

MOBILE 3D
GRAPHICS SoC

MOBILE 3D
GRAPHICS SoC
From Algorithm to Chip

Jeong-Ho Woo
Korea Advanced Institute of Science and Technology, Republic of Korea

Ju-Ho Sohn
LG Electronics Institute of Technology, Republic of Korea

Byeong-Gyu Nam
Samsung Electronics, Republic of Korea

Hoi-Jun Yoo
Korea Advanced Institute of Science and Technology, Republic of Korea

Copyright � 2010 John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01,

Singapore 129809

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

expressly permitted by law, without either the prior written permission of the Publisher, or authorization through

payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be

addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809,

tel: 65-64632400, fax: 65-64646912, email: enquiry@wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names

and product names used in this book are trade names, service marks, trademarks or registered trademarks of their

respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks

referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered.

It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional

advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstrasse 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons Canada Ltd, 5353 Dundas Street West, Suite 400, Toronto, ONT, M9B 6H8, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not

be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Mobile 3D graphics SoC : from algorithm to chip / Jeong-Ho Woo ... [et al.].

p. cm.

Includes index.

ISBN 978-0-470-82377-4 (cloth)

1. Computer graphics. 2. Mobile computing. 3. Systems on a chip. 4. Three dimensional display systems.

I. Woo, Jeong-Ho.

T385.M62193 2010

621.3815–dc22

2009049311

ISBN 978-0-470-82377-4 (HB)

Typeset in 10/12pt Times by Thomson Digital, Noida, India.

Printed and bound in Singapore by Markono Print Media Pte Ltd, Singapore.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees

are planted for each one used for paper production.

www.wiley.com

Contents

Preface ix

1 Introduction 1

1.1 Mobile 3D Graphics 1

1.2 Mobile Devices and Design Challenges 3

1.2.1 Mobile Computing Power 3

1.2.2 Mobile Display Devices 5

1.2.3 Design Challenges 5

1.3 Introduction to SoC Design 6

1.4 About this Book 7

2 Application Platform 9

2.1 SoC Design Paradigms 9

2.1.1 Platform and Set-based Design 9

2.1.2 Modeling: Memory and Operations 14

2.2 System Architecture 18

2.2.1 Reference Machine and API 18

2.2.2 Communication Architecture Design 22

2.2.3 System Analysis 25

2.3 Low-power SoC Design 27

2.3.1 CMOS Circuit-level Low-power Design 27

2.3.2 Architecture-level Low-power Design 27

2.3.3 System-level Low-power Design 28

2.4 Network-on-Chip based SoC 28

2.4.1 Network-on-Chip Basics 29

2.4.2 NoC Design Considerations 41

2.4.3 Case Studies of Chip Implementation 48

3 Introduction to 3D Graphics 67

3.1 The 3D Graphics Pipeline 68

3.1.1 The Application Stage 68

3.1.2 The Geometry Stage 68

3.1.3 The Rendering Stage 74

3.2 Programmable 3D Graphics 78

3.2.1 Programmable Graphics Pipeline 78

3.2.2 Shader Models 81

4 Mobile 3D Graphics 85
4.1 Principles of Mobile 3D Graphics 85

4.1.1 Application Challenges 86

4.1.2 Design Principles 87

4.2 Mobile 3D Graphics APIs 91

4.2.1 KAIST MobileGL 91

4.2.2 Khronos OpenGL-ES 93

4.2.3 Microsoft’s Direct3D-Mobile 95

4.3 Summary and Future Directions 96

5 Mobile 3D Graphics SoC 99

5.1 Low-power Rendering Processor 100

5.1.1 Early Depth Test 101

5.1.2 Logarithmic Datapaths 102

5.1.3 Low-power Texture Unit 104

5.1.4 Tile-based Rendering 106

5.1.5 Texture Compression 107

5.1.6 Texture Filtering and Anti-aliasing 109

5.2 Low-power Shader 110

5.2.1 Vertex Cache 110

5.2.2 Low-power Register File 111

5.2.3 Mobile Unified Shader 113

6 Real Chip Implementations 119

6.1 KAIST RAMP Architecture 119

6.1.1 RAMP-IV 120

6.1.2 RAMP-V 123

6.1.3 RAMP-VI 127

6.1.4 RAMP-VII 132

6.2 Industry Architecture 139

6.2.1 nVidia Mobile GPU – SC10 and Tegra 139

6.2.2 Sony PSP 143

6.2.3 Imagination Technology MBX/SGX 144

7 Low-power Rasterizer Design 149

7.1 Target System Architecture 149

7.2 Summary of Performance and Features 150

7.3 Block Diagram of the Rasterizer 150

7.4 Instruction Set Architecture (ISA) 151

7.5 Detailed Design with Register Transfer Level Code 154

7.5.1 Rasterization Top Block 154

7.5.2 Pipeline Architecture 156

vi Contents

7.5.3 Main Controller Design 156

7.5.4 Rasterization Core Unit 158

8 The Future of Mobile 3D Graphics 295

8.1 Game and Mapping Applications Involving Networking 295

8.2 Moves Towards More User-centered Applications 296

8.3 Final Remarks 297

Appendix Verilog HDL Design 299

A.1 Introduction to Verilog Design 299

A.2 Design Level 300

A.2.1 Behavior Level 300

A.2.2 Register Transfer Level 300

A.2.3 Gate Level 300

A.3 Design Flow 301

A.3.1 Specification 302

A.3.2 High-level Design 302

A.3.3 Low-level Design 303

A.3.4 RTL Coding 303

A.3.5 Simulation 304

A.3.6 Synthesis 304

A.3.7 Placement and Routing 305

A.4 Verilog Syntax 305

A.4.1 Modules 306

A.4.2 Logic Values and Numbers 307

A.4.3 Data Types 308

A.4.4 Operators 309

A.4.5 Assignment 311

A.4.6 Ports and Connections 312

A.4.7 Expressions 312

A.4.8 Instantiation 314

A.4.9 Miscellaneous 316

A.5 Example of Four-bit Adder with Zero Detection 318

A.6 Synthesis Scripts 320

Glossaries 323

Index 325

Contents vii

Preface

This is a book about low-power high-performance 3D graphics for SoC (system-on-

chip). It summarizes the results of 10 years of “ramP” research at KAIST (ramP stands

for RAMprocessor) – a national project that was sponsored by theKorean government

for low-power processors integrated with high-density memory. The book is mostly

dedicated to 3D graphics processors with less than 500mW power consumption for

small-screen portable applications

Screen images continue to become ever-more dramatic and fantastic. These changes

are accelerated by the introduction of more realistic 3D effects. The 3D graphics

technology makes vivid realism possible on TVand computer screens, especially for

games. Complicated and high-performance processors are required to realize the 3D

graphics. Rather than use a general-purpose central processing unit (CPU), dedicated

3D graphic processors have been adopted to run the complicated graphics software.

There is no doubt that all the innovations in PC or desktopmachineswill be repeated

in portable devices. Cellphones and portable gamemachines now have relatively large

screens with enhanced graphics functions. High-performance 3D graphics units are

included in the more advanced cellphones and portable game machines, and for these

applications a low power consumption is crucial. In spite of the increasing interest in

3D graphics, it is difficult to find a book on portable 3D graphics. Although the

principles, algorithms and software issues have been well dealt with for desktop

applications, hardware implementation is more critical for portable 3D graphics. We

intend to cover the 3D graphics hardware implementation especially emphasizing low

power consumption. In addition, we place emphasis on practical design issues and

know-how. This book is an introduction to low-power portable 3D graphics for

researchers of PC-based high-performance 3D graphics as well as for beginners who

want to learn about 3D graphics processors. The HDL file at the end of the book offers

readers some first-hand experience of the algorithms, and gives a feel of the hardware

implementation issues of low-power 3D graphics.

This book would not have been possible without help from many colleagues and

supporters. First we would like to thank Dr Sejeong Park of Mediabridge, Dr Yongha

Park of Samsung, Dr Chiwon Yoon of Samsung, and Dr RamchanWoo of LG for their

pioneering efforts in mobile 3D graphics research at the Semiconductor Systems

laboratory in KAIST. Professor Kyuho Park of KAIST, Professor T. Kuroda of Keio

University, andDr IanYoung of Intel helped us to begin our research on low-power 3D

graphics. We would like also to thank Professor Young-Joon Park of Seoul National

University, Dr Heegook Lee of LG, and Dr Huh Youm of Hynix for their help with the

ramP project. Last but not least, we would like to thank James and his team at John

Wiley for their care in the birth of this book.

x Preface

1

Introduction

1.1 Mobile 3D Graphics

Mobile devices are leading the second revolution in the computer graphics arena,

especially with regard to 3D graphics. The first revolution came with personal

computers (PC), and computer graphics have been growing in sophistication since

the 1960s. To begin with it was widely used for science and engineering simulations,

special effects in movies, and so on, but it was implemented only on specialized

graphics workstations. From the late 1980s, as PCs became more widely available,

various applications were developed for them and computer graphics moved on to

normal PCs – from specific-purpose to normal usage.

Three-dimensional graphics are desirable because they can generate realistic

images, create great effects on games, and enable slick effects for user interfaces.

So 3D graphics applications have been growing very quickly. Almost all games now

use 3D graphics to generate images, and the latest operating systems – such as

Windows 7 and OS X – use 3D graphics for attractive user interfaces. This strongly

drives the development of 3D graphics hardware. The 3D graphics processing unit

(GPU) has been evolving from a fixed-function unit to a massively powerful comput-

ing machine and it is becoming a common component of desktop and laptop

computers.

A similar revolution is happening right now with mobile devices. The International

Telecommunications Union (ITU) reports that 3.3 billion people – half the world’s

population – used mobile phones in 2008, and Nokia expects that there will be more

than 4 billion mobile phone users (more than double the number of personal

computers) in the world by 2010 [1]. In addition, mobile devices have been dramati-

cally improved from simple devices to powerful multimedia devices; a typical

specification is 24-bit color WVGA (800� 480) display screen, more than 1GOPS

(giga-operations per second) computing power, and dedicated multimedia processors

including an image signal processor (ISP), video codec and graphics accelerator.

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

So 3D graphics is no longer a guest on mobile devices. A low-cost software-based

implementation is used widely in low-end mobile phones for user interfaces or simple

games,while a high-end dedicatedGPU-based implementation brings PCgames to the

mobile device.

Nowadays, 3D graphics are becoming key to themobile device experience.With the

help of 3D graphics, mobile devices have been evolving with fruitful applications

ranging from simple personal information management (PIM) systems (managing

schedules, writing memos, and sending e-mails or messages), to listening to music,

playing back videos, and playing games. Just as with the earlier revolution in the PC

arena, 3D graphics can make mobile phone applications richer and more attractive –

this is the reason why I have used the phrase “second revolution.”

Development of mobile 3D graphics was started basically in the late 1990s

(Figure 1.1). Low-power GPU hardware architectures were developed, and the

software algorithms of PCs and workstations were modified for mobile devices.

Software engines initially drove the market. Among them, two notable solutions –

“Fathammer’s X Forge” engine and “J-phone’s Micro Capsule” – were embedded in

Nokia cellular phones and J-phone cellular phones. Those software solutions do

provide simple 3D games and avatars, but the graphics performance is limited by the

computation power of mobile devices. So new hardware solutions arrived to the

market. ATI and nVidia introduced “Imageon” and “GoForce” using their knowledge

of the PC market. Besides the traditional GPU vendors like nVidia and ATI, lots of

challengers introduced great innovations (Figure 1.2). Imagination Technology’s

MBX/SGX employs tile-based rendering (discussed in Chapter 5) to reduce data

transactions between GPU and memory. Although tile-based rendering is not widely

Figure 1.1 A history of 3D graphics

2 Mobile 3D Graphics SoC

used on the PC platform, it is very useful in reducing power consumption so that the

MBX/SGX has become one of the major mobile GPUs on the market. FalanX and

Bitboys developed their own architectures – FalanXMali and Bitboys Acceleon – and

they provided good graphics performance with low power consumption. Although

those companiesmerged intoARMandAMD, respectively, their architectures are still

used to develop mobile GPUs in ARM and AMD.

1.2 Mobile Devices and Design Challenges

As mentioned in the previous section, mobile devices have evolved at a rapid pace. To

satisfy various user requirements there are lots of types of mobile device, such as

personal digital assistant (PDA),mobile navigator, personalmultimedia player (PMP),

and cellular phone. According to their physical dimensions or multimedia functional-

ity, these various devices can be categorized into several groups, but their system

configurations are very similar. Figure 1.3 shows two leading-edgemobile devices and

their system block diagram. Recent high-performance mobile devices consist of host

processor, systemmemories (DRAMand Flashmemory), an application processor for

multimedia processing, and display control. Low-end devices do not have a dedicated

application processor, to reduce hardware cost. Evolution of the embedded processor

and display devices has led to recent exciting mobile computing.

1.2.1 Mobile Computing Power

In line with Moore’s law [2], the embedded processors of mobile devices have been

developing from simple microcontroller to multi-core processors and the computing

Figure 1.2 Mobile 3D graphics

Introduction 3

power has kept increasing roughly 50% per year. To reduce power consumption, an

embedded processor employs RISC (Reduced Instruction Set Computer) architecture,

and the computing power already exceeds that of the early Intel Pentium processors.

Typically, recent mobile devices have one or two processors as shown in Figure 1.4.

Low-end devices have a single processor so that multimedia applications are im-

plemented in software, while high-end devices have two processors, one for real-time

operations and the other for dedicated multimedia operations. The host processor

performs fundamental operations such as running the operating system, and personal

information management (PIM). Meanwhile the application processor is in charge of

Figure 1.3 Mobile devices and their configuration

Figure 1.4 Embedded processors and system architecture

4 Mobile 3D Graphics SoC

high-performance multimedia operations such as MPEG4/H.264 video encoding or

real-time 3D graphics. To increase computing power, the newest processors employ

multi-core architecture. Some high-performance processors contain both a general-

purpose CPU and DSP together, and some application processors consist of more than

four processing elements to handle various multimedia operations such as video

decoding and 3D graphics processing.

1.2.2 Mobile Display Devices

It is safe to say that evolution of mobile display devices leads the revolution of mobile

devices, especially the multimedia type. The first mobile devices had a tiny monotone

display that could cope with several numbers or characters. Recent mobile devices

support up to VGA (640� 480) 24-bit true-color display. The material of the display

device is also changing from liquid crystal to AMOLED (Active Mode Organic

Light Emitting Diode). The notable advantages of AMPLED are fast response time

(about 100 times faster than LCD), and low power consumption. Since it does not

require back-lighting like the LCD, the power consumption and weight are reduced,

and the thickness is roughly one-third of the LCD. Of course the functionality of the

display device is improved too, so that nowadays we can use touch-screens on mobile

devices.

1.2.3 Design Challenges

Although the funtionality ofmobile devices is greatly improved, there aremany design

challenges in component design. In short, there are three major challenges.

Physical dimension – The main limitation of mobile devices is definitely their

physical size. For portability the principal physical dimension is limited to about

5 inches (12.5 cm), and the latest high-end cellular phones do not exceed 4 inches.

Thatmeans there is limited footprint on the systemboard, and components should be

designed with small footprint.

Power consumption – Since the mobile device runs on a battery, the power

consumption decides the available operating time. As the performance increases

it consumes more power owing to the faster clock frequency or richer hardware

blocks. Therefore, increasing operating time by reducing power consumption is as

important as increasing computing power.

System resources – Mobile devices cannot have rich system resources owing to the

physical dimension and power consumption. They cannot utilize a wide-width

system bus and cannot use high-performance memory such as DDR2 or DDR3.

Despite this, mobile devices provide quite high performance to satisfy user

requirements.

Introduction 5

To meet these design challenges, many mobile components are designed as SoC

(System-on-a-Chip). Since the SoC includes various functional blocks such as

processor, memory, and dedicated functional blocks in a single die, we can achieve

high performance with low power consumption and small area.

1.3 Introduction to SoC Design

System-on-a-Chip has replaced key roles of VLSI (Very Large Scale Integration) and

ULSI (Ultra Large Scale Integration) in mobile devices. The change of the name is

a reflection of the shift of the main point from “chip” to “system.” You may wonder

what “system” means and what the difference is compared with “chip.”

Before SoC, the hardware developer considered how to enhance the performance of

the components. At that time, the hardware developer, the system developer and the

software developer were separated and made their own domains. In the SoC era, those

domains are merging. Engineers, be they a hardware engineer or a software engineer,

have to consider both hardware issues and software issues and provide a system

solution to the target problem with the end application in mind.

Of course, there aremanydifferent definitions of SoCaccording to theviewpoint, but in

this book the systemmeans “a set of components connected together to achieve a goal as a

whole for the satisfaction of the user.” To satisfy end-user requirements, the engineer

should cover various domains. With regard to the software aspect, the engineer should

consider the software interface such as API or device driver, specific algorithms, and

compatibility.With regard to the hardware aspect, the engineer should consider functional

blocks, communication architecture to supply enoughbandwidth to each functional block,

memory architecture, and interface logics. Moreover, since such a complicated entity can

be handled only by CAD (Computer Aided Design) tools, the engineer should have

knowledge of CAD, which covers automatic synthesis of the physical layouts.

Therefore, the discipline of SoC design is intrinsically complicated and covers

a variety of areas such as marketing, software, computing system and semiconductor

IC design as described in Figure 1.5. SoC development requires expertise in IC

technology, CAD, software, and algorithms, aswell asmanagement of extended teams

and project and customer research.

Initially, the concept of SoCcame from the PCbus system.By adopting the same bus

architectures as those used in the PC, the processing of embedded applications was to

be implemented on a single chip by assembling dedicated hard-wired logic and

existing general-purpose processors. As the scale of integration and design complexity

increased, the concepts of “design reuse” and “platform-based design” were born. The

well-designed functional blocks could be reused in the later SoC.

However, such pre-designed functional blocks, called Intellectual Property (IP),

are difficult to reuse with SoC because they were optimally developed for specific

purposes, not for general-purpose utilization. In addition, since conventional buses

were not suitable for the on-chip environment, there was a need to develop new

6 Mobile 3D Graphics SoC

communication architecture with specific characteristics – such as wide bit width, low

power, higher clock frequency, and a tailored interface. The details of design reuse and

platform-based SoC design are discussed in Chapter 2.

Figure 1.6 shows an example of SoC. Intel’s research chip [3] has 80 CPUs inside.

1.4 About this Book

Thisbookdescribesdesignissuesinmobile3Dgraphicshardware.PCgraphicshardware

architecture with its shortcomings in the mobile environment is described, and several

low-power techniques for mobile GPU and its real implementation are discussed.

Chapter 1 introduces the current mobile devices and mobile 3D graphics compared

with desktop or arcade-type solutions. Chapter 2 discusses the general chip imple-

mentation issue, such as how to design the SoC, and includes an explanation of SoC

platforms. The SoC design paradigm, system architecture, and low-power SoC design

are addressed in detail. Chapter 3 deals with basic 3D graphics, the fixed-function

3D graphics pipeline, the application-geometry rendering procedure, and the

programmable 3D graphics pipeline. In Chapter 4 we articulate the differences

between conventional and mobile 3D graphics, and introduce the principles of mobile

3D graphics and standard mobile 3D graphics APIs.

User
Satisfaction

Algorithm

State
Diagram

Synthesis

HDL

CAD
Project

Management

Embedded
Software

Middleware

OS

Circuits
Library

Device

Process

Figure 1.5 Disciplines required for the design of SoC

Introduction 7

The design of 3Dgraphic processors is discussed inChapters 5–7.Chapter 5 explains

the hardware design techniques for mobile 3D graphics, such as low-power rasterizer,

low-power texture unit, and several hardware schemes for low-power shaders.Chapter 6

covers the real chip implementation of mobile 3D graphics hardware. For academic

architecture, KAIST RAMP architecture is introduced and the industrial architectures,

SONY PSP and Imagination Technology SGX, are also described. Chapter 7 has

a detailed explanation of the low-power rasterization unit with RTL code. In this

chapter, readers can grasp the basic concept of how to design low-power 3D graphics

processors. The future of mobile 3D graphics is very promising because people will

carry more and more portable equipment in the futurewith high-performance displays.

Finally, Chapter 8 looks at the future of mobile 3D graphics.

We also include appendices to introduce to chip design by verilog HDLThe reader

can run the verilog file to check the algorithms explained in the earlier chapters and get

a taste of real 3D graphics chip design.

References

1 TolgaCapin, et, al., “The State of theArt inMobileGraphicsResearch”, IEEEComputerGraphics andApplications,

Vol. 28, Issue 4, 2008, pp. 74–84.

2 Gordon E. Moore, “Cramming more components onto integrated circuits”, Electronics, vol. 38, no. 8, 1965.

3 J. Held, et al, “From a Few Cores to Many: A Tera-scale Computing Research Overview,” white paper, Intel

Corporation, www.intel.com.

Figure 1.6 Example of an SoC implementation: Intel’s 80-core processor and its unit CPU. The Intel

logo is a registered trademark of Intel Corporation

8 Mobile 3D Graphics SoC

2

Application Platform

2.1 SoC Design Paradigms

2.1.1 Platform and Set-based Design

2.1.1.1 Definition of a Platform

Two steps are encountered in any design process: “planning” and “making.” Certain

procedures are followedwhenwewant to performmeaningful tasks towards building a

target structure. As the target structure takes on more complexity, well-established

design procedures are essential. This applies in SoCdesign,which is strongly driven by

its target applications such as multimedia andmobile communications. SoC engineers

have to consider factors like quality, cost and delivery (QCD). In that sense, their

design procedures naturally seek the reuse of previously developed techniques and

materials at every possible design step.

In a popular English dictionary, a “system” is defined as a set and awayofworking in

a fixed plan with networks of components. In addition to this, SoC requires one more

idea, which is the integration of components on a single semiconductor chip. So it

follows that we need to focus on two concepts: the fixed plan, and integration. We can

catch the concept of predetermined architecture from the fixed plan; and integration

involves the network and component-based design. Considering that modern digital

gadgets require not only hardware (HW) components but also software (SW)

programs, we can begin to see what the “platform” means in SoC design.

The platform is a set of standalone modules that become the basis of the system.

These standalone modules are pre-integrated and combine HWand SW components –

we call them the “reference architectures.” They are also well-verified and have well-

defined external interfaces. The platform guides what designers do, and this guidance

determines the design flow. The platform concept helps us to design a more compli-

cated and less buggy systemwithin limitedQCD factors by reusing and upgrading pre-

built HW and SW components.

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

In this part of the chapter we will discuss what the platform is and what it does. We

will explain how the platform can be extracted from earlier design examples and how it

can be used for a new design. The concept of modeling and its relationship with the

platform will also be examined. We then go on to discuss the system architecture and

software design in detail in the following sections.

2.1.1.2 Platformization

Sometimes, use of the word “platform” seems to be a little confused. Many

engineers tend to think that a platform is a kind of restriction. However, we need

to consider a platform in two respects: its philosophy and its management. By

philosophy we mean how a platform is derived from the ideas, theory and history of

pre-designed samples. It also encompasses how we can use the derived platform for

new designs. By management we mean the directions the platform – and the designs

guided from that platform – should be evolved and maintained. We should avoid

trying to make a design tool such as a design wizard program while developing the

platform. The platform is not intended to generate design examples automatically.

Instead, it is better to approach the platform as a design methodology, which is a set-

based design. That can lead us to the many benefits of design planning and our

design procedures.

When developing a platform for a given design set and research area, we will try to

analyze pre-designed examples and extract some common ideas in those designs. The

ideas may include target design specifications with a primary feature set, external

interfaces and internal architecture.After collecting these common ideas, we canmake

the basic standalone modules and define the platform by reusing the individual

components and arranging them under categories and levels of primary features.

This procedure resembles inductive reasoning, which derives general principles from

particular facts and instances. In this process, it is very important to categorize the

primary features and link them to each specification level (such as low-, middle-, or

high-performance levels) when building the reference architectures. Actually, when

we design something,we are first given the target specifications and primary feature set

to be designed. The detailed architecture and design plan doesn’t matter for this step.

We should plan to design our target based on previous examples and theory by using

previous knowledge and experience. The platform is then the collection of our design

history and theories. So, categorization and arrangement of primary features are the

guideline to distinguish the reference architectures in the platform.

Now we are ready for our new design. The specification and external interfaces of

our new design target may contain some parts of the pre-developed platforms. Some

other parts may differ. However, we can usually find one best-matched standalone

module in the platforms as a reference for our next design target. The parts that are

common with the reference design can be reused in the new design. Some other parts

might be developed by reusing and expanding the internal architecture and interface

10 Mobile 3D Graphics SoC

definitions of the reference design. This is the set-based design approach and

resembles deductive reasoning, which generates specific facts and conclusions (our

new design) from the general premises (our platform). Therefore, platformization can

be understood as inductive and deductive reasoning, which helps us to develop a new,

more complex design with very controlled and acceptable resources.

Figure 2.1 illustrates the design process. We have mentioned that the common

ideas extracted from previous designs and theories contain the specification, external

interface and internal architectures. In real designs, the specification and definitions

of external interfaces tend to influence and decide the internal architectures to a

certain extent. The definitions of internal architecture contain the following

components.

Primary processing elements – What kinds of task are required and what are the

related computing units?

Memory architecture –What kinds of processing result are stored for next time and

how many memories are required?

Internal network – How can the processing elements and memory components be

connected and interfaced with each other? And how are the internal elements

connected to external interfaces?

Programmer’s model – How can software developers use the HW devices to

complete the functions of the target design?

In set-based design, the reference architecture is applied as a starting point for the

target design. As shown in the figure, there are four options: “As-is,” “Modified,”

“New design,” and “Removed.” “As-is” means the reuse of components. Since the

reference architecture is not the final design output, additions and modifications are

always necessary. However, the set-based design approach can help us concentrate on

the updated parts and reduce design costs.

2.1.1.3 Mobile 3D Graphics Example

The operational sequence, or pipeline, of mobile 3D graphics consists of geometry and

rendering stages, which are explained in Chapter . In this subsection, the platformiza-

tion of mobile 3D graphics will be briefly described as an example of the earlier

discussion.

There are many design examples in mobile 3D graphics [1–3]. Like many

multimedia applications, the Advanced RISC Machines (ARM) processor family

that has the reduced instruction-set computer (RISC) architecture is most widely used

as a main host processor because of its good performance and low power consump-

tion [4]. Many mobile 3D graphics designs employ the ARM architecture with

appropriate hardware accelerators. These HW accelerators can be divided into fully

hard-wired logic and programmable architecture. As more functionality is required,

Application Platform 11

more programmability is integrated. In the software part, we have the industry-

standard API, OpenGL-ES, for mobile 3D graphics [5]. It is also evolving from the

application of compact and efficient architecture into integrating more programma-

bility in the next version.

Figure 2.1 (a) Platform and (b) set-based design

12 Mobile 3D Graphics SoC

Figure 2.2 shows the range of graphics specifications and their reference archi-

tectures. For peoplewanting high-end graphics performance, programmability and full

HWacceleration are necessary. In contrast, simple shading is required by some people

who just want simple graphics such as the user interface of a small cellular phone. As

more graphics functions are required, the processing speed must also be increased. As

the target design moves towards high-end performance, more HW accelerators and

programmability will be applied. The reference architecture depicted in the figure

Figure 2.2 Platform of mobile 3D graphics

Application Platform 13

shows typical HWbuilding blocks and the related software OpenGL-ES library. Some

HWblocks such as a rendering engine (RE) and a texture engine (TE) are reused in two

more of the reference architectures. The vertex shader (VS) and pixel shader (PS) are

newly introduced in the reference architecture of the highest performance range. So,

when designing a new mobile 3D graphics system including HW and SW, we can

decide on the reference architecture by inspecting target specifications and graphics

features. Then we can complete the design by reusing, updating and optimizing the

additionally necessary SW and HW components based on the chosen reference

architecture.

2.1.2 Modeling: Memory and Operations

2.1.2.1 Memory and Operations

How can the platform be derived from earlier design examples? Asking this question

may help us to make and use the platform for our new design more efficiently.

When we design electrical components, there are certain requirements to drive

signals or store information for future use. These actions are related to memory or, in

other words, state variables. If an external stimulus and internal activity do not affect

any part of the internal memory contents, we can say that nothing important happened.

Then, after defining memories, we can consider what types of operation can be

performed on them. So, we can imagine that an electrical component actually consists

of the memory and the operations. In that sense, modeling can be defined as deciding

on the memory architecture and its related operations for the target components. The

design of an electrical system can be regarded as the process that defines its memories

and operations by reusing and combining sub-components that are also defined as

memories and operations.

Figure 2.3 outlines the modeling and design methodology. The basic elements can

be defined by their memories and operations, and the memories can be called state

variables. Then we have two design methods. The first ismodular design. This means

that every element can be developed independently and reused to provide multiple

functions. Many interconnections – such as serial, parallel, and feedback networks –

can be implemented. So, for example, one output of elementA can be fed into one input

of element B. The second method is hierarchical design. Here, elements can be

organized as parent–child or tree-like structures to permit complex functions. The state

variables are newly defined and the details of internal operations are encapsulated. This

process can be repeated many times, step by step. Complicated designs are made

possible by combining simpler elements.

Since complex designs can be divided into sub-elements, modularly and hierar-

chically, we can set up reference architecture for those complex designs. The reference

architectures in the platform can be built by combining or selecting necessary

14 Mobile 3D Graphics SoC

sub-elements, and be reused by being combined andmodified with other elements.We

can update some parts of the reference design by changing the definitions of memories

and operations. However, to maximize the efficiency of reuse in the reference design,

we should restrict changes of input and output ports in the model of sub-elements as

much as possible. This can be controlled because we know the influence of those

changes by using modular and hierarchical design methods. Changing internal

definitions of memories and operations does not result in changes in other parts of

the whole design, and changing definitions of input and output ports can be clearly

traced through the design hierarchy.

In the past, many designers have used flow charts or sequential diagrams to model

their designs. However, as designs become more complex it becomes difficult to

manage, update and reuse earlier designs with the flow chart method. It becomes

difficult to understand the influence of changing elements. However, the sequential

diagram is still useful in understating the behavior of a system when analyzing

particular cases.Many design specifications are described by functional requirements,

such as listening tomusicwhile viewing photographs. In that situation, the interactions

of each sub-block should be clearly revealed to discover any insufficiency or bottle-

neck in the whole design. These interactions are triggered in the current sub-block by

events in earlier blocks. The modular and hierarchical design methods, and therefore

Figure 2.3 Modeling and design methodology: (a) modeling, (b) modular design, and (c) hierarchical

design

Application Platform 15

platform and set-based design, can help us not only to build the design but also to

analyze particular cases of using the design, because the interfaces and internal

architecture are clearly defined.

Figure 2.4 shows an example. Part (a) shows the block diagram of a mobile 3D

graphics system that can perform full programmable graphics pipeline operations,

including a vertex shader and a pixel shader. Part (b) illustrates a case of a game

application including game logic operations and graphics operations. The game logic

operations – such as game physics and artificial intelligence – are performed on the

ARM11host processorwith a vector floating-point unit. Then theARM11commits the

graphics commands into the graphics sub-system. The vertex shader is invoked first.

Then a triangle setup and pixel shader follows. In this figure, note that the 3Dmemory

block is accessed many times by multiple functional units. Finally, the ARM11 reads

the final graphics results from the 3Dmemory. This analysis can inform us that the 3D

memory block should be carefully designed for best performance.

2.1.2.2 Applications of Analog and Digital Designs

The modeling and design methodology discussed in the previous subsection can be

applied to both analog and digital designs. Figure 2.5 shows examples.

In both analog and digital designs, devices manufactured with silicon materials are

used – so-called semiconductormaterials. The behavior of thesematerials is explained

by physics and electromagnetic theories such as wave equations and Maxwell

equations. From the viewpoint of memory and operation modeling, the electronic

charges and vector fields (such as electronic and magnetic fields) are the memories.

The values of those parameters represent the information carried by the materials. The

governing equations define the operations performed on those memories.

In analog design, circuit elements such as field-effect transistors, resistors and

capacitors are built using siliconmaterials.We can regard voltages and currents as new

state variables, andKirchhoff’s current law (KCL) andKirchhoff’s voltage law (KVL)

as new definitions of operations. Physics books describe how KCL and KVL can be

deduced from Maxwell equations. Then we can build circuit blocks – such as

Figure 2.4 Example of use-case analysis: (a) block diagram, and (b) use-case analysis of a game

16 Mobile 3D Graphics SoC

operational amplifiers and analog filters – by using circuit elements. The voltages at

important nodes and currents in important circuit paths can now be introduced as new

state variables. If we repeat the same process in steps, we can build functional blocks

such as analog-to-digital converters, mixers and tuner, and finally an analog radio as

the product. All these processes can be understood by the modular and hierarchical

design methods.

Figure 2.5 Applying (a) analog and (b) digital designs

Application Platform 17

Digital design also shows the same sequences. By using siliconmaterials and circuit

elements, we can make logic gates such as AND, OR, and NOT. Then the logic blocks

such as registers and adders can be developed. Again, the voltages at important nodes

can be defined as the memories. By using logic blocks, we can build functional blocks

such as an arithmetic and logic unit (ALU) and a control unit, and then finally the

product such as a RISC processor can be released.

The above concepts in modeling, design methodology and platform should be kept

in mind during all design processes. The use of a reference architecture and set-based

design results in reduced design costs and permits the development of more advanced

design targets. Themodular and hierarchical approach based onmemory and operation

modeling canmake it possible to divide complex problems and keep the focus onmore

easily handled sub-elements.

2.2 System Architecture

2.2.1 Reference Machine and API

2.2.1.1 Definition of Reference Machine

We have described the reference architecture as the standalone module that becomes

the basis of the system, and the platform as a set of those standalone modules. Nowwe

need to step inside the reference architecture.

When deciding to implement a real system by using the reference architecture,

we have to consider which parts will be mapped into software and which into

hardware. The software will run on general-purpose processing elements such as

RISC processors or digital signal processors (DSPs). The hardware parts can be

mapped into hardware accelerators or application-specific processors with their own

instruction set, such as DirectX graphics shaders. However, before beginning the

separation of HW and SW parts, we have to consider how programmers or

applications engineers approach the target system efficiently. Programmers require

function lists that cover all possible things they can do with the system. They do not

need to know how the system works internally. On the other hand, hardware or

system engineers need to know how each function is actually implemented in the

system. They will also want to keep the feature set within a controlled range in

order to ensure design feasibility. In relation to this we can introduce two concepts

concerning the reference architecture.

The first concept is the reference machine. It is defined as a state machine that

controls a set of specific (or target) functions. So, it represents all features to be

implemented. Conceptually, the reference machine is composed of datapaths, local

states, global states and selectors (Figure 2.6).Datapaths are the computing elements

that represent the operations to be performed. Local states are the memories

storing internal information for datapaths; they are not shared with other datapaths.

18 Mobile 3D Graphics SoC

Global states are the memories that can be shared between datapaths. Selectors

interconnect between datapaths. The output port of one datapath is connected to the

input port of another datapath. The selector also performs operations such as multi-

plexing of multiple inputs, which are controlled by some parameters.

The second concept is the application programming interface (API). It can be

defined as the programmer’s interface to target the reference machine. It totally

encapsulates the internal structure of the reference machine. APIs can be categorized

as data processing operations, control operations and memory operations. They are

related, respectively, to datapaths, selectors and state variables in the reference

machine. Therefore, any application algorithm expected to use the target reference

machine should be described by using only the defined APIs. Any additional functions

not covered by the APIs should be implemented by using other computing elements or

processors that are outside the target reference machine.

After defining the reference machine and APIs, the system architect has to

decide which parts of the reference machine will be implanted as hardware and

which as software, by analyzing the performance requirements (covered in a later

section).

We can say that the reference architecture is composed of the implementation of the

reference machine and its APIs. Of course, the APIs can be also reused between

different reference architectures. The implementation level of the referencemachine is

decided by the target performance requirements, so we can state the following

definition and simple equation:

Platform: a set of reference architecture

Reference architecture ¼ implementation of reference machineþAPI:

Building the referencemachine andAPIs in a given design problem is not an easy task,

but the simplest approach is to usememory and operationmodeling. After defining the

memories and operations for each algorithmic description of the design problem, the

system architect can merge and rearrange the primary operations modularly and

Figure 2.6 Elements of a reference machine

Application Platform 19

hierarchically in order to build the reference machine. In this, the definitions of local

and global states are very important.

Inmobile 3D graphics, there are now industry-standardAPIs. OpenGL-ES is awell-

defined subset of desktop OpenGL, and adopts various optimizations such as fixed-

point operations and redundancy eliminations for mobile devices with low processing

power. In its latest version, OpenGL-ES enables fully programmable 3D graphics such

as vertex and pixel shading. Mobile 3D graphics are being improved towards even

more functionality and programmability in both of hardware and software, while

achieving low power consumption.

2.2.1.2 SoC Design Flow

Figure 2.7 shows the design process from target specification to manufacture, with the

focus on system architecture.

The target specification defines the type of product and rough performance

requirements. Suitable algorithms are chosen tomeet the specification using computer

programs such as a programming language, UML [6] or MATLAB.

In the system specification, the performance of the system is given but the

implementation details are not determined yet. The fact that the system has to be

implemented on a chip (SoC) means that the software running on the embedded CPUs

should be designed concurrently. This is the big difference between SoC design and

VLSI (very large scale integrated) design. Determination of which parts of the

specification will be implemented in hardware and which in software is included in

the design process.

Once the concept of the target systemhas been grasped, the set of functions to realize

the system specification should be derived and divided into more affordable unit

functions. Therefore, the functional specification of a system is determined as a set of

functions which calculate outputs from the inputs.

As mentioned in the previous subsection, the reference machine and its APIs can be

developed from the algorithm descriptions by using memory and operation modeling.

Then,wego into the step of product definition. This involves the namingof the product,

“is/is-not” analysis, priority analysis, and competitive analysis. “Is/is-not” analysis is

the process of defining the desired level of development: unnecessary features should

be identified in order to preventwasting design resources. Priority analysis includes the

schedule, costs, and power consumption. Because the development process is always

controlled by a limited delivery time, some parts of the first design plan might have to

be abandoned.

Next in the design flow comes the system architecture: reference architecture

selection, system specification, target architecture selection, and performance

analysis. With the production definitions and the developed reference machine, a

suitable platform and one well-matched reference architecture in that platform can be

selected. This reference architecture can be used in the remaining design steps using

20 Mobile 3D Graphics SoC

the set-based design approach. Then, documentation of the system specification can be

prepared.

The system specification can contain the following items:

1. Summary of product requirements

2. List of features

3. Top-level block diagram

4. Use case descriptions

5. Availability and status of functional blocks (As-is, New, Modified, Removed)

6. Block specification

Figure 2.7 Design flow

Application Platform 21

7. Integration and communication specification

8. Power specification

9. External interface (Pin list, Pin multiplexing, Package) specification.

Although the initial specifications and performance requests are a little indistinct, the

system specification describes the target productmore concretely. By using the system

specification and reference architecture, we can decide the internal architecture of

software and hardware parts in more detail. Having decided the target architecture, we

can estimate factors such as silicon area, power consumption, processing speed and

memory requirements. For each use case, the performance analysis is performed to

reveal bottlenecks and wastage of resources. If the performance does not meet the

requirements, the target architecture should bemodified. So the target architecture and

performance analysis will be repeated until the performance meets the target

requirements.

When the system architecture is finalized, the programmer’s model for the target

product should be defined. The APIs are a kind of top-level software interface. To

realize each API function, there should be invocations of some hardware blocks or

processing elements that have their own internal architectures. Therefore, we need

descriptions of how the API developers can use each functional block in the target

architecture. The programmer’s model defines the behavior of each functional block.

The following items can be identified:

1. Memory map and instruction sets

2. Memory format and memory interface

3. Register set

4. Exception, interrupts and reset behavior

5. External interface and debug interface

6. Timing and pipeline architecture.

At this stage we have all the descriptions of internal architecture in both the software

and hardware parts. The remaining steps are SW/HW development and manufacture.

Common semiconductor design processes such as register transfer level (RTL)

descriptions with synthesis and custom design with circuit simulations can be

employed.

2.2.2 Communication Architecture Design

2.2.2.1 Data and Command Transfers

The transfer of information between building blocks is crucial in the electrical design

of, especially, multimedia applications such as 3D graphics. When we map the

reference machine to a real implementation, we can observe that one component of

22 Mobile 3D Graphics SoC

a system is producing something that is immediately consumed by another component

of the system. In fact, this features multimedia signal processing itself.

Going deeper into the real implementation, there are two kinds of information

transfer: command transfer and data transfer (Figure 2.8). Command transfer uses

information to control operations of building blocks such as register settings or small

program codes. Mostly, command transfer is not shown in the diagram of a reference

machine; it appears clearly after the step of system architecture is finished. Data

transfer uses information to give intermediate results from the current processing block

to the next processing block. As explained in the definition of the reference machine,

there are transfers of local states and global states in these data transfers. In general, the

bandwidth of data transfer is higher than for command transfer.

2.2.2.2 On-chip Interconnections

The demand for high performance of semiconductor devices has required increased

operating frequency of the silicon chip. However, owing to the difficulty of imple-

mentations such as clock distributions, the design approach of SoC with multiple

functional units has been widely adopted in multimedia and communication applica-

tions. As mentioned earlier, on-chip interconnections between the functional units

influence the whole system performance in SoC design.

Generally, the host processor in the SoC has its own instruction set and memory

space. Therefore, in the programmer’smodel, the functional unit can be attached in the

memory space or in the instruction set. In a real implementation, the former adopts on-

chip bus architecture and the latter adopts coprocessor architecture. The on-chip bus

provides shared datawires that can be connected with data ports of multiple functional

units. These data wires can be unidirectional or bidirectional. Each address port of the

functional units is decoded and arbitrated by bus arbiters in the on-chip bus architec-

ture. If the programmer accesses the address space mapped to some functional units,

the bus arbiters enable the related functional unit to access the shared data bus while

keeping other functional units from interrupting the data transactions. There can be

Figure 2.8 Data and command transfers

Application Platform 23

multiple layers and multiple arbiters in the on-chip bus architecture for increased

performance.

In the modern embedded RISC processor, the coprocessor is defined as a general

mechanism for extension of the instruction set architecture. The coprocessors have

their own private register set and state, and these are controlled by coprocessor

instructions that mirror the host processor instructions controlling the host processor’s

register set. The host processor has sole responsibility for flow control, so the

coprocessor instructions are concerned only with data processing and data movement.

Following RISC load–store architectural principles, these categories are cleanly

separated.

Figure 2.9 compares the on-chip bus and coprocessor architecture in terms of data

and command transfers. Conventional bus architecture implies that an additional

hardware block attached in the memory space should be connected with the data port

of the main processor. This is because a modern embedded RISC processor does not

have a dedicated port for memory-mapped components. Therefore, the command

transfers of hardware blocks use the bus shared with main memory transactions,

causing inefficient utilization of processing elements. In addition, multi-layer bus

architecture requires complex interconnections including multi-port arbiters with

long and wide global metal wires, leading to high power consumption. Also,

concentrated data transactions may cause heavy bus arbitrations, and the main

processor should always consider thread synchronizations in invoking bus-attached

Figure 2.9 Bus and coprocessor

24 Mobile 3D Graphics SoC

hardware blocks. On the other hand, the coprocessor system shows the following

features.

a. A direct signal path with short coprocessor interfaces provides simple interconnec-

tions. Coprocessors share a bypassed instruction port with themain processor. They

do not need bus arbitrations for hardware access, unlike conventional bus-attached

hardware accelerators. Therefore, the coprocessor interface can reduce unwanted

delays between the main processor and hardware accelerators, and thus relevant

power consumption.

b. Since the coprocessor operates in locked step with the core pipeline of the main

processor, complex synchronization is avoided.

c. Since the commands of the coprocessor are regarded as extended instruction set

architectures of the main processor, easy programmability can be achieved.

However, the interface coprocessor architecture is strongly dependent on the

architecture of the host processor while the on-chip bus uses a typical memory

interface. Therefore, the coprocessor cannot fully achieve the reusability of platform

and set-based design. Which on-chip interconnections should be used will be deter-

mined by the performance requirements and availability of other functional blocks.

Recently, a newon-chip interconnection scheme has been introduced in SoCdesign.

The network-on-a-chip (NOC) uses computer network concepts in its on-chip inter-

connections [7]. Instead of a circuit-switched network of conventional bus architec-

ture, packet data transfers and fast low-voltage serializations achieve high data

bandwidth while keeping the power consumption low.

2.2.3 System Analysis

One of the most important tasks of a system architect is the analysis of system

performance during the development of system specifications. Generally the items to

be estimated are memory bandwidth, memory capacity, processing speed, power

consumption, and silicon die area.

The memory capacity and memory bandwidth can be analyzed by checking defined

use cases. According to the definitions ofmemorymapping and the formats ofmemory

contents such as addressing schemes, the required memory bandwidth and memory

capacity can be varied. Careful assignment of memory space is very important. Use

case analysis can clarify which memory accesses should be done separately. Because

dynamic random access memory (DRAM) is widely used, the estimation margin

should be addressed to compensate for read and write latencies. The total required

memory bandwidth should be restricted to less than 60% of peak DRAMbandwidth in

most cases.

Power consumption and processing speed, too, can be analyzed based on use case

descriptions. The power consumptions of building blocks in earlier designs can be used

Application Platform 25

as parameters for power estimations. Voltage scaling and other technology advantages

can be also considered. The active power of processing can then be computed by

summing the power consumptions of all functional units. If the power consumptions

are known in terms of mWperMHz, the operating frequencywill determine the actual

power consumption, and the operating frequency is determined by use case analysis

taking into account processing loads in the functional units. The leakage power can

be computed by estimation of the equivalent number of basic logic elements such as

2-input NAND gates for a given functional unit. Many semiconductor manufacturers

provide the leakage power consumption of these basic logic gates under various

operationing conditions, such as voltage and temperature. We can make use of the

following relations in power estimations:

Total power consumption ¼ active powerþ leakage power

Active power of RISC sub-system ¼ constant powerþ (core factor(mA/MHz)þ
memory factor(mA/MHz)þ peripheral factor(mA/MHz))*voltage*frequency

Active power of HW accelerators ¼ gate power factor(mA/MHz/gate)*gate

count*activity level*voltage*frequency

Leakage power ¼ logic leakage powerþmemory leakage power

Logic leakage power ¼ 2-input NAND leakage power*gate count

Memory leakage power ¼ bit-cell leakage power*capacityþ 2-input NAND

leakage power*memory array logic factor*capacity

Estimation of the silicon die area is important because it influences the selling price

of the silicon chip. Although there is likely to be some overhead to account for internal

interconnections, summation of the silicon areas of the functional units can provide

meaningful information before real implementations. Of course, the shrink-down

effect of semiconductor technology advances should be considered when using

parameters from earlier designs. Many semiconductor manufactureres also provide

the routing efficiency and integration density in terms of the number of transistors per

unit area. The following simple equations can be used in die area estimations:

Logic area ¼ gate count*gate density

Memory area ¼ equivalent gate count*gate density or memory macro area

Sub-modulelogic area ¼ sum of building block logic area*(1þ PnR fix-cell over-

head)*(1þ clock tree overhead)*(1þ hold-time fix overhead)*(1þ large buffer

overhead)

Sub-module macro ¼ sum of macro block area*(1þmacro overhead)

Sub-module total area ¼ sub-module logic areaþ sub-module macro area

Top core area ¼ sum of total logic areaþ sum of total macro area*(1þmacro

placement overhead)

Total chip area ¼ (square root of top core areaþ 2*(IO, power ring and scribe width

per side))2̂

26 Mobile 3D Graphics SoC

2.3 Low-power SoC Design

Low-power designmethodologies arewell developed and are actively employed in the

design of SoC for cellphones [8–11]. Low power operation can be obtained at each

design level. This section briefly introduces the principles.

2.3.1 CMOS Circuit-level Low-power Design

CMOS logic devices consume power when they are operating. There are two major

elements to active power dissipation: dynamic switching power and short circuit

power. A third element is the leakage power that results from sub-threshold current, or

the current flowing through aMOSFETwhenVgs¼ 0V. The total power is given by the

following equation:

Ptotal ¼ PswitchingþPshort-circuitþPleakage ¼ a0! 1CLV
2
dd fCLKþ IscVddþ IleakageVdd:

Low-power design methods aim to decrease power dissipation by reducing the values

of a0! 1, CL,V
2
dd, and fCLK. Various techniques and their effects on the terms of the

power equation are summarized in Table 2.1. The node transition activity factor is a

function of the Boolean logic function being implemented, the logic style, the circuit

topologies, signal statistics, signal correlations, and the sequence of operations.

However, most of the factors affecting the transition activity are determined by the

logic synthesis EDA tools.

2.3.2 Architecture-level Low-power Design

There are many low-power schemes above the level of register transfer level designs.

The most common method is clock gating, which disables unnecessary blocks in the

synchronous system. The clock is connected to the internal circuits through an AND

gate which is controlled by the gate enabling signal. This scheme can be applied block

by block to selectively control the power consumption.

At the architecture level, parallelism can be used to reduce power consumption. For

example, if one puts an identical functional module in parallel with the original one,

Table 2.1 Summary of low-power techniques for SoC

Toggle count Logic style; transition reduction coding

Load capacitance Wire length minimization; partial activation

Voltage scaling (VS) Small swing

Multi Vdd; dynamic VS; adaptive VS

Multi Vth; variable Vth (substrate bias); negative Vgs

Power shutoff; power gating

Frequency scaling (FS) Clock gating; dynamic FS

Application Platform 27

one can double the throughput of the functional operation, and the clock frequency can

be halved if the throughput is the same as for the original one. Pre-computation can

remove unnecessary toggles too. Before the main operation of the circuit, a part of the

circuit is pre-computed and the internal switching activities of the main circuit are

controlled by using the pre-computed results to reduce the number of toggles.

2.3.3 System-level Low-power Design

A SoC or subsystem has one or more major functional modes, prime examples being

operational mode, idle mode, sleep mode, and power-down mode. The operational

mode is when the SoC operates its normal functions. In the idle mode, the clock block

isONbut no signal is switching. In the sleepmode, even the clock part isOFFaswell as

themain blocks.When the SoC is turned off with the power supply connected, the SoC

is in power-down mode. At the system level, low-power solutions are “multi-supply

voltage” or “voltage scaling,” “power shut-off,” “adaptive voltage scaling,” and

“dynamic voltage and frequency scaling.”

In system-level low-power schemes, the SoC is divided into multiple voltage and

frequency domains, and then it adopts DVFS (dynamic voltage–frequency scaling),

AVS (adaptive voltage scaling), and power shut-off or power gating to control the

power dissipation in each domain.

2.4 Network-on-Chip based SoC

As chip integration evolves, current SoC designs incorporate a number of processing

elements to meet performance requirements with reasonable power consump-

tion [1–3]. This design trend makes it simpler to achieve high performance with

moderate design effort because a verified processor core can be replicated. In addition,

SoC design requires integration of numerous peripheral modules such as on-chip

memory, an external memory controller, and I/O interfaces. As a result it is very

important to provide efficient interconnections between numerous processing cores

and peripheral modules within an SoC.

Traditional bus-based interconnection techniques are not suitable for current large-

scale SoCs because of their inherent poor scalability, so a design paradigm based on

network-on-a-chip (NoC) has been proposed as a solution for on-chip interconnection

of large-scale SoCs [4, 5]. The modular structure of NoCs makes chip architecture

highly scalable, and well-controlled electrical parameters of the modular block

improve reliability and operation frequency.

There have been many architectural and theoretical studies of NoCs, such as design

methodology, topology exploration, quality-of-service (QoS) guarantees, and low-

power design. In this section, basic NoC design issues and building blocks are briefly

described, and then practical NoC design considerations and case studies for real chip

implementations are introduced.

28 Mobile 3D Graphics SoC

2.4.1 Network-on-Chip Basics

2.4.1.1 Homogeneous and Heterogeneous SoCs

Network-on-chip architectures are emerging as a strong candidate for a highly

scalable, reliable, and modular on-chip communication infrastructure platform for

high-performance SoCs [12, 13].

To date, there have been two distinct types of SoC: homogeneous and heteroge-

neous. With homogeneous SoCs, suitably designed modules are replicated and placed

on a single chip in a regular topology. MIT’s RAW processor [16] and Intel’s 80-tile

processor implementation [11] are examples with two-dimensional mesh topology.

These processors consist of modular tiles that include a processing core and 5-port

crossbar switch. In each tile, the 5-port crossbar switch provides connections to the

four neighboring tiles of a mesh topology and processing core inside the tile. For

homogeneous SoCs, crossbar switches are commonly adopted instead of the conven-

tional bus, because the non-blocking characteristic of the crossbar switch has the

advantage of enabling concurrent interconnections among multiple processing cores

and peripheral modules. Figure 2.10a depicts how the homogeneous SoC is organized

in a regular array structure.

A heterogeneousSoC [17, 18] integrates various functionalmodules that are usually

dedicated to accelerating specialized computations of the target application. With a

heterogeneous SoC it is difficult to build up regular structures – such as a two-

dimensional array of processors – because the sizes of the functional modules are

different from each other. In addition, adopting regular interconnections may result in

waste of wire resources owing to highly localized and fixed traffic patterns among

functionalmodules. Therefore, inmost cases, a heterogeneous SoC requires optimized

Figure 2.10 Two types of SoC: (a) homogeneous, and (b) heterogeneous

Application Platform 29

interconnections that are tailored to the data traffic patterns of the target application.

Figure 2.10b shows a simplified example.

Entirely homogeneous or heterogeneous SoCs have been introduced above to

highlight the distinctions between the two types, but hybrid versions will be in

widespread use in the near future. The homogeneous architecture is mainly beneficial

for providing huge computing power, so integrating additional functionalmodules such

as external I/O or application-specific accelerators is usually necessary, and this results

in the need for a hybrid architecture. Then, scalablity and structured interconnections

are essential to establish efficient interconnections for a complex SoC architecture.

When compared to the conventional bus and point-to-point architecture, NoC has huge

advantages. The next subsection expands on the benefits of adopting NoC.

2.4.1.2 Comparison of NoC and Buses

NoC-based SoC design uses twomajor concepts that are distinguishable from those of

bus-based SoC architecture. There are packet transactions rather than circuit transac-

tions, and there is a distributed network structure instead of a conventional globally

shared bus or a centralized matrix. In NoC-based SoC design, each of the functional

modules should be designed to be latency-insensitive, to support packet transactions.

Although this makes functional module design slightly more complex, many benefits

are gained from having packet transactions. It improves reliability and the speed of

interconnection links, because packet transactions are intrinsically pipelined so that

the physical lengths of interconnection links can be kept short. Efficient link utilization

is another advantage, because only part of the end-to-end path between functional

modules is occupied by the traversing packets. It is also advantageous that the

electrical parameters of one NoC are not influenced by the addition of other NoC

modules, owing to the structured characteristic of the NoC. This enables the building

up of large-scale SoCs from smaller existing components by the addition of any

required functionalmodules. For all these reasons, advanced bus architectures, too, are

gradually considering a packet transaction concept into their protocols; examples are

multiple-outstanding addressing, split transactions, and multi-threaded transac-

tions [19, 20]. In the near future, it is expected that commercial bus architectures for

a high-end SoC will take the NoC design into their specifications [21, 22].

As mentioned earlier, the NoC paradigm arose to alleviate the design complexity of

a very-large-scale SoC design that could not be fabricated on a single chip. As

manufacturing scale goes further down into the very deep submicron (VDSM) level,

communication between integrated modules becomes more complicated and unman-

ageable with a conventional design methodology. Communication itself becomes a

design bottleneck in relation to performance, design effort, area cost, and power

consumption. The NoC paradigm tries to solve this problem based on a well-defined

layered architecture that is much like the Open System Interconnection (OSI) basic

reference model [23]. This methodology divides the communication mechanism into

30 Mobile 3D Graphics SoC

several layers that are independent of each other, so that the design procedure becomes

more manageable and easily modifiable. The detailed correspondence of NoC to the

OSI reference model will be described in a later subsection.

First we will briefly summarize the pros and cons of NoC-based design and bus-

based design as shown in Table 2.2. For many reasons, NoC-based design is

advantageous; the details are addressed in the table.

2.4.1.3 NoC Design Issues

Figure 2.11 illustrates the overall architecture of an NoC. First, an appropriate

topology and protocol should be selected whenNoC design begins. TheNoC topology

can be configured with regular topologies such as “mesh,” “torus,” “tree,” or “star.”

Alternatively, an optimization can be carried out to build an application-specific

topologywithout a regular pattern. Second, protocols including packet format, end-to-

end services, and flow control should be defined and implemented in a network

interface (NI) module. Packet size definition affects the buffer capacity requirement

and multiplexing gain in the network.

The packet switching scheme is the next factor to be determined. There are many

switching methods such as store-and-forward, wormhole switching, and cut-through

switching.

. Store-and-forward. The entire data of a packet at the incoming link are stored in

the buffer for switching and forwarding. A buffer with a large capacity is required.
. Wormhole routing. An incoming packet is forwarded right after the packet header

is identified and the complete packet follows the header without any discontinuity.

The path that the packet occupies traveling through the switch is blocked against

access by other packets.
. Virtual cut-through. The path is determined as with wormhole routing. If the next

hop is occupied by another packet, the packet tail is stored in a local buffer to await

clearing of the path. Its buffer size can be smaller than the store-and-forward switch;

but if the packet size is large, many local buffers are occupied to delay the switch

throughput.

Choosing an appropriate switching scheme to suit the target application and silicon

resource budget is necessary. In many NoC implementations a wormhole routing

scheme is chosen because of its lower buffer resource requirement.

Once the basic topology, protocol, and routing method have been determined, the

operation of the crossbar switch is as follows.When the input packets arrive at the input

port, the crossbar switch scheduler gets the destination information from the input

packets. If every packet arrives at a different input port and wants to leave from a

different output port, there are no input or output conflicts. Then, the scheduler

connects the cross junctions to connect the packets at the input ports to their output

Application Platform 31

Table 2.2 Comparison between NoC-based and bus-based design methodologies

Network-on-chip Bus

Bandwidth and speed . Nonblocked switching guarantees multiple

concurrent transactions.

þ �

. Pipelined links: higher throughput and clock

speed.

. A transaction blocks the other transactions in a

shared bus.
.Regular repetition of similarwire segmentswhich

are easier to model as DSM interconnects.

. Every unit attached adds parasitic capacitance;

therefore electrical performance degrades with

growth.a [24]

Resource utilization . Packet transactions share the link resources in a

statistically multiplexing manner.

þ � . A single master occupies a shared bus during its

transaction.

Reliability . Link-level and packet-basis error control enables

earlier detection and gives less penalty.

þ � . End-to-end error control imposes more penalty.

. Shorter switch-to-switch links, more error-

reliable signaling.

. Longer bus wires are prone to errors.

. Rerouting is possible when a fault path exists.

(self-repairing).

. A fault path in a bus is a system failure.

Arbitration . Distributed arbiters are smaller, thus faster. þ � . All masters request to a single arbiter; thus the

arbiter becomes big and slow,which degrades bus

speed.
. Distributed arbiters use only local information,

not a global traffic

condition

� þ . Central arbitration may make a better decision.

Transaction energy . Point-to-point connection consumes the

minimum energy.

þ � . A broadcast transaction needs more energy.

Modularity and

complexity

. A switch/link design is re-instantiated, thus less

design time.

þ � . A bus design is specific, thus not reusable.

. Decoupling between communicational and

computational designs

Scalability . Aggregated bandwidth is scaled with network

size.

þ � . A shared bus becomes slower as the design

bigger, thus it is less scalable.

3
2

M
o
b
ile

3
D

G
rap

h
ics

S
o
C

Clocking . Plesiochronous, mesochronous, and GALS

fashion don’t need a globally synchronized

clock: very advantageous for high-speed

clocking.

þ � . A global clock needs to be synchronized over the

whole chip bus area.

Latency . Internal network contention cause a packet

latency.

� þ . Bus latency is wire-speed once a master has a

grant from an arbiter.
. Repeated arbitration on each switch may cause

cumulative latency.
. Packetizing, synchronizing, interfacing cause an

additional latency.

Overhead .Additional routers/switches and buffers consume

area and power.

� þ . Less area is consumed.b

. Fewer buffers are used.b

Standardization . There is no NoC-oriented global standard

protocol yet; however, legacy interfaces such as

OCP and AXI can be used.

� þ . AMBA and OCP protocols are widely used and

designed for many functional IPs.

aRecent advanced buses are using pipelined wires by inserting registers in between long wires [14, 15].
bRecent advanced buses use crossbar switches and buffers (register slices) in their bus structure.

A
p
p
licatio

n
P
latfo

rm
3
3

ports. When conflicts occur, the scheduler should resolve them according to a pre-

defined algorithm. Buffers are important to store the packet data temporarily for

congestion control.

There are three queuing schemes distinguished by the location of the buffers inside

the router (switch): input queuing, output queuing, and virtual output queuing

(Figure 2.12).

. Input queuing. Every incoming link has a single input queue so that N queues are

necessary for an N�N Switch. Input queuing suffers from the “head-of-line”

blocking problem; that is, the switch utilization is saturated at the 58.6% load.
. Output queuing. The queues are placed at the output port of the link, but N output

queues for every outgoing link are required to resolve the output conflict, resulting in

N2 queues. Owing to the excessive number of buffers and its complexwiring, in spite

of its optimal performance, output queuing is not used.
. Virtual output queuing. The advantages of input queuing and output queuing are
combined. A separate input queue is placed at each input port for each output,

requiringN2 buffers.The“head-of-line”blockingproblem is resolvedby scheduling.

Complicated scheduling algorithms such as iterative algorithms are needed.

Figure 2.12 Queuing schemes: (a) input queuing, (b) output queuing, and (c) virtual output queuing

Figure 2.11 Basic design parameters of NoC

34 Mobile 3D Graphics SoC

The last issue in Figure 2.12 is flow control or congestion control. There are several

solutions which prevent packets from output conflict and buffer overflow.

. Packet discarding. Once the buffer is overflowed, the packets coming next are

simply dropped off.
. Credit-based flow control. A back-pressure scheme uses separate wires for the

receiver, to notify congestion of the buffer to the transmitter to prevent packet loss, as

shown in Figure 2.13a. The propagation delay time between transmitter and receiver

should be considered carefully to avoid packet transmission while the wait signal is

coming on the wire. In the Window scheme of Figure 2.13b, the receiver regularly

informs the transmitter about the available buffer space.
. Rate-based flow control. The sender gradually adjusts the packet transmission

according to the control flow messages from the receiver. For example, the error

control uses Go-back-N algorithm and related signals. In this case, a certain amount

of buffer space is guaranteed for effective flow control, but owing to its long control

loop, rate-based flow control potentially suffers from instability.

In addition to the basic design parameters required to be determined for an NoC

design, additional functionalities are required to enhance NoC performance and

optimize the cost overhead. Quality of service is one of the most critical issues. The

quality factors in anNoC should be bandwidth and latency. Guaranteed bandwidth and

limited latency enable packet transactions to be punctual, thus making it possible to

execute real-time applications in the NoC-based SoC.

2.4.1.4 NoC Building Blocks

The circuits of the basic building blocks will be introduced. The basic building blocks

are high-speed signaling circuits, queuing buffers and memories, switches, crossbar

switch schedulers, and SERDES.

Figure 2.13 Flow control schemes: (a) back pressure, and (b) credit-based flow control

Application Platform 35

High-speed Signaling
For high-speed signaling, bit width, operating frequency, and differential signaling

need to be carefully explored. If we use a wide bit width, interference among channel

wires hinders high-speed operation of the channels. Differential signaling can achieve

a high speed of operation with a relatively high signal to noise ratio (SNR), but it uses

up twice the area of single wire signaling, and for a wide bit width it is impractical.

Figure 2.14a shows voltagemode signaling and it usually uses repeaters along thewire

to reduce the capacitive load of the driver circuits. Figure 2.14b shows current mode

signaling circuits and it is known that current mode signaling is faster than voltage

mode signaling.

Queuing Buffer Design
The effective bandwidth of the data-link layer is heavily influenced by the traffic

pattern and queue size. A queue buffer is located at the input or output port of the

switch, and in the network interface that interconnects logic blocks to the sender or

receiver. Queuing buffers consume the most area and power among building blocks in

the NoC. There are two ways to implement a buffer: flip–flop-based (register) and

SRAM-based. Figure 2.15 shows four different register designs: a conventional shift

register, a push-in shift-out register, a push-in bus-out register, and a push-inMUX-out

register. A SRAM-based design is also shown in Figure 2.9.

Figure 2.14 Interconnection drivers: (a) voltage mode, and (b) current mode

Figure 2.15 DFF-based queues

36 Mobile 3D Graphics SoC

In a conventional shift-register type, bubble cells may occur when the packet input/

output rates are different. Shifting all the registers at every packet-out consumes a huge

amount of power. Furthermore the minimum latency in a queue is as long as the

physical queue length rather than the backlog. Although this design is the simplest, it is

not suitable to implement on a chip.

To remove the intermediate empty bubble, the arrival packet can be stored at the

front empty cell rather than at the tail of a queue. This input style is called as “push-in.”

It can remove unnecessary latency and power consumption caused by the empty

bubble. Only the occupied register cells are enabled. However, the shifting register

style still consumes unnecessary power by shifting all the occupied cells when a packet

is output. To avoid the shifting operation, the outputs of all registers are tied to a shared

output bus line via tri-state buffers, as shown if Figure 2.15c. The register holding the

first-in packet is connected to the output bus and turns on the tri-state buffers. In this

design, only a cell in which a newly arrived packet is stored is enabled. As the queuing

capacity increases, the capacitance of the shared bus wire increases as well because of

the parasitic capacitance of tri-state buffers, and the delay and power consumption

become considerable. To eliminate this effect, output multiplexers can be used as

shown in Figure 2.15d.

The areas and power consumption of register-based buffers are relatively large. As

the queuing capacity increases to dozens of packets, the register-based implementation

is not good in both respects of area and power. The dual-port SRAM cell is used for

large-capacity queuing as shown in Figure 2.16. This figure shows the circuit and

layout of a unit cell and, for comparison, the layout of theD-FF.ASRAMcell occupies

only a fifth of a register (flip–flop) area.

Switch Design
The conventional switch consists of input queue (IQ), scheduler, switch fabric, and

output queue (OQ), as shown in Figure 2.17a. There are two types of switch fabric

Figure 2.16 SRAM-based queue

Application Platform 37

design: cross-point and MUX-based. The cross-point switch has pass transistors at

each crossing junction of the input and output wires. In this switch fabric, the

capacitive loading due to the input driver is the junction capacitance of pass transistors

on input and output wires and thewire capacitance itself. These parasitic capacitances

and the series resistance of the wire cause RC delay, so limiting the bandwidth of the

switch. The voltage swing on the output wire is reduced to VDD�Vth_N because of the

threshold voltage drop of the NMOS pass-transistor, so the power dissipation is

reduced. ACMOS pass gate can be used to avoid the voltage drop, but another control

wire is required which increases the area consumption. The fabric area is determined

by thewiring area and not by the transistors, so that its area cost can beminimized. The

MUX-based switch uses a multiplexer for each output port. The capacitive loading

driven by the input driver is the input gate capacitance of the multiplexers and input

wire capacitance. The parasitic capacitance is larger than with cross-point switch, but

the high resistance of the pass transistor does not exist. It can operate at relatively high

speeds and is synthesized by EDA tools.

Figure 2.18 shows other circuit implementations of the 256� 256 crossbar

switch [25]. Part (a) is a circuit based on a tree of NAND inverters (AND) and local

decoders, and (b) shows a pre-programmed crossbar.

To arbitrate the output conflicts, a scheduler is used on each output port. The

arbitration scheduling is required to perform fair routing, no-starvation, andmaximum

throughput in high-level, but it does not significantly increase the latency, power, and

areaof theswitchdesign.Thelatencyof thearbiterbecomeslarger thanthatof theswitch

fabric as the switch size exceeds 16� 16. As shown in Figure 2.19, the scheduler

occupies similar area to the switch fabricwhen thephit (physical digit)widthof aport is

10 bits. Therefore, scheduler design is as important as switch fabric design.

Scheduler Design
Many scheduling algorithms are known, examples being round-robin, propagation

basis, and maximum weight matching algorithms. However, diagonal/rectilinear

Figure 2.17 (a) Cross-point, and (b) MUX-based switch fabrics

38 Mobile 3D Graphics SoC

propagation methods or weighting matching such as LQF and OQF are too compli-

cated to lay out on a chip with small area. The round-robin scheduling algorithm is

most widely used in the on-chip network because of its fairness and no-starvation

properties.

In round-robin scheduling, each port in turn is given the opportunity to transmit data

for a fixed amount of data or time. The port may not take the opportunity, and the

opportunity is moved to the next port. Figure 2.20a shows an example of round-robin

scheduling for a six-port systemwhen 1, 3, 4, and 6 ports are ready to transmit a packet.

The round-robin scheduler can be implemented by using two priority encoders (PEs),

as shown in Figure 2.20b, or by MUX-tree-connected logic.

Figure 2.19 Switch layout diagram of 6� 6 and phit width of 10 bits/link

Figure 2.18 Circuits for crossbar switch: (a) tree of NAND invertors, and (b) pre-programmed

Application Platform 39

SERDES Design
As stated above, an on-chip serialization technique reduces the area of the NoC

significantly, so a serializer and de-serializer (SERDES) circuit is an essential

building block for practical NoC designs. There are two typical SERDES circuits:

shift register and MUX-tree as shown in Figure 2.21. The shift register (SR)

serializer fetches the parallel packet through 2:1 MUXs when the load signal is

enabled. Then, the shift mechanism of the series F/Fs realizes high-speed

serialization. The MUX-type serializer divides a packet into several parts, and

then multiplexes them into the serialized link. In both the serializer types the

maximum clock frequency is limited by the delay time of the D-FF, and a high-

speed clock is required for the serialization speed. To overcome these limitations,

a new serializer structure has been described that uses delay elements (DEs) as a

timing reference instead of a clock, and uses signal propagation phenomena

instead of the shifting mechanism [26]. The serialization scheme is called

wavefront train or WAFT.

Figure 2.20 (a) Round-robin algorithm, and (b) round-robin algorithm circuits with two priority

encoders

40 Mobile 3D Graphics SoC

Figure 2.22 shows a 4:1 WAFT serializer and deserializer schematic. When EN is

low, Dh3:0i is waiting at QSh3:0i. The VDD input of MUXP, which is called a pilot

signal, is also loaded to QP. The GND input of MUXO discharges the serial output

(SOUT) while the serializer is disabled. If EN is asserted, QSh3:0i and the pilot signal
start to propagate through the serial link wire. Each signal forms a wavefront of the

SOUT signal, and the timing distance between the wavefronts is the DE and MUX

delay which we call a “unit delay.” The series of wavefronts propagates to the

deserializer like a train (hence the name).

When theSOUTsignalarrivesat thedeserializer, it propagates through thedeserializer

until thepilotsignalarrivesat theendof thedeserializer,orSTOPnode.As longas theunit

delay times of the sender and the receiver are the same,Dh3:0i arrives at its exact position
when the pilot signal arrives at the STOP node. When the STOP signal is asserted, the

MUX feeds back its output to its input, so that the output value is latched.

2.4.2 NoC Design Considerations

NoC design strategies can be divided into two main categories: one is to determine or

optimize fundamental network parameters, and the other is to propose new additional

Figure 2.22 WAFT (a) serializer and (b) deserializer

Figure 2.21 (a) Shift-register type, and (b) MUX-tree type serializers

Application Platform 41

features for enhancing performance and/or reducing cost. These NoC designs are

based on a top-down approach that tries to shrink the legacy network to fit it into a given

silicon area. Thus, such approaches have a tendency to follow communication and

network features adopted in legacy networks, but some features seem to be inadequate

or unnecessarily complicated for on-chip situations.

Although the NoC borrows basic concepts from legacy network architectures,

implementing the network architecture on a chip needs to consider many physical

design issues. However, most work on NoC design overlooks actual implementation

issues because it has not yet reached chip implementations, ignoring the on-chip

characteristics. Architectural specifications like topology, routing, switching, and link

bit width are determined without consideration of implementation constraints like low

power consumption and small area.More physical issues like on-chip serialization and

mesochronous communication also must be considered in order to implement NoC on

silicon. Here, some architectural decision and physical implementation issues for the

practical design of NoCs will be described from a chip designer’s viewpoint.

2.4.2.1 Topology Selection

Traditionally, a mesh topology as shown in Figure 2.23a is widely used and studied for

parallel computing architectures owing to its highly scalable and regular features.

Most NoC implementations [27, 28] have used a mesh topology or a derivative, and

wide link bit width over 128-bit. However, the mesh topology needs to be reassessed

for practical NoC design in terms of area and power consumption in an SoC

environment. Although a wide link has been used in an on-chip situation, the large

number of metal wires complicates not only metal routing but also placement of

processing elements (PEs). In an actual layout, PEs may be placed irregularly to

minimize the chip area, so the regular structure of mesh topology may not be possible

Figure 2.23 Topologies: (a) mesh, and (b) hierarchical star

42 Mobile 3D Graphics SoC

in an SoCdesign. Furthermore, awide linkmeanswide switch fabrics, which increases

the network area significantly. Moreover, the mesh topology results in inefficient

global packet transactions because of its large hop counts. The alternative star topology

has not been popular owing to its poor scalability, in spite of its higher bisection

bandwidth and small hop count. However, in an on-chip situation the number of

integrated PEs (N) is limited to a few tens. Even whenN is larger than 100, the PEs can

be interconnected hierarchically, as shown in Figure 2.23b. PEs communicating with

each other intensively will be grouped as a cluster, and a local network will

interconnect the PEs. The clusters will be interconnected by a global network. Then,

interconnection in a cluster (as well as interconnecting the clusters) becomes the same

issue as interconnecting a few tens of PEs. Therefore, the hierarchical star topology is a

better candidate than the mesh topology for practical NoC design, because it shows

better cost efficiency and the lowest latency [29].

2.4.2.2 Routing Scheme

An adaptive routing method is widely used for general macro-networks because it

enables fault-tolerant packet transfer and hot-spot avoidance by using alternative

packet routing paths, which leads to higher throughput. However, the packets may

arrive out of order in adaptive routing, so huge scratch buffering resources are needed

to store incoming packets temporarily, and packet re-ordering based on a packet

sequence number is required (Figure 2.24). Because of such a huge area cost and

unpredictable latency, adaptive routing is not suitable for NoC implementation

considering the hardware overhead in relation to performance improvement.

On the other hand, deterministic routing such as source routing may be a good

solution. In deterministic routing, a packet is transferred to a destination through a

fixed routing path that is defined at a network interface. A switch does not support the

adaptive routing function, and network interfaces need no packet re-ordering function.

As a result, the NoC hardware implementation cost is very low compared to adaptive

routing. There is still a potential problem regarding hot-spots with deterministic

routing. However, even though bandwidth is limited by hot-spots, we can say that it

is the maximum affordable bandwidth for the network. Moreover, in an SoC

Figure 2.24 Adaptive routing method

Application Platform 43

environment, the designer has a good knowledge of the traffic characteristics for

specific applications and can avoid the hot-spot problemby allocating the routing paths

wisely.

2.4.2.3 Switching Scheme

A packet-switching method like wormhole-based routing is widely used for NoC

because of the limited buffering resources. A packet-switched network uses channel

resources more efficiently than a circuit-switched network because the route from a

source to a destination is pipelined. This advantage increases as the route becomes

longer. However, the route length in current SoCs is insignificant, so this alone does

little for a packet-switched network. Clearly, if a NoC uses a high clock frequency and

small packets, the packet-switched network works well as a global interconnect

architecture. However, if the NoC has a lower clock frequency for low power

consumption or uses burst packet transfer, repetitive processes such as synchroniza-

tion, packet queuing, and arbitration in all the intermediate switches are redundant and

inefficient, which leads to large latency. To solve this problem of the packet-switching

NoC, we recommend the use of an adaptive switching method in which circuit

switching techniques are combinedwith packet switching as shown inFigure 2.25. The

NoChas level 1 and level 2 switches.A level 1 switch supports both switchingmodes; a

level 2 switch supports only packet switching. The first packet of a burst packet flow

enables the level 1 switches’ circuit-switching mode, so that the remaining packets

bypass the level 1 switches. This mechanism effectively reduces the number of

switches along the end-to-end route, and the level 2 switches still provide the

advantages of a packet-switched network. When a level 1 switch is in the circuit-

switching mode, a synchronizer, a FIFO buffer, and the input port’s packet-parsing

logic are bypassed, and the packets are routed to the prescheduled output port. This

effectively reduces delay and energy consumption for a packet transfer.

Figure 2.25 Adaptive switching method

44 Mobile 3D Graphics SoC

2.4.2.4 Phit Size Determination

The physical transfer unit or “physical digit” (phit) is a unit inwhich a packet is divided

and transmitted through the core network. The phit size is the bit-width of a link and

determines the switch area. Therefore, for practical NoCdesign, the phit size should be

carefully determined considering both the NoC cost and performance. An on-chip

serialization technique can be effectively used to reduce the area andpower of theNoC.

The phit size determination is largely related to the on-chip serialization. If the phit size

is smaller than the packet length, serialization must be performed by the factor of

serialization ratioðSERRÞ ¼ packet size=phit size:

Using a large phit size, as shown in Figure 2.26a, obtains wide bandwidth easily but is

inefficient in respect of the NoC cost – that is, area and power consumption. On the

other hand, use of a small phit size, as shown in Figure 2.26b, reduces the number of

link wires, so the spaces between link wires can be widened to decrease coupling

capacitance. Also, the smaller phit reduces the switch fabric size, so again the area and

power consumption of a switch can be reduced [30].

In more detail, switch power consumption is the sum of arbiter and switch fabric

power, and the switch fabric power is the dominant part.When serialization is used, the

operating frequency of the core networkmust be increased by the factor of the SERR in

order to maintain network bandwidth. Considering additional circuitry for the

frequency increment, energy consumption and area of NoC building blocks such as

serialization and de-serialization (SERDES), link, synchronizer, and switch are

analyzed according to the SERR. The operating frequency without serialization is

set to be 200MHz, and detailed designs of the blocks are based on the implementation

results. Figure 2.27 shows analytical results of energy consumption per packet

transmission and area of building blocks in the star topology NoC. In part (a), the

energy consumptions in a switch and links decrease as the SERR increases as

mentioned above. On the contrary, those of a SER, DES, and SYNC increase due

to additional circuitry for the serialization. In most cases, an SERR of 4 minimizes the

overall power consumption. As shown in part (b), serialization also reduces the overall

NoC area effectively, and the SERR of 4 is optimal. An SERR of 8 remains the same

Figure 2.26 NoC structure according to phit size

Application Platform 45

as 4 in terms of area, but is inefficient in terms of power. In the implemented chip [31],

the phit size is determined as a quarter packet length to cover design issues on a 4:1

serialized network.

2.4.2.5 Mesochronous Synchronizer

One of NoC’s contributions to SoC design is to ease the burden of global synchroni-

zation by usingmesochronous communication, meaning that network blocks share the

same clock source but the clock phases of functional blocksmay be different from each

other owing to asymmetric clock tree design and difference in load capacitance of the

leaf cell. Without a mechanism to compensate for the phase difference, nondetermin-

istic operation, such as meta-stability, would impair stability or functionality of NoC-

based systems. To resolve such a problem, synchronizers are required between the

clock domains.

Several types of synchronizer have been used inNoCdesign, examples being first-in

first-out (FIFO), delay-line, and simple pipeline synchronizers [31, 32]. The FIFO

synchronizer is useful when the phase difference between clock domains is unknown.

However, its power and latency overhead is considerable. A single-stage pipeline

synchronizer provides the best performance and lowest overhead if intensive SPICE

simulations under various conditions eliminate all possible synchronization failures.

However, as the operating frequency and the number of network nodes increase, the

full-custom solution is not practical.

To resolve these problems, a programmable delay synchronizer has been devised as

shown in Figure 2.28. A variable delay (VD) is connected with a simple pipeline

synchronizer, and the VD is controlled according to the network circumstances. The

appropriate VD setting for a certain circumstance is obtained through a calibration

process, performed as follows. In the network initialization period, the calibration

master unit (CMU) sends packets to all the PEs in the network. When a synchronizer

Figure 2.27 (a) Energy and (b) area of NoC according to SERR

46 Mobile 3D Graphics SoC

(SYNC) receives a packet, the phase detecting unit (PDU) in the SYNC finds the best

timing to sample the input signal. Then, the timing information is encoded into the

appropriate VD setting value, and it is programmed into a register and VDs. After the

VD setting, the PDU will sample input signals correctly and thus asserts the done-

signal. Then, the switch fetches the output of the SYNC, and performs packet

switching. While the packets from the CMU are delivered to every PE, all the SYNCs

in the CMU-to-PE paths are calibrated. The network interface is designed to return the

packet when it receives a packet in the initialization period. Therefore, the SYNCs in

the PE-to-CMU paths are also calibrated. This calibration process is repeated for all

combinations of network circumstances like operating frequency and topology

configuration.

Programmable delay synchronizer operation is measured. In Figure 2.29, the EN

signal is fetched at the positive edge of the clock. After that, the EN is de-asserted by a

handshaking protocol. One problem is that the EN signal is not synchronized with the

clock so that the rising edge of the EN could be very close to the “rising edge minus

setup time margin.” In Figure 2.29a, the mode C represents a situation in which the

rising edge of the EN signal is very close to the clock timing. When the mode C is

enabled, fetching the EN signal is very unstable so that the ENwould be fetched at the

next clock cycle as shown in Figure 2.29b. Figure 2.30 shows the measured waveform

when the programmable delay synchronizer is enabled. When the mode C is enabled,

the delay time applied to the EN signal is reduced so that the fetching timing is

effectively delayed compared to normal operation, which ensures sufficient timing

Figure 2.28 Programmable delay synchronizer

Application Platform 47

margin to fetch the EN signal. As a result, the de-assertion of the EN signal is delayed

as shown in Figure 5.21.

2.4.3 Case Studies of Chip Implementation

In this subsection we shall introduce silicon chip implementation trials for NoC-based

SoCs. They can be grouped into two categories: academic research and industrial

approaches. The academic research shows complete chip implementations and

demonstrations for specific applications. The industrial approaches are mainly about

the new protocol specifications, EDA tool chain, and IP library support for the NoC

developers.

Figure 2.29 (a) EN signal variation according to the modes, and (b) unstable EN signal fetching

Figure 2.30 EN signal expansion using programmable delay synchronizer

48 Mobile 3D Graphics SoC

2.4.3.1 Intel Teraflop 80-Core NoC

The Intel Corporation launched a Tera-Scale Computing Research Program a few

years ago to handle tomorrow’s advanced applications that will need a thousand times

more computing capability than is available in today’s giga-scale devices. For example

there is real-time data mining across teraflops of data, artificial intelligence (AI) for

smarter cars and appliances, and virtual reality (VR) for modeling, visualization,

physics simulation, and medical training [33].

The Intel tera-scale research consists of three categories: teraflop of perfor-

mance, terabytes per second of memory bandwidth, and terabits per second of I/O

performance [33]. Here we shall focus on the “teraflop of performance” research

where NoC is developed and implemented (Figure 2.31). Eighty processing cores

are interconnected through a 2D mesh, packet-switched, on-chip network. It

performs up to 1-teraflops at 4GHz clock speed and consumes less than

100W. [11]

Figure 2.31 Intel’s teraflop 80-core NoC chip. The Intel logo is a registered trademark of Intel

Corporation

Application Platform 49

Key Enablers for Teraflop on a Chip [11]

. 80 processing engines and 160 single-precision floating-point units

. Designed for 4GHz operation

. Fast single-cycle accumulate loop

. Sustained FPU throughput: 2 flops per cycle

. 80GB/s router, operating at 4GHz

. Shared and double-pumped crossbar switch

. 2D mesh topology, 256GB/s bisection bandwidth

. A 15FO4 balanced core and router pipeline

. Robust, scalable mesochronous clock distribution

. 65 nm eight-metal CMOS.

Architecture Overview [11]
The NoC architecture contains 80 tiles arranged as a 10� 8 two-dimensional mesh

network operating at 4GHz (Figure 2.32). Each tile consists of a processing engine

connected to a 5-port router with mesochronous interfaces, which forwards packets

between tiles. The 80-tile on-chip network enables a bisection bandwidth of 256GB/s.

The PE contains two independent fully-pipelined single-precision floating-point

multiply–accumulator (FPMAC) units, 3KB of single-cycle instruction memory

(IMEM), and 2KB of data memory (DMEM). A 96-bit VLIW (very long instruction

word) encodes up to eight operations per cycle. With a 10-port (6-read, 4-write)

Figure 2.32 Chip architecture

50 Mobile 3D Graphics SoC

register file, the architecture allows scheduling to both FPMACs, simultaneous

DMEM load and stores, packet send/receive from themesh network, program control,

and dynamic sleep instructions. A router interface block (RIB) handles packet

encapsulation between the PE and router. The fully symmetric architecture allows

any processing engine to send (receive) instruction and data packets to (from) any other

tile.

The 4GHz 5-port wormhole-switched router uses two logical lanes – virtual

channels – for dead-lock free routing, and a fully nonblocking crossbar switch with

a total bandwidth of 80GB/s. Each lane has a 16-flit (flow control unit) queue, arbiter,

and flow control logic. The router uses a 5-stage pipelinewith a two-stage round-robin

arbitration scheme that first binds an input port to an output port in each lane and then

selects a pending flit from one of the two lanes.

Figure 2.33 shows a NoC packet format. Each packet is subdivided into multiple

flits. It has a minimum of two flits and there is no maximum packet size limit. Each flit

consists of a 6-bit control field and 32-bit data field. The control field includes two flow

control bits for each lane, a valid indication bit for the flit, and packet header/tail

indication bits. There are three types of flit: header, PE control, and data flits. A header

flit has a 3-bit destination ID (DID) which represents the out-port direction on each

switching hop. Because of the data field size limit, the maximum hop count is limited

to 10. However, a chained header seems to support larger hop counts to break this

limitation. The PE control flit includes an address file and PE control information like

PE power management signals [11].

Double-pumped Crossbar Router and Mesochronous Interface
Each 36-bit crossbar data bus is double-pumped at the fourth pipe stage by interleaving

alternate data bits using dual edge-triggered flip–flops, reducing crossbar area by

50% [34]. The double-pumped technique is the same as the 2:1 serialization within a

Figure 2.33 Packet format and protocols

Application Platform 51

switch fabric line, while it maintains the clock frequency by using double-edges like a

double-data-rate SRDAM (DDR-SDRAM) interface.

The chip uses scalable global mesochronous clocking, which allows for clock-

phase-insensitive communication across tiles and synchronous operation within each

tile – globally mesochronous and locally synchronous (GMLS) – see Figure 2.34. The

on-chip PLL output is routed using horizontal M8 and vertical M7 spines. Each spine

consists of differential clocks for low duty-cycle variation along the worst-case clock

route of 26mm. An operational amplifier at each tile converts the differential clocks to

a single-ended clockwith 50%duty cycle. Theworst-case simulated global duty-cycle

variation is 3 ps, and local clock skewwithin the tile is 4 ps. The systematic clock skews

inherent in the distribution help spread clock power owing to simultaneous clock

switching over the entire cycle. The estimated global clock distribution power at

4GHz, 1.2V supply is 2.2W.

Fine-grained Power Management
Fine-grained clock gating, sleep transistors, and body bias circuits [35] are used to

reduce active and standby leakage power, and are controlled at full-chip, tile-slice, and

individual tile levels based on workload. Each tile is partitioned into 21 smaller sleep

regions with dynamic control of individual blocks in PE and router units, based on

instruction type. The router is enabled on a per-port basis, depending on network

Figure 2.34 Clock distribution

52 Mobile 3D Graphics SoC

traffic patterns. The design uses NMOS sleep transistors to reduce frequency penalty

and area overhead. Memory arrays use an active clamped sleep transistor [36] that

ensures data retention and minimizes standby leakage power. The average sleep

transistor area overhead is 5.4% with a 4% frequency penalty. About 90% of FPMAC

logic and 74%of each PE is sleep-enabled. Forward body bias can be applied toNMOS

devices during active mode to increase the operating frequency, and reverse body bias

can be applied during idle mode for further leakage savings.

Figure 2.35 shows the power breakdown of a tile andNoCbuilding blocks. Clocking

and buffering are the major power consumers. Table 2.3 shows the power and

performance summary of the teraflop 80-core NoC.

2.4.3.2 KAIST BONE-V (Basic On-chip Network for Vision Applications)

Introduction
This subsection describes a memory-centric NoC (MC-NoC) that facilitates flexible

and traffic-insensitive mapping of tasks on a homogeneous multi-processor SoC

(MP-SoC) [37]. The MC-NoC features a hierarchical star topology network and

memory management scheme which supports unidirectional inter-processor commu-

nication. The MC-NoC incorporates distributed and fine-grained shared memory for

simultaneous data transactions among processing elements, while the hierarchical star

topology network is adopted to provide processing elements with area-efficient

Table 2.3 Power and performance summary

Frequency Voltage Power Aggregated BW Performance

3.16GHz 0.95V 62W 1.62 Tb/s 1.01 Tflops

5.1GHz 1.2V 175W 2.61 Tb/s 1.63 Tflops

5.7GHz 1.35V 256W 2.92 Tb/s 1.81 Tflops

Figure 2.35 Power breakdown of a tile and NoC building blocks

Application Platform 53

external memory interconnections. The MC-NoC improves feasibility and flexibility

in mapping series of tasks into the homogeneous MP-SoC.

Architecture and Operation
Figure 2.36 shows the architecture and operation of the MC-NoC. It incorporates

10 RISC processors. The building blocks of the MC-NoC are dual-port SRAMs,

crossbar switches, network interfaces, and channel controllers. Dual-port SRAMs are

dynamically assigned to the subset of the RISC processors involved in data commu-

nication. Then, shared data is exchanged by accessing assigned dual-port SRAM.

Crossbar switches provide nonblocking concurrent interconnections between dual-

port SRAMs andRISC processors. The operating frequency of the crossbar switches is

decided to be twice that of the other part of the MC-NoC to reduce the overhead of

packet switching latency. The network interface performs packet processing and clock

synchronization between a crossbar switch and other building blocks. The key building

block of the MC-NoC is the channel controller. This automatically manages commu-

nication channels between RISC processors to facilitate mapping of tasks on the

homogeneous SoC. The role of the channel controller is described in more below.

Figure 2.37 outlines the important steps of MC-NoC operation. In this figure,

crossbar switches are not drawn for simplicity. While the operation is explained, we

will assume that RISC processor 0 wants to pass the processed results into RISC

Figure 2.36 Overall architecture of the MC-NoC

54 Mobile 3D Graphics SoC

processors 2 and 3. TheMC-NoCoperation is initiated byRISCprocessor 0 sending an

open-channel request to the channel controller. Information about source and desti-

nation RISC processors is also included in the open-channel request. After that, the

channel controller assigns one dual-port SRAM as a data communication channel if

Figure 2.37 Important steps of the MC-NoC operation

Application Platform 55

any of the SRAMs is available. By updating the routing look-up tables (LUTs) in the

network interfaces of corresponding processors, SRAM assignment is completed. In

this way, assigned SRAM is made to be accessible only for the RISC processors

involved in data communication. At the end of data transfer through the dual-port

SRAM, source RISC processors send a close-channel request to the channel controller.

Then the channel controller invalidates updated LUTs after checking completion of

data transfer. In the proposed MC-NoC, each processor is able to send multiple open-

channel requests as required. If all the SRAMs are being used by other processors, the

data transfer is stalled until one of the SRAMs becomes available. Open- and close-

channel requests andLUTupdates are performedby sending special packets that are not

visible to any processors or memories. Controlling operations of theMC-NoC by using

special packets has the advantage of eliminating additional control signal wires.

While data communication is performed through the dual-port SRAM that is

assigned by the channel controller, progress of data access from destination pro-

cessors may differ from each other. To improve programming feasibility of the

multiple RISC processors, the MC-NoC provides a data synchronization scheme to

resolve the consistency problem arising from the different data access order of

destination processors. Figure 2.38 shows an example. Processor 2 reads data from

address 0� 0, while processor 3 accesses address 0�C. Until this moment,

processor 0 has written valid data only at the address 0� 0. The next step is shown

in Figure 2.38b. In this case, only processor 2 gets valid data from the dual-port

SRAM, and processor 3 receives an invalidate signal from valid check logic inside

the dual-port SRAM. After that, the network interface of processor 3 holds the

processor and retries reading after specified wait cycles, as shown in Figure 2.38c.

Once processor 0 writes valid data at address 0�C, processor 3 also gets valid data

and continues processing, as in Figure 2.38d. The retry procedure described in

Figure 2.38c is transparent to the RISC processors because the NI module of the MC-

NoC automatically manages the procedure. As with an open- or close-channel

request, an invalid signal from valid check logic of the dual-port SRAM is also

transferred as a special packet. In our implementation, the valid check logic takes 5%

of the dual-port SRAM area.

Benefits of the MC-NoC
The main advantage of the MC-NoC is its flexibility of task mapping on a homoge-

neous SoC. Here we discuss the benefits of the MC-NoC by comparison with a

conventional 2D mesh topology NoC. As a task mapping example, edge detection

operation is shown in Figure 2.39a [38]. In the figure, rectangular boxes represent

processors performing tasks and solid/dotted lines depict data flow between tasks. In

this operation, an input image is first converted from RGB color space to HSI color

space. The converted image is processed by Gaussian filters with varying coefficients

(sigma) and subtractions between filtered results are calculated to detect edges in

different scale. Figures 2.39b and c showmapping of the edge detection operation on a

56 Mobile 3D Graphics SoC

Figure 2.38 Data synchronization scheme of the MC-NoC

Application Platform 57

homogeneous SoCwith conventional 2DmeshNoC. Because there is no contention in

data flow for the task mapping of Figure 2.39b, it will outperform the task mapping of

Figure 2.39c, even though all other conditions are equally given. The contention of data

flow in Figure 2.39c is visualized by the number of arrows in the same locations. The

drawback of the conventional 2D mesh NoC is dependency of overall SoC perfor-

mance on mapping of the task. Even more, finding optimal task mapping may be very

difficult for applications with complex data dependencies. Longer average hop counts

and possibilities of deadlock on theway of finding bandwidth-optimized taskmapping

are additional drawbacks of the 2D mesh NoC.

Feasibility of task mapping on the MC-NoC can be judged from Figure 2.40. For

simplicity, crossbar switches are not drawn and only a portion of the MC-NoC is

depicted in this figure. In the MC-NoC, processors and dual-port SRAMs are

interconnected through the crossbar switches which provide full nonblocking con-

nections. Therefore, interchanging task mappings just inside the left side or right side

Figure 2.39 Mapping of edge detection task into conventional mesh NoC

58 Mobile 3D Graphics SoC

of the MC-NoC does not affect the data flow characteristic and resulting overall

performance. For example, interchanging task mapping of difference of Gaussian

(DoG) 0–1 and RGB to HSI conversion in Figure 2.40 has no impact on contentions in

data flow. This attribute of the MC-NoC improves the flexibility of task mapping on a

homogeneous SoC, because the key decision of task mapping reduces to whether

the given task is mapped on the left side or the right side. Dual-port SRAMs are

adopted to remove performance loss when SRAM access comes from both left and

right sides.

In addition, variations on required bandwidth between co-working tasks are also

successfully supported by the MC-NoC. If a large bandwidth is required for some

tasks, multiple numbers of SRAMs can be dynamically assigned for the demanding

task. For a small amount of data transfer, only one dual-port SRAM is assigned. With

regard to traffic, the MC-NoC improves locality because most packet transactions

between processors andmemories are confined to a single crossbar switch towhich the

involved processors and SRAMs are connected.

Evaluation of the MC-NoC
To demonstrate feasibility and flexibility of task mapping on the MC-NoC, we shall

briefly report experimental results showing how the overall performance is affected by

different task mappings (Figure 2.41).

Although the MC-NoC is drawn as a single rectangular “black box” for simplicity,

the architecture shown in Figure 2.41a is exactly applied for our performance

comparison. First, RGB to HSI conversion, Gaussian filter operations, and DoG

calculation tasks are mapped randomly on the given architecture (Figure 2.41a).

Second,Gaussian filter operations aremapped on the upper half of the SoC,whileDoG

calculations are mapped on the lower half (Figure 2.41b). Similarly, the DoG and

Figure 2.40 Mapping of edge detection task on MC-NoC

Application Platform 59

Gaussian filtering tasks are separated into left and right, respectively, in the third task

mapping configuration (Figure 2.41b).

The results of our performance comparison are given in Table 2.4. In this

comparison, verilog HDL description is used for the MC-NoC and other parts of the

SoC. Therefore, the performance comparison result derived from the simulation is

cycle-accurate. In Table 2.4, numbers in the “cycle count” column refer to clock cycles

required to perform edge detection for 320� 240 pixels of image. The numbers in the

extreme right column show cycle count ratio compared to the task mapping configu-

ration in Figure 2.41a. The results in Table 2.4 prove the flexibility of task mapping on

the proposed MC-NoC. In the MC-NoC based homogeneous SoC, the difference in

overall performance according to thevarious taskmapping is less than 3%.This feature

of the MC-NoC also facilitates software level optimization.

2.4.3.3 FAUST (Flexible Architecture of Unified System for Telecoms)

Eleven European industrial bodies, research institutes and universities launched a joint

project named 4-MORE, standing for “4G Multi-carrier CDMA multiple antenna

system-on-chip for radio enhancements.” Recently, their architecture has been

published for the application of orthogonal frequency-division multiplexing (OFDM)

to multi-carrier baseband processing such as 802.11n, 802.16e, 3GPP/LTE [39, 40].

They proposed asynchronous network-on-chip (ANOC) with a GALS (globally

asynchronous locally synchronous) paradigm. The ANOC architecture uses virtual

Table 2.4 Performance comparisons of different task mappings on the MC-NoC

Task mapping Cycle count Ratio to mapping (a)

(a) 8,202,900 1

(b) 8,086,580 0.986

(c) 8,021,820 0.978

Figure 2.41 Task mapping of edge detection on the MC-NoC

60 Mobile 3D Graphics SoC

channels to provide low latency and quality of service, and is implemented in quasi-

delay-insensitive (QDI) asynchronous logic [41].

The FAUST chip integrates 20 asynchronous NoC routers, 23 synchronous units

including an ARM946 core, embedded memories, various IP blocks, reconfigurable

data-path engines, and one clock management unit to generate the 24 distinct unit

clocks (Figure 2.42).

To integrate any synchronous IPwithin theANOCarchitecture, a dedicated network

interface performs two main tasks. The first is synchronization between the synchro-

nous and asynchronous logic domains using ad-hoc decoupling FIFOs [42]. The

second task provides all facilities to access the NoC communication infrastructure:

network routing path programming, network data packet generation, and IP core

configuration.

Table 2.5 presents themain features of the FAUST chip. It is implemented in a 6ML,

130 nm, 1.2V CMOS process from STMicroelectronics. The whole chip integrates

more than 3Mgates and 3.5MB of embedded RAM, which corresponds to a core area

of 72.71mm2 and a chip area of 79.5mm2. The maximum NoC throughput measured

between two adjacent nodes or between an IP and its connected node is 5.12Gb/s per

link. The latency is about 6 ns per crossed node, 12 ns for theGALS IF, and 12 ns for the

network interface.

A real-time 100Mb/s single-input single-output (SISO) OFDM transceiver needs

a bandwidth of 10Gb/s that corresponds to a 10% network load, for a complexity of

1.7 million gates at the transmitter level and 1.9Mgates at the receiver level.

The integration of each IP within the NoC costs 41Kgates (�0.45mm2) for the

5� 5 asynchronous node (19K), the GALS interface (12K), and the network interface

Figure 2.42 FAUST architecture

Application Platform 61

(10K without configuration registers). The 20-node NoC represents about 15% of the

overall area, and the average complexity of the 23 IP connected is close to 300Kgates

(including RAM). Using an optimized frequency scaling between 160MHz and

250MHz, the transceiver functions consume 640mW in TX mode and 760mW in

RX mode. The NoC power consumption accounts for only about 6% of the overall

power consumption for a typical traffic defined by the targeted applications

(Figure 2.43).

The cost of the NoC in terms of area is similar to a bus-based architecture, but the

properties ofNoC structures are better suited to addressing the design issues associated

with complex SoCs.

Table 2.5 Features of the FAUST chip

NoC architecture

Topology and size 2D mesh including 20 nodes

Switching and routing modes Packet switching and wormhole routing

Flow control technique Credit-based

Flit size (i.e., word size) 32 bits

QoS support 2 virtual channels

I/O Direct external NoC accesses

Implementation Asynchronous logic (QDI)

Power-saving technique Dynamic frequency scaling

Computing and memory aspects

IP count 23 units connected to the NoC

Processor core ARM946 ES

DMA engines 3 units to manage on-chip and off-chip

memories

Reconfigurable datapath SIMD structure for channel estimation

Host computer interface 100Mb/s full duplex Ethernet unit

Technology and complexity

Process 130 nm CMOS 6ML (STMicroelectronics)

Logic gate count 3.124Mgates (excluding SRAM blocks)

On-chip clocks 24

Die size 8.900mm� 8.933mm¼ 79.50mm2

Package BGA420 (35mm� 35mm)

Signal I/O count 275

Supply voltage 1.2V for core, 3.3V for I/O

Measured performance

NoC throughput 5.120Gb/s per link

IP operating frequency 162MHz

Chip power consumption 640mW in TX mode, 760mW in RX mode

NoC area 15% of the global area

NoC power consumption 6% of the global consumption

62 Mobile 3D Graphics SoC

References

1 Sohn, J.-H. et al. (2005) Low-power 3D graphics processors for mobile terminals. IEEE Commun. Mag., 33 (12),

90–99.

2 Kurose, Y., Kumata, I., Okabe, M. et al. (2004) A 90 nm embedded DRAM single chip LSI with a 3D graphics,

H.264 codec engine, and a reconfigurable processor. Proc. of Hot Chips 16: Symposium on High Performance

Chips 2004.

3 Imagination Technology MBX graphics IP core. Available at http://www.imgtec.com/powervr/mbx.asp.

4 ARM RISC processor. Available at http://www.arm.com.

5 OpenGL-ES Khronos group. Available at http://www.khronos.org/.

6 Fowler, Martin and Scott, Kendall (2000) UML Distilled, 2nd edn, Addison–Wesley, Boston.

7 Yoo, H.-J. et al. (2007) Low-power NoC for High-performance SoC Design, CRC Press, New York.

8 Chndrakasan, Anantha P. and Broderson, RobertW. (1996) Low-power Digital CMOSDesign, Kluwer Academic,

Boston.

9 Chandrakasan, Anantha and Brodersen, Robert (1998) Low-power CMOS Design, IEEE Press, New York.

10 Gupta, Ankur and Hattori, Toshihiro (2007) Low-power CMOS design.Asia and South PacificDesign Automation

Conference (tutorials).

Figure 2.43 Area and power profile of the FAUST chip

Application Platform 63

11 Sriram,Vangal et al. (2007)On an 80-tile 1.28Tflops network-on-chip in 65nmCMOS.Digest of TechnicalPapers,

IEEE International Solid State Circuits Conference, pp. 98–589.

12 Brucek, Khalany et al. (2007) A programmable 512 GOPS stream processor for signal, image, and video

processing. Digest of Technical Papers, IEEE International Solid State Circuits Conference, pp. 272–602.

13 Didier, Lattard et al. (2007) A telecom baseband circuit based on an asynchronous network-on-chip. Digest of

Technical Papers, IEEE International Solid State Circuits Conference, pp. 258–601.

14 Benini, Luca andDeMicheli,Giovanni (2002)Networks on chips: a newSoCparadigm. IEEEComput.,35, 70–78.

15 Dally, W.J. and Towles, B. (2001) Route packets, not wires: on-chip interconnection networks. Proc. of IEEE

Design Automation Conference, pp. 684–689.

16 Taylor, M.B. et al. (2002) The Raw microprocessor: a computational fabric for software circuits and general-

purpose programs. IEEE Micro., 22 (2), 25–35.

17 Sohn, Ju.-Ho. et al. (2006) A 155-mW 50M vertices/s graphics processor with fixed-point programmable vertex

shader for mobile applications. IEEE J. Solid-St. Circ., 41 (5), 1081–1091.

18 Intel Xscale processor. Available at http://www.intel.com/design/intelxscale/.

19 AMBA AXI specification.

20 OCP 2.0 protocol specification.

21 STBus functional specifications, STMicroelectronics public web support site, http://www.stmcu.com/inchtml-

pages-STBus_intro.html, April 2003.

22 Goossens, Kees et al. (2005) Æthereal network on chip: concepts, architectures, and implementations. IEEE Des.

Test Comput., 22, 414–421.

23 Zimmermann,Hubert (1980)OSI referencemodel: the ISOmodel of architecture for open systems interconnection.

IEEE T. Commun., 28 (4), 425–432.

24 Wingrad, D. (2001) MicroNetwork-based integration for SOCs. Proc. of Design Automation Conference 2001,

pp. 673–677.

25 Choi, Kyusun and Adams, William S. (1992) VLSI implementation of a 256 � 256 crossbar interconnection

network. Proc. of IEEE 6th International Parallel Processing Symposium, pp. 289–293.

26 Lee, S.-J. et al. (2005) Adaptive network-on-chip with wave-front train serialization scheme. Digest of Technical

Papers, IEEE Symposium on VLSI Circuits 2005, pp. 104–107.

27 Worn, F., Lenne, P., Thiran, P., andDeMicheli, G. (2005)A robust self-calibrating transmission scheme for on-chip

networks. IEEE T. VLSI Syst., 13, 126–139.

28 Millberg, M. et al. (2004) The Nostrum backbone: a communication protocol stack for network-on-chip. Proc. of

International Conference on VLSI Design, pp. 693–696.

29 Lee, K. et al. (2006) Low-power network-on-chip for high-performance SoC design. IEEE T. VLSI Syst., 14,

148–160.

30 Lee, S.-J. et al. (2005) Packet-switched on-chip interconnection network for system-on-chip applications. IEEE T.

Circuits-II, 52, 308–312.

31 Lee, Se-Joong et al. (2003) An 800 MHz star-connected on-chip network for application to systems on a chip.

Digest of Technical Papers, IEEE International Solid-States Circuits Conference 2003, pp. 468–469.

32 Lee, Kangmin et al. (2004) A 51mW1.6GHz on-chip network for low-power heterogeneous SoC platform.Digest

of Technical Papers, IEEE International Solid-States Circuits Conference 2004, pp. 152–518.

33 Held, J. et al. From a Few Cores to Many: A Tera-scale Computing Research Overview, white paper, Intel

Corporation, 2006. www.intel.com.

34 Vangal, S., Borkar, N.Y., and Alvandpour, A. (2005) A six-port 57GB/s double-pumped non-blocking router core.

Digest of Symposium on VLSI Circuits, pp. 268–269.

35 Tschanz, J., Narendra, S.G., Ye, Y. et al. (2003) Dynamic sleep transistor and body bias for active leakage power

control of microprocessors. IEEE J. Solid-St. Circ., 1, 1838–1845.

36 Khellah,M., Kim,N.S., Howard, J. et al. (2006)A 4.2GHz 0. 3mm2 256kb dual-Vcc SRAMbuilding block in 65 nm

CMOS. Digest of Technical Papers, ISSCC 2006, pp. 624–625.

37 Kim, D. et al. (2007) Solutions for real chip implementation issues of NoC and their application to memory-centric

NoC. Proc. of IEEE International Symposium on Networks-on-Chip (NOCS) 2007, pp. 30–39.

38 Lowe, D.G. (2004) Distinctive image features from scale-invariant keypoints. ACM Int. J. Comput. Vision, 60 (2),

91–110.

39 Lattard, D. et al. (2007) A telecom baseband circuit based on an asynchronous network-on-chip. Digest of

Technical Papers, ISSCC 2007, pp. 258–259.

64 Mobile 3D Graphics SoC

40 Viviet, P. et al. (2007) FAUST: an asynchronous network-on-chip based architecture for telecomapplications.Proc.

of Design, Automation and Test in Europe Conference.

41 Beigne, E., Clermidy, F., Vivet, P. et al. (2005) An asynchronous NOC architecture providing low latency service

and its multi-level design framework. Proc.of ASYNC, New York, 2005, pp. 54–63.

42 Beigne, E. and Vivet, P. (2006) Design of on-chip and off-chip interfaces for a GALS NoC architecture. Proc. of

ASYNC, Grenoble, 2006, pp. 172–181.

Application Platform 65

3

Introduction to 3D Graphics

Three-dimensional graphics started with the display of data on hardcopy plotters and

CRT screens soon after the introduction of computers themselves. It has grown to

include the creation, storage, andmanipulation ofmodels and images of objects. These

models come from a diverse and expanding set of fields, and include physical,

mathematical, engineering, architectural, and even conceptual structures, natural

phenomena, and so on.

Until the early 1980s, 3D graphics was used in specialized fields because the

hardware was expensive and there were few graphics-based application programs that

were easy to use and cost-effective. Since personal computers have become popular,

3D graphics is widely used for various applications, such as user interfaces and games.

Today, almost all interactive programs, even those for manipulating text (e.g., word

processors) and numerical data (e.g., spreadsheet programs), use graphics extensively

in the user interface and for visualizing and manipulating the application-specific

objects. So 3Dgraphics is no longer a rarity and is indispensable for visualizing objects

in areas as diverse as education, science, engineering, medicine, commerce, military,

advertising, and entertainment.

Fundamentally, 3D graphics simulates the physical phenomena that occur in the real

world – especially dynamic mechanical and lighting effects – on 2D display devices.

Thus the role of the 3D graphics pipeline is to project 3D objects on to a 2D screenwith

appropriate lighting effects. As shown in Figure 3.1, the 3D graphics pipeline is

composed of application, geometry, and rendering stages. The application stage

computes the dynamic behavior description of 3D objects; the objects are transformed

and vertex information is computed in the geometry stage; and the information for each

pixel is computed in the rendering stage. Recently, programmability has been

introduced into the 3D graphics pipeline to support various graphics effects, including

non-photorealistic effects. This approach supports programmability in the geometry

and rendering stages.

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

This chapter is organized as follows. Section 3.1 describes the overall graphics

pipeline including the application, geometry, and rendering stages. The modified

programmable version is explained in Section 3.2.

3.1 The 3D Graphics Pipeline

3.1.1 The Application Stage

The application stage starts and drives the 3D graphics pipeline by feeding 3Dmodels

to be rendered according to the information determined in the application stage. Thus it

should be understood in the context of the 3D graphics pipeline although the

application stage is not an actual part of the 3D graphics subsystem.

The application stage generates the movements of 3D objects based on the

information gathered from the environment. The environmental information includes

the user interaction from keyboard or mouse, and internally generated information in

the real world. Thus the application stage also processes the artificial intelligence (AI),

collision detection, and physics simulations to generate this information. Based on

these, the objects’ movements produce the 3D animation by moving the objects from

frame to frame.

The dynamics of the 3D objects and the camera position defined in the application

stage also affects the animation, in which the 3D objects are moved by frames taken at

certain viewpoints. In the application stage, the 3D objects are represented as sets of

polygons or triangles and their movements are specified by geometry transformation

matrices. Thesematrices are sent to the geometry stage to be used for transformation of

vertex positions.

3.1.2 The Geometry Stage

The geometry stage operates on the polygons or vertices. The major operations in this

stage are, first, geometric transformation of the vertices according to the matrices

determined in the application stage and, second, the lighting which determines the

color intensity of each vertex according to the relationship between the properties of

the vertex and the light source.

Figure 3.1 3D graphics pipeline stages

68 Mobile 3D Graphics SoC

The geometric transformation goes through several coordinate transformations as

shown in Figure 3.2. The objects defined in local model coordinate space are

transformed into world coordinate and camera coordinate spaces, and finally into

the device coordinate space. Each coordinate space for the geometric transformation is

explained in detail in this section.

3.1.2.1 Local Coordinate Space

The local coordinate space is the space where 3D objects are developed. For

modeling convenience, the 3D objects are modeled in their local coordinate spaces

and the origin is located at the center or corner of each model. These models are

gathered into the world space by transforming the center of each local coordinate

space to the point where the object is located in the world space. This is called

modeling transformation and it involves shifting, rotating and scaling operations on

the original 3D object. The vertex normal is also transformed into theworld space for

the lighting operation. Each operation is specified by matrix coefficients, and the

matrices are combined into a single modeling transformation matrix by multiplying

thematrices. Figure 3.3 shows themodeling transformation operations and examples

of corresponding matrices.

Figure 3.2 Spaces and coordinate systems in 3D graphics

Introduction to 3D Graphics 69

3.1.2.2 World Coordinate Space

The 3Dmodels are gathered in the world coordinate space to make a 3D world. In this

world space, the light sources are defined and intensity calculations are performed for

the objects in the 3D world. According to the shading strategy chosen, the actual

lighting operation takes place in this coordinate space or later in 3D screen coordinate

space. If Gouraud shading (also called intensity interpolation) is adopted [1], the

intensity calculation takes place in this space for each vertex of the object using its

transformed vertex coordinates and normal values.

The lightingmodel for the intensity calculation is composed of ambient, diffuse, and

specular terms as follows:

I ¼ iambþ idiff þ ispec: ð3:1Þ

The ambient light approximates a constant background light coming from all

directions, which is represented as below, where lamb is a global ambient light source

parameter and mamb is ambient material parameter:

iamb ¼ lamb �mamb: ð3:2Þ
It does not depend on the geometrical relationships between the light position and

the pixel position in 3D space.

The diffuse light term depends on the light direction vector (L) and the surface

normal vector (N) as shown inFigure 3.4. This term ismaximizedwhen the light source

is incident perpendicular to the object surface. Thus it can be described by:

idiff ¼ ldiff �mdiff � cosy ¼ ldiff �mdiff � ðN �LÞ ð3:3Þ
where ldiff is the diffuse parameter of the light source andmamb is the diffuse color of the

material.

The specular term depends on the angle ðfÞ between the light reflection vector (R)
and the view vector (V). Assuming the object’s surface is a shiny material, such as a

mirror, we can obtain maximum intensity when the viewing vector is coincident with

the reflection vector. As the viewing vector deviates from the reflection vector, the

1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 cos sin 0

0 0 1 0 0 0 0 sin cos 0

0 0 0 1 0 0 0 1 0 0 0 1

xx

yy

zz

T S
T S
T S

θ θ
θ θ

 −

RotationScalingTranslation

Modeling Transformation

World
coordinate

space

Local coordinate space

Figure 3.3 Modeling transformation example

70 Mobile 3D Graphics SoC

specular term becomes smaller, which is described by:

ispec ¼ lspec �mspec � cosmshinf ¼ lspec �mspec � ðR �VÞmshin : ð3:4Þ
Here, lspec is the color of the specular contribution of the light source andmamb is the

specular color of the material. The exponent term, mshin, in the specular intensity

calculation represents the shininess of the surface. The reflection vector R can be

calculated by:

R ¼ 2ðN � LÞN�L ð3:5Þ
where L and N are normalized vectors. A popular variant of (3.4) avoiding the

computation of the reflection vector R is:

ispec ¼ lspec �mspec � cosmshinj ¼ lspec �mspec � ðN �HÞmshin : ð3:6Þ
The geometries of the specular lighting are illustrated in Figure 3.5.

If Phong shading is applied [2], the intensity is calculated per pixel and is deferred

until the objects are transformed into the 3D screen coordinate space; this will be

explained later. In this case, the normal vectors should be carried up to the 3D screen

coordinate space for the lighting operation.

ϕ

L
H

Surface

Light source

Surface normal

N Half vector

Figure 3.5 Geometry for specular lighting

θ

L

Surface

Light source

Surface normal

N

Figure 3.4 Geometry for diffuse lighting

Introduction to 3D Graphics 71

In the world space, a camera is set up through which we can observe the 3D world

from a certain position. By moving the position and angle of the camera in the world

space, we can get scenes navigating the 3Dworld. For convenience of computations in

the following stages, the world coordinate space is transformed into a view coordinate

space with the camera located at the origin. This transformation is called the viewing

transformation.

Figure 3.6 illustrates the viewing transformation which first performs coordinate

translation of the camera and then the rotation.

3.1.2.3 Viewing Coordinate Space

After the viewing transformation, all the objects are spaced with respect to the

camera position at the origin of the view space. In this view space, culling and

clipping operations are carried out in preparation for later rendering stage

operations.

When only the front-facing polygons of a 3D object are visible to the camera, a

culling operation, also called “back-face culling,” can remove polygons that will be

invisible on the 2D screen. Thus the number of polygons to be processed in the later

stages is reduced. This is done by rejecting back-facing polygons when seen from the

camera position, based on the following strategy:

Visibility ¼ Np �N: ð3:7Þ

Based on this equation, we can determine whether the polygon is back-facing or

not by testing the sign of the inner product of two vectors: the polygon normal

vector ðNpÞ and the line of sight vector ðNÞ. Therefore, a large amount of processing

in later stages can be avoided if the visibility of a polygon is determined and culled

out at this stage.

In the view space, the view frustum is defined to determine the objects to be

considered for a scene. Figure 3.7 shows a view frustum defined with six clipping

planes, including the near and far clip planes. The objects are transformed into the

clipping coordinate space by perspective transformation shown in Figure 3.8, which is

defined in terms of the view frustum definition.

1 0 0 0 1 0 0

0 cos sin 0 0 1 0

0 sin cos 0 0 0 1

0 0 0 1 0 0 0 1

x

y

z

T
T
T

θ θ
θ θ

 −

TranslationRotation

Viewing Transformation

View
coordinate

space

World coordinate space

Figure 3.6 Viewing transformation example

72 Mobile 3D Graphics SoC

Viewing

direction
C

Near clip plane

(zv = d) Far clip plane

(zv = f)

h

zv =
hzv

d

yv =
hzv

d

yv =
hzv

d

zv =
hzv

d

Figure 3.7 View frustum

Figure 3.8 Perspective transformation and its matrix

Introduction to 3D Graphics 73

3.1.2.4 Clipping Coordinate Space

Although polygon clipping can be done in the view coordinate space against the view

frustum with six planes, the clipping occurs in this clipping space to avoid solving

plane equations. Polygon clipping against a square volume in this space is easier than

in the view space, since simple limit comparisons with w component value as follows

are sufficient for the clip tests:

�w � x � w

�w � y � w

�w � z � w:
ð3:8Þ

The polygons are tested according to (3.8) and the results fall into one of three

categories: completely outside, completely inside, or straddling. The “completely

outside” polygons are simply rejected. The “completely inside” polygons are pro-

cessed as normal. The “straddling” polygons are clipped against the six clipping

planes, and those inside are processed as normal.

After clipping, the polygons in the clipping space are divided by theirw component,

which converts the homogeneous coordinate system into a normalized device coordi-

nate (NDC) space, as described below.

3.1.2.5 Normalized Device Coordinate Space

The range of polygon coordinates in the normalized device coordinate (NDC) space is

½�1; 1�, as shown in Figure 3.9. The polygons in this space are transformed into the

device coordinate space using the viewport transformation, which determines how a

scene is mapped on to the device screen. The viewport defines the size and shape of the

device screen area on to which the scene is mapped. Therefore, in this transformation,

the polygons in NDC are enlarged, shrunk or distorted according to the aspect ratio of

the viewport.

3.1.2.6 Device Coordinate Space

After viewport transformation, the polygons are in the device coordinate space as

shown in Figure 3.10. In this space, all the pixel-level operations, such as shading, Z

testing, texture mapping, and blending are performed. Up to the viewport transforma-

tion is called the geometry stage, and the later stages are called the rendering stage,

where each pixel value is evaluated to fill the polygons.

3.1.3 The Rendering Stage

In the rendering stage, pixel-level operations take place in the device coordinate space.

Various pixel-level operations are performed, such as pixel rendering by Gouraud or

74 Mobile 3D Graphics SoC

Phong shading, depth testing, texture mapping, and several extra effects such as alpha

blending and anti-aliasing.

3.1.3.1 Triangle Setup

Using thevertices from thegeometry stage, a triangle ismade upbefore the rasterization

can start. Information on the triangle attributes is calculated, such as the attribute deltas

Camera

xv

yv

zv

Near clip plane

(z
v
 = d)

Far clip plane

(z
v
 = f)

Camera

xd

yd

zd

Near clip plane

(z
d
 = –1)

Far clip plane

(z
d
 = 1)

View space

Normalized device
coordinate space

(0,0,d)

h

y
d
 = 1

y
d
 = –1

x
d
 = 1

x
d
 = –1

Figure 3.9 Normalized device coordinate space

Figure 3.10 Device coordinate space

Introduction to 3D Graphics 75

between triangle vertices and edge slops for the rasterization. This is called the triangle

setup operation. These values are given to the rasterizer, where the triangle attributes –

such as color and texture coordinates – are interpolated for the pixels inside a triangle by

incrementing the delta value as we move one pixel at a time.

3.1.3.2 Shading

Thefirst thing to be determined in the rendering stage iswhat shading algorithm is to be

used. There are two commonly used shading algorithms: Gouraud and Phong.

Gouraud shading is a per-vertex algorithm that computes the intensity of each

vertex, as discussed already. The rendering stage just linearly interpolates the color of

each vertex determined in the geometry stage to determine the intensities of pixels

inside the polygon. In contrast, Phong shading is a per-pixel algorithm in which the

intensity of every pixel in a given polygon is computed rather than just interpolating the

vertex color. Thus, Phong shading requires high computational power to do complex

lighting operations according to the lighting model explained earlier. However, it can

generate very sharp specular lighting effects even if the light source is located just

above the center of a polygon, in which case the pixel color changes rapidly. This is

illustrated in Figure 3.11.

3.1.3.3 Texture Mapping

Texture mapping enhances the reality of 3D graphics scenes significantly with

relatively simple computations. This operation wraps a 3D object with 2D texture

image obtained by taking a picture of the real surface of a 3D object. Thus, texture

mapping can easily represent surface details such as color and roughness without

requiring complex computations of lighting or geometric transformation. On the other

hand, it requires large memory bandwidth to fetch texture image data, called texels, to

be used for the mapping. It also requires filtering of the texels, called texture filtering,

in order to reduce the aliasing artifacts of the textured image. There are various texture

filtering algorithms: point sampling, bilinear interpolation, mip-mapping, and so on.

The texturemapping operation is illustrated in Figure 3.12, and the difference between

using and not using texture mapping is shown in Figure 3.13.

Phong

shading

Gouraud

shading

Figure 3.11 Shading schemes

76 Mobile 3D Graphics SoC

3.1.3.4 Depth Testing

Depth testing (or Z-testing) is used to remove hidden surface pixels. For this scheme, a

depth buffer of the same size as the 2D screen resolution is required. The depth buffer

stores the depth values of the pixels drawn on the screen, and every depth value of the

pixel being drawn is comparedwith the value at the same position in the depth buffer to

determine its visibility. The pixel is drawn on the screen if it passes the test. In this case,

the depth and color values (R, G, B) of the pixel are updated into the depth and frame

buffer. Otherwise, the depth and color values are discarded because the pixel resides

further from the viewer than the one currently stored at the given position in the frame

buffer.

3.1.3.5 Blending, Fog, and Anti-aliasing

There are several extra effects that can enhance the final scene. “Alpha blending” is

used to give a translucent effect to the polygon being drawn. This scheme blends the

color value of the pixel being processed with the one from the frame buffer at the same

position. This blending is done according to the alpha value associated with the pixel.

The alpha value represents the opacity of the given pixel. After blending, the result

color value is updated to the frame buffer.

Meanwhile, the final graphics image can seem unrealistic because it is too sharp for

an outdoor scene. The scene can be made more realistic by adopting the “fog effect,”

Figure 3.13 Texture mapping effects: (a) flat shaded image, and (b) texture-mapped image

Screen space3D object spaceTexture space

Figure 3.12 Texture mapping

Introduction to 3D Graphics 77

which is a simple atmospheric effect that makes objects fade away as they are located

further from the viewpoint.

“Anti-aliasing” is applied to reduce the jagged look of the final 3D graphics scene.

The jagged look is due to the approximation of ideal lines with digitized pixels on a

screen. To remove these artifacts, an anti-aliasing algorithm calculates the coverage

value – what fraction of the pixel covers the line.

Although there are other ways to classify the 3D graphics pipeline, and various

graphics algorithms in each pipeline stage, those described above represent the

fundamental structure of a 3D graphics pipeline.

3.2 Programmable 3D Graphics

The functions of the 3D graphics pipeline explained in the previous section are fixed.

However, a fixed function pipeline can support only predetermined graphics effects.

Recently, new3Dgraphics standards likeOpenGL [3] andDirectX [4] have introduced

programmable 3Dgraphics [5] to support various effects by programming the graphics

pipeline to adopt a certain graphics effect [6].

3.2.1 Programmable Graphics Pipeline

Themodern programmable graphics pipeline adopts twomajor programmable stages:

vertex shading and pixel shading. In this configuration, the vertex shader and pixel

shader replace, respectively, the transformation and lighting operations of the geome-

try stage and the texturemapping operation of the rendering stage. This is illustrated in

Figure 3.14.

Figure 3.14 Programmable 3D graphics pipeline

78 Mobile 3D Graphics SoC

The vertex shader works on vertex attributes such as the vertex position, normal,

color, and texture coordinates. The pixel shaderworks on the position of each pixel and

carries out the procedural texture mapping by accessing the texture sampler with its

texture instructions. Detailed descriptions of these two programmable shaders follow.

3.2.1.1 Vertex Shader

Thevertex shader is defined as a process that accepts input vertex streams and produces

new vertex streams as the output. A vertex is composed of several attributes which

include vertex position, color, texture coordinates, fog values, and some user-defined

attribute values. The vertex shader updates these vertex attributes, so that a new vertex

position is located in the clipping coordinate space.

The role of the vertex shader is to transform the vertex coordinates from the local

coordinate space into the clipping space and to compute the intensity of vertex color.

The other fixed-function stages of the pipeline – such as culling, clipping, perspective

division, and viewport mapping – are not replaced by the vertex shader.

Thegeneral executionmodel of thevertex shader is shown inFigure 3.15. Thevertex

shader has several operand register files andwrite-only output register files. The source

operand register files include read-only input register files, constant memory, and

read–write temporary register file. These register files are made up of entries with

floating-point four-component vectors.

The vertex shader accesses the source registers to get vertex attributes and these

registers contain two types of input data, changing per vertex or per frame. The input

registers contain the changing per-vertex data such as the vertex position and normal,

while the constant memory contains the changing per-frame data such as the

transformation matrix, light position and material. Integer registers, which are not

directly accessible from the shader programs, are also provided only for indexed array

addressing.

Figure 3.15 Vertex shader model

Introduction to 3D Graphics 79

After vertex shading, the result is written to the write-only output register file. The

output registers have the transformed vertex position in the homogeneous clipping

coordinate space, and lit vertex colors. The output vertex from the vertex shader goes

through fixed-function stages and the pixel shader, which will be discussed in the

following section.

3.2.1.2 Pixel Shader

A pixel (also known as a fragment shader) is defined by the point associated with its

position in the device coordinate space, color, depth, and texture coordinates. The

attributes of each pixel are interpolated in the rasterizer and these are used as the inputs

for the pixel shader.

The pixel shader executes per pixel in the device coordinate space during raster-

ization. Itsmajor operations include texturemapping and color blending according to a

programmed routine. The pixel shader includes the texture sampler stage to give more

flexibility in texture mapping. With the texture sampler, a dependent texture read –

where the result from a texture read modifies the texture coordinates of a later texture

access – becomes possible, enabling more advanced rendering effects. The other

rendering parts – such as depth test, alpha blending, and anti-aliasing operations –

remain as fixed functions separated from the pixel shader.

The general model of the pixel shader is shown in Figure 3.16, which is similar to

that of the vertex shader. It also has a read-only input register file, constant memory,

and read–write temporary register file. These register files are also of four-component

floating-point vectors. The input register file contains interpolated pixel attributes such

Figure 3.16 Pixel shader model

80 Mobile 3D Graphics SoC

as color and texture coordinates. With the attributes from the input register and the

texture read values, the pixel shader determines the resultant color that will be

displayed and stores it in the output register file. The depth value is also determined

to be used in the later depth test stage.

3.2.2 Shader Models

This subsection explains shader models based on the generic shader architectures

described in the previous subsection. The shaders are basically numeric vector

processors and they provide CPU-like assembly languages even though their instruc-

tion sets are mainly defined for four-component floating-point vectors and limited to

3D graphics processing only.

3.2.2.1 Shader Model 1.0

Shader model 1.0 was the first major programmable shader model [7]. The vertex

shader of this model replaced the transform and lighting stages of the fixed-function

pipeline. The pixel shader replaced the texturemapping and blending stages. However,

its instruction usagewas quite restrictive, and the number of registers was quite limited

for use with complex shading algorithms.

Based on the generic architecture introduced in Figure 3.15, the vertex shader

architecture in this version has four-way floating-point registers including 16 input

registers, 12 temporary registers, 96-entry constant memory, 13 output registers, and a

single address register. The address register is also of the four-way floating-point type

and only the x component is rounded to the integer and used for indexing. The output

registers have fixed names and meanings and are used for passing the vertex shader

results on to the next stages of the graphics pipeline.

The vertex shader has two types of instruction: general and macro. General

instructions take one instruction slot whereas macro instructions are expanded into

several general instruction slots. A single vertex shader routine can use up to a

maximum of 128 instruction slots. The operand modifiers are embedded into the

instructions to support primitive unary operations on the operands without additional

cycle costs. The operand modifiers supported in this model include source negation,

swizzle, and destination mask. “Source negation” allows the source operand to be

negated before it is used in the instruction. “Source swizzle” allows swapping or

replication of the components in an operand register before it is used. The

“destination mask” controls the updates to certain components in the destination

register.

The pixel shader of this model is primitive and restricted. It has two main types of

instruction: arithmetic and texture addressing. In this version, these instructions

cannot be used in amix and the texture addressing instructions should come before any

arithmetic instructions. Therefore, the texture addressing instructions provide matrix

Introduction to 3D Graphics 81

transformation functionality for the texture coordinates to avoid the mixed use of

arithmetic and texture addressing instructions.

The arithmetic instructions are used to blend the interpolated pixel colors passed

from the rasterizer and the texels fetched from the texture addressing instructions. The

blended pixel color and the depth value make up the final output of the pixel shader.

The programming model is limited in that a couple of useful instructions are

missing, and instructions can be programmed in only a quite restrictedmanner. Several

architectural advances have been made in later model specifications.

3.2.2.2 Shader Model 2.0

The vertex shader 2.0 version has an increased constant memory of 256 entries [8].

It also contains new Boolean registers for conditional execution and new integer

registers used for counters in a loop. The maximum number of instructions is also

increased to 256.

In this version, several new arithmetic instructions are defined. These include

several vector and transcendental functions such as vector normalize, cross-product,

power, and sincos functions. These can be considered as macro instructions since they

are multi-cycle instructions and can be emulated by multiple instructions.

The most significant change in this version is flow control instructions, of which

there are two types: static and dynamic. These flow control instructions can reduce

code size by enabling loops to avoid repeated block copies. For example, the lighting

routine for multiple light sources can avoid repeated copies of the lighting routine for

each light source if static flow control instructions are supported.

In thismodel, there are significant improvements in the pixel shader. Amaximum64

instructions and 32 texture instructions are supported. With this model, all of the

arithmetic instructions in the vertex shader are also supported in the pixel shader.

The texture coordinates and texture samplers are separated into two different

register banks. They provide 8 texture coordinate registers and 16 sampler registers.

There are only three texture lookup instructions: texld is used for regular texture

sampling, texldp is for projective texture sampling, and texldb is forMIPMAP texture

sampling.

3.2.2.3 Shader Model 3.0

Shader model 3.0 provides a more unified structure of the vertex and pixel shaders in

order to make the shader codes more consistent [9]. Thus there are various common

features between these two shaders. The most significant improvement is the dynamic

flow control mechanisms. The dynamic flow control instructions allow if-statements,

loops, subroutine calls, and breaks that are executed according to a condition value

determined during program running. They also provide a predication scheme to

better support fine-grained dynamic flow controls. This is preferred in cases of very

82 Mobile 3D Graphics SoC

short branching sequences to the dynamic branch instructions. This shader model

supports nested flow controls: four nesting levels are supported for static flow control

and 24 levels for dynamic flow control.

The arbitrary swizzling in thismodel allows the source components to be arranged in

any order and eliminates the move of registers to align the components to a specific

order. This arbitrary swizzling is also compatible with the texture instructions.

The vertex shader in this model incorporates 32 temporary registers and 12 output

registers. Moreover, it provides a loop counter register, which allows indexing of

constant memory within a loop, now to be used for the relative addressing of input and

output registers. Themaximumnumber of instructions is also increased to at least 512.

Supporting longer instructions can reduce the state change of the vertex shader and

thus improve its performance.

The most prominent improvement is to the vertex texturing. The vertex texturing

instruction is quite similar to that of the pixel shader, except that only the texldl

instruction is supported in thevertex shader since the rate of change is not available and

the level of detail (LOD) should be calculated and provided to the texture sampling

instruction.

The pixel shader 3.0 model supports 10 input registers, 32 temporary registers, and

256 constant registers. The predication register p0 is provided, and flow control is

controlled by the loop counter register aL. The aL is also used to index input registers.

The minimum instruction count of this model has increased to 512. With the

increased instruction count and the static and dynamic flow control schemes, several

pixel shader routines can be combined into a single one, thereby reducing the shader

state change and increasing the performance. The gradient instructions, dsx and dsy,

are newly introduced to the pixel shader 3.0. These are used to calculate the rate of

change of a pixel attribute across pixels in horizontal and vertical directions. This pixel

shader model supports unlimited texture read operations.

3.2.2.4 Shader Model 4.0

Shader model 4.0 consists of three programmable shaders – vertex shader, pixel

shader, and geometry shader – and defines a single common shader core virtual

machine as the base for each of these programmable shaders [10]. This shader model

provides expanded register files of 4096 temporary registers and 16 banks of 4096

constant memories. The instruction set also provides 32-bit integer instructions

including integer arithmetic, bitwise, and conversion instructions, and supports infinite

instruction slots. Its texture sampler state is decoupled from the texture unit. To this

base model, each of the shaders adds some stage-specific functionality to make a

complete shader.

Themost significant improvement of this shader model is the geometry shader. The

geometry shader can generate vertices on a GPU taking the output vertices from the

vertex shader. It can add or remove vertices from a polygon and thus can producemore

Introduction to 3D Graphics 83

detailed geometry out of existing rather plain polygon meshes. The geometry shader

can be used when a large geometry amplification such as tessellation is required.

References

1 Gouraud, H.(June 1971) Computer display of curved surfaces. Technical Report UTEC-CSc-71-113, Dept. of

Computer Science, University of Utah.

2 Tuong-Phong, Bui(July 1973) Illumination for computer-generated images. Technical Report UTEC-CSc-73-129,

Dept. of Computer Science, University of Utah.

3 OpenGL ARB (1999) OpenGL Programming Guide, 3rd edn, Addison–Wesley.

4 Microsoft Corporation. Available at http://msdn.microsoft.com/directx.

5 Lindholm, E., Kilgard, M.J., and Moreton, H. (2003) A user-programmable vertex engine. Proc. of SIGGRAPH

2001, pp. 149–158.

6 Gooch,A., Gooch, B., Shirley, P., andCohen, E. (1998)A non-photorealistic lightingmodel for automatic technical

illustration. Proc. of SIGGRAPH 1998, pp. 447–452.

7 Microsoft Corporation (2001) Microsoft DirectX 8.1 Programmer’s Reference, DirectX 8.1 SDK.

8 Microsoft Corporation (2002) Microsoft DirectX 9.0 Programmer’s Reference, DirectX 9.0 SDK.

9 Fernando, R. (2004) Shader Model 3.0 Unleashed, NVIDIA Developer Technology Group.

10 Blythe, D. (2006) The Direct3D 10 System. Proc. of SIGGRAPH 2006, pp. 724–734.

84 Mobile 3D Graphics SoC

4

Mobile 3D Graphics

Advancements in very-large-scale integration (VLSI) technologies have enabled the

integration of several system components on to a single chip, leading to so-called

systems-on-a-chip. SoC technologies now allow high-speed low-power electronic

devices to be manufactured in a compact size so as to eliminate slow and power-

consuming off-chip communications between modules as well as area-consuming

off-chip interconnections. As a consequence, mobile electronic devices such as

smartphones and personal digital assistants (PDAs) have become major players in

the consumer electronics market and their popularity increases every year.

However, mobile electronic devices have been hampered by their limited resources,

such as small screen size, user input interfaces, computing capability, and battery

lifetime. Thus their applications have also been restricted to relatively simple opera-

tions like text processing. Nevertheless, mobile electronic devices have evolved from

being text-based into many kinds of multimedia applications such asMP3, H.264, and

even to realtime 3D computer graphics. Figure 4.1 shows an example of a 3G system

that consists of an RF frontend, a baseband modem, an application processor, and

peripherals. The power consumption of each component in these types of system can

be found elsewhere [1, 2].

Realization of 3Dgraphics is a challenging issue because the huge computing power

andmemory bandwidth inherently required for realtime processung has to be achieved

within a limited power budget. In this chapter, design principles will be presented, and

a few examples of mobile 3D graphics will be introduced.

4.1 Principles of Mobile 3D Graphics

Sincethecomputingpowerandpowerbudgetsofmobiledevicesarequite limited,mobile

3Dgraphics is not intended for cinematic images requiringhuge computing resources; it

is targeted at mid-quality graphics. However, it should still be capable of presenting

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

sufficiently elaborate 3D graphics scenes to be used for practical applications such

as advertisements, the user interface, avatars, and gaming. There should be an optimal

designtradeoffpointbetweenqualityandhardwarecomplexitytobewithinsystempower

budgets. In this section, this tradeoff point will be explored for modern systems.

4.1.1 Application Challenges

There are several design challenges because of the limited computing power, memory

bandwidth, power budgets, and footprint of mobile devices. We have analyzed the

performance of 3D graphics pipelines on mobile systems with an in-house mobile

graphics library, Mobile-GL, which will be covered in the following section. This

library is optimized for fixed-point arithmetic on embedded CPUs used in mobile

devices in which floating-point arithmetic units are not incorporated.

Figure 4.2a shows the pixel fill rate when the 3D graphics pipeline is implemented

with the library running on the 400MHz PXA-255 application processor. For QVGA

(320� 240) size screen, the required pixel fill rate is more than 23Mpixels/s for

60 frames per second, but the performance level shown in the graph is far below that.

So the rendering stage should be accelerated in hardware because it becomes themajor

performance bottleneck.

LCD

Mem
Ctrl

Camera

Baseband
ModemR

F
F

ro
nt

en
d

System
Memory

FlashSRAM

Application Processor

CPU Codec

GPU

Figure 4.1 Architecture of modern cellphone systems

RequiredPXA255 400MHzStrongARM 200MHz
0

5

10

15

20

P
ix

el
 f

ill
 r

at
e

(M
pi

xe
ls

/s
ec

)

RequiredPXA255 400MHzStrongARM 200MHz
0.0

0.5

1.0

1.5

2.0

V
er

te
x

fil
l r

at
e

(M
ve

rt
ic

es
/s

ec
)

(b)(a)

Figure 4.2 Performance graphs: (a) pixel fill rate, and (b) vertex fill rate

86 Mobile 3D Graphics SoC

After the rendering stage performance issues are overcome, the geometry stage

computation becomes another performance bottleneck. Since the average pixel count

in a triangle is about 10 in QVGA screen resolution, the vertex fill rate should be more

than 2.3Mvertices/s. However, it is still under the required performance level as shown

in Figure 4.2b. So hardware acceleration is required for both the geometry and

rendering stages in mobile 3D graphics systems.

Three-dimensional graphics rendering requires large memory bandwidth support

for rendering operations such as texture image mapping, depth test, and alpha

blending. Currently, mobile DDR SDRAM can provide a maximum memory band-

width up to 1GB/s. However, the widely adopted texture mapping operation with

trilinearMIPMAP filtering requires 1.1GB/s for a 50 pixels/s pixel fill rate. Moreover,

the whole memory bandwidth cannot be occupied by the rendering operations only; it

has to be shared with, for example, geometry operations and other application

hardware IPs operating concurrently. Therefore, memory bandwidth reduction is

desirable in designing mobile 3D graphics systems.

In addition to these performance requirements, the most critical design issue is the

power budget. A modern Li–ion battery can supply 2Wh, so the system power budget

for LCD, CPU, memory, and other peripherals is only about 800mW for 2–3 hours of

operation, and then only 200–300mW can be allocated for 3D graphics processing.

Chip size has to be taken into account in hardware accelerator design. The limited

footprint and cost value of mobile devices limits the die area and thereby reduces the

cost per die.

There are various solutions to reducing power consumption and obtaining sufficient

memory bandwidth, such as adopting finer process technology or incorporating

embedded DRAM technology. However, what is required is a more cost-effective

way to address the design challenges of mobile 3D graphics applications. Several

design principles will be covered here.

4.1.2 Design Principles

Basically, the design of mobile 3D graphics systems is based on exploitation of the

limitations of the human visual system [3–9]. This tolerates a reasonable amount of

computational errors during graphics processingwithout any apparent image artifacts,

and thereby reduces significantly the required arithmetic hardware resources signifi-

cantly. Since 3D graphics applications require intensive arithmetic operations, the

efficient design of arithmetic units aims to reduce their area and power consumption.

RAMP (RAM processor) architecture has been proposed in this line of approach

from KAIST [4–9]. Its focus is on low-power designs to exploit the reduced

complexities of arithmetic hardware and external memory bandwidth requirements.

Despite its limited dynamic range, the fixed-point (FXP) number system uses simple

integer arithmetic circuits that operate at higher clock frequency and lower power

Mobile 3D Graphics 87

consumption comparedwithfloating-point units counterpart. Therefore, FXParithmetic

units are used for rendering engine implementations, since the rendering operations are

performed in screen coordinate spacewhich has limited dynamic range. Thus, theword

length and the precision are optimized for each operation in the rendering engine.

The shaders in the programmable graphics pipeline incorporate a 4-way SIMD

multiply–accumulate (MAC) unit and a special function unit for reciprocal (RCP) and

reciprocal square-root (RSQ) operations. Therefore, programmable precision control

is required for the FXP units to be used for the different precision requirements in each

shader program. The precision of the FXP units is made to be programmable from

Q32.0 throughQ1.31, as shown in Figure 4.3, so that the precision can be optimized for

each shader program and result in low-power implementation of the programmable

graphics pipeline. This FXP unit implementation for the programmable shaders

showed 30% higher operating frequency and 17% less power consumption compared

with the floating-point implementation.

In order to further improve the power and area efficiency, logarithmic arithmetic is

adopted in theRAMParchitecture. Even though the logarithmic number system (LNS)

carries a certain amount of computational error, it can reduce arithmetic operation

complexities significantly: multiplication, division, square-root, and power functions

can be reduced to addition, subtraction, right shift, and multiplication in the LNS,

respectively, as shown in Table 4.1. However, addition and subtraction become more

complicated, requiring nonlinear function evaluation as shown inTable 4.1. Therefore,

we adopted the hybrid approach of combining the strong points of FXP and LNS, so

that additions and subtractions are performed in FXPwhile all the other operations are

converted into LNS.

Integer (m bits) Fraction (n bits)

031

programmable fraction point

n

Figure 4.3 Number format of fixed-point arithmetic with programmable precision

Table 4.1 Operations in ordinary and logarithmic arithmetic

Operation Ordinary arithmetic Logarithmic arithmetic

Multiplication x� y Xþ Y

Division x‚y X�Y

Square-root
ffiffiffi

x
p

X � 1

Power xy 2y�X

Addition xþ y Xþ log2ð1þ 2Y�XÞ
Subtraction x�y Xþ log2ð1�2Y�XÞ

88 Mobile 3D Graphics SoC

Based on this hybrid (called FXP–HNS), a power- and area-efficient multifunction

unit is proposed [10]. It unifies various vector and elementary functions, including

vector multiplication, multiply-and-add, division, division-by-square-root, dot-

product, power, logarithm, and several trigonometric functions including sin, cos,

and arctan, into a 4-way single arithmetic unit. It achieves a single-cycle throughput for

all the supported operations with maximum 4-cycle latency. It shows about 50% less

power consumption for the vector multiply-and-add operation than the FXP approach.

The newly definedmobile 3D graphics API, OpenGL-ES 2.0, requires floating-point

operation for the vertex shaders [11]. Thus, the FXP–HNS is extended into the floating-

point version, that is, a combination of FLP and LNS, which makes FLP–HNS. In this

approach, the additions and subtractions are carried out in FLP while all other

operations are done in LNS.

In addition to the vector and elementary functions, the multifunction unit in this

FLP–HNS also unifies matrix–vector multiplication, which is used for 3D geometry

transformation, with vector and elementary functions into a 4-way single arithmetic

unit. It achieves a single-cycle throughput with maximum five-cycle latency for all

supported operations except for the matrix-vector multiplication, which takes two

cycles per result and six-cycle latency.

Thememory bandwidth reductionmechanism is anothermajor feature of theRAMP

architecture. Embedded DRAM technology was employed in the RAMP series [4, 5]

to exploit the higher memory bandwidth and lower power consumption by integrating

the logic and DRAM on a single die. Using this technology, each DRAM macro for

the frame buffer and texture memory is customized to its functionality. Although the

merits for this technology are still promising, its high fabrication cost for the

integration of two different technologies prevented it from being widely adopted for

mobile electronic devices. Therefore, a pure DRAM technology is exploited as a cost-

effective alternative in the succeeding RAMP series [6]. In this approach, logic

modules are implemented using peripheral transistors of DRAM technology, which

can degrade logic speed and increase the area because of the larger minimum gate

length of the peripheral transistors. This approach only requires an additional single

metal layer for the global signal routing in the logic modules, with a modest cost

increase (Figure 4.4).

The graphics cache system is adopted as an alternative approach to reduce memory

bandwidth requirements in 3D graphic systems. This approach is based on conven-

tional pure logic process technology and it incorporates embedded SRAM to be used

for the cache memory. The cache system contains the frame, depth, and texture caches

for the frame buffer, depth buffer, and texture memory in the external systemmemory,

respectively.

In addition to reduction of arithmetic complexity and memory bandwidth, the

RAMP series also incorporate several power management schemes. As shown in

Figure 4.5, the clock gating is fully employed throughout the RAMP series to reduce

dynamic switching power. In its graphics pipeline, the depth test is moved to the

Mobile 3D Graphics 89

Logic
(DRAM Peri)

DRAM

M3
(Additional Layer)

M0

M1

M2

Figure 4.4 Embedded DRAM vs. DRAM-based SoC process technology

Rasterizer Depth
Test

Texture
Mapping

(a)

(b)

Blend

Rasterizer
Depth
Test

Texture
Mapping

Blend

en

clk

clk

Figure 4.5 Depth reordering: (a) conventional pipeline, and (b) proposed pipeline

90 Mobile 3D Graphics SoC

earlier stage of the pipeline so that the later pipeline stages can be disabled for the

invisible pixels from the viewers. Therefore, the texture mapping and blending

operations can be disabled for the invisible pixels, so that overall power consumption

and memory bandwidth requirements are reduced.

Dynamic frequency scaling (DFS) has been adopted to optimize the power

consumption for a given performance level [6, 7]. Three frequency levels are defined

for fast, normal, and slow modes, as shown in Figure 4.6, and the frequency can be

changed adaptively according to the required performance level.

In addition to frequency scaling, dynamic voltage scaling has been exploited [8],

which makes dynamic voltage and frequency scaling (DVFS), since the dynamic

power consumption is quadratically proportional to the supply voltage. As the

workloads for the application, geometry, and rendering stages are completely different

in a GPU pipeline, the DVFS scheme is adopted for the multiple power domains. The

GPU is divided into triple individual power domains, in which the clock frequency and

supply voltage are controlled separately according to the given workload conditions.

4.2 Mobile 3D Graphics APIs

There have been efforts to establish realtime mobile 3D graphics APIs (application

program interfaces) for performance-limited microprocessors. Since mobile 3D

graphics requires a low-power design and is usually targeted at relatively limited

applications like 3D gaming and user interfaces, there is usually a tradeoff between

computational complexities and generated scene quality. Recently, several mobile 3D

graphicsAPIs includingMobileGL [12],OpenGL-ES [11], andDirect3D-Mobile [13],

have been proposed in this context and will be discussed in this section.

4.2.1 KAIST MobileGL

MobileGL is the first 3DgraphicsAPI introduced to themobile 3Dgraphics community.

It is the best-fit to the embeddedprocessors such asARMcoreswhich have limited cache

memory and lack floating-point units.

MobileGL supports graphics primitives such as triangles, quads, fans, and strips in

modeling. Its geometry pipeline supports culling and clipping as well as full model-

view transformation and projection matrices. Ambient, diffuse, and specular lighting

wolSlamroNtsaF

Figure 4.6 Clock frequency scaling scheme according to the mode

Mobile 3D Graphics 91

are supported to give more realistic images. The lighting can be turned on or off based

on the performance conditions. Runtime switching between fixed-point and floating-

point for these geometry operations is supported.

The rendering pipeline supports several per-fragment operations including texture

image mapping, depth test, alpha blending, and anti-aliasing. Perspective texturing is

also supported and can be turned off. The texture filtering algorithm can also be

selected among the nearest neighborhood, bilinear, MIPMAP, and trilinear sampling

methods.

The MobilGL implementation achieves 67Kpolygons/s on an embedded micro-

processor running at 200MHz. It takes 483KB for the library size and requires runtime

memory of 1.14MB. The test scenes for lighting and texture mapping operation from

MobilGL are shown in Figure 4.7. The MobileGL specification is summarized in

Table 4.2, and a comparison between MobileGL and the industry standard OpenGL-

ES is summarized in Table 4.3.

Figure 4.7 Scenes from MobileGL: (a) lighting, and (b) texture mapping

Table 4.2 MobileGL specification

Data types Floating-point; integer; fixed-point

Performance 67Kpolygons/s at Xscale 200MHz

Full 3D graphics pipeline

Library size 483KB

Runtime memory size 1.14MB (including depth buffer)

Resolution QVGA (320� 240)

Texture type 2D

Texture image size 256� 256

Coordinate limit (x, y) 32 bits

Number of light sources 8 independent sources

Diffuse and specular highlighting

92 Mobile 3D Graphics SoC

4.2.2 Khronos OpenGL-ES

OpenGL-ES is an industry-standard embedded graphics API defined by the Khronos

Group. It is a subset of the OpenGL API for desktops. It is a low-level rendering API

that provides a basic library of functions for specifying graphics primitives, attributes,

geometric transformations, lighting, and many other rendering operations. It is a

hardware-independent API and operates as a low-level interface between the software

and graphics hardware devices. It includes both fixed-point and floating-point profiles.

The graphics pipeline supports both the fixed function pipeline in version 1.x and

programmable pipeline in version 2.x. The first version, OpenGL-ES 1.0, was

developed to provide an extremely compact API in mobile devices. It focused on

enabling software-only execution of 3D graphics. Therefore, it could fully implement

3D graphics without hardware acceleration. A later version, OpenGL-ES 1.1, added

more features amenable to first-generationmobile 3D graphics hardware acceleration.

The OpenGL-ES 1.x versions were developed for a fixed function pipeline. Although

they support floating-point arithmetic, they initially focused on fixed-point. But the

latest version, OpenGL-ES 2.0, has been developed for a programmable pipeline. For

that, more than 24-bit floating-point precision is required for the shader model. The

shading language is also defined in version 2.0 to support high-level language

programming. Basically, its syntax looks much like the C programming language.

However, it has several built-in data types and operations optimized for 3D graphics

processing, such as vectors, matrices, and their associated operations like matrix

multiplication, dot product, normalize, and many other operations.

Table 4.3 Comparison between MobileGL and OpenGL-ES

MobileGL OpenGL-ES

Basic GL Operations

Begin/end paradigm * *

Vertex specification * *

Coordinate transformation * *

Colors and coloring * *

Clipping * *

Rasterization

Texturing * *

Anti-aliasing * *

Polygon * *

Alpha, depth * *

Scissor, stencil, fog � *

Core additions and extensions to MobileGL

Runtime format conversion * �
Functions for fixed-point * �
Precision for fixed-point format Variable Q16.16

Mobile 3D Graphics 93

The primitives such as points, lines, and triangles are used for modeling geometric

shapes in OpenGL-ES. The models are translated, rotated, or scaled using geometric

transformation matrices and projected in an orthographic or perspective way. The

ambient, diffuse, and specular lightings are supported and at least eight light sources

can be used in a scene.

Based on the lighting result, color for each pixel is interpolated and blendedwith the

texture mapping result in the rendering stages. Fragment operations like depth test,

alpha blending, and anti-aliasing are carried out at the final stage of rendering.

4.2.2.1 OpenGL-ES 1.x

In creating OpenGL-ES 1.0, much functionality has been removed from the original

OpenGL API and a little bit added. Two big differences between OpenGL-ES and

OpenGLare the removalof theglBegin–glEndcalling semantics for primitive rendering

and the adoptation of fixed-point data types for vertex coordinates and attributes. Since

the embedded processors mainly consist of fixed-point datapaths, the graphics API also

adopted fixed-point to enhance the computational abilities. Many other areas of

functionality have been removed in version 1.0 to produce a compact API under 50KB

code size. OpenGL-ES 1.1 was developed based on OpenGL-1.5 and it had new

features, to provide enhanced functionality, to improve image quality, and to optimize

for increasing performance while reducing memory bandwidth usage. The features of

OpenGL-ES 1.1 are listed below:

. Buffer objects – to enable efficient caching of geometry data in graphics memory;

. Enhanced texture processing – including a minimum of two multi-textures and

texture combiner functionality for effects such as bump-mapping and per-pixel

lighting;
. Vertex skinning functionality – to smoothly animate complex figures and

geometries;
. User clip plane – for efficient early culling of hidden polygons, increasing perfor-

mance and saving power;
. Enhanced point sprites – for efficient and realistic particle effects;
. Dynamic state queries – enabling OpenGL ES to be used in a layered software

environment;
. Draw texture – for efficient sprites, bitmapped fonts and 2D framing elements in

games.

4.2.2.2 OpenGL-ES 2.x

Vertex Processing
OpenGL-ES 2.0 supports programmable vertex and fragment shaders instead of the

fixed-function pipeline to allow applications to describe operations on the vertex and

94 Mobile 3D Graphics SoC

fragment data. Therefore, it requires a shader compiler for the programmable vertex/

fragment shader and provides APIs to compile the shader source codes or to load

directly the pre-compiled shader binaries.

In comparison with OpenGL 2.0, the fixed-function vertex and fragment pipeline is

no longer supported in OpenGL-ES 2.0. Replacing the fixed-function transformation

pipeline, the application can calculate the necessary matrices for the model view

transformation and projection and load them in the vertex shader. However, the

viewport transformation and clipping are still supported as a fixed function since they

are not replaced by the vertex shader. The fixed-function lighting model is no longer

supported either. Instead, a user-defined lighting model can be applied by writing

appropriate vertex and fragment shaders in OpenGL-ES 2.0.

Fragment Processing
OpenGL-ES 2.0 supports the programmable fragment shader in its fragment proces-

sing pipeline and replaces several fixed-function fragment processes such as texture

mapping, color blend, and fog.A fragment shader is defined to be a kernel that operates

on each fragment which results from the rasterization.

OpenGL-ES 2.0 adopts multi-sampling for its anti-aliasing scheme in its raster-

ization pipeline. In texturemapping, it supports 2D textures and cubemaps. 1D textures

and depth textures are not supported, and 3D textures can be optionally supported. It

supports non-power-of-two 2D textures and cubemaps as well as power-of-two

textures. The cubemaps can provide functionalities icluding reflections, per-pixel

lighting, and so on. The use of 3D textures is limited to only a few applications, so it is

supported optionally. Copying from the framebuffer is supported for many shading

algorithms. Texture compression is also supported to reduce memory space and

bandwidth requirements.

Frame Buffer Operations
Among the per-fragment operations, the alpha test is not directly supported in

OpenGL-ES 2.0 and it can be implemented using a fragment shader. The

OpenGL-ES2.0 requires the depth buffer since it is essential formany 3Dapplications.

Blending is supported for implementing transparency and color sums and dithering is

useful for displays in low resolution. Supporting the reading to the frame buffer is

useful for some applications and testing scheme.

4.2.3 Microsoft’s Direct3D-Mobile

Microsoft has developed this mobile 3D graphics API to support applications on

Windows CE platforms. It is based on DirectX, the desktop 3D graphics API of the

Windows operating system. Compared to OpenGL-ES, it is not portable to other

platforms as it works only with the Windows platform.

Mobile 3D Graphics 95

The graphics pipeline of Direct3D-Mobile is similar to the OpenGL pipeline and

consists of geometry transformation, lighting, rasterization, texture mapping, and

fragment operations like depth test. The geometric primitives include points, lines,

and triangles (triangle strip and fan), to describe 3D objects.

The geometry transformation matrices can be represented in Q16.16 fixed-point

format as well as in IEEE-754 single-precision floating-point format. Three types of

transformation are defined in this API: “world transformation,” “view transformation,”

and “projection transformation.”

For the lighting, Direct3D-Mobile supports diffuse and specular lightings and an

unlimited number of light sources in a scene. Four types of light source are defined in

this API: point, directional, spot, and ambient.

4.3 Summary and Future Directions

In this chapter we have explored the concept, challenges, and design principles of

mobile 3D graphics. We have defined the basic concept and discussed design

challenges presented by limited resources. Several mobile 3D graphics APIs for

software solutions have been reviewed. The future of mobile 3D graphics is expected

to include more programmability, such as the inclusion of geometry shaders in their

pipeline in a similar way that the PC graphics pipeline has evolved. More enhanced

texturing capability is expected for each programmable shader to give more realistic

3D scenes. Therefore, there would be increasing requirements for obtaining higher

memory bandwidth and the optimization of the floating-point arithmetic circuits for

the efficient implementation of the texture mapping units as well as the datapaths of

programmable shader cores.

References

1 Viredaz, M.A. and Wallach, D.A. (2003) Power evaluation of a handheld computer. IEEE Micro., 23, 66–74.

2 Simunic, T., Benini, L., Glynn, P., and De Micheli, G. (2001) Event-driven power management. IEEE Trans.

Comput. Aided Design, 20 (7), 840–857.

3 Crisu, D., Vassiliadis, S., Cotofana, S., and Liuha, P. (2004) Low-cost and latency embedded 3D graphics

reciprocation. Proc. of IEEE International Symposium on Circuits and Systems 2004.

4 Park, Y.-H., Han, S.-H., Kim, J.-S. et al. (2000) A 7.1-GB/s low-power 3D rendering engine in 2D array

embedded memory logic CMOS.Digest Technical Papers of IEEE International Solid-State Circuits Conference

2000.

5 Yoon, C.-W.,Woo, R., Kook, J. et al. (2001) 80/20-MHz 160-mWmultimedia processor integrated with embedded

DRAM MPEG-4 accelerator 3D rendering engine for mobile applications. Digest of Technical Papers of IEEE

International Solid-State Circuits Conference 2001.

6 Woo, R., Choi, S., Sohn, J.-H. et al. (2003) A 210-mW graphics LSI implementing full 3D pipeline with

264-Mtexels/s texturing for mobile multimedia applications. Digest of Technical Papers of IEEE International

Solid-State Circuits Conference 2003.

7 Sohn, J.-H., Woo, J.-H., Lee, M.-W. et al. (2005) A 50-Mvertices/s graphics processor with fixed-point

programmable vertex shader for mobile applications. Digest of Technical Papers of IEEE International Solid-

State Circuits Conference 2005.

96 Mobile 3D Graphics SoC

8 Nam, B.-G., Lee, J., Kim, K. et al. (2007) A 52.4-mW 3D graphics processor with 141-Mvertices/s vertex shader

and three power domains of dynamic voltage and frequency scaling. Digest of Technical Papers of IEEE

International Solid-State Circuits Conference 2007.

9 Woo, J.-H., Sohn, J.-H., Kim, H. et al. (2007) A 152-mW mobile multimedia SoC with fully programmable 3D

graphics and MEPG4/H.264/JPEG. Digest of Technical Papers of Symposium on VLSI Circuits 2007.

10 Nam, B.-G., Kim, H., and Yoo, H.-J. (2006) A low-power unified arithmetic unit for programmable handheld 3-D

graphics systems. Proc. of IEEE Custom Integrated Circuits Conference 2006.

11 Khronos Group (July 2005) OpenGL 2.0. Available at http://www.khronos.org.

12 Semiconductor System Laboratory at KAIST,MobileGL: the Standard for Embedded 3D Graphics. Available at

http://ssl.kast.ac.kr/ramp/.

13 Microsoft Corporation, Microsoft Direct3D Mobile. Available at http://msdn.microsoft.com/en-us/library/

aa452478.aspx.

Mobile 3D Graphics 97

5

Mobile 3D Graphics SoC

A 3D graphics pipeline has geometry operations for computing the attributes of

vertices of polygons, and rendering operations for filling colors inside the polygons.

The geometry stage generates vertex data from primitive input vertex attributes using

transformation, lighting, and perspective projection. The rendering stage draws pixels

from thevertex data computed in the geometry stage. First, vertex data are transformed

into sets of 2D triangles using interpolation to calculate edge coordinates for each

polygon.Then every pixel is rendered by shading and texturemapping.Alpha blending

for translucent objects and depth comparison for hidden surface removal are per-

formed during the rendering stage.

The geometry operation is computation-intensive, and the rendering operation is

data-intensive as well computation-intensive. To relieve bottlenecks, 3D graphics

hardware has been evolving using fast, parallel datapaths such as multicore vector

processors with 3D graphics-optimized memory systems [1, 2].

Mobile devices have limitations imposed by their power supply, their computational

power, physical dimensions, and input devices. The fundamental problem is that

mobile devices are powered by batteries.

With regard to the hardware, the key issue to achieve good graphics performance

and low power consumption is to reduce the internal data transactions between

graphics-processing unit (GPU) and memory. Many researchers have focused on how

to reduce or how to compress data transactions. As a result, various mobile graphics

hardware approaches have been reported, including tile-based rendering [3], special-

ized embeddedDRAM [4], and compression algorithms. They have employed various

low-power techniques such as clock gating [5], power-down schemes, and voltage/

frequency scaling [5].

With regard to the software, standard application programming interfaces (APIs) for

embedded systems have been released: OpenGL-ES [6] and Microsoft Direct3D-

Mobile [7]. The first is a subset of desktop OpenGL and adopts optimizations and

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

redundancy eliminations for mobile devices with low processing power, while

supporting programmable 3D graphics such as vertex and pixel shading.

The goal of this chapter is to impart an understanding of various low-power

techniques for mobile applications. We begin by discussing low-power architectures

related to a real-time rendering system. Then, low-power techniques for vertex shaders

and pixel shaders are described. The chapter concludes with an overview of a mobile

unified shader, focusing on the differences from PC or console systems.

5.1 Low-power Rendering Processor

This section will present low-power architectures for a real-time rendering system.

Figure 5.1 shows a block diagram of a simple rendering pipeline for PCs or console

devices. The first step in the rendering system is triangle setup, which computes

various deltas and slopes from the vertex information. In this step, three vertices form

Figure 5.1 Simple rendering pipeline

100 Mobile 3D Graphics SoC

a triangle and various deltas and slopes of vertex attributes such as coordinate, color,

and texture coordinate are computed. The next step is interpolation. Using the slopes

computed in the triangle setup, a fragment – which is simply data for a pixel covered

by a primitive – is generated. If there is a texture associated with the primitive, then

texture is applied. After that, the final fragment operation is performed – fog, alpha

test, stencil test, depth test, alpha blending, dithering, and so on – with fragment

information such as depth, alpha value, color, and so on.

5.1.1 Early Depth Test

In general, 3D graphics processors for PCs or console devices follow the standard

OpenGL machine [8]. The depth test is performed in the fragment operation stage as

shown in Figure 5.1, and thevisibility of the pixels is determined at the end. Thismeans

that the processor will compute some invisible pixels, causing unnecessary computa-

tions and power consumption. To reduce this drawback, the early depth test is widely

used [4]. The idea is to put the depth test into the middle of the rendering pipeline as

shown Figure 5.2. The depth test is performed immediately after interpolation, and this

can prevent unnecessary operations such as shading and texturing if the fragment is an

invisible pixel. It also eliminates unnecessary requests to the correspondingmemories.

Using the early depth test result, the clock gating scheme can be applied to the texture

Figure 5.2 Early depth test

Mobile 3D Graphics SoC 101

unit and fragment operation block as shown in Figure 5.3, and this reduces dynamic

power consumption of the rendering processor. For typical graphics applications that

have depth complexity of two, pixel-level clock gating of the rendering engine shows

an average 25% power reduction.

5.1.2 Logarithmic Datapaths

Processors for 3D graphics perform more arithmetic calculations such as division,

reciprocal, square-root, square, and powering operations than do general processors

(Figure 5.3). It has been estimated that 83% of the processing time of a 3D graphics

rendering pipeline relates to those arithmetic functions [9]. These functions consume

most of the computing power because they use most of the clock cycles in realtime

systems; so, to lower the power consumption, the clock cycles of these complex

functions should be reduced as much as possible.

The logarithmic number system simplifies arithmetic computations, as shown

in Table 5.1, so many researchers have tried to apply it to both generic and

Figure 5.3 Percentage of processing time of the 3D graphics rendering pipeline

Table 5.1 Operations in the logarithmic number system

Operation Normal arithmetic Logarithmic arithmetic

(where X¼ log2x and Y¼ log2y)

Multiplication Z¼ x � y X þ Y

Division Z¼ x/y X� Y

Reciprocal Z¼ 1/y �X

Square-root Z¼�x X� 2

Reciprocal square-root Z¼ 1/�x �X� 2

Square Z¼ x2 X� 2

Powering Z¼ xy Y þ log2X

102 Mobile 3D Graphics SoC

application-specific processors. It is also good for mobile 3D graphics processors,

especially for low power consumption, high computation speed, and small gate

counts.

However, as many researchers have pointed out, one critical issue with logarithmic

datapaths is errors in data conversion from ordinary to logarithmic, and vice versa.

Since Mitchell introduced the binary logarithmic converting algorithm [10], linear

approximation algorithms for logarithmic arithmetic have been studied to minimize

errors in hardware implementation [10–12].

Since 3D graphics systems are more sensitive to conversion errors compared with

conventional DSP applications, a logarithmic arithmetic unit with precise log- and

antilog-conversion algorithms has been developed [13] (Figure 5.4). First the ordinary

input signals are converted into logarithmic values. Then the arithmetic operations

mentioned in Table 5.1 are performed. Finally the logarithmic results are converted

into ordinary numbers in anti-log converters. To minimize conversion errors, an

8-region piecewise-linear interpolation approximation algorithm is used in the log-

and anti-log convertors.

Figure 5.5 shows a 3D image rendered by a fixed-point number library and the

logarithmic calculation. In logarithmic calculations, all operations including vertex

transformation, lighting, rasterization and texture mapping are performed except for

addition and subtraction. In the figure there is barely any difference between the two

images discernable by the naked eye.

As mentioned earlier, the logarithmic approach is good for lower computation

complexity, high computation speed, and small gate counts. Compared with a

Figure 5.4 Logarithmic datapath

Mobile 3D Graphics SoC 103

conventional RADIX4 datapath [14], the logarithmic datapath reduces the silicon

area to a quarter and the power consumption to a half, as shown in Table 5.2. Since

the realtime rendering system includes huge division operations – triangle setup,

rasterization, and texture address generation – the divider is a critical bottleneck. The

logarithmic datapath can be a good solution for power consumption and performance

for low-end rendering systems.

5.1.3 Low-power Texture Unit

In realtime 3D graphics applications the GPU requires large memory bandwidth. To

achieve this, the embedded memory system needs a wide data bus or a fast clock

frequency. Fetching various data directly from embedded memory with wide I/O may

consume a large amount of power owing to the concurrent data transitions in many

capacitive I/Os and the activation power of memories themselves. Therefore, reducing

the number of memory requests is desirable for low power consumption. One strong

Table 5.2 Comparison of LAU and RADIX4 in 0.18mm CMOS technology

RADIX4 LAU

Gate count 44K 9K

Latency/throughput 10-cycle/8-cycle 2-cycle/1-cycle

Maximum operating frequency 60MHz 231MHz

Power consumption 4.29mW 2.18mW

Figure 5.5 Comparison of 3D graphics results: (a) normal fixed-point calculation, and (b) logarithmic

number calculation

104 Mobile 3D Graphics SoC

candidate is to exploit localities – spatial locality and temporal locality. For texture

data, address alignment logic (AAL), which exploits the access pattern of the texture

space, was introduced [4].

In bilinear MIPMAP filtering [15], a pixel uses four texels on a nearest level-

of-detail (LOD) plane, as shown in Figure 5.6. Since two texture units generate four

texture requests each, there are eight texture requests at every cycle. However, there

are several requests that are overlapped because their footprints are separated by

approximately one texel distance. Figure 5.7a represents the block diagram of the

AAL. The spatial aligner finds and eliminates these overlapped requests, reducing

the total number of requests. Then the temporal aligner compares the current texture

address with previous ones and leaves only the different addresses. It stores recently

used texels working with pipeline latches and comparators. The temporal aligner is

basically similar to the 8-entry texture cache [16]. However, texels are simply stored

in the pipeline latches instead of power-consuming SRAM. Also, the caching

concept is extended to dual pixel processors. After the spatial and temporal over-

lapping of texels are removed, the average number of remaining requests is reduced

to less than 2.3.

This AAL reduces the energy required to draw a scene, as summarized in

Figure 5.7b. The average number of cycles in the four texture memoriess (TMs) with

AAL is slightly increased to 1.1 owing to thememory conflict. The power consumption

of the TM is proportional to the number of texture memories to be activated per cycle,

as shown in Figure 5.7b. With the help of AAL, the number is reduced to 2.3 while

doubling the performance compared with four TMswith 1-PP architecture. Therefore,

Figure 5.6 Texture requests

Mobile 3D Graphics SoC 105

the energy consumption (multiplication of time by power) required to access the

texture memory can be reduced by 68% on average.

5.1.4 Tile-based Rendering

Tile-based rendering (TBR) was invented for the PC platform. PowerVR KYRO,

KYRO-II, andMicrosoft Talismanprocessors employed TBR, but they failed in the PC

market. A few years later, however, TBR came to the forefront as a mobile GPU

architecture. In 2003, PowerVR introduced MBX, a low-power mobile GPU with

tile-based rendering. The conventional GPUs rendered a scene in a single pass – brute

force rendering. In contrast, the basic principle of TBR is to decompose a scene into

several small tiles and to render each one separately (Figure 5.8).

One reason for the success of TBR in mobile devices is power reduction. Since, as

shown in Figure 5.9, TBR operates on a small tile of the screen, tile-based GPUs

require only data for a tile, not for thewhole screen. Thus tile-based GPUs reduce data

transactions. Also, tile-based GPUs require a smaller and faster on-chip memory, not

a complex cache system or a complex compression algorithm, to store the depth and

color values for the tile being rendered, and this helps to reduce design complexity.

Another advantage of TBR is hidden-surface removal (HSR). Conventional GPUs

first fill all the polygons without considering which ones will be hidden later on.

In contrast, PowerVR’s TBR technology first verifies whether it is necessary to fill

Figure 5.7 Address alignment logic: (a) block diagram, and (b) energy efficiency

106 Mobile 3D Graphics SoC

all the polygons. Generally, only objects in the foreground require this process. Classic

3D games need to access memory constantly for the z-buffer and to load textures,

thereby eating up valuable memory bandwidth and degrading graphics performance.

PowerVR’s rendering pipeline is significantly different from the classic approach.

The z-buffer has basically been done away with, and textures are loaded only if a

visible object requires them. The whole procedure is skipped for hidden objects (see

Figure 5.9).

5.1.5 Texture Compression

Texture compression has been proposed to reduce memory bandwidth. The basic idea

is to use compression on the texture images. The aim is to save memory bandwidth

without degrading the generated image quality too much.

Figure 5.8 Tile-based rendering

Mobile 3D Graphics SoC 107

There are a few requirements for efficient texture compression in mobile devices.

A fixed compression rate is required for straightforward address computations, and the

number of indirect look-ups for the compression should be limited. Then, decompres-

sion shouldbe fast andeasy to implement inhardware tokeep thepipeline latency short.

Figure 5.9 Tile-based rendering (HSR)

Figure 5.10 Comparison of external bandwidth usage

108 Mobile 3D Graphics SoC

There are currently two major texture compression schemes. The palettized

scheme [17, 18] is adopted in OpenGL-ES 1.x for mobile devices. It uses a color

table containing high-precision color values, and an index is used for each texel to

access the corresponding color in the table. The iPackman scheme [19] exploits the fact

that the human eye is more sensitive to luminance than to chrominance, so the scheme

changes the luminance for every texel while varying the chrominance for multiple

texels. The palettized scheme is good for images with a limited number of colors,

while the iPackman scheme is good for images that have their variations mainly in

luminance, with relatively uniform chrominance.

5.1.6 Texture Filtering and Anti-aliasing

“Bilinear–average mipmapping” has been proposed as a low-cost texture filtering

mechanism to save memory bandwidth [17, 20]. In contrast to the trilinear mipmap-

ping in high-end graphics systems (which requires access to the 2� 2 neighborhood in

two levels of themipmap, it requires the four texels from the higher resolutionmipmap

level, as shown in Figure 5.11. It computes a bilinear filtering for level n, and a nearest-

neighbor filtering for level n þ 1, and then a linear filtering between them.

A low-cost anti-aliasing mechanism called FlipQuad has been proposed [21]. The

scheme is based on a rotated-grid super-sampling (RGSS) pattern with the sample

locations at the pixel borders, which is flipped after every other pattern (Figure 5.12).

Figure 5.12 FlipQuad sampling: (a) RGSS pattern, and (b) FlipQuad pattern

Figure 5.11 Mipmap pyramid: (a) conventional approach, and (b) bilinear–average mipmap

Mobile 3D Graphics SoC 109

This simplifies sample sharing between neighboring pixels. This sampling pattern

requires only two samples per pixel.

5.2 Low-power Shader

5.2.1 Vertex Cache

Bandwidth sharing between external memories is an important design issue, because

various IPs share the limited bandwidth resource. Among the IPs in a mobile

multimedia SoC, the 3D graphics processor is one of the biggest bandwidth consumers

owing to the large data requirements for vertex, texture, color and depth. To reduce the

bandwidth demand, various techniques are employed [4, 5, 13].

Avertex cache is widely employed to reduce the bandwidth demand for input vertex

attributes. The pre-TnL (“transformation and lighting”) vertex cache is used to reduce

data transfer between GPU and host, and a post-TnL vertex cache is used to reduce the

redundant vertex processing [5, 22].Although the concept of having pre- and post-TnL

vertex caches was introduced for high-end 3D graphics accelerators on the PC

platform [23, 24], it can be more effective in embedded systems for reducing power

consumption.

5.2.1.1 Pre-TnL Cache

Since the primitive vertex attributes come from the external system memory through

a shared bus, the pre-TnL cache is used to reduce the amount of data coming from

external memory. Pre-fetching of the vertex data can be used to take advantage of the

burst transfer mode of DRAM which is usually more beneficial than separate

accesses [25]. In addition, the order of indexes in the index buffer (the same as the

processing sequence) is not the order of vertices in the vertex buffer, as shown in

Figure 5.13a. Vertices can be reused by caching the previous data. Figure 5.13b

illustrates the distribution of the Dindex: according to the result in Figure 5.7b, about
81% of vertices can be reused if the pre-TnL vertex cache has 32 entries [25].

5.2.1.2 Post-TnL Cache

Aseries of vertices such as triangle strips or triangle fansmight be rendered as shown in

Figure 5.14, so that several vertices are processed repeatedly. For example, vertex 4 is

processed three times. The post-TnL cache aims to improve performance by reducing

such repeated operations. The cache reserves vertices results temporarily and caches

the results before a new vertex operation occurs. Figure 5.15 represents the overall

architecture with vertex caches. Only when both pre-TnL cache and post-TnL cache

are missed does an external data fetch occur. Therefore, up to 65% of data bandwidth

110 Mobile 3D Graphics SoC

between the host and the graphics processor can be reducedwhen 32 entries in pre-TnL

vertex cache and 8 entries in post-TnL vertex cache are used.

5.2.2 Low-power Register File

The pixel and vertex shader uses various registers for streaming graphics processing,

as explained in Chapter 3. The input register is used to hold vertex attributes such as

position and normal vector, and pixel attributes such as position, color, and texture

Figure 5.15 Overall architecture with vertex cache

Figure 5.14 Triangle strip alignment

Figure 5.13 Characteristics of the indexed vertex: (a) vertex ordering, and (b) coverage of the Dindex

Mobile 3D Graphics SoC 111

coordinates. In order to reduce data fetch time, the input register consists of two

register banks for double buffering. The constant register stores the coefficients for 3D

graphics operations, and the temporary register is used to store temporary computa-

tional results during vertex program and pixel program execution. Themodified vertex

and modified pixel information are stored in the output register. Table 5.3 summarizes

the required registers for vertex shader and pixel shader according to shadermodel 2.0.

In general, since the shaders use 4-way SIMD type data, the power consumption of

the register file is an important design issue. To reduce the power consumption of the

register files, selective channel activation and partial activation schemes are widely

used [21].

Although the register file also consists of four channels for 4-way SIMD datapaths,

depending on instructions, not all channels are activated all the time:

MAD O1; I1; T1 4- channel activation

ADD O1; xy; I2:xz; T3:yw 2- channel activation

RCP O1:x C4:y 1- channel activation:

A selective channel activation scheme can reduce the dynamic power consumption

of unused channels. The activated channel is selected by instruction decoding and

write-mask, and an unselected channel is gated to prevent unnecessary signal

transitions.

Since the constant register has more than 200 entries, generally it is designed using

power-consuming SRAM. Therefore, the constant register is the most power-con-

suming block among the register file of the shaders. To reduce the power consumption

of the constant register, a partial activation scheme can be the best solution. However,

although a partial activation scheme can reduce dynamic power consumption, it

increases the silicon area owing to the submodules.

Table 5.4 summarizes the characteristics of the embedded SRAM in a 0.13mm
CMOS logic process. In using a partial activation scheme, the designer should consider

the area/power-reduction tradeoff.

Let us assume that the constant register consists of four 32-bit (256) entries and it is

partitioned into two submodules as shown in Figure 5.16. Then, only one submodule is

activated while the other modules are in standbymode. The power consumption of the

constant register is reduced by 40%.

Table 5.3 Required registers for shader model 2.0

Vertex shader Pixel shader

Input register 4� 32 bits, 16 entries 4� 32 bits, 13 entries

Output register 4� 32 bits, 13 entries 4� 32 bits, 5 entries

Temporary register 4� 32 bits, 16 entries 4� 32 bits, 16 entries

Constant register 4� 32 bits, 256 entries 4� 32 bits, 32 entries

Texture sample register N/A 4� 32 bits, 16 entries

112 Mobile 3D Graphics SoC

5.2.3 Mobile Unified Shader

As shaders have developed, vertex shaders and pixel shaders have similar instruction

set architecture and register files, except for some unique instructions such as texture

sampling. Therefore a unified shader architecture, which can compute vertex

shading and pixel shading with the same hardware, has been developed to reduce

Figure 5.16 Partial activation

Table 5.4 SRAM characteristics in 0.13mm CMOS processor (200MHz, 1.2V)

Capacity Size (mm2) AC current

(mA)a
Peak

current (mA)

Standby

current (mA)

32� 16 (512 b) 316� 124 12.5 154.1 0.002

64� 16 (1Kb) 559� 124 14.9 144.8 0.002

128� 16 (2Kb) 559� 134 14.9 144.8 0.002

256� 16 (4Kb) 563� 154 15.0 144.8 0.002

512� 16 (1KB) 568� 195 15.0 145.0 0.002

1024� 16 (2KB) 753� 125 13.0 183.4 0.003

32� 32 (1Kb) 559� 124 20.8 271.5 0.003

64� 32 (2Kb) 1044� 124 25.5 277.0 0.003

128� 32 (4Kb) 1044� 134 25.6 277.1 0.002

256� 32 (1KB) 1044� 154 25.6 277.2 0.002

512� 32 (2KB) 1053� 195 25.6 277.4 0.002

1024� 32 (4KB) 1451� 125 24.8 354.5 0.006

aAC current is measured at 25% read, 25% write, 50% idle state.

Mobile 3D Graphics SoC 113

design complexity and turnaround time. The first unified shader was implemented in

Xenos by ATI for X-Box 360 [26]. In PC and console devices, a few tens of unified

shaders are integrated and controlled with multi-thread control. Therefore, program-

mable graphics operations can be mapped to those unified shaders dynamically in

real time, and the 3D graphics processor with unified shader can utilize the hardware

resources more efficiently than conventional architecture with vertex shader and

pixel shader.

In the mobile environment, a fully programmable 3D graphics pipeline is required.

Owing to the need for low power consumption and small area, the conventional

architecturewith separate vertex shader and pixel shader is hard to implement. Since a

unified shader can compute vertex shading and pixel shading in a single hardware, it is

a good solution for programmable 3D graphics [21]. Figure 5.17a shows the block

diagram of the 3D graphics processor, in which the unified shader performs vertex and

pixel shading and other blocks perform other operations of the 3D graphics pipeline

such as clipping, rasterization, and blending.

The unified shader is a 4-way SIMDprocessor. It consists of 128 b, 4� 32-bit SIMD

datapath, a special functional unit, a texture engine, a low-power lighting engine,

register files, and control logic, as shown in Figure 5.17b. The SIMD datapath is

responsible for vector and matrix arithmetic operations such as addition (ADD),

multiplication (MUL), and inner product (DOT), and the special functional unit is

dedicated to special functional scalar operations such as logarithm (LOG), exponent

Figure 5.17 Mobile unified shader: (a) 3D graphics processor, and (b) mobile unified shader

114 Mobile 3D Graphics SoC

(EXP), reciprocal (RCP), and reciprocal square-root (RSQ). The texture engine

performs texture address generation, texture fetching, and texture filtering.

Since the single shader performs both vertex shading and pixel shading, task

scheduling is crucial. Figure 5.18a shows a data flow diagram of the programmable

3Dgraphics pipeline. In conventional architecture, the primitivevertices are computed

in thevertex shader for per-vertex operations such as transformation and lighting.After

per-vertex operations, vertex generator and fragment generator perform clipping and

Figure 5.18 Pixel–vertex multi-threading: (a) data flow diagram, and (b) pixel–vertex multi-threading

Mobile 3D Graphics SoC 115

rasterization and they generate interpolated pixels (fragments). After that, the frag-

ments are modified in the pixel shader using per-pixel effects and blending operations

generate final pixel data. In contrast to conventional architecture, the graphics data

traverse the mobile unified shader twice in a single 3D graphics pipeline, as shown in

Figure 5.18a, so performance is limited to less than half of its peak performance owing

to task switching. To use themobile unified shadermore efficiently, pixel-vertexmulti-

threading (PVMT) was introduced. This uses the datapaths of the mobile unified

shader in parallel. Since the texture engine performs texture fetching and filtering

independently with the SIMD datapath and special functional block, those datapaths

are idle during the texture operations. Therefore, PVMT enables the SIMD datapath

and special functional unit to compute per-vertex operations during the texture cache

miss, as shown in Figure 5.18b. When the texture cache miss occurs during per-pixel

operations and there are vertices to compute, PVMT issues the next vertices and the

SIMD datapath and SFU perform per-vertex operations. If the texture cache filling

is finished during the per-vertex operations, the mobile unified shader moves back to

per-pixel operation and finalizes the remaining pixel operations. Otherwise, the PVMT

issues the next vertices and performs per-vertex operations continuously.

Figure 5.19 shows the efficiency of the PVMT in a mobile multimedia SoC versus

the number of vertex buffers and the average number of pixels in a polygon.While the

effects of the PVMT vary with the vertex/pixel ratio, the PVMT reduces the cycles of

vertex operations by at least 60%, or 94% at themost. Although the PVMTreduces the

Figure 5.19 Efficiency of PVMT

116 Mobile 3D Graphics SoC

cycles of vertex operations, the effect of the PVMT is bounded when the vertex buffer

has five entries because the PVMTuses cycles wasted by the texture cachemiss and the

cycle counts are limited to around 100 cycles on average. Therefore, the 3D graphics

processor that has been developed has five entries of the vertex buffer as a tradeoff

between hardware cost and desired performance. By employing a PVMTwith 5-entry

vertex buffer, about 90% of the vertex operations are interleaved into the pixel

operations and the cycle time of the vertex operations can be removed from the

graphics pipeline.

References

1 Montry, J. and Moreton, H. (2005) The GeForce 6800. IEEE Micro., 25 (1), 41–51.

2 Morein, Steve. (2000) ATI Radeon HyperZ Technology, ACM SIGGRAPH/EuroGraphics Graphics Hardware

Workshop.

3 Imagination Technology MBX/SGX engine. Available at http://www.imgtec.com/powervr/powervr-graphics.asp.

4 Woo, R. et al. (2004) A 210-mW graphics LSI implementing full 3D pipeline with 264-Mtexels/s texturing for

mobile multimedia applications. IEEE J. Solid-St. Circ., 39 (2), 358–367.

5 Nam, B.-G. et al. (2007) A 52.4-mW 3D graphics processor with 141-Mvertices/s vertex shader and three power

domains of dynamic voltage and frequency scaling.Digest of Technical Papers of IEEE International Solid-State

Circuits Conference 2007.

6 Khronos Group (July 2005) OpenGL 2.0. Available at http://www.khronos.org.

7 Microsoft Corporation, Microsoft Direct3D Mobile. Available at http://msdn.microsoft.com/en-us/library/

aa452478.aspx.

8 OpenGL (2003) [Online]. Available at http://www.opengl.org.

9 Yosida, K., Sakamoto, T., and Hase, T. (1998) A 3D graphics library for 32-bit mocroprocessors for embedded

systems. IEEE Trans. Consum. Electron., 44 (4), 1107–1114.

10 Mitchell, J.N. Jr. (1962) Computer multiplication and division using binary logarithms. IRE Trans. Electron.

Comput., 11, 512–517.

11 SanGregory, S.L., Siferd, R.E., Brother, C., and Gallagher, D. (1999) A fast, low-power logarithm approximation

with CMOS VLSI implementation. Proc. of IEEE Midwest Symposium on Circuits and Systems 1999,

pp. 388–391.

12 Combet, M., Zonneveld, H., and Verbeek, L. (1965) Computation of the base-two logarithm of binary numbers.

IEEE Trans. Electron. Comput., 14, 863–867.

13 Kim, H. et al. (2006) A 231-MHz, 2.18-mW32-bit logarithmic arithmetic unit for fixed-point 3D graphics system.

IEEE J. Solid-St. Circ., 41 (11), 2373–2381.

14 Sohn, J.-H. et al. (2005) A 50-Mvertices/s graphics processor with fixed-point programmable vertex shader for

mobile applications. Digest of Technical Papers of IEEE International Solid-State Circuits Conference 2005.

15 Williams, L. (1983) Pyramidal parametrics. Proc. of SIGGRAPH, pp. 1–11.

16 Hakura, Z.S. and Gupta, A. (1997) The design and analysis of a cache architecture for texture mapping. Proc. of

24th International Symposium on Computer Architecture, pp. 108–120.

17 Park, Y.-H., Han, S.-H., Kim, J.-S. et al. (2000) A 7.1-GB/s low -power 3D rendering engine in 2D array embedded

memory logic CMOS. Digest of Technical Papers of IEEE International Solid-State Circuits Conference 2000.

18 Knittel, G., Schilling, A., Kugler, A., and Straber, W. (1996) Hardware for superior texture performance. Comput.

Graph., 20, 475–481.

19 Str€om, J. and Akenine-M€oller, T. (2005) iPACKMAN: high-quality, low-complexity texture compression for

mobile phones. HWWS’05: Proceedings of ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics

Hardware, pp. 63–70.

20 Akenine-M€oller, T. and Str€om, J. (2003) Graphics for the masses: a hardware rasterization architecture for mobile

phones. ACM Trans. Graph, 22 (3), 792–800.

21 Woo, J.-H. et al. (2008) A 195/152-mW mobile multimedia SoC with fully programmable 3D graphics and

MPEG4/H.264/JPEG. IEEE J. Solid-St. Circ., 43 (9), 2047–2056.

Mobile 3D Graphics SoC 117

22 Yu, C.H. et al. (2007) An energy-efficient mobile vertex processor with multithread expanded VLIWarchitecture

and vertex caches. IEEE J. Solid-St. Circ., 42 (10), 2257–2269.

23 Hoppe, H. (1999) Optimization of mesh locality for transparent vertex caching. Proc. of SIGGRAPH 1999,

pp. 269–276.

24 Bogomjakov, A. and Gotsman, C. (2001) Universal rendering sequences for transparent vertex caching of

progressive meshes. Proc. of Graphics Interface Conference 2001, pp. 81–90.

25 ARM Corporation, AMBA 2.0 Specification, revision 2.0.

26 Doggett, M. (2005) Xenos: XBOX360 GPU, ACM Eurographics.

118 Mobile 3D Graphics SoC

6

Real Chip Implementations

PC and console graphics hardware has been evolving rapidly from simple shading

accelerator to the unified shader architecture, and mobile graphics hardware has

followed that trend. However, mobile systems cannot supply unlimited power or

system resources to graphics hardware, so the hardware is evolving with its own

architectures for lowhardware cost and lowpower consumption. In this chapterwewill

explain the design concepts and architecture of several mobile graphics hardwares.

First we review the RAMP architecture developed by KAIST. We then go on to

introduce commercial graphics hardwares developed by industry, looking at their key

features.

6.1 KAIST RAMP Architecture

As explained in earlier chapters, rendering operations such as rasterization and texture

mapping dominate the 3D graphics pipeline, and require high memory bandwidth [1].

Solving the bandwidth bottleneck with traditional approaches such as high-speed

crossbars and off-chip DDR-SDRAMs can result in increased power consumption.

However, the limited screen resolutions in mobile terminals (e.g., QVGA) imply that

a reasonable amount of integrated memory, from a few tens of kilobytes to a few

megabytes, is sufficient for graphics memories, depth buffer, frame buffer, and texture

memory. In addition, by embedding all the required memory with the logic on a single

die, external memory accesses are dramatically reduced, so we can develop more

efficient architectures in terms of performance and power consumption.

The RAMP (RAM processor: Figure 6.1) is designed based on the design philoso-

phy that memory is no longer a passive device, nor a subsystem. The RAMP

architecture uses embedded DRAM (RAMP-I [2], RAMP-II [3], and RAMP-IV) for

3D rendering in a very efficientmanner that avoids connecting thememorywith a large

number of wires and corresponding high-speed crossbar switch. The characteristics of

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

3D rendering operations are exploited to distribute thememory accesses in time, hence

reducing the power consumption by activating one or some of the memories locally.

The design of the embedded DRAM is specified in terms of the latency, throughput,

number of buses, and commands of eachDRAMblock. The logic pipelines are tuned to

the modified timing and functions of the DRAMs. Various low-power techniques such

as clock gating are used extensively inside the memory and logic.

6.1.1 RAMP-IV

In 2002, KAIST released RAMP-IV [4]. This was the first graphics processor to

implement texture mapping in mobile devices. It focuses more on realtime 3D gaming

applications, drawing bilinearMIPMAP texture-mapped pixels with special rendering

effects such as fogging and motion blur at 66Mpixels/s and 264Mtexels/s, as well as

supporting the shading operations. Figure 6.2 illustrates the block diagram of the

SlimShader, the rendering processor in RAMP-IV.

Figure 6.1 Summary of RAMP architectures

120 Mobile 3D Graphics SoC

It consists of a hardwired triangle setup engine, an edge-processing (EP) block,

two pixel processors (PPs), and 29Mb of embedded DRAM. To create realistic 3D

images in real time, the SlimShader contains two energy-efficient texture engines

(TEs), which are in charge of texture address generation, texture fetching, and

texture filtering. One of the difficulties in implementing texture mapping in mobile

devices is power consumption. In bilinear filtering [5], two pixels to texel space

require eight texture memory requests every cycle, and those cause huge power

consumption. To reduce the power consumption, TEs employ address alignment logic

(AAL), introduced in Chapter 5, which uses temporal and spatial localities of texture

addresses in MIPMAP filtering to reduce total memory requests, thus yielding power

savings.

For realtime special effects such as fog, anti-aliasing, and cartoon shading,

a memory programmer is implemented in SlimShader and post-processes the

rendered pixels of the frame buffer by using a dedicated instruction set and its

SIMD datapath.

Figure 6.2 SlimShader architecture

Real Chip Implementations 121

6.1.1.1 Embedded Memory

RAMP-IV distributes the embeddedDRAMover the logic pipeline via different ports,

in addition to pixel-parallel distribution. Each pipeline stage can directly and concur-

rently access the contents of DRAM, just like accessing dedicated local SRAM.

Satisfying the pipeline timing is a big challenge in terms of DRAMdesign as the cycle

time (TRC) of embeddedDRAMsmust be less than 20 ns, while commodity SDRAMs

work at 65 ns or more. The timing budget of frame and depth buffers is even stricter as

the read-datamust bewritten back to the same addresswithin a single cycle for efficient

read-modify-write (RMW) transactions. Distributing the DRAMs over the pipeline

and accessing one or more of them selectively can reduce the power consumption of

memory by 65%. Since the depth of the processed pixel is compared at the first stage

of the PP pipeline, the following stages and corresponding memories can be gated off

according to the comparison result.

6.1.1.2 Implementation

The SlimShader architecture was integrated into a RAMP-IV chip (Figure 6.3)

together with an ARM9-compatible RISC processor with enhanced multiply-and-

accumulate (MAC), 29Mb of embedded DRAM, and a power management unit. The

chip was fabricated using a 0.16mm Hynix 256Mb SDRAM process. Its area and

power consumption were 121mm2 and 210mW. The RAMP-IV chip utilizes a pure

DRAM process to reduce the fabrication cost. Although the pure DRAM process has

Figure 6.3 RAMP-IV chip micro-photo

122 Mobile 3D Graphics SoC

slower logic transistor speed and fewer metal layers, 133MHz speed can be achieved

in the chip’s RISC processor. The negligible sub-threshold leakage current of the

DRAM process also reduces standby current, which is a critical issue for battery-

driven devices. Since modern SoC design prefers the standard CMOS logic process

to a DRAM-based CMOS process, the application of SlimShader architecture to a

CMOS logic process is also being completed for future integration into next-

generation graphics processors, while improving the scalability of memory capacity.

6.1.2 RAMP-V

Asmobile 3D graphics becomesmore popular, the trend in research ismoving towards

development of high-quality flexible graphics architectures capable of providingmore

realistic images for handheld devices, using advanced graphics algorithms. To satisfy

this requirement, the RAMP-V was developed in 2005 [6–8]. RAMP-V, shown in

Figure 6.4, was the first mobile graphics processor with a programmable vertex shader

and low-power rendering processor in a single chip.

RAMP-V consists of an ARM10-compatible 32-bit RISC processor with 16 kB

I/D caches, a 128-bit programmable fixed-point SIMD vertex shader, a low-power

Figure 6.4 RAMP-V architecture

Real Chip Implementations 123

rendering engine – using the same architecture as RAMP-IV – and a programmable

frequency synthesizer (PFS). RAMP-V features a fixed-point programmable vertex

shading architecture called SATINE. The vertex shader is implemented as an ARM10

coprocessor and processes all per-vertex operations such as geometry transformations

and lighting calculations. Primitive assemblymethods such as clipping and culling are

also performed by the vertex shader in collaboration with the ARM10 processor.

6.1.2.1 SATINE Architecture

Figure 6.5 shows the internal architecture of the SATINE vertex shader. The vertex

program control unit (VPCTRL) issues the graphics instructions independently of the

ARM10 processor for vertex shading. SATINE can also execute general-purpose

integer and fixed-point SIMD instructions controlled via the coprocessor interface in

order to implement various multimedia operations beyond 3D graphics, such as

MPEG4 video decoding. A 32 kB display buffer integrated into the SATINE vertex

shader decreases the system-bus bandwidth requirements when used in vertex array

implementation and indexed primitive drawing. It stores vertex model data as well as

graphics parameters such as matrix and light coefficients.

6.1.2.2 Dual Operations

SATINE implements dual operations (Figure 6.6). Unlike a conventional ARM

coprocessor architecture, the SATINE vertex shader has dual operating states to allow

it to be better adapted to the parallelism inherent in graphics processing.

Figure 6.5 SATINE architecture

124 Mobile 3D Graphics SoC

1. Tightly coupled coprocessor (TCC) state. In this state, SATINE is a normal

ARM10 coprocessor. The instructions of the coprocessor are issued in the

instruction stream of the main processor as extended coprocessor instructions,

and they are executed in lock step with the pipeline of themain processor. The TCC

state implements integer and fixed-point SIMD data-processing instructions, and

all instructions can be executed conditionally like conventional ARM instructions.

2. Parallel processor (PP) state. In thisstate,SATINEisanindependentprocessorand

can operate independently of the ARM10 processor. The PP state has a graphics

instruction set that is separate from the general SIMD instructions of the TCC state.

SATINE executes the independent vertex program while the ARM10 processor

performsthemainapplicationprogramorentersacachemissstate.Intheprogrammer’s

model, the graphics instructions set is a subset of the general SIMD instructions with

graphics extensions, suchas source swizzlingandwritemasks. In thePP state, there are

more register file sets that can be used as input operands of instructions. SATINE

maintains thecommunicationprotocolof theARM10coprocessor interfacebydriving

the coprocessor busy signal to the ARM10 processor, allowing the next coprocessor

instruction from the ARM10 processor to be blocked for synchronization.

The two operating states share all the hardware blocks except the instruction fetch

units. Dual operations enable a single hardware resource to perform various multime-

dia operations. In addition, RAMP-V can process streaming graphics data more

efficiently because various user-defined vertex processing can be performed for the

current vertex input during the next vertex fetch of the ARM10 processor.

6.1.2.3 Fixed-point SIMD Processing

Most mobile 3D graphics applications require real number representation to support

various graphics algorithms. For this, fixed-point number representation shown in

Figure 6.7 is used instead of floating-point number format.

Figure 6.6 Dual operations: (a) TCC state, and (b) PP state

Real Chip Implementations 125

The simple integer datapath of a fixed-point unit can achieve higher clock frequency

while consuming less power than a floating-point unit, yielding total energy reduction.

For typical 3D matrix transformation, gate-level simulation of a four-stage pipelined

32-bit fixed-pointmultiplier showed 30%highermaximumoperating frequency than a

six-stage pipelined single-precision floating-point multiplier. In addition, the fixed-

pointmultiplier consumed only 83%of the power of the floating-pointmultiplier at the

same operating frequency. Consequently, when fixed-point arithmetic is applied to

graphics applications, 36% of total energy consumption can be saved on average

(Figure 6.8).

To evaluate the accuracy of fixed-point arithmetic in 3D geometry operations, the

following equations can be used to decide the number of bits for fractional part, nf, of

Qm,nfixed-point number [9], wherem is the number of bits representing the integer part

and n is the number of bits representing the fractional part.

For transformation:

nf ¼ naþ 3þ log2 1þ distance of far plane from eye

distance of scene vertex to eye

� �

; ð6:1Þ

Figure 6.7 Fixed-point representation

Figure 6.8 Energy saving by fixed-point arithmetic, measured during transformation operations

126 Mobile 3D Graphics SoC

and for lighting:

nf ¼ na þ 8 or na þ 9; ð6:2Þ
where na is the number of bits required for securing the accuracy in transformation and

lighting calculations.

6.1.2.4 Implementation

RAMP-V is fabricated in a 0.18mm six-metal standard CMOS logic process. The chip

size is 36mm including 2M logic transistors and 96 kBof SRAM.Figure 6.9 shows the

die photograph and summarizes its features. By using this chip, various 3D graphics

algorithms and other multimedia functions can be processed with 50Mvertices/s peak

graphics performance, and 24-bit true-colored and texture-mapped graphics images

can be drawn at the speed of 50Mpixels/s and 200Mtexels/s.

6.1.3 RAMP-VI

The overall architecture of RAMP-VI is shown in Figure 6.10 [10, 11]. It consists of

a RISC processor, a vertex shader, and a rendering engine. The RISC processor

controls the entire GPU system and runs artificial intelligence and collision detection

for 3D gaming. Logarithmic arithmetic [12] is exploited in this design for reduced

arithmetic complexity. The GPU is divided into three independent power domains to

optimize power consumption for a given performance level.

Figure 6.9 RAMP-V implementation results

Real Chip Implementations 127

6.1.3.1 Vertex Shader

The vertex shader is described in Figure 6.11. It includes vector register files,

multifunction unit, and vertex cache. The vertex cache is included to reuse the

previously processed vertices. The multifunction unit unifies the matrix, vector, and

elementary functions in a single four-way arithmetic unit shown in Figure 6.12.

The logarithm converter (LOGC) and antilogarithm converter (ALOGC) use

piecewise-linear interpolation for approximation of their nonlinear function evalua-

tions. These number converters are used for conversion between floating-point and

logarithmic numbers. This unit includes a programmable multiplier (PMUL) that can

be programmed into a Booth multiplier, LOGCs, or ALOGCs for the target

operations to be implemented. This is done by just adding 15-entry LOG and 8-

entry ALOG lookup tables (LUTs) to the Booth multiplier and sharing the common

adder tree. It also includes a programmable adder (PADD) that can be programmed

into a single 5-input adder tree or 4-way 2-input SIMD adders for target operations.

Using these components, various operations are implemented in this multifunction

unit as follows.

6.1.3.2 Matrix–Vector Multiplication

The 3D geometry transformation is computed by multiplication of a 4� 4 matrix

and a 4-element vector, which requires sixteen multiplications and twelve additions.

This can be converted into an operation requiring twenty LOGCs, sixteen adders,

sixteen ALOGCs, and twelve FLP adders by exploiting the logarithmic arithmetic as

follows:

Figure 6.10 Proposed handheld GPU

128 Mobile 3D Graphics SoC

Taking note that the coefficients of a geometry transformation matrix are fixed

during processing of a 3D object, these can be pre-converted into the logarithmic

domain and be regarded as constants during the processing. Therefore, the required

numberofLOGCsformatrix–vectormultiplication (MAT)canbe reduced fromtwenty

Figure 6.11 Vertex shader

Real Chip Implementations 129

to four.This canbe implemented in twophaseson theproposed4-wayarithmetic unit as

illustrated in Figure 6.12, requiring eight adders and eight ALOGCs per phase. The

eight ALOGCs are obtained by programming the PMUL into four ALOGCs

together with four ALOGCs in E3. The carry propagate adders (CPAs) in E1 and E3

stages are used for the required eight adders. The four multiplication results from the

ALOGCs in E2 stage and the other four from the E3 stage are added by programming

the PADD into a 4-way SIMD FLP adder to get the first phase result. With the same

process repeated, accumulation with the first phase result in E5 completes the MAT.

Thus, the MAT produces one result every two cycles on this 4-way arithmetic unit,

whereas it would have taken four cycles per result in the conventional way [4].

6.1.3.3 Vector Operations

The vector SIMD operations such as vector multiplication, division, square-root, and

multiply–add (MAD) can be represented as a single generic operation, which can be

converted into one using logarithmic arithmetic as follows:

xi � y s
i � zi

� �

i2f0;1;2;3g ¼ 2ðlog2xiÞ�ðs�log2yiÞ � zi
� �

i2f0;1;2;3g

where� 2 f�; ‚g;� 2 fþ ;�g; s 2 f0:5; 1g:
ð6:4Þ

Sincewe require two LOGCs per channel – that is, eight LOGCs for four channels –

the PMUL is programmed into fourLOGCs tomake the eight LOGCs togetherwith the

four LOGCs in the E1 stage. Both the vector MAD and dot product (DOT) require

Figure 6.12 Multifunction unit

130 Mobile 3D Graphics SoC

vector element multiplication and final summation. Thus, the PADD is programmed

into a 4-way 2-input SIMDadder for thevectorMADand a single 5-input adder tree for

the DOT.

6.1.3.4 Elementary Functions

In general, elementary functions can be represented as a power series, such as the

Taylor series expansion. For the first five terms of the Taylor series expansion, a new

generic operation is defined and converted into one exploiting logarithmic arithmetic:

c0x
k0 � c1x

k1 � c2x
k2 � c3x

k3 � c4x
k4

¼ c0x
k0 � 2log2c1 þ k1�log2x � 2log2c2 þ k2�log2x � 2log2c3 þ k3�log2x � 2log2c4 þ k4�log2x

where� 2 fþ ;�g; ci; log2ci; ki are coefficients:

ð6:5Þ
Since the power function is converted intomultiplication in the logarithmic domain,

and ki is a small integer, the power functions can be implemented with a 4-way

32-bit� 6-bit multiplier in the logarithmic domain. The first term does not need to be

converted into the logarithmic domain since the first term of the Taylor series is usually

a constant or the input x that can be fed directly into the “bias” port. Therefore,

the generic power series can be implemented by programming the PMUL into 4-way

32-bit� 6-bit BMUL and the PADD into a single 5-input adder tree.

6.1.3.5 Power Management

In this GPU, triple power domains are tuned with separate frequencies and supply

voltage by tracking the workloads. Since the objects in a scene are composed of

a number of triangles and these are again composed of a number of pixels, the

workloads of the RISC, VS, and RE – which operate on objects, triangle, and pixels,

respectively – can be different completely. Therefore, the RISC, VS, and RE are

divided into different power domains and their frequencies and supply voltages are

controlled separately according to their workloads. The workload for each domain is

measured from the occupation level of the FIFO and the level is compared with the

reference level so that the PMU determines target clock frequency and supply voltage.

Figure 6.13 illustrates this power management scheme.

6.1.3.6 Chip Implementation

RamP-VI is fabricated into a chip using 0.18mm six-metal CMOS technology [10].

Figure 6.14 shows the chipmicrograph. It integrates the RISC,VS, andRE into a small

area of 17.2mm2 containing 1.57M transistors and 29 kB of SRAM. It shows

141Mvertices/s of peak performance by exploiting logarithmic arithmetic. This chip

dissipates only 52.4mWwhen the scenes are drawn at 60 frames per second by using

the triple-domain power management scheme.

Real Chip Implementations 131

6.1.4 RAMP-VII

RAMP-VII is a low-power processor that is fully programmable for vertex shading and

pixel shading, including a mobile unified shader architecture. In PC and console

platforms, 3D images can be generated using programmable vertex shading and pro-

grammable pixel shading, but themost recent employ a unified shader architecture [13]

Figure 6.13 Triple-domain DVFS scheme

Figure 6.14 RAMP-VI chip micrograph

132 Mobile 3D Graphics SoC

to enhance the graphics performance and hardware utilization. To meet the specific

characteristics of mobile systems, RAMP-VII proposed a mobile unified shader

architecture (Figure 6.15). It consists of the unified shader, matrix/quaternion vec-

tor generator, vector generator, fragment generator, pixel generator, and graphics

caches.

6.1.4.1 Mobile Unified Shader

The mobile unified shader is a single-instruction multiple-data (SIMD) processor. It

contains a 128-bit (4� 32) SIMD datapath, special functional unit, texture engine,

specialized lighting engine, SIMD register files, and control logic, as shown in

Figure 6.16.

The SIMD datapath is responsible for vector arithmetic operations such as addition

(ADD), multiplication (MUL), and inner product (DOT). The SFU is dedicated to

special functional scalar operations such as logarithm (LOG), exponent (EXP),

reciprocal (RCP), and reciprocal square-root (RSQ). The texture engine performs

Figure 6.15 Block diagram of RAMP-VII

Real Chip Implementations 133

texture-related operations such as perspective-correct texture address generation and

texture filtering.

In contrast to a conventional unified shader in PCs or consoles, the mobile unified

shader contains a dedicated lighting engine. The lighting equation is themost complex

operation during the vertex operation owing to the power (POW) operation, so it

consumes lots of time in a mobile system. In RAMP-VII, to accelerate the lighting

equation with low power consumption, the lighting engine employs a logarithmic

number datapath [12]. The OpenGL lighting equation – which includes an ambient

light, a diffuse light, and a specular light – is described below in the ordinary number

system and the log number system. The complex POW operation can be simply

Input Register
Constant Register

Lighting
Engine

Write Mask

Source Data Modifier(SWP / NEG/ABS)

Output Data Modifier(SAT)

Temporary
Register

128b

128b

SIMD
Datapath

128b

SFU

Write Mask

4-inputAdder

Code Memory

Texture
Engine

Fetch Unit Decoder/ Controller

Address Reg.

128b 128b 128b

Vertex FIFO Pixel FIFO

Vertex Output Register Pixel Output Register

Figure 6.16 Mobile unified shader

134 Mobile 3D Graphics SoC

converted into a multiplication:

Color�ORD ¼ CambþfðN 0 � HÞ � CdiffgþfðN 0 � HÞcpow � Cspecg; ð6:6Þ

Color�LNS ¼ Camb þfðN 0 � HÞ � Cdiffgþ 2flog2ðN
0�HÞ�Cpow þ log2Cspecg: ð6:7Þ

Therefore, the lighting engine consists of the logarithmic number datapath for the

power (POW) operation of the specular light and the ordinary datapath for the ambient

and the diffuse light calculations, as shown in Figure 6.17. In addition, since the data

dependency in the lighting calculation degrades graphics performance (Figure 6.18),

the specialized lighting instruction, TLT, is proposed to reduce data dependency. The

TLT instruction combines the light coefficient calculation with the multiplication of

coefficients and materials together and it generate a lit-vertex in every two cycles with

the lighting engine.

Ambient
Diffuse

A B

AxB

A B

A+B

C

A B

AxB

0 1 1288 -1280 1

A B

A+B

POW

LOG C.

A B

A+B

0 1

LOG C.LLL

Camb (N’xH)Cdiff (N’xH) Cpowoo Cspec

Color

Specular
EXP .

Figure 6.17 Lighting engine

Real Chip Implementations 135

6.1.4.2 Pixel–Vertex Multi-threading

Figure 6.19 shows a data flow diagram of the programmable 3D graphics pipeline. In

conventional architecture, the primitive vertices are computed in the vertex shader for

per-vertex operations such as transformation and lighting. After per-vertex operations,

the vertex generator and fragment generator perform clipping and rasterization and

they generate interpolated pixels (fragments). After that, the fragments aremodified in

the pixel shader using per-pixel effects, and blending operations generate final pixel

data. In contrast with conventional architecture, the mobile unified shader is respon-

sible for both per-vertex operations and per-pixel operations in a single hardware.

Therefore, the graphics data traverse the mobile unified shader twice in a single 3D

graphics pipeline as shown in Figure 6.19, so the 3D graphics performance is degraded

less than half of its peak performance due to task switching.Moreover, during the pixel

operation, texture cache miss halts the 3D graphics processor until the cache is filled

up, so the graphics performance is degraded further. To improve the 3D graphics

performance, RAMP-VII adopts pixel–vertexmulti-threading (PVMT),which utilizes

datapaths of the mobile unified shader in parallel.

Since the texture engine performs texture fetching and filtering independent of the

SIMDdatapath and special functional block, those datapaths are idle during the texture

operations. Therefore, the PVMT enables the SIMD datapath and special functional

unit to compute per-vertex operations during the texture cache miss, as shown in

Figure 6.20.When the texture cache miss occurs during per-pixel operations and there

are vertices to compute, the PVMT issues the next vertices and the SIMD datapath and

SFU perform per-vertex operations. If the texture cache filling is finished during the

MOV R1.w, C[3], x;

LIT R2, R1;

MAD R3, C[1].x, R2.y, C[1].y;

MAD O[COL].xyz, C[2], R2.z, R3;

DP3 R1.y, H, N’;

DP3 R1.x, Ldir, N’;

Previous Implementation

MOV R1.w, C[3], x;

MOV R2, C[2];

DP3 R1.y, H, N’;

DP3 R1.x, Ldir, N’;

TLT O[COL].xyz, R1, C[1], R2;

Proposed Lighting Engine

Data Dependency

Figure 6.18 Lighting instruction

136 Mobile 3D Graphics SoC

Vertex Shader

SIMD SFU

Reg. File Lit-Vertex Vertex
Generator

Frag.
Generator

Pixel Shader

SIMD SFU

Reg. File

Tex. Engine

3D Scene

Texture
Engine

Mobile
Unified Shader

SIMD SFU

Lighting
Engine

T
extre

C
ach

e

Lit-Vertex Vertex
Generator

Frag.
Generator

Fragments

Primitive Vertex

3D Scene

Conventional Architecture

Proposed Architecture

Fragments

Primitive Vertex

Figure 6.19 Data flow diagram in programmable 3D graphics pipeline

Real Chip Implementations 137

per-vertex operations, themobile unified shadermoves back to per-pixel operation and

finalizes the remaining pixel operations. Otherwise, the PVMT issues the next vertices

and performs per-vertex operations continuously.

Since the PVMT utilizes the wasted cycle of the texture cache miss, contents

characteristics such as texture cache miss rate and vertex/pixel ratio strongly influence

the effect of the PVMT. In our environment, the texture cache miss occurs with

about 10% probability on average, and a texture cache miss consumes 100 cycles on

average (as short as 64 cycles, or 148 cycles at most). Since the simple per-vertex

operation including transform and lighting consumes about 20 cycles, the 3D graphics

processor with PVMT can compute more than three vertices during the texture

cache miss if the vertex buffer is enough. While the effect of the PVMT varies with

the vertex/pixel ratio and the number of vertex buffer entries, the PVMT reduces

the cycles of the vertex operation at least 60%, or 94% at the most. When the output

vertex queue has five entries and an average polygon consists of 12 pixels, 94% of

vertex operations are interleaved with pixel operations. By employing PVMTwith a 5-

entry vertex buffer, 94% of the vertex operations are interleaved into the pixel

operations with only 6% performance degradation, and the single mobile unified

shader can compute both per-vertex operations and per-pixel operations in a single

hardware.

Figure 6.20 Pixel–vertex multi-threading

138 Mobile 3D Graphics SoC

6.1.4.3 Implementation

RAMP-VII has been fabricated using a 0.13 mm seven-metal CMOS logic process and

it was integrated into an ARM9-based mobile multimedia SoC [14]. It contains 1.3M

logic gates and graphics cache in an area 3.3mm� 3.0mm. Figure 6.21 shows the chip

micro-photograph and feature summary.

6.2 Industry Architecture

6.2.1 nVidia Mobile GPU – SC10 and Tegra

Since 2003, nVidia has been developing mobile 3D graphics processors using their

knowledge base on GPUs for PCs. The first mobile GPU, the SC10, was introduced in

2004. This is an application processor targeted at handheld devices [15]. It works as

a companion chip to the host processor and accelerates image, video, 2D, and 3D

graphics processing. Its block diagram is shown in Figure 6.22 and its layout figure is

shown in Figure 6.24. The 3D graphics processing engine, AR10 architecture, in this

chip works with the external host processor and system memory. The chip interfaces

with the host processor using scalable I/O from 8-bit to full 32-bit. The full duplex

Figure 6.21 Implementation results of RAMP-VII

Real Chip Implementations 139

hardware MPEG4 codec, serial peripheral bus for camera control, and LCD interface

enables various multimedia solutions on a single chip. The SC10 distinguishes itself

from other architectures by implementing pixel-level programmability in a 3D

graphics accelerator for blending and combing operations to give various graphics

effects on handheld devices. The embedded 1280 kB of SRAM (variable according to

product line-up) with 128-bit interface provides a large vertex cache for reducing

external memory accesses.

The SC10 supports several APIs for 3D graphics, such as OpenGL-ES and D3D

Mobile. Its graphics pipeline consists of setup, raster, gatekeeper, data fetch, arithmetic

units, and data write stages, as described below.

The setup stage provides a simple packet-based host interface and prepares the

triangles for rasterization. It incorporates a software-controlled vertex cache and per-

forms simple transformations, clipping, and back-face culling. The raster unit inter po-

lates pixel parameters and generates pixel packets used by the rest of the pipeline. The

gatekeeper unit performs the scoreboard operation of the pipeline and controls pixel

packet flow. It keeps the pipeline as full as possible by tracking the recirculated (x, y)

positionvalue. The data fetch unit reads color, depth, and texture data. It performs the

texture filtering and depth test. The texture filtering takes one clock cycle for nearest

and bilinear filtering, and two cycles for trilinear filtering. There are four ALU units

in the SC10 core. The ALUs perform blending and texture combining operations

and operate on four 20-bit variables. The data write unit writes back the color and

depth values. There are write merge buffers for the color and depth data, which avoids

writing back the killed pixels from the depth test. It indicates retired writes to the

gatekeeper for scoreboarding. The SC10 3D graphics pipeline is shown in Figure 6.23.

Low-power schemes such as low leakage process technology, embedded memory,

and clock gating techniques are adopted in this processor. The processor is fabricated

MPEG-4

Encode

CIF @ 30fps

MPEG-4

Decode

CIF @ 30fps

JPEG

Decode

3MP

SDIO

1 & 4-bit

32-bit Host Bus Interface

1,280KB 128-bit SRAM
128-bit 3D

Engine

Flat Panel

Interface

JPEG

Encode

3MP

64-bit 2D

Engine

Graphics

Controller

Video Input

3MP

SPB

8/16/32-bit Host CPU +

Sys Mem

SDIO Card

Main LCD

(640x480)

Sub LCD

Figure 6.22 Block diagram of the nVidia SC10

140 Mobile 3D Graphics SoC

into a chip using 3.7M transistors in 0.15mm technology. Its pipeline shows a

throughput of 1-pixel/clock and achieves 1Mvertices/s at 72MHz. It shows low

power consumption of 50–75mW at 30 frames per second. Although the setup unit

relieves the burden on the host processor by doing simple transformations, clipping,

and culling operations, the lack of a dedicated geometry engine and slow off-chip host

interface limit its performance. The SC10 was the first programmable 3D graphics

processor for mobile devices, but it did not achieve a big success in the mobile market

owing to its limited graphics performance.

In early 2008, nVidia introduced a powerful mobile multimedia processor, the

APX2500. After that, nVidia added Tegra 600 and 650 processors. Like the SC10, the

Tegra APX2500 is an application processor that includes video, image signal

processing, and 3D graphics. Figure 6.25 summarized the features of the APX2500

and Figure 6.26 shows the block diagram of APX2500.

For advanced 3Dgraphicswith low power consumption, nVidia developed the ultra-

low-power Geforce (ULP Geforce), which it claims is the lowest power 3D hardware

solution available. The ULP Geforce supports programmable vertex lighting and

SetupCPU Raster
Gate-

keeper
Data
Fetch

ALUs
Data
Write

Vertex Buffer Texture Cache Write Buffer

Figure 6.23 nVidia SC10 3D graphics engine

Figure 6.24 Layout figure of nVidia SC10.�2009 NVIDIA Corp. NVIDIA, the NVIDIA logo, SC10,

and Tegra are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and

other countries. All rights reserved

Real Chip Implementations 141

programmable pixel lighting and it is also compatiblewith OpenGL-ES 2.0 andDirect

3D Mobile, especially it targeted at the DirectX-9 model. In DirectX-9 the program-

mable 3D graphics pipeline, the vertex, and state traffic have been increased compared

with the DirectX-7 model, so the tile-based rendering cannot achieve good graphics

performance with low power consumption. Therefore, the ULP Geforce employs the

traditional 3D graphics pipelinewith early depth test and fragment caching, which are

helpful to reduce required bandwidth of graphics data. For the same reason, it does not

employ a unified shader [13],which ismore efficient in theDirectX-10model.And one

notable thing is the advanced 2D graphics. Since vector graphics are widely used in

mobile devices for user interfaces (e.g the Apple iPod), or flash playback, the ULP

Geforce is designed to accelerate those 2D vector graphics. TheULPGeforce achieves

Figure 6.25 nVidia APX2500.�2009NVIDIACorp. NVIDIA, the NVIDIA logo, SC10, and Tegra are

trademarks and/or registered trademarks ofNVIDIACorporation in theUnited States and other countries.

All rights reserved

142 Mobile 3D Graphics SoC

40Mtriangles/s for geometry performance, and it shows 600Mpixels/s without

texturing and 240Mpixels/s with texturing for rendering performance.

6.2.2 Sony PSP

In 2004, Sony released a handheld video gaming system called PlayStation Portable

(PSP�) for realtime 3D gaming and multimedia applications like MPEG video and

MP3 audio playbacks on a battery-powered handheld device. The graphics processor

for PSP� supports 3D computer graphics gaming on a relatively wide screen of 4.3

inches for a handheld system [16]. PSP� includes the MIPS R4000 CPU core with

vector floating-point unit (FPU) and a surface engine and a rendering engine for the

game processing, aswell as theH.264 codec formedia processing and a reconfigurable

processor for audio/video codec. It also features 4Mbyte of embedded DRAM for

enhanced support of memory bandwidth, and read–modify–write operations for 3D

graphics processing.

The graphics module in PSP� consists of surface engine and rendering engine. The

surface engine of the gaming core supports the tessellation of Bezier and Spline

surfaces to reduce the memory bandwidth for model transference. It also supports

Figure 6.26 Block diagram of the Tegra family. �2009 NVIDIA Corp. NVIDIA, the NVIDIA logo,

SC10, andTegra are trademarks and/or registered trademarks ofNVIDIACorporation in theUnited States

and other countries. All rights reserved

Real Chip Implementations 143

geometry processing such as 3D geometry transformations, lighting operations and

geometry blending for skinning and morphing. The rendering engine supports several

lighting effects including directional, point, and spot lighting effects. It also supports

several texture mapping schemes such as environmental mapping, projection map-

ping, and per-fragment operations like alpha blending, depth test, stencil test, and

dithering.

Figure 6.27 shows the PSP� 3D graphics pipeline. The media processing unit in

PSP� incorporates the hardwired H.264 codec and a real-time reconfigurable

processor for audio/video codec implementation. Even though it adopts a quite

conventional bus protocol for its interface with the host system, the direct eDRAM

controller attached to the rendering engine significantly reduces the memory band-

width requirements for the external mainmemory. The eDRAM controller also allows

the host system to access the video memory directly for flexible memory operations.

The processor operates at 166MHz with 4Mbytes of graphics memory. It shows

graphics performance of 58Kpatches/s for surface tessellation, 35Mpolygons/s for

geometry processing, 35Mpolygons/s for rendering setup, and 664Mpixels/s for pixel

processing. It adopts several low-power design techniques such as voltage and clock

frequency control and clock and power gating techniques to each IP, so that it achieves

less than 500mW power consumption. However, even with its several low-power

design techniques, it still shows relatively high power dissipation for devices like

cellphones.

6.2.3 Imagination Technology MBX/SGX

In 2002, Imagination Technology (previous known as PowerVR) developed a low-

power rendering processor, MBX, based on tile-based rendering [17, 18]. MBX

was designed to support the OpenGL-ES 1.x, fixed-function 3D graphics pipeline.

Figure 6.28 shows the architecture. It consists of tile accelerator, rendering core,

texture unit with texture cache, pixel blend unit, and control unit.

Blend
Sub-

division
TnL

Vertex
Sort

Clip

Setup Derivative
Tex
Map

Pixel
Op

eDRAM

Surface Engine

Rendering Engine

Figure 6.27 Sony PSP� 3D graphics pipeline

144 Mobile 3D Graphics SoC

MBX divides the screen into 32� 32-pixel tiles and it operates based on that. To

increase the pixel throughput, MBX has a parallel 32� 1-pixel tile accelerator inside

the rendering core. The pixel tile accelerator performs the parallel triangle setup

equation and depth test per cycle. This means that it consumes 32 cycles to compute

one triangle. Therefore, the peak performance is limited to 7Mtriangles/s at 200MHz

operating frequency. To reduce memory utilization, MBX also employs texture

compression, which is an algorithm unique to Imagination Technology; the texture

data is storedwith only 2 bits or 4 bits. One problemwith adopting tile-based rendering

is the geometry overhead. Since the rendering operation is done on a tile basis, it

requires additional computational power. Therefore there is “tile acceleration,” a kind

of programmable SIMD coprocessor, inside MBX.

In 2005, Imagination Technology announced a new mobile 3D GPU, called

SGX. This is targeted to the OpenGL-ES 2.x, programmable 3D graphics pipeline.

Figure 6.29 shows the architecture. The company claims that the PowerVRSGXcore –

formerly known by its codename “Eurasia” – provides programmable shader support

to beyond OpenGL 2.0 and DirectX-9 shader model 3 standard. As the figure shows,

SGXs shader system employs the unified scalable shader engine (USSE), which

merges vertex and pixel shading into a single pipeline capable of processing either kind

of image element. Its instruction set architecture and features are optimized for three

types of task: vertex shading, pixel shading, and video/imaging processing.

The coarse-grain scheduler (CGS) is the main controller for SGX. It consists of two

stages, the data master selector (DMS) and program data sequencer (PDS). The DMS

processes requests from the data masters and determines which tasks can be executed

given the resource requirements. Then, the PDSmanages theworkload and processing

of data on the USSE. For data parsing to the USSE, there are three data masters in the

SGX core: general-purpose data master (GPD), pixel data master (PDM), and vertex

data master (VDM).

Host Interface

Event
Controller

Tile
Accelerator

Rendering
Core

Texture
Shading

Unit

Display List
Parser

Pixel
Blender

Texture
Cache

Memory Arbiter
Memory
Interface

Display List
Z buffer
Read/Write

DisplayList Texture

F
ram

e B
u

ffer W
rtie

Figure 6.28 MBX architecture

Real Chip Implementations 145

The VDM initiates transform and lighting processing. The VDM reads an input

control stream, which contains triangle index data, and state data. Using state data, the

VDM decides the PDS program, size of the vertices, and the amount of USSE output

buffer resource.

The PDM is the initiator of rasterization processing. Each pixel pipeline processes

pixels for a different half of a given tile, which allows for optimum efficiency within

each pipe due to locality of the data. For each task it determines the amount of resource

required within the USSE. It merges this with the state address and issues a request for

execution on the USSE to the DMS.

The GDM responds to events within the system (such as end of a pass of triangles

from the ISP, end of a tile from the ISP, end of render, or parameter stream breakpoint

event). Each event causes either an interrupt to the host or synchronized execution of

a program on the PDS. The program may, or may not, cause a subsequent task to be

executed on the USSE.

The multilevel cache is a two-level cache consisting of twomodules, the cache core

and the mux/arbiter/demux/decompression (MADD) unit. The MADD is a wrapper

around the cache core designed to manage data format between cache core and other

blocks such as texture coprocessor and USSE, as well as providing level 0 caching for

texture and USSE requests. The MADD can accept requests from the PDS, USSE,

and texture address generator modules. Arbitration is performed between the three

data streams. Since the texture data are compressed, texture decompression is also

performed as necessary.

Power
Management

Control
Register

Bus Interface

Vertex Data
Master

Coarse-grain
Scheduler

Universal
Scalable
Shader
Engine
(USSE)

Tile-
Coprocessor

Texture
Coprocessor

SoC
Interface

Pixel Data
Master

General Purpose
Data Master

Program
Data

Sequencer

Data
Master

Selector

Pixel-
Coprocessor

Multi-Level
Cache

Figure 6.29 SGX architecture

146 Mobile 3D Graphics SoC

The texturing coprocessor performs texture address generation and formatting of

texture data. It receives requests from either the iterators or USSE modules and

translates these into requests into the multilevel cache. Data returned from the cache

are then formatted according to the texture format selected and sent to the USSE for

pixel-shading operations. As in MBX, it also contains a tiling coprocessor to process

pixels in a tiled manner. The tiling coprocessor performs dividing screen into tiles,

arranging tiles as groups. A native advantage of tiling architecture is that a large

amount of vertex data can be rejected at this stage, thus reducing both the memory

storage requirements and the amount of pixel processing to be performed. The pixel

coprocessor is the final stage of the pixel-processing pipeline and controls the format of

the final pixel data sent to the memory. It supplies the USSE with an address into the

output buffer, and the USSE returns the relevant pixel data. The address order is

determined by the frame buffer mode. The pixel coprocessor contains a dithering and

packing function.

The SGX architecture decouples geometry processing and rendering processing to

minimize pipeline stalling, along with on-chip support for multiple render targets

(MRTs). A large proportion of PowerVR SGX’s peak throughput is achievable in real

applications, and the architecture has the lowest bandwidth requirements as PowerVR

SGX’s deferred pixel shading gives 2–3 times fill rate comparedwith other solutions at

the same bandwidth. Across the SGX family (510, 520, and 530), the effective fill-rate

performance is from 200M to 1200Mpixels/s at 200MHz (with even higher Z and

stencil rates), and polygon throughput is from 2M to 13.5Mpolygons/s at 200MHz.

The SGX’s USSE supports advanced geometry and pixel processing capabilities such

as procedural geometry and textures, advanced per-pixel and vertex lighting effects.

Further, the highly flexible nature of the USSE architecture allows this programma-

bility to be applied to many other tasks such as other multimedia-related activities

(e.g., physical modeling), flexible video and image processing, and many more. This

unified approach to processing also has the benefit of requiring a single unified

programmingmodel with one compiler, reducing hardware and software qualification

time.

Anotable benefit of the SGX tiling architecture is the on-chipmultiple render targets

(MRTs). This technology is unique to Imagination Technology tile-based rendering

and cannot be replicated by an immediate mode renderer (IMR) in a cost-effective

manner. IMRs use conventional external MRTs with huge external memory storage

and bandwidth. PowerVR’s on-chip MRTs result in low geometry processing with no

additional external memory cost and no additional memory bandwidth cost.

References

1 Sohn, J.-H. et al. (2005) A 50-Mvertices/s graphics processor with fixed-point programmable vertex shader for

mobile applications. Proc. of IEEE International Solid-State Circuits Conference 2005, pp. 192–193.

2 Park, Y.-H. et al. (2001) A 7.1-GB/s low-power rendering engine in 2D array embedded memory logic CMOS for

portable multimedia system. IEEE J. Solid-St. Circ., 36 (6), 944–955.

Real Chip Implementations 147

3 Yoon,C.-W. et al. (2001)A80/20-MHz160-mWmultimedia processor integratedwith embeddedDRAM,MPEG4

and 3D rendering engine for mobile applications. IEEE J. Solid-St. Circ., 36 (11), 1758–1767.

4 Woo, R. et al. (2004) A 210-mW graphics LSI implementing full 3D pipeline with 264-Mtexels/s texturing for

mobile multimedia applications. IEEE J. Solid-St. Circ., 39 (2), 358–367.

5 Williams, L. (1983) Pyramidal parametrics. Proc. of SIGGRAPH 1983, pp. 1–11.

6 Sohn, J.-H. et al. (2005) A 50-Mvertices/s graphics processor with fixed-point programmable vertex shader for

mobile applications. Digest of Technical Papers of IEEE International Solid-State Circuits Conference 2005.

7 Sohn, J.-H. et al. (2005) Low-power 3D graphics processors for mobile terminals. IEEE Commun. Mag., 43 (12)

90–99.

8 Sohn, J.-H. et al. (2004) A programmable vertex shader with fixed-point SIMD datapath for low power wireless

applications. Proc. of ACM Graphics Hardware Workshop, pp. 107–114.

9 Hao, Xuejun et al. (2001) Variable-precision rendering. Proc. of Symposium on Interactive 3D Graphics,

pp. 149–158.

10 Nam, B.-G. et al. (2007) A 52.4-mW 3D graphics processor with 141-Mvertices/s vertex shader and three power

domains of dynamic voltage and frequency scaling.Digest of Technical Papers of IEEE International Solid-State

Circuits Conference 2007.

11 Nam, B.G. et al. (2005) Development of a 3-D graphics rendering engine with lighting acceleration for handheld

multimedia systems. IEEE Trans. Consumer Elec., 51 (3), 1020–1027.

12 Kim, H. et al. (2006) A 231-MHz 2.18-mW 32-bit logarithmic arithmetic unit for fixed-point 3D graphics system.

IEEE J. Solid-St. Circ., 41 (11), 2373–2381.

13 Doggett, M. (2005) Xenos: XBOX360 GPU, ACM Eurographics.

14 Woo, J.-H. et al. (2008) A 195/152-mW mobile multimedia SoC with fully programmable 3D graphics and

MPEG4/H.264/JPEG. IEEE J. Solid-St. Circ., 43 (9), 2047–2056.

15 Hutchins, E. (2004) SC10: Avideo processor and pixel-shading GPU for handheld devices. Proc. of Hot Chips 16:

Symposium on High Performance Chips.

16 Kurose, Y., Kumata, I., Okabe, M. et al. (2004) A 90-nm embedded-DRAM single-chip LSI with a 3D graphics,

H.264 codec engine, and a reconfigurable processor. Proc. of Hot Chips 16: Symposium on High Performance

Chips.

17 MBX. Available at http://www.imgtec.com/powervr/mbx.asp.

18 SGX. Available at http://www.imgtec.com/powervr/sgx.asp.

148 Mobile 3D Graphics SoC

7

Low-power Rasterizer Design

This chapter attempts to show how to design a large-scale system – from specification

to real implementation – bymeans of an example of a low-power rasterizer. First, high-

level information about the rasterizer is described: its target system architecture,

performance and feature summaries, and instruction set architecture. We explain the

details of the rasterizer from top module to tiny single register. We also include the

verilog source codes. The source code and simulation environments are included on

the CD accompanying this book.

7.1 Target System Architecture

When you start to design a certain functional unit, the most important thing is to define

the target system. You need to define the boundary conditions such as power, memory

bandwidth, and job partitioning from the system’s view, otherwise the unit you design

may not provide the desired performance in the system. In this chapter we assume that

the rasterizer is connected to the system using memory-mapped I/O. The application

software andgeometryoperations are computed in thehost processor, and the rasterizer

performs the remaining rendering operation, shading and texturing. Figure 7.1 shows

the target system architecture including the rasterizer.

The host processor performs geometry operations using primitive data stored in

system memory. The vertex data and rendering commands are transferred to the

rendering processor through the system bus. The rendering processor generates

texture-mapped pixels which are displayed on a liquid-crystal display of QVGA

screen resolution.

In this system, the rasterizer is a slave component. The host processor controls the

operation of the rasterizer and it controls the data transfer. Communication between the

host processor and the rasterizer uses a chip status register (CSR). When a rendering

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

operation is finished, the “Operation Done” flag of the CSR turns high and the

processor checks the register to recognize that the operation is done.

7.2 Summary of Performance and Features

Table 7.1 summarizes the performance and features of the rasterizer. It is designed for

low-end mobile devices, so it targets 20Mpixels/s fill rate at 10MHz operating

frequency. It supports basic rendering functions: Gouraud shading, perspective correct

bilinear texture filtering, and alpha blending.

7.3 Block Diagram of the Rasterizer

Figure 7.2 shows the block diagram. It consists of a low-power rendering engine

(LRE), depth buffer, texture cache, and interface logics. The LRE contains a triangle

setup engine, two pixel processors, two texture units, and two pixel blending engines.

The system interface logic decodes memory addresses and decides the operating

mode – between graphicmode and directmemory accessmode. Thememory interface

logic controls the SRAM, and arbitrates memory requests from the texture cache and

blending unit. The LRE performs shading and texturing operations with two pixel

processors including texture units. In order to achieve low-power rendering, it uses

pixel-level clock gating and address alignment logic, as explained in Chapter 5. Pixel-

level clock gating prevents unnecessary operation of pipeline datapaths according to

the results of depth comparisons. Pixel-level clock gating shows an average 25%power

Figure 7.1 Target system architecture

150 Mobile 3D Graphics SoC

reduction for typical graphics applications. Bilinear MIPMAP texture filtering re-

quires asmany as eight texturememory requests at every cycle. The address alignment

logic reduces memory requests from eight to an average of 2.5 by using temporal and

spatial data locality.

7.4 Instruction Set Architecture (ISA)

The rasterizer has a 128-bit instruction format as shown in Figure 7.3. It consists of

32-bit command field and 96-bit data field (Figures 7.4 and 7.5). The command field

has MODE, TYPE, OP1, OP2, and EXTRA fields.

The MODE field defines the rasterizer mode: normal, debug, memory test, and so

on. In this example the rasterizer operates in normal mode, so that the mode field is set

to 4-bit 1111.

The TYPE field classifies OP code types. In this example, the rasterizer has three

types of OP code as summarized in Table 7.2. OP1 and OP2 fields carry various

meanings according to the OP code.

TheDATAfiled contains one-vertex information. For rasterization, onevertex has to

contain screen coordinates, texture coordinates, and color information. The detailed

field definition is shown inTable 7.2. For rendering data transfer, theDATAfield is used

for vertex data, and it is used for texture data for texture setup.

Table 7.1 Performance and features summary

Low-power rasterization unit (RAMP-GR)

Screen resolution 320� 240

Color depth 16-bit (Red: Green: Blue ¼ 5b: 6b: 5b)

Rendering performances 20Mpixels/s pixel fill rate @ 10MHz

80Mtexels/s texel fill rate

Two pixel processors

Shading feature Gouraud shading

Pixel alpha blending

Texture blending (decal/modulate)

Z-buffer 16-bit embedded Z-buffer

Texture mapping Perspective correct texture address generation

Texture sampling

Point sampling

Bilinear filtering

Maximum texture size: 256� 256 pixels

Maximum number of texture ¼ 4

Software controllable texture address calculation

Efficient texture fetch through cache alignment

Logic texture filtering

Operation frequency 10MHz

External SRAM capacity 1MB (256� 32 bits)

Low-power Rasterizer Design 151

Figure 7.3 Instruction format

Figure 7.2 Block diagram

Figure 7.4 Command (CMD) format

152 Mobile 3D Graphics SoC

In this example the rasterizer has four instructions: RDAT, TMOD, ASTR, and

RDON. RDAT is designed for basic rasterization operations. In a typical case (not

STRIP or FAN), one polygon consists of three vertices, and when the TRI field

represents “EndVertex” the rendering for thepolygon is started.TheTMODinstruction

sets the texturemodeof the rasterizer. Ina typicalcase, theTMODinstructionappearsas

thefirst lineof thecode.TheASTRinstruction isused toclearorpre-set frameanddepth

buffers.Using theASTR instruction, the user can change the backgroundcolor or depth

bias. This can generate some smart 3D graphics effects such as a user-defined surface.

Last, the RDON instruction is designed to communicatewith the host processor.When

the RDON command runs the rasterizer pipeline to the last, the chip status register is

changedtoshowtherenderingoperationdone.Thenthehostprocessorreads theregister

and it transfers the next frame to the rasterizer. An example of code is shown below:

F4420000110001000000000000000000 //TMOD

F2100000000000000000000000000000 //ASTR ZB

F220000000012C000000000000000000 //ASTR FB

F80400FF19190000FF00008000000000 //RDAT 1
st

Vertex

F80200FF19320000FF00008000000000 //RDAT 2
nd

Vertex

F81100FF32320000FF00008000000000 //RDAT 3
rd

Vertex

F8C00000000000000000000000000000 //RDON

Number Format and Range

0W, U, V [16b] : [unsigned int [8b] : fractional int [8b]]

R, G, B : [5b : 6b : 5b] : unsigned int

X [9b] : unsigned int

Y [8b] : unsigned int

Z [15b] : unsigned int

A [5b] : 5 - level active

1_XXXX : 100% (opaque)

0_1XXX : 50%

0_01XX : 25%

0_001X : 12.5%

0_0001 : 0%

Texture ID [8b] : unsigned int If (tid == 0) No texture

Texture Size [9b] : unsigned int (max. 256)

Texture Addr [20b] : unsigned int

LOD Bias [3b] : unsigned int

FZB Address [16b] : unsigned int

Screen coordinates are depicted in Figure 7.6.

Figure 7.5 Data field format

Low-power Rasterizer Design 153

7.5 Detailed Design with Register Transfer Level Code

7.5.1 Rasterization Top Block

The diagram of the top block is given in Figure 7.7. Below is listed the RTL code.

Table 7.2 Instruction set

Type Mnemonic Op code Description

Rendering RDAT MODE¼ 1111 Fetch vertex data

TRI TYPE¼ 1000 00 TRI: strip support

POS OP1¼TRI 00¼ intermediate vertex

W U V OP2¼ POS 01¼ end vertex

X Y Z EXTRA¼W POS: reduce BW

A R G B DATA 0100: 1st vertex

0010: 2nd vertex

0001: 3rd vertex

W[16b] ¼ 1/W

DATA0 [16b:16b]¼ u: v

DATA1 [9b:8b:15b]¼X: Y: Z

DATA2 [8b:8b:8b:8b]¼A: R: G: B

(R,G,B: used upper 5,6,5-bit)

(A is valid only if TRI¼ 01)

RDON MODE¼ 1111 Check rendering done

TYPE¼ 1000 11

Texture TMOD MODE¼ 1111 Set texture mode

ADDR TYPE¼ 0100 01 ADDR [22b]: base address

BLND FILT ID {OP1:OP2:

EXTRA}¼ADDR

BLND [4b]: blending mode

SIZE DATA0¼ {BLND: FILT:

ID: LOD: SIZE}

0001: decal

0010: modulate

FILT [4b]: filtering

0001: point sampling

0010: bilinear filtering

0100: trilinear filtering

ID [8b]: texture ID

LOD [4b]: LOD bias

0xxx: normal mode

LOD must be 0000

SIZE [12b]: texture size

Auxiliary ASTR MODE¼ 1111 Store data to front buffer

FZ TYPE¼ 0010 00 Frame buffer/depth buffer

ADDR OP1¼ FZ 10¼ FB only

R G B EXTRA¼ADDR 01¼ZB only

DATA 0 11¼ FB and ZB

ADDR¼ FB/ZB address

DATA 0 [8b, 8b, 8b]¼R: G: B

(Used lower 24b of DATA0)

154 Mobile 3D Graphics SoC

Figure 7.6 Screen coordinates

Figure 7.7 Module block diagram

Low-power Rasterizer Design 155

RTL Code

/*

* Project : RAMP-GR : Low-power Rasterazation Unit

* WGR_TOP : Rasterization Top Module

* By Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module WGR(REclk, memclk1, memclk2, REreset,

HnCS, HnWE, HnOE, HBSEL, HADDR, HRDATA, HWDATA, HOEN,

EnCS, EnWE, EnOE, EBSEL, EADDR, ERDATA, EWDATA, EOEN,

Dbg_out);

// Memory-mapped I/O interfacel logic

// The BEQ stands for bandwidth equalizer.

// Since the system bus has 32-bit interface and the rasterizer

// command uses 128-bit width, interface logic to adjust

// two different bit widths is required.

// And the BEQ has 6 command queues to reduce communication

// latency between host processor and rasterization unit.

Wbeq_re GR_BEQ();

// Rasteration unit core logic

// Rasterization pipeline implemented in WAR block

WAR GR_CORE()

// Memory address decoder logic

Wmem_decode GR_MDEC();

//Memory request muxing logic

Wmem_mux GR_MMUX();

endmodule

7.5.2 Pipeline Architecture

The pipeline architecture is shown in Figure 7.8.

7.5.3 Main Controller Design

The block diagram is shown in Figure 7.9, and the signal descriptions are detailed in

Tables 7.3 and 7.4.

The main controller of the rasterizer has two control signals, nHld and nWait. By

using two signals the controller can manage multi-cycle operation. An nHld signal

comes from the previous pipeline stage, otherwise an nWait signal comes from the next

pipeline stage. When nHld or nWait goes high at one stage, the pipeline stage does not

operate until the signal turns off. For example, if one line has 10 pixels, the pixel

interpolater unit requires 10 cycles to finish the line. During those 10 cycles, earlier

156 Mobile 3D Graphics SoC

pipeline stages – fetch, decode, triangle setup, edge processor, and horizontal setup –

have to stop processing. In this case the pixel interpolation generates nWait signals to

the earlier stages. In the sameway, when one pipeline stage needs to stop the following

pipeline stages – texture cache miss or memory arbitration – it generates nHld signals

Figure 7.9 Main controller

Figure 7.8 Pipeline architecture

Low-power Rasterizer Design 157

to the following pipelines. In a certain pipeline stage, the enable signals of the stage are

generated with nHld and nWait signals. The nWait signals of the stage enable control

and data latches as shown in Figure 7.10.

7.5.4 Rasterization Core Unit

The complete block diagram of the core unit is shown in Figure 7.11.

7.5.4.1 IF: Instruction Fetch Unit

In the IF stage (Figure 7.12), the input data are latched when the rasterizer is enabled.

Table 7.3 External signals of the controller

Signal Description

RE_clk Main rendering clock

nWait (@p) Wait signal to previous pipe

Overrides NXTnWait with nWait_gen

FIR with PRVreset (nWait¼ 1 when PRVreset ¼¼0)

PRVnHld (@p) Hold signal from previous pipe

NOP if nHld ¼¼ 0

PRV_FETCH (@p) Fetch signal from previous pipe

PRV_CTRL (@p) Control signals from previous pipe

PRVreset (@p) Reset signal from previous pipe

Overrides nWait

Force to fetch

NXTnWait (@p) Wait signal from next pipe

nHld (@p) Hold signal to next pipe

Overrides PRVnHld with nHld_gen

FETCH (@n) Fetch signal to next pipe

CTRL (@p) Control signal to next pipe

Reset (@p) Reset signal to next pipe

fetch_XXX REclk & PRV_FETCH

fetch_CLK nWait & PRVnHld

Table 7.4 Internal signals of the controller

Signal Description

nHld_gen Generate NOP to next pipe

nWait_gen Generate or erase wait to previous pipe

FETCH_int (@p) Fetch signals

nHld_int (@p) Hold signals

158 Mobile 3D Graphics SoC

Internal Input

. RE_nRESET: external reset signal

. InWAIT: handshaking signal

. ID1nwait: wait for the next stage

Pipeline Output

. IFnHld: hold the next stage

. IFreset: reset

Functions

. Instruction fetch control

. Instruction fetch with BEQ (bandwidth equalizer).

Signal Descriptions

Control signal Description

REreset 0: Forced to Reset (Synchronous Reset)

1: Run

IFreset Reset

IDnwait 0: Wait

1: Ready

IFnHld (@n) �REreset @ | IDnwait

0: Hold

1: Force to Run

Figure 7.10 Latch control

Low-power Rasterizer Design 159

IF
Control

RE_data[127:0]RE_resetRE_fetch

ID

Control

RE_fclk

RE_off

ctrlwait

Instruction Register

Instruction Decoder

TS

Control

IF

ID

Data Register Vertex Register TS

RE_clk

Triangle Setup Engine

Data Register Edge Register EP
EP

Control

LOD-Y

Calculation

Edge Interpolation
Unit (L)

Edge Divide Unit

Pixel Register

FZB Address
Calculation

PI
Control

PIData Register

ZBI
Control

Edge Interpolation
Unit (R)

ZB_cmd

ZB_addr

ZB_data[31:0]

Pixel Interpolation Unit

Z-Compare Unit

LOD-X
Calculation

LOD
Selection

TAPixel RegisterData Register
TA

Control

Texture Address Calculation

Address Alignment

Address Compare

Address Register (B/T)
TP

Control

TM_cmd
TMI

Control

Data Register Pixel Register TP

TM_addr
TM_data[23:0]

TF
Control

TFData Register Texel Register (B/T)

TM_texel[95:0]

Pixel Register

Texture Filter

Texel Register (B/T)Data Register
PB

Control
PB

FBI
Control

FB_cmd

FB_addr

FB_data[32:0]

Pixel Register

Texture Blend

Alpha Blend

Figure 7.11 Detailed block diagram of the rasterizer

160 Mobile 3D Graphics SoC

RTL Code

/*

* RAMP-GR

* IF: Instruction Fetch

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wif(REclk, REreset, ID1nwait, InWAIT, IFmode,

InREQ, IFnhld, IFreset);

//List of ports omitted

//InREQ is request signal for input command

assign #1 InREQ = ~(ID1nwait | ~IFreset);

// If theinputdata is notready,the restof the pipeline shouldbe stalled

assign #1...IFnhld = InWAIT;

always @(posedge REclk)

begin

IFreset <= REreset;

end

endmodule

7.5.4.2 ID1: Instruction Decode Stage #1

In the ID1 stage (Figure 7.13), almost signals decoded from the latched data from IF.

Pipeline Input

. REclk: rendering engine clock

. REdata[123:0]: rendering engine data

. IFnhld: pipeline hold

. IFreset: reset

. ID2nwait: wait for the next stage

IF_CTRL

REdata[127:0]

REnoff

IFmode [3:0] REdata[127:124]

REfetchREreset

IFtmIDnwait

IF

IFfzbIFnhld

REclk

IFreset

Figure 7.12 IF stage

Low-power Rasterizer Design 161

Pipeline Output

. ID1nwait: wait signal

. ID1reset: reset

. ID1nhld: hold the next stage

. ID1ctrl_OP [7:0]: OP code

. ID1ctrl_FB: frame buffer flag

. ID1ctrl_ZB: depth buffer (Z buffer) flag

. ID1ctrl_POS [2:0]: pixel fetch position (input)

. ID1ctrl_DF: pixel fetch position (output)

. ID1ctrl_TMF: texture mode fetch

. ID1ctrl_AAF: auxiliary address fetch

. ID1ctrl_ADF: auxiliary data fetch

. ID1ctrl_TEXEN: texture enable status

. ID1data_ADDR [19:0]: auxiliary address

. ID1data_COLOR [15:0]: auxiliary colors

. ID1data_A [4:0]: alpha (5b)

. ID1data_R [7:0: red (5b)

. ID1data_G [7:0]: green (6b)

. ID1data_B [7:0]: blue (5b)

. ID1data_X [8:0]: coordinate X

. ID1data_Y [7:0]: coordinate Y

. ID1data_Z [14:0]: coordinate Z

. ID1data_U [15:0]: texture coordinate U

. ID1data_V [15:0]: texture coordinate V

. ID1data_W [15:0]: extra data

Figure 7.13 ID1 stage

162 Mobile 3D Graphics SoC

. ID1tmod_BLND: blend mode

. ID1tmod_FILT [2:0]: filtering mode

. ID1tmod_SIZE [8:0]: texture size

Functions

. Instruction decode

. Control signal generation

Signal Descriptions

Control signal Description

IDreset IFreset

ID1nwait (@n) Rule @ Verilog

ID1nhld (@n) Rule @ Verilog

IDfetch REclk & IDnhld

IDctrl Decode

IDdata Decode

IFtmod Decode

RTL Code

/*

*RAMP-GR

*ID1 : Instruction Decode #1

*by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

*Semiconductor System Laboratory, KAIST

*All rights reserved

*/

module Wid1(REclk, REdata, IFreset, ID2nwait, IFnhld, ID1nwait, ID1nhld, ID1reset,

ID1ctrl_TEXEN, ID1ctrl_OP, ID1ctrl_FB, ID1ctrl_ZB, ID1ctrl_pPOS,

ID1ctrl_tPOS, ID1ctrl_DF, ID1ctrl_TMF, ID1ctrl_AF, ID1ctrl_FMB,

ID1ctrl_TMB, ID1ctrl_SCR, ID1tmod_BLND, ID1tmod_FILT, ID1tmod_SIZE,

ID1tmod_BIAS, ID1data_ADDR, ID1data_A, ID1data_R, ID1data_G,

ID1data_B, ID1data_X, ID1data_Y, ID1data_Z, ID1data_U, ID1data_V,

ID1data_W, RDON_clr);

// List of port L is omitted

//Pipleine latch

Wid1_latch s sid1_latch();

//ID1 latch

module Wid1_latch (clk, en, datain, dataout);

// List of port L is omitted

always @(posedge clk)

begin

if(en)

Low-power Rasterizer Design 163

begin

dataout <= datain;

end

end

endmodule

// Pipeline controller

Wid1_ctrl ssid1_ctrl();

// ID1 Controller

module Wid1_ctrl (REclk, IFreset, IFnhld, ID2nwait, ID1nhld, ID1nwait,

ID1reset, ID1fetch_CLK);

// List of port L is omitted

//Pipeline control signals generation

//nwait

assign #1 ID1nwait = ID2nwait | �IFreset;

//Fetch enable signal. When ID1 is activated, data latch enable signal is

turned on

assign #1 ID1fetch_CLK = ID1nwait & IFnhld;

//Pipeline control signal latch

always @(posedge REclk)

begin

//State control

if (ID1nwait)

begin

ID1nhld <= IFnhld;

ID1reset <= IFreset;

end

end

endmodule

// Instruction decode unit

Wid1_decode ssid1_decode();

module Wid1_decode (REclk,ID1data,ID1tir,ID1tid,ID1ctrl_TEXEN,ID1ctrl_OP,

ID1ctrl_FB, ID1ctrl_ZB, ID1ctrl_pPOS, ID1ctrl_tPOS, ID1ctrl_DF,

ID1ctrl_TMF, ID1ctrl_AF, ID1ctrl_FMB, ID1ctrl_TMB, ID1ctrl_SCR,

ID1tmod_BLND, ID1tmod_FILT, ID1tmod_BIAS,

ID1tmod_SIZE, ID1data_ADDR, ID1data_A, ID1data_R,

ID1data_G, ID1data_B, ID1data_X, ID1data_Y, ID1data_Z,

ID1data_U, ID1data_V, ID1data_W, RDON_clr);

//Instruction field decode

assign #1 ID1data_ADDR = (ID1data[123:118] == ‘WISA_MBAS) ? ID1data[81:64] :

18’b0;

assign #1 ID1data_W = (ID1data[123:118] == ‘WISA_RTEX) ? ID1data[96:64] :

32’b0;

assign #1 ID1data_U = (ID1data[123:118] == ‘WISA_RTEX) ? ID1data[63:32] :

32’b0;

assign #1 ID1data_V = (ID1data[123:118] == ‘WISA_RTEX) ? ID1data[31:0] : 32’b0;

assign #1 ID1data_X = (ID1data[123:118] == ‘WISA_RSHA) ? ID1data[95:87] : 9’b0;

164 Mobile 3D Graphics SoC

assign #1 ID1data_Y = (ID1data[123:118] == ‘WISA_RSHA) ? ID1data[86:79] : 8’b0;

assign #1 ID1data_Z = (ID1data[123:118] == ‘WISA_RSHA) ? ID1data[111:96] :

16’b0;

assign #1 ID1data_R = (ID1data[123:118] == ‘WISA_RSHA) ? ID1data[63:56] : 8’b0;

assign #1 ID1data_G = (ID1data[123:118] == ‘WISA_RSHA) ? ID1data[55:48] : 8’b0;

assign #1 ID1data_B = (ID1data[123:118] == ‘WISA_RSHA) ? ID1data[47:40] : 8’b0;

assign #1 ID1data_A = (ID1data[123:118] == ‘WISA_RSHA) ? ID1data[39:32] : 8’b0;

//Texture mode

assign #1 ID1tmod_BLND = (ID1data[123:118] == ‘WISA_TMOD) ? ID1data[93] : 1’b0;

assign #1 ID1tmod_FILT = (ID1data[123:118] == ‘WISA_TMOD) ? ID1data[90:88]:

3’b0;

assign #1 ID1tmod_BIAS = (ID1data[123:118] == ‘WISA_TMOD) ? ID1data[79:76]:

4’b0;

assign #1 ID1tmod_SIZE = (ID1data[123:118] == ‘WISA_TMOD) ? ID1data[72:64]:

9’b0;

//Control

assign#1 ID1ctrl_FB= ({ID1data[121],ID1data[118]}==2’b11)? ID1data[117]:

1’b0;

assign#1 ID1ctrl_ZB= ({ID1data[121],ID1data[118]}==2’b11)? ID1data[116]:

1’b0;

assign #1 ID1ctrl_pPOS_int = ({ID1data[123], ID1data[119:118]} == 3’b100) ?

ID1data[114:112] : 3’b000; //RSHA

assign #1 ID1ctrl_tPOS_int = ({ID1data[123], ID1data[119:118]} == 3’b101) ?

ID1data[114:112] : 3’b000; //RTEX

assign #1 ID1ctrl_DF_int = ({ID1data[123], ID1data[119:118]} == 3’b100) ?

ID1data[116] : 1’b0; //RSHA

assign #1 ID1ctrl_TMF_int = ID1data[122] & ID1data[118];

assign #1 ID1ctrl_AF_int = ID1data[121] & �ID1data[118];

assign #1 ID1ctrl_FMB_int = ({ID1data[121], ID1data[118]} == 2’b10) ?

ID1data[116] : 1’b0;

assign #1 ID1ctrl_TMB_int = ({ID1data[121], ID1data[118]} == 2’b10) ?

ID1data[117] : 1’b0;

assign #1 RDON_clr = (ID1ctrl_OP[3]) ? 1’b0 : 1’b1;

//Screen color depth

always @(ID1data)

begin

if(ID1data[123:118] == ‘WISA_TMOD) ID1ctrl_SCR <= ID1data[115:112];

else ID1ctrl_SCR <= 4’b0;

end

//Command decoder

always @(ID1data)

begin

case(ID1data[123:118])

‘WISA_RSHA : ID1ctrl_OP <= ‘WCTRL_OP_RSHA;

‘WISA_RTEX : ID1ctrl_OP <= ‘WCTRL_OP_RTEX;

‘WISA_RDON : ID1ctrl_OP <= ‘WCTRL_OP_RDON;

‘WISA_TMOD : ID1ctrl_OP <= ‘WCTRL_OP_TMOD;

‘WISA_MBAS : ID1ctrl_OP <= ‘WCTRL_OP_MBAS;

‘WISA_RCLR : ID1ctrl_OP <= ‘WCTRL_OP_RCLR;

default : ID1ctrl_OP <= 6’b0;

Low-power Rasterizer Design 165

endcase

end

//Texture enable

always @(posedge REclk)

begin

if (ID1tir ==‘WISA_TMOD) ID1ctrl_TEXEN_int <= |ID1tid;

end

//Fetch signals

always @(negedge REclk)

begin

ID1ctrl_DF <= ID1ctrl_DF_int;

ID1ctrl_TMF <= ID1ctrl_TMF_int;

ID1ctrl_AF <= ID1ctrl_AF_int;

ID1ctrl_FMB <= ID1ctrl_FMB_int;

ID1ctrl_TMB <= ID1ctrl_TMB_int;

ID1ctrl_TEXEN <= ID1ctrl_TEXEN_int;

ID1ctrl_pPOS <= ID1ctrl_pPOS_int;

ID1ctrl_tPOS <= ID1ctrl_tPOS_int;

end

endmodule

endmodule

7.5.4.3 ID2: Instruction Decode Stage #2

In the ID2 stage (Figure 7.14), the vertex data from ID1 are stored in order. According

to the vertex alignment mode – STRIP, FAN, NORMAL – three vertices are gathered

in the ID2 stage. After gathering three vertices, then the rendering operation is

started.

Figure 7.14 ID2 stage

166 Mobile 3D Graphics SoC

Pipeline Input

. REclk: rendering engine clock

. ID1reset: reset

. ID1hld: hold

. TSnwait: wait for the next stage

. ID1ctrl_OP [7:0]: OP code

. ID1ctrl_FB: FB flag

. ID1ctrl_ZB: ZB flag

. ID1ctrl_POS [2:0]: pixel fetch position

. ID1ctrl_DF: pixel output control

. ID1ctrl_TMF: texture mode fetch

. ID1ctrl_AAF: auxiliary address fetch

. ID1ctrl_ADF: auxiliary data fetch

. ID1cttl_TEXEN: texture enable

. ID1tmod [16:0] {BLND, FILT, BIAS, SIZE}

. ID1data_ADDR [19:0]: auxiliary address

. ID1data_COLOR [15:0]: auxiliary color

. ID1data_A [7:0]: alpha (5b)

. ID1data_PXL [55:0]: {R, G, B, X, Y, Z}

. ID1data_TXL [47:0]: {U, V, W}

Pipeline Output

. ID2nwait: wait

. ID2reset: reset

. ID2nhld: hold

. ID2ctrl_OP [7:0]: OP code

. ID2ctrl_FB: FB flag

. ID2ctrl_ZB: ZB flag

. ID2ctrl_DF: pixel fetch

. ID2ctrl_TMF: texture mode fetch

. ID2ctrl_AAF: auxiliary address fetch

. ID2ctrl_ADF: auxiliary data fetch

. ID2ctrl_TEXEN: texture enable

. ID2tmod [16:0]: texture mode

. ID2data_ADDR [19:0]: auxiliary address

. ID2data_COLOR [15:0]: auxiliary colors

. ID2data_PXL0 [55:0]: pixel data 0 {X, Y, Z, R, G, B}

. ID2data_PXL1 [55:0]: pixel data 1

. ID2data_PXL2 [55:0]: pixel data 2

. ID2data_TXL0 [47:0]: texel data 0

Low-power Rasterizer Design 167

. ID2data_TXL0 [47:0]: texel data 1

. ID2data_TXL0 [47:0]: texel data 2

Functions

. Data fetch into corresponding latch

. Isolation between TS and BEQ

Signal Descriptions

Signals Description

ID2nwait ID2nwait_gen ¼ (�ID2ctrl_DF & ID1nhld & ID2OP[7])

ID2nwait ¼ ID2nwait_gen | TSnwait

ID2nhld Rule @ Verilog

ID2reset Fetch @ Normal

Cannot be activated with “RDAT”

ID2ctrl_TMF ID1ctrl_TMF & ID1ctrl_TEXEN

ID2fetch_CLK ID1nhld & REclk

ID2fetch_TMOD ID1ctrl_TMF & ID1ctrl_TEXEN

ID2fetch_COLOR ID1ctrl_ADF

ID2fetch_ALPHA ID1ctrl_DF

ID2fetch_PXL [#] ID1ctrl_POS [#]

#: Vertex position

ID2fetch_TXL [#] ID1ctrl_POX [#] & ID1ctrl_TEXEN

RTL Code

/*

* RAMP-GR

* RAMP-GR ID2 Module : Instruction DECODER #2

* by Jeong-Ho Hoo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

moduleWid2(REclk,ID1reset,ID1nhld,TSnwait,ID1ctrl_OP,ID1ctrl_FB,ID1ctrl_ZB,

ID1ctrl_pPOS, ID1ctrl_tPOS, ID1ctrl_DF, ID1ctrl_TMF, ID1ctrl_AF,

ID1ctrl_TEXEN, ID1ctrl_FMB, ID1ctrl_TMB, ID1ctrl_SCR, ID1tmod_BLND,

ID1tmod_FILT, ID1tmod_BIAS, ID1tmod_SIZE, ID1data_ADDR, ID1data_A,

ID1data_R, ID1data_G, ID1data_B, ID1data_X, ID1data_Y, ID1data_Z,

ID1data_U, ID1data_V, ID1data_W, ID2nwait, ID2reset, ID2nhld,

ID2ctrl_OP, ID2ctrl_FB, ID2ctrl_ZB, ID2ctrl_pPOS, ID2ctrl_tPOS,

ID2ctrl_DF,

ID2ctrl_TMF, ID2ctrl_AF, ID2ctrl_TEXEN, ID2ctrl_FMB,

ID2ctrl_TMB,ID2ctrl_SCR, ID2tmod, ID2data_ADDR, ID2data_A,

ID2dataPXL0, ID2dataPXL1, ID2dataPXL2, ID2dataTXL0, ID2dataTXL1,

ID2dataTXL2);

168 Mobile 3D Graphics SoC

//List of Ports is omitted

// Gathering

assign #1 ID1tmod = {ID1tmod_BLND , ID1tmod_FILT, ID1tmod_BIAS,

ID1tmod_SIZE};

assign #1 ID1dataPXL = {ID1data_R, ID1data_G, ID1data_B, ID1data_X,

ID1data_Y, ID1data_Z};

assign #1 ID1dataTXL = {ID1data_U, ID1data_V, ID1data_W};

// Main controller

Wid2_ctrl ssid2_ctrl();

// Main controller

module Wid2_ctrl(REclk, ID1reset, ID1nhld, ID1ctrl_OP,

ID1ctrl_FB, ID1ctrl_ZB, ID1ctrl_pPOS,

ID1ctrl_tPOS, ID1ctrl_DF, ID1ctrl_TMF, ID1ctrl_AF, ID1ctrl_TEXEN,

ID1ctrl_FMB, ID1ctrl_TMB, ID1ctrl_SCR, TSnwait, ID2nwait, ID2reset,

ID2nhld,ID2ctrl_OP,ID2ctrl_FB,ID2ctrl_ZB,ID2ctrl_DF,ID2ctrl_TMF,

ID2ctrl_AF, ID2ctrl_TEXEN, ID2ctrl_FMB, ID2ctrl_TMB, ID2ctrl_SCR,

ID2fetch_CLK, ID2fetch_TMOD, ID2fetch_ADDR, ID2fetch_ALPHA,

ID2fetch_PXL0, ID2fetch_PXL1, ID2fetch_PXL2, ID2fetch_TXL0,

ID2fetch_TXL1, ID2fetch_TXL2);

//Pipeline control signal

//nwait

assign #1 ID2nwait_gen = ID2nhld_int & (ID2ctrl_OP[5] | ID2ctrl_OP[4]) &

�ID2ctrl_DF_int;

assign #1 ID2nwait = ID2nwait_gen | TSnwait | �ID1reset;

//nHld (NOP for DF == 0)

assign #1 ID2nhld_gen = �(ID2nhld_int & (ID2ctrl_OP [5] | ID2ctrl_OP[4]) &

�ID2ctrl_DF_int);

assign #1 ID2nhld = ID2nhld_int & ID2nhld_gen;

// ID2 latch fetch enable signal generation

assign #1 ID2fetch_CLK = ID2nwait & ID1nhld;

assign ID2fetch_TMOD = ID1ctrl_TMF & ID1ctrl_TEXEN;

assign ID2fetch_ADDR = ID1ctrl_AF;

assign ID2fetch_ALPHA = ID1ctrl_DF;

assign ID2fetch_PXL0 = ID1ctrl_pPOS[2];

assign ID2fetch_PXL1 = ID1ctrl_pPOS[1];

assign ID2fetch_PXL2 = ID1ctrl_pPOS[0];

assign ID2fetch_TXL0 = ID1ctrl_tPOS[2] & ID1ctrl_TEXEN;

assign ID2fetch_TXL1 = ID1ctrl_tPOS[1] & ID1ctrl_TEXEN;

assign ID2fetch_TXL2 = ID1ctrl_tPOS[0] & ID1ctrl_TEXEN;

always @(posedge REclk)

begin

//Control signals

if(ID2nwait)

begin

//State controls

ID2nhld_int <= ID1nhld;

ID2reset <= ID1reset;

//Fetch signals

Low-power Rasterizer Design 169

ID2ctrl_DF_int <= ID1ctrl_DF;

ID2ctrl_TMF_int <= ID1ctrl_TMF & ID1ctrl_TEXEN;

ID2ctrl_AF_int <= ID1ctrl_AF;

ID2ctrl_TEXEN_int <= ID1ctrl_TEXEN;

ID2ctrl_FMB_int <= ID1ctrl_FMB;

ID2ctrl_TMB_int <= ID1ctrl_TMB;

ID2ctrl_OP <= ID1ctrl_OP;

ID2ctrl_FB <= ID1ctrl_FB;

ID2ctrl_ZB <= ID1ctrl_ZB;

ID2ctrl_SCR<= ID1ctrl_SCR;

end

end

always @(negedge REclk)

begin

ID2ctrl_DF <= ID2ctrl_DF_int & ID2nhld;

ID2ctrl_TMF <= ID2ctrl_TMF_int & ID2nhld;

ID2ctrl_AF <= ID2ctrl_AF_int & ID2nhld;

ID2ctrl_TEXEN <= ID2ctrl_TEXEN_int & ID2nhld;

ID2ctrl_FMB <= ID2ctrl_FMB_int & ID2nhld;

ID2ctrl_TMB <= ID2ctrl_TMB_int & ID2nhld;

end

endmodule

// Latch

Wid2_latch ssid2_latch();

// Data latches

module Wid2_latch(clk,REclk,ID2fetch_TMOD,ID2fetch_ADDR,ID2fetch_ALPHA,

ID2fetch_PXL0, ID2fetch_PXL1, ID2fetch_PXL2,

ID2fetch_TXL0, ID2fetch_TXL1, ID2fetch_TXL2,

ID1tmod, ID1data_ADDR, ID1data_A, ID1dataPXL, ID1dataTXL,

ID2tmod, ID2data_ADDR, ID2data_A,

ID2dataPXL0, ID2dataPXL1, ID2dataPXL2,

ID2dataTXL0, ID2dataTXL1, ID2dataTXL2);

// ID2_LATCH_TMOD

always @(posedge REclk)

begin

if(clk & ID2fetch_TMOD)

begin

ID2tmod <= ID1tmod;

end

end

// ID2_LATCH_ADDR

always @(posedge REclk)

if(clk & ID2fetch_ADDR) ID2data_ADDR <= ID1data_ADDR;

// ID2_LATCH_ALPHA

always @(posedge REclk)

if(clk & ID2fetch_ALPHA) ID2data_A <= ID1data_A;

170 Mobile 3D Graphics SoC

// ID2_LATCH_PXL#

always @(posedge REclk)

if(clk & ID2fetch_PXL0) ID2dataPXL0 <= ID1dataPXL;

always @(posedge REclk)

if(clk & ID2fetch_PXL1) ID2dataPXL1 <= ID1dataPXL;

always @(posedge REclk)

if(clk & ID2fetch_PXL2) ID2dataPXL2 <= ID1dataPXL;

// ID2_LATCH_TXL#

always @(posedge REclk)

if(clk & ID2fetch_TXL0) ID2dataTXL0 <= ID1dataTXL;

always @(posedge REclk)

if(clk & ID2fetch_TXL1) ID2dataTXL1 <= ID1dataTXL;

always @(posedge REclk)

if(clk & ID2fetch_TXL2) ID2dataTXL2 <= ID1dataTXL;

endmodule

endmodule

7.5.4.4 TS: Triangle Setup

In the TS stage (Figure 7.15), the order of vertices is decided according to the y

coordinate. From the top pixel, the other two pixels are lined up, then the shape of the

triangle is decided.

Pipeline Input

. REclk: rendering engine clock

. Control signals: same as ID2

. Auxiliary signals: same as ID2

. Pixel/texel data: same as ID2

Pipeline Output

. Control signals: same as ID2

. Auxiliary signals: same as ID2

. TSaddrY [7:0]: top Y address for interpolation

. TSline [7:0]: number of lines needed for EP iteration

. TSedge: edge flag needed for left/right decision

. TScount0_1_2: edge count in vertical direction

. TSePXL0_1_2 [92:0]: dP {dX, dZ, dR, dG, dB}

. TSeTXL0_1_2 [74:0]: dZ, dU, dV

. TSvPXL0_1_2 [55:0]: pixel {X, Z, R, G, B}

. TSvTXL0_1_2 [47:0]: texel {U, V, W}

Low-power Rasterizer Design 171

Functions

. Triangle setup

. EP control signal generation

Signal Descriptions

Control signals Description

All Rule @ Verilog Following ID2 & ID

Figure 7.15 Triangle setup

172 Mobile 3D Graphics SoC

Datapath signals Description

TSpxl # {X[55:47], Y[46:39], Z[38:15], R[24:16], G[15:8], B[7:0]}

TXtxl # {U[46:32], V[31:16], W[15:0]}

TSsubY# Y: 9-bit signed data

Input: {0, data} – {0, data}

Output: {Sign, data}

TSsub# {X[95:86], Z[85:70], R[69:64], G[63:57], B[56:51]

U[50:34], V[33:17], W[16:0]}

X:10-bit signed data

R(9), G(9), B(9): signed data {0, data}-{0,data} ¼ {s, data}

Z: 16-bit signed data

U, V, W: 17-bit Signed data {0, data}-{0,data} ¼ {s, data}

TSsubt2bY# Y: 8-bit positive data

TSsubt2b# Same as TSsub#

TSdivPXL# {X[92:76], Z[75:51], R[50:34], G[33:17], B[32:0]}

X, R, G, B: 9-bit signed data {sign, data, fraction}

Z: 25-bit signed data {sign, data, fraction}

TSdivTXL# {U[74:50], V[49:25], W[24:0]}

U, V, W: 25sbit signed data {sign, data, fraction}

Datapath #3: TS_MID_CAL

This is the datapath for mid point computation.

RTL Code

/*

* RAMP-GR

* RAMP-GR TS Module : Triangle Setup Module

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wts (REclk, ID2reset, ID2nhld, ID2ctrl_OP, ID2ctrl_FB, ID2ctrl_ZB,

ID2ctrl_DF, ID2ctrl_TMF, ID2ctrl_AF, ID2ctrl_TEXEN,

ID2ctrl_FMB, ID2ctrl_TMB, ID2ctrl_SCR, ID2tmod, ID2data_ADDR,

ID2data_A, ID2dataPXL0, ID2dataPXL1, ID2dataPXL2,

ID2dataTXL0, ID2dataTXL1, ID2dataTXL2,

EPnwait, TSreset,

TSnhld, TSnwait, TScOP, TScFB, TScZB, TScDF, TScTMF, TScAF,

TScTEXEN, TScFMB, TScTMB, TScSCR, TStmod,

TSdADDR, TSdA, TSaddrY, TSline, TSedge,

TScount0, TScount1, TScount2,

TSePXL0, TSePXL1, TSePXL2, TSeTXL0, TSeTXL1, TSeTXL2,

TSvPXL0, TSvPXL1, TSvPXL2, TSvTXL0, TSvTXL1, TSvTXL2);

Low-power Rasterizer Design 173

//Main controller

Wts_ctrl ssts_ctrl();

//Main controller

module Wts_ctrl (REclk, ID2reset, ID2nhld, ID2ctrl_OP, ID2ctrl_FB,

ID2ctrl_ZB, ID2ctrl_DF, ID2ctrl_TMF, ID2ctrl_AF, ID2ctrl_TEXEN,

ID2ctrl_FMB, ID2ctrl_TMB, ID2ctrl_SCR,

EPnwait, TSreset,

TSnhld, TSnwait, TScOP, TScFB, TScZB, TScDF, TScTMF,

TScAF, TScTEXEN, TScFMB, TScTMB, TScSCR,

TSfetch_CLK, TSfetch_TMOD, TSfetch_ADDR,

TSfetch_ALPHA, TSfetch_PXL, TSfetch_TXL);

//Pipeline control signals

//nWait

assign #1 TSnwait = EPnwait | �ID2reset;

//nHld

assign #1 TSnhld = TSnhld_int;

//Fetch enable

assign #1 TSfetch_CLK = TSnwait & ID2nhld;

assign TSfetch_TMOD = ID2ctrl_TMF;

assign TSfetch_ADDR = ID2ctrl_AF;

assign TSfetch_ALPHA = ID2ctrl_DF;

assign TSfetch_PXL = ID2ctrl_DF;

assign TSfetch_TXL = ID2ctrl_DF & ID2ctrl_TEXEN;

always @(posedge REclk)

begin

//Pipeline control signals

if(TSnwait)

begin

//State control

TSnhld_int <= ID2nhld;

TSreset <= ID2reset;

//Fetch signals

TScDF_int <= ID2ctrl_DF;

TScTMF_int <= ID2ctrl_TMF;

TScAF_int <= ID2ctrl_AF;

TScTEXEN_int <= ID2ctrl_TEXEN;

TScFMB_int <= ID2ctrl_FMB;

TScTMB_int <= ID2ctrl_TMB;

TScOP <= ID2ctrl_OP;

TScFB <= ID2ctrl_FB;

TScZB <= ID2ctrl_ZB;

TScSCR <= ID2ctrl_SCR;

end

end

always @(negedge REclk)

begin

TScDF <= TScDF_int & TSnhld;

TScTMF <= TScTMF_int & TSnhld;

TScAF <= TScAF_int & TSnhld;

174 Mobile 3D Graphics SoC

TScTEXEN <= TScTEXEN_int & TSnhld;

TScFMB <= TScFMB_int & TSnhld;

TScTMB <= TScTMB_int & TSnhld;

end

endmodule

//Input latches

Wts_latch ssts_latch();

//Input Latches

module Wts_latch (clk, REclk, TSfetch_TMOD, TSfetch_ADDR, TSfetch_ALPHA,

TSfetch_PXL, TSfetch_TXL, ID2tmod, ID2data_ADDR,

ID2data_A, ID2dataPXL0, ID2dataPXL1, ID2dataPXL2,

ID2dataTXL0, ID2dataTXL1, ID2dataTXL2,

TStmod, TSdADDR, TSdA,

TSpxl0, TSpxl1, TSpxl2, TStxl0, TStxl1, TStxl2);

//TS_LATCH_TMOD

always @(posedge REclk)

if(clk & TSfetch_TMOD) TStmod <= ID2tmod;

//TS_LATCH_ADDR

always @(posedge REclk)

if(clk & TSfetch_ADDR) TSdADDR <= ID2data_ADDR;

//TS_LATCH_ALPHA

always @(posedge REclk)

if(clk & TSfetch_ALPHA) TSdA <= ID2data_A;

//TS_LATCH_PXL {R:G:B:X:Y:Z => X:Y:Z:R:G:B}

always @(posedge REclk)

begin

if(clk & TSfetch_PXL)

begin

TSpxl0 <= {ID2dataPXL0[32:0], ID2dataPXL0[56:33]};

TSpxl1 <= {ID2dataPXL1[32:0], ID2dataPXL1[56:33]};

TSpxl2 <= {ID2dataPXL2[32:0], ID2dataPXL2[56:33]};

end

end

//TS_LATCH_TXL

always @(posedge REclk)

begin

if(clk & TSfetch_TXL)

begin

TStxl0 <= ID2dataTXL0;

TStxl1 <= ID2dataTXL1;

TStxl2 <= ID2dataTXL2;

end

end

endmodule

Low-power Rasterizer Design 175

//Datapath interconnection

//Datapath interconnection

//These three datapaths (Wts_3sub_9simd, Wts_sgnchg_9simd, Wts_3div_8simd)

//compute the slope of all possible edges.

//Let us assume the three vertices are V1, V2, and V3

// V1{x1, y1, z1, w1, r1, g1, b1, u1, v1}

// V2{x2, y2, z2, w2, r2, g2, b2, u2, v2}

// V3{x3, y3, z3, w3, r3, g3, b3, u3, v3}

// The results of these three datapath are shown in diagram A.

V1

V2

V3

|V1-V2|

|y1-y2|

|V2-V3|

|y2-y3|

|V1-V3|

|y1-y3|

//The sign bit of the results of substraction of y decides

//the order of verticies according to y position.

//3 x 9-way SIMD SUB

Wts_3sub_9simd ssts_3sub_9simd();

//3SUB 9SIMD

module Wts_3sub_9simd(TSpxl0, TSpxl1, TSpxl2, TStxl0, TStxl1, TStxl2,

TSsubY0, TSsubY1, TSsubY2, TSsub0, TSsub1, TSsub2);

/* Module interconnection */

//TS_SUB0 : V0- V1

DW01_sub #(10) sub0_X(.A ({1’b0, subin0_X}),

.B ({1’b0, subin1_X}),

.CI (1’b0),

.DIFF (subout0_X),

.CO (c0X));

DW01_sub #(9) sub0_Y(.A ({1’b0, subin0_Y}),

.B ({1’b0, subin1_Y}),

.CI (1’b0),

.DIFF (subout0_Y),

.CO (c0Y));

DW01_sub #(17) sub0_Z(.A ({1’b0, subin0_Z}),

.B ({1’b0, subin1_Z}),

.CI (1’b0),

176 Mobile 3D Graphics SoC

.DIFF (subout0_Z),

.CO (c0Z));

DW01_sub #(9) sub0_R(.A ({1’b0, subin0_R}),

.B ({1’b0, subin1_R}),

.CI (1’b0),

.DIFF (subout0_R),

.CO (c0R));

DW01_sub #(9) sub0_G(.A ({1’b0, subin0_G}),

.B ({1’b0, subin1_G}),

.CI (1’b0),

.DIFF (subout0_G),

.CO (c0G));

DW01_sub #(9) sub0_B(.A ({1’b0, subin0_B}),

.B ({1’b0, subin1_B}),

.CI (1’b0),

.DIFF (subout0_B),

.CO (c0B));

DW01_sub #(33) sub0_U(.A ({1’b0, subin0_U}),

.B ({1’b0, subin1_U}),

.CI (1’b0),

.DIFF (subout0_U),

.CO (c0U));

DW01_sub #(33) sub0_V(.A ({1’b0, subin0_V}),

.B ({1’b0, subin1_V}),

.CI (1’b0),

.DIFF (subout0_V),

.CO (c0V));

DW01_sub #(33) sub0_W(.A ({1’b0, subin0_W}),

.B ({1’b0, subin1_W}),

.CI (1’b0),

.DIFF (subout0_W),

.CO (c0W));

//TS_SUB1 : V1- V2

// The same connection with TS_SUB0

//TS_SUB2 : V2- V3

// The same connection with TS_SUB0

/* Output grouping */

assign TSsubY0 = subout0_Y;

assign TSsubY1 = subout1_Y;

assign TSsubY2 = subout2_Y;

assign TSsub0 = {subout0_X, subout0_Z, subout0_R, subout0_G, sub-

out0_B,

subout0_U,subout0_V, subout0_W};

assign TSsub1 = {subout1_X, subout1_Z, subout1_R, subout1_G, sub-

out1_B,

subout1_U, subout1_V, subout1_W};

assign TSsub2 = {subout2_X, subout2_Z, subout2_R, subout2_G, sub-

out2_B,

subout2_U, subout2_V, subout2_W};

/* See diagram B */

Low-power Rasterizer Design 177

TS_SUB0_$
(9bit SUB)

S

U
B

in
1_

$
[1

5:
0]

T
S

p
xl

0
[5

5:
0]

T
S

p
xl

1
[5

5:
0]

T
S

p
xl

2
[5

5:
0]

T
S

tx
l0

 [
47

:0
]

T
S

tx
l1

 [
47

:0
]

T
S

tx
l2

 [
47

:0
]

S

U
B

in
0_

$
[1

5:
0]

S

U
B

in
2_

$
[1

5:
0]

S

U
B

in
1_

$
[7

:0
]

S

U
B

in
0_

$
[7

:0
]

S

U
B

in
2_

$
[7

:0
]

TS_SUB0_$
(17bit SUB)

{0, SUBin0_$}

{0, SUBin1_$}

SUBout0_$

TS_SUB0_$
(9bit SUB)

TS_SUB0_$
(17bit SUB)

{0, SUBin1_$}

{0, SUBin2_$}

SUBout1_$

TS_SUB0_$
(9bit SUB)

TS_SUB0_$
(17bit SUB)

{0, SUBin2_$}

{0, SUBin0_$}

SUBout2_$

+

-

T
S

su
b

Y
0

[8
:0

]

T
S

su
b

Y
1

[8
:0

]

T
S

su
b

Y
2

[8
:0

]

T
S

su
b

0
[1

03
:0

]

T
S

su
b

1
[1

03
:0

]

T
S

su
b

2
[1

03
:0

]

endmodule

//3 x 9-way SIMD Sign-Change

Wts_sgnchg_9simd ssts_sgnchg_9simd();

module Wts_sgnchg_9simd(TSsubY0, TSsubY1,TSsubY2,TSsub0,TSsub1,TSsub2,

TSsubt2bY0, TSsubt2bY1, TSsubt2bY2,

TSsubt2b0, TSsubt2b1, TSsubt2b2);

/* Input ungrouping XORing with YSIGN */

assign in0_Y = TSsubY0[7:0] ^ {8{TSsubY0[8]}};

assign in1_Y = TSsubY1[7:0] ^ {8{TSsubY1[8]}};

assign in2_Y = TSsubY2[7:0] ^ {8{TSsubY2[8]}};

assign {in0_X, in0_Z, in0_R, in0_G, in0_B, in0_U, in0_V, in0_W}

= TSsub0 ^ {153{TSsubY0[8]}};

assign {in1_X, in1_Z, in1_R, in1_G, in1_B, in1_U, in1_V, in1_W}

= TSsub1 ^ {153{TSsubY1[8]}};

assign {in2_X, in2_Z, in2_R, in2_G, in2_B, in2_U, in2_V, in2_W}

= TSsub2 ^ {153{TSsubY2[8]}};

/* Module interconnection */

// SIGNCHG 0

DW01_add #(10) add0_X(.A (10’b0),

178 Mobile 3D Graphics SoC

.B (in0_X),

.CI (TSsubY0[8]),

.SUM (out0_X),

.CO (c0X));

DW01_add #(8) add0_Y(.A (8’b0),

.B (in0_Y),

.CI (TSsubY0[8]),

.SUM (TSsubt2bY0),

.CO (c0Y));

DW01_add #(17) add0_Z(.A (17’b0),

.B (in0_Z),

.CI (TSsubY0[8]),

.SUM (out0_Z),

.CO (c0Z));

DW01_add #(9) add0_R(.A (9’b0),

.B (in0_R),

.CI (TSsubY0[8]),

.SUM (out0_R),

.CO (c0R));

DW01_add #(9) add0_G(.A (9’b0),

.B (in0_G),

.CI (TSsubY0[8]),

.SUM (out0_G),

.CO (c0G));

DW01_add #(9) add0_B(.A (9’b0),

.B (in0_B),

.CI (TSsubY0[8]),

.SUM (out0_B),

.CO (c0B));

DW01_add #(33) add0_U(.A (33’b0),

.B (in0_U),

.CI (TSsubY0[8]),

.SUM (out0_U),

.CO (c0U));

DW01_add #(33) add0_V(.A (33’b0),

.B (in0_V),

.CI (TSsubY0[8]),

.SUM (out0_V),

.CO (c0V));

DW01_add #(33) add0_W(.A (33’b0),

.B (in0_W),

.CI (TSsubY0[8]),

.SUM (out0_W),

.CO (c0W));

// SIGNCHG 1 :

// The same with SIGNCHG0

// SIGNCHG 2

// The same with SIGNCHG0

/* Output grouping */

//TSsubt2b is irrevelant to T2B variable in C model.

Low-power Rasterizer Design 179

assign TSsubt2b0 = {out0_X, out0_Z, out0_R, out0_G, out0_B, out0_U, out0_V,

out0_W};

assign TSsubt2b1 = {out1_X, out1_Z, out1_R, out1_G, out1_B, out1_U, out1_V,

out1_W};

assign TSsubt2b2 = {out2_X, out2_Z, out2_R, out2_G, out2_B, out2_U, out2_V,

out2_W};

endmodule

// 3 x 8-way SIMD Divider

Wts_3div_8simd ssts_3div_8simd();

//3DIV 8SIMD

module Wts_3div_8simd(TSsubt2bY0, TSsubt2bY1, TSsubt2bY2, TSsubt2b0,

TSsubt2b1, TSsubt2b2, TSdivPXL0, TSdivPXL1, TSdivPXL2,

TSdivTXL0, TSdivTXL1, TSdivTXL2);

/* Input ungrouping */

assign {TSdivin0_X, TSdivin0_Z, TSdivin0_R, TSdivin0_G, TSdivin0_B,

TSdivin0_U, TSdivin0_V, TSdivin0_W} = TSsubt2b0;

assign {TSdivin1_X, TSdivin1_Z, TSdivin1_R, TSdivin1_G, TSdivin1_B,

TSdivin1_U, TSdivin1_V, TSdivin1_W} = TSsubt2b1;

assign {TSdivin2_X, TSdivin2_Z, TSdivin2_R, TSdivin2_G, TSdivin2_B,

TSdivin2_U, TSdivin2_V, TSdivin2_W} = TSsubt2b2;

/* Divide look-up table */

// x-> LUT -> 1/X (Mantisa , exponent)

WDIVLUT8 lut0(.tbin (TSsubt2bY0),

.tbout (DIVsel0),

.tbshift (DIVshift0));

WDIVLUT8 lut1(.tbin (TSsubt2bY1),

.tbout (DIVsel1),

.tbshift (DIVshift1));

WDIVLUT8 lut2(.tbin (TSsubt2bY2),

.tbout (DIVsel2),

.tbshift (DIVshift2));

/* Bunch of multipliers */

//MUL0

WMUL10x8 mul0_X(.x (TSdivin0_X),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_X)); // 17bit

WMUL17x8 mul0_Z(.x (TSdivin0_Z),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_Z)); //exponent 3b

WMUL9x8 mul0_R(.x (TSdivin0_R),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_R)); //exponent 3b

WMUL9x8 mul0_G(.x (TSdivin0_G),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_G)); //exponent 3b

180 Mobile 3D Graphics SoC

WMUL9x8 mul0_B(.x (TSdivin0_B),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_B)); //exponent 3b

WMUL33x8 mul0_U(.x (TSdivin0_U),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_U)); //exponent 3b

WMUL33x8 mul0_V(.x (TSdivin0_V),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_V)); //exponent 3b

WMUL33x8 mul0_W(.x (TSdivin0_W),

.y (DIVsel0), //mantisa 8b

.z (TSdivout0_W)); //exponent 3b

//MUL 1

WMUL10x8 mul1_X();

WMUL17x8 mul1_Z();

WMUL9x8 mul1_R();

WMUL9x8 mul1_G();

WMUL9x8 mul1_B();

WMUL33x8 mul1_U();

WMUL33x8 mul1_V();

WMUL33x8 mul1_W();

//MUL 2

WMUL10x8 mul2_X();

WMUL17x8 mul2_Z();

WMUL9x8 mul2_R();

WMUL9x8 mul2_G();

WMUL9x8 mul2_B();

WMUL33x8 mul2_U();

WMUL33x8 mul2_V();

WMUL33x8 mul2_W();

//Shift 0

Wts_shift_18 shift0_X(.din (TSdivout0_X), .dout (TSdivout0_Xr), .shift

(DIVshift0));

Wts_shift_25 shift0_Z(.din (TSdivout0_Z), .dout (TSdivout0_Zr), .shift

(DIVshift0));

Wts_shift_17 shift0_R(.din (TSdivout0_R), .dout (TSdivout0_Rr), .shift

(DIVshift0));

Wts_shift_17 shift0_G(.din (TSdivout0_G), .dout (TSdivout0_Gr), .shift

(DIVshift0));

Wts_shift_17 shift0_B(.din (TSdivout0_B), .dout (TSdivout0_Br), .shift

(DIVshift0));

Wts_shift_41 shift0_U(.din (TSdivout0_U), .dout (TSdivout0_Ur), .shift

(DIVshift0));

Wts_shift_41 shift0_V(.din (TSdivout0_V), .dout (TSdivout0_Vr), .shift

(DIVshift0));

Wts_shift_41 shift0_W(.din (TSdivout0_W), .dout (TSdivout0_Wr), .shift

(DIVshift0));

Low-power Rasterizer Design 181

//Shift 1

Wts_shift_18 shift1_X(.din(TSdivout1_X),.dout(TSdivout1_Xr),.shift

(DIVshift1));

Wts_shift_25 shift1_Z(.din(TSdivout1_Z),.dout(TSdivout1_Zr),.shift

(DIVshift1));

Wts_shift_17 shift1_R(.din(TSdivout1_R),.dout(TSdivout1_Rr),.shift

(DIVshift1));

Wts_shift_17 shift1_G(.din(TSdivout1_G),.dout(TSdivout1_Gr),.shift

(DIVshift1));

Wts_shift_17 shift1_B(.din(TSdivout1_B),.dout(TSdivout1_Br),.shift

(DIVshift1));

Wts_shift_41 shift1_U(.din(TSdivout1_U),.dout(TSdivout1_Ur),.shift

(DIVshift1));

Wts_shift_41 shift1_V(.din(TSdivout1_V),.dout(TSdivout1_Vr),.shift

(DIVshift1));

Wts_shift_41 shift1_W(.din(TSdivout1_W),.dout(TSdivout1_Wr),.shift

(DIVshift1));

//Shift 2

Wts_shift_18 shift2_X(.din(TSdivout2_X),.dout(TSdivout2_Xr),.shift

(DIVshift2));

Wts_shift_25 shift2_Z(.din(TSdivout2_Z),.dout(TSdivout2_Zr),.shift

(DIVshift2));

Wts_shift_17 shift2_R(.din(TSdivout2_R),.dout(TSdivout2_Rr),.shift

(DIVshift2));

Wts_shift_17 shift2_G(.din(TSdivout2_G),.dout(TSdivout2_Gr),.shift

(DIVshift2));

Wts_shift_17 shift2_B(.din(TSdivout2_B),.dout(TSdivout2_Br),.shift

(DIVshift2));

Wts_shift_41 shift2_U(.din(TSdivout2_U),.dout(TSdivout2_Ur),.shift

(DIVshift2));

Wts_shift_41 shift2_V(.din(TSdivout2_V),.dout(TSdivout2_Vr),.shift

(DIVshift2));

Wts_shift_41 shift2_W(.din(TSdivout2_W),.dout(TSdivout2_Wr),.shift

(DIVshift2));

/* Output grouping */

//Pixel

assign TSdivPXL0 = {TSdivout0_Xr, TSdivout0_Zr,

TSdivout0_Rr, TSdivout0_Gr, TSdivout0_Br};

assign TSdivPXL1 = {TSdivout1_Xr, TSdivout1_Zr,

TSdivout1_Rr, TSdivout1_Gr, TSdivout1_Br};

assign TSdivPXL2 = {TSdivout2_Xr, TSdivout2_Zr,

TSdivout2_Rr, TSdivout2_Gr, TSdivout2_Br};

//Texel

assign TSdivTXL0 = {TSdivout0_Ur, TSdivout0_Vr, TSdivout0_Wr};

assign TSdivTXL1 = {TSdivout1_Ur, TSdivout1_Vr, TSdivout1_Wr};

assign TSdivTXL2 = {TSdivout2_Ur, TSdivout2_Vr, TSdivout2_Wr};

//See diagram C.

endmodule

182 Mobile 3D Graphics SoC

TS_LUT2 TS_MUL2_$

T
S

su
b

t2
b

Y
2

[7
:0

]

Y X

T
S

su
b

t2
b

2
[1

03
:0

]

DIVshift2 [2:0]

TS_LUT1 TS_MUL1_$

T
S

su
b

t2
b

Y
1

[7
:0

]

Y X

T
S

su
b

t2
b

1
[1

03
:0

]

T
S

d
iv

in
0_

$

TS_LUT0 TS_MUL0_$DIVsor2 [7:0]
T

S
su

b
t2

b
Y

0
[7

:0
]

Y X

T
S

su
b

t2
b

0
[1

03
:0

]
T

S
d

iv
in

1_
$

T
S

d
iv

o
u

t0
_$

T
S

d
iv

o
u

t2
_$

T
S

d
iv

o
u

t1
_$

T
S

d
iv

P
X

L
0

[9
2:

0]

T
S

d
iv

P
X

L
1

[9
2:

0]

T
S

d
iv

P
X

L
2

[9
2:

0]

T
S

d
iv

T
X

L
0

[9
2:

0]

T
S

d
iv

T
X

L
1

[9
2:

0]

T
S

d
iv

T
X

L
2

[9
2:

0]

//Using the results of the substraction of the y position,

//the datapaths T2B_GEN, T2B_SELGEN, SEL_EDGE, and SEL_VERTEX

//decide the order of vertices and slopes according to the y position.

// TS_T2B_GEN
Wts_t2b_gen ssts_t2b_gen()

//T2B_GEN

module Wts_t2b_gen(Y0, Y1, Y2, TSt2b);

input Y0; // Sign of eachsubstraction of |y0-y1|, |y1-y2|, |y0-y2|

input Y1;

input Y2;

output [2:0] TSt2b;

/* Register */

reg [2:0] TSt2b;

always @(Y0 or Y1 or Y2)

begin

casex({Y0, Y1, Y2})

//Means the order of vertices according to y

//Sort vertices by y position from top to bottom

Low-power Rasterizer Design 183

3’b00X: TSt2b <= ‘WT2B_210; // V2, V1, V0

3’b010: TSt2b <= ‘WT2B_102; // V1, V0, V2

3’b011: TSt2b <= ‘WT2B_120; // V1, V2, V0

3’b100: TSt2b <= ‘WT2B_021; // V0, V2, V1

3’b101: TSt2b <= ‘WT2B_201; // V2, V0, V1

3’b11X: TSt2b <= ‘WT2B_012; // V0, V1, V2

default: TSt2b <= 3’bX;

endcase

end

endmodule

// TS_T2B_SELGEN : Vertex and slope slection signal generation

Wts_t2b_selgen ssts_t2b_selgen();

//T2B SELGEN

module Wts_t2b_selgen(TSt2b, TSsel_dX, TSsel_dY, TSsel_Xi,

TSsel_Xm, TSlredge0, TSlredge1, TSlredge2,

TSt2bb0, TSt2bb1, TSt2bb2);

always @(TSt2b)

begin

//TSsel_dX

casex(TSt2b)

‘WT2B_210 : TSsel_dX <= 2’d2;

‘WT2B_102 : TSsel_dX <= 2’d1;

‘WT2B_120 : TSsel_dX <= 2’d0;

‘WT2B_021 : TSsel_dX <= 2’d0;

‘WT2B_201 : TSsel_dX <= 2’d1;

‘WT2B_012 : TSsel_dX <= 2’d2;

default : TSsel_dX <= 2’bX;

endcase

//TSsel_dY

casex(TSt2b)

‘WT2B_210 : TSsel_dY <= 2’d1;

‘WT2B_102 : TSsel_dY <= 2’d0;

‘WT2B_120 : TSsel_dY <= 2’d1;

‘WT2B_021 : TSsel_dY <= 2’d2;

‘WT2B_201 : TSsel_dY <= 2’d2;

‘WT2B_012 : TSsel_dY <= 2’d0;

default : TSsel_dY <= 2’bX;

endcase

//TSsel_Xi

casex(TSt2b)

‘WT2B_210 : TSsel_Xi <= 2’d2;

‘WT2B_102 : TSsel_Xi <= 2’d1;

‘WT2B_120 : TSsel_Xi <= 2’d1;

‘WT2B_021 : TSsel_Xi <= 2’d0;

‘WT2B_201 : TSsel_Xi <= 2’d2;

‘WT2B_012 : TSsel_Xi <= 2’d0;

default : TSsel_Xi <= 2’bX;

endcase

//TSsel_Xm

casex(TSt2b)

‘WT2B_210 : TSsel_Xm <= 2’d1;

‘WT2B_102 : TSsel_Xm <= 2’d0;

‘WT2B_120 : TSsel_Xm <= 2’d2;

184 Mobile 3D Graphics SoC

‘WT2B_021 : TSsel_Xm <= 2’d2;

‘WT2B_201 : TSsel_Xm <= 2’d0;

‘WT2B_012 : TSsel_Xm <= 2’d1;

default : TSsel_Xm <= 2’bX;

endcase

//TSlredge0

casex(TSt2b)

‘WT2B_210 : TSlredge0 <= 2’d1;

‘WT2B_102 : TSlredge0 <= 2’d0;

‘WT2B_120 : TSlredge0 <= 2’d1;

‘WT2B_021 : TSlredge0 <= 2’d2;

‘WT2B_201 : TSlredge0 <= 2’d2;

‘WT2B_012 : TSlredge0 <= 2’d0;

default : TSlredge0 <= 2’bX;

endcase

//TSlredge1

casex(TSt2b)

‘WT2B_210 : TSlredge1 <= 2’d0;

‘WT2B_102 : TSlredge1 <= 2’d2;

‘WT2B_120 : TSlredge1 <= 2’d2;

‘WT2B_021 : TSlredge1 <= 2’d1;

‘WT2B_201 : TSlredge1 <= 2’d0;

‘WT2B_012 : TSlredge1 <= 2’d1;

default : TSlredge1 <= 2’bX;

endcase

//TSlredge2

casex(TSt2b)

‘WT2B_210 : TSlredge2 <= 2’d2;

‘WT2B_102 : TSlredge2 <= 2’d1;

‘WT2B_120 : TSlredge2 <= 2’d0;

‘WT2B_021 : TSlredge2 <= 2’d0;

‘WT2B_201 : TSlredge2 <= 2’d1;

‘WT2B_012 : TSlredge2 <= 2’d2;

default : TSlredge2 <= 2’bX;

endcase

//TSt2bb0

casex(TSt2b)

‘WT2B_210 : TSt2bb0 <= 2’d2;

‘WT2B_102 : TSt2bb0 <= 2’d1;

‘WT2B_120 : TSt2bb0 <= 2’d1;

‘WT2B_021 : TSt2bb0 <= 2’d0;

‘WT2B_201 : TSt2bb0 <= 2’d2;

‘WT2B_012 : TSt2bb0 <= 2’d0;

default : TSt2bb0 <= 2’bX;

endcase

//TSt2bb1

casex(TSt2b)

‘WT2B_210 : TSt2bb1 <= 2’d1;

‘WT2B_102 : TSt2bb1 <= 2’d0;

‘WT2B_120 : TSt2bb1 <= 2’d2;

‘WT2B_021 : TSt2bb1 <= 2’d2;

‘WT2B_201 : TSt2bb1 <= 2’d0;

‘WT2B_012 : TSt2bb1 <= 2’d1;

default : TSt2bb1 <= 2’bX;

Low-power Rasterizer Design 185

endcase

//TSt2bb2

casex(TSt2b)

‘WT2B_210 : TSt2bb2 <= 2’d0;

‘WT2B_102 : TSt2bb2 <= 2’d2;

‘WT2B_120 : TSt2bb2 <= 2’d0;

‘WT2B_021 : TSt2bb2 <= 2’d1;

‘WT2B_201 : TSt2bb2 <= 2’d1;

‘WT2B_012 : TSt2bb2 <= 2’d2;

default : TSt2bb2 <= 2’bX;

endcase

end

//Results of the T2B_SELGEN are shown in the chart.

endmodule

T2B dX dY Xi Xm

T2B_210 2 1 2 1

T2B_102 1 0 1 0

T2B_120 0 1 1 2

T2B_021 0 2 0 2

T2B_201 1 2 2 0

T2B_012 2 0 0 1

T2B LREDGE0 LREDGE1 LREDGE2 T2BB0 T2BB1 T2BB2

T2B_210 1 0 2 2 1 0

T2B_102 0 2 1 1 0 2

T2B_120 1 2 0 1 2 0

T2B_021 2 1 0 0 2 1

T2B_201 2 0 1 2 0 1

T2B_012 0 1 2 0 1 2

//TS_SEL_EDGE

Wts_sel_edge ssts_sel_edge();

//SEL EDGE

module Wts_sel_edge(TSlredge0, TSlredge1, TSlredge2, TSsubt2bY0,

TSsubt2bY1, TSsubt2bY2, TSdivPXL0,

TSdivPXL1, TSdivPXL2, TSdivTXL0,

TSdivTXL1, TSdivTXL2,

TScount0, TScount1, TScount2,

TSePXL0, TSePXL1, TSePXL2,

TSeTXL0, TSeTXL1, TSeTXL2);

//Y count selection

//This Y count value controls multi-cycle operation

always @(TSlredge0 or TSlredge1 or TSlredge2 or TSsubt2bY0 or TSsubt2bY1

or TSsubt2bY2)

begin

//Count0

casex(TSlredge0)

2’d0 : TScount0 <= TSsubt2bY0;

2’d1 : TScount0 <= TSsubt2bY1;

186 Mobile 3D Graphics SoC

2’d2 : TScount0 <= TSsubt2bY2;

default : TScount0 <= 8’bX;

endcase

//Count1

casex(TSlredge1)

2’d0 : TScount1 <= TSsubt2bY0;

2’d1 : TScount1 <= TSsubt2bY1;

2’d2 : TScount1 <= TSsubt2bY2;

default : TScount1 <= 8’bX;

endcase

//Count2

casex(TSlredge2)

2’d0 : TScount2 <= TSsubt2bY0;

2’d1 : TScount2 <= TSsubt2bY1;

2’d2 : TScount2 <= TSsubt2bY2;

default : TScount2 <= 8’bX;

endcase

end

//PXL

always @(TSlredge0 or TSlredge1 or TSlredge2 or TSdivPXL0 or TSdivPXL1 or

TSdivPXL2)

begin

//PXL 0

casex(TSlredge0)

2’d0 : TSePXL0 <= TSdivPXL0;

2’d1 : TSePXL0 <= TSdivPXL1;

2’d2 : TSePXL0 <= TSdivPXL2;

default : TSePXL0 <= 94’bX;

endcase

//PXL 1

casex(TSlredge1)

2’d0 : TSePXL1 <= TSdivPXL0;

2’d1 : TSePXL1 <= TSdivPXL1;

2’d2 : TSePXL1 <= TSdivPXL2;

default : TSePXL1 <= 94’bX;

endcase

//PXL 2

casex(TSlredge2)

2’d0 : TSePXL2 <= TSdivPXL0;

2’d1 : TSePXL2 <= TSdivPXL1;

2’d2 : TSePXL2 <= TSdivPXL2;

default : TSePXL2 <= 94’bX;

endcase

end

//TXL

always @(TSlredge0 or TSlredge1 or TSlredge2 or TSdivTXL0 or TSdivTXL1 or

TSdivTXL2)

begin

//PXL 0

casex(TSlredge0)

2’d0 : TSeTXL0 <= TSdivTXL0;

2’d1 : TSeTXL0 <= TSdivTXL1;

2’d2 : TSeTXL0 <= TSdivTXL2;

Low-power Rasterizer Design 187

default : TSeTXL0 <= 123’bX;

endcase

//PXL 1

casex(TSlredge1)

2’d0 : TSeTXL1 <= TSdivTXL0;

2’d1 : TSeTXL1 <= TSdivTXL1;

2’d2 : TSeTXL1 <= TSdivTXL2;

default : TSeTXL1 <= 123’bX;

endcase

//PXL 2

casex(TSlredge2)

2’d0 : TSeTXL2 <= TSdivTXL0;

2’d1 : TSeTXL2 <= TSdivTXL1;

2’d2 : TSeTXL2 <= TSdivTXL2;

default : TSeTXL2 <= 123’bX;

endcase

end

//Results are shown in the chart.

endmodule

Output SEL Input

TScount# TSlredge # TSsubt2bY#

TSePXL# TSlredge # TSdivPXL#

TSeTXL# TSlredge # TSdivTXL#

//TS_SEL_VERTEX

Wts_sel_vertex ssts_sel_vertex();

//TS_SEL_VERTEX

//Huge power consumption due to large bit switching

Module Wts_sel_vertex(TSt2bb0, TSt2bb1, TSt2bb2, TSpxl0, TSpxl1, TSpxl2,

TStxl0, TStxl1, TStxl2,

TSvPXL0, TSvPXL1, TSvPXL2, TSvTXL0,

TSvTXL1, TSvTXL2);

/* MUX */

//PXL

always @(TSt2bb0 or TSt2bb1 or TSt2bb2 or TSpxl0 or TSpxl1 or TSpxl2)

begin

//PXL0

casex(TSt2bb0)

2’d0 : TSvPXL0 <= TSpxl0;

2’d1 : TSvPXL0 <= TSpxl1;

2’d2 : TSvPXL0 <= TSpxl2;

default : TSvPXL0 <= 49’bX;

endcase

//PXL1

casex(TSt2bb1)

2’d0 : TSvPXL1 <= TSpxl0;

2’d1 : TSvPXL1 <= TSpxl1;

2’d2 : TSvPXL1 <= TSpxl2;

default : TSvPXL1 <= 49’bX;

endcase

188 Mobile 3D Graphics SoC

//PXL2

casex(TSt2bb2)

2’d0 : TSvPXL2 <= TSpxl0;

2’d1 : TSvPXL2 <= TSpxl1;

2’d2 : TSvPXL2 <= TSpxl2;

default : TSvPXL2 <= 49’bX;

endcase

end

//TXL

always @(TSt2bb0 or TSt2bb1 or TSt2bb2 or TStxl0 or TStxl1 or TStxl2)

begin

//TXL0

casex(TSt2bb0)

2’d0 : TSvTXL0 <= TStxl0;

2’d1 : TSvTXL0 <= TStxl1;

2’d2 : TSvTXL0 <= TStxl2;

default : TSvTXL0 <= 96’bX;

endcase

//TXL1

casex(TSt2bb1)

2’d0 : TSvTXL1 <= TStxl0;

2’d1 : TSvTXL1 <= TStxl1;

2’d2 : TSvTXL1 <= TStxl2;

default : TSvTXL1 <= 96’bX;

endcase

//TXL2

casex(TSt2bb2)

2’d0 : TSvTXL2 <= TStxl0;

2’d1 : TSvTXL2 <= TStxl1;

2’d2 : TSvTXL2 <= TStxl2;

default : TSvTXL2 <= 96’bX;

endcase

end

//Results are shown in the chart.

endmodule

Output SEL Input

TSvPXL# TSt2bb# TSpxl#

TSvTXL# TSt2bb# TStxl#

//Since the middle point of the polygon, the edge should be changed.

//The MID_CAL unit computes the middle point of the vertex and controls the change of

the edges

Wts_mid_cal ssts_mid_cal();

//TS_MID_CAL

module Wts_mid_cal(TSsel_dX, TSsel_dY, TSsel_Xi, TSsel_Xm,

TSdivPXL0, TSdivPXL1, TSdivPXL2, TSsubt2bY0,

TSsubt2bY1, TSsubt2bY2,

TSpxl0_X, TSpxl1_X, TSpxl2_X,

TSpxl0_Y, TSpxl1_Y, TSpxl2_Y,

TSlredge2, TSt2bb0, TSedge, TSline, TSaddrY);

Low-power Rasterizer Design 189

/* MUX */

//dX

always @(TSsel_dX or TSdivPXL0 or TSdivPXL1 or TSdivPXL2)

begin

casex(TSsel_dX)

2’d0 : dX <= TSdivPXL0;

2’d1 : dX <= TSdivPXL1;

2’d2 : dX <= TSdivPXL2;

default : dX <= 18’bX;

endcase

end

//dY

always @(TSsel_dY or TSsubt2bY0 or TSsubt2bY1 or TSsubt2bY2)

begin

casex(TSsel_dY)

2’d0 : dY <= TSsubt2bY0;

2’d1 : dY <= TSsubt2bY1;

2’d2 : dY <= TSsubt2bY2;

default : dY <= 8’bX;

endcase

end

//Xi

always @(TSsel_Xi or TSpxl0_X or TSpxl1_X or TSpxl2_X)

begin

casex(TSsel_Xi)

2’d0 : Xi <= TSpxl0_X;

2’d1 : Xi <= TSpxl1_X;

2’d2 : Xi <= TSpxl2_X;

default : Xi <= 9’bX;

endcase

end

//Xm

always @(TSsel_Xm or TSpxl0_X or TSpxl1_X or TSpxl2_X)

begin

casex(TSsel_Xm)

2’d0 : Xm <= TSpxl0_X;

2’d1 : Xm <= TSpxl1_X;

2’d2 : Xm <= TSpxl2_X;

default : Xm <= 9’bX;

endcase

end

//TSline

always @(TSlredge2 or TSsubt2bY0 or TSsubt2bY1 or TSsubt2bY2)

begin

casex(TSlredge2)

2’d0 : TSline <= TSsubt2bY0;

2’d1 : TSline <= TSsubt2bY1;

2’d2 : TSline <= TSsubt2bY2;

default : TSline <= 8’bX;

endcase

end

190 Mobile 3D Graphics SoC

//TSaddrY

always @(TSt2bb0 or TSpxl0_Y or TSpxl1_Y or TSpxl2_Y)

begin

casex(TSt2bb0)

2’d0 : TSaddrY <= TSpxl0_Y;

2’d1 : TSaddrY <= TSpxl1_Y;

2’d2 : TSaddrY <= TSpxl2_Y;

default : TSaddrY <= 8’bX;

endcase

end

/* Module interconnection */

WMUL18x8 TS_MUL18t8(.x (dX),

.y (dY),

.z (MULout));

DW01_add #(10) TS_ADD9t9 (.A (MULout[17:8]),

.B ({1’b0, Xi}),

.C (1’b0),

.SUM (ADDout),

.CO (ADDcout));

DW01_sub #(10) TS_SUB9t9 (.A ({1’b0, Xm}),

.B (ADDout),

.CI (1’b0),

.DIFF (EDGEout),

.CO (EDGEcout));

/* Edge assignment: MSB of EDGEout */

assign TSedge = EDGEout[9];

//See diagram D and the chart.

endmodule

T
S

se
l_

d
X

 [
1:

0]

d
X

 [
16

:0
]

T
S

se
l_

d
X

 [
1:

0]

d
X

 [
16

:0
]

S
E

L
_d

X
 [

1:
0

]

S
E

L
_d

Y
 [

1:
0

]

TS_MUL17t8

ADDout [8:0]

MULout [16:8]

T
S

se
l_

X
i [

1:
0]

X
i [

7:
0]

T
S

se
l_

X
m

 [
1:

0]

X
m

 [
7:

0]

Xi Xm

S
E

L
_X

i
[1

:0
]

S
E

L
_X

m
 [

1:
0

]

TS_ADD9t9

TS_SUB9t9

T
S

ed
g

e

- +

T
S

d
iv

P
X

L
0

[9
2:

76
]

T
S

d
iv

P
X

L
1

[9
2:

76
]

T
S

d
iv

P
X

L
2

[9
2:

76
]

T
S

su
b

t2
b

Y
0

[7
:0

]
T

S
su

b
t2

b
Y

1
[7

:0
]

T
S

su
b

t2
b

Y
2

[7
:0

]

d
X

0
[1

6:
0]

d
X

1
[1

6:
0]

d
X

2
[1

6:
0]

d
Y

0
[1

6:
0]

d
Y

1
[1

6:
0]

d
Y

2
[1

6:
0]

T
S

p
x

l0
 [

55
:4

8]
T

S
p

x
1

[5
5:

48
]

T
S

p
x

l2
 [

55
:4

8]

X
0

[7
:0

]
X

1
[7

:0
]

X
2

[7
:0

]

T
S

lr
ed

g
e2

 [
1:

0]

L
in

e
[7

:0
]

lr
ed

g
e2

 [
1

:0
]

d
Y

0
[1

6:
0]

d
Y

1
[1

6:
0]

d
Y

2
[1

6:
0]

T
S

lin
e

[7
:0

]

T
S

lr
ed

g
e2

 [
1:

0]

A
d

d
r

[7
:0

]

lr
ed

g
e

2
[1

:0
]

Y
0

[7
:0

]
Y

1
[7

:0
]

Y
2

[7
:0

]

T
S

p
xl

0
[4

7:
40

]
T

S
p

xl
1

[4
7:

40
]

T
S

p
xl

2
[4

7:
40

]
T

S
lin

e
[7

:0
]

rddAenil

Low-power Rasterizer Design 191

Datapath signals Description

MULout Multiplier output: 18-bit {s, d 8, f8}

MULout ¼ {sign, data8}

ADDout Adder input: 10-bit { 0, data8}

ADDout ¼ 10-bit Adder output {s, d8}

edge MSB of TS_SUB10t10 (sign: minus)

endmodule

7.5.4.5 EP: Edge Setup Processor

In the EP stage (Figure 7.16), the pixels on the slope of three edges of the polygon are

computed. The slope of the edge is used to compute edge pixel values, like this:

ðNþ 1Þth pixel ¼ Nth pixelþ slope of the edge:

Pipeline Input

. REclk: rendering engine clock

. Control signals: same as TS

. Auxiliary data: same as TS

. Pixel/texel data: same as TS

Pipeline Output

. Control signals: same as TS

. Auxiliary data: same as TS

. EPpxlY [7:0]: Y address

. EPpxlL [47:0]: left edge pixel data

. EPtxlL [47:0]: left edge texel data

. EPpxlR [47:0]: right edge pixel data

. EPtxlR [47:0]: right edge texel data

. EPcntX [8:0]: edge processor X-count (determine PP cycle)

. EPpxlX [8:0]: edge processor X0-address for horizontal intp.

. EPdivPXL [75:0]: EP-div pixel data

. EPdivTXL [74:0]: EP-div texel data

Functions

. Edge processor interpolation

. Multicycle operation management

192 Mobile 3D Graphics SoC

Figure 7.16 Edge processor

L
o
w
-p
o
w
er

R
asterizer

D
esig

n
1
9
3

Signal Descriptions

Control signals Description

Main Rule @ Verilog following ID2 & ID & TS

Supporting multicycle wait – generation

EPline Setting-up EP vertical counter

Used for EP cycle control

EPvcnt Count starts from zero to EPline @ (REclk & nHld)

Datapath signals Description

TSePXL# {X[92:76],Z[75:51],R[50:34],G[33:17],B[16:0]}

X, R, G, B: 17-bit signed data

{sign_1b, data_8b, frac_8b}

Z: 24-bit signed data

{sign_1b, data_15b, frac_8b}

TSeTXL# {U[74:50],V[49:25],W[24:0]}

25-bit signed data

{sign_1b, data_16b, frac_8b}

TSvPXL# {X[47:39],Z[38:24],R[23:16],G[15:8],B[7:0]}

unsigned data

TSvTXL# {U[47:32],V[31:16],W[15:0]}

unsigned data

EPpxlY Y address

8-bit unsigned data

EPpxlLR {X[47:39],Z[38:24],R[23:16],G[15:8],B[7:0]}

X, R, G, B: 8bit unsigned data

Z: 16-bit unsigned data

EPtxlLR {U[47:32],V[31:16],W[15:0]}

U, V, W: 16-bit unsigned data

EPcntX Edge processor X-count

- Determines the number of PP operation cycles

8-bit unsigned data

Datapath: EPI

RTL Code

/*

* RAMP-GR

* RAMP-GR EP Module : Edge Process

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

Module Wep(REclk, TSreset, TSnhld, HSnwait, TScOP, TScFB, TScZB, TScDF,

TScTMF, TScAF, TScTEXEN, TScFMB, TScTMB, TScSCR, TStmod,

TSdADDR, TSdA, TSaddrY, TSline, TSedge, TScount0, TScount2,

194 Mobile 3D Graphics SoC

TSePXL0, TSePXL1, TSePXL2, TSeTXL0, TSeTXL1, TSeTXL2,

TSvPXL0, TSvPXL1, TSvPXL2, TSvTXL0, TSvTXL1, TSvTXL2,

EPnwait, EPreset, EPnhld, EPcOP, EPcFB, EPcZB, EPcDF,

EPcTMF, EPcAF, EPcTEXEN, EPcFMB, EPcTMB, EPcSCR,

EPtmod, EPdADDR, EPdA, EPpxlY, EPpxlX, EPpxlL, EPpxlR,

EPtxlL, EPtxlR, EPcntX);

//Feedthrough signals

assign EPline = TSline;

/* Module interconnection */

// Main Controller

Wep_ctrl ssep_ctrl();

//Main controller

module Wep_ctrl(REclk, TSreset, TSnhld, HSnwait, TScOP, TScFB,

TScZB, TScDF, TScTMF, TScAF, TScTEXEN, TScFMB,

TScTMB, TScSCR, EPline, EPnwait, EPreset, EPnhld,

EPcOP, EPcFB, EPcZB, EPcDF, EPcTMF, EPcAF,

EPcTEXEN, EPcFMB, EPcTMB, EPcSCR, EPvcnt, EPfetch_CLK,

EPfetch_TMOD, EPfetch_ADDR, EPfetch_ALPHA, EPfetch_PXL,

EPfetch_TXL, EPIfetch_CLK, EPIfetch_PXL, EPIfetch_TXL);

//Pipeline control signal

//EP stage controls the multi-cycle operation by y count.

//Therefore, until the multi-cycle operation, the previous

//pipeline stage should be stalled.

//That means the EPnwait is high until the multi-cycle operation is done.

//nwait

assign #1 EPnwait_gen = �(EPnhld_int & EPcDF_int & (|EPcounter));

assign #1 EPnwait = (EPnwait_gen & HSnwait) | �TSreset;

//nhld

assign #1 EPnhld_gen = �EPnwait_gen;

assign #1 EPnhld = EPnhld_int | EPnhld_gen;

//Fetch

assign #1 EPfetch_CLK = EPnwait & TSnhld;

assign EPfetch_TMOD = TScTMF;

assign EPfetch_ADDR = TScAF;

assign EPfetch_ALPHA = TScDF;

assign EPfetch_PXL = TScDF;

assign EPfetch_TXL = TScDF & TScTEXEN;

//EPI fetch signals

assign EPIfetch_CLK = HSnwait & EPnhld;

assign EPIfetch_PXL = EPcDF;

assign EPIfetch_TXL = EPcDF & EPcTEXEN;

always @(posedge REclk)

begin

if(EPnwait)

Low-power Rasterizer Design 195

begin

//State controls

EPnhld_int <= TSnhld;

EPreset <= TSreset;

//Fetch_Signal

EPcDF_int <= TScDF;

EPcTMF_int <= TScTMF;

EPcAF_int <= TScAF;

EPcTEXEN_int <= TScTEXEN;

EPcFMB_int <= TScFMB;

EPcTMB_int <= TScTMB;

//Trivial Signals

EPcOP <= TScOP;

EPcFB <= TScFB;

EPcZB <= TScZB;

EPcSCR <= TScSCR;

end

/* Multicycle counter */

// Set to EPline

if(EPnwait & TScDF & (TScOP[5]|TScOP[4]))

begin

EPvcnt <= 8’b0;

EPcounter <= EPline;

end

//Count when {Next OK, RDAT Mode, Run Mode} until EPcounter =0

else if((HSnwait | �TSreset) & (|EPcounter) & EPnhld)

begin

EPvcnt <= EPvcnt +1; // Up counter

EPcounter <= EPcounter -1; // Down counter

end

end

always @(negedge REclk)

begin

EPcDF <= EPcDF_int & EPnhld;

EPcTMF <= EPcTMF_int & EPnhld;

EPcAF <= EPcAF_int & EPnhld;

EPcTEXEN <= EPcTEXEN_int & EPnhld;

EPcFMB <= EPcFMB_int & EPnhld;

EPcTMB <= EPcTMB_int & EPnhld;

end

endmodule

//Pipeline data latches

Wep_latch ssep_latch();

//Data latches

module Wep_latch(REclk, clk, EPfetch_TMOD, EPfetch_ADDR, EPfetch_ALPHA,

EPfetch_PXL, EPfetch_TXL, TStmod, TSdADDR, TSdA, TSaddrY, TSedge,

TScount0, TScount2, TSePXL0, TSePXL1, TSePXL2, TSeTXL0,

TSeTXL1, TSeTXL2, TSvPXL0, TSvPXL1, TSvPXL2, TSvTXL0, TSvTXL1,

TSvTXL2, EPtmod, EPdADDR, EPdA, EPaddrY, EPedge, EPcount0,

196 Mobile 3D Graphics SoC

EPcount2, EPePXL0, EPePXL1, EPePXL2, EPeTXL0, EPeTXL1, EPeTXL2,

EPvPXL0, EPvPXL1, EPvPXL2, EPvTXL0, EPvTXL1, EPvTXL2);

/* Pipeline latches */

//EP_LATCH_TMOD

always @(posedge REclk)

begin

if(clk & EPfetch_TMOD)

begin

EPtmod <= TStmod;

end

end

//EP_LATCH_ADDR

always @(posedge REclk)

begin

if(clk & EPfetch_ADDR) EPdADDR <= TSdADDR;

end

//EP_LATCH_ALPHA

always @(posedge REclk)

begin

if(clk & EPfetch_ALPHA) EPdA <= TSdA;

end

//EP_LATCH_PXL

always @(posedge REclk)

begin

if(clk & EPfetch_PXL)

begin

//Triangle setup values

EPaddrY <= TSaddrY;

EPedge <= TSedge;

EPcount0 <= TScount0;

EPcount2 <= TScount2;

//Normal pixels: edge

EPePXL0 <= TSePXL0;

EPePXL1 <= TSePXL1;

EPePXL2 <= TSePXL2;

//Normal pixels: vertex

EPvPXL0 <= TSvPXL0;

EPvPXL1 <= TSvPXL1;

EPvPXL2 <= TSvPXL2;

end

end

//EP_LATCH_TXL

always @(posedge REclk)

begin

if(clk & EPfetch_TXL)

begin

//Edge

EPeTXL0 <= TSeTXL0;

EPeTXL1 <= TSeTXL1;

EPeTXL2 <= TSeTXL2;

//Vertex

Low-power Rasterizer Design 197

EPvTXL0 <= TSvTXL0;

EPvTXL1 <= TSvTXL1;

EPvTXL2 <= TSvTXL2;

end

end

endmodule

//EPI_Y

Wep_epi_y ssep_epi_y();

//EPI_Y

module Wep_epi_y(inY, vcnt, outY);

input [7:0] inY;

input [7:0] vcnt;

output [7:0] outY;

DW01_add #(8) add_Y(.A (inY),

.B (vcnt),

.CI (1’b0),

.SUM (outY),

.CO (cout));

endmodule

//The EPI generates the pixel values of left and right edges.

//The EPI block consists of controller and controller, latch, and SIMD_adder block;

see diagram E and the chart.

EPI_CTRL

E
P

_c
o

u
n

t0
 [

7:
0]

E
P

_c
o

u
n

t1
 [

7:
0]

E
P

_c
o

u
n

t2
 [

7:
0]

E
P

eP
X

L
0

[9
2:

0]

E
P

eP
X

L
1

[9
2:

0]

E
P

eP
X

L
2

[9
2:

0]

E
P

eT
X

L
0

[7
4:

0]

E
P

vP
X

L
0

[4
7:

0]

E
P

eT
X

L
1

[7
4:

0]

E
P

eT
X

L
2

[7
4:

0]

E
P

vP
X

L
1

[4
7:

0]

E
P

vP
X

L
2

[4
7:

0]

E
P

vT
X

L
0

[4
7:

0]

E
P

vT
X

L
1

[4
7:

0]

E
P

vT
X

L
2

[4
7:

0]
EPlsel_E[1:0]

EPlsel_V[1:0]

E
P

eP
X

L
[9

2:
0]

E
P

eT
X

L
[7

4:
0]

EPI_Adder

EPI_LATCH

EPIfetch_CLK
EPIfetch_PXL
EPIfetch_TXL

EPedge
EPvcnt [7:0]

EPflag
EPlatchTXL [74:0]

EPlatchPXL [92:0]

E
P

ad
d

[P
X

L
[9

2:
0]

E
P

ad
d

T
X

L
[7

4:
0]

E
P

vP
X

L
[9

2:
0]

E
P

vT
X

L
[7

4:
0]

EPIselPPASS

E
P

o
u

tP
X

L
 [

92
:0

]

E
P

o
u

tT
X

L
 [

74
:0

]

EPoutPXL [92:0]

EPoutTXL [74:0]

198 Mobile 3D Graphics SoC

Control signal Description

EPedge¼¼EPIflag EPedge!¼EPIflag

EPIsel_PASS Set to 1 (PASS) when Set to 1 (PASS) when

EPIv_0 (First) EPIv_0 (First)

EPIv_cnt2 (Last) EPIv_cnt0 (Middle)

EPIv_cnt2 (Last)

EPIsel_V Select Select

0 when EPIv_0 0 when EPIv_0 & �v_cnt0

2 when EPIv_cnt2 1 when EPIv_cnt0

2 when EPIv_cnt2

EPIsel_E Select Select

2 whenever 0 when EPImode¼¼0

1 when EPImode¼¼1

EPImode MSB of Sign Extended {EPIcount0-EPIvcnt}

EPIv_0 1 when EPvcnt¼¼0

EPIv_cnt0 1 when EPvcnt¼¼EPcount0

EPIv_cnt2 1 when EPvcnt¼¼EPcount2

//EPI_L

Wep_epi ssep_epi_L();

//EPI_R

Wep_epi ssep_epi_R();

//EPI controller

module Wep_epi_ctrl(EPvcnt, EPedge, EPflag, EPcount0, EPcount2,

EPIsel_E, EPIsel_V, EPIsel_PASS);

DW01_sub #(9) sub_MODE(.A ({1’b0, EPcount0}),

.B ({1’b0, EPvcnt}),

.CI (1’b0),

.DIFF (EPIsubY),

.CO (EPIcarry));

//Basic state signals

always @(EPvcnt or EPcount0 or EPcount2 or EPflag or EPedge)

begin

EPIv_0 = (EPvcnt == 8’b0) ? 1’b1 : 1’b0;

EPIv_cnt0 = (EPvcnt == EPcount0) ? 1’b1 : 1’b0;

EPIv_cnt2 = (EPvcnt == EPcount2) ? 1’b1 : 1’b0;

EPIfe = (EPflag != EPedge) ? 1’b1 : 1’b0;

end

//Control signals

//EPIsel_PASS, EPIsel_V

always @(EPIfe or EPIv_0 or EPIv_cnt0 or EPIv_cnt2)

begin

//EPIsel_PASS

casex({EPIfe, EPIv_0, EPIv_cnt0, EPIv_cnt2})

Low-power Rasterizer Design 199

4’bx1xx : EPIsel_PASS <= 1’b1;

4’bxxx1 : EPIsel_PASS <= 1’b1;

4’b1x1x : EPIsel_PASS <= 1’b1;

default : EPIsel_PASS <= 1’b0;

endcase

//EPIsel_V

casex({EPIfe, EPIv_0, EPIv_cnt0, EPIv_cnt2})

4’b01xx : EPIsel_V <= 2’d0;

4’b0xx1 : EPIsel_V <= 2’d2;

4’b110x : EPIsel_V <= 2’d0;

4’b1x1x : EPIsel_V <= 2’d1;

4’b1x01 : EPIsel_V <= 2’d2;

default : EPIsel_V <= 2’bX;

endcase

end

//EPIsel_E

always @(EPIfe or EPIsubY)

begin

casex({EPIfe, EPIsubY[8]})

2’b0x : EPIsel_E <= 2’d2;

2’b10 : EPIsel_E <= 2’d0;

2’b11 : EPIsel_E <= 2’d1;

endcase

end

endmodule

//7-SIMD interpolation adders

module Wep_epi_add_7simd(EPlatchPXL, EPlatchTXL, EPePXL, EPeTXL,

EPaddPXL, EPaddTXL);

/* Adder interconnections */

DW01_add #(18) add_X(.A (EPlatchPXL[93:76]),

.B (EPePXL[93:76]),

.CI (1’b0),

.SUM (EPaddPXL[93:76]),

.CO (coutX));

DW01_add #(25) add_Z(.A (EPlatchPXL[75:51]),

.B (EPePXL[75:51]),

.CI (1’b0),

.SUM (EPaddPXL[75:51]),

.CO (coutZ));

DW01_add #(17) add_R(.A (EPlatchPXL[50:34]),

.B (EPePXL[50:34]),

.CI (1’b0),

.SUM (EPaddPXL[50:34]),

.CO (coutR));

DW01_add #(17) add_G(.A (EPlatchPXL[33:17]),

.B (EPePXL[33:17]),

.CI (1’b0),

.SUM (EPaddPXL[33:17]),

.CO (coutG));

DW01_add #(17) add_B(.A (EPlatchPXL[16:0]),

200 Mobile 3D Graphics SoC

.B (EPePXL[16:0]),

.CI (1’b0),

.SUM (EPaddPXL[16:0]),

.CO (coutB));

DW01_add #(41) add_U(.A (EPlatchTXL[122:82]),

.B (EPeTXL[122:82]),

.CI (1’b0),

.SUM (EPaddTXL[122:82]),

.CO (coutU));

DW01_add #(41) add_V(.A (EPlatchTXL[81:41]),

.B (EPeTXL[81:41]),

.CI (1’b0),

.SUM (EPaddTXL[81:41]),

.CO (coutV));

DW01_add #(41) add_W(.A (EPlatchTXL[40:0]),

.B (EPeTXL[40:0]),

.CI (1’b0),

.SUM (EPaddTXL[40:0]),

.CO (coutW));

endmodule

//EPI top

module Wep_epi(REclk,EPvcnt,EPedge,EPflag,EPIfetch_CLK,EPIfetch_PXL,

EPIfetch_TXL, EPcount0, EPcount2, EPePXL0, EPePXL1, EPePXL2,

EPeTXL0, EPeTXL1, EPeTXL2,

EPvPXL0, EPvPXL1, EPvPXL2, EPvTXL0, EPvTXL1, EPvTXL2, EPpxlLR,

EPtxlLR, EPlatchPXL);

//Module interconnection

//Main controller for EPI

Wep_epi_ctrl ssep_epi_ctrl();

// 7-SIMD adder

Wep_epi_add_7simd ssep_add_7simd();

//EPI_MUX_EDGE_PXL

always @(EPIsel_E or EPePXL0 or EPePXL1 or EPePXL2)

begin

casex(EPIsel_E)

2’d0 : EPePXL <= EPePXL0;

2’d1 : EPePXL <= EPePXL1;

2’d2 : EPePXL <= EPePXL2;

default : EPePXL <= 94’b0;

endcase

end

//EPI_MUX_EDGE_TXL

always @(EPIsel_E or EPeTXL0 or EPeTXL1 or EPeTXL2)

begin

casex(EPIsel_E)

Low-power Rasterizer Design 201

2’d0 : EPeTXL <= EPeTXL0;

2’d1 : EPeTXL <= EPeTXL1;

2’d2 : EPeTXL <= EPeTXL2;

default : EPeTXL <= 123’b0;

endcase

end

//EPI_MUX_VERTEX_PXL

always @(EPIsel_V or EPvPXL0 or EPvPXL1 or EPvPXL2)

begin

casex(EPIsel_V)

2’d0 : EPvPXL <= EPvPXL0;

2’d1 : EPvPXL <= EPvPXL1;

2’d2 : EPvPXL <= EPvPXL2;

default : EPvPXL <= 49’b0;

endcase

end

//EPI_MUX_VERTXL_TXL

always @(EPIsel_V or EPvTXL0 or EPvTXL1 or EPvTXL2)

begin

casex(EPIsel_V)

2’d0 : EPvTXL <= EPvTXL0;

2’d1 : EPvTXL <= EPvTXL1;

2’d2 : EPvTXL <= EPvTXL2;

default : EPvTXL <= 96’b0;

endcase

end

//EPI_MUX_OUTPUT_PXL with sign and fraction extention

always @(EPIsel_PASS or EPaddPXL or EPvPXL)

begin

casex(EPIsel_PASS)

1’b0 : EPoutPXL <= EPaddPXL;

1’b1 :

begin

EPoutPXL[93:76] <= {1’b0, EPvPXL[48:40], 8’b0}; //X

EPoutPXL[75:51] <= {1’b0, EPvPXL[39:24], 8’b0}; //Z

EPoutPXL[50:34] <= {1’b0, EPvPXL[23:16], 8’b0}; //R

EPoutPXL[33:17] <= {1’b0, EPvPXL[15:8], 8’b0}; //G

EPoutPXL[16:0] <={1’b0,EPvPXL[7:0],8’b0}; //B

end

endcase

end

always @(EPIsel_PASS or EPaddTXL or EPvTXL)

begin

casex(EPIsel_PASS)

1’b0 : EPoutTXL <= EPaddTXL;

1’b1 :

begin

EPoutTXL[122:82] <= {1’b0, EPvTXL[95:64], 8’b0}; //U

EPoutTXL[81:41] <= {1’b0, EPvTXL[63:32], 8’b0}; //V

202 Mobile 3D Graphics SoC

EPoutTXL[40:0] <= {1’b0, EPvTXL[31:0], 8’b0}; //W

end

endcase

end

/* Datapath latch */

//EPI_LATCH_PXL

always @(posedge REclk)

begin

if(EPIfetch_CLK & EPIfetch_PXL) EPlatchPXL <= EPoutPXL;

end

//EPI_LATCH_TXL

always @(posedge REclk)

begin

if(EPIfetch_CLK & EPIfetch_TXL) EPlatchTXL <= EPoutTXL;

end

/* Output reassignment */

//Pixel

assign #1 EPpxlLR[48:40] = EPoutPXL[92:84]; //X

assign #1 EPpxlLR[39:24] = EPoutPXL[74:59]; //Z

assign #1 EPpxlLR[23:16] = EPoutPXL[49:42]; //R

assign #1 EPpxlLR[15:8] = EPoutPXL[32:25]; //G

assign #1 EPpxlLR[7:0] = EPoutPXL[15:8]; //B

//Texel

assign #1 EPtxlLR[95:64] = EPoutTXL[121:90]; //U

assign #1 EPtxlLR[63:32] = EPoutTXL[80:49]; //V

assign #1 EPtxlLR[31:0] = EPoutTXL[39:8]; //W

endmodule

//EPI_LRSUB_X

DW01_sub #(10) sub0_X(.A ({1’b0, EPpxlR[48:40]}),

.B ({1’b0, EPpxlL[48:40]}),

.CI (1’b0),

.DIFF (EPcntX_int),

.CO (coutX));

//Minus saturation due to lacking of precision @ TS_MID_CAL

assign EPcntX = (EPcntX_int[9]) ? 9’b0 : EPcntX_int[8:0];

//X0 Address

assign #1 EPpxlX = EPpxlL [48:40];

endmodule

7.5.4.6 HS: Horizontal Setup

In the HS stage (Figure 7.17), the horizontal slopes (used for pixel interpolation) are

computed. The horizontal slopes are computed using the left and right edge pixels,

which are located on the same y axis. Also in this stage, depth requests occur. Since the

Low-power Rasterizer Design 203

embedded memory requires 1 cycle latency to read data, the depth buffer request and

buffer address are transferred to the depth buffer in the HS stage.

Since the rasterizer has of two pixel processors, it is important to assign pixels to

their correct processor. Basically, this is done according to the x coordinate – odd/

even – and the start of the line assigned to pixel processor (PP)0. For line starts with

even x coordinate it is easy to assign PPs. In other cases the PP assignment is more

difficult.

Since the horizontal setup is performed on a line basis, it contains several pixels. The

next pipeline pixel interpolation generates one pixel in a cycle, so the HS stage has to

wait until the pixel interpolation is ended. Therefore, theHS stage controlsmulti-cycle

operation.

Pipeline Input

. REclk: rendering engine clock

. Control signals: same as EP

. Auxiliary signals: same as EP

. Pixel/texel: same as EP

Figure 7.17 Horizontal setup

204 Mobile 3D Graphics SoC

Pipeline Output

. Pipe control signals: same as EP

. HS_ZB0cmd [2:0]: ZB0 command

. HS_ZB1cmd [2:0]: ZB1 command

. HS_ZB0addr [15:0]: ZB0 address

. HS_ZB1addr [15:0]: ZB1 address

. HSppMASK [1:0]: pixel processor operation mask

. HSppASSIGN: pixel processor assignment flag

Memory Output

. ZBI_nREQ: ZB operation request

. ZBI_ZB0addr [15:0]: ZB0 address

. ZBI_ZB1addr [15:0]: ZB1 address

. ZBIppASSIGN: PP assignment for arbiter

Pixel Processor Output

. HSpp0MASK: PP0 operation mask

. HSpp1MASK: PP1 operation mask

. HSpp0EDGE [1:0]: PP0 edge selection flag

. HSpp1EDGE [1:0]: PP1 edge selection flag

Functions

Type HScOP[7:0] Cycle Description

Rendering CTRL_OP_RDAT EPcntX/2 Horizontal setup

Pixel processor management

Pixel processor assignment

(PP interpolation by 2X)

Texture CTRL_OP_TMOD 1 Set texture mode

Bypass

Auxiliary CTRL_OP_ASTR 1 Store data to front buffer

PP Control Scheme
See Figure 7.18.

Pipeline Timing
See Figure 7.19.

Low-power Rasterizer Design 205

Signal Descriptions

Control signals Description

MPnwait nWait from memory programmer

ZBI_selBUS Front/back buffer selection (alpha/beta memory)

ZBI_ZB0cmd[2:0]@n Z-buffer eDRAM command

ZBI_ZB1cmd[2:0]@n Bypass from HS_ZBcmd

ZBI_ZB0addr[14:0]@n Z-buffer eDRAM address

ZBI_ZB1addr[14:0]@n Bypass from HS_ZBaddr considering ZB flag

ZBInwait nWait to previous pipe

HScOP[7:0] Original OP code without refresh

Same as EPcOP[7:0]

Required to generate ZBInwait from Mpnwait

HScZB Z-buffer flag

RBUF mode: buffer select

ASTR, RCLR mode: masking out

HS_ZB0cmd[2:0] Z-buffer eDRAM command

Figure 7.18 PP control scheme: block diagram

EP HS PI

EP HS PIwait

wait

Figure 7.19 PP control scheme: pipeline timing

206 Mobile 3D Graphics SoC

HS_ZB1cmd[2:0] 3’b100: dRMW (different ROW)

3’b010: sRMW (same ROW)

3’b000: NOP

ROW-address register must be reset to dRMW for

non-consecutive operation at every Refresh/CMD

(NOP, RDAT, RCLR, ASTR)

ex: {MSB_OP_flag þ ROW}

Commonly generated and masked by HSppMASK

Overridden by HSnhld

HS_ZB0addr[14:0] 15-bit Z-buffer address (128� 256)

HS_ZB1addr[14:0] {ROW,COL}

Normal operation: generated by counter

ASTR: with HSdADDR[15:0]

Commonly generated and masked by HSppMASK

HSppMASK[1:0] PP enable mask

Overrides nhld at the next stage and command generation

2’b1X: PP0 enable

2’bX1: PP1 enable

HSppASSIGN PP assign

Assign-A: PP0 ! PP1

Assign-B: PP1 ! PP0

HSpp0EDGE[1:0] PP edge selection

HSpp1EDGE[1:0] 2’b10: left edge

2’b01: right edge

HScOP[7:0] OP code

Datapath signal Description

HSpxlLR {Z[39:24],R[23:16],G[15:8],B[7:0]}

R, G, B: 8-bit unsigned data

Z: 16-bit unsigned data

HStxlLR {U[47:32],V[31:16],W[15:0]}

U, V, W: 16-bit unsigned data

HSsubPXL {Z[43:27],R[26:18],G[17:9],B[8:0]}

Z: 17-bit signed data

{sign, data}

R, G, B: 9-bit signed data

{sign, data}

HSsubTXL {U[50:34],V[33:17],W[16:0]}

U, V, W: 17-bit signed data

{sign, data}

HSdivPXL {Z[75:51],R[50:34],G[33:17],B[16:0]}

Z: 25-bit signed data

{sign_1b, data_16b, frac_8b}

R, G, B: 17-bit signed data

{sign_1b, data_8b, frac_8b}

HSdivTXL {U[74:50],V[49:25],W[24:0]}

25-bit signed data

{sign_1b, data_16b, frac_8b}

Low-power Rasterizer Design 207

Horizontal Setup

See Figure 7.20.

. Prevents unnecessary PP from transition

. Horizontal-fixed PP assignment eliminates “2-to-2 memory crossbar”

Pipeline Timing

See Figure 7.21.

Figure 7.21 Horizontal setup: pipeline timing

P
P

0
P

P
1

P
P

0
P

P
1

Horizontal-Fixed
PP Assignment

(Vertical 1x256 Strip)

PP0 PP1 PP1PP0

PP Distribute

2*dXdX2*dXdX

ZB : +1 X-AddressZB : Same Address

PP1 PP0PP1PP0

Assign-BAssign-A

Figure 7.20 Horizontal setup: PP assignment

208 Mobile 3D Graphics SoC

RTL Code

/*

* RAMP-GR

* RAMP-GR HS Module: Horizontal Setup

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Whs(REclk, PInwait, EPreset, EPnhld, EPcOP, EPcFB, EPcZB,

EPcDF, EPcTMF, EPcAF, EPcTEXEN, EPcFMB, EPcTMB, EPcSCR,

EPtmod, EPdADDR, EPdA, EPpxlY, EPpxlX, EPcntX,

EPpxlL, EPtxlL, EPpxlR, EPtxlR,

HSnwait, HSreset, HSnhld, HScOP, HScFB,

HScDF, HScTMF, HScAF, HScTEXEN, HScFMB, HScTMB, HScSCR,

HS_ZB0cmd, HS_ZB1cmd, HS_ZB0addr, HS_ZB1addr, HSppMASK, HSppASSIGN,

HStmod, HSdADDR, HSdA, HSpxlL, HStxlL, HSpxlR, HStxlR, HSdivPXL,

HSdivTXL, HSpp0MASK, HSpp0EDGE_L, HSpp0EDGE, HSpp1MASK, HSpp1EDGE_L,

HSpp1EDGE, ZBI_HSreset, ZBI_ZB0cmd, ZBI_ZB1cmd, ZBI_ZB0addr,

ZBI_ZB1addr);

//Wiring

assign #1 HSpp0MASK = HSppMASK[1];

assign #1 HSpp1MASK = HSppMASK[0];

assign #1 HSpp0EDGE_L = HSpp0EDGE[1] | HSpp1EDGE[1];

assign #1 HSpp1EDGE_L = HSpp0EDGE[1] | HSpp1EDGE[1];

/* Module interconnection */

//Main controller

Whs_ctrl sshs_ctrl();

//Main controller

module Whs_ctrl(REclk, PInwait, EPreset, EPnhld, EPcOP, EPcFB, EPcZB,

EPcDF, EPcTMF, EPcAF, EPcTEXEN, EPcFMB, EPcTMB, EPcSCR,

HSdADDR, HSpxlY, HSpxlX, EPcntX, HScntX,

HSnwait, HSreset, HSnhld, HScOP, HScFB,

HScDF, HScTMF, HScAF, HScTEXEN, HScFMB, HScTMB, HScSCR,

HSfetch_CLK, HSfetch_TMOD, HSfetch_ADDR, HSfetch_ALPHA,

HSfetch_PXL, HSfetch_TXL,

HS_ZB0cmd, HS_ZB1cmd, HS_ZB0addr, HS_ZB1addr,

HSppMASK, HSppASSIGN, HSpp0EDGE, HSpp1EDGE, HScZB, HSnhld_int,

HScounter_X, HScounter_Y);

/* Combinational state-control logics */

//nWait

assign HSnwait_gen1 = �(HSnhld_int & (HScDF_int HScOP[4]))

& (|{HScounter_Y, HScounter_X}));

assign HSnwait_gen2 = �(HSnhld_int & HScOP[0] & (|{HScounter_Y,

HScounter_X}));

assign HSnwait_gen = (HSnwait_gen1 & HSnwait_gen2);

assign HSnwait = (HSnwait_gen & PInwait) | �EPreset;

Low-power Rasterizer Design 209

//nHld

assign HSnhld_gen1 = �HSnwait_gen;

assign HSnhld = HSnhld_int|HSnhld_gen1;

//Fetch

assign #1 HSfetch_CLK = HSnwait & EPnhld;

assign HSfetch_TMOD = EPcTMF;

assign HSfetch_ADDR = EPcAF;

assign HSfetch_ALPHA = EPcDF;

assign HSfetch_PXL = EPcDF;

assign HSfetch_TXL = EPcDF & EPcTEXEN;

always @(posedge REclk)

begin

//Control signals

if(HSnwait)

begin

//State control

HSnhld_int <= EPnhld;

HSreset <= EPreset;

//Fetch singals

HScDF_int <= EPcDF;

HScTMF_int <= EPcTMF;

HScAF_int <= EPcAF;

HScTEXEN_int <= EPcTEXEN;

HScFMB_int <= EPcFMB;

HScTMB_int <= EPcTMB;

//Trivial Signals

HScOP <= EPcOP;

HScFB <= EPcFB;

HScZB <= EPcZB;

HScSCR <= EPcSCR;

end

/* Multicycle counter */

//Set: RDAT to EPcntX/2

if(HSnwait & EPcDF & (EPcOP[5]|EPcOP[4]))

begin

HSxcnt <= 8’b0;

//HScounter <= {8’b0,EPcntX[8:1]};

HScounter_X <= EPcntX[8:1];

HScounter_Y <= 8’b0;

end

//Set: RCLR to EPcnt

else if(HSnwait & EPcOP[0])

begin

HScounter_X <= 8’d159;

HScounter_Y <= 8’d239;

end

//Count

else if((PInwait | �EPreset) & (|{HScounter_Y, HScounter_X}) & HSnhld)

begin

if(HScOP[5])

begin

//Up counter

210 Mobile 3D Graphics SoC

HSxcnt <= HSxcnt + 1;

HScounter_X <= HScounter_X -1;

end

else if(HScOP[0])

begin

//Down counter

HScounter_X <= HScounter_X - 1;

if(�|HScounter_X & |HScounter_Y)

begin

HScounter_X <= 8’d159;

HScounter_Y <= HScounter_Y - 1;

end

end

//Down counter

//HScounter <= HScounter - 1;

end

end

always @(negedge REclk)

begin

HScDF <= HScDF_int & HSnhld;

HScTMF <= HScTMF_int & HSnhld;

HScAF <= HScAF_int & HSnhld;

HScTEXEN <= HScTEXEN_int & HSnhld;

HScFMB <= HScFMB_int & HSnhld;

HScTMB <= HScTMB_int & HSnhld;

end

/* PP control signals: fully combinational logic */

//Assignment, edge, mask: left and rignt engine (not PP0 nor PP1)

assign #1 HSppASSIGN = HSpxlX[0];

assign #1 HSppEDGE_LR = {�(|HSxcnt), �(|{HScounter_Y, HScounter_X})};

assign#1 HSppMASK_LR ={1’b1,((|{HScounter_Y,HScounter_X})|HScntX[0])};

//PP0 and PP1 correction

assign #1 HSppMASK = (HSppASSIGN) ?

{HSppMASK_LR[0], HSppMASK_LR[1]} : HSppMASK_LR;

always @(HSppASSIGN or HSppEDGE_LR or HScntX)

begin

casex({HSppASSIGN, HScntX[0]})

2’b00 : begin

HSpp0EDGE <= HSppEDGE_LR;

HSpp1EDGE <= 2’b00; end

2’b01 : begin

HSpp0EDGE <= {HSppEDGE_LR[1], 1’b0};

HSpp1EDGE <= {1’b0, HSppEDGE_LR[0]}; end

2’b10 : begin

HSpp0EDGE <= 2’b00;

HSpp1EDGE <= HSppEDGE_LR; end

2’b11 : begin

HSpp0EDGE <= {1’b0, HSppEDGE_LR[0]};

HSpp1EDGE <= {HSppEDGE_LR[1], 1’b0}; end

endcase

end

Low-power Rasterizer Design 211

//Z-buffer address generation

//RDAT

DW01_add #(8) add_ZB_XL (.A (HSpxlX[8:1]),

.B (HSxcnt),

.CI (1’b0),

.SUM (HSZBaddrX_L),

.CO (cout0));

DW01_add #(8) add_ZB_XR (.A (HSpxlX[8:1]),

.B (HSxcnt),

.CI (HSpxlX[0]),

.SUM (HSZBaddrX_R),

.CO (cout1));

//320xy

WMUL_add mul_ZB_Y (.x (10’d320),

.y (HSpxlY),

.z (HS_yout));

DW01_add #(16) add_addr_L(.A (HS_yout[16:1]),

.B ({8’b0, HSZBaddrX_L}),

.CI (1’b0),

.SUM (HS_RDATaddrL),

.CO (a_coutL));

DW01_add #(16) add_addr_R(.A (HS_yout[16:1]),

.B ({8’b0, HSZBaddrX_R}),

.CI (1’b0),

.SUM (HS_RDATaddrR),

.CO (a_coutR));

//Clear address

WMUL_add mul_CLR_Y (.x (10’d320),

.y (HScounter_Y),

.z (HS_Yclr));

DW01_add #(16) add_CLR (.A (HS_Yclr[16:1]),

.B ({8’b0, HScounter_X}),

.CI (1’b0),

.SUM (HS_clraddr),

.CO (a_coutclr));

//assign #1 HSpp0_RDATaddr = (HSppASSIGN) ?

{HSpxlY, HSZBaddrX_R} : {HSpxlY, HSZBaddrX_L};

//assign #1 HSpp1_RDATaddr = (HSppASSIGN) ?

{HSpxlY, HSZBaddrX_L} : {HSpxlY, HSZBaddrX_R};

assign #1 HSpp0_RDATaddr = (HSppASSIGN) ? HS_RDATaddrR : HS_RDATaddrL;

assign #1 HSpp1_RDATaddr = (HSppASSIGN) ? HS_RDATaddrL : HS_RDATaddrR;

//Address multiplexing

always @(HScOP or HSpp0_RDATaddr or HSpp1_RDATaddr or HS_clraddr)

begin

casex(HScOP)

‘WCTRL_OP_RSHA : begin

HS_ZB0addr <= HSpp0_RDATaddr;

HS_ZB1addr <= HSpp1_RDATaddr; end

‘WCTRL_OP_RCLR : begin

HS_ZB0addr <= HS_clraddr;

HS_ZB1addr <= HS_clraddr; end

default : begin

HS_ZB0addr <= 16’b0;

212 Mobile 3D Graphics SoC

HS_ZB1addr <= 16’b0; end

endcase

end

/* Z-buffer command generation */

always @(HScOP or HSnhld or PInwait)

begin

if((HScOP[5]|HScOP[4]|HScOP[0]) & HSnhld & PInwait)

//RSHA, RTEX, RCLR

HS_ZBcmd_int <= ‘WHS_MEMCMD_RMW;

else HS_ZBcmd_int <= ‘WHS_MEMCMD_NOP;

end

//Command generation

always @(HS_ZBcmd_int or HSppMASK or HScOP)

begin

//Other operations

casex(HS_ZBcmd_int)

‘WHS_MEMCMD_NOP :

begin

HS_ZB0cmd <= ‘WFZB_CMD_NOP;

HS_ZB1cmd <= ‘WFZB_CMD_NOP;

end

‘WHS_MEMCMD_RMW :

begin

if(HScOP[0])

//RCLR

begin

HS_ZB0cmd <= ‘WFZB_CMD_RMW;

HS_ZB1cmd <= ‘WFZB_CMD_RMW;

end

else if(HScOP[5]|HScOP[4])

//RSHA / RTEX

begin

HS_ZB0cmd <= (HSppMASK[1]) ?

‘WFZB_CMD_RMW : ‘WFZB_CMD_NOP;

HS_ZB1cmd <= (HSppMASK[0]) ?

‘WFZB_CMD_RMW : ‘WFZB_CMD_NOP;

end

else

begin

HS_ZB0cmd <= ‘WFZB_CMD_NOP;

HS_ZB1cmd <= ‘WFZB_CMD_NOP;

end

end

default :

begin

HS_ZB0cmd <= ‘WFZB_CMD_NOP;

HS_ZB1cmd <= ‘WFZB_CMD_NOP;

end

endcase

end

endmodule

Low-power Rasterizer Design 213

//Data latches

Whs_latch sshs_latch();

//Data latches

module Whs_latch(REclk, clk, HSfetch_TMOD, HSfetch_ADDR,

HSfetch_ALPHA, HSfetch_PXL, HSfetch_TXL,

EPtmod, EPdADDR, EPdA, EPpxlY, EPpxlX, EPcntX,

EPpxlL, EPtxlL, EPpxlR, EPtxlR,

HStmod, HSdADDR, HSdA, HSpxlY, HSpxlX, HScntX,

HSpxlL, HStxlL, HSpxlR, HStxlR);

//HS_LATCH_TMOD

always @(posedge REclk)

begin

if(clk & HSfetch_TMOD) HStmod <= EPtmod;

end

//HS_LATCH_ADDR

always @(posedge REclk)

begin

if(clk & HSfetch_ADDR) HSdADDR <= EPdADDR;

end

//HS_LATCH_ALPHA

always @(posedge REclk)

begin

if(clk & HSfetch_ALPHA) HSdA <= EPdA;

end

//HS_LATCH_PXL

always @(posedge REclk)

begin

if(clk & HSfetch_PXL)

begin

HSpxlY <= EPpxlY;

HSpxlX <= EPpxlX;

HScntX <= EPcntX;

HSpxlL <= EPpxlL;

HSpxlR <= EPpxlR;

end

end

//HS_LATCH_TXL

always @(posedge REclk)

begin

if(clk & HSfetch_TXL)

begin

HStxlL <= EPtxlL;

HStxlR <= EPtxlR;

end

end

endmodule

//Depth buffer interface

Whs_zbi sshs_zbi();

// Z-buffer interface

module Whs_zbi(REclk, HScZB, HSnhld_int,

214 Mobile 3D Graphics SoC

HS_ZB0cmd, HS_ZB1cmd, HS_ZB0addr, HS_ZB1addr, PInwait, HSreset, HScOP,

ZBI_HSreset, ZBI_ZB0cmd, ZBI_ZB1cmd, ZBI_ZB0addr, ZBI_ZB1addr);

//Reset

assign #1 ZBI_HSreset = HSreset;

/* Z-buffer command/address interface */

//Latched @ negative REclk for large skew-free window

always @(negedge REclk)

begin

//Command - RCLR : masking out depending on HScZB

if(HScOP[0]) begin

ZBI_ZB0cmd <= (HScZB) ? HS_ZB0cmd : ‘WFZB_CMD_NOP;

ZBI_ZB1cmd <= (HScZB) ? HS_ZB1cmd : ‘WFZB_CMD_NOP; end

//Command otherwise

else begin

ZBI_ZB0cmd <= HS_ZB0cmd;

ZBI_ZB1cmd <= HS_ZB1cmd; end

//Address

ZBI_ZB0addr <= HS_ZB0addr;

ZBI_ZB1addr <= HS_ZB1addr;

end

endmodule

//7-way SIMD subtractor

Whs_lrsub_7simd sshs_lrsub_7simd();

module Whs_lrsub_7simd(HSpxlL,HStxlL,HSpxlR,HStxlR,HSsubPXL,HSsubTXL);

/* Substractor */

DW01_sub #(17) sub_Z(.A ({1’b0, HSpxlR[39:24]}),

.B ({1’b0, HSpxlL[39:24]}),

.CI (1’b0),

.DIFF (HSsubPXL[43:27]),

.CO (coutZ));

DW01_sub #(9) sub_R(.A ({1’b0, HSpxlR[23:16]}),

.B ({1’b0, HSpxlL[23:16]}),

.CI (1’b0),

.DIFF (HSsubPXL[26:18]),

.CO (coutR));

DW01_sub #(9) sub_G(.A ({1’b0, HSpxlR[15:8]}),

.B ({1’b0, HSpxlL[15:8]}),

.CI (1’b0),

.DIFF (HSsubPXL[17:9]),

.CO (coutG));

DW01_sub #(9) sub_B(.A ({1’b0, HSpxlR[7:0]}),

.B ({1’b0, HSpxlL[7:0]}),

.CI (1’b0),

.DIFF (HSsubPXL[8:0]),

.CO (coutB));

DW01_sub #(33) sub_U(.A ({1’b0, HStxlR[95:64]}),

.B ({1’b0, HStxlL[95:64]}),

.CI (1’b0),

Low-power Rasterizer Design 215

.DIFF (HSsubTXL[98:66]),

.CO (coutU));

DW01_sub #(33) sub_V(.A ({1’b0, HStxlR[63:32]}),

.B ({1’b0, HStxlL[63:32]}),

.CI (1’b0),

.DIFF (HSsubTXL[65:33]),

.CO (coutV));

DW01_sub #(33) sub_W(.A ({1’b0, HStxlR[31:0]}),

.B ({1’b0, HStxlL[31:0]}),

.CI (1’b0),

.DIFF (HSsubTXL[32:0]),

.CO (coutW));

endmodule

//7-way SIMD divider

Whs_div_7simd sshs_div_7simd();

//7-way SIMD divider

module Whs_div_7simd(HSsubPXL, HSsubTXL, HScntX, HSdivPXL, HSdivTXL);

/* Divide look-up table */

WDIVLUT9 lut(.tbin (HScntX),

.tbout (DIVsel),

.tbshift (DIVshift));

/* Bunch of multipliers */

WMUL17x8 mul_Z(.x (HSsubPXL[43:27]),

.y (DIVsel),

.z (HSdivPXLs[75:51]));

WMUL9x8 mul_R(.x (HSsubPXL[26:18]),

.y (DIVsel),

.z (HSdivPXLs[50:34]));

WMUL9x8 mul_G(.x (HSsubPXL[17:9]),

.y (DIVsel),

.z (HSdivPXLs[33:17]));

WMUL9x8 mul_B(.x (HSsubPXL[8:0]),

.y (DIVsel),

.z (HSdivPXLs[16:0]));

WMUL33x8 mul_U(.x (HSsubTXL[98:66]),

.y (DIVsel),

.z (HSdivTXLs[122:82]));

WMUL33x8 mul_V(.x (HSsubTXL[65:33]),

.y (DIVsel),

.z (HSdivTXLs[81:41]));

WMUL33x8 mul_W(.x (HSsubTXL[32:0]),

.y (DIVsel),

.z (HSdivTXLs[40:0]));

/* Shift module */

Whs_shift_25 shift_Z(.din(HSdivPXLs[75:51]),

.dout(HSdivPXL[75:51]), .shift(DIVshift));

Whs_shift_17 shift_R(.din(HSdivPXLs[50:34]),

216 Mobile 3D Graphics SoC

.dout(HSdivPXL[50:34]), .shift(DIVshift));

Whs_shift_17 shift_G(.din(HSdivPXLs[33:17]),

.dout(HSdivPXL[33:17]), .shift(DIVshift));

Whs_shift_17 shift_B(.din(HSdivPXLs[16: 0]),

.dout(HSdivPXL[16: 0]), .shift(DIVshift));

Whs_shift_41 shift_U(.din(HSdivTXLs[122:82]),

.dout(HSdivTXL[122:82]), .shift(DIVshift));

Whs_shift_41 shift_V(.din(HSdivTXLs[81:41]),

.dout(HSdivTXL[81:41]), .shift(DIVshift));

Whs_shift_41 shift_W(.din(HSdivTXLs[40: 0]),

.dout(HSdivTXL[40: 0]), .shift(DIVshift));

endmodule

endmodule

7.5.4.7 PI: Pixel Interpolation

The PI stage (Figure 7.22) computes pixel values using the edge pixel and the

horizontal slope. Also, the depth test is performed in the PI stage. The previous depth

data stored in the depth buffer and the depth data of the current pixel are compared and

the prior pixel, from the view point, is stored. If the current pixel is a later pixel than the

previous pixel, the rest of the pipelines are turned off.

Figure 7.22 Pixel interpolation

Low-power Rasterizer Design 217

Pipeline Input

. REclk: redering engine clock

. Pipe control signals: same as HS

. Memory bypass signals: ZB0, ZB1, TM control signals

. PP common signals: edge pixel data

. PP dependent signals

. ZB_nWAIT: arbitration wait signal

Pipeline Output

. Main pipe signals

. LOD signals

. Common signals

. PP dependent signals

Functions

. Pixel/texel horizontal interpolation

. Depth test

. Z-buffer databus interface

. Turing off following “datapath” if z-test fails

Signal Descriptions

Datapath signal Description

HSpxlLR {Z[30:16],R[15:11],G[10:5],B[4:0]}

PIpp#PXL R, G, B: 5:6:5 unsigned data

Z: 15-bit unsigned data

HStxlLR {U[47:32],V[31:16],W[15:0]}

PIpp#TXL U, V, W: 16-bit unsigned data

HSdivPXL {Z[74:51],R[50:34],G[33:17],B[16:0]}

Z: 24-bit signed data

- {sign_1b, data_16b, frac_8b}

R, G, B: 17-bit signed data

- {sign_1b, data_8b, frac_8b}

HSdivTXL {U[74:50],V[49:25],W[24:0]}

25-bit signed data

- {sign_1b, data_16b, frac_8b}

Control signal Description

PI_ZBmode[2:0] Z-buffer interface write-bus-mux control

ZBI_ZB#wdat[15:0]

3’b100: Write 16’b0

218 Mobile 3D Graphics SoC

3’b010: Driving {1’b0, PI_ZBdata[14:0]}

3’b001: Bypass PI_ZB#wdat(Default)

ZBI_ZB#wmsk

3’b100: Force to 1

3’b010: Force to 1

3’b001: Bypass PI_ZB#wmsk (default)

PIppMASK[1:0] “Real mask”

HSppMASK & PI_ZB#wmsk (bitwise operation)

PIpp0MASK “Bypass mask”

PIpp1MASK Bypass HSpp#MASK

To conserve u,v,w for LOD calculation

RTL Code

/*

* RAMP-GR

* RAMP-GR PI Module: Pixel Interpolation

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wpi(REclk, TA1nwait, HSreset, HSnhld, HScOP, HScFB,

HScDF, HScTMF, HScAF, HScTEXEN, HScFMB, HScTMB, HScSCR,

HS_ZB0cmd, HS_ZB1cmd, HS_ZB0addr, HS_ZB1addr, HSppMASK,

HSppASSIGN, HStmod, HSdADDR, HSdA, HSpxlL, HStxlL, HSpxlR,

HStxlR, HSdivPXL, HSdivTXL, HSpp0MASK, HSpp0EDGE_L,

HSpp0EDGE, HSpp1MASK, HSpp1EDGE_L, HSpp1EDGE,

ZBI_ZB0rdat, ZBI_ZB1rdat,

PInwait, PIreset, PInhld, PIcOP, PIcFB, PIcDF, PIcTMF, PIcAF,

PIcTEXEN, PIcFMB, PIcTMB, PIcSCR,

PI_ZB0cmd, PI_ZB1cmd, PI_ZB0addr, PI_ZB1addr, PIppASSIGN,

PIppMASK, PIppEDGE_L, PItmod, PIdADDR, PIdA,

PIpp0MASK, PIpp0PXL, PIpp0TXL, PIpp1MASK, PIpp1PXL, PIpp1TXL,

ZBI_ZB0wdat, ZBI_ZB1wdat, ZBI_ZB0wmsk, ZBI_ZB1wmsk);

/* Module interconnection */

//Main controller

Wpi_ctrl sspi_ctrl();

//Main controller

module Wpi_ctrl(REclk, TA1nwait, HSreset, HSnhld, HScOP, HScFB, HScDF,

HScTMF,

HScAF, HScTEXEN, HScFMB, HScTMB, HScSCR,

HS_ZB0cmd, HS_ZB1cmd, HS_ZB0addr, HS_ZB1addr, HSppMASK,

HSppASSIGN, PIpp0EDGE_L, PIpp1EDGE_L, PI_ZB0wmsk,

PI_ZB1wmsk, PInwait, PIreset, PInhld, PIcOP, PIcFB, PIcDF,

PIcTMF,

PIcAF, PIcTEXEN, PIcFMB, PIcTMB, PIcSCR,

PI_ZB0cmd, PI_ZB1cmd, PI_ZB0addr, PI_ZB1addr,

PIppASSIGN, PIppMASK, PIppMASK_int, PIppEDGE_L, PI_ZBmode,

Low-power Rasterizer Design 219

PIfetch_CLK, PIfetch_TMOD, PIfetch_ADDR, PIfetch_ALPHA,

PIfetch_PXL, PIfetch_TXL);

/* Pipeline control signal generation */

//nWait

assign PInwait = TA1nwait | �HSreset;

//nHld

assign #1 PInhld = PInhld_int;

//Fetch enable

assign #1 PIfetch_CLK = PInwait & HSnhld;

assign PIfetch_TMOD = HScTMF;

assign PIfetch_ADDR = HScAF;

assign PIfetch_ALPHA = HScDF;

assign PIfetch_PXL = HScDF;

assign PIfetch_TXL = HScDF & HScTEXEN;

//LOD control

assign #1 PIppMASK[1] = PIppMASK_int[1] & PI_ZB0wmsk;

assign #1 PIppMASK[0] = PIppMASK_int[0] & PI_ZB1wmsk;

assign #1 PIppEDGE_L = PIpp0EDGE_L | PIpp1EDGE_L;

always @(posedge REclk)

begin

if(PInwait)

begin

//State controls

PInhld_int <= HSnhld;

PIreset <= HSreset;

//Trivial signals

PIcOP <= HScOP;

PIcFB <= HScFB;

PIcSCR <= HScSCR;

PI_ZB0cmd <= HS_ZB0cmd;

PI_ZB1cmd <= HS_ZB1cmd;

PI_ZB0addr <= HS_ZB0addr;

PI_ZB1addr <= HS_ZB1addr;

//Fetch Signals

PIcDF_int <= HScDF;

PIcTMF_int <= HScTMF;

PIcAF_int <= HScAF;

PIcTEXEN_int <= HScTEXEN;

PIcFMB_int <= HScFMB;

PIcTMB_int <= HScTMB;

//LOD Signals

PIppASSIGN <= HSppASSIGN;

PIppMASK_int <= HSppMASK;

end

end

always @(negedge REclk)

begin

PIcDF <= PIcDF_int & PInhld;

PIcTMF <= PIcTMF_int & PInhld;

PIcAF <= PIcAF_int & PInhld;

PIcTEXEN <= PIcTEXEN_int & PInhld;

220 Mobile 3D Graphics SoC

PIcFMB <= PIcFMB_int & PInhld;

PIcTMB <= PIcTMB_int & PInhld;

end

/* Z-buffer interface signal generation */

//This signal is overridden by ZBcmd

always @(PIcOP or PInhld)

begin

if(PInhld & PIcOP[0]) PI_ZBmode <= ‘WPI_ZBI_ZERO; //RCLR;

else PI_ZBmode <= ‘WPI_ZBI_BYPASS; //RSHA / RTEX

end

endmodule

//Data latches

Wpi_latch sspi_latch();

//Data latches

module Wpi_latch(REclk, clk, PIfetch_TMOD, PIfetch_ADDR, PIfetch_ALPHA,

PIfetch_PXL, PIfetch_TXL, HStmod, HSdADDR, HSdA,

HSpxlL, HStxlL, HSpxlR, HStxlR, HSdivPXL, HSdivTXL,

PItmod, PIdADDR, PIdA, PIpxlL, PItxlL, PIpxlR, PItxlR,

PIdivPXL, PIdivTXL);

//PI_LATCH_TMOD

always @(posedge REclk)

begin

if(clk&PIfetch_TMOD)

PItmod <= HStmod;

end

//PI_LATCH_ADDR

always @(posedge REclk)

begin

if(clk&PIfetch_ADDR)

PIdADDR <= HSdADDR;

end

//PI_LATCH_ALPHA

always @(posedge REclk)

begin

if(clk&PIfetch_ALPHA)

PIdA <= HSdA;

end

//PI_LATCH_PIXEL

always @(posedge REclk)

begin

if(clk &PIfetch_PXL)

begin

PIpxlL <= HSpxlL;

PIpxlR <= HSpxlR;

PIdivPXL <= HSdivPXL;

end

end

//PI_LATHCH_TEXEL

always @(posedge REclk)

Low-power Rasterizer Design 221

begin

if(clk & PIfetch_TXL)

begin

PItxlL <= HStxlL;

PItxlR <= HStxlR;

PIdivTXL <= HSdivTXL;

end

end

endmodule

// PI_ZBI

Wpi_zbi sspi_zbi();

//Z-buffer interface

module Wpi_zbi(PI_ZBmode, PIppMASK_int, ZBI_ZB0rdat, ZBI_ZB1rdat,

ZBI_ZB0wdat, ZBI_ZB1wdat, ZBI_ZB0wmsk, ZBI_ZB1wmsk,

PI_ZB0rdat, PI_ZB1rdat, PI_ZB0wdat, PI_ZB1wdat,

PI_ZB0wmsk, PI_ZB1wmsk);

//ZB -> PI

assign #1 PI_ZB0rdat = ZBI_ZB0rdat;

assign #1 PI_ZB1rdat = ZBI_ZB1rdat;

//PI -> ZB

always@(PI_ZBmodeorPIppMASK_intorPI_ZB0wdatorPI_ZB1wdatorPI_ZB0wmsk

or PI_ZB1wmsk)

begin

casex(PI_ZBmode)

‘WPI_ZBI_ZERO : begin

ZBI_ZB0wdat <= 16’b0;

ZBI_ZB1wdat <= 16’b0;

ZBI_ZB0wmsk <= 1’b1;

ZBI_ZB1wmsk <= 1’b1; end

‘WPI_ZBI_BYPASS : begin

ZBI_ZB0wdat <= PI_ZB0wdat;

ZBI_ZB1wdat <= PI_ZB1wdat;

ZBI_ZB0wmsk <= PI_ZB0wmsk & PIppMASK_int[1];

ZBI_ZB1wmsk <= PI_ZB1wmsk & PIppMASK_int[0]; end

default : begin

ZBI_ZB0wdat <= 16’bX;

ZBI_ZB1wdat <= 16’bX;

ZBI_ZB0wmsk <= 1’bX;

ZBI_ZB1wmsk <= 1’bX; end

endcase

end

endmodule

//PIE_0

Wpi_engine sspi_pie0();

//PIE_1

Wpi_engine sspi_pie1();

//PI engine is in charge of the pixel interpolation operation.

//See the chart.

222 Mobile 3D Graphics SoC

REclk
H

S
p

p
E

D
G

E
[1

:0
]

H
S

p
p

M
A

S
K

H
S

p
p

E
D

G
E

_L

P
It

xl
R

[4
7:

0]

P
Ip

xl
R

[3
0:

0]

P
Ip

xl
L

[3
0:

0]

P
It

xl
L

[4
7:

0]

PI_ZBrdat[15:0]

PI_ZBwdat[15:0]

PI_ZBwmsk

P
Id

iv
P

X
L

[7
4:

0]

P
Id

iv
T

X
L

[7
4:

0]

P
Ip

p
M

A
S

K

PIE_CTRL

PIE_ADD_7SIMD

PIEctrlVL

PIEctrlD[1:0]

PIE_LATCH

P
IE

p
xl

V
[7

4:
0]

P
IE

tx
lV

[7
4:

0]

P
IE

p
xl

D
[7

4:
0]

P
IE

tx
lD

[7
4:

0]

P
IE

p
xl

L
A

T
C

H
[7

4:
0]

P
IE

tx
lL

A
T

C
H

[7
4:

0]

PIEctrlVR

PIE_CLK

PIEpxlADD[74:0]

PIEtxlADD[74:0]

P
Ip

p
P

X
L

[1
5:

0]

P
Ip

p
T

X
L

[4
7:

0]

PIcOP[7]

PInhld

PIEppPXL[39:24]

PIE_ZSUB
+ –

P
IE

p
p

P
X

L
[1

5:
0]

P
IE

p
p

T
X

L
[4

7:
0]

PIppEDGE_L

PIfetch_CLK

PIfetch_PXL

Datapath signals Description

PIEctrlVL Left vertex selection

= HSppEDGE_L

0: select LATCH

1: bypass PI_L

PIEctrlVR Right vertex selection

= HSppEDGE[0]

0: select ADD

1: select PI_R

PIEctrlD[1:0] Interpolation delta selection

={EDGE_L,EDGE[1]}

0X: PI_D<<1 (x2 generation)

10: PI_D (x1 bypass)

11: 0 (zero blocking)

PIE_CLK Fetch signal

Low-power Rasterizer Design 223

= (PIcOP & PInhld & PIppMASK) & REclk

Internal enable signal (@ negedge REclk)

PIE_ADD_7SIMD Input: sign extension þ data þ fraction padding

Output: data only

PIE_ZSUB Input: sign extension

Output: MSB 1-bit only

//PIE main controller

module Wpie_ctrl(REclk, PIfetch_CLK, PIfetch_PXL, PIcOP, PInhld,

PIppEDGE_L, HSppMASK, HSppEDGE_L, HSppEDGE,

PIppMASK, PIEctrlVL, PIEctrlVR, PIEctrlD, PIE_CLK);

assign PIE_CLK = PIE_FETCH;

always @(posedge REclk)

begin

if(PIfetch_CLK&PIfetch_PXL)

begin

PIppEDGE_L <= HSppEDGE_L;

PIppMASK <= HSppMASK;

PIEctrlVL <= HSppEDGE_L;

PIEctrlVR <= HSppEDGE[0];

PIEctrlD <= {HSppEDGE_L,HSppEDGE[1]};

end

end

always @(negedge REclk)

begin

PIE_FETCH <= PIcOP & PInhld & PIppMASK;

end

endmodule

//7-way SIMD adder with sign extended input

//and trimmed output

module Wpie_add_7simd(PIEpxlV, PIEtxlV, PIEpxlD, PIEtxlD, PIEpxlADD,

PIEtxlADD);

/* Adders */

DW01_add #(25) add_Z(.A (PIEpxlV[75:51]),

.B (PIEpxlD[75:51]),

.CI (1’b0),

.SUM (PIEpxlADD[75:51]),

.CO (coutZ));

DW01_add #(17) add_R(.A (PIEpxlV[50:34]),

.B (PIEpxlD[50:34]),

.CI (1’b0),

.SUM (PIEpxlADD[50:34]),

.CO (coutR));

DW01_add #(17) add_G(.A (PIEpxlV[33:17]),

.B (PIEpxlD[33:17]),

.CI (1’b0),

224 Mobile 3D Graphics SoC

.SUM (PIEpxlADD[33:17]),

.CO (coutG));

DW01_add #(17) add_B(.A (PIEpxlV[16:0]),

.B (PIEpxlD[16:0]),

.CI (1’b0),

.SUM (PIEpxlADD[16:0]),

.CO (coutB));

DW01_add #(41) add_U(.A (PIEtxlV[122:82]),

.B (PIEtxlD[122:82]),

.CI (1’b0),

.SUM (PIEtxlADD[122:82]),

.CO (coutU));

DW01_add #(41) add_V(.A (PIEtxlV[81:41]),

.B (PIEtxlD[81:41]),

.CI (1’b0),

.SUM (PIEtxlADD[81:41]),

.CO (coutV));

DW01_add #(41) add_W(.A (PIEtxlV[40:0]),

.B (PIEtxlD[40:0]),

.CI (1’b0),

.SUM (PIEtxlADD[40:0]),

.CO (coutW));

endmodule

module Wpi_engine (REclk, PIcOP, PInhld, PIfetch_CLK, PIfetch_PXL,

HSppMASK, HSppEDGE_L, HSppEDGE,

PIpxlL, PItxlL, PIpxlR, PItxlR, PIdivPXL, PIdivTXL,

PI_ZBrdat, PIppEDGE_L, PI_ZBwdat, PI_ZBwmsk,

PIppMASK, PIppPXL, PIppTXL);

//PIE main controller

Wpie_ctrl sspie_ctrl();

//PIE_ADD_7SIMD

Wpie_add_7simd sspie_add_7simd();

//PIE_ZSBUB

DW01_sub #(17) sspie_zsub(

.A ({1’b0, PI_ZBrdat}),

.B ({1’b0, PIEppPXL[39:24]}),

.CI (1’b0),

.DIFF ({PI_ZBwmsk, subZ}),

.CO (coutZ));

/* Flattened logics */

//PIE_SEL_VL

always @(PIEctrlVL or PIpxlL or PItxlL or PIEpxlLATCH or PIEtxlLATCH)

begin

casex (PIEctrlVL)

1’b0 : begin

PIEpxlV <= PIEpxlLATCH;

PIEtxlV <= PIEtxlLATCH; end

1’b1 :begin

PIEpxlV[75:51] <= {1’b0, PIpxlL[39:24], 8’b0}; //Z

PIEpxlV[50:34] <= {1’b0, PIpxlL[23:16], 8’b0}; //R

PIEpxlV[33:17] <= {1’b0, PIpxlL[15: 8], 8’b0}; //G

PIEpxlV[16: 0] <= {1’b0, PIpxlL[7: 0], 8’b0}; //B

Low-power Rasterizer Design 225

PIEtxlV[122:82] <= {1’b0, PItxlL[95:64], 8’b0}; //U

PIEtxlV[81:41] <= {1’b0, PItxlL[63:32], 8’b0}; //V

PIEtxlV[40: 0] <= {1’b0, PItxlL[31: 0], 8’b0}; end //W

endcase

end

//PIE_SEL_VR

always @(PIEctrlVR or PIEpxlADD or PIEtxlADD or PIpxlR or PItxlR)

begin

casex(PIEctrlVR)

1’b0 : begin

PIEppPXL [39:24] <= PIEpxlADD[74:59]; //Z

PIEppPXL [23:16] <= PIEpxlADD[49:42]; //R

PIEppPXL [15: 8] <= PIEpxlADD[32:25]; //G

PIEppPXL [7: 0] <= PIEpxlADD[15: 8]; //B

PIEppTXL [95:64] <= PIEtxlADD[121:90]; //U

PIEppTXL [63:32] <= PIEtxlADD[81:49]; //V

PIEppTXL [31: 0] <= PIEtxlADD[39: 8]; end //W

1’b1 : begin

PIEppPXL <= PIpxlR;

PIEppTXL <= PItxlR; end

endcase

end

//PIE_SEL_D

always @(PIEctrlD or PIdivPXL or PIdivTXL)

begin

casex(PIEctrlD)

2’b00 : begin // x2 generation

PIEpxlD[75:51] <= {PIdivPXL[73:51], 1’b0}; //Z

PIEpxlD[50:34] <= {PIdivPXL[49:34], 1’b0}; //R

PIEpxlD[33:17] <= {PIdivPXL[32:17], 1’b0}; //G

PIEpxlD[16: 0] <= {PIdivPXL[15: 0], 1’b0}; //B

PIEtxlD[122:82] <= {PIdivTXL[121:82], 1’b0}; //U

PIEtxlD[81:41] <= {PIdivTXL[80:41], 1’b0}; //V

PIEtxlD[40: 0] <= {PIdivTXL[39: 0], 1’b0}; end //W

2’b10 : begin //x1 bypass

PIEpxlD <= PIdivPXL;

PIEtxlD <= PIdivTXL; end

2’b11 : begin //zero blocking

PIEpxlD <= 76’b0;

PIEtxlD <= 123’b0; end

default : begin

PIEpxlD <= 76’bX;

PIEtxlD <= 123’bX; end

endcase

end

//PIE_LATCH

always @(posedge REclk)

begin

//if(PIfetch_CLK&PIE_CLK)

if(PIfetch_CLK)

begin

PIEpxlLATCH <= PIEpxlADD;

PIEtxlLATCH <= PIEtxlADD;

end

226 Mobile 3D Graphics SoC

end

/* Output Re-wiring */

assign #1 PIppPXL = {PIEppPXL[23:16], PIEppPXL[15:8], PIEppPXL[7:0]};

assign #1 PIppTXL = PIEppTXL;

assign #1 PI_ZBwdat = PIEppPXL[39:24];

endmodule

endmodule

7.5.4.8 TA1: Texture Address #1

See Figure 7.23.

Pipeline Input

. REclk: rendering clock

. Pipeline control signal: same as PI

. Memory bypass signal: same as PI

. PP common signal

. PP dependent signal

Figure 7.23 Texture address #1

Low-power Rasterizer Design 227

Pipeline Output

. Pipeline control signals

. Common signals

. PP dependent signals

Functions

. UV calculation with u/w, v/w

. “Really” turning off following datapath if PPmask ¼ 0

Signal Descriptions

Control signal Description

TA1nhld Normal

TA1ppFETCH TA1enable & REclk

TA1enable ¼ TA1nhld_int & TA1cOP[7] &

TA1cTEXEN (@ negedge)

TA1tmod[12:0] BLND:FILT:SIZE

¼ {PItmod[16:13],Pitmod[8:0]}

TA1tmod_BIAS[3:0] Texture LOD bias control

¼ PItmod[12:9]

Bias control

0XXX: unbiased

1AAA: Set to AAA

TA1tmod_SIZE[8:0] Texture size

¼ PItmod[8:0]

Size control

1_0000_0000: 256� 256

0_1000_0000: 128� 128 . . .
TA1lod[2:0] Texture LOD

000: LOD_0

001: LOD_1

010: LOD_2 . . .

Datapath signal Description

TA1pp#U[11:0] 8-bit texture address with 4-bit fraction

TA1pp#V[11:0] Multiplied (shifted) by texture size

RTL Code

/*

* RAMP-GR

* RAMP-GR TA1 Module : Texture Address #1

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

228 Mobile 3D Graphics SoC

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wta1(REclk, TA2nwait, PIreset, PInhld, PIcOP, PIcFB, PIcDF, PIcTMF,

PIcAF, PIcTEXEN, PIcFMB, PIcTMB, PIcSCR,

PI_ZB0cmd, PI_ZB1cmd, PI_ZB0addr, PI_ZB1addr,

PIppASSIGN, PIppMASK, PIppEDGE_L, PItmod, PIdADDR, PIdA,

PIpp0MASK, PIpp0PXL, PIpp0TXL, PIpp1MASK, PIpp1PXL, PIpp1TXL,

TA1nwait, TA1reset, TA1nhld, TA1cOP, TA1cFB, TA1cDF, TA1cTMF,

TA1cAF, TA1cTEXEN, TA1cFMB, TA1cTMB, TA1cSCR,

TA1_ZB0cmd, TA1_ZB1cmd, TA1_ZB0addr, TA1_ZB1addr,

TA1ppMASK, TA1ppASSIGN, TA1tmod, TA1dADDR, TA1dA,

TA1pp0VALID, TA1pp0RGB, TA1pp0U, TA1pp0V,

TA1pp1VALID, TA1pp1RGB, TA1pp1U, TA1pp1V);

/* Wire renaming */

assign #1 TA1pp0VALID = TA1ppMASK[1];

assign #1 TA1pp1VALID = TA1ppMASK[0];

/* Module interconnection */

//Main controller

Wta1_ctrl ssta1_ctrl();

//Main controller

module Wta1_ctrl(REclk, TA2nwait, PIreset, PInhld, PIcOP, PIcFB, PIcDF,

PIcTMF, PIcAF, PIcTEXEN, PIcFMB, PIcTMB, PIcSCR,

PI_ZB0cmd, PI_ZB1cmd, PI_ZB0addr, PI_ZB1addr, PIppASSIGN, PIppMASK,

PIppEDGE_L, TA1nwait, TA1reset, TA1nhld, TA1cOP, TA1cFB, TA1cDF,

TA1cTMF, TA1cAF, TA1cTEXEN, TA1cFMB, TA1cTMB, TA1cSCR,

TA1_ZB0cmd, TA1_ZB1cmd, TA1_ZB0addr, TA1_ZB1addr,

TA1ppMASK, TA1ppASSIGN,

TA1fetch_CLK, TA1fetch_TMOD, TA1fetch_ADDR, TA1fetch_ALPHA,

TA1fetch_PXL, TA1fetch_TXL);

//nWait

assign TA1nwait = TA2nwait | �PIreset;

//nhld

assign #1 TA1nhld = TA1nhld_int;

//Fetch enable

assign #1 TA1fetch_CLK = TA1nwait & PInhld;

assign TA1fetch_TMOD = PIcTMF;

assign TA1fetch_ADDR = PIcAF;

assign TA1fetch_ALPHA = PIcDF;

assign TA1fetch_PXL = PIcDF;

assign TA1fetch_TXL = PIcDF & PIcTEXEN;

always @(posedge REclk)

begin

if(TA1nwait)

begin

//State controls

Low-power Rasterizer Design 229

TA1nhld_int <= PInhld;

TA1reset <= PIreset;

//Fetch signals

TA1cDF_int <= PIcDF;

TA1cTMF_int <= PIcTMF;

TA1cAF_int <= PIcAF;

TA1cTEXEN_int <= PIcTEXEN;

TA1cFMB_int <= PIcFMB;

TA1cTMB_int <= PIcTMB;

//Trivial signals

TA1cOP <= PIcOP;

TA1cFB <= PIcFB;

TA1cSCR <= PIcSCR;

TA1_ZB0cmd <= PI_ZB0cmd;

TA1_ZB1cmd <= PI_ZB1cmd;

TA1_ZB0addr <= PI_ZB0addr;

TA1_ZB1addr <= PI_ZB1addr;

//PP control

TA1ppMASK <= PIppMASK;

TA1ppASSIGN <= PIppASSIGN;

end

end

always @(negedge REclk)

begin

TA1cDF <= TA1cDF_int;

TA1cTMF <= TA1cTMF_int;

TA1cAF <= TA1cAF_int;

TA1cTEXEN <= TA1cTEXEN_int;

TA1cFMB <= TA1cFMB_int;

TA1cTMB <= TA1cTMB_int;

end

endmodule

//Data latches

Wta1_latch ssta1_latch();

//Data latches

module Wta1_latch(REclk,clk,TA1fetch_TMOD,TA1fetch_ADDR,TA1fetch_ALPHA,

PItmod, PIdADDR, PIdA,

TA1tmod, TA1tmod_BIAS, TA1tmod_SIZE, TA1dADDR, TA1dA);.

//TMOD

always @(posedge REclk)

begin

if(clk & TA1fetch_TMOD)

begin

TA1tmod<={PItmod[16:13],PItmod[8:0]};//BLND[1]:FILT[3]:SIZE[9]

TA1tmod_BIAS <= PItmod [12:9];

TA1tmod_SIZE <= PItmod [8:0];

end

end

230 Mobile 3D Graphics SoC

//ADDR

always @(posedge REclk)

begin

if(clk & TA1fetch_ADDR) TA1dADDR <= PIdADDR;

end

//ALPHA

always @(posedge REclk)

begin

if(clk & TA1fetch_ALPHA) TA1dA <= PIdA;

end

endmodule

/* Texture address generation unit */

//TA_engine generates perspective correct texture address.

//Datapath #1: see diagram G.

TA1_ENGINEP
Ip

p
M

A
S

K

P
Ip

p
P

X
L

[2
3:

0]

P
Ip

p
T

X
L

[4
7:

0]

TA1tmod_SIZE[8:0]

TA1fetch_CLK

TA1fetch_TXL

TA1fetch_PXL

TA1fetch_ENGINE

T
A

1p
p

R
G

B
[2

3:
0]

u
IN

[1
5:

0]

vI
N

[1
5:

0]

w
IN

[1
5:

0]

TA1_UVW

u
O

U
T

[1
1:

0]

vO
U

T
[1

1:
0]

TA1_SIZECAL

T
A

1p
p

U
[1

1:
0]

T
A

1p
p

V
[1

1:
0]

Low-power Rasterizer Design 231

//Datapath #2: see diagram H.

uIN[15:0] wIN[15:0]vIN[15:0]

TA1_DETECT_LZ

TA1_UVW

wLZ[7:0]

TA1_DIV_LUT

TA1_DIV_MUL

TA1_DIV_SHIFT

uvMODE[3:0]

DIVsel[7:0]

DIVshift[2:0]

uMUL[24:0] vMUL[24:0]

TA1_TRIM_UV

uDIV[24:0] vDIV[24:0]

TA1_DIV_SAT

uTRIM[15:0] vTRIM[15:0]

uOUT[11:0] vOUT[11:0]

Wta1_engine ssta1_ta1e_0();

Wta1_engine ssta1_ta1e_1();

//TA1_UVW

//TA1_UVW unit divides texture coordinate U and V by W.

//To reduce computation latency and powe consumption, it employs

//logarithmic datapath in divider.

//Details of the HDIV block are in the datapath file.

module Wta1_uvw(uIN, vIN, wIN, uOUT, vOUT);

//U/W

Hdiv div_U(.inx (uIN),

.iny (wIN),

.outx (uDIV_out));

//V/W

Hdiv div_V(.inx (vIN),

.iny (wIN),

.outx (vDIV_out));

//Zero devide by zero

assign #1 uDIV = (uIN == 32’b0) ? 32’b0 : uDIV_out;

assign #1 vDIV = (vIN == 32’b0) ? 32’b0 : vDIV_out;

//TA1_DIV_SAT_U

always @(uDIV)

begin

if(uDIV[16]) uOUT <= 12’b1111_1111_1111;

else uOUT <= uDIV[15:4];

end

232 Mobile 3D Graphics SoC

//TA1)DIV_SAT_V

always @(vDIV)

begin

if(vDIV[16]) vOUT <= 12’b1111_1111_1111;

else vOUT <= vDIV[15:4];

end

endmodule

/* Main engine */

module Wta1_engine(REclk, TA1fetch_CLK, TA1fetch_PXL, TA1fetch_TXL, PIpp-

MASK,

PIppPXL, PIppTXL, TA1tmod_SIZE, TA1ppRGB, TA1ppU, TA1ppV);

//Fetch signals

assign #1 TA1fetch_ENGINE = TA1fetch_CLK & PIppMASK;

/* Module interconnection */

//TA1_ENGINE_LATCH_PXL

always @(posedge REclk)

begin

if(TA1fetch_ENGINE & TA1fetch_PXL) TA1ppRGB <= PIppPXL;

end

//TA1_ENGINE_LATCH_TXL

always @(posedge REclk)

begin

if(TA1fetch_ENGINE & TA1fetch_TXL)

begin

uIN <= PIppTXL[95:64];

vIN <= PIppTXL[63:32];

wIN <= PIppTXL[31:0];

end

end

// UVW unit

Wta1_uvw ssta1_uvw();

//TA1_Sizecal_u

always @(TA1tmod_SIZE or uOUT)

begin

casex(TA1tmod_SIZE)

9’b1_XXXX_XXXX : TA1ppU <= uOUT;

9’bX_1XXX_XXXX : TA1ppU <= {1’b0, uOUT[11:1]};

9’bX_X1XX_XXXX : TA1ppU <= {2’b0, uOUT[11:2]};

9’bX_XX1X_XXXX : TA1ppU <= {3’b0, uOUT[11:3]};

9’bX_XXX1_XXXX : TA1ppU <= {4’b0, uOUT[11:4]};

9’bX_XXXX_1XXX : TA1ppU <= {5’b0, uOUT[11:5]};

9’bX_XXXX_X1XX : TA1ppU <= {6’b0, uOUT[11:6]};

9’bX_XXXX_XX1X : TA1ppU <= {7’b0, uOUT[11:7]};

9’bX_XXXX_XXX1 : TA1ppU <= {8’b0, uOUT[11:8]};

default : TA1ppU <= 12’bX;

endcase

end

//TA1_Sizecal_u

always @(TA1tmod_SIZE or vOUT)

Low-power Rasterizer Design 233

begin

casex(TA1tmod_SIZE)

9’b1_XXXX_XXXX : TA1ppV <= vOUT;

9’bX_1XXX_XXXX : TA1ppV <= {1’b0, vOUT[11:1]};

9’bX_X1XX_XXXX : TA1ppV <= {2’b0, vOUT[11:2]};

9’bX_XX1X_XXXX : TA1ppV <= {3’b0, vOUT[11:3]};

9’bX_XXX1_XXXX : TA1ppV <= {4’b0, vOUT[11:4]};

9’bX_XXXX_1XXX : TA1ppV <= {5’b0, vOUT[11:5]};

9’bX_XXXX_X1XX : TA1ppV <= {6’b0, vOUT[11:6]};

9’bX_XXXX_XX1X : TA1ppV <= {7’b0, vOUT[11:7]};

9’bX_XXXX_XXX1 : TA1ppV <= {8’b0, vOUT[11:8]};

default : TA1ppV <= 12’bX;

endcase

end

endmodule

endmodule

7.5.4.9 TA2: Texture Address #2

In the TA2 stage (Figure 7.24), the bilinear texture addresses are generated and the

cache address alignment (CAL) logic, the same as the address alignment logic (AAL)

mentioned in Chapter 5, is activated. First the bilinear texture addresses are generated

and then the addresses are compared with neighboring texture addresses and previous

texture addresses. Finally, only the new texture addresses are transferred to the next

pipeline stage.

Pipeline Inputs

. REclk: rendering engine clock

. Pipe control signals: same as TA1

. Memory bypass signals: same as TA1

. LOD signals

. PP common signals

. PP dependent signals

Pipeline Outputs

. Pipe controls

. Common signals

. CAL control

. PP dependent signals

. Texture memory address calculation

Functions

. Cache alignment logic core

. Generate �8 physical texture address (bilinear filtering)

234 Mobile 3D Graphics SoC

Signal Descriptions

Control signal Description

TA2pp#U_LOD[8:0] Post LOD address: real address on

LOD map

TA2pp#V_LOD[8:0] {8-bit integer þ 1-bit fraction}

Figure 7.24 Texture address generation #2

Low-power Rasterizer Design 235

TA2pp#U_frac[3:0] Fraction of texture address

TA2pp#V_frac[3:0] For bilinear interpolation

TA2pp#UV_N[15:0] For bilinear texture address

{U[15:8],V[7:0]}

Generation method

0: {U-0.5, V-0.5} 1: {U-0.5, Vþ 0.5}

2: {Uþ 0.5, V-0.5} 3: {Uþ 0.5, Vþ 0.5}

0 2

1 3

U
V

TA2pp#UV_end[3:0] End point flag

{U[3:2],V[1:0]}

Flag

2’d0: no end point

2’d1: equals to zero

2’d2: equals to one

TA2UV#_align[3:0] Address align flag

PP1 ¼¼ PP0[0�3] ?

4’b0000: unique

4’b1000: same as UV_0

4’b0100: same as UV_1

4’b0010: same as UV_2

4’b0001: same as UV_3

TA2UV#_reg[15:0] Cached address

TA2lod_now[3:0] LOD address with RESET status

Force to reset by TMF signal

{TA2cTMF,LOD[2:0]}

TA2lod_reg[3:0] Cached LOD address

TA2fetch_REG Texture register fetch

Verilog rule @ TA1

TA2UV#_comp[7:0] Address register flag

PP ¼¼ PP_reg[0�7] ?

8’b0000_0000: unique

8’b1000_0000: same as REG[0]

8’b0100_0000: same as REG[1]

TA2tmod Texture blending mode

¼ TA1tmod[12]

1’b0: decal

1’b1: modulate

TA2tmod_FILT[2:0] Texture filtering mode

¼ TA1tmod[11:9]

3’b001: point sampling

3’b010: bilinear filtering

3’b100: trilinear filtering

TA2tmod_SIZE[8:0] Texture size

¼ TA1tmod[8:0]

9’b1_0000_0000: 256� 256

236 Mobile 3D Graphics SoC

9’b0_1000_0000: 128� 128

9’b0_0100_0000: 64� 64

TA2UV_spmask[7:0] Spatial locality mask

Generation rule @

TA2_MASK_GEN

TA2UV_tmmask[7:0] Temporal locality mask

Generation rule @

TA2_MASK_GEN

TA2_TMA#[19:0] Texture memory address

Generation rule @

TA2_ADDR_TMGEN

RTL Code

/*

* RAMP-GR

* RAMP-GR TA2 Module: Texture Address #2

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wta2(REclk,TP1nwait,TA1reset,TA1nhld,TA1cOP,TA1cFB,TA1cDF,TA1cTMF,

TA1cAF, TA1cTEXEN, TA1cFMB, TA1cTMB, TA1cSCR, TA1_ZB0cmd,

TA1_ZB1cmd, TA1_ZB0addr, TA1_ZB1addr, TA1ppASSIGN,

TA1ppMASK, TA1tmod, TA1dADDR, TA1dA,

TA1pp0VALID, TA1pp0RGB, TA1pp0U, TA1pp0V, TA1pp1VALID,

TA1pp1RGB, TA1pp1U, TA1pp1V, TA2nwait, TA2reset, TA2nhld, TA2cOP,

TA2cFB, TA2cDF, TA2cTMF, TA2cAF, TA2cTEXEN, TA2cFMB, TA2cTMB,

TA2cSCR, TA2_ZB0cmd, TA2_ZB1cmd, TA2_ZB0addr, TA2_ZB1addr,

TA2ppASSIGN, TA2ppMASK, TA2tmod_FILT, TA2tmod, TA2dADDR,

TA2dA, TA2UV_spmask, TA2UV_tmmask, TA2UV0_align, TA2UV1_align,

TA2UV2_align, TA2UV3_align, TA2UV0_comp, TA2UV1_comp,

TA2UV2_comp, TA2UV3_comp, TA2UV4_comp, TA2UV5_comp,

TA2UV6_comp, TA2UV7_comp, TA2pp0VALID, TA2pp0RGB,

TA2pp0U_frac, TA2pp0V_frac, TA2pp0UV_end,

TA2pp1VALID, TA2pp1RGB, TA2pp1U_frac, TA2pp1V_frac,

TA2pp1UV_end, TA2_TMA0, TA2_TMA1, TA2_TMA2, TA2_TMA3,

TA2_TMA4, TA2_TMA5, TA2_TMA6, TA2_TMA7);

/* Wire renaming */

assign #1 TA2pp0VALID = TA2ppMASK[1];

assign #1 TA2pp1VALID = TA2ppMASK[0];

/* Module interconnection */

//Main Controller

Wta2_ctrl ssta2_ctrl();

//Main controller

module Wta2_ctrl(REclk, TP1nwait, TA1reset, TA1nhld, TA1cOP,

Low-power Rasterizer Design 237

TA1cFB, TA1cDF, TA1cTMF, TA1cAF, TA1cTEXEN, TA1cFMB,

TA1cTMB, TA1cSCR, TA1_ZB0cmd, TA1_ZB1cmd, TA1_ZB0addr,

TA1_ZB1addr, TA1ppASSIGN,

TA1ppMASK, TA2nwait, TA2reset, TA2nhld, TA2cOP, TA2cFB, TA2cDF,

TA2cTMF, TA2cAF, TA2cTEXEN, TA2cFMB, TA2cTMB, TA2cSCR,

TA2_ZB0cmd, TA2_ZB1cmd, TA2_ZB0addr, TA2_ZB1addr, TA2ppASSIGN,

TA2ppMASK, TA2fetch_CLK, TA2fetch_TMOD, TA2fetch_ADDR,

TA2fetch_ALPHA, TA2fetch_PXL, TA2fetch_TXL, TA2fetch_REG);

/* Combinational logics */

//nwait

assign TA2nwait = TP1nwait | �TA1reset;

//nhld

assign #1 TA2nhld = TA2nhld_int;

//Fetch enables

assign #1 TA2fetch_CLK = TA2nwait & TA1nhld;

assign TA2fetch_TMOD = TA1cTMF;

assign TA2fetch_ADDR = TA1cAF;

assign TA2fetch_ALPHA = TA1cDF;

assign TA2fetch_PXL = TA1cDF;

assign TA2fetch_TXL = TA1cDF & TA1cTEXEN;

//PP controls

assign TA2fetch_REG = TA2enable;

always @(posedge REclk)

begin

if(TA2nwait)

begin

//State control

TA2nhld_int <= TA1nhld;

TA2reset <= TA1reset;

//Fetch signals

TA2cDF_int <= TA1cDF;

TA2cTMF_int <= TA1cTMF;

TA2cAF_int <= TA1cAF;

TA2cTEXEN_int <= TA1cTEXEN;

TA2cFMB_int <= TA1cFMB;

TA2cTMB_int <= TA1cTMB;

//Trivial signals

TA2cOP <= TA1cOP;

TA2cFB <= TA1cFB;

TA2cSCR <= TA1cSCR;

TA2_ZB0cmd <= TA1_ZB0cmd;

TA2_ZB1cmd <= TA1_ZB1cmd;

TA2_ZB0addr <= TA1_ZB0addr;

TA2_ZB1addr <= TA1_ZB1addr;

TA2ppASSIGN <= TA1ppASSIGN;

//PP Controls

TA2ppMASK <= TA1ppMASK;

end

end

always @(negedge REclk)

begin

238 Mobile 3D Graphics SoC

//Fetch signals

TA2cDF <= TA2cDF_int;

TA2cTMF <= TA2cTMF_int;

TA2cAF <= TA2cAF_int;

TA2cTEXEN <= TA2cTEXEN_int;

TA2cFMB <= TA2cFMB_int;

TA2cTMB <= TA2cTMB_int;

//PP controls @ RDAT or TMOD

TA2enable <= TA2nhld_int & (TA2cOP[5] | TA2cOP[2]) & TA2cTEXEN_int;

end

endmodule

//Pipeline latch

Wta2_latch ssta2_latch();

//Data latches

module Wta2_latch(REclk,clk,TA2fetch_TMOD,TA2fetch_ADDR,TA2fetch_ALPHA,

TA2fetch_PXL, TA2fetch_TXL, TA1tmod, TA1dADDR, TA1dA,

TA1pp0VALID, TA1pp0RGB, TA1pp0U, TA1pp0V,

TA1pp1VALID, TA1pp1RGB, TA1pp1U, TA1pp1V,

TA2tmod, TA2tmod_FILT, TA2tmod_SIZE, TA2dADDR, TA2dA, TA2lod,

TA2pp0RGB, TA2pp0U, TA2pp0V, TA2pp1RGB, TA2pp1U, TA2pp1V);

//TMOD

always @(posedge REclk)

begin

if(clk & TA2fetch_TMOD)

begin

TA2tmod <= TA1tmod [12];

TA2tmod_FILT <= TA1tmod [11:9];

TA2tmod_SIZE <= TA1tmod [8:0];

end

end

//ADDR

always @(posedge REclk)

begin

if(clk & TA2fetch_ADDR) TA2dADDR <= TA1dADDR;

end

//ALPHA

always @(posedge REclk)

begin

if(clk & TA2fetch_ALPHA) TA2dA <= TA1dA;

end

//LOD

always @(posedge REclk)

begin

if(clk & TA2fetch_TXL) TA2lod <= 3’b0;

end

//PP0_PXL

always @(posedge REclk)

begin

if(clk & TA1pp0VALID & TA2fetch_PXL) TA2pp0RGB <= TA1pp0RGB;

Low-power Rasterizer Design 239

end

//PP0_TXL

always @(posedge REclk)

begin

if(clk & TA1pp0VALID & TA2fetch_TXL)

begin

TA2pp0U <= TA1pp0U;

TA2pp0V <= TA1pp0V;

end

end

//PP1_PXL

always @(posedge REclk)

begin

if(clk & TA1pp1VALID & TA2fetch_PXL) TA2pp1RGB <= TA1pp1RGB;

end

//PP1_TXL

always @(posedge REclk)

begin

if(clk & TA1pp1VALID & TA2fetch_TXL)

begin

TA2pp1U <= TA1pp1U;

TA2pp1V <= TA1pp1V;

end

end

endmodule

/* Address after LOD calculation */

//In this block, the LOD (“level of detail”) addresses of texture.

//But, in this example, the texture unit does not support LOD operation,

//it just bypasses the texture address.

Wta2_addr_lod ssta2_addr_lod();

//Address after LOD calculation unit

module Wta2_addr_lod_unit(TA2uvIN, TA2uvOUT, TA2fracOUT);

//Bus renaming

assign #1 TA2uvOUT = TA2uvIN[11:3];

assign #1 TA2fracOUT = {�TA2uvIN[3],TA2uvIN[3:1]};

endmodule

//Address after LOD calculation

module Wta2_addr_lod(TA2pp0U,TA2pp0V,TA2pp1U,TA2pp1V,

TA2pp0U_LOD,TA2pp0V_LOD,TA2pp1U_LOD,TA2pp1V_LOD,

TA2pp0U_frac,TA2pp0V_frac,TA2pp1U_frac,TA2pp1V_frac);

/* Unit interconnection */

Wta2_addr_lod_unit lod0(.TA2uvIN (TA2pp0U),

.TA2uvOUT (TA2pp0U_LOD),

.TA2fracOUT (TA2pp0U_frac));

240 Mobile 3D Graphics SoC

Wta2_addr_lod_unit lod1(.TA2uvIN (TA2pp0V),

.TA2uvOUT (TA2pp0V_LOD),

.TA2fracOUT (TA2pp0V_frac));

Wta2_addr_lod_unit lod2(.TA2uvIN (TA2pp1U),

.TA2uvOUT (TA2pp1U_LOD),

.TA2fracOUT (TA2pp1U_frac));

Wta2_addr_lod_unit lod3(.TA2uvIN (TA2pp1V),

.TA2uvOUT (TA2pp1V_LOD),

.TA2fracOUT (TA2pp1V_frac));

endmodule

//Bilinear address generation

Wta2_addr_4x ssta2_addr_4x();

//Bilinear address generation unit block

module Wta2_addr_4x_unit(TA2tmod_FILT, TA2u_LOD, TA2v_LOD,

TA2uv0, TA2uv1, TA2uv2, TA2uv3, TA2uvEND);

/* Adders & Subs */

//u-0.5

DW01_sub #(9) u_minus(.A (TA2u_LOD),

.B ({8’b0, 1’b1}),

.CI (1’b0),

.DIFF (TA2u_MINUS),

.CO (carry0));

//u+0.5

DW01_add #(9) u_plus (.A (TA2u_LOD),

.B ({8’b0, 1’b1}),

.CI (1’b0),

.SUM (TA2u_PLUS),

.CO (carry1));

//v-0.5

DW01_sub #(9) v_minus(.A (TA2v_LOD),

.B ({8’b0, 1’b1}),

.CI (1’b0),

.DIFF (TA2v_MINUS),

.CO (carry2));

//v+0.5

DW01_add #(9) v_plus (.A (TA2v_LOD),

.B ({8’b0, 1’b1}),

.CI (1’b0),

.SUM (TA2v_PLUS),

.CO (carry3));

//For bilinear address

assign #1 TA2uv0 = (TA2tmod_FILT[0]) ? {TA2u_LOD[8:1], TA2v_LOD[8:1]} :

{TA2u_MINUS[8:1] , TA2v_MINUS[8:1]};

assign #1 TA2uv1 = {TA2u_MINUS[8:1], TA2v_PLUS[8:1]};

assign #1 TA2uv2 = {TA2u_PLUS[8:1], TA2v_MINUS[8:1]};

assign #1 TA2uv3 = {TA2u_PLUS[8:1], TA2v_PLUS[8:1]};

//End-point detection

assign #1 TA2uvEND_int[3] = &(TA2u_MINUS[8:1]);

assign #1 TA2uvEND_int[2] = �(|(TA2u_PLUS[8:1]));

Low-power Rasterizer Design 241

assign #1 TA2uvEND_int[1] = &(TA2v_MINUS[8:1]);

assign #1 TA2uvEND_int[0] = �(|(TA2v_PLUS[8:1]));

//Zero priority

always @(TA2uvEND_int)

begin

//U

if(TA2uvEND_int[3:2] == 2’b11) TA2uvEND[3:2] <= 2’b01;

else

TA2uvEND[3:2] <= TA2uvEND_int[3:2];

//V

if(TA2uvEND_int[1:0] == 2’b11) TA2uvEND[1:0] <= 2’b01;

else TA2uvEND[1:0] <= TA2uvEND_int[1:0];

end

endmodule

//Bilinear address generation

module Wta2_addr_4x(TA2tmod_FILT,TA2pp0U_LOD,TA2pp0V_LOD,TA2pp1U_LOD,

TA2pp1V_LOD, TA2pp0UV_0,TA2pp0UV_1,TA2pp0UV_2,TA2pp0UV_3,

TA2pp1UV_0,TA2pp1UV_1,TA2pp1UV_2,TA2pp1UV_3,

TA2pp0UV_end,TA2pp1UV_end);

/* Unit interconnection */

Wta2_addr_4x_unit addr_4x0(.TA2tmod_FILT (TA2tmod_FILT),

.TA2u_LOD (TA2pp0U_LOD),

.TA2v_LOD (TA2pp0V_LOD),

.TA2uv0 (TA2pp0UV_0),

.TA2uv1 (TA2pp0UV_1),

.TA2uv2 (TA2pp0UV_2),

.TA2uv3 (TA2pp0UV_3),

.TA2uvEND (TA2pp0UV_end));

Wta2_addr_4x_unit addr_4x1(.TA2tmod_FILT (TA2tmod_FILT),

.TA2u_LOD (TA2pp1U_LOD),

.TA2v_LOD (TA2pp1V_LOD),

.TA2uv0 (TA2pp1UV_0),

.TA2uv1 (TA2pp1UV_1),

.TA2uv2 (TA2pp1UV_2),

.TA2uv3 (TA2pp1UV_3),

.TA2uvEND (TA2pp1UV_end));

endmodule

//Address alignment logic

Wta2_addr_align ssta2_addr_align();

//Address alignment logic

module Wta2_addr_align(TA2pp0UV_0,TA2pp0UV_1,TA2pp0UV_2,TA2pp0UV_3,

TA2pp1UV_0,TA2pp1UV_1,TA2pp1UV_2,TA2pp1UV_3,

TA2UV0_align,TA2UV1_align,TA2UV2_align,TA2UV3_align);

/* Parallel compare logic for PP1 */

//#0

assign #1 TA2UV0_align[3] = (TA2pp1UV_0 == TA2pp0UV_0) ? 1’b1 : 1’b0;

assign #1 TA2UV0_align[2] = (TA2pp1UV_0 == TA2pp0UV_1) ? 1’b1 : 1’b0;

assign #1 TA2UV0_align[1] = (TA2pp1UV_0 == TA2pp0UV_2) ? 1’b1 : 1’b0;

242 Mobile 3D Graphics SoC

assign #1 TA2UV0_align[0] = (TA2pp1UV_0 == TA2pp0UV_3) ? 1’b1 : 1’b0;

//#1

assign #1 TA2UV1_align[3] = (TA2pp1UV_1 == TA2pp0UV_0) ? 1’b1 : 1’b0;

assign #1 TA2UV1_align[2] = (TA2pp1UV_1 == TA2pp0UV_1) ? 1’b1 : 1’b0;

assign #1 TA2UV1_align[1] = (TA2pp1UV_1 == TA2pp0UV_2) ? 1’b1 : 1’b0;

assign #1 TA2UV1_align[0] = (TA2pp1UV_1 == TA2pp0UV_3) ? 1’b1 : 1’b0;

//#2

assign #1 TA2UV2_align[3] = (TA2pp1UV_2 == TA2pp0UV_0) ? 1’b1 : 1’b0;

assign #1 TA2UV2_align[2] = (TA2pp1UV_2 == TA2pp0UV_1) ? 1’b1 : 1’b0;

assign #1 TA2UV2_align[1] = (TA2pp1UV_2 == TA2pp0UV_2) ? 1’b1 : 1’b0;

assign #1 TA2UV2_align[0] = (TA2pp1UV_2 == TA2pp0UV_3) ? 1’b1 : 1’b0;

//#3

assign #1 TA2UV3_align[3] = (TA2pp1UV_3 == TA2pp0UV_0) ? 1’b1 : 1’b0;

assign #1 TA2UV3_align[2] = (TA2pp1UV_3 == TA2pp0UV_1) ? 1’b1 : 1’b0;

assign #1 TA2UV3_align[1] = (TA2pp1UV_3 == TA2pp0UV_2) ? 1’b1 : 1’b0;

assign #1 TA2UV3_align[0] = (TA2pp1UV_3 == TA2pp0UV_3) ? 1’b1 : 1’b0;

endmodule

//Address register

Wta2_addr_register ssta2_addr_register();

//Address register

module Wta2_addr_register(REclk,TA2fetch_REG,TA2fetch_CLK,TA2lod_now,

TA2lod_reg,TA2UV_spmask, TA2pp0UV_0,TA2pp0UV_1,TA2pp0UV_2,

TA2pp0UV_3, TA2pp1UV_0,TA2pp1UV_1,

TA2pp1UV_2,TA2pp1UV_3,

TA2UV0_reg,TA2UV1_reg,TA2UV2_reg,TA2UV3_reg,

TA2UV4_reg,TA2UV5_reg,TA2UV6_reg,TA2UV7_reg);

always @(posedge REclk)

begin

if(TA2fetch_REG)

begin

TA2lod_reg = TA2lod_now;

//Initial status

if(TA2lod_now[3])

begin

TA2UV0_reg <= 16’b1111_1111_1111_1111;

TA2UV1_reg <= 16’b1111_1111_1111_1111;

TA2UV2_reg <= 16’b1111_1111_1111_1111;

TA2UV3_reg <= 16’b1111_1111_1111_1111;

TA2UV4_reg <= 16’b1111_1111_1111_1111;

TA2UV5_reg <= 16’b1111_1111_1111_1111;

TA2UV6_reg <= 16’b1111_1111_1111_1111;

TA2UV7_reg <= 16’b1111_1111_1111_1111;

end

else

begin

if(TA2UV_spmask[7] & TA2fetch_CLK)

TA2UV0_reg <= TA2pp0UV_0;

if(TA2UV_spmask[6] & TA2fetch_CLK)

Low-power Rasterizer Design 243

TA2UV1_reg <= TA2pp0UV_1;

if(TA2UV_spmask[5] & TA2fetch_CLK)

TA2UV2_reg <= TA2pp0UV_2;

if(TA2UV_spmask[4] & TA2fetch_CLK)

TA2UV3_reg <= TA2pp0UV_3;

if(TA2UV_spmask[3] & TA2fetch_CLK)

TA2UV4_reg <= TA2pp1UV_0;

if(TA2UV_spmask[2] & TA2fetch_CLK)

TA2UV5_reg <= TA2pp1UV_1;

if(TA2UV_spmask[1] & TA2fetch_CLK)

TA2UV6_reg <= TA2pp1UV_2;

if(TA2UV_spmask[0] & TA2fetch_CLK)

TA2UV7_reg <= TA2pp1UV_3;

end

end

end

endmodule

//Address compare logic

Wta2_addr_compare ssta2_addr_compare();

//Address compare logic endmodule

module Wta2_addr_compare(TA2lod_now,TA2lod_reg, TA2pp0UV_0,TA2pp0UV_1,

TA2pp0UV_2,TA2pp0UV_3, TA2pp1UV_0,TA2pp1UV_1,

TA2pp1UV_2,TA2pp1UV_3, TA2UV0_reg,TA2UV1_reg,

TA2UV2_reg,TA2UV3_reg,

TA2UV4_reg,TA2UV5_reg,TA2UV6_reg,TA2UV7_reg,

TA2UV0_comp,TA2UV1_comp,TA2UV2_comp,TA2UV3_comp,

TA2UV4_comp,TA2UV5_comp,TA2UV6_comp,TA2UV7_comp);

/* Bunch of comparators */

//Overridden by LOD results

//#0

assign #1 comp0[7] = (TA2pp0UV_0 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp0[6] = (TA2pp0UV_0 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp0[5] = (TA2pp0UV_0 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp0[4] = (TA2pp0UV_0 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp0[3] = (TA2pp0UV_0 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp0[2] = (TA2pp0UV_0 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp0[1] = (TA2pp0UV_0 == TA2UV6_reg) ? 1’b1 : 1’b0;

assign #1 comp0[0] = (TA2pp0UV_0 == TA2UV7_reg) ? 1’b1 : 1’b0;

//#1

assign #1 comp1[7] = (TA2pp0UV_1 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp1[6] = (TA2pp0UV_1 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp1[5] = (TA2pp0UV_1 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp1[4] = (TA2pp0UV_1 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp1[3] = (TA2pp0UV_1 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp1[2] = (TA2pp0UV_1 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp1[1] = (TA2pp0UV_1 == TA2UV6_reg) ? 1’b1 : 1’b0;

assign #1 comp1[0] = (TA2pp0UV_1 == TA2UV7_reg) ? 1’b1 : 1’b0;

244 Mobile 3D Graphics SoC

//#2

assign #1 comp2[7] = (TA2pp0UV_2 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp2[6] = (TA2pp0UV_2 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp2[5] = (TA2pp0UV_2 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp2[4] = (TA2pp0UV_2 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp2[3] = (TA2pp0UV_2 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp2[2] = (TA2pp0UV_2 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp2[1] = (TA2pp0UV_2 == TA2UV6_reg) ? 1’b1 : 1’b0;

assign #1 comp2[0] = (TA2pp0UV_2 == TA2UV7_reg) ? 1’b1 : 1’b0;

//#3

assign #1 comp3[7] = (TA2pp0UV_3 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp3[6] = (TA2pp0UV_3 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp3[5] = (TA2pp0UV_3 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp3[4] = (TA2pp0UV_3 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp3[3] = (TA2pp0UV_3 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp3[2] = (TA2pp0UV_3 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp3[1] = (TA2pp0UV_3 == TA2UV6_reg) ? 1’b1 : 1’b0;

assign #1 comp3[0] = (TA2pp0UV_3 == TA2UV7_reg) ? 1’b1 : 1’b0;

//#4

assign #1 comp4[7] = (TA2pp1UV_0 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp4[6] = (TA2pp1UV_0 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp4[5] = (TA2pp1UV_0 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp4[4] = (TA2pp1UV_0 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp4[3] = (TA2pp1UV_0 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp4[2] = (TA2pp1UV_0 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp4[1] = (TA2pp1UV_0 == TA2UV6_reg) ? 1’b1 : 1’b0;

assign #1 comp4[0] = (TA2pp1UV_0 == TA2UV7_reg) ? 1’b1 : 1’b0;

//#5

assign #1 comp5[7] = (TA2pp1UV_1 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp5[6] = (TA2pp1UV_1 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp5[5] = (TA2pp1UV_1 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp5[4] = (TA2pp1UV_1 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp5[3] = (TA2pp1UV_1 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp5[2] = (TA2pp1UV_1 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp5[1] = (TA2pp1UV_1 == TA2UV6_reg) ? 1’b1 : 1’b0;

assign #1 comp5[0] = (TA2pp1UV_1 == TA2UV7_reg) ? 1’b1 : 1’b0;

//#6

assign #1 comp6[7] = (TA2pp1UV_2 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp6[6] = (TA2pp1UV_2 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp6[5] = (TA2pp1UV_2 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp6[4] = (TA2pp1UV_2 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp6[3] = (TA2pp1UV_2 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp6[2] = (TA2pp1UV_2 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp6[1] = (TA2pp1UV_2 == TA2UV6_reg) ? 1’b1 : 1’b0;

assign #1 comp6[0] = (TA2pp1UV_2 == TA2UV7_reg) ? 1’b1 : 1’b0;

//#7

assign #1 comp7[7] = (TA2pp1UV_3 == TA2UV0_reg) ? 1’b1 : 1’b0;

assign #1 comp7[6] = (TA2pp1UV_3 == TA2UV1_reg) ? 1’b1 : 1’b0;

assign #1 comp7[5] = (TA2pp1UV_3 == TA2UV2_reg) ? 1’b1 : 1’b0;

assign #1 comp7[4] = (TA2pp1UV_3 == TA2UV3_reg) ? 1’b1 : 1’b0;

assign #1 comp7[3] = (TA2pp1UV_3 == TA2UV4_reg) ? 1’b1 : 1’b0;

assign #1 comp7[2] = (TA2pp1UV_3 == TA2UV5_reg) ? 1’b1 : 1’b0;

assign #1 comp7[1] = (TA2pp1UV_3 == TA2UV6_reg) ? 1’b1 : 1’b0;

Low-power Rasterizer Design 245

assign #1 comp7[0] = (TA2pp1UV_3 == TA2UV7_reg) ? 1’b1 : 1’b0;

//LOD override

assign #1 TA2UV0_comp = (TA2lod_now==TA2lod_reg) ? comp0 : 8’b0;

assign #1 TA2UV1_comp = (TA2lod_now==TA2lod_reg) ? comp1 : 8’b0;

assign #1 TA2UV2_comp = (TA2lod_now==TA2lod_reg) ? comp2 : 8’b0;

assign #1 TA2UV3_comp = (TA2lod_now==TA2lod_reg) ? comp3 : 8’b0;

assign #1 TA2UV4_comp = (TA2lod_now==TA2lod_reg) ? comp4 : 8’b0;

assign #1 TA2UV5_comp = (TA2lod_now==TA2lod_reg) ? comp5 : 8’b0;

assign #1 TA2UV6_comp = (TA2lod_now==TA2lod_reg) ? comp6 : 8’b0;

assign #1 TA2UV7_comp = (TA2lod_now==TA2lod_reg) ? comp7 : 8’b0;

endmodule

//Texture memory address generation

Wta2_addr_tmgen ssta2_addr_tmgen();

//Texture memory address generation unit block

module Wta2_addr_tmgen_unit(size, uvin, tmout);

/* Inputs */

input [8:0] size;

input [15:0] uvin;

output [15:0] tmout;

//Intermediate wires

wire [7:0] u;

wire [7:0] v;

wire tmcarry;

wire [15:0] tmout;

reg [15:0] uvshift;

//reg [17:0] tmout;

assign #1 u = uvin[15:8];

assign #1 v = uvin[7:0];

//UVshift

always @(size or u or v)

begin

casex(size)

9’b1_XXXX_XXXX : uvshift <= {v[7:0], u[7:0]};

9’bX_1XXX_XXXX : uvshift <= {2’b0, v[6:0], u[6:0]};

9’bX_X1XX_XXXX : uvshift <= {4’b0, v[5:0], u[5:0]};

9’bX_XX1X_XXXX : uvshift <= {6’b0, v[4:0], u[4:0]};

9’bX_XXX1_XXXX : uvshift <= {8’b0, v[3:0], u[3:0]};

9’bX_XXXX_1XXX : uvshift <= {10’b0, v[2:0], u[2:0]};

9’bX_XXXX_X1XX : uvshift <= {12’b0, v[1:0], u[1:0]};

9’bX_XXXX_XX1X : uvshift <= {14’b0, v[0], u[0]};

9’bX_XXXX_XXX1 : uvshift <= 16’b0;

default : uvshift <= 16’bX;

endcase

end

assign tmout = uvshift;

endmodule

246 Mobile 3D Graphics SoC

//Texture memory Address Generation

module Wta2_addr_tmgen(TA2tmod_SIZE, TA2pp0UV_0, TA2pp0UV_1, TA2pp0UV_2,

TA2pp0UV_3, TA2pp1UV_0, TA2pp1UV_1, TA2pp1UV_2, TA2pp1UV_3,

TA2_TMA0, TA2_TMA1, TA2_TMA2, TA2_TMA3,

TA2_TMA4, TA2_TMA5, TA2_TMA6, TA2_TMA7);

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit0(

.size (TA2tmod_SIZE),

.uvin (TA2pp0UV_0),

.tmout (TA2_TMA0));

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit1(

.size (TA2tmod_SIZE),

.uvin (TA2pp0UV_1),

.tmout (TA2_TMA1));

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit2(

.size (TA2tmod_SIZE),

.uvin (TA2pp0UV_2),

.tmout (TA2_TMA2));

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit3(

.size (TA2tmod_SIZE),

.uvin (TA2pp0UV_3),

.tmout (TA2_TMA3));

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit4(

.size (TA2tmod_SIZE),

.uvin (TA2pp1UV_0),

.tmout (TA2_TMA4));

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit5(

.size (TA2tmod_SIZE),

.uvin (TA2pp1UV_1),

.tmout (TA2_TMA5));

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit6(

.size (TA2tmod_SIZE),

.uvin (TA2pp1UV_2),

.tmout (TA2_TMA6));

Wta2_addr_tmgen_unit ssta2_addr_tmgen_unit7(

.size (TA2tmod_SIZE),

.uvin (TA2pp1UV_3),

.tmout (TA2_TMA7));

endmodule

//Alignment mask generation module

Wta2_mask_gen ssta2_mask_gen();

//Alignment mask generation module

module Wta2_mask_gen(TA2cTMF, TA2ppMASK, TA2tmod_FILT, TA2lod,

TA2UV0_align, TA2UV1_align, TA2UV2_align, TA2UV3_align,

TA2UV0_comp, TA2UV1_comp, TA2UV2_comp, TA2UV3_comp,

TA2UV4_comp, TA2UV5_comp, TA2UV6_comp, TA2UV7_comp,

TA2lod_now, TA2UV_spmask, TA2UV_tmmask);

//Filtering mask seed generator

always @(TA2tmod_FILT)

begin

casex(TA2tmod_FILT)

Low-power Rasterizer Design 247

3’b001: SEEDfilt <= 8’b1000_1000; //Point Sampling

3’b010: SEEDfilt <= 8’b1111_1111; //Bilinear Filtering

default: SEEDfilt <= 8’bX;

endcase

end

//PP mask

assign #1 MASKpp = SEEDfilt & { {4{TA2ppMASK[1]}}, {4{TA2ppMASK[0]}} };

//Alignment mask

assign #1 MASKalign[3] = �(|TA2UV0_align);

assign #1 MASKalign[2] = �(|TA2UV1_align);

assign #1 MASKalign[1] = �(|TA2UV2_align);

assign #1 MASKalign[0] = �(|TA2UV3_align);

//spmask: spatial locality mask - special care for Pt sample

always @(TA2tmod_FILT or MASKalign or MASKpp or TA2ppMASK)

begin

if(TA2tmod_FILT[1] & (&TA2ppMASK))

TA2UV_spmask <= MASKpp & {4’b1111, MASKalign};

else TA2UV_spmask <= MASKpp;

end

//Compare mask

assign #1 MASKcomp[7] = �(|TA2UV0_comp);

assign #1 MASKcomp[6] = �(|TA2UV1_comp);

assign #1 MASKcomp[5] = �(|TA2UV2_comp);

assign #1 MASKcomp[4] = �(|TA2UV3_comp);

assign #1 MASKcomp[3] = �(|TA2UV4_comp);

assign #1 MASKcomp[2] = �(|TA2UV5_comp);

assign #1 MASKcomp[1] = �(|TA2UV6_comp);

assign #1 MASKcomp[0] = �(|TA2UV7_comp);

//tmmask: temporal locality mask

assign #1 TA2UV_tmmask = TA2UV_spmask & MASKcomp;

assign #1 TA2lod_now = {TA2cTMF, TA2lod};

endmodule

endmodule

7.5.4.10 TP1: Texture Prefetch #1

In the TP1 stage (Figure 7.25), texture cache requests are generated. Since the

rasterizer has four independent texture caches, this stage decides which cache is

used. The other important task of this stage is to hold whole pipeline texture cache

status. When the texture cache misses, it requires a few tens of cycles and this stage

holds all pipeline stages by generating nHld and nWait signals.

Pipe Inputs

. REclk: rendering clock

. Pipe controls: same as TA2

. Common signals: same as TA2

. CAL controls: same as TA2

248 Mobile 3D Graphics SoC

. PP dependent signals: same as TA2

. Texture memory address: same as TA2

Pipe Outputs

. Pipe controls

. Common signals

. CAL control: cache alignment logic

. TMA control: texture memory aggregation control

. PP dependent signals

Memory Input/Outputs

. Texture memory request (out)

. Texture memory address (out)

. Texture memory nWAIT (in)

Functions

. Texture address generation

. Multi-cycle control

. Texture address control

Figure 7.25 Texture prefetch #1

Low-power Rasterizer Design 249

Type TP1cOP[8:0] Cycle Functional description@ this stage

Rendering CTRL_OP_RDAT Multi-cycle Texture bank aggregation

(Depends on TM

bank flag)

Multi-cycle control

Independent texture memory con-

trol (�4)

Texture CTRL_OP_TSTR 1 Store texture map

Write one of TM @ TA1dADDR

CTRL_OP_TMOD 1 Bypass

CTRL_OP_TF2T 1 Bypass

[This instruction is deleted to

reduce design complexity. It

may be implemented later on the

next revision.]

Auxiliary CTRL_OP_ASTR 1 Bypass

Signal Descriptions

Control signal Description

TP1selMC Multi-cycle selection signal

Generated by using TEXEN,OP_CODE,nHLD,baMULTI

1’b0: initial/no texture

1’b1: multi-cycle

TP1fetchMC Multi-cycle fetch signal

Rule @ Verilog

TP1baMULTI Multi-cycle flag from bank aggregation

1’b0: single cycle

1’b1: multi-cycle

TP1baON Texture bank active flag

TP1baSEL#[7:0] Texture bank selection signal

TP1_TM#addr[17:0] Texture memory address

TP1_TMcmd[2:0] Texture memory command from CTRL to TMI

3’b000: NOP

3’b001: REFRESH

3’b010: READ

3’b100: WRITE

TMI_TM#cmd[2:0] Texture memory command

TMI_TM#addr[17:0] Texture memory address

Datapath #1: TP1_BANK_AGGR
See Figure 7.26.

Multi-cycle Timing
See Figure 7.27.

250 Mobile 3D Graphics SoC

REclk

TA2

TP1

TP2

OP1

TF

OP2

OP1

nWait

Texture
Command

Texture
Data

OP3

OP1 OP1

OP2 OP3

OP1

Aggr

nHld

NOP NOP OP1

OP2

OP2

OP3

OP3

Figure 7.27 Multi-cycle timing

TP1_BAM

T
P

1U
V

_t
m

m
as

k[
7:

0]

TP1_selMC

TP1_BAM_LATCH

TP1_maskOUT

REclk

TP1_fetchMC

TP1_maskOLD T
P

1_
b

aM
U

L
T

I T
P

1_
b

aS
E

L
[7

:0
]

T
P

1_
b

aO
N

Figure 7.26 Datapath #1: TP1_BANK_AGGR

Low-power Rasterizer Design 251

RTL Code

/*

* RAMP-GR

* RAMP-GR TP1 Module: Texture Prefetch #1

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wtp1(REclk, TP1nwait, TA2reset, TA2nhld, TA2cOP, TA2cFB, TA2cDF, TA2cTMF,

TA2cAF, TA2cTEXEN, TA2cFMB, TA2cTMB, TA2cSCR,

TA2_ZB0cmd, TA2_ZB1cmd, TA2_ZB0addr, TA2_ZB1addr,

TA2ppMASK, TA2tmod_FILT, TA2tmod, TA2dADDR, TA2dA,

TA2UV_spmask, TA2UV_tmmask, TA2UV0_align, TA2UV1_align,

TA2UV2_align, TA2UV3_align,

TA2UV0_comp, TA2UV1_comp, TA2UV2_comp, TA2UV3_comp,

TA2UV4_comp, TA2UV5_comp, TA2UV6_comp, TA2UV7_comp,

TA2_TMA0, TA2_TMA1, TA2_TMA2, TA2_TMA3,

TA2_TMA4, TA2_TMA5, TA2_TMA6, TA2_TMA7,

TA2pp0VALID, TA2pp0RGB, TA2pp0U_frac, TA2pp0V_frac, TA2pp0UV_end,

TA2pp1VALID, TA2pp1RGB, TA2pp1U_frac, TA2pp1V_frac, TA2pp1UV_end,

TP2nwait, TP1reset, TP1nhld, TP1cOP, TP1cFB, TP1cDF, TP1cTMF,

TP1cAF, TP1cTEXEN, TP1cFMB, TP1cSCR,

TP1_ZB0cmd, TP1_ZB1cmd, TP1_ZB0addr, TP1_ZB1addr,

TP1ppMASK, TP1tmod_FILT, TP1tmod, TP1dADDR, TP1dA,

TP1UV_spmask, TP1UV_tmmask, TP1UV0t3_align, TP1UV0t7_comp,

TP1baMULTI, TP1baON, TP1baSEL0, TP1baSEL1, TP1baSEL2, TP1baSEL3,

TP1pp0VALID, TP1pp0RGB, TP1pp0U_frac, TP1pp0V_frac, TP1pp0UV_end,

TP1pp1VALID, TP1pp1RGB, TP1pp1U_frac, TP1pp1V_frac, TP1pp1UV_end,

TMI_TMBADDR, TMI_TM0nREQ, TMI_TM0cmd, TMI_TM0addr,

TMI_TM1nREQ, TMI_TM1cmd, TMI_TM1addr,

TMI_TM2nREQ, TMI_TM2cmd, TMI_TM2addr,

TMI_TM3nREQ, TMI_TM3cmd, TMI_TM3addr);

/* Wire renaming */

assign #1 TP1pp0VALID = TP1ppMASK[1];

assign #1 TP1pp1VALID = TP1ppMASK[0];

/* Module interconnection */

//Main controller

Wtp1_ctrl sstp1_ctrl();

//Main controller

module Wtp1_ctrl(REclk, TP1nwait, TA2reset, TA2nhld,

TA2cOP, TA2cFB, TA2cDF, TA2cTMF,

TA2cAF, TA2cTEXEN, TA2cFMB, TA2cTMB, TA2cSCR,

TA2_ZB0cmd, TA2_ZB1cmd, TA2_ZB0addr, TA2_ZB1addr, TA2ppMASK,

TP2nwait, TP1reset, TP1nhld, TP1cOP, TP1cFB, TP1cDF, TP1cTMF,

TP1cAF, TP1cTEXEN, TP1cFMB, TP1cSCR,

TP1_ZB0cmd, TP1_ZB1cmd, TP1_ZB0addr, TP1_ZB1addr, TP1ppMASK,

TP1_TMcmd, TP1fetch_CLK, TP1fetch_TMOD, TP1fetch_ADDR,

252 Mobile 3D Graphics SoC

TP1fetch_TADDR, TP1fetch_ALPHA,

TP1fetch_PXL, TP1fetch_TXL, TP1fetchMC, TP1selMC, TP1baMULTI);

//nwait

assign TP1nwait_gen = �(TP1nhld_int & TP1cDF_int & TP1cOP[5]

& TP1cTEXEN_int & TP1baMULTI);

assign TP1nwait = (TP1nwait_gen & TP2nwait) | �TA2reset;

//nhld

assign #1 TP1nhld = TP1nhld_int;

//Fetch enable

assign #1 TP1fetch_CLK = TP1nwait & TA2nhld;

assign TP1fetch_TMOD = TA2cTMF;

assign TP1fetch_ADDR = TA2cAF;

assign TP1fetch_TADDR = TA2cAF & TA2cTMB;

assign TP1fetch_ALPHA= TA2cDF;

assign TP1fetch_PXL = TA2cDF;

assign TP1fetch_TXL = TA2cDF & TA2cTEXEN;

assign TP1fetchMC = TP1enable & TP1cTEXEN;

//MC select signal

assign #1 TP1selMC = TP1nhld_int & TP1cDF_int & TP1cOP[5]

& TP1cTEXEN_int & TP1selMC_int;

//TM command

assign #1 TP1_TMcmd = TP1_TMcmd_int;

always @(posedge REclk)

begin

if(TP1nwait)

begin

//State controls

TP1nhld_int <= TA2nhld;

TP1reset <= TA2reset;

//Fetch signals

TP1cDF_int <= TA2cDF;

TP1cTMF_int <= TA2cTMF;

TP1cAF_int <= TA2cAF;

TP1cTEXEN_int <= TA2cTEXEN;

TP1cFMB_int <= TA2cFMB;

// Trivial Signals

TP1cOP <= TA2cOP;

TP1cFB <= TA2cFB;

TP1cSCR <= TA2cSCR;

TP1_ZB0cmd <= TA2_ZB0cmd;

TP1_ZB1cmd <= TA2_ZB1cmd;

TP1_ZB0addr <= TA2_ZB0addr;

TP1_ZB1addr <= TA2_ZB1addr;

// PP Control Signals

TP1ppMASK <= TA2ppMASK;

end

TP1selMC_int <= �TP1nwait_gen_lat;

end

always @(negedge REclk)

begin

//Fetch signals

Low-power Rasterizer Design 253

TP1cDF <= TP1cDF_int;

TP1cTMF <= TP1cTMF_int;

TP1cAF <= TP1cAF_int;

TP1cTEXEN <= TP1cTEXEN_int;

TP1cFMB <= TP1cFMB_int;

//BA fetch control

TP1enable <= TP1nhld_int & TP1cOP[5];

//MC control

TP1nwait_gen_lat <= TP1nwait_gen;

end

//TM command generation

always @(TP1cOP or TP1nhld_int or TP2nwait or TP1cTEXEN_int)

begin

casex({TP1nhld_int, TP2nwait, TP1cTEXEN_int, TP1cOP})

{3’b111,‘WCTRL_OP_RSHA} : TP1_TMcmd_int<= ‘WTM_CMD_READ;

default TP1_TMcmd_int <= ‘WTM_CMD_NOP;

endcase

end

endmodule

//Data latches

Wtp1_latch sstp1_latch();

//Data latches

module Wtp1_latch(REclk, clk, TP1fetch_TMOD, TP1fetch_ADDR,

TP1fetch_TADDR,

TP1fetch_ALPHA, TP1fetch_PXL, TP1fetch_TXL,

TA2tmod_FILT, TA2tmod, TA2dADDR, TA2dA,

TA2UV_spmask, TA2UV_tmmask, TA2UV0_align, TA2UV1_align,

TA2UV2_align, TA2UV3_align,

TA2UV0_comp, TA2UV1_comp, TA2UV2_comp, TA2UV3_comp,

TA2UV4_comp, TA2UV5_comp, TA2UV6_comp, TA2UV7_comp,

TA2_TMA0, TA2_TMA1, TA2_TMA2, TA2_TMA3,

TA2_TMA4, TA2_TMA5, TA2_TMA6, TA2_TMA7,

TA2pp0VALID, TA2pp0RGB, TA2pp0U_frac,

TA2pp0V_frac, TA2pp0UV_end,

TA2pp1VALID, TA2pp1RGB, TA2pp1U_frac, TA2pp1V_frac,

TA2pp1UV_end, TP1tmod_FILT, TP1tmod, TP1dADDR, TP1dA,

TP1UV_spmask, TP1UV_tmmask, TP1UV0t3_align,

TP1UV0t7_comp,

TP1_TMBADDR, TP1_TMA0, TP1_TMA1, TP1_TMA2,

TP1_TMA3,

TP1_TMA4, TP1_TMA5, TP1_TMA6, TP1_TMA7,

TP1pp0RGB, TP1pp0U_frac, TP1pp0V_frac, TP1pp0UV_end,

TP1pp1RGB, TP1pp1U_frac, TP1pp1V_frac, TP1pp1UV_end);

//TMOD

always @(posedge REclk)

begin

if(clk & TP1fetch_TMOD)

begin

TP1tmod_FILT <= TA2tmod_FILT;

TP1tmod <= TA2tmod;

end

254 Mobile 3D Graphics SoC

end

//ADDR

always @(posedge REclk)

begin

if(clk & TP1fetch_ADDR) TP1dADDR <= TA2dADDR;

end

//TADDR

always @(posedge REclk)

begin

if(clk & TP1fetch_TADDR) TP1_TMBADDR <= TA2dADDR;

end

//ALPHA

always @(posedge REclk)

begin

if(clk & TP1fetch_ALPHA) TP1dA <= TA2dA;

end

//TXL

always @(posedge REclk)

begin

if(clk & TP1fetch_TXL)

begin

TP1UV_spmask <= TA2UV_spmask;

TP1UV_tmmask <= TA2UV_tmmask;

TP1UV0t3_align <= { TA2UV0_align, TA2UV1_align, TA2UV2_align,

TA2UV3_align};

TP1UV0t7_comp<={TA2UV0_comp,TA2UV1_comp,TA2UV2_comp,TA2UV3_comp,

TA2UV4_comp, TA2UV5_comp, TA2UV6_comp, TA2UV7_comp};

TP1_TMA0 <= TA2_TMA0;

TP1_TMA1 <= TA2_TMA1;

TP1_TMA2 <= TA2_TMA2;

TP1_TMA3 <= TA2_TMA3;

TP1_TMA4 <= TA2_TMA4;

TP1_TMA5 <= TA2_TMA5;

TP1_TMA6 <= TA2_TMA6;

TP1_TMA7 <= TA2_TMA7;

end

end

//PP0 PXL

always @(posedge REclk)

begin

if(clk & TA2pp0VALID & TP1fetch_PXL) TP1pp0RGB <= TA2pp0RGB;

end

//PP0 TXL

always @(posedge REclk)

begin

if(clk & TA2pp0VALID & TP1fetch_TXL)

begin

TP1pp0U_frac <= TA2pp0U_frac;

TP1pp0V_frac <= TA2pp0V_frac;

TP1pp0UV_end <= TA2pp0UV_end;

end

end

//PP1 PXL

always @(posedge REclk)

Low-power Rasterizer Design 255

begin

if(clk & TA2pp1VALID & TP1fetch_PXL) TP1pp1RGB <= TA2pp1RGB;

end

//PP1 TXL

always @(posedge REclk)

begin

if(clk & TA2pp1VALID & TP1fetch_TXL)

begin

TP1pp1U_frac <= TA2pp1U_frac;

TP1pp1V_frac <= TA2pp1V_frac;

TP1pp1UV_end <= TA2pp1UV_end;

end

end

endmodule

//Bank aggregation

Wtp1_bank_aggr sstp1_bank_aggr();

//Bank aggregation module

module Wtp1_bam_unit(moduleID,maskIN,maskOUT,baON,baSEL,

tma0,tma1,tma2,tma3,tma4,tma5,tma6,tma7);

/* Combinational logics */

//ID==?TMA

assign bankSAME[7] = (moduleID == tma0) ? 1’b1 : 1’b0; // TMA0

assign bankSAME[6] = (moduleID == tma1) ? 1’b1 : 1’b0; // TMA1

assign bankSAME[5] = (moduleID == tma2) ? 1’b1 : 1’b0; // TMA2

assign bankSAME[4] = (moduleID == tma3) ? 1’b1 : 1’b0; // TMA3

assign bankSAME[3] = (moduleID == tma4) ? 1’b1 : 1’b0; // TMA4

assign bankSAME[2] = (moduleID == tma5) ? 1’b1 : 1’b0; // TMA5

assign bankSAME[1] = (moduleID == tma6) ? 1’b1 : 1’b0; // TMA6

assign bankSAME[0] = (moduleID == tma7) ? 1’b1 : 1’b0; // TMA7

//Bitwise-AND with tmmask

assign bankANDmask = maskIN & bankSAME;

// Bank address ON

assign baON = (|baSEL);

//Mask out

assign maskOUT = maskIN & (�baSEL);

//Bank address select: priority selection

always @(bankANDmask)

begin

casex(bankANDmask)

8’b1XXX_XXXX : baSEL <= 8’b1000_0000;

8’b01XX_XXXX : baSEL <= 8’b0100_0000;

8’b001X_XXXX : baSEL <= 8’b0010_0000;

8’b0001_XXXX : baSEL <= 8’b0001_0000;

8’b0000_1XXX : baSEL <= 8’b0000_1000;

8’b0000_01XX : baSEL <= 8’b0000_0100;

8’b0000_001X : baSEL <= 8’b0000_0010;

8’b0000_0001 : baSEL <= 8’b0000_0001;

8’b0000_0000 : baSEL <= 8’b0000_0000;

256 Mobile 3D Graphics SoC

default : baSEL <= 8’b0000_0000;

endcase

end

endmodule

/* Bank aggregation */

module Wtp1_bank_aggr(REclk,TP1selMC,TP1fetchMC,TP1fetch_CLK,

TP1UV_tmmask, TP1_TMA0,TP1_TMA1,TP1_TMA2,TP1_TMA3,

TP1_TMA4,TP1_TMA5,TP1_TMA6,TP1_TMA7,

TP1baMULTI,TP1baON,

TP1baSEL0,TP1baSEL1,TP1baSEL2,TP1baSEL3);

/* Combinational Logics */

assign #1 TP1maskIN = (TP1selMC) ? TP1maskOLD : TP1UV_tmmask;

assign #1 TP1baMULTI = (|TP1maskOUT);

/* Latches */

always @(posedge REclk)

begin

//if(TP1fetch_CLK) TP1maskOLD = TP1maskOUT;

if(TP1fetchMC) TP1maskOLD <= TP1maskOUT;

end

/* Module interconnection */

Wtp1_bam_unit sstp1_bam_0();

Wtp1_bam_unit sstp1_bam_1();

Wtp1_bam_unit sstp1_bam_2();

Wtp1_bam_unit sstp1_bam_3();

endmodule

//Address select MUX

Wtp1_addr_sel sstp1_addr_sel();

//Address select MUX

module Wtp1_addr_sel(TP1baSEL0,TP1baSEL1,TP1baSEL2,TP1baSEL3,

TP1_TMA0,TP1_TMA1,TP1_TMA2,TP1_TMA3,

TP1_TMA4,TP1_TMA5,TP1_TMA6,TP1_TMA7,

TP1_TM0addr,TP1_TM1addr,TP1_TM2addr,TP1_TM3addr);

//TM

always @(TP1baSEL0 or TP1baSEL1 or TP1baSEL2 or TP1baSEL3 or

TP1_TMA0 or TP1_TMA1 or TP1_TMA2 or TP1_TMA3 or

TP1_TMA4 or TP1_TMA5 or TP1_TMA6 or TP1_TMA7)

begin

//TM#0

casex(TP1baSEL0)

8’b1XXX_XXXX : TP1_TM0addr <= TP1_TMA0;

8’bX1XX_XXXX : TP1_TM0addr <= TP1_TMA1;

8’bXX1X_XXXX : TP1_TM0addr <= TP1_TMA2;

8’bXXX1_XXXX : TP1_TM0addr <= TP1_TMA3;

8’bXXXX_1XXX : TP1_TM0addr <= TP1_TMA4;

8’bXXXX_X1XX : TP1_TM0addr <= TP1_TMA5;

Low-power Rasterizer Design 257

8’bXXXX_XX1X : TP1_TM0addr <= TP1_TMA6;

8’bXXXX_XXX1 : TP1_TM0addr <= TP1_TMA7;

default : TP1_TM0addr <= 16’bX;

endcase

//TM#1

casex(TP1baSEL1)

8’b1XXX_XXXX : TP1_TM1addr <= TP1_TMA0;

8’bX1XX_XXXX : TP1_TM1addr <= TP1_TMA1;

8’bXX1X_XXXX : TP1_TM1addr <= TP1_TMA2;

8’bXXX1_XXXX : TP1_TM1addr <= TP1_TMA3;

8’bXXXX_1XXX : TP1_TM1addr <= TP1_TMA4;

8’bXXXX_X1XX : TP1_TM1addr <= TP1_TMA5;

8’bXXXX_XX1X : TP1_TM1addr <= TP1_TMA6;

8’bXXXX_XXX1 : TP1_TM1addr <= TP1_TMA7;

default : TP1_TM1addr <= 16’bX;

endcase

//TM#2

casex(TP1baSEL2)

8’b1XXX_XXXX : TP1_TM2addr <= TP1_TMA0;

8’bX1XX_XXXX : TP1_TM2addr <= TP1_TMA1;

8’bXX1X_XXXX : TP1_TM2addr <= TP1_TMA2;

8’bXXX1_XXXX : TP1_TM2addr <= TP1_TMA3;

8’bXXXX_1XXX : TP1_TM2addr <= TP1_TMA4;

8’bXXXX_X1XX : TP1_TM2addr <= TP1_TMA5;

8’bXXXX_XX1X : TP1_TM2addr <= TP1_TMA6;

8’bXXXX_XXX1 : TP1_TM2addr <= TP1_TMA7;

default : TP1_TM2addr <= 16’bX;

endcase

//TM#3

casex(TP1baSEL3)

8’b1XXX_XXXX : TP1_TM3addr <= TP1_TMA0;

8’bX1XX_XXXX : TP1_TM3addr <= TP1_TMA1;

8’bXX1X_XXXX : TP1_TM3addr <= TP1_TMA2;

8’bXXX1_XXXX : TP1_TM3addr <= TP1_TMA3;

8’bXXXX_1XXX : TP1_TM3addr <= TP1_TMA4;

8’bXXXX_X1XX : TP1_TM3addr <= TP1_TMA5;

8’bXXXX_XX1X : TP1_TM3addr <= TP1_TMA6;

8’bXXXX_XXX1 : TP1_TM3addr <= TP1_TMA7;

default : TP1_TM3addr <= 16’bX;

endcase

end

endmodule

//Texture memory interface

Wtp1_tmi sstp1_tmi();

//Texture memory interface

module Wtp1_tmi(REclk, TP1_TMcmd, TP1baON,

TP1_TMBADDR, TP1_TM0addr, TP1_TM1addr,

TP1_TM2addr,TP1_TM3addr,

TMI_TMBADDR, TMI_TM0nREQ, TMI_TM0cmd, TMI_TM0addr,

TMI_TM1nREQ, TMI_TM1cmd, TMI_TM1addr,

258 Mobile 3D Graphics SoC

TMI_TM2nREQ, TMI_TM2cmd, TMI_TM2addr,

TMI_TM3nREQ, TMI_TM3cmd, TMI_TM3addr);

/* Combinational logics */

//TMmask

always @(TP1_TMcmd or writeON or TP1baON)

begin

casex(TP1_TMcmd)

‘WTM_CMD_READ : TMmask <= TP1baON;

default : TMmask <= 4’b1111;

endcase

end

//TM#cmd

assign TM0cmd = TP1_TMcmd & {3{TMmask[3]}}; // TM0

assign TM1cmd = TP1_TMcmd // TM1

assign TM2cmd = TP1_TMcmd & {3{TMmask[1]}}; // TM2

assign TM3cmd = TP1_TMcmd & {3{TMmask[0]}}; // TM3

//TM#addr

always @(TP1_TMcmd or tmADDR or

TP1_TM0addr or TP1_TM1addr or TP1_TM2addr or TP1_TM3addr)

begin

casex(TP1_TMcmd)

‘WTM_CMD_READ :

begin

TM0addr <= TP1_TM0addr;

TM1addr <= TP1_TM1addr;

TM2addr <= TP1_TM2addr;

TM3addr <= TP1_TM3addr;

end

default :

begin

TM0addr <= 16’b0;

TM1addr <= 16’b0;

TM2addr <= 16’b0;

TM3addr <= 16’b0;

end

endcase

end

//Command & address

always @(negedge REclk)

begin

TMI_TMBADDR <= TP1_TMBADDR;

//REQ & command & address

TMI_TM0nREQ <= �(|TM0cmd);

TMI_TM0cmd <= TM0cmd;

TMI_TM0addr <= TM0addr;

TMI_TM1nREQ <= �(|TM1cmd);

TMI_TM1cmd <= TM1cmd;

TMI_TM1addr <= TM1addr;

TMI_TM2nREQ <= �(|TM2cmd);

TMI_TM2cmd <= TM2cmd;

TMI_TM2addr <= TM2addr;

TMI_TM3nREQ <= �(|TM3cmd);

Low-power Rasterizer Design 259

TMI_TM3cmd <= TM3cmd;

TMI_TM3addr <= TM3addr;

end

endmodule

endmodule

7.5.4.11 TP2: Texture Prefetch #2

The TP2 stage (Figure 7.28) latches the texture data from the texture cache and it

transfers to the next pipeline stage.

Pipe Inputs

. REclk: rendering clock

. Pipe controls

. Common signals

. CAL controls

. TMA Controls

. PP dependent signals

Pipe Outputs

. Pipe controls

. Common signals

. CAL controls

Figure 7.28 Texture prefetch #2

260 Mobile 3D Graphics SoC

. Texture memory data outputs

. PP dependent signals

Memory Inputs

. Texture data (in)

Functions

. Store texture memory data from texture memory

. Control MUX of data bus to prevent race at negative edge REclk

Datapath #1: TP2_TMI
See Figure 7.29.

Control signal Description

TP2latchON[7:0] Latch enable signal

“Enable signal for next-stage latch”

({8{TP2baON[3]}} & TP2baSEL0) | . . .

TP2_TMI

TMI_TM0dat[15:0]

TP2baON

TP2baSEL[7:0]

REclk

TMIsel#[3:0]

TP2_TM#dat[23:0]

8 x [4-to-1 MUX]

TP2latchON[7:0]

Figure 7.29 Datapath #1: TP2_TMI

Low-power Rasterizer Design 261

TMsel[7:0] MUX select control

Latch @ negative latch (if TP2baON

to reduce bus transition)

RTL Code

/*

* RAMP-GR

* RAMP-GR TP2 Module : Texture Prefetch #2

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wtp2(REclk, TP3nwait, TP1reset, TP1nhld, TP1cOP, TP1cFB, TP1cDF,

TP1cTMF, TP1cAF, TP1cTEXEN, TP1cFMB, TP1cSCR,

TP1_ZB0cmd, TP1_ZB1cmd, TP1_ZB0addr, TP1_ZB1addr,

TP1ppMASK, TP1tmod_FILT, TP1tmod, TP1dADDR, TP1dA,

TP1UV_spmask, TP1UV_tmmask,TP1UV0t3_align,TP1UV0t7_comp,TP1baMULTI,

TP1baON, TP1baSEL0, TP1baSEL1, TP1baSEL2, TP1baSEL3,

TP1pp0VALID, TP1pp0RGB, TP1pp0U_frac, TP1pp0V_frac, TP1pp0UV_end,

TP1pp1VALID, TP1pp1RGB, TP1pp1U_frac, TP1pp1V_frac, TP1pp1UV_end,

TMI_TM0dat, TMI_TM1dat, TMI_TM2dat, TMI_TM3dat,

TMI_TM0nWAIT, TMI_TM1nWAIT, TMI_TM2nWAIT, TMI_TM3nWAIT,

TP2nwait, TP2reset, TP2nhld, TP2cOP, TP2cFB, TP2cDF,

TP2cTMF, TP2cAF, TP2cTEXEN, TP2cFMB, TP2cSCR,

TP2_ZB0cmd, TP2_ZB1cmd, TP2_ZB0addr, TP2_ZB1addr, TP2ppMASK,

TP2tmod_FILT, TP2tmod, TP2dADDR, TP2dA,

TP2UV_spmask, TP2UV_tmmask,TP2UV0t3_align,TP2UV0t7_comp,TP2baMULTI,

TP2latchON,TP2_TM0dat,TP2_TM1dat,TP2_TM2dat,TP2_TM3dat,TP2_TM4dat,

TP2_TM5dat, TP2_TM6dat, TP2_TM7dat,

TP2pp0VALID, TP2pp0RGB, TP2pp0U_frac, TP2pp0V_frac, TP2pp0UV_end,

TP2pp1VALID, TP2pp1RGB, TP2pp1U_frac, TP2pp1V_frac, TP2pp1UV_end);

/* Wire renaming */

assign #1 TP2pp0VALID = TP2ppMASK[1];

assign #1 TP2pp1VALID = TP2ppMASK[0];

reg TMI_TMnWAIT;

always @(posedge REclk)

begin

TMI_TMnWAIT <= TMI_TM0nWAIT & TMI_TM1nWAIT & TMI_TM2nWAIT

& TMI_TM3nWAIT;

end

/* Module interconnection */

//Main controller

Wtp2_ctrl sstp2_ctrl();

//Main controller

module Wtp2_ctrl(REclk, TP3nwait, TP1reset, TP1nhld,

262 Mobile 3D Graphics SoC

TP1cOP, TP1cFB, TP1cDF, TP1cTMF,

TP1cAF, TP1cTEXEN, TP1cFMB, TP1cSCR,

TP1_ZB0cmd, TP1_ZB1cmd, TP1_ZB0addr, TP1_ZB1addr, TP1ppMASK,

TMI_TMnWAIT,

TP2nwait, TP2reset, TP2nhld, TP2cOP, TP2cFB, TP2cDF, TP2cTMF,

TP2cAF, TP2cTEXEN, TP2cFMB, TP2cSCR,

TP2_ZB0cmd, TP2_ZB1cmd, TP2_ZB0addr, TP2_ZB1addr, TP2ppMASK,

TP2fetch_CLK, TP2fetch_TMOD, TP2fetch_ADDR, TP2fetch_ALPHA,

TP2fetch_PXL, TP2fetch_TXL);

/* Combinational logics */

//nwait

assign TP2nwait = ((TP3nwait & TMI_TMnWAIT) | �TP1reset) ;

//nhld

assign TP2nhld = TP2nhld_int & TMI_TMnWAIT;

//Fetch enables

assign #1 TP2fetch_CLK = TP2nwait & TP1nhld;

assign TP2fetch_TMOD = TP1cTMF;

assign TP2fetch_ADDR = TP1cAF;

assign TP2fetch_ALPHA = TP1cDF;

assign TP2fetch_PXL = TP1cDF;

assign TP2fetch_TXL = TP1cDF & TP1cTEXEN;

always @(posedge REclk)

begin

if(TP2nwait)

begin

//State controls

TP2nhld_int <= TP1nhld;

TP2reset <= TP1reset;

//Fetch signals

TP2cDF_int <= TP1cDF;

TP2cTMF_int <= TP1cTMF;

TP2cAF_int <= TP1cAF;

TP2cTEXEN_int <= TP1cTEXEN;

TP2cFMB_int <= TP1cFMB;

//Trivial signals

TP2cOP <= TP1cOP;

TP2cFB <= TP1cFB;

TP2cSCR <= TP1cSCR;

TP2_ZB0cmd <= TP1_ZB0cmd;

TP2_ZB1cmd <= TP1_ZB1cmd;

TP2_ZB0addr <= TP1_ZB0addr;

TP2_ZB1addr <= TP1_ZB1addr;

TP2ppMASK <= TP1ppMASK;

end

end

always @(negedge REclk)

begin

TP2cDF <= TP2cDF_int;

TP2cTMF <= TP2cTMF_int;

TP2cAF <= TP2cAF_int;

TP2cTEXEN <= TP2cTEXEN_int;

Low-power Rasterizer Design 263

TP2cFMB <= TP2cFMB_int;

end

endmodule

//Data latches

Wtp2_latch sstp2_latch();

//Data latches

module Wtp2_latch(REclk,clk,TP2fetch_TMOD,TP2fetch_ADDR,TP2fetch_ALPHA,

TP2fetch_PXL, TP2fetch_TXL,

TP1tmod_FILT, TP1tmod, TP1dADDR, TP1dA, TP1UV_spmask,

TP1UV_tmmask,TP1UV0t3_align, TP1UV0t7_comp, TP1baMULTI,

TP1baON, TP1baSEL0, TP1baSEL1, TP1baSEL2, TP1baSEL3,

TP1pp0VALID, TP1pp0RGB, TP1pp0U_frac, TP1pp0V_frac,

TP1pp0UV_end, TP1pp1VALID, TP1pp1RGB, TP1pp1U_frac,

TP1pp1V_frac, TP1pp1UV_end,

TP2tmod_FILT, TP2tmod, TP2dADDR, TP2dA,

TP2UV_spmask, TP2UV_tmmask, TP2UV0t3_align, TP2UV0t7_comp,

TP2baMULTI, TP2baON, TP2baSEL0, TP2baSEL1,

TP2baSEL2, TP2baSEL3,

TP2pp0RGB, TP2pp0U_frac, TP2pp0V_frac, TP2pp0UV_end,

TP2pp1RGB, TP2pp1U_frac, TP2pp1V_frac, TP2pp1UV_end);

/* Latching */

//TP2_LATCH_TMOD

always @(posedge REclk)

begin

if(clk&TP2fetch_TMOD)

begin

TP2tmod_FILT <= TP1tmod_FILT;

TP2tmod <= TP1tmod;

end

end

//TP2_LATCH_ADDR

always @(posedge REclk)

begin

if(clk&TP2fetch_ADDR) TP2dADDR <= TP1dADDR;

end

//TP2_LATCH_ALPHA

always @(posedge REclk)

begin

if(clk&TP2fetch_ALPHA) TP2dA <= TP1dA;

end

//TP2_LATCH_CAL : TXL

always @(posedge REclk)

begin

if(clk&TP2fetch_TXL)

begin

TP2UV_spmask <= TP1UV_spmask;

TP2UV_tmmask <= TP1UV_tmmask;

TP2UV0t3_align <= TP1UV0t3_align;

TP2UV0t7_comp <= TP1UV0t7_comp;

TP2baMULTI <= TP1baMULTI;

264 Mobile 3D Graphics SoC

TP2baON <= TP1baON;

TP2baSEL0 <= TP1baSEL0;

TP2baSEL1 <= TP1baSEL1;

TP2baSEL2 <= TP1baSEL2;

TP2baSEL3 <= TP1baSEL3;

end

end

//TP2_LATCH_PP0_PXL

always @(posedge REclk)

begin

if(clk & TP1pp0VALID&TP2fetch_PXL) TP2pp0RGB <= TP1pp0RGB;

end

//TP2_LATCH_PP0_TXL

always @(posedge REclk)

begin

if(clk & TP1pp0VALID&TP2fetch_TXL)

begin

TP2pp0U_frac <= TP1pp0U_frac;

TP2pp0V_frac <= TP1pp0V_frac;

TP2pp0UV_end <= TP1pp0UV_end;

end

end

//TP2_LATCH_PP1_PXL

always @(posedge REclk)

begin

if(clk & TP1pp1VALID&TP2fetch_PXL) TP2pp1RGB <= TP1pp1RGB;

end

//TP2_LATCH_PP1_TXL

always @(posedge REclk)

begin

if(clk & TP1pp1VALID&TP2fetch_TXL)

begin

TP2pp1U_frac <= TP1pp1U_frac;

TP2pp1V_frac <= TP1pp1V_frac;

TP2pp1UV_end <= TP1pp1UV_end;

end

end

endmodule

//Texture memory interface

Wtp2_tmi sstp2_tmi();

//Texture memory interface: MUX Unix

module Wtp2_tmi_muxunit(TMsel,TMin0,TMin1,TMin2,TMin3,TMout);

/* Inputs */

input [3:0] TMsel;

input [23:0] TMin0;

input [23:0] TMin1;

input [23:0] TMin2;

input [23:0] TMin3;

/* Outputs */

output [23:0] TMout;

reg [23:0] TMout;

Low-power Rasterizer Design 265

always @(TMsel or TMin0 or TMin1 or TMin2 or TMin3)

begin

casex(TMsel)

4’b1XXX : TMout <= TMin0;

4’bX1XX : TMout <= TMin1;

4’bXX1X : TMout <= TMin2;

4’bXXX1 : TMout <= TMin3;

default : TMout <= 24’bX;

endcase

end

endmodule

//Texture memory interface

module Wtp2_tmi(REclk,TP2baON,TP2baSEL0,TP2baSEL1,TP2baSEL2,TP2ba-

SEL3,

TP2latchON,TP2_TM0dat,TP2_TM1dat,TP2_TM2dat,TP2_TM3dat,

TP2_TM4dat,TP2_TM5dat,TP2_TM6dat,TP2_TM7dat,

TMI_TM0dat,TMI_TM1dat,TMI_TM2dat,TMI_TM3dat);

/* Combinational logic */

assign #1 TP2latchON = ({8{TP2baON[3]}} & TP2baSEL0) | //TM0

({8{TP2baON[2]}} & TP2baSEL1) | //TM1

({8{TP2baON[1]}} & TP2baSEL2) | //TM2

({8{TP2baON[0]}} & TP2baSEL3); //TM3

/* Control Latch */

always @(negedge REclk)

begin

if(|TP2baON)

begin

TMsel0 <= {TP2baSEL0[7],TP2baSEL1[7],TP2baSEL2[7],TP2baSEL3[7]};

TMsel1 <= {TP2baSEL0[6],TP2baSEL1[6],TP2baSEL2[6],TP2baSEL3[6]};

TMsel2 <= {TP2baSEL0[5],TP2baSEL1[5],TP2baSEL2[5],TP2baSEL3[5]};

TMsel3 <= {TP2baSEL0[4],TP2baSEL1[4],TP2baSEL2[4],TP2baSEL3[4]};

TMsel4 <= {TP2baSEL0[3],TP2baSEL1[3],TP2baSEL2[3],TP2baSEL3[3]};

TMsel5 <= {TP2baSEL0[2],TP2baSEL1[2],TP2baSEL2[2],TP2baSEL3[2]};

TMsel6 <= {TP2baSEL0[1],TP2baSEL1[1],TP2baSEL2[1],TP2baSEL3[1]};

TMsel7 <= {TP2baSEL0[0],TP2baSEL1[0],TP2baSEL2[0],TP2baSEL3[0]};

end

end

/* Buffer insertion for synthesis: one more inverter @ WTP2_TOP */

assign TMI_TM0dat_buf= {TMI_TM0dat[15:11], 3’b0,TMI_TM0dat[10:5],2’b0,

TMI_TM0dat[4:0], 3’b0};

assign TMI_TM1dat_buf= {TMI_TM1dat[15:11], 3’b0,TMI_TM1dat[10:5],2’b0,

TMI_TM1dat[4:0], 3’b0};

assign TMI_TM2dat_buf= {TMI_TM2dat[15:11], 3’b0,TMI_TM2dat[10:5],2’b0,

TMI_TM2dat[4:0], 3’b0};

assign TMI_TM3dat_buf= {TMI_TM3dat[15:11], 3’b0,TMI_TM3dat[10:5],2’b0,

TMI_TM3dat[4:0], 3’b0};

/* Module interconnection */

Wtp2_tmi_muxunit sstp2_tmi_mux0();

266 Mobile 3D Graphics SoC

Wtp2_tmi_muxunit sstp2_tmi_mux1();

Wtp2_tmi_muxunit sstp2_tmi_mux2();

Wtp2_tmi_muxunit sstp2_tmi_mux3();

Wtp2_tmi_muxunit sstp2_tmi_mux4();

Wtp2_tmi_muxunit sstp2_tmi_mux5();

Wtp2_tmi_muxunit sstp2_tmi_mux6();

Wtp2_tmi_muxunit sstp2_tmi_mux7();

endmodule

endmodule

7.5.4.12 TP3: Texture Prefetch #3

In the TP3 stage (Figure 7.30), the reverse operation of the address alignment logic is

performed. Using the previous used texels, which are stored in the register, and the new

texels from the texture caches, four bilinear texels are aligned in this stage; and the

aligned texels are transferred to the next pipeline stage, texture filtering.

Pipe Inputs

. Pipe controls

. Common signals

. CAL controls

. Texture memory data output

. PP dependent signals

Figure 7.30 Texture prefetch #3

Low-power Rasterizer Design 267

Pipe Outputs

. Pipe controls

. Common signals

. PP dependent signals

– ALID

– Pixel RGB

– Texel U,V, End

– Texel RGB �4

Functions

. Cache alignment logic: reverse operation

. Realign texel

Signal Descriptions

Control signal Description

TP3baMULTI Multi-cycle control signal

TP3nhld¼ 0 (if MULTI¼¼1)

Datapath #1: TP3_DATA_COMPARE
See Figure 7.31.

Datapath #2: TP3_DA_COMP_REVUNIT
See Figure 7.32.

RTL Code

/*

* RAMP-GR

* RAMP-GR TP3 Module: Texture Prefetch #3

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wtp3(REclk, TFnwait, TP2reset, TP2nhld, TP2cOP, TP2cFB, TP2cDF,

TP2cTMF, TP2cAF, TP2cTEXEN, TP2cFMB, TP2cSCR,

TP2_ZB0cmd, TP2_ZB1cmd, TP2_ZB0addr, TP2_ZB1addr, TP2ppMASK,

TP2tmod_FILT, TP2tmod, TP2dADDR, TP2dA,

TP2UV_spmask, TP2UV_tmmask, TP2UV0t3_align, TP2UV0t7_comp,

TP2baMULTI, TP2latchON,

TP2_TM0dat, TP2_TM1dat, TP2_TM2dat, TP2_TM3dat,

TP2_TM4dat, TP2_TM5dat, TP2_TM6dat, TP2_TM7dat,

TP2pp0VALID, TP2pp0RGB, TP2pp0U_frac, TP2pp0V_frac, TP2pp0UV_end,

268 Mobile 3D Graphics SoC

TP2pp1VALID, TP2pp1RGB, TP2pp1U_frac, TP2pp1V_frac, TP2pp1UV_end,

TP3nwait, TP3reset, TP3nhld, TP3cOP, TP3cFB, TP3cDF,

TP3cTMF, TP3cAF, TP3cTEXEN, TP3cFMB, TP3cSCR,

TP3_ZB0cmd, TP3_ZB1cmd, TP3_ZB0addr, TP3_ZB1addr, TP3ppMASK,

TP3tmod_FILT, TP3tmod, TP3dADDR, TP3dA,

TP3pp0VALID, TP3pp0RGB, TP3pp0U_frac, TP3pp0V_frac, TP3pp0UV_end,

TP3pp0RGB_0, TP3pp0RGB_1, TP3pp0RGB_2, TP3pp0RGB_3,

TP3pp1VALID, TP3pp1RGB, TP3pp1U_frac, TP3pp1V_frac, TP3pp1UV_end,

TP3pp1RGB_0, TP3pp1RGB_1, TP3pp1RGB_2, TP3pp1RGB_3);

/* Renaming */

assign #1 TP3pp0VALID = TP3ppMASK[1];

assign #1 TP3pp1VALID = TP3ppMASK[0];

/* Module interconnection */

//Main controller

Wtp3_ctrl Wtp3_ctrl();

//Main controller

module Wtp3_ctrl(REclk,TFnwait,TP2reset,TP2nhld,TP2cOP,TP2cFB,TP2cDF,

TP2cTMF, TP2cAF, TP2cTEXEN, TP2cFMB, TP2cSCR,

TP2_ZB0cmd, TP2_ZB1cmd, TP2_ZB0addr, TP2_ZB1addr, TP2ppMASK,

TP3baMULTI,

TP3nwait, TP3reset, TP3nhld, TP3cOP, TP3cFB, TP3cDF,

Figure 7.31 Datapath #1: TP3_DATA_COMPARE

Low-power Rasterizer Design 269

TP3cTMF, TP3cAF, TP3cTEXEN, TP3cFMB, TP3cSCR,

TP3_ZB0cmd, TP3_ZB1cmd, TP3_ZB0addr, TP3_ZB1addr, TP3ppMASK,

TP3fetch_CLK, TP3fetch_TMOD, TP3fetch_ADDR,

TP3fetch_ALPHA, TP3fetch_PXL, TP3fetch_TXL);

//nwait

assign TP3nwait = TFnwait | �TP2reset;

//nhld

assign TP3nhld_gen=�(TP3cDF_int&TP3cOP[5]&TP3cTEXEN_int&TP3baMULTI);

assign TP3nhld = TP3nhld_int & TP3nhld_gen;

//Fetch signals

assign #1 TP3fetch_CLK = TP3nwait & TP2nhld;

assign TP3fetch_TMOD = TP2cTMF;

assign TP3fetch_ADDR = TP2cAF;

assign TP3fetch_ALPHA = TP2cDF;

assign TP3fetch_PXL = TP2cDF;

assign TP3fetch_TXL = TP2cDF & TP2cTEXEN;

always @(posedge REclk)

begin

if(TP3nwait)

begin

//State control

TP3nhld_int <= TP2nhld;

TP3_TMdat[23:0]

TP3_TM0pre[23:0]

TP3_TM1pre[23:0]

TP3_TM2pre[23:0]

TP3_TM3pre[23:0]

TP3_TM4pre[23:0]

TP3_TM5pre[23:0]

TP3_TM6pre[23:0]

TP3_TM7pre[23:0]

TP3tmSEL[7:0]

TP3_TMpre[23:0]
0

TP3_RGB[23:0]

TP3_DATA_COMP_REVUNIT

TP3UV_tmmask

1

Figure 7.32 Datapath #2: TP3_DA_COMP_REVUNIT

270 Mobile 3D Graphics SoC

TP3reset <= TP2reset;

//Fetch signals

TP3cDF_int <= TP2cDF;

TP3cTMF_int <= TP2cTMF;

TP3cAF_int <= TP2cAF;

TP3cTEXEN_int <= TP2cTEXEN;

TP3cFMB_int <= TP2cFMB;

//Trivial signals

TP3cOP <= TP2cOP;

TP3cFB <= TP2cFB;

TP3cSCR <= TP2cSCR;

TP3_ZB0cmd <= TP2_ZB0cmd;

TP3_ZB1cmd <= TP2_ZB1cmd;

TP3_ZB0addr <= TP2_ZB0addr;

TP3_ZB1addr <= TP2_ZB1addr;

TP3ppMASK <= TP2ppMASK;

end

end

always @(negedge REclk)

begin

TP3cDF <= TP3cDF_int;

TP3cTMF <= TP3cTMF_int;

TP3cAF <= TP3cAF_int;

TP3cTEXEN <= TP3cTEXEN_int;

TP3cFMB <= TP3cFMB_int;

end

endmodule

//Data latching

Wtp3_latch Wtp3_latch();

//Data latching

module Wtp3_latch(REclk, clk, TP3fetch_TMOD, TP3fetch_ADDR,

TP3fetch_ALPHA, TP3fetch_PXL, TP3fetch_TXL,

TP2tmod_FILT, TP2tmod, TP2dADDR, TP2dA,

TP2UV_spmask, TP2UV_tmmask, TP2UV0t3_align, TP2UV0t7_comp,

TP2baMULTI, TP2pp0VALID, TP2pp0RGB, TP2pp0U_frac,

TP2pp0V_frac,

TP2pp0UV_end, TP2pp1VALID, TP2pp1RGB, TP2pp1U_frac,

TP2pp1V_frac, TP2pp1UV_end,

TP3tmod_FILT, TP3tmod, TP3dADDR, TP3dA,

TP3UV_spmask, TP3UV_tmmask, TP3UV0t3_align, TP3UV0t7_comp,

TP3baMULTI,

TP3pp0RGB, TP3pp0U_frac, TP3pp0V_frac, TP3pp0UV_end,

TP3pp1RGB, TP3pp1U_frac, TP3pp1V_frac, TP3pp1UV_end);

//TMOD

always @(posedge REclk)

begin

if(clk & TP3fetch_TMOD)

begin

TP3tmod_FILT <= TP2tmod_FILT;

TP3tmod <= TP2tmod;

end

Low-power Rasterizer Design 271

end

//ADDR

always @(posedge REclk)

begin

if(clk & TP3fetch_ADDR) TP3dADDR <= TP2dADDR;

end

//ALPHA

always @(posedge REclk)

begin

if(clk & TP3fetch_ALPHA) TP3dA <= TP2dA;

end

//TXL

always @(posedge REclk)

begin

if(clk & TP3fetch_TXL)

begin

TP3UV_spmask <= TP2UV_spmask;

TP3UV_tmmask <= TP2UV_tmmask;

TP3UV0t3_align <= TP2UV0t3_align;

TP3UV0t7_comp <= TP2UV0t7_comp;

TP3baMULTI <= TP2baMULTI;

end

end

//PP0_PXL’

always @(posedge REclk)

begin

if (clk & TP3fetch_PXL) TP3pp0RGB <= TP2pp0RGB;

end

//PP0_TXL

always @(posedge REclk)

begin

if(clk & TP3fetch_TXL)

begin

TP3pp0U_frac <= TP2pp0U_frac;

TP3pp0V_frac <= TP2pp0V_frac;

TP3pp0UV_end <= TP2pp0UV_end;

end

end

//PP1_PXL

always @(posedge REclk)

begin

if(clk & TP3fetch_PXL) TP3pp1RGB <= TP2pp1RGB;

end

//PP1_TXL

always @(posedge REclk)

begin

if(clk & TP3fetch_TXL)

begin

TP3pp1U_frac <= TP2pp1U_frac;

TP3pp1V_frac <= TP2pp1V_frac;

TP3pp1UV_end <= TP2pp1UV_end;

end

end

endmodule

272 Mobile 3D Graphics SoC

//Data compare

Wtp3_data_compare sstp3_data_compare();

//Data compare reverse unit block

module Wtp3_data_comp_revunit(TP3tmSEL, TP3UV_tmmask, TP3_TMdat,

TP3_TM0pre, TP3_TM1pre, TP3_TM2pre, TP3_TM3pre,

TP3_TM4pre, TP3_TM5pre, TP3_TM6pre, TP3_TM7pre, TP3_RGB);

/* MUX */

//PRE-SEL: priority decoder

always @(TP3tmSEL or TP3_TM0pre or TP3_TM1pre or TP3_TM2pre or TP3_TM3pre or

TP3_TM4pre or TP3_TM5pre or TP3_TM6pre or TP3_TM7pre)

begin

casex(TP3tmSEL)

8’b1XXX_XXXX : TP3_TMpre <= TP3_TM0pre;

8’b01XX_XXXX : TP3_TMpre <= TP3_TM1pre;

8’b001X_XXXX : TP3_TMpre <= TP3_TM2pre;

8’b0001_XXXX : TP3_TMpre <= TP3_TM3pre;

8’b0000_1XXX : TP3_TMpre <= TP3_TM4pre;

8’b0000_01XX : TP3_TMpre <= TP3_TM5pre;

8’b0000_001X : TP3_TMpre <= TP3_TM6pre;

8’b0000_0001 : TP3_TMpre <= TP3_TM7pre;

default : TP3_TMpre <= 24’bX;

endcase

end

//OUT-SEL

always @(TP3UV_tmmask or TP3_TMdat or TP3_TMpre)

begin

if(TP3UV_tmmask) TP3_RGB <= TP3_TMdat; // Pass-thru

else TP3_RGB <= TP3_TMpre; // Internal

end

endmodule

//Data compare reverse unit block

module Wtp3_da_comp_rev(TP3UV_tmmask, TP3UV0t7_comp,

TP3_TM0dat, TP3_TM1dat, TP3_TM2dat, TP3_TM3dat,

TP3_TM4dat, TP3_TM5dat, TP3_TM6dat, TP3_TM7dat,

TP3_TM0pre, TP3_TM1pre, TP3_TM2pre, TP3_TM3pre,

TP3_TM4pre, TP3_TM5pre, TP3_TM6pre, TP3_TM7pre,

TP3_RGB0, TP3_RGB1, TP3_RGB2, TP3_RGB3,

TP3_RGB4, TP3_RGB5, TP3_RGB6, TP3_RGB7);

//Reassign wires

assign #1 TP3tmSEL0 = TP3UV0t7_comp[63:56];

assign #1 TP3tmSEL1 = TP3UV0t7_comp[55:48];

assign #1 TP3tmSEL2 = TP3UV0t7_comp[47:40];

assign #1 TP3tmSEL3 = TP3UV0t7_comp[39:32];

assign #1 TP3tmSEL4 = TP3UV0t7_comp[31:24];

assign #1 TP3tmSEL5 = TP3UV0t7_comp[23:16];

assign #1 TP3tmSEL6 = TP3UV0t7_comp[16:8];

assign #1 TP3tmSEL7 = TP3UV0t7_comp[7:0];

/* Module interconnection */

Low-power Rasterizer Design 273

Wtp3_data_comp_revunit sstp3_data_comp_rev0();

Wtp3_data_comp_revunit sstp3_data_comp_rev1();

Wtp3_data_comp_revunit sstp3_data_comp_rev2();

Wtp3_data_comp_revunit sstp3_data_comp_rev3();

Wtp3_data_comp_revunit sstp3_data_comp_rev4();

Wtp3_data_comp_revunit sstp3_data_comp_rev5();

Wtp3_data_comp_revunit sstp3_data_comp_rev6();

Wtp3_data_comp_revunit sstp3_data_comp_rev7();

endmodule

//Data compare

module Wtp3_data_compare(REclk, TP3fetch_CLK, TP3fetch_TXL, TP3UV_tmmask,

TP3UV_spmask, TP3UV0t7_comp, TP2latchON,

TP2_TM0dat, TP2_TM1dat, TP2_TM2dat, TP2_TM3dat,

TP2_TM4dat, TP2_TM5dat, TP2_TM6dat, TP2_TM7dat,

TP3_RGB0, TP3_RGB1, TP3_RGB2, TP3_RGB3,

TP3_RGB4, TP3_RGB5, TP3_RGB6, TP3_RGB7,TP3baMULTI);

//TP3_DA_LATCH

always @(posedge REclk)

begin

if(TP3fetch_CLK&TP3fetch_TXL)

begin

if(TP2latchON[7]) TP3_TM0dat <= TP2_TM0dat;

if(TP2latchON[6]) TP3_TM1dat <= TP2_TM1dat;

if(TP2latchON[5]) TP3_TM2dat <= TP2_TM2dat;

if(TP2latchON[4]) TP3_TM3dat <= TP2_TM3dat;

if(TP2latchON[3]) TP3_TM4dat <= TP2_TM4dat;

if(TP2latchON[2]) TP3_TM5dat <= TP2_TM5dat;

if(TP2latchON[1]) TP3_TM6dat <= TP2_TM6dat;

if(TP2latchON[0]) TP3_TM7dat <= TP2_TM7dat;

end

end

//TP3_DA_DATA_REG

always @(posedge REclk)

begin

if(TP3fetch_CLK & �TP3baMULTI & TP3fetch_TXL)

begin

if(TP3UV_spmask[7]) TP3_TM0pre <= TP3_RGB0;

if(TP3UV_spmask[6]) TP3_TM1pre <= TP3_RGB1;

if(TP3UV_spmask[5]) TP3_TM2pre <= TP3_RGB2;

if(TP3UV_spmask[4]) TP3_TM3pre <= TP3_RGB3;

if(TP3UV_spmask[3]) TP3_TM4pre <= TP3_RGB4;

if(TP3UV_spmask[2]) TP3_TM5pre <= TP3_RGB5;

if(TP3UV_spmask[1]) TP3_TM6pre <= TP3_RGB6;

if(TP3UV_spmask[0]) TP3_TM7pre <= TP3_RGB7;

end

end

Wtp3_da_comp_rev sstp3_da_comp_rev();

endmodule

274 Mobile 3D Graphics SoC

//Data align

Wtp3_data_align sstp3_data_align();

//Data align unit

module Wtp3_data_alignunit(TP3tmSEL, TP3UV_spmask, TP3_RGB,

TP3_RGB0, TP3_RGB1, TP3_RGB2, TP3_RGB3, TP3pp1RGB);

/* MUX */

//PRE-SEL: pririty decoder

always @(TP3tmSEL or TP3_RGB0 or TP3_RGB1 or TP3_RGB2 or TP3_RGB3)

begin

casex(TP3tmSEL)

4’b1XXX : TP3pp1PRE <= TP3_RGB0;

4’b01XX : TP3pp1PRE <= TP3_RGB1;

4’b001X : TP3pp1PRE <= TP3_RGB2;

4’b0001 : TP3pp1PRE <= TP3_RGB3;

default : TP3pp1PRE <= 24’bX;

endcase

end

//OUT-SEL

always @(TP3UV_spmask or TP3pp1PRE or TP3_RGB)

begin

if(TP3UV_spmask) TP3pp1RGB <= TP3_RGB; //Pass-through

else TP3pp1RGB <= TP3pp1PRE; //Internal

end

endmodule

//Data align

module Wtp3_data_align(TP3UV_spmask, TP3UV0t3_align,

TP3_RGB0, TP3_RGB1, TP3_RGB2, TP3_RGB3,

TP3_RGB4, TP3_RGB5, TP3_RGB6, TP3_RGB7,

TP3pp0RGB_0, TP3pp0RGB_1, TP3pp0RGB_2, TP3pp0RGB_3,

TP3pp1RGB_0, TP3pp1RGB_1, TP3pp1RGB_2, TP3pp1RGB_3);

/* Reassign wires */

//Select signals

assign #1 TP3tmSEL0 = TP3UV0t3_align[15:12];

assign #1 TP3tmSEL1 = TP3UV0t3_align[11:8];

assign #1 TP3tmSEL2 = TP3UV0t3_align[7:4];

assign #1 TP3tmSEL3 = TP3UV0t3_align[3:0];

//PP0 feed-through data

assign #1 TP3pp0RGB_0 = TP3_RGB0;

assign #1 TP3pp0RGB_1 = TP3_RGB1;

assign #1 TP3pp0RGB_2 = TP3_RGB2;

assign #1 TP3pp0RGB_3 = TP3_RGB3;

/* Module interconnection */

Wtp3_data_alignunit sstp3_data_align0();

Wtp3_data_alignunit sstp3_data_align1();

Wtp3_data_alignunit sstp3_data_align2();

Wtp3_data_alignunit sstp3_data_align3();

endmodule

endmodule

Low-power Rasterizer Design 275

7.5.4.13 TF: Texture Filtering

The task of this stage (Figure 7.33) is to generate filtered texels and to generate the

frame buffer requests. Using four texels from the previous stage, texture filtering is

performed according to the texture mode. This stage generates the frame buffer read

requests for the next pixel blending stage.

Pipe Inputs

. Pipe controls

. Common signals

. PP dependent signals

Pipe Outputs

. Pipe contorls

. Common signals

. PP valid signals

. Pixel RGB

. Bilinear filtered texel RGB.

Memory Outputs

. Frame buffer request

. Frame buffer address.

Figure 7.33 Texture filting unit

276 Mobile 3D Graphics SoC

Functions

. Texture filtering (point sampling/bilinear filter)

. Frame buffer memory control

Frame Buffer Commands

Command Functional description

RDAT FBI_FB#cmd[2:0] ¼ TF_ZB#cmd[2:0]

FB0/FB1 Control <¼ TFppMASK[1:0]

TMOD NOP

ASTR FBI_FB#cmd[2:0] ¼ TF_ZB#cmd[2:0]

FB0/FB1 Control <¼ TFcFB (Both)

Datapath #1: TF_ENGINE
See Figure 7.34.

Signal Description

TFpp#UV_end[1:0] End-point select flag

Flag

2’d0: no end point – select BLEND

2’d1: equals zero – select HIGH

2’d2: equals one – select LOW

TFtmod_FILT[2:0] Texture filtering mode

3’b001: point sampling – select RGB_0

3’b010: bilinear filtering – select BLEND

Datapath #2: TF Blend Module
See Figure 7.35.

C ¼ A� f þB� ð1�f Þ
¼ A� f þB�B� f

¼ f � ðA�BÞþB

¼ ð24 � f � ðA�BÞþ 24 � BÞ=24
¼ ð frac½3 : 0� � ðA�BÞþ fB � 4; 40b0gÞ � 4

RTL Code

/*

* RAMP-GR

* RAMP-GR TF Module: Textue Filtering

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

Low-power Rasterizer Design 277

TF_ENGINET
F

p
p

R
G

B
_0

[1
5:

0]

T
F

p
p

R
G

B
_1

[1
5:

0]

T
F

p
p

R
G

B
_2

[1
5:

0]

T
F

p
p

R
G

B
_3

[1
5:

0]

TFtmod_FILT[2:0]

TFppU_frac[3:0]

TFppV_frac[3:0]

TFppUV_end[3:2]

TF_3BLEND_UL TF_3BLEND _UH

T
F

b
le

n
d

U
L

[1
5:

0]

T
F

b
le

n
d

U
H

[1
5:

0]

T
F

rg
b

U
L

[1
5:

0]

T
F

rg
b

U
H

[1
5:

0]
TF_3BLEND _V

TFppUV_end[1:0]

T
F

b
le

n
d

V
[1

5:
0]

T
F

rg
b

V
[1

5:
0]

T
F

p
p

T
X

L
[1

5:
0]

Figure 7.34 Datapath #1: TF_ENGINE

278 Mobile 3D Graphics SoC

module Wtf(REclk, memclk1, PBnwait, TP3reset, TP3nhld, TP3cOP, TP3cFB, TP3cDF,

TP3cTMF, TP3cAF, TP3cTEXEN, TP3cFMB, TP3cSCR,

TP3_ZB0cmd, TP3_ZB1cmd, TP3_ZB0addr, TP3_ZB1addr, TP3ppMASK,

TP3tmod_FILT, TP3tmod, TP3dADDR, TP3dA,

TP3pp0VALID, TP3pp0RGB, TP3pp0U_frac, TP3pp0V_frac, TP3pp0UV_end,

TP3pp0RGB_0, TP3pp0RGB_1, TP3pp0RGB_2, TP3pp0RGB_3,

TP3pp1VALID, TP3pp1RGB, TP3pp1U_frac, TP3pp1V_frac, TP3pp1UV_end,

TP3pp1RGB_0, TP3pp1RGB_1, TP3pp1RGB_2, TP3pp1RGB_3,

TFnwait, TFreset, TFnhld, TFcOP, TFcFB, TFcDF,

TFcTMF, TFcAF, TFcTEXEN, TFcSCR, TFppMASK, TFtmod, TFdA,

TFpp0VALID, TFpp0PXL, TFpp0TXL, TFpp1VALID, TFpp1PXL, TFpp1TXL,

FB_nREQ, FBI_FB0addr, FBI_FB1addr, FBI_FB0cmd, FBI_FB1cmd,

FBI_FBnWAIT);

1'
b

0,
R

G
B

in
A

[5
:0

]

1'
b

0,
R

G
B

in
B

[5
:0

]

SUB9
+-

R
G

B
su

b
[6

:0
]

WMUL9x4

UVfrac[3:0]

R
G

B
m

u
l[

12
:4

]

ADD9

R
G

B
o

u
t[

5:
0]

AB

TF_BLEND_MODULE

Figure 7.35 Datapath #2: TF blend module

Low-power Rasterizer Design 279

/* Renaming */

assign #1 TFpp0VALID = TFppMASK[1];

assign #1 TFpp1VALID = TFppMASK[0];

/*Module Interconnection*/

//Main controller

Wtf_ctrl sstf_ctrl ();

//Pipeline controller

module Wtf_ctrl(REclk,PBnwait,TP3reset,TP3nhld,TP3cOP,TP3cFB,TP3cDF,

TP3cTMF, TP3cAF, TP3cTEXEN, TP3cFMB, TP3cSCR,

TP3_ZB0cmd, TP3_ZB1cmd, TP3_ZB0addr, TP3_ZB1addr, TP3ppMASK,

FBI_FBnWAIT, TFnwait, TFreset, TFnhld, TFcOP, TFcFB, TFcDF,

TFcTMF, TFcAF, TFcTEXEN, TFcSCR,

TF_ZB0cmd, TF_ZB1cmd, TF_ZB0addr, TF_ZB1addr, TFppMASK,

TFfetch_CLK, TFfetch_TMOD, TFfetch_FADDR, TFfetch_ALPHA,

TFfetch_PXL, TFfetch_TXL);

/* Combinational logics */

//nwait

assign TFnwait = (PBnwait&FBI_FBnWAIT) | �TP3reset;

//nhld

assign TFnhld = TFnhld_int;

//Fetch signals

assign #1 TFfetch_CLK = TFnwait & TP3nhld;

assign TFfetch_TMOD = TP3cTMF;

assign TFfetch_FADDR = TP3cAF & TP3cFMB;

assign TFfetch_ALPHA = TP3cDF;

assign TFfetch_PXL = TP3cDF;

assign TFfetch_TXL = TP3cDF & TP3cTEXEN;

always @(posedge REclk)

begin

if(TFnwait)

begin

TFnhld_int <= TP3nhld;

TFreset <= TP3reset;

//Fetch signals

TFcDF_int <= TP3cDF;

TFcTMF_int <= TP3cTMF;

TFcAF_int <= TP3cAF;

TFcTEXEN_int <= TP3cTEXEN;

//Trivial signals

TFcOP <= TP3cOP;

TFcFB <= TP3cFB;

TFcSCR <= TP3cSCR;

TF_ZB0cmd <= TP3_ZB0cmd;

TF_ZB1cmd <= TP3_ZB1cmd;

TF_ZB0addr <= TP3_ZB0addr;

TF_ZB1addr <= TP3_ZB1addr;

TFppMASK <= TP3ppMASK;

end

end

280 Mobile 3D Graphics SoC

always @(negedge REclk)

begin

TFcDF <= TFcDF_int;

TFcTMF <= TFcTMF_int;

TFcAF <= TFcAF_int;

TFcTEXEN <= TFcTEXEN_int;

end

endmodule

//Data latches

Wtf_latch sstf_latch();

//Data latches

module Wtf_latch(REclk, clk, TFfetch_TMOD, TFfetch_FADDR, TFfetch_ALPHA,

TFfetch_PXL, TFfetch_TXL,

TP3tmod_FILT, TP3tmod, TP3dADDR, TP3dA,

TP3pp0VALID, TP3pp0RGB, TP3pp0U_frac, TP3pp0V_frac, TP3pp0UV_end,

TP3pp0RGB_0, TP3pp0RGB_1, TP3pp0RGB_2, TP3pp0RGB_3,

TP3pp1VALID, TP3pp1RGB, TP3pp1U_frac, TP3pp1V_frac, TP3pp1UV_end,

TP3pp1RGB_0, TP3pp1RGB_1, TP3pp1RGB_2, TP3pp1RGB_3,

TFtmod_FILT, TFtmod, TFdA, FBI_FBBADDR,

TFpp0PXL, TFpp0U_frac, TFpp0V_frac, TFpp0UV_end,

TFpp0RGB_0, TFpp0RGB_1, TFpp0RGB_2, TFpp0RGB_3,

TFpp1PXL, TFpp1U_frac, TFpp1V_frac, TFpp1UV_end,

TFpp1RGB_0, TFpp1RGB_1, TFpp1RGB_2, TFpp1RGB_3);

/* Latching */

//TMOD

always @(posedge REclk)

begin

if(clk & TFfetch_TMOD)

begin

TFtmod_FILT <= TP3tmod_FILT;

TFtmod <= TP3tmod;

end

end

//ADDR

always @(posedge REclk)

begin

if(clk & TFfetch_FADDR) FBI_FBBADDR <= TP3dADDR;

end

//ALPHA

always @(posedge REclk)

begin

if(clk & TFfetch_ALPHA) TFdA <= TP3dA;

end

//PPO PXL

always @(posedge REclk)

begin

if(clk & TP3pp0VALID & TFfetch_PXL) TFpp0PXL <= TP3pp0RGB;

end

//PP0 TXL

Low-power Rasterizer Design 281

always @(posedge REclk)

begin

if(clk & TP3pp0VALID & TFfetch_TXL)

begin

TFpp0U_frac <= TP3pp0U_frac;

TFpp0V_frac <= TP3pp0V_frac;

TFpp0UV_end <= TP3pp0UV_end;

TFpp0RGB_0 <= TP3pp0RGB_0;

TFpp0RGB_1 <= TP3pp0RGB_1;

TFpp0RGB_2 <= TP3pp0RGB_2;

TFpp0RGB_3 <= TP3pp0RGB_3;

end

end

//PP1 PXL

always @(posedge REclk)

begin

if(clk & TP3pp1VALID & TFfetch_PXL) TFpp1PXL <= TP3pp1RGB;

end

//PP1 TXL

always @(posedge REclk)

begin

if(clk & TP3pp1VALID & TFfetch_TXL)

begin

TFpp1U_frac <= TP3pp1U_frac;

TFpp1V_frac <= TP3pp1V_frac;

TFpp1UV_end <= TP3pp1UV_end;

TFpp1RGB_0 <= TP3pp1RGB_0;

TFpp1RGB_1 <= TP3pp1RGB_1;

TFpp1RGB_2 <= TP3pp1RGB_2;

TFpp1RGB_3 <= TP3pp1RGB_3;

end

end

endmodule

//Frame buffer interface

Wtf_fbi sstf_fbi();

//Frame buffer interface

module Wtf_fbi(REclk, memclk1, TFnhld, TFcOP, TFcFB, TF_ZB0cmd, TF_ZB1cmd,

TF_ZB0addr, TF_ZB1addr, TFppMASK, FBI_FBBADDR,

FBI_FBnREQ, FBI_FB0cmd, FBI_FB1cmd, FBI_FB0addr, FBI_FB1addr);

/* Request generation */

assign FBI_FBnREQ_int = �((|FBI_FB0cmd_int) | (|FBI_FB1cmd_int));

/* Address generation */

DW01_add #(18) addr0(.A (FBI_FBBADDR),

.B ({1’b0, TF_ZB0addr, 1’b0}),

.CI (1’b0),

.SUM (FBI_FB0addr_int),

.CO (FB0_cout));

DW01_add #(18) addr1(.A (FBI_FBBADDR),

.B ({1’b0, TF_ZB1addr, 1’b1}),

.CI (1’b0),

282 Mobile 3D Graphics SoC

.SUM (FBI_FB1addr_int),

.CO (FB1_cout));

/* Command generation */

always @(TFcOP or TFnhld or TF_ZB0cmd or TF_ZB1cmd or TFppMASK or TFcFB)

begin

casex(TFcOP)

‘WCTRL_OP_RSHA : begin //RDAT

FBI_FB0cmd_int<=(TFppMASK[1]&TFnhld)?TF_ZB0cmd:‘WFZB_CMD_NOP;

FBI_FB1cmd_int<=(TFppMASK[0]&TFnhld)?TF_ZB1cmd:‘WFZB_CMD_NOP;

end

‘WCTRL_OP_RCLR : begin //RCLR

FBI_FB0cmd_int <= (TFcFB&TFnhld) ? TF_ZB0cmd : ‘WFZB_CMD_NOP;

FBI_FB1cmd_int <= (TFcFB&TFnhld) ? TF_ZB1cmd : ‘WFZB_CMD_NOP;

end

default : begin //Other commands

FBI_FB0cmd_int <= ‘WFZB_CMD_NOP;

FBI_FB1cmd_int <= ‘WFZB_CMD_NOP; end

endcase

end

// Command and address fetch @ negative Clk

always @(negedge memclk1)

begin

FBI_FBnREQ <= FBI_FBnREQ_int;

FBI_FB0cmd <= FBI_FB0cmd_int;

FBI_FB1cmd <= FBI_FB1cmd_int;

FBI_FB0addr <= FBI_FB0addr_int;

FBI_FB1addr <= FBI_FB1addr_int;

end

endmodule

//Pixel processor engine #0

Wtf_engine sstfe_0();

//Pixel processor engine #1

Wtf_engine sstfe_1();

/* Blend unit module */

module Wtf_blend_module(UVfrac, RGBinA, RGBinB, RGBout);

//B-A: sign extension

DW01_sub #(9) sub9(.A ({1’b0,RGBinB}),

.B ({1’b0,RGBinA}),

.CI (1’b0),

.DIFF (RGBsub),

.CO (scout));

//(F*(B-A)) << 4

WMUL9x4 mul9x4(.x (RGBsub),

.y (UVfrac),

.z (RGBmul));

//(F*(A-B) + A) = B*F + A*(1-F)

DW01_add #(9) add9(.A (RGBmul[12:4]),

.B ({1’b0,RGBinA}),

.CI (1’b0),

Low-power Rasterizer Design 283

.SUM (RGBsum),

.CO (cout));

//Output renaming

assign #1 RGBout = RGBsum[7:0];

endmodule

/* 3-way SIMD blend unit */

module Wtf_3blend_unit(UVfrac, RGBinA, RGBinB, RGBout);

/* Module interconnection */

Wtf_blend_module sstf_blend_R(

.UVfrac (UVfrac),

.RGBinA (RGBinA[23:16]),

.RGBinB (RGBinB[23:16]),

.RGBout (RGBout[23:16]));

Wtf_blend_module sstf_blend_G(

.UVfrac (UVfrac),

.RGBinA (RGBinA[15:8]),

.RGBinB (RGBinB[15:8]),

.RGBout (RGBout[15:8]));

Wtf_blend_module sstf_blend_B(

.UVfrac (UVfrac),

.RGBinA (RGBinA[7:0]),

.RGBinB (RGBinB[7:0]),

.RGBout (RGBout[7:0]));

endmodule

/* Pixel processor engine */

module Wtf_engine(TFppRGB_0, TFppRGB_1, TFppRGB_2, TFppRGB_3,

TFppU_frac, TFppV_frac, TFppUV_end, TFtmod_FILT, TFppTXL);

/* Module interconnection */

Wtf_3blend_unit sstf_3blend_ul();

Wtf_3blend_unit sstf_3blend_uh();

Wtf_3blend_unit sstf_3blend_v();

/* Mux */

//TF_MUX_UL

always @(TFppUV_end or TFppRGB_0 or TFppRGB_2 or TFblendUL)

begin

casex(TFppUV_end[3:2])

2’d0 : TFrgbUL <= TFblendUL; //No end point

2’d1 : TFrgbUL <= TFppRGB_2; //Equals to zero

2’d2 : TFrgbUL <= TFppRGB_0; //Equals to one

default : TFrgbUL <= 24’b0;

endcase

end

//TF_MUX_UH

always @(TFppUV_end or TFppRGB_1 or TFppRGB_3 or TFblendUH)

begin

casex(TFppUV_end[3:2])

2’d0 : TFrgbUH <= TFblendUH; //No end point

2’d1 : TFrgbUH <= TFppRGB_3; //Equals to zero

2’d2 : TFrgbUH <= TFppRGB_1; //Equals to one

default : TFrgbUH <= 24’b0;

284 Mobile 3D Graphics SoC

endcase

end

//TF_MUX_V

always @(TFppUV_end or TFrgbUL or TFrgbUH or TFblendV)

begin

casex(TFppUV_end[1:0])

2’d0 : TFrgbV <= TFblendV; //No end point

2’d1 : TFrgbV <= TFrgbUH; //Equals to zero

2’d2 : TFrgbV <= TFrgbUL; //Equals to one

default : TFrgbV <= 24’b0;

endcase

end

//TF_MUX_FILTER_MODE

always @(TFtmod_FILT or TFppRGB_0 or TFrgbV)

begin

casex(TFtmod_FILT)

3’bXX1 : TFppTXL <= TFppRGB_0; //Point sampling

3’bX1X : TFppTXL <= TFrgbV; //Bilinear filtering

default : TFppTXL <= 24’b0;

endcase

end

endmodule

endmodule

7.5.4.14 PB: Pixel Blending

This is the last stage of the rasterizer. In this stage, the pixels and texels are blended and

the pixel alpha blending is performed using the previous frame data (Figure 7.36).

Pipe Inputs

. Pipe controls

. Common signals

. PP valid signal

. Pixel RGB

. Texel RGB

Pipe Outputs

. None: the last pipeline stage

Memory Inputs/Outputs

. FRAME read data (in)

. FRAME write data (out)

. Mask signal (out)

Low-power Rasterizer Design 285

Functions

. Pixel color blending with textured color

. Alpha blending

Datapath #1: PB_ENGINE
See Figure 7.37.

Datapath #2: PB_ALPHA_MODULE
See Figure 7.38.

RTL Code

/*

* RAMP-GR

* RAMP-GR PB Module: Pixel Blending

* by Jeong-Ho Woo (denber@eeinfo.kaist.ac.kr)

* Semiconductor System Laboratory, KAIST

* All rights reserved

*/

module Wpb(REclk, PBnwait, TFreset, TFnhld, TFcOP, TFcDF,

TFcTMF,TFcAF, TFcTEXEN, TFcSCR, TFppMASK, TFtmod, TFdA, PBcOP,

Figure 7.36 Pixel blending

286 Mobile 3D Graphics SoC

TFpp0VALID, TFpp0PXL, TFpp0TXL, TFpp1VALID, TFpp1PXL, TFpp1TXL,

RDON_clr, FBI_FB0rdat, FBI_FB1rdat, FBI_FB0wdat, FBI_FB1wdat,

FBI_FB0wmsk, FBI_FB1wmsk, RDON);

/* Module interconnection */

//Main controller

Wpb_ctrl sspb_ctrl();

//Main controller

module Wpb_ctrl(REclk, PBnwait, TFreset, TFnhld, TFcOP, TFcDF,

TFcTMF, TFcAF, TFcTEXEN, TFcSCR, TFppMASK, RDON_clr,

PBcOP, PB_FBmode, PBppMASK, PBcSCR,

PBfetch_CLK, PBfetch_TMOD, PBfetch_ALPHA,

PBfetch_PXL, PBfetch_TXL, PBcTEXEN, RDON);

/* Combinational logics */

//nwait

assign PBnwait = 1’b1; // End of Pipeline

//nhld

P
B

p
p

P
X

L
[1

5:
0]

P
B

p
p

T
X

L
[1

5:
0]

WPB_3BLEND

AB

P
B

m
o

d
u

l[
15

:0
]

PBcTEXEN,PBtmo
d 1011

P
B

b
le

n
d

[1
5:

0]

PB_ENGINE

WPB_3ALPHA

PB_FBrdat[15:0]

PB_FBwdat[15:0]

PBdA[7:0]

0X

Figure 7.37 Datapath #1: PB_ENGINE

Low-power Rasterizer Design 287

assign PBnhld = PBnhld_int;

//Fetch signals

assign #1 PBfetch_CLK = PBnwait & TFnhld;

assign PBfetch_TMOD = TFcTMF;

assign PBfetch_ALPHA = TFcDF;

assign PBfetch_PXL = TFcDF;

assign PBfetch_TXL = TFcDF & TFcTEXEN;

//Texture blending control

assign #1 PBcTEXEN = PBcTEXEN_int;

always @(posedge REclk)

begin

if(PBnwait)

begin

//State controls

PBnhld_int <= TFnhld;

PBreset <= TFreset;

//Fetch signals

PBcDF_int <= TFcDF;

PBcTMF_int <= TFcTMF;

1'
b

0,
R

G
B

n
ew

[7
:0

]

1'
b

0,
R

G
B

o
ld

[7
:0

]

SUB9
+-

R
G

B
su

b
[8

:0
]

WPB_SHIFT

R
G

B
sh

if
t[

8:
0]

ADD9

al
p

h
aO

U
T

[7
:0

]
AB

PB_ALPHA_MODULE

Figure 7.38 Datapath #2: PB_ALPHA_MODULE

288 Mobile 3D Graphics SoC

PBcAF_int <= TFcAF;

PBcTEXEN_int <= TFcTEXEN;

//Trivial signals

PBcOP <= TFcOP;

PBcSCR <= TFcSCR;

//PP control signals

PBppMASK <= TFppMASK;

end

end

/* Frame buffer interface signal generation */

// This signal is overridden by FBcmd

always @(PBcOP or PBnhld)

begin

if(PBnhld & PBcOP[0]) PB_FBmode <= ‘WPI_ZBI_ZERO;

else if(PBnhld & PBcOP[5]) PB_FBmode <= ‘WPI_ZBI_BYPASS;

else PB_FBmode <= ‘WPI_ZBI_BYPASS;

end

always @(PBcOP or RDON_clr)

begin

if((PBcOP == ‘WCTRL_OP_RDON) (RDON_clr == 1’b0)) RDON <= 1’b1;

else RDON <= 1’b0;

end

endmodule

//Data latches

Wpb_latch sspb_latch();

//Data latches

module Wpb_latch(REclk, clk, PBfetch_TMOD, PBfetch_ALPHA, PBfetch_PXL,

PBfetch_TXL, TFtmod, TFdA, TFpp0VALID, TFpp0PXL, TFpp0TXL,

TFpp1VALID, TFpp1PXL, TFpp1TXL, PBtmod, PBdA,

PBpp0PXL, PBpp0TXL, PBpp1PXL, PBpp1TXL);

/* Latches */

//PB_LATCH_TMOD

always @(posedge REclk)

begin

if(clk&PBfetch_TMOD) PBtmod <= TFtmod;

end

//PB_LATCH_ALPHA

always @(posedge REclk)

begin

if(clk&PBfetch_ALPHA) PBdA <= TFdA;

end

//PB_LATCH_PP0_PXL

always @(posedge REclk)

begin

if(clk & TFpp0VALID&PBfetch_PXL) PBpp0PXL <= TFpp0PXL;

end

//PB_LATCH_PP0_TXL

Low-power Rasterizer Design 289

always @(posedge REclk)

begin

if(clk & TFpp0VALID&PBfetch_TXL) PBpp0TXL <= TFpp0TXL;

end

//PB_LATCH_PP1_PXL

always @(posedge REclk)

begin

if(clk & TFpp1VALID&PBfetch_PXL) PBpp1PXL <= TFpp1PXL;

end

//PB_LATCH_PP1_TXL

always @(posedge REclk)

begin

if(clk & TFpp1VALID&PBfetch_TXL) PBpp1TXL <= TFpp1TXL;

end

endmodule

//PP #0

Wpb_engine sspbe_0();

//PP #1

Wpb_engine sspbe_1();

/* Alpha blend shift module */

module Wpb_alpha_shift(shiftIN, shiftVAL, shiftOUT);

/* Inputs */

input [8:0] shiftIN;

input [7:0] shiftVAL;

/* Outputs */

output [8:0] shiftOUT;

wire [16:0] shift_OUT;

WMUL9x8 alpha(.x (shiftIN),

.y ({1’b0,shiftVAL[6:0]}),

.z (shift_OUT));

assign shiftOUT = shift_OUT[15:7];

endmodule

/* Alpha blend module */

module Wpb_alpha_module(RGBnew, RGBold, PBdA, alphaOUT);

//NEW-OLD: sign extension

DW01_sub #(9) sub9(.A ({1’b0,RGBnew}),

.B ({1’b0,RGBold}),

.CI (1’b0),

.DIFF (RGBsub),

.CO (scout));

//(NEW-OLD)*ALPHA: shift with sign extension

Wpb_alpha_shift sspb_alpha_shift();

// (NEW-OLD)*ALPHA + OLD = NEW*ALPHA + OLD*(1-ALPHA)

DW01_add #(9) add9(.A ({1’b0,RGBold}),

.B (RGBshift),

.CI (1’b0),

290 Mobile 3D Graphics SoC

.SUM (RGBsum),

.CO (cout));

// Output Select

assign #1 alphaOUT = (PBdA[7]) ? RGBnew : RGBsum[7:0];

endmodule

/* 3-way SIMD alpha blend logic

module Wpb_3alpha(PB_FBrdat, PBblend, PBdA, PB_FBwdat);

/* Inputs */

input [15:0] PB_FBrdat;

input [23:0] PBblend;

input [7:0] PBdA;

/* Outputs */

output [23:0] PB_FBwdat;

/* Module interconnection */

Wpb_alpha_module alpha_R();

Wpb_alpha_module alpha_G();

Wpb_alpha_module alpha_B();

endmodule

/* 3-way SIMD texture blend logic */

module Wpb_3blend(PBppPXL, PBppTXL, PBmodul);

/* Module interconnection */

//TXL * PXL

WMUL9x8 mul_R(.x ({1’b0,PBppTXL[23:16]}),

.y (PBppPXL[23:16]),

.z (mulR));

WMUL9x8 mul_G(.x ({1’b0,PBppTXL[15:8]}),

.y (PBppPXL[15:8]),

.z (mulG));

WMUL9x8 mul_B(.x ({1’b0,PBppTXL[7:0]}),

.y (PBppPXL[7:0]),

.z (mulB));

/* Wire connection */

//(TXL * PXL) / 255

assign #1 PBmodul = {mulR[15:8],mulG[15:8],mulB[15:8]};

endmodule

/* Pixel processor engine

module Wpb_engine(PBtmod, PBdA, PBcTEXEN, PBppPXL,

PBppTXL, PB_FBrdat, PB_FBwdat);

/* Module interconnection */

//3-way SIMD texture blend logic

Wpb_3blend sspb_3blend(

.PBppPXL (PBppPXL),

.PBppTXL (PBppTXL),

.PBmodul (PBmodul));

Low-power Rasterizer Design 291

// 3-Way SIMD Alpha Blend Logic

Wpb_3alpha sspb_3alpha(

.PB_FBrdat (PB_FBrdat),

.PBblend (PBblend),

.PBdA (PBdA),

.PB_FBwdat (PB_FBwdat));

/* Mux */

always @(PBcTEXEN or PBtmod or PBmodul or PBppPXL or PBppTXL)

begin

casex({PBcTEXEN,PBtmod})

2’b0X : PBblend <= PBppPXL; //No texture

2’b10 : PBblend <= PBppTXL; //Decal

2’b11 : PBblend <= PBmodul; //Modulate

default : PBblend <= 24’bX;

endcase

end

endmodule

//Frame buffer interface

Wpb_fbi sspb_fbi();

//Frame buffer interface

module Wpb_fbi(PB_FBmode, PBppMASK, PB_FB0rdat, PB_FB1rdat,

PB_FB0wdat, PB_FB1wdat, FBI_FB0rdat, FBI_FB1rdat,

FBI_FB0wdat,FBI_FB1wdat,FBI_FB0wmsk,FBI_FB1wmsk);

/* Logics */

//FB -> PB

assign PB_FB0rdat = FBI_FB0rdat;

assign PB_FB1rdat = FBI_FB1rdat;

//PB -> FB

always @(PB_FBmode or PBppMASK or PB_FB0wdat or PB_FB1wdat)

begin

casex(PB_FBmode)

‘WPI_ZBI_ZERO :

begin

FBI_FB0wdat <= 24’b0;

FBI_FB1wdat <= 24’b0;

FBI_FB0wmsk <= 1’b1;

FBI_FB1wmsk <= 1’b1;

end

‘WPI_ZBI_BYPASS :

begin

FBI_FB0wdat <= {PB_FB0wdat[23:19], PB_FB0wdat[15:10],

PB_FB0wdat[7:3]};

FBI_FB1wdat <= {PB_FB1wdat[23:19], PB_FB1wdat[15:10],

PB_FB1wdat[7:3]};

FBI_FB0wmsk <= PBppMASK[1];

FBI_FB1wmsk <= PBppMASK[0];

end

default :

292 Mobile 3D Graphics SoC

begin

FBI_FB0wdat <= 16’bX;

FBI_FB1wdat <= 16’bX;

FBI_FB0wmsk<= 1’b1;

FBI_FB1wmsk <= 1’b1;

end

endcase

end

endmodule

endmodule

Low-power Rasterizer Design 293

8

The Future of Mobile 3D Graphics

8.1 Game and Mapping Applications Involving Networking

Key applications of mobile 3D graphics in the future will be games and mapping, just

as these are already very popular in typical PCs and game consoles. Users have

experienced the rich graphics scenes of many fantastic 3D games, so it is easy to

imagine the demand for comparable 3D graphics quality in mobile devices, despite

their small screen size. Early mobile 3D games used only a software game enginewith

limited graphics capabilities. Users were satisfied with just running a 3D game on

a small screen. However, recently many hardware architectures have been proposed

and commercialized for mobile 3D graphics applications. Today’s graphics power of

a premium mobile device is comparable to that of PCs and game consoles of a few

years ago. By adoptingHWacceleration inmobile 3D graphics, we can now extend the

experience of PCs and game consoles to mobile devices.

In mapping applications such as car navigation devices, the transition from simple

2D bitmaps to complete 3D modeling is already occurring. The modeling of geo-

graphical information using 3D graphics is very useful. Roads and buildings can be

located in x, y, and z coordinates. Users can see the whole of the Earth through the

Google Map application, which uses texture mapping to show details of land and

oceans.

These popular applications will be enhanced with the help of networking capabili-

ties. Many people are already connected through the Internet and by means of mobile

cellphones and wireless networks, so now the position of mobile 3D graphics cannot

be considered separately from the connected environment. While the use of 3D

modelingwill initially reduce the capacity to represent quantities of information, itwill

encourage people to become thirsty for even more information. Network service

providers such as mobile communications carriers will have to cater for more people

wanting to use more network capacity. They will provide an online games service and

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

other applications through the Internet. The challenge for mobile 3D graphics is to

provide ever more efficient tools to represent these vast quantities of information.

In this book we have introduced the OpenGL-ES 2.0 library and its features. These

can provide more graphics functions with lower power consumption. Moreover,

current mobile devices incorporate many semiconductor chips that integrate hardware

accelerators compatible with OpenGL-ES 2.0. PC graphics have already adopted the

benefits of programmability in graphics architectures such as Direct3D and OpenGL

2.0, but the introduction of OpenGL-ES 2.0 opens the way for users to experience the

quality of PC graphics on a small screen. This evolution drives the development

of more efficient graphics accelerators. Currently, some newly developed mobile 3D

graphics make use of multiple cores of very powerful unified shaders in a single

graphics system.We can look forward to seeing many mobile devices using OpenGL-

ES 2.0 or more advanced graphics architectures.

8.2 Moves Towards More User-centered Applications

Research on the use of highly featured mobile handsets shows that they are increas-

ingly used to support daily information management, such as e-mail Web browsing.

Figure 8.1 shows an analysis of Apple iPhone usage which was presented by Rubion

Consulting in 2008 [1]. The graph shows that about 72% of users did e-mail reading

at least once a day. Web browsing and calendar checking were performed more than

Figure 8.1 Apple iPhone usage

296 Mobile 3D Graphics SoC

gaming. Although the iPhone does not have the most powerful mobile 3D hardware

such as OpenGL-ES 2.0 full shaders, this research indicates that user experience and

convenience in their daily lives should be the key drivers in developing new high-

quality mobile gadgets.

Therefore, mobile 3D graphics applications – such as in Web browsers – should be

designed to be used intuitively. Especially after the release of the iPhone, the trend is to

get around the small fixed screen by adopting sensors such as a touch interface.

Dynamic changes and zooming of scenes and UI elements such as icons and pictures

are easily implemented by mobile 3D graphics. OpenGL-ES 2.0 will add a very

esthetic feeling to these elements, as if we are touching and navigating in the more

sensitive materials, not just plastic phone cases. Moreover, the quantity of information

that can be accessed at the same time will also be increased because this information

can be represented in three-dimensional spaces, and can be popped up in the front from

the background by user inputs.

The mobile’s display is much smaller than a PC screen which we use for Web

browsing inmost cases. Thatmeanswe need to drawaWeb page on the small screen by

zooming out, and see the parts we want by zooming in. This interactive action should

be carried out swiftly, and mobile 3D graphics is the right solution. Also we can use

ideas from mobile 3D graphics to enhance the rendering speed of a Web page. One

example is to store a full Web page in texture images and apply texture mapping in

zooming operations. Since Web pages nowadays contain not only text but also

multimedia content such as images and videos, the composition of multiple sources

will be necessary.

Mobile3Dgraphicswill bedeveloped formoreuser-centeredapplications, drivenby

the UI andWeb browsing applications. The combination of UI andWeb browsing will

lead us to integrate all the information wewant into single, simple and comprehensive

interfaces (Figure 8.2). Mobile 3D graphics will be the canvas we are drawing on. The

content of existing game and mapping applications will also be ported and integrated

into more mobile devices.

8.3 Final Remarks

The programmability introduced into mobile 3D graphics is gradually removing the

distinction between PC and mobile experiences in terms of quantity and quality of

content. This crossover is apparent in the development of both hardware and software

libraries. In fact, in terms of programmability, the architectural difference between

mobile graphics hardware and PC hardware is not particularly high because the basic

algorithms of coordinate transformation and color processing are not very different.

The difference relates to the level and number of hardware integrations. Moreover, the

standard of a mobile 3D graphics library is approaching that of a PC graphics library.

We think that this trend is the result of the applications enlargement described in the

The Future of Mobile 3D Graphics 297

previous section. Now, very recursively, that enlargement will accelerate the program-

mability and innovations of mobile 3D graphics standards and architecture.

As more functions and scenarios are integrated, the refinement of architecture and

physical considerations such as memory management and graphics object composi-

tions will be researched more and more. The modeling and platform approach with

a systems engineering concept, for example, will be accompanied by enhancing the

programmable architecture.

Reference

1 The Apple iPhone: Successes and Challenges for the Mobile Industry, Rubicon Consulting Inc. (March 2008).

Figure 8.2 Examples of user interfaces from nVidia. � 2009 NVIDIA Corporation. NVIDIA, The

NVIDIA logo, SC10 and Tegra are trademarks and/or registered trademarks of NVIDIA Corporation in

the United States and other countries. All rights reserved

298 Mobile 3D Graphics SoC

Appendix

Verilog HDL Design

This appendix introduces the hardware description language,Verilog. It describes how

to use Verilog and create your own hardware models. After a short introduction, the

design flow and the level of designs usingVerilog are explained. Then the basicVerilog

syntax is explained with basic examples. We include RTL code and simulation

environments, so that users can simulate the rendering processor on their PC or

workstation environment. In addition, the synthesis scripts are also included.

A.1 Introduction to Verilog Design

Verilog is a hardware description language (HDL), which is a language to describe a

digital system such as microprocessor, application-specific unit, memory, or a simple

flip–flop. Anyone can describe any hardware at any level of detail by using a hardware

description language.

Verilog was developed initially as a proprietary hardware modeling language by

Gateway Design Automation Inc. around 1984. It is very similar to traditional

computer language such as C. At that time, Verilog was not standardized and the

language became modified in almost all the revisions that came out between 1984 and

1990. AVerilog simulator was first used in early 1985 and was extended substantially

through to 1987. In 1990, Cadence Design Systems decided to acquire Gateway, so

Cadence became the owner of theVerilog language, and continued tomarketVerilog as

both a language and a simulator. At the same time, Synopsys was marketing the top-

down design methodology, using Verilog. This was the starting point of powerful

digital systemdesign. In 1990, to survive in a tough industry that usedVHDL,Cadence

decided to make Verilog an “open” language. Cadence organized the Open Verilog

International (OVI) in 1991 and, in the meantime, the popularity of Verilog was rising

exponentially.

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

The need for a universal standard was recognized at this time. The directors of OVI

asked the IEEE to form aworking committee to establish Verilog as an IEEE standard.

The working committee 1364 was formed in mid 1993, and finally in 1995 the

standard, which combined both the Verilog language syntax and the PLI in a single

volume, was passed as IEEE standard 1364(1995).

A.2 Design Level

Verilog allows a digital system to be designed at a wide range of abstractions – at

behavior level, at register transfer level (RTL), at gate level, at switch level, and so on.

Among these, behavior level, RTL level, and gate level design are frequently used for

digital system design.

A.2.1 Behavior Level

The behavior level is used to describe a system intuitively. Therefore, this level is

frequently used to verify algorithms or system behavior like a high-level language.

This level is not focused on synthesizability or structural realization of the design.

A.2.2 Register Transfer Level

After high-level verification at the behavior level, RTL code is used to specify the

characteristics of a circuit or system by operations and the transfer of data between the

registers. This level is focused on real implementation of the design, so the design

should be carefully described according to synthesizable syntax or semantics. At this

level the design contains explicit clocks, so RTL design contains exact timing bounds.

A.2.3 Gate Level

After synthesizing RTL code, gate-level code is generated. Within this level, the

characteristics of a system are described by standard cell libraries and their logical

links and timing properties.All signals are discrete signals. They can only have definite

logical values (0, 1, X, Z). The usable operations are predefined logic primitives (gates

AND, OR, NOT etc.). Gate-level code is generated by tools like synthesis tools, and

this net list is used for gate-level simulation and for back-end design.

Design flow is one of the most difficult decisions. Like other HDLs, Verilog also

allows both bottom-up and top-down design.

. Bottom-up design This is a type of traditional design flow. Each design is

performed at thegate level using standard gates such asAND,OR,NOR, andNAND.

300 Mobile 3D Graphics SoC

Designers decidewhich gateswill be used andwhere those gateswill be placed.With

increasing design complexity, this approach is nearly impossible to maintain.

Emerging large-scale systems consist ofASICormicroprocessorswith a complexity

ofmillionsof transistors.Thesetraditionalbottom-updesignshavetogivewaytonew,

structural, hierarchical design methods.
. Top-down design Designers can concretize their ideas from concept to silicon

implementation. The major advantages of top-down design are early testing, easy

change between different technologies, and a structured system design. Details of

top-down design will be discussed below.

A.3 Design Flow

Figure A.1 shows a typical design flow of a digital system using Verilog. In short, the

design flow can be divided into two steps: front-end and back-end. It consists of about

nine or ten design steps, which will be described briefly.

Figure A.1 Typical design flow

Verilog HDL Design 301

A.3.1 Specification

The designer decides what the target performance will be, what the important

parameters of the design are, what the interfaces are, and so on (Figure A.2). For

example, when designing a microprocessor, the designer should decide the target

performance, the reset behavior, the interfaces with other blocks, and input/output

format. Normally, the specification does not need a technical tool; designers often use

documentation tools such as Microsoft Word, PowerPoint, Visio, and so on.

A.3.2 High-level Design

After deciding the specification, the designer should describe the target system in high-

level language (Figure A.3). Algorithm verification or block definitions are performed

in this stage. To design a microprocessor, how to divide functional blocks and how to

communicate between them should be decided. For algorithm verification or block

definition, a high-level language such as C or Cþþ or Verilog behavior-level

description is widely used in this stage.

Figure A.3 High-level design

Figure A.2 Specification

302 Mobile 3D Graphics SoC

A.3.3 Low-level Design

The designer defines the details about how each block works. In this stage, you should

define how to design a finite state machine, registers, and control units of each block

(Figure A.4). Of course, the detailed timing diagrams of interfaces are defined with

waveforms. It is strongly recommended that you make all items of the design clear in

this phase.

A.3.4 RTL Coding

In RTL coding, the low-level design is implemented into a hardware description

language such as Verilog or VHDL.

Figure A.4 Low-level design

module processor(clk, //Clock

reset //Reset

inputs;

outputs);

input clk;

input reset;

input inputs;

output outputs

controller proc_ctrl(clk, reset, signals)

datapath proc_dp(clk, reset, signals)

registerfile proc_rf(clk, reset, signals)

interfaces proc_if(clk, reset, signals)

endmodule

Verilog HDL Design 303

A.3.5 Simulation

The functionality and timing characteristics of a system should be verified at every step

of its design (Figure A.5). A test bench is needed that generates input signals, dummy

blocks that are behavioral models of neighboring blocks, and simulators. The initial

simulation is done by using RTL codes for functional verification of blocks. After that,

gate-level simulation is performed to verify timing bounds as well as functionalities.

The final simulation is performed after placement and routing (PnR). After PnR, the

design contains wire delays and parasitic resistances and capacitances, so verification

is needed that the design meets the target specification.

After the simulations, waveform outputs and functional outputs can be obtained, to

check functionality and timing bounds.

A.3.6 Synthesis

In the synthesis stage, the RTL code is converted into a gate-level net list (Figure A.6).

A synthesis tool such as a design compiler or Synplify takes the RTL code and

technology library files as inputs and generates gate-level code that contains standard

cells and link data. Basically, the synthesis tool reports on whether or not the timing

information meets the timing requirements. However, it does not include wire delays,

only gate propagation delays.

Figure A.5 Simulation

304 Mobile 3D Graphics SoC

A.3.7 Placement and Routing

In this stage, the gate-level netlists are converted into a physical layout (Figure A.7).

All gates and flip–flops in a gate-level netlist are placed; and clock tree synthesis and

global signals such as “reset” are routed. After that, local signals are routed. Then the

final GDS file that will be delivered to the foundary, and final net list which includes

wire delays as well as gate delays, are generated.

A.4 Verilog Syntax

The basic Verilog syntax will be described. The goal of this section is to show how to

write Verilog, but it does not cover all the syntax. More information is available at, for

example, www.verilog.com and www.verilogtutorial.info.

Figure A.7 Placement and routing

Figure A.6 Synthesis

Verilog HDL Design 305

A.4.1 Modules

The basic unit of Verilog modeling is the module. As in the C language, you can use

lower-case letters, capital letters, numbers, and underscores (_). Of course, it is case-

sensitive. Below we show the basic configuration of a module.

Module Example

module module_name (port-list); //Declare all inputs and outputs

port declaration

//Detailed declaration of inputs and outputs, including bitwidth

//For example:

//input clk, res; ! 1-bit input signals

//input [7:0] bus; ! 8-bit input signal

//output done; ! 1-bit output signal

//inout [3:0] dbus; ! 4-bit inout signal

//inout means bidirectional signal

net declaration

//Declaration of internal net of the block

//wire enable;

//wire [7:0] int_bus;

reg declaration

//Register declaration

//reg enable;

//reg [3:0] number;

//You should declare all ports or values which are used in

//initial, task, function, and always statements

parameter declaration

//Parameter declaration

//parameter WORD=32;

//parameter BW=8;

//reg [BW:0] temp_out; ! example of usage

assign statement

//Combinational logic declaration

function statement

always statement

Instantiation

//Instantiate sub-modules

endmodule

//Declaration of the end of the module

Initial Statement Example

“Initial” and “always” statements are event-driven. The details of these statementswill

be discussed later. Here only the configuration is discussed.

initial

//Initial statement does not require an event list.

begin

//If the initial includes more than one statement, ‘begin–end’ command

clk = 0; //Bind those statements into one command

reg = 1; //Use begin–end command with event-driven statements

end

//Include more than one statement.

306 Mobile 3D Graphics SoC

Always Statement Examples

always @(posedge Clk)

//Every positive edge of Clk signal drives this statement.

always @(posedge Clk or negedge reset)

//Every positive edge of Clk or negative edge or reset drives.

always @(a or b or c)

//When one of the conditional signals changes,

//this statement is executed.

always @(posedge Clk)

begin

//An always statement also requires ‘begin-end’.

command_latch <= command_in; //Command

data_latch <= data_in;

end

Examples of Bad Expressions

always @(Clk)

//This is a correct expression in terms of grammar.

//However, the clock signal is edge-triggered.

//Therefore this statement will incur a timing violation.

always @(a or b or posedge Clk)

//Do not mix level-triggered and edge-triggered events.

A.4.2 Logic Values and Numbers

Verilog supports four logic values:

0 Logic value 0

1 Logic value 1

X Unknown signal means “don’t care”

Z High-impedance value

To describe logic values or numbers in Verilog, follow the syntax:

<bit width>’<base><value>

Here, <bit width> declares thewidth of the data bit in decimal (the default is 32-bit);

and <base> declares the base number of the data (default ¼ decimal)

b, B: binary o,O: octal

d,D: decimal h,H: hexadecimal

The <value> declares the value of data.

When the <base> is decimal, you can declare data without <bit width> and <base>,

and you can use underscore (_) for convenience.

Verilog HDL Design 307

Data Bit width Base Binary digit

10 32 10 0000. . .01010
1’b1 1 2 1

8’hf1 8 16 11110001

4’bx 4 2 Xxxx

8’b0000_11xx 8 2 000011xx

‘hf_f 32 16 0000 011111111

4’d5 4 10 0101

A.4.3 Data Types

To declare signals or variables you have two choices, the “register” type or the “net”

type. You should declare the type for all variables.

Register type Declare using “reg”

Used for latch or flip–flop

It stores values until the next event occurs

Net type Declare using “wire”

Used for combinational logic or intermediate signals for links

When the data is used on the left side there is no limitation.When the data is used on

the right side you should follow two rules:

. Use the “reg” type signals only in always, initial, task, and function statements.

. Use the “wire” type signals only in assign statements.

You can omit the wire declaration only when the “net” type signal is in the port list.

//Example 1

module DFF(Clk, D, Q);

input Clk;

input D;

output Q;

wire Clk, D; //You can omit this statement

reg Q;

always @(posedge Clk) Q <=D;

endmodule

//Example 2

module Func_1(In1, enable, Q1, Q2);

input In1;

input[2:0] enable;

output Q1;

output Q2;

wire In1; //You can omit this statement

wire [2:0] enable //You can omit this statement

wire int_sig //You can omit this statement

but it is useful for debugging

308 Mobile 3D Graphics SoC

wire Q1, Q2 //You can omit this statement

assign Q1 = enable[2] enable[0] ;

nand nd1(In1, enable[2], int_sig);

nand nd2(int_sig, enable[0], Q2);

endmodule

When you declare multibit signals, you can declare the bit width of the signal in the

format [MSB:LSB]:

input [3:0] enable; //4-bit input signal enable

wire [7:0] bus; //8-bit net signal bus

output [4:0] out; //5-bit output signal out

Of course you can select bits from multibit signals, or you can assign part of the

multibit signal:

wire SB;

wire [2:0] DB;

assign SB = dbus [7];

assign = dbus [6:4];

assign dbus[3:0] = enable;

You can assign a register array. This is frequently used for a memory block or

register file:

reg [15:0] mem[0:127]; //16-bit signal * 128 entries

However in this case you cannot directly select part of the signal in a register array;

you can access the signal only entry level. And Verilog does not support multidimen-

sional arrays like C or Cþþ.

reg [15:0] mem[0:127]

//To access the last 4bit of the first entry of the mem array.

//Incorrect example

assign out1 = mem[0][4:0]

//Correct example

wire [15:0] temp;

assgign temp = mem[0];

assign out1 = temp[4:0];

A.4.4 Operators

Verilog supports arithmetic operators, bitwise operators, bit-reduction operators, logic

operators, relative operators, shift operators, conditional operators, and concatenation.

The operators are listed below.
wire a, b, c;

wire [4:0] d, e;

Verilog HDL Design 309

Operator Meaning

ar
itt

m
et

ic

+

-

*

/

%

~

&

|

^

~^

B
it

&

~&

|

~|

^

~^

B
it

R
ed

uc
tio

n

L
og

ic
 O

pe
ra

tio
n

!

&&

||

==

!=

===

!==

<

<=

>

>=

<<

>>

? :

{}

R
el

at
iv

e
Sh

if
t

E
T

C

Operator Meaning

Add

Sub

Multiplication

Division

Modulo operation

NOT

AND

OR

XOR

XNOR

AND

NAND

OR

NOR

XOR

XNOR

Logical NOT

Logical AND

Logical OR

Equal

Not equal

Equal including (x, z)

Not equal including (x, z)

Less than

Less than or equal to

Larger than

Larger than or equal to

Left Shift

Right Shift

Conditional

Concatenation

//Arithmetic operations

assign c = aþb;

assign c = a-b;

assign c = a*b;

assign c = a/b;

assign c = a%b;

//If the process library supports these arithmetic operations, the

operators are

//simply converted into an arithmetic unit, called design ware.

//The types of those arithmetic units are decided

//according to timing constraints.

//If the process library does not support design ware,

//these expressions are not synthesizable.

//Bit operations

assign c = �a;

assign c = a&b;

//Bit-reduction operations

assign c = &d;

//c = d[4] & d[3] & d[2] & d[1] & d[0];

assign c = |d;

//c = d[4] | d[3] | d[2] | d[1] | d[0];

//Logical operations

assign c = (a == 1) && (b==1);

assign c = (a >= 1) || (b !=3);

//When you want to decide a certain signal with logical conditions,

//use logical operators.

//Since === and !== are not synthesizable, use them carefully.

310 Mobile 3D Graphics SoC

//Shift operations

assign d = a << 3;

//Shift three bits to the left

assign e = d >>2;

//shift two bits to the right

//Conditional operation

assign d = (a == 0)? 11000 : 00001;

//If the condition is true, the procedure is selected.

//If not, the latter is selected.

//Concatenations

assign {a,b,c} = d[2:0];

//Assign the last three bits of d to a, b, c, respectively

assign d = {a, b, c, 2’b11};

The priority of the operators is very similar that of the C and Cþþ languages:

*, /, %

+, -

<< , >>

<, <=, >, >=

==, !=, ===, !==

&

^, ~^

|

&&

Higher Priority

When you use concatenation, you also can use repeated expressions:

wire [7:0] temp;

assign temp = {4{2’b10}}; //temp = 8’b10101010

wire [15:0] word;

wire [31:0] double

assign double = {{16{word[15]}}, word};

A.4.5 Assignment

In Verilog there are two assignment statements, blocking and non-blocking. In “net”

type signal statements, these produce the same results. But, in a “reg” signal statement

they produce different results.

//Assume initial values a = 4, b = 5, c = 6

//Blocking assignment

always @(posedge clk)

Verilog HDL Design 311

begin

a=b; //a = b = 5; c=6;

c=a; //c = a = b = 5;

end

//Non-blocking assignment

always @(posedge clk)

begin

a <= b; //a = 5;

c <= a; //c = 4;

end

//Synthesis results:

//Blocking assignment

//Non-blocking assignment

You can easily distinguish the difference between blocking assignments and non-

blocking assignments. The data transition of the blocking assignment occurs one by

one and that of the non-blocking assignment occurs simultaneously. When you design

a digital system, it is best to use one type of assignment only.

A.4.6 Ports and Connections

Verilog has three types of port: input, output, and inout (FigureA.8). Basically, all ports

are considered as wires. Therefore, if the ports use “net” type signals, you do not need

to declare wire statements. But if the output port needs to hold the value – the left side

value in initial or always statements – you should declare a “reg” statement about that

signal. Since the input signal cannot hold a value, you cannot declare a “reg” statement

for input and inout ports.

A.4.7 Expressions

The most frequently used statements in Verilog are “initial” and “always.” Both of

them are used to generate events. Normally, the “always” statement is used to design

sequential logic like flip–flops or to design complex combinational logic, and the

312 Mobile 3D Graphics SoC

“initial” statement is used to declare an initial value. One big difference between

“initial” and “always” is the number of executions: the “initial” statement runs only

once when the module is activated, but the “always” statement runs every time a

specified event occurs. Also, the “initial” statement is omitted when the module is

synthesized. Therefore, use the “initial” statement only to describe behavior or to

declare an initial value.

//Initial statement

initial //Execute once to initiate ing_sig and temp_wire

begin

int_sig = 0;

temp_data = 4’b0;

end

//Always statements

always @(posedge clk)

//Execute every positive edge of the clock signal

begin

int_sig = in_data [4];

temp_data = in_data[3:0];

end

always @(a or b or c)

//Execute whenever value of a or b or c is changed.

//! Sensitivity list

begin

//Write all values used in right-hand side of the equation

//and all values in conditions to the sensitivity list

if (c ==1);

d = (a & b);

end

As in the C language, Verilog supports “if–else” statements and “case” statements.

These statements should be inside the “initial” or “always” statements. With these

conditional statements there is one rule: “Make a complete conditional statement.”

When you use “if–else” and “case” statements with edge-triggered events you do not

need to make the condition complete; but when you use them with level-triggered

Figure A.8 Ports

Verilog HDL Design 313

events, like combinational logic, you should make the condition complete. If you do

not do this, undesired latches are generated in the logic, and those latches cause an

unrecoverable timing violation like hold time violations and setup time violations.

//Edge-triggered event

always @(posedge Clk)

//An edge-triggered event is synthesized with a flip–flop.

//Therefore you don’t need to complete the condition.

begin

if (enable == 1) data_latch <= data_in;

end

//Combinational logic:

//if-else statement

always @(a or b or c or d or e)

//List all right-side signals and condition signals

//in an if–else statement.

//There are three choices: if, else if, else.

//Although you don’t need the ‘else’ case,

//you should declare it for a complete declaration.

//If you don’t complete the conditions, an undesired latch

//will be inserted.

begin

if (a & b == 1) out = c;

else if (b & c == 0) out = d & e;

else out = 1’b0;

end

//Case statement

always @(a or b or c or d)

begin

case({a,b}) //There are three case statements: case, casex, casez.

2’b00 : out = 1; //case signal can be 0 or 1

2’b01 : out = 0; //casex signal can be 0 or 1 or x

default : out =0; //casez signal can be 0 or 1 or z

//With a case statement, declare a default case

//to make the condition complete.

//It prevents an unwanted latch.

endcase

end

A.4.8 Instantiation

Digital systems are designed with a hierarchical structure, so that one big system

consists of many sub-modules. One reason for this is design complexity. Since the

system cannot beverified all at once, the desirability of dividing it into several blocks is

increased. After verifying the sub-modules, it is easier to verify the big system so that

the efficiency of designing is increased. Other advantages are the shortened design

time and efficient use of system resources. Therefore, you often use instantiation in

Verilog. There are twomethods for instantiation: port assignment based on an order of

signals, and port assignment based on number of ports.

314 Mobile 3D Graphics SoC

Examples of Instantiation: Flip–Flops

//1-bit flip–flop

module DFF (Clk, reset, ena, D, Q);

input Clk, reset, ena;

input D;

output Q;

always @(posedge Clk or negedge reset)

begin

if(�reset) Q <= 0;

else if(ena) Q <=D;

end

endmodule

//4-bit flip–flop (Figure A.9)

module 4b_DFF(Clk, reset, ena, D, Q);

input Clk, reset, ena;

input [3:0] D;

output [3:0] Q;

//Instantiation by order

//When the sub-block has only a few in/out signals,

//you can use instantiation by order.

//As the signal is connected by order, it is easy to make mistakes.

//This is especially true when debugging the block

//or when adding or removing signals of sub-blocks.

//Therefore, this method is not recommended for a block

//containing lots of ports.

DFF DFF0(Clk, reset, ena, D[3], Q[3]);

DFF DFF1(Clk, reset, ena, D[2], Q[2]);

DFF DFF2(Clk, reset, ena, D[1], Q[1]);

DFF DFF3(Clk, reset, ena, D[0], Q[0]);

//Instantiation by name

//In this method, you should declare the name or port with ‘.’

//and put the name of the link signal to the port.

//.Clk (Clk) means that the Clk signal of the 4-bit flip–flop is

//connected to the Clk port of the 1-bit flip–flop.

//This method may seem a little scrappy, but it does not

//depend on the order of ports. That means this method

reset

Clk

D Q

ena

reset

D Q

ena

reset

D Q

ena

reset

D Q

ena

reset

ena

D[0]

D[1] D[2]
D[3]

Q[1] Q[2] Q[3]Q[0]

Figure A.9 Four-bit flip–flop

Verilog HDL Design 315

//can add or remove ports of the sub-blocks, which is

//really helpful for debugging.

DFF DFF0(.Clk (Clk),

.reset (reset),

.ena (ena),

.D (D[3]),

.Q (Q[3]));

DFF DFF1(.Clk (Clk),

.reset (reset),

.ena (ena),

.D (D[2]),

.Q (Q[2]));

DFF DFF2(.Clk (Clk),

.reset (reset),

.ena (ena),

.D (D[1]),

.Q (Q[1]));

DFF DFF3(.Clk (Clk),

.reset (reset),

.ena (ena),

.D (D[0]),

.Q (Q[0]));

endmodule

A.4.9 Miscellaneous

Include Directive

Like the C language’s #include, Verilog supports an include directive. This is used to

include other Verilog code or library filewithin the current Verilog code. The syntax of

the include directive is shown below:

‘include ‘‘datapath.v’’

//Datapath.v includes adder module, multiplier, divider modules.

//Then you can use those modules when you declare the include directive.

module

processor(clk, inputs, output);

input clk;

input inputs;

output outputs;

//Divider and multiplier are described in datapath.v.

divider proc_div(.input(input), .output(output));

multiplier proc_mul(.input(input), .output(output));

endmodule

Define Statement

The “define” statement is a kind of complier command to transpose a text. When you

use a certain value recursively, the “define” statement can help you.

//Do not write semicolons in define statements.

//Once you have declared a define statement,you can use the text in any modules.

316 Mobile 3D Graphics SoC

//You can use these defined texts in other files if you include this file.

‘define WISA_RSHA 6’b1000_00

‘define WISA_RTEX 6’b1000_01

‘define WISA_RDON 6’b1000_10

‘define WISA_TMOD 6’b0100_01

‘define WISA_MBAS 6’b0010_00

‘define WISA_RCLR 6’b0010_01

module

decode(inputs, outputs);

input inputs;

output outputs;

...

//Command decoder

always @(ID1data)

begin

case(ID1data[123:118])

//In compile time, these texts are converted into defined signals.

‘WISA_RSHA : ID1ctrl_OP <= ‘WCTRL_OP_RSHA;

‘WISA_RTEX : ID1ctrl_OP <= ‘WCTRL_OP_RTEX;

‘WISA_RDON : ID1ctrl_OP <= ‘WCTRL_OP_RDON;

‘WISA_TMOD : ID1ctrl_OP <= ‘WCTRL_OP_TMOD;

‘WISA_MBAS : ID1ctrl_OP <= ‘WCTRL_OP_MBAS;

‘WISA_RCLR : ID1ctrl_OP <= ‘WCTRL_OP_RCLR;

default : ID1ctrl_OP <= 6’b0;

endcase

end

...

endmodule

Timescale Command

InVerilog you can define a timescale. You should define thiswhen youwant to perform

gate-level simulation or post-PnR simulation. Of course you can define a delay time in

your design with timescale. But it will be omitted in synthesis time. Therefore use

a time delay statement only for functional verification like gate propagation delay

modeling.

‘timescale 1ns / 1ps

//1ns is the reference time unit. It is a unit of time and delay.

//1ps is the precision of the time.

//Below, #5 means 5ns in simulation time,

//but this is not effective in the synthesis.

module testbench();

reg clk;

initial clk = 1b0;

always #5

begin

clk = ~clk;

end

endmodule

Verilog HDL Design 317

A.5 Example of Four-bit Adder with Zero Detection

See Figure A.10.

Behavior-level Description

This behavior-level description includes an initial statement and thus it is not

synthesizable.

module adder4 (in1, in2, sum, zero);

input [3:0] in1, in2;

output [4:0] sum;

output zero;

reg [4:0] sum;

reg zero;

initial

begin

sum = 0;

zero = 1;

end

always @ (in1 or in2)

begin

sum = in1 + in2;

if (sum == 0) zero = 1;

else zero = 0;

end

endmodule

Hierarchical Description 1 – Full Adder

//1-bit full adder module

module FA (in1, in2, c_in, sum, c_out);

Figure A.10 Four-bit adder with zero detection

318 Mobile 3D Graphics SoC

input in1, in2, c_in;

output sum, c_out;

assign {c_out, sum} = in1 + in2 + c_in;

endmodule

//4-bit full adder module

module adder4 (in1, in2, sum, zero);

input [3:0] in1;

input [3:0] in2;

output [4:0] sum;

output zero;

wire c0, c1, c2;

FA add1(.in1(in1[0]),.in2(in2[0]),.c_in(1b0),.sum(sum[0]), .c_out(c0));

FA add2 (. in1(in1[1]), .in2(in2[1]), .c_in(c0), .sum(sum[1]), .c_out(c1));

FA add3 (. in1(in1[2]), .in2(in2[2]), .c_in(c1), .sum(sum[2]), .c_out(c2));

FA add4 (. in1(in1[3]), .in2(in2[3]), .c_in(c2), .sum(sum[3]),

.c_out(sum[4]));

//zero detection

zero = | sum;

endmodule

Hierarchical Description 2 – Designware

The Synopsys design compiler, a synthesis tool, supports designware libraries.

A designware library is a type of datapath set – unsigned adder, subtracter, multiplier,

divider, floating-point adder, subtracter, multiplier, divider, and so on. When you use

designware you do not need to declare basic datapaths. More details of designware are

available on the website of Synopsys: www.synopsys.com.

//4-bit full adder module

module adder4 (in1, in2, sum, zero);

input [3:0] in1;

input [3:0] in2;

output [4:0] sum;

output zero;

wire c0, c1, c2;

//Designware module #(bitwidth) instant_name(portlist)

//When you declare the designware adder,

//the type of adder is decided by timing and area bounds.

DW01_add#(1)add0(.A(in1[0]),.B(in2[0]),.CI(1b0),.SUM(sum[0]),.CO(c0));

DW01_add #(1) add1(.A(in1[1]), .B(in2[1]), .CI(c0), .SUM(sum[1]), .CO(c1));

DW01_add #(1) add2(.A(in1[2]), .B(in2[2]), .CI(c1), .SUM(sum[2]), .CO(c2));

DW01_add #(1) add3(.A(in1[3]), .B(in2[3]), .CI(c2), .SUM(sum[3]),

.CO(sum[4]));

//Zero detection

zero = | sum;

endmodule

Verilog HDL Design 319

A.6 Synthesis Scripts

dont_use Scan Chain

This command is used to exempt some library blocks from the process library file.

set_dont_use {typical/SD*}

set_dont_use {typical/SE*}

read

read -format db {"WGR_ctrl.db"}

//Read database as db format

read -format db {"WGR_datapath.db"}

//This command is used to read a previously synthesized block

read -format verilog {"WGR_main.v"}

//Used to read target design Verilog file

check_design

//Check target design

reset_design

//Reset target design

remove_clock -all

//Since each block has its own clock and timing bound,

//the previously defined clock should be removed.

IF: TOP

current_design Wif

//Define current design.

//One Verilog file can have several modules,

//so you should declare the current block to be synthesized.

remove_constraint – all

//Since the new constraints will be declared,

//the previous constraints should be removed.

create_clock -period 40 REclk -waveform {0,20.0}

//Create clock: period is 40ns, duty cycle is 50%.

set_dont_touch find(net, "REclk")

//Since clock net is a global signal, declare ‘‘dont_touch’’ net.

set_input_delay 2.5 -rise -clock REclk {IFmode, SYS_nRESET}

//Declare input signal delay.

set_load 0.05 all_outputs()

//Set load to all output signals

//to adjust driving power of the output load

set_load 0.3 InREQ

//Set load to output signal.

set_max_transition 0.06 all_outputs()

//To limit rising or falling time due to RC time constant.

set_max_area 39

//Declare the area bound.

compile -map_effort high

//Set compile option.

report_area > Wif_Area.txt

//Write area report.

320 Mobile 3D Graphics SoC

report_timing -from all_inputs() -to all_outputs() > Wif_Timing.txt

//Write timing report.

//Timing report of the synthesis only includes gate propagation delay.

write -format db -hierarchy -output "Wif.db"

//Write result as db format – for hierarchical synthesis

write -format verilog -hierarchy -output "Wif.v"

//Write result as Verilog file – for gate-level simulation.

write_sdf "/home/denber/project/ramp-GR/verilog/sdf/Wif.sdf"

//Write SDF file – standard delay file.

Script for Top Module: WRE_top

current_design WRE

//Declare current design.

remove_clock – all

//Remove previously defined clock.

remove_constraint – all

//Remove previously define constraints.

create_clock "REclk" -period 40.0 -waveform {0, 20.0}

//Create clock for processor.

create_clock "memclk1" -period 20.0 -waveform {0, 10.0}

//Create clock for memory module.

set_dont_touch find (net, "REclk")

//Declare dont_touch net signal – clock.

set_dont_touch find (net, "memclk1")

//Declare dont_touch net signal – clock.

set_dont_touch find (cell, "GR_IF")

//Declare previously synthesized module.

//In top module, it only uses the previously synthesized module.

set_dont_touch find (cell, "GR_ID1")

set_dont_touch find (cell, "GR_ID2")

set_load 0.05 {Dbg_out, CSR}

//Set output load capacity.

set_max_transition 0.06 {Dbg_out, CSR}

//Limit rising and falling times.

compile -map_effort high

//Set compiler option.

report_area > WRE_Area.txt

//Write area report.

report_timing -from all_inputs() -to all_outputs() > WRE_Timing.txt

//Write timing report.

write -format db -hierarchy -output "WGR.db"

//Write result as db format

write -format verilog -hierarchy -output "WGR.v"

//Write result as Verilog file.

write_sdf "WGR.sdf"

//Write SDF file.

Verilog HDL Design 321

Glossaries

3D Graphics Three Dimensional Graphics

AAL Address Alignment Logic

AI Artificial Intelligence

ALU Arithmetic and Logic Unit

API Application Programming Interfaces

ARM Advanced RISC Machine; a popular embedded processor

ARM9 ARM processor with ARM v5instuction set

ARM11 ARM processor with ARM v6 instruction set

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DVFS Dynamic Voltage Frequency Scaling

GPU Graphics Processing Unit

HSR Hidden Surface Removal

HW Hardware

IP Intellectual Property

ISP Image Signal Processor

KAIST Korean Advanced Institute of Science and Technology

LOD Level of Detail

MIPS Million Instructions per Second

NoC Network-on-Chip

OpenGL Open Graphics Library

PC Personal Computer

PIM Personal Information Management

RAMP RAM þ Processor; a GPU architecture developed by KAIST

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SERDES SERializer and DESerializer

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

SIMD Single Instruction Multiple Data

SoC System-on-a-Chip

SRAM Static Random Access Memory

SW Software

TBR Tile Based Rendering

TnL Transform and Lighting

UML Unified Modeling Language

VSLI Very Large Scaled Integration

324 Glossaries

Index

3D graphics 22, 67–69, 76, 78, 81, 85,

99–104, 110, 112, 114–117, 119,

123–125, 127, 136–145, 153, 295–298

history, 2

address alignment logic (AAL), 105, 106,

121, 150, 151, 234, 242, 267

analog design, 16

API, 6, 8, 12, 18–20, 22, 89, 91, 93–96,

99, 139, 140

application stage, 67, 68

bandwidth, 6, 23, 25, 32, 35, 36, 38, 43,

45, 49–52, 58, 59, 61, 76, 85–87, 89,

91, 92, 94, 95, 104, 107–110, 119,

124, 142–144, 149, 156, 159

bus, 5–7, 23–25, 28–33, 36, 37, 50, 51,

62, 104, 110, 120, 124, 125, 140,

141, 146, 149, 156, 206

cache, 89, 91, 106, 110, 111, 116, 117,

123, 125, 128, 133, 136–141, 144–147,

150, 151, 157, 234, 236, 248, 249,

260, 267, 268

texture cache, 89, 105, 116, 117, 136, 138,

141, 144, 145, 150, 157, 248, 260, 267

vertex cache, 110, 111, 128, 140

clock gating, 27, 52, 89, 99, 101, 102, 120,

140, 150

compression, 95, 99, 106–109, 145

computer graphics 1, 143

coprocessor, 23–25, 124, 125, 145, 146

datapath, 18, 19, 62, 94, 96, 99, 102–104,

112, 114, 116, 121, 126, 133–136, 150,

173, 176, 183, 192, 194, 203, 207,

218, 223, 228, 231, 232, 250, 251,

261, 268–270, 277–279, 286–288

depth comparison, 99, 150

design flow, 9, 20, 21

communication architecture, 6–7, 22

command transfer, 22–24

data transfer, 23, 25, 56, 59, 110,

149, 151

on-chip interconnection, 23, 25, 28

digital design, 16–18

Direct3D, 91, 95, 96, 99, 296

early depth test, 101, 142

embedded DRAM, 87, 89, 90, 119, 120,

121, 122, 143

embedded memory, 104, 122, 140, 204

fixed-point number, 96, 103, 125, 126

frequency scaling, 27, 28, 62, 91, 99

geometry, 7, 11, 67, 68, 71, 74–76, 78,

83–84, 87, 89, 91, 92, 94, 96, 99,

124, 126, 128, 129, 141, 143–145,

147, 149

Mobile 3DGraphics SoC: FromAlgorithm toChip Jeong-HoWoo, Ju-Ho Sohn, Byeong-GyuNam andHoi-JunYoo

� 2010 John Wiley & Sons (Asia) Pte Ltd

geometry stage, 67, 68, 74–76, 78, 87, 99

ambient light, 70, 134

clipping, 72, 74, 79, 80, 91, 93, 95,

114, 115, 124, 136, 140, 141

device coordinate, 69, 74, 75, 80

diffuse lighting, 71

local coordinate, 69, 70, 79

perspective transformation, 72, 73

Phong shading, 71, 75, 76

specular lighting, 71, 76, 91, 94, 96

view coordinate, 72, 74

world coordinate, 69, 70, 72

graphics pipeline, 16, 67–69, 78, 81, 86,

88, 89, 92, 93, 96, 99, 114–117, 119,

136, 137, 140, 142, 144–145

hardware solution, 2, 141

hidden surface removal, 99, 106

hierarchical design, 14, 15, 17

interfaces, 1, 2, 6, 7, 9–11, 13, 16, 19, 22,

25, 28, 31, 33, 36, 43, 47, 50–52, 54, 56,

61, 62, 67, 85, 86, 91, 93, 99, 124,

125, 139, 140–142, 144–146, 150, 156,

214, 215, 218, 221, 222, 258, 265,

266, 282, 289, 292, 297, 298

lighting, 5, 67–71, 76, 78, 81, 82, 91–96,

99, 103, 110, 114, 115, 124, 127,

133–138, 141, 142, 144, 146–147

logarithmic arithmetic, 88, 102, 103, 127,

128, 130, 131

low power, 2, 3, 5–7, 11, 20, 27, 28, 42,

44, 85, 87–89, 91, 120, 123, 132, 134,

140–142, 144, 149–151, 156

MBX, 2, 3, 106, 144, 145, 147

memory, 2, 3, 5, 6, 11, 14, 16, 18–20,

22–26, 28, 49, 50, 53, 54, 62, 76,

79–83, 85–87, 89, 91, 92, 94–96, 99,

104–107, 109, 110, 119–123, 134,

139, 140, 143–145, 147, 149–151, 156,

157, 204–206, 208, 218, 227, 234,

237, 246, 247, 249, 250, 258, 261,

265–267, 276, 277, 285, 298

mobile 3D GPU, 145

mobile 3D graphics, 1–9, 20, 123

APIs, 91–96

applications, 125

example, 11–14

future, 295–298

principles, 85–91

processors, 103, 139

system, 16

mobile applications, 100

mobile devices, 99, 108–110, 150

Mobile-GL, 86

mobile GPU, 106

mobile graphics hardware, 119

mobile graphics processor, 123

mobile unified shader, 113, 114, 132–135,

136–138

modeling, 10, 14–16, 18–20, 49, 69, 70, 91,

94, 147, 295, 298

modular design, 14, 15

network, 9, 11, 14, 25, 28–33, 36, 39, 41–47,

49, 50–54, 56, 60, 61, 295

network-on-chip (NoC), 25, 28, 29, 30,

31, 32, 33–36, 40–46, 48–51, 53–65

nVidia, 2, 139–143, 298

SC10, 139–143

Tegra, 139, 141–143

OpenGL|ES, 139

pixel, 14, 16, 20, 60, 67, 70, 71, 74,

76–83, 86–87, 91, 94–95, 99–102,

105, 109–117, 120–122, 127, 131–134,

136–147, 149–151, 156

pixel fill rate, 86, 87, 139, 151

pixel-vertex multi-threading, 115, 136, 138

platform, 3, 6, 7, 9–14, 16, 18–20, 25,

29, 95, 106, 110, 132, 298

Play Station Portable (PSP), 8, 143, 144

programmable graphics, 16, 78, 88, 114

pixel shader, 14, 16, 78–83, 100,

112–114, 116, 136, 137, 139

shader model, 79–83, 93, 112, 145

vertex shader, 14, 16, 78–83, 89, 95, 100,

111–115

programmer’s model, 11, 22, 23, 125

326 Index

RAMP architecture, 8, 89, 119, 120

RAMP-IV, 119, 120, 122, 124

RAMP-V, 123–125, 127

RAMP-VI, 127, 131, 132

RAMP-VII, 132–134, 136, 139

rasterization, 8, 75, 76, 80, 93, 95, 96, 103,

104, 114, 116, 119, 136, 140, 146,

151, 153, 154, 156, 158

reference machine, 18–20, 22, 23

register file, 51, 79, 80, 81, 83, 111–114,

125, 128, 133

rendering, 2, 7, 11, 14, 67, 68, 72, 74, 76,

78, 80, 86–88, 91–94, 99–102, 104,

106–108, 119, 120, 123, 124, 127,

142–145, 147, 149–151, 153, 154, 158,

161, 166, 167, 171, 192, 204, 205,

227, 234, 248, 250, 260, 297

rendering stage, 11, 67, 68, 72, 74, 76, 78, 86,

87, 91, 94, 99

alpha blending, 75, 77, 80, 87, 92, 94, 99,

101, 144, 150, 151, 285, 286

anti-aliasing, 75, 77, 78, 80, 92–95, 109, 121

blending, 74, 75, 77, 80, 81, 87, 91, 92, 94,

95, 99, 101, 114, 116, 136, 140, 144,

150, 151, 154, 236, 276, 285, 286

depth test, 76, 77, 80, 81, 87, 89, 90, 92,

94, 96, 101, 140, 142, 144, 145, 217, 218

fog, 77, 79, 93, 95, 101, 120, 121

shading, 13, 20, 70, 71, 74–76, 78, 80, 81,

93, 95, 99–101, 113–115, 120, 121, 124,

132, 139, 145, 147, 149–151

texturemapping, 74–81, 87, 90–92, 94–96,

99, 103, 119–121, 144, 151, 295, 297

triangle setup, 16, 75, 76, 100, 101, 104,

121, 145, 150, 157, 160, 171–173, 197

RISC, 4, 11, 18, 24, 26, 54–56, 122, 123,

127, 131

SGX, 2, 3, 8, 144–147

SIMD, 62, 88, 112, 114, 116, 121, 123–125,

128, 130, 131, 133, 134, 136, 137,

145, 176, 178, 180, 198, 200, 201, 215,

216, 223, 224, 225, 284, 291, 292

SoC, 6–9, 20, 23, 25, 27–30, 35, 42–44, 46,

48, 53, 54, 56, 58–60, 62, 85, 90, 99, 110,

116, 123, 139, 146

software solution, 2, 96

switch, 25, 27–29, 31–39, 42–45, 47,

49–52, 54, 58–59, 62, 89, 92, 116,

119, 136, 188

flow control, 24, 31, 35, 51, 62, 82, 83

input queuing, 34

output queuing, 34

packet, 25, 30–35, 37, 39–40, 43–47,

49–51, 54, 56, 59, 61, 62, 140

routing, 26, 31, 32, 38, 42–44, 51, 56,

61, 62, 82, 89

scheduler, 31, 34, 35, 37–39, 145, 146

SERDES, 30, 35, 40

synchronizer, 44–48

topology, 28, 29, 31, 42, 43, 45, 47, 50, 53,

56, 62

system, 1–7, 9, 10, 14–16, 18–23, 25–28,

30, 32, 39, 46, 60, 74, 85–89, 95, 99,

100, 102–104, 106, 109, 110, 119,

124, 127, 133, 134, 139, 143–146, 149,

150, 156, 161, 163, 168, 173, 194,

209, 219, 229, 237, 252, 262, 268, 277,

286, 296, 298

texture, 8, 14, 74–83, 87, 89–92, 94–96, 99,

101, 103–117, 119–121, 127, 133,

134, 136–138, 140, 141, 144–147, 157,

160, 162–163, 165–167, 205, 227,

228, 231, 232, 234–237, 240, 295, 297

tile-based rendering, 2, 106–108, 142, 144,

145, 147

transform, 67–74, 76, 78–82, 89, 91, 93–96,

99, 103, 110, 115, 124, 126–129, 136,

138, 140–141, 144, 146, 297

unified shader, 100, 113, 114, 116,

119, 132, 133, 134, 136–139,

142, 296

use-case analysis, 16

vertex, 14, 16, 20, 67–70, 76, 78–83, 86,

87, 89, 93–95, 99–101, 103, 110–117,

123–129, 132, 134–142, 144–147, 149,

151, 153, 154, 160, 166, 168,

183–184, 188–189, 197, 202, 223

vertex fill rate, 86, 87, 139, 151

Index 327

Figure 3.2 A 3D graphics pipeline

Figure 3.13 Texture mapping effects: (a) flat shaded image, and (b) texture-mapped image

Figure 4.7 Scenes from MobileGL: (a) lighting, and (b) texture mapping

Figure 5.5 Comparison of 3D graphics results: (a) normal fixed-point calculation, and (b) logarithmic

number calculation

Figure 6.1 Summary of RAMP architectures

	MOBILE 3D GRAPHICS SoC: From Algorithm to Chip
	Contents
	Preface
	1 Introduction
	1.1 Mobile 3D Graphics
	1.2 Mobile Devices and Design Challenges
	1.2.1 Mobile Computing Power
	1.2.2 Mobile Display Devices
	1.2.3 Design Challenges

	1.3 Introduction to SoC Design
	1.4 About this Book

	2 Application Platform
	2.1 SoC Design Paradigms
	2.1.1 Platform and Set-based Design
	2.1.2 Modeling: Memory and Operations

	2.2 System Architecture
	2.2.1 Reference Machine and API
	2.2.2 Communication Architecture Design
	2.2.3 System Analysis

	2.3 Low-power SoC Design
	2.3.1 CMOS Circuit-level Low-power Design
	2.3.2 Architecture-level Low-power Design
	2.3.3 System-level Low-power Design

	2.4 Network-on-Chip based SoC
	2.4.1 Network-on-Chip Basics
	2.4.2 NoC Design Considerations
	2.4.3 Case Studies of Chip Implementation

	3 Introduction to 3D Graphics
	3.1 The 3D Graphics Pipeline
	3.1.1 The Application Stage
	3.1.2 The Geometry Stage
	3.1.3 The Rendering Stage

	3.2 Programmable 3D Graphics
	3.2.1 Programmable Graphics Pipeline
	3.2.2 Shader Models

	4 Mobile 3D Graphics
	4.1 Principles of Mobile 3D Graphics
	4.1.1 Application Challenges
	4.1.2 Design Principles

	4.2 Mobile 3D Graphics APIs
	4.2.1 KAIST MobileGL
	4.2.2 Khronos OpenGL-ES
	4.2.3 Microsoft’s Direct3D-Mobile

	4.3 Summary and Future Directions

	5 Mobile 3D Graphics SoC
	5.1 Low-power Rendering Processor
	5.1.1 Early Depth Test
	5.1.2 Logarithmic Datapaths
	5.1.3 Low-power Texture Unit
	5.1.4 Tile-based Rendering
	5.1.5 Texture Compression
	5.1.6 Texture Filtering and Anti-aliasing

	5.2 Low-power Shader
	5.2.1 Vertex Cache
	5.2.2 Low-power Register File
	5.2.3 Mobile Unified Shader

	6 Real Chip Implementations
	6.1 KAIST RAMP Architecture
	6.1.1 RAMP-IV
	6.1.2 RAMP-V
	6.1.3 RAMP-VI
	6.1.4 RAMP-VII

	6.2 Industry Architecture
	6.2.1 nVidia Mobile GPU – SC10 and Tegra
	6.2.2 Sony PSP
	6.2.3 Imagination Technology MBX/SGX

	7 Low-power Rasterizer Design
	7.1 Target System Architecture
	7.2 Summary of Performance and Features
	7.3 Block Diagram of the Rasterizer
	7.4 Instruction Set Architecture (ISA)
	7.5 Detailed Design with Register Transfer Level Code
	7.5.1 Rasterization Top Block
	7.5.2 Pipeline Architecture
	7.5.3 Main Controller Design
	7.5.4 Rasterization Core Unit

	8 The Future of Mobile 3D Graphics
	8.1 Game and Mapping Applications Involving Networking
	8.2 Moves Towards More User-centered Applications
	8.3 Final Remarks

	Appendix: Verilog HDL Design
	A.1 Introduction to Verilog Design
	A.2 Design Level
	A.2.1 Behavior Level
	A.2.2 Register Transfer Level
	A.2.3 Gate Level

	A.3 Design Flow
	A.3.1 Specification
	A.3.2 High-level Design
	A.3.3 Low-level Design
	A.3.4 RTL Coding
	A.3.5 Simulation
	A.3.6 Synthesis
	A.3.7 Placement and Routing

	A.4 Verilog Syntax
	A.4.1 Modules
	A.4.2 Logic Values and Numbers
	A.4.3 Data Types
	A.4.4 Operators
	A.4.5 Assignment
	A.4.6 Ports and Connections
	A.4.7 Expressions
	A.4.8 Instantiation
	A.4.9 Miscellaneous

	A.5 Example of Four-bit Adder with Zero Detection
	A.6 Synthesis Scripts

	Glossaries
	Index
	Colour Plate

