
ptg

ptg

IPHONE® FOR PROGRAMMERS:
AN APP-DRIVEN APPROACH

DEITEL® DEVELOPER SERIES

Download from <www.wowebook.com>

ptg

Deitel® Ser
Deitel® Developer Series
AJAX, Rich Internet Applications and Web Development

for Programmers

C++ for Programmers

C# 2008 for Programmers, 3/E

iPhone for Programmers: An App-Driven Approach

Java for Programmers

JavaScript for Programmers

Visual Basic® 2005 for Programmers, 2/E

How to Program Series
C How to Program, 6/E

C++ How to Program, 7/E

Internet & World Wide Web How to Program, 4/E

Java How to Program, Early Objects Version, 8/E

Java How to Program, Late Objects Version, 8/E

Visual Basic® 2008 How to Program

Visual C#® 2008 How to Program, 3/E

Visual C++® 2008 How to Program, 2/E

Simply Series
Simply Visual Basic® 2008, 3/E: An

Application-Driven Tutorial
Approach

Simply C++: An Application-Driven
Tutorial Approach

Simply Java™ Programming: An
Application-Driven Tutorial
Approach

Simply C#: An Application-Driven
Tutorial Approach

Download from <www.wowebook.com>

ptg

ies Page
CourseSmart Web Books
www.deitel.com/books/CourseSmart.html

C++ How to Program, 5/E, 6/E & 7/E
Java How to Program, 6/E, 7/E & 8/E
Simply C++: An Application-Driven

Tutorial Approach
Simply Visual Basic® 2008: An

Application-Driven Tutorial
Approach, 3/E

Small C++ How to Program, 5/E
Small Java How to Program, 6/E
Visual Basic® 2008 How to Program
Visual C#® 2008 How to Program, 3/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Java Fundamentals Parts 1 and 2
C# Fundamentals Parts 1 and 2

C++ Fundamentals Parts 1 and 2
JavaScript Fundamentals Parts 1 and 2

To receive updates on Deitel publications, Resource Centers, training courses, partner
offers and more, please register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

follow us on Twitter®

@deitel

and Facebook®

 www.deitel.com/deitelfan/

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars
offered by Deitel & Associates, Inc. worldwide, visit:
 www.deitel.com/training/

or write to
 deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:
 www.deitel.com
 www.pearsonhighered.com/deitel

Check out our Resource Centers for valuable web resources that will help you master
various programming languages, software and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

Download from <www.wowebook.com>

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

All of the code and iPhone apps in this book are copyrighted by Deitel & Associates, Inc. As a user of the book, we
grant you the nonexclusive right to copy, distribute, display the code, and create derivative apps based on the code for
noncommercial purposes only—so long as you attribute the code to Deitel & Associates, Inc. and reference the book’s
website www.deitel.com/books/iPhoneFP/. If you have any questions, or specifically would like to use our code for
commercial purposes, contact deitel@deitel.com.

iPhone for Programmers is not endorsed by nor is affiliated with Apple, Inc.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-10: 0-13-705842-X
ISBN-13: 978-0-13-705842-6

Text printed in the United States on recycled paper at R.R . Donnelley in Crawfordsville, Indiana.
First printing, October 2009

Download from <www.wowebook.com>

ptg

IPHONE® FOR PROGRAMMERS:
AN APP-DRIVEN APPROACH
DEITEL® DEVELOPER SERIES

Paul Deitel • Harvey Deitel
Abbey Deitel • Eric Kern • Michael Morgano

All of Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Download from <www.wowebook.com>

ptg

Trademarks
DEITEL, the double-thumbs-up bug and Dive Into are registered trademarks of Deitel &
Associates, Inc.

Apple, iPhone, iPod, iPod Touch, Xcode, Objective-C and Cocoa are registered trademarks
of Apple, Inc.

Google is a trademark of Google, Inc.

Twitter is a registered trademark of Twitter, Inc.

Download from <www.wowebook.com>

ptg

Dedicated to the wonderful folks at Apple
For making such great products.

Paul, Harvey, Abbey, Eric and Michael

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

Deitel Resource Centers
Our Resource Centers focus on the vast amounts of free content available online. Find resources,
downloads, tutorials, documentation, books, e-books, journals, articles, blogs, RSS feeds and more
on many of today’s hottest programming and technology topics. For the most up-to-date list of our
Resource Centers, visit:

www.deitel.com/ResourceCenters.html

Let us know what other Resource Centers you’d like to see! Also, please register for the free Deitel®
Buzz Online e-mail newsletter at:

 www.deitel.com/newsletter/subscribe.html

Computer Science
Functional Programming
Regular Expressions

Programming
ASP.NET 3.5
Adobe Flex
Ajax
Apex
ASP.NET Ajax
ASP.NET
C
C++
C++ Boost Libraries
C++ Game Programming
C#
Code Search Engines and

Code Sites
Computer Game

Programming
CSS 2.1
Dojo
Facebook Developer Plat-

form
Flash 9
Functional Programming
Java
Java Certification and

Assessment Testing
Java Design Patterns
Java EE 5
Java SE 6
Java SE 7 (Dolphin)

Resource Center
JavaFX
JavaScript
JSON
Microsoft LINQ
Microsoft Popfly
.NET
.NET 3.0
.NET 3.5
OpenGL
Perl
PHP
Programming Projects
Python
Regular Expressions
Ruby
Ruby on Rails
Silverlight

UML
Visual Basic
Visual C++
Visual Studio Team Sys-

tem
Web 3D Technologies
Web Services
Windows Presentation

Foundation
XHTML
XML

Apple
iPhone
Objective-C
Cocoa

Games and Game
Programming

Computer Game Pro-
gramming

Computer Games
Mobile Gaming
Sudoku

Internet Business
Affiliate Programs
Competitive Analysis
Facebook Social Ads
Google AdSense
Google Analytics
Google Services
Internet Advertising
Internet Business

Initiative
Internet Public Relations
Link Building
Location-Based Services
Online Lead Generation
Podcasting
Search Engine Optimiza-

tion
Selling Digital Content
Sitemaps
Web Analytics
Website Monetization
YouTube and AdSense

Java
Java
Java Certification and

Assessment Testing

Java Design Patterns
Java EE 5
Java SE 6
Java SE 7 (Dolphin)

Resource Center
JavaFX

Microsoft
ASP.NET
ASP.NET 3.5
ASP.NET Ajax
C#
DotNetNuke (DNN)
Internet Explorer 7 (IE7)
Microsoft LINQ
.NET
.NET 3.0
.NET 3.5
SharePoint
Silverlight
Visual Basic
Visual C++
Visual Studio Team

System
Windows Presentation

Foundation
Windows Vista
Microsoft Popfly

Open Source &
LAMP Stack

Apache
DotNetNuke (DNN)
Eclipse
Firefox
Linux
MySQL
Open Source
Perl
PHP
Python
Ruby

Software
Apache
DotNetNuke (DNN)
Eclipse
Firefox
Internet Explorer 7 (IE7)
Linux
MySQL

Open Source
Search Engines
SharePoint
Skype
Web Servers
Wikis
Windows Vista

Web 2.0
Alert Services
Attention Economy
Blogging
Building Web

Communities
Community Generated

Content
Facebook Developer

Platform
Facebook Social Ads
Google Base
Google Video
Google Web Toolkit

(GWT)
Internet Video
Joost
Location-Based Services
Mashups
Microformats
Recommender Systems
RSS
Social Graph
Social Media
Social Networking
Software as a Service

(SaaS)
Virtual Worlds
Web 2.0
Web 3.0
Widgets

Dive Into® Web 2.0
eBook

Web 2 eBook

Other Topics
Computer Games
Computing Jobs
Gadgets and Gizmos
Ring Tones
Sudoku

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

Illustrations xvii

Preface xxvii

Before You Begin xxxiii

1 Introduction to iPhone App Development 1
1.1 Introduction to iPhone for Programmers 2
1.2 iPhone Overview 3
1.3 Key New iPhone 3GS and OS 3.x Features and Enhancements 6
1.4 Downloading Apps from the App Store 7
1.5 iPhone OS 3.x 8
1.6 Objective-C Programming Language 9
1.7 Design Patterns 10
1.8 Cocoa Frameworks 11
1.9 New iPhone SDK 3 Features 13
1.10 Xcode Toolset 14
1.11 Basics of Object Technology 15
1.12 Web 2.0 17
1.13 Test-Driving the Painter App in the iPhone Simulator 17
1.14 Wrap-Up 22
1.15 Deitel Resource Centers 22

2 iPhone App Store and App Business Issues 23
2.1 Introduction 24
2.2 iPhone Developer Program: Setting Up Your Profile for Testing and

Submitting Apps 25
2.2.1 Setting Up Your iPhone Development Team 25
2.2.2 Getting an iPhone Development Certificate 26
2.2.3 Registering Devices for Testing 27
2.2.4 Creating App IDs 27
2.2.5 Creating a Provisioning Profile 27
2.2.6 Using the Provisioning Profile to Install an App on an iPhone

or iPod Touch 28
2.2.7 Submitting Your App for Distribution 29

Contents

Download from <www.wowebook.com>

ptg

xii Contents

2.3 iPhone Human Interface Guidelines 30
2.4 Testing Your App 32
2.5 Preparing Your App for Submission through iTunes Connect 32
2.6 Characteristics of Great iPhone Apps 34
2.7 Avoiding Rejection of Your App 35
2.8 Pricing Your App: Free or Fee 36
2.9 Adding an App to iTunes Connect 38
2.10 Monetizing Paid Apps: Using In App Purchase to Sell Virtual Goods 41
2.11 Using iTunes Connect to Manage Your Apps 42
2.12 Marketing Your App 43
2.13 iPhone Anecdotes and Humor 48
2.14 Other Platforms 49
2.15 iPhone Developer Documentation 50
2.16 Wrap-Up 50

3 Welcome App 51
Dive-Into® Xcode, Cocoa and Interface Builder

3.1 Introduction 52
3.2 Overview of the Technologies 52
3.3 Xcode 3.x IDE and Cocoa 53
3.4 Building the Application 56
3.5 Building the GUI with Interface Builder 57
3.6 Running the Welcome App 61
3.7 Wrap-Up 63

4 Tip Calculator App 64
Introducing Objective-C Programming

4.1 Introduction 65
4.2 Test-Driving the Tip Calculator App 66
4.3 Overview of the Technologies 66
4.4 Building the App 66
4.5 Adding Functionality to Your App 71
4.6 Connecting Objects in Interface Builder 73
4.7 Implementing the Class’s Methods 76
4.8 Wrap-Up 81

5 Favorite Twitter® Searches App 83
Collections and Cocoa GUI Programming

5.1 Introduction 84
5.2 Test-Driving the Favorite Twitter Searches App 85
5.3 Technologies Overview 86
5.4 Building the App 86
5.5 Wrap-Up 101

Download from <www.wowebook.com>

ptg

 Contents xiii

6 Flag Quiz Game App 102
Controllers and the Utility Application Template

6.1 Introduction 103
6.2 Test-Driving the Flag Quiz Game App 106
6.3 Technologies Overview 106
6.4 Building the App 107

6.4.1 The MainView and Class MainViewController 107
6.4.2 The FlipsideView and Class FlipsideViewController 122

6.5 Wrap-Up 127

7 Spot-On Game App 129
Using UIView and Detecting Touches

7.1 Introduction 130
7.2 Test-Driving the Spot-On Game App 132
7.3 Overview of the Technologies 132
7.4 Building the App 132
7.5 Wrap-Up 147

8 Cannon Game App 154
Animation with NSTimer and Handling Drag Events

8.1 Introduction 155
8.2 Test-Driving the Cannon Game app 156
8.3 Overview of the Technologies 156
8.4 Building the App 157
8.5 Wrap-Up 171

9 Painter App 173
Using Controls with a UIView

9.1 Introduction 174
9.2 Overview of the Technologies 174
9.3 Building the App 175
9.4 Wrap-Up 191

10 Address Book App 193
Tables and UINavigationController

10.1 Introduction 194
10.2 Test-Driving the Address Book App 196
10.3 Technologies Overview 196
10.4 Building the App 197

10.4.1 Class RootViewController 197

Download from <www.wowebook.com>

ptg

xiv Contents

10.4.2 Class AddViewController 205
10.4.3 Class ContactViewController 212
10.4.4 Class EditableCell 215

10.5 Wrap-Up 219

11 Route Tracker App 220
Map Kit and Core Location (GPS and Compass)

11.1 Introduction 221
11.2 Test-Driving the Route Tracker App 224
11.3 Technologies Overview 224
11.4 Building the App 225

11.4.1 Class TrackingMapView 225
11.4.2 Class Controller 231

11.5 Wrap-Up 238

12 Slideshow App 240
Photos and iPod Library Access

12.1 Introduction 241
12.2 Test-Driving the Slideshow App 244
12.3 Technologies Overview 245
12.4 Building the App 245

12.4.1 Class RootViewController 246
12.4.2 Class SlideshowViewController 256
12.4.3 Class NameViewController 264
12.4.4 Class SlideshowDataViewController 266

12.5 Wrap-Up 276

13 Enhanced Slideshow App 278
Serialization Data with NSCoder and Playing Video

13.1 Introduction 279
13.2 Test-Driving the Enhanced Slideshow App 281
13.3 Overview of the Technologies 282
13.4 Building the App 282

13.4.1 Class MediaItem 282
13.4.2 Class Slideshow 286
13.4.3 Class RootViewController 291
13.4.4 Class SlideshowDataViewController 294
13.4.5 Class EnhancedSlideshowAppDelegate 302
13.4.6 Class SlideshowViewController 303

13.5 Suggested Enhancements 309
13.6 Wrap-Up 309

Download from <www.wowebook.com>

ptg

 Contents xv

14 Voice Recorder App 310
Audio Recording and Playback

14.1 Introduction 311
14.2 Test-Driving the Voice Recorder App 314
14.3 Overview of the Technologies 314
14.4 Building the App 315

14.4.1 Class VoiceRecorderViewController 315
14.4.2 Class NameRecordingViewController 322
14.4.3 Class Visualizer 325
14.4.4 Class PlaybackViewController 328

14.5 Speech Synthesis and Recognition 341
14.6 Wrap-Up 341

15 Enhanced Address Book App 342
Managing and Transferring Persistent Data

15.1 Introduction 343
15.2 Test-Driving the Enhanced Address Book App 345
15.3 Technologies Overview 345
15.4 Building the App 346

15.4.1 Building the Core Data Model 346
15.4.2 Class ContactViewController 346
15.4.3 Class RootViewController 351

15.5 Wrap-Up 362

16 Twitter® Discount Airfares App 364
Internet Enabled Applications

16.1 Introduction 365
16.2 Test-Driving the Twitter Discount Airfares App 366
16.3 Technologies Overview 366
16.4 Building the App 366
16.5 Wrap-Up 386

Index 387

Download from <www.wowebook.com>

ptg

This page intentionally left blank

Download from <www.wowebook.com>

ptg

Preface
1 iPhone for Programmers apps and the technologies they introduce. xxx

1 Introduction to iPhone App Development
1.1 Key online documentation for iPhone developers. 3
1.2 iPhone gestures. 4
1.3 iPhone hardware. 5
1.4 iPhone 3.x default apps. 5
1.5 New landscape keyboard. 6
1.6 Popular iPhone apps in the App Store. 7
1.7 New iPhone 3.x software features

(www.apple.com/iphone/softwareupdate/). 8
1.8 Design patterns used in iPhone for Programmers. 10
1.9 Cocoa frameworks (developer.apple.com/iPhone/library/

navigation/Frameworks/index.html). 11
1.10 iPhone gestures on the simulator (developer.apple.com/IPhone/

library/documentation/Xcode/Conceptual/iphone_development/

125-Using_iPhone_Simulator/iphone_simulator_application.html). 15
1.11 Clicking the Build and Go button to run the Painter app. 18
1.12 Painter app with a blank canvas. 19
1.13 Painter app settings. 19
1.14 Drawing with a new brush color. 20
1.15 Changing the line color and line size to draw the stem and grass. 21
1.16 Changing the line color and line size to draw the rain. 21

2 iPhone App Store and App Business Issues
2.1 iPhone Development Team responsibilities. (iTunes Connect Developer

Guide version 4.7, July 10, 2009.) 25
2.2 Points and suggestions from the iPhone Human Interface Guidelines. 31
2.3 iPhone functionality that is not available on the simulator. 32
2.4 Custom app icon design firms. 33
2.5 Languages available for localizing your iPhone apps. 34
2.6 Characteristics of great apps. 35
2.7 Reasons apps are rejected by Apple. 36
2.8 Ways to monetize your app. 36
2.9 Free iPhone apps that are building brand awareness. 37

Illustrations

Download from <www.wowebook.com>

ptg

xviii Illustrations

2.10 iTunes Connect Overview page for adding an app. 38
2.11 App ratings. 39
2.12 App Stores worldwide. 40
2.13 Virtual goods. 41
2.14 Categorizing your products for sale using In App Purchase. 42
2.15 iTunes Connect modules. 43
2.16 Marketing Resources for iPhone app developers

(developer.apple.com/iphone/). 43
2.17 Popular social media sites. 44
2.18 iPhone app review sites. 45
2.19 Internet public relations resources. 46
2.20 Mobile advertising networks. 47
2.21 iPhone development anecdotes, tips and humor. 48
2.22 Other popular platforms. 49
2.23 iPhone Reference Library documentation. 50

3 Welcome App
3.1 Welcome app. 52
3.2 Instruments capabilities. 53
3.3 Welcome to Xcode window. 54
3.4 Xcode templates. 54
3.5 Xcode toolbar. 55
3.6 Xcode toolbar elements. 55
3.7 Common Xcode keyboard shortcuts. 55
3.8 New Project window. 56
3.9 Naming your project. 57
3.10 WelcomeTest project window. 57
3.11 Adding a file to the Welcome project. 58
3.12 MainMenu.xib window. 58
3.13 Interface Builder’s app window. 59
3.14 Interface Builder’s Library window. 59
3.15 Adding an Image View via the Library Window. 60
3.16 Sizing handles on an Image View. 60
3.17 Image View Attributes tab in the Inspector window. 61
3.18 Adding a Label to a window. 62
3.19 Label Attributes tab of the Inspector window. 62
3.20 Completed Welcome app. 63
3.21 Xcode toolbar while an app is running. 63

4 Tip Calculator App
4.1 Entering the bill total and calculating the tip. 65
4.2 Adding a Text Field to the app window. 67
4.3 Adding a Label to the app window. 67
4.4 Placing a Label in the app window. 68
4.5 Adding a Slider to the app window. 69

Download from <www.wowebook.com>

ptg

Illustrations xix

4.6 App window after adding and sizing the Slider. 69
4.7 Positioning the “Tip” and “Total” Text Fields. 70
4.8 Completed Tip Calculator user interface. 70
4.9 Adding a new Objective-C class file to your Xcode project. 71
4.10 Controller class for the Tip Calculator app. 72
4.11 Adding a Custom Object to a nib file. 74
4.12 Changing the class of a custom object via the Identity tab. 74
4.13 Controller’s Connections tab of the Inspector window. 74
4.14 Connecting an outlet to a Text Field. 75
4.15 Connecting an action to a Controller object. 76
4.16 Controller class for the Tip Calculator app. 76
4.17 Relational operators in Objective-C. 80
4.18 Arithmetic operators in Objective-C. 81

5 Favorite Twitter® Searches App
5.1 Favorite Twitter Searches app. 84
5.2 Running the Favorite Twitter Searches app. 85
5.3 Interface Builder Button styles. 86
5.4 App window with a Label and two Text Fields. 87
5.5 Adding the “Save” Button to the app window. 88
5.6 View with a colored background and a white Label at the top. 88
5.7 App window with a Round Rect Button at the bottom. 89
5.8 Adding a UIScrollView to the app window. 89
5.9 Controller class for the Favorite Twitter Searches app. 90
5.10 Adding a Custom Object to a nib file. 92
5.11 Controller class for the Favorite Twitter Searches app. 93
5.12 Method awakeFromNib of class Controller. 95
5.13 Method refreshList of class Controller. 95
5.14 Method infoButtonTouched: of class Controller. 97
5.15 Methods addTag: and clearTags: of class Controller. 97
5.16 Method addNewButtonWithTitle: of class Controller. 99
5.17 Method buttonTouched: of class Controller. 100
5.18 UIButton’s sorting category. 101

6 Flag Quiz Game App
6.1 Flag Quiz Game app. 103
6.2 Correct answer in the Flag Quiz Game app. 104
6.3 Disabled incorrect answer in the Flag Quiz Game app. 104
6.4 Options screen of the Flag Quiz Game app. 105
6.5 Results alert after quiz completion. 105
6.6 Completed MainView GUI design. 107
6.7 MainViewController interface declaration. 108
6.8 Initializing the MainViewController class. 110
6.9 MainViewController’s viewDidLoad method. 111
6.10 MainViewController’s loadNextFlag method. 113

Download from <www.wowebook.com>

ptg

xx Illustrations

6.11 MainViewController’s submitGuess: method. 116
6.12 Resetting the quiz. 118
6.13 showInfo and flipsideViewControllerDidFinish: methods. 119
6.14 NSString’s displayName category. 121
6.15 Segmented Control in the FlipsideView. 122
6.16 Switches in the FlipsideView. 123
6.17 FlipsideViewController interface declaration. 123
6.18 FlipsideViewController class implementation. 125

7 Spot-On Game App
7.1 Spot-On Game app. 130
7.2 Spot-On Game with a touched spot. 131
7.3 Game Over alert. 131
7.4 SpotOnViewController interface declaration. 132
7.5 SpotOnViewController’s user interface. 134
7.6 SpotOnViewController’s viewDidLoad method. 135
7.7 SpotOnViewController’s resetGame method. 136
7.8 SpotOnViewController’s addNewSpot method. 137
7.9 SpotOnViewController’s beginSpotAnimation: method. 139
7.10 SpotOnViewController’s touchesBegan:withEvent: method. 140
7.11 SpotOnViewController’s touchedSpot: method. 142
7.12 SpotOnViewController’s beginSpotEndAnimation method. 143
7.13 SpotOnViewController’s finishedAnimation:finished:Context:

method. 144
7.14 SpotOnViewController’s methods alertView:clickedButtonAtIndex:,

shouldAutoRotateToInterfaceOrientation: and dealloc. 146

8 Cannon Game App
8.1 Completed Cannon Game app. 155
8.2 Cannon Game app with cannonball in flight. 156
8.3 CannonView’s interface declaration. 157
8.4 Global variable declarations in CannonView.m. 159
8.5 CannonView’s initWithCoder: and awakeFromNib methods. 160
8.6 CannonView’s newGame method. 161
8.7 CannonView’s timerFired: method. 162
8.8 CannonView’s showAlertwithTitle:message: and

alertView:clickedButtonAtIndex: methods. 165
8.9 CannonView’s drawRect: method. 166
8.10 CannonView’s touchesBegan:withEvent:, touchesMoved:withEvent:

and processTouch: methods. 170

9 Painter App
9.1 Painter app and its control panel. 174
9.2 Class Squiggle represents the points, color and width of one line. 175

Download from <www.wowebook.com>

ptg

Illustrations xxi

9.3 Squiggle class implementation. 176
9.4 View for the frontside of the Painter app. 177
9.5 Method initWithCoder: of class MainView. 178
9.6 Methods resetView and drawRect: of class MainView. 178
9.7 Method drawSquiggle: of class MainView. 179
9.8 Touch-handling methods of class MainView. 180
9.9 Methods motionEnded:withEvent:, alertView:clickedButtonAtIndex:,

canBecomeFirstResponder and dealloc of class MainView. 183
9.10 MainViewController interface. 184
9.11 Controller for the front side of the Painter app. 185
9.12 FlipsideViewController interface. 187
9.13 FlipsideViewController class. 188
9.14 The finished flipside interface. 191

10 Address Book App
10.1 List of contacts. 194
10.2 Viewing a single contact’s details. 195
10.3 Add Contact screen. 195
10.4 Deleting a contact. 196
10.5 Controller for the main table of the Address Book app. 197
10.6 Method viewDidLoad of class RootViewController. 199
10.7 Method addContact of class RootViewController. 200
10.8 Method addViewControllerDidFinishAdding: of class

RootViewController. 200
10.9 Methods and tableView:NumberOfRowsInSection: and

tableView:cellForRowAtIndexPath: of class RootViewController. 201
10.10 Method tableView:didSelectRowAtIndexPath: of class

RootViewController. 202
10.11 Methods tableView:commitEditingStyle:forRowAtIndexPath:,

shouldAutorotateToInterfaceOrientation: and dealloc of class
RootViewController. 203

10.12 NSDictionary’s sorting category. 204
10.13 AddViewController.xib in Interface Builder after placing the

default TableView. 205
10.14 AddViewController’s interface declaration. 205
10.15 Methods initWithNibName:bundle: and viewDidLoad of class

AddViewController. 207
10.16 Methods doneAdding: and values of class AddViewController. 208
10.17 Methods editableCellDidBeginEditing:, editableCellDidEndEditing:

and editableCellDidEndOnExit: of class AddViewController. 209
10.18 Methods numberOfSectionsInTableView:,

tableView:numberOfRowsInSection: and
tableView:titleForHeaderInSection: of class AddViewController. 210

10.19 Method tableView:cellForRowAtIndexPath: of
class AddViewController. 211

Download from <www.wowebook.com>

ptg

xxii Illustrations

10.20 ContactViewController’s interface declaration. 212
10.21 ContactViewController class displays information for a contact. 213
10.22 Interface for a UITableViewCell that contains a Label and a Text Field. 215
10.23 EditableCell’s class definition. 216

11 Route Tracker App
11.1 Approximate user location on world map. 221
11.2 Map just after the user presses Start Tracking. 222
11.3 User’s route displayed on the map with arrows showing the

user’s direction. 222
11.4 Satellite and hybrid map views. 223
11.5 Statistics for a completed route. 223
11.6 MainWindow.xib in Interface Builder. 225
11.7 TrackingMapView interface declaration. 226
11.8 Method initWithFrame: of class TrackingMapView. 226
11.9 Method drawRect: of class TrackingMapView. 227
11.10 Methods addPoint: and reset of class TrackingMapView. 230
11.11 Methods mapView:regionWillChangeAnimated: and

mapView:regionDidChangeAnimated: of class TrackingMapView. 231
11.12 Controller class for the Route Tracker app interface declaration. 232
11.13 Method viewDidLoad of class Controller. 233
11.14 Method toggleTracking of class Controller. 234
11.15 Methods resetMap, selectMapMode: and mapView:viewForAnnotation:

of class Controller. 236
11.16 Method locationManager:didUpdateToLocation:fromLocation: of

class Controller. 237
11.17 Methods locationManager:didUpdateHeading: and

locationManager:didFailWithError: of class Controller. 238

12 Slideshow App
12.1 List of saved slideshows. 241
12.2 Slideshow playing in portrait and landcape orientations. 242
12.3 Editing the list of slideshows. 242
12.4 Creating a new slideshow. 243
12.5 Photo library. 243
12.6 Picking a photo. 244
12.7 RootViewController class controls the main list of slideshows. 246
12.8 Methods viewDidLoad of class RootViewController. 246
12.9 Method viewWillAppear: and addSlideshow of class

RootViewController. 247
12.10 RootViewController methods nameViewController:didGetName:,

and tableView:numberOfRowsInSection:. 248
12.11 Method tableView:cellForRowAtIndexPath: of class

RootViewController. 249

Download from <www.wowebook.com>

ptg

Illustrations xxiii

12.12 Methods slideshowCellDidSelectEditButton: and
slideshowCellDidSelectPlayButton: of class RootViewController. 250

12.13 Method tableView:commitEditingStyle:forRowAtIndexPath:
of class RootViewController. 251

12.14 Methods tableView:moveRowAtIndexPath:toIndexPath: and
tableView:canMoveRowAtIndexPath: of class RootViewController. 252

12.15 UITableViewCell for previewing a slideshow. 253
12.16 SlideshowCell method initWithFrame:reuseIdentifier:. 254
12.17 Methods editSlideshow and playSlideShow of class SlideshowCell. 255
12.18 Controller for a View that shows a slideshow. 256
12.19 Methods loadView and nextImageView of class

SlideshowViewController. 257
12.20 Methods exitShow and timerFired of class SlideshowViewController. 259
12.21 Methods transitionFinished:finished:context:, viewWillAppear

and viewDidDisappear of class SlideshowViewController. 261
12.22 Methods shouldAutorotateToInterfaceOrientation: and

willRotateToInterfaceOrientation: of class
SlideshowViewController. 263

12.23 Scaling category of UIImageView. 263
12.24 Controls a View for naming a slideshow. 265
12.25 Implementation of NameViewController. 265
12.26 Manages the pictures, sounds and effects of a slideshow. 266
12.27 Method viewDidLoad of class SlideshowDataViewController. 268
12.28 Method viewDidAppear: and viewDidDisappear: of class

SlideshowDataViewController. 269
12.29 Methods addPhoto and

imagePickerController:didFinishPickingImage: of class
SlideshowDataViewController. 271

12.30 Methods addMusic and mediaPicker:didPickMediaItems: of class
SlideshowDataViewController. 272

12.31 Methods addEffect and startSlideshow of class
SlideshowDataViewController. 273

12.32 Method tableView:cellForRowAtIndexPath: of class
SlideshowDataViewController. 274

12.33 Methods tableView:commitEditingStyle:forRowAtIndexPath:,
tableView:moveRowAtIndexPath:toIndexPath: and
tableView:canMoveRowAtIndexPath: of class
SlideshowDataViewController. 275

13 Enhanced Slideshow App
13.1 iPhone photo library. 279
13.2 Viewing a video. 280
13.3 Setting the image transition effect. 280
13.4 Flip effect—rotates slide horizontally revealing the next slide underneath. 281
13.5 MediaItem class represents an image or a video. 283

Download from <www.wowebook.com>

ptg

xxiv Illustrations

13.6 MediaItem class implementation. 283
13.7 Presents the user with an interface for creating a MediaItem. 285
13.8 MediaItemCreator class implementation. 286
13.9 Interface for class Slideshow which represents a slideshow. 287
13.10 Methods init and initWithCoder: of class Slideshow. 288
13.11 Methods encodeWithCoder: and firstImage of class Slideshow. 289
13.12 NSCoding category For UIImage. 290
13.13 Method viewDidLoad of class RootViewController. 291
13.14 Method nameViewController:didGetName: of class

RootViewController. 292
13.15 Method slideshowCellDidSelectEditButton: of class

RootViewController. 293
13.16 Method tableView:cellForRowAtIndexPath: of class

RootViewController. 294
13.17 Method initWithSlideshow: of class SlideshowDataViewController. 295
13.18 Method addPhoto of class SlideshowDataViewController. 295
13.19 Method imagePickerController:didFinishPickingMediaWithInfo:

of class SlideshowDataViewController. 296
13.20 Method mediaItemCreator:didCreateMediaItem: of class

SlideshowDataViewController. 298
13.21 Methods mediaPicker:didPickMediaItems: and addEffect of class

SlideshowDataViewController. 299
13.22 Methods startSlideshow and actionSheet:clickedButtonAtIndex:

of class SlideshowDataViewController. 299
13.23 Method tableView:cellForRowAtIndexPath: of class

SlideshowDataViewController. 300
13.24 Method tableView:moveRowAtIndexPath:toIndexPath: of class

SlideshowDataViewController. 302
13.25 Method applicationWillTerminate: of class

EnhancedSlideshowAppDelegate. 303
13.26 Controller for a view that shows a slideshow. 303
13.27 Method nextImageViewWithMedia: of class SlideshowViewController. 305
13.28 Method changeSlide of class SlideshowViewController. 306
13.29 Method displayNewImage: of class SlideshowViewController. 306
13.30 Method displayNewVideo: of class SlideshowViewController. 308

14 Voice Recorder App
14.1 Voice Recorder app ready to record. 311
14.2 Visualizer during a recording. 312
14.3 Naming a recording. 312
14.4 Playing a saved recording. 313
14.5 E-mailing a recording. 313
14.6 VoiceRecorderViewController interface declaration. 315
14.7 VoiceRecorderViewController’s finished view. 316
14.9 Method record: of class VoiceRecorderViewController. 317

Download from <www.wowebook.com>

ptg

Illustrations xxv

14.8 Methods initWithNibName:bundle: and viewDidLoad of class
VoiceRecorderViewController. 317

14.10 Method nameRecordingViewController:didGetName: of class
VoiceRecorderViewController. 320

14.11 Method flip: of class VoiceRecorderViewController. 321
14.12 Methods playbackViewControllerDidFinish: and timerFired:

of class VoiceRecorderViewController. 322
14.13 Controls a View for naming a recording. 322
14.14 Finished layout of NameRecordingViewController’s view. 323
14.15 Implementation of NameRecordingViewController. 324
14.16 View that displays a visualization of a recording in progress. 326
14.17 Method initWithCoder: of class Visualizer. 326
14.18 Methods setPower: and clear of class Visualizer. 327
14.19 Method drawRect: of class Visualizer. 327
14.20 Controls the View where the user plays existing sound files. 329
14.21 Completed PlaybackViewController GUI. 330
14.22 Implementation for PlaybackViewController. 331
14.23 Methods sliderMoved:, togglePlay and updateVolume: of class

PlaybackViewController. 332
14.24 PlaybackViewController methods timerFired: and record:. 333
14.25 Method playSound of class PlaybackViewController. 334
14.26 Methods stopSound, numberOfSectionsInTableView: and

tableView:numberOfRowsInSection: of class PlaybackViewController. 335
14.27 Method tableView:cellForRowAtIndexPath: of class

PlaybackViewController. 336
14.28 Method tableView:commitEditingStyle:forRowAtIndexPath: of class

PlaybackViewController. 337
14.29 Method tableView:didSelectRowAtIndexPath: of class

PlaybackViewController. 338
14.30 Methods tableView:accessoryButtonTappedForRowWithIndexPath:

and mailComposeController:didFinishWithResult:error: of class
PlaybackViewController. 339

15 Enhanced Address Book App
15.1 Viewing a contact. 343
15.2 Requesting a connection. 344
15.3 Getting a Bluetooth Connection Request. 344
15.4 Data model editor. 346
15.5 Controller that displays the contact information for a created contact. 347
15.6 Methods viewDidLoad and send of class ContactViewController. 347
15.7 Method peerPickerController:didConnectPeer:toSession: of class

ContactViewController. 348
15.8 Methods peerPickerControllerDidCancel:, updateTitle and

tableView:numberOfRowsInSection: of class ContactViewController. 349
15.9 Method tableView:cellForRowAtIndexPath: of class

ContactViewController. 350

Download from <www.wowebook.com>

ptg

xxvi Illustrations

15.10 Controls the main view of the Enhanced Address Book app. 351
15.11 Method viewDidLoad of class RootViewController. 352
15.12 Method session:didReceiveConnectionRequestFromPeer: of class

RootViewController. 353
15.13 Methods alertView:clickedButtonAtIndex: and alertViewCancel:

of class RootViewController. 354
15.14 Method receiveData:fromPeer:inSession:context: of class

RootViewController. 355
15.15 Methods insertNewObject and addViewControllerDidFinishAdding:

of class RootViewController. 356
15.16 Methods numberOfSectionsInTableView: and

tableView:numberOfRowsInSection: of class RootViewController. 358
15.17 Methods tableView:cellForRowAtIndexPath: and

tableView:didSelectRowAtIndexPath: of class RootViewController. 359
15.18 Methods tableView:commitEditingStyle:forRowAtIndexPath: and

tableView:canMoveRowAtIndexPath: of class RootViewController. 360
15.19 Method fetchedResultsController of class RootViewController. 361

16 Twitter® Discount Airfares App
16.1 Twitter Discount Airfares app showing several discount airfares. 365
16.2 Class that represents an airfare. 366
16.3 Implementation of class Airfare. 367
16.4 Controller for the root View of the Twitter Discount Airfares app. 367
16.5 RootViewController class implementation. 368
16.6 UITableView delegate and data source methods of class

RootViewController. 370
16.7 View that displays the website for purchasing flight tickets. 371
16.8 View that displays a website for purchasing flight tickets. 372
16.9 Class that connects with Twitter web services and returns data. 373
16.10 Implementation of TwitterConnection. 374
16.11 Class that gets tweets and parses them for information. 376
16.12 AirfareFinder class implementation. 377
16.13 XML containing information about a single tweet. 378
16.14 NSXMLParser delegate methods. 379
16.15 Method parseCost of category parsing of class NSString. 381
16.16 Method parseLocation of category parsing of class NSString. 382
16.17 Method removeLink of category parsing of class NSString. 383
16.18 UITableViewCell that displays information about an airfare. 383
16.19 AirfareCell class implementation. 384

Download from <www.wowebook.com>

ptg

Welcome to the world of iPhone app development with the iPhone Software Develop-
ment Kit (SDK) 3.x, the Objective-C® programming language, the Cocoa® frameworks
and the Xcode® development tools.

This book presents leading-edge computing technologies for professional software
developers. At the heart of the book is our “app-driven approach”—we present concepts
in the context of 14 completely coded iPhone apps, rather than using code snippets. The
introduction and app test drives at the beginning of each chapter show one or more sample
executions. The book’s source code is available at www.deitel.com/books/iPhoneFP/.

Sales of the iPhone and app downloads have been growing explosively. The first-gen-
eration iPhone sold 6.1 million units in its initial five quarters of availability.1 The second-
generation iPhone 3G sold 6.9 million units in its first quarter alone. The iPhone 3GS,
launched in June 2009, sold 5.2 million units in its first month! At the time of this writing,
there were approximately 75,000 apps in the App Store, and in just one year, over 1.5 bil-
lion apps were downloaded.2 The potential for iPhone apps is enormous.

iPhone for Programmers was fun to write! We got to know (and love) the iPhone and
many of its most popular apps. Then we let our imaginations run wild as we started devel-
oping our own iPhone apps. Some of the apps appear in this book, and some we’ll sell
through the iTunes App Store. The book’s apps were carefully designed to introduce you
to key iPhone features and frameworks (e.g., audio, video, animation, the compass, peer-
to-peer connectivity, GPS and much more). You’ll quickly learn everything you’ll need to
start building iPhone apps—starting with a test-drive of the Painter app in Chapter 1, then
building your first app in Chapter 3. Chapter 2, iPhone App Store and App Business
Issues walks you through what makes a great app, the submission process including
uploading your apps for consideration by Apple, criteria for approval, what to expect in
the process, why Apple rejects apps, deciding whether to sell your apps or offer them for
free, and marketing them using the Internet, word-of-mouth, and so on.

Copyright Notice and Code License
This book is copyrighted by Pearson. All of the code and iPhone apps in this book are
copyrighted by Deitel & Associates, Inc. As a user of the book, we grant you the nonexclusive
right to copy, distribute, display the code, and create derivative apps based on the code for non-
commercial purposes only—so long as you attribute the code to Deitel & Associates, Inc. and
reference www.deitel.com/books/iPhoneFP/. If you have any questions, or specifically would
like to use our code for commercial purposes, contact deitel@deitel.com.

1. www.apple.com/pr/library/2009/07/21results.html.
2. www.apple.com/pr/library/2009/07/14apps.html.

Preface

Download from <www.wowebook.com>

ptg

xxviii Preface

Intended Audience
We assume that you’re comfortable with Mac OS X, as you’ll need to work on a Mac to
develop iPhone apps. We also assume that you’re a programmer with significant experi-
ence working in a C-based object-oriented language such as Objective-C, C++, Java or C#.
If you have not worked in any of these languages, you should still be able to master iPhone
app development and object-oriented programming by reading the code and our code
walkthroughs, running the apps and observing the results. You’ll quickly learn a great deal
about object-oriented iPhone app development in Objective-C and Cocoa. We overview
the basics of object-oriented programming in Chapter 1.

Key Features
Here are some of the book’s key features:

App-Driven Approach. You’ll learn the programming technologies in the context of 14 com-
plete working iPhone apps. Each chapter presents one app—we discuss what the app does,
show screen shots, test-drive it and overview the technologies and the architecture you’ll use
to build it. Then we build the app, present the complete code and do a detailed code walk-
through. As part of the code walkthrough, we discuss the programming concepts and dem-
onstrate the functionality of the iPhone APIs (application programming interfaces). Figure 1
lists the 14 apps in the book and the key technologies we introduce as we present each.

Objective-C. This book is not an Objective-C tutorial, but it teaches a good portion of this
object-oriented programming language in the context of iPhone app development.

iPhone for Programmers apps and the technologies they introduce

Chapter 3, Welcome App
Introducing Xcode, Cocoa and Interface
Builder

Chapter 4, Tip Calculator App
Introducing Objective-C Programming

Chapter 5, Favorite Twitter® Searches App
Collections and Cocoa GUI Programming

Chapter 6, Flag Quiz Game App
Controllers and the Utility Application
Template

Chapter 7, Spot-On Game App
Using UIView and Detecting Touches

Chapter 8, Cannon Game App
Animation with NSTimer and Handling Drag
Events

Chapter 9, Painter App
Using Controls with a UIView

Chapter 10, Address Book App
Tables and UINavigationController

Chapter 11, Route Tracker App
Map Kit and Core Location (GPS and Compass)

Chapter 12, Slideshow App
Photos and iPod Library Access

Chapter 13, Enhanced Slideshow App
Saving Data and Playing Video

Chapter 14, Voice Recorder App
Audio Recording and Playback

Chapter 15, Enhanced Address Book App
Managing and Transferring Persistent Data

Chapter 16, Twitter® Discount Airfares App
Internet Enabled Applications

Fig. 1 | iPhone for Programmers apps and the technologies they introduce.

Download from <www.wowebook.com>

ptg

 Features xxix

Cocoa Frameworks. Cocoa is the set of frameworks and the runtime environment for the
iPhone. Throughout the book, we use many of the Cocoa features and frameworks.
(Figure 1.9 in Chapter 1 shows the Cocoa frameworks.)

iPhone SDK 3.x. We cover many of the new features included in iPhone Software Devel-
opment Kid (SDK) 3.x—the Game Kit framework for Bluetooth peer-to-peer connectiv-
ity, the Map Kit framework for embedding Google Maps3, the Media Player framework
for accessing the iPod music library, the Core Location framework for accessing the com-
pass and the Core Data framework for managing app data.

Xcode. Apple’s Xcode integrated development environment (IDE) and its associated tools
for Mac OS, combined with the iPhone SDK, provide everything you need to develop and
test iPhone apps.

Instruments. The Instruments tool, which is packaged with the SDK, is used to inspect
apps while they’re running to check for memory leaks, monitor CPU usage and network
activity, and review the objects allocated in memory. We discuss how we used the Instru-
ments tool to fix memory leaks and performance problems in Chapter 6’s Flag Quiz Game
App and Chapter 8’s Cannon Game App, respectively.

Multimedia. The apps use a broad range of iPhone multimedia capabilities, including
graphics, images, audio, video, speech synthesis and speech recognition.

iPhone App Design Patterns. This book adheres to Apple’s app coding standards, includ-
ing the Model-View-Controller (MVC) design pattern. (Figure 1.8 in Chapter 1 shows
many of the design patterns we use directly or indirectly in the book.)

Web Services. Web services enable information sharing, e-commerce and other interac-
tions using standard Internet protocols and technologies. Web services allow you to use
the web as a library of reusable software components. Chapter 11’s Route Tracker app uses
built-in Apple APIs to interact with the Google Maps web services. In Chapter 16’s Twit-
ter® Discount Airfares app, you’ll work directly with Twitter’s REST-based web services.

Uploading Apps to the App Store. In Chapter 2, iPhone App Store and App Business Is-
sues, we walk you through the process of obtaining development certificates, creating pro-
visioning profiles, submitting your apps to the App Store for approval, deciding whether
your app should be free or fee based, marketing it and much more.

Features
Syntax Shading. For readability, we syntax shade the code, similar to Xcode’s use of syntax
coloring. Our syntax-shading conventions are as follows:

comments appear in gray
keywords appear in bold black

constants and literal values appear in bold gray

all other code appears in black

3. Note: The Route Tracker App uses the Map Kit framework which allows you to incorporate
Google™ Maps in your app. Before developing any app using the Map Kit, you must agree to the
Google Maps Terms of Service for the iPhone (including the related Legal Notices and Privacy Poli-
cy) at: code.google.com/apis/maps/iphone/terms.html.

Download from <www.wowebook.com>

ptg

xxx Preface

Code Highlighting. We use gray rectangles to emphasize the key code segments in each
program that exercise the new technologies the program presents.

Using Fonts for Emphasis. We place the defining occurrences of key terms in bold italic
text for easier reference. We emphasize on-screen components in the bold Helvetica font
(e.g., the Project menu) and emphasize Objective-C and Cocoa program text in the Luci-
da font (e.g., int x = 5;).

In this book you’ll create GUIs using a combination of visual programming (drag and
drop) and writing code. We’ll constantly be referring to GUI elements on the screen. We
use different fonts when we refer to GUI components. For example, if a button is part of
the IDE, we write the word “button” in lowercase and plain text, as in “Build and Go
button.” If on the other hand, it’s a button that we create as part of an app, we use the
name Button as it appears in the library of controls you can use in an app. When we refer
to a Button’s class, we use the class name UIButton.

Source Code. All of the source-code examples are available for download from:

www.deitel.com/books/iPhoneFP/

Documentation. All of the manuals that you’ll need to develop iPhone apps are available
free at developer.apple.com/iphone/.

Chapter Objectives. Each chapter begins with a list of objectives.

Figures. Abundant charts, tables, app source code listings and iPhone screen shots are in-
cluded.

Index. We include an extensive index, which is especially useful when you use the book as
a reference. Defining occurrences of key terms are highlighted with a bold page number.

The Deitel Online Resource Centers
Our website www.deitel.com provides more than 100 Resource Centers on various topics
including programming languages, software development, Web 2.0, Internet business and
open-source projects—see the list of Resource Centers in the first few pages of this book
and visit www.deitel.com/ResourceCenters.html. Each week we announce our latest Re-
source Centers in our newsletter, the Deitel® Buzz Online (www.deitel.com/newsletter/
subscribe.html). The Resource Centers evolve out of the research we do to support our
publications and business operations. We’ve found many exceptional iPhone and iPhone
programming resources online, including tutorials, documentation, software downloads,
articles, blogs, podcasts, videos, code samples, books, e-books and more—most of them are
free. Check out the growing list of iPhone-related Resource Centers, including:

• iPhone (www.deitel.com/iPhone/)

• Objective-C (www.deitel.com/ObjectiveC/)

• Cocoa (www.deitel.com/Cocoa/)

• iPhone App Development (www.deitel.com/iPhoneAppDev/)

Download from <www.wowebook.com>

ptg

 Deitel® Buzz Online Free E-mail Newsletter xxxi

Deitel® Buzz Online Free E-mail Newsletter
The Deitel® Buzz Online e-mail newsletter will keep you posted on issues related to this
book. It also includes commentary on industry trends and developments, links to free ar-
ticles and resources from our published books and upcoming publications, product-release
schedules, errata, challenges, anecdotes, information on our corporate instructor-led train-
ing courses delivered at client locations worldwide and more. To subscribe, visit

www.deitel.com/newsletter/subscribe.html

Follow Deitel on Twitter® and Facebook®

To receive updates on Deitel publications, Resource Centers, training courses, partner
offers and more, follow us on Twitter®

@deitel

and join the Deitel & Associates group on Facebook®

www.deitel.com/deitelfan/

Acknowledgments
We’re fortunate to have worked on this project with the talented and dedicated team of
publishing professionals at Prentice Hall/Pearson. We appreciate the extraordinary efforts
and mentorship of Mark L. Taub, Editor-in-Chief of Pearson Technology Group. Sandra
Schroeder designed the book’s cover. John Fuller managed the book’s production.

Reviewers
We wish to acknowledge the efforts of our reviewers. Adhering to a tight time schedule,
they scrutinized the manuscript and the programs and provided constructive suggestions
for improving the accuracy and completeness of the presentation:

• Marcantonio Magnarapa, Research & Development on Mobile Platforms,
Ogilvy Interactive

• Zach Saul, Founder, Retronyms

• Rik Watson, Senior Software Engineer, Lockheed Martin

Well, there you have it! This book will quickly get you comfortable developing iPhone
apps. As you read the book, we’d sincerely appreciate your comments, criticisms, correc-
tions and suggestions for improvement. Please address all correspondence to:

deitel@deitel.com

We’ll respond promptly, and post corrections and clarifications on:

www.deitel.com/books/iPhoneFP/

Download from <www.wowebook.com>

ptg

xxxii Preface

We hope you enjoy reading iPhone for Programmers: An App-Driven Approach as much
as we enjoyed writing it!

Paul Deitel
Harvey Deitel
Abbey Deitel
Eric Kern
Michael Morgano
October 2009

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring, corporate training and software development organization special-
izing in computer programming languages, object technology, Internet and web software
technology, iPhone app development and training, and Internet business development.
The company offers instructor-led courses delivered at client sites worldwide on major
programming languages and platforms, such as Objective-C and iPhone app develop-
ment, C, C++, Visual C++®, Java™, Visual C#®, Visual Basic®, XML®, Python®, object
technology, Internet and web programming, and a growing list of additional program-
ming and software-development-related courses. The company’s clients include many of
the world’s largest companies, government agencies, branches of the military, and academ-
ic institutions. Through its 33-year publishing partnership with Prentice Hall/Pearson,
Deitel & Associates, Inc., publishes leading-edge programming professional books, text-
books, LiveLessons DVD- and web-based video courses, and e-content for popular course-
management systems. Deitel & Associates, Inc., and the authors can be reached via e-mail
at:

deitel@deitel.com

To learn more about Deitel’s Dive Into® Series Corporate Training curriculum, visit:

www.deitel.com/training/

To request a proposal for on-site, instructor-led training at your company or organization,
e-mail:

deitel@deitel.com

To learn more about the company and its publications, subscribe to the free Deitel®

Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

Individuals wishing to purchase Deitel books and LiveLessons DVD- and web-based
training courses can do so through www.deitel.com. Bulk orders by corporations, the gov-
ernment, the military and academic institutions should be placed directly with Pearson.
For more information, visit www.prenhall.com/mischtm/support.html#order.

Download from <www.wowebook.com>

ptg

This section contains information and instructions you should review to ensure that your
Mac is set up properly for use with this book. We’ll post updates (if any) to this Before
You Begin section on the book’s website:

www.deitel.com/books/iPhoneFP/

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Objective-C code or commands. Our convention is to show on-screen
components in a sans-serif bold Helvetica font (for example, Project menu) and to show
file names, Objective-C code, label text and commands in a sans-serif Lucida font (for ex-
ample, @interface).

Software and Hardware System Requirements
To develop apps for the iPhone you need an Intel-based Mac running Mac OS X Leopard
or later. There are no versions of the Software Development Kit (SDK) or the Xcode tool-
set for non-Intel-based Macs or for Windows®. To view the latest operating-system re-
quirements visit:

www.apple.com/downloads/macosx/development_tools/iphonesdk.html

Installing the Software
To download the iPhone SDK you must first register for a free Apple developer account at:

developer.apple.com/iphone/program/start/register/

This account allows you access to the latest released version of the SDK, documentation
and code examples. There is also a paid developer program that lets you download the lat-
est SDK betas, upload finished apps to the App Store and load your apps directly onto an
iPhone for testing. After registering for a developer account (free or paid), you can down-
load the SDK from

developer.apple.com/iphone/index.action#downloads

Click the link for your version of Mac OS X to download the SDK.
We demonstrate most of the apps in this book using the iPhone SDK’s iPhone Sim-

ulator; however, some of the apps use features that are available only on an actual iPhone,
not the iPhone simulator. In addition, some features are available only on the iPhone 3GS.
Testing apps on your iPhone requires a paid Apple developer account.

Before You Begin

Download from <www.wowebook.com>

ptg

xxxiv Before You Begin

Installation Instructions and Installers
When the iPhone SDK finishes downloading, double click its disk-image (.dmg) file to
mount it. Open the mounted image in the Finder and double click iPhoneSDK.mpkg in-
staller package. This executes the installer, which walks you through the rest of the instal-
lation process. When you arrive at the Installation Type step, the default items checked will
be adequate for this book.

Once the installation finishes, you can begin programming with the iPhone SDK.
The default install location for the SDK is /Developer/. The development tools you use
in this book are located in /Developer/Applications/.

Obtaining the Code Examples
The examples for iPhone for Programmers are available for download at

www.deitel.com/books/iPhoneFP/

If you are not already registered at our website, go to www.deitel.com and click the
Register link below our logo in the upper-left corner of the page. Fill in your information.
There is no charge to register, and we do not share your information with anyone. We send
you only account-management e-mails unless you register separately for our free, double-
opt-in Deitel® Buzz Online e-mail newsletter at

www.deitel.com/newsletter/subscribe.html

After registering for our website, you’ll receive a confirmation e-mail with your verification
code. You’ll need this code to sign in at www.deitel.com for the first time. Configure your e-
mail client to allow e-mails from deitel.com to ensure that the confirmation e-mail is not
filtered as junk mail.

Next, visit www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to www.deitel.com/books/iPhoneFP/. Click the Exam-
ples link to download the Examples.zip file to your computer. Double click Exam-
ples.zip to unzip the archive. We assume that you extract the example code to your
Documents folder.

You are now ready to begin developing iPhone apps with iPhone for Programmers. We
hope you enjoy the book!

Download from <www.wowebook.com>

ptg

1
Introduction to iPhone App

Development

O B J E C T I V E S
In this chapter you’ll be introduced to:

■ The history of the iPhone.

■ The history of Objective C® and the iPhone SDK.

■ Some basics of object technology.

■ Key software for iPhone app development, including the
Xcode® integrated development environment and
Interface Builder.

■ The Objective-C programming language and the Cocoa®
frameworks.

■ Important Apple iPhone publications.

■ The iPhone Developer Program.

■ The iPhone Developer University Program.

■ Test-driving an iPhone app that enables you to draw on
the screen.

■ The Deitel online iPhone Resource Centers.

Download from <www.wowebook.com>

ptg

2 Chapter 1 Introduction to iPhone App Development

O
u

tl
in

e

1.1 Introduction to iPhone for Programmers
Welcome to iPhone app development! We hope that working with iPhone for Programmers
will be an informative, challenging, entertaining and rewarding experience for you. This
book is geared toward experienced programmers who have worked in a C-based object-
oriented language like C++, Java™, C# or Objective-C®. If you don’t specifically know
object-oriented programming using the Objective-C programming language and the
Cocoa® frameworks, you should be able to absorb it by running the book’s iPhone apps
and carefully studying the detailed code walkthroughs and feature presentations.

The book uses an app-driven approach—each new technology is discussed in the con-
text of a complete working iPhone app, with one app per chapter. Most of our apps will
also work on the iPod Touch®.1 We start by describing the app, then test-driving it. Next,
we briefly overview the key Xcode® (integrated development environment), Objective-C
and Cocoa technologies we’ll use to implement the app. For apps that require it, we walk
through designing the GUI visually using Interface Builder. Then we provide the com-
plete source-code listing using line numbers, syntax shading (to mimic the syntax coloring
used in the Xcode IDE) and code highlighting to emphasize the key portions of the code.
We also show one or more screen shots of the running app. Then we do a code walk-
through, explaining any new programming concepts we introduced in the app. The source
code for all of the book’s apps may be downloaded from www.deitel.com/books/
iPhoneFP/. We encourage you to read Apple’s online documentation (Fig. 1.1) to learn
more about the technologies discussed throughout the book, design guidelines, and so on.

To download the software for building iPhone apps, you’ll need to become a Regis-
tered iPhone Developer at developer.apple.com/iphone/. This account allows you to
access free downloads plus documentation, how-to videos, coding guidelines and more. As
a Registered iPhone Developer, you’ll be able to build and test iPhone apps on your Mac
computer. To load apps onto your iPhone for testing, and to submit your apps to Apple’s
App Store, you’ll need to join Apple’s fee-based iPhone Developer Program, also at devel-
oper.apple.com/iphone/. This program allows you to access the latest iPhone SDK betas
and features such as Store Kit and Push Notification, and it includes technical support.

1.1 Introduction to iPhone for
Programmers

1.2 iPhone Overview

1.3 Key New iPhone 3GS and OS 3.x
Features and Enhancements

1.4 Downloading Apps from the App
Store

1.5 iPhone OS 3.x

1.6 Objective-C Programming Language

1.7 Design Patterns

1.8 Cocoa Frameworks

1.9 New iPhone SDK 3 Features

1.10 Xcode Toolset

1.11 Basics of Object Technology

1.12 Web 2.0

1.13 Test-Driving the Painter App in the
iPhone Simulator

1.14 Wrap-Up

1.15 Deitel Resource Centers

1. Chapter 11’s Route Tracker app works with limited functionality because the iPod Touch does not
have a compass.

Download from <www.wowebook.com>

ptg

1.2 iPhone Overview 3

Colleges and universities interested in offering iPhone programming courses can apply to
the iPhone Developer University Program for free (developer.apple.com/iphone/
program/university.html). Qualifying schools receive free access to all the developer
tools and resources. Students can share their apps with each other, and the schools can
apply to include their apps in the App Store.

1.2 iPhone Overview
The first-generation iPhone was released in June 2007 and was an instant blockbuster suc-
cess. Sales have grown significantly with each new version. According to Apple, 6.1 million
first-generation iPhones were sold in the initial five quarters of availability.2 The second-
generation iPhone 3G included GPS and was released in July 2008; it sold 6.9 million
units in the first quarter alone. The faster iPhone 3GS includes a compass; it was launched
in June 2009 and sold 5.2 million in its first month of availability.

Gestures
The iPhone wraps the functionality of a mobile phone, Internet client, iPod, gaming con-
sole, digital camera and more into a handheld smartphone with a full-color, 480-by-320-

 Title URL

iPhone Human Interface Guidelines developer.apple.com/iphone/library/

documentation/userexperience/conceptual/

mobilehig/Introduction/Introduction.html

The Objective-C 2.0
Programming Language

developer.apple.com/documentation/Cocoa/

Conceptual/ObjectiveC/ObjC.pdf

Objective-C 2.0 Runtime
Programming Guide

developer.apple.com/documentation/Cocoa/

Conceptual/ObjCRuntimeGuide/

ObjCRuntimeGuide.pdf

Xcode Overview developer.apple.com/documentation/

DeveloperTools/Conceptual/Xcode_Overview/

Contents/Resources/en.lproj/Xcode_Overview.pdf

Xcode Debugging Guide developer.apple.com/documentation/

DeveloperTools/Conceptual/XcodeDebugging/

Xcode_Debugging.pdf

Understanding XCode Projects developer.apple.com/tools/xcode/

xcodeprojects.html

Cocoa Fundamentals Guide developer.apple.com/documentation/Cocoa/

Conceptual/CocoaFundamentals/

CocoaFundamentals.pdf

Coding Guidelines for Cocoa developer.apple.com/documentation/Cocoa/

Conceptual/CodingGuidelines/

CodingGuidelines.pdf

Fig. 1.1 | Key online documentation for iPhone developers.

2. www.apple.com/pr/library/2009/07/21results.html.

Download from <www.wowebook.com>

ptg

4 Chapter 1 Introduction to iPhone App Development

pixel resolution Multi-Touch® screen. Apple’s patented Multi-Touch screen allows you to
control the device with gestures involving one touch or multiple simultaneous touches
(Fig. 1.2).

iPhone Buttons and Features
The device itself is uncomplicated and easy to use (Fig. 1.3). The top of the phone has a
headset jack, SIM card tray and a Sleep/Awake button—used to lock and unlock the
iPhone, and to power it on and off. On the left side of the iPhone are the Ring/Silent
switch and the Volume buttons. On the bottom of the iPhone are the speaker, the micro-
phone and the Dock Connector (to plug-in a USB cable to charge or sync the device). On
the front of the phone at the bottom is the Home button—used to exit apps and return
to the home screen. On the back of the iPhone is the camera.

Multi-Touch Screen
Using the Multi-Touch screen, you can easily navigate between your phone, apps, your
iTunes® music, web browsing, and so on. The screen can display a keyboard for typing e-
mails and text messages and entering data in apps. Using two fingers, you can zoom in
(moving your fingers apart) and out (pinching your fingers together) on photos, videos
and web pages. You can scroll up-and-down or side-to-side by just swiping your finger
across the screen.

Default Apps
The iPhone comes with several default apps, including Phone, Contacts, Mail, iPod, Safari
and more (Fig. 1.4). To access any app, simply touch its icon.

Gesture Action Used to

Tap Tap the screen once. Open an app, select a button.

Double Tap Tap the screen twice. Select text to cut, copy and paste.

Touch and Hold Touch the screen and hold
finger in position.

Move the cursor in e-mail and
SMS messages, move app icons,
and so on.

Drag Touch and drag your finger
across the screen.

Move a slider left and right.

Swipe Touch the screen, then move
your finger in the swipe
direction and release.

Flip through photos or music
album covers.

Flick Touch and quickly flick your
finger across the screen in
the direction you’d like to
move.

Scroll through a Table View (e.g.,
Contacts) or a Picker View (e.g.
dates and times in the Calendar)

Pinch Using two fingers, touch and
pinch your fingers together,
or spread them apart.

Zoom in and out on the screen
(for example, enlarging text and
pictures).

Fig. 1.2 | iPhone gestures.

Download from <www.wowebook.com>

ptg

1.2 iPhone Overview 5

Fig. 1.3 | iPhone hardware.

Icon App Icon App Icon App

Phone Photos Voice Memos

Contacts Camera Notes

Mail Settings Calculator

iPod YouTube Settings

Safari Stocks iTunes

Calendar Maps App Store

Messages
(SMS/MMS)

Weather Compass
(iPhone 3GS
only)

Fig. 1.4 | iPhone 3.x default apps.

Headset jack SIM card tray

Home button

Ring/Silent switch

Volume buttons

Dock connector

Sleep/Awake button

SpeakerMicrophone

Download from <www.wowebook.com>

ptg

6 Chapter 1 Introduction to iPhone App Development

1.3 Key New iPhone 3GS and OS 3.x Features and
Enhancements
The iPhone 3GS features several new hardware and software updates.

3-Megapixel Camera and Video
The new iPhone includes a 3-megapixel autofocus camera. You can touch the screen to
focus on a particular subject. You can capture and edit videos. You can share photos and
videos via e-mail, your MobileMeSM gallery (where your friends can view and download
your photos or add their own) or YouTube®.

Find My iPhone and Remote Wipe
If you misplace your iPhone, log in to Apple’s MobileMe (a fee-based subscription service)
from any computer and use the Find My iPhone feature to view a map with the iPhone’s
approximate location. You can then have the iPhone play a sound to help you locate the
device, or display a message to help the person who finds your iPhone return it to you. If
you’re unable to find your iPhone, the Remote Wipe feature restores the device to the fac-
tory settings (removing all personal data), thus protecting the privacy of your information.

Compass
The digital compass can be used on its own or to orient maps in your apps—e.g., to point
in the direction you’re facing. We use the compass in Chapter 11’s Route Tracker app.

Accelerometer
The accelerometer, included in all iPhones, allows the device to respond to motion. For
example, you can rotate the phone from portrait to landscape (vertical to horizontal) to
change the orientation of pictures, e-mails, web pages and more. You can also use the ac-
celerometer to control games by shaking or tilting the iPhone. With the updated iPhone
OS 3.x accelerometer-based apps, you can shake the iPhone to “shuffle” randomly to a dif-
ferent song in your music library, or turn the iPhone sideways to display a landscape key-
board for easier typing (Fig. 1.5). We use the accelerometer in Chapter 12’s Slideshow
app.

Fig. 1.5 | New landscape keyboard.

Download from <www.wowebook.com>

ptg

1.4 Downloading Apps from the App Store 7

Bluetooth
You can connect compatible Bluetooth stereo headphones and other accessories to your
iPhone. OS 3.x provides for peer-to-peer connectivity via Bluetooth. Also, Internet teth-
ering enables users in some countries to connect to a Wi-Fi or 3G network on their laptop
by using their iPhone as a modem (connected to their laptop via Bluetooth or USB cable).

Accessibility
The iPhone 3GS includes several accessibility features to help vision- and hearing-im-
paired users. VoiceOver is a gesture-based screen reader program. It allows vision-impaired
users to interact with objects on the screen and understand their context. For example, us-
ers can touch the screen to hear a description of the item they touch, then drag their finger
to hear descriptions of the surrounding content. It’s also used with the keyboard to speak
each character touched, or each complete word. The iPhone 3GS voice-recognition capa-
bilities allow you to use voice commands to access features on the phone, such as making
phone calls and playing music.

For hearing-impaired users, the iPhone 3GS has closed-captioning capabilities, MMS
texting (not available in the U.S. at the time of this writing), visible and vibrating alerts
and more. To learn about these and other accessibility features, visit www.apple.com/
iphone/iphone-3gs/accessibility.html.

1.4 Downloading Apps from the App Store
Figure 1.6 lists some popular iPhone apps. You can download additional apps directly onto
your iPhone through Apple’s App Store, or download apps through iTunes, then sync your
iPhone to install them. To sync the iPhone, use the USB cable to connect the device to a
computer with iTunes. Syncing allows you to back up your information (contacts, apps
and their data, music, photos, videos, and so on) and download new information onto the
device. The App Store notifies you when updates to your downloaded apps are available.

Category Sample apps

Books B&N Bookstore, Kindle for iPhone, Classics

Business QuickOffice® Mobile Office Suite, PDF Reader, Job Search

Education Wheels on the Bus, 24/7 Tutor Spanish, USA Presidents

Entertainment Backgrounds, Fandango®, i.TV

Finance Bank of America Mobile Banking, PayPal™, Mint.com Personal Finance

Games Hero of Sparta, Flight Control, Paper Toss, Monkey Sling

Healthcare and
Fitness

iFitness, Lose It!, Restaurant Nutrition, Pedometer, BMI Calculator

Lifestyle AroundMe, Shopper, GroceryIQ, eBay Mobile, OpenTable

Medical Epocrates, EyeChart, Cardio Calc, BLACKBAG™, Dog First Aid

Music Shazam, Pandora Radio, SIRIUS XM Premium Online, MiniPiano

Navigation MapQuest® 4 Mobile, Free Wi-Fi, MotionX™ GPS

Fig. 1.6 | Popular iPhone apps in the App Store. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

8 Chapter 1 Introduction to iPhone App Development

The number of apps available is growing rapidly. At the time of this writing, there
were approximately 75,000 apps in the App Store. In just one year, over 1.5 billion apps
were downloaded.3 Visit www.apple.com/iphone/apps-for-iphone/ to check out
Apple’s featured apps. Some are free and some are fee based. Developers set the prices for
their apps sold through the App Store and receive 70% of the revenue. Many app devel-
opers offer basic versions of their apps for free as a marketing strategy, so users can down-
load apps and see whether they like them, then purchase more feature-rich versions. We
discuss this so-called “lite” strategy in more detail in Section 2.8.

1.5 iPhone OS 3.x
The iPhone operating system is derived from Apple’s Mac OS X and is used in the iPhone
and iPod Touch devices. iPhone OS 3.0 was released in June 2009 and includes several
new features and enhancements (Fig. 1.7). For example, you can cut, copy and paste
text—even between apps. The new landscape keyboard—which appears when you turn
the iPhone sideways in Mail, Safari, Notes and Messages—provides more room to type
messages (and makes it easier to type with your thumbs). And you can record voice memos
using the built-in microphone.

News CNNMoney, NYTimes, USA Today, WSJ, Pro RSS Reader, Yahoo!®

Photography Crop for Free, Camera Zoom, ColorSplash, Vint B&W

Productivity iTranslate, Todo, Documents To Go®, Excuse Generator

Reference Google® Mobile App, Dictionary.com, Wiki Mobile

Social
Networking

Facebook®, MySpace™ Mobile, Skype™, Tweetie, LinkedIn®

Sports ESPN® Score Center, Sportacular, Golfshot: Golf GPS

Travel Google Earth, Urbanspoon, Yelp®, Cheap Gas!, Currency

Utilities iHandyLevel Free, textPlus, Bug Spray—Ultrasonic, myLite Flashlight

Weather The Weather Channel®, WeatherBug®, Surf Report

3. www.apple.com/pr/library/2009/07/14apps.html.

Feature Description

Landscape Keyboard Larger keyboard—for use with Mail, Messages, Safari and Notes—
makes typing easier.

Cut, Copy and Paste Cut, copy and paste text and images between apps.

Fig. 1.7 | New iPhone 3.x software features (www.apple.com/iphone/softwareupdate/).
(Part 1 of 2.)

Category Sample apps

Fig. 1.6 | Popular iPhone apps in the App Store. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

1.6 Objective-C Programming Language 9

1.6 Objective-C Programming Language
Apple was founded in 1976 by Steve Jobs and Steve Wozniak, and quickly became a leader
in personal computing. In 1979, Jobs and several Apple employees visited Xerox PARC
(Palo Alto Research Center) to learn about Xerox’s desktop computer that featured a
graphical user interface. That GUI served as the inspiration for the Apple Lisa personal
computer (designed for business customers) and, more notably, the Apple Macintosh,
which was launched with much fanfare in a memorable Super Bowl ad in 1984. Steve Jobs
left Apple in 1985 and founded NeXT Inc.

The Objective-C programming language, created by Brad Cox and Tom Love at Step-
stone in the early 1980s, added capabilities for object-oriented programming (OOP) to
the C programming language. In 1988, NeXT licensed Objective-C from StepStone and
developed an Objective-C compiler and libraries which were used as the platform for the
NeXTSTEP operating system’s user interface and Interface Builder—used to construct
graphical user interfaces (we discuss Interface Builder in more detail in Section 1.10).
Apple’s Mac OS X is a descendant of NeXTSTEP.

MMS Multimedia Messaging Service (not available in the U.S. at the time
of this writing)—send photos, audio and videos with messages.

Voice Controls Access Contacts and your iPod music library via voice controls.

Voice Memos Record audio messages with the new Voice Memos.

Spotlight Search e-mail, contacts, calendars, notes and your iPod library.

Parental Controls Restrict children's access to videos, music and apps.

Safari Improvements to the Safari browser help you surf the web faster.

Notes Sync your Notes to your computer.

Calendar Improved functionality allows you to create meetings using Micro-
soft Exchange ActiveSync, and subscribe to calendars that use Cal-
DAV—the standardized protocol to access information on a server
and schedule meetings with other users (caldav.calconnect.org).

Wi-Fi Automatically log in to Wi-Fi hotspots you’ve accessed previously.

iTunes Create and access iTunes Store accounts directly from your iPhone,
and purchase movies, TV shows and audiobooks directly from
iTunes on the iPhone.

Shake to Shuffle Shake the iPhone to skip to a different song in your iTunes library.

Shake to Undo Shake the iPhone to undo an operation, such as a text edit.

Language Support The iPhone supports 30 languages and over 40 keyboard layouts.

Peer-to-Peer Bluetooth
Connectivity

Transfer data among nearby iPhones using Bluetooth. We use peer-
to-peer functionality in Chapter 15’s Enhanced Address Book app.

YouTube Log in to your YouTube account to sync bookmarks, rate your favor-
ite videos and more.

Feature Description

Fig. 1.7 | New iPhone 3.x software features (www.apple.com/iphone/softwareupdate/).
(Part 2 of 2.)

Download from <www.wowebook.com>

ptg

10 Chapter 1 Introduction to iPhone App Development

Objective-C is object oriented and has access to the Cocoa frameworks (powerful class
libraries of prebuilt components), enabling you to develop apps quickly. The Cocoa
frameworks are discussed in Section 1.8. Cocoa Touch is the version of Cocoa for the
iPhone and iPod Touch. We’ll simply refer to it as Cocoa from now on.

Cocoa programming in Objective-C is event driven—in this book, you’ll write apps
that respond to timer firings and user-initiated events such as touches and keystrokes. In
addition to directly programming portions of your Objective-C apps, you’ll also use Inter-
face Builder to conveniently drag and drop predefined objects like buttons and textboxes
into place on your screen, and label and resize them. With Xcode, you can create, run, test
and debug iPhone apps quickly and conveniently.

1.7 Design Patterns
Besides using predefined objects in your code, you’ll also use several predefined design pat-
terns4 to help you design and implement your apps according to Apple’s guidelines
(Fig. 1.8). Like a pattern a dressmaker uses to create clothing, a design pattern provides
programmers with an architectural template for designing and implementing apps.

4. Some books you’ll want to consult on design patterns are the seminal “gang of four” book, Design
Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson and Vlissides,
©1994, Addison Wesley, and Cocoa Design Patterns, by Buck and Yacktman, ©2010, Addison Wes-
ley.

Design Pattern Where it’s used How it’s used

Abstract Factory Introduced in Chapter 4’s Tip
Calculator app; used in every
later app.

Many Foundation framework classes
(Fig. 1.9) allow programmers to use
one familiar interface to interact with
different data structures.

Chain of
Responsibility

Introduced in Chapter 7’s Spot-On
app; seen in several later apps.

Built into Cocoa as the mechanism
for dealing with events.

Command Introduced in Chapter 5’s Favorite

Twitter Searches app; used in most
later apps.

To bind GUI components to actions
(i.e., event handlers) that are trig-
gered in response to events.

Composite Introduced in Chapter 5’s Favorite
Twitter Searches app; used in most
later apps.

To create a hierarchy of objects that
can all be manipulated through the
root object.

Decorator Introduced in Chapter 6’s Flag
Quiz app; used in most later apps.

To add new functionality to an exist-
ing class without subclassing.

Facade Introduced in Chapter 6’s Flag
Quiz app.

To provide a simple interface for the
behaviors of a complex subsystem.

Model View
Controller

Introduced in Chapter 4’s Tip

Calculator app; used in every
later app.

To separate app data (contained in
the model) from graphical presenta-
tion (the view) and input-processing
logic (the controller).

Fig. 1.8 | Design patterns used in iPhone for Programmers. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

1.8 Cocoa Frameworks 11

1.8 Cocoa Frameworks
Cocoa, a collection of frameworks, also evolved from projects at NeXT. OpenStep was de-
veloped at NeXT as an object-oriented programming API to be used in developing an op-
erating system. After Apple acquired NeXT, the OpenStep operating system evolved into
Rhapsody, and many of the base libraries became the Yellow Box API. Rhapsody and Yel-
low Box eventually evolved into OS X and Cocoa, respectively.

Cocoa consists of many frameworks (Fig. 1.9) that allow you to conveniently access
iPhone OS features and incorporate them into your apps. Many of these frameworks are
discussed in this book. They’re written mainly in Objective-C and are accessible to Objec-
tive-C programs. The Cocoa frameworks help you create apps which adhere to the Mac’s
unique look and feel (see developer.apple.com/cocoa/).

Memento Introduced in Chapter 5’s Favorite

Twitter Searches app; used in
every later app that needs to save
data.

To represent an object as a bit stream
so it can be saved to a file or trans-
ferred over a network (also called
“serialization”).

Singleton Introduced in Chapter 5’s Favorite

Twitter Searches app.
To ensure that only one object of a
class is created. Other objects in the
app can share the singleton object.

Template
Methods

Introduced in Chapter 4’s Tip
Calculator app; used in every
later app.

To define an algorithm in a super-
class, parts of which a subclass can
override.

Framework Description

Cocoa Touch Layer—Frameworks for building graphical, event-driven apps.

Address Book UI GUI for accessing the user’s Address Book contacts. Used in
Chapter 15’s Enhanced Address Book app.

Game Kit Voice and Bluetooth networking capabilities for games and other
apps. Used in Chapter 15’s Enhanced Address Book app.

Map Kit Add maps and satellite images to location-based apps. Used in
Chapter 11’s Route Tracker app.

Message UI Create e-mail messages from within an app.

UIKit Classes for creating and managing a user interface, including event
handling, drawing, windows, views and Multi-Touch interface con-
trols. Introduced in Chapter 3’s Welcome app, and used throughout
the book.

Fig. 1.9 | Cocoa frameworks (developer.apple.com/iPhone/library/navigation/
Frameworks/index.html). (Part 1 of 3.)

Design Pattern Where it’s used How it’s used

Fig. 1.8 | Design patterns used in iPhone for Programmers. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12 Chapter 1 Introduction to iPhone App Development

Media Layer—Frameworks for adding audio, video, graphics and animations to your apps.

Audio Toolbox Interface for audio recording and playback of streamed audio and
alerts.

Audio Unit Interface for opening, connecting and using the iPhone OS audio
processing plug-ins.

AV Foundation Interface for audio recording and playback (similar to the Audio
Toolbox). Used in Chapter 7’s Spot-On Game app and Chapter 8’s
Cannon Game app.

Core Audio Framework for declaring data types and constants used by other Core
Audio interfaces. Used in Chapter 7’s Spot-On Game app and
Chapter 8’s Cannon Game app.

Core Graphics API for drawing, rendering images, color management, gradients,
coordinate-space transformations and handling PDF documents.
Used in Chapter 7’s Spot-On Game app and Chapter 8’s Cannon
Game app.

Media Player Finds and plays audio and video files within an app. Used in
Chapter 12’s Slideshow app.

OpenGL ES Supports integration with the Core Animation layer and UIKit views.
Subset of the OpenGL API for 2D and 3D drawing on embedded
systems.

Quartz Core Framework for image and video processing, and animation using the
Core Animation technology. Used in Chapter 7’s Spot-On Game app.

Core Services Layer—Frameworks for accessing core iPhone OS 3.x services.

Address Book Used to access the user's Address Book contacts. Used in
Chapter 15’s Enhanced Address Book app.

Core Data Framework for performing tasks related to object life-cycle and object
graph management. Used in Chapter 15’s Enhanced Address Book
app.

Core Foundation Library of programming interfaces that allow frameworks and librar-
ies to share code and data. Also supports internationalization. Intro-
duced in Chapter 5’s Favorite Twitter Searches app and used
throughout the book.

Core Location Used to determine the location and orientation of an iPhone, then
configure and schedule the delivery of location-based events. Used in
Chapter 11’s Route Tracker app.

Foundation Includes NSObject (used to define object behavior), plus tools for cre-
ating graphical, event-driven apps. Also includes design patterns and
features for making your apps more efficient. Introduced in Chapter 5’s
Favorite Twitter Searches app and used throughout the book.

Mobile Core Services Includes standard types and constants.

Framework Description

Fig. 1.9 | Cocoa frameworks (developer.apple.com/iPhone/library/navigation/
Frameworks/index.html). (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

1.9 New iPhone SDK 3 Features 13

1.9 New iPhone SDK 3 Features
iPhone SDK 3 includes several new frameworks for building powerful functionality into
your iPhone apps. We use most of these new frameworks in this book. We also use web
services. With web services, you can create mashups, which enable you to rapidly develop
apps by combining the complementary web services of several organizations and possibly
other forms of information feeds. A popular mashup is www.housingmaps.com, which uses
web services to combine www.craigslist.org real estate listings with the mapping capa-
bilities of Google Maps to offer maps that show the locations of apartments for rent in a
given area. We use Twitter web services in Chapter 16’s Twitter Discount Airfares app.

In App Purchase
In App Purchase allows you to build purchasing capabilities into your apps using the Store
Kit framework, which processes payments through the iTunes Store. From a paid app, you
can solicit the user to pay for additional content or functionality for that app. When the
user chooses to make a purchase through your paid app, the app sends a payment request
to the iTunes Store, which verifies and approves the payment and alerts the app to unlock
new features or download new content. You’ll receive 70% of the purchase price (Apple
retains 30%), paid to you monthly. In App Purchase is discussed in more detail in
Chapter 2, iPhone App Store and App Business Issues.

Apple Push Notification
The new Apple Push Notification service allows apps to receive notifications, even when
the apps aren’t running. The service can be used to notify the user when a new version of
your app is available for download, to send news and messages to users, and so on. The
Apple Push Notification service operates mostly on the server side, thus limiting the im-
pact on the app user’s iPhone performance and battery life.

Store Kit In-app purchase support for processing transactions.

System Configuration Determines network availability and state on an iPhone.

Core OS Layer—Frameworks for accessing the core iPhone OS 3.x kernel.

CFNetwork Framework using network protocols in apps to perform tasks includ-
ing working with HTTP and authenticating HTTP and HTTPS
servers, working with FTP servers, creating encrypted connections
and more. Used in Chapter 16’s Twitter Discount Airfares app.

External Accessory Allows the iPhone to interact with third party authorized accessories
connected via Bluetooth or the Dock Connector.

Security Framework for securing data used in an app.

System BSD operating system and POSIX API functions.

Framework Description

Fig. 1.9 | Cocoa frameworks (developer.apple.com/iPhone/library/navigation/
Frameworks/index.html). (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

14 Chapter 1 Introduction to iPhone App Development

Accessories
Accessory manufacturers can create protocols that allow the iPhone to interact with their
accessories connected via Bluetooth or the Dock Connector. For example, you can create
an app that interacts with a heart-rate monitor, pedometer or Nike + iPod Sensor to keep
track of fitness goals, calories burned, and so on.

Peer-to-Peer Connectivity
The Game Kit framework includes peer-to-peer connectivity and in-game voice commu-
nication features, so you can add multiplayer and chat functionality to your games and
apps. Multiple iPhones in close proximity can connect wirelessly via Bluetooth. Players
can compete with one another. The Game Kit can also be used to exchange data, photos,
and the like. This framework is used in Chapter 15’s Enhanced Address Book app.

Maps
The Map Kit framework (which uses the Google Mobile Maps Service) creates location-
based apps—for example, an app that displays a map of the nearest gas stations or public
parking garages. The Map Kit framework is used in Chapter 11’s Route Tracker app.

iPod Library Access
The Media Player framework allows apps to access music, podcasts and audio books in
the user’s iPod library. For example, in Chapter 12’s Slideshow app, you’ll use the Media
Player framework in a Slideshow app that allows the user to create a slideshow of pictures
set to a song from the music library.

1.10 Xcode Toolset
The Xcode 3 toolset, bundled with all Mac OS X versions since v10.5, is available for free
through the Apple Developer Connection at developer.apple.com/. The toolset in-
cludes the Xcode IDE, Interface Builder, support for the Objective-C 2.0 language, the
Instruments tool (used to improve performance) and more.

Xcode Integrated Development Environment (IDE)
Xcode is Apple’s standard integrated development environment for Mac OS X. Xcode
supports many programming languages including Java, C++, C, Python and Objective-C,
but only Objective-C can be used for iPhone development. It includes a code editor with
support for syntax coloring, autoindenting and autocomplete. It also includes a debugger
and a version control system. You’ll start using Xcode in Chapter 3, Welcome App.

Interface Builder
Interface Builder is a visual GUI design tool. GUI components can be dragged and
dropped into place to form simple GUIs without any coding. Interface Builder files use
the.xib extension, but earlier versions used.nib—short for NeXT Interface Builder. For
this reason, Interface Builder .xib files are commonly referred to as “nib files.” You’ll learn
more about Interface Builder in Chapter 3, Welcome App.

The iPhone Simulator
The iPhone simulator, included in the iPhone SDK, allows you to run iPhone apps in a
simulated environment within OS X. The simulator displays a realistic iPhone user-inter-

Download from <www.wowebook.com>

ptg

1.11 Basics of Object Technology 15

face window. We used this (not an actual iPhone) to take most of the iPhone screen shots
for this book. You can reproduce on the simulator many of the iPhone gestures using your
Mac’s keyboard and mouse (Fig. 1.10). The gestures on the simulator are a bit limited,
since your computer cannot simulate all the iPhone hardware features. For example, when
running GPS apps, the simulator always indicates that you’re at Apple’s headquarters in
Cupertino, California. Also, although you can simulate orientation changes (to portrait or
landscape mode) and the shake gesture, there is no way to simulate particular accelerom-
eter readings. You can, however, upload your app to an iPhone to test these features. You’ll
see how to do this in Chapter 11, Route Tracker app. You’ll start using the simulator to
develop iPhone apps in Chapter 3’s Welcome app.

1.11 Basics of Object Technology
Objects are reusable software components that model items in the real world. A modular,
object-oriented approach to design and implementation can make software-development
groups much more productive than is possible using earlier programming techniques. Ob-
ject-oriented programs are often easier to understand, correct and modify.

What are objects, and why are they special? Object technology is a packaging scheme
for creating meaningful software units. There are date objects, time objects, invoice
objects, automobile objects, people objects, audio objects, video objects, file objects and
so on. There are graphics objects such as circles and squares, and GUI objects such as but-
tons, text boxes and sliders. In fact, almost any noun can be reasonably represented as a

Gesture Simulator action
App in which gesture
is introduced

Tap Click the mouse once. Chapter 4’s Tip Calculator app

Double Tap Double click the mouse. Chapter 8’s Cannon Game app

Touch and Hold Click and hold the mouse.

Drag Click, hold and drag the mouse. Chapter 8’s Cannon Game app

Swipe Click and hold the mouse, move
the pointer in the swipe direction
and release the mouse.

Chapter 10’s Address Book app

Flick Click and hold the mouse, move
the pointer in the flick direction
and quickly release the mouse.

Chapter 10’s Address Book app

Pinch Press and hold the Option key.
Two circles that simulate the two
touches will appear. Move the cir-
cles to the start position, click
and hold the mouse and drag the
circles to the end position.

Chapter 11’s Route Tracker app

Fig. 1.10 | iPhone gestures on the simulator (developer.apple.com/IPhone/
library/documentation/Xcode/Conceptual/iphone_development/125-
Using_iPhone_Simulator/iphone_simulator_application.html).

Download from <www.wowebook.com>

ptg

16 Chapter 1 Introduction to iPhone App Development

software object. Objects have properties (also called attributes), such as color, size and
weight; and perform methods (also called behaviors), such as moving, sleeping or drawing.

Classes are types of related objects. For example, all cars belong to the “car” class, even
though individual cars vary in make, model, color and options packages. A class specifies
the general format of its objects, and the properties and actions available to an object
depend on its class.

Different objects can have similar attributes and can exhibit similar behaviors. Com-
parisons can be made, for example, between babies and adults, and between humans and
chimpanzees.

With object technology, properly designed classes can be reused on future projects.
Using class libraries greatly reduces the effort required to implement new systems.

Object-oriented design (OOD) models software in terms similar to those that people
use to describe real-world objects. It takes advantage of class relationships, where objects
of a certain class, such as a class of vehicles, have the same characteristics—cars, trucks,
little red wagons and roller skates have much in common. OOD takes advantage of inher-
itance relationships, where new classes of objects are derived quickly by absorbing charac-
teristics of existing classes and adding unique characteristics of their own. For example, an
object of class “convertible” certainly has the characteristics of the more general class
“automobile,” but more specifically, the roof goes up and down.

Object-oriented design provides a natural and intuitive way to view the software
design process—namely, modeling objects by their attributes, behaviors and interrelation-
ships, just as we describe real-world objects. OOD also models communication between
objects. For example, a bank account object may receive a message to decrease its balance
by a certain amount because the customer is withdrawing that amount of money.

OOD encapsulates (i.e., wraps) attributes and behaviors into objects—an object’s
attributes and behaviors are intimately tied together. Objects have the property of infor-
mation hiding. This means that objects may know how to communicate with one another
across well-defined interfaces, but normally they’re not allowed to know how other objects
are implemented—the implementation details are hidden within the objects themselves.
We can drive a car effectively, for instance, without knowing the details of how engines,
transmissions, brakes and exhaust systems work internally—as long as we know how to use
the accelerator pedal, the brake pedal, the steering wheel and so on. Information hiding is
crucial to good software engineering.

Languages like Objective-C are object oriented. Programming in such a language is
called object-oriented programming (OOP), and it allows you to implement object-ori-
ented designs as working software systems. In Objective-C, the unit of programming is the
class from which objects are eventually instantiated (an OOP term for “created”). An
object is said to be an instance of its class. Objective-C classes contain methods that imple-
ment behaviors and data that implements attributes.

Classes, Instance Variables and Methods
Objective-C programmers concentrate on creating their own classes and reusing existing
classes, most notably those of the Cocoa frameworks. Each class contains data and the
methods that manipulate that data and provide services to clients (i.e., other classes or
functions that use the class). The data components of a class are implemented as instance
variables and properties. For example, a bank account class might include an account

Download from <www.wowebook.com>

ptg

1.12 Web 2.0 17

number and a balance. The class might include member functions to make a deposit (in-
creasing the balance), make a withdrawal (decreasing the balance) and inquire what the
current balance is. The nouns in a system specification help the Objective-C programmer
determine the set of classes from which objects will be created to work together to imple-
ment the system.

Classes are to objects as blueprints are to houses—a class is a “plan” for building an
object of the class. Just as we can build many houses from one blueprint, we can instantiate
(create) many objects from one class. You cannot cook meals in the kitchen of a blueprint;
you can cook meals in the kitchen of a house. You cannot sleep in the bedroom of a blue-
print; you can sleep in the bedroom of a house.

Classes can have relationships—called associations—with other classes. For example,
in an object-oriented design of a bank, the “bank teller” class needs to relate to other
classes, such as the “customer” class, the “cash drawer” class, the “safe” class, and so on.

Packaging software as classes makes it convenient to reuse the software. Reuse of
existing classes when building programs saves time and money. Reuse also helps you build
more reliable and effective systems, because existing classes and components often have
gone through extensive testing, debugging and performance tuning. Indeed, with object
technology, you can build much of the new software you’ll need by combining existing
classes, exactly as we do throughout this book.

1.12 Web 2.0
The web literally exploded in the mid-to-late 1990s, but the “dot com” economic bust
brought hard times in the early 2000s. The resurgence that began in 2004 or so has been
named Web 2.0. Google is widely regarded as the signature company of Web 2.0. Some
others are FaceBook and MySpace (social networking), Twitter (social messaging), Flickr
(photo sharing), Craigslist (free classified listings), delicious (social bookmarking), You-
Tube (video sharing), Salesforce (business software offered as online services), Second Life
(a virtual world), Skype (Internet telephony) and Wikipedia (a free online encyclopedia).

At Deitel & Associates, we launched our Web 2.0-based Internet business initiative
in 2005. We share our research in the form of Resource Centers at www.deitel.com/
resourcecenters.html. Each lists many links to mostly free content and software on the
Internet. We announce our latest Resource Centers in our weekly newsletter, the Deitel®

Buzz Online (www.deitel.com/newsletter/subscribe.html).
To follow the latest developments in Web 2.0, read www.techcrunch.com and

www.slashdot.org and check out the growing list of Internet- and web-related Resource
Centers at www.deitel.com/resourcecenters.html.

1.13 Test-Driving the Painter App in the iPhone
Simulator
In this section, you’ll run and interact with your first iPhone app. The Painter app allows
the user to “paint” on the screen using different brush sizes and colors. You’ll build this
app in Chapter 9.

We use fonts to distinguish between IDE features (such as menu names and menu
items) and other elements that appear in the IDE. The following steps show you how to
test-drive the app.

Download from <www.wowebook.com>

ptg

18 Chapter 1 Introduction to iPhone App Development

1. Checking your setup. Confirm that you’ve set up your computer properly by read-
ing the Before You Begin section located after the Preface.

2. Locating the app folder. Open a Finder window and navigate to the Documents/
Examples/Painter folder or the folder where you saved the chapter’s examples.

3. Opening the Painter project. Double click the file name Painter.xcodeproj to
open the project in Xcode.

4. Launching the Painter app. In Xcode, select Project > Set Active SDK from the
menu bar. Make sure iPhone Simulator 3.0 (or 3.1) is selected. Once this is done,
click the Build and Go button (Fig. 1.11) to run the app in the simulator. [Note:
Apple continuously updates Xcode. Depending on your version and how you last
executed an app, this button may be called Build and Run or Build and Debug.]

5. Exploring the app. The only items on the screen are the drawing canvas and the
info () button (Fig. 1.12). When the app is installed on an iPhone, you can cre-
ate a new painting by dragging your finger anywhere on the canvas. In the simu-
lator, you “touch” the screen by using the mouse.

To change the brush size or color, touch the info () button. The view
changes to display the app settings. In Fig. 1.13 several graphical elements—
called components—are labeled. The components include Sliders, Labels, But-
tons and a View (these controls are discussed in depth later in the book). The app
allows you to set the color and thickness of the brush. You’ll explore these options
momentarily. You can also clear the entire drawing to start from scratch.

Using preexisting GUI components, you can create powerful apps in Cocoa
much faster than if you had to write all the code yourself. In this book, you’ll use
many preexisting Cocoa components and write your own Objective-C code to
customize your apps.

Fig. 1.11 | Clicking the Build and Go button to run the Painter app.

Build and Go button

Download from <www.wowebook.com>

ptg

1.13 Test-Driving the Painter App in the iPhone Simulator 19

6. Changing the brush color. To change the brush color, drag any of the three sliders
under the “Line Color” Label. As you drag a slider, the View below the Sliders dis-

Fig. 1.12 | Painter app with a blank canvas.

Fig. 1.13 | Painter app settings.

Canvas

Info button

Sliders

View

Button

Labels

Button

Download from <www.wowebook.com>

ptg

20 Chapter 1 Introduction to iPhone App Development

plays the new color. Moving these Red, Green and Blue sliders enables the user to
control the amounts of red, green and blue used to form the new color. iPhones
also support alpha transparency (partial transparency), which you’ll use in
Chapter 7’s Spot-On Game app. Once you’ve selected a color, touch the Done
button to return to the canvas. Select a red color now by dragging the “Red” Slid-
er to the right and the “Blue” Slider and “Green” Slider to the left Fig. 1.14(a).
Touch the Done button to return to the canvas. Drag your finger on the screen
to draw flower petals (Fig. 1.14(b)).

7. Changing the brush color and size. Change to the settings screen again by touch-
ing the info () button. Select a green color by dragging the “Green” Slider to
the right and “Red” and “Blue” Sliders to the left (Fig. 1.15(a)). The line width is
controlled by the slider labeled Line Width. Drag this slider to the right to thicken
the line. Touch the Done button to return to the canvas. Draw grass and a flower
stem (Fig. 1.15(b)).

8. Finishing the drawing. Switch back to the settings screen by touching the info
() button. Select a blue color by dragging the “Blue” Slider to the right and the
“Red” and “Green” Sliders to the left (Fig. 1.16(a)). Switch back to the canvas and
draw the raindrops (Fig. 1.16(b)).

9. Closing the app. Close your running app by clicking the Home button on the
bottom of the iPhone Simulator, or by selecting iPhone Simulator > Quit iPhone
Simulator from the menu bar.

Fig. 1.14 | Drawing with a new brush color.

a) b)

Done Button

Download from <www.wowebook.com>

ptg

1.13 Test-Driving the Painter App in the iPhone Simulator 21

Fig. 1.15 | Changing the line color and line size to draw the stem and grass.

Fig. 1.16 | Changing the line color and line size to draw the rain.

a) b)

a) b)

Download from <www.wowebook.com>

ptg

22 Chapter 1 Introduction to iPhone App Development

1.14 Wrap-Up
This chapter presented a brief history of the iPhone and discussed its functionality. You
learned about the new and updated hardware and software features of the iPhone 3GS and
the iPhone 3.x operating system. You learned the iPhone gestures, and how to perform
each on the iPhone and using the iPhone simulator. We introduced the Cocoa frameworks
that enable you to use the iPhone hardware and software functionality to build your
iPhone apps. You’ll use many of these frameworks in this book. You also learned about the
history of Objective-C programming and Apple’s iPhone SDK 3. We listed the design pat-
terns that we use in the book’s apps. We discussed basic object-technology concepts, in-
cluding classes, objects, attributes and behaviors. We discussed Web 2.0. Finally, you test-
drove the Painter app.

In Chapter 2, we discuss the business side of iPhone app development. You’ll see how
to prepare your app for submission to the app store, including making icons and launch
images. We provide tips for pricing and marketing your app. We also show how to use
iTunes Connect to track app sales, payments and more.

1.15 Deitel Resource Centers
Our website (www.deitel.com) provides more than 100 Resource Centers on various top-
ics including programming languages, software development, Web 2.0, Internet business
and open-source projects. The Resource Centers evolve out of the research we do to sup-
port our publications and business endeavors. We’ve found many exceptional resources
online, including tutorials, documentation, software downloads, articles, blogs, podcasts,
videos, code samples, books, e-books and more—most of them are free. Each week we an-
nounce our latest Resource Centers in our newsletter, the Deitel® Buzz Online. Check out
the iPhone-related Resource Centers to get started:

www.deitel.com/iPhone/

Apple iPhone Resource Center.
www.deitel.com/ObjectiveC/

Objective-C Resource Center.
www.deitel.com/Cocoa/

Cocoa Frameworks Resource Center.
www.deitel.com/iPhoneAppDevelopment/

iPhone App Development Resource Center.
www.deitel.com/ResourceCenters.html

The master list of all Deitel Resource Centers.
www.deitel.com/books/iPhoneFP/

Code downloads, updates, errata, Frequently Asked Questions (FAQs), hot links and additional re-
sources for iPhone for Programmers.

Download from <www.wowebook.com>

ptg

2
iPhone App Store and App

Business Issues

O B J E C T I V E S
In this chapter you’ll be introduced to:

■ iPhone Human Interface Guidelines for designing your
app.

■ Characteristics of great apps.

■ Setting up an iPhone Developer Program profile so you
can test your apps on devices and submit your apps to
the App Store.

■ Submitting your app to the App Store through iTunes
Connect.

■ Common reasons an app might be rejected by Apple.

■ Pricing your app and the benefits of free vs. paid apps.

■ Marketing and monetizing your app.

■ Using iTunes Connect to track sales and trends.

■ iPhone anecdotes and humor.

■ Other popular platforms to which you can port your app.

Download from <www.wowebook.com>

ptg

24 Chapter 2 iPhone App Store and App Business Issues

O
u

tl
in

e

2.1 Introduction
In Chapters 3–16, you’ll learn how to develop a wide variety of iPhone apps. Once you’ve
developed and tested your own app—both in the simulator and on iPhones—the next step
is to submit it to Apple’s App Store for approval for distribution. At the time of this writ-
ing, Apple indicated that “94% of apps are being approved within 14 days.”1 In this chap-
ter, you’ll learn how to set up your iPhone Developer Program profile so you can test your
app on iPhones and submit it to the App Store for approval. We’ll discuss the iPhone Hu-
man Interface Guidelines to follow when you design your app’s user interface, and general
characteristics of great apps. We’ll list some common reasons why Apple rejects apps.
You’ll learn how to submit your app through iTunes Connect (part of the iPhone Devel-
oper Program). We’ll discuss some considerations for making your app free or selling it for
a fee, and refer you to resources for monetizing apps. We’ll provide resources for marketing
your app. We’ll introduce you to iTunes Connect where you can track your app sales, pay-
ments and more. And, we’ll point you to lots of online resources, mostly free, where you
can find additional information.

There’s a lot of useful information in this chapter that you should keep in mind as
you develop your iPhone apps and that we kept in mind as we developed the 14 apps in
Chapters 3–16. If you’re eager to plunge into iPhone app development, you can skip right
to Chapter 3. At a minimum, you should glance through this chapter to see what’s cov-
ered. You can then return to this chapter as you like while reading the rest of the book.

2.1 Introduction

2.2 iPhone Developer Program:

2.2.1 Setting Up Your iPhone
Development Team

2.2.2 Getting an iPhone
Development Certificate

2.2.3 Registering Devices for
Testing

2.2.4 Creating App IDs

2.2.5 Creating a Provisioning
Profile

2.2.6 Using the Provisioning
Profile to Install an App on
an iPhone or iPod Touch

2.2.7 Submitting Your App for
Distribution

2.3 iPhone Human Interface Guidelines

2.4 Testing Your App

2.5 Preparing Your App for Submission
through iTunes Connect

2.6 Characteristics of Great iPhone Apps

2.7 Avoiding Rejection of Your App

2.8 Pricing Your App: Free or Fee

2.9 Adding an App to iTunes Connect

2.10 Monetizing Paid Apps: Using In App
Purchase to Sell Virtual Goods

2.11 Using iTunes Connect to Manage
Your Apps

2.12 Marketing Your App

2.13 iPhone Anecdotes and Humor

2.14 Other Platforms

2.15 iPhone Developer Documentation

2.16 Wrap-Up

1. “Announcements and News for iPhone Developers,” developer.apple.com/iphone.

Download from <www.wowebook.com>

ptg

2.2 Setting Up Your Profile for Testing and Submitting Apps 25

2.2 iPhone Developer Program: Setting Up Your Profile
for Testing and Submitting Apps
To test your apps on actual iPhones and to submit your apps to the App Store for approval,
you must join the fee-based iPhone Developer Program at developer.apple.com/
iphone/. As a member, you’ll have access to numerous resources, including:

• Getting started guides

• Tips on submitting your apps to the App Store

• Programming guides

• Sample code

• Downloads

• Preview/beta releases of the iPhone OS and iPhone SDK

• Developer forums, and more.

As we completed this book for publication, Apple released the “App Store Resource Cen-
ter” (developer.apple.com/iphone/appstore/), which provides additional information
about the issues we discuss in Sections 2.2.1–2.2.7.

2.2.1 Setting Up Your iPhone Development Team
Log into the iPhone Developer Program site and click iPhone Developer Program Portal
(the link for this appears after you’ve bought and activated the developer program mem-
bership). Here you’ll find the resources for testing your apps and submitting them for ap-
proval. You’ll need to set up your iPhone Development Team (Fig. 2.1)—you and/or the
people in your organization who’ll be able to log into the iPhone Developer Program Por-
tal, test apps on iPhones, add iPhones to the account for testing, and so on. To set up your
team, click the Team link on the iPhone Developer Program Portal page. The person who
registers is designated as the Team Agent. If you register as a company, you can assign Team
Members. The Team Agent has all primary responsibilities for the account.

iPhone Development Team

Team Agent

• Primary responsibilities for the account—assigned to the person who enrolls in the iPhone
Developer program.

• Accepts all legal program agreements through iTunes Connect.

• Assigns Team Admins and Team Members.

• Creates Provisioning Profiles, which include your development certificates, devices and App
IDs (an alphanumeric identifier of your choice).

• Obtains the iPhone Distribution Certificate for App Store and Ad Hoc distribution.

• Designated as a Team Admin if the team consists of two or more people.

• Tests apps on designated iPhones.

Fig. 2.1 | iPhone Development Team responsibilities. (iTunes Connect Developer Guide
version 4.7, July 10, 2009.) (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

26 Chapter 2 iPhone App Store and App Business Issues

2.2.2 Getting an iPhone Development Certificate
You’ll also need to get an iPhone Development Certificate—an encrypted certificate that
serves as your digital identification. You must sign your app using the certificate before you
can run and test the app on an iPhone.

To get a development certificate, you must first generate a Certificate Signing Request
(CSR) using the pre-installed Mac OS X Keychain Access application (Applications > Util-
ities > Keychain Access).

1. Go to the Keychain Access menu and select Preferences.

2. Click the Certificates tab and set the Online Certificate Status Protocol and Certif-
icate Revocation List to Off. Close this dialog.

3. Next, in the Keychain Access menu, select Certificate Assistant > Request a Cer-
tificate from a Certificate Authority to display the Certificate Assistant. Enter the
same e-mail address and name you used to enroll in the iPhone Developer Pro-
gram. Select the Saved to Disk radio button and check the Let me specify key pair
information checkbox. Click Continue then Save to save the request to disk.

4. In the Key Pair Information screen, set the Key Size to 2048 bits and the Algorithm
to RSA, then click Continue. The CSR is now saved on your computer.

Go back to the iPhone Developer Program Portal and click the Certificates link to add
the certificate.

1. Ensure that the Development tab is selected.

2. Click the Request Certificate button to display the Create iPhone Development
Certificate instructions page.

3. Click the Browse… (for Team Admins) or Choose File (for Team Members) but-
ton near the bottom of the page to find the CSR you saved on your computer.
Select the file then click Open.

Team Admin

• Assigns Team Admins and Team Members who’ll be eligible to test your apps on iPhones.

• Approves Development Certificate requests.

• Assigns iPhones to your account for testing.

• Creates Provisioning Profiles.

• Tests apps on designated iPhones.

Team Member

• Makes (but does not approve) Development Certificate requests.

• Downloads Provisioning Profiles.

• Tests apps on designated iPhones.

iPhone Development Team

Fig. 2.1 | iPhone Development Team responsibilities. (iTunes Connect Developer Guide
version 4.7, July 10, 2009.) (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

2.2 Setting Up Your Profile for Testing and Submitting Apps 27

4. On the Create iPhone Development Certificate instructions page, click Submit.

A request for approval will be sent to the Team Admin(s). An admin (or the Team Agent)
must go to the Certificates page and click Approve (for a certificate requested by an admin)
or Approve Selected (for a request from a Team Member) to approve the request. Upon
approval, the developer who submitted the CSR will be able to download the certificate.
The developer may need to refresh the browser window to see the Download button.

Next, go to the iPhone Developer Program Portal and click the Certificates link, where
you’ll see your development certificate listed. Before downloading the development certif-
icate, you must install the WWDR intermediate certificate on your computer. Just below
your certificate you’ll see “If you do not have the WWDR intermediate certificate installed,
click here to download now.”

1. Click the link and save the WWDR intermediate certificate to your computer.

2. In Finder, double-click the WWDR intermediate certificate file to open it in Key-
chain Access and install it. Click OK to complete the installation.

3. Return to the Certificates page in the iPhone Developer Program Portal. Click the
Download button next to your certificate and save it to your computer. In Finder,
double-click the development certificate file to open it in Keychain Access and
install it on your computer. Click OK to complete the installation.

It’s possible to use the same developer certificate on multiple computers, which can
be handy and really cut down on all of the certificate requesting overhead.

2.2.3 Registering Devices for Testing
Next, click Devices to register up to 100 iPhone and iPod Touch devices on which to test
your apps. For each, provide a device name of your choosing and a Unique Device Identi-
fier (UDID)—a 40-character identification code that is associated with a particular device.
To find the UDID for a device, connect it to your Mac. Open Xcode and go to Window >
Organizer. Select the connected device. The UDID appears in the Identifier field. To add a
device, click the Add Devices button, enter the device’s name and ID, then click Submit.

2.2.4 Creating App IDs
Return to the iPhone Developer Program Portal and click the App IDs link. The App ID
(part of the Provisioning Profile, which we’ll discuss shortly) identifies an app or a suite of
related apps. It’s used when communicating with hardware accessories and the Apple Push
Notification service, and when sharing data in a suite of apps. Click the New App ID button.
Enter an alphanumeric description of your app (e.g., the app’s name). Next, add the Bundle
Seed ID—the App ID prefix—by going to Bundle Seed App ID and selecting Generate New
from the drop-down menu. Finally, in the Bundle Identifier textbox, enter a unique Bundle
Indentifier—the App ID suffix. Apple recommends using the reverse-domain-name style
(e.g., com.DomainName.AppName). Click Submit to add the new App ID.

2.2.5 Creating a Provisioning Profile
Now, click the Provisioning link on the iPhone Developer Program Portal page. A Devel-
opment Provisioning Profile assigns your authorized iPhone Development Team members
to your approved devices, allowing the Team Members to test an app on the devices. It’s

Download from <www.wowebook.com>

ptg

28 Chapter 2 iPhone App Store and App Business Issues

installed on each device and contains the iPhone Development Certificates for each Team
Member, the UDID and the App ID. To create a Provisioning Profile:

1. Click the New Profile button.

2. In the Profile Name textbox, enter the name you wish to use for this profile.

3. In the Certificates section, check the boxes for each approved Team Member.

4. Go to the App ID drop-down menu and select the name of the app associated with
the profile.

5. Under Devices, check the boxes for the devices on which the profile will be used.

6. Click the Submit button to create the profile.

Next, the development Team Members must download the profile and add it in Xcode.
Each approved Team Member should perform the following steps:

1. Go to the iPhone Developer Program Portal and click the Provisioning link.

2. Click the Download button next to the appropriate provisioning profile and save
it to your computer.

3. In Finder, double-click the provisioning profile that you saved to your computer
(ending with .mobileprovision) to install the provisioning profile in Xcode.

4. To confirm that the profile was installed in Xcode, select Window > Organizer,
then clicking Provisioning Profiles under the IPHONE DEVELOPMENT category.

2.2.6 Using the Provisioning Profile to Install an App on an iPhone or
iPod Touch
The steps in this section should be performed once you’ve created an app and would like
to install it on an actual device for testing.

1. In Xcode, open the project for the app that you’d like to install on a device.

2. In the Project’s Resources group, double click the info.plist file (now called
AppName-info.plist in newer Xcode versions).

3. Change the Bundle identifier to the bundle identifier you specified when you cre-
ated your App ID, then save the file.

4. In Xcode, select Project > Edit Project Settings to display the Project Info dialog.

5. Under Code Signing > Code Signing Identity, select iPhone Developer under Auto-
matic Profile Selector. [Note: In Xcode 3.2, click the Build tab to see this option.]
This will choose the appropriate developer certificate for the app and will allow
other developers on the team to build the app if you pass your project to them.
You can also select your specific developer certificate if you like, but this will al-
low the app to be built only on your computer.

6. To get the app onto your device, ensure that your device is connected to your
computer. Then, in Xcode, select Project > Set Active SDK > iPhone Device 3.x
(where x is the most recent SDK version) and click Build and Go. In the latest ver-
sion of Xcode, Build and Go is Build and Run or Build and Debug, depending on
how you last ran an app.

Download from <www.wowebook.com>

ptg

2.2 Setting Up Your Profile for Testing and Submitting Apps 29

The project will be compiled (if it is not up to date), then the app will be installed on the
device and executed. [Note: If you have trouble getting the app to run on your device, it is
sometimes helpful to reboot your iPhone or to select Build > Clean All Targets in Xcode.]

2.2.7 Submitting Your App for Distribution
The steps so far enable you to build and test apps on iPhones and iPod Touches. If you’d
like to distribute your apps, you’ll also need to perform the steps described in this subsec-
tion. In the iPhone Developer Program Portal, click the Distribution link to learn how to
prepare and submit your app for App Store or Ad Hoc distribution, which allows you to
distribute your app to up to 100 users via e-mail, a website or a server. Only the Team
Agent can create an iPhone Distribution Certificate and submit an app for distribution.
Assuming you are the Team Agent, generate a CSR in Keychain Access as follows:

1. In the Keychain Access menu, select Preferences.

2. Click the Certificates tab and set the Online Certificate Status Protocol and Certif-
icate Revocation List to Off.

3. In the Keychain Access menu, select Certificate Assistant > Request a Certificate
from a Certificate Authority to display the Certificate Assistant. Enter the same e-
mail address and name you used to enroll in the iPhone Developer Program.
Select the Saved to Disk radio button and check the Let me specify key pair infor-
mation checkbox. In the Key Pair Information screen, set the Key Size to 2048 bits
and the Algorithm to RSA. Click Continue then Save to save the request to disk.

4. Click Done.

Next, return to the iPhone Developer Program Portal to upload the certificate request.

1. Click the Certificates link, then click the Distribution tab.

2. Upload and submit the CSR, then approve your distribution certificate using the
same steps we described earlier in Section 2.2.2.

3. If you do not already have the WWDR intermediate certificate on your comput-
er, follow the steps in Section 2.2.2 to download it.

4. Next, download the distribution certificate. Return to the Certificates link (and
the Distribution tab) on the iPhone Developer Program Portal. Click the Download
button next to distribution certificate and save it to your computer.

5. In Finder, double-click the distribution certificate file to open it in Keychain Ac-
cess and install it on your computer.

To distribute your app through the App Store, you’ll need to create a Distribution
Provisioning Profile. [Note: Before performing these steps, some developers prefer to make
copies of the projects they intend to distribute, rather than modifying the settings on their
development projects.] On the Create iPhone Distribution Provisioning Profile page, you’ll
be able to create a profile for either App Store distribution of Ad Hoc distribution.

1. In the iPhone Developer Program Portal, click the Provisioning link.

2. Click the Distribution tab, then click the New Profile button.

3. Select the App Store radio button. In the Profile Name textbox, enter the name
you wish to use for your Distribution Provisioning Profile. The Distribution Cer-

Download from <www.wowebook.com>

ptg

30 Chapter 2 iPhone App Store and App Business Issues

tificates section should show your distribution certificate. In the App ID drop-
down menu, select the name of the app (or suite of apps) associated with the pro-
file.

4. For Ad Hoc distribution, under Devices, check the boxes for the devices on which
the app will be run. This section is disabled for App Store distribution profiles.

5. Click the Submit button. Once the Distribution Provisioning Profile is created,
click the name of the file to download it to your computer, then double click it
to install it in Xcode.

6. To use this profile, you’ll need to select it in your project’s settings. In Xcode, se-
lect Project > Edit Project Settings to display the Project Info dialog. Then Under
Code Signing > Code Signing Identity, select iPhone Distribution under Automatic
Profile Selector. [Note: In Xcode 3.2, click the Build tab to see this option.]

To use Ad Hoc distribution, build your app, then provide each approved device’s owner
with both the application file and the Ad Hoc Distribution Provisioning Profile. The de-
vice owner must drag both of these into iTunes, then sync the device. For App Store dis-
tribution, see Section 2.5.

After building your appl, locate and compress your app for distribution as follows:

1. In Xcode, open the Products group under Groups & Files for your project.

2. Right click the app name under Products and select Reveal in Finder to locate the
app bundle in Finder.

3. In Finder, right click the app bundle (which looks like a file with the .app exten-
sion) and select compress.

You now have a zipped app bundle—required since app bundles are actually folders—
that you can distribute. For more detail on building and verifying your app for distribu-
tion, visit developer.apple.com/iphone/manage/distribution/index.action in the
iPhone Developer Program Portal.

2.3 iPhone Human Interface Guidelines
It’s important when creating iPhone apps to follow the iPhone Human Interface Guide-
lines:

developer.apple.com/iphone/library/documentation/userexperience/
 conceptual/mobilehig/Introduction/Introduction.html

Part One, “Planning Your iPhone Software Product,” provides guidelines for developing
apps that run efficiently and effectively on the iPhone platform. For example, you’ll need
to consider the screen size, memory limitations and the ease of use of your apps, particu-
larly because your app cannot include extensive help documentation. The guide also in-
cludes principles for creating good user interfaces, such as designing easy-to-use controls,
providing status updates and other feedback, and more.

Part Two, “Designing the User Interface of Your iPhone Application,” walks through
the proper use and appearance of views and controls including:

• Navigation bars and toolbars,

• Alerts,

Download from <www.wowebook.com>

ptg

2.3 iPhone Human Interface Guidelines 31

• Table views,

• App controls (e.g., date and time pickers, labels, etc.),

• Buttons and icons (e.g., the Done button, the info () button, etc.) ,

• Creating custom icons and images,

• and more.

Figure 2.2 lists some of the many suggestions that appear in the 130-page document
IPhone Human Interface Guidelines.

Points and Suggestions from the iPhone Human Interface Guidelines

• Most important, read the document IPhone Human Interface Guidelines.
• If you’re going to create web applications, also read the document iPhone Human Interface

Guidelines for Web Applications.
• Make your apps aesthetically pleasing.
• Keep your apps simple and easy to use.
• Keep in mind that iPhone apps are designed differently from desktop apps because of the small

screen.
• Avoid cluttering the screen.
• Design your app to work well given that the iPhone displays only a single screen at a time.
• Keep in mind that the iPhone runs only one app at a time. Leaving an app quits the app, so be

sure to save anything you need immediately after it’s created.
• Carefully manage memory as a limited resource.
• Keep in mind why the user is using your app.
• Keep your app’s goals in mind as you design it.
• Your app should be modeled after the way things work in the real world.
• People feel closer to your app’s interface because they touch it directly (rather than indirectly

through a mouse).
• Give people lists and let them touch the choice they want rather than requiring key stroking, if

possible.
• Provide feedback to user actions—for example, use an activity indicator to show that an app is

working on a task of unpredictable duration.
• Be consistent—for example, always prefer standard buttons and icons provided by the iPhone

OS to creating your own customized buttons and icons.
• If you do provide custom icons, make sure that they’re easily distinguishable from system icons.
• Although you can have as many buttons as you like on alerts, you should provide two. Avoid

the complexity of alerts with more than two buttons.
• Your apps should be intuitive—the user should be able to figure out what to do at any given

time, with minimal help.
• Support the standard iPhone gestures in the standard way.
• Make your apps accessible for people with disabilities.
• If a button does something destructive, make it red.

Fig. 2.2 | Points and suggestions from the iPhone Human Interface Guidelines. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

32 Chapter 2 iPhone App Store and App Business Issues

2.4 Testing Your App
Before submitting your app for approval for App Store or Ad Hoc distribution, test your
app thoroughly to make sure it works properly on iPhone OS 3.x. Although the app might
work perfectly using the simulator on your Mac, problems could arise when running the
app on an iPhone. Figure 2.3 lists iPhone functionality that isn’t available on the simula-
tor. To learn more about the simulator and the frameworks it uses, read the iPhone Devel-
opment Guide.

Check out the iPhone OS 3.0 Readiness Checklist on the password-protected Devel-
oper Connection website. Here you’ll find:

• Getting Started guides for the latest iPhone OS 3.x features including Apple Push
Notification, In App Purchase and Parental Controls.

• Programming guides for additional iPhone OS 3.x features including Accessibil-
ity, Game Kit, iPod Library Access, Open GL ES 2.0 and Store Kit.

• The iTunes Connect Developer Guide, which provides guidelines for adding an app
to the App Store; testing, creating and managing In-App Purchases; updating
your app on the App Store; and more.

2.5 Preparing Your App for Submission through iTunes
Connect
When submitting your app for approval through iTunes Connect, you’ll be asked to pro-
vide keywords, icons, a launch image, screenshots and translated app data if you intend to
offer localized versions of your app for international App Stores. In this section, we’ll tell
you what to prepare. In Section 2.9, Adding an App to iTunes Connect, we’ll walk you
through the steps of uploading everything for approval.

• Make your application icons 57 x 57 pixels with square corners.
• The user’s finger is generally much larger than a mouse pointer (used in desktop applications),

so make the “hit region” of each user interface element 44 x 44 pixels.

iPhone functionality that is not available on the simulator

Compass Camera

Bluetooth data transfer 3D graphics (works differently)

iPod music library access Accelerometer (allows only orientation changes)

GPS

Fig. 2.3 | iPhone functionality that is not available on the simulator.

Points and Suggestions from the iPhone Human Interface Guidelines

Fig. 2.2 | Points and suggestions from the iPhone Human Interface Guidelines. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

2.5 Preparing Your App for Submission through iTunes Connect 33

Keywords
When submitting your app, you’ll provide a comma-separated list of descriptive keywords
that will help users find your app on the App Store. Your keyword list is limited to 100
characters. This is similar to the tagging schemes used by websites such as Flickr and You-
Tube, except that only you can provide keywords for your own apps. Although Apple
doesn’t provide guidelines or suggested keywords, they do state that you cannot use the
names of other people’s apps.

Icons
Design an icon for your app that will appear in the App Store and on the user’s iPhone.
You can use your company logo, an image from the app or a custom image. Create the
icon in two different sizes:2

• 57 x 57 pixels

• 512 x 512 pixels

Both icons should have square corners and no shine effects. The iPhone OS will automat-
ically apply three visual effects to give your icon a similar appearance to the built-in iPhone
app icons:

• Rounded corners

• Drop shadow to give the icons a 3-D appearance

• Glass-like reflective shine

In addition, every app should provide a 29 x 29 icon that will appear next to the app’s name
in Spotlight searches and possibly the iPhone’s Settings app. For further specifications and
best practices, see the iPhone Human Interface Guidelines (under Creating Custom Icons and
Images) and the iTunes Connect Developer Guide. You might also consider hiring an expe-
rienced graphic designer to help you create a compelling, professional icon (Fig. 2.4).

2. iTunes Connect Developer Guide (version 4.7, July 10, 2009).

Company URL Services

icondesign www.icondesign.dk/ In addition to paid services, they
offer a “free for free” deal—free
icon design for your free app.

The Iconfactory iconfactory.com/home Custom and stock icons. Also
offers IconBuilder software (for
use with Adobe® Photoshop®)
for creating your own icons.

IconDrawer www.icondrawer.com/main.php/ Custom icon design and some
free downloadable icons.

Razorianfly
Graphic Design

www.rflygd.com/services/ Custom icons and launch images.

Fig. 2.4 | Custom app icon design firms.

Download from <www.wowebook.com>

ptg

34 Chapter 2 iPhone App Store and App Business Issues

Launch Images
Next, create a launch image, which will be displayed when the icon is tapped on the screen
so that the user sees an immediate response while waiting for the app to load. For example,
tap any of the default icons on the iPhone (e.g., Stocks, Camera, Contacts) and you’ll no-
tice that they immediately display a launch image that resembles the app’s user interface—
often just an image of the background elements of the GUI. To add a launch image to
your app, open the project in Xcode. Go to the Project menu and select Add to Project.
Locate the file and click Add. Name the launch image Default.png. For additional infor-
mation, see the iPhone Human Interface Guidelines, the iPhone Application Programming
Guide and the Bundle Programming Guide.

Primary Screenshot(s)
Take between one and four screenshots of your app that will be included with your app
description in the App Store. These provide a preview of your app since users can’t test the
app before downloading it. See the iTunes Connect Developer Guide for screenshot size and
resolution specifications.

Contract Information
To sell your app through the App Store, the Team Admin must agree to the terms of the
Paid Applications contract—this may take some time while Apple verifies your financial
information. If you intend to offer your app for free, the Team Admin must agree to the
Free Applications contract.

Additional Languages (Optional)
You may offer your app in foreign languages (Fig. 2.5) through international iTunes App
Stores. You’ll be asked to enter your translated data into iTunes Connect as part of the
submission process (see Section 2.9). You can offer your app in the international stores
without translating your metadata—if you do so, the international users see English. You
can actually localize the app to many more languages, but you can only localize the store
description and other metadata to the the languages in Fig. 2.5.

2.6 Characteristics of Great iPhone Apps
With over 75,000 apps in the App Store, how do you create an iPhone app that people
will find, download, use and recommend to others? Consider what makes an app fun, use-
ful, interesting, appealing and enduring. A clever app name, an attractive icon and an en-
gaging description might lure people to your app on the App Store. But once users
download the app, what will make them use it and recommend it to others? Figure 2.6

Languages for localizing apps

Dutch UK English Italian

English French Japanese

Australian English Canadian French Spanish

Canadian English German Mexican Spanish

Fig. 2.5 | Languages available for localizing your iPhone apps.

Download from <www.wowebook.com>

ptg

2.7 Avoiding Rejection of Your App 35

shows some characteristics of great apps. You can find additional tips in the News and An-
nouncements section of the iPhone Dev Center (accessible by logging into the iPhone De-
veloper Program).

2.7 Avoiding Rejection of Your App
Apple doesn’t list all of the reasons why an app might be rejected, so we researched the web
for insights from developers who have gone through the approval process. Figure 2.7 in-
cludes some of the common reasons iPhone apps have been rejected by Apple.3,4,5

Characteristics of great apps

General Characteristics
• Compatible with the latest iPhone OS 3.x.
• Updated frequently with new features.
• Features work properly (and bugs are fixed promptly).
• Follow standard iPhone app GUI conventions.
• Responsive and don’t require too much memory, bandwidth or battery power.
• Novel and creative—possess a “wow” factor.
• Enduring—something that you’ll use regularly.
• Use quality graphics.
• Intuitive and easy-to-use (don’t require extensive help documentation).
• Accessible to people with disabilities (see the Accessibility Programming Guide for iPhone OS).
• Give users reasons and a means to tell others about your app.
• Provide additional content (for content-driven apps).

Great Games
• Entertaining.
• Challenging (progressive levels of difficulty).
• Show your scores and record high scores.
• Provide audio and visual feedback.
• Offer single player, multi-player and networked games.

Useful Utilities
• Provide useful functionality and accurate information.
• Make tasks more convenient.
• Make the user better informed.
• Topical—provide information on current subjects of interest (e.g., Swine Flu, stock prices).
• Provide access on-the-go to your favorite websites (e.g., stores, banks, etc.).
• Increase your personal and business productivity.

Fig. 2.6 | Characteristics of great apps.

3. www.mobileorchard.com/avoiding-iphone-app-rejection-from-apple/.
4. stackoverflow.com/questions/308479/reasons-for-rejecting-iphone-application-by-

apple-store.
5. appreview.tumblr.com/.

Download from <www.wowebook.com>

ptg

36 Chapter 2 iPhone App Store and App Business Issues

2.8 Pricing Your App: Free or Fee
You set the price for your app that is distributed through the App Store. An increasing
number of developers offer their apps for free as a marketing and publicity tool, earning
revenue through increased sales of products and services, sales of more feature-rich versions
of the same app, or in-app advertising. Figure 2.8 lists ways to monetize your app.

Paid Apps
According to a study by O’Reilly® Radar, the average price of paid apps is around $2.65
(the median is $1.99).6 When setting a price for your app, you should start by researching
your competition. How much do their apps cost? Do theirs have the similar functionality?

Reasons apps are rejected by Apple

iPhone OS 3.x incompatibility.

Failure to comply with Apple’s Human Interface Guidelines.

Copying existing iPhone functionality.

Functionality does not work as indicated.

The app crashes.

Simulating failures of the user’s iPhone (e.g., the screen breaking).

Using too much bandwidth to download data.

Linking to private frameworks.

Icons don’t match (i.e., your large and small icons are different).

Referencing public figures.

Continuous vibration (which uses excess battery power).

Collecting personal data without receiving the users’ permission.

Failure to show an error message when the network isn’t available.

Infringing on the copyrights or trademarks of others.

Fig. 2.7 | Reasons apps are rejected by Apple.

Paid apps Free apps

Sell the app on the App Store. Use mobile advertising services for in-app ads
(see Section 2.12, Marketing Your App).

Sell paid upgrades to the app. Sell in-app advertising space directly to your
customers.

Sell virtual goods (see Section 2.10). Use it to drive sales of a more feature-rich ver-
sion of the app.

Fig. 2.8 | Ways to monetize your app.

6. radar.oreilly.com/2009/04/itunes-app-store-billionth-download.html.

Download from <www.wowebook.com>

ptg

2.8 Pricing Your App: Free or Fee 37

Is yours more feature-rich? Will offering your app at a lower price than the competition
attract users? Is your goal is to recoup development costs and generate additional revenue?

All of the financial transactions for paid apps are handled by the App Store. Apple
retains 30% of the purchase price and distributes 70% to you. Earnings are paid to you on
a monthly basis, though Apple will withhold payment until you reach the minimum pay-
ment amount.

Free Apps
Approximately 22% of apps on the App Store are free, but they comprise the vast majority
of downloads.7 Given that users are more likely to download an app if it’s free, consider
offering a free “lite” version of your app to encourage users to download and try it. For
example, if your app is a game, you might offer a free version with the first few levels. Once
users complete these, the app would provide a message encouraging users to buy your
more robust app with numerous game levels through the App Store. According to a recent
study by AdMob, upgrading from the “lite” version was the number one reason why users pur-
chased a paid app.8

Many companies use free apps to build brand awareness and drive sales of other prod-
ucts and services (Fig. 2.9).

Some developers offer free apps that are monetized with in-app advertising—often
banner ads similar to those you find on websites. Mobile advertising networks such as
AdMob (www.admob.com/) and Tapjoy (www.tapjoy.com/) aggregate advertisers for you
and serve the ads to your app (see Section 2.12, Marketing Your App). You earn adver-
tising revenue based on the number of views. According to a report by Adwhirl, a mobile

7. radar.oreilly.com/2009/07/news-providers-are-embracing-t.html.
8. metrics.admob.com/wp-content/uploads/2009/08/AdMob-Mobile-Metrics-July-09.pdf.

Free app Functionality

Amazon® Mobile Browse and purchase items on Amazon.

Bank of America Locate ATMs and bank branches in your area,
check balances and pay bills.

ESPN® ScoreCenter Set up personalized scoreboards to track your
favorite college and professional teams in football,
basketball, baseball, hockey, soccer and more.

Comcast® Mobile Check your Comcast home phone voice mail and
e-mail, forward calls to your iPhone, check televi-
sion listings, watch trailers for Comcast On
Demand movies and more.

Nationwide® Mobile If you’re in a car accident, use the accident toolkit
to record the other driver’s information, start an
accident claim report, find a Nationwide agent
and find a nearby repair shop.

Fig. 2.9 | Free iPhone apps that are building brand awareness.

Download from <www.wowebook.com>

ptg

38 Chapter 2 iPhone App Store and App Business Issues

advertising network, the top 100 free apps earn about $400–5000 per day from in-app
advertising.9 They estimate that it takes about 2500 daily downloads for an app to make
it into the top 100 of a given category.10 In-app advertising does not generate significant
revenue for most apps, so if your goal is to recoup development costs and generate profits,
you may be better off selling your app. According to a study by Pinch Media, 20% of
people who download a free app will use it within the first day after they download it, but
only 5% will continue to use it after 30 days.11 Unless your app is widely downloaded and
used, it will generate minimal advertising revenue.

2.9 Adding an App to iTunes Connect
Once you’ve prepared all of your files and you’re ready to submit your app to the App
Store for approval, log into iTunes Connect at itunesconnect.apple.com. Click the Man-
age Your Applications link, then click the Add New Application button. The following is a
walkthrough of the steps to add a new app. The iTunes Connect Developer Guide provides
detailed descriptions of, and technical specifications for, each of the items you’ll need to
provide. [Note: You can also use the Application Loader to upload your apps. To get it,
click the Get Application Loader link on the Manage Your Applications page.]

Add New Application
Chose the primary language for your app on the App Store (Fig. 2.5) and enter your com-
pany name, as it will appear on the App Store. Click the Continue button to proceed to the
Export Compliance page.

Export Compliance
If your app includes encryption, you’ll be asked a series of questions and you may need to
provide Apple with copies of proper United States government authorization forms for ex-
porting your app. To learn more about the U.S. Commerce Department export controls,
go to (www.bis.doc.gov/licensing/exportingbasics.htm). Once you’ve provided the
appropriate information, click the Continue button to proceed to the Overview page.

Overview
Enter the information in Fig. 2.10 (most of which will appear in the App Store), then click
the Continue button to proceed to the Ratings page.

9. www.techcrunch.com/2009/05/06/just-how-much-money-can-free-iphone-apps-make-
quite-a-bit/.

10. Adwhirl, “Over 50,000 Apps in the App Store—How do Apps Get Discovered?” (June 2009).
11. www.techcrunch.com/2009/02/19/pinch-media-data-shows-the-average-shelf-life-of-

an-iphone-app-is-less-than-30-days/.

iTunes Connect Overview page for adding an app

App name.

App description (4000 characters or less).

Fig. 2.10 | iTunes Connect Overview page for adding an app. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

2.9 Adding an App to iTunes Connect 39

Ratings
iTunes requires ratings for apps sold through the App Store. The ratings—used for the
new iPhone parental controls—are displayed in the App Store below the price of the app
so that parents can determine if the app contains material that is not suitable for children
of a certain age. Parental controls enable users to restrict access to an app based on the rat-
ing. On the ratings page, you’ll be asked if your app contains violence, sexual content, pro-
fanity, mature themes, gambling or horror themes. Next to each, select the radio button
corresponding to the frequency of such content in your app—None, Infrequent/Mild or
Frequent/Intense. Based on your responses, Apple will assign one of the ratings in
Fig. 2.11. As you respond to each category, you’re app rating will be displayed on the
screen. Click the Continue button to proceed to the Upload page.

Device requirements—choose from the drop-down menu (e.g, iPhone only, iPhone and iPod
Touch).

Primary category—choose from the drop-down menu (see Fig. 1.6 for a list of categories on
the App Store).

Subcategory—choose up to two subcategories from the drop-down menus (for games only—
subcategories include action, adventure, kids, trivia, etc.).

Secondary category—choose from the drop-down menu (again, see Figure 1.6 for a list of cat-
egories on the App Store).

Copyright holder and year of copyright.

App version number (e.g., 1.0).

SKU (your own unique alphanumeric stock keeping unit number).

Keywords (see Section 2.5, Preparing Your App for Submission through iTunes Connect).

App URL (not required—website with additional information about your app.).

Support URL (where users can submit feedback forms, find bug reports, etc.).

Support e-mail (where users can send bug reports, feedback, etc.).

Demo account—full access (not required—usernames and passwords for any test accounts
that Apple may use to test your app).

End User License Agreement (not required).

Age rating Description

4+ No objectionable material.

9+ Suitable for children 9 years and older.

12+ Suitable for children 12 years and older.

17+ Frequent or intense objectionable material,
suitable only for people 17 years and older.

Fig. 2.11 | App ratings.

iTunes Connect Overview page for adding an app

Fig. 2.10 | iTunes Connect Overview page for adding an app. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

40 Chapter 2 iPhone App Store and App Business Issues

Upload
On this page, you’ll upload the files for your app, including:

• 2GB or smaller zipped app binary (which includes your app code, launch image
and 57 x 57 icon)

• Large icon (512 x 512)

• Primary screenshot

• Additional screenshots

Once you’ve uploaded all of the files, click the Continue button to proceed to the Pricing
and Availability page.

Pricing and Availability
On this page you’ll select the price for your app.

• Select the date that you wish to make your app available through the App Store.
The App Store will display the app release date as either the date you enter here
or the date your app is approved, whichever is earlier.

• Next, select a price tier for your app. Click See Pricing Matrix to view a list of the
numbered price tiers and the corresponding app price for each. Select a tier to
view a table displaying the customer price for your app in the local currency for
each App Store worldwide, and the proceeds you’ll receive in each currency based
on that price.

• Finally, select the App Stores (Fig. 2.12) in which you’ll sell your app by clicking
the checkbox next to each country name. Click the Continue button to proceed
to the Localization page.

Localization
You may enter your app information (which you supplied on the Overview page) in other
languages to be used in international App Stores. For example, enter the information in
Spanish for use in App Stores in Spanish-speaking countries. See Fig. 2.5 for a list of avail-
able languages. Click the Continue button to proceed to the Review page. To learn more

App Stores

Australia Greece Norway

Austria Ireland Portugal

Belgium Italy Spain

Canada Japan Sweden

Denmark Luxembourg Switzerland

Finland Mexico United Kingdom

France Netherlands United States

Germany New Zealand Rest of World

Fig. 2.12 | App Stores worldwide.

Download from <www.wowebook.com>

ptg

2.10 Monetizing Paid Apps: Using In App Purchase to Sell Virtual Goods 41

about designing your app for international markets, search “Internationalization Program-
ming Topics” in the iPhone Developer Program.

Review
The Review page provides a summary of all of the information you entered. If everything
is correct, click the Submit Application button to send the information to the App Store for
approval. Once you’ve submitted your app for approval, you can check the status of the
app by going to the Manage Your Applications link in iTunes Connect. If you make chang-
es to your app (e.g., upgrades, bug fixes, etc.) after it’s approved and need to upload a new
version, you must re-submit it to the App Store for approval. Your existing users will be
notified that an update to the app is available when they access the App Store from their
iPhone and tap the Updates icon.

2.10 Monetizing Paid Apps: Using In App Purchase to
Sell Virtual Goods
As we discussed in Chapter 1, In App Purchase—a new feature in iPhone OS 3.x and part
of the Store Kit framework—allows you to sell virtual goods (e.g., digital content) through
a paid app (Fig. 2.13). In App Purchase is not available in free apps. In App Purchase items
have a separate approval process, e.g., if you offer books for sale through a bookstore app,
each book has to be approved as it is added to the catalog. According to Viximo, a virtual
goods company, sales of virtual goods will reach $400 million in the United States and
$5.5 billion globally in 2009.12 In App Purchase opens this lucrative market to iPhone app
developers. Selling virtual goods can generate higher revenue per user than advertising.13

Using In App Purchase
There are two ways to use In App Purchase:

• You can build the additional functionality into your app. When the user opts to
make a purchase, the app notifies the App Store which handles the financial

12. viximo.com/publishers/about/why.

Virtual goods

Magazine subscriptions Localized guides Avatars

Virtual apparel Game levels Game scenery

Add-on features Ringtones Icons

E-cards E-gifts Virtual currency

Wallpaper Images Virtual pets

Audio Video And more.

Fig. 2.13 | Virtual goods.

13. www.virtualgoodsnews.com/2009/04/super-rewards-brings-virtual-currency-platform-
to-social-web.html.

Download from <www.wowebook.com>

ptg

42 Chapter 2 iPhone App Store and App Business Issues

transaction and returns a message to the app verifying payment. The app then un-
locks the additional functionality.

• Your app can download the additional content on demand. When the user makes
a purchase, the app notifies the App Store which handles the financial transac-
tion. The app then notifies your server to send the new content. Before doing so,
your server can verify that the app has a valid receipt.14

Your app provides the purchasing interface, allowing you to control the user experi-
ence. The Store Kit framework processes the payment request through the iTunes store,
then sends your app confirmation of the purchase. To learn more about the In App Pur-
chase using the Store Kit framework, read the Store Kit Programming Guide and the Store
Kit Framework Reference (available at the iPhone Developer Program website).

If your app uses In App Purchase functionality, it’s important that you select the cor-
rect category for the item you’re selling (Fig. 2.14) as you cannot modify the settings later.
For step-by-step instructions on setting up in app purchases, read the In App Purchases
section of the iTunes Connect Developer Guide (available in the iPhone Developer Program
website).

2.11 Using iTunes Connect to Manage Your Apps
iTunes Connect (itunesconnect.apple.com/), which is part of the iPhone Developer
Program, allows you to manage your account and your apps, track sales, request promo-
tional codes for your products and more (Fig. 2.15). Promotional codes allow you to dis-
tribute up to 50 complimentary copies of your for-sale app per update of your app. In
addition, iTunes reports app crashes from the devices on which your app is installed back
to iTunes Connect. When managing an app in iTunes Connect, you can view crash infor-
mation in the app’s App Details page by clicking the View Crash Reports button. This in-
formation can help you fix bugs in your app.

14. For more information see “Verifying Store Receipts” in the In App Purchase Programming Guide
(developer.apple.com/iphone/library/documentation/NetworkingInternet/Conceptual/
StoreKitGuide/StoreKitGuide.pdf).

Category Description

Consumables Users pay for the item each time it is downloaded and it cannot be
downloaded on multiple devices.

Non-consumables Users pay for the content once. Subsequent downloads are free and
can be used across multiple devices (e.g., your new iPhone or iPod).

Subscription Users pay for content that is delivered for a set period of time (e.g., a
six-month subscription). Content cannot be downloaded on multiple
devices.

Fig. 2.14 | Categorizing your products for sale using In App Purchase.

Download from <www.wowebook.com>

ptg

2.12 Marketing Your App 43

2.12 Marketing Your App
Once your app has been approved by Apple, you need to market it to your audience. Start
by going to the Marketing Resources for iPhone Developers page on the iPhone Developer
Center website at developer.apple.com/iphone/—log into the site and you’ll see the Mar-
keting Resources for iPhone Developers link under iPhone Developer Program (Fig. 2.16).

 iTunes Connect module Description

Sales/Trend Reports View daily, weekly and monthly sales reports.

Contracts, Tax & Banking
Information

Sign paid applications agreements to sell your apps
through the App Store. Set up banking informa-
tion and tax withholdings. Manage your iTunes
contracts.

Financial Reports Access your monthly financial reports.

Manage Users Add or remove authorized users for your iTunes
Connect account and designate the modules each
is able to access.

Manage Your Applications Add new apps to be approved for the App Store.

Request Promotional
Codes

Get promotional codes that allow selected users to
download your app for free (see Section 2.12,
Marketing Your App).

Contact Us Find answers to frequently asked questions or fill
out forms to contact an Apple representative.

Fig. 2.15 | iTunes Connect modules.

 Resource Description

App Store Logo
License Program

Promote awareness by including the “Available on the App
Store” logo in marketing materials. You must sign the App
Marketing License Agreement and comply with the App Market-
ing and Identity Guidelines for Developers to use the artwork in
your marketing materials.

iTunes Affiliate Program If you’re promoting apps on your website and in e-mail news-
letters, sign up for the iTunes Affiliate Program (offered
through LinkShare™) to earn a 5% commission on sales gen-
erated from your links to the App Store. Visit www.apple.com/
itunes/affiliates/.

Sales and Trend Reporting Available through iTunes Connect.

Keywords for
App Store Search

Choose keywords that you believe will help users find your app
when searching the App Store (see Section 2.5).

Fig. 2.16 | Marketing Resources for iPhone app developers (developer.apple.com/
iphone/). (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

44 Chapter 2 iPhone App Store and App Business Issues

Viral marketing and word-of-mouth marketing through social media sites such as
Facebook and Twitter, and video sites such as YouTube, can help you get your message
out. Figure 2.17 lists some of the most popular social media sites. Also, e-mail and elec-
tronic newsletters are still effective and often inexpensive marketing tools.

Facebook
Facebook, the premier social networking site, has over 250 million active users, each with
an average of 120 friends.15 It’s an excellent resource for viral (word-of-mouth) marketing.
Start by setting up a fan page for your app. Use the fan page to post:

• App information

• News

iTunes Deep Links Use deep links to take users directly to your app on the App
Store. Deep links are simply of the form itunes.com/apps/
appName. For example, itunes.com/apps/facebook.

App Store Promo Codes
(US-based developers
only)

Use your promotional codes to increase awareness of your app.
Give them to reviewers, bloggers or others who might spread
the word (see Fig. 2.18 for a list of popular app review sites).

 Social media sites URL Description

Facebook www.facebook.com Social networking.

Twitter www.twitter.com Micro blogging, social networking.

MySpace www.myspace.com Social networking.

Orkut www.orkut.com Google’s social networking site.

YouTube www.youtube.com Video sharing.

LinkedIn www.linkedin.com Social networking for business.

Flickr www.flickr.com Photo sharing.

Digg www.digg.com Content “sharing and discovery.”

StumbleUpon www.stumbleupon.com Social bookmarking.

Delicious www.delicious.com Social bookmarking.

Tip’d www.tipd.com/ Social news for finance and business.

Blogger www.blogger.com Blogging sites.

Wordpress www.wordpress.com Blogging sites.

Squidoo www.squidoo.com Publishing platform and community.

Fig. 2.17 | Popular social media sites.

15. www.facebook.com/press/info.php?statistics.

 Resource Description

Fig. 2.16 | Marketing Resources for iPhone app developers (developer.apple.com/
iphone/). (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

2.12 Marketing Your App 45

• Updates

• Reviews

• Tips

• Videos

• Screenshots

• High scores for games

• User feedback

• Links to the App Store where users can download your app

Next, you need to spread the word. Encourage your co-workers and friends to become
fans and to tell their friends to become fans as well. As people interact with your fan page,
stories will appear in their friends’ news feeds, building awareness to a growing audience.

Twitter
Twitter is a micro blogging, social networking site. You post tweets—messages of 140
characters or less. Twitter then distributes your tweets to all your followers (several Twitter
users already have more than a million followers). Many people use Twitter to track news
and trends. Tweet about your app—include announcements about new releases, tips,
facts, comments from users, etc. Also encourage your colleagues and friends to tweet about
your app. Use a hashtag (#) to reference your app. For example, when tweeting about this
book on our Twitter page, @deitel, we use the hashtag #iPhoneFP. This enables you to
easily search our tweets for messages related to iPhone for Programmers.

YouTube
Viral video is another great way to spread the word about your app. If you create a com-
pelling video, which is often something humorous or even outrageous, it may quickly rise
in popularity and the video may be tagged by users across multiple social networks.

E-Mail Newsletters
If you have an e-mail newsletter, use it to promote your app. Include links to the App Store
where users can download it. Also include links to your Facebook fan page and Twitter
page where users can stay up-to-date with the latest news about your app.

App Reviews
Contact influential bloggers and app review sites (Fig. 2.18) and tell them about your app.
Provide them with a promotional code to download your app for free (see Section 2.11).
Influential bloggers and reviewers receive numerous requests, so keep yours concise and
informative without too much marketing hype. Many app reviewers post video app re-
views on YouTube.

iPhone app review sites URL

What’s on iPhone www.whatsoniphone.com/

iPhone App Reviews www.iphoneappreviews.net/

Fig. 2.18 | iPhone app review sites. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

46 Chapter 2 iPhone App Store and App Business Issues

Internet Public Relations
The public relations industry uses traditional media outlets to help companies get their
message out to consumers. With the phenomenon known as Web 2.0, public relations
practitioners are incorporating blogs, podcasts, RSS feeds and social media into their PR
campaigns. Figure 2.19 lists some of the free and fee-based Internet public relations re-
sources, including press release distribution sites, press release writing services and more.
For additional resources, check out our Internet Public Relations Resource Center at
www.deitel.com/InternetPR/.

iusethis iphone.iusethis.com/

Apple iPhone School www.appleiphoneschool.com/

AppVee www.appvee.com/

AppCraver www.appcraver.com/

The App Podcast theapppodcast.com/

Gizmodo gizmodo.com/tag/iphone-apps-directory/

iPhone Toolbox iphonetoolbox.com/category/application/

Fresh Apps www.freshapps.com/

Apptism www.apptism.com/

148Apps www.148apps.com/

Macworld www.macworld.com/appguide/index.html

Ars Technica arstechnica.com/apple/iphone/apps/

Appletell www.appletell.com/apple/tag/

iphone+app+reviews/

Site URL Description

PRWeb® www.prweb.com Online press release distribution ser-
vice offering free and fee-based ser-
vices.

ClickPress™ www.clickpress.com Submit your news stories for
approval (free of charge). If approved,
they’ll be available on the ClickPress
site and to news search engines.

PR Leap www.prleap.com Fee-based online press release distri-
bution service.

Marketwire www.marketwire.com Fee-based press release distribution
service allows you to target your
audience by geography, industry, etc.

Fig. 2.19 | Internet public relations resources. (Part 1 of 2.)

iPhone app review sites URL

Fig. 2.18 | iPhone app review sites. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

2.12 Marketing Your App 47

Mobile Advertising Networks
Purchasing advertising space—in other apps, online, in newspapers and magazines or on
television—is one means of marketing your app. Mobile advertising networks (Fig. 2.20)
specialize in advertising iPhone (and other) mobile apps on mobile platforms. You can pay
these networks to market your iPhone apps, or monetize your free apps by including their
banner ads within the apps. Many of these mobile advertising networks are able to target
audiences by location, carrier, device (e.g., iPhone, BlackBerry, etc.) and more.

PRLog www.prlog.org/pub/ Free press release submission and dis-
tribution.

i-Newswire www.i-newswire.com Free press release submission and dis-
tribution.

InternetNews-
Bureau.com®

www.internetnewsbureau.com Online press release services for busi-
nesses and journalists.

openPR® www.openpr.com Free press release publication.

PRX Builder www.prxbuilder.com/x2/ Tool for creating social media press
releases.

Press Release Writing www.press-release-

writing.com

Press release distribution and services
including press release writing, proof-
reading and editing. Check out the
tips for writing effective press
releases.

Mobile ad
networks URL Description

AdWhirl www.adwhirl.com/ Free service that aggregates multiple
mobile ad networks, allowing you to
increase your advertising fill rate. Also
use it to sell virtual goods in your apps.

AdMob www.admob.com/ Advertise your app online and in other
apps, or incorporate ads in your app for
monetization.

Medialets www.medialets.com/ Mobile Advertising SDK allows you to
incorporate ads into your app. The ana-
lytics SDK enables you to track usage of
the app and ad clickthroughs.

Quattro Wireless www.quattrowireless.com/ Advertise your app online and in other
apps, or incorporate targeted, location-
based ads in your app for monetization.

Fig. 2.20 | Mobile advertising networks. (Part 1 of 2.)

Site URL Description

Fig. 2.19 | Internet public relations resources. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

48 Chapter 2 iPhone App Store and App Business Issues

Advertising Costs
According to AdWhirl, the eCPM (effective cost per 1000 impressions) for ads in iPhone
apps ranges from $0.50 to $4.00, depending on the ad network and the ad. Most ads on the
iPhone pay based on click-through rate (CTR) of the ads rather than the number of impres-
sions generated. If the CTRs of the ads in your app are high, your ad network may serve you
higher paying ads, thus increasing your eCPM (earnings per thousand impressions). CTRs
are generally 1 to 2% on iPhone apps (though this varies based on the app).

2.13 iPhone Anecdotes and Humor
Figure 2.21 lists sites where you’ll find iPhone-related anecdotes and humor.

Decktrade www.decktrade.com/ Advertise your app on mobile sites, or
incorporate ads in your app for moneti-
zation.

Pinch Media www.pinchmedia.com/

#pinchanalytics

Analytics tools for tracking downloads,
usage and revenue for your iPhone app.

Tapjoy www.tapjoy.com Aggregates seven mobile ad networks,
allowing you to increase your advertis-
ing fill rate. Also use it to sell virtual
goods in your apps.

URL Description

Anecdotes

blog.wundrbar.com/ True story about the process of submitting an app to
the App Store for approval.

www.touchtip.com/iphone-and-

ipod-touch/worlds-youngest-

iphone-developer/

The article, “Worlds Youngest iPhone Developer.”

www.techcrunch.com/2009/02/15/

experiences-of-a-newbie-

iphone-developer/

The TechCrunch article, “Experiences of a Newbie
iPhone Developer.”

www.wired.com/gadgets/wireless/

magazine/16-02/ff_iphone?

currentPage=all

The Wired Magazine article, “The Untold Story:
How the iPhone Blew Up the Wireless Industry.”

stackoverflow.com/questions/

740127/how-was-your-iphone-

developer-experience

Feedback from developers who have submitted apps
to the App Store for approval.

Fig. 2.21 | iPhone development anecdotes, tips and humor. (Part 1 of 2.)

Mobile ad
networks URL Description

Fig. 2.20 | Mobile advertising networks. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

2.14 Other Platforms 49

2.14 Other Platforms
iPhone for Programmers is the first of our platform development titles in our Deitel Devel-
oper Series published by Pearson Technology Group. There are numerous other platforms
that you may want to consider when creating applications (Fig. 2.22). You could reach an
even larger audience by porting your iPhone apps to other platforms.

Humor

www.iphonebuzz.com/category/

apple-iphone-humor

Humorous iPhone blog posts from iPhone Buzz.

twitter.com/Humorforiphone Send your favorite iPhone jokes to iPhone Humor
on Twitter.

dailymobile.se/2009/02/11/

iphone-humor-cell-phone-

reunion/

The video, “Cell Phone Reunion,” by CollegeHu-
mor, features iPhone apps such as Google Maps.

gizmodo.com/5300060/find-my-

iphone-saved-my-phone-from-a-

thief

The story, “Find My iPhone Saved my Phone from a
Thief,” that tells you how an iPhone owner used
MobileMe to get his iPhone back.

Platforms URL Description

Mobile Platforms

BlackBerry (RIM) na.blackberry.com/eng/

services/appworld/?

BlackBerry development platform.

Android (Google) www.google.com/mobile/

#p=android

Google apps for Android, Blackberry,
iPhone, Windows Mobile, Nokia S60
and other devices.

webOS (Palm) developer.palm.com/ Palm’s webOS developer program.

Windows Mobile msdn.microsoft.com/en-us/

windowsmobile/default.aspx

Windows Mobile Developer
Center.

Symbian developer.symbian.org/ Symbian developer program.

Internet Platforms

Facebook developers.facebook.com/ Facebook Platform.

Twitter apiwiki.twitter.com/ Twitter API.

Google code.google.com Google APIs.

Yahoo! developer.yahoo.com Yahoo! Developer Network APIs.

Bing www.bing.com/developers Bing API.

Chrome code.google.com/chromium/ Google’s open-source Internet browser.

Fig. 2.22 | Other popular platforms. (Part 1 of 2.)

URL Description

Fig. 2.21 | iPhone development anecdotes, tips and humor. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

50 Chapter 2 iPhone App Store and App Business Issues

2.15 iPhone Developer Documentation
Figure 2.23 is a list of freely available iPhone Reference Library documentation mentioned
in this chapter. For additional documentation, go to developer.apple.com/iphone/
library/navigation/index.html.

2.16 Wrap-Up
In Chapter 2, you learned how to prepare your apps for submission to the App Store, in-
cluding testing them on the simulator and on iPhones, creating icons and launch images
and following the iPhone Human Interface Guidelines. We walked through the steps for
submitting your apps through iTunes Connect. We provided tips for pricing your apps,
and resources for monetizing free apps. You learned how to use iTunes Connect to manage
your apps and track sales. And we included resources for marketing your apps once they’re
available through the App Store.

Chapters 3–16 present 14 complete working iPhone apps exercising a broad range of
functionality, including the latest iPhone 3GS features. In Chapter 3, you’ll use the Xcode
IDE to create your first iPhone app, using visual programming, without writing any code!
And you’ll become familiar with Xcode’s extensive help features.

LinkedIn www.linkedin.com/

static?key=developers_widge

ts&trk=hb_ft_widgets

LinkedIn Applications Platform.

MySpace developer.myspace.com/

community/
MySpace Open Platform.

Document URL

iPhone Development Guide developer.apple.com/iphone/library/documentation/

Xcode/Conceptual/iphone_development/000-Introduction/

introduction.html

iPhone Human Interface
Guidelines

developer.apple.com/iphone/library/documentation/

UserExperience/Conceptual/MobileHIG/Introduction/

Introduction.html

iPhone Application
Programming Guide

developer.apple.com/iphone/library/documentation/

iPhone/Conceptual/iPhoneOSProgrammingGuide/

Introduction/Introduction.html

Bundle Programming Guide developer.apple.com/iphone/library/documentation/

CoreFoundation/Conceptual/CFBundles/Introduction/

Introduction.html

Fig. 2.23 | iPhone Reference Library documentation.

Platforms URL Description

Fig. 2.22 | Other popular platforms. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

3
Welcome App

Dive-Into® Xcode, Cocoa and Interface Builder

O B J E C T I V E S
In this chapter you’ll learn:

■ The basics of the Xcode integrated development
environment (IDE) for writing, running and debugging
your iPhone apps.

■ How to create an Xcode project to develop a new app.

■ The purpose of the various Xcode and Interface Builder
windows.

■ To design a Cocoa GUI visually using Interface Builder.

■ To edit the properties of Cocoa GUI components.

■ To build and launch a simple iPhone app.

Download from <www.wowebook.com>

ptg

52 Chapter 3 Welcome App

O
u

tl
in

e

3.1 Introduction
In this chapter, you’ll build the Welcome app—a simple iPhone app that displays a wel-
come message and an image of the Deitel bug—without writing any code. The Xcode 3.x
toolset is Apple’s suite of development tools for creating and testing Mac OS X and iPhone
applications. The toolset includes an Integrated Development Environment (IDE), also
referred to as Xcode—and Interface Builder, which is used to construct graphical user in-
terfaces quickly and conveniently. We’ll overview Xcode and show you how to create a
simple iPhone app (Fig. 3.1) by dragging and dropping predefined building blocks onto
your app using Interface Builder. Finally, you’ll compile your app and execute it in the
iPhone simulator.

3.2 Overview of the Technologies
This chapter introduces the Xcode IDE and Interface Builder. You’ll learn how to navigate
Xcode and create a new project. With Interface Builder, you’ll display a picture using an

3.1 Introduction

3.2 Overview of the Technologies

3.3 Xcode 3.x IDE and Cocoa

3.4 Building the Application

3.5 Building the GUI with Interface Builder

3.6 Running the Welcome App

3.7 Wrap-Up

Fig. 3.1 | Welcome app.

Label component

Image View component

Download from <www.wowebook.com>

ptg

3.3 Xcode 3.x IDE and Cocoa 53

Image View (an object of class UIImageView) and display text using a Label (an object of
class UILabel). You’ll see how to edit the properties of GUI components (e.g., the Text
property of a Label and the Image property of an Image View) to customize them for your
app and you’ll run your app in the iPhone simulator.

3.3 Xcode 3.x IDE and Cocoa
The book’s examples are based on Xcode 3.x, which is bundled with all Mac OS X versions
since v10.5. Apple offers it free through the Apple Developer Connection at

developer.apple.com/

We assume you’re familiar with Mac OS X.

Introduction to Xcode 3.x
To start Xcode 3.x, double click the Xcode icon in the /Developer/Applications folder.
This folder also contains Interface Builder—a tool for designing graphical interfaces that
you’ll use throughout the book, and Instruments—a tool for inspecting your running app
that can monitor memory usage, CPU load and more (Fig. 3.2). If this is your first time
running Xcode 3.x, the Welcome to Xcode window will open (Fig. 3.3). This contains a
list of links to local and online Xcode 3.x resources. Close this window for now—you can
access it any time by selecting Help > Xcode News. From this point forward, we’ll refer to
the Xcode 3.x IDE simply as “Xcode” or “the IDE.” We use the > character to indicate
selecting a menu item from a menu. For example, we use the notation File > Open… to
indicate that you should select the Open… menu item from the File menu.

Customizing the IDE and Creating a New Project
To begin programming in Xcode, select either File > New Project… to create a new project
or File > Open… to open an existing project. A project is a group of related files, such as
the Objective-C code files and any images that make up an app.

When you select File > New Project…, the New Project dialog appears. Dialogs are
windows that facilitate user-computer communication. You’ll see how to create new proj-
ects in Section 3.4.

Instruments Capabilities

Automate testing of your app.

Monitor file usage in your app—record what files
are opened, closed, read from and written to.

Detect memory leaks and monitor object allocation.

Stress test your app.

Record a set of user interactions and play them back
to automate human interaction with your app.

Fig. 3.2 | Instruments capabilities.

Download from <www.wowebook.com>

ptg

54 Chapter 3 Welcome App

Xcode provides several Templates (Fig. 3.4) that represent the different project types
you can create in Xcode, such as navigation-based applications, tab bar applications, utility
applications and more. For iPhone development you’ll use the templates listed under
iPhone OS > Application.

Toolbar
The Xcode toolbar (Fig. 3.5) contains menus and buttons that cause Xcode to perform
specific actions. Figure 3.6 overviews each of these elements.

Fig. 3.3 | Welcome to Xcode window.

Template Template Description

Navigation-based
Application

An application that involves traversing a hierarchy of views, such as the
Address Book app you’ll build in Chapter 10.

OpenGL ES
Application

An application with a view configured to render complex 3D graphics
using the OpenGL ES graphics API (www.khronos.org/opengles).

Tab Bar

Application

An application with a tab bar at the bottom configured for switching
between multiple views.

Utility Application An application that has a frontside and a flipside. The flipside is gener-
ally used to configure the app. Examples of this template are the
iPhone’s Stocks and Weather apps.

View-based

Application

An application containing a single view in which you can draw custom
graphics or add subviews.

Window-based
Application

An application containing only the basic elements required to run an
iPhone app.

Fig. 3.4 | Xcode templates.

Download from <www.wowebook.com>

ptg

3.3 Xcode 3.x IDE and Cocoa 55

Groups and Files
The Groups and Files list in the project window provides access to all of a project’s com-
ponents. It consists of a series of groups containing error messages, bookmarks, break-
points and more. The most used group is the project structure group—the topmost group
whose title is the same as that of the project. This group contains all the files currently in
your project, including source files, preference files and frameworks. Frameworks are Co-
coa libraries that you use to develop your app. The hierarchy in the project structure group
does not affect the program, but there are some general guidelines for organizing your files:

• Classes group—source files.

• Resources group—Interface Builder files, preference files and images.

• Frameworks group—frameworks used in the app.

Keyboard Shortcuts
Xcode provides many keyboard shortcuts for useful commands. Figure 3.7 shows some of
the most useful shortcuts.

Fig. 3.5 | Xcode toolbar.

Control Description

Overview Drop-down menu for changing the project’s build settings, such as the active
SDK, target and executable.

Action Drop-down menu containing actions specific to the currently selected item.
Many of these are also available when you right click an item in your app.

Build and Go Compiles then runs the project. [Note: In the latest version of Xcode, this is
Build and Run or Build and Debug, depending on how you last ran an app.
We’ll refer to it as Build and Go from this point forward.]

Tasks Terminates a task, such as a build or the running app.
Info Opens an Info window with information on the currently selected item.

Search Searches filenames in the project.

Fig. 3.6 | Xcode toolbar elements.

Shortcut Function Shortcut Function

shift + + N Creates a new project. + B Builds the project.

 + N Creates a new file. + R Builds and runs the project.
 + S Saves the current file. + I Displays additional information

about the selected file.

Fig. 3.7 | Common Xcode keyboard shortcuts.

Download from <www.wowebook.com>

ptg

56 Chapter 3 Welcome App

Interface Builder
Interface Builder is a tool for visually laying out your GUI. You can use it to drag and drop
Buttons, Text Fields, Sliders and other GUI components onto an app. Interface Builder files
now use the .xib extension, but earlier versions used.nib, short for NeXT Interface Build-
er. For this reason, Interface Builder files are commonly referred to as “nib files.” Interface
Builder opens when you double click a nib file in your project.

Cocoa
Cocoa is a collection of APIs, frameworks and runtimes used in Mac OS X development
(developer.apple.com/cocoa/). A successor of the NeXTSTEP programming environ-
ment developed by NeXT, Cocoa provides the easiest way to develop iPhone apps that
match the Mac look and feel. In this chapter, we use the UIKit framework, which contains
the Text Field, Image View and many other GUI components. Other frameworks provide
libraries for networking, 3D graphics and more.

3.4 Building the Application
Creating a New Project
Open Xcode and select File > New Project… to create a new project. The New Project win-
dow (Fig. 3.8) appears, prompting you to choose a template for your new project.

Select Window-based Application—the simplest template provided by Xcode. All
other iPhone app templates are enhanced versions of this template. When you click the
Choose... button, a dialog box appears attached to the top of the New Project window. This

Fig. 3.8 | New Project window.

Templates

Download from <www.wowebook.com>

ptg

3.5 Building the GUI with Interface Builder 57

is known as a sheet. In this case, it prompts you to choose a project name and to specify
where to save the project (Fig. 3.9). Name the project Welcome, choose where you’d like
to save it and click Save.

3.5 Building the GUI with Interface Builder
Next, you’ll create the GUI for the Welcome app. After you’ve created a new project, the
project window appears (Fig. 3.10). The column on the left shows all of the files in your
project.

Fig. 3.9 | Naming your project.

Fig. 3.10 | WelcomeTest project window.

Sheet

Project name

Save location

Resources
group

nib file

Project name

Download from <www.wowebook.com>

ptg

58 Chapter 3 Welcome App

To create the Welcome app, you need to add the Deitel bug image file from the Finder
to the project. The image (bug.png) is located in this chapter’s examples folder. Drag the
file to the Resources group. A sheet appears (Fig. 3.11). Check Copy items into destination
group’s folder (if needed) to make sure all files are stored in the project’s folder and click
Add. Next, locate the file MainWindow.xib under the Resources group. Double click the
file to open it in Interface Builder.

Once MainWindow.xib opens in Interface Builder, you’ll see the MainWindow.xib,
Window and Library windows. The MainWindow.xib window (Fig. 3.12) is used to manage
objects. You’ll learn more about this window in the next chapter. The window titled
Window (Fig. 3.13) represents the iPhone’s screen. The Library window (Fig. 3.14) con-
tains the standard GUI components for designing iPhone apps. Its Media tab contains the
project’s resource images. You drag and drop GUI components from the Library to add
them to your app.

Fig. 3.11 | Adding a file to the Welcome project.

Fig. 3.12 | MainMenu.xib window.

Download from <www.wowebook.com>

ptg

3.5 Building the GUI with Interface Builder 59

To create the Welcome app, you need to add the Image View that will display the
bug.png image. In Cocoa, images are usually displayed using the UIImageView class. In the
Library window, locate Image View by scrolling or by typing Image View into the Filter field
at the bottom of the window (Fig. 3.15). Drag and drop an Image View from the Library
onto the window (Fig. 3.15). Resize the view using the sizing handles that appear along
the edges (Fig. 3.16) until it fills the bottom half of the window. Notice the blue lines that

Fig. 3.13 | Interface Builder’s app window.

Fig. 3.14 | Interface Builder’s Library window.

GUI components

Library window

Download from <www.wowebook.com>

ptg

60 Chapter 3 Welcome App

appear along the edge of the window to help you conform to Apple’s Human Interface
Guidelines (developer.apple.com/iphone/library/documentation/userexperience/
conceptual/mobilehig/). The blue lines suggest spacing and alignment that adhere to
Apple’s standards.

Fig. 3.15 | Adding an Image View via the Library Window.

Fig. 3.16 | Sizing handles on an Image View.

Image View icon

Sizing handles

Download from <www.wowebook.com>

ptg

3.6 Running the Welcome App 61

Next, select the Image View you just created then open the Inspector window by
selecting Tools > Inspector. The Inspector window allows you to customize the GUI com-
ponents. In most cases it’s helpful to leave the Inspector open while designing your inter-
face. In the Inspector window, locate the Image View section, select the Image field, then
enter bug.png for the image name (Fig. 3.17). This tells the Image View to display this pic-
ture. Then set the Mode field to Aspect Fit to force your image to fit in the Image View.
When you press Enter, the image should appear in the Image View. Interface Builder can
also create the Image View for you and configure it to display the proper image—simply
drag the image from the Library window’s Media tab to the app window.

Next, you’ll add the text. Drag and drop a Label from the Library window onto the
app window above the image (Fig. 3.18). When you select the Label, the Inspector
window will change to display the Label properties. Under the Label header set the Text
property to Welcome to the iPhone! (you can also set the text by double clicking the
Label), set Layout to the middle option for centered alignment, set # Lines to 2 and set the
minimum font size to 30 (Fig. 3.19). Once the properties are set, change the size of the
Label to fit the larger text, then recenter the Label (Fig. 3.20).

3.6 Running the Welcome App
Save the nib file and return to Xcode. To run the project, select either Build > Build and
Run or click the Build and Go button in the Project window (Fig. 3.21). The Build and Go
button repeats the last build action, such as build and run, build and debug or build and
launch in the Instruments tool. Because this is the first time we’ve run this project, the

Fig. 3.17 | Image View Attributes tab in the Inspector window.

Identity tab

Size tabConnections tab

Attributes tab

Image name

Image View section

Mode

Download from <www.wowebook.com>

ptg

62 Chapter 3 Welcome App

Build and Go button builds the project and runs the app in the iPhone Simulator. While
your app is running, the Tasks button becomes enabled. Clicking the Tasks button termi-
nates the app. You can also close your app by quitting the iPhone Simulator or by pressing
the home button on the simulator.

Fig. 3.18 | Adding a Label to a window.

Fig. 3.19 | Label Attributes tab of the Inspector window.

Design suggestion
guideline

Minimum font size

Number of Lines

Alignment

Download from <www.wowebook.com>

ptg

3.7 Wrap-Up 63

3.7 Wrap-Up
This chapter introduced key features of Xcode and Interface Builder. You used Interface
Builder to create a working iPhone app without writing any code! You used the Image View
and Label GUI components to display an image and accompanying text. You edited the
properties of GUI components to customize them for your app. You then compiled your
app and tested it in the iPhone simulator.

 In the next chapter we introduce Objective-C programming. iPhone development is
a combination of GUI design and Objective-C coding:

• Interface Builder allows you to develop GUIs visually, avoiding tedious GUI pro-
gramming.

• Objective-C programming allows you to specify the behavior of your apps.

You’ll develop the Tip Calculator app, which calculates a range of tip possibilities when
given a restaurant bill amount. You’ll design the GUI using Interface Builder as you did
in this chapter, but you’ll also add Objective-C code to specify how the app should process
user input and display the results of its calculations.

Fig. 3.20 | Completed Welcome app.

Fig. 3.21 | Xcode toolbar while an app is running.

Enabled Tasks button

Download from <www.wowebook.com>

ptg

4
Tip Calculator App
Introducing Objective-C Programming

O B J E C T I V E S
In this chapter you’ll learn:

■ Basic Objective-C syntax and keywords.

■ To use object-oriented features of Objective-C, including
objects, classes, interfaces and inheritance.

■ Arithmetic and relational operators.

■ Text Field and Slider GUI components.

■ To design an app following the Model-View-Controller
(MVC) design pattern.

■ To programmatically interact with GUI components.

■ To invoke methods of objects via object messaging.

■ To build and run an interactive iPhone app.

Download from <www.wowebook.com>

ptg

4.1 Introduction 65

O
u

tl
in

e

4.1 Introduction
The Tip Calculator app (Fig. 4.1) calculates and displays tips for a restaurant bill. As the
user enters a bill total, the app calculates and displays the tip amount and total bill for three
standard tipping percentages—10%, 15% and 20%. The user can also specify a custom
tip percentage by moving the thumb of a Slider. The tip and the total are updated in re-
sponse to each user interaction.

This app uses various object-oriented Objective-C features including class declara-
tions (known as interfaces in Objective-C), class implementations and inheritance. You’ll
also learn basic Objective-C keywords and syntax as you write the code that responds to
user interactions and programmatically updates the GUI.

4.1 Introduction

4.2 Test-Driving the Tip Calculator App

4.3 Overview of the Technologies

4.4 Building the App

4.5 Adding Functionality to Your App

4.6 Connecting Objects in Interface Builder

4.7 Implementing the Class’s Methods

4.8 Wrap-Up

Fig. 4.1 | Entering the bill total and calculating the tip.

Use Slider to
set custom tip
percentage

a) b)

Download from <www.wowebook.com>

ptg

66 Chapter 4 Tip Calculator App

4.2 Test-Driving the Tip Calculator App
Opening the Completed Application
Open the folder on your local computer containing the Tip Calculator app project. Double
click TipCalculator.xcodeproj to open the project in Xcode.

Running the App
Click the Build and Go button to run the app in the iPhone Simulator. The user enters a
restaurant bill amount in the “Bill Total” Text Field. The Text Fields under 10%, 15% and
20% display the tip and the total bill for the corresponding tip percentage. The Slider al-
lows the user to enter a custom percentage, and the Text Fields below the Slider display the
corresponding tip and the total bill. The numeric keypad in the bottom half of the app is
always present and is used to enter the bill amount.

Entering a Bill Total
Enter 56.32 into the “Bill Total” Text Field by touching the numeric keypad. If you make a
mistake, press the delete button () in the bottom right corner of the keypad to erase the
last digit you entered. Notice that the “Tip” and “Total” Text Fields update as you enter or
delete digits.

Selecting a Custom Tipping Percentage
Drag the Slider’s thumb to the right until the custom percentage reads 19%. The totals for
this custom tip percentage now appear below the Slider.

4.3 Overview of the Technologies
This chapter introduces Objective-C and several of its object-oriented programming ca-
pabilities, including objects, classes, interfaces and inheritance. The app’s code requires
various Objective-C data types, operators, control statements and keywords. You’ll declare
variables to programmatically interact with GUI components and use Interface Builder to
visually “connect” each variable with the corresponding GUI component. You’ll declare
and implement methods, and use message passing to invoke an object’s methods. You’ll
also use event handling to process the user’s GUI interactions. To set up the event han-
dling, you’ll use drag-and-drop capabilities of Interface Builder to link each GUI compo-
nent to the method that should respond to their events.

4.4 Building the App
Open Xcode and create a new project. Select the Window-based Application template and
name the project TipCalculator. Double click MainWindow.xib to open the file in Inter-
face Builder so you can design the app’s GUI. Drag a Text Field from the Library window
to the top of the app window (Fig. 4.2). This is where the bill total will be displayed. Select
your Text Field from the Inspector window. Set the Text property’s value to 0.00. The new
value will appear in the app window. Uncheck the checkbox Clear When Editing Begins—
otherwise, the Text Field will be cleared each time the user enters a digit. Next, locate the
Keyboard property under Text Input Traits—this property controls the type of keyboard
that is displayed when the user touches the Text Field. Since we need only digits, change
the value to Number Pad.

Download from <www.wowebook.com>

ptg

4.4 Building the App 67

Next, to identify the Text Field in the GUI, drag a Label from the Library onto the app
window (Fig. 4.3). Double click the Label and change its Text property to Bill Total.
Select the previously created Text Field and use the resizing handles to stretch it to the left.
When the Text Field reaches the recommended minimum distance from the Label, a blue
guideline appears to indicate that you should stop resizing the Text Field.

v

Fig. 4.2 | Adding a Text Field to the app window.

Fig. 4.3 | Adding a Label to the app window.

Text Field with
placement guidelines
for positioning

Label with
placement
guidelines

Download from <www.wowebook.com>

ptg

68 Chapter 4 Tip Calculator App

Next, drag three more Labels onto the app window and name them 10%, 15% and
20%—these will label tip calculation results. Arrange the Labels side by side in the window
as shown in Fig. 4.1. Select the Text Field and duplicate it by pressing D or by holding
the option key and dragging the Text Field. Resize the new Text Field to be approximately
one quarter of its original size and position it under the “10%” Label. Select the new Text
Field and open the Inspector. Scroll down to the Control section and uncheck Enabled.
This prevents the user from manually editing the Text Field. You can also use the
Inspector’s Size () tab to view a component’s size and position, and you can see a com-
ponent’s position by holding the option key and moving the cursor over the component.

Make two copies of this Text Field and position them under the “15%” and “20%”
Labels. These three Text Fields will display the standard tip amounts. You may need to
adjust their sizes to make them fit. When the Text Fields are aligned, select all three by
holding the key and clicking each, then make a duplicate by typing D. Position the
three new Text Fields directly under the originals, using the blue guidelines to adjust the
spacing. These will display the totals for standard tip amounts.

Drag and drop two more Labels and set their Text attributes to Tip and Total, respec-
tively. These will label the standard tip and total Text Fields. Position Tip next to the first
row of fields and Total next to the second row (Fig. 4.4). In the Layout section of the
Inspector for each of these Labels, set the Alignment to be right aligned. This ensures that
the text of each Label is the same distance from the Text Fields.

Add a new Label to the app window and set its Text attribute to 15%. Move it to the
right side, directly under the last row of Text Fields, and use the blue guidelines to align it
properly. The Label should snap into place when it gets close to the lines.

Next, you’ll add a Slider that will allow the user to customize the tip percentage from
0% to 30%. Drag a Slider from the Library window onto the app and left-align it below

Fig. 4.4 | Placing a Label in the app window.

First Text Field row

Second Text Field row

Download from <www.wowebook.com>

ptg

4.4 Building the App 69

the “Total” Text Fields (Fig. 4.5). Resize the Slider until a guideline appears at its side to
specify the correct distance from the “15%” Label (Fig. 4.6).

Select the Slider, then locate the Values field in the Inspector and set Minimum to 0.00,

Maximum to 0.30 and Initial to 0.15. This tells the Slider that its value is 0.00 when the
thumb is fully to the left, 0.30 when the thumb is fully to the right and 0.15 in its initial
state when the app is launched.

Fig. 4.5 | Adding a Slider to the app window.

Fig. 4.6 | App window after adding and sizing the Slider.

Slider

Download from <www.wowebook.com>

ptg

70 Chapter 4 Tip Calculator App

Now that the Slider is configured, add another Label to the Slider’s left and set its text
to Custom (Fig. 4.6). To complete the user interface, you need to add Labels and Text Fields
for the custom percentage tip and total. Copy one of the existing small Text Fields and
paste it twice. Align one under the first column of Text Fields and one under the third
column (Fig. 4.7). Create a “Tip” Label and position it to the left of the first Text Field,
then create a “Total” Label and position it to the left of the second Text Field (Fig. 4.8).
Each Label’s text should be right aligned. Save the file and switch back to Xcode.

Fig. 4.7 | Positioning the “Tip” and “Total” Text Fields.

Fig. 4.8 | Completed Tip Calculator user interface.

Custom total Text FieldCustom tip TextField

Download from <www.wowebook.com>

ptg

4.5 Adding Functionality to Your App 71

4.5 Adding Functionality to Your App
In Xcode, click the Build and Go button to run the app in the iPhone simulator. You can
touch the “Bill Total” Text Field to display the numerical keyboard and you can move the
Slider left and right, but the app’s functionality is still missing. In this section, you’ll write
the code to calculate the tips and totals, and display them in the GUI.

This app adheres to the Model-View-Controller (MVC) design pattern, which sepa-
rates app data (contained in the model) from graphical presentation (the view) and input-
processing logic (the controller). Most iPhone apps use this design pattern. You created
Tip Calculator’s view using Interface Builder; you’ll construct the controller in Objective-
C. This app’s data is trivial, so we implement the model in the same file as the controller.
As your apps get more complex, you’ll find it beneficial to separate the two, which we’ll
do in later examples. A key benefit of the MVC design pattern is that you can modify the
model, view and controller individually without modifying the others.

Creating the App’s Controller Class
Close the simulator. In Xcode’s Groups and Files list, select the Classes group and select
File > New File... to add a new file to the project. A window will appear, prompting you to
choose a template (Fig. 4.9). In the left column, ensure that Cocoa Touch Class is selected,
then select Objective-C class in the right column. Make sure the Subclass of list is set to
NSObject1 and click the Next button. Name the file Controller.m, then click Finish.

This creates two files in the Classes folder—Controller.h and Controller.m. Con-
troller.h (Fig. 4.10) is a header file, in which you’ll declare the instance variables and
methods of the new class. Controller.m is a source file in which you’ll implement those
methods. The separation between the declaration (header file) and implementation

Fig. 4.9 | Adding a new Objective-C class file to your Xcode project.

1. Normally, controllers are defined as UIViewController subclasses—introduced in Chapter 6.

Cocoa Touch Class
category of files

Subclass of list for
specifying the new

class’s superclass

Download from <www.wowebook.com>

ptg

72 Chapter 4 Tip Calculator App

(source file) is an important aspect of Objective-C and object-oriented programming.
Splitting a class into separate files is not required, but it’s considered to be good practice.

Examining the Completed Controller.h File
Figure 4.10 begins with three lines of comments (lines 1–3) that indicate the name and
purpose of the file. The symbol // indicates that the remainder of each line is a comment.
Line 4 is a directive to the preprocessor. Lines beginning with # are processed by the
preprocessor before the program is compiled. The #import directive tells the preprocessor
to include the contents of the UIKit header file (<UIKit/UIKit.h>) in the program. The
#import directive ensures that a header file is included only once in the compilation
unit—an improvement over C and C++ #includes, for which you must guard against this.
UIKit.h represents a system library containing the declarations for the common user-in-
terface components, such as Sliders (UISlider) and Text Fields (UITextField).

The declaration of class Controller’s interface (line 6) states that this class inherits
from NSObject. Inheritance is a form of software reuse in which a new class is created by
absorbing an existing class’s members and enhancing them with new or modified capabil-
ities. All Cocoa classes in the UIKit framework inherit from NSObject. The class on the
left of the : is the subclass and the class on the right is the superclass.

We must declare instance variables for each GUI component that the Controller will
interact with programmatically (lines 9–19). IBOutlet is a macro that evaluates to
nothing. Its purpose is to let Interface Builder know that the variable being declared is an
outlet—meaning that it will be connected to a GUI component through Interface Builder.

1 // Fig. 4.10: Controller.h
2 // Controller class for the Tip Calculator app.
3 // Methods defined in Controller.m.
4 #import <UIKit/UIKit.h>
5
6 @interface Controller : NSObject
7 {
8 // outlets
9 IBOutlet UITextField *billField;

10 IBOutlet UITextField *tipFieldTen;
11 IBOutlet UITextField *tipFieldFifteen;
12 IBOutlet UITextField *tipFieldTwenty;
13 IBOutlet UITextField *tipFieldCustom;
14 IBOutlet UITextField *totalFieldTen;
15 IBOutlet UITextField *totalFieldFifteen;
16 IBOutlet UITextField *totalFieldTwenty;
17 IBOutlet UITextField *totalFieldCustom;
18 IBOutlet UILabel *customPercentLabel;
19 IBOutlet UISlider *customPercentSlider;
20
21 NSString *billTotal; // string for the "Bill Total" field
22 } //end instance variable declarations
23
24 - (IBAction)calculateTip:(id)sender; // calculates the tips
25 @end

Fig. 4.10 | Controller class for the Tip Calculator app.

Download from <www.wowebook.com>

ptg

4.6 Connecting Objects in Interface Builder 73

Outlets allow you to programmatically interact with the GUI via Objective-C variables.2

IBOutlet is followed by a type name and a variable name. The asterisk (*) before each vari-
able name indicates that the variable is a pointer—it contains an object’s location in
memory. All objects in Objective-C are manipulated via pointers.

The nine UITextField pointers (lines 9–17) represent the nine Text Fields you put in
your nib file. The UISlider (line 19) represents the Slider. We declare only one UILabel
(line 18), even though we created 10 Labels in the nib file. This is because only the Label
next to the Slider will change in response to user interactions. The rest of the Labels will
not change, so Controller doesn’t need to interact with them. The last instance variable
(line 21) is an NSString, a class that represents a sequence of characters. This variable does
not point to a GUI component, so it’s not preceded by IBOutlet. It will store a string used
during the tip calculation.

Finally, line 24 declares the calculateTip: method. The - symbol indicates that this
is an instance method, meaning it’s associated with an instance of the class (an object) as
opposed to the class itself. This allows the method access to instance variables and other
instance methods. Static methods are preceded by a + and are associated with a class. They
cannot access instance variables or instance methods directly. The method’s return type is
placed in parentheses to the right of the + or - symbol. The return type IBAction is a
macro that evaluates to void, similar to IBOutlet. It indicates to Interface Builder that the
method can be used as an event handler that responds to user interactions with GUI com-
ponents. Such a method is known as an action. After the return type is the method name.
The colon is a part of the name and signifies that the method takes an argument. A method
takes the same number of arguments as the number of colons in its name. Before each
argument is text that describes the argument (which you’ll see in later examples). The next
item in parentheses is the type of the argument. This is followed by the argument’s name.
The type id represents a pointer to any type of object. Since this type does not provide any
information about the object, the object’s type must be determined at runtime. This
dynamic typing is used for event handlers, because many different types of objects can gen-
erate events. Objective-C also has static typing in which an object’s type is known at com-
pile time. Line 24 can be read as “instance method calculateTip takes a pointer to an
object as an argument and returns nothing.” The @end keyword (line 25) terminates the
class declaration.

4.6 Connecting Objects in Interface Builder
Now that you’ve declared your class, let’s connect the IBOutlet instance variables to the
GUI components you placed on your app with Interface Builder. If you’ve closed Interface
Builder, reopen it by double clicking MainWindow.xib. In the Interface Builder Library
window, locate Object. This isn’t a GUI component, so you aren’t going to drag it onto
the app window. Instead, drag it onto the MainWindow.xib window (Fig. 4.11). This Ob-
ject will be used to create an instance of the Controller class so that we can connect each
IBOutlet instance variable to the appropriate GUI component.

With the new object selected, open the Inspector window. In the Identity tab change
Class from NSObject to Controller (Fig. 4.12). Then change to the Connections tab

2. In Chapter 6, we introduce memory management and a feature called “properties.” From that point
forward, we’ll declare all outlets as properties, as recommended by Apple.

Download from <www.wowebook.com>

ptg

74 Chapter 4 Tip Calculator App

(Fig. 4.13). Here you’ll see all the outlets (IBOutlets) and actions (IBActions) you defined
in the header file. Click the small dot next to the billField outlet and drag to the topmost
Text Field in the app window (Fig. 4.14). This connects the billField variable to the
specified Text Field—when you modify billField’s text property programmatically, the
text in the Text Field will change accordingly.

Fig. 4.11 | Adding a Custom Object to a nib file.

Fig. 4.12 | Changing the class of a custom object via the Identity tab.

Fig. 4.13 | Controller’s Connections tab of the Inspector window.

New Custom Object

Specifies that the
Custom Object
should create an
instance of the
Controller class

Connections tab

Download from <www.wowebook.com>

ptg

4.6 Connecting Objects in Interface Builder 75

Next you need to connect the rest of the outlets to their corresponding GUI compo-
nents. Once all the outlets are connected, you need to connect the events sent by the GUI
components to their respective actions. We want to call the calculateTip: method every
time the user enters or removes a digit to change the bill total and when the user moves
the Slider’s thumb. To do this, first select the top Text Field, then click the Connections
tab in the Inspector window. In the Events section, you can see all the possible events for
the Text Field. An event, such as user interaction with the GUI, triggers a message to be
sent to an object. This could be pushing a button, typing text or shaking the iPhone. You
want the Text Field to send the Controller a message every time the user presses a key—
the corresponding event for this is Editing Changed. A message tells an object to execute a
method. In this case, the event is triggered when the user edits the Text Field. When that
occurs, a message is sent to the Controller object to execute the calculateTip: method.
Click the circle next to the Editing Changed event and drag it to the Controller object in the
MainWindow.xib window (Fig. 4.15). A small gray overlay will appear to let you choose
which method you want to connect to the event. Choose the calculateTip: method.

You also want the Slider to call the calculateTip: method when the user moves the
thumb, so select the Slider and open the Connections tab in the Inspector window. Editing
Changed events are primarily used for Text Fields. For Sliders you typically handle the
Value Changed event. Drag a connection from the circle next to Value Changed to your
Controller object and select the calculateTip: method.

Fig. 4.14 | Connecting an outlet to a Text Field.

Connected Text Field billField outlet

Download from <www.wowebook.com>

ptg

76 Chapter 4 Tip Calculator App

4.7 Implementing the Class’s Methods
Now that you’ve connected the outlets and actions, you’ll implement the Controller’s
logic for handling the user-interface events. Figure 4.16 shows the completed code for the
file Controller.m. As you type the code, Xcode suggests completions for the class and
method names. You can also press the esc key to show a list of all the possible completions.

Fig. 4.15 | Connecting an action to a Controller object.

1 // Fig. 4.16: Controller.m
2 // Controller class for the tip calculator app.
3 #import "Controller.h"

4
5 @implementation Controller // begin implementation of Controller
6
7 // called after all the GUI elements have been loaded
8 - (void)awakeFromNib
9 {

10 [billField becomeFirstResponder]; // display keyboard for billField
11 } // end method awakeFromNib
12

Fig. 4.16 | Controller class for the Tip Calculator app. (Part 1 of 3.)

Editing Changed eventController object

Download from <www.wowebook.com>

ptg

4.7 Implementing the Class’s Methods 77

13 // called when the user touches a key or button
14 - (IBAction)calculateTip:(id)sender
15 {
16 static BOOL toggle = YES; // was this method trigger by the user?
17
18 // the user touched the keypad or moved the Slider
19 if (toggle)
20 {
21 toggle = NO; // this method will next be called programmatically
22 // retrieve the string in billField
23 NSString *billFieldText = billField.text;
24
25 // convert billFieldText to a float
26 float newTotal = [billFieldText floatValue];
27
28 // retrieve the slider value (between 0 and 0.3)
29 float customTipPercent = customPercentSlider.value;
30
31 // determine if billField generated the event
32 if (sender == billField)
33 {
34 // delete key pressed
35 if (billFieldText.length < billTotal.length)
36 billTotal = [NSString stringWithFormat:@"%.02f",
37 newTotal / 10];
38 else // new digit entered
39 billTotal = [NSString stringWithFormat:@"%.02f",
40 newTotal * 10];
41
42 // update billField with the properly formatted number
43 billField.text = billTotal;
44
45 // update newTotal with the new value
46 newTotal = [billTotal floatValue];
47
48 // calculate the tips for 10, 15 and 20%
49 float tenTip = newTotal * 0.10;
50 float fifteenTip = newTotal * 0.15;
51 float twentyTip = newTotal * 0.20;
52
53 // set the values for the "Tip" fields
54 tipFieldTen.text = [NSString stringWithFormat:@"%.02f", tenTip];
55 tipFieldFifteen.text =
56 [NSString stringWithFormat:@"%.02f", fifteenTip];
57 tipFieldTwenty.text =
58 [NSString stringWithFormat:@"%.02f", twentyTip];
59
60 // set the values for the "Total" fields
61 totalFieldTen.text =
62 [NSString stringWithFormat:@"%.02f", newTotal + tenTip];
63 totalFieldFifteen.text =
64 [NSString stringWithFormat:@"%.02f", newTotal + fifteenTip];

Fig. 4.16 | Controller class for the Tip Calculator app. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

78 Chapter 4 Tip Calculator App

Controller.m contains the implementation of the class’s methods. This implementa-
tion file begins by importing the Controller’s interface header file (line 3). This is
required so that you can implement methods declared in class Controller’s interface and
methods declared in class Controller’s direct and indirect superclasses. You may notice
that the header file name is enclosed in quotes on line 3, but line 4 of Controller.h
(Fig. 4.10) enclosed a header file name in angle brackets. To help the compiler locate the
files, quotes are used for files you create in your project, and angle brackets are used for
files in system libraries. The Controller class’s implementation starts at line 5 with the
@implementation keyword and ends at line 103 with the @end keyword. This implemen-
tation contains two methods—awakeFromNib and calculateTip:.

65 totalFieldTwenty.text =
66 [NSString stringWithFormat:@"%.02f", newTotal + twentyTip];
67 } // end if
68 // determine if customPercentSlider generated the event
69 else if (sender == customPercentSlider)
70 {
71 // the "Custom" slider was moved
72 // round the value to a whole number
73 int percentage = (int)(customTipPercent * 100);
74
75 // update the label with the new percentage followed by %
76 customPercentLabel.text =
77 [NSString stringWithFormat:@"%i%%", percentage];
78
79 // convert percentage back to float and assign to Slider's value
80 float newSliderValue = ((float) percentage) / 100;
81 customPercentSlider.value = newSliderValue;
82
83 // slider Thumb moved; update customTipPercent
84 customTipPercent = newSliderValue;
85 } // end else
86
87 // calculate customTip
88 float customTip = customTipPercent * newTotal;
89
90 // update tipFieldCustom with the new custom tip value
91 tipFieldCustom.text = [NSString stringWithFormat:@"%.02f",
92 customTip];
93
94 // update totalFieldCustom
95 totalFieldCustom.text =
96 [NSString stringWithFormat:@"%.02f", customTip + newTotal];
97 } // end if
98 else // the method was called programmatically
99 {
100 toggle = YES; // the method will next be called by user interaction
101 }
102 } // end method calculateTip:
103 @end // Controller’s implementation

Fig. 4.16 | Controller class for the Tip Calculator app. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

4.7 Implementing the Class’s Methods 79

Launching and Initializing the App
When a user launches the app, the app’s main function is called to begin the app’s execu-
tion. This function is defined by each application template in the file main.m. When an
app executes, its main nib file loads to create the application’s GUI. After all the objects
in the nib file are created, the runtime sends an awakeFromNib message to each object in
the nib file to perform app-specific initialization. Recall that an object of class Controller
was added to the nib file in Fig. 4.11.

Implementing awakeFromNib is an example of using the template method design pat-
tern in which an algorithm pre-exists, but one of its steps is defined elsewhere. In this app,
the algorithm for loading objects from a nib file is built into the process of starting up the
app. However, what to do when the algorithm calls method awakeFromNib on a particular
object is left to that object’s class.

In this app, we want billField to be the selected object and we want to display the
numeric keyboard immediately. To do this, we send a message to the billField object in
the Controller’s awakeFromNib method (lines 8–11). The syntax for sending a message is

[receiver message];

where receiver is an object and message is the name of one of the object’s methods. In line
10, billField is the receiver and becomeFirstResponder is the message. The billField’s
becomeFirstResponder method programmatically makes billField the active compo-
nent on the screen—as if the user touched it. Recall that we previously configured bill-
Field such that when it’s selected, the numeric keypad is displayed in the lower half of the
screen, so line 10 also causes this keypad to be displayed when the app loads. Method
becomeFirstResponder does not receive any arguments—you’ll see how to pass argu-
ments to methods momentarily.

calculateTip: Method
The calculateTip: method (lines 14–102) gets the current values of billField and cus-
tomPercentSlider and uses them to calculate the new tip and total values. Line 16 de-
clares a static BOOL and initializes it to YES. Local variables that are declared static are
initialized the first time the method is called and retain their values between calls—so tog-
gle is set to YES only the first time this method is called. Method calculateTip: was de-
signed to be called in response to user interactions with the GUI, but setting billField’s
value programmatically also generates an event that results in a call to this method. We
want to update billField’s text when calculateTip: was called as a result of a user in-
teraction, not by changing the Text Field’s value programmatically. If toggle is YES (line
19), we update billField, otherwise we do nothing. This prevents infinite recursion.

Line 23 accesses billField’s text property using dot (.) notation to obtain the Text
Field’s string content. This notation can be used only to access instance variables declared
as properties.3 In Objective-C, unlike many other object-oriented languages, dot notation
cannot be used to invoke methods. For methods, you must use the syntax for sending mes-
sages shown in our discussion of method awakeFromNib. Line 26 invokes billField’s
floatValue method to convert that string to a floating-point number. Line 29 gets cus-
tomPercentSlider’s value by accessing its value property, which returns a float.

3. We discuss properties in Chapter 6.

Download from <www.wowebook.com>

ptg

80 Chapter 4 Tip Calculator App

As you know, method calculateTip: is invoked in response to a user interaction with
billField or customPercentSlider. When an object receives a message from a GUI com-
ponent, it also receives a pointer to that component (known as the sender) as an argument.
Parameter sender’s type—id—represents a generic pointer that can point to any object.
Line 32 determines whether sender and billField point to the same object. When com-
paring pointers, the equality operator compares the addresses stored in its operands—if
these addresses are equal, the pointers point to the same object. In this case, that means the
user interacted with the billField. We perform a similar test at line 69 to determine
whether the user interacted with the customPercentSlider. This nested if…else state-
ment enables us to perform different tasks based on the component that caused the event.

Lines 35–40 calculate a new bill total based on whether the user added a digit to the
total or removed a digit from the total, then display the updated total in billField. We
do this by comparing the current length of billField’s string to the previous string’s
length (stored in billTotal); if the current string is shorter (line 35), the user deleted a
digit, so we divide newTotal by 10 to reposition the decimal point; otherwise, the user
entered a digit, so we multiply newTotal by 10 to reposition the decimal point.4 Lines 36
and 39 use NSString literals of the form @"string". A string literal that begins with @ rep-
resents an NSString object, whereas "string" (without the @ symbol) represents a C-style
string in Objective-C.

Lines 35–40 create a formatted string with two digits to the right of the decimal point
by calling NSString’s static class method stringWithFormat:, which performs string
formatting. The %.02f format specifier is a placeholder for the value newTotal / 10. The
.02 forces the string to include two places to the right of the decimal point (with trailing
0’s if necessary) and the letter f indicates that the value is a floating-point number. Com-
plete documentation for formatting strings can be found at

developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/
 Strings/introStrings.html

under Formatting String Objects. After the string billTotal is updated, line 43 program-
matically changes billField’s text to the new value.

The length comparison in line 35 uses the less-than (<) relational operator. The rela-
tional operators are shown in Figure 4.17.

4. This app assumes that “.” is the decimal separator. Many countries use “,” instead. To obtain the
locale-specific decimal separator, use the expression:

[[NSLocale currentLocale] objectForKey:NSLocaleDecimalSeparator]

You can use this and the NSNumberFormatter class for localized currency formatting.

Standard algebraic
relational operators

Objective-C
relational
operator

Sample
Objective-C
condition

Meaning of Objective-C
condition

= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. 4.17 | Relational operators in Objective-C. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

4.8 Wrap-Up 81

Lines 46–51 update newTotal with the floating-point value of the string billTotal,
then calculate the tips for 10%, 15% and 20% using the multiplication operator (*). The
arithmetic operators are shown in (Fig. 4.18). Lines 54–66 create formatted strings to dis-
play the updated tip and total amounts in the 10%, 15% and 20% tip and total Text Fields.

Lines 69–85 change the value of customPercentLabel and customPercentSlider
when the user moves the Slider. Line 73 obtains the Slider’s percentage value, then rounds
down to the nearest integer. Lines 76–77 update customPercentLabel with the new
value—formatted with the %i format specifier for integers. The %% format specifier inserts
a single % in the formatted string. Lines 80–81 compute and set a new Slider value using
the rounded number. This prevents the Slider from stopping between whole numbers.
Lines 88–96 update the custom tip and total Text Fields outside the inner if statement,
since those need to be updated regardless of which GUI component generated the event.

If this method was called programmatically (line 98), we set toggle to YES. This indi-
cates that this method will next be called in response to an event generated by a user inter-
action and prevents infinite recursion when the events are generated programmatically.

4.8 Wrap-Up
In this chapter, you created your first interactive iPhone app using object-oriented pro-
gramming in Objective-C. You learned how to control GUI components, receive messages
from the GUI and respond by updating the display. The user interacted with the app via
two new GUI components—Text Fields and Sliders. You learned how to create a class’s

< < x < y x is less than y

> > x > y x is greater than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Objective-C operation
Arithmetic
operator

Algebraic
expression

Objective-C
expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 4.18 | Arithmetic operators in Objective-C.

Standard algebraic
relational operators

Objective-C
relational
operator

Sample
Objective-C
condition

Meaning of Objective-C
condition

Fig. 4.17 | Relational operators in Objective-C. (Part 2 of 2.)

x
y--

Download from <www.wowebook.com>

ptg

82 Chapter 4 Tip Calculator App

interface and implementation. You used various Objective-C data types, keywords, oper-
ators and control statements while building your app.

In the next chapter, we introduce data structures while building the Favorite Twitter
Searches app. More advanced object-oriented techniques will be used, including inheri-
tance and the self and super keywords. You’ll also use C-style structures, and you’ll lay
out a GUI programmatically—allowing you to add and remove components in response
to user interactions.

Download from <www.wowebook.com>

ptg

5
Favorite Twitter® Searches

App
Collections and Cocoa GUI Programming

O B J E C T I V E S
In this chapter you’ll learn:

■ To use View objects in Interface Builder to add color to
an app.

■ To enable users to interact with an app via Buttons.

■ To use a Scroll View to display objects that do not fit on
the screen.

■ To write a custom init method to initialize an object’s
data when the object is created.

■ To use the classes NSMutableArray and
NSMutableDictionary to store mutable app data.

■ To create GUI components programmatically to add
components to the user interface in response to user
interactions.

■ To write the contents of an NSMutableDictionary to
a file and read the contents from a file.

■ To programmatically open a website in the Safari
browser.

Download from <www.wowebook.com>

ptg

84 Chapter 5 Favorite Twitter® Searches App

O
u

tl
in

e

5.1 Introduction
The Favorite Twitter Searches app allows users to save their favorite (possibly lengthy)
Twitter search strings with user-chosen, short tag names that are easy to remember. It en-
ables users to quickly and easily follow the tweets on their favorite topics. Twitter search
queries can be finely tuned using Twitter’s search operators—often resulting in lengthy
queries that are time consuming to type on an iPhone. (A complete list of Twitter search
operators can be found at search.twitter.com/operators.) The user’s favorite searches
are saved on the iPhone, so they’re available each time the app launches. Figure 5.1(a)
shows the app with four saved searches—the user can save many searches and scroll
through them. The tags are maintained in alphabetical order. Search queries and their cor-
responding tags are entered in the top Text Fields, and the “Save” Button adds the search
to the favorites list. Tapping a search button opens the Twitter search results in the Safari
web browser. Figure 5.1(b) shows the result of touching the “Deitel” Button button, which
we specified should search for c OR java from:deitel. You can edit the search using the

Buttons to the right of each favorite search Button. This enables you to tweak your
searches for better results after you save them as favorites. The “Clear All Tags” Button at
the bottom of the screen removes all the searches from the favorites list.

5.1 Introduction

5.2 Test-Driving the Favorite Twitter Searches App

5.3 Technologies Overview

5.4 Building the App

5.5 Wrap-Up

Fig. 5.1 | Favorite Twitter Searches app.

a) b)

Tag your search

Enter query
 expression here

Download from <www.wowebook.com>

ptg

5.2 Test-Driving the Favorite Twitter Searches App 85

5.2 Test-Driving the Favorite Twitter Searches App
Opening the Completed Application
Open the directory on your computer containing the Favorite Twitter Searches app proj-
ect. Double click FavoriteTwitterSearches.xcodeproj to open the project in Xcode.

Running the App
Click the Build and Go button to run the app in the iPhone Simulator (Fig. 5.2). The top
two Text Fields allow you to enter new searches, and the bottom section will display pre-
viously saved searches (in this case none).

Adding a New Favorite Search
Enter Apple OR iPhone into the top Text Field specifying your search subject. Enter iPhone
into the bottom Text Field. This will be the short name displayed in the Tagged Searches
section. Press the “Save” Button to save the search—a new search Button appears in the
Tagged Searches section.

Editing a Search
To the right of each search Button is a Detail Disclosure Button (). Touch this Button to
reload your query and tag into the Text Fields at the top of the app for editing. Let’s restrict
our search to within five miles of Apple’s headquarters by adding near:Cupertino with-
in:5 mi to the end of the query. Touching Save updates the saved search.

Viewing Twitter Search Results
To see the search results touch the “iPhone” Button. This opens the Safari web browser and
accesses the Twitter website to obtain and display the results.

Fig. 5.2 | Running the Favorite Twitter Searches app.

Download from <www.wowebook.com>

ptg

86 Chapter 5 Favorite Twitter® Searches App

5.3 Technologies Overview
This app uses three new GUI components—View, Scroll View and Button. A View provides
the fundamental capabilities of many other GUI components. Labels and Image Views are
types of Views. Buttons and Sliders are types of Controls. A Control is a type of View, so But-
tons and Sliders are also Views. Such components respond to touches, display complicated
graphics and perform 3D animations. In this app, we’ll use a View simply to place a back-
ground color in the area of the app where saved searches are displayed.

A Scroll View is a View that lets you scroll to access content that’s too large to display
on the screen. We use a Scroll View to display an arbitrarily large list of saved searches,
because the user may have more favorite searches than can fit on the screen.

A Button sends actions when tapped. Five Button styles are available in Interface
Builder (Fig. 5.3). Additional button styles are available for Toolbars (Bar Button Items; dis-
cussed in Chapter 10) and Tab Bars (Tab Bar Items; not discussed in this book). In this app,
we use Rounded Rect and Detail Disclosure Buttons. The Detail Disclosure Button ()
allows the user to edit an existing search. The large Buttons that open each search in Safari
are Rounded Rect Buttons.

We store the search query/tag pairs in an NSDictionary. We maintain the set of
Rounded Rect Buttons in an NSArray. This app uses the mutable (or editable) counterparts
of these collections—NSMutableArray and NSMutableDictionary, respectively—since the
immutable versions cannot be changed after they are created and initialized.

We also show how to create GUI components programmatically to modify the GUI
in response to user interactions. We use this technique to create a Round Rect Button for
each new search the user adds. We programmatically set the Button’s sizes and positions
on the screen. We also programmatically specify their target objects and actions.

5.4 Building the App
Open Xcode and create a new Window-based Application project named FavoriteTwit-
terSearches. Double click MainWindow.xib to open Interface Builder.

Button Style Sample Description

Rounded Rect Multipurpose Button used to perform
an action.

Detail Disclosure Used to display additional informa-
tion about an element.

Add Contact Used to display a “people picker” for
choosing an existing contact from the
address book.

Info Dark Info Button with dark background.
Often used to access an app’s settings.

Info Light Info Button with light background.
Often used to access an app’s settings.

Fig. 5.3 | Interface Builder Button styles.

Download from <www.wowebook.com>

ptg

5.4 Building the App 87

Laying Out the GUI
Drag a Label from the Library and name it Favorite Twitter Searches. In the Inspector,
increase Font Size to 18. Center the Label in the top of the window by using Layout > Align-
ment > Align Horizontal Center in Container. Next, drag two Text Fields to the app window.
Select the first Text Field. In the Inspector’s Attributes tab, add the text Enter query ex-
pression here in the Placeholder field. Select the second Text Field and set its Placeholder
text to Tag your search. Resize the Text Field objects and arrange them so that your app
window looks like Fig. 5.4.

Next, drag a Round Rect Button from the Library window onto the app window. In
the Inspector’s Attributes tab, set the Title to Save.

Next, drag a View from the Library onto the app window. Expand the View to cover
the app window below the Text Fields. Select this View and open the Inspector. Under the
Attributes tab click the color swatch next to Background. This opens the Colors window.
Click the second tab (), and select RGB Sliders from the list. Every color can be created
from a combination of red, green and blue components called RGB values, each in the
range 0–255. The first value defines the amount of red in the color, the second the amount
of green and the third the amount of blue. The larger a particular value, the greater the
amount of that color. Enter the value 129 for Red, 160 for Green and 168 for Blue (or use
your own preferred color values). Close the Color window and switch back to the app
window. The color of the View changes to reflect the new color.

Drag a Label onto the View and set its text to Tagged Searches. In the Inspector, click
the color swatch next to the Color label. Change the color to white, then center the Label
at the top of the View (Fig. 5.6).

Fig. 5.4 | App window with a Label and two Text Fields.

User enters the search
query here

User enters the tag
name for the search
here

Download from <www.wowebook.com>

ptg

88 Chapter 5 Favorite Twitter® Searches App

Next, drag a Round Rect Button from the Library and position it at the bottom of the
View. Double click the Button and set its title to Clear All Tags (Fig. 5.7).

Next, you’ll add a Scroll View (an instance of the UIScrollView class), which enables
the user to scroll through content that’s too large to display on the screen. Position a Scroll
View in the colored View between the Button and the Label (Fig. 5.8). You’ve now com-
pleted the GUI design. Save the nib file and switch back to Xcode.

Fig. 5.5 | Adding the “Save” Button to the app window.

Fig. 5.6 | View with a colored background and a white Label at the top.

“Save” Button

Colored View

White Label

Download from <www.wowebook.com>

ptg

5.4 Building the App 89

Defining the Controller Class
In Xcode, select the Classes group and create a new class (as discussed in Section 4.5).
Make sure NSObject is selected in the Subclass of list. Click Finish and open the newly cre-
ated file Controller.h. Figure 5.9 shows the completed class declaration.

Lines 6–7 define two constants. In Chapter 6, we’ll introduce the preferred way to
create constants with static const. BUTTON_SPACING defines the spacing between Buttons
in the Scroll View, and BUTTON_HEIGHT represents the height of each Button. If you want to
change how each Button is displayed, you can simply alter these values.

Fig. 5.7 | App window with a Round Rect Button at the bottom.

Fig. 5.8 | Adding a UIScrollView to the app window.

“Clear All Tags” Button

Scroll View

Download from <www.wowebook.com>

ptg

90 Chapter 5 Favorite Twitter® Searches App

Lines 12–14 define a UIScrollView and two UITextField pointers. These IBOutlets
correspond to the Scroll View and Text Fields we created with Interface Builder.

Line 17 declares an NSMutableDictionary pointer named tags which will point to
an object that stores Twitter search queries and their corresponding tags. NSMutableDic-
tionary is a subclass of NSDictionary, a collection of key–value pairs in which each key
has a corresponding value. The word “mutable” in the name indicates that an object of
this class can be modified after it’s created—by contrast, the entries in an NSDictionary
object cannot be modified after the collection is initialized. The keys are the tags you

1 // Controller.h
2 // Controller class for the Favorite Twitter Searches app.
3 #import <UIKit/UIKit.h> // this line is auto-generated
4
5 // constants that control the height of the buttons and the spacing
6
7
8
9 @interface Controller : NSObject // this line is auto-generated

10 {
11 // Interface Builder outlets
12 IBOutlet UIScrollView *scrollView; // for scrollable favorites
13 IBOutlet UITextField *tagField; // text field for entering tag
14 IBOutlet UITextField *queryField; // text field for entering query
15
16 // stores the tag names and searches
17
18
19 // stores the Buttons representing the searches
20
21
22 // stores the info buttons for editing existing searches
23
24
25 // location of the file in which favorites are stored
26 NSString *filePath;
27 } // end instance variable declarations
28
29 - (IBAction)addTag:sender; // adds a new tag
30 - (IBAction)clearTags:sender; // clears all of the tags
31 - (void)addNewButtonWithTitle:(NSString *)title; // creates a new button
32 - (void)refreshList; // refreshes the list of buttons
33 - (void)buttonTouched:sender; // handles favorite button event
34 - (void)infoButtonTouched:sender; // handles info button event
35 @end // end Controller interface
36
37
38
39
40
41

Fig. 5.9 | Controller class for the Favorite Twitter Searches app.

#define BUTTON_SPACING 10

#define BUTTON_HEIGHT 40

NSMutableDictionary *tags;

NSMutableArray *buttons;

NSMutableArray *infoButtons;

// begin UIButton's sorting category
@interface UIButton (sorting)

// compares this UIButton's title to the given UIButton's title
 - (NSComparisonResult)compareButtonTitles:(UIButton *)button;
@end // end category sorting of interface UIButton

Download from <www.wowebook.com>

ptg

5.4 Building the App 91

entered, and the corresponding value for each key is the search query. The collection must
be mutable, because we insert a new key–value pair every time the user adds a new search.

We also use collections to store the Buttons created for each search and their corre-
sponding Buttons for editing favorites. Lines 20 and 23 declare NSMutableArray pointers,
named buttons and infoButtons. NSMutableArray (a subclass of NSArray) represents a
mutable array of objects. Similarly to NSMutableDictionary, NSMutableArray allows you
to alter the elements of the array without creating a new array object.

Lines 29–34 declare the methods of our class. The first two are IBActions that will
appear in Interface Builder as actions that components can invoke to handle events.
Method addTag: adds a new search favorite. Method clearTags: clears all previously
saved favorites. Method addNewButtonWithTitle: adds a new Button to the GUI when
the user adds a new search favorite. Method refreshList updates the Buttons on the
screen when the user adds a new favorite. Method buttonTouched: loads a selected search
into the web browser. Method infoButtonTouched: loads an existing search into the Text
Fields for editing.

Lines 38–41 add the sorting category to UIButton. A category is a group of related
method implementations that enhance an existing class. Category methods are added to a
class at runtime, so we can add methods to UIButton even though we cannot edit the orig-
inal class declaration and implementation. The sorting category has only one method—
compareButtonTitles: (defined in Fig. 5.18), which compares two UIButtons’ titles
alphabetically. We use this method to sort an NSMutableArray of UIButtons.

The Abstract Factory Design Pattern
NSArray and NSDictionary are examples of the abstract factory design pattern. In this pat-
tern the abstract factory hides from the client code the details of creating objects of classes
that are typically in a class hierarchy. The client code does not know the actual type of the
object that is returned by the factory, only that the object has the capabilities that the client
needs. Typically, an abstract factory provides methods that the client calls to obtain ap-
propriate objects. When you create an NSArray, the object you receive is actually an object
of a private NSArray subclass. The client code interacts with the object via the abstract
NSArray superclass’s public interface. NSArray and its private subclasses are collectively
known as a class cluster.

Connecting Objects in Interface Builder
Once you’ve finished editing Controller.h, save it and open MainWindow.xib in Interface
Builder. Drag an Object from the Library window onto the window labeled MainWin-
dow.xib (Fig. 5.10). Select your new object and open the Inspector. In the Identity tab
change the value in the Class list to Controller. The actions and outlets we’ve defined
should appear under the Class Outlets and Class Actions headers.

Switch to the Connections tab in the Inspector. There are three outlets to connect to
GUI components. Connect the queryField outlet to the top Text Field by dragging from
the circle to the right of the outlet name to the corresponding component. Similarly, con-
nect scrollView to the Scroll View in the middle of the screen and tagField to the second
Text Field. Make these connections now. You can also access the connections by right
clicking the Controller in the MainWindow.xib window.

Download from <www.wowebook.com>

ptg

92 Chapter 5 Favorite Twitter® Searches App

Next you’ll connect the events generated by GUI components to their corresponding
actions. The events generated in this app are sent by the two Button objects. Select the
“Save” Button and open the Connections tab of the Inspector. In this case, we use the
Button’s Touch Up Inside event, which is triggered when the user touches and releases a
Button while staying inside its bound. This means the event is not triggered if the user
drags outside the Button while maintaining contact with the screen. Connect the Touch Up
Inside event to your Controller object. When the dialog box appears prompting you to pick
a method, choose addTag: from the list. Next, select the “Clear All Tags” Button. Connect
its Touch Up Inside event to the Controller object and select the clearTags: method. Save
the file and close Interface Builder.

Defining Class Controller’s Implementation
Now that we’ve declared class Controller and connected our actions and outlets, we need
to provide the class’s implementation. For this app, we must implement the six methods we
declared in Controller.h. We also override two others inherited from class NSObject—the
init method (used to initialize the object) and the dealloc method (used to release the ob-
ject from memory). Finally, we define the awakeFromNib method because we added an in-
stance of the class to the nib file in Interface Builder. This method will be invoked after the
nib file loads and the GUI is created. In Xcode, open the file Controller.m.

init Method of Class Controller
The method init (Fig. 5.11, lines 8–44), which we inherit from NSObject and override
here, initializes our Controller class’s instance variables. In this example, method init is
called automatically when the nib file is loaded, which creates the GUI components and the
Controller object. When you override this method, you must call the superclass’s version
to ensure that inherited instance variables are properly initialized (line 10). Every object can
access a pointer to itself with the keyword self. The keyword super references the same
object as self, but super is used to access members inherited from the superclass. Line 10
sends the init message to super, which calls the init method of superclass NSObject. It’s
important to initialize the inherited superclass instance variables before performing custom
initialization.

Fig. 5.10 | Adding a Custom Object to a nib file.

Used to create an
instance of our
Controller class

Download from <www.wowebook.com>

ptg

5.4 Building the App 93

If the superclass doesn’t instantiate properly, init returns a “pointer to nothing,”
which is represented by the keyword nil. Line 12 ensures that the superclass was properly
initialized by comparing self to nil. Line 43 returns self. If self is not nil, initializa-
tion was successful; otherwise, initialization failed.

1 // Fig. 5.11: Controller.m
2 // Controller class for the Favorite Twitter Searches app.
3 #import "Controller.h" // this line is auto-generated
4
5 @implementation Controller // this line is auto-generated
6
7 // called when object is initialized
8 - (id)init
9 {

10
11
12 if (self != nil) // if the superclass initialized properly
13 {
14 // creates list of valid directories for saving a file
15
16
17
18 // get the first directory
19 NSString *dir = [paths objectAtIndex:0];
20
21 // concatenate the file name "tagsIndex.plist" to the path
22 filePath = [[NSString alloc] initWithString:
23 [dir stringByAppendingPathComponent:@"tagsIndex.plist"]];
24
25
26
27 // if the file does not exist, create an empty NSMutableDictionary;
28 // otherwise, initialize an NSDictionary with the file's contents
29
30
31
32
33
34
35
36
37
38
39 buttons = [[NSMutableArray alloc] init]; // create array
40 infoButtons = [[NSMutableArray alloc] init]; // create array
41 } // end if
42
43 return self; // if self == nil, object not initialized properly
44 } // end method init
45

Fig. 5.11 | Controller class for the Favorite Twitter Searches app.

self = [super init]; // initialize the superclass members

NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

NSFileManager *fileManager = [NSFileManager defaultManager];

if ([fileManager fileExistsAtPath:filePath] == NO)
{
 tags = [[NSMutableDictionary alloc] init];
} // end if
else

{
 tags = [[NSMutableDictionary alloc]
 initWithContentsOfFile:filePath];
} // end else

Download from <www.wowebook.com>

ptg

94 Chapter 5 Favorite Twitter® Searches App

If initialization of the superclass’s members succeeds, lines 15–40 initialize class Con-
troller’s instance variables. To initialize filePath, we need to ask the operating system
where we’re allowed to save files for the app. According to the iPhone developer documen-
tation, it’s poor practice to specify hard coded paths in iPhone apps, because the underlying
directory structure could change in future iPhone OS releases. Calling NSSearch-
PathForDirectoriesInDomains (lines 15–16) returns an NSArray containing possible loca-
tions. The method takes three arguments and returns an NSArray containing a list of paths
matching our search. The first argument indicates that we’re looking for a directory that
can store documents. The second says that we’re looking for the directory relative to the
current user. The iPhone SDK does not give you access to shared system folders; you can
use only folders that are specific to your app. The last argument tells the function to return
complete path strings by expanding any tildes (~), which are used in UNIX systems to rep-
resent the user’s home directory. To see what the iPhone’s file system looks like, navigate
to the folder ~/Library/Application Support/iPhone Simulator/User/Applications.
Because each iPhone app has one documents directory, the function NSSearchPathForDi-
rectoriesInDomains returns an NSArray containing only one object. Line 19 obtains the
path to that directory from the array with method objectAtIndex, which returns the object
at the specified index.

Lines 22–23 create a new string and initialize it with a string containing the name of
the file in which we’ll save the favorites (tagsIndex) appended to the string dir. NSString
method initWithString: initializes a string with another string’s contents. NSString
method stringByAppendingPathComponent: returns a new string with its argument
appended to the string on which the method is called. The method ensures that the path
components are separated by the path-separator character (/). Variable filePath now
contains the path where we’ll save and load the app’s data.

Line 25 retrieves the default NSFileManager—used to perform common file-system
operations such as adding, copying and removing files. This is another example of the sin-
gleton design pattern. Lines 29–32 check if the file already exists using NSFileManager
method fileExistsAtPath:, which receives the file’s name and path as an argument and
returns YES or NO. The file will already exist if it was created during a previous execution
of the app. If it does not exist, we initialize tags as an empty NSMutableDictionary. To
create the object, we call NSMutableDictionary’s alloc method. We then initialize the
object by calling NSMutableDictionary’s init method. If the file exists, we initialize tags
with the contents of that file (lines 35–36). NSMutableDictionary method initWithCon-
tentsOfFile: receives the file’s name and path as an argument and initializes the NSMut-
ableDictionary with the file’s contents. Lines 39–40 initialize buttons and infoButtons
as empty NSMutableArrays. Note that, unlike many other object-oriented programming
languages, Objective-C does not have constructors that are guaranteed to get called when
an object is created. It’s the responsibility of the object’s creator to invoke an appropriate
initialization method on the object.

awakeFromNib Method of Class Controller
The awakeFromNib method (Fig. 5.12, lines 47–51) creates Buttons for each search saved
by the user. We do this here rather than in method init to ensure that the GUI has loaded
before trying to programmatically attach new Buttons to it. Recall that awakeFromNib is
called once your GUI objects have finished loading. Method init is called before the GUI

Download from <www.wowebook.com>

ptg

5.4 Building the App 95

is created. Method awakeFromNib iterates over the entries in tags and creates a new
UIButton for each one. We use a for...in loop, which iterates through the items in a col-
lection. For an NSDictionary, a for...in loop iterates through the collection’s keys by de-
fault. For each key, we call the addNewButtonWithTitle: method (lines 151–197), passing
the user-specified tag as the text to display on the Button.

refreshList Method of Class Controller
Method refreshList (Fig. 5.13, lines 54–99) updates the list of searches on the screen to
reflect changes to the number of Buttons in the Scroll View. First, lines 57–58 remove all
the UIButtons.1 The subviews property of scrollView returns all the Views currently
managed by scrollView, or in our case all the UIButton objects previously added. A sub-
view is a View contained in a larger View. In this case, each Button is an individual View in
scrollView. The containing View is called the superview. For each UIButton, we call the
removeFromSuperview method, which tells the UIButton to remove itself from scroll-
View. We also clear the NSMutableArray infoButtons (line 60) by calling its removeAll-
Objects method. We’ll be adding new objects to it later.

46 // called when the GUI components finish loading
47 - (void)awakeFromNib
48 {
49 for (NSString *title in tags)
50 [self addNewButtonWithTitle:title];
51 } // end method awakeFromNib
52

Fig. 5.12 | Method awakeFromNib of class Controller.

1. This method of removing all the UIButtons and re-adding them will become slow if the number of
UIButtons is large. To better manage large lists of items, you can use the UITableView class, which
we present in Chapter 10.

53 // remove all buttons and populate View with favorites
54 - (void)refreshList
55 {
56 // remove all the buttons from the GUI
57
58
59
60
61
62 float buttonOffset = BUTTON_SPACING; // reset the spacing
63
64 // repopulate the scroll view with buttons
65 for (UIButton *button in buttons)
66 {
67
68
69

Fig. 5.13 | Method refreshList of class Controller. (Part 1 of 2.)

for (UIButton *button in scrollView.subviews)
 [button removeFromSuperview];

[infoButtons removeAllObjects];

CGRect buttonFrame = button.frame; // fetch the frame of button
buttonFrame.origin.x = BUTTON_SPACING; // set the x-coordinate
buttonFrame.origin.y = buttonOffset; // set the y-coordinate

Download from <www.wowebook.com>

ptg

96 Chapter 5 Favorite Twitter® Searches App

Lines 65–98 iterate through the buttons array and set each UIButton’s width, height
and location in scrollView. Line 67 gets the current Button’s frame property. This prop-
erty (of type CGRect) is a structure containing a CGSize named size and a CGPoint named
origin. A structure is an aggregate type capable of storing related data items of different
types under one name. The size property controls the width and height of the UIButton,
and origin controls its placement in the superview. In this case, the superview is scroll-
View. Line 68 sets the distance of the UIButton from the left side of the Scroll View, and
line 69 sets the distance from the top. Lines 72–73 set the width of the UIButton, which
is the entire width of the scrollView object minus the padding on either side, minus the
size of the UIButton we’ll be placing next to it. We then set the height (line 74), assign the
new frame to the UIButton (line 75) and add the UIButton to scrollView (line 76).

Next we create a Detail Disclosure Button () that will be displayed to the right of the
UIButton we just added. We create the UIButton (lines 79–80), add it to infoButtons
(line 81), then set its frame property. This is similar to how we set the frame of the pre-
vious UIButton. We don’t set width and height, because we want to keep the default
values. Lines 92–93 specify that the action infoButtonTouched: should be called in
response to infoButton’s UIControlEventTouchUpInside event.

70
71 // button width is the size of the view minus padding on each side
72
73
74
75
76
77
78 // create detail button
79
80
81 [infoButtons addObject:infoButton]; // add infoButton to infoButtons
82
83 // position button to the right of the button we just added
84 buttonFrame = infoButton.frame; // fetch the frame of infoButton
85 buttonFrame.origin.x = scrollView.frame.size.width - 35;
86
87 // this button is a bit shorter than normal buttons, so we adjust
88 buttonFrame.origin.y = buttonOffset + 3;
89 infoButton.frame = buttonFrame; // assign the new frame
90
91 // make the button call infoButtonTouched: when it is touched
92
93
94 [scrollView addSubview:infoButton]; // add infoButton as a subview
95
96 // increase the offset so the next button is added further down
97 buttonOffset += BUTTON_HEIGHT + BUTTON_SPACING;
98 } // end for
99 } // end refreshList
100

Fig. 5.13 | Method refreshList of class Controller. (Part 2 of 2.)

buttonFrame.size.width =
 scrollView.frame.size.width - 5 * BUTTON_SPACING;
buttonFrame.size.height = BUTTON_HEIGHT; // set the height of button
button.frame = buttonFrame; // assign the new frame to button
[scrollView addSubview:button]; // add button as a subview

UIButton *infoButton =
 [UIButton buttonWithType: UIButtonTypeDetailDisclosure];

[infoButton addTarget:self action:@selector(infoButtonTouched:)
 forControlEvents:UIControlEventTouchUpInside];

Download from <www.wowebook.com>

ptg

5.4 Building the App 97

infoButtonTouched: Method of Class Controller
The infoButtonTouched: method (Fig. 5.14, lines 102–114) allows the user to edit an ex-
isting search. This method is called when the user touches a Detail Disclosure Button in the
scrollView. When this happens, we update tagField and queryField with the appropri-
ate values. First, line 105 gets the index in infoButtons of the UIButton that was touched.
The sender argument (which implicitly has the type id if no type is specified) is passed
into the event handler automatically and represents the component with which the user
interacted. The UIButton next to the touched Detail Disclosure Button is at the same index
in buttons, so we get that UIButton and retrieve its title (line 108). We then set tag-
Field’s text property to the title (line 109), look up the title in tags (line 112) by calling
NSMutableDictionary’s valueForKey method and update queryField’s text property
with the returned value (line 113).

addTag: and clearTags: Methods of Class Controller
The addTag: method (Fig. 5.15, lines 117–139) adds a new Button to the app when the
user touches the “Save” Button. Lines 120–121 hide the keyboard by deselecting tagField
and queryField. Lines 123–124 obtain the values in tagField and queryField. If either
field is empty, we exit the method (line 128). Line 130 checks whether an entry for this
tag already exists. If not, we add a new UIButton (line 131). Otherwise, we simply alter
the existing tag’s value using NSMutableDictionary’s setValue:forKey: method (line
133). This method takes an NSString as the key and an object as the value.

101 // called when the user touches an info button
102 - (void)infoButtonTouched:sender
103 {
104 // get the index of the button that was touched
105
106
107 // get the title of the button
108 NSString *key = [[buttons objectAtIndex:index] titleLabel].text;
109 tagField.text = key; // update tagField with the button title
110
111 // get the search query using the button title
112
113 queryField.text = value; // update queryField with the value
114 } // end method infoButtonTouched:
115

Fig. 5.14 | Method infoButtonTouched: of class Controller.

116 // add a favorite search
117 - (IBAction)addTag:sender
118 {
119 // make the keyboard disappear
120
121
122

Fig. 5.15 | Methods addTag: and clearTags: of class Controller. (Part 1 of 2.)

int index = [infoButtons indexOfObject:sender];

NSString *value = [tags valueForKey:key];

[tagField resignFirstResponder];
[queryField resignFirstResponder];

Download from <www.wowebook.com>

ptg

98 Chapter 5 Favorite Twitter® Searches App

We next clear the text in queryField and tagField (lines 135–136). Because a new
entry has been added, we need to update the file containing the saved favorites (line 138).
The writeToFile:atomically: method of NSDictionary writes the entire contents of the
NSDictionary to a file.2 Providing NO as the second argument tells the NSDictionary to
write directly to the file rather than using a temporary file. This will perform the write
operation faster but could corrupt the file if a write got interrupted.

The clearTags: method (lines 142–148) empties the tags collection, then writes its
contents to the file (thus clearing the file’s contents). We then remove all the Buttons from
the buttons collection and call refreshList to update the app’s user interface.

addNewButtonWithTitle: Method of Class Controller
The addNewButtonWithTitle: method (Fig. 5.16, lines 151–197) adds a new UIButton
in alphabetical order to NSArray buttons. Line 154 creates the UIButton as a Round Rect
Button. Line 157 sets the title of the UIButton. Lines 160–161 connect the UIButton’s
UIControlTouchUpInside event to our Controller’s buttonTouched: action. Method
addTarget:action:forControlEvents: receives three arguments. The first is a pointer to
the object that defines the action, the second is the action to invoke and the third is a con-
stant representing the event that invokes the action. In the second argument, @selector

123 NSString *key = tagField.text; // get the text in tagField
124 NSString *value = queryField.text; // get the text in queryField
125
126 // test if either field is empty
127 if (value.length == nil || key.length == nil)
128 return; // exit from the method
129
130 if ([tags valueForKey:key] == nil) // test if the tag already exists
131 [self addNewButtonWithTitle:key]; // if not, add a new button
132
133
134
135 tagField.text = nil; // clear tagField of text
136 queryField.text = nil; // clear queryField of text
137
138
139 } // end method addTag:
140
141 // remove all the tags
142 - (IBAction)clearTags:sender
143 {
144 [tags removeAllObjects]; // clear tags
145 [tags writeToFile:filePath atomically:NO]; // update favorite file
146 [buttons removeAllObjects]; // clear buttons
147 [self refreshList]; // update the display
148 } // end clearTags:
149

2. The file uses Apple’s property list (also called plist) format, which is an XML document with the
.plist extension by convention.

Fig. 5.15 | Methods addTag: and clearTags: of class Controller. (Part 2 of 2.)

[tags setValue:value forKey:key]; // add a new entry in tags

[tags writeToFile:filePath atomically:NO]; // save the data

Download from <www.wowebook.com>

ptg

5.4 Building the App 99

is a compiler directive that enables you to pass a method name as data in a method call.
This is similar to a function pointer in C and C++.

Line 163 inserts the UIButton at the end of the array using NSMutableArray’s addOb-
ject: method. Next, we sort the UIButtons in alphabetical order by their titles using
NSMutableArray’s sortUsingSelector: method. We pass the UIButton category method
compareButtonTitles:, which we define in Figure 5.18. This method compares the
NSStrings that represent the titles of two UIButtons.

So far, we haven’t changed the GUI—we’ve modified only a list of UIButton objects.
To update the GUI with the updated list of Buttons, we call our refreshList method (line
167). We’ll review this method shortly.

The last step in adding a new UIButton is adjusting the contentSize property of
scrollView, which sets the size of scrollView’s contents so it knows how much to let the
user scroll in any given direction. Lines 171–172 pass dimensions to the CGSizeMake func-
tion, creating a new CGSize (a data structure containing width and height) representing
those dimensions. The first argument is the width, which we don’t want to change since
this app does not require horizontal scrolling. The second argument is the height. This is
the sum of the heights of a UIButton and the spacing below it, multiplied by the number
of UIButtons. We also add space before the first UIButton. Line 173 readjusts the size of
the Scroll View to accommodate the new Button by calling the UIScrollView’s set-
ContentSize: method.

150 // add a new button with the given title to the bottom of the list
151 - (void)addNewButtonWithTitle:(NSString *)title
152 {
153 // create a new button
154
155
156 // give the button the title of the tag
157 [button setTitle:title forState:UIControlStateNormal];
158
159 // tell the button to call buttonTouched: when it is touched
160 [button addTarget:self action:@selector(buttonTouched:)
161 forControlEvents:UIControlEventTouchUpInside];
162
163 [buttons addObject:button]; // add the UIButton to the end of the array
164
165
166
167 [self refreshList]; // refresh the list of favorite search Buttons
168
169 // Adjust the content size of the view to include the new button. The
170 // view scrolls only when the content size is greater than its frame.
171
172
173
174 } // end addNewButtonWithTitle:
175

Fig. 5.16 | Method addNewButtonWithTitle: of class Controller.

UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];

// sort the NSMutableArray by the UIButton's titles
[buttons sortUsingSelector:@selector(compareButtonTitles:)];

CGSize contentSize = CGSizeMake(scrollView.frame.size.width,
 buttons.count * (BUTTON_HEIGHT + BUTTON_SPACING) + BUTTON_SPACING);
[scrollView setContentSize:contentSize];

Download from <www.wowebook.com>

ptg

100 Chapter 5 Favorite Twitter® Searches App

The Command Design Pattern
The method addTarget:action:forControlEvents: that we use to register an event
handler programmatically is an example of the command design pattern in which an object
contains the information necessary to call a method at a later time—typical of event han-
dlers. This information includes the method name and the object on which that method
should be called. In this case, a UIButton object is storing information necessary to call the
buttonTouched: event-handling method on the Controller object when a user touches
the button.

buttonTouched: Method of Class Controller
The buttonTouched: method (Fig. 5.17, lines 177–190) tells the Safari browser to open
the search query related to the touched Button. First we get the touched UIButton’s text
(line 179). Notice that to access sender’s titleLabel property we use object messaging
and not dot notation. Since sender is of the generic type id, which defines no properties,
trying to access titleLabel via dot notation would result in a compilation error.3 In ob-
ject messaging the receiving object and calling method are dynamically bound at runtime.
The compiler does not check whether you call a method that is not applicable for the re-
ceiving object—such an error would cause your app to fail at runtime. In this case, we
know that sender is a UIButton which defines a titleLabel property. We look up this
title in tags (lines 182–183) to retrieve the search string, then URL encode it.

Method stringByAddingPercentEscapesUsingEncoding: encodes the special char-
acters in the string so that it’s a properly formatted URL that can be passed to the web
browser. We append this formatted search string to the Twitter search URL (lines 186–
187) and create an NSURL object (line 188). The %@ format specifier is a placeholder for an
object that should be converted to a string. Line 189 tells the operating system to open the
URL. Each application running on the iPhone OS has one instance of UIApplication—

3. If you cast sender to a UIButton*, you can use dot notation to access its properties.

176 // load selected search in web browser
177 - (void)buttonTouched:sender
178 {
179 NSString *key = [sender titleLabel].text; // get Button's text
180
181 // get the search and URL encode any special characters
182
183
184
185 // format the URL
186 NSString *urlString = [NSString stringWithFormat:
187 @"http://search.twitter.com/search?q=%@", search];
188
189
190 } // end buttonTouched
191 @end // end implementation controller
192

Fig. 5.17 | Method buttonTouched: of class Controller.

NSMutableString *search = [[tags valueForKey:key]
 stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

NSURL *url = [NSURL URLWithString:urlString];
[[UIApplication sharedApplication] openURL:url];

Download from <www.wowebook.com>

ptg

5.5 Wrap-Up 101

used to manage the app (e.g., managing windows and opening outside resources). This is
an example of the singleton design pattern, which guarantees that a system instantiates a
maximum of one object of a given class. For class UIApplication, we retrieve this object
by invoking sharedApplication and call openURL to open the web page in Safari. Any
NSURL beginning with http:// is opened by Safari by default. This causes your app to quit.
The page is then loaded and displayed by Safari.

UIButton’s sorting Category
Lines 194–201 implement method compareButtonTitles: of UIButton’s sorting cate-
gory (Fig. 5.18). Lines 198–199 use NSString’s caseInsensitiveCompare: method to
compare the text property of the UIButton argument to that of the UIButton receiving
the compareButtonTitles: message, then return the result. This method is used to deter-
mine the sorting order of the UIButtons.

5.5 Wrap-Up
In this chapter, we created the Favorite Twitter Searches app. First we designed the GUI,
introducing the Button and View components. We then wrote Objective-C code, using
the classes NSMutableDictionary and NSMutableArray. We introduced the init method
along with the self and super keywords for getting pointers to the current object and ac-
cessing its superclass’s members. Later, you saw how to create GUI components program-
matically. This allowed you to modify the GUI dynamically in response to user
interactions. We showed how to programmatically add a target object and an action to a
control. You then saw how to format a URL and use the iPhone OS to open it in the Safari
web browser. We also showed how to sort elements in an NSMutableArray using its sort-
UsingSelector method. In Chapter 16, we’ll revisit Twitter—creating an app which calls
Twitter web services.

In Chapter 6, you’ll build the Flag Quiz app, which uses the Utility Application tem-
plate to create an app with two Views. We show a more complex View while managing
frontside and flipside Views. We’ll also introduce basic memory management and UIView-
Controller.

193 // define UIButton's sorting category method
194 @implementation UIButton (sorting)
195 - (NSComparisonResult)compareButtonTitles:(UIButton *)button
196 {
197 // compare this UIButton's title to that of the given UIButton
198 return [self.titleLabel.text
199 caseInsensitiveCompare:button.titleLabel.text];
200 } // end method compareButtonTitles
201 @end // end UIButtons's sorting category

Fig. 5.18 | UIButton’s sorting category.

Download from <www.wowebook.com>

ptg

6
Flag Quiz Game App

 Controllers and the Utility Application Template

O B J E C T I V E S
In this chapter you’ll learn:

■ To create an app with a frontside and a flipside
(commonly used for app settings), using the Utility
Application template.

■ To extend the UIViewController class to manage
multiple views.

■ To use the Segmented Control GUI component to create
multiple selectable items.

■ To vary the quiz answers each time the app runs using
random number generation.

■ To avoid memory leaks using basic memory
management.

■ To load resource files from your iPhone to display the flag
images.

Download from <www.wowebook.com>

ptg

6.1 Introduction 103

O
u

tl
in

e

6.1 Introduction
The Flag Quiz Game app tests the user’s ability to correctly identify flags from around the
world (Fig. 6.1). The user is presented with a flag image and three, six or nine country
names—one matches the flag and the others are randomly selected. The user chooses the
country by touching its name on the screen. If the choice is correct, the app displays “Cor-
rect!” in green (Fig. 6.2) and loads the next flag after a three-second delay. An incorrect
choice disables the chosen country and displays “Incorrect” in red (Fig. 6.3)—the user
must keep choosing until the correct country is picked. The app displays in the lower-left
corner the user’s progress throughout the quiz. The user can customize the quiz using an
options screen which is hidden behind the game (Fig. 6.4)—and accessed by touching the
Info Button (). The user can increase the number of country choices from the default of
3 to 6 or 9 to make the quiz more difficult. Switches are used to restrict the quiz to certain
regions of the world—five of the major continents and Oceania, which consists of Austra-
lia, New Zealand and various South Pacific Islands. Touching a Switch to turn it to the

6.1 Introduction
6.2 Test-Driving the Flag Quiz Game App

6.3 Technologies Overview

6.4 Building the App
6.4.1 The MainView and Class MainViewController

6.4.2 The FlipsideView and Class FlipsideViewController

6.5 Wrap-Up

Fig. 6.1 | Flag Quiz Game app.

Info ButtonQuiz progress

Download from <www.wowebook.com>

ptg

104 Chapter 6 Flag Quiz Game App

OFF position removes the corresponding region’s countries from the quiz. The “Done”
Button applies the configuration changes and begins a new quiz. After 10 flags are
matched, a popup alert displays the user’s total number of guesses and the percentage of
correct answers (Fig. 6.5). The “Reset Quiz” Button starts a new quiz.

Fig. 6.2 | Correct answer in the Flag Quiz Game app.

Fig. 6.3 | Disabled incorrect answer in the Flag Quiz Game app.

Disabled item

Download from <www.wowebook.com>

ptg

6.1 Introduction 105

Fig. 6.4 | Options screen of the Flag Quiz Game app.

Fig. 6.5 | Results alert after quiz completion.

Switch components

Results alert

“Reset Quiz” Button

App is grayed out when alert is
displayed

Download from <www.wowebook.com>

ptg

106 Chapter 6 Flag Quiz Game App

6.2 Test-Driving the Flag Quiz Game App
Opening the Completed Application
Open the directory on your computer containing the Flag Quiz Game app project. Double
click FlagQuizGame.xcodeproj to open the project in Xcode.

Running the App
Click Build and Go to run the app in the iPhone Simulator. A new quiz begins automati-
cally. The flag at the top of the app matches one of the three countries below the image.
The flag and the answer choices are selected randomly, varying each time you run the app.

Configuring the Quiz
Touch the Info Button () to view the options screen. The three topmost items specify the
number of answers that should be displayed with each flag. The item reading 3 is initially
selected. Touch the middle item to double the answer pool to 6. Each of the six Switches
in the lower part of the options screen represents a region of the world. They all currently
read ON—meaning that any of the world’s flags can be selected randomly for the quiz.
Touch the Switches next to Africa and Oceania to set them to the OFF position and exclude
the corresponding countries from the quiz. Press the “Done” Button at the top of the op-
tions screen to start a new game with your specified options.

Completing the Quiz
A new quiz starts with six answer choices and no flags from either Africa or Oceania. Work
through the quiz by touching the country you think matches each flag. If you guess incor-
rectly, keep guessing until you get the right answer. After you’ve successfully matched 10
flags, the quiz is grayed out and an alert window displays the number of guesses you made
and your accuracy percentage. Touch the “Reset Quiz” Button to take another quiz.

6.3 Technologies Overview
This chapter introduces the Utility Application template, which defines an app with front-
side and flipside views. The frontside typically displays the app’s main view and the flipside
is used for settings. The template generates several classes—a view for the frontside, a view
for the flipside and a View Controller for each. A View Controller is a class which manages a
single view and its subviews. It usually responds to events generated in the corresponding
view. The Utility Application template also autogenerates interface elements for changing
between the two views. An Info Button () is placed on the frontside and a “Done” Button
on the flipside. Each Button is preconfigured to flip the app to the other side.

The app has an image for each flag. The images are stored on the iPhone and are
loaded into the app only when they’re needed. We obtained the images from

www.free-country-flags.com

This app introduces Segmented Controls—GUI controls that present a series of
choices the user can pick. Segmented Controls can act either like a series of Buttons or as a
way to select a single choice from a set of mutually exclusive options—like radio buttons
in other user interface technologies. We use both capabilities in this chapter.

We also introduce memory management. In Cocoa, memory is managed manually
using a system called retain counting. Every descendent of NSObject has an integer retain

Download from <www.wowebook.com>

ptg

6.4 Building the App 107

count. When this reaches zero, the object’s memory is deallocated. If a part of your pro-
gram relies on an object, it sends the object a retain message, which adds one to the
object’s retain count. When that part of the program is finished using the object, it sends
the object a release message, which subtracts one from the retain count. As a rule, you’re
responsible for releasing any object you retain or create with alloc or copy.

You do not have to release any object returned from methods or created using a con-
venience constructor, such as stringWithFormat:. Such an object is autoreleased—the
object will be sent a release message at some point in the future. For more information
on memory management, visit developer.apple.com/iPhone/library/documentation/
Cocoa/Conceptual/MemoryMgmt/MemoryMgmt.html.

6.4 Building the App
Section 6.4.1 presents the MainView and class MainViewController. Section 6.4.2 pres-
ents the FlipsideView and class FlipsideViewController.

6.4.1 The MainView and Class MainViewController
Open Xcode and create a new Utility Application. Remember to drag the folders containing
this example’s images from the Finder into the project’s Resources group.Open Main-
View.xib in Interface Builder. Center a Label at the top of the screen and set its text to 10
Question Flag Quiz. Set the Label’s Minimum Font Size to 27 in the Inspector window.
Drag an Image View to the top of the app window. This Image View displays the flag images.
Next, center a Label underneath the Image View, then change its text to Select the coun-
try. Drag two more Labels onto the app window. Center the first Label near the bottom of
the app and set its Minimum Font Size property to 30—this Label is used to display whether
each answer is correct or incorrect. Set this Label’s text to Answer. You’ll soon see how to
hide the Label until the user selects an answer. The Label in the bottom-left corner will dis-
play the user’s progress—showing the number of flags seen so far in the quiz. Set this Label’s
text to Question 0 of 10. Figure 6.6 shows the completed layout for MainView.

Fig. 6.6 | Completed MainView GUI design.

Download from <www.wowebook.com>

ptg

108 Chapter 6 Flag Quiz Game App

The Info Button () at the bottom-right corner of the app window was automatically
generated by the Utility Application template. Touching this Button displays the
FlipsideView, which contains this app’s options screen. This Button’s functionality is pro-
vided by the template. You can move the Info Button, but Apple’s iPhone Human Interface
Guidelines recommend leaving it in the lower-right corner when appropriate.

The MainView interface
Under the Main View folder of Xcode’s Groups and Files window, select MainViewCon-
troller.h. This is the automatically generated header file for class MainViewController.
Initially, the class includes method showInfo, which is called to display the FlipsideView.
Figure 6.7 contains the completed interface declaration.

1 // MainViewController.h
2 // Controller for the front side of the Flag Quiz app.
3 // Implementation in MainViewController.m
4 #import "FlipsideViewController.h"
5
6 @interface MainViewController : UIViewController
7
8 {
9 IBOutlet UIImageView *flagView; // displays the flag image

10 IBOutlet UILabel *answerLabel; // displays if guess is correct
11 IBOutlet UILabel *numCorrectLabel; // displays quiz's progress
12 NSMutableArray *bars; // stores Segmented Controls
13 NSMutableArray *filenames; // list of flag image file names
14 NSMutableArray *quizCountries; // names of 10 countries in the quiz
15 NSMutableDictionary *regions; // stores whether each region is enabled
16 NSString *correctAnswer; // the correct country for the current flag
17 int totalGuesses; // number of guesses made
18 int numCorrect; // number of correct guesses
19 int guessRows; // number of Segmented Controls displaying choices
20 } // end instance variable declarations
21
22 // declare the three outlets as properties
23
24
25
26
27 // method declarations
28 - (IBAction)showInfo; // displays the FlipsideView
29 - (IBAction)submitGuess:sender; // processes a guess
30 - (void)loadNextFlag; // displays a new flag and country choices
31 - (void)setGuessRows:(int)rows; // sets the number of Segmented Controls
32 - (void)resetQuiz; // starts a new quiz
33 - (NSMutableDictionary *)regions; // returns the regions dictionary
34 @end // end interface MainViewController;
35
36 @interface NSString (displayName) // begin NSString’s displayName category
37 - (NSString *)convertToDisplayName; // converts file name to country name
38 @end // end category displayName of interface NSString

Fig. 6.7 | MainViewController interface declaration.

<FlipsideViewControllerDelegate>

@property (nonatomic, retain) IBOutlet UIImageView *flagView;
@property (nonatomic, retain) IBOutlet UILabel *answerLabel;
@property (nonatomic, retain) IBOutlet UILabel *numCorrectLabel;

Download from <www.wowebook.com>

ptg

6.4 Building the App 109

MainViewController is a subclass of UIViewController (line 6) that implements the
FlipSideViewContollerDelegate protocol (line 7). A protocol describes a set of methods
that can be called on an object—this is similar to the concept of an “interface” in other
programming languages. The FlipSideViewControllerDelegate protocol was automat-
ically defined in the FlipSideViewController class by the Utility Application template.
This protocol declares the flipsideViewControllerDidFinish method, which returns
the app to the MainView when the user touches the “Done” Button on the options screen.

There are three outlets (lines 9–11) representing the three dynamic GUI components
on the MainView that we’ll interact with programmatically—flagView, answerLabel and
numCorrectLabel. Lines 12–14 declare NSMutableArrays to store the quiz’s Segmented
Controls, flag file names and country names, respectively. NSMutableDictionary regions
stores whether each region’s countries are included in the quiz (line 15). Lines 16–19
declare other variables used to maintain the game’s state.

Lines 23–25 declare each of our outlets as properties. A property is a member variable
that defines a get and a set method. As you’ll soon see, these methods can be automatically
generated. The nonatomic keyword affects the performance and threading of a property.
More information can be found in the Performance and Threading section of Apple’s
Objective-C documentation, located at

developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
Articles/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17-SW12

The retain keyword specifies that the set method will release the old object, assign a new
one and invoke the new one’s retain method. This is typical with outlets. Other keywords
can be used to specify that the generated set method simply assigns a new value to the
pointer without releasing the old object or retaining the new one, or make a copy of the
object being used to set the property.

MainViewController contains six methods (lines 28–33):

• showInfo:—displays the FlipsideView (options) when the “Info” Button is touched.

• submitGuess—processes the answer when the user touches a country name on a
Segmented Control.

• loadNextFlag—loads a new flag and set of answers.

• setGuessRows:—sets the number of country choices. Each row is a Segmented
Control that contains three countries.

• resetQuiz:—resets the game after the user completes the quiz.

• regions—returns an NSMutableDictionary indicating which regions were cho-
sen to be included in the quiz. By default, all regions are chosen.

Lines 36–38 add the displayName category to NSString. The displayName category
has only one method—convertToDisplayName (defined in Fig. 6.14). This converts the
flag-image file names to readable country names for display in the app.

Implementing the MainViewController Class
Under the Main View folder of Xcode’s Groups and Files window, double click MainView-
Controller.m. The completed initialization methods appear in Fig. 6.8. The class begins
by declaring the BAR_OFFSET global variable (line 8). Because the variables are declared

Download from <www.wowebook.com>

ptg

110 Chapter 6 Flag Quiz Game App

outside any interface definition, they’re accessible to any class. BAR_OFFSET represents the
space between the top of the MainView and the top-most Segmented Control (247 pixels).
The const qualifier informs the compiler that the variable’s value cannot be modified. If
an attempt is made to modify a const variable, the compiler catches it and issues an error.
The static keyword indicates that the variable is known only in this compilation unit.

1 // MainViewController.m
2 // Controller for the front side of the Flag Quiz app.
3 #import <AVFoundation/AVFoundation.h>
4 #import <MediaPlayer/MediaPlayer.h>
5 #import "MainViewController.h"

6 #import "MainView.h"

7
8 static const int BAR_OFFSET = 247; // top Segmented Control's y-coordinate
9

10 @implementation MainViewController
11
12 // generate get and set methods for outlet properties
13 @synthesize flagView;
14 @synthesize answerLabel;
15 @synthesize numCorrectLabel;
16
17 // initialize the controller
18 - (id)initWithNibName:(NSString *)nibNameOrNil
19 bundle:(NSBundle *)nibBundleOrNil
20 {
21 // initialize the superclass
22 if (self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil])
23 {
24 guessRows = 1; // default to one row of choices
25 bars = [[NSMutableArray alloc] init]; // initialize the list of bars
26 filenames = [[NSMutableArray alloc] init];
27
28 // initialize the list of flags to be displayed
29 quizCountries = [[NSMutableArray alloc] initWithCapacity:10];
30
31 // create the dictionary of regions
32 regions = [[NSMutableDictionary alloc] init];
33
34 // default all the regions to on
35 NSNumber *yesBool = [NSNumber numberWithBool:YES];
36 [regions setValue:yesBool forKey:@"Africa"];
37 [regions setValue:yesBool forKey:@"Asia"];
38 [regions setValue:yesBool forKey:@"Europe"];
39 [regions setValue:yesBool forKey:@"North_America"];
40 [regions setValue:yesBool forKey:@"Oceania"];
41 [regions setValue:yesBool forKey:@"South_America"];
42 } // end if
43
44 return self; // return this MainViewController
45 } // end method initWithNibName:bundle:
46

Fig. 6.8 | Initializing the MainViewController class.

Download from <www.wowebook.com>

ptg

6.4 Building the App 111

Lines 13–15 use @synthesize to “synthesize each outlet’s property.” This automati-
cally generates get and set methods (also known as get and set accessors) for the properties,
based on the options specified in the @property declarations. In this case, property
flagView can be modified using setFlagView: and accessed using flagView. These follow
the default naming scheme for a property’s methods. It’s also possible to define your own
custom get and set methods for a property as we show for a get method in Fig. 10.14.

The initWithNibName:bundle: method (lines 18–45) initializes class MainViewCon-
troller’s instance variables. The guessRows instance variable is initialized to 1 row, so
that three answer choices are displayed for each flag (line 24). Lines 25–26 initialize two
NSMutableArrays—one to store the Segmented Controls displaying country names and
one to store the flag image file names. NSMutableArray quizCountries (line 29) will con-
tain the names of the 10 flag images used in the quiz. Since we know exactly how many
flag path names we need to store for each quiz (10), we can use NSMutableArray’s init-
WithCapacity method to allocate exactly 10 elements. This prevents the array from having
to resize itself when we add new objects to it, thus increasing the app’s performance. Line
35 calls NSNumber’s numberWithBool: method to create the yesBool NSNumber. The
NSNumber class represents a numeric value as an object. We perform this operation because
only objects that derive from NSObject can be stored in an NSArray, and a BOOL is not an
object. Supplying YES as an argument to numberWithBool: returns an NSNumber repre-
senting YES’s numerical equivalent, which is 1. Lines 36–41 initialize the NSDictionary
containing the world’s six regions—using yesBool to enable each region by default. All
the world’s regions are included in the quiz unless the user disables any in the FlipsideView.

Method viewDidLoad of Class MainViewController
Method viewDidLoad (Fig. 6.9) is inherited from UIViewController (MainViewCon-
troller’s superclass) and overridden. This method initializes instance variables that can
be created only after the view has been initialized (i.e., loaded). Line 50 calls the super-
class’s viewDidLoad method. Line 51 seeds the random number generator. The srandom
library method uses an integer seed to produce a different sequence of random numbers
for each execution of the app. We use the current time as the seed by calling the time li-
brary function. Lines 53–54 set the Text property of answerLabel and numCorrectLabel
to their initial states.

47 // called when the view finishes loading
48 - (void)viewDidLoad
49 {
50 [super viewDidLoad]; // call superclass's viewDidLoad method
51 srandom(time(0)); // seed random number generator
52
53 [answerLabel setText:nil]; // clear answerLabel
54 [numCorrectLabel setText:@"Question 1 of 10"]; // initialize label
55
56 // get a list of all the png files in the app
57 NSMutableArray *paths = [[[NSBundle mainBundle]
58 pathsForResourcesOfType:@"png" inDirectory:nil] mutableCopy];
59

Fig. 6.9 | MainViewController’s viewDidLoad method. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

112 Chapter 6 Flag Quiz Game App

Lines 57–58 obtain an array containing all of the flag images’ (.png) path names.
NSBundle’s static mainBundle method returns the NSBundle for the Flag Quiz Game app’s
directory. An NSBundle represents a special directory in the file system that groups an app’s
executables and corresponding resources. The NSBundle method pathsForResources-
OfType: returns an NSArray of NSStrings representing the paths of all files that have the
specified type (.png). Calling mutableCopy on the NSArray returns an NSMutableArray so
we can shuffle the elements later. NSArray inherits this method from NSObject. Lines 61–
66 extract the file names from the paths and add them to NSArray filenames. NSString
method lastPathComponent returns the part of the path after the last path separator (/)—
this represents the file name. The method returns the entire string if there are no path sep-
arators.

Line 68 decrements paths’ retain count using NSObject’s release method. When an
object’s retain count reaches zero, its internal pointer is deleted and its dealloc method is
called. All objects are created with a retain count of 1. NSObject’s retain and release
methods increment and decrement the retain count, respectively. In this case, paths had
a retain count of 1—unchanged since the array was created (line 58). Line 68 lowers its
retain count to zero, thus deallocating its memory. It’s important to release objects when
they’re no longer needed. If another object still relied on paths (e.g., a view or a collection
class) the retain count would be higher than 1 and invoking release would not destroy
the paths object, thus ensuring that the object remained in memory if other parts of the
app were referencing it. Calling resetQuiz (line 69) begins the game.

Method loadNextFlag of Class MainViewController
The loadNextFlag method (lines 73–206) displays a new flag and answer choices on the
MainView (Fig. 6.10). Line 76 gets the file name of the next flag image from the end of
array quizCountries. NSObject’s retain method ensures that the NSString representing
the file name is not released from memory when we remove it from the array in line 77.
The correctAnswer NSString stores the flag’s image name (which is its country’s name).
Line 81 creates a new UIImage using the flag’s file name.

We now need to display the next flag’s image. Lines 84–85 create a new UIImage using
the next flag’s file name. Because Image Views are immutable, it’s not possible to change
the image displayed by the Image View—a new Image View must be created. UIView’s
removeFromSuperview method (line 89) removes the flagView from the MainView, then

60 // loop through each png file
61 for (NSString *filename in paths)
62 {
63 // separate the file name from the rest of the path
64
65 [filenames addObject:filename]; // add the display name
66 } // end for
67
68
69 [self resetQuiz]; // start a new quiz
70 } // end viewDidLoad
71

Fig. 6.9 | MainViewController’s viewDidLoad method. (Part 2 of 2.)

filename = [filename lastPathComponent];

[paths release]; // release the paths NSMutableArray

Download from <www.wowebook.com>

ptg

6.4 Building the App 113

line 85 releases it from memory. Lines 91–92 set flagView equal to a new Image View,
then attach it to the MainView to display the new flag.

72 // called 3 seconds after the user guesses a correct flag
73 - (void)loadNextFlag
74 {
75 // get file name of the next flag
76 NSString *nextImageName = [[quizCountries lastObject] retain];
77 [quizCountries removeLastObject]; // remove that flag from list
78 correctAnswer = nextImageName; // update the correct answer
79
80 // create a new flag image using the given file name
81 UIImage *nextImage = [UIImage imageNamed:nextImageName];
82
83 // create a UIImageView for the next flag
84 UIImageView *nextImageView =
85 [[UIImageView alloc] initWithImage:nextImage];
86
87 // delete the current flagView and put nextImageView in its place
88 [nextImageView setFrame:[flagView frame]]; // copy the frame over
89 [flagView removeFromSuperview]; // remove flagView from view
90 [flagView release]; // release the flagView's memory
91 flagView = nextImageView; // reassign flagView to the new view
92 [self.view addSubview:flagView]; // add the new view to view
93
94 int offset = BAR_OFFSET + 40 * bars.count; // set offset for next bar
95
96 // add new UISegmentedControls if necessary
97 for (int i = bars.count; i < guessRows; i++)
98 {
99 // create a new bar with three empty items
100 UISegmentedControl *bar = [[UISegmentedControl alloc] initWithItems:
101 [NSArray arrayWithObjects:@"", @"", @"", nil]];
102 bar.segmentedControlStyle = UISegmentedControlStyleBar;
103
104 // make the segments stay selected only momentarily
105 bar.momentary = YES;
106
107 // tell the bar to call the given method whenever it's touched
108 [bar addTarget:self action:@selector(submitGuess:)
109 forControlEvents: UIControlEventValueChanged];
110 CGRect frame = bar.frame; // get the current frame for the bar
111 frame.origin.y = offset; // position it below the last bar
112 frame.origin.x = 20; // give it some padding on the left
113
114 // expand the bar to fill the screen with some padding on the right
115 frame.size.width = self.view.frame.size.width - 40;
116 bar.frame = frame; // assign the new frame
117 [self.view addSubview:bar]; // add the bar to the main view
118 [bars addObject:bar]; // add the bar to the list of bars
119 [bar release]; // release the bar Segmented Control

Fig. 6.10 | MainViewController’s loadNextFlag method. (Part 1 of 3.)

Download from <www.wowebook.com>

ptg

114 Chapter 6 Flag Quiz Game App

120 offset += 40; // increase the offset so the next bar is farther down
121 } // end for
122
123 // delete bars if there are too many on the screen
124 for (int i = bars.count; i > guessRows; i--)
125 {
126 UISegmentedControl *bar = [bars lastObject]; // get the last bar
127 [bar removeFromSuperview]; // remove the bar from the main view
128 [bars removeLastObject]; // remove the bar from the list of bars
129 } // end for
130
131 // enable all the bars
132 for (UISegmentedControl *bar in bars)
133 {
134 bar.enabled = YES; // enable the Segmented Control
135
136 // enable each segment of the bar
137 for (int i = 0; i < 3; i++)
138 [bar setEnabled:YES forSegmentAtIndex:i];
139 } // end for
140
141 // shuffle filenames
142 for (int i = 0; i < filenames.count; i++)
143 {
144 // pick a random int between the current index and the end
145 int n = (random() % (filenames.count - i)) + i;
146
147 // swap the object at index i with the index randomly picked
148 [filenames exchangeObjectAtIndex:i withObjectAtIndex:n];
149 } // end for
150
151 // get the index of the string with the correct answer
152 int correct = [filenames indexOfObject:correctAnswer];
153
154 // put the correct answer at the end
155 [filenames exchangeObjectAtIndex:filenames.count - 1
156 withObjectAtIndex:correct];
157
158 int flagIndex = 0; // start adding flags from the beginning
159
160 // loop through each bar and choose incorrect answers to display
161 for (int i = 0; i < guessRows; i++)
162 {
163 // get the bar at the current index
164 UISegmentedControl *bar =
165 (UISegmentedControl *)[bars objectAtIndex:i];
166 int segmentIndex = 0;
167
168 // loop through each segment of the bar
169 while (segmentIndex < 3)
170 {
171 NSString *name; // store country name
172

Fig. 6.10 | MainViewController’s loadNextFlag method. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

6.4 Building the App 115

Lines 97–121 dynamically create Segmented Controls for displaying the answer coun-
tries. We initialize the loop’s control variable to the current number of Segmented Controls
(guessRows). If guessRows equals the current number of Segmented Controls, the loop
does nothing. Otherwise, each iteration of the loop creates a Segmented Control. Lines
100–101 create a new Segmented Control containing three empty items. Line 102 specifies
the Segmented Control’s appearance by setting its segmentedControlStyle property. Line
105 sets bar’s momentary property to YES—specifying that the Segmented Control’s items
do not remain selected once touched. Lines 108–109 specify the submitGuess: method
as the action that responds to a touch of the Segmented Control. Lines 110–112 position
the Segmented Control in the MainView. Line 115 sets frame’s width to fill most of the
screen and line 116 sets bar’s frame property to frame. Lines 117–118 add the bar object
to the MainView and the bars NSMutableArray. After releasing bar (line 119), we increase
offset to ensure that the next Segmented Control is placed below this one (line 120).

173 // if there is another file name
174 if (flagIndex < filenames.count)
175 name = [filenames objectAtIndex:flagIndex]; // get filename
176 else // there aren't enough names to display
177 name = nil; // set name to nil
178
179 // get the region from the file name
180 NSString *region =
181 [[name componentsSeparatedByString:@"-"] objectAtIndex:0];
182
183 // if the region of the selected country is enabled
184 if ([[regions valueForKey:region] boolValue])
185 {
186 [bar setTitle:[name convertToDisplayName]
187 forSegmentAtIndex:segmentIndex];
188 ++segmentIndex;
189 } // end if
190
191 ++flagIndex; // move to the next entry in the array
192 } // end while
193 } // end for
194
195 int z = random() % guessRows; // pick a random bar
196 UISegmentedControl *bar = [bars objectAtIndex:z];
197
198 // put the correct answer on a randomly chosen segment
199 [bar setTitle:[correctAnswer convertToDisplayName]
200 forSegmentAtIndex:random() % 3];
201
202 // update the label to display the current question number
203 [numCorrectLabel setText:[NSString stringWithFormat:
204 @"Question %i of 10", numCorrect + 1]];
205 [answerLabel setText:nil]; // clear the answer label
206 } // end method loadNextFlag
207

Fig. 6.10 | MainViewController’s loadNextFlag method. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

116 Chapter 6 Flag Quiz Game App

If guessRows is less than the current number of Segmented Controls, the excess com-
ponents must be deleted from the quiz. Lines 124–129 remove each extra Segmented Con-
trol from the superview (line 127) and the bars array (line 128). Lines 132–139 enable the
items in all the Segmented Controls.

When the flag is updated, new answers need to be generated. To do this we shuffle
the array of possible answers, then move the correct answer to the end of the array. We
then choose the displayed answers from the front of the shuffled array (the correct answer
will not get chosen). We overwrite a random incorrect answer with the correct one.

Lines 142–149 shuffle the answers. Line 145 chooses a random index in the array. To
produce a value inside the array’s bounds, the random number is scaled using the modulus
operator (%) and the size of the array. The randomly chosen array element is swapped with
the element at index i (line 148). This is repeated for each item in the array. Once the
array is shuffled, the correct answer is located and moved to the end of the array so that
it’s out of the way (lines 155–156). Next, we set the title of each item in the Segmented
Controls by picking names from the filenames array. Lines 161–193 loop through each
Segmented Control. For each item in a Segmented Control, we extract the country name
and region from the next element in filenames (lines 171–181). Finally, a random seg-
ment is picked to display the correct answer, which is currently at the end of the array
(lines 199–200). Lines 203–205 update the quiz’s Labels to reflect the user’s progress.

Method submitGuess: of Class MainViewController
The submitGuess: method (Fig. 6.11) is called when the user submits an answer by
touching a Segmented Control item. The selected country is determined by getting the
touched segment’s index (line 212). Lines 215 retrieves the title of that segment using
UISegmentedControl’s titleForSegmentAtIndex: method. If the chosen country match-
es the current flag (line 219), the answerLabel’s Text property is set to “Correct!” (lines
222–224). All of the other segments are then disabled (lines 220–244). If the game is fin-
ished (line 249), lines 252–254 create an NSString to display the total number of guesses
and the percentage accuracy. If the game isn’t over, the performSelector:withOb-
ject:AfterDelay: method (inherited from class NSObject) invokes the loadNextFlag
method after a three-second delay (lines 266–267). Method performSelector:withOb-
ject:AfterDelay: receives as arguments a method to call, an object to pass to the method
and a time in seconds to wait before invoking the method. If the user did not choose cor-
rectly, lines 272–273 display “Incorrect” in red text in answerLabel. Line 276 then dis-
ables the incorrect segment so the answer cannot be selected again.

208 // called when the user touches one of the Segmented Control items
209 - (IBAction)submitGuess:sender
210 {
211 // get the index of the selected item
212 int index = [sender selectedSegmentIndex];
213
214 // get the title of the bar at that segment, which is the guess
215 NSString *guess = [sender titleForSegmentAtIndex:index];
216 ++totalGuesses; // increment the number of times the user has guessed
217

Fig. 6.11 | MainViewController’s submitGuess: method. (Part 1 of 3.)

Download from <www.wowebook.com>

ptg

6.4 Building the App 117

218 // if the guess is correct
219 if ([guess isEqualToString:[correctAnswer convertToDisplayName]])
220 {
221 // make the text color a medium green
222 answerLabel.textColor =
223 [UIColor colorWithRed:0.0 green:0.7 blue:0.0 alpha:1.0];
224 answerLabel.text = @"Correct!"; // set the text in the label
225
226 // get the correct answer from the correct file name
227 NSString *correct = [correctAnswer convertToDisplayName];
228
229 // loop through each bar
230 for (UISegmentedControl *bar in bars)
231 {
232 bar.enabled = NO; // don't let the user choose another answer
233
234 // loop through the bar segments
235 for (int i = 0; i < 3; i++)
236 {
237 // get the segment's title
238 NSString *title = [bar titleForSegmentAtIndex:i];
239
240 // if this segment does not have the correct choice
241 if (![title isEqualToString:correct])
242 [bar setEnabled:NO forSegmentAtIndex:i]; // disable segment
243 } // end for
244 } // end for
245
246 ++numCorrect; // increment the number of correct answers
247
248 // is the game finished?
249 if (numCorrect == 10)
250 {
251 // create the message which includes guess number and percentage
252 NSString *message = [NSString stringWithFormat:
253 @"%i guesses, %.02f%% correct", totalGuesses,
254 1000 / (float)totalGuesses];
255
256 // create an alert to display the message
257 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
258 @"Results" message:message delegate:self cancelButtonTitle:
259 @"Reset Quiz" otherButtonTitles:nil];
260 [alert show]; // show the alert
261 [alert release]; // release the alert UIAlertView
262 } // end if
263 else // the game is not finished so load another flag
264 {
265 // load a new flag after 3 seconds
266
267
268 } // end else
269 } // end if

Fig. 6.11 | MainViewController’s submitGuess: method. (Part 2 of 3.)

[self performSelector:@selector(loadNextFlag) withObject:nil
 afterDelay:3];

Download from <www.wowebook.com>

ptg

118 Chapter 6 Flag Quiz Game App

Resetting the Quiz
Recall that at the end of each quiz, the submitGuess: method creates a UIAlertView dis-
playing the user’s total guesses and percentage (lines 257–260). The UIAlertView contains
a Button titled “Reset Quiz.” Touching this Button calls the alertView:clickedButtonAt-
Index method (Fig. 6.12, lines 281–285), which invokes the resetQuiz method.

Note that line 261 releases the UIAlertView because it’s retained automatically when
it’s displayed. When we built this app, we initially forgot to call release on this object.
By running the app in the Instruments tool (as we did with every app), we were able to see
a memory leak each time the “Reset Quiz” Button was touched to start a new quiz. We
examined the leaked object in the Instruments tool, determined where the leak occurred
and added the appropriate release call to eliminate the leak.

After the user completes a quiz and chooses to start a new one, the resetQuiz method
(lines 294–325) returns the game to its initial state. Lines 296–297 reset numGuesses and
totalGuesses to zero. Ten flags must be randomly chosen for the new quiz. We begin by
picking a random file name from the filenames array (lines 303–306). Each file name
begins with its region, followed by a hyphen. Line 310 extracts the region. If the region is
enabled and has not already been chosen (lines 316–317), the flag’s file name is added to
the quizCountries array (line 319). Method setGuessRows: (lines 288–291) takes an int
argument and sets it as the value of guessRows (line 290). This sets the number of rows of
answers—which is used by loadNextFlag method when creating the Segmented Controls.

270 else // the user has guessed incorrectly
271 {
272 answerLabel.textColor = [UIColor redColor]; // set text color to red
273 answerLabel.text = @"Incorrect"; // set the text of the label
274
275 // disable the incorrect choice
276 [sender setEnabled:NO forSegmentAtIndex:index];
277 } // end else
278 } // end method submitGuess:
279

280 // called when the user touches the "Reset Quiz" button in the alert
281 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
282 (NSInteger)buttonIndex
283 {
284 [self resetQuiz]; // reset the quiz
285 } // end method alertView:clickedButtonAtIndex:
286
287 // set the number of bars for displaying choices
288 - (void)setGuessRows:(int)rows
289 {
290 guessRows = rows;
291 } // end method setGuessRows:
292

Fig. 6.12 | Resetting the quiz. (Part 1 of 2.)

Fig. 6.11 | MainViewController’s submitGuess: method. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

6.4 Building the App 119

Methods regions, flipsideViewControllerDidFinish: and showInfo of Class
MainViewController

The regions method (Fig. 6.13, lines 328–331) is a get method for the regions NSMuta-
bleDictionary. Calling this method allows other classes to access the regions variable. In
Objective-C, get methods are typically named the same as the variable they return, and set
methods begin with the word set followed by the variable name, as in setVariable:.

293 // reset the quiz
294 - (void)resetQuiz
295 {
296 numCorrect = 0; // reset the number of correct answers the user made
297 totalGuesses = 0; // reset the total number of guesses the user made
298 int i = 0; // initialize i to 0
299
300 // add 10 random file names to quizCountries
301 while (i < 10)
302 {
303 int n = random() % filenames.count; // choose a random index
304
305 // get the filename from the end of the path
306 NSString *filename = [filenames objectAtIndex:n];
307 NSArray *components = [filename componentsSeparatedByString:@"-"];
308
309 // get the region from the beginning of the filename
310 NSString *region = [components objectAtIndex:0];
311
312 // check if the region is enabled
313 NSNumber *regionEnabled = [regions valueForKey:region];
314
315 // if the region is enabled and it hasn't already been chosen
316 if ([regionEnabled boolValue] &&
317 ![quizCountries containsObject:filename])
318 {
319 [quizCountries addObject:filename]; // add the file to the list
320 ++i; // increment i
321 } // end if
322 } // end for
323
324 [self loadNextFlag]; // load the first flag
325 } // end method resetQuiz:
326

327 // returns the NSMutableDictionary regions
328 - (NSMutableDictionary *)regions
329 {
330 return regions; // return the regions NSMutableDictionary
331 } // end method regions
332

Fig. 6.13 | showInfo and flipsideViewControllerDidFinish: methods. (Part 1 of 2.)

Fig. 6.12 | Resetting the quiz. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

120 Chapter 6 Flag Quiz Game App

The flipsideViewControllerDidFinish method (lines 334–339) is called when the
user touches the “Done” Button on the option screen. This method (automatically gener-
ated by the Utility Application template) returns the user to the MainView by invoking its
dismissModalViewControllerAnimated: method (line 338).

Method showInfo (Fig. 6.13, lines 342–360) creates and shows the game’s options
screen. Lines 345–346 create a new FlipsideViewController. Line 347 sets its delegate
property to self so that the FlipSideViewController can call this class’s flipside-
ViewControllerDidFinish: method. It also gives controller access to NSMutableDic-
tionary regions and the setGuessRows: method—allowing it to apply user settings from

333 // called by a FlipsideViewController when the user touches "Done"
334 - (void)flipsideViewControllerDidFinish:
335 (FlipsideViewController *)controller
336 {
337 // flip the app back to the front side
338 [self dismissModalViewControllerAnimated:YES];
339 } // end method flipsideViewControllerDidFinish:
340
341 // called when the user touches the info button
342 - (IBAction)showInfo
343 {
344 // create a new FlipsideViewController
345
346
347
348
349 // set the animation style to a horizontal flip
350 controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;
351
352 // show the flipside of the app
353 [self presentModalViewController:controller animated:YES];
354
355 // set the controls on the flipside
356 [controller setSwitches:regions]; // set each region's switch
357 [controller setSelectedIndex:guessRows - 1]; // set number of choices
358
359 [controller release]; // release the controller FlipsideViewController
360 } // end method showInfo
361
362 - (void)dealloc
363 {
364 [filenames release]; // release the filenames NSMutableArray
365 [bars release]; // release the bars NSMutableArray
366 [quizCountries release]; // release quizCountries NSMutableDictionary
367 [flagView release]; // release the flagView UIImageView
368 [answerLabel release]; // release the answerLabel UILabel
369 [numCorrectLabel release]; // release the numCorrectLabel UILabel
370 [super dealloc]; // release the superclass
371 } // end method dealloc
372 @end // end implementation of MainViewController
373

Fig. 6.13 | showInfo and flipsideViewControllerDidFinish: methods. (Part 2 of 2.)

FlipsideViewController *controller = [[FlipsideViewController alloc]
 initWithNibName:@"FlipsideView" bundle:nil];
controller.delegate = self; // set the delegate

Download from <www.wowebook.com>

ptg

6.4 Building the App 121

FlipsideView. The FlipsideViewController class, which was autogenerated by the Utility
Application template, controls the FlipsideView. Line 350 sets controller’s modalTransi-
tionStyle property to UIModalTransitionStyleFlipHorizontal—telling the transition
style to flip the screen horizontally. Normally, the new view slides in from the bottom of
the screen. We then tell the MainViewController to display the options screen by passing
our FlipsideViewController object to presentModalViewController:animated: (line
353). Lines 356–357 set the GUI components on the FlipsideView to match the current
quiz settings. FlipsideViewController controller can now be released, since it’s no
longer needed by this class (line 359). The FlipsideViewController is retained when its
view appears on the screen, so the controller will not be deallocated right away. When the
FlipsideViewController’s view disappears from the screen, the controller will be
released. If it hasn’t been retained elsewhere, it will also be deallocated.

Delegation and the Decorator Design Pattern
Delegates are used frequently in iPhone app development to handle events. A delegate im-
plements the functionality specified in a delegate protocol. When an event occurs, the
component calls the delegate’s appropriate method to handle the event. Delegation im-
plements a form of the decorator design pattern, which allows new functionality to be add-
ed to an existing class without creating a subclass. This is particularly important in event
handling, since the designers of the GUI components cannot know in advance what each
app should do in response to a particular user interaction. For this reason, the GUI com-
ponents use delegate protocols to specify the methods that can be called in response to
events. Classes that implement these protocols enhance the functionality of existing GUI
component classes by specifying what should happen when events occur.

displayName Category
Lines 374–394 implement method convertToDisplayName of NSString’s displayName
category (Fig. 6.14). (Categories are another example of the decorator design pattern—
they’re used to add functionality to a class without subclassing.)

374 @implementation NSString (displayName)
375 - (NSString *)convertToDisplayName
376 {
377 // get the name from the end of the string after the hyphen
378 NSString *name = [[self componentsSeparatedByString:@"-"]
379 objectAtIndex:1];
380
381 // get a mutable copy of the name for editing
382 NSMutableString *displayName = ;
383
384 // remove the .png from the end of the name
385 [displayName replaceOccurrencesOfString:@".png" withString:@""
386 options:NSLiteralSearch range:NSMakeRange(0, displayName.length)];
387
388 // replace all underscores with spaces
389 [displayName replaceOccurrencesOfString:@"_" withString:@" "
390 options:NSLiteralSearch range:NSMakeRange(0, displayName.length)];

Fig. 6.14 | NSString’s displayName category. (Part 1 of 2.)

[[name mutableCopy] autorelease]

Download from <www.wowebook.com>

ptg

122 Chapter 6 Flag Quiz Game App

 We use NSString’s componentsSeparatedByString: method and NSArray’s object-
AtIndex: method to remove the part of the file name before the hyphen (lines 379–380).
After retrieving a mutable copy of the file name (line 382), we remove the .png file exten-
sion using NSString’s replaceOccurrencesOfString:withString:options:range:

method (lines 385–386). Lines 389–390 remove the underscores and line 392 returns the
formatted country name. We send the autorelease message to displayName (line 382) to
add displayName to the current autorelease pool (an instance of class NSAutoreleasePool).
Autorelease pools contain objects that have received the autorelease message. When a
pool is destroyed, it sends a release message to all the objects it contains. Typically, objects
that are returned from methods are autoreleased, so that the caller is not responsible for
releasing objects it did not create. Every app has an event-handling loop, generally known
as the run loop. Each iteration of this loop creates an autorelease pool that can be used
during that iteration, and releases the pool at the end of the iteration. This ensures that
autoreleased objects are released when the event handler finishes executing.

6.4.2 The FlipsideView and Class FlipsideViewController
Open FlipsideView.xib from the Groups and Files list. Double click title and change the
text to Flag Quiz. Center a Label at the top of the app window and change its Text property
to Number of Choices. Drag a Segmented Control from the Library to the app window below
the Label (Fig. 6.15). Select the Segmented Control. In the Inspector window’s Attributes

391
392 return displayName;
393 } // end method convertToDisplayName
394 @end // end implementation of NSString

Fig. 6.15 | Segmented Control in the FlipsideView.

Fig. 6.14 | NSString’s displayName category. (Part 2 of 2.)

Segmented Control
component

Download from <www.wowebook.com>

ptg

6.4 Building the App 123

tab set the Segments property to 3. Each segment represents the number of country choices
for each flag, where only one choice can be selected at a time. The advantage of using a Seg-
mented Control, as opposed to manually adding three Buttons, is that a Segmented Control
ensures that each item has the same width. Use the drop-down menu in the Inspector Win-
dow to set the text in each segment to read 3, 6 and 9, respectively, from left to right. Alter-
natively, you can edit this text by double clicking the center of each segment.

Switch components are used in this app to allow the user to exclude certain regions
from the quiz. Switches correspond to boolean values and are tapped to change between
the ON and OFF positions—corresponding to the values YES and NO, respectively. Drag six
Switches from the Library to the right side of the app window (Fig. 6.16). Six Labels are
added, representing the six regions of the world. You can use Interface Builder’s align tool,
located in the Inspector’s ruler tab, to align the components. Select all the components to
align, then click the appropriate button under the Alignment header. The “Done” Button
in the top-left corner of the app was placed there by the Utility Application template. Its
default functionality is to return to the MainView.

Declaring the FlipsideViewController Class’s Interface
The FlipsideViewController class controls the options screen used to customize the Flag
Quiz Game app (Fig. 6.17). In addition to declaring the FlipsideViewController inter-
face, FlipsideViewController.h declares the FlipsideViewControllerDelegate proto-
col—which is implemented by MainViewController.

Fig. 6.16 | Switches in the FlipsideView.

1 // FlipsideViewController.h
2 // Controller for the flipside of the Flag Quiz app
3 // Implementation in FlipsideViewController.m
4 @protocol FlipsideViewControllerDelegate;

Fig. 6.17 | FlipsideViewController interface declaration. (Part 1 of 2.)

Switch component

Download from <www.wowebook.com>

ptg

124 Chapter 6 Flag Quiz Game App

Line 9 declares a variable of type id that implements the FlipsideViewCon-
trollerDelegate protocol. This will be used to call the flipsideViewControllerDid-
Finish method on the object that implements this method. Outlets are declared for the
Segmented Control (line 12) and all of the Switches used in the options screen (lines 15–
20). Line 24 declares the variable delegate (of type id) as a property. The assign keyword
specifies that the generated set method simply assigns a new value to the pointer without
releasing the old object or retaining the new one. This is typical with delegates. Lines 25–
31 declare each of FlipsideViewController’s outlets as properties.

Class FlipsideViewController contains three methods—done, setSwitches and
setSelectedIndex (lines 33–35). The done method applies all of the option settings and

5
6 @interface FlipsideViewController : UIViewController
7 {
8 // stores an object that will receive the delegate messages
9

10
11 // control for selecting the number of choices in the quiz
12 IBOutlet UISegmentedControl *choicesControl;
13
14 // switches to include/exclude each region in the quiz
15 IBOutlet UISwitch *africaSwitch;
16 IBOutlet UISwitch *asiaSwitch;
17 IBOutlet UISwitch *europeSwitch;
18 IBOutlet UISwitch *northAmericaSwitch;
19 IBOutlet UISwitch *oceaniaSwitch;
20 IBOutlet UISwitch *southAmericaSwitch;
21 } // end instance variable declarations
22
23 // declare delegate and outlets as properties
24 @property(nonatomic, assign) id <FlipsideViewControllerDelegate> delegate;
25 @property(nonatomic, retain) IBOutlet UISegmentedControl *choicesControl;
26 @property(nonatomic, retain) IBOutlet UISwitch *africaSwitch;
27 @property(nonatomic, retain) IBOutlet UISwitch *asiaSwitch;
28 @property(nonatomic, retain) IBOutlet UISwitch *europeSwitch;
29 @property(nonatomic, retain) IBOutlet UISwitch *northAmericaSwitch;
30 @property(nonatomic, retain) IBOutlet UISwitch *oceaniaSwitch;
31 @property(nonatomic, retain) IBOutlet UISwitch *southAmericaSwitch;
32
33 - (IBAction)done; // return to the MainView
34 - (void)setSwitches:(NSDictionary *)dictionary; // set the Switch’s states
35 - (void)setSelectedIndex:(int)index; // set selected segment
36 @end // end interface FlipsideViewController
37
38
39
40
41
42
43

Fig. 6.17 | FlipsideViewController interface declaration. (Part 2 of 2.)

id <FlipsideViewControllerDelegate> delegate;

@protocol FlipsideViewControllerDelegate // begin delegate protocol

// notifies MainViewController that the "Done" button was touched
- (void)flipsideViewControllerDidFinish:
 (FlipsideViewController *)controller;
@end // end protocol FlipsideViewControllerDelegate

Download from <www.wowebook.com>

ptg

6.4 Building the App 125

returns the user to the MainView. Methods setSwitches and setSelectedIndex update
the GUI components on the FlipsideView to reflect the current quiz settings.

Lines 38–42 declare the FlipsideViewDelegate protocol. Classes implementing this
protocol define the flipsideViewControllerDidFinish: method. MainViewController
implements this protocol—using the flipsideViewControllerDidFinish method to
hide the FlipsideView when the “Done” Button is touched.

Implementing the FlipsideViewController class
The FlipsideViewController class defines all of the methods that coordinate data be-
tween the MainView and the FlipsideView (Fig. 6.18). This includes applying option set-
tings to the quiz and initializing the FlipsideView to reflect the current settings. The
FlipsideView is recreated each time the user touches the Info Button.

1 // FlipsideViewController.m
2 // Controller for the flipside of the Flag Quiz app
3 #import "FlipsideViewController.h"

4 #import "MainViewController.h"

5
6 @implementation FlipsideViewController
7
8 // generate get and set methods for our properties
9 @synthesize delegate;

10 @synthesize choicesControl;
11 @synthesize africaSwitch;
12 @synthesize asiaSwitch;
13 @synthesize europeSwitch;
14 @synthesize northAmericaSwitch;
15 @synthesize oceaniaSwitch;
16 @synthesize southAmericaSwitch;
17
18 // called when the main view finishes initializing
19 - (void)viewDidLoad
20 {
21 // set the background color to the standard background color
22 self.view.backgroundColor = [UIColor viewFlipsideBackgroundColor];
23 } // end method viewDidLoad
24
25 // called when the user touches the "Done" button
26 - (IBAction)done
27 {
28 // if none of the switches are selected
29 if (!africaSwitch.on && !asiaSwitch.on && !europeSwitch.on &&
30 !oceaniaSwitch.on && ! northAmericaSwitch.on &&
31 !southAmericaSwitch.on)
32 {
33 // show an alert prompting the user to select at least one region
34 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
35 message:@"Please select at least one region" delegate:self
36 cancelButtonTitle:@"Ok" otherButtonTitles:nil];
37 [alert show]; // show the alert

Fig. 6.18 | FlipsideViewController class implementation. (Part 1 of 3.)

Download from <www.wowebook.com>

ptg

126 Chapter 6 Flag Quiz Game App

38 [alert release]; // release the alert UIAlertView
39 } // end if
40 else
41 {
42 // get the selected index of choicesControl
43 int index = [choicesControl selectedSegmentIndex];
44
45 // update the number of guess rows on the frontside
46 [(MainViewController *)self.delegate setGuessRows:index + 1];
47
48 // update the enabled regions on the fronside with the switch values
49 NSMutableDictionary *regions =
50 [(MainViewController *)self.delegate regions];
51 [regions setValue:[NSNumber numberWithBool:africaSwitch.on]
52 forKey: @"Africa"];
53 [regions setValue:[NSNumber numberWithBool:asiaSwitch.on]
54 forKey: @"Asia"];
55 [regions setValue:[NSNumber numberWithBool:europeSwitch.on]
56 forKey: @"Europe"];
57 [regions setValue:[NSNumber numberWithBool:
58 northAmericaSwitch.on] forKey:@"North_America"];
59 [regions setValue:[NSNumber numberWithBool:oceaniaSwitch.on]
60 forKey: @"Oceania"];
61 [regions setValue:[NSNumber numberWithBool:
62 southAmericaSwitch.on] forKey:@"South_America"];
63
64 // create a new quiz on the frontside
65 [(MainViewController *)self.delegate resetQuiz];
66
67 // flip back to the frontside
68 [self.delegate flipsideViewControllerDidFinish:self];
69 } // end else
70 } // end method done
71
72 // update the switches with values from the frontside
73 - (void)setSwitches:(NSDictionary *)dictionary
74 {
75 // update each switch with its corresponding entry in the dictionary
76 [africaSwitch setOn:[[dictionary valueForKey:@"Africa"] boolValue]];
77 [asiaSwitch setOn:[[dictionary valueForKey:@"Asia"] boolValue]];
78 [europeSwitch setOn:[[dictionary valueForKey:@"Europe"] boolValue]];
79 [northAmericaSwitch setOn:
80 [[dictionary valueForKey:@"North_America"] boolValue]];
81 [oceaniaSwitch setOn:[[dictionary valueForKey:@"Oceania"] boolValue]];
82 [southAmericaSwitch setOn:
83 [[dictionary valueForKey:@"South_America"] boolValue]];
84 } // end method setSwitches:
85
86 // update choicesControl with the value from the frontside
87 - (void)setSelectedIndex:(int)index
88 {
89 choicesControl.selectedSegmentIndex = index;
90 } // end method setSelectedIndex:

Fig. 6.18 | FlipsideViewController class implementation. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

6.5 Wrap-Up 127

Initialization
The viewDidLoad method (lines 19–23) sets FlipsideView’s background color when the
view is created. The setSwitches: and setSelectedIndex: methods are called by the
MainViewController class immediately after creating the FlipsideView to set the GUI
components to reflect the current quiz configuration.

done and setSwitches Methods of Class MainViewController
The done method (lines 26–70) returns to the MainView when the user touches the “Done”
Button. We want to switch Views only if there’s at least one region included in the quiz. If
none of the Switches are in the ON position (lines 29–31), a UIAlert (lines 34–36) tells
the user to select a region, and the method exits without returning to the MainView. Oth-
erwise, we retrieve the selected index from our Segmented Control (line 43) and update the
number of answer choices in the quiz by invoking setGuessRows: on delegate (line 46).

Lines 49–62 update delegate’s regions dictionary by invoking NSMutableDic-
tionary’s setValue:forKey: method—matching each key with the state of its respective
Switch. Line 65 starts a new quiz and line 68 informs the delegate that the user touched
the Button. We assume that delegate implements the flipsideViewControllerDid-
Finish: method—this might not be the case, since classes that implement a protocol
don’t have to implement every method. We know it is implemented here, however,
because we defined the method in MainViewController.m.

The setSwitches: method (lines 73–84) sets each Switch to display whether that
region’s flags are included in the quiz. The method updates the Switches to match an
NSMutableDictionary it receives from MainViewController. This dictionary stores
boolean values for each region—specifying whether or not that region is included in the
quiz. The setSelectedIndex method (lines 87–90) selects an item in the choicesControl
Segmented Control. The selected item’s text matches the number of possible answers dis-
played for each flag.

6.5 Wrap-Up
In this chapter we created the Flag Quiz Game app, testing the user’s knowledge of the
world’s flags. We used the Utility Application template and UIViewController so that our

91
92 // free FlipsideViewController's memory
93 - (void)dealloc
94 {
95 [choicesControl release]; // release choicesControl UISegmentedControl
96 [africaSwitch release]; // release africaSwitch UISwitch
97 [asiaSwitch release]; // release asiaSwitch UISwitch
98 [europeSwitch release]; // release europeSwitch UISwitch
99 [northAmericaSwitch release]; // release northAmericaSwitch UISwitch
100 [oceaniaSwitch release]; // release oceaniaSwitch UISwitch
101 [southAmericaSwitch release]; // release southAmericaSwitch UISwitch
102 [super dealloc]; // call the superclass's dealloc method
103 } // end dealloc method
104 @end // end FlipsideViewController class

Fig. 6.18 | FlipsideViewController class implementation. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

128 Chapter 6 Flag Quiz Game App

app could have a quiz game on the front side and game options on the flipside. On the
FlipsideView, the user could select the regions included in the quiz and the number of an-
swers to display. The quiz selected random flags and answers, and used a Segmented Con-
trol to display the answers. We began to consider memory management—retaining objects
when they might be needed beyond the current scope and releasing them when they were
no longer needed to avoid memory leaks.

In Chapter 7, you’ll create a game called Spot-On using Cocoa’s Core Animation
libraries. This app will test the user’s reflexes by animating multiple custom Views (spots)
that the user must touch before they disappear. You’ll manually process touch gestures for
the first time. The spots will be animated using Core Animation, and the AVFoundation
framework will be used to add sound effects to the game.

Download from <www.wowebook.com>

ptg

7
Spot-On Game App

Using UIView and Detecting Touches

O B J E C T I V E S
In this chapter you’ll learn:

■ To create a simple game app that’s easy to code and fun
to play.

■ To animate Views using Core Animation.

■ To use UIImageViews to display custom images.

■ To add sound to your app using the AVFoundation
framework.

■ To process multitouch gestures when several fingers
simultaneously touch the iPhone.

■ To create an app containing a single UIView, using the
View-based Application template.

Download from <www.wowebook.com>

ptg

130 Chapter 7 Spot-On Game App

O
u

tl
in

e

7.1 Introduction
The Spot-On Game tests your reflexes by requiring you to touch moving spots before they
disappear (Fig. 7.1). The spots shrink as they move—the longer a spot is on the screen the
harder it is to touch. The game begins on level one and each higher level is reached by
touching 10 spots. The spots move faster at higher levels—making the game increasingly
challenging. When you touch a spot, the app makes a popping sound and the spot turns
green then fades away (Fig. 7.2). The player receives points (10 times the current level) for
each touched spot. Accuracy is important—any touch that isn’t on a spot decreases the
score by 20 times the current level. The score is tallied in the top-left corner of the screen.
The player begins the game with three lives, which are displayed in the bottom-left corner
of the app. If a spot disappears before it’s touched, the player hears a flushing sound and
loses a life. The player gains a life for each new level reached, up to a maximum of seven
lives. When all the lives are lost, the game ends (Fig. 7.3).

7.1 Introduction

7.2 Test-Driving the Spot-On Game App

7.3 Overview of the Technologies

7.4 Building the App

7.5 Wrap-Up

Fig. 7.1 | Spot-On Game app.

Current level

Spot

Current score

Lives remaining

High score

Download from <www.wowebook.com>

ptg

7.1 Introduction 131

Fig. 7.2 | Spot-On Game with a touched spot.

Fig. 7.3 | Game Over alert.

Green touched spot
shrinks and fades away

Final score

“Reset Game” Button

Download from <www.wowebook.com>

ptg

132 Chapter 7 Spot-On Game App

7.2 Test-Driving the Spot-On Game App
Opening the completed application
Open the directory containing the Spot On Game app project. Double click Spot-
On.xcodeproj to open the project in Xcode.

Playing the app
Click Build and Go to run the app in the iPhone Simulator. The game begins immediately.
Touch the red spots as fast as you can! Don’t delay in touching a spot—if the spot disap-
pears before you touch it, you’ll lose a life!

7.3 Overview of the Technologies
For each animated spot, we’ll use a UIImageView to display a custom image. We change
this image when a spot is touched by setting the UIImageView’s image property to a new
UIImage. In SpotOnViewController, we’ll implement touch handling for our game. We’ll
process multi-touch events—allowing the player to touch several spots simultaneously.
The touchesBegan method inherited from UIView gets touch information from the
iPhone. This method receives pointers to UITouch objects when the screen is touched.
We’ll retrieve the coordinates of each touch, and use that information to determine if the
player touched a spot.

We’ll use the Core Animation framework to animate the spots—making them move,
get smaller and disappear. As you’ll see, UIImageView has built-in animation methods,
which provide easy access to basic animations. We’ll also access the underlying CALayer
(Core Animation Layer) to perform more complex functions that are not provided by class
UIImageView.

Sounds are added to the app using the AVFoundation framework. AVAudioPlayers
are used to play back .wav files stored on the iPhone. Each file will have an associated
AVAudioPlayer object to control playback of that file. The NSObject method perform-
Selector:withObject:afterDelay: allows us to call functions after a specified delay (in
seconds). We use this to add the first three spots to a new game at one-second intervals.

7.4 Building the App
To begin, open XCode and create a new project. Select the View-based Application tem-
plate and name the project SpotOn.

Declaring the SpotOnViewController Interface
The SpotOnViewController (Fig. 7.4) manages the game, keeping track of the current
score, high score, current level and lives remaining. It’s also responsible for animating the
spots, and touch handling.

1 // Fig. 7.4: SpotOnViewController.h
2 // SpotOnViewController interface declaration.
3 // Implementation in SpotOnViewController.m
4 #import <UIKit/UIKit.h>

Fig. 7.4 | SpotOnViewController interface declaration. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

7.4 Building the App 133

SpotOnViewContoller’s instance variables are declared at lines 11–25. Labels score-
Label and levelLabel display the current score and level (lines 11–12). NSMutableArrays
spots and lives store the UIImageViews representing the current spots and the player’s
remaining lives (lines 14–15). AVAudioPlayer objects are used to play sound files included
in the app (lines 16–18). Each AVAudioPlayer is initialized with a single sound file, which
the AVAudioPlayer can play. The number of spots already touched is stored in spots-
Touched, which is used to calculate the score (line 19). The level variable stores the cur-
rent level (line 21). The time it takes spots to disappear is stored in drawTime (line 22).
This decreases by five percent each time a new level is reached. The SpotOnViewCon-
troller class contains four methods (lines 33–39):

• resetGame—resets the score and begins a new game.

• addNewSpot—adds a new spot to the display.

5 #import <CoreGraphics/CGBase.h>
6 #import <QuartzCore/CoreAnimation.h>
7 #import <AVFoundation/AVFoundation.h>
8
9 @interface SpotOnViewController : UIViewController

10 {
11 IBOutlet UILabel *scoreLabel; // label for displaying the score
12 IBOutlet UILabel *levelLabel; // label for displaying the level
13 IBOutlet UILabel *highScoreLabel; // label for displaying high score
14 NSMutableArray *spots; // stores the spot images
15 NSMutableArray *lives; // stores the Views representing remaining lives
16 AVAudioPlayer *hitPlayer; // plays a sound when a spot is touched
17 AVAudioPlayer *missPlayer; // plays a sound when a spot is missed
18 AVAudioPlayer *disappearPlayer; // plays a sound when a spot disappears
19 int spotsTouched; // number of spots touched
20 int score; // current score
21 int level; // current level
22 float drawTime; // duration that each spot remains on the screen
23 BOOL gameOver; // has the game ended?
24 UIImage *touchedImage; // touched spot image
25 UIImage *untouchedImage; // untouched spot image
26 } // end instance variable declaration
27
28 // declare our outlets as properties
29 @property(nonatomic, retain) IBOutlet UILabel *scoreLabel;
30 @property(nonatomic, retain) IBOutlet UILabel *levelLabel;
31 @property(nonatomic, retain) IBOutlet UILabel *highScoreLabel;
32
33 - (void)resetGame; // starts a new game
34 - (void)addNewSpot; // adds a new spot to the game
35
36 // called when spots disappear
37 - (void)finishedAnimation:(NSString *)animationId finished:(BOOL)finished
38 context:(void *)context;
39 - (void)touchedSpot:(UIImageView *)spot; // called when a spot is touched
40 @end // end interface SpotOnViewController

Fig. 7.4 | SpotOnViewController interface declaration. (Part 2 of 2.)

<UIAlertViewDelegate>

Download from <www.wowebook.com>

ptg

134 Chapter 7 Spot-On Game App

• finishedAnimation:finished:context:—called when a spot disappears from
the screen. This method creates a new spot, determines if the finished spot was
ever touched, and decreases the remaining lives if it wasn’t.

• touchedSpot—increases the score when a spot is touched. It will increase the
level if the touched spot was the tenth of the current level.

Building the Interface
Double-click the file SpotOnViewController.xib to open it in Interface Builder. When it
opens, double-click View in the window labeled SpotOnViewController.xib to edit the con-
tents of the view. Drag three Labels onto the view and arrange them as you see in Fig. 7.5.
Change the opacity of each Label to 50% by editing the Color property in the Inspector.

Next, connect the outlets from SpotOnViewController to their corresponding Labels.
In the window labeled MainViewController.xib, the MainViewController object is repre-
sented by the object named File’s Owner. If you select this object, you’ll see the outlets you
defined in MainViewController.h appear in the Inspector. Connect each of these outlets
to the appropriate Label.

Implementing the SpotOnViewController Class
Exit Interface Builder and open the file SpotOnViewController.m in XCode. The SpotOn-
ViewContoller class controls the game’s animation. It creates, destroys and displays spots
and processes the player’s touch gestures.

Figure 7.6 shows the viewDidLoad method (lines 14–65), which initializes the game
when the main view loads. After initializing the superclass view members (line 16), we seed
a random number generator and initialize the NSMutableArrays spots and lives (lines
17–19). Lines 22–23 load the spot UIImages. NSBundle’s pathForResource:ofType:
method is used to retrieve the full file path for hit.wav (lines 26–27). We create an NSURL

Fig. 7.5 | SpotOnViewController’s user interface.

levelLabelscoreLabel
highScoreLabel

Download from <www.wowebook.com>

ptg

7.4 Building the App 135

to store the path of the hit sound (line 30) and use the path to initialize the hitPlayer
AVAudioPlayer (lines 33–34). Line 35 sets hitPlayer’s volume to 0.3 (on a scale of 0 to
1). Lines 38–62 perform similiar operations to initialize the other sound effects. Line 64
starts the new game by calling the resetGame method.

1 // Fig. 7.6: SpotOnViewController.m
2 // Controller for the Spot On Game app
3 #import "SpotOnViewController.h"

4 static const int BALL_RADIUS = 40;
5
6 @implementation SpotOnViewController
7
8 // generate get and set methods for our properties
9 @synthesize scoreLabel;

10 @synthesize levelLabel;
11 @synthesize highScoreLabel;
12
13 // called when the view finishes loading
14 - (void)viewDidLoad
15 {
16 [super viewDidLoad]; // pass the message to the superclass
17 srandom(time(0)); // seed random number generation
18 spots = [[NSMutableArray alloc] init]; // initialize spots
19 lives = [[NSMutableArray alloc] init]; // initialize lives
20
21 // initialize the two spot images
22 touchedImage = [UIImage imageNamed:@"touched.png"];
23 untouchedImage = [UIImage imageNamed:@"untouched.png"];
24
25 // get the path of the sound file
26 NSString *soundPath = [[NSBundle mainBundle] pathForResource:@"hit"
27 ofType:@"wav"];
28
29 // create a URL with the given path
30 NSURL *fileURL = [[NSURL alloc] initFileURLWithPath:soundPath];
31
32 // initialize the AVAudioPlayer with the sound file
33
34
35
36
37 // get the path of the sound file
38 soundPath = [[NSBundle mainBundle] pathForResource:@"miss"
39 ofType:@"wav"];
40
41 // create a URL with the given path
42 [fileURL release];
43 fileURL = [[NSURL alloc] initFileURLWithPath:soundPath];
44
45 // initialize the AVAudioPlayer with the sound file
46
47

Fig. 7.6 | SpotOnViewController’s viewDidLoad method. (Part 1 of 2.)

hitPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil];
hitPlayer.volume = 0.3; // set hitPlayer's volume

missPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil];

Download from <www.wowebook.com>

ptg

136 Chapter 7 Spot-On Game App

Method resetGame of class SpotOnViewController
The resetGame method (Fig. 7.7) removes any spots from previous games and sets the
game’s instance variables to their initial states. The method adds the new game’s first three
spots at one-second intervals.

48
49
50 // get the path of the sound file
51 soundPath =
52 [[NSBundle mainBundle] pathForResource:@"disappear" ofType:@"wav"];
53
54 // create a URL with the given path
55 [fileURL release];
56 fileURL = [[NSURL alloc] initFileURLWithPath:soundPath];
57
58 // initialize the AVAudioPlayer with the sound file
59
60
61
62 [fileURL release]; // release the fileURL NSURL
63
64 [self resetGame]; // begin a new game
65 } // end method viewDidLoad
66

67 // removes old objects and begins a new game
68 - (void)resetGame
69 {
70 [spots removeAllObjects]; // empty the array of spots
71 drawTime = 3.0; // reset the draw time
72 spotsTouched = 0; // reset the number of spots touched
73 score = 0; // reset the score
74 level = 1; // reset the level
75 [scoreLabel setText:@"Score: 0"]; // reset the score label
76 [levelLabel setText:@"Level: 1"]; // reset the level label
77
78 // get the high score from the preferences file
79
80
81
82 // if there isn't a current high score
83 if (highScore == nil)
84 highScore = ; // set the high score to 0
85
86 // update the high score label with the high score
87 [highScoreLabel setText:
88 [NSString stringWithFormat:@"High Score: %@", highScore]];
89 gameOver = NO; // reset the gameOver boolean

Fig. 7.7 | SpotOnViewController’s resetGame method. (Part 1 of 2.)

Fig. 7.6 | SpotOnViewController’s viewDidLoad method. (Part 2 of 2.)

missPlayer.volume = 0.7; // set missPlayer's volume

disappearPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL:fileURL error:nil];
disappearPlayer.volume = 0.3; // set disappearPlayer's volume

NSNumber *highScore =
 [[NSUserDefaults standardUserDefaults] valueForKey:@"highScore"];

[NSNumber numberWithInt:0]

Download from <www.wowebook.com>

ptg

7.4 Building the App 137

Lines 70–76 reset SpotOnViewController’s instance variables to their states for the
start of a new game. Lines 79–80 get an NSNumber representing the current high score.
NSUserDefault’s standardUserDefaults method returns the NSUserDefault repre-
senting this app’s preferences. This information is stored in the app’s .plist file.
NSUserDefault’s valueForKey: method returns the value for highScore saved in this file.
If there is no current high score (line 83), we set highScore to 0. Lines 87–88 update the
high-score label.

 Lines 92–103 add three small versions of the green spot image to the lower-left corner
of the app. These images represent the player’s remaining lives.

To begin the game, we must add the initial spots to the screen. Lines 106–110 create
three new spots, invoking addNewSpot three times. The second and third calls to
addNewSpot are performed by NSObject’s performSelector:withObject:afterDelay:
method to add these spots at one-second intervals.

Method addNewSpot of class SpotOnViewController
The addNewSpot method (Fig. 7.8) creates new UIImageViews and adds them to the dis-
play. Once a new spot is added, its beginSpotAnimation method is called to start its ani-
mation.

90
91 // add three lives
92 for (int i = 0; i < 3; i++)
93 {
94 UIImageView *life = [[UIImageView alloc]
95 initWithImage:touchedImage];
96
97 // position the views next to each other at the bottom left
98 CGRect frame = CGRectMake(10 + 40 * i, 420, 30, 30);
99 life.frame = frame; // assign the new frame
100 [lives addObject:life]; // add the view to the list of lives
101 [self.view addSubview:life]; // add the image to the view
102 [life release];
103 } // end for
104
105 // add three new spots, each spaced by a one-second delay
106 [self addNewSpot];
107 [self performSelector:@selector(addNewSpot) withObject:nil
108 afterDelay:1.0]; // call addNewSpot after 1 second
109 [self performSelector:@selector(addNewSpot) withObject:nil
110 afterDelay:2.0]; // call addNewSpot after 2 seconds
111 } // end method resetGame
112

113 // adds a new spot at a random location
114 - (void)addNewSpot
115 {

Fig. 7.8 | SpotOnViewController’s addNewSpot method. (Part 1 of 2.)

Fig. 7.7 | SpotOnViewController’s resetGame method. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

138 Chapter 7 Spot-On Game App

Lines 117–118 retrieve the screen size. We access the SpotOnViewController’s
UIView, which has a bounds property that, in turn, contains a size property from which
we obtain the view’s width and height. We then compute random x- and y-coordinates
in that area (lines 121–122). Line 127 invokes UIView’s addSubview method to attach the
UIImageView representing a spot to the main view. The UIImageView’s frame is created at
the random coordinates (line 130) and the method beginSpotAnimation is invoked,
starting the UIImageView’s movement (lines 133–134). A small (.01 second) delay is used
to allow the spot to render before the animation begins. Line 136 releases the UIImageView
because it’s no longer needed by this method; howerver, the UIImageView isn’t deallo-
cated, because it was added to the spots NSMutableArray and as a subview of the main
view—both of which automatically send a retain messages to the object being added.

Method beginSpotAnimation of class SpotOnViewController
The beginSpotAnimation method (Fig. 7.9) selects random coordinates inside the main
view and animates the UIImageView to that point. This method and method beginSpot-
EndAnimation (Fig. 7.12) are not declared in SpotOnViewController.h—this is required
in Objective-C only for methods that will be called from outside the class.

First, we pick the coordinates to which the UIImageView will move (lines 143–148).
We then move the UIImageView to that point by using a Core Animation block—a section
of code in which changes to the UIView are animated rather than performed immediately.
A Core Animation block always begins with UIView’s beginAnimations:context:
method (line 150) and ends with its commitAnimations method (line 163).

The first parameter to beginAnimations:withContext: is the animation identifier.
This doesn’t affect the animation—it’s used only to identify the animation in the delegate

116 // get the view width and height
117 float viewWidth = ;
118 float viewHeight = ;
119
120 // pick random coordinates inside the view
121 float x = random() % (int)(viewWidth - 2 * BALL_RADIUS);
122 float y = random() % (int)(viewHeight - 2 * BALL_RADIUS);
123
124 // create a new spot
125 UIImageView *spot = [[UIImageView alloc] initWithImage:untouchedImage];
126 [spots addObject:spot]; // add the spot to the spots NSMutableArray
127 [self.view addSubview:spot]; // add the spot to the main view
128
129 // set the frame of variable spot with the random coordinates
130 [spot setFrame:CGRectMake(x, y, BALL_RADIUS * 2, BALL_RADIUS * 2)];
131
132 // delay beginning animation to give the spot time to redraw
133 [self performSelector:@selector(beginSpotAnimation:) withObject:spot
134 afterDelay:0.01];
135
136 [spot release]; // release the spot UIImageView
137 } // end method addNewSpot
138

Fig. 7.8 | SpotOnViewController’s addNewSpot method. (Part 2 of 2.)

self.view.bounds.size.width
self.view.bounds.size.height

Download from <www.wowebook.com>

ptg

7.4 Building the App 139

methods so that separate animations can be treated differently by the delagate. We pass
nil because we won’t need the identifier in this app. The second argument represents the
view that the delegate will manipulate. We pass the animating view (spot) because we’ll
need to interact with it in the delegate methods. Line 151 sets the SpotOnViewController
as the animation’s delegate. This means that the SpotOnViewController will be notified
when this animation starts and stops. Next, we specify the message sent (i.e., the method
that is called on the delegate) when the animation stops by calling UIView’s setAnima-
tionDidStopSelector: method (lines 154–155).

UIView’s setAnimationDuration: method (line 156) sets drawTime as the time it
takes the animation to complete. This means that the life of a spot—from when it first
appears on the screen until it disappears—takes place in this time frame. Line 159 uses
UIView’s setAnimationCurve: method to specify that the UIImageView will begin moving
slowly, then accelerate over the course of the animation. After setting the ending location
of the animation using the setFrame: method (line 162), line 163 calls UIView’s commit-
Animations method to end the Core Animation block. The animation begins as soon as
beginSpotAnimation: finishes executing.

Method touchesBegan:withEvent: of class SpotOnViewController
Touch handling is performed in the touchesBegan:withEvent: method (Fig. 7.10, lines
167–218), which is called every time the player touches the screen. We override it to make
spots disappear when the player touches them. The method’s first argument is an NSSet

139 // start the animation of the given spot
140 - (void)beginSpotAnimation:(UIImageView *)spot
141 {
142 // get the width and height of view
143 float viewWidth = [self.view bounds].size.width;
144 float viewHeight = [self.view bounds].size.height;
145
146 // pick random coordinates inside the view
147 float x = random() % (int)(viewWidth - 2 * BALL_RADIUS);
148 float y = random() % (int)(viewHeight - 2 * BALL_RADIUS);
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164 } // end method beginSpotAnimation:
165

Fig. 7.9 | SpotOnViewController’s beginSpotAnimation: method.

[UIView beginAnimations:nil context:spot]; // begin the animation block
[UIView setAnimationDelegate:self]; // set the delegate as this object

// call the given method of the delegate when the animation ends
[UIView setAnimationDidStopSelector:

@selector(finishedAnimation:finished:context:)];
[UIView setAnimationDuration:drawTime]; // set the animation length

// make the animation start slow and speed up
[UIView setAnimationCurve:UIViewAnimationCurveEaseIn];

// set the ending location of the spot
[spot setFrame:CGRectMake(x + BALL_RADIUS, y + BALL_RADIUS, 0, 0)];
[UIView commitAnimations]; // end the animation block

Download from <www.wowebook.com>

ptg

140 Chapter 7 Spot-On Game App

containing all the new touches. An NSSet is a collection of unique objects. In this case, it
contains one UITouch object for each new touch on the screen. A UITouch represents a sin-
gle touch on the screen. It contains information such as where and when the touch oc-
curred and the type of touch.

166 // method is called when the player touches the screen
167 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
168 {
169 BOOL hitSpot = NO; // initialize hitSpot
170
171
172 {
173 // get the location of the touch in the main view
174
175
176 // loop through all the spots to check if the player hit any;
177 // iterate backwards so foreground spots get checked first
178 for (int i = spots.count - 1; i >= 0 && !hitSpot; i--)
179 {
180 UIImageView *spot = [spots objectAtIndex:i];
181
182 // We need to get the current location of spot, but the frame
183 // of spot is already set to its ending location. To get the
184 // displayed frame, we need to access the Core Animation layer.
185
186
187 // compute the point at the center of the spot
188 CGPoint origin = CGPointMake(frame.origin.x + frame.size.width /
189 2, frame.origin.y + frame.size.height / 2);
190
191 // compute the distance between the spot's center and the touch
192 float distance =
193 pow(origin.x - point.x, 2) + pow(origin.y - point.y, 2);
194 distance = sqrt(distance); // square root to complete formula
195
196 // check if the touch is within the spot
197 if (distance <= frame.size.width / 2)
198 {
199 spot.image = touchedImage; // change to touched spot image
200 [self touchedSpot:spot]; // call the touchedSpot: method
201 hitSpot = YES; // a spot has been touched
202 } // end if
203 } // end for
204 } // end for
205
206 if (!hitSpot) // if the player missed
207 {
208
209 score -= 20 * level; // remove some points
210
211 if (score < 0)
212 score = 0;

Fig. 7.10 | SpotOnViewController’s touchesBegan:withEvent: method. (Part 1 of 2.)

for (UITouch *touch in touches) // loop through all the new touches

CGPoint point = [touch locationInView:self.view];

CGRect frame = [[spot.layer presentationLayer] frame];

[missPlayer play]; // play the miss sound

Download from <www.wowebook.com>

ptg

7.4 Building the App 141

Lines 171–204 loop through each UITouch object. To get the location of a touch, we
call UITouch’s locationInView: method, which returns a CGPoint containing the location
of the touch in the specified UIView (line 174). Lines 178–203 loop through each spot
UIImageView, determining if the UITouch is in the UIImageView’s bounds. If the player
touches two spots that overlap, we want only the top one to be destroyed. To accomplish
this, we loop through the array of spots backwards, so the top UIImageView is checked first.

Next, we determine the UIImageView’s location. The UIImageView is currently being
animated, so its frame corresponds to where the animation eventually finishes. To find the
location when the player touches the screen, we need to access its Core Animation layer.
UIImageView’s layer property provides access to UIImageView’s Core Animation layer (an
object of class CALayer). CALayer’s presentationLayer method returns a copy of the layer
in the position currently shown on the screen. The frame of this layer is the one we want.

Lines 188–189 determine the UIImageView’s center, then lines 192–194 get the dis-
tance between the player’s touch and the UIImageView’s center (lines 192–194). If the
player touched inside the UIImageView (line 197), we change the spot’s image property to
display the green spot image and invoke SpotOnViewController’s touchedSpot method.
Otherwise, we play a sound effect indicating a miss (line 208), decrease the score by the
product of 20 and the current level (line 209). If the score is below 0 (line 211), we set it
to 0 to avoid negative scores (line 212). Lines 215–216 update scoreLabel appropriately.

The Chain of Responsibility Design Pattern
The touchesBegan:withEvent: method responds to events in a manner that is consistent
with the chain-of-responsibility design pattern. In this pattern, a series of processing ob-
jects is given the opportunity to respond to a so-called command object—typically, an
event. If the first object in the chain cannot handle the event (i.e., no event handler was
registered for that event), the event is passed to the next object in the chain. If the event
gets handled, processing stops.

In Cocoa, the responder chain is a series of linked objects that respond to events. First
the view that the user interacts with receives the event. If that object does not have an event
handler, then the event is passed to the next object in the chain (i.e., the containing view),
and so on. When an event such as a touch occurs, the event is sent down the responder
chain until an object is encountered that has an appropriate event handler to process the
event. If none of the objects can handle the event, it’s ignored.

Method touchedSpot: of class SpotOnViewController
SpotOnViewController’s touchedSpot: method (Fig. 7.11) is called when the player suc-
cessfully touches a spot UIImageView. This method updates the score, level and lives re-
maining, then starts the animation that causes the touched UIImageView to fade away.

213
214 // update the score label
215 [scoreLabel setText:
216 [NSString stringWithFormat:@"Score: %i", score]];
217 } // end if
218 } // end method touchesBegan:withEvent:
219

Fig. 7.10 | SpotOnViewController’s touchesBegan:withEvent: method. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

142 Chapter 7 Spot-On Game App

First, we increment spotsTouched and add 10 times the current level to the score
(lines 222–223). Then, we play a sound indicating that a spot was touched. First, we reset
hitPlayer to the beginning (line 224), so that if it’s already playing (most likely because
the player touched multiple spots quickly) it will play again.

220 - (void)touchedSpot:(UIImageView *)spot
221 {
222 ++spotsTouched; // increment the number of spots touched
223 score += 10 * level; // increment the score
224 hitPlayer.currentTime = 0; // reset the playback to the beginning
225 [hitPlayer play]; // play the sound for when the player hits a spot
226
227 // update the score label
228 [scoreLabel setText:[NSString stringWithFormat:@"Score: %i", score]];
229
230 // increment level if the player touched 10 spots in the current level
231 if (spotsTouched % 10 == 0)
232 {
233 ++level; // increment the level
234 drawTime *= 0.95; // speed up the game
235
236 // update the level label
237 [levelLabel setText:
238 [NSString stringWithFormat:@"Level: %i", level]];
239
240 // add a new life if it fits on the screen
241 if (lives.count < 7)
242 {
243 // load the life image
244 UIImageView *life = [[UIImageView alloc]
245 initWithImage:touchedImage];
246
247 // position the View to the right of the previous life View
248 CGRect frame = CGRectMake(10 + 40 * lives.count, 420, 30, 30);
249 life.frame = frame; // set life's frame
250 [self.view addSubview:life]; // add life to View
251 [lives addObject:life]; // add life to lives array
252 [life release]; // release the life UIImageView
253 } // end if
254 } // end if
255
256 // stop the current animation and start a new one at the same place
257 CGRect frame = [[spot.layer presentationLayer] frame]; // get the frame
258
259 spot.frame = frame; // move the spot to where the old animation ended
260 [spot setNeedsDisplay]; // redraw the spot
261
262 // give the spot time to redraw by delaying the end animation
263 [self performSelector:@selector(beginSpotEndAnimation:) withObject:spot
264 afterDelay:0.01];
265 } // end method touchedSpot:
266

Fig. 7.11 | SpotOnViewController’s touchedSpot: method.

[spot.layer removeAllAnimations]; // stop the animation

Download from <www.wowebook.com>

ptg

7.4 Building the App 143

Line 231 determines if the level needs to be increased by checking if this spot was the
tenth one touched in the current level. If so, we increment the level then decrease draw-
Time, which controls how long the spot animations last. Because the animations have less
time to complete, the spots move faster to reach their end locations. We update the level-
Label (lines 237–238), then add a new life to reward the player for completing the pre-
vious level (lines 241–252)—if the player has fewer than seven lives.

Next, we end spot’s current animation and start its fade away animation. If we just
end the animation, the spot UIImageView will jump to the end location. To keep the UIIm-
ageView where it was touched, we use its CALayer to get its current position, stop the ani-
mation, then update the UIImageView’s frame (lines 257–259).

We want the spot to turn green when it is touched, so we flag it for redrawing using
the setNeedsDisplay method (line 260). This tells the app that the view needs to be
redrawn. It will be redrawn once this method exits. Lines 263–264 call the perform-
Selector:withObject:afterDelay method to begin the touched spot UIImageView’s
fade away animation.

Method beginSpotEndAnimation: of class SpotOnViewController
The beginSpotEndAnimation: method (Fig. 7.12) causes the passed UIImageView to
shrink, fade away and disappear. This method is called by the touchedSpot: method once
the spot’s first animation has been stopped.

Line 270 begins a new Core Animation block, passing end as the identifier and spot
as the context. We specify an identifier in this animation block because we need to differ-
entiate between this animation and other animations in the delegate methods. UIView’s
setAnimationDuration method specifies that the animation will last 0.8 seconds,

267 // starts the fade-away animation for a spot that's been touched
268 - (void)beginSpotEndAnimation:(UIImageView *)spot
269 {
270
271
272
273
274 // set the method to call when the animation ends
275
276
277
278 // make the spot stay in the same place and disappear
279 CGRect frame = spot.frame; // get the current frame
280 frame.origin.x += frame.size.width / 2; // set x to the center
281 frame.origin.y += frame.size.height / 2; // set y to the center
282 frame.size.width = 0; // set the width to 0
283 frame.size.height = 0; // set the height to 0
284 [spot setFrame:frame]; // assign the new frame
285 [spot setAlpha:0.0]; // set the spot to be fully transparent
286 [UIView commitAnimations]; // end the animation block
287 } // end method beginSpotEndAnimation:
288

Fig. 7.12 | SpotOnViewController’s beginSpotEndAnimation method.

[UIView beginAnimations:@"end" context:spot]; // begin animation block
[UIView setAnimationDuration:0.8]; // set the time for the animation
[UIView setAnimationDelegate:self]; // set the animation delegate

[UIView setAnimationDidStopSelector:
@selector(finishedAnimation:finished:context:)];

Download from <www.wowebook.com>

ptg

144 Chapter 7 Spot-On Game App

allowing it to be visible but ensuring that the spot disappears quickly. Line 272 sets the
animation’s delegate to self, which allows the SpotOnViewController to receive messages
when the animation starts and ends. UIView’s setAnimationDidStopSelector method is
used to specify that SpotOnViewController’s finishedAnimation:finished:Context
method is called when the animation ends. Lines 279–283 create a new CGRect at the
center of spot’s current location. The CGRect’s width and height are set to 0 so the spot
UIImageView will vanish from the screen. This CGRect is set as spot’s final frame (line
284), which will cause the UIImageView to fade and shrink once the animation begins. The
animation block ends with UIView’s commitAnimations method. The animation will
begin once beginSpotAnimation: finishes executing.

Method finishedAnimation:finished:context: of class
SpotOnViewController

The finishedAnimation method (Fig. 7.13) is called when a spot UIImageView animation
ends. This occurs when both touched and untouched spots disappear from the screen.

289 // method is automatically called when an animation ends
290 - (void)finishedAnimation:(NSString *)animationId finished:(BOOL)finished
291 context:(void *)context
292 {
293 // if the game has already been lost, exit
294 if (gameOver)
295 return;
296
297 UIImageView *spot = (UIImageView *)context; // get the finished spot
298
299 // if it was an ending animation that finished, add a new spot
300 if (animationId == @"end")
301 {
302 // remove spot from the spots NSMutableArray
303 [spots removeObject:spot];
304 [spot removeFromSuperview]; // remove the old spot
305 [self addNewSpot]; // add a new spot
306 } // end if
307 else if ([spot.image isEqual:untouchedImage]) // a spot was missed
308 {
309
310
311 // the game has been lost
312 if (lives.count == 0)
313 {
314 for (UIImageView *spot in spots) // delete all old spots
315 {
316 [spot removeFromSuperview]; // remove the spot from the View
317 [spot.layer removeAllAnimations]; // stop existing animations
318 } // end for
319
320 gameOver = YES; // the game is over

Fig. 7.13 | SpotOnViewController’s finishedAnimation:finished:Context: method.
(Part 1 of 2.)

[disappearPlayer play]; // play disappearing spot sound effect

Download from <www.wowebook.com>

ptg

7.4 Building the App 145

If the game is over, the method exits (lines 294–295). Otherwise, we cast context to
a UIImageView (line 297)—remember that we attached animations only to UIImageViews.
If the animation that just finished is an ending animation (line 300), we remove the
UIImageView from the spots NSMutableArray (line 301). We then remove the old UIIm-
ageView and add a new one (line 304–305). If it’s a spot that’s never been touched (line
307), we play the sound effect for a missed spot (line 309). We determine whether the
game is over by checking if the player has any lives remaining (line 312). If it’s over, lines
314–318 loop through the spots NSMutableArray and remove any UIImageViews from
the previous game. UIView’s removeFromSuperView method erases each UIImageView from
the screen. Line 317 ends each UIImageView’s animation. We use UIImageView’s layer
property to access the UIImageView’s Core Animation layer (an object of class CALayer),

321
322 // display the game-over alert
323 NSString *message =
324 [NSString stringWithFormat:@"Score: %i", score];
325
326 // get the standard user defaults
327 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
328
329 // get the current high score
330 int highScore = [[defaults valueForKey:@"highScore"] intValue];
331
332 // if the score of the last game is greater than the high score
333 if (score > highScore)
334
335 // update the file with the new high score
336
337
338
339 UIAlertView *alert = [[UIAlertView alloc]
340 initWithTitle:@"Game Over" message:message delegate:self
341 cancelButtonTitle:@"Reset Game" otherButtonTitles:nil];
342 [alert show]; // show the alert
343 [alert release]; // release the alert UIAlertView
344 } // end else
345 else // remove one life
346 {
347 UIImageView *life = [lives lastObject]; // get the last life
348 [lives removeLastObject]; // remove the life from the array
349 [life removeFromSuperview]; // remove the life from the screen
350
351 // remove the old spot and create a new one
352 [spot removeFromSuperview]; // remove old spot
353 [self addNewSpot]; // add a new spot
354 } // end else
355 } // end else
356 } // end method finishedAnimation:finished:context:
357

Fig. 7.13 | SpotOnViewController’s finishedAnimation:finished:Context: method.
(Part 2 of 2.)

[defaults setValue:[NSNumber numberWithInt:score]
 forKey:@"highScore"];

Download from <www.wowebook.com>

ptg

146 Chapter 7 Spot-On Game App

which provides the view with animation support. CALayer’s removeAllAnimations
method removes any animations attached to the layer. If we don’t remove the animations,
Core Animation will continue animating a view that no longer exists, causing the app to
crash.

We get the high score using NSUserDefault’s valueForKey: method. If the player’s
score is greater than the old high score (line 333), we write the new high score to the app’s
preferences file using NSUserDefault’s setValue:forKey: method (lines 336–337). We
then display a UIAlertView with the final score. Otherwise, we remove one life and update
the display.

Methods altertView:clickedButtonAtIndex:, shouldAutorotateTo-
InterfaceOrientation: and dealloc of class SpotOnViewController
The alertView:clickedButtonAtIndex: method (Fig. 7.14) is called when the player
touches the “Reset Game” Button on UIAlertView displayed at the end of the game. Line
362 starts a new game, by invoking the resetGame method.

Method shouldAutoRotateToInterfaceOrientation: (lines 366–371) is inherited
from UIViewController. It’s called by the iPhone OS to determine whether this view
should rotate when the iPhone’s orientation changes. Method dealloc (lines 374–385)
releases SpotOnViewController’s remaining objects and calls the superclass’s dealloc
method.

358 // called when the player touches the "Reset Game" Button
359 - (void)alertView:(UIAlertView *)alertView
360 clickedButtonAtIndex:(NSInteger)buttonIndex
361 {
362 [self resetGame]; // create a new game
363 } // end method alertView:clickedButtonAtIndex:
364
365 // called to determine what orientations our View allows
366 - (BOOL)shouldAutorotateToInterfaceOrientation:
367 (UIInterfaceOrientation)interfaceOrientation
368 {
369 // allow only the portrait orientation
370 return (interfaceOrientation == UIInterfaceOrientationPortrait);
371 } // end method shouldAutorotateToInterfaceOrientation:
372
373 // free SpotOnViewController's memory
374 - (void)dealloc
375 {
376 [spots release]; // release the spots NSMutableArray
377 [lives release]; // release the lives NSMutableArray
378 [hitPlayer release]; // release the hitPlayer AVAudioPlayer
379 [missPlayer release]; // release the missPlayer AVAudioPlayer
380 [disappearPlayer release]; // release the disappearPlayer AVAudioPlayer
381 [scoreLabel release]; // release the scoreLabel UILabel
382 [levelLabel release]; // release the levelLabe UILabel
383 [highScoreLabel release]; // release the highScoreLabel UILabel

Fig. 7.14 | SpotOnViewController’s methods alertView:clickedButtonAtIndex:,
shouldAutoRotateToInterfaceOrientation: and dealloc. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

7.5 Wrap-Up 147

7.5 Wrap-Up
In this chapter, we created the Spot-On Game app, using Core Animation to animate mul-
tiple views. We used Core Animation blocks to animate UIImageViews. We provided an
ending location and size for each spot UIImageView and the length of the animation. Core
Animation then moved the UIImageViews and shrunk them, in accordance with the
parameters we set. We used AVAudioPlayers to play sound effects in the game. Each
AVAudioPlayer was tied to an individual sound file and gave us the ability to play the file
programmatically.

In Chapter 8, the Cannon Game app makes further use of many of the technologies
used in this chapter. We handle multitaps and swipe gestures. Rather than animating the
game with the Core Animation framework, we introduce an NSTimer to generate events
and update the display in response to those events. We also show how to group related
objects in structures, and how to perform simple collision detection.

384 [super dealloc]; // invokes the superclass's dealloc method
385 } // end method dealloc
386 @end

Fig. 7.14 | SpotOnViewController’s methods alertView:clickedButtonAtIndex:,
shouldAutoRotateToInterfaceOrientation: and dealloc. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

148 Chapter 7 Spot-On Game App

This page intentionally left blank.

Download from <www.wowebook.com>

ptg

7.5 Wrap-Up 149

This page intentionally left blank.

Download from <www.wowebook.com>

ptg

150 Chapter 7 Spot-On Game App

This page intentionally left blank.

Download from <www.wowebook.com>

ptg

7.5 Wrap-Up 151

This page intentionally left blank.

Download from <www.wowebook.com>

ptg

152 Chapter 7 Spot-On Game App

This page intentionally left blank.

Download from <www.wowebook.com>

ptg

7.5 Wrap-Up 153

This page intentionally left blank.

Download from <www.wowebook.com>

ptg

8
Cannon Game App

 Animation with NSTimer and Handling Drag Events

O B J E C T I V E S
In this chapter you’ll learn:

■ To use an NSTimer to generate events at fixed time
intervals.

■ To group common variables under one name using a
struct type.

■ To perform simple collision detection.

■ To use the touchesMoved:withEvent: method to
aim the cannon as the player drags a finger on the screen.

■ To process double-tap events to fire the cannon.

■ To use the typedef keyword to declare easier-to-
understand aliases for previously defined data types.

i

Download from <www.wowebook.com>

ptg

8.1 Introduction 155

O
u

tl
in

e

8.1 Introduction
The Cannon Game app challenges the player to destroy a seven-piece target before a ten-
second time limit runs out (Fig. 8.1). The game consists of three visual components—a
cannon that the player controls, the target and a blocker that defends the target. The player
aims the cannon by touching the screen—the cannon then aims at the touched point. The
cannon fires a cannonball when the player double-taps the screen (Fig. 8.2).

The target consists of seven pieces, each of which the player must hit to win the game.
When a cannonball hits the target, a glass-breaking sound plays and that piece of the target
disappears from the screen. When the cannonball hits the blocker, a “hit” sound plays and
the cannonball bounces back. The blocker cannot be destroyed. The target and blocker
move vertically, changing direction when they hit the top or bottom of the screen.

 The game begins with a 10-second time limit. Each time a cannonball hits the target,
three seconds are added to the time limit, and each time a cannonball hits the blocker, two
seconds are subtracted. The player wins by destroying all seven target sections before time
runs out. If the timer reaches zero, the player loses.

8.1 Introduction

8.2 Test-Driving the Cannon Game app

8.3 Overview of the Technologies

8.4 Building the App

8.5 Wrap-Up

Fig. 8.1 | Completed Cannon Game app.

Target

Blocker

Time remaining

Cannon

Download from <www.wowebook.com>

ptg

156 Chapter 8 Cannon Game App

8.2 Test-Driving the Cannon Game App
Opening the Completed Application
Open the directory containing the Cannon Game app project. Double click Cannon-
Game.xcodeproj to open the project in Xcode.

Running the Game
Click the Build and Go button to run the app in the iPhone Simulator. Drag your finger
on the screen or tap it to aim the cannon, and double tap the screen (i.e., tap it twice quick-
ly in the same place) to fire a shot. Try to destroy the target as fast as you can—if the timer
in the lower-left corner of the app runs out, the game is over.

8.3 Overview of the Technologies
In the previous chapter, we used the Core Animation framework to animate several views
in our app. In this chapter, we manually perform the animations by responding to NSTimer
events that occur at fixed time intervals. This gives us more control over the animations
but sacrifices some of the simplicity of using Core Animation.

An NSTimer object is initialized with a time interval and a method to call when that
interval expires. In this app, the NSTimer generates an event every 0.025 second, and the
method that is called in response to the event redraws the entire display. This will cause
the app to refresh the display 40 times per second.

To refresh the display, we must compute new coordinates for each item on the screen,
checking for collisions and adjusting velocities accordingly. This is straightforward in our

Fig. 8.2 | Cannon Game app with cannonball in flight.

Cannonball in flight

a) b)

Download from <www.wowebook.com>

ptg

8.4 Building the App 157

app, because only four pieces move (the cannon, cannonball, blocker and target) and only
the cannonball can collide with the other elements.

We introduce structures and use a structure in this app to group two points that rep-
resent the endpoints of a line. Variables of this new type are used to represent the end-
points of both the blocker and the target.

This chapter also introduces Core Graphics framework functionality. We show how
to draw lines, draw text, change line thicknesses, change colors, and save and restore
graphics contexts.

8.4 Building the App
Declaring the CannonView Interface
The CannonView class controls the game—storing the locations of the cannon, cannonball,
target and blocker. An NSTimer refreshes the game every .025 second to update the posi-
tion of each item on the screen. Figure 8.3 shows CannonView’s interface declaration.

1 // CannonView.h
2 // CannonView's interface declaration
3 // Implementation in CannonView.m
4 #import <UIKit/UIKit.h>
5 #import <AVFoundation/AVFoundation.h>
6 #define TARGET_PIECES 7 // number of sections in the target
7
8
9

10
11
12
13
14 @interface CannonView : UIView
15 {
16 AVAudioPlayer *cannonFireSound; // plays the cannon firing sound
17 AVAudioPlayer *targetHitSound; // plays the target hit sound
18 AVAudioPlayer *blockerHitSound; // plays the blocker hit sound
19
20 Line blocker; // stores the points representing the blocker
21 Line target; // stores the points representing the target
22 BOOL targetPieceHit[TARGET_PIECES]; // is each target piece hit?
23 int targetPiecesHit; // number of target pieces hit
24 float blockerVelocity; // blocker's velocity
25 float targetVelocity; // target's velocity
26
27 CGPoint cannonball; // cannonball image’s upper-left corner
28 CGPoint cannonballVelocity; // cannonball's velocity
29 CGPoint barrelEnd; // the endpoint of the cannon's barrel
30
31 BOOL cannonballOnScreen; // is the cannonball on the screen?
32
33 int timerCount; // times the timer fired since the last second

Fig. 8.3 | CannonView’s interface declaration. (Part 1 of 2.)

typedef struct line // groups two points that represent a line
{
 CGPoint start; // the line’s start point
 CGPoint end; // the line’s endpoint
} Line; // end typedef struct line

NSTimer *timer; // the main timer

Download from <www.wowebook.com>

ptg

158 Chapter 8 Cannon Game App

The constant TARGET_PIECES specifies the number of sections in the target (line 6).
Lines 8–12 define a structure—a collection of related variables under one name. Unlike
an array, a structure can contain variables of different data types. The struct keyword
begins the structure declaration. The identifier line is the structure tag, which names the
declaration. Variables declared within the braces of the structure declaration are the struc-
ture’s members. Members of the same structure type must have unique names, but two dif-
ferent structure types may contain members of the same name without conflict. The
struct keyword is normally used to declare variables of a structure type. In this example,
the structure type is struct line. The typedef specifier (line 8) declares synonyms
(aliases) for previously defined data types. We use typedef to create shorter, more readable
type names. Here, we create the alias Line (line 12) for the struct line structure type.
When a struct declaration begins with typedef struct, we place the alias name between
the struct’s closing brace and semicolon. In this example, we can declare variables of our
structure type by using the alias Line.

The declaration for the CannonView interface states that it’s a subclass of UIView. Lines
16–18 declare three AVAudioPlayer pointers—which are used to play sound effects when
the cannon is fired, when the cannonball hits the blocker and when the cannonball hits
the target.

Line 30 declares an NSTimer pointer. The timer will call the setNeedsDisplay
method every .025 seconds, which will indirectly cause CannonView’s drawRect: method
to be called to update the view. Class CannonView defines four methods (lines 39–44):

• timerFired:—updates the status of the game each time the timer fires.

• showAlertWithTitle:message:—displays results at the end of the game.

• newGame—resets all of the game components restoring all of the target’s pieces,
removing the ball from sight and aiming the cannon horizontally, then starts a
new game.

• processTouch—processes taps, double taps and drag touches.

CannonView Class Implementation
The CannonView (Fig. 8.4) will display all of the game’s visual elements and perform the
animation. A CannonView is later added to the main view through Interface Builder, but
none of the visual design takes place outside the CannonView class.

34 int timeLeft; // the amount of time left in seconds
35 int shotsFired; // the number of shots the user has made
36 int timeElapsed; // the number of seconds elapsed
37 } // end instance variable declaration
38
39 - (void)timerFired:(NSTimer *)theTimer; // updates the entire display
40
41 // shows an alert with the given title and message
42 - (void)showAlertWithTitle:(NSString *)title message:(NSString *)message;
43 - (void)newGame; // starts a new game
44 - (void)processTouch:(UITouch *)touch; // process a player’s touch
45 @end // end interface CannonView

Fig. 8.3 | CannonView’s interface declaration. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

8.4 Building the App 159

Lines 6–26 declare static const global variables used throughout class CannonView.
CANNON_BASE_RADIUS and CANNON_LENGTH are used to set the cannon’s size (line 6–7).
CANNONBALL_RADIUS declares the size of the cannonball and CANNONBALL_VELOCITY con-
trols how fast the cannonball moves across the screen (lines 9–10). LINE_WIDTH (line 12)
defines the width of the blocker and target. BLOCKER_DISTANCE sets the blocker’s x-
coordinate, BLOCKER_BEGINNING sets the blocker’s top y-coordinate and BLOCKER_END sets
the blocker’s bottom y-coordinate (lines 13–15). The blocker’s speed is defined by
BLOCKER_VELOCITY (line 16). The target’s velocity is set by TARGET_VELOCITY and its x-
coordinate is TARGET_DISTANCE (lines 18–19). The target’s top y-coordinate is set by
TARGET_BEGINNING; TARGET_END sets its bottom y-coordinate (lines 20–21). MISS_PENALTY
is the number of seconds subtracted from the remaining time when the player fires a
missed shot and HIT_REWARD is the number of seconds added back when the target is hit
(lines 23–24). TIME_INTERVAL is used to set how often the timer generates events to update
the display (line 26).

Methods initWithCoder: and awakeFromNib of Class CannonView
The initWithCoder: method is called by the iPhone OS when loading nib files. Since we
add CannonView to a nib file in Interface Builder, we use the initWithCoder: method
(Fig. 8.5) to initialize the CannonView. If the superview’s initialization is successful (line
34), the cannon’s position is initialized to be parallel to the bottom of the screen. This is

1 // CannonView.m
2 // Main view for the Cannon Game.
3 #import <AVFoundation/AVFoundation.h>
4 #import "CannonView.h"
5
6 static const int CANNON_BASE_RADIUS = 25; // radius of the cannon base
7 static const int CANNON_LENGTH = 40; // length of the cannon barrel
8
9 static const int CANNONBALL_RADIUS = 10; // radius of the cannonball

10 static const int CANNONBALL_VELOCITY = 600; // cannonball's velocity
11
12 static const int LINE_WIDTH = 10; // width of the target and blocker
13 static const int BLOCKER_DISTANCE = 200; // blocker distance from left
14 static const int BLOCKER_BEGINNING = 50; // blocker distance from top
15 static const int BLOCKER_END = 200; // blocker bottom's distance from top
16 static const int BLOCKER_VELOCITY = 300; // blocker's velocity
17
18 static const int TARGET_VELOCITY = -100; // target's velocity
19 static const int TARGET_DISTANCE = 300; // target's distance from left
20 static const int TARGET_BEGINNING = 50; // target's distance from top
21 static const int TARGET_END = 400; // target bottom's distance from top
22
23 static const int MISS_PENALTY = 2; // seconds subtracted for a miss
24 static const int HIT_REWARD = 3; // seconds added for a hit
25
26 static const float TIME_INTERVAL = 0.025; // interval for timer events
27

Fig. 8.4 | Global variable declarations in CannonView.m.

Download from <www.wowebook.com>

ptg

160 Chapter 8 Cannon Game App

set using the barrelEnd CGPoint, which represents the point at the tip of the cannon.
Changing this point changes the cannon’s angle. We initialize the point halfway down the
screen at the end of the cannon (line 37). CannonView’s frame’s size property returns a
CGSize object representing the size of the entire view. Lines 40–41 invoke NSBundle’s
pathForResource:ofType: method to get the file path of cannon_fire.wav. Line 44 con-
verts this path to an NSURL. This NSURL is used to initialize the cannonFireSound AVAudio-
Player (lines 47–48). Lines 52–73 initialize the remaining AVAudioPlayers.

The awakeFromNib method (lines 80–83) is called after the nib file has finished
loading. At this point, we start a new game by calling the newGame method.

28 @implementation CannonView
29
30 // initialize the view
31 - (id)initWithCoder:(NSCoder *)aDecoder
32 {
33 // if the superclass initialized properly
34 if (self = [super initWithCoder:aDecoder])
35 {
36
37
38
39 // get the path for the cannon firing sound
40 NSString *soundPath = [[NSBundle mainBundle]
41 pathForResource:@"cannon_fire" ofType:@"wav"];
42
43 // create a URL from the path
44 NSURL *soundURL = [[NSURL alloc] initFileURLWithPath:soundPath];
45
46 // initialize cannonFireSound with the URL
47 cannonFireSound =
48 [[AVAudioPlayer alloc] initWithContentsOfURL:soundURL error:nil];
49 [soundURL release]; // release the soundURL NSURL
50
51 // get the path for the target hit sound
52 soundPath = [[NSBundle mainBundle] pathForResource:@"target_hit"
53 ofType:@"wav"];
54
55 // create a URL from the path
56 soundURL = [[NSURL alloc] initFileURLWithPath:soundPath];
57
58 // initialize targetHitSound with the URL
59 targetHitSound =
60 [[AVAudioPlayer alloc] initWithContentsOfURL:soundURL error:nil];
61 [soundURL release]; // release the soundURL NSURL
62
63 // get the path for the blocker hit sound
64 soundPath = [[NSBundle mainBundle] pathForResource:@"blocker_hit"
65 ofType:@"wav"];
66
67 // create a URL from the path
68 soundURL = [[NSURL alloc] initFileURLWithPath:soundPath];

Fig. 8.5 | CannonView’s initWithCoder: and awakeFromNib methods. (Part 1 of 2.)

// make the cannon initially point horizontally
barrelEnd = CGPointMake(CANNON_LENGTH, self.frame.size.height / 2);

Download from <www.wowebook.com>

ptg

8.4 Building the App 161

newGame method of Class CannonView
The newGame method (Fig. 8.5) resets the display and begins a new game. The newGame
method begins by declaring the endpoints for the blocker and target Lines (lines 89–
94). We then loop through the targetPieceHit array, declaring that each segment of the
target has not yet been hit (lines 97–98). The targetPiecesHit instance variable begins
at 0 and cannonballVelocity and targetVelocity are initialized to their respective con-
stants’ values (lines 102–103). The game begins with timeLeft set to 10. Lines 100–113
initialize CannonView’s remaining instance variables to their initial game states. Lines 112–
113 create a new NSTimer by invoking its static method scheduledTimerWithTimeInter-
val—which automatically allocates memory for the new NSTimer. It also adds the timer
to the current run loop, which retains the timer. TIME_INTERVAL specifies how often the
timer will generate events and the next two arguments state that the timer will invoke the
timerFired method of self. The userInfo parameter can be used to store any object you
want to use in the specified method, but we pass nil in this app since we have no need.
The last argument specifies that we wish the timer to keep generating events throughout
the game as opposed to generating a single event.

69
70 // initialize blockerHitSound with the URL
71 blockerHitSound =
72 [[AVAudioPlayer alloc] initWithContentsOfURL:soundURL error:nil];
73 [soundURL release]; // release the soundURL NSURL
74 } // end if
75
76 return self;
77 } // end method initWithCoder:
78
79 // called when the nib file finishes loading
80 - (void)awakeFromNib
81 {
82 [self newGame]; // view is loaded, so start a new game
83 } // end method awakeFromNib
84

85 // reset all the screen elements and start a new game
86 - (void)newGame
87 {
88
89
90
91
92
93
94
95

Fig. 8.6 | CannonView’s newGame method. (Part 1 of 2.)

Fig. 8.5 | CannonView’s initWithCoder: and awakeFromNib methods. (Part 2 of 2.)

// set the initial blocker position based on the defined constants
blocker.start = CGPointMake(BLOCKER_DISTANCE, BLOCKER_BEGINNING);
blocker.end = CGPointMake(BLOCKER_DISTANCE, BLOCKER_END);

// set the initial target position based on the defined constants
target.start = CGPointMake(TARGET_DISTANCE, TARGET_BEGINNING);
target.end = CGPointMake(TARGET_DISTANCE, TARGET_END);

Download from <www.wowebook.com>

ptg

162 Chapter 8 Cannon Game App

Method timerFired: of Class CannonView
Method timerFired: (Fig. 8.7) updates the game each time the timer generates an event.
Global constant TIME_INTERVAL global variable indicates that the timer generates events
every .025 second; however, these events may not be processed at .025 second intervals.
For example, if another event is still being handled, the new timer event will be queued for
processing as soon as possible. Therefore, timerFired: might not be called precisely when
each timer event occurs. Method timerFired: is called approximately 40 times per second
for smooth animation. Fewer refreshes start to make the animation choppy.

96 // set every element of targetPieceHit to NO
97 for (int i = 0; i < TARGET_PIECES; i++)
98 targetPieceHit[i] = NO; // this piece hasn't been hit
99
100 targetPiecesHit = 0; // no target pieces have been hit
101
102 blockerVelocity = BLOCKER_VELOCITY; // set the initial blocker velocity
103 targetVelocity = TARGET_VELOCITY; // set the initial target velocity
104
105 timeLeft = 10; // start the countdown at 10 seconds
106 timerCount = 0; // the timer has fired 0 times so far
107 cannonballOnScreen = NO; // the cannonball is not on the screen
108 shotsFired = 0; // set initial number of shots fired
109 timeElapsed = 0; // set the time elapsed to zero
110
111
112
113
114 } // end method newGame
115

116 // refreshes all the elements on the screen
117 - (void)timerFired:(NSTimer *)theTimer
118 {
119 // if the cannonball is on the screen
120 if (cannonballOnScreen)
121 {
122 // update cannonball position
123 cannonball.x += TIME_INTERVAL * cannonballVelocity.x;
124 cannonball.y += TIME_INTERVAL * cannonballVelocity.y;
125
126 // check for collision with blocker
127 if (cannonball.x > BLOCKER_DISTANCE - CANNONBALL_RADIUS * 2 &&
128 cannonball.x < BLOCKER_DISTANCE + LINE_WIDTH / 2 &&
129 cannonball.y + CANNONBALL_RADIUS * 2 > blocker.start.y &&
130 cannonball.y < blocker.end.y)
131 {

Fig. 8.7 | CannonView’s timerFired: method. (Part 1 of 3.)

Fig. 8.6 | CannonView’s newGame method. (Part 2 of 2.)

// start the timer with the defined time interval
timer = [NSTimer scheduledTimerWithTimeInterval:TIME_INTERVAL target:
 self selector:@selector(timerFired:) userInfo:nil repeats:YES];

Download from <www.wowebook.com>

ptg

8.4 Building the App 163

132 cannonballVelocity.x *= -1;
133 [blockerHitSound play]; // play the blocker hit sound
134 timeLeft -= MISS_PENALTY;
135 } // end if
136
137 // check for collisions with the left and right walls
138 else if (cannonball.x > self.frame.size.width || cannonball.x +
139 CANNONBALL_RADIUS * 2 < 0 && cannonballVelocity.x < 0)
140 cannonballOnScreen = NO; // make the cannonball disappear
141
142 // check for collisions with top and bottom walls
143 else if (cannonball.y + CANNONBALL_RADIUS * 2 < 0 ||
144 cannonball.y > self.frame.size.height + CANNONBALL_RADIUS * 2)
145 cannonballOnScreen = NO; // make the cannonball disappear
146
147 // check for a hit on the target
148 else if (cannonball.x > TARGET_DISTANCE - CANNONBALL_RADIUS * 2 &&
149 cannonball.x < TARGET_DISTANCE + LINE_WIDTH / 2 &&
150 cannonball.y + CANNONBALL_RADIUS * 2 > target.start.y &&
151 cannonball.y < target.end.y)
152 {
153 // calculate the length of each piece of the target
154 float pieceLength =
155 (TARGET_END - TARGET_BEGINNING) / TARGET_PIECES;
156
157 // determine which section number was hit (0 is the top)
158 int section =
159 (int)((cannonball.y - target.start.y) / pieceLength);
160
161 // check if the piece hasn't been hit yet
162 if (!targetPieceHit[section])
163 {
164 targetPieceHit[section] = YES; // the piece was hit
165 cannonballOnScreen = NO; // make the cannonball disappear
166 timeLeft += HIT_REWARD; // add reward to remaining
167 [targetHitSound play]; // play the target hit sound
168
169 // if all the target's pieces have been hit
170 if (++targetPiecesHit == TARGET_PIECES)
171 {
172 NSString *message = [NSString stringWithFormat:
173 @"Shots fired: %i\nTime elapsed: %i seconds",
174 shotsFired, timeElapsed];
175
176 // display the game won alert
177 [self showAlertWithTitle:@"You Win!" message:message];
178 } // end if
179 } // end if
180 } // end else
181 } // end if
182

Fig. 8.7 | CannonView’s timerFired: method. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

164 Chapter 8 Cannon Game App

Line 120 checks whether the cannonball is currently on the screen. If it is, we update
its position by adding the distance it should have traveled since the last timer event. This
is calculated by multiplying its velocity by the amount of time that passed (lines 123–124).
Lines 127–130 check whether the cannonball has collided with the blocker. We perform
simple collision detection in this app based on the rectangular boundaries of the cannon-
ball image. There are four conditions that must be met if the cannonball is in contact with
the blocker. The left edge of the cannonball must be greater than the blocker’s x-coordi-
nate (BLOCKER_DISTANCE) minus the diameter of the cannonball (line 127). This means
that the cannonball has reached the blocker. The cannonball’s x-coordinate must also be
less than the blocker’s position plus the width of the line (line 128). This ensures that the
cannonball has not yet passed the blocker. Part of the cannonball must also be lower than
the top of the blocker (line 129) and higher than the bottom of the blocker (line 130). If
all these conditions are met, we remove the cannonball from the screen by setting cannon-
ballOnScreen to NO, then play the blockerHitSound AVAudioPlayer.

183 // update the blocker's position
184 blocker.start.y += TIME_INTERVAL * blockerVelocity;
185 blocker.end.y += TIME_INTERVAL * blockerVelocity;
186
187 // update the target's position
188 target.start.y += TIME_INTERVAL * targetVelocity;
189 target.end.y += TIME_INTERVAL * targetVelocity;
190
191 // check if the blocker has hit the top or bottom walls
192 if (blocker.start.y < 0 || blocker.end.y > self.bounds.size.height)
193 blockerVelocity *= -1; // reverse the blocker's direction
194
195 // check if the target has hit the top or bottom walls
196 if (target.start.y < 0 || target.end.y > self.bounds.size.height)
197 targetVelocity *= -1; // reverse the target's direction
198
199 ++timerCount; // increment the timer event counter
200
201 // if one second has passed
202 if (TIME_INTERVAL * timerCount >= 1)
203 {
204 --timeLeft; // subtract one from the timer
205 ++timeElapsed; // increment the time elapsed
206 timerCount = 0; // reset the count
207 } // end if
208
209 // if the timer reached zero
210 if (timeLeft <= 0 && timerCount > 0)
211
212 // display game over alert
213 [self showAlertWithTitle:@"Game Over" message:nil];
214
215 [self setNeedsDisplay]; // redraw the entire display
216 } // end method timerFired:
217

Fig. 8.7 | CannonView’s timerFired: method. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

8.4 Building the App 165

We remove the cannonball if it reaches any of the screen’s edges. Lines 143–145
remove the cannonball if any part of it has reached the right or left edge. Lines 148–151
remove the cannonball if it reaches the top or bottom of the screen. We then check whether
the cannonball has hit the target. Four conditions must be met if the cannonball has made
contact with the target (142–145). These are exactly the same as the conditions used to
determine collision with the blocker, but using target’s coordinates.

If the cannonball hit the target, we determine which section of the target was hit.
Lines 154–155 calculate the length of each target section by dividing the total length of
the target by the number of sections. Lines 158–159 determine which section has been
hit—dividing the distance between the cannonball and the bottom of the target by the
size of a piece. This returns 0 for the top-most section and 6 for the bottom-most. We
check whether that section was previously hit, using the targetPieceHit array (line 162).
If it wasn’t, line 164 sets the appropriate element of targetPieceHit to YES and the can-
nonball is removed from the screen. We then add HIT_REWARD to timeLeft, increasing the
game’s time remaining, and play the targetHitSound. We increment targetPiecesHit—
if it’s equal to TARGET_PIECES (line 170), the game is over. The showAlertwith-
Title:message: method is called to display a UIAlertView containing a string detailing
the number of shots fired and time elapsed during the game (lines 172–177).

Now that all possible cannonball collisions have been checked, the blocker and
target positions must be updated. Lines 184–185 change the blocker’s position by mul-
tiplying blockerVelocity by the amount of time that has passed since the last update and
adding that value to the current x- and y-coordinates. Lines 188–189 do the same for
target. If the blocker has collided with the top or bottom wall, its direction is reversed
by multiplying its velocity by -1 (lines 192–193). Lines 196–197 perform the same check
and adjustment for target.

We increment the timerCount, keeping track of the number of times the timer has
generated an event. If the product of TIME_INTERVAL (.025) and timerCount is one,
timerCount must equal 40 and one second has passed since timeLeft was last updated. If
so, we decrement timeLeft, increment timeElapsed and reset timerCount (205–207). If
the timer has reached zero, the showAlertwithTitle:message: method is called to display
a UIAlertView reading “Game Over” (line 213). Line 215 invokes UIView’s setNeedsDis-
play method, causing the CannonView to redraw.

Methods showAlertwithTitle:message: and alertView:clickedButtonAtIn-
dex: of class CannonView
The showAlertwithTitle:message: method (Fig. 8.8, lines 219–229) displays a UI-
AlertView at the end of the game.

218 // show an alert with the given title and message
219 - (void)showAlertWithTitle:(NSString *)title message:(NSString *)message
220 {
221 [timer invalidate]; // stop and release the timer
222 timer = nil; // set timer to nil
223

Fig. 8.8 | CannonView’s showAlertwithTitle:message: and
alertView:clickedButtonAtIndex: methods. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

166 Chapter 8 Cannon Game App

Line 221 invokes NSTimer’s invalidate method to prevent the timer from generating
events and line 222 sets the timer to nil. Lines 225–228 create and display a UIAlertView
displaying the title taken in as an argument. The cancelButtonTitle: argument is set to
read “New Game” and will call CannonView’s alertView:clickedButtonAtIndex: method,
which starts a new game by calling the newGame method (lines 233–237).

drawRect method of class CannonView
The drawRect: method (Fig. 8.9) redraws the CannonView after the timerFired: method
updates each screen item’s position in the view.

224 // create the game over alert
225 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title
226 message:message delegate:self cancelButtonTitle:@"New Game"
227 otherButtonTitles:nil];
228 [alert show]; // show the alert
229 [alert release]; // release the alert UIAlertView
230 } // end method displayAlertWithTitle:
231
232 // called when the player touches the new game button in an alert
233 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
234 (NSInteger)buttonIndex
235 {
236 [self newGame]; // start a new game
237 } // end method alertView:clickedButtonAtIndex:
238

239 // draw the display in the given rectangle
240 - (void)drawRect:(CGRect)rect
241 {
242
243
244
245
246
247
248
249
250
251
252 // create a string with the time remaining
253 NSString *str =
254 [NSString stringWithFormat:@"Time remaining: %i seconds", timeLeft];
255
256
257
258

Fig. 8.9 | CannonView’s drawRect: method. (Part 1 of 3.)

Fig. 8.8 | CannonView’s showAlertwithTitle:message: and
alertView:clickedButtonAtIndex: methods. (Part 2 of 2.)

// get the current graphics context
CGContextRef context = UIGraphicsGetCurrentContext();

// save the context because we need to flip it upside down
CGContextSaveGState(context);

// translate the context down
CGContextTranslateCTM(context, 0, self.bounds.size.height);
CGContextScaleCTM(context, 1.0, -1.0); // flip context up over itself

// make the font 16pt Helvetica
CGContextSelectFont(context, "Helvetica", 16, kCGEncodingMacRoman);
CGContextSetTextDrawingMode(context, kCGTextFill); // set drawing mode

Download from <www.wowebook.com>

ptg

8.4 Building the App 167

259
260
261
262
263
264
265
266
267
268
269 // if the cannonball is on the screen
270 if (cannonballOnScreen)
271 {
272 // create the rectangle to draw the cannonball in
273 CGRect cannonballRect = CGRectMake(cannonball.x, cannonball.y,
274 CANNONBALL_RADIUS * 2, CANNONBALL_RADIUS * 2);
275
276 // load the cannonball image
277 UIImage *image = [UIImage imageNamed:@"cannonball80.png"];
278
279
280
281 } // end if
282
283 // draw the cannon barrel
284
285
286
287
288
289
290
291
292
293 // create the rectangle for the cannon base
294 CGRect cannonBase = CGRectMake(0, self.frame.size.height / 2 -
295 CANNON_BASE_RADIUS, CANNON_BASE_RADIUS, CANNON_BASE_RADIUS * 2);
296
297 // load the image for the cannon base
298 UIImage *baseImage = [UIImage imageNamed:@"cannon_base.png"];
299
300 // draw the cannon base image into the rectangle
301 CGContextDrawImage(context, cannonBase, baseImage.CGImage);
302
303
304
305
306
307
308
309

Fig. 8.9 | CannonView’s drawRect: method. (Part 2 of 3.)

// set the text color to black
CGContextSetRGBFillColor(context, 0.0, 0.0, 0.0, 1.0);

// // convert str to a C string and display it
CGContextShowTextAtPoint(context, 10.0, 10.0,
 [str cStringUsingEncoding:[NSString defaultCStringEncoding]],
 str.length);
CGContextRestoreGState(context); // restore the context

// draw the image into the rectangle
CGContextDrawImage(context, cannonballRect, image.CGImage);

// move to the middle of the cannon base
CGContextMoveToPoint(context, 0, self.frame.size.height / 2);

// add a line to the endpoint of the cannon barrel
CGContextAddLineToPoint(context, barrelEnd.x, barrelEnd.y);
CGContextSetLineWidth(context, 20); // set line thickness
CGContextSetRGBStrokeColor(context, 0.0, 0.0, 0.0, 1.0); // black color
CGContextStrokePath(context); // draw the line

// add a line between the two points of the blocker
CGContextMoveToPoint(context, blocker.start.x, blocker.start.y);
CGContextAddLineToPoint(context, blocker.end.x, blocker.end.y);
CGContextSetLineWidth(context, LINE_WIDTH); // set the line width

CGContextStrokePath(context); // draw the line

Download from <www.wowebook.com>

ptg

168 Chapter 8 Cannon Game App

To perform a custom drawing in a view, we must first get the current graphics context.
A graphics context (of type struct CGContext) represents a drawing canvas. It stores
drawing information such as the color, line width and font. Before calling drawRect:, a
UIView configures the current graphics context for itself. The UIGraphicsGetCurrentCon-
text function of the UIKit framework returns the current graphics context that has been
configured for the current UIView (line 243).

 Line 246 saves the state of context, because we’ll be altering its coordinates to display
the time remaining but will want to restore the original coordinate system afterward. We
must change the context’s coordinate system to draw text properly. By default, the origin
for drawing graphics is the upper-left (0,0) coordinate of the view. The x-coordinates
increase toward the right and the y-coordinates increase toward the bottom. For drawing
directly to a graphics context, however, the origin is in the lower-left corner, and the y-
coordinates increase toward the top. For the text to draw properly, we must change the
context to the correct coordinate system. First we move the origin to the lower-left corner
by calling the CGContextTranslateCTM function of CGContextRef (line 249), which takes
two parameters—the amount to shift the origin horizontally and the amount to shift it
vertically. We then use the CGContextScaleCTM function of CGContextRef to invert the y-
axis (line 250). The function takes two parameters—the amount to scale the x-axis and the

310 // calculate the length of each piece in the target
311 float pieceLength = (TARGET_END - TARGET_BEGINNING) / TARGET_PIECES;
312
313
314
315
316 // draw each target piece
317 for (int i = 1; i <= TARGET_PIECES; i++)
318 {
319 // make the pieces different colors between yellow and blue
320 if (i % 2 == 0)
321
322 else
323
324
325
326
327
328
329 // if the piece hasn't been hit yet
330 if (!targetPieceHit[i - 1])
331 {
332
333
334
335
336 } // end if
337 } // end for
338 } // end method drawRect:
339

Fig. 8.9 | CannonView’s drawRect: method. (Part 3 of 3.)

// move to the start point of the target
CGContextMoveToPoint(context, target.start.x, target.start.y);

CGContextSetRGBStrokeColor(context, 1, 1, 0, 1);

CGContextSetRGBStrokeColor(context, 0, 0, 0.5, 1);

// move to the ending point of the next segment
CGContextMoveToPoint(context, target.end.x,
 target.start.y + pieceLength * (i - 1));

// add a line for the piece
CGContextAddLineToPoint(context, target.end.x,
 target.start.y + pieceLength * i);
CGContextStrokePath(context); // draw the piece

Download from <www.wowebook.com>

ptg

8.4 Building the App 169

amount to scale the y-axis. We pass 1 for the first parameter to keep the x-axis as it is, and
pass -1 for the second parameter to invert the y-axis.

Line 253–254 creates an NSString which will be used to display the remaining time.
The %i format specifier (line 254) indicates that timeLeft contains an integer value that
will be converted to string format. The CGContextSelectFont function sets the graphics
context’s font to 16 point Helvetica (line 257). Line 258 sets context’s text drawing
mode to CGTextFill, telling the graphics context to display text using a fill operation. The
CGContextSetRGBFillColor function sets the text color to black. Lines 264–266 call the
CGContextShowTextAtPoint function to display the text at point (10.0, 10.0). This func-
tion requires a C-style string as an argument, so line 265 calls NSString’s cStringUsing-
Encoding method to obtain the C-string version of str. Next, line 267 restores the
original coordinate system.

We next draw the cannonball if it’s on the screen (lines 270–281). The CGMakeRect
function creates the cannonballRect CGRect, providing cannonball’s coordinates and cir-
cumference. Line 277 loads the cannonball image, creating a new UIImage using
cannonball80.png. The CGContextDrawImage function draws the cannonball to context
(line 280). UIView’s CGImage property returns a pointer to a CGImage copy of cannonball-
Image, which can be written to a graphics context (unlike UIImages). The image is drawn
inside the cannonballRect CGRect.

We next draw the cannon’s barrel. The CGContextMoveToPoint function selects the
point halfway down the left side of the screen (line 285). When we draw to context, this
will be the starting point. Lines 288–291 add a black line 20 pixels wide from the point
we just selected to barrelEnd (which stores the point at the end of the barrel). The CGCon-
textStrokePath function draws that line.

Lines 294–295 create a CGRect for the cannon’s base using the CGRectMake function.
The cannon’s base is a half circle attached to the left side of the screen. We use
CANNON_BASE_RADIUS as the width and double that (the circumference) as the height. The
baseImage UIImage is created using cannon_base.png then the CGContextDrawImage
function draws the cannon’s base to context (lines 298 and 301).

The blocker is drawn using a single line in a manner similar to the drawing of the
cannon’s barrel. Line 304 selects the blocker’s starting location in context, and lines
305–306 draw a 10-pixel-wide line from that point to the blocker’s end location.

Line 311 calculates the length of each section of the target by dividing the height of
the target by the number of sections. Line 314 uses the CGContextMoveToPoint function
to select the target’s starting point. Lines 317–337 loop through each of the target’s sec-
tions, drawing each section if it hasn’t been hit. Lines 320–323 alternate the colors of each
target section between yellow and dark blue. We then select the point starting the section
to be drawn. Multiplying pieceLength by the index of the current section calculates each
section’s distance from the start of the target. Lines 330–336 draw the section if it has
not yet been hit.

Using the Instruments Tool to Detect Performance Problems
When we first created this app, we used circles with gradients rather than images to draw
the cannon’s base and cannonball. When we ran the app, the animation was choppy and
unpredictable. So, we ran the app in the Instruments tool using the Activity Monitor tem-
plate. According to the tool, our app was using little memory and few threads; however,

Download from <www.wowebook.com>

ptg

170 Chapter 8 Cannon Game App

the CPU load was nearly 100%. With that knowledge, we modified the processor-inten-
sive sections of our code. After removing the gradients and replacing them with images,
the animation sped up considerably.

Methods touchesBegan:withEvent and touchesMove:withEvent: and
processTouch:withEvent: of Class CannonView
The touchesBegan:withEvent: (Fig. 8.10, lines 341–344) and touchesMovedwithEv-
ent: (lines 347–350) methods both perform the same touch handling. The touchesBe-
gan:withEvent: method is called when the player first makes contact with the screen and
touchesMoved:withEvent: is called when the user drags a finger across the screen. Each
of these methods uses NSSet’s anyObject method to pass as an argument one of its touch
objects to the processTouch: method (chosen at the collection’s convenience) (lines 353–
391).

340 // handle new touches
341 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
342 {
343 [self processTouch:[touches anyObject]];
344 } // end method touchesBegan:withEvent:
345
346 // exactly the same as touchesBegan:withEvent: minus double-tapping
347 - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
348 {
349 [self processTouch:[touches anyObject]];
350 } // end method touchesMoved:withEvent:
351
352 // aims the cannon and fires the cannonball if appropriate
353 - (void)processTouch:(UITouch *)touch
354 {
355 // get the location of the touch in this view
356 CGPoint touchPoint = [touch locationInView:self];
357
358 // calculate the angle the barrel makes with the horizontal
359 float angle =
360 atan(touchPoint.x / (self.frame.size.height / 2 - touchPoint.y));
361
362 // if the touch is on the lower half of the screen
363 if (touchPoint.y > self.frame.size.height / 2)
364 angle += M_PI; // adjust the angle
365
366 // calculate the endpoint of the cannon barrel
367 barrelEnd.x = CANNON_LENGTH * sin(angle);
368 barrelEnd.y = -CANNON_LENGTH * cos(angle) + self.frame.size.height / 2;
369
370 // update the display only in the area of the cannon
371 [self setNeedsDisplayInRect:CGRectMake(0, self.frame.size.height / 2 -
372 CANNON_BASE_RADIUS - CANNON_LENGTH, CANNON_BASE_RADIUS +
373 CANNON_LENGTH, (CANNON_BASE_RADIUS + CANNON_LENGTH) * 2)];
374

Fig. 8.10 | CannonView’s touchesBegan:withEvent:, touchesMoved:withEvent: and
processTouch: methods. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

8.5 Wrap-Up 171

Invoking UITouch’s locationInView method (line 356) returns a CGPoint repre-
senting the point where the touch was made. Lines 359–360 determine the angle that aims
the cannon at the point where the player touches. We then redraw the cannon at the new
angle (lines 371–373). Each UITouch object contains a tapCount property storing how
many rapid touches occur in a short period of time. If there are at least two taps (line 376)
the cannonball is fired. Lines 386–389 initialize the cannonball at the end of the cannon
and set cannonballOnScreen to YES.

8.5 Wrap-Up
In this chapter we created the Cannon Game app by drawing graphics on a single UIView.
To make this possible we introduced several new technologies. We demonstrated how to
group variables using structures and used the typedef keyword to declare an alias for the
structure type. We used an NSTimer to generate events that continually updated the game.
Finally, you saw how to use the Core Graphics framework to draw the images, lines and
text that make up the game. We handled player touches using the touchesBegan:with-
Event and touchesDragged:withEvent: methods. We accessed each touch’s tapCount
property, firing the cannon only if the user double tapped the screen.

375 // fire a cannonball on a double-tap
376 if (>= 2 && !cannonballOnScreen)
377 {
378 // move the cannonball to be inside the cannon
379 cannonball.x = -CANNONBALL_RADIUS; // align x-coordinate with cannon
380 cannonball.y = self.frame.size.height / 2 - CANNONBALL_RADIUS;
381
382 // get the x component of the total velocity
383 cannonballVelocity.x = CANNONBALL_VELOCITY * sin(angle);
384
385 // get the y component of the total velocity
386 cannonballVelocity.y = -CANNONBALL_VELOCITY * cos(angle);
387 cannonballOnScreen = YES; // the cannonball is now visible
388 ++shotsFired; // increment number of shots fired
389 [cannonFireSound play]; // play the firing sound
390 } // end if
391 } // end method processTouch:
392
393 // releases CannonView's memory
394 - (void)dealloc
395 {
396 [cannonFireSound release]; // release the cannonFireSound AVAudioPlayer
397 [targetHitSound release]; // release the targetHitSound AVAudioPlayer
398 [blockerHitSound release]; // release the blockerHitSound AVAudioPlayer
399 [super dealloc]; // invokes the superclass's dealloc method
400 } // end method dealloc
401 @end // end implementation of CannonView

Fig. 8.10 | CannonView’s touchesBegan:withEvent:, touchesMoved:withEvent: and
processTouch: methods. (Part 2 of 2.)

touch.tapCount

Download from <www.wowebook.com>

ptg

172 Chapter 8 Cannon Game App

In Chapter 9, we create the Painter app—tranforming the iPhone’s screen to a virtual
canvas. This app will be designed using the Utility Application template—creating a Main-
View and FlipsideView. We’ll define a class representing painted lines and add new points
to these lines as the user moves fingers across the screen. The iPhone’s accelerometer gen-
erates an event which allows the user to erase the painting by shaking the phone.

Download from <www.wowebook.com>

ptg

9
Painter App

Using Controls with a UIView

O B J E C T I V E S
In this chapter you’ll learn:

■ How to combine custom views with Cocoa GUI
components to create a richer app,

■ How to process multiple screen touches.

■ How to detect when touches move and leave the screen.

■ How to detect motion events to clear the screen when
the user shakes the iPhone.

■ How to add variables of primitive and struct types to
collections.

Download from <www.wowebook.com>

ptg

174 Chapter 9 Painter App

O
u

tl
in

e

9.1 Introduction
The Painter app turns the iPhone screen into a virtual canvas (Fig. 9.1). The user paints
by dragging one or more fingers across the screen. The line color and thickness can be set
by touching the info button in the lower-right corner of the screen. The control panel
(Fig. 9.2) includes a slider for line width and red, green and blue sliders for line color. As
the Line Width slider is moved from left to right, the width of the line increases. At the bot-
tom of the screen, two buttons allow the user to turn a finger into an eraser or clear the
screen entirely. At any point while painting, the user can shake the iPhone to clear the en-
tire drawing from the screen.

9.2 Overview of the Technologies
The Painter app stores painted lines using the custom Squiggle class. Each Squiggle con-
tains an array of points, a UIColor object and a numeric line-width value. When the user
touches the screen, a new Squiggle is created, given a unique key and placed in an NSMut-

9.1 Introduction

9.2 Overview of the Technologies

9.3 Building the App

9.4 Wrap-Up

Fig. 9.1 | Painter app and its control panel.

Download from <www.wowebook.com>

ptg

9.3 Building the App 175

ableDictionary. New points are added to the Squiggle as the user drags a finger along
the screen. When the touch ends, the Squiggle is transferred from the dictionary to an
array of finished Squiggles.

The app uses the Utility Application template. The MainView displays the user’s
painting—showing all the finished Squiggles and any Squiggles currently in progress.
The user sets the line characteristics in the FlipsideView. The color is set using three
Sliders, representing the RGB values of the painted line. We display the currently selected
color using a UIView’s backgroundColor property that is updated dynamically as the user
moves any of the Sliders. When the user flips from the FlipsideView to the MainView, the
values for the color and line width are loaded from the Sliders and passed to the MainView.

9.3 Building the App
To begin, open Xcode and create a new project. Choose the Utility Application template
and name the project Painter.

Declaring the Squiggle Interface
Create a new file and name it Squiggle. Squiggle.h declares a class named Squiggle,
which represents a single stroke of a finger on the iPhone screen. A Squiggle saves each
point touched by the user’s finger between where the first touch occurred and where the
finger was finally lifted from the screen. It also saves the color and line width at the time
of the stroke—representing all of the information needed to draw the stroke to the screen.
Let’s take a look at the interface (Fig. 9.2).

The points are stored in an NSMutableArray (line 8), and the color, line width and
points are stored as properties (lines 14–16). The addPoint: method adds a new point to
a Squiggle. We declared the points property as readonly so that other classes can modify
the points array only by calling the addPoint: method.

1 // Squiggle.h
2 // Class Squiggle represents the points, color and width of one line.
3 // Implementation in Squiggle.m
4 #import <UIKit/UIKit.h>
5
6 @interface Squiggle : NSObject
7 {
8 NSMutableArray *points; // the points that make up the Squiggle
9 UIColor *strokeColor; // the color of this Squiggle

10 float lineWidth; // the line width for this Squiggle
11 } // end instance variable declaration
12
13 // declare strokeColor, lineWidth and points as properties
14 @property (retain) UIColor* strokeColor;
15 @property (assign) float lineWidth;
16
17
18 - (void)addPoint:(CGPoint)point; // adds a new point to the Squiggle
19 @end // end interface Squiggle

Fig. 9.2 | Class Squiggle represents the points, color and width of one line.

@property (nonatomic, readonly) NSMutableArray *points;

Download from <www.wowebook.com>

ptg

176 Chapter 9 Painter App

Implementing the Squiggle Class
Class Squiggle (Fig. 9.3) contains the information required to display a Squiggle but it
does not define how to draw one. Drawing is handled by the view containing a Squiggle.

Lines 7–9 synthesize get and set methods for the strokeColor, lineWidth and points
properties. The compiler generates only a get method for points because it’s readonly.
The init method (lines 12–22) initializes a Squiggle by allocating the points array and
setting the strokeColor to black (line 18), which is the default color for a Squiggle.

The addPoint: method adds a new point to the Squiggle (lines 25–31). This method
takes a CGPoint as an argument. You cannot add a CGPoint directly to an NSArray because

1 // Squiggle.m
2 // Squiggle class implementation.
3 #import "Squiggle.h"

4
5 @implementation Squiggle
6
7 @synthesize strokeColor; // generate set and get methods for strokeColor
8 @synthesize lineWidth; // generate set and get methods for lineWidth
9 @synthesize points; // generate set and get methods for points

10
11 // initialize the Squiggle object
12 - (id)init
13 {
14 // if the superclass properly initializes
15 if (self = [super init])
16 {
17 points = [[NSMutableArray alloc] init]; // initialize points
18 strokeColor = [[UIColor blackColor] retain]; // set default color
19 } // end if
20
21 return self; // return this object
22 } // end method init
23
24 // add a new point to the Squiggle
25 - (void)addPoint:(CGPoint)point
26 {
27 // encode the point in an NSValue so we can put it in an NSArray
28
29
30 [points addObject:value]; // add the encoded point to the NSArray
31 } // end method addPoint:
32
33 // release Squiggle's memory
34 - (void)dealloc
35 {
36 [strokeColor release]; // release the strokeColor UIColor
37 [points release]; // release the points NSMutableArray
38 [super dealloc];
39 } // end method dealloc
40 @end

Fig. 9.3 | Squiggle class implementation.

NSValue *value =
 [NSValue valueWithBytes:&point objCType:@encode(CGPoint)];

Download from <www.wowebook.com>

ptg

9.3 Building the App 177

CGPoint is a struct not a class. For this reason, we convert the CGPoint to an NSValue
object, which is used as a container to store nonobject types, such as ints, floats, structs
and pointers. We perform the conversion using NSValue’s valueWithBytes:objCType:
method (lines 28–29), which takes two arguments—a pointer to the value being encoded
and its type. We obtain a pointer to the CGPoint using the & (address of) operator, which
returns a pointer to the variable (i.e., its location in memory). The @encode compiler direc-
tive converts a type’s name to the C string representing the type. This technique can be
used when you need to store a nonobject type (such as a primitive value or a struct) in a
collection. Line 30 adds the NSValue object to the array. When a Squiggle is removed
from memory, the dealloc method releases all of the objects initialized in the init
method (lines 34–39).

Declaring the MainView Interface
MainView.h (Fig. 9.4) declares class MainView—a UIView subclass that represents the app’s
canvas. MainView handles touches, draws the Squiggles and stores the painting.

To display the painting, the MainView stores all the Squiggles on the screen in two
data structures—one for Squiggles in progress and one for finished Squiggles (lines 9–
10). MainView also stores the current drawing color and line width (lines 11–12). The
drawSquiggle:inContext: method displays one Squiggle in the given graphics context,
and resetView clears the entire painting.

Implementing the MainView Class
MainView.m (Fig. 9.5) contains class MainView’s implementation. Lines 7–8 synthesize
properties color and lineWidth (lines 7–8). The initWithCoder: method is called when

1 // MainView.h
2 // View for the frontside of the Painter app.
3 // Implementation in MainView.m
4 #import <UIKit/UIKit.h>
5 #import "Squiggle.h"

6
7 @interface MainView : UIView
8 {
9 NSMutableDictionary *squiggles; // squiggles in progress

10 NSMutableArray *finishedSquiggles; // finished squiggles
11 UIColor *color; // the current drawing color
12 float lineWidth; // the current drawing line width
13 } // end instance variable declaration
14
15 // declare color and lineWidth as properties
16 @property(nonatomic, retain) UIColor *color;
17 @property float lineWidth;
18
19 // draw the given Squiggle into the given graphics context
20 - (void)drawSquiggle:(Squiggle *)squiggle inContext:(CGContextRef)context;
21 - (void)resetView; // clear all squiggles from the view
22 @end // end interface MainView

Fig. 9.4 | View for the frontside of the Painter app.

Download from <www.wowebook.com>

ptg

178 Chapter 9 Painter App

the MainView is created in a nib file. If the superclass is initialized properly (line 14), we
initialize the squiggles NSMutableDictionary and the finishedSquiggles NSMutable-
Array (lines 17–18). The drawing color is initially set to black (line 21) and the line width
is initially set to 5 pixels (line 22).

Methods resetView and drawRect: of Class MainView
The resetView method (Fig. 9.6, lines 29–34) clears the painting from the screen by call-
ing the removeAllObjects method on both the squiggles dictionary and finished-
Squiggles array. Calling UIView’s setNeedsDisplay method (line 33) forces the MainView
to redraw, thus clearing the screen. The drawRect: method draws the entire painting using
the stored squiggles. Line 40 retrieves the current graphics context to use for drawing.
Then we loop through finishedSquiggles, passing each Squiggle and the graphics con-
text to the drawSquiggle:inContext: method (lines 43–44). Finally, we loop through the
squiggles NSMutableDictionary to draw any Squiggles still in progress (lines 47–51).

1 // MainView.m
2 // View for the frontside of the Painter app.
3 #import "MainView.h"

4
5 @implementation MainView
6
7 @synthesize color; // generate getters and setters for color
8 @synthesize lineWidth; // generate getters and setters for lineWidth
9

10 // method is called when the view is created in a nib file
11 - (id)initWithCoder:(NSCoder*)decoder
12 {
13 // if the superclass initializes properly
14 if (self = [super initWithCoder:decoder])
15 {
16 // initialize squiggles and finishedSquiggles
17 squiggles = [[NSMutableDictionary alloc] init];
18 finishedSquiggles = [[NSMutableArray alloc] init];
19
20 // the starting color is black
21 color = [[UIColor alloc] initWithRed:0 green:0 blue:0 alpha:1];
22 lineWidth = 5; // default line width
23 } // end if
24
25 return self; // return this object
26 } // end method initWithCoder:
27

Fig. 9.5 | Method initWithCoder: of class MainView.

28 // clears all the drawings
29 - (void)resetView
30 {
31 [squiggles removeAllObjects]; // clear the dictionary of squiggles

Fig. 9.6 | Methods resetView and drawRect: of class MainView. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

9.3 Building the App 179

Method drawSquiggle:inContext: of Class MainView
The drawSquiggle:inContext: method receives a Squiggle and a graphics context, then
draws the Squiggle into the graphics context using the Squiggle’s color and line width.

32 [finishedSquiggles removeAllObjects]; // clear the array of squiggles
33 [self setNeedsDisplay]; // refresh the display
34 } // end method resetView
35
36 // draw the view
37 - (void)drawRect:(CGRect)rect
38 {
39 // get the current graphics context
40 CGContextRef context = UIGraphicsGetCurrentContext();
41
42 // draw all the finished squiggles
43 for (Squiggle *squiggle in finishedSquiggles)
44 [self drawSquiggle:squiggle inContext:context];
45
46 // draw all the squiggles currently in progress
47 for (NSString *key in squiggles)
48 {
49 Squiggle *squiggle = [squiggles valueForKey:key]; // get squiggle
50 [self drawSquiggle:squiggle inContext:context]; // draw squiggle
51 } // end for
52 } // end method drawRect:
53

54 // draws the given squiggle into the given context
55 - (void)drawSquiggle:(Squiggle*)squiggle inContext:(CGContextRef)context
56 {
57 // set the drawing color to the squiggle's color
58 UIColor *squiggleColor = squiggle.strokeColor; // get squiggle’s color
59 CGColorRef colorRef = [squiggleColor CGColor]; // get the CGColor
60 CGContextSetStrokeColorWithColor(context, colorRef);
61
62 // set the line width to the squiggle's line width
63 CGContextSetLineWidth(context, squiggle.lineWidth);
64
65 NSMutableArray *points = [squiggle points]; // get points from squiggle
66
67 // retrieve the NSValue object and store the value in firstPoint
68
69
70
71 // move to the point
72 CGContextMoveToPoint(context, firstPoint.x, firstPoint.y);
73

Fig. 9.7 | Method drawSquiggle: of class MainView. (Part 1 of 2.)

Fig. 9.6 | Methods resetView and drawRect: of class MainView. (Part 2 of 2.)

CGPoint firstPoint; // declare a CGPoint
[[points objectAtIndex:0] getValue:&firstPoint];

Download from <www.wowebook.com>

ptg

180 Chapter 9 Painter App

First, the color of the Squiggle is retrieved and set as the current stroke color (lines
58–60). Line 63 then gets the Squiggle’s line width and updates the graphics context with
it. Next, we draw the Squiggle. Lines 68–69 get the first point in the Squiggle and move
to it. Recall that we added each CGPoint to the points array by storing it in an NSValue
object. To retrieve the CGPoint from the NSValue, we use the getValue: method, which
receives a pointer to where the value will be stored.

Once we move to the first point, we add lines to each of the Squiggle’s remaining
points in sequence (lines 72–83). We get the next NSValue (line 77), get the CGPoint con-
tained in the NSValue (lines 78–79) and add a line to the CGPoint (line 82). We then call
the CGContextStrokePath function (line 85) to draw the Squiggle we just defined.

Touch-Handling Methods of Class MainView
The next three methods defined in MainView.m perform touch handling (Fig. 9.8). The
method touchesBegan:withEvent: is called when the user touches the screen, touches-
Moved:withEvent: is called when the user drags a finger and touchesEnded:withEvent:
is called when the user lifts a finger.

74 // draw a line from each point to the next in order
75 for (int i = 1; i < [points count]; i++)
76 {
77
78
79
80
81 // draw a line to the new point
82 CGContextAddLineToPoint(context, point.x, point.y);
83 } // end for
84
85 CGContextStrokePath(context);
86 } // end method drawSquiggle:inContext:
87

88 // called whenever the user places a finger on the screen
89
90 {
91 NSArray *array = [touches allObjects]; // get all the new touches
92
93 // loop through each new touch
94 for (UITouch *touch in array)
95 {
96 // create and configure a new squiggle
97 Squiggle *squiggle = [[Squiggle alloc] init];
98 [squiggle setStrokeColor:color]; // set squiggle’s stroke color
99 [squiggle setLineWidth:lineWidth]; // set squiggle’s line width
100

Fig. 9.8 | Touch-handling methods of class MainView. (Part 1 of 3.)

Fig. 9.7 | Method drawSquiggle: of class MainView. (Part 2 of 2.)

NSValue *value = [points objectAtIndex:i]; // get the next value
CGPoint point; // declare a new point
[value getValue:&point]; // store the value in point

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

Download from <www.wowebook.com>

ptg

9.3 Building the App 181

101 // add the location of the first touch to the squiggle
102 [squiggle addPoint:[touch locationInView:self]];
103
104 // the key for each touch is the value of the pointer
105
106
107
108 // add the new touch to the dictionary under a unique key
109 [squiggles setValue:squiggle forKey:key];
110 [squiggle release]; // we are done with squiggle so release it
111 } // end for
112 } // end method touchesBegan:withEvent:
113
114 // called whenever the user drags a finger on the screen
115
116 {
117 NSArray *array = [touches allObjects]; // get all the moved touches
118
119 // loop through all the touches
120 for (UITouch *touch in array)
121 {
122 // get the unique key for this touch
123
124
125 // fetch the squiggle this touch should be added to using the key
126 Squiggle *squiggle = [squiggles valueForKey:
127 [NSString stringWithFormat:@"%@", touchValue]];
128
129 // get the current and previous touch locations
130 CGPoint current = [touch locationInView:self];
131
132 [squiggle addPoint:current]; // add the new point to the squiggle
133
134 // Create two points: one with the smaller x and y values and one
135 // with the larger. This is used to determine exactly where on the
136 // screen needs to be redrawn.
137 CGPoint lower, higher;
138
139
140
141
142
143 // redraw the screen in the required region
144
145
146
147 } // end for
148 } // end method touchesMoved:withEvent:
149
150 // called when the user lifts a finger from the screen
151
152 {

Fig. 9.8 | Touch-handling methods of class MainView. (Part 2 of 3.)

NSValue *touchValue = [NSValue valueWithPointer:touch];
NSString *key = [NSString stringWithFormat:@"%@", touchValue];

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

NSValue *touchValue = [NSValue valueWithPointer:touch];

CGPoint previous = [touch previousLocationInView:self];

lower.x = (previous.x > current.x ? current.x : previous.x);
lower.y = (previous.y > current.y ? current.y : previous.y);
higher.x = (previous.x < current.x ? current.x : previous.x);
higher.y = (previous.y < current.y ? current.y : previous.y);

[self setNeedsDisplayInRect:CGRectMake(lower.x - lineWidth,
 lower.y - lineWidth, higher.x - lower.x + lineWidth * 2,
 higher.y - lower.y + lineWidth * 2)];

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

Download from <www.wowebook.com>

ptg

182 Chapter 9 Painter App

In touchesBegan:withEvent:, we first get all the new touches by using the allOb-
jects method of NSSet (line 91). This method returns an NSArray containing all the
UITouch objects in the NSSet. We then loop through all the new touches (lines 94–111).
For each touch, we create a new Squiggle and add it to the dictionary under a unique key.
For the entire duration of a touch (from when it begins to when it ends), we are always
guaranteed to be passed the same UITouch object in our touch-handling methods. So, we
can use the memory address of the UITouch object as the key for the new Squiggle. We
create the new Squiggle (line 97), customize it (lines 98–99) and add its first point (line
100). We then create the key (105–106). We use the valueWithPointer: method of
NSValue to convert the memory address of the UITouch into an object (line 105). We then
convert the NSValue to an NSString (line 106) and store the Squiggle in the dictionary
using the NSString as the key (line 109).

In the touchedMoved:withEvent: method (lines 115–148), we add new points to the
Squiggles in the squiggles dictionary for each touch that moved. For each moved touch,
we get the unique key for that touch (line 123), then get the Squiggle using that key (lines
126–127). We then get the point the touch was moved to (line 130) and add it to the
Squiggle (line 132).

Now that the Squiggle is updated, we need to update the view to draw the new line
(lines 137–146). We could use the setNeedsDisplay method to redraw the entire view,
but this is inefficient because only a portion of the view is changing. Instead, we use the
setNeedsDisplayInRect: method (lines 144–146) to tell the view to update the display
only in the area defined by the CGRect argument. To determine the CGRect that encloses
the line segment, we first calculate the upper-left and bottom-right corners of the CGRect
(lines 137–141) using the ?: (conditional) operator, which takes three arguments. The
first is a condition. The second is the value for the entire expression if the condition is true,
and the third is the value for the entire expression if the condition is false. Once we calcu-
late the points, we use them, along with some padding on either side to account for the
line’s thickness, to create the CGRect (lines 144–146).

153 // loop through the touches
154 for (UITouch *touch in touches)
155 {
156 // get the unique key for the touch
157
158
159
160 // retrieve the squiggle for this touch using the key
161 Squiggle *squiggle = [squiggles valueForKey:key];
162
163 // remove the squiggle from the dictionary and place it in an array
164 // of finished squiggles
165 [finishedSquiggles addObject:squiggle]; // add to finishedSquiggles
166 [squiggles removeObjectForKey:key]; // remove from squiggles
167 } // end for
168 } // end method touchesEnded:withEvent:
169

Fig. 9.8 | Touch-handling methods of class MainView. (Part 3 of 3.)

NSValue *touchValue = [NSValue valueWithPointer:touch];
NSString *key = [NSString stringWithFormat:@"%@", touchValue];

Download from <www.wowebook.com>

ptg

9.3 Building the App 183

In the touchesEnded:withEvent: method (lines 151–168), we transfer the Squig-
gles that correspond to the finished touches from the NSMutableDictionary of Squiggles
in progress to the NSMutableArray of finished Squiggles. We loop through each finished
touch (lines 154–167), and for each touch we get its corresponding Squiggle, using the
touch’s memory address as the key (157–161). We then add this Squiggle to the fin-
ishedSquiggles NSMutableArray (line 165) and remove it from the squiggles NSMuta-
bleDictionary (line 166).

Methods motionEnded:withEvent:, alertView:clickedButtonAtIndex:, canBecome-
FirstResponder and dealloc of Class MainView
The next three methods in MainView (Fig. 9.9) clear the painting when the user shakes the
iPhone. The method motionEnded:withEvent: is called when the user finishes a motion
event, such as a shake. If the ended event was a shake (line 174), we display an alert asking
whether the user really wanted to erase the painting (lines 177–182). The alert-
View:clickedButtonAtIndex: method is called when the user touches one of the buttons
in the alert. If the user touched the button labeled Clear (line 194), we clear the entire
painting (line 195). The canBecomeFirstResponder method is called to determine wheth-
er an object of this class can become the first responder. Only the first responder receives
notifications about motion events, so we need MainView to be the first responder. We re-
turn YES (line 201) to enable this.

170 // called when a motion event, such as a shake, ends
171
172 {
173 // if a shake event ended
174
175 {
176 // create an alert prompting the user about clearing the painting
177 NSString *message = @"Are you sure you want to clear the painting?";
178 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
179 @"Clear painting" message:message delegate:self
180 cancelButtonTitle:@"Cancel" otherButtonTitles:@"Clear", nil];
181 [alert show]; // show the alert
182 [alert release]; // release the alert UIAlertView
183 } // end if
184
185 // call the superclass's moetionEnded:withEvent: method
186
187 } // end method motionEnded:withEvent:
188
189 // clear the painting if the user touched the "Clear" button
190 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
191 (NSInteger)buttonIndex
192 {
193 // if the user touched the Clear button
194 if (buttonIndex == 1)
195 [self resetView]; // clear the screen
196 } // end method alertView:clickedButtonAtIndex:

Fig. 9.9 | Methods motionEnded:withEvent:, alertView:clickedButtonAtIndex:,
canBecomeFirstResponder and dealloc of class MainView. (Part 1 of 2.)

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event

if (event.subtype == UIEventSubtypeMotionShake)

[super motionEnded:motion withEvent:event];

Download from <www.wowebook.com>

ptg

184 Chapter 9 Painter App

Declaring the MainViewController Interface
MainViewController.h (Fig. 9.10) defines the class MainViewController, a subclass of
UIViewController. This class is the controller for the frontside of our app. Its main func-
tions are to show the flipside when the info button is touched and to pass messages from
the flipside to MainView. We declare the MainViewController class as a subclass of UI-
ViewController (line 6). MainViewController also conforms to the FlipsideViewCon-
trollerDelegate protocol, which is defined in FlipsideViewController.h. The
showInfo: method creates a new FlipsideViewController and displays it when the info
button is touched (line 11).

Implementing the MainViewController Class
MainViewController.m (Fig. 9.11) provides the definition of class MainViewController.
The viewDidAppear: and viewDidDisappear: methods (lines 9–20) are inherited from
UIViewController. They are called when MainView is going to be shown or hidden, re-
spectivly. For MainView to receive notifications about motion events, it must be the first
responder. These notifications are necessary for the “shake to erase” feature to work. We

197
198 // determines if this view can become the first responder
199
200
201
202
203
204 // free MainView's memory
205 - (void)dealloc
206 {
207 [squiggles release]; // release the squiggles NSMutableDictionary
208 [finishedSquiggles release]; // release finishedSquiggles
209 [color release]; // release the color UIColor
210 [super dealloc];
211 } // end method dealloc
212 @end

1 // MainViewController.h
2 // Controller for the front side of the Painter app.
3 // Implementation in MainViewController.m
4 #import "FlipsideViewController.h"

5
6 @interface MainViewController : UIViewController
7 <FlipsideViewControllerDelegate>
8 {
9 } // end instance variable declaration

10
11 - (IBAction)showInfo; // flip the app to the flipside
12 @end // end interface MainViewController

Fig. 9.10 | MainViewController interface.

Fig. 9.9 | Methods motionEnded:withEvent:, alertView:clickedButtonAtIndex:,
canBecomeFirstResponder and dealloc of class MainView. (Part 2 of 2.)

- (BOOL)canBecomeFirstResponder
{
 return YES; // this view can be the first responder
} // end method canBecomeFirstResponder

Download from <www.wowebook.com>

ptg

9.3 Building the App 185

don’t want MainView to be the first responder when it’s hidden, so we make it the first re-
sponder when it appears by using the becomeFirstResponder method (line 12). We then
remove the first-responder status when the MainView disappears by using the resign-
FirstResponder method (line 19).

1 // MainViewController.m
2 // Controller for the front side of the Painter app.
3 #import "MainViewController.h"

4 #import "MainView.h"

5
6 @implementation MainViewController
7
8 // make the main view the first responder
9 - (void)viewDidAppear:(BOOL)animated

10 {
11 [super viewDidAppear:animated]; // pass message to superclass
12 [self.view becomeFirstResponder]; // make main view the first responder
13 } // end method viewDidAppear
14
15 // resign the main view as the first responder
16 - (void)viewDidDisappear:(BOOL)animated
17 {
18 [super viewDidDisappear:animated]; // pass message to superclass
19 [self.view resignFirstResponder]; // resign view as first responder
20 } // end method viewDidDisappear:
21
22 // called when the Done button on the flipside is touched
23 - (void)flipsideViewControllerDidFinish:(FlipsideViewController *)c
24 {
25 // make the app flip back to the main view
26 [self dismissModalViewControllerAnimated:YES];
27 } // end method flipsideViewControllerDidFinish:
28
29 // called when the info button is touched
30 - (IBAction)showInfo
31 {
32 // load a new FlipsideViewController from FlipsideView.xib
33 FlipsideViewController *controller = [[FlipsideViewController alloc]
34 initWithNibName:@"FlipsideView" bundle:nil];
35
36 controller.delegate = self; // set the delegate of controller
37
38 // set the animation effect and show the flipside
39 controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;
40 [self presentModalViewController:controller animated:YES];
41
42 // set the sliders on the flipside to the current values in view
43 MainView *view = (MainView *)self.view;
44 [controller setColor:view.color lineWidth:view.lineWidth];
45 [controller release]; // we are done with controller so release it
46 } // end method showInfo
47

Fig. 9.11 | Controller for the front side of the Painter app. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

186 Chapter 9 Painter App

The flipsideViewControllerDidFinish: method (lines 23–27) is called when the
user touches the “Done” Button on the FlipSideView. The showInfo method (lines 30–46)
switches to the FlipsideView when the info button is touched. Lines (33–34) create a new
FlipsideViewcontroller, setting the view it controls to FlipsideView.xib. This is
accessed via the controller pointer. We then set controller’s delegate property to
self—allowing the FlipsideViewController to access MainViewcontroller’s methods
and properties. Line 39 sets controller’s modalTransitionStyle property (inherited
from UIViewController) to UIModalTransitionStyleFlipHorizontal. This makes it
flip horizontally between the MainView and the FlipsideView.

Line 43 gets a pointer to the MainView. Line 44 calls controller’s setColor:line-
Width: method, passing the MainView’s color and lineWidth properties as arguments.
This initializes the FlipsideView’s GUI components to match the current painted line’s
color and width. Line 45 releases controller, because it’s no longer needed by the Main-
ViewController.

The setColor: method (lines 49–53) takes a UIColor—retrieving the MainView and
setting its color property to the given UIColor. The setLineWidth method (lines 56–60)
sets MainView’s lineWidth property in a similar manner. The resetView method (lines
63–67) simply calls the MainView’s resetView method.

Declaring the FlipsideViewController Interface
FlipsideViewController.h (Fig. 9.12) declares the FlipsideViewController class,
which is a UIViewController subclass that controls the flipside of our app. Line 8 declares
instance variable delegate (line 8), which is of type id and implements the
FlipsideViewControllerDelegate protocol. This is the object that will receive a message
when the user touches the “Done” Button. We next declare five outlets that will be con-
nected to GUI components in Interface Builder. Four UISliders represent the Sliders used

48 // set the color of the main view
49 - (void)setColor:(UIColor *)color
50 {
51 MainView *view = (MainView *)self.view; // get main view as a MainView
52 view.color = color; // update the color in the main view
53 } // end method setColor:
54
55 // set the line width of the main view
56 - (void)setLineWidth:(float)width
57 {
58 MainView *view = (MainView *)self.view; // get main view as a MainView
59 view.lineWidth = width; // update the line width in the main view
60 } // end method setLineWidth:
61
62 // clear the paintings in the main view
63 - (void)resetView
64 {
65 MainView *view = (MainView *)self.view; // get main view as a MainView
66 [view resetView]; // reset the main view
67 } // end method resetView
68 @end

Fig. 9.11 | Controller for the front side of the Painter app. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

9.3 Building the App 187

to set the color and width of the painted line (lines 9–13). The UIView shows a preview of
the painting color. The clearScreen variable tracks whether the user has touched the
“Clear Screen” Button.

The FlipsideViewcontroller class has five methods:

• done returns the user to the MainView when the “Done” Button is touched.

• updateColor updates the UIView previewing the chosen color when any of the
color Sliders’ thumbs are moved.

1 // FlipsideViewController.h
2 // Controller for the flipside of the Painter app.
3 // Implementation in FlipsideViewController.m
4 @protocol FlipsideViewControllerDelegate; // declare a new protocol
5
6 @interface FlipsideViewController : UIViewController
7 {
8 id <FlipsideViewControllerDelegate> delegate; // this class's delegate
9 IBOutlet UISlider *redSlider; // slider for changing amount of red

10 IBOutlet UISlider *greenSlider; // slider for changing amount of green
11 IBOutlet UISlider *blueSlider; // slider for changing amount of blue
12 IBOutlet UISlider *widthSlider; // slider for changing line width
13 IBOutlet UIView *colorView; // view that displays the current color
14 BOOL clearScreen; // was the Clear Screen button touched?
15 } // end instance variable declaration
16
17 // declare delegate and outlets as properties
18 @property(nonatomic, assign) id <FlipsideViewControllerDelegate> delegate;
19 @property(nonatomic, retain) IBOutlet UISlider *redSlider;
20 @property(nonatomic, retain) IBOutlet UISlider *greenSlider;
21 @property(nonatomic, retain) IBOutlet UISlider *blueSlider;
22 @property(nonatomic, retain) IBOutlet UISlider *widthSlider;
23 @property(nonatomic, retain) IBOutlet UIView *colorView;
24
25 - (IBAction)done; // called when the Done button is touched
26 - (IBAction)updateColor:sender; // called when a color slider is moved
27 - (IBAction)erase:sender; // called when the Erase button is touched
28 - (IBAction)clearScreen:sender; // called by Clear Screen button
29
30 // sets the color and line width
31 - (void)setColor:(UIColor *)c lineWidth:(float)width;
32 @end // end interface FlipsideViewController
33
34 // protocol that the delegate implements
35 @protocol FlipsideViewControllerDelegate
36 - (void)flipsideViewControllerDidFinish: // return to the MainView
37 (FlipsideViewController *)controller;
38 - (void)setColor:(UIColor *)color; // sets the current drawing color
39 - (void)setLineWidth:(float)width; // sets the current drawing line width
40 - (void)resetView; // erases the entire painting
41 @end // end protocol FlipsideViewControllerDelegate

Fig. 9.12 | FlipsideViewController interface.

Download from <www.wowebook.com>

ptg

188 Chapter 9 Painter App

• erase sets the color of the painted line to white when the “Eraser” Button is
touched. The Sliders move to the right to reflect the change.

• clearScreen:sender: is called when the “Clear Screen” Button is touched and
causes the painting to be erased when the app returns to the MainView.

• setColor:lineWidth: sets the Sliders’ thumb positions to match the current col-
or and width of the painted line.

Implementing the FlipsideViewController Class
FlipsideViewController.m (Fig. 9.13) defines the FlipsideViewController class. The
viewDidLoad method (lines 16–20) initializes FlipsideViewController’s instance vari-
ables when its view loads. We set the view’s backgroundColor property to the default UI-
Color used for flipside views.

1 // Fig. 9.13: FlipsideViewController.m
2 // Controller for the flipside of the Painter app.
3 #import "FlipsideViewController.h"

4 #import "MainViewController.h"

5
6 @implementation FlipsideViewController
7
8 @synthesize delegate; // generate getter and setter for delegate
9 @synthesize redSlider; // generate getter and setter for redSlider

10 @synthesize greenSlider; // generate getter and setter for greenSlider
11 @synthesize blueSlider; // generate getter and setter for blueSlider
12 @synthesize widthSlider; // generate getter and setter for widthSlider
13 @synthesize colorView; // generate getter and setter for colorView
14
15 // called when view finishes loading
16 - (void)viewDidLoad
17 {
18 // initialize the background color to the default
19 self.view.backgroundColor = [UIColor viewFlipsideBackgroundColor];
20 } // end method viewDidLoad
21
22 // called when view is going to be displayed
23 - (void)viewWillAppear:(BOOL)animated
24 {
25 [super viewWillAppear:animated];
26 clearScreen = NO; // reset clearScreen
27 } // end method viewWillAppear:
28
29 // set the values for color and lineWidth
30 - (void)setColor:(UIColor *)c lineWidth:(float)width
31 {
32 // split the passed color into its RGB components
33
34
35 // update the sliders with the new value
36 redSlider.value = colors[0]; // set the red slider’s value

Fig. 9.13 | FlipsideViewController class. (Part 1 of 3.)

const float *colors = CGColorGetComponents(c.CGColor);

Download from <www.wowebook.com>

ptg

9.3 Building the App 189

37 greenSlider.value = colors[1]; // set the green slider’s value
38 blueSlider.value = colors[2]; // set the blue slider’s value
39
40 // update the color of colorView to reflect the sliders
41 colorView.backgroundColor = c;
42
43 // update the width slider
44 widthSlider.value = width;
45 } // end method setColor:lineWidth:
46
47 // called when any of the color sliders are changed
48 - (IBAction)updateColor:sender
49 {
50 // get the color from the sliders
51 UIColor *color = [UIColor colorWithRed:redSlider.value
52 green:greenSlider.value blue:blueSlider.value alpha:1.0];
53
54 // update colorView to reflect the new slider values
55 [colorView setBackgroundColor:color];
56 } // end method updateColor:
57
58 // called when the Eraser button is touched
59 - (IBAction)erase:sender
60 {
61 // do all the changes in an animation block so all the sliders finish
62 // moving at the same time
63 [UIView beginAnimations:nil context:nil]; // begin animation block
64 [UIView setAnimationDuration:0.5]; // set the animation length
65
66 // set all sliders to their max value so the color is white
67 [redSlider setValue:1.0]; // set the red slider’s value to 1
68 [greenSlider setValue:1.0]; // set the green slider’s value to 1
69 [blueSlider setValue:1.0]; // set the blue slider’s value to 1
70
71 // update colorView to reflect the new slider values
72 [colorView setBackgroundColor:[UIColor whiteColor]];
73 [UIView commitAnimations]; // end animation block
74 } // end method erase
75
76 // called when the Clear Screen button is touched
77 - (IBAction)clearScreen:sender
78 {
79 clearScreen = YES; // set clearScreen to YES
80 } // end method clearScreen:
81
82 // called when the Done button is touched
83 - (IBAction)done
84 {
85 // set the new values for color and line width
86 [self.delegate setColor:colorView.backgroundColor];
87 [self.delegate setLineWidth:widthSlider.value];
88

Fig. 9.13 | FlipsideViewController class. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

190 Chapter 9 Painter App

The viewWillAppear method (lines 23–27) is called when the FlipsideView is about
to be displayed. The method resets clearScreen to NO. We call the superclass’s viewWill-
Appear: method (line 25) to ensure that the UIView is ready to be displayed.

The setColor:lineWidth: method (lines 30–45) is used to update the GUI compo-
nents on the flipside to match the current appearance of the painted line. Remember, a
new FlipsideViewController is created every time the user touches the info button, but
we want to save the settings through each one. The CGColorGetComponents function
breaks down a CGColor into an array of its RGB values (line 33). Lines 36–38 update each
Slider’s value property to the appropriate colors—moving the thumbs to their proper
locations. The colorView UIView’s backgroundColor is updated to display the current
color of the painted line and widthSlider’s value is updated to the current width (lines 41
and 44).

The updateColor method (lines 48–56) is called to update colorView each time a
Slider’s thumbs is moved. We create a new UIColor object using the values of the Sliders
(lines 51–52). We then update the background color of colorView to reflect the new
color.

The erase method (lines 59–74) sets each color Slider’s value property to one—set-
ting the color of the painted line to white. The Slider’s thumbs are moved to their new
positions using animation. Line 63 begins a new Core Animation block by calling
UIView’s beginAnimations:context: method. The setAnimationDuration: method
specifies that the animation will last half a second. Lines 67–69 set all of the Sliders’
values to 1.0 using UISlider’s setValue: method. The colorView UIView is then
updated to display the color white. Line 73 calls UIView’s commitAnimations method to
end the animation block and start the animation.

The clearScreen: method (lines 77–80) sets clearScreen to YES when the “Clear
Screen” Button is touched. This causes the painting to clear when the user switches back
to the MainView.

89 // if the user touched the Clear Screen button
90 if (clearScreen)
91 [self.delegate resetView]; // clear the canvas
92
93 // flip the view back to the front side
94 [self.delegate flipsideViewControllerDidFinish:self];
95 } // end method done
96
97 // free FlipsideViewController's memory
98 - (void)dealloc
99 {
100 [redSlider release]; // release the redSlider UISlider
101 [greenSlider release]; // release the greenSlider UISlider
102 [blueSlider release]; // release the blueSlider UISlider
103 [widthSlider release]; // release the widthSlider UISlider
104 [colorView release]; // release the colorView UIView
105 [super dealloc]; // call the superclass's dealloc method
106 } // end method dealloc
107 @end

Fig. 9.13 | FlipsideViewController class. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

9.4 Wrap-Up 191

The done method (lines 83–95) is called when the user touches the “Done” Button.
We then call the delegate’s setColor method—setting the color of the painted line equal
to colorView’s backgroundColor property (line 86). Line 87 sets the painted line width
equal to the value of widthSlider using the delegate’s setLineWidth method. If the
“Clear Screen” Button was touched (line 90), we call the delegates’s resetView method
to erase the current painting. MainViewController’s flipsideViewControllerDid-
Finish: method returns the app to the MainView.

Building the Flipside View
The interface for the flipside view is contained in the file FlipsideView.xib. The flipside
view contains components used to set the width and the color of the painted line. Begin by
changing Title to Painter, then add a Slider for changing the line width and a Label to
describe it. Select the Slider and open the Inspector. Change Minimum to 1.0, Maximum to
20.0 and Current to 5.0. Drag three more Sliders to set the RGB values of the painted line.
In the Inspector check the checkbox Continuous for each one. This makes the Slider send
events every time it’s moved, rather than once only when it stops moving. Add a Button ti-
tled Clear Screen to allow the user to erase the canvas, and add a Button titled Eraser which
will turn the painted line into an eraser. The finished interface is shown in Fig. 9.14.

Next, connect the outlets and actions as we discussed in Section 4.6. In the Flipside-
View.xib window, the FlipsideViewController object is represented by File’s Owner.
Select this object and connect its outlets as labeled in Fig. 9.14. Next, select the three color
Sliders and connect their Value Changed event to the updateColor: method of File’s
Owner. Also connect the “Eraser” Button’s Touch Up Inside event to the erase: method
and the “Clear Screen” Button’s event to the clearScreen: method.

9.4 Wrap-Up
In the Painter app, you learned more about how custom UIViews and UIViewControllers
interact. We saw how to handle all three types of touch events, along with motion events
generated when the user shakes the iPhone. We also saw how to store primitives and struc-

Fig. 9.14 | The finished flipside interface.

redSlider

blueSlider
greenSlider

widthSlider

colorView

Download from <www.wowebook.com>

ptg

192 Chapter 9 Painter App

tures in collections using the NSValue class, and how to selectively redraw a UIView to op-
timize the app’s performance.

In Chapter 10, we build the Address Book app. We introduce the Table View compo-
nent to display a list of information. We show the different kinds of Table Views and how to
populate them with information. We also introduce Navigation Controllers, which are used
to manage a hierarchy of Views and are usually used in conjunction with Table Views. Both
of these new classes are used in the context of the Navigation-based Application template.

Download from <www.wowebook.com>

ptg

10
Address Book App

Tables and UINavigationController

O B J E C T I V E S
In this chapter you’ll learn:

■ To use UITableViews to display contact information.

■ To save memory by reusing UITableViewCells.

■ To display different keyboard styles to match various
input types using UIKeyboardStyles.

■ To use the Navigation-based Application template to
switch between Views using a Navigation Controller.

■ To add Buttons to a UINavigationItem so that one
navigation bar can handle transitions between three
Views.

■ To extend UITableViewCell to create an editable cell.

Download from <www.wowebook.com>

ptg

194 Chapter 10 Address Book App

O
u

tl
in

e

10.1 Introduction
The Address Book app (Fig. 10.1) provides quick and easy access to stored contact infor-
mation. On the main screen, the user can scroll through an alphabetical contact list, add
contacts, delete contacts and view more information about individual contacts. Touching
a contact’s name displays a screen showing the contact’s detailed information (Fig. 10.2).
Touching the “Back” Button in the top-left corner of the details screen returns the user to
the contacts list. You can add a new contact by touching the Add Contact Button () in
the top-right corner of the app. This shows a screen containing editable Text Fields for en-
tering the new contact’s name, address, e-mail and phone number (Fig. 10.3). Touching
the “Done” Button adds the new contact and returns the user to the main contact screen.
Pressing the “Edit” Button in the top-left corner of the main screen displays the Deletion
Control Buttons () next to each contact (Fig. 10.4(a)). Touching one of these displays a

10.1 Introduction
10.2 Test-Driving the Address Book App

10.3 Technologies Overview

10.4 Building the App
10.4.1 Class RootViewController

10.4.2 Class AddViewController

10.4.3 Class ContactViewController
10.4.4 Class EditableCell

10.5 Wrap-Up

Fig. 10.1 | List of contacts.

Touch to add a new contact

Touch to
choose a

contact to
delete

Download from <www.wowebook.com>

ptg

10.1 Introduction 195

“Delete” Button next to the chosen contact’s name (Fig. 10.4(b)). Pressing the “Delete”
Button deletes the corresponding contact.

Fig. 10.2 | Viewing a single contact’s details.

Fig. 10.3 | Add Contact screen.

Touch to return to the
list of contacts

Editable Text Fields

Touch to store entered
contact information

Download from <www.wowebook.com>

ptg

196 Chapter 10 Address Book App

10.2 Test-Driving the Address Book App
Opening the Completed Application
Open the directory containing the Address Book app project. Double click Address-
Book.xcodeproj to open the project in Xcode.

Adding a New Contact
Click the Build and Go button to run the app in the iPhone Simulator. Touch the But-
ton in the top-right corner of the app to view the Add New Contact screen. Touch the
“Name” Text Field and enter the first and last name using the keyboard. Touch the “Street”
Text Field and enter the street address, then fill in the remaining contact information.
When you’re finished, touch the “Done” Button in the top-right corner of the app. The
name you entered appears as the only entry in the contact list. Add additional entries if
you wish. Notice that they’re maintained in alphabetical order.

Deleting a Contact
Touch the “Edit” Button in the top-left corner of the contacts list. Deletion Control Buttons
() appear next to each contact. Touch the Deletion Control Button next to one of the
contacts to show the red “Delete” Button to the right of the contact’s name. Touch this
Button to remove the contact from the list.

10.3 Technologies Overview
This app displays a list of contacts in a UITableView—the standard table for iPhone apps.
A UITableView allows the user to scroll through the contacts by dragging a finger up or

Fig. 10.4 | Deleting a contact.

Deletion
Control
Button

Touch to
remove a
contact

a) b)

Download from <www.wowebook.com>

ptg

10.4 Building the App 197

down the screen. UITableViews contain UITableViewCells. We use both editable and
non-editable cells in this app. To save memory and improve the app’s performance, we
reuse UITableViewCells in our UITableViews. For example, when the user is scrolling
through a long list of contacts, only a limited number of contacts can appear on the screen
at any time. Rather than creating new UITableViewCells for contacts as the appear on the
screen, we can reuse the ones that are no longer visible by calling UITableView’s de-
queueReusableCellWithIdentifier: method. This saves memory and improves the
app’s performance. Similarly, we don’t need new UITableViewCells for each new contact
the user adds—we can simply reuse the cells in the UITableView for each new contact. For
more information on programming with UITableViews, visit:

developer.apple.com/iphone/library/documentation/UserExperience/
 Conceptual/TableView_iPhone/

All UIViewControllers have a navigationController property of type UINaviga-
tionController. We use this navigation bar to add Buttons that the user can press to view,
edit and add new contacts. UINavigationItems contain the Buttons that are used to navi-
gate through the app’s screens. The RootViewController’s view contains the contact-list
UITableView. The RootViewController displays a new ContactViewController when
the user touches an individual contact and creates an AddViewController when the user
touches the Button. Various UIKeyboardTypes provide the user with the correct key-
board for the type of information being entered.

10.4 Building the App
Open Xcode and create a new project. Select the Navigation-based Application template
and name the project AddressBook. The RootViewController class files are automatically
generated.

10.4.1 Class RootViewController
The RootViewController class (Fig. 10.5) manages the RootView. This is the starting
point of the Address Book app.

1 // RootViewController.h
2 // Controller for the main table of the Address Book app.
3 // Implementation in RootViewController.m
4 #import <UIKit/UIKit.h>
5 #import "AddViewController.h"

6 #import "ContactViewController.h"

7
8 // begin interface RootViewController
9 @interface RootViewController :

10 <AddViewControllerDelegate>
11 {
12 NSMutableArray *contacts; // contains all the added contacts
13 NSString *filePath; // the path of the save file
14 } // end instance variables declaration

Fig. 10.5 | Controller for the main table of the Address Book app. (Part 1 of 2.)

UITableViewController

Download from <www.wowebook.com>

ptg

198 Chapter 10 Address Book App

RootViewController is a subclass of UITableViewController (line 9)—which is a
subclass of the UIViewController class we’ve used in previous apps. A UITableViewCon-
troller manages UITableViews similar to the way UIViewController manages UIViews.
Line 10 states that this class implements the AddViewControllerDelegate protocol—it
defines the addViewControllerDidFinish: method.

RootViewController has two instance variables—contacts (line 12) and filePath
(line 13). The contacts NSMutableArray contains NSDictionary objects—each repre-
sents the complete contact information for one person. The filePath contains the loca-
tion of the file that stores the app’s data. The addContact method (line 16) creates a new
AddContactView so the user can add a new contact.

Lines 20–23 add the sorting category to NSDictionary. The sorting category has
only one method—compareContactNames: (defined in Fig. 10.12). This compares the
names of two contacts represented as NSDictionarys. We use this method to sort an
NSMutableArray of contacts in alphabetical order.

Defining the RootViewController Class Implementation
The viewDidLoad method (Fig. 10.6, lines 9–48) initializes class RootViewController’s
instance variables after the view loads. Lines 12–13 use the NSSearchPathForDirecto-
riesInDomains function to get an NSArray with one item—the path name of the directory
where this app can save data. The path name is stored in the directory NSString (line
16). Lines 19–20 concatenate the word contacts to the end of directory to specify the
complete path of the file in which we’ll save the contact information. Line 23 creates a new
NSFileManager by calling NSFileManager’s defaultManager static method. We use this
object to determine whether the file already exists (line 26). If it does, we use NSMutable-
Array’s static initWithContentsOfFile method to initialize contacts with the contents
of that file (line 27). This method parses a plist file to create an NSMutableArray contain-
ing the file’s contents. Otherwise, NSMutableArray contacts is initialized as a new, empty
array (line 29). Lines 32–34 create an Add Contact Button () as a new UIBarButtonItem
that, when touched, calls RootViewController’s addContact method. A UIBarButton-
Item functions similar to a UIButton, except that a UIBarButtonItem appears only inside
a Navigation Bar. Lines 37–38 create another UIBarButtonItem titled Back. We then access
RootViewController’s navigationItem property (inherited from class UIViewCon-
troller) to place the two UIBarButtonItems on the Navigation Bar at the top of the app
(lines 41–42). The Add Contact Button is placed on the right side of the bar (line 41) and
UIViewController’s editButtonItem is placed on the left (line 42). Line 45 sets naviga-
tionItem’s backBarButtonItem to backButton—causing the navigation controller to use

15
16 - (void)addContact; // present the view for adding a new contact
17 @end // end interface RootViewController
18
19 // begin NSDictionary's sorting category
20 @interface NSDictionary (sorting)
21 // compares this contact's name to the given contact's title
22 - (NSComparisonResult)compareContactNames:(NSDictionary *)contact;
23 @end // end category sorting of interface UIButton

Fig. 10.5 | Controller for the main table of the Address Book app. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

10.4 Building the App 199

backButton as navigationItem’s leftBarButtonItem when the user navigates away from
the RootViewController’s view.

1 // RootViewController.m
2 // Controller for the main table of the Address Book app.
3 #import "RootViewController.h"

4 #import "AddressBookAppDelegate.h"

5
6 @implementation RootViewController
7
8 // called when view finishes initializing
9 - (void)viewDidLoad

10 {
11 // creates list of valid directories for saving a file
12 NSArray *paths = NSSearchPathForDirectoriesInDomains(
13 NSDocumentDirectory, NSUserDomainMask, YES);
14
15 // get the first directory because we only care about one
16 NSString *directory = [paths objectAtIndex:0];
17
18 // concatenate the file name "contacts" to the end of the path
19 filePath = [[NSString alloc] initWithString:
20 [directory stringByAppendingPathComponent:@"contacts"]];
21
22 // retrieve the default NSFileManager
23 NSFileManager *fileManager = [NSFileManager defaultManager];
24
25 // if the file exists, initialize contacts with its contents
26 if ([fileManager fileExistsAtPath:filePath])
27 contacts = [[NSMutableArray alloc] initWithContentsOfFile:filePath];
28 else // else initialize contacts as empty NSMutableArray
29 contacts = [[NSMutableArray alloc] init];
30
31 // create the button to add a new contact
32
33
34
35
36 // create the back UIBarButtonItem
37
38
39
40 // add the plus UIBarButtonItem to the top bar on the right
41
42
43
44 // set the back UIBarButtonItem to show if the user navigates away
45
46 [plusButton release]; // release the plusButton UIButton
47 [backButton release]; // release the backButton UIButton
48 } // end method viewDidLoad
49

Fig. 10.6 | Method viewDidLoad of class RootViewController.

UIBarButtonItem *plusButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
 action:@selector(addContact)];

UIBarButtonItem *backButton = [[UIBarButtonItem alloc]initWithTitle:
@"Back" style:UIBarButtonItemStylePlain target:nil action:nil];

self.navigationItem.rightBarButtonItem = plusButton;
self.navigationItem.leftBarButtonItem = self.editButtonItem;

self.navigationItem.backBarButtonItem = backButton;

Download from <www.wowebook.com>

ptg

200 Chapter 10 Address Book App

Method addContact of Class RootViewController
The addContact method (Fig. 10.7) initializes a new AddViewController (lines 54–55).
UIViewController’s presentModalViewController:animated: method is called to dis-
play the controller’s View (line 58).

Method addViewControllerDidFinishAdding: of Class RootViewController
The addViewControllerDidFinishAdding: method (Fig. 10.8) adds a new contact then
dismisses the AddViewController. Line 65 calls the AddViewController’s values method
(defined in Fig. 10.16), which returns an NSDictionary containing the data for the new
contact. If the NSDictionary is not nil, we add the new contact using NSDictionary’s
addObject: method (line 70). Line 73 sorts contacts by their names using NSMutable-
Array’s sortUsingSelector: method. We then hide AddViewController’s view by call-
ing UIViewController’s dismissModalViewControllerAnimated: method (line 77).
Line 80 saves the contents of the contacts dictionary to a file by calling NSMutableDic-
tionary’s writeToFile:atomically: method. Next, we reload the UITableView (line 82)
to display the updated contact list data.

50 // called when the user touches the plus button
51 - (void)addContact
52 {
53 // create new AddViewController
54 AddViewController *controller = [[AddViewController alloc] init];
55 controller.delegate = self; // set controller’s delegate to self
56
57 // show the new controller
58 [self presentModalViewController:controller animated:YES];
59 [controller release]; // release the controller AddViewController
60 } // end method addContact
61

Fig. 10.7 | Method addContact of class RootViewController.

62 - (void)addViewControllerDidFinishAdding:(AddViewController *)controller
63 {
64 // get the values for the new person to be added
65 NSDictionary *person = [controller values];
66
67 // if there is a person
68 if (person != nil)
69 {
70 [contacts addObject:person]; // add person to contacts
71
72 // sort the contacts array in alphabetical name by order
73 [contacts sortUsingSelector:@selector(compareContactNames:)];
74 } // end if
75

Fig. 10.8 | Method addViewControllerDidFinishAdding: of class RootViewController.
(Part 1 of 2.)

Download from <www.wowebook.com>

ptg

10.4 Building the App 201

Methods tableView:NumberOfRowsInSection and tableView:cellForRowAt-
IndexPath: of Class RootViewController
Several methods inherited from UITableViewController control the table’s formatting.
These methods are defined in the UITableViewDataSource and UITableViewDelegate
protocols, which UITableViewController implements. A UITableView gets its data from
its specified dataSource. In this case, RootViewController is the dataSource. The num-
ber of rows in each section is specified by the UITableViewDataSource protocol’s
tableView:numberOfRowsInSection: method (Fig. 10.9, lines 86–90). We return the
number of elements in the contacts array (line 89) in this case, since all of the saved con-
tacts are shown in one section of the table.

76 // make the AddViewControler stop showing
77 [self dismissModalViewControllerAnimated:YES];
78
79 // write contacts to file
80 [contacts writeToFile:filePath atomically:NO];
81
82 [self.tableView reloadData]; // refresh the table view
83 } // end method finishedAdding
84

85
86
87
88 {
89 return contacts.count; //return the number of contacts
90 } // end method tableView:numberOfRowsInSection:
91
92
93
94
95 {
96 // create cell identifier
97 static NSString *MyIdentifier = @"StandardCell";
98
99
100
101 // if no reusable cells are available
102 if (cell == nil)
103 {
104 // create a new editable cell
105
106
107
108 } // end if

Fig. 10.9 | Methods and tableView:NumberOfRowsInSection: and
tableView:cellForRowAtIndexPath: of class RootViewController. (Part 1 of 2.)

Fig. 10.8 | Method addViewControllerDidFinishAdding: of class RootViewController.
(Part 2 of 2.)

// called by the table view to determine the number of rows in a section
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
 (NSInteger)section

// returns tableView’s cell at specified indexPath
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 MyIdentifier]; // get a reusable cell

cell = [[[UITableViewCell alloc] initWithStyle:
UITableViewCellStyleDefault reuseIdentifier:MyIdentifier]

 autorelease];

Download from <www.wowebook.com>

ptg

202 Chapter 10 Address Book App

The tableView:cellForRowAtIndexPath: method returns a UITableViewCell for
the given UITableView and NSIndexPath—an object that represents the index of a cell
(i.e., contact) in the table. Line 97 creates an NSString which will be passed to
UITableView’s dequeueReusableCellWithIdentifier: method to get a UITableView-
Cell from tableView (lines 98–99). The NSString specifies the type of cell we want to
receive. This method attempts to reuse an existing UITableViewCell (with the specified
identifier) which is not in use at the moment, possibly because it is not displayed on the
screen. If tableView contains no editable UITableViewCells that can be reused (line 102),
we create a new one using UITableViewCell’s initWithStyle:reuseIdentifier: method
(lines 105–107). UITableViewCell styles are new to iPhone OS 3.x, you can learn more
about them by searching developer.apple.com for A Closer Look at Table-View Cells.
Lines 111–112 get the name of the contact corresponding to the row we’re retrieving.
Lines 113–114 update cell’s textLabel property to display the correct contact’s name.
We then return the configured cell to the UITableView (line 118).

Method tableView:didSelectRowAtIndexPath: of Class RootViewController
The UITableViewDelegate’s tableView:didSelectRowAtIndexPath: method (Fig. 10.10)
is called when the user touches a row of the UITableView. In this case, we display a Contact-
View so the user can edit a contact. Lines 126–127 create a new ContactViewController.
We then call ContactViewController’s setPerson and updateTitle methods to initialize
the ContactView with the data from the selected contact. Line 134 calls UINavigationCon-
troller’s pushViewController:animated: method to display the new ContactView.

109
110 // set up the cell
111 NSString *name = [[contacts objectAtIndex:indexPath.row] valueForKey:
112 @"Name"];
113 UILabel *label = [cell textLabel]; // get the label for the cell
114 label.text = name; // set the text of the label
115
116 // make the cell display an arrow on the right side
117
118 return cell; // return the updated cell
119 } // end method tableView:cellForRowAtIndexPath:
120

121
122
123
124 {

Fig. 10.10 | Method tableView:didSelectRowAtIndexPath: of class
RootViewController. (Part 1 of 2.)

Fig. 10.9 | Methods and tableView:NumberOfRowsInSection: and
tableView:cellForRowAtIndexPath: of class RootViewController. (Part 2 of 2.)

cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

// called when the user touches one of the rows in the table
 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
 (NSIndexPath *)indexPath

Download from <www.wowebook.com>

ptg

10.4 Building the App 203

Methods tableView:commitEditingStyle:forRowAtIndexPath:,
shouldAutorotateToInterfaceOrientation: and dealloc of Class
RootViewController

The UITableViewDataSource protocol’s tableView:commitEditingStyle:forRowAtIn-
dexPath: method (Fig. 10.11, lines 139–156) is called when the user edits the table, such
as by deleting or inserting a row. Recall that the user can delete cells using when the app
is in edit mode. If the given UITableViewCellEditingStyle is UITableViewCellEdit-
ingStyleDelete (line 144), the user touched the “Delete” Button, so line 147 calls con-
tact’s removeObjectAtIndex method to remove the element at indexPath.row. We call
UITableView’s deleteRowsAtIndexPaths:withRowAnimation method to remove the de-
leted row from tableView (lines 150–151). We then write the updated contacts to the
file (line 154).

125 // initialize a ContactViewController
126 ContactViewController *controller = [[ContactViewController alloc]
127 initWithNibName:@"ContactViewController" bundle:nil];
128
129 // give controller the data to display
130 [controller setPerson:[contacts objectAtIndex:[indexPath row]]];
131 [controller updateTitle]; // update the title with the new data
132
133 // show the ContactViewController
134
135 [controller release]; // release the controller ContactViewController
136 } // end method tableView:didSelectRowAtIndexPath:
137

138
139
140
141
142 {
143 // "delete" editing style is committed
144
145 {
146 // remove contact at indexPath.row
147 [contacts removeObjectAtIndex:indexPath.row];
148
149 // delete the row from the data source
150
151
152

Fig. 10.11 | Methods tableView:commitEditingStyle:forRowAtIndexPath:,
shouldAutorotateToInterfaceOrientation: and dealloc of class RootViewController.
(Part 1 of 2.)

Fig. 10.10 | Method tableView:didSelectRowAtIndexPath: of class
RootViewController. (Part 2 of 2.)

[self.navigationController pushViewController:controller animated:YES];

// Override to support editing the table view.
- (void)tableView:(UITableView *)tableView commitEditingStyle:
 (UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:
 (NSIndexPath *)indexPath

if (editingStyle == UITableViewCellEditingStyleDelete)

[tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:
 indexPath] withRowAnimation:UITableViewRowAnimationFade];

Download from <www.wowebook.com>

ptg

204 Chapter 10 Address Book App

The shouldAutoRotateToInterfaceOrientation: method (lines 159–164) is inher-
ited from UIViewController and overridden by default in the Navigation-based Applica-
tion template. This method is called by the iPhone OS to determine if this view should
rotate when the iPhone’s orientation changes. The dealloc method (lines 167–171)
releases the contacts NSMutableArray and calls the superclass’s dealloc method.

NSDictionary’s sorting Category
Lines 175–182 implement method compareContactNames: of NSDictionary’s sorting
category (Fig. 10.12). Lines 179–180 use NSString’s caseInsensitiveCompare: method
to compare the value for key Name of the given NSDictionary to that of the NSDictionary
receiving the compareContactNames: message.

153 // write contacts to file
154 [contacts writeToFile:filePath atomically:NO];
155 } // end if
156 } // end method tableView:commitEditingStyle:forRowAtIndexPath:
157
158 // called to determine what orientations our View allows
159 - (BOOL)shouldAutorotateToInterfaceOrientation:
160 (UIInterfaceOrientation)interfaceOrientation
161 {
162 // return YES for supported orientations
163 return (interfaceOrientation == UIInterfaceOrientationPortrait);
164 } // end method shouldAutorotateToInterfaceOrientation
165
166 // release MainViewController’s memory
167 - (void)dealloc
168 {
169 [contacts release]; // release the contacts NSMutableArray
170 [super dealloc]; // call the superclass’s dealloc method
171 } // end method dealloc
172 @end // end RootViewController implementation
173

174 // define NSDictionary's sorting category method
175 @implementation NSDictionary (sorting)
176 - (NSComparisonResult)compareContactNames:(NSDictionary *)contact
177 {
178 // compare this contact's title to that of the given contact
179 return [[self valueForKey:@"Name"]
180 caseInsensitiveCompare:[contact valueForKey:@"Name"]];
181 } // end method compareContactNames
182 @end // end NSDictionary's sorting category

Fig. 10.12 | NSDictionary’s sorting category.

Fig. 10.11 | Methods tableView:commitEditingStyle:forRowAtIndexPath:,
shouldAutorotateToInterfaceOrientation: and dealloc of class RootViewController.
(Part 2 of 2.)

Download from <www.wowebook.com>

ptg

10.4 Building the App 205

10.4.2 Class AddViewController
In Xcode, select File > New File and chose UIViewController subclass. Before pressing Next,
ensure that the With XIB for user interface checkbox is checked so that Xcode automatically
generates a nib file for the new class. Name the class AddViewController and save it in the
default location provided. Open AddViewController.xib and drag a Navigation Bar to the
top of the app window. Change the title of the Navigation Item to Add Contact. Next, drag
a Bar Button Item from the Library to the right side of the Navigation Bar. Open the In-
spector window to change the Bar Button Item’s Title to Done. Drag a TableView from the
Library window and resize it to fill the remainder of the app window. Figure 10.13 shows
the completed nib file.

AddViewController Interface Declaration
Class AddViewController (Fig. 10.14) is a subclass of UIViewController (line 10) and
implements the UITableViewDataSource protocol. This means that AddViewController
acts as a data source for a UITableView. It also implements the EditableCellDelegate
protocol so that it can receive messages when a user begins editing a cell, stops editing a
cell or touches the “Done” Button.

Fig. 10.13 | AddViewController.xib in Interface Builder after placing the default
TableView.

1 // AddViewController.h
2 // AddViewController’s interface declaration.
3 // Implementation in AddViewController.m
4 #import <UIKit/UIKit.h>
5 #import "EditableCell.h"

Fig. 10.14 | AddViewController’s interface declaration. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

206 Chapter 10 Address Book App

Line 13 declares variable delegate of type id which implements the AddViewCon-
trollerDelegate protocol. This will be used to store the RootViewController. The
UITableView table is declared as an outlet and will display the contact information for
the chosen contact (line 14). In Interface Builder connect the new Table View to the table
property of File’s Owner. NSArray fields will store the field names for each of the fields
in table (line 15). The NSMutableDictionary data contains the data for the new contact,
once the user enters it (line 16). The BOOL variable keyboardShown indicates whether or
not the keyboard is currently visible (line 17). Line 18 declares an EditableCell to store
the UITableViewCell currently being edited by the user.

Lines 22–24 declare delegate, table and data as properties. The AddViewCon-
troller class defines three methods:

• doneAdding:sender: returns the app to the RootView when the user touches the
“Done” Button

• values returns an NSDictionary containing all the contact information stored in
table.

• clearFields clears all of table’s EditableCells.

Lines 31–33 declare the AddViewControllerDelegate protocol. Classes imple-
menting this protocol define the addViewControllerDidFinishAdding: method. Root-

6 static const int KEYBOARD_HEIGHT = 200; // the height of the keyboard
7
8 @protocol AddViewControllerDelegate; // AddViewControllerDelegate protocol
9

10 @interface AddViewController : UIViewController < ,
11 EditableCellDelegate>
12 {
13 id <AddViewControllerDelegate> delegate; // this class's delegate
14 IBOutlet UITableView *table; // table that displays editable fields
15 NSArray *fields; // an array containing the field names
16 NSMutableDictionary *data; // dictionary containing contact data
17 BOOL keyboardShown; // is the keyboard visible?
18 EditableCell *currentCell; // the cell the user is currently editing
19 } // end instance variable declaration
20
21 // declare delegate and table as properties
22 @property (nonatomic, assign) id <AddViewControllerDelegate> delegate;
23 @property (nonatomic, retain) IBOutlet UITableView *table;
24 @property (readonly, copy, getter=values) NSDictionary *data;
25 - (IBAction)doneAdding:sender; // return to RootView
26 - (NSDictionary *)values; // return values NSDictionary
27 - (void)clearFields; // clear table cells
28 @end // end interface AddViewController
29
30 // notifies RootViewcontroller that Done Button was touched
31 @protocol AddViewControllerDelegate
32 - (void)addViewControllerDidFinishAdding:(AddViewController *)controller;
33 @end // end protocol AddViewControllerDelegate

Fig. 10.14 | AddViewController’s interface declaration. (Part 2 of 2.)

UITableViewDataSource

Download from <www.wowebook.com>

ptg

10.4 Building the App 207

ViewController implements this protocol to hide the AddView when the “Done” Button
is touched.

Method initWithNibName:bundle: of Class AddViewController
The initWithNibName:bundle: method (Fig. 10.15, lines 10–27) is called when the Add-
ViewController loads. If the inherited superclass members initialize without error (line
14), lines 17–18 initialize the fields NSArray with names of the fields in the table
UITableView using NSArray’s initWithObjects: method. This method takes a comma
separated list of objects ending with nil. The last argument indicates the end of the list
and is not included in the NSArray. Line 21 uses NSMutableDictionary’s initWithCapac-
ity: method to create the data NSMutableDictionary with the same number of elements
as fields.

Methods doneAdding: and values of Class AddViewController
The doneAdding: method (Fig. 10.16, lines 30–40) returns the app to the RootView when
the user touches the “Done” Button. If there is a currently selected UITableViewCell (line
33), we call NSDictionary’s setValue:forKey: method to update data with the selected
UITableViewCell’s text. Line 39 calls RootViewController’s addViewControllerDid-
FinishAdding: method to switch views. If the user has not entered any contacts, the val-

1 // AddViewController.m
2 // Controls a view for adding a new contact.
3 #import "AddViewController.h"

4
5 @implementation AddViewController
6 @synthesize delegate;
7 @synthesize table;
8
9 // initialize the AddViewController

10 - (id)initWithNibName:(NSString *)nibNameOrNil bundle:
11 (NSBundle *)nibBundleOrNil
12 {
13 // if the superclass initialized properly
14 if (self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil])
15 {
16 // create the names of the fields
17 fields = [[NSArray alloc] initWithObjects:@"Name", @"Email",
18 @"Phone", @"Street", @"City/State/Zip", nil];
19
20 // initialize the data NSMutableDictionary
21 data = [[NSMutableDictionary alloc] initWithCapacity:fields.count];
22 keyboardShown = NO; // hide the keyboard
23 currentCell = nil; // there is no cell currently selected
24 } // end if
25
26 return self; // return this AddViewController
27 } // end method initWithNibName:bundle:
28

Fig. 10.15 | Methods initWithNibName:bundle: and viewDidLoad of class
AddViewController.

Download from <www.wowebook.com>

ptg

208 Chapter 10 Address Book App

ues method (lines 43–51) returns nil (line 47). Otherwise, it calls NSDictionary’s
dictionaryWithDictionary: method to create a new NSDictionary containing the same
information as data (line 50).

Methods editableCellDidBeginEditing:, editableCellDidEndEditing: and
editableCellDidEndOnExit: of Class AddViewController
The editableCellDidBeginEditing: method (Fig. 10.17, lines 54–78) is called when
the user touches one of table’s cells. If the keyboard is not currently displayed (line 57),
we resize table to make room for the keyboard. We animate the resize to make it a visually
smooth transition. Line 60 calls UIView’s beginAnimations:context: method to begin a
new animation block. We set the length of the animation to 0.25 seconds by calling UI-
View’s setAnimationDuration: method. We call UIView’s setAnimationCurve method
to specify that the animation starts slowly and accelerates until finishing. Lines 63–64 get
table’s frame and decrease frame’s height by the height of the keyboard. We then apply
the resized frame to table and call UIView’s commitAnimations method to end the anima-
tion block and begin animating (lines 65–66). Next, we set keyboardShown equal to YES
(line 69). Line 73 passes cell as an argument to UITableView’s indexPathForCell: meth-
od to get an NSIndexPath representing cell’s location in table. UITableView’s
scrollToRowAtIndexPath:atScrollPosition:animated: scrolls the table so that cell
appears at the top of the screen (lines 76–77).

The editableCellDidEndEditing: method (lines 81–85) is called when the user fin-
ishes editing a cell—either by selecting another cell or hitting the “Done” Button. Line 84
stores the name of the cell and its content as a key/value pair in NSDictionary data.

29 // alert RootViewController that the "Done" Button was touched
30 - (IBAction)doneAdding:sender
31 {
32 // if there is a cell currently selected
33 if (currentCell != nil)
34 // update data with the text in the currently selected cell
35 [data setValue:currentCell.textField.text
36 forKey:currentCell.label.text];
37
38 // return to the RootView
39 [delegate addViewControllerDidFinishAdding:self];
40 } // end method doneAdding:
41
42 // returns a dictionary containing all the supplied contact information
43 - (NSDictionary *)values
44 {
45 // if the user did not supply a name
46 if ([data valueForKey:@"Name"] == nil)
47 return nil; // return nil
48
49 // returns a copy of the data NSDictionary
50 return [NSDictionary dictionaryWithDictionary:data];
51 } // end method values
52

Fig. 10.16 | Methods doneAdding: and values of class AddViewController.

Download from <www.wowebook.com>

ptg

10.4 Building the App 209

The editableCellDidEndOnExit: method (lines 88–98) removes the keyboard when
the user touches the “Done” Button. Lines 92–94 resize table’s frame to fill the entire
screen and line 96 sets keyboardShown to NO.

53 // called when the user begins editing a cell
54 - (void)editableCellDidBeginEditing:(EditableCell *)cell
55 {
56 // if the keyboard is hidden
57 if (!keyboardShown)
58 {
59 // animate resizing the table to fit the keyboard
60 [UIView beginAnimations:nil context:NULL]; // begin animation block
61 [UIView setAnimationDuration:0.25]; // set the animation duration
62 [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
63
64
65
66 [UIView commitAnimations]; // end animation block
67 } // end if
68
69 keyboardShown = YES; // the keyboard appears on the screen
70 currentCell = cell; // update the currently selected cell
71
72
73
74
75
76
77
78 } // end method cellBeganEditing:
79
80 // called when the user stops editing a cell or selects another cell
81 - (void)editableCellDidEndEditing:(EditableCell *)cell
82 {
83 // add the new entered data
84 [data setValue:cell.textField.text forKey:cell.label.text];
85 } // end method editableCellDidEndEditing:
86
87 // called when the user touches the Done button on the keyboard
88 - (void)editableCellDidEndOnExit:(EditableCell *)cell
89 {
90
91
92
93
94
95
96 keyboardShown = NO; // hide the keyboard
97 currentCell = nil; // there is no cell currently selected
98 } // end method editableCellDidEndOnExit:
99

Fig. 10.17 | Methods editableCellDidBeginEditing:, editableCellDidEndEditing:
and editableCellDidEndOnExit: of class AddViewController.

CGRect frame = table.frame; // get the frame of the table
frame.size.height -= KEYBOARD_HEIGHT; // subtract from the height
[table setFrame:frame]; // apply the new frame

// get the index path for the selected cell
NSIndexPath *path = [table indexPathForCell:cell];

// scroll the table so that the selected cell is at the top
[table scrollToRowAtIndexPath:path atScrollPosition:

UITableViewScrollPositionTop animated:YES];

// resize the table to fit the keyboard
CGRect frame = table.frame; // get the frame of the table
frame.size.height += KEYBOARD_HEIGHT; // subtract from the height
[table setFrame:frame]; // apply the new frame

Download from <www.wowebook.com>

ptg

210 Chapter 10 Address Book App

Methods numberOfSectionsInTableView:, tableView:numberOfRowsInSec-
tion: and tableView:titleForHeaderInSection: of Class AddViewController
The numberOfSectionsInTableView: method (Fig. 10.18, lines 101–104) returns the
number of sections in the table—two. The tableView:numberOfRowsInSection: meth-
od (lines 107–115) returns the number of rows for a given section. The first section con-
tains three rows (name, e-mail, phone) and table’s remaining rows are in the second
section (lines 111–114). The tableView:titleForHeaderInSection: method (lines 118–
126) returns the title of a section. The first section is titled Address (lines 122–125). All
other sections have no title, so passing them to this method returns the value nil.

Methods tableView:cellForRowAtIndexPath:, shouldAutorotateToInter-
faceOrientation: and dealloc of Class AddViewController
Line 132 creates an NSString that will be passed to UITableView’s dequeueReusable-
CellWithIdentifier: method to get an UITableViewCell from tableView (lines 135–
136). If tableView contains no reusable UITableViewCells (line 139), we create a new
one (lines 142–143). Once we’ve created a new cell or obtained one for reuse, we custom-
ize the cell using the saved data. Lines 146–148 get the correct label for the cell. We then
set the text in the text field to what the user entered (line 151). Next, we set the keyboard

100
101
102 {
103 return 2; // the number of sections in the table
104 } // end method numberOfSectionsInTableView:
105
106
107
108
109 {
110 // if it’s the first section
111 if (section == 0)
112 return 3; // there are three rows in the first section
113 else

114 return fields.count - 3; // all other rows are in the second section
115 } // end method tableView:numberOfRowsInSection:
116
117
118
119
120 {
121 // if it’s the second section
122 if (section == 1) // return the title
123 return @"Address";
124 else // none of the other sections have titles
125 return nil; // return nil
126 } // end method tableView:titleForHeaderInSection:
127

Fig. 10.18 | Methods numberOfSectionsInTableView:, tableView:numberOf-
RowsInSection: and tableView:titleForHeaderInSection: of class AddViewController.

// returns the number of sections in table
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

// returns the number of rows in the given table section
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
 (NSInteger)section

// returns the title for the given section
- (NSString *)tableView:(UITableView *)tableView titleForHeaderInSection:
 (NSInteger)section

Download from <www.wowebook.com>

ptg

10.4 Building the App 211

type for the cell’s text field (lines 154–164). Most of the cells use the default keyboard, but
the cell for entering an e-mail address and the cell for entering a phone number require
special keyboards. Finally, we set the editing mode, delegate and selection style for the cell
(lines 165–169). Line 170 returns the cell.

128
129
130
131 {
132 static NSString *identifier = @"EditableCell";
133
134
135
136
137
138 // if no reusable cell exists
139 if (cell == nil)
140 {
141
142
143
144 } // end if
145 // get the key for the given index path
146 NSString *key =
147 [fields objectAtIndex:indexPath.row + indexPath.section * 3];
148 [cell setLabelText:key]; // update the cell text with the key
149
150 // update the text in the text field with the value
151 cell.textField.text = [data valueForKey:key];
152
153 // if cell is going to store an e-mail address (1st section 2nd row)
154 if (indexPath.section == 0 && indexPath.row == 1)
155 {
156
157
158 } // end if
159 // if the cell is going to store a phone number (1st section 3rd row)
160 else if (indexPath.section == 0 && indexPath.row == 2)
161 {
162
163
164 } // end else if
165 cell.editing = NO; // cell is not in editing mode
166 cell.delegate = self; // set this object as the cell's delegate
167
168 // make the cell do nothing when it is selected
169 cell.selectionStyle = UITableViewCellSelectionStyleNone;
170 return cell; // return the customized cell
171 } // end method tableView:cellForRowAtIndexPath:
172

Fig. 10.19 | Method tableView:cellForRowAtIndexPath: of class AddViewController.
(Part 1 of 2.)

// returns the cell at the given index path
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

// get a reusable cell
EditableCell *cell = (EditableCell *)[table
 dequeueReusableCellWithIdentifier:identifier];

// create a new EditableCell
cell = [[EditableCell alloc] initWithStyle:

UITableViewCellStyleDefault reuseIdentifier:identifier];

// set the cells keyboard to email address keyboard
cell.textField.keyboardType = UIKeyboardTypeEmailAddress;

// set the cell's keyboard to the phone pad keyboard
cell.textField.keyboardType = UIKeyboardTypePhonePad;

Download from <www.wowebook.com>

ptg

212 Chapter 10 Address Book App

10.4.3 Class ContactViewController
In Xcode, select File > New File and chose UIViewController subclass. Before pressing Next,
ensure that the With XIB for user interface checkbox is checked to auto-generate a nib file.
Name the class ContactViewController and save it in the default location provided. Drag a
TableView from the Library window and resize it to fill the entire app window.

ContactViewController Interface Declaration
Class ContactViewController (Fig. 10.20) controls the View that displays a single exist-
ing contact’s information. ContactViewController is a subclass of UIViewController
and implements the UITableViewDataSource protocol (lines 7–8). The class has one in-
stance variable, person (line 10) which is declared as a property at line 14. The update-
Title method updates the navigation bar’s title to the selected contact’s name.

173 // called to determine what orientations our View allows
174 - (BOOL)shouldAutorotateToInterfaceOrientation:
175 (UIInterfaceOrientation)interfaceOrientation
176 {
177 // return YES for supported orientations
178 return (interfaceOrientation == UIInterfaceOrientationPortrait);
179 } // end method shouldAutorotateToInterfaceOrientation:
180
181 // free AddViewController’s memory
182 - (void)dealloc
183 {
184 [fields release]; // release the fields NSArray
185 [data release]; // release the data NSMutableDictionary
186 [table release]; // release the table UITableView
187 [super dealloc]; // release the superclass
188 } // end method dealloc
189 @end // end AddViewController’s implementation

1 // ContactViewController.h
2 // ContactViewController’s interface declaration.
3 // Implementation in ContactViewController.m
4 #import <UIKit/UIKit.h>
5
6 // begin ContactViewController interface
7 @interface ContactViewController : UIViewController
8 <UITableViewDataSource>
9 {

10 NSDictionary *person; // the data for the entry being viewed
11 } // end instance variable declaration
12

Fig. 10.20 | ContactViewController’s interface declaration. (Part 1 of 2.)

Fig. 10.19 | Method tableView:cellForRowAtIndexPath: of class AddViewController.
(Part 2 of 2.)

Download from <www.wowebook.com>

ptg

10.4 Building the App 213

ContactViewController Class Definition
ContactViewController’s updateTitle method (Fig. 10.21, lines 11–15) sets naviga-
tionItem’s title property to the selected contact’s name. The tableView:numberOfRow-
sInSection: method (lines 18–22) returns the total number of pieces of information
contained in the person NSDictionary (line 21). This corresponds to the number of rows
in the UITableView’s only section.

13 // declare person as a property
14 @property(nonatomic, retain) NSDictionary* person;
15 - (void)updateTitle; // updates the title in the navigation bar
16 @end // end interface ContactViewController

1 // ContactViewController.m
2 // ContactViewController class displays information for a contact.
3 #import "ContactViewController.h"

4 #import "EditableCell.h"
5
6 @implementation ContactViewController
7
8 @synthesize person; // generate get and set methods for person
9

10 // update the title in the navigation bar
11 - (void)updateTitle
12 {
13 // set the title to the name of the contact
14 [self.navigationItem setTitle:[person valueForKey:@"Name"]];
15 } // end method updateTitle
16
17 // determines how many rows are in a given section
18 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
19 (NSInteger)section
20 {
21 return person.count; // return the number of total rows
22 } // end method tableView:numberOfRowsInSection:
23
24 // retrieve tableView’s cell at the given index path
25 - (UITableViewCell *)tableView:(UITableView *)tableView
26 cellForRowAtIndexPath:(NSIndexPath *)indexPath
27 {
28 // used to identify cell as a normal cell
29
30
31 // get a reusable cell
32
33
34

Fig. 10.21 | ContactViewController class displays information for a contact. (Part 1 of 2.)

Fig. 10.20 | ContactViewController’s interface declaration. (Part 2 of 2.)

static NSString *MyIdentifier = @"NormalCell";

UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:MyIdentifier];

Download from <www.wowebook.com>

ptg

214 Chapter 10 Address Book App

The tableView:cellForRowAtIndexPath: method (lines 25–52) returns the cell at
the location specified by the NSIndexPath. Line 29 creates an NSString which we’ll use to
indicate that we want to retrieve cells as standard UITableViewCells (not editable ones).
Lines 32–33 use UITableView’s dequeueReusableCellWithIdentifier: method to get a

35 // if there are no cells to be reused, create one
36 if (cell == nil)
37 {
38
39
40
41 } // end if
42
43 // get the key at the appropriate index in the dictionary
44 NSString *key = [[person allKeys] objectAtIndex:indexPath.row];
45 NSString *value = [person valueForKey:key]; // get the value
46 UILabel *label = [cell textLabel]; // get the label for the cell
47
48 // update the text of the label
49 label.text = [NSString stringWithFormat:@"%@: %@", key, value];
50 return cell; // return the customized cell
51 } // end method tableView:cellForRowAtIndexPath:
52
53 // determines the title for a given table header
54 - (NSString *)tableView:(UITableView *)tableView titleForHeaderInSection:
55 (NSInteger)section
56 {
57 return nil; // there are no section headers
58 } // end method tableView:titleForHeaderInSection:
59
60 // determines if a table row can be edited
61 - (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:
62 (NSIndexPath *)indexPath
63 {
64 return NO; // none of the rows are editable
65 } // end method tableView:canEditRowAtIndexPath:
66
67 // called to determine what orientations our View allows
68 - (BOOL)shouldAutorotateToInterfaceOrientation:
69 (UIInterfaceOrientation)interfaceOrientation
70 {
71 // allow only the portrait orientation
72 return (interfaceOrientation == UIInterfaceOrientationPortrait);
73 } // end method shouldAutorotateToInterfaceOrientation:
74
75 // free ContactViewController’s memory
76 - (void)dealloc
77 {
78 [person release]; // release the person NSDictionary
79 [super dealloc]; // call the superclass’s dealloc method
80 } // end method dealloc
81 @end // end implementation of ContactViewController

Fig. 10.21 | ContactViewController class displays information for a contact. (Part 2 of 2.)

// create a new cell
cell = [[UITableViewCell alloc] initWithStyle:

UITableViewCellStyleDefault reuseIdentifier:identifier];

Download from <www.wowebook.com>

ptg

10.4 Building the App 215

UITableViewCell from tableView. This method attempts to reuse an existing cell which
is no longer displayed on the screen. If tableView contains no reusable cells (line 36), we
must create a new UITableViewCell (lines 39–40). Lines 44–55 retrieve the key–value
pair of the given UITableViewCell from the person NSDictionary and line 46 retrieves
that UITableViewCell’s Label. We then update the Label with the retrieved data from
person and return the cell (lines 49–50).

10.4.4 Class EditableCell
Select File > New File... and choose Objective-C class. Choose UITableViewCell from the
Subclass Of drop-down menu. This specifies that our new class will extend class
UITableViewCell. Press Next then name the class EditableCell. Although we programati-
cally create EditableCells, it’s also possible to load custom UITableViewCells from nib
files. For information on doing this, see the section “A Closer Look at Table-View Cells”
in the Table View Programming Guide for iPhone OS, which can be found at:

developer.apple.com/iphone/library/documentation/UserExperience/
 Conceptual/TableView_iPhone/TableView_iPhone.pdf

EditableCell Interface Declaration
The EditableCell class (Fig. 10.22) extends UITableViewCell and implements the
UITextFieldDelegate protocol (line 9), which states that EditableCell can respond to
messages sent by a Text Field as the user edits that Text Field. All of these messages are op-
tional, but EditableCell defines the textFieldDidBeginEditing: and textFieldDid-
EndEditing: methods. Lines 11–13 declare EditableCell’s instance variables.

1 // EditableCell.h
2 // Interface for UITableViewCell that contains a label and a text field.
3 // Implementation in EditableCell.m
4
5 #import <UIKit/UIKit.h>
6
7 @protocol EditableCellDelegate; // declare EditableCellDelegate Protocol
8
9 @interface EditableCell : UITableViewCell <UITextFieldDelegate>

10 {
11 id <EditableCellDelegate> delegate; // this class's delegate
12 UITextField *textField; // text field the user edits
13 UILabel *label; // label on the left side of the cell
14 } // end instance variables declaration
15
16 // declare textField as a property
17 @property (nonatomic, retain) UITextField *textField;
18
19 // declare label as a property
20 @property (readonly, retain) UILabel *label;
21

Fig. 10.22 | Interface for a UITableViewCell that contains a Label and a Text Field. (Part 1
of 2.)

Download from <www.wowebook.com>

ptg

216 Chapter 10 Address Book App

Lines 17–23 declare each of EditableCell’s instance variables as properties. The
readonly keyword is used for label so that other classes will not be able to directly change
its text. Lines 25–26 declare two methods. The setLabelText: method sets label’s text
property. The clearText method removes all text from textField. Lines 29–39 declare
the EditableCellDelegate protocol. Any class implementing this protocol should define
three methods—editableCellDidBeginEditing:, editableCellDidEndEditing: and
editableCellDidEndOnExit:, which are called when the user starts editing a cell, stops
editing a cell or touches the keyboard’s “Done” Button, respectively.

EditableCell Class Definition
Lines 6–8 of class EditableCell (Fig. 10.23) synthesize each of EditableCell’s proper-
ties. The initWithStyle:reuseIdentifier: method (lines 11–34) initializes an Edita-
bleCell. If the superclass’s inherited members are initialized without error (line 15), we
create a Label on the left side of the EditableCell (line 18). Lines 21–22 create a new Text
Field to the right of the Label. We then set this EditableCell as textField’s delegate so
this class will receive the textFieldDidBeginEditing: and textFieldDidEndEditing:
messages. Lines 27–28 call UITextField’s addTarget:action:forControlEvents: meth-
od to specify that this EditableCell object receives the textFieldDidEndOnExit: mes-
sage when the user touches the keyboard’s “Done” Button. We then add label and
textField to the EditableCell’s view (lines 29–30).

22 //declare delegate as a property
23 @property (nonatomic, assign) id <EditableCellDelegate> delegate;
24
25 - (void)setLabelText:(NSString *)text; // set the text of label
26 - (void)clearText; // clear all the text out of textField
27 @end // end interface EditableCell
28
29 @protocol EditableCellDelegate // protocol for the delegate
30
31 // called when the user begins editing a cell
32 - (void)editableCellDidBeginEditing:(EditableCell *)cell;
33
34 // called when the user stops editing a cell
35 - (void)editableCellDidEndEditing:(EditableCell *)cell;
36
37 // called when the user touches the Done button on the keyboard
38 - (void)editableCellDidEndOnExit:(EditableCell *)cell;
39 @end // end protocol EditableCellDelegate

1 // EditableCell.m
2 // EditcableCell’s class definition
3 #import "EditableCell.h"

4 @implementation EditableCell

Fig. 10.23 | EditableCell’s class definition. (Part 1 of 3.)

Fig. 10.22 | Interface for a UITableViewCell that contains a Label and a Text Field. (Part 2
of 2.)

Download from <www.wowebook.com>

ptg

10.4 Building the App 217

5
6 @synthesize textField; // synthesize get and set methods for textField
7 @synthesize label; // synthesize get and set methods for label
8 @synthesize delegate; // synthesize get and set methods for delegate
9

10 // initialize the cell
11 - (id)initWithStyle:(UITableViewCellStyle)style
12 reuseIdentifier:(NSString *)reuseIdentifier
13 {
14 // call the superclass
15 if (self = [super initWithStyle:style reuseIdentifier:reuseIdentifier])
16 {
17 // create the label on the left side
18 label = [[UILabel alloc] initWithFrame:CGRectMake(20, 10, 0, 20)];
19
20 // create the text field to the right of the label
21 textField =
22 [[UITextField alloc] initWithFrame:CGRectMake(0, 10, 0, 20)];
23
24 [textField setDelegate:self]; // set the delegate to this object
25
26 // call textFieldDidEndOnExit when the Done key is touched
27 [textField addTarget:self action:@selector(textFieldDidEndOnExit)
28 forControlEvents:UIControlEventEditingDidEndOnExit];
29 [self.contentView addSubview:label]; // add label to the cell
30 [self.contentView addSubview:textField]; // add textField to cell
31 } // end if
32
33 return self; // return this Editable cell
34 } // end method initWithFrame:reuseIdentifier:
35
36 // method is called when the user touches the Done button on the keyboard
37 - (void)textFieldDidEndOnExit
38 {
39 [textField resignFirstResponder]; // make the keyboard go away
40 [delegate editableCellDidEndOnExit:self]; // call the delegate method
41 } // end method textFieldDidEndOnExit
42
43 // set the text of the label
44 - (void)setLabelText:(NSString *)text
45 {
46 label.text = text; // update the text
47
48 // get the size of the passed text with the current font
49 CGSize size = [text sizeWithFont:label.font];
50 CGRect labelFrame = label.frame; // get the frame of the label
51 labelFrame.size.width = size.width; // size the frame to fit the text
52 label.frame = labelFrame; // update the label with the new frame
53
54 CGRect textFieldFrame = textField.frame; // get the frame of textField
55

Fig. 10.23 | EditableCell’s class definition. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

218 Chapter 10 Address Book App

The textFieldDidEndOnExit method (lines 37–41) is called when the user touches
the keyboard’s “Done” Button. Calling UITextField’s resignFirstResponder method
deselects textField, causing the keyboard to disappear. Line 40 calls delegate’s edita-
bleCellDidEndOnExit: method to indicate that the user touched the “Done” Button.

The setLabelText: method (lines 44–63) updates the text displayed by label. Line
46 sets label’s text property to the given NSString. NSString’s sizeWithFont: method is
used to get a CGSize object representing the size of text when it appears in label’s font.
Lines 50–52 adjust label’s frame to fit the new CGSize. Lines 54–62 adjust textField’s
frame to fill the remainder of the EditableCell.

The clearText method (lines 66–69) sets textField’s text property to an empty
string. The textFieldDidBeginEditing: and textFieldDidEndEditing: methods call
their corresponding methods of delegate.

56 // move textField to 30 pts to the right of label
57 textFieldFrame.origin.x = size.width + 30;
58
59 // set the width to fill the remainder of the screen
60 textFieldFrame.size.width =
61 self.frame.size.width - textFieldFrame.origin.x;
62 textField.frame = textFieldFrame; // assign the new frame
63 } // end method setLabelText:
64
65 // clear the text in textField
66 - (void)clearText
67 {
68 textField.text = @""; // update textField with an empty string
69 } // end method clearText
70
71 // delegate method of UITextField, called when a text field begins editing
72 - (void)textFieldDidBeginEditing:(UITextField *)textField
73 {
74 [delegate editableCellDidBeginEditing:self]; // inform the delegate
75 } // end method textFieldDidBeginEditing:
76
77 // delegate method of UITextField, called when a text field ends editing
78 - (void)textFieldDidEndEditing:(UITextField *)textField
79 {
80 [delegate editableCellDidEndEditing:self]; // inform the delegate
81 } // end method textFieldDidEndEditing:
82
83 // free EditableCell's memory
84 - (void)dealloc
85 {
86 [textField release]; // release the textField UITextField
87 [label release]; // release the label UILabel
88 [super dealloc]; // call the superclass's dealloc method
89 } // end method dealloc
90 @end // end EditableCell class definition

Fig. 10.23 | EditableCell’s class definition. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

10.5 Wrap-Up 219

10.5 Wrap-Up
The Address Book app used several UITableViews to display contact information stored in
the app. We handled navigation between the app’s three views with a UINavigationCon-
troller. We added Buttons to a UINavigationItem, allowing the user to switch between
views while displaying a navigation bar throughout the whole app. Each of the views dis-
played contact information in a UITableView. To allow the user to enter information into
a UITableView we created a custom EditableCell subclass of UITableViewCell. The Ed-
itableCell class allowed the user to enter information in a UITableView for a new con-
tact.

In Chapter 11, we’ll develop the Route Tracker app. This app will track the user’s path
showing a map and satellite image of where the user has traveled. We’ll do this using the
Map Kit framework, which interacts with Google Maps web services, and using the Core
Location framework, which interacts with the iPhone’s GPS and compass to provide loca-
tions and maps for the user’s current location.

Download from <www.wowebook.com>

ptg

11
Route Tracker App

Map Kit and Core Location (GPS and Compass)

O B J E C T I V E S
In this chapter you’ll learn:

■ To use the Map Kit framework and MKMapView class to
display Google Maps™ generated by Google web
services.

■ To use the Core Location framework and
CLLocationManager class to receive information on
the iPhone’s position and compass heading.

■ To display the user’s route using GPS location data
received in the form of CLLocation objects.

■ To orient the map to the user’s current compass heading
using data in CLHeading objects—a new feature of the
iPhone 3GS.

■ To use NSDate objects to calculate the speed at which
the user moves along the route.

Download from <www.wowebook.com>

ptg

11.1 Introduction1 221

O
u

tl
in

e

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

11.1 Introduction1

The Route Tracker app monitors the user’s location and heading (i.e., direction)—visually
displaying a route on a map. The app initially presents the user with a world map contain-
ing a blue dot that approximates the iPhone’s location (Fig. 11.1). The user touches the
“Start Tracking” Button to zoom the map in, centered on the iPhone’s current location
(Fig. 11.2). The map shifts as the user moves, keeping the user’s location centered in the
map. The route is a line colored from green (the starting location) to blue (the current lo-
cation). Black arrows appear at intervals along the route, indicating the user’s direction as
shown in Fig. 11.3(a) and (b). The map is always oriented in the user’s direction and that
direction always points to the top of the device. The user changes the look of the map by
touching Map, Satellite or Hybrid in the Segmented Control in the app’s top-right corner.
Touching Map changes the display to show a Google™ Maps street map—the app’s de-
fault. Touching Satellite displays a satellite image of the area around the user (Fig. 11.4(a))
and touching Hybrid shows the map overlaid on the satellite image (Fig. 11.4(b)). The user
touches the “Stop Tracking” Button to end the current route. This displays an alert con-
taining the total distance travelled and the user’s average speed (Fig. 11.5).

11.1 Introduction1

11.2 Test-Driving the Route Tracker App
11.3 Technologies Overview

11.4.1 Class TrackingMapView
11.4.2 Class Controller

11.4 Building the App
11.5 Wrap-Up

Fig. 11.1 | Approximate user location on world map.

Touch to begin tracking

User’s current location

1. Note: The Route Tracker App
uses the Map Kit framework which
allows you to incorporate Google™
Maps in your app. Before developing
any app using the Map Kit, you must
agree to the Google Maps Terms of
Service for the iPhone (including the
related Legal Notices and Privacy
Policy) at: code.google.com/
apis/maps/iphone/

Download from <www.wowebook.com>

ptg

222 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 11.2 | Map just after the user presses Start Tracking.

Fig. 11.3 | User’s route displayed on the map with arrows showing the user’s direction.

User’s current location

Arrow representing the user’s directionCurrent route

a) b)

Download from <www.wowebook.com>

ptg

11.1 Introduction1 223

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 11.4 | Satellite and hybrid map views.

Fig. 11.5 | Statistics for a completed route.

Hybrid map viewSatellite map view

a) b)

Touch to return to
the map

Route statistics

Download from <www.wowebook.com>

ptg

224 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

11.2 Test-Driving the Route Tracker App
Opening the Completed App
Open the directory containing the Route Tracker app project. Double click RouteTrack-
er.xcodeproj to open the project in Xcode. The iPhone simulator does not have the abil-
ity to simulate the GPS capabilities of the iPhone 3GS. The app will run in the iPhone
simulator, but it will show only the default location of Apple’s headquarters in Cupertino,
California. Please refer to the document Program Portal User Guide in the iPhone Devel-
oper Program Portal at

developer.apple.com/iphone/manage/overview/index.action

for instructions on testing the app on your iPhone. The iPhone Developer Program Portal
is available only to members of Apple’s fee-based developer program. Also, although this
app runs on any iPhone model with GPS support, iPhones prior to the iPhone 3GS cannot
use the compass features.

Using the Route Tracker App
Once the Route Tracker App is running on your iPhone, touch the “Start Tracking” Button
in the bottom-right corner of the app. Go outside and run, walk, jog or drive around the
block. As you move, the blue dot representing the iPhone’s location moves as well. Your
route is marked with a line colored from green (the starting location) to blue (the current
location). The iPhone 3GS compass ensures that the map is always oriented the way you’re
currently facing—this will not be the case on devices that do not have the compass feature.
Touching Map, Satellite or Hybrid at the top of the app changes the map’s display to a street
map, a satellite image or an overlay of the two, respectively. When you’ve finished moving,
touch the “Stop Tracking” Button in the bottom-right corner of the app. An alert displays
your distance traveled and speed. Touch the “Return” Button to close the alert and return
to the map. Touching the “Reset” Button in the lower-left corner of the app will erase your
route from the map.

11.3 Technologies Overview
The Route Tracker app displays a map using the Map Kit framework’s MKMapView. We’ll
use this class to rotate, zoom and draw to the map. The route is displayed by drawing di-
rectly to the MKMapView. The user’s location and compass heading are provided by the Core
Location framework. A CLLocationManager monitors the iPhone’s location and compass
heading and sends messages to our Controller class when either reading is updated. The
user’s location is represented by a CLLocation object, which provides the iPhone’s latitude,
longitude and altitude (in meters) at a specific time. Each time we receive a CLLocation
from the CLLocationManager, we draw the route line to the new location. We also use the
CLLocation class to calculate the distance between two CLLocations. This allows us to cal-
culate the user’s total distance traveled in a route.

The iPhone’s heading is represented by a CLHeading object. Each time the Con-
troller class receives a CLHeading, we rotate the map’s orientation to the same direction
as the user. Each time we start tracking a route, we initialize an NSDate object to the cur-

Download from <www.wowebook.com>

ptg

11.4 Building the App 225

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

rent time. When we stop tracking, we can ask this object how long it’s been since tracking
began and use that time to calculate the user’s speed.

11.4 Building the App
Open Xcode and create a new project. Select the Window-based Application template and
name the project RouteTracker. Open MainWindow.xib in Interface Builder. Drag Tool-
bars to the top and bottom of the app window and delete their default “Item” Buttons.
Drag a Map View from the Library onto the app window between the Toolbars and size it
to fill the remaining space. Drag Flexible Space Bar Button Items to the top and bottom of
the window. A Flexible Space Bar Button Item is an invisible component that is used to
add space between other Bar Button Items. Next, to the right side of the top Flexible Space
Bar Button Item drag a Segmented Control and configure it to have three sections named
Map, Satellite and Hybrid. Drag two Round Rect Buttons to the left and right of the bot-
tom Flexible Space Bar Button Item and name them Reset and Start Tracking, respec-
tively. Connect all of the appropriate IBOutlets and actions using the Inspector window.
Fig. 11.6 shows the final nib file in Interface Builder.

11.4.1 Class TrackingMapView
The TrackingMapView class (Fig. 11.7) is a subclass of UIView. We overlay an object of this
class on the MKMapView. We could add the TrackingMapView as a subview of the MKMapView
in Interface Builder; however, the TrackingMapView and MKMapView are the same size, so
they would overlap in the nib file, making them difficult to work with. We chose to add
the TrackingMapView programmatically to keep the nib file as simple as possible. Track-

Fig. 11.6 | MainWindow.xib in Interface Builder.

Download from <www.wowebook.com>

ptg

226 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

ingMapView implements the MKMapViewDelegate protocol which declares several methods
that respond to messages from MKMapView objects (line 9). The class MKMapView represents
a map that can be displayed in our app and controlled programmatically. This class is part
of the Map Kit framework that uses Google Maps web services. NSMutableArray points
(line 11) stores CLLocations representing locations along the user’s route. A CLLocation
object represents the iPhone’s geographical location at a specific time. Lines 14–15 declare
two methods. The addPoint: method adds new CLLocations to NSMutableArray points.
The reset method removes all the CLLocations from points. Both methods refresh the
display after performing their tasks.

Method initWithFrame: of Class TrackingMapView
TrackingMapView’s initWithFrame: method (Fig. 11.8) is inherited from UIView and
overridden. Line 13 calls the superclass’s initWithFrame: method and checks that the
superclass’s inherited members were initialized without error. If so, line 15 sets this Track-
ingMapView’s backgroundColor property to clear using UIColor’s clearColor method
and line 16 creates points as an empty NSMutableArray (line 16).

1 // TrackingMapView.h
2 // TrackingMapView interface declaration.
3 // Implementation in TrackingMapView.m
4 #import <UIKit/UIKit.h>
5 #import

6 #import <CoreLocation/CoreLocation.h>
7
8 // begin TrackingMapView interface declaration
9 @interface TrackingMapView : UIView

10 {
11 NSMutableArray *points; // stores all points visited by the user
12 } // end instance variable declaration
13
14 - (void)addPoint:(CLLocation *)point; // add a new point to points
15 - (void)reset; // reset the MKMapView
16 @end // end interface TrackingMapView

Fig. 11.7 | TrackingMapView interface declaration.

1 // TrackingMapView.m
2 // A view that displays lines connecting coordinates on a MKMapView.
3 #import "TrackingMapView.h"

4 #import <MapKit/MKMapView.h>
5 static const int ARROW_THRESHOLD = 50;
6
7 @implementation TrackingMapView
8

Fig. 11.8 | Method initWithFrame: of class TrackingMapView. (Part 1 of 2.)

<MapKit/MapKit.h>

<MKMapViewDelegate>

Download from <www.wowebook.com>

ptg

11.4 Building the App 227

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Method drawRect: of Class TrackingMapView
The drawRect: method (Fig. 11.9) draws the route line and arrows representing the path
traveled by the user. If there’s only one CLLocation in points or the TrackingMapView’s
hidden property is YES, the method exits because no line needs to be drawn (lines 27–28).
Line 31 gets the current graphics context using the UIGraphicsGetCurrentContext func-
tion. The CGContextSetLineWidth function sets the width of any line drawn in context
to four pixels (line 32). This will be the width of the line representing the user’s route on
the map. Lines 33–34 declare the CGPoint point and float distance. Variable point is
used to store the next point in the line during each iteration of the loop in lines 37–120.
We initialize distance to zero. This variable helps us determine whether to place the next
arrow on the line representing the route.

9 // initialize the view
10 - (id)initWithFrame:(CGRect)frame
11 {
12 // if the superclass initialized properly
13 if (self = [super initWithFrame:frame])
14 {
15 self.backgroundColor = [UIColor clearColor]; // set the background
16 points = [[NSMutableArray alloc] init]; // initialize points
17 } // end if
18
19 return self; // return this TrackingMapView
20 } // end method initWithFrame:
21

22 // called automatically when the view needs to be displayed
23 // this is where we do all of our drawing
24 - (void)drawRect:(CGRect)rect
25 {
26 // no drawing needed if there is only one point or the view is hidden
27 if (points.count == 1 || self.hidden)
28 return; // exit the method
29
30 // get the current graphics context
31 CGContextRef context = UIGraphicsGetCurrentContext();
32 CGContextSetLineWidth(context, 4.0); // set the line width
33 CGPoint point; // declare the point CGPoint
34 float distance = 0.0; // initialize distance to 0.0
35
36 // loop through all of the points
37 for (int i = 0; i < points.count; i++)
38 {
39 float f = (float)i; // cast i as a float and store in f

Fig. 11.9 | Method drawRect: of class TrackingMapView. (Part 1 of 3.)

Fig. 11.8 | Method initWithFrame: of class TrackingMapView. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

228 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

40
41 // set the lines's color so that the whole line has a gradient
42 CGContextSetRGBStrokeColor(context, 0, 1 - f / (points.count - 1),
43 f / (points.count - 1), 0.8);
44
45 // get the next location
46 CLLocation *nextLocation = [points objectAtIndex:i];
47 CGPoint lastPoint = point; // store point in lastPoint
48
49 // get the view point for the given map coordinate
50
51
52
53 // if this isn't the first point
54 if (i != 0)
55 {
56 // move to the last point
57 CGContextMoveToPoint(context, lastPoint.x, lastPoint.y);
58
59 // add a line
60 CGContextAddLineToPoint(context, point.x, point.y);
61
62 // add the length of the line drawn to distance
63 distance += sqrt(pow(point.x - lastPoint.x, 2) +
64 pow(point.y - lastPoint.y, 2));
65
66 // if distance is large enough
67 if (distance >= ARROW_THRESHOLD)
68 {
69 // load the arrow image
70 UIImage *image = [UIImage imageNamed:@"arrow.png"];
71 CGRect frame; // declare frame CGRect
72
73 // calculate the point in the middle of the line
74 CGPoint middle = CGPointMake((point.x + lastPoint.x) / 2,
75 (point.y + lastPoint.y) / 2);
76
77 // set frame's width to image's width
78 frame.size.width = image.size.width;
79
80 // set frame's height to image's height
81 frame.size.height = image.size.height;
82
83 // move frame’s origin’s x-coordinate halfway across the frame
84 frame.origin.x = middle.x - frame.size.width / 2;
85
86 // move frame’s origin’s y-coordinate halfway down the frame
87 frame.origin.y = middle.y - frame.size.height / 2;
88
89 // save the graphics state so we can restore it later
90 CGContextSaveGState(context);
91

Fig. 11.9 | Method drawRect: of class TrackingMapView. (Part 2 of 3.)

point = [(MKMapView *)self.superview convertCoordinate:
 nextLocation.coordinate toPointToView:self];

Download from <www.wowebook.com>

ptg

11.4 Building the App 229

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Lines 37–124 loop through each CLLocation in points. Line 39 stores the control
variable in float variable f so that we can use the value in a floating-point division calcu-
lation. Lines 42–43 set the line color using the CGContextSetRGBStrokeColor function.
The RGB values are calculated using f and points.count in such a way that the line will
start green and become more blue with each additional location. Passing 0.8 as the last
argument makes the line slightly transparent so the user can still see the underlying map.
Line 46 gets the CLLocation at index i of points. Line 47 initializes the lastPoint
CGPoint to point. This does nothing during the first iteration of the loop because point
has not yet been initialized, but for each subsequent iteration this stores the previous
CGPoint drawn into lastPoint. Lines 50–51 convert the nextLocation CLLocation to a
CGPoint in TrackingMapView. We do this by first casting TrackingMapView’s superview to
an MKMapView (line 50)—as you’ll see in Fig. 11.13, the controller sets TrackingMapView
as a subview of MKMapView. We then call MKMapView’s convertCoordinate:toPoint-
ToView: method to receive a CGPoint in TrackingMapView representing nextLocation.

If this is not the first loop iteration (line 54), we call the CGContextMoveToPoint func-
tion to select the location in context of the last point drawn (line 57). The CGContext-
AddLineToPoint function adds a line from the last point drawn to point’s coordinates

92 // center the context where we want to draw the arrow
93 CGContextTranslateCTM(context, frame.origin.x +
94 frame.size.width / 2, frame.origin.y + \
95 frame.size.height / 2);
96
97 // calculate the angle at which to draw the arrow image
98 float angle = atan((point.y - lastPoint.y) / (point.x -
99 lastPoint.x));
100
101 // if this point is to the left of the last point
102 if (point.x < lastPoint.x)
103 angle += 3.14159; // increase angle by pi
104
105
106
107
108 // draw the image into the rotated context
109 CGContextDrawImage(context, CGRectMake(-frame.size.width / 2,
110 -frame.size.height / 2, frame.size.width,
111 frame.size.height), image.CGImage);
112
113 // restore context's original coordinate system
114 CGContextRestoreGState(context);
115 distance = 0.0; // reset distance
116 } // end if
117 } // end if
118
119 CGContextStrokePath(context); // draw the path
120 } // end for
121 } // end method drawRect:
122

Fig. 11.9 | Method drawRect: of class TrackingMapView. (Part 3 of 3.)

// rotate the context by the required angle
CGContextRotateCTM(context, angle);

Download from <www.wowebook.com>

ptg

230 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

(line 60). Lines 63–64 use the formula for the distance between two points to calculate the
length the last line segment and add that to distance. If this distance is greater than or
equal to ARROW_THRESHOLD (line 67), we draw a new arrow onto the route. Line 70 declares
a new UIImage using arrow.png and line 71 declares the frame CGRect. Lines 74–75 call
the CGPointMake function to create a new CGPoint in the center of the last line segment.
We then set frame’s size to that of image (lines 78 and 81) and its origin to the coordi-
nates in the line segment’s center (lines 84–87).

The CGContextSaveGState function saves the coordinate system of the current
graphics context (line 90) so we can revert back to it later. Lines 93–95 call the CGCon-
textTranslateCTM function to translate context to the location at the center of the line
segment where we wish to display the arrow. Lines 98–103 calculate the angle at which
context needs to be rotated so that when we place the arrow on context it will be perpen-
dicular to the second endpoint of the line. The CGContextRotateCTM function rotates the
context by the calculated angle (line 106). Lines 109–111 call the CGContextDrawImage
function to draw the image into the context. Line 114 uses the CGContextRestoreCG-
State function to restore context’s original coordinate system. Line 119 draws the line
representing the route by calling the function CGContextStrokePath. We do this after the
arrow image is displayed so that the line appears on top of the arrow.

Methods addPoint: and reset of Class TrackingMapView
The addPoint: method (Fig. 11.10, lines 124–136) adds a new CLLocation to the points
NSMutableArray. Before adding a new point, we ensure that it does not describe the same
geographical coordinates as the last element in the NSMutableArray, which would indicate
that the user has not moved from the prior position. Line 127 receives the last element in
points using NSMutableArray’s lastObject method. Lines 130–131 compare the lati-
tude and longitude properties of CLLocations point and lastPoint. If either is different,
we add the new CLLocaton to points (line 133). We then force TrackingMapView to re-
draw by calling UIView’s setNeedsDisplay method (line 134). The reset method (lines
139–143) removes the visual representation of the user’s route from the TrackingMapView
by calling NSMutableArray’s removeAllObjects method to empty points and calling
setNeedsDisplay to force TrackingMapView to redraw (lines 141–142).

123 // add a new point to the list
124 - (void)addPoint:(CLLocation *)point
125 {
126 // store last element of point
127 CLLocation *lastPoint = [points lastObject];
128
129 // if new point is at a different location than lastPoint
130
131
132 {
133 [points addObject:point]; // add the point
134 [self setNeedsDisplay]; // redraw the view
135 } // end if
136 } // end method addPoint:

Fig. 11.10 | Methods addPoint: and reset of class TrackingMapView. (Part 1 of 2.)

if (point.coordinate.latitude != lastPoint.coordinate.latitude ||
 point.coordinate.longitude != lastPoint.coordinate.longitude)

Download from <www.wowebook.com>

ptg

11.4 Building the App 231

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Methods mapView:regionWillChangeAnimated: and mapView:regionDid-
ChangeAnimated: of Class TrackingMapView.
The mapView:regionWillChangeAnimated: method of the MKMapViewDelegate protocol
(Fig. 11.11, lines 146–150) is called by the MKMapView when the area being displayed by
the map is about to shift. Line 149 hides the TrackingMapView during this transition so
that the line is not temporarily displayed out of place while the map shifts. When the map
finishes shifting, the mapView:regionDidChangeAnimated: method of the MKMapViewDel-
egate protocol is called. Line 156 indicates that the TrackingMapView should display and
line 157 calls UIView’s setNeedsDisplay method so the TrackingMapView redraws.

11.4.2 Class Controller
Controller is a subclass of UIViewController and implements the MKMapViewDelegate
protocol and the CLLocationManagerDelegate protocol (Fig. 11.12, lines 9–10), which

137
138 // remove all the points and update the display
139 - (void)reset
140 {
141 [points removeAllObjects]; // remove all the points
142 [self setNeedsDisplay]; // update the display
143 } // end method reset
144

145 // called by the MKMapView when the region is going to change
146 - (void)mapView:(MKMapView *)mapView regionWillChangeAnimated:
147 (BOOL)animated
148 {
149 self.hidden = YES; // hide the view during the transition
150 } // end method mapView:regionWillChangeAnimated:
151
152 // called by the MKMapView when the region has finished changing
153 - (void)mapView:(MKMapView *)mapView
154 regionDidChangeAnimated:(BOOL)animated
155 {
156 self.hidden = NO; // unhide the view
157 [self setNeedsDisplay]; // redraw the view
158 } // end method mapview:regionDidChangeAnimated:
159
160 // free TrackingMapView's memory
161 - (void)dealloc
162 {
163 [points release]; // release the points NSMutableArray
164 [super dealloc]; // call the superclass's dealloc method
165 } // end method dealloc
166 @end // end TrackingMapView class implementation

Fig. 11.11 | Methods mapView:regionWillChangeAnimated: and
mapView:regionDidChangeAnimated: of class TrackingMapView.

Fig. 11.10 | Methods addPoint: and reset of class TrackingMapView. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

232 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

indicates that this class can receive messages from a CLLocationManager object. Class
CLLocationManager is a part of the Core Location framework and provides information
on the iPhone’s location and compass heading.

The startButton outlet (line 13) is connected to the Button pressed by the user to
toggle whether or not the app is tracking the route. Line 14 declares a TrackingMapView.
The MKMapView mapView represents the map displayed in the TrackingMapView (line 15).
Line 16 declares a CLLocationManager that’s used to get location and compass heading
information needed to draw the user’s route. BOOL variable tracking specifies whether the
app is currently tracking the user’s route and distance stores the total distance traveled in
the current route. The NSDate class stores a date and time. Line 19 declares an NSDate
object used to store the time when tracking starts. Line 20 declares a CLHeading repre-
senting the iPhone’s compass heading.

Class Controller also declares three methods (lines 27–29):

• toggleTracking—tells the CLLocationManager to start tracking the iPhone’s
position if it isn’t currently doing so. Otherwise, this method stops tracking and
displays a UIAlertView containing the route’s statistics.

1 // Controller.h
2 // Controller class for the Route Tracker app interface declaration
3 // Implementation in Controller.m
4 #import <UIKit/UIKit.h>
5 #import <MapKit/MapKit.h>
6 #import <CoreLocation/CoreLocation.h>
7 #import "TrackingMapView.h"

8
9 @interface Controller : UIViewController <MKMapViewDelegate,

10
11 {
12 // touched to start or stop tracking
13 IBOutlet UIBarButtonItem *startButton;
14 TrackingMapView *trackingMapView; // View displaying the map and route
15
16
17 BOOL tracking; // is the app tracking?
18 float distance; // the distance traveled by the user
19
20 CLHeading *heading; // the compass heading of the iPhone
21 } // end instance variable declaration
22
23 // declare our outlets as properties
24 @property (nonatomic,retain) IBOutlet UIBarButtonItem *startButton;
25 @property (nonatomic,retain) IBOutlet MKMapView *mapView;
26
27 - (IBAction)toggleTracking; // switch between tracking or not tracking
28 - (IBAction)resetMap; // resets the MKMapView
29 - (IBAction)selectMapMode:sender; // select type of map displayed
30 @end // end interface Controller

Fig. 11.12 | Controller class for the Route Tracker app interface declaration.

CLLocationManagerDelegate>

IBOutlet MKMapView *mapView; // represents the map
CLLocationManager *locationManager; // provides location information

NSDate *startDate; // stores the time when tracking began

Download from <www.wowebook.com>

ptg

11.4 Building the App 233

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

• resetMap—clears the previous route from the map.

• selectMapMode:—switches between street map, satellite image and combination
of the two.

Method viewDidLoad of Class Controller
Controller’s viewDidLoad method (Fig. 11.13) begins by initializing the superclass’s in-
herited members and setting tracking to NO. Lines 18–19 initializes trackingMapView to
have the same size as mapView, because we’re going to overlay the trackingMapView on
the mapView. Line 22 calls UIView’s addSubview: method to add trackingMapView as a
subview of mapView. We then set mapView’s delegate property to trackingMapView (line
26) so the mapView can deliver notifications to trackingMapView when the map moves.
Lines 29 and 32 initialize locationManager and set its delegate to this Controller ob-
ject. Setting locationManager’s desiredAccuracy property to kCLLocationAccuracy-
Best (line 35) specifies that the location and heading information provided by
locationManager should be as accurate as the iPhone’s hardware can provide.

1 // Controller.m
2 // Controller class for the Route Tracker app.
3 #import "Controller.h"

4
5 @implementation Controller
6
7 // generate get and set methods for our properties
8 @synthesize startButton;
9 @synthesize mapView;

10
11 // called when the main view finishes loading
12 - (void)viewDidLoad
13 {
14 [super viewDidLoad]; // initialize the superclass
15 tracking = NO; // set tracking to NO
16
17 // initialize the TrackingMapView
18 trackingMapView =
19 [[TrackingMapView alloc] initWithFrame:mapView.frame];
20
21 // add the trackingMapView subview to mapView
22 [mapView addSubview:trackingMapView];
23 [trackingMapView release]; // release the TrackingMapView
24
25 // set trackingMapView as mapView's delegate
26 mapView.delegate = trackingMapView;
27
28 // initialize location manager
29
30
31 // set locationManager's delegate to self
32 locationManager.delegate = self;
33

Fig. 11.13 | Method viewDidLoad of class Controller. (Part 1 of 2.)

locationManager= [[CLLocationManager alloc] init];

Download from <www.wowebook.com>

ptg

234 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Method toggleTracking of Class Controller
The toggleTracking method (Fig. 11.14) is called when the user touches the Button in
the bottom-right corner of the app which alternates between Start Tracking and Stop
Tracking, depending on the current tracking state. If the app is currently tracking the user’s
route (line 42) we set tracking to NO (line 44), then enable sleep mode for the iPhone by
using UIApplication’s setIdleTimerDisabled: method (line 47). We also set startBut-
ton’s title property to Start Tracking (line 48). We then send stopUpdatingLocation
and stopUpdatingHeading messages to prevent the locationManager from monitoring
the iPhone’s position and orientation (lines 49–50). Lines 51–52 set mapView’s scrollEn-
abled and zoomEnabled properties to YES, allowing the user to scroll through the map and
zoom in and out.

34 // set locationManager to provide the most accurate readings possible
35
36 } // end method viewDidLoad
37

38 // called when the user touches the "Start Tracking" button
39 - (IBAction)toggleTracking
40 {
41 // if the app is currently tracking
42 if (tracking)
43 {
44 tracking = NO; // stop tracking
45
46 // allow the iPhone to go to sleep
47
48 startButton.title = @"Start Tracking"; // update button title
49
50
51
52
53
54 // get the time elapsed since the tracking started
55
56
57 // format the ending message with various calculations
58 NSString *message = [NSString stringWithFormat:
59 @"Distance: %.02f km, %.02f mi\nSpeed: %.02f km/h, %.02f mph",
60 distance / 1000, distance * 0.00062, distance * 3.6 / time,
61 distance * 2.2369 / time];
62
63 // create an alert that shows the message
64 UIAlertView *alert = [[UIAlertView alloc]
65 initWithTitle:@"Statistics" message:message delegate:self
66 cancelButtonTitle:@"Return" otherButtonTitles:nil];

Fig. 11.14 | Method toggleTracking of class Controller. (Part 1 of 2.)

Fig. 11.13 | Method viewDidLoad of class Controller. (Part 2 of 2.)

locationManager.desiredAccuracy = kCLLocationAccuracyBest;

[[UIApplication sharedApplication] setIdleTimerDisabled:NO];

[locationManager stopUpdatingLocation]; // stop tracking location
[locationManager stopUpdatingHeading]; // stop tracking heading
mapView.scrollEnabled = YES; // allow the user to scroll the map
mapView.zoomEnabled = YES; // allow the user to zoom the map

float time = -[startDate timeIntervalSinceNow];

Download from <www.wowebook.com>

ptg

11.4 Building the App 235

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Line 55 calls NSDate’s timeIntervalSinceNow method to return a float containing
the number seconds that have elapsed since startDate was created (i.e., when the app first
started tracking). We then prepare an NSString containing the distance and speed the user
traveled (lines 58–61), using both standard and metric measurement units. Lines 64–66
display that NSString in a UIAlertView containing a “Return” Button.

If the app had not previously been tracking (line 70), we set tracking to YES (line 72).
Lines 73–74 set mapView’s scrollEnabled and zoomEnabled properties to NO so the user
cannot scroll or zoom the map while the app is tracking. We then disable sleep mode for
the iPhone by using UIApplication’s setIdleTimerDisabled: method (line 77). Lines
78–79 set startButton’s title property to Stop Tracking and reset distance to zero.
We create a new NSDate object to monitor how much time passes during the user’s route.
We then send startUpdatingLocation and startUpdatingHeading messages to tell the
locationManager to begin monitoring the iPhone’s position and direction.

Methods resetMap, selectMapMode: and mapView:viewForAnnotation: of
Class Controller
The resetMap method (Fig. 11.15, lines 87–90) calls trackingMapView’s reset method
when the user touches the “Reset” Button. This will clear the previous route from the map.
The selectMapMode: method (lines 93–109) updates the type of map displayed when the
user touches the Segmented Control containing map options. Line 95 gets UISegmented-
Control’s selectedSegmentIndex property which represents the index of the touched
item. If index is zero, we set mapView’s mapType property to MKMapTypeStandard—causing
mapView to display a standard street map (line 101). If index is 1, we set the mapType prop-
erty to MKMapTypeSatellite (line 104) to display a satellite image. If index is 2, we set the
mapType property to MKTypeHybrid to display a street map on a satellite image.

67 [alert show]; // show the alert
68 [alert release]; // release the alert UIAlertView
69 } // end if
70 else // start tracking
71 {
72 tracking = YES; // start tracking
73
74
75
76 // keep the iPhone from going to sleep
77
78 startButton.title = @"Stop Tracking"; // update button title
79 distance = 0.0; // reset the distance
80
81
82
83 } // end else
84 } // end method toggleTracking
85

Fig. 11.14 | Method toggleTracking of class Controller. (Part 2 of 2.)

mapView.scrollEnabled = NO; // prevent map scrolling by user
mapView.zoomEnabled = NO; // prevent map zooming by user

[[UIApplication sharedApplication] setIdleTimerDisabled:YES];

startDate = [[NSDate date] retain]; // store the start time
[locationManager startUpdatingLocation]; // start tracking location
[locationManager startUpdatingHeading]; // start tracking heading

Download from <www.wowebook.com>

ptg

236 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

The mapView:viewForAnnotation: method (lines 112–116) returns nil because we
do not use annotations in this app. The MKAnnotationView class represents annotations
(such as push pins) that can be displayed on the map to mark locations.

Method locationManager:didUpdateToLocation:fromLocation: of Class
Controller

The locationManager:didUpdateToLocation:fromLocation: method (Fig. 11.16) of
the CLLocationManagerDelegate protocol is called each time our CLLocationManager
updates the location of the iPhone. This method receives a CLLocation representing the
iPhone’s current position (newLocation) and a CLLocation representing the iPhone’s pre-
vious position (lines 119–120). Line 123 passes the newLocation to TrackingMapView’s
addPoint method. If this is not the first location added (line 126), we calculate the dis-
tance between the locations using CLLocation’s getDistanceFrom: method then add the
result to distance. Line 133 uses MapKit’s MKCoordinateSpanMake function to create an

86 // called when the user touches the Reset button
87 - (IBAction)resetMap
88 {
89 [trackingMapView reset]; // clear all the stored points
90 } // end method resetMap
91
92 // called when the user touches a segment of the UISegmentedControl
93 - (IBAction)selectMapMode:sender
94 {
95 int index = [sender selectedSegmentIndex]; // get the selected segment
96
97 // set the map type depending on the selected segment
98 switch (index)
99 {
100 // show the standard map
101 case 0: break;
102
103 // show the satellite map
104 case 1: break;
105
106 // show the hybrid map
107 case 2: break;
108 } // end switch
109 } // end method selectMapMode:
110
111 // delegate method for the MKMapView
112 - (MKAnnotationView *)mapView:(MKMapView *)mapView viewForAnnotation:
113 (id <MKAnnotation>)annotation
114 {
115 return nil; // we don't want any annotations
116 } // end method mapView:viewForAnnotation:
117

Fig. 11.15 | Methods resetMap, selectMapMode: and mapView:viewForAnnotation: of
class Controller.

mapView.mapType = MKMapTypeStandard;

mapView.mapType = MKMapTypeSatellite;

mapView.mapType = MKMapTypeHybrid;

Download from <www.wowebook.com>

ptg

11.4 Building the App 237

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

MKCoordinateSpan struct of size 0.005 degrees longitude and 0.005 degrees latitude.
MKCoordinateSpan structs represent the size of the area covered in an MKCoordinate-
Region. MKCoordinateRegion structs represent a portion of a total map to display. Lines
136–137 create a new MKCoordinateRegion the same size as span, centered around the
newLocation. Line 140 passes this new region to UIMapView’s setRegion method to cen-
ter the user’s location in mapView.

Methods locationManager:didUpdateHeading: and locationManager:did-
FailWithError: of Class Controller
The locationManager:didUpdateHeading: method of the CLLocationManagerDelegate
protocol (Fig. 11.17) is called each time our CLLocationManager updates the iPhone’s
compass heading. The newHeading’s trueHeading property is converted to radians (from
degrees) and stored in the float variable rotation (line 148). Line 151 resets mapView’s
transform property to CGAffineTransformIdentity. This returns mapView’s coordinate
system to its original settings. Lines 154–155 create a new CGAffineTransform and apply
it to mapView, causing the map to rotate at the angle received from newHeading. The
locationManager:didFailWithError: method (lines 159–167) checks the error code to
determine whether the user denied the use of locaton services. If so, line 164 invokes
CLLocationManager method stopUpdatingLocation to stop using the location services.

118 // called whenever the location manager updates the current location
119 - (void)locationManager:(CLLocationManager *)manager didUpdateToLocation:
120 (CLLocation *)newLocation fromLocation:(CLLocation *)oldLocation
121 {
122 // add the new location to the map
123 [trackingMapView addPoint:newLocation];
124
125 // if there was a previous location
126 if (oldLocation != nil)
127 {
128 // add distance from the old location to the total distance
129 distance += ;
130 }
131
132 // create a region centered around the new point
133
134
135 // create a new MKCoordinateRegion centered around the new location
136
137
138
139 // reposition the map to show the new point
140
141 } // end method locationManager:didUpdateToLocation:fromLocation
142

Fig. 11.16 | Method locationManager:didUpdateToLocation:fromLocation: of class
Controller.

[newLocation getDistanceFrom:oldLocation]

MKCoordinateSpan span = MKCoordinateSpanMake(0.005, 0.005);

MKCoordinateRegion region = MKCoordinateRegionMake(
 newLocation.coordinate, span);

[mapView setRegion:region animated:YES];

Download from <www.wowebook.com>

ptg

238 Chapter 11 Route Tracker App

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

Line 166 writes to the log when the CLLocation manager fails. This can occur for several
reasons, such as a hardware error or the user denying access to location services.

11.5 Wrap-Up
In the Route Tracker app, we displayed a map using the Map Kit framework, which relies
on Google Maps web services to obtain map data. The MKMapView class allowed us to draw
our route on top of the map and change the display mode between a street map, a satellite
image and a combination of the two. The Core Location framework and CLLocationMan-
ager class allowed us to access the user’s location and compass heading to draw the route
and keep the map oriented in the same direction as the user. The NSDate class helped us
determine the time it took the user to complete a route—allowing us to calculate the user’s
average speed along that route.

143 // called when the location manager updates the heading
144 - (void)locationManager:(CLLocationManager *)manager didUpdateHeading:
145 (CLHeading *)newHeading
146 {
147 // calculate the rotation in radians
148 float rotation = newHeading.trueHeading * M_PI / 180;
149
150 // reset the transform
151
152
153 // create a new transform with the angle
154
155
156 } // end method locationManager:didUpdateHeading:
157
158 // Write an error to console if the CLLocationManager fails
159 - (void)locationManager:(CLLocationManager *)manager didFailWithError:
160 (NSError *)error
161 {
162
163
164
165
166 NSLog(@"location manager failed"); // log location manager error
167 } // end method locationManager:didFailWithError:
168
169 // free Controller's memory
170 - (void)dealloc
171 {
172 [startButton release]; // release the startButton UIBarButtonItem
173 [mapView release]; // release the mapView MKMapView
174 [locationManager release]; // release the CLLocationManager
175 [super dealloc]; // call the superclass's dealloc
176 } // end method dealloc
177 @end // end Controller implementation

Fig. 11.17 | Methods locationManager:didUpdateHeading: and
locationManager:didFailWithError: of class Controller.

mapView.transform = CGAffineTransformIdentity;

CGAffineTransform transform = CGAffineTransformMakeRotation(-rotation);
mapView.transform = transform; // apply the new transform

// stop using the location service if user disallowed access to it
if ([error code] == kCLErrorDenied)
 [locationManager stopUpdatingLocation];

Download from <www.wowebook.com>

ptg

11.5 Wrap-Up 239

©Copyright 2009 by Deitel & Associates, Inc. All Rights Reserved.

In Chapter 12, we build the SlideShow app, which allows the user to create and dis-
play slideshows using images and music. The app will allow the user to access the iPhone’s
music and photo libraries. The photo picker will be used to add new photos to the slide
show, and the music picker will be used to choose a song to play during the slideshow.

Download from <www.wowebook.com>

ptg

12
Slideshow App
Photos and iPod Library Access

O B J E C T I V E S
In this chapter you’ll learn:

■ To use a UIImagePickerController to allow the
user to add pictures from the iPhone’s photo library to a
slideshow.

■ To use an MPMediaPickerController to allow the
user to add music from the iPod library to a slideshow.

■ To use a UIActionSheet to allow the user to choose
how slideshow images transition from one to the next.

■ To use an MPMusicPlayerController to play music
from the iPod library during the slideshow.

■ To allow the slideshow to be viewed in landscape mode
by detecting orientation changes.

Download from <www.wowebook.com>

ptg

12.1 Introduction 241

O
u

tl
in

e

12.1 Introduction
The Slideshow app allows the user to create and manage slideshows using pictures and mu-
sic from the iPhone photo album and iPod library. Each slideshow’s title and first image
are displayed in a table (Fig. 12.1). This app does not save slideshows when the app is
closed—we add this capability in the next chapter’s Enhanced Slideshow app. Touching
the “Play” Button next to a slideshow plays that slideshow (Fig. 12.2(a)). Rotating the
iPhone horizontally while the slideshow is playing displays its images in landscape orien-
tation (Fig. 12.2(b)). Each of the images displays for five seconds, while a user-chosen song
from the iPod library plays in the background. The images transition either by fading or
by sliding to the left, as specified by the user when creating the slideshow. Touching the
“Edit” Button in the top-left corner of the app displays Deletion Control Buttons () next

12.1 Introduction

12.2 Test-Driving the Slideshow App

12.3 Technologies Overview

12.4 Building the App

12.4.1 Class RootViewController

12.4.2 Class SlideshowViewController

12.4.3 Class NameViewController

12.4.4 Class SlideshowDataViewController

12.5 Wrap-Up

Fig. 12.1 | List of saved slideshows.

Touch to create a new
slideshow

Touch to play My
Slideshow1

Touch to modify My
Slideshow2

Touch to delete and
reorder Slideshows

Download from <www.wowebook.com>

ptg

242 Chapter 12 Slideshow App

to each of the slideshows (Fig. 12.3 (a)). Touching one of these displays a “Delete” Button
next to the selected slideshow (Fig. 12.3 (b)) that allows the user to remove that slideshow.
The user touches the “New” Button to create a new slideshow.

Fig. 12.2 | Slideshow playing in portrait and landcape orientations.

Fig. 12.3 | Editing the list of slideshows.

 a) b)

Touch the
“Delete”
Button to
remove the
selected
slideshow

Touch to
display a

“Delete”
Button

 a) b)

Touch the
“Done”

Button to
exit editing

mode

Download from <www.wowebook.com>

ptg

12.1 Introduction 243

Touching the “New” Button in the top-right corner of the app displays a Text Field
requesting a name for the new slideshow (Fig. 12.4 (a)). The Edit Slideshow screen
(Fig. 12.4 (b)) allows the user to add pictures, music and effects to the slideshow.
Touching the “Add Picture” Button in the bottom-left corner of the app displays the
iPhone’s photo library (Fig. 12.5).

Fig. 12.4 | Creating a new slideshow.

Fig. 12.5 | Photo library.

 a) b)

“Add Picture”
Button

“Set Effect”
Button

“Add Music”
Button

iPhone photo
library album

Download from <www.wowebook.com>

ptg

244 Chapter 12 Slideshow App

Touching any of the albums displays the pictures in the album (Fig. 12.6 (a)). The
user touches a picture to see a larger version of it. Touching the “Choose” Button adds that
photo to the slideshow (Fig. 12.6 (b)).

12.2 Test-Driving the Slideshow App
Opening the Completed App
Open the directory containing the Slideshow app project. Double click Slide-

show.xcodeproj to open the project in Xcode.

Adding a New Slideshow
Touch the “New” Button at the top of the app to view the Edit Slideshow screen. Touch
the “Add Picture” Button to view the iPhone’s (or simulator’s) photo library. If you’re using
the simulator, touch Saved Photos; otherwise, touch one of your personal photo folders.
Touch any one of the photos to see a larger view of that photo and touch the “Choose”
Button to add the picture to the slideshow and return to the Edit Slideshow screen. Touch-
ing the “Cancel” Button here returns you to the previous screen without adding the photo.
Add two more images to this slideshow. Touch the reordering control () next to the top
picture and drag that picture to the bottom of the list so it’s the last image displayed in this
slideshow. Now touch the Deletion Control Button () next to the top picture then touch
the “Delete” Button to remove that picture from this slideshow.

Touch the “Add Effect” Button and choose Slide. This will cause the slideshow to tran-
sition between images by sliding them to the left. If you’re using an actual iPhone to test
this app, touch the “Add Music” Button to view your iPod music library—this feature is not
supported by the simulator. Select one or more of your songs to add them to the slideshow

Fig. 12.6 | Picking a photo.

Add
current
picture to
slideshow

Return to
photo
library

Touch the
“Cancel”
Button to

return to the
Edit

Slideshow
screen

 a) b)

Download from <www.wowebook.com>

ptg

12.3 Technologies Overview 245

as background music. If your slideshow contains enough pictures, the slideshow will play
the list of songs in the order you selected them; otherwise, the slideshow will likely end
before the first song completes. Touch the “Back” Button in the top-left corner of the app
to return to the list of slideshows.

Playing a Slideshow
Touch the “Play” Button next to your slideshow to play it. The images you added are dis-
played on the screen, sliding to the left when each new image transitions into view. Your
chosen songs play in the background. Rotate the iPhone horizontally to view the slideshow
in portrait mode. You can do this in the simulator by selecting Hardware > Rotate Left or
Hardware > Rotate Right in the iPhone simulator.

Editing and Deleting a Slideshow
Touch the “Modify” Button next to your slideshow to return to the Edit Slideshow screen.
Touch the “Add Effect” Button and choose Fade. You can add or delete photos as you did
previously. If you choose different songs, the original song list is replaced. Return to the
list of slideshows and play your slideshow again. The images now transition by fading from
view instead of sliding off the screen.

Once the slideshow finishes, touch the “Edit” Button in the top-left corner of the app.
Touch the Deletion Control Button () next to your slideshow then touch the “Delete”
Button to erase your slideshow from the app.

12.3 Technologies Overview
The app’s list of slideshows is displayed in a UITableView containing custom UITable-
ViewCells in which we add “Play” and “Modify” Buttons. The Edit Slideshow screen uses
a UITableView with standard UITableViewCells to display the images in a selected slide-
show. We’ll use a UINavigationController with a UIToolbar to allow the user to navi-
gate between the app’s screens. UIBarButtonItems are used to switch between views and
to delete images and slideshows.

The Photo API contains image pickers that provide a user interface for choosing
photos from the iPhone’s photo library. We create a UIImagePickerController to allow
the user to add photos from the photo library to the slideshow. We use MPMediaPicker-
Controller to control a similar built-in interface that allows the user to choose the slide-
show’s background music from their iPod library. We store songs chosen from the iPod
music library in an MPMediaItemCollection. An MPMusicPlayerController is used to
play the selected song.

The user selects between different image transitions for a slideshow using a UIAction-
Sheet. This displays a screen displaying several Buttons describing different image transi-
tions. Each of these buttons corresponds to a member of the transitions enum which is
used to define the different transition styles our app supports.

12.4 Building the App
The RootViewController controls the view displaying the list of created slideshows. Users
can play, modify and delete existing slideshows from this view. The SlideshowViewCon-
troller controls the view used to play slideshows. New slideshows are named using the
view controlled by the NameViewController, which provides a Text Field in which the user

Download from <www.wowebook.com>

ptg

246 Chapter 12 Slideshow App

can specify the slideshow name. The user can add images, effects and music to a slideshow
in the view controlled by the SlideshowDataViewController.

12.4.1 Class RootViewController
Class RootViewController (Fig. 12.7) is a subclass of UITableViewController and im-
plements the SlideshowCellDelegate (Fig. 12.15) and NameViewControllerDelegate
(Fig. 12.24) protocols (lines 10–11). The NSMutableArray variable slideshows (line 13)
will store the user’s slideshows. The addSlideshow method (line 16) displays the naming
view, which allows the user to enter a title for a new slideshow. After being named, the
slideshow is displayed in RootViewController’s list of slideshows.

Method viewDidLoad of Class RootViewController
The viewDidLoad method (Fig. 12.8) is called after the RootViewController’s view is ini-
tialized. Lines 10–11 call the superclass’s viewDidLoad method and initialize the slide-
shows NSMutableArray. Line 12 calls RootViewController’s navigationItem property’s
setTitle method to display Slideshows at the top of the app.

1 // RootViewController.h
2 // RootViewController class controls the main list of slideshows.
3 // Implementation in RootViewController.m
4 #import <MediaPlayer/MediaPlayer.h>
5 #import "SlideshowDataViewController.h"

6 #import "SlideshowCell.h"

7 #import "NameViewController.h"

8
9 // RootViewController interface declaration

10 @interface RootViewController : UITableViewController
11 <SlideshowCellDelegate, NameViewControllerDelegate>
12 {
13 NSMutableArray *slideshows; // the created slideshows
14 } // end instance variable declaration
15
16 - (void)addSlideshow; // allows the user to add a new slideshow
17 @end // end interface RootViewController

Fig. 12.7 | RootViewController class controls the main list of slideshows.

1 // RootViewController.m
2 // This class controls the main list of slideshows.
3 #import "RootViewController.h"

4
5 @implementation RootViewController
6
7 // called after the view is initialized
8 - (void)viewDidLoad
9 {

10 [super viewDidLoad]; // initialize the superclass
11 slideshows = [[NSMutableArray alloc] init]; // initialize slideshows

Fig. 12.8 | Methods viewDidLoad of class RootViewController. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 247

Lines 15–17 create a new UIBarButtonItem titled New, which calls the addSlideshow
method when touched. This allows the user to create a new slideshow. Lines 20–22 create
a UIBarButtonItem titled Back, which is added to the navigation bar when the user leaves
the RootViewController, so the user can return to this view. We then add the “New”
Button to the right side of the navigation bar (line 25). Line 26 adds RootViewCon-
troller’s editButtonItem property to the left side of the navigation bar. This is the “Edit”
Button used to delete slideshows. Line 29 passes backButton to UINavigationItem’s set-
BackBarButtonItem: method to specify that backButton should appear when the user
navigates to a different view.

Methods viewWillAppear: and addSlideshow of Class RootViewController
The viewWillAppear: method (Fig. 12.9, lines 36–43) is called each time the app displays
the RootViewController’s view. Line 38 calls the superclass’s viewWillAppear: method.
We then get RootViewController’s UINavigationController and use its setNaviga-
tionBarHidden:animated: method to display the navigation bar (line 41). Line 42 calls
UITableView’s reloadData method to update RootViewController’s table to any changes
made in another view.

12 [self.navigationItem setTitle:@"Slideshows"]; // set the bar title
13
14 // create the newSlideshowButton for adding a new slideshow
15 UIBarButtonItem *newSlideshowButton = [[UIBarButtonItem alloc]
16 initWithTitle:@"New" style:UIBarButtonItemStylePlain target:self
17 action:@selector(addSlideshow)];
18
19 // create the back button for when the user navigates away
20 UIBarButtonItem *backButton = [[UIBarButtonItem alloc]
21 initWithTitle:@"Back" style:UIBarButtonItemStylePlain target:nil
22 action:nil];
23
24 // add the newSlideshowButton to the right side of the navigation bar
25 [self.navigationItem setRightBarButtonItem:newSlideshowButton];
26 self.navigationItem.leftBarButtonItem = self.editButtonItem;
27
28 // set the back button to be displayed when the user navigates away
29 [self.navigationItem setBackBarButtonItem:backButton];
30 self.tableView.rowHeight = ROW_HEIGHT; // set the table's row height
31 [newSlideshowButton release]; // release the newSlideshowButton
32 [backButton release]; // release the backButton
33 } // end method viewDidLoad
34

35 // called when the view is about to be displayed
36 - (void)viewWillAppear:(BOOL)animated
37 {

Fig. 12.9 | Method viewWillAppear: and addSlideshow of class RootViewController.
(Part 1 of 2.)

Fig. 12.8 | Methods viewDidLoad of class RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

248 Chapter 12 Slideshow App

The addSlideshow method (lines 46–55) displays the NameViewController when the
user touches the “New” Button. Lines 49–51 create a new NameViewController and set its
delegate to self. We call UIViewController’s presentModalViewController:animated:
method to display the NameViewController (line 54).

Methods nameViewController:didGetName: and tableView:numberOfRowsIn-
Section: of Class RootViewController
The nameViewController:didGetName: method (Fig. 12.10, lines 58–73) is declared in
the NameViewDelegate protocol (Fig. 12.24) and is called when the user finishes entering
a name for a new slideshow. UIViewController’s dismissModalViewControllerAnimat-
ed: method hides the NameViewController’s view (line 62). Lines 65–67 create a new
SlideshowDataViewController and add it to slideshows using NSMutableArray’s add-
Object: method. We then set the new slideshow’s title property to the given name.
Line 71 calls UINavigationController’s pushViewController:animated: method to
show the SlideshowDataView for the new slideshow. The tableView:numberOfRowsIn-
Section: method (lines 76–80) specifies that RootViewController’s UITableView’s only
section has as many rows as there are slideshows.

38 [super viewWillAppear:animated]; // pass message to the superclass
39
40 // show the navigation bar
41 [self.navigationController setNavigationBarHidden:NO animated:YES];
42 [(UITableView *)self.view reloadData]; // update the table
43 } // end method viewWillAppear:
44
45 // called when the "New" button is touched
46 - (void)addSlideshow
47 {
48 // create a new NameViewController
49 NameViewController *controller = [[NameViewController alloc]
50 initWithNibName:@"NameViewController" bundle:nil];
51 controller.delegate = self; // set delegate to self
52
53 // display the NameViewController
54 [self presentModalViewController:controller animated:YES];
55 } // end method addSlideshow
56

57 // gets slideshow name from the NameView then displays SlideshowDataView
58 - (void)nameViewController:(NameViewController *)controller
59 didGetName:(NSString *)name
60 {
61 // hide the NameView
62 [self dismissModalViewControllerAnimated:YES];

Fig. 12.10 | RootViewController methods nameViewController:didGetName:, and
tableView:numberOfRowsInSection:. (Part 1 of 2.)

Fig. 12.9 | Method viewWillAppear: and addSlideshow of class RootViewController.
(Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 249

Method tableView:cellForRowAtIndexPath: of Class RootViewController
The tableView:cellForRowAtIndexPath: method (Fig. 12.11) retrieves the UITable-
ViewCell specified by the given NSIndexPath. Lines 87–100 attempt to reuse a
UITableViewCell from the given tableView using UITableView’s dequeReusableCell-
WithIdentifier: method. We set the new SlideshowCell’s delegate to this RootView-
Controller (line 103). Line 105 sets the UITableViewCell’s selectionStyle property to
UITableViewCallSelectionStyleNone to indicated that no action is taken when the
UITableViewCell is touched. Lines 108–109 get the SlideshowDataViewController cor-
responding to the touched UITableViewCell. Line 112 calls the SlideshowDataViewCon-
troller’s firstImage method to get a UIImage representing the first picture in the
selected slideshow. Lines 113–114 set the SlideshowCell’s thumbnail to that UIImage
and title to the SlideshowDataViewController’s title.

63
64 // create a new SlideshowDataViewController
65 SlideshowDataViewController *slideshow =
66 [[SlideshowDataViewController alloc] init];
67 [slideshows addObject:slideshow]; // add it to the list of slideshows
68 slideshow.title = name; // title the slideshow with the given name
69
70 // show the create slideshow view
71 [self.navigationController pushViewController:slideshow animated:YES];
72 [slideshow release]; // release the SlideshowDataViewController
73 } // end method nameViewController:didGetName:
74
75 // called by the table view to get the number of rows in a given section
76 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
77 (NSInteger)section
78 {
79 return slideshows.count; // return one row for each slideshow
80 } // end method tableView:numberOfRowsInSection:
81

82 // called by the table view to get the cells it needs to populate itself
83 - (UITableViewCell *)tableView:(UITableView *)tableView
84 cellForRowAtIndexPath:(NSIndexPath *)indexPath
85 {
86 // create cell identifier
87 static NSString *CellIdentifier = @"SlideshowCell";
88
89 // get a reusable cell
90 SlideshowCell *cell = (SlideshowCell *)[tableView
91 dequeueReusableCellWithIdentifier:CellIdentifier];
92

Fig. 12.11 | Method tableView:cellForRowAtIndexPath: of class RootViewController.
(Part 1 of 2.)

Fig. 12.10 | RootViewController methods nameViewController:didGetName:, and
tableView:numberOfRowsInSection:. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

250 Chapter 12 Slideshow App

Methods slideshowCellDidSelectEditButton: and slideshowCellDidSe-
lectPlayButton: of Class RootViewController
The slideshowCellDidSelectEditButton: method (Fig. 12.12, lines 120–126) is de-
clared by the SlideshowCellDelegate protocol and displays the SlideshowDataViewCon-
troller’s view for the touched slideshow. This allows the user to edit the selected
slideshow.

93 // if no reusable cells are available
94 if (cell == nil)
95 {
96 // create a new cell
97 cell = [[[SlideshowCell alloc] initWithStyle:
98 UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
99 autorelease];
100 } // end if
101
102 cell.delegate = self; // set this object as cell's delegate
103
104 // make the cell do nothing when selected
105 cell.selectionStyle = UITableViewCellSelectionStyleNone;
106
107 // get the SlideshowDataViewController for the given row
108 SlideshowDataViewController *controller =
109 [slideshows objectAtIndex:indexPath.row];
110
111 // get the first image in the slideshow at the correct index
112 UIImage *image = [controller firstImage];
113 cell.thumbnail.image = image; // set the cell's thumbnail image
114 cell.title.text = controller.title; // set the cell's text
115
116 return cell; // return the configured cell to the table view
117 } // end method tableView:cellForRowAtIndexPath:
118

119 // called when the user touches the modify button of a SlideshowCell
120 - (void)slideshowCellDidSelectEditButton:(SlideshowCell *)cell
121 {
122 // get the index path for the touched cell
123 NSIndexPath *indexPath = [self.tableView indexPathForCell:cell];
124 [self.navigationController pushViewController:
125 [slideshows objectAtIndex:indexPath.row] animated:YES];
126 } // end method slideshowCellDidSelectEditButton:
127
128 // called when the user touches the play button of a SlideshowCell
129 - (void)slideshowCellDidSelectPlayButton:(SlideshowCell *)cell
130 {

Fig. 12.12 | Methods slideshowCellDidSelectEditButton: and slideshowCell-
DidSelectPlayButton: of class RootViewController. (Part 1 of 2.)

Fig. 12.11 | Method tableView:cellForRowAtIndexPath: of class RootViewController.
(Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 251

The slideshowCellDidSelectPlayButton: method (lines 129–150) plays a slide-
show when the user touches its “Play” Button. Lines 132–136 get the SlideshowData-
ViewController at the UITableViewCell selected by the given NSIndexPath. We then
create a new SlideshowViewController to play the selected slideshow (lines 139–140).
Lines 141–143 set the SlideshowViewController’s pictures, effect and music to those
of the selected slideshow. We hide the navigation bar then call UINavigationController’s
pushViewController:animated: method to display the slideshow (lines 146–149).

MethodtableView:commitEditingStyle:forRowAtIndexPath: of Class Root-
ViewController

Method tableView:commitEditingStyle:forRowAtIndexPath: (Fig. 12.13) specifies
that RootViewController’s UITableViewCells support editing. This allows the user to de-
lete slideshows.

131 // find the index path where the given cell is located
132 NSIndexPath *indexPath = [self.tableView indexPathForCell:cell];
133
134 // get the SlideshowDataViewController at the index path
135 SlideshowDataViewController *data =
136 [slideshows objectAtIndex:indexPath.row];
137
138 // create a new SlideshowViewController
139 SlideshowViewController *controller =
140 [[SlideshowViewController alloc] init];
141 controller.pictures = data.pictures; // set controller's pictures
142 controller.effect = data.effect; // set controller's effect
143 controller.music = data.music; // set controller's music
144
145 // hide the navigation bar
146 [self.navigationController setNavigationBarHidden:YES animated:YES];
147
148 // show the slideshow
149 [self.navigationController pushViewController:controller animated:YES];
150 } // end method slideshowCellDidSelectPlayButton:
151

152 // Override to support editing the table view.
153 - (void)tableView:(UITableView *)tableView commitEditingStyle:
154 (UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:
155 (NSIndexPath *)indexPath
156 {
157 // "delete" editing style is committed
158 if (editingStyle == UITableViewCellEditingStyleDelete)
159 {

Fig. 12.13 | Method tableView:commitEditingStyle:forRowAtIndexPath: of class
RootViewController. (Part 1 of 2.)

Fig. 12.12 | Methods slideshowCellDidSelectEditButton: and slideshowCell-
DidSelectPlayButton: of class RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

252 Chapter 12 Slideshow App

Methods tableView:moveRowAtIndexPath:toIndexPath: and tableView:can-
MoveRowAtIndexPath: of Class RootViewController
The tableView:moveAtIndexPath:toIndexPath: method (Fig. 12.14, lines 170–183) is
called when the user moves a row in RootViewController’s UITableView by dragging a
UITableViewCell’s reordering control (). Lines 174–178 get the SlideshowDataView-
Controller for the row being dragged and remove it from slideshows using NSMutable-
Array’s removeObjectAtIndex: method. The fromIndexPath NSIndexPath specifies the
UITableViewCell being dragged. Line 181 inserts the SlideshowDataViewController
back in slideshows at the index to which the UITableViewCell was dragged. The toIn-
dexPath NSIndexPath specifies the end location of the dragged UITableViewCell. Meth-
od tableView:canMoveRowAtIndexPath: (lines 186–190) always returns YES in this
example to indicate that the user can move all of the UITableViewCells.

160 // remove contact at indexPath.row
161 [slideshows removeObjectAtIndex:indexPath.row];
162
163 // delete the row from the table view
164 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:
165 indexPath] withRowAnimation:UITableViewRowAnimationFade];
166 } // end if
167 } // end method tableView:commitEditingStyle:forRowAtIndexPath:
168

169 // called when the user moves a row in the table
170 - (void)tableView:(UITableView *)tableView moveRowAtIndexPath:
171 (NSIndexPath *)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath
172 {
173 // get the SlideshowDataViewController for the moved row
174 SlideshowDataViewController *data =
175 [[slideshows objectAtIndex:fromIndexPath.row] retain];
176
177 // remove the moved SlideshowDataViewController
178 [slideshows removeObjectAtIndex:fromIndexPath.row];
179
180 // insert the SlideshowDataViewController in the new position
181 [slideshows insertObject:data atIndex:toIndexPath.row];
182 [data release]; // release the data SlideshowDataViewController
183 } // end method tableView:moveRowAtIndexPath:toIndexPath:
184
185 // called by the table view to check if a given row can be moved
186 - (BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:
187 (NSIndexPath *)indexPath
188 {
189 return YES; // all the rows in this table can be moved
190 } // end method tableView:canMoveRowAtIndexPath:

Fig. 12.14 | Methods tableView:moveRowAtIndexPath:toIndexPath: and
tableView:canMoveRowAtIndexPath: of class RootViewController.

Fig. 12.13 | Method tableView:commitEditingStyle:forRowAtIndexPath: of class
RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 253

SlideshowCell Interface Declaration
The SlideshowCell class (Fig. 12.15) extends UITableViewCell to display a slideshow ti-
tle, and “Play” and “Modify” Buttons. Lines 11–13 declare this class’s delegate and other
instance variables. We declare each of SlideshowCell’s instance variables as properties
(lines 17–19). The editSlideshow method (line 21) informs the delegate that the
SlideshowCell’s “Edit” Button was touched. The playSlideshow method (line 22) in-
forms the delegate that the SlideshowCell’s “Play” Button was touched. The Slide-
showCellDelegate protocol (lines 26–33) defines two methods used to inform the
delegate that SlideshowCell’s Buttons were touched.

Method initWithFrame:reuseIdentifier: of Class SlideshowCell
The initWithFrame:reuseIdentifier: method (Fig. 12.16) initializes the Slideshow-
Cell. Lines 19–20 create a new UIImageView on the left side of the SlideshowCell. This
is used to show a thumbnail of the first image of the slideshow. Line 23 expands the
thumbnail to fit the height of the SlideshowCell. Lines 26–27 create a new Label which
we user later to title the slideshow. Lines 30–55 create UIButtons editButton and play-

1 // SlideshowCell.h
2 // UITableViewCell for previewing a slideshow.
3 // Implementation in SlideshowCell.m
4 #import <UIKit/UIKit.h>
5
6 @protocol SlideshowCellDelegate; // declare SlideshowCellDelegate protocol
7
8 // SlideshowCell interface declaration
9

10 {
11 id <SlideshowCellDelegate> delegate; // this class's delegate
12 UIImageView *thumbnail; // the first slide in the slideshow
13 UILabel *title; // the slideshow's title
14 } // end instance variable declarations
15
16 // declare delegate, thumbnail and title as properties
17 @property (nonatomic, assign) id <SlideshowCellDelegate> delegate;
18 @property (nonatomic, readonly) UIImageView *thumbnail;
19 @property (nonatomic, readonly) UILabel *title;
20
21 - (void)editSlideshow; // called when the user touches the edit button
22 - (void)playSlideshow; // called when the user touches the play button
23 @end // end interface SlideshowCell
24
25 // SlideshowCell Delegate protocol
26 @protocol SlideshowCellDelegate
27
28 // informs delegate that the edit button was touched
29 - (void)slideshowCellDidSelectEditButton:(SlideshowCell *)cell;
30
31 // informs delegate that the play button was touched
32 - (void)slideshowCellDidSelectPlayButton:(SlideshowCell *)cell;
33 @end // end protocol SlideshowCellDelegate

Fig. 12.15 | UITableViewCell for previewing a slideshow.

@interface SlideshowCell : UITableViewCell

Download from <www.wowebook.com>

ptg

254 Chapter 12 Slideshow App

Button. Touching the editButton calls SlideshowCell’s editSlideshow method.
Touching the playButton calls the playSlideshow method. We then call UIView’s add-
Subview method to add the thumbnail image, title and Buttons to this SlideshowCell’s
contentView to display them on the UITableViewCell (lines 58–61).

1 // SlideshowCell.m
2 // SlideshowCell implementation
3 #import "SlideshowCell.h"

4
5 @implementation SlideshowCell
6
7 @synthesize delegate; // generate get and set methods for delegate
8 @synthesize thumbnail; // generate get and set methods for thumbnail
9 @synthesize title; // generate get and set methods for title

10
11 // initialize the SlideshowCell
12 - (id)initWithStyle:(UITableViewCellStyle)style
13 reuseIdentifier:(NSString *)reuseIdentifier
14 {
15 // if the superclass initialized properly
16 if (self = [super initWithStyle:style reuseIdentifier:reuseIdentifier])
17 {
18 // initialize thumbnail
19 thumbnail =
20 [[UIImageView alloc] initWithFrame:CGRectMake(20, 10, 120, 76)];
21
22 // make the image scale to fit the view
23 thumbnail.contentMode = UIViewContentModeScaleAspectFit;
24
25 // initialize title
26 title =
27 [[UILabel alloc] initWithFrame:CGRectMake(148, 20, 152, 21)];
28
29 // initialize editButton
30 UIButton *editButton =
31 [UIButton buttonWithType:UIButtonTypeRoundedRect];
32
33 // set editButton's frame
34 editButton.frame = CGRectMake(228, 49, 72, 37);
35
36 // set editButton's title
37 [editButton setTitle:@"Modify" forState:UIControlStateNormal];
38
39 // make editButton call the editSlideshow method when touched
40 [editButton addTarget:self action:@selector(editSlideshow)
41 forControlEvents:UIControlEventTouchUpInside];
42
43 // initialize playButton
44 UIButton *playButton =
45 [UIButton buttonWithType:UIButtonTypeRoundedRect];
46

Fig. 12.16 | SlideshowCell method initWithFrame:reuseIdentifier:. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 255

Methods editSlideshow and playSlideShow of Class SlideshowCell
The editSlideshow method (Fig. 12.17, lines 68–72) calls the delegate’s slideshow-
CellDidSelectEditButton: method (line 71). This displays the selected slideshow’s
SlideshowDataViewController so the user can edit that slideshow. The playSlideshow
method (Fig. 12.17, lines 75–79) calls the delegate’s slideshowCellDidSelectPlayBut-
ton: method to play the selected slideshow.

47 // set playButton's title
48 [playButton setTitle:@"Play" forState:UIControlStateNormal];
49
50 // set playButton's frame
51 playButton.frame = CGRectMake(148, 49, 72, 37);
52
53 // make playButton call the playSlideshow method when touched
54 [playButton addTarget:self action:@selector(playSlideshow)
55 forControlEvents:UIControlEventTouchUpInside];
56
57 // add the components to contentView
58 [self.contentView addSubview:thumbnail]; // add thumbnail to View
59 [self.contentView addSubview:title]; // add title to View
60 [self.contentView addSubview:editButton]; // add editButton to View
61 [self.contentView addSubview:playButton]; // add playButton to View
62 } // end if
63
64 return self; // return this object
65 } // end method initWithFrame:reuseIdentifier:
66

67 // called when the edit button is touched
68 - (void)editSlideshow
69 {
70 // inform the delegate that the edit button was touched
71 [delegate slideshowCellDidSelectEditButton:self];
72 } // end method editSlideshow
73
74 // called when the play button is touched
75 - (void)playSlideshow
76 {
77 // inform the delegate that the play button was touched
78 [delegate slideshowCellDidSelectPlayButton:self];
79 } // end method playSlideshow
80
81 // release SlideshowCell's memory
82 - (void)dealloc
83 {
84 [thumbnail release]; // release the thumbnail UIImageView
85 [title release]; // release the title UILabel

Fig. 12.17 | Methods editSlideshow and playSlideShow of class SlideshowCell. (Part 1
of 2.)

Fig. 12.16 | SlideshowCell method initWithFrame:reuseIdentifier:. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

256 Chapter 12 Slideshow App

12.4.2 Class SlideshowViewController
The SlideshowViewController’s View plays a slideshow in full screen mode. The slide-
show re-orients as the user rotates the iPhone.

SlideshowViewController Interface Declaration
The SlideshowViewController class (Fig. 12.18) controls a view that displays a user-
created slideshow. Lines 7–11 create an enum type containing a set of integer symbolic con-
stants. Values in an enum start with 0 and increment by 1 by default, so the constant
TransitionEffectFade has the value 0 and TransitionEffectSlide has the value 1. The
identifiers in an enumeration must be unique, but the values may be duplicated. To pro-
vide a specific value for a constant, assign the value to the enum constant in the enum dec-
laration. Line 16 declares a TransitionEffect variable effect. If the user chooses Fade
as this slideshow’s effect, the effect variable is set to TransitionEffectFade. Choosing
the Slide effect sets the variable effect to TransitionEffectSlide.

86 [super dealloc]; // call the superclass's dealloc method
87 } // end method dealloc
88 @end

1 // SlideshowViewController.h
2 // Controller for a View that shows a slideshow.
3 // Implementation in SlideshowViewController.m
4 #import <UIKit/UIKit.h>
5 #import <MediaPlayer/MediaPlayer.h>
6
7 typedef enum _transitionEffects
8 {
9 TransitionEffectFade, // represents fade image transition effect

10 TransitionEffectSlide // represents slide image transition effect
11 } TransitionEffect;
12
13 @interface SlideshowViewController : UIViewController
14 {
15 NSMutableArray *pictures; // the pictures in this slideshow
16 TransitionEffect effect; // the transition effect for the slideshow
17
18
19 NSTimer *timer; // generates event to move to the next slide
20 UIImageView *currentImageView; // the current image being displayed
21 int pictureIndex; // the index in pictures of the current slide
22 } // end instance variable declaration
23
24 // declare pictures, effect and music as properties
25 @property (nonatomic, assign) NSMutableArray *pictures;
26 @property (nonatomic, assign) TransitionEffect effect;
27 @property (nonatomic, assign) MPMediaItemCollection *music;

Fig. 12.18 | Controller for a View that shows a slideshow. (Part 1 of 2.)

Fig. 12.17 | Methods editSlideshow and playSlideShow of class SlideshowCell. (Part 2
of 2.)

MPMediaItemCollection *music; // the music to play during the slideshow
MPMusicPlayerController *musicPlayer; // plays the music

Download from <www.wowebook.com>

ptg

12.4 Building the App 257

Line 17 declares an MPMediaItemCollection used to store the background music for
this slideshow. We declare an MPMusicPlayerController to play music from the iPod
library (line 18). Lines 19–21 declare SlideshowViewController’s remaining instance
variables.

Lines 25–27 declare the NSMutableArray, TransitionEffect and MPMediaItemCol-
lection as properties. The SlideshowViewController class declares three methods (lines
29–31):

• nextImageView—returns the new UIImage displayed in the current slideshow

• exitShow—returns the app to the RootView

• timerFired:—changes the slideshow’s image every five seconds; if there are no
slides left, this method calls exitShow

Lines 35–39 add the Scaling category to class UIImageView. The category’s expand-
ToFill: method scales a UIImageView to fill the given CGRect.

Methods loadView and nextImageView of Class SlideshowViewController
The loadView method (Fig. 12.19, lines 12–18) initializes the SlideshowView (line 14).
We set the UIView’s frame property makes the slideshowView fill the entire screen (line
17).

28
29 - (UIImageView *)nextImageView; // returns the next image to display
30 - (void)exitShow; // returns the app to the previous screen
31 - (void)timerFired:(NSTimer *)timer; // progresses the slideshow
32 @end // end interface SlideshowViewController
33
34 // additional method for UIImageView
35 @interface UIImageView (Scaling)
36
37 // scales the image view to fill the given bounds
38 - (void)expandToFill:(CGRect)bounds;
39 @end // end category Scaling of interface UIImageView

1 // SlideshowViewController.m
2 // Controller for a view that shows a slideshow
3 #import "SlideshowViewController.h"

4
5 @implementation SlideshowViewController
6
7 @synthesize pictures; // generate getter and setter for pictures
8 @synthesize effect; // generate getter and setter for effect
9 @synthesize music; // generate getter and setter for music

10

Fig. 12.19 | Methods loadView and nextImageView of class SlideshowViewController.
(Part 1 of 2.)

Fig. 12.18 | Controller for a View that shows a slideshow. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

258 Chapter 12 Slideshow App

Method nextImageView (lines 21–46) returns a UIImageView displaying the slide-
show’s next image. We retrieve the next UIImage from pictures (line 24), then increment
pictureIndex (line 25). Line 28 creates a new UIImageView using the retrieved UIImage.
We access SlideshowViewController’s UIView’s bounds property to get a CGRect repre-
senting the screen’s bounds (line 30). We pass this CGRect to imageView’s expandToFill:
method to resize our Image View to fill the entire screen. This method expands the image
as much as possible without distorting it. Line 36 centers the UIImageView in the screen.

SlideshowViewController’s autoresizingMask property (inherited from UIView)
defines how the UIView resizes its subviews when the UIView’s bounds change. This occurs
in this app when the user rotates the iPhone while a slideshow is playing. The autoresiz-
ingMask property is an integer containing bit flags so we set it by combining all desired

11 // setup the view
12 - (void)loadView
13 {
14 self.view = [[UIView alloc] init]; // initialize the main view
15
16
17
18 } // end method loadView
19
20 // Returns a UIImageView that contains the next image to display
21 - (UIImageView *)nextImageView
22 {
23 // get the image at the next index
24 UIImage *image = [pictures objectAtIndex:pictureIndex];
25 ++pictureIndex; // increment the index
26
27 // create an image view for the image
28 UIImageView *imageView = [[UIImageView alloc] initWithImage:image];
29
30 CGRect screenBounds = self.view.bounds; // get the screen bounds
31
32 // resize the image to fill the screen without distorting
33 [imageView expandToFill:screenBounds];
34
35
36
37
38 // Makes the image move proportionally in any direction if the
39 // bounds of the superview change when the iPhone is rotated.
40
41
42
43
44
45 return imageView;
46 } // end method nextImageView
47

Fig. 12.19 | Methods loadView and nextImageView of class SlideshowViewController.
(Part 2 of 2.)

// size the main view to fill the entire screen
self.view.frame = [UIScreen mainScreen].bounds;

// position the image to appear in the center of the view
imageView.center = self.view.center;

imageView.autoresizingMask = (UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleRightMargin |
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleBottomMargin);

Download from <www.wowebook.com>

ptg

12.4 Building the App 259

options using the bitwise OR operator (|). Lines 40–43 specify that SlideshowViewCon-
troller’s UIImageView remains centered as the iPhone rotates.

Methods exitShow and timerFired of Class SlideshowViewController
The exitShow method (Fig. 12.20, lines 49–58) stops the background music by calling
AVAudioPlayer’s stop method (line 51). We call UIApplication’s sharedApplication
method to get the singleton UIApplication for this app (line 54). UIApplication’s set-
StatusBarHidden method is called to redisplay the status bar, which we hid when the slide-
show began playing. The status bar normally appears at the top of the app and displays
the iPhone’s remaining battery life, service provider (e.g. AT&T) and current time among
other things. Line 57 calls UINavigationController’s popViewControllerAnimated:
method to return to the previous view.

The timerFired: method (lines 61–119) displays the next slideshow image every five
seconds. If there are no more images in the slideshow (line 64), we call the exitShow
method to end the current slideshow (line 66). Otherwise, we call the nextImageView
method to get a UIImageView representing the next picture in this slideshow (line 71).
UIView’s addSubview: method is used to display the image (line 72).

48 // called from timerFired: if there are no more images to be displayed
49 - (void)exitShow
50 {
51
52
53 // display the status bar
54
55
56 // remove the slideshow view to return to the previous View
57 [self.navigationController popViewControllerAnimated:YES];
58 } // end method exitShow
59
60 // called every five seconds when the timer fires
61 - (void)timerFired:(NSTimer *)timer
62 {
63 // check if there’s another image to display
64 if (pictureIndex >= pictures.count)
65 {
66 [self exitShow]; // if there’s no image, exit the slideshow
67 } // end if
68 else

69 {
70 // get the next image to display
71 UIImageView *nextImageView = [self nextImageView];
72 [self.view addSubview:nextImageView]; // add the image to the view
73 CGRect frame;
74
75 // set the next image to its beginning state for the effect
76 switch (effect)
77 {

Fig. 12.20 | Methods exitShow and timerFired of class SlideshowViewController. (Part
1 of 2.)

[musicPlayer stop]; // stop the music

[[UIApplication sharedApplication] setStatusBarHidden:NO];

Download from <www.wowebook.com>

ptg

260 Chapter 12 Slideshow App

The image is added to the screen using Core Animation according to the user’s chosen
effect. If the effect is TransitionEffectFade, the UIImageView’s alpha property to set
to 0.0, making the image transparent (lines 78–79). This allows us to fade in the image as
the old image is faded out. If the effect is TransitionEffectSlide, we position the
UIImageView to the right of the screen (lines 81–86). This allows us to slide the image in
from the right edge of the screen. Lines 91–93 begin a Core Animation block defining an

78 case TransitionEffectFade: // the user chose the fade effect
79 nextImageView.alpha = 0.0; // make the next image transparent
80 break;
81 case TransitionEffectSlide: // the user chose the slide effect
82
83 // position the next image to the right of the screen
84 frame = nextImageView.frame; // get the next image’s frame
85 frame.origin.x += frame.size.width; // move frame off screen
86 nextImageView.frame = frame; // apply the repositioned frame
87 break;
88 } // end switch
89
90 // begin animation block
91 [UIView beginAnimations:nil context:nextImageView];
92 [UIView setAnimationDuration:2.0]; // set the animation length
93 [UIView setAnimationDelegate:self]; // set the animation delegate
94
95 // call the given method when the animation ends
96 [UIView setAnimationDidStopSelector:
97 @selector(transitionFinished:finished:context:)];
98
99 // make the next image appear with the chosen effect
100 switch (effect)
101 {
102 case TransitionEffectFade: // the user chose the fade effect
103 [nextImageView setAlpha:1.0]; // fade in the next image
104 [currentImageView setAlpha:0.0]; // fade out the old image
105 break;
106 case TransitionEffectSlide: // the user chose the slide effect
107 frame.origin.x -= frame.size.width; // slide new image left
108 nextImageView.frame = frame; // apply the repositioned frame
109 CGRect currentImageFrame = currentImageView.frame;
110
111 // slide the old image to the left
112 currentImageFrame.origin.x -= currentImageFrame.size.width;
113 currentImageView.frame = currentImageFrame; // apply frame
114 break;
115 } // end switch
116
117 [UIView commitAnimations]; // end animation block
118 } // end else
119 } // end method timerFired:
120

Fig. 12.20 | Methods exitShow and timerFired of class SlideshowViewController. (Part
2 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 261

animation lasting two seconds. Lines 96–97 specify that the transitionFinished:fin-
ished:context: method is called when the animation ends.

We then set the final state of the image according to the chosen effect. If the effect
is TransitionEffectFade the new UIImageView will have full opacity and the old
UIImageView will be transparent (lines 101–102). If the effect is TransitionEffectSlide,
we place the new UIImageView in the center of the screen (lines 106–109) and move the
old UIImageView off the left side of the screen (lines 112–113). Line 117 calls UIView’s
commitAnimations method to animate the UIImageView’s to their final state.

Methods transitionFinished:finished:context:, viewWillAppear and
viewDidDisappear of Class SlideshowViewController
The transitionFinished:finished:context: method (Fig. 12.21, lines 122–128) is
called when the image transition animation completes. Line 125 calls UIImageView’s re-
moveFromSuperview method to remove the old image. We release the previous UIImage-
View’s memory and set currentImageView to the new image (lines 126–127).

121 // called when the image transition animation finishes
122 - (void)transitionFinished:(NSString *)animationId finished:(BOOL)finished
123 context:(void *)context
124 {
125 [currentImageView removeFromSuperview]; // remove the old image
126 [currentImageView release]; // release the memory for the old image
127 currentImageView = context; // assign the new image
128 } // end method transitionFinished:finished:context:
129
130 // called when the View appears
131 - (void)viewWillAppear:(BOOL)animated
132 {
133 [super viewWillAppear:animated]; // pass the message to the superclass
134 pictureIndex = 0; // reset the index
135
136 currentImageView = [self nextImageView]; // load the first image
137 [self.view addSubview:currentImageView]; // add the image to the view
138
139 // hide the status bar so the slideshow can appear fullscreen
140
141
142 // initialize the timer to fire every 5 seconds
143 timer = [NSTimer scheduledTimerWithTimeInterval:5.0 target:self
144 selector:@selector(timerFired:) userInfo:nil repeats:YES];
145
146 // if the user has selected music to play
147 if (music != nil)
148 {
149 // get the application music player
150
151
152

Fig. 12.21 | Methods transitionFinished:finished:context:, viewWillAppear and
viewDidDisappear of class SlideshowViewController. (Part 1 of 2.)

[[UIApplication sharedApplication] setStatusBarHidden:YES];

musicPlayer = [MPMusicPlayerController applicationMusicPlayer];
musicPlayer.shuffleMode = MPMusicShuffleModeOff; // turn off shuffle
musicPlayer.repeatMode = MPMusicRepeatModeNone; // turn off repeat

Download from <www.wowebook.com>

ptg

262 Chapter 12 Slideshow App

The viewWillAppear method (lines 131–158) is called when the app transitions to
the SlideshowViewController’s view. Lines 136–137 use UIView’s addSubview: method
to display the first image in the slideshow. UIApplication’s setStatusBarHidden:
method is used to hide the iPhone status bar so the slideshow fills the entire screen. Lines
143–144 initialize our NSTimer to call the timerFired: method every five seconds.

If the user selected background music for this slideshow (line 147), we use an
MPMusicPlayerController to play those files. Line 150 calls MPMusicPlayerController’s
applicationMusicPlayer method to get the app’s singleton MPMusicPlayerController
object. We prevent the MPMusicPlayerController from shuffling the selected songs by
setting its shuffleMode property to MPMusicShuffleModeOff (line 151). We prevent the
MPMusicPlayerController from repeating songs by setting its repeatMode property to
MPMusicShuffleModeNone (line 152). Line 155 passes music to MPMusicPlayer’s set-
QueueWithItemCollection: method so the MPMusicPlayer plays each song in music
when the MPMusicPlayer’s play method is called in line 156.

Method viewDidDisappear: (lines 161–169) is called when the app transitions from
the SlideshowViewController’s view back to that of the RootViewController or the
SlideshowDataViewController—this depends on where the user began playing the slide-
show. We call the superclass’s viewDidDisappear method (line 163) then use NSTimer’s
invalidate method to stop timer and release it (line 166). Line 168 calls UIImageView’s
removeFromSuperView method to remove the current image; otherwise, the next time the
user plays a slideshow, the previous slideshow’s last image will still be displayed.

Methods shouldAutorotateToInterfaceOrientation: and willRotateToInt-
erfaceOrientation: of Class SlideshowViewController
The shouldAutorotateToInterfaceOrientation: method (Fig. 12.22, lines 172–176)
returns YES indicating that the SlideshowViewController’s view can rotate to all possible
iPhone orientations. Method willRotateToInterfaceOrientation:duration: (lines

153
154 // add the music the user selected to the queue
155
156
157 } // end if
158 } // end method viewWillAppear:
159
160 // called when the View disappears
161 - (void)viewDidDisappear:(BOOL)animated
162 {
163 [super viewDidDisappear:animated];
164
165 // Stop the timer
166 [timer invalidate];
167 timer = nil; // set timer to nil
168 [currentImageView removeFromSuperview]; // remove the current image
169 } // end method viewDidDisappear:
170

Fig. 12.21 | Methods transitionFinished:finished:context:, viewWillAppear and
viewDidDisappear of class SlideshowViewController. (Part 2 of 2.)

[musicPlayer setQueueWithItemCollection:music];
[musicPlayer play]; // play the music

Download from <www.wowebook.com>

ptg

12.4 Building the App 263

179–189) is called when the user rotates the iPhone. Lines 184–185 create a new CGRect
the same size as the screen. Line 188 calls imageView’s expandToFill: method to resize
the slideshow image according to the screen’s new height and width.

Scaling Category of UIImageView
Method expandToFill: (Fig. 12.23, lines 202–237) expands a UIImageView to fill the
given CGRect. Lines 204–205 get this UIImageView’s UIImage and frame. First, we check
if the UIImage is bound by its height (lines 208–209). If it is, we expand its frame’s height
to match the given CGRect’s height (line 212). We then calculate a new width to ensure
the image is not distorted (lines 215–216). Lines 219–220 adjust the image’s origin so it
remains centered. If the UIImage is bound by its width (line 222), we expand its frame’s
height to match the given CGRect’s width (line 225). We then calculate a new height so
the image is not distorted (lines 228–229). Lines 232–233 adjust the image’s origin so it
remains centered.

171 // determines whether the view rotates when the iPhone orientation changes
172 - (BOOL)shouldAutorotateToInterfaceOrientation:
173 (UIInterfaceOrientation)interfaceOrientation
174 {
175 return YES; // allow rotation to all interface orientations
176 } // end method shouldAutorotateToInterfaceOrientation
177
178 // called when the iPhone orientation changes
179
180
181
182 {
183 // create a CGRect with the view's height and width flipped
184 CGRect bounds = CGRectMake(0, 0, self.view.bounds.size.height,
185 self.view.bounds.size.width);
186
187 // make the current image resize to fill the flipped bounds
188 [currentImageView expandToFill:bounds];
189 } // end method willRotateToInterfaceOrientation:
190
191 // free SlideshowViewController's memory
192 - (void)dealloc
193 {
194 [currentImageView release]; // release the currentImageView UIImageView
195 [super dealloc]; // call the superclass's dealloc method
196 } // end method dealloc
197 @end // end implementation SlideshowviewController
198

Fig. 12.22 | Methods shouldAutorotateToInterfaceOrientation: and willRotate-
ToInterfaceOrientation: of class SlideshowViewController.

199 @implementation UIImageView (Scaling) // extensions to UIImageView
200

Fig. 12.23 | Scaling category of UIImageView. (Part 1 of 2.)

- (void)willRotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation duration:
 (NSTimeInterval)duration

Download from <www.wowebook.com>

ptg

264 Chapter 12 Slideshow App

12.4.3 Class NameViewController
The NameViewController’s view is displayed when the user touches the “New” Button
above the slideshow list. The user enters the name of the new slideshow into a Text Field.

NameViewController Interface Declaration
The NameViewController class (Fig. 12.24) extends UIViewController. Line 11 declares
this class’s delegate and line 12 declares an outlet that responds to events from the Text
Field used to name the slideshow. Lines 16–17 declare delegate and textField as prop-
erties. Method finishedNaming: is called when the user finishes naming a new slideshow.
The NameViewControllerDelegate protocol declares the nameViewController:didGet-
Name: method (lines 26–27), which passes the slideshow’s name to the delegate.

201 // scale the view to fill the given bounds without distorting
202 - (void)expandToFill:(CGRect)bounds
203 {
204 UIImage *image = self.image; // get the image of this view
205 CGRect frame = self.frame; // get the frame of this view
206
207 // check if the image is bound by its height
208 if (image.size.height / image.size.width >
209 bounds.size.height / bounds.size.width)
210 {
211 // expand the new height to fill the entire view
212 frame.size.height = bounds.size.height;
213
214 // calculate the new width so the image isn't distorted
215 frame.size.width = image.size.width * bounds.size.height /
216 image.size.height;
217
218 // add to the x and y coordinates so the view remains centered
219 frame.origin.y += (self.frame.size.height - frame.size.height) / 2;
220 frame.origin.x += (self.frame.size.width - frame.size.width) / 2;
221 } // end if
222 else // the image is bound by its width
223 {
224 // expand the new width to fill the entire view
225 frame.size.width = bounds.size.width;
226
227 // calculate the new height so the image isn't distorted
228 frame.size.height = image.size.height * bounds.size.width /
229 image.size.width;
230
231 // add to the x and y coordinates so the view remains centered
232 frame.origin.y += (self.frame.size.height - frame.size.height) / 2;
233 frame.origin.x += (self.frame.size.width - frame.size.width) / 2;
234 } // end else
235
236 self.frame = frame; // assign the new frame
237 } // end method expandToFill:
238 @end // end implementation UIImageView (Scaling)

Fig. 12.23 | Scaling category of UIImageView. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 265

NameViewController Class Implementation
Method ViewDidLoad (Fig. 12.25, lines 11–17) calls the superclass’s viewDidLoad method
(line 13) then selects the Text Field by calling UITextField’s becomeFirstResponder
method to display the keyboard. The finishedNaming: method (lines 20–24) passes the
textField’s text property to the delegate’s nameViewController:didGetName: meth-
od. This gives the RootViewController the user-entered name for the new slideshow.

1 // NameViewController.h
2 // Controls a View for naming a slideshow.
3 #import <UIKit/UIKit.h>
4
5 // declare NameViewControllerDelegate protocol
6 @protocol NameViewControllerDelegate;
7
8 // begin NameRecordingViewController interface
9 @interface NameViewController : UIViewController

10 {
11 id <NameViewControllerDelegate> delegate; // declare class's delegate
12 IBOutlet UITextField *textField; // text field for entering name
13 } // end instance variable declaration
14
15 // declare delegate and textField as properties
16 @property (nonatomic, assign) id <NameViewControllerDelegate> delegate;
17 @property (nonatomic, retain) UITextField *textField;
18
19 - (IBAction)finishedNaming:sender; // the user finished entering the name
20 @end // end interface NameViewController
21
22 // begin NameDelegate protocol
23 @protocol NameViewControllerDelegate
24
25 // informs the delegate that the user chose a name
26 - (void)nameViewController:(NameViewController *)
27 controller didGetName:(NSString *)fileName;
28 @end // end protocol NameDelegate

Fig. 12.24 | Controls a View for naming a slideshow.

1 // NameViewController.m
2 // Implementation of NameViewController.
3 #import "NameViewController.h"
4
5 @implementation NameViewController
6
7 @synthesize delegate; // synthesize get and set methods for delegate
8 @synthesize textField; // synthesize get and set methods for textField
9

10 // called when the View finishes loading
11 - (void)viewDidLoad
12 {

Fig. 12.25 | Implementation of NameViewController. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

266 Chapter 12 Slideshow App

12.4.4 Class SlideshowDataViewController
The class SlideshowDataViewController controls the view where the user edits a slide-
show. The view contains buttons for adding pictures, music and effects, and displays con-
trols for deleting and reordering slides.

SlideshowDataViewController Interface Declaration
Create a new UIViewController subclass named SlideshowDataViewController. Its
class declaration is shown in SlideshowDataViewController.h (Fig. 12.26).

13 [super viewDidLoad]; // calls the superclass's viewDidLoad method
14
15 // select the text field to make the keyboard appear
16 [textField becomeFirstResponder];
17 } // end method viewDidLoad
18
19 // call when the user touches the Done button on the keyboard
20 - (IBAction)finishedNaming:sender
21 {
22 // inform the delegate that the user chose a name
23 [delegate nameViewController:self didGetName:textField.text];
24 } // end method finishedNaming:
25 @end // NameRecoringViewController implementation

1 // SlideshowDataViewController.h
2 // Manages the pictures, sounds and effects of a slideshow.
3 // Implementation in SlideshowDataViewController.m
4 #import <MediaPlayer/MediaPlayer.h>
5 #import "SlideshowViewController.h"

6
7 const static float ROW_HEIGHT = 100; // the height of the rows
8
9 // SlideshowDataViewController interface declaration

10 @interface SlideshowDataViewController : UITableViewController
11 <UIImagePickerControllerDelegate, UINavigationControllerDelegate,
12 MPMediaPickerControllerDelegate, UIActionSheetDelegate>
13 {
14
15
16
17
18 // View used to play the slideshow
19 SlideshowViewController *slideshowViewController;
20
21 UIToolbar *toolbar; // the toolbar at the bottom
22 NSMutableArray *pictures; // the chosen pictures
23 TransitionEffect effect; // the transition effect
24 NSString *title; // this slideshow's title
25 BOOL firstLoad; // is this the first load of this object?

Fig. 12.26 | Manages the pictures, sounds and effects of a slideshow. (Part 1 of 2.)

Fig. 12.25 | Implementation of NameViewController. (Part 2 of 2.)

UIImagePickerController *imagePicker; // controller for picking images
MPMediaPickerController *musicPicker; // controller for picking music
MPMediaItemCollection *music; // the chosen music for the slideshow

UIActionSheet *effectSheet; // a sheet for choosing an effect

Download from <www.wowebook.com>

ptg

12.4 Building the App 267

Lines 10–12 declare the protocols that SlideshowDataViewController implements.
We then declare a UIImagePickerController (line 14), which controls a view that
prompts the user to choose a picture from the photo library. We also declare a MPMedia-
PickerController (line 15), which controls a view that prompts the user to pick music
from the iPod music library. The music MPMediaItemCollection represents the songs the
user chose using the MPMediaPickerController.

The SlideshowViewController (line 19) controls the view that displays the slide-
show. Line 20 declares a UIActionSheet—a GUI component that prompts the user to
choose between multiple options. We declare a UIToolbar (line 21), an NSMutableArray
to hold the chosen pictures (line 22), a TransitionEffect to store the transition effect
(line 23) and an NSString to store the slideshow’s title (line 24). We also declare two BOOLs
(lines 25–26) that store whether this is the first time the view is appearing and whether the
app is returning from picking an image. The SlideshowDataViewController interface
declares five methods:

• addPhoto—prompts the user to add a new photo to the slideshow

• addMusic—prompts the user to choose music to play during the slideshow

• addEffect—displays the choices for the slideshow’s transition effect

• startSlideshow—begins playing the slideshow

• firstImage—returns the first image in the slideshow

Method viewDidLoad of Class SlideshowDataViewController
SlideshowDataViewController’s class implementation can be found in SlideshowData-
ViewController.m (Fig. 12.27). Lines 7–10 synthesize the properties. We override the
viewDidLoad method (lines 13–80) to set up our view. First, we set the navigationItem’s
title (line 16) and initialize pictures (line 18). Then we create the four UIBarButtonItems
for adding pictures, music, effects and playing the slideshow (lines 22–52). We add the
UIBarButtonItem for playing the slideshow to the UINavigationItem (line 27) and add
the other UIBarButtonItems to the bottom toolbar (lines 55–56). We also add a Flexible
Space Bar Button Item (created at lines 50–52) to the bottom toolbar to center the other

26 BOOL returnFromImagePicker; // are we returning from the image picker?
27 } // end instance variable declaration
28
29 // declare pictures, effect, music and title as properties
30 @property (nonatomic, readonly) NSMutableArray *pictures;
31 @property (nonatomic, readonly) TransitionEffect effect;
32 @property (nonatomic, readonly) MPMediaItemCollection *music;
33 @property (nonatomic, retain) NSString *title;
34
35 - (void)addPhoto; // adds a new photo to the slideshow
36 - (void)addMusic; // adds music to the slideshow
37 - (void)addEffect; // adds the effect for the slideshow
38 - (void)startSlideshow; // begins the slideshow
39 - (UIImage *)firstImage; // return the first image in the slideshow
40 @end // end interface SlideshowDataViewController

Fig. 12.26 | Manages the pictures, sounds and effects of a slideshow. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

268 Chapter 12 Slideshow App

components. Lines 65–69 position the toolbar at the bottom of the main view. We then
put the Table View in editing mode (line 73) and set the Table View’s row height (line 76).

1 // SlideshowDataViewController.m
2 // Manages the pictures, sounds and effects of a slideshow.
3 #import "SlideshowDataViewController.h"

4
5 @implementation SlideshowDataViewController
6
7 @synthesize pictures; // generate get method for pictures
8 @synthesize effect; // generate get method for effect
9 @synthesize music; // generate get method for music

10 @synthesize title; // generate get and set methods for title
11
12 // method is called when view finishes initializing
13 - (void)viewDidLoad
14 {
15 [super viewDidLoad]; // initialize the superclass
16 [self.navigationItem setTitle:@"Edit Slideshow"]; // set the bar title
17
18 pictures = [[NSMutableArray alloc] init]; // initialize pictures
19
20 // create the "Play" button
21 // the "black translucent" style makes the button blue
22 UIBarButtonItem *playButton = [[UIBarButtonItem alloc]
23 initWithTitle:@"Play" style:UIBarStyleBlackTranslucent
24 target:self action:@selector(startSlideshow)];
25
26 // add the "Play" button to the top navigation bar on the right side
27 [self.navigationItem setRightBarButtonItem:playButton];
28 [playButton release]; // release the playButton UIBarButtonItem
29
30 // create the toolbar at the bottom
31 toolbar = [[UIToolbar alloc] init];
32 [toolbar setBarStyle:UIBarStyleBlack]; // make toolbar black
33
34 // create a "Add Picture" button for adding new photos
35 UIBarButtonItem *pictureButton = [[UIBarButtonItem alloc]
36 initWithTitle:@"Add Picture" style:UIBarStyleBlack target:self
37 action:@selector(addPhoto)];
38
39 // create the "Add Music" button
40 UIBarButtonItem *musicButton = [[UIBarButtonItem alloc]
41 initWithTitle:@"Add Music" style:UIBarStyleBlack target:self
42 action:@selector(addMusic)];
43
44 // create the "Add Effect" button
45 UIBarButtonItem *effectButton = [[UIBarButtonItem alloc]
46 initWithTitle:@"Set Effect" style:UIBarStyleBlack target:self
47 action:@selector(addEffect)];
48

Fig. 12.27 | Method viewDidLoad of class SlideshowDataViewController. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 269

Method viewDidAppear: and viewDidDisappear: of Class SlideshowData-
ViewController

Methods viewDidAppear: and viewDidDisappear: (Fig. 12.28) adjust the GUI compo-
nent’s sizes as necessary for hiding and showing the view. In viewDidAppear: (lines 83–
114) we first check if this is the first time the view is appearing (line 88). If so, we adjust
the size of the Table View to fit the toolbar (lines 92–96) otherwise, an animation displays
the toolbar (lines 101–109). In viewWillDisappear: we hide the toolbar by moving it be-
low the screen (lines 122–126).

49 // create a flexible space bar button item
50 UIBarButtonItem *space = [[UIBarButtonItem alloc]
51 initWithBarButtonSystemItem:UIBarButtonSystemItemFlexibleSpace
52 target:nil action:NULL];
53
54
55
56
57
58 [pictureButton release]; // release the pictureButton UIBarButtonItem
59 [musicButton release]; // release the musicButton UIBarButtonItem
60 [effectButton release]; // release the effectButton UIBarButtonItem
61
62
63
64
65
66
67
68
69
70
71 // put the table's cells in editing mode so they display reorder and
72 // delete controls
73 [(UITableView *)self.view setEditing:YES];
74
75 // set the height of each row
76 [(UITableView *)self.view setRowHeight:ROW_HEIGHT];
77
78 firstLoad = YES; // this is the first load of this view
79 returnFromImagePicker = NO; // we’re not returning from image picker
80 } // end method viewDidLoad
81

82 // called when view appears
83 - (void)viewDidAppear:(BOOL)animated
84 {
85 [super viewDidAppear:animated]; // pass the message to the superclass

Fig. 12.28 | Method viewDidAppear: and viewDidDisappear: of class
SlideshowDataViewController. (Part 1 of 2.)

Fig. 12.27 | Method viewDidLoad of class SlideshowDataViewController. (Part 2 of 2.)

// add the buttons to toolbar in the given order
[toolbar setItems:[NSArray arrayWithObjects:space, pictureButton,
 effectButton, musicButton, space, nil]];

// add the toolbar to the superview
[[self.navigationController view] addSubview:toolbar];

[toolbar sizeToFit]; // expand the toolbar to include all the buttons
CGRect frame = toolbar.frame; // get the frame of toolbar
frame.origin.y = self.navigationController.view.bounds.size.height -
 toolbar.bounds.size.height; // move toolbar to the bottom edge
[toolbar setFrame:frame]; // apply the new frame

Download from <www.wowebook.com>

ptg

270 Chapter 12 Slideshow App

Methods addPhoto and imagePickerController:didFinishPickingImage: of
Class SlideshowDataViewController
The next two methods (Fig. 12.29) allow the user to choose an image from the photo li-
brary and add it to the slideshow. The addPhoto method (lines 130–148) is called when
the user touches the “Add Picture” UIBarButtonItem. First, we initialize the UIImagePick-
erController if it hasn’t been initialized yet (lines 132–142). We set the allowsImage-

86
87 // if this is the first time the view is appearing
88 if (firstLoad)
89 {
90 // resize the table to fit the toolbar at the bottom
91 firstLoad = NO; // the View has loaded once already
92 CGRect frame = [self.view frame]; // fetch the frame of view
93
94 // decrease the height of the table
95 frame.size.height -= [toolbar bounds].size.height;
96 [self.view setFrame:frame]; // apply the new frame
97 } // end if
98 else

99 {
100 // unhide the toolbar and navigation bar
101 CGRect frame = toolbar.frame; // fetch the toolbar’s frame
102
103 // set the frame to be just below the bottom of the screen
104 frame.origin.y = self.navigationController.view.bounds.size.height;
105 [toolbar setFrame:frame]; // apply the new frame
106 [UIView beginAnimations:nil context:toolbar]; // begin animation
107 frame.origin.y -= frame.size.height; // move the toolbar up
108 [toolbar setFrame:frame]; // apply the new frame
109 [UIView commitAnimations]; // end animation block
110
111 // show the navigation bar at the top
112 [self.navigationController setNavigationBarHidden:NO animated:YES];
113 } // end else
114 } // end method viewDidAppear:
115
116 // called when the view is going to disappear
117 - (void)viewWillDisappear:(BOOL)animated
118 {
119 [super viewWillDisappear:animated]; // pass message to the superclass
120
121 // hide the toolbar
122 [UIView beginAnimations:nil context:toolbar]; // begin animation block
123 CGRect frame = [toolbar frame]; // fetch the frame of toolbar
124 frame.origin.y += frame.size.height; // move the toolbar down
125 [toolbar setFrame:frame]; // apply the new frame
126 [UIView commitAnimations]; // end animation block
127 } // end method viewWillDisappear:
128

Fig. 12.28 | Method viewDidAppear: and viewDidDisappear: of class
SlideshowDataViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 271

Editing property to YES (line 136) to allow the user to edit the image before it is added to
the slideshow. We also set the sourceType to UIImagePickerControllerSourceTypePho-
toLibrary to specify that the image is to be picked from the user’s photo library. We then
show the image picker (line 147).

The imagePickerController:didFinishPickingImage:editingInfo: method is
called when the user finishes picking an image using a UIImagePickerController. The
chosen image is passed as the img property. First, we add the chosen image to pictures
(line 155). We then insert a new row in the table for the image (lines 159–161) and dismiss
the UIImagePickerController (line 164).

129 // add a new photo to the slideshow
130 - (void)addPhoto
131 {
132 if (imagePicker == nil) // create the image picker
133 {
134
135
136
137
138
139
140
141
142 } // end if
143
144 returnFromImagePicker = YES; // we’re returning from image picker
145
146 // show the image picker
147 [self presentModalViewController:imagePicker animated:YES];
148 } // end method addPhoto
149
150 // add the chosen image to the slideshow
151 - (void)imagePickerController:(UIImagePickerController *)picker
152 didFinishPickingImage:(UIImage *)img editingInfo:
153 (NSDictionary *)editInfo
154 {
155 [pictures addObject:img]; // add the picked image to the image list
156 UITableView *table = (UITableView *)self.view;
157
158 // insert a new row in the table for the new picture
159 [table insertRowsAtIndexPaths:[NSArray arrayWithObject:[NSIndexPath
160 indexPathForRow:pictures.count - 1 inSection:0]] withRowAnimation:
161 UITableViewRowAnimationRight];
162
163 // make the image picker go away
164 [self dismissModalViewControllerAnimated:YES];
165 } // end method imagePickerController:didFinishPickingImage:
166

Fig. 12.29 | Methods addPhoto and imagePickerController:didFinishPickingImage:
of class SlideshowDataViewController.

// initialize imagePicker
imagePicker = [[UIImagePickerController alloc] init];
imagePicker.allowsImageEditing = YES; // allow image editing

// set the image source as the photo library
imagePicker.sourceType =

UIImagePickerControllerSourceTypePhotoLibrary;
imagePicker.delegate = self; // set imagePicker's delegate

Download from <www.wowebook.com>

ptg

272 Chapter 12 Slideshow App

Methods addMusic and mediaPicker:didPickMediaItems: of Class Slideshow-
DataViewController

The addMusic and mediaPicker:didPickMediaItems: methods (Fig. 12.30) allow the
user to choose music from the iPod similarly to how they chose images from the photo
library. In the addMusic method (lines 168–179) we create a new MPMediaPickerCon-
troller (lines 171–172). We specify MPMediaTypeMusic to only allow the media picker
to pick music. We set the allowsPickingMultipleItems property to YES to allow the user
to pick multiple songs. We then show the MPMediaPickerController (line 177).

The MPMediaPickerController calls method mediaPicker:didPickMediaItems:
when the user finishes picking songs. We store the chosen music (line 185) and dismiss
the MPMediaPickerContorller (line 188).

Methods addEffect, actionSheet:clickedButtonAtIndex:, startSlideshow
and firstImage of Class SlideshowDataViewController
Figure 12.31 defines the addEffect, actionSheet:clickedButtonAtIndex: and start-
Slideshow methods. The addEffect method (lines 192–203) creates the UIActionSheet
(from which the user chooses an effect) if it hasn’t been initialized yet (lines 194–200). We
then show the UIActionSheet (line 202).

The actionSheet:clickedButtonAtIndex: method is called when the user touches
one of the choices on the UIActionSheet. We update effect with the selected choice.

The startSlideshow method begins the slideshow. First, we create slideshowView-
Controller if it hasn’t been created yet (lines 216–217). We then update slideshowView-

167 // called when the user touches the Add Music button
168 - (void)addMusic
169 {
170
171
172
173
174
175
176 // show the music picker
177 [self presentModalViewController:musicPicker animated:YES];
178 [musicPicker release];
179 } // end method addMusic
180
181 // called when the user touches the done button in the media picker
182 - (void)mediaPicker: (MPMediaPickerController *)mediaPicker
183 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection
184 {
185 music = [mediaItemCollection retain]; // get the returned songs
186
187 // make the media picker go away
188 [self dismissModalViewControllerAnimated:YES];
189 } // end method mediaPicker:didPickMediaItems:
190

Fig. 12.30 | Methods addMusic and mediaPicker:didPickMediaItems: of class
SlideshowDataViewController.

// create a new media picker configured for picking music
musicPicker = [[MPMediaPickerController alloc] initWithMediaTypes:

MPMediaTypeMusic];
musicPicker.allowsPickingMultipleItems = YES;
musicPicker.delegate = self;

Download from <www.wowebook.com>

ptg

12.4 Building the App 273

Controller’s properties (lines 220–222) with the correct pictures, transition effect and
music. We hide the navigation bar (line 225) and show the slideshowViewController
(lines 228–229). The firstImage method (lines 233–240) returns the first UIImage in the
pictures array, if one exists.

191 // called when the user touches the Add Effect button
192 - (void)addEffect
193 {
194 if (effectSheet == nil) // first time the user touches the button
195 {
196
197
198
199
200 } // end if
201
202
203 } // end method addEffect
204
205 // called when the user touches one of the options in the effect sheet
206 - (void)actionSheet:(UIActionSheet *)actionSheet clickedButtonAtIndex:
207 (NSInteger)buttonIndex
208 {
209 effect = buttonIndex; // keep track of which effect is selected
210 } // end method actionSheet:clickedButtonAtIndex:
211
212 // called when the user touches the Start Slideshow button
213 - (void)startSlideshow
214 {
215 // first time button was touched
216 if (slideshowViewController == nil)
217 slideshowViewController = [[SlideshowViewController alloc] init];
218
219 // set the pictures to appear in the slideshow
220 slideshowViewController.pictures = pictures;
221 slideshowViewController.effect = effect; // set the slideshow effect
222 slideshowViewController.music = music; // set the slideshow music
223
224 // hide the navigation bar so the screen is clear for the slideshow
225 [self.navigationController setNavigationBarHidden:YES animated:YES];
226
227 // show the view that plays the slideshow
228 [self.navigationController pushViewController:slideshowViewController
229 animated:YES];
230 } // end method startSlideshow
231
232 // called by RootViewController to get thumbnails for the table
233 - (UIImage *)firstImage
234 {

Fig. 12.31 | Methods addEffect and startSlideshow of class
SlideshowDataViewController. (Part 1 of 2.)

// create a new sheet with the given title and button titles
effectSheet = [[UIActionSheet alloc] initWithTitle:@"Choose Effect"
 delegate:self cancelButtonTitle:nil destructiveButtonTitle:nil
 otherButtonTitles:@"Fade", @"Slide In", nil];

[effectSheet showInView:self.view]; // show the sheet

Download from <www.wowebook.com>

ptg

274 Chapter 12 Slideshow App

UITableViewDataSource methods of Class SlideshowDataViewController
The next methods in SlideshowDataViewController are declared in the UITableView-
DataSource protocol. Method tableView:numberOfRowsInSection: (Fig. 12.32, lines
243–247) returns the number of pictures in the slideshow to indicate the number of rows.

235 // if no pictures are in the slideshow
236 if (pictures.count == 0)
237 return nil; // return nil
238
239 return [pictures objectAtIndex:0]; // return the first picture
240 } // end method firstImage
241

242 // called by the table view to get the number of rows in a given section
243 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
244 (NSInteger)section
245 {
246 return pictures.count;
247 } // end method tableView:numberOfRowsInSection:
248
249 // called by the table view to get the cells it needs to populate itself
250 - (UITableViewCell *)tableView:(UITableView *)tableView
251 cellForRowAtIndexPath:(NSIndexPath *)indexPath
252 {
253 static NSString *CellIdentifier = @"Cell";
254
255 // get a reused cell
256 UITableViewCell *cell =
257 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
258
259 // if no reusable cells were available
260 if (cell == nil)
261 {
262 // create a new cell
263 cell = [[[UITableViewCell alloc] initWithStyle:
264 UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
265 autorelease];
266 } // end if
267
268 // remove any views that exist in a reused cell
269 for (UIView *view in cell.contentView.subviews)
270 [view removeFromSuperview];
271
272 // get the image for the given row
273 UIImage *image = [pictures objectAtIndex:indexPath.row];
274

Fig. 12.32 | Method tableView:cellForRowAtIndexPath: of class
SlideshowDataViewController. (Part 1 of 2.)

Fig. 12.31 | Methods addEffect and startSlideshow of class
SlideshowDataViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12.4 Building the App 275

The tableView:cellForRowAtIndexPath: method (lines 250–290) first creates or
reuses a UITableViewCell (lines 253–266). We then remove any views that may have been
previously added to the cell (lines 269–270). Lines 273–276 create the UIImageView for
this cell, which we then resize (lines 279–287). We add the configured UIImageView to the
cell (line 288) and return the cell (line 290).

Additional UITableViewDataSource methods of Class SlideshowDataViewCon-
troller

In tableView:commitEditingStyle:forRowAtIndexPath: (Fig. 12.33, lines 294–308) we
handle the event generated when the user deletes a row. If the user deleted the row (line
299), we remove that entry from pictures (line 301) and remove the row from the table
(lines 305–306). In the tableView:moveRowAtIndexPath:toIndexPath: method (lines
310–319) we move the object in pictures from the UItableviewcell specified by from-
IndexPath to the UItableviewcell specified by toIndexPath. In tableView:canMoveRow-
AtIndexPath: we return YES because all the rows are reorderable.

275 // create an image view for the image
276 UIImageView *view = [[UIImageView alloc] initWithImage:image];
277
278 // resize the image without distorting it
279 float newWidth = image.size.width * ROW_HEIGHT / image.size.height;
280 CGRect frame;
281
282 // create the image shifted to the left of the center by 50 pts
283 frame.origin.x = cell.center.x - newWidth / 2 - 50;
284 frame.origin.y = 0; // the image will fill the height of the cell
285 frame.size.width = newWidth; // the width so there is no distortion
286 frame.size.height = ROW_HEIGHT; // the image will fill the whole height
287 view.frame = frame; // assign the new frame
288 [cell.contentView addSubview:view]; // add the image to the cell
289
290 return cell; // return the configured cell
291 } // end method tableView:cellForRowAtIndexPath:
292

293 // called by the table when the user touches the delete button
294 - (void)tableView:(UITableView *)tableView commitEditingStyle:
295 (UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:
296 (NSIndexPath *)indexPath
297 {
298 // if the user touched a delete button
299 if (editingStyle == UITableViewCellEditingStyleDelete)
300 {

Fig. 12.33 | Methods tableView:commitEditingStyle:forRowAtIndexPath:,
tableView:moveRowAtIndexPath:toIndexPath: and tableView:canMoveRowAtIndexPath:
of class SlideshowDataViewController. (Part 1 of 2.)

Fig. 12.32 | Method tableView:cellForRowAtIndexPath: of class
SlideshowDataViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

276 Chapter 12 Slideshow App

12.5 Wrap-Up
The Slideshow app enables users to create slideshows using pictures and music stored on
their iPhones. You saw how to use class UIImagePickerController to display a standard
interface for choosing images, and class MPMediaPickerController for picking music
from the iPod library. We used class MPMusicPlayerController to play the selected mu-
sic. We also used the UIActionSheet component to present the user with a list of transi-
tion effect choices. Lastly, you learned how to enable an app to operate in portrait and
landscape orientations by responding to orientation change events.

301 // remove the object at the deleted row
302 [pictures removeObjectAtIndex:indexPath.row];
303
304 // remove the row from the table
305 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:
306 indexPath] withRowAnimation:UITableViewRowAnimationLeft];
307 } // end if
308 } // end method tableView:commitEditingStyle:forRowAtIndexPath:
309
310 - (void)tableView:(UITableView *)tableView moveRowAtIndexPath:
311 (NSIndexPath *)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath
312 {
313 // get the image at the moved row
314 UIImage *image = [pictures objectAtIndex:fromIndexPath.row];
315 [pictures removeObject:image]; // remove the image from the list
316
317 // insert the image into the list at the specified index
318 [pictures insertObject:image atIndex:toIndexPath.row];
319 } // end method tableView:moveRowAtIndexPath:toIndexPath:
320
321 // called by the table view to check if a given row can be moved
322 - (BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:
323 (NSIndexPath *)indexPath
324 {
325 return YES; // all the rows in this table can be moved
326 } // end method tableView:canMoveRowAtIndexPath:
327
328 // release this object's memory
329 - (void)dealloc
330 {
331 [imagePicker release]; // release imagePicker UIImagePickerController
332 [slideshowViewController release]; // release slideshowViewController
333 [pictures release]; // release the pictures NSMutableArray
334 [toolbar release]; // release the toolbar UIToolbar
335 [music release]; // release the music MPMediaItemCollection
336 [super dealloc]; // call the superclass's dealloc method
337 } // end method dealloc
338 @end // end SlideshowDataViewController class

Fig. 12.33 | Methods tableView:commitEditingStyle:forRowAtIndexPath:,
tableView:moveRowAtIndexPath:toIndexPath: and tableView:canMoveRowAtIndexPath:
of class SlideshowDataViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

12.5 Wrap-Up 277

In Chapter 13, we’ll build the Enhanced Slideshow app, which enhances the Slide-
show app with support for video and saving slideshows. You’ll see how to use the NSCoding
protocol and the NSKeyedArchiver class to serialize an object to a file. You’ll also see how
to use the UIImagePickerController class to allow the user to select videos, and how to
use the MPMoviePlayerController class to play them.

Download from <www.wowebook.com>

ptg

13
Enhanced Slideshow App
Serialization Data with NSCoder and Playing Video

O B J E C T I V E S
In this chapter you’ll learn:

■ To use an MPMoviePlayerController to play videos
from the iPhone’s photo library.

■ To use a UIImagePickerController to allow the
user to chose images and videos from the iPhone’s photo
library.

■ To add new image transitions using Core Animation.

■ To use an NSCoder to serialize and deserialize objects.

■ To use an NSKeyedArchiver to serialize all saved
slideshows to memory so the app can reload the
slideshows the next time it executes.

■ To use the app’s delegate class to save data when the app
closes.

Download from <www.wowebook.com>

ptg

13.1 Introduction 279

O
u

tl
in

e

13.1 Introduction
The Enhanced Slideshow app adds video capabilities to Chapter 12’s SlideShow app.
When modifying a slideshow, the user touches the “Add Picture/Video” Button to view the
iPhone’s photo library, which now includes videos (Fig. 13.1). Selecting a video’s thumb-
nail displays a close-up of that thumbnail (Fig. 13.2). The user touches the play Button to
play the video without adding it to the slideshow. Touching the “Choose” Button adds the
selected video to the slideshow. A new effect is displayed when the user touches the “Set
Effect” Button (Fig. 13.3). The Flip effect rotates the previous image horizontally to reveal
the next image on its reverse (Fig. 13.4). All user-created slideshows are saved and available
each time the app is run.

13.1 Introduction
13.2 Test-Driving the Enhanced Slideshow App
13.3 Overview of the Technologies
13.4 Building the App

13.4.1 Class MediaItem
13.4.2 Class Slideshow
13.4.3 Class RootViewController
13.4.4 Class SlideshowDataViewController
13.4.5 Class EnhancedSlideshowAppDelegate
13.4.6 Class SlideshowViewController

13.5 Suggested Enhancements
13.6 Wrap-Up

Fig. 13.1 | iPhone photo library.

Video thumbnailImage thumbnail

Download from <www.wowebook.com>

ptg

280 Chapter 13 Enhanced Slideshow App

Fig. 13.2 | Viewing a video.

Fig. 13.3 | Setting the image transition effect.

Touch to add this video
to the slideshow

Touch to play/
pause the video

Position in the video
playback

“Choose Effect”
Action Sheet

Download from <www.wowebook.com>

ptg

13.2 Test-Driving the Enhanced Slideshow App 281

13.2 Test-Driving the Enhanced Slideshow App
Opening the completed application
Open the Enhanced Slideshow app project’s directory and double click EnhancedSlide-
show.xcodeproj to open it in Xcode. Apps running in the iPhone simulator cannot access
the iPod music library, so if you’re using the simulator you cannot add slideshow back-
ground music. Also, you cannot add video to the photo libraries of iPhones older than the
3GS (nor to the simulator’s photo library), so slideshows running on those devices are lim-
ited to images. This test-drive assumes you’re running the app on an iPhone 3GS.

Creating a New Slideshow
Touch the “New” Button in the top-right corner of the app and enter My Slideshow1 in
the “Name this slideshow” Text Field. Touch the “Add Picture/Video” Button to view the
iPhone’s photo library. This library stores pictures and videos taken by the iPhone’s cam-
era. Touch a video’s thumbnail to see a close-up of that thumbnail. Press the play Button
to watch the video. Add the video to the slideshow by touching the “Choose” Button.
Enter My Video1 in the “Add a title for the video” Text Field. Your video is displayed in the
“Edit Slideshow” screen, represented by a thumbnail and the title you specified. Add two
more pictures or videos, then select background music for this slideshow. Touch the “Set
Effect” Button and choose Flip. Touch the “Back” Button to return to the list of slideshows.

Playing a Slideshow
Touch the “Play” Button next to your slideshow. Your videos and images are displayed.
Images remain on the screen for five seconds while the background music plays. Videos

Fig. 13.4 | Flip effect—rotates slide horizontally revealing the next slide underneath.

Download from <www.wowebook.com>

ptg

282 Chapter 13 Enhanced Slideshow App

remain on the screen for their entire duration. Each video silences the background music
in favor of the video’s audio. Exit the app and touch its icon to run the Enhanced Slide-
show again. Unlike the original Slideshow app, notice that the slideshows are persistent.

13.3 Overview of the Technologies
The Enhanced Slideshow app plays videos from the iPhone’s photo library using an
MPMoviePlayerController. The user chooses videos for the slideshow using a UIImage-
PickerController. We specify that all available media types in the photo library (images
and videos) are available to the user by setting the UIImagePickerController’s media-
Types property.

We added another Core Animation image transition to this version of the app. The
UIViewAnimationTransitionFlipFromRight animation transition flips a slideshow image
horizontally to reveal the next image.

In the Enhanced Slideshow app, slideshows are stored on the iPhone for viewing later.
We’ve saved textual data previously, but saving objects (such as those representing images
and videos) requires a technique called object serialization. A so-called serialized object is
an object represented as a sequence of bytes that includes the object’s data as well as infor-
mation about the object’s type and the types of data stored in the object. We serialize an
object (also referred to as encoding in Objective-C) using a subclass of the NSCoder abstract
class. This class acts as an interface for storing Objective-C objects on disk (referred to as
archiving). Class NSKeyedArchiver is a concrete subclass of NSCoder used to save the entire
slideshow list’s object graph to a file. An object graph is a representation of an object, all
of the objects that it references, all of the objects that those objects reference, and so on.
The NSKeyedArchiver handles creation of the object graph and serializing it.

After a serialized object has been written to a file, it can be read from the file and dese-
rialized—that is, the type information and bytes that represent the object and its data can
be used to recreate the object graph in memory. This is also referred to as decoding or
unarchiving and is accomplished with a subclass of NSCoder.

13.4 Building the App
Only classes and methods that have changed from Chapter 12’s Slideshow app are shown
here. The complete source code is located in the project’s directory. For any class or meth-
od that was previously discussed in Chapter 12 and that is shown in this chapter, we high-
light the new or changed lines. For new classes and methods, we highlight new and
important lines, as per our usual convention.

13.4.1 Class MediaItem
The new class MediaItem (Fig. 13.5) represents an image or video in a slideshow. Lines 6–
10 declare the _mediaType enum. The typedef allows us to refer to this enum as MediaType.
The MediaTypeImage enum constant indicates that a MediaItem represents a picture and
the MediaTypeVideo constant indicates that a MediaItem represent a video.

MediaItem implements the NSCoding protocol (line 12), which declares two methods
to encode and decode objects of the implementing class. This allows us to store Media-
Items on the iPhone. The initWithCoder: method creates a MediaItem using an NSCoder
object. The encodeWithCoder: method encodes a MediaItem, also using an NSCoder.

Download from <www.wowebook.com>

ptg

13.4 Building the App 283

Class MediaItem declares three instance variables (lines 14–16). The MediaType vari-
able (line 14) type indicates if this MediaItem represents an image or a video. The
NSString description (line 15) stores a brief title of this MediaItem if it’s a video. Images
do not store anything in description. The variable data of type id (line 16) represents
the file path of this MediaItem’s image or video. Lines 20–22 declare each of MediaItem’s
instance variables as properties. The initWithType:description:data: method (lines
25–26) receives arguments corresponding to each of MediaItem’s instance variables and
creates a new MediaItem.

MediaItem Class Definition
The initWithType:description:data: method (Fig. 13.6, lines 12–24) creates a new
MediaType. Lines 18–20 set each of MediaItem’s instance variables to their respective ar-
guments.

1 // MediaItem.h
2 // MediaItem class represents an image or a video.
3 #import <Foundation/Foundation.h>
4
5 // the type of media this MediaItem represents
6 typedef enum _mediaType
7 {
8 MediaTypeImage, // MediaItem represents an image
9 MediaTypeVideo // MediaItem represents a video

10 } MediaType;
11
12
13 {
14 MediaType type; // the type of the MediaItem
15 NSString *description; // a description of the MediaItem
16 id data; // the media, either an image or a video
17 } // end instance variable declaration
18
19 // declare type, description and data as properties
20 @property MediaType type;
21 @property (nonatomic, retain) NSString *description;
22 @property (nonatomic, retain) id data;
23
24 // creates a new MediaItem with the given type, description and data
25 - (id)initWithType:(MediaType)theType description:
26 (NSString *)theDescription data:(id)theData;
27 @end // end interface MediaItem

Fig. 13.5 | MediaItem class represents an image or a video.

1 // MediaItem.m
2 // MediaItem class implementation.
3 #import "MediaItem.h"

4
5 @implementation MediaItem

Fig. 13.6 | MediaItem class implementation. (Part 1 of 2.)

@interface MediaItem : NSObject <NSCoding>

Download from <www.wowebook.com>

ptg

284 Chapter 13 Enhanced Slideshow App

The initWithCoder: method (lines 27–43) decodes each of MediaItem’s instance
variables from the given NSCoder. This method is called to deserialize a MediaItem. Line

6
7 @synthesize type; // generate get and set methods for type
8 @synthesize description; // generate get and set methods for description
9 @synthesize data; // generate get and set methods for data

10
11 // initalize the Media type with the given type, description and data
12 - (id)initWithType:(MediaType)theType description:
13 (NSString *)theDescription data:(id)theData
14 {
15 // if the superclass initializes properly
16 if (self = [super init])
17 {
18 self.type = theType; // update type with the given type
19 self.description = theDescription; // update description
20 self.data = theData; // update data with the given data
21 } // end if
22
23 return self; // return this object
24 } // end method initWithType:description:data:
25
26 // initialize the MediaItem with the given NSCoder
27
28 {
29 // if the superclass initializes properly
30 if (self = [super init])
31 {
32 // get the type from the NSCoder
33
34
35 // get the description from the NSCoder
36
37
38 // get the data from the NSCoder
39
40 } // end if
41
42 return self; // return this object
43 } // end method initWithCoder:
44
45 // encode this object into the given NSCoder
46
47 {
48
49
50 // encode description
51
52
53 } // end method encodeWithCoder:
54 @end // end class MediaItem

Fig. 13.6 | MediaItem class implementation. (Part 2 of 2.)

- (id)initWithCoder:(NSCoder *)decoder

self.type = [decoder decodeIntForKey:@"type"];

self.description = [decoder decodeObjectForKey:@"description"];

self.data = [decoder decodeObjectForKey:@"data"];

- (void)encodeWithCoder:(NSCoder *)coder

[coder encodeInt:type forKey:@"type"]; // encode type

[coder encodeObject:description forKey:@"description"];
[coder encodeObject:data forKey:@"data"]; // encode data

Download from <www.wowebook.com>

ptg

13.4 Building the App 285

33 decodes a value for the MediaType using NSCoder’s decodeIntForKey: method. We
supply "type" as the key for this decoding since we use this same key when encoding this
instance variable. Lines 36 and 39 decode values for MediaItem’s remaining instance vari-
ables using NSCoder’s decodeObjectForKey: method.

The encodeWithCoder: method (lines 46–53) serializes the MediaItem by encoding
each of MediaItem’s instance variables using the given NSCoder. Line 48 passes the key
"type" to NSCoder’s encodeIntForKey: method. The key identifies the encoding and is
required for decoding. Lines 51–52 encode MediaItem’s remaining instance variables
using NSCoder’s encodeObjectForKey: method.

MediaItemCreator Interface Declaration
The new class MediaItemCreator (Fig. 13.7) controls a view that allows the user to title a
selected video. Lines 10–11 declare MediaItemCreator’s delegate and the Text Field used
to enter a video name. The NSURL variable media stores the location of the video that is
being titled. Lines 16–17 declare delegate and media as properties. Method finished-
Naming: (line 20) passes the video’s name to the delegate when the user touches the
“Done” Button on the keyboard. Lines 27–28 declare the NameChooserDelegate. Method
mediaItemCreator:didCreateMediaItem: is called to pass the new video MediaItem to
the delegate.

1 // MediaItemCreator.h
2 // Presents the user with an interface for creating a MediaItem.
3 #import <UIKit/UIKit.h>
4 #import "MediaItem.h"

5
6 @protocol NameChooserDelegate;
7
8 @interface MediaItemCreator : UIViewController
9 {

10 id <NameChooserDelegate> delegate; // this class's delegate
11 IBOutlet UITextField *textField; // text field where user enters a name
12 NSURL *media; // the video
13 } // end instance variable declaration
14
15 // declare delegate and media as properties
16 @property (nonatomic, assign) id <NameChooserDelegate> delegate;
17 @property (nonatomic, retain) NSURL *media;
18
19 // called when the user is finished naming the media
20 - (IBAction)finishedNaming:sender;
21 @end // end interface NameChooser
22
23 // NameChooserDelegate
24 @protocol NameChooserDelegate
25
26 // informs the delegate that this object has finished creating a MediaItem
27 - (void)mediaItemCreator:(MediaItemCreator *)creator didCreateMediaItem:
28 (MediaItem *)item;
29 @end // end protocol NameChooserDelegate

Fig. 13.7 | Presents the user with an interface for creating a MediaItem.

Download from <www.wowebook.com>

ptg

286 Chapter 13 Enhanced Slideshow App

To build this view’s GUI, open MediaItemCreator.xib in Interface builder then add
a Label and set its text to Add a label for the video. Add a Text Field below the Label then
open the Inspector window and connect the finishedNaming: method to the Text Field’s
Did End On Exit event in the Inspector window.

MeidaItemCreator Class Definition
Lines 7–8 of class MediaItemCreator (Fig. 13.8) synthesize properties delegate and
media. This viewDidLoad method (lines 11–15) sets up MediaItemCreator’s view. We call
the superclass’s viewDidLoad method (line 13) then call UITextField’s becomeFirstRe-
sponder method to select the “Add a label for the video” Text Field (line 14). This displays
the keyboard. The finishedNaming: method (lines 18–26) creates a new MediaItem that
is labeled using the textField’s text property (lines 21–22) and passes the MediaItem to
the delegate’s mediaItemCreator:didCreateMediaItem: method (line 25). This passes
to the SlideshowDataViewController a MediaItem representing the selected video with
the user-entered title.

13.4.2 Class Slideshow
The Slideshow class (Fig. 13.9) represents a user-created slideshow. In the original Slide-
show app, we did not create a separate class to represent slideshows. The increased com-
plexity of slideshows in the Enhanced Slideshow app and the requirements for archiving
slideshows make it important to follow the Model-View-Controller design pattern. So we

1 // MediaItemCreator.m
2 // MediaItemCreator class implementation.
3 #import "MediaItemCreator.h"

4
5 @implementation MediaItemCreator
6
7 @synthesize delegate; // generate get and set methods for delegate
8 @synthesize media; // generate get and set method for media
9

10 // set up the main view
11 - (void)viewDidLoad
12 {
13 [super viewDidLoad]; // call the superclass's viewDidLoad method
14 [textField becomeFirstResponder]; // make the keyboard appear
15 } // end method viewDidLoad
16
17 // called when the user touches the Done button on the keyboard
18 - (IBAction)finishedNaming:sender
19 {
20 // create a new MediaItem with the text the user entered
21 MediaItem *item = [[MediaItem alloc] initWithType:MediaTypeVideo
22 description:textField.text data:media];
23
24 // pass the MediaItem to the delegate
25 [delegate mediaItemCreator:self didCreateMediaItem:item];
26 } // end method finishedNaming:
27 @end // end MediaItemCreator class

Fig. 13.8 | MediaItemCreator class implementation.

Download from <www.wowebook.com>

ptg

13.4 Building the App 287

create a new class representing a slideshow. The Enhanced Slideshow app adds an enumer-
ation constant to the TransitionEffect enum (lines 8–13). TransitionEffectFlip (line
12) represents an image transition which flips the previous image horizontally to reveal the
next image on its the backside.

The NSMutableArray variable media stores the images and videos in this Slideshow
(line 18). Line 19 declares an MPMediaItemCollection that stores the background music
for a Slideshow. We use a TransitionEffect (line 20) to represent the type of animated
transition between this Slideshow’s slides. An NSString stores this Slideshow’s title. Lines
25–28 declare Slideshow’s instance variables as properties. Slideshow’s firstImage
method (lines 30) returns the Slideshow’s first image, which will not be the first slide if
the Slideshow starts with a video.

1 // Slideshow.h
2 // Interface for class which represents a slideshow.
3 #import <Foundation/Foundation.h>
4 #import <MediaPlayer/MediaPlayer.h>
5 #import "MediaItem.h"

6
7 // the transition effect in the slideshow
8 typedef enum _transitionEffects
9 {

10 TransitionEffectFade = 0, // fade from one slide to the next
11 TransitionEffectSlide = 1, // move next slide in from the right
12
13 } TransitionEffect;
14
15 // Slideshow interface
16 @interface Slideshow : NSObject <NSCoding>
17 {
18 NSMutableArray *media; // the slides in the slideshow
19 MPMediaItemCollection *music; // the music for the slideshow
20 TransitionEffect effect; // the effect to transition between slides
21 NSString *title; // the slideshow's title
22 } // end instance variable declaration
23
24 // declare music, effect, media and title as properties
25 @property (nonatomic, retain) MPMediaItemCollection *music;
26 @property TransitionEffect effect;
27 @property (nonatomic, retain) NSMutableArray *media;
28 @property (nonatomic, retain) NSString *title;
29
30 - (UIImage *)firstImage; // returns the first image in the slideshow
31 @end // end interface Slideshow
32
33 // NSCoding category
34 @interface UIImage (NSCoding) // add NSCoding protocol methods to UIImage
35
36
37 @end // end Slideshow class

Fig. 13.9 | Interface for class Slideshow which represents a slideshow.

TransitionEffectFlip = 2, // flip from one slide to the next

- (id)initWithCoder:(NSCoder *)decoder; // create slideshow from archive
- (void)encodeWithCoder:(NSCoder *)encoder; // archive slideshow

Download from <www.wowebook.com>

ptg

288 Chapter 13 Enhanced Slideshow App

Lines 34–37 declare a category named NSCoding which adds the two NSCoding pro-
tocol methods to UIImage (lines 35–36). The initWithCoder: method uses an NSCoder
to deserialize a UIImage and the encodeWithCoder: method uses an NSCoder to serialize a
UIImage.

Methods init and initWithCoder: of Class Slideshow
The init method (Fig. 13.10, lines 12–20) calls the superclass’s init method (line 16)
then initializes the media NSMutableArray (line 17). The initWithCoder: method (lines
23–42) receives an NSCoder that is used to deserialize a Slideshow. Lines 29–38 use
NSCoder’s decodeObjectForKey method to deserialize each Slideshow instance variable.

1 // Slideshow.m
2 // Represents a slideshow.
3 #import "Slideshow.h"

4
5 @implementation Slideshow
6
7 @synthesize media; // generate get and set methods for media
8 @synthesize music; // generate get and set methods for music
9 @synthesize effect; // generate get and set methods for effect

10 @synthesize title; // generate get and set methods for title
11
12 // initialize this object
13 - (id)init
14 {
15 // if the superclass initializes properly
16 if (self = [super init])
17 media = [[NSMutableArray alloc] init]; // initialize media
18
19 return self; // return this object
20 } // end method init
21
22 // initialize this object from the given NSCoder
23
24 {
25 // if the superclass initializes properly
26 if (self = [super init])
27 {
28 // decode media from the NSCoder
29
30
31 // decode effect from the NSCoder
32
33
34 // decode music from the NSCoder
35
36
37 // decode title from the NSCoder
38
39 } // end if
40

Fig. 13.10 | Methods init and initWithCoder: of class Slideshow. (Part 1 of 2.)

- (id)initWithCoder:(NSCoder *)decoder

self.media = [decoder decodeObjectForKey:@"media"];

self.effect = [decoder decodeIntForKey:@"effect"];

self.music = [decoder decodeObjectForKey:@"music"];

self.title = [decoder decodeObjectForKey:@"title"];

Download from <www.wowebook.com>

ptg

13.4 Building the App 289

Methods encodeWithCoder: and firstImage of Class Slideshow
The encodeWithCoder: method (Fig. 13.11, lines 45–51) uses NSCoder’s encodeOb-
ject:forKey: method to serialize Slideshow’s media, music and title instance variables.
We can encode the media because we made MediaItem implement the NSCoding protocol
earlier in the chapter. We use NSCoder’s encodeInt:forKey: method to serialize the Tran-
sitionEffect enum value because an enum is equivallent to an int.

The firstImage method (lines 54–73) returns the first image slide in this Slideshow.
Lines 60–70 loop through each MediaItem and check if its type property is MediaType-
Image (line 65). If it is, this MediaItem represents a picture and is assigned to firstImage
(line 67). Line 68 sets found to YES indicating that the first image has been found.

41 return self; // return this object
42 } // initWithCoder:
43

44 // encode this object into the given NSCoder
45
46
47
48
49
50
51
52
53 // returns the first image in this slideshow
54 - (UIImage *)firstImage
55 {
56 UIImage *firstImage = nil; // set first image to nil until we find one
57 BOOL found = NO; // we’ve not found the first image yet
58
59 // loop through each slide
60 for (int i = 0; i < media.count && !found; i++)
61 {
62 MediaItem *item = [media objectAtIndex:i]; // get slide at index i
63
64 // if the slide is an image
65 if (item.type == MediaTypeImage)
66 {
67 firstImage = item.data; // assign item to firstImage
68 found = YES; // we found the first image
69 } // end if
70 } // end for
71
72 return firstImage; // return the first image
73 } // end method firstImage
74

Fig. 13.11 | Methods encodeWithCoder: and firstImage of class Slideshow. (Part 1 of 2.)

Fig. 13.10 | Methods init and initWithCoder: of class Slideshow. (Part 2 of 2.)

- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeObject:media forKey:@"media"]; // encode media
 [coder encodeInt:effect forKey:@"effect"]; // encode effect
 [coder encodeObject:music forKey:@"music"]; // encode music
 [coder encodeObject:title forKey:@"title"]; // encode title
} // end method encodeWithCoder:

Download from <www.wowebook.com>

ptg

290 Chapter 13 Enhanced Slideshow App

NSCoding category For UIImage
Class UIImage does not implement the NSCoding protocol, so we use the category feature
of Objective-C to add the required serialization methods to UIImage. Method initWith-
Coder: (Fig. 13.12, lines 89–100) initializes a UIImage using an NSCoder. NSCoder’s
decodeObjectForKey: method returns an NSData object representing the UIImage (line
94). We pass this to UIImage’s initWithData: method to initialize the UIImage from the
saved data (line 95).

75 // release this object's memory
76 - (void)dealloc
77 {
78 [media release]; // release the media NSMutableArray
79 [music release]; // release the music MPMediaItemCollection
80 [title release]; // release the title NSString
81 [super dealloc]; // call the superclass's dealloc method
82 } // end method dealloc
83 @end // end Slideshow class
84

85 // NSCoding category for UIImage
86 @implementation UIImage (NSCoding)
87
88 // initialize the UIImage with the given NSCoder
89 - (id)initWithCoder:(NSCoder *)decoder
90 {
91 // if the superclass initializes properly
92 if (self = [super init])
93 {
94 // decode the NSData from the NSCoder
95 NSData *data = [decoder decodeObjectForKey:@"UIImage"];
96 self = [self initWithData:data]; // initialize the UIImage with data
97 } // end if
98
99 return self; // return this object
100 } // end method initWithCoder:
101
102 // encode the UIImage into the given NSCoder
103 - (void)encodeWithCoder:(NSCoder *)encoder
104 {
105 // get the PNG representation of the UIImage
106
107
108 // encode the data using the NSCoder
109
110 } // end method encodeWithCoder:
111 @end // end NSCoding category

Fig. 13.12 | NSCoding category For UIImage.

Fig. 13.11 | Methods encodeWithCoder: and firstImage of class Slideshow. (Part 2 of 2.)

NSData *data = UIImagePNGRepresentation(self);

[encoder encodeObject:data forKey:@"UIImage"];

Download from <www.wowebook.com>

ptg

13.4 Building the App 291

The encodeWithCoder: method (lines 103 –110) gets an NSData object representing
this UIImage using the UIImagePNGRepresentation function (line 105). We then serialize
this object by passing the NSData object to NSCoder’s encodeObject:forKey: method
(line 108).

13.4.3 Class RootViewController
This section shows only the updated portions of the RootViewController class from
Section 12.4.1.

Method viewDidLoad of class RootViewController
RootViewController’s viewDidLoad method (Fig. 13.13) loads the list of slideshows from
the app’s data directory on the iPhone each time RootViewController’s view is loaded.
Lines 15–16 call the NSSearchPathForDirectoriesInDomains function to get an NSArray
containing one element—the path for this app’s documents directory. We retrieve this di-
rectory path (line 19), then append the name of the slideshow data file (data.slideshow)
to the app’s data directory.

9 // set up the main view
10 - (void)viewDidLoad
11 {
12 [super viewDidLoad]; // call the superclass's viewDidLoad method
13
14 // find this app's documents directory
15 NSArray *paths = NSSearchPathForDirectoriesInDomains(
16 NSDocumentDirectory, NSUserDomainMask, YES);
17
18 // get the first directory
19 NSString *directory = [paths objectAtIndex:0];
20
21 // concatenate the file name "data.slideshows" to the end of the path
22 NSString *filePath = [[NSString alloc] initWithString:
23 [directory stringByAppendingPathComponent:@"data.slideshows"]];
24
25 // unarchive slideshows from the file data.slideshows
26
27
28 [filePath release]; // release the filePath NSString
29
30 // if no data was unarchived from data.slideshows
31 if (slideshows == nil)
32 slideshows = [[NSMutableArray alloc] init]; // create slideshows
33
34 [self.navigationItem setTitle:@"Slideshows"]; // set the bar title
35
36 // create the New Slideshow button for adding a new slideshow
37 UIBarButtonItem *newSlideshowButton = [[UIBarButtonItem alloc]
38 initWithTitle:@"New" style:UIBarButtonItemStylePlain target:self
39 action:@selector(addSlideshow)];
40

Fig. 13.13 | Method viewDidLoad of class RootViewController. (Part 1 of 2.)

slideshows =
 [[NSKeyedUnarchiver unarchiveObjectWithFile:filePath] mutableCopy];

Download from <www.wowebook.com>

ptg

292 Chapter 13 Enhanced Slideshow App

Lines 26–27 get an NSMutableArray containing all of the slideshows by deserializing
the data.slideshows file. NSKeyedUnarchiver’s unarchiveObjectWithFile: method
returns an object graph of type id, representing the NSArray of saved slideshows. NSKeyed-
Unarchiver is a concrete subclass of NSCoder that deserializes an object. NSObject’s muta-
bleCopy method converts the NSArray to an NSMutableArray. If there are no saved
slideshows, we initialize slideshows as a new NSMutableArray (lines 31–32). Lines 34–55
set up the app’s navigation bar the same way as in the original Slideshow app.

Method nameViewController:didGetName: of class RootViewController
The nameViewController:didGetName: method (Fig. 13.14) is called when the user fin-
ishes entering a name for a new slideshow. UIViewController’s dismissModalViewCon-
trollerAnimated: method hides the NameViewController’s view (line 85). Lines 88–89
create a new Slideshow and set its title property to the given NSString. We then create
a new SlideshowDataViewController using the initWithSlideshow: method (lines 92–
93). We call NSMutableArray’s addObject: method to add the new Slideshow to the list
of Slideshows.

41 // create the back button for when the user navigates away
42 UIBarButtonItem *backButton = [[UIBarButtonItem alloc]
43 initWithTitle:@"Back" style:UIBarButtonItemStylePlain target:nil
44 action:nil];
45
46 // add the "New" Button to the right side of the navigation bar
47 self.navigationItem.rightBarButtonItem = newSlideshowButton;
48
49 // add the "Edit" Button to the left side of the navigation bar
50 self.navigationItem.leftBarButtonItem = self.editButtonItem;
51
52 // set the back button to be displayed when the user navigates away
53 [self.navigationItem setBackBarButtonItem:backButton];
54 [newSlideshowButton release]; // release the newSlideshowButton
55 [backButton release]; // release the backButton
56 } // end method viewDidLoad

80 // called when the user picks a name using the NameViewController
81 - (void)nameViewController:(NameViewController *)controller
82 didGetName:(NSString *)name
83 {
84 // hide the NameViewContorller
85 [self dismissModalViewControllerAnimated:YES];
86
87 // create a new Slideshow
88 Slideshow *slideshow = [[Slideshow alloc] init];
89 slideshow.title = name; // update slideshow's name
90

Fig. 13.14 | Method nameViewController:didGetName: of class RootViewController.
(Part 1 of 2.)

Fig. 13.13 | Method viewDidLoad of class RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

13.4 Building the App 293

Method slideshowCellDidSelectEditButton: of class RootViewController
Method slideshowCellDidSelectEditButton: (Fig. 13.15) displays the view for editing
the selected Slideshow. Line 107 calls method UITableView’s indexPathForCell: to get
an NSIndexPath representing the index of the touched UITableViewCell. We create a new
SlideshowDataViewController using its initWithSlideshow method (lines 110–112).
Line 112 gets the selected Slideshow by passing the NSIndexPath’s row property to NS-
MutableArray method objectAtIndex:. Lines 115–116 call UINavigationController’s
pushViewController:animated: method to display the Slideshow-editing view.

Method tableView:cellForRowAtIndexPath: of Class RootViewController
Method tableView:cellForRowAtIndexPath: (Fig. 13.16) retrieves the UITableView-
Cell specified by the given NSIndexPath. Lines 153–165 attempt to reuse a cell from the
given tableView using UITableView’s dequeReusableCellWithIdentifier: method. We
set the new SlideshowCell’s delegate to this RootViewController (line 167). Line 170
sets the UITableViewCell’s selectionStyle property to UITableViewCellSelection-
StyleNone so that no action is taken when the UITableViewCell is touched. Line 173 gets

91 // create a new SlideshowDataViewController with the Slideshow
92 SlideshowDataViewController *dataController =
93 [[SlideshowDataViewController alloc] initWithSlideshow:slideshow];
94 [slideshows addObject:slideshow]; // add to the list of slideshows
95
96 // show the slideshow creator
97 [self.navigationController pushViewController:dataController
98 animated:YES];
99 [slideshow release]; // release the Slideshow
100 [dataController release]; // release the SlideshowDataViewController
101 } // end method nameViewController:didGetName:

103 // called when the user touched the edit button of a SlideshowCell
104 - (void)slideshowCellDidSelectEditButton:(SlideshowCell *)cell
105 {
106 // find the index path where the given cell is located
107 NSIndexPath *indexPath = [self.tableView indexPathForCell:cell];
108
109 // create a new SlideshowDataViewController
110 SlideshowDataViewController *controller =
111 [[SlideshowDataViewController alloc] initWithSlideshow:
112 [slideshows objectAtIndex:indexPath.row]];
113
114 // show the SlideshowDataViewController
115 [self.navigationController pushViewController:controller
116 animated:YES];
117 } // end method slideshowCellDidSelectPlayButton:

Fig. 13.15 | Method slideshowCellDidSelectEditButton: of class
RootViewController.

Fig. 13.14 | Method nameViewController:didGetName: of class RootViewController.
(Part 2 of 2.)

Download from <www.wowebook.com>

ptg

294 Chapter 13 Enhanced Slideshow App

the SlideShow corresponding to the touched UITableViewCell. Line 176 calls the Slide-
show’s firstImage method to get a UIImage representing the first picture in the selected
Slideshow. Lines 177–178 set the SlideshowCell’s thumbnail to that UIImage and title
to the Slideshow’s title.

13.4.4 Class SlideshowDataViewController
This section shows only the updated portions of the SlideshowDataViewController class
from Section 12.4.4.

Method initWithSlideshow: of Class SlideshowDataViewController
The Enhanced Slideshow app’s SlideshowDataViewController class (Fig. 13.17) has one
additional instance variable not in the original Slideshow app. The slideshow currently be-
ing edited is stored as a pointer to an object of the new Slideshow class. Line 13 sets this
slideshow instance variable to the given Slideshow and calls its retain method—increas-
ing its retain count by one and ensuring that the Slideshow’s memory is not freed until
the SlideshowViewController no longer needs it.

149 // called by the table view to get the cells it needs to populate itself
150 - (UITableViewCell *)tableView:(UITableView *)tableView
151 cellForRowAtIndexPath:(NSIndexPath *)indexPath
152 {
153 static NSString *CellIdentifier = @"SlideshowCell";
154
155 // get a reusable cell
156 SlideshowCell *cell = (SlideshowCell *)[tableView
157 dequeueReusableCellWithIdentifier:CellIdentifier];
158
159 // if no reusable cells are available, create one
160 if (cell == nil)
161 {
162 cell = [[[SlideshowCell alloc] initWithStyle:
163 UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
164 autorelease];
165 } // end if
166
167 cell.delegate = self; // set cell’s delegate to this controller
168
169 // make the cell do nothing when selected
170 cell.selectionStyle = UITableViewCellSelectionStyleNone;
171
172 // get the Slideshow for the given row
173 Slideshow *slideshow = [slideshows objectAtIndex:indexPath.row];
174
175 // get the first image in the Slideshow at the correct index
176 UIImage *image = [slideshow firstImage];
177 cell.thumbnail.image = image; // set the cell's thumbnail image
178 cell.title.text = slideshow.title; // set the cell’s title
179
180 return cell; // return the configured cell to the table view
181 } // end method tableView:cellForRowAtIndexPath:

Fig. 13.16 | Method tableView:cellForRowAtIndexPath: of class RootViewController.

Download from <www.wowebook.com>

ptg

13.4 Building the App 295

Method addPhoto of Class SlideshowDataViewController
The addPhoto method (Fig. 13.18) allows the user to choose an image or video from the
photo library and add it to the slideshow when the user touches the “Add Picture/Video”
Bar Button Item. First, we initialize the UIImagePickerController if it hasn’t been initial-
ized yet (lines 137–140). We set the allowsImageEditing property to YES (line 141) to
allow the user to edit the image or video before it’s added to the slideshow. For example,
the user can zoom into a particular part of an image with a pinch gesture, or the user can
trim a video by dragging the handles at the left or right side of the video’s thumbnail strip
at the top of the screen. We set the sourceType to UIImagePickerControllerSource-
TypePhotoLibrary to specify that the image or video is to be picked from the user’s photo
library. Lines 148–150 call UIImagePickerController’s availableMediaTypesFor-
SourceType method, passing as an argument the source type representing the iPhone’s
photo library (UIImagePickerControllerSourceTypePhotoLibrary). We assign the re-
sult to imagePicker’s mediaTypes property to specify that we want the imagePicker to
display both images and videos. We then show the imagePicker (line 157).

8 // initialize with the given slideshow
9 - (id)initWithSlideshow:(Slideshow *)show

10 {
11 // if the superclass initializes properly
12 if (self = [super init])
13 slideshow = [show retain]; // take ownership of the Slideshow
14
15 return self; // return this object
16 } // end method initWithSlideshow

Fig. 13.17 | Method initWithSlideshow: of class SlideshowDataViewController.

133 // prompts the user to add a new photo or video to the slideshow
134 - (void)addPhoto
135 {
136 // if imagePicker hasn't been initialized yet
137 if (imagePicker == nil)
138 {
139 // create the image picker
140 imagePicker = [[UIImagePickerController alloc] init];
141 imagePicker.allowsEditing = YES; // allow user to edit images
142
143 // pick images from the photo library
144 imagePicker.sourceType =
145 UIImagePickerControllerSourceTypePhotoLibrary;
146
147 // allow all media types available in the photo library
148
149
150
151 imagePicker.delegate = self; // set delegate to this object
152 } // end if

Fig. 13.18 | Method addPhoto of class SlideshowDataViewController. (Part 1 of 2.)

imagePicker.mediaTypes =
 [UIImagePickerController availableMediaTypesForSourceType:

UIImagePickerControllerSourceTypePhotoLibrary];

Download from <www.wowebook.com>

ptg

296 Chapter 13 Enhanced Slideshow App

Method imagePickerController:didFinishPickingMediaWithInfo: of Class
SlideshowDataViewController

The imagePickerController:didFinishPickingMediaWithInfo: method (Fig. 13.19) is
called when the user adds an image or video from the image picker to the slideshow. Line
165 hides the image picker by calling UIViewController’s dismissModalViewController-
Animated: method. The info NSDictionary contains information on the chosen image or
video. We use NSDictionary’s valueForKey: method to get info’s value for key UIImage-
PickerControllerMediaType (line 168). If this value equals kuTypeImage, we know the
user touched an image. Lines 172–173 get info’s UIImage for key UIImagePickerCon-
trollerEditedImage. This is the user’s chosen picture. We then create a new MediaItem
using the UIImage and add the MediaItem to the Slideshow (lines 176–180). Line 183 gets
SlideshowDataViewController’s UITableView. We then insert the new MediaItem into
the UITableView of slides (lines 186–188).

153
154 returnFromImagePicker = YES; // we’re going to the image picker
155
156 // show the image picker
157 [self presentModalViewController:imagePicker animated:YES];
158 } // end method addPhoto

160 // called when the user finishes picking a photo or video
161 - (void)imagePickerController:(UIImagePickerController *)picker
162 didFinishPickingMediaWithInfo:(NSDictionary *)info
163 {
164 // make the image picker go away
165 [self dismissModalViewControllerAnimated:NO];
166
167 // if the user chose an image
168
169 isEqualToString:kUTTypeImage])
170 {
171 // get the image the user chose
172 UIImage *image =
173 [info objectForKey:UIImagePickerControllerEditedImage];
174
175 // create a MediaItem with the image
176 MediaItem *item = [[MediaItem alloc] initWithType:MediaTypeImage
177 description:nil data:image];
178
179 // add the MediaItem to the slideshow
180 [slideshow.media addObject:item];
181
182 // insert the new image into the table
183 UITableView *table = (UITableView *)self.view;

Fig. 13.19 | Method imagePickerController:didFinishPickingMediaWithInfo: of
class SlideshowDataViewController. (Part 1 of 2.)

Fig. 13.18 | Method addPhoto of class SlideshowDataViewController. (Part 2 of 2.)

if ([[info valueForKey:@"UIImagePickerControllerMediaType"]

Download from <www.wowebook.com>

ptg

13.4 Building the App 297

If the user did not touch an image they must have touched a video. Line 193 gets
info’s NSURL for the key UIImagePickerControllerMediaURL. This represents the chosen
video’s location on the iPhone. We use NSURL’s absoluteString method to get a NSString
representing the URL then call NSString’s lastPathComponent to extract the video’s
name from the end of its file path. The NSSearchPathForDirectoriesInDomains function

184
185 // insert a new row in the table for the new picture
186 [table insertRowsAtIndexPaths:[NSArray arrayWithObject:[NSIndexPath
187 indexPathForRow:slideshow.media.count - 1 inSection:0]]
188 withRowAnimation:UITableViewRowAnimationRight];
189 } // end if
190 else // if the user chose a video
191 {
192 // get the URL for the selected video
193 NSURL *url = [info objectForKey:UIImagePickerControllerMediaURL];
194
195 // get the name of the video
196 NSString *name = [[url absoluteString] lastPathComponent];
197
198 // find the location of this app's documents directory
199 NSArray *paths = NSSearchPathForDirectoriesInDomains(
200 NSDocumentDirectory, NSUserDomainMask, YES);
201
202 // get the first directory
203 NSString *directory = [paths objectAtIndex:0];
204
205 // create a path in the documents directory for the video
206 NSString *newPath = [directory stringByAppendingPathComponent:name];
207
208 // get the default file manager
209 NSFileManager *manager = [NSFileManager defaultManager];
210
211 // move video from the temporary directory to documents directory
212 [manager copyItemAtPath:[url path] toPath:newPath error:nil];
213
214
215
216
217
218
219
220
221
222 // show the MediaItemCreator
223 [self presentModalViewController:creator animated:YES];
224 [creator release]; // release the creator MediaItemCreator
225 } // end else
226 } // end method imagePickerController:didFinishPickingMediaWithInfo:
227

Fig. 13.19 | Method imagePickerController:didFinishPickingMediaWithInfo: of
class SlideshowDataViewController. (Part 2 of 2.)

// create a new MediaItemCreator
MediaItemCreator *creator = [[MediaItemCreator alloc]
 initWithNibName:@"MediaItemCreator" bundle:nil];
creator.delegate = self; // set delegate to this object

// set the media to the chosen video
creator.media = [NSURL fileURLWithPath:newPath];

Download from <www.wowebook.com>

ptg

298 Chapter 13 Enhanced Slideshow App

returns an NSString representing the directory path for this app’s documents directory
(lines 199–200). The video file was automatically saved in a temporary directory. We need
to move the video out of this directory, so that it’s not deleted when the app closes.
NSString’s stringByAppendingPathComponent: method is used to append the video’s
name to the end of the documents directory path to get the video’s current file path (line
202). Line 209 gets the default NSFileManager. NSFileManager’s copyItemAtPath:new-
Path:error: method is used to move the video file from the temporary directory to the
app’s data directory. We get the path for the video file in the temporary directory is saved
using NSURL’s path method (line 212).

Lines 215–217 create a new MediaItemCreator and set its delegate to self. We use
NSURL’s fileURLWithPath: method to convert the video file path in the app’s data direc-
tory to an NSURL (line 220). Line 226 calls UIViewController’s presentModalViewCon-
troller:animated: method to display MediaItemCreator’s view.

Method mediaItemCreator:didCreateMediaItem: of Class SlideshowData-
ViewController

The mediaItemCreator:didCreateMediaItem: method (Fig. 13.20) is called when the
user finishes naming a video MediaItem using MediaItemCreator’s view. Line 232 adds
the MediaItem to the current Slideshow. Lines 238–243 add a new row displaying the
new MediaItem to SlideshowDataViewController’s UITableView and hides MediaItem-
Creator’s view.

Methods mediaPicker:didPickMediaItems: and addEffect of Class Slide-
showDataViewController

The mediaPicker:addPickMediaItems: method (Fig. 13.21, lines 263–271) is called
when the user touches the “Done” Button after selecting songs from the iPod music library.
Line 267 assigns the MPMediaItemCollection containing the selected songs to the Slide-
show’s music property. UIViewController’s dismissModalViewControllerAnimated:

228 // called when the user finishes naming the media
229 - (void)mediaItemCreator:(MediaItemCreator *)creator didCreateMediaItem:
230 (MediaItem *)item;
231 {
232 [slideshow.media addObject:item]; // add the media to the slideshow
233
234 // add a new row in the table for the media
235 UITableView *table = (UITableView *)self.view;
236
237 // insert a new row in the table for the new picture
238 [table insertRowsAtIndexPaths:[NSArray arrayWithObject:[NSIndexPath
239 indexPathForRow:slideshow.media.count - 1 inSection:0]]
240 withRowAnimation:UITableViewRowAnimationRight];
241
242 // dismiss the MediaItemCreator
243 [self dismissModalViewControllerAnimated:YES];
244 } // end method mediaItemCreator:didCreateMediaItem:

Fig. 13.20 | Method mediaItemCreator:didCreateMediaItem: of class
SlideshowDataViewController.

Download from <www.wowebook.com>

ptg

13.4 Building the App 299

removes the media picker from view (line 270). The addEffect method (lines 274–286)
displays a UIActionSheet when the user touches the “Add Effect” Button. Lines 280–282
create the UIActionSheet that displays the transition options. We add the Flip effect as a
third argument to otherButtonTitles:.

Methods startSlideshow and actionSheet:clickedButtonAtIndex: of Class
SlideshowDataViewController

Method startSlideshow (Fig. 13.22, lines 289–303) begins the slideshow. First, we cre-
ate the SlideshowViewController (lines 291–292) then set its slideshow property to the
current Slideshow (line 295). We hide the navigation bar (line 298) then show the Slide-
showViewController using UINavigationController’s pushViewController:animat-
ed: method (line 301). Method actionSheet:clickedButtonAtIndex: (lines 306–310)
sets this Slideshow’s effect property to the given NSInteger representing the effect the
user selected. This saves the user’s choice of image transition effect.

262 // called when the user touches the done button in the media picker
263 - (void)mediaPicker: (MPMediaPickerController *)mediaPicker
264 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection
265 {
266 // update the music of the slideshow
267 slideshow.music = mediaItemCollection;
268
269 // make the media picker go away
270 [self dismissModalViewControllerAnimated:YES];
271 } // end method mediaPicker:didPickMediaItems:
272
273 // called when the user touches the "Add Effect" Button
274 - (void)addEffect
275 {
276 // if effectSheet hasn't been created yet
277 if (effectSheet == nil)
278 {
279 // create a new sheet with the given title and button titles
280 effectSheet = [[UIActionSheet alloc] initWithTitle:@"Choose Effect"
281 delegate:self cancelButtonTitle:nil destructiveButtonTitle:nil
282 otherButtonTitles:@"Fade", @"Slide", @"Flip", nil];
283 } // end if
284
285 [effectSheet showInView:self.view]; // show the sheet
286 } // end method addEffect
287

Fig. 13.21 | Methods mediaPicker:didPickMediaItems: and addEffect of class
SlideshowDataViewController.

288 // called when the user touches the Start Slideshow button
289 - (void)startSlideshow
290 {

Fig. 13.22 | Methods startSlideshow and actionSheet:clickedButtonAtIndex: of class
SlideshowDataViewController. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

300 Chapter 13 Enhanced Slideshow App

Method tableView:cellForRowAtIndexPath: of Class SlideshowDataView-
Controller

Method tableView:cellForRowAtIndexPath: (Fig. 13.23) retrieves the UITableView-
Cell at the given NSIndexPath. Lines 328–339 attempt to reuse a cell from the tableView.
We empty any subviews from the UITableViewCell using UIView’s removeFromSuper-
View method (lines 342–343). Line 346 gets the MediaItem corresponding to the touched
UITableViewCell. If this MediaItem’s type is MediaTypeImage, the MediaItem represents
an image so we access its data property to receive a UIImage (349–352). Line 355 creates
a new UIImageView using the retrieved UIImage, then resizes it to fit the cell (lines 358–
367). We then add the configured UIImageView to the cell (line 368). If the MediaItem
represents a video, we need to title the UITableCell with the video’s title. Lines 376–378
create a new UILabel and set its text to “Video:” followed by the MediaItem’s descrip-
tion. Lines 379–383 size and position the Label then add it to the UITableViewCell.

291 SlideshowViewController *controller =
292 [[SlideshowViewController alloc] init];
293
294 // set the pictures to appear in the slideshow
295 controller.slideshow = slideshow;
296
297 // hide the navigation bar so the screen is clear for the slideshow
298 [self.navigationController setNavigationBarHidden:YES animated:YES];
299
300 // show the view that shows the slideshow
301 [self.navigationController pushViewController:controller animated:YES];
302 [controller release]; // release the controller SlideshowViewController
303 } // end method startSlideshow
304
305 // called when the user touches one of the options in the effect sheet
306 - (void)actionSheet:(UIActionSheet *)actionSheet clickedButtonAtIndex:
307 (NSInteger)buttonIndex
308 {
309 slideshow.effect = buttonIndex; // update the selected effect
310 } // end method actionSheet:clickedButtonAtIndex:

324 // called by the table view to get the cells it needs to populate itself
325 - (UITableViewCell *)tableView:(UITableView *)tableView
326 cellForRowAtIndexPath:(NSIndexPath *)indexPath
327 {
328 static NSString *CellIdentifier = @"Cell";
329
330 // get a reused cell
331 UITableViewCell *cell =
332 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

Fig. 13.23 | Method tableView:cellForRowAtIndexPath: of class
SlideshowDataViewController. (Part 1 of 3.)

Fig. 13.22 | Methods startSlideshow and actionSheet:clickedButtonAtIndex: of class
SlideshowDataViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

13.4 Building the App 301

333
334 // if there were no cells that could be reused
335 if (cell == nil)
336 // create a new cell
337 cell = [[[UITableViewCell alloc] initWithStyle:
338 UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
339 autorelease];
340
341 // loop through all the existing subviews in the cell
342 for (UIView *view in cell.contentView.subviews)
343 [view removeFromSuperview]; // remove the view from the cell
344
345 // get the MediaItem at the appropriate row for this cell
346 MediaItem *item = [slideshow.media objectAtIndex:indexPath.row];
347
348 // if the MediaItem represents an image
349 if (item.type == MediaTypeImage)
350 {
351 // get the image for the given row
352 UIImage *image = item.data;
353
354 // create an image view for the image
355 UIImageView *view = [[UIImageView alloc] initWithImage:image];
356
357 // resize the image without distorting it
358 float newWidth = image.size.width * rowHeight / image.size.height;
359 CGRect frame;
360
361 // create the image shifted to the right of the center by 50 points
362 frame.origin.x = (cell.frame.size.width / 2) - (newWidth / 2) - 50;
363 frame.origin.y = 0; // the image will fill the height of the cell
364 frame.size.width = newWidth; // the width so there’s no distortion
365 frame.size.height = rowHeight; // the image fills the entire height
366 view.center = CGPointMake(cell.center.x - 50, cell.center.y);
367 view.frame = frame; // assign the new frame
368 [cell.contentView addSubview:view]; // add the image to the cell
369 [view release]; // release the view UIImageView
370 } // end if
371 else // if the MediaItem represents a video
372 {
373 UILabel *label = [[UILabel alloc] init]; // create a new label
374
375 // set the label's text using the user's description of the video
376 label.text = [NSString stringWithFormat:@"Video: %@",
377 item.description];
378 CGRect frame = label.frame; // get the label's frame
379 frame.origin.x = 20; // update the x-coordinate
380 frame.size.height = rowHeight; // update the height
381 frame.size.width = cell.contentView.frame.size.width; // set width
382 label.frame = frame; // apply the new frame
383 [cell.contentView addSubview:label]; // add the label to the cell

Fig. 13.23 | Method tableView:cellForRowAtIndexPath: of class
SlideshowDataViewController. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

302 Chapter 13 Enhanced Slideshow App

Method tableView:moveRowAtIndexPath:toIndexPath: of Class Slideshow-
DataViewController

When the user reorders slideshow items, method tableView:moveRowAtIndexPath:toIn-
dexPath: (Fig. 13.24) moves a MediaItem from the UITableViewCell specified by from-
IndexPath to the UITableViewCell specified by toIndexPath. We use NSMutableArray’s
objectAtIndex: and insertObject:atIndex: methods to reorder the Slideshow’s media
array according to the NSIndexPaths.

13.4.5 Class EnhancedSlideshowAppDelegate
An app delegate (subclass of UIApplicationDelegate) responds to messages from the
app’s singleton UIApplication object after the app loads and just before it terminates.
Xcode generates app delegate classes for each project which can be overwritten to add be-
havior at load or launch.

Method applicationWillTerminate: of Class EnhancedSlideshowAppDelegate
The EnhancedSlideshowAppDelegate class was automatically created by Xcode when we
created the Enhanced Slideshow app project. We ignored this file in the previous Slide-
show app; however, to save the slideshows when the user exits the app, we must add code
to the app delegate’s applicationWillTerminate: method (Fig. 13.25). Lines 34–38 get
this app’s data directory. We add data.slideshows to the end of this directory path. Lines
45–46 access the UINavigationController’s viewController property to get the app’s

384 [label release]; // release the label UILabel
385 } // end else
386
387 return cell; // return the configured cell
388 } // end method tableView:cellForRowAtIndexPath:

1 // used to reorder UITableViewCells
2 - (void)tableView:(UITableView *)tableView moveRowAtIndexPath:
3 (NSIndexPath *)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath
4 {
5 // get the image at the moved row
6 MediaItem *item =
7 [[slideshow.media objectAtIndex:fromIndexPath.row] retain];
8
9 // remove the MediaItem

10 [slideshow.media removeObjectAtIndex:fromIndexPath.row];
11
12 // insert the image into the list at the specified index
13 [slideshow.media insertObject:item atIndex:toIndexPath.row];
14 [item release]; // release the item MediaItem
15 } // end method tableView:moveRowAtIndexPath:toIndexPath:

Fig. 13.24 | Method tableView:moveRowAtIndexPath:toIndexPath: of class
SlideshowDataViewController.

Fig. 13.23 | Method tableView:cellForRowAtIndexPath: of class
SlideshowDataViewController. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

13.4 Building the App 303

RootViewController. We pass the RootViewController’s NSMutableArray of Slide-
shows to NSKeyedArchiver’s archiveRootObject:toFile: method. This serializes the
slideshow list’s object graph (i.e., the slideshows and their contents) so it can be loaded the
next time the app executes.

13.4.6 Class SlideshowViewController
The SlideshowViewController class (Fig. 13.26) controls a view that plays the Slide-
show stored in the slideshow instance variable (line 10). An MPMoviePlayerController
is used to play full screen movies (lines 12). Video on the iPhone plays only in landscape
orientation, so the video will not rotate in response to reorienting the iPhone. Line 18 de-
clares Slideshow as a property.

30 // called when the application is going to close
31
32 {
33 // creates list of valid directories for saving a file
34 NSArray *paths = NSSearchPathForDirectoriesInDomains(
35 NSDocumentDirectory, NSUserDomainMask, YES);
36
37 // get the first directory because we care about only one
38 NSString *directory = [paths objectAtIndex:0];
39
40 // concatenate the file name "data.slideshows" to the end of the path
41 NSString *filePath = [[NSString alloc] initWithString:
42 [directory stringByAppendingPathComponent:@"data.slideshows"]];
43
44 // get the root view controller
45 RootViewController *controller =
46 [navigationController.viewControllers objectAtIndex:0];
47
48 // get all the slideshows from controller
49 NSArray *slideshows = controller.slideshows;
50
51 // archive the slideshows to the file data.slideshows
52
53 } // end method applicationWillTerminate:

Fig. 13.25 | Method applicationWillTerminate: of class
EnhancedSlideshowAppDelegate.

1 // SlideshowViewController.h
2 // Controller for a view that shows a slideshow.
3 // Implementation in SlideshowViewController.m
4 #import <UIKit/UIKit.h>
5 #import <MediaPlayer/MediaPlayer.h>
6 #import "Slideshow.h"

7
8 @interface SlideshowViewController : UIViewController
9 {

Fig. 13.26 | Controller for a view that shows a slideshow. (Part 1 of 2.)

- (void)applicationWillTerminate:(UIApplication *)application

[NSKeyedArchiver archiveRootObject:slideshows toFile:filePath];

Download from <www.wowebook.com>

ptg

304 Chapter 13 Enhanced Slideshow App

SlideshowViewController declares seven methods (lines 21–34):
• nextImageViewWithMedia:—returns a UIImage representing a given MediaIt-

em’s image. This method is called only for MediaItem’s representing images.
• displayNewImage:—displays a MediaItem representing the next image in the

slideshow
• displayNewVideo:—displays a MediaItem representing the next video in the

slideshow
• videoFinished:—moves to the next slide in the slideshow when a video finishes

playing
• exitShow:—stops the music and returns to the previous view.
• changeSlide:—moves to the next slide in the slideshow or calls the exitShow

method if there are no more slides
• transitionFinished:finished:context:—called when an image transition

animation completes

10 Slideshow *slideshow; // the Slideshow that’s being played
11 MPMusicPlayerController *musicPlayer; // plays the slideshow's music
12
13 UIImageView *currentImageView; // the current image being displayed
14 int pictureIndex; // the index of the current place in Slideshow
15 } // end instance variable declaration
16
17 // declare slideshow as a property
18 @property (nonatomic, retain) Slideshow *slideshow;
19
20 // returns an image view for the given MediaItem
21 - (UIImageView *)nextImageViewWithMedia:(MediaItem *)item;
22
23 // transitions the slideshow to a new image
24 - (void)displayNewImage:(MediaItem *)item;
25
26 // transitions the slideshow to a new video
27 - (void)displayNewVideo:(MediaItem *)item;
28 - (void)videoFinished:(NSNotification *)n; // called when video finishes
29 - (void)exitShow; // ends the slideshow and returns to the previous view
30 - (void)changeSlide; // moves to the next slide in the slideshow
31
32 // called when the transition between two slides finishes
33 - (void)transitionFinished:(NSString *)animationId finished:(BOOL)finished
34 context:(void *)context;
35 @end // end SlideshowViewController interface
36
37 // additional method for UIImageView
38 @interface UIImageView (Scaling)
39
40 // scales the image view to fill the given bounds
41 - (void)expandToFill:(CGRect)bounds;
42 @end // end category Scaling of interface UIImageView

Fig. 13.26 | Controller for a view that shows a slideshow. (Part 2 of 2.)

MPMoviePlayerController *moviePlayer; // plays the slideshow's video

Download from <www.wowebook.com>

ptg

13.4 Building the App 305

Method nextImageViewWithMedia: of Class SlideshowViewController
Method nextImageViewWithMedia (Fig. 13.27) returns a UIImageView representing the
given MediaItem. We retrieve the UIImage by accessing the MediaItem’s data property
(line 22). Line 25 creates a new UIImageView using the retrieved UIImage. Line 27 accesses
SlideshowViewController’s UIView’s bounds property to get a CGRect representing the
screen’s bounds. We pass this CGRect to imageView’s expandToFill: method to resize our
UIImageView to fill the entire screen (line 30). This expands the image as much as possible
in the current orientation without distorting it. Lines 31–36 get the expanded UIImage-
View’s frame and center the UIImageView in the screen. Lines 40–43 specify that Slide-
showViewController’s UIImageView remains centered as the iPhone rotates. We set the
UIImageView’s autoresizingMask property by combining all desired options using the
bitwise OR operator (|).

Method changeSlide of Class SlideshowViewController
Method changeSlide method (Fig. 13.28) advances the Slideshow by displaying its next
image or video. If pictureIndex equals the number of slides in this Slideshow (slide-
show.media.count), we call the exitShow method to end the Slideshow (lines 64–65).
Otherwise, we get this Slideshow’s next MediaItem (line 69). If the MediaItem’s type
property is MediaTypeImage, we pass the MediaType to the displayNewImage: method to

18 // returns a UIImageView that contains the next image to display
19 - (UIImageView *)nextImageViewWithMedia:(MediaItem *)item
20 {
21 // get the image at the next index
22 UIImage *image = item.data;
23
24 // create an image view for the image
25 UIImageView *imageView = [[UIImageView alloc] initWithImage:image];
26
27 CGRect screenBounds = self.view.bounds; // get the screen bounds
28
29 // resize the image to fill the screen without distorting
30 [imageView expandToFill:screenBounds];
31 CGRect frame = imageView.frame; // get the frame of the image
32
33 // position the image to appear in the center of the view
34 frame.origin.x = (screenBounds.size.width - frame.size.width) / 2;
35 frame.origin.y = (screenBounds.size.height - frame.size.height) / 2;
36 imageView.frame = frame; // assign the new frame
37
38 // Makes the image move proportionally in any direction if the
39 // bounds of the superview change. Used during orientation changes.
40 imageView.autoresizingMask = (UIViewAutoresizingFlexibleLeftMargin |
41 UIViewAutoresizingFlexibleRightMargin |
42 UIViewAutoresizingFlexibleTopMargin |
43 UIViewAutoresizingFlexibleBottomMargin);
44
45 return imageView; // return the configured image view
46 } // end method nextImageViewWithMedia:

Fig. 13.27 | Method nextImageViewWithMedia: of class SlideshowViewController.

Download from <www.wowebook.com>

ptg

306 Chapter 13 Enhanced Slideshow App

display that picture as the next slide (lines 72–73). Otherwise, the MediaItem represents a
video so we pass it to the displayNewVideo: method (lines 74–75).

Method displayNewImage: of Class SlideshowViewController
Method displayNewImage: (Fig. 13.29) displays an image (represented by the given
MediaItem) as the next slide in this Slideshow. Lines 89–137 implement the Fade and
Slide transitions the same way as in the original Slideshow app.

If this Slideshow uses the Flip image transition (line 138), we start a new Core Ani-
mation block describing an animation with a duration of two seconds which calls the
transitionFinished:finished:context: method upon completion (lines 146–147).
We call UIView’s setAnimationTransition:forView:cache: method, supplying
UIViewAnimationTransitionFlipFromRight as the animation transition (lines 150–
152). Lines 154–156 remove the previous UIImageView, add the new UIImageView and
begin the animation. Lines 161–162 use the performSelector:withObject:afterDelay:
method to call the changeSlide method after a five-second delay.

60 // changes to the next slide in the slideshow
61 - (void)changeSlide
62 {
63 // check if there’s another slide to display
64 if (pictureIndex >= slideshow.media.count)
65 [self exitShow]; // if there’s no image, exit the slideshow
66 else

67 {
68 // get the next MediaItem
69 MediaItem *item = [slideshow.media objectAtIndex:pictureIndex];
70
71 // if the MediaItem represents an image
72 if (item.type == MediaTypeImage)
73 [self displayNewImage:item]; // display the image
74 else // the MediaItem represents a video
75 [self displayNewVideo:item]; // display the video
76
77 ++pictureIndex; // increment the index
78 } // end else
79 } // end method changeSlide

Fig. 13.28 | Method changeSlide of class SlideshowViewController.

81 // displays a new image in the slideshow
82 - (void)displayNewImage:(MediaItem *)item
83 {
84 // get the next image to display
85 UIImageView *nextImageView = [self nextImageViewWithMedia:item];
86 CGRect frame; // declare a new CGRect
87
88 // transition to the image based on the transition effect
89 switch (slideshow.effect)
90 {

Fig. 13.29 | Method displayNewImage: of class SlideshowViewController. (Part 1 of 3.)

Download from <www.wowebook.com>

ptg

13.4 Building the App 307

91 // if the transition effect is fade
92 case TransitionEffectFade:
93 [self.view addSubview:nextImageView]; // add the image to view
94 nextImageView.alpha = 0.0; // make the next image transparent
95
96 // begin animation block
97 [UIView beginAnimations:nil context:nextImageView];
98 [UIView setAnimationDuration:2.0]; // set the animation length
99 [UIView setAnimationDelegate:self]; // set the animation delegate
100
101 // call the given method when the animation ends
102 [UIView setAnimationDidStopSelector:
103 @selector(transitionFinished:finished:context:)];
104
105 [nextImageView setAlpha:1.0]; // fade in the next image
106 [currentImageView setAlpha:0.0]; // fade out the old image
107
108 [UIView commitAnimations]; // end animation block
109 break;
110
111 // if the transition effect is slide
112 case TransitionEffectSlide:
113 // position the next image to the right of the screen
114 [self.view addSubview:nextImageView]; // add the image to view
115 frame = nextImageView.frame;
116 frame.origin.x += frame.size.width;
117 nextImageView.frame = frame;
118
119 // begin animation block
120 [UIView beginAnimations:nil context:nextImageView];
121 [UIView setAnimationDuration:2.0]; // set the animation length
122 [UIView setAnimationDelegate:self]; // set the animation delegate
123
124 // call the given method when the animation ends
125 [UIView setAnimationDidStopSelector:
126 @selector(transitionFinished:finished:context:)];
127
128 frame.origin.x -= frame.size.width; // slide new image left
129 nextImageView.frame = frame; // apply the new frame
130 CGRect currentImageFrame = currentImageView.frame;
131
132 // slide the old image to the left
133 currentImageFrame.origin.x -= currentImageFrame.size.width;
134 currentImageView.frame = currentImageFrame;
135
136 [UIView commitAnimations]; // end animation block
137 break;
138 case TransitionEffectFlip: // if the transition effect is flip
139
140 // begin the animation block
141 [UIView beginAnimations:@"flip" context:nextImageView];
142 [UIView setAnimationDuration:2.0]; // set the animation duration

Fig. 13.29 | Method displayNewImage: of class SlideshowViewController. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

308 Chapter 13 Enhanced Slideshow App

Methods displayNewVideo: and videoFinished of Class SlideshowViewCon-
troller

Method displayNewVideo: (lines 166–178) displays a video as the next slide in the slide-
show. First, we add self as an observer of the MPMoviePlayerPlaybackDidFinish-
Notification (lines 169–171). Class NSNotificationCenter manages notifications and
observers. Notifications are objects that represent an event—in this example the event oc-
curs when a movie’s playback finishes. An observer is an object that should be notified
when the event occurs. We access the defaultCenter singleton object, which is where sys-
tem notifications are posted. Lines 169–171 indicate that the videoFinished method
should be called when a MPMoviePlayer finishes playback. We then initialize moviePlayer
with the URL of the movie to be played (lines 175–176) and play the movie (line 177).

143 [UIView setAnimationDelegate:self]; // set delegate to self
144
145 // call the given method when the animation finishes
146 [UIView setAnimationDidStopSelector:
147 @selector(transitionFinished:finished:context:)];
148
149 // set the transition to flip from the right side
150
151
152
153
154 [currentImageView removeFromSuperview]; // remove the last image
155 [self.view addSubview:nextImageView]; // add the new image
156 [UIView commitAnimations]; // start the animation
157 break;
158 } // end switch
159
160 // change the slide after 5 seconds
161 [self performSelector:@selector(changeSlide) withObject:nil
162 afterDelay:5.0];
163 } // end method displayNewImage
164

165 // displays a new video in the slideshow
166 - (void)displayNewVideo:(MediaItem *)item
167 {
168 // receive notifications when a movie player finishes playback
169
170
171
172 [moviePlayer release]; // release the old movie player
173
174 // create a new movie player with the video URL
175 moviePlayer =
176 [[MPMoviePlayerController alloc] initWithContentURL:item.data];

Fig. 13.30 | Method displayNewVideo: of class SlideshowViewController. (Part 1 of 2.)

Fig. 13.29 | Method displayNewImage: of class SlideshowViewController. (Part 3 of 3.)

[UIView setAnimationTransition:
 UIViewAnimationTransitionFlipFromRight forView:

self.view cache:NO];

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(videoFinished:)
 name:MPMoviePlayerPlaybackDidFinishNotification object:nil];

Download from <www.wowebook.com>

ptg

13.5 Suggested Enhancements 309

The videoFinished method is called when the movie stops playing. We remove self
as an observer from the NSNotificationCenter using the removeObserver: method. This
stops the object from receiving notifications about movies ending. We then hide the status
bar (line 187) and change to the next slide (line 188).

13.5 Suggested Enhancements
The Enhanced Slideshow app provides numerous capabilities not found in its predecessor
but there are still features which can improve the app. Currently, each image displays for
five seconds before moving to the next slide. Providing a means for the user to adjust this
time would allow the slideshow to be more customized. Additionally, the app could enable
the user to navigate through the slideshow while it’s playing—left swipe could advance to
the next slide and a right swipe could return to the previous slide.

13.6 Wrap-Up
The Enhanced Slideshow app played videos from the iPhone’s photo library using an MP-
MoviePlayerController. We used a UIImagePickerController to create a graphical in-
terface for the user to chose images and videos. We added a new image transition using
Core Animation. The UIViewAnimationTransitionFlipFromRight animation transition
enabled images to transition by flipping horizontally. We saved slideshows so they would
be accessible between multiple executions of the app using object serialization. We encod-
ed objects using a subclass of NSCoder. An NSKeyedArchiver was used to save the entire
slideshow list’s object graph to a file.

In Chapter 14, we build the Voice Recorder app. We use the AVFoundation frame-
work and an AVAudioRecorder object to record the user’s speech through the iPhone’s
microphone. We’ll change the app’s AVAudioSession to switch between settings for
recording and audio playback. We’ll also use an MFMailComposeViewController to allow
the user to send a voice recording as an e-mail attachment directly from the app.

177 [moviePlayer play]; // play the video
178 } // end method displayNewVideo
179
180 // called when the video finishes playing
181 - (void)videoFinished:(NSNotification *)n
182 {
183 // stop receiving notifications when videos finish
184
185
186 // hide the status bar
187 [[UIApplication sharedApplication] setStatusBarHidden:YES];
188 [self changeSlide]; // change to the next slide
189 } // end method videoFinished

Fig. 13.30 | Method displayNewVideo: of class SlideshowViewController. (Part 2 of 2.)

[[NSNotificationCenter defaultCenter] removeObserver:self];

Download from <www.wowebook.com>

ptg

14
Voice Recorder App

Audio Recording and Playback

O B J E C T I V E S
In this chapter you’ll learn:

■ To record audio files using an AVAudioRecorder and
the AV Foundation framework.

■ To set the AVAudioSession to accommodate playback
and recording.

■ To verify text input using an NSPredicate object and
a regular expression.

■ To use metering to create a visual representation of the
user’s audio input.

■ To create an NSData object representing an audio file
and use an MFMailComposeViewController to
send an e-mail with the recording attached.

Download from <www.wowebook.com>

ptg

14.1 Introduction 311

O
u

tl
in

e

14.1 Introduction
The Voice Recorder app allows the user to record sounds using the iPhone’s microphone
and save the audio files for playback later. The app has a red record Button which the user
presses to begin recording audio (Fig. 14.1). At this point, the screen becomes a visualizer,
displaying bars in reaction to the strength of the user’s voice (Fig. 14.2). During recording,
the record Button changes to a stop Button, which the user can touch to end the recording
and display a Text Field used to enter the file name for the saved recording (Fig. 14.3).

Saved recordings can be viewed by touching the “Saved” Button in the app’s lower-
right corner. They’re displayed in a table. Touching a recording’s name (Fig. 14.4) plays
that recording. You can drag the Slider above the table of names to move forward or back-
ward in the audio file—just like in the iPod app. The Slider at the bottom of the app con-

14.1 Introduction
14.2 Test-Driving the Voice Recorder App
14.3 Overview of the Technologies
14.4 Building the App

14.4.1 Class VoiceRecorderViewController
14.4.2 Class NameRecordingViewController
14.4.3 Class Visualizer
14.4.4 Class PlaybackViewController

14.5 Speech Synthesis and Recognition
14.6 Wrap-Up

Fig. 14.1 | Voice Recorder app ready to record.

Touch to view saved
recordings

Red record Button

Download from <www.wowebook.com>

ptg

312 Chapter 14 Voice Recorder App

trols the playback’s volume. Touching the e-mail Button next to a recording’s name opens
an e-mail dialog with the audio file attached (Fig. 14.5). The user can send an e-mail con-
taining the audio file without leaving the Voice Recorder app. Touching the “Record”

Fig. 14.2 | Visualizer during a recording.

Fig. 14.3 | Naming a recording.

Stop Button

Visual
representation of
recording

Download from <www.wowebook.com>

ptg

14.1 Introduction 313

Button returns the user to the app’s original screen. This app introduces the iPhone’s
speech-based capabilities, but this powerful tool is not fully explored here. Please see
Section 14.5 for more information on speech synthesis and recognition.

Fig. 14.4 | Playing a saved recording.

Fig. 14.5 | E-mailing a recording.

Send this recording as an
e-mail attachment

Recording name

Return to the audio
recording screen

E-mail’s subject

E-mail’s message

Audio file as an e-mail
attachment

Download from <www.wowebook.com>

ptg

314 Chapter 14 Voice Recorder App

14.2 Test-Driving the Voice Recorder App
Opening the Completed App
Open the directory containing the Voice Recorder app project. Double click VoiceRe-
corder.xcodeproj to open the project in Xcode. This project will compile and run in the
iPhone Simulator, but you will not be able to make recordings.

Recording a New Audio File
Touch the red record Button at the bottom of the app to begin recording sound. Speak
into the iPhone and notice that the app’s visualizer reacts to the intensity of your voice.
When you’re done recording, hit the white stop Button then enter Test Recording into
the “Name your recording” Text Field.

Playing a Recording
Touch the “Saved” Button in the lower-right corner of the app to see a table containing the
names of any audio files recorded with this app. Touch Test Recording and your recording
will play through the iPhone’s speaker. Slide the thumb of the Slider at the bottom of the
app to adjust the volume and do the same for the top Slider to adjust the playback’s posi-
tion in the audio file. Touch the “Record” Button in the bottom-right corner of the app to
return to the recording screen.

E-mailing a Recording
Touch the "Saved" Button to return to the app’s flipside and touch the e-mail Button next
to any of the saved audio file’s names. An e-mail dialog appears with the audio file as an
attachment. Enter a destination e-mail address and hit Send to e-mail the audio file. (This
assumes that you’ve configured your iPhone with an e-mail account that can send e-mail.)

14.3 Overview of the Technologies
The Voice Recorder app uses the AV Foundation framework to record and play back
sounds. An AVAudioRecorder records sounds using the iPhone’s microphone and saves
them to audio files in the app. We access the AVAudioSession singleton object belonging
to this app to change the iPhone’s audio session. The singleton design pattern guarantees
that a system instantiates a maximum of one object of a given class. This is useful here be-
cause the app can handle only one audio session at a time. When the app is recording we
use the AVAudioSessionCategoryRecord session to silence any audio that might be play-
ing. An AVAudioSessionCategoryPlayback session is used to play back recordings and to
force audio to play even when the Ring/Silent switch is set to silent. The AVAudioSession-
CategoryPlayback also continues playback while the iPhone is locked. The flipside of the
app contains a UITableView displaying the name of each saved audio recording. An AVAu-
dioPlayer plays a files when the user touches the name of a prior recording.

We use the NSPredicate class and a regular expression to verify that the user entered
a valid file name, which can’t include special characters such as slashes or ampersands. We
allow the user to e-mail a saved audio recording by converting the saved file to an NSData
object, then pass that as an attachment to an MFMailComposeViewController. This class
opens an e-mail dialog in the app.

Download from <www.wowebook.com>

ptg

14.4 Building the App 315

14.4 Building the App
In the next several subsections, we define the app’s views and controllers. We begin with
the app’s VoiceRecorderViewController.

14.4.1 Class VoiceRecorderViewController
Create a new project in Xcode using the View-based Application template and name it
VoiceRecorder. The files VoiceRecorderViewController.h, VoiceRecorderViewCon-
troller.m and VoiceRecorderViewController.xib are created for you.

VoiceRecorderViewController Interface Declaration
The VoiceRecorderViewController class (Fig. 14.6) extends UIViewController and im-
plements the PlaybackViewControllerDelegate and NameRecordingDelegate protocols
(lines 10–11)—defined by this app’s two other UIViewControllers (Figs. 14.20 and
14.13, respectively).

Line 13 declares an outlet for a new Visualizer. This is a subclass of UIView (defined
in 14.16) that displays a visualizer that reacts to the intensity of the user’s voice. The
UIButton recordButton (line 14) is touched by the user to start and stop recording. Line
15 declares an instance variable of type AVAudioRecorder. Objects of this class can record
audio through the iPhone’s microphone. The NSTimer (line 16) generates events which
redraw the Visualizer 20 times per second for smooth animation of the visualizer’s bars.

1 // Fig. 14.6: VoiceRecorderViewController.h
2 // VoiceRecorderViewController interface declaration.
3
4
5 #import "Visualizer.h"

6 #import "PlaybackViewController.h"

7 #import "NameRecordingViewController.h"

8
9 // begin VoiceRecorderVewController interface declaration

10 @interface VoiceRecorderViewController : UIViewController
11 <PlaybackViewControllerDelegate, NameRecordingDelegate>
12 {
13 IBOutlet Visualizer *visualizer; // store Visualizer
14 IBOutlet UIButton *recordButton; // touched to start and stop recording
15
16 NSTimer *timer; // updates the visualizer every .05 seconds
17 } // end instance variable declaration
18
19 // declare visualizer and recordButton as properties
20 @property (nonatomic, retain) Visualizer *visualizer;
21 @property (nonatomic, retain) UIButton *recordButton;
22
23 - (IBAction)record:sender; // toggle recording
24 - (IBAction)flip:sender; // moves to the flipside
25 @end // end interface VoiceRecorderViewController

Fig. 14.6 | VoiceRecorderViewController interface declaration.

#import <AVFoundation/AVFoundation.h>
#import <CoreAudio/CoreAudioTypes.h>

AVAudioRecorder *recorder; // records user sound input

Download from <www.wowebook.com>

ptg

316 Chapter 14 Voice Recorder App

VoiceRecorderViewController’s interface declares two methods (lines 23–24).
Method record: starts recording audio when the user touches the red record Button.
When the user touches the white stop Button, this method ends the recording and displays
a NameRecordingView, which allows users to name their recordings. The flip: method
transitions the app to the PlaybackView when the “Saved” Button is touched.

Defining the VoiceRecorderViewController’s View
Open the file VoiceRecorderViewController.xib in Interface Builder. Double-click
View to edit its contents. Drag a Toolbar from the Library window to the bottom of View.
Set its Style to Black Opaque. Drag a Fixed Space Bar Button Item onto the Toolbar, follwed
by a Bar Button Item. Change the Bar Button Item’s Identifier to Custom and change its Im-
age to record.png. Resize the Fixed Space Bar Button Item so that the record Button is cen-
tered in the Toolbar. Next, drag a Flexible Space Bar Button Item onto the Toolbar, followed
by another Bar Button Item and set the Button’s text to Saved. Finally, drag a View above
the Toolbar and position it to fill the remaining space in the app. Change its Class to Vi-
sualizer. Figure 14.7 shows the final layout.

Next, connect the recordButton outlet of File’s Owner to the middle Button in the
Toolbar, and connect the visualizer outlet to the View above the Toolbar. Connect the
Touch Up Inside event from the record Button to the record: action of File’s Owner, and
connect the Touch Up Inside event from the “Saved” Button to the flip: action.

Method viewDidLoad of Class VoiceRecorderViewController
The viewDidLoad method sets up the VoiceRecorderViewController’s View. After pass-
ing the viewDidLoad message to the superclass (line 12), we activate the AVAudioSession
(line 15). AVAudioSession’s sharedInstance method returns the singleton AVAudio-
Session object for this app. This object can be used to set audio preferences, such as how
to react to incoming calls or whether to continue audio when the screen locks. The AV-
AudioSession’s behavior is determined by its category property—there are different cat-
egories for recording and playing back audio.

Fig. 14.7 | VoiceRecorderViewController’s finished view.

Download from <www.wowebook.com>

ptg

14.4 Building the App 317

Method record: of Class VoiceRecorderViewController
The record: method (Fig. 14.9) toggles whether or not the app is recording. If the app
was recording when the method was called (line 22), we invalidate timer so it stops gen-
erating events and redrawing the Visualizer. Line 26 tells the recorder AVAudioRecord-
er to stop recording. Lines 29–30 pass AVAudioSessionCategorySoloAmbient to
AVAudioSession’s setCategory: method. This sets the iPhone back to its default audio
session. In this case, it indicates that the app is no longer in recording mode. We create a
new UIImage variable recordImage using record.png and use UIButton’s setIm-
age:forState: method to display this image for recordButton (line 36). Lines 39–41
create a new NameRecordingViewController and set its delegate to self. Line 44 presents
the view for naming recordings using method UIViewController’s presentModalView-
Controller:animated:. This view allows the user to enter a name for the audio recording.

1 // Fig. 14.8: VoiceRecorderViewController.m
2 // VoiceRecorderViewController class implementation.
3 #import "VoiceRecorderViewController.h"

4
5 @implementation VoiceRecorderViewController
6 @synthesize visualizer; // generate get and set methods for visualizer
7 @synthesize recordButton; // generate get and set methods for recordButton
8
9 // setup the View

10 - (void)viewDidLoad
11 {
12 [super viewDidLoad]; // call the superclass's viewDidLoad method
13
14 // activate the current audio session
15
16 } // end method viewDidLoad
17

Fig. 14.8 | Methods initWithNibName:bundle: and viewDidLoad of class
VoiceRecorderViewController.

18 // called when the user touches the record/stop recording button
19 - (IBAction)record:sender
20 {
21 // if we’re currently recording
22 if ()
23 {
24 [timer invalidate]; // stop the timer from generating events
25 timer = nil; // set time to nil
26
27
28 // set the category of the current audio session
29
30
31

Fig. 14.9 | Method record: of class VoiceRecorderViewController. (Part 1 of 3.)

[[AVAudioSession sharedInstance] setActive:YES error:nil];

recorder.recording

[recorder stop]; // stop recording

[[AVAudioSession sharedInstance] setCategory:
AVAudioSessionCategorySoloAmbient error:nil];

Download from <www.wowebook.com>

ptg

318 Chapter 14 Voice Recorder App

32 // load the record image
33 UIImage *recordImage = [UIImage imageNamed:@"record.png"];
34
35 // set the image on the record button
36 [recordButton setImage:recordImage forState:UIControlStateNormal];
37
38 // create a new NameRecordingViewController
39 NameRecordingViewController *controller =
40 [[NameRecordingViewController alloc] init];
41 controller.delegate = self; // set controller's delegate to self
42
43 // show the NameRecordingViewController
44 [self presentModalViewController:controller animated:YES];
45 } // end if
46 else

47 {
48 // set the audio session's category to record
49
50
51
52 // find the location of the document directory
53 NSArray *paths = NSSearchPathForDirectoriesInDomains(
54 NSDocumentDirectory, NSUserDomainMask, YES);
55
56 // get the first directory
57 NSString *dir = [paths objectAtIndex:0];
58
59 // create a name for the file using the current system time
60 NSString *filename = [NSString stringWithFormat:@"%f.caf",
61 [[NSDate date] timeIntervalSince1970]];
62
63 // create the path using the directory and file name
64 NSString *path = [dir stringByAppendingPathComponent:filename];
65
66 // create a new NSMutableDictionary for the record settings
67 NSMutableDictionary *settings = [[NSMutableDictionary alloc] init];
68
69 // record using the Apple lossless format
70 [settings setValue: [NSNumber
71 numberWithInt:kAudioFormatAppleLossless] forKey:AVFormatIDKey];
72
73 // set the sample rate to 44100 Hz
74 [settings setValue:[NSNumber
75 numberWithFloat:44100.0] forKey:AVSampleRateKey];
76
77 // set the number of channels for recording
78 [settings setValue:[NSNumber numberWithInt:1]
79 forKey:AVNumberOfChannelsKey];
80
81 // set the bit depth
82 [settings setValue:[NSNumber numberWithInt:16]
83 forKey:AVLinearPCMBitDepthKey];

Fig. 14.9 | Method record: of class VoiceRecorderViewController. (Part 2 of 3.)

[[AVAudioSession sharedInstance] setCategory:
AVAudioSessionCategoryRecord error:nil];

Download from <www.wowebook.com>

ptg

14.4 Building the App 319

If the app wasn’t recording (line 46), we pass AVAudioSessionCategoryRecord to
AVAudioSession’s setCategory: method. This silences any playback audio so we can
properly record the user’s voice. The NSSearchPathForDirectoriesInDomains function
is used to get an NSArray containing only this app’s documents directory (lines 53–54).
Line 57 stores that directory name in NSString variable dir. The NameRecordingView-
Controller later allows the user to enter a recording name, but for now we need to save
the clip to a temporary location. Lines 60–61 create a file name using the current system
time (to ensure unique names) and the .caf extension, which stands for Core Audio
File—a type of container used by the Core Audio framework that supports many types of
audio files, such as WAV and AIFF. Lines 67–91 initialize the settings NSMutableDic-
tionary with the standard settings for iPhone audio recording. For more information on
iPhone these settings visit

developer.apple.com/iphone/library/documentation/AVFoundation/
 Reference/AVAudioRecorder_ClassReference/Reference/Reference.html

and scroll to the section Constants.

84
85 // set whether the format is big endian
86 [settings setValue:[NSNumber numberWithBool:NO]
87 forKey:AVLinearPCMIsBigEndianKey];
88
89 // set whether the audio format is floating point
90 [settings setValue:[NSNumber numberWithBool:NO]
91 forKey:AVLinearPCMIsFloatKey];
92 [visualizer clear]; // clear the visualizer
93
94 [recorder release]; // release the recorder AVAudioRecorder
95
96 // initialize recorder with the URL and settings
97
98
99
100
101
102
103
104 // start a timer
105 timer = [NSTimer scheduledTimerWithTimeInterval:0.05 target:self
106 selector:@selector(timerFired:) userInfo:nil repeats:YES];
107
108 // create the stop recording image
109 UIImage *stopImage = [UIImage imageNamed:@"stop.png"];
110
111 // change the image on recordButton to the stop image
112 [recordButton setImage:stopImage forState:UIControlStateNormal];
113 } // end else
114 } // end method record:
115

Fig. 14.9 | Method record: of class VoiceRecorderViewController. (Part 3 of 3.)

recorder =
 [[AVAudioRecorder alloc] initWithURL:[NSURL fileURLWithPath:path]
 settings:settings error:nil];
[recorder prepareToRecord]; // prepare the recorder to record
recorder.meteringEnabled = YES; // enable metering for the recorder
[recorder record]; // start the recording

Download from <www.wowebook.com>

ptg

320 Chapter 14 Voice Recorder App

Lines 92 and 94 clear the visualizer and release the previous recorder. Lines 97–
102 assign recorder a new AVAudioRecorder that writes to the temporary location we
chose, and that uses the settings specified in the settings NSMutableDictionary. We
then call recorder’s prepareToRecord method (line 100). This is required to set
recorder’s allowMetering property to YES (line 101), which allows us to sample the
recording’s intensity level so we can animate the visualizer. Line 102 starts the recording
by calling AVAudioRecorder’s record method. We then create a new NSTimer which gen-
erates an event calling the timerFired: method 20 times per second. Lines 109–112 use
UIButton’s setImage:forState: method to change the record Button to a stop Button.

Method nameRecordingViewController:didGetName: of Class Voice-
RecorderViewController

The nameRecordingViewController:didGetName: method (Fig. 14.10) receives from the
NameRecordingViewController an NSString chosen by the user to name an audio record-
ing. Line 121 appends the caf file extension to the end of the given fileName using NS-
String’s stringByAppendingPathExtension: method. Accessing recorder’s url

property and calling its path method (line 124) returns an NSString representing the file
path of the last recorded audio file. Line 127 uses NSString’s stringByDeletingLast-
PathComponent method to remove the last part of the path in the string (i.e., the file name
of that recording) and store only the directory. We append the given fileName and the
.caf extension to the end of this directory.

116 // called when the user finishes picking a name for the recording
117 - (void)nameRecordingViewController:(NameRecordingViewController *)
118 controller didGetName:(NSString *)fileName
119 {
120 // append the extension to the chosen name
121 fileName = [fileName stringByAppendingPathExtension:@"caf"];
122
123 // get the path for the last recorded file
124
125
126 // get the directory the last file was saved in
127 NSString *dir = [path stringByDeletingLastPathComponent];
128
129 // append the new file name to the path
130 NSString *newPath = [dir stringByAppendingPathComponent:fileName];
131
132 // get the default file manager
133 NSFileManager *fileManager = [NSFileManager defaultManager];
134
135 // rename the old file to the new name the user picked
136 [fileManager moveItemAtPath:path toPath:newPath error:nil];
137
138 // make the NameRecordingViewController go away
139 [self dismissModalViewControllerAnimated:YES];
140 } // end method nameRecordingViewController:didGetName:
141

Fig. 14.10 | Method nameRecordingViewController:didGetName: of class
VoiceRecorderViewController.

NSString *path = [recorder.url path];

Download from <www.wowebook.com>

ptg

14.4 Building the App 321

Line 133 gets the default NSFileManager using NSFileManager’s static defaultMan-
ager method. NSFileManager’s moveItemAtPath:toPath: method is used to change the
default file name of the recording to the user’s chosen file name (line 136).1 Line 139 hides
the NameRecordingView using UIViewController’s dismissModalViewController-

Animated: method.

Method flip: of Class VoiceRecorderViewController
The flip: method (Fig. 14.11) transitions the app to the playback View when the user
touches the “Saved” Button. Lines 146–147 initialize a new PlaybackViewController.
We set playback’s modalTransitionStyle property to UIModalTransitionStyleCross-
Dissolve so the recording View will fade into the playback View (line 150). We then set
playback’s delegate to this VoiceRecorderViewController. Line 154 calls UIViewCon-
troller’s presentModalViewController:animated: method to transition to the Play-
backRecordingViewController’s view.

Methods playbackViewControllerDidFinish: and timerFired: of Class
VoiceRecorderViewController

Method playbackViewControllerDidFinish: (Fig. 14.12, lines 159–164) is called when
the user touches the “Record” Button in the playback View. Line 163 calls UIView-
Controller’s dismissModalViewControllerAnimated: method to transition the app
back to the recorder View.

Method timerFired: (lines 167–174) is called 20 times a second to update visual-
izer. We use the AVAudioRecorder updateMeters method to cause the recorder to
refresh its meters based on the recording’s power levels (i.e., intensities). Line 172 calls our
visualizer’s setPower: method, passing the result of recorder’s averagePowerForChannel:
method. We use the first channel (0) because the iPhone’s microphone has only one
channel. Line 173 calls UIView’s setNeedsDisplay method to redraw the visualizer.

1. In this app, we assume that the file name specified by the user does not already exist. If it does, the
move operation will fail.

142 // transition the app to the PlaybackView
143 - (IBAction)flip:sender
144 {
145 // create a new PlaybackViewController
146 PlaybackViewController *playback =
147 [[PlaybackViewController alloc] init];
148
149 // set the transition style to fade
150
151 playback.delegate = self; // set playback's delegate to self
152
153 // show the PlaybackViewController
154 [self presentModalViewController:playback animated:YES];
155 [playback release]; // release the playback PlaybackViewController
156 } // end method flip:
157

Fig. 14.11 | Method flip: of class VoiceRecorderViewController.

playback.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;

Download from <www.wowebook.com>

ptg

322 Chapter 14 Voice Recorder App

14.4.2 Class NameRecordingViewController
Create a new UIViewController subclass named NameRecordingViewController and
check the With XIB for user interface checkbox to generate the header, source and nib files.

NameRecordingViewController Interface Declaration
The NameRecordingViewController class (Fig. 14.13) is a sublcass of UIViewController
whichs implements the UITextFieldDelegate protocol, indicating that it can respond to
events generated by a Text Field. Lines 11–12 declare this class’s delegate and a UITex-
Field outlet which responds to events from the “Name your recording” Text Field . Line 16
declares delegate as a property. The finishedNaming: method (line 19) verifies that the
input audio file’s name is valid and passes it on to the delegate. Lines 23–28 declare the
NameRecordingDelegate protocol which contains one method declaration. The nameRe-
cordingViewController:didGetName: method (lines 26–27) is used by the delegate to
receive an audio file name when the user touches the keyboard’s “Done” Button.

158 // delegate method for the PlaybackViewController
159 - (void)playbackViewControllerDidFinish:
160 (PlaybackViewController *)controller
161 {
162 // return to the VoiceRecorderView
163 [self dismissModalViewControllerAnimated:YES];
164 } // end method playbackViewControllerDidFinish:
165
166 // called every .05 seconds when the timer generates an event
167 - (void)timerFired:(NSTimer *)timer
168 {
169
170
171 // set the visualizer's average power level
172 [visualizer setPower:];
173 [visualizer setNeedsDisplay]; // redraw the visualizer
174 } // end method timerFired:
175
176 // release this object's memory
177 - (void)dealloc
178 {
179 [visualizer release]; // release the Visualizer
180 [recordButton release]; // release the recordButton UIButton
181 [recorder release]; // release the recorder AVAudioRecorder
182 [super dealloc]; // call the superclass’s dealloc method
183 } // end method dealloc
184 @end // VoiceRecorderViewController class

Fig. 14.12 | Methods playbackViewControllerDidFinish: and timerFired: of class
VoiceRecorderViewController.

1 // Fig. 14.13: NameRecordingViewController.h
2 // Controls a View for naming a recording.
3 #import <UIKit/UIKit.h>

Fig. 14.13 | Controls a View for naming a recording. (Part 1 of 2.)

[recorder updateMeters]; // sample the recording to get new data

[recorder averagePowerForChannel:0]

Download from <www.wowebook.com>

ptg

14.4 Building the App 323

Defining the NameRecordingViewController’s View
Open the file NameRecordingViewController.xib in Interface Builder. Open View and
drag a Text Field and a Label onto it. Position and name the components as seen in
Fig. 14.14. Connect the textField outlet of File’s Owner to the Text Field and connect the
Did End On Exit event of the Text Field to the finishedNaming: method of File’s Owner.

4
5 @protocol NameRecordingDelegate; // declare NameRecordingDelegate protocol
6
7 // begin NameRecordingViewController interface
8 @interface NameRecordingViewController : UIViewController
9 <UITextFieldDelegate>

10 {
11 id <NameRecordingDelegate> delegate; // declare the class's delegate
12 IBOutlet UITextField *textField; // text field for entering the name
13 } // end instance variable declaration
14
15 // declare delegate and textField as a properties
16 @property (nonatomic, assign) id <NameRecordingDelegate> delegate;
17 @property (nonatomic, retain) UITextField *textField;
18
19 - (IBAction)finishedNaming:sender; // the user finished entering the name
20 @end // end interface NameRecordingViewController
21
22 // begin NameRecordingDelegate protocol
23 @protocol NameRecordingDelegate
24
25 // informs the delegate that the user chose a name
26 - (void)nameRecordingViewController:(NameRecordingViewController *)
27 controller didGetName:(NSString *)fileName;
28 @end // end protocol NameRecordingDelegate

Fig. 14.14 | Finished layout of NameRecordingViewController’s view.

Fig. 14.13 | Controls a View for naming a recording. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

324 Chapter 14 Voice Recorder App

NameRecordingViewController Class Definition
The viewDidLoad method (Fig. 14.15, lines 11–15) is called when the NameRecord-
ingView loads. Line 13 calls the superclass’s viewDidLoad method and line 14 uses UIText-
Field’s becomeFirstResponder method to select textField and display the keyboard.

The finishedNaming: method (lines 18–22) is called when the user touches the key-
board’s “Done” Button after entering a save name for the audio recording. Line 21 passes
the name to delegate’s nameRecordingViewController:didGetName: method to inform
the VoiceRecorderViewController of the chosen name.

1 // Fig. 14.15: NameRecordingViewController.m
2 // Implementation of NameRecordingViewController
3 #import "NameRecordingViewController.h"

4
5 @implementation NameRecordingViewController
6
7 @synthesize delegate; // synthesize get and set methods for the delegate
8 @synthesize textField; // synthesize get and set methods for textField
9

10 // called when the View finishes loading
11 - (void)viewDidLoad
12 {
13 [super viewDidLoad]; // calls the superclass's viewDidLoad method
14 [textField becomeFirstResponder]; // show the keyboard
15 } // end method viewDidLoad
16
17 // call when the user touches the "Done" button on the keyboard
18 - (IBAction)finishedNaming:sender
19 {
20 // inform the delegate that the user chose a name
21 [delegate nameRecordingViewController:self didGetName:textField.text];
22 } // end method finishedNaming:
23
24 // called every time the user edits text in the text field
25 - (BOOL)textField:(UITextField *)field shouldChangeCharactersInRange:
26 (NSRange)range replacementString:(NSString *)string
27 {
28 // string that will exist once this method returns YES
29 NSString *newString = [field.text stringByReplacingCharactersInRange:
30 range withString:string];
31
32 // create a new predicate that matches characters valid for file names
33
34
35
36
37 // if the new string is an invalid file name
38 if (matches)
39 field.textColor = [UIColor redColor]; // change the text to red
40 else // if the string is a valid file name
41 field.textColor = [UIColor blackColor]; // change the text to black

Fig. 14.15 | Implementation of NameRecordingViewController. (Part 1 of 2.)

NSPredicate *regex = [NSPredicate predicateWithFormat:
@"SELF MATCHES '.*[^-_.a-zA-Z0-9].*'"];

BOOL matches = [regex evaluateWithObject:newString]; // check for match

Download from <www.wowebook.com>

ptg

14.4 Building the App 325

The textField:shouldChangeCharactersInRange:replacementString: method is
a method of the UITextFieldDelegate protocol which a UITextField calls each time the
user enters a new character in that UITextField. If this method returns YES, the character
is appended to the end of the Text Field’s text property; otherwise, it’s not appended. The
NSString parameter string represents the user’s edit to the Text Field. We first apply the
user’s change so we can work with the new value (lines 29–30). Lines 33–34 create a new
NSPredicate object using NSPredicate’s static predicateWithFormat: method. This is
used to define a regular expression which matches only invalid file name strings. For more
information on regular expressions, visit www.deitel.com/regularexpressions/.

Line 35 uses NSPredicate’s evaluateWithObject: method to compare the string to
the regular expression. This returns YES for valid strings and NO for invalid ones. We then
set the color of the text in the Text Field—black if the string is valid, red if it isn’t. We
return YES to allow all edits, even if they are invalid.

The textFieldShouldReturn: method is called when the user touches the Return
button on the keyboard. If this method returns YES, the user’s file name is valid and the
Text Field will call our finishedNaming: method. To determine whether the name is valid,
we create an NSPredicate object with an appropriate regular expression (lines 50–51),
then use the regular expression to validate the name (line 52).

14.4.3 Class Visualizer
Create a new UIView subclass named Visualizer to generate the files Visualizer.h and
Visualizer.m. This class renders a graphic of the user’s voice intensity during recording.

Visualizer Interface Declaration
Class Visualizer (Fig. 14.16) is a subclass of UIView (line 6). Variable powers (line 8) rep-
resents the power levels received from the VoiceRecorderViewController. The lowest re-
corded power level for the current recording is stored in minPower (line 9). Lines 12–13
declare two methods. The setPower: method (line 12) adds a new power level to the pow-
ers NSMutableArray and updates minPower when necessary. The clear method (line 13)
removes all elements from the powers NSMutableArray, thus clearing the Visualizer.

42
43 return YES; // allow the edit
44 } // end method textField:shouldChangeCharactersInRange:replacementString:
45
46 // called when the user touches the "Done" button on the keyboard
47 - (BOOL)textFieldShouldReturn:(UITextField *)field
48 {
49 // create a new predicate that matches characters valid for file names
50
51
52
53 } // end method textFieldShouldReturn:
54 @end // NameRecoringViewController implementation

Fig. 14.15 | Implementation of NameRecordingViewController. (Part 2 of 2.)

NSPredicate *regex = [NSPredicate predicateWithFormat:
@"SELF MATCHES '.*[^-_.a-zA-Z0-9].*'"];

return (![regex evaluateWithObject:field.text]); // check for a match

Download from <www.wowebook.com>

ptg

326 Chapter 14 Voice Recorder App

Method initWithCoder: of Class Visualizer
The initWithCoder: method (Fig. 14.17) initializes the Visualizer. Line 11 checks if
the superclass initialized correctly. If so, we initialize the powers array with a capacity of
half the screen’s width using NSMutableArray’s initWithCapacity: method (lines 14–
15). This initializes the NSMutableArray to contain the same number of elements as half
the number of pixels in the screen’s width. We’ll display a power-level line for every other
pixel in the width of the screen.

Methods setPower: and clear of Class Visualizer
The setPower: method (Fig. 14.18, lines 22–33) adds the recording’s current power to
the Visualizer. Line 24 wraps the given float in an NSNumber object and adds it to the

1 // Fig. 14.16: Visualizer.h
2 // View that displays a visualization of a recording in progress.
3 #import <UIKit/UIKit.h>
4
5 // begin Visualizer interface definition
6 @interface Visualizer : UIView
7 {
8 NSMutableArray *powers; // past power levels in the recording
9 float minPower; // the lowest recorded power level

10 } // end instance variable declaration
11
12 - (void)setPower:(float)p; // set the powerLevel
13 - (void)clear; // clear all the past power levels
14 @end // end interface Visualizer

Fig. 14.16 | View that displays a visualization of a recording in progress.

1 // Fig. 14.17: Visualizer.m
2 // VoiceRecorder
3 #import "Visualizer.h"

4
5 @implementation Visualizer
6
7 // initialize the Visualizer
8 - (id)initWithCoder:(NSCoder *)aDecoder
9 {

10 // if the superclass initializes properly
11 if (self = [super initWithCoder:aDecoder])
12 {
13 // initialize powers with an entry for every other pixel of width
14 powers = [[NSMutableArray alloc]
15 initWithCapacity:self.frame.size.width / 2];
16 } // end if
17
18 return self; // return this BarVisualizer
19 } // end method initWithCoder:
20

Fig. 14.17 | Method initWithCoder: of class Visualizer.

Download from <www.wowebook.com>

ptg

14.4 Building the App 327

powers array. Recall that primitives such as floats can’t be directly inserted in collections
like NSMutableArrays. Line 27 checks whether there are enough power levels to fill the en-
tire screen. If so, we use NSMutableArray’s removeObjectAtIndex: method to remove the
oldest entries in powers (line 28). Line 31 checks if the given power level is lower than
any level previously recorded. If there are too many, we update minPower to the given value
(line 32). The clear method (lines 36–39) calls NSMutableArray’s removeAllObjects
method to remove all elements from powers. This clears the Visualizer’s display.

Method drawRect: of Class Visualizer
The drawRect: method (Fig. 14.19) draws each power level in the Visualizer. Line 45
retrieves the current graphics context using the UIGraphicsGetCurrentContext function.
We then access Visualizer’s frame property’s size to get a CGSize representing the size
of the Visualizer (line 46).

21 // sets the current power in the recording
22 - (void)setPower:(float)p
23 {
24 [powers addObject:[NSNumber numberWithFloat:p]]; // add value to powers
25
26 // while there are enough entries to fill the entire screen
27 while (powers.count * 2 > self.frame.size.width)
28 [powers removeObjectAtIndex:0]; // remove the oldest entry
29
30 // if the new power is less than the smallest power recorded
31 if (p < minPower)
32 minPower = p; // update minPower with the new power
33 } // end method setPower:
34
35 // clears all the points from the visualizer
36 - (void)clear
37 {
38 [powers removeAllObjects]; // remove all objects from powers
39 } // end method clear
40

Fig. 14.18 | Methods setPower: and clear of class Visualizer.

41 // draws the visualizer
42 - (void)drawRect:(CGRect)rect
43 {
44 // get the current graphics context
45 CGContextRef context = UIGraphicsGetCurrentContext();
46 CGSize size = self.frame.size;
47
48 // draw a line for each point in powers
49 for (int i = 0; i < powers.count; i++)
50 {
51 // get next power level
52 float newPower = [[powers objectAtIndex:i] floatValue];

Fig. 14.19 | Method drawRect: of class Visualizer. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

328 Chapter 14 Voice Recorder App

Lines 49–66 loop through each power level in powers and draw a line representing
that level. Line 52 gets a float value representing the power level at index i. NSMutable-
Array’s objectAtIndex: method is used to retrieve the NSNumber at the current index and
NSNumber’s floatValue method converts that to a float. Line 55 uses this value to calcu-
late the height for this power level’s line, scaled by the minPower. The line is drawn so that
it is bisected by the vertical center of the screen. Line 58 uses the CGContextMoveToPoint
function to select the point in context that is half of the line’s height above the vertical
center of the screen. This will be the line’s top endpoint. Line 61 draws the line to the
point in context half of the line’s height below the vertical center of the screen. Line 64
sets the stroke color to green using the CGContextSetRGBStrokeColor function. The
CGContextStrokePath function draws the line to context (line 65).

14.4.4 Class PlaybackViewController
Create a new UIViewController subclass named PlayBackViewController and check the
With XIB for user interface checkbox to generate the class’s header, source and nib files.

PlaybackViewController Interface Declaration
The PlaybackViewController class (Fig. 14.20) is a subclass of UIViewController that
implements the UITableViewDataSource and UITableViewDelegate protocols (lines 9–
10) indicating that this class is a data model for a UITableView and receives messages when
the user interacts with that UITableView. Line 13 declares a PlaybackViewCon-
trollerDelegate for this class. Lines 14–19 declare outlets used to connect to the inter-
active GUI components in this view. The AVAudioPlayer variable player is used to play
back saved recordings and the NSMutableArray variable files stores the list of the record-

53
54 // calculate the height for this power level
55 float height = (1 - newPower / minPower) * (size.height / 2);
56
57 // move to a point above the middle of the screen
58 CGContextMoveToPoint(context, i * 2, size.height / 2 - height);
59
60 // add a line to a point below the middle of the screen
61 CGContextAddLineToPoint(context, i * 2, size.height / 2 + height);
62
63 // set the color for this line segment based on f
64 CGContextSetRGBStrokeColor(context, 0, 1, 0, 1);
65 CGContextStrokePath(context); // draw the line
66 } // end for
67 } // end method drawRect:
68
69 // free Visualizer's memory
70 - (void)dealloc
71 {
72 [powers release]; // release the powers NSMutableArray
73 [super dealloc]; // call the superclass's dealloc method
74 } // end method dealloc
75 @end // end visualizer implementation

Fig. 14.19 | Method drawRect: of class Visualizer. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

14.4 Building the App 329

ings’ file paths (lines 20–21). Line 22 declares an NSTimer which will generate events to
update the progress and volume Sliders to correspond to the current position and volume
of the playback. Lines 26–32 declare delegate and the outlets as a properties.

1 // Fig. 14.20: PlaybackViewController.h
2 // Controls the View where the user plays existing sound files.
3 #import <UIKit/UIKit.h>
4 #import <MessageUI/MessageUI.h>
5
6 @protocol PlaybackViewControllerDelegate;
7
8 // begin interface PlaybackViewController's declaration
9 @interface PlaybackViewController : UIViewController

10 <UITableViewDataSource, UITableViewDelegate,
11 MFMailComposeViewControllerDelegate>
12 {
13 id <PlaybackViewControllerDelegate> delegate; // this class's delegate
14 IBOutlet UITableView *table; // displays a list of recordings
15 IBOutlet UIToolbar *toolbar; // top toolbar
16 IBOutlet UISlider *progressSlider; // controls the playback progress
17 IBOutlet UISlider *volumeSlider; // controls the playback volume
18 IBOutlet UIBarButtonItem *timeLabel; // shows the playback time
19 IBOutlet UIBarButtonItem *playButton; // button to play/pause playback
20
21 NSMutableArray *files; // a list of the recordings
22 NSTimer *timer; // fires to update the progress slider and time label
23 } // end instance variable declaration
24
25 // declare delegate and the outlets as properties
26 @property(nonatomic, assign) id <PlaybackViewControllerDelegate> delegate;
27 @property (nonatomic, retain) UITableView *table;
28 @property (nonatomic, retain) UIToolbar *toolbar;
29 @property (nonatomic, retain) UISlider *progressSlider;
30 @property (nonatomic, retain) UISlider *volumeSlider;
31 @property (nonatomic, retain) UIBarButtonItem *timeLabel;
32 @property (nonatomic, retain) UIBarButtonItem *playButton;
33
34 - (IBAction)sliderMoved:sender; // called when progressSlider is moved
35 - (IBAction)togglePlay:sender; // called when playButton is touched
36 - (IBAction)updateVolume:sender; // called when volumeSlider is moved
37 - (IBAction)record:sender; // called when the "record" button is touched
38 - (void)timerFired:(NSTimer *)t; // called when the timer fires
39 - (void)playSound; // plays the current sound
40 - (void)stopSound; // stops playback
41 @end // end interface PlaybackViewController
42
43 @protocol PlaybackViewControllerDelegate
44
45 // informs the delegate that the user finished playback
46 - (void)playbackViewControllerDidFinish:
47 (PlaybackViewController *)controller;
48 @end // end protocol PlaybackControllerDelegate

Fig. 14.20 | Controls the View where the user plays existing sound files.

AVAudioPlayer *player; // plays the recordings

Download from <www.wowebook.com>

ptg

330 Chapter 14 Voice Recorder App

This class declares seven methods (lines 34–40):

• sliderMoved:—adjusts the position in the audio playback when the user moves
the progress Slider’s thumb

• togglePlay:—starts the audio playback if no recording is currently playing; oth-
erwise, it stops the currently playing audio recording

• updateVolume:—adjusts the audio playback’s volume when the user moves the
volume Slider’s thumb

• record:—returns the app to the recorder View when the user touches Record

• timerFired:—adjusts the progress and volume Sliders to match the state of the
audio playback 10 times per second

• playSound—plays an AVAudioPlayer representing the selected audio

• stopSound—stops the currently playing AVAudioRecorder

Lines 43–48 declare the PlaybackViewControllerDelegate. The playbackViewCon-
trollerDidFinish: method is called to inform the RootViewController that the user has
finished playing back saved audio recordings and touched the red record Button.

Building the PlaybackViewController’s View
Open the file PlaybackViewController.xib in Interface Builder. Open the View object
to edit its contents. Drag two Toolbars from the Library window onto View and position
one at the top and one at the bottom. Change the Style of both Toolbars to Black Opaque.
Drag a Bar Button Item onto the top toolbar, change its Identifier to Play and uncheck
Enabled. Drag a Slider and a Label onto the top toolbar. Set the label’s text to 0:00, un-
check the Enabled checkbox in the Inspector, expand the Slider to fill the extra space and
check the Slider’s Continuous checkbox. Drag another Slider onto the bottom Toolbar. Set
the Slider’s Min Image to low_volume.png and High Image to high_volume.png. Drag a Bar
Button Item onto the bottom Toolbar and name it Record. Expand the bottom Slider to fill
any empty space. Finally, drag a Table View onto View and expand it to fill all the space
between the top and bottom Toolbars. Figure 14.21 shows the finished GUI.

Fig. 14.21 | Completed PlaybackViewController GUI.

Download from <www.wowebook.com>

ptg

14.4 Building the App 331

Connect the playButton outlet of File’s Owner to the Button on the left side of the top
Toolbar. Connect progressSlider to the top Slider and timeLabel to the Label on the
right side. Connect toolbar to the top Toolbar and table to the Table View in the middle.
Connect volumeSlider to the bottom Slider.

Next, connect the selector action of the left Bar Button Item in the top Toolbar to the
togglePlay: method of File’s Owner. Connect the Value Changed event of the top Slider
to the sliderMoved: method and the Value Changed event of the bottom Slider to the
updateVolume: method. Finally, connect the selector action of the red record Bar Button
Item to the record: method.

Method viewDidLoad of Class PlaybackViewController
PlaybackViewController’s viewDidLoad method (Fig. 14.22) begins by initializing the
files NSMutableArray. Lines 22–23 use the NSSearchPathForDirectoriesInDomains
function to get an array of one element, which is the directory path for this app’s data. Line
24 stores that directory in the dir NSString variable.

1 // Fig. 14.22: PlaybackViewController.m
2 // Implementation for PlaybackViewController.
3 #import <AVFoundation/AVFoundation.h>
4 #import "PlaybackViewController.h"

5
6 @implementation PlaybackViewController
7
8 @synthesize delegate; // generate get and set methods for the delegate
9 @synthesize table; // generate get and set methods for table

10 @synthesize toolbar; // generate get and set methods for toolbar
11 @synthesize progressSlider; // generate get and set methods for the slider
12 @synthesize volumeSlider; // generate get and set methods for the slider
13 @synthesize timeLabel; // generate get and set methods for timeLabel
14 @synthesize playButton; // generate get and set methods for playButton
15
16 // setup the view
17 - (void)viewDidLoad
18 {
19 files = [[NSMutableArray alloc] init]; // initialize files
20
21 // find the directory that the recordings are saved in
22 NSArray *paths = NSSearchPathForDirectoriesInDomains(
23 NSDocumentDirectory, NSUserDomainMask, YES);
24 NSString *dir = [paths objectAtIndex:0];
25
26 // get the default file manager
27 NSFileManager *filemanager = [NSFileManager defaultManager];
28
29 // get a list of all the files in the directory
30
31
32 // iterate through each file in the directory
33 for (NSString *file in filelist)
34 {

Fig. 14.22 | Implementation for PlaybackViewController. (Part 1 of 2.)

NSArray *filelist = [filemanager directoryContentsAtPath:dir];

Download from <www.wowebook.com>

ptg

332 Chapter 14 Voice Recorder App

NSFileManager’s static defaultManager method returns an instance of the default
NSFileManager (line 27). Line 30 stores a list of all files in the app’s data directory by
calling the new fileManager’s directoryContentsAtPath: method. Lines 33–39 loop
though each file, using NSString’s pathExtension method to get each file’s extension then
check if the extension matches caf (line 36). Line 38 uses NSString’s stringByAppend-
ingPathComponent: method to append each file name to the app’s data directory, then
adds the .caf file’s complete path to the files array. Line 41 calls table’s reloadData
method to refresh the UITableView and display the newly added file names.

Methods sliderMoved:, togglePlay: and updateVolume: of Class Playback-
ViewController

The sliderMoved: method (Fig. 14.23, lines 45–51) changes the current playback loca-
tion when the user adjusts the Slider at the top of the app. If the player is currently playing
a recording (line 48), we set player’s currentTime property to progressSlider’s value.

The togglePlay: method (lines 54–61) is called when the user touches the Button
next to the progress Slider that alternates between play and pause. If the player is already
playing (line 57), line 58 calls the stopSound method to end the playback. Otherwise, if
player exists (line 59), line 60 calls the playSound method to play the recording.

Method updateVolume: (lines 64–67) sets player’s volume property to volume-
Slider’s value, which allows the user to adjust the playback’s volume by moving the
Slider’s thumb.

35 // if the file's extension is "caf"
36 if ([[file pathExtension] isEqualToString:@"caf"])
37 // add the path to files
38 [files addObject:[dir stringByAppendingPathComponent:file]];
39 } // end for
40
41 [table reloadData]; // refresh the table
42 } // end method viewDidLoad
43

44 // called when the user moves the playback slider
45 - (IBAction)sliderMoved:sender
46 {
47 // if the player is currently playing a recording
48 if (player != nil)
49 // update the player's playback time
50
51 } // end method sliderMoved:
52
53 // called when the user touches the play/pause button
54 - (IBAction)togglePlay:sender
55 {

Fig. 14.23 | Methods sliderMoved:, togglePlay and updateVolume: of class
PlaybackViewController. (Part 1 of 2.)

Fig. 14.22 | Implementation for PlaybackViewController. (Part 2 of 2.)

player.currentTime = progressSlider.value;

Download from <www.wowebook.com>

ptg

14.4 Building the App 333

Methods timerFired: and record: of Class PlaybackViewController
The timerFired: method (Fig. 14.24, lines 70–89) is called 10 times per second to up-
date the progressSlider and timeLabel according to the current playback position. If the
AVAudioPlayer is currently playing (line 73), we get the current playback’s time by access-
ing player’s currentTime property. Line 78 calls progressSlider’s setValue:animated:
method to move the Slider’s thumb to match player’s currentTime. Lines 81–82 use NS-
String’s stringWithFormat: method to update timeLabel to display the current time
elapsed in the audio playback. If the player isn’t playing (line 84), the playback must have
reached its end. We call our stopSound method to perform any necessary cleanup, and we
reset progressSlider to the beginning (line 87).

The record: method (lines 92–96) is called when the user touches the “Record”
Button to the bottom-right corner of the app. Line 95 calls delegate’s playbackViewCon-
trollerDidFinish: method to return the app to the recorder View.

56 // if the player is playing a recording
57 if (player.playing)
58 [self stopSound]; // stop playback
59 else if (player != nil) // if the player has been created
60 [self playSound]; // play the player's sound
61 } // end method togglePlay:
62
63 // called when the user moved the volume slider
64 - (IBAction)updateVolume:sender
65 {
66
67 } // end method updateVolume:
68

69 // update progressSlider and timeLabel when the timer fires
70 - (void)timerFired:(NSTimer *)t
71 {
72 // if the player is playing
73 if ()
74 {
75 double time = player.currentTime; // get the current playback time
76
77 // update progressSlider with the time
78 [progressSlider setValue:time animated:NO];
79
80 // update timeLabel with the time in minutes:seconds
81 timeLabel.title = [NSString stringWithFormat:@"%i:%.02i",
82 (int)time / 60, (int)time % 60];
83 } // end if
84 else // if the player isn’t playing
85 {

Fig. 14.24 | PlaybackViewController methods timerFired: and record:. (Part 1 of 2.)

Fig. 14.23 | Methods sliderMoved:, togglePlay and updateVolume: of class
PlaybackViewController. (Part 2 of 2.)

player.volume = volumeSlider.value; // update player's volume

player.playing

Download from <www.wowebook.com>

ptg

334 Chapter 14 Voice Recorder App

Method playSound of Class PlaybackViewController
PlaybackViewController’s playSound method (Fig. 14.25) plays a saved audio record-
ing. Lines 102–103 set the audio session to AVAudioSessionCategoryPlayback using
AVAudioSession’s setCategory: method. We then play the AVAudioPlayer (line 104).
Lines 107–108 initialize the timer to generate an event every .1 second which calls the
timerFired: method. Lines 111–113 create a new UIBarButtonItem that calls the tog-
glePlay: method when touched. This Button pauses the playback.

86 [self stopSound]; // stop the playback
87 [progressSlider setValue:0 animated:YES]; // move slider to start
88 } // end else
89 } // end method timerFired:
90
91 // called when the user touches the "Record" Button
92 - (IBAction)record:sender
93 {
94 // inform the delegate that the user is done playing recordings
95 [delegate playbackViewControllerDidFinish:self];
96 } // end method record:
97

98 // plays the current recording
99 - (void)playSound
100 {
101 // set the audio session's category to playback
102
103
104
105
106 // initialize the timer
107 timer = [NSTimer scheduledTimerWithTimeInterval:0.1 target:self
108 selector:@selector(timerFired:) userInfo:nil repeats:YES];
109
110 // create a pause button
111 UIBarButtonItem *pauseButton = [[UIBarButtonItem alloc]
112 initWithBarButtonSystemItem:UIBarButtonSystemItemPause target:self
113 action:@selector(togglePlay:)];
114
115 // get the items in the toolbar
116 NSMutableArray *items = [toolbar.items mutableCopy];
117
118 // replace the play button with the pause button
119 [items removeObjectAtIndex:0]; // remove the play button
120 [items insertObject:pauseButton atIndex:0]; // add the pause button
121 [pauseButton release]; // release the pauseButton UIBarButtonItem
122 [toolbar setItems:items animated:NO]; // update toolbar's items
123 } // end method playSound
124

Fig. 14.25 | Method playSound of class PlaybackViewController.

Fig. 14.24 | PlaybackViewController methods timerFired: and record:. (Part 2 of 2.)

[[AVAudioSession sharedInstance] setCategory:
 AVAudioSessionCategoryPlayback error:nil];
[player play]; // play the audio player

Download from <www.wowebook.com>

ptg

14.4 Building the App 335

We must alter toolbar’s items property to add the pauseButton to the Toolbar. We
can’t alter items directly, so we use the mutableCopy method to store an NSMutableArray
copy of items (line 116). Line 119 calls NSMutableArray’s removeObjectAtIndex:
method to remove the playButton from the copy of items. We then insert the pause-
Button at the same index using NSMutableArray’s insertObject:atIndex: method (line
120). We then call UIToolbar’s setItems:animated: method to replace items with our
altered copy which includes the pauseButton.

Methods stopSound, numberOfSectionsInTableView: and tableView:number-
OfRowsInSection: of Class PlaybackViewController
The stopSound method (Fig. 14.26, lines 126–143) ends the playback of the current au-
dio recording. Lines 128–129 stop the timer and set it to nil. Line 130 stops player from
playing the recording by calling AVAudioPlayer’s pause method. Lines 133–134 return
the app’s audio session to the default AVAudioSessionCategorySoloAmbient. We then
store a copy of the items in toolbar using NSMutableArrays’s mutableCopy method. Lines
140–141 remove the pauseButton from the copy of items and replace it with the play-
Button. We then set toolbar’s items property to the altered copy. Method
tableView:numberOfRowsInSection: (lines 152–156) returns the value of files.count
because our UITableView has one row for each saved audio recording file.

125 // stops the playback of current recording
126 - (void)stopSound
127 {
128 [timer invalidate]; // stop and release the timer
129 timer = nil; // assign the timer to nil
130
131
132 // set the audio session's category to ambient
133
134
135
136 // get the items in the toolbar
137 NSMutableArray *items = [toolbar.items mutableCopy];
138
139 // replace the pause button with the play button
140 [items removeObjectAtIndex:0]; // remove the pause button
141 [items insertObject:playButton atIndex:0]; // add the play button
142 [toolbar setItems:items animated:NO]; // update the toolbar's items
143 } // end method stopSound
144
145 // called by the table view to determine its number of sections
146 - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
147 {
148 return 1; // this table has only one section
149 } // end method numberOfSectionsInTableView:
150

Fig. 14.26 | Methods stopSound, numberOfSectionsInTableView: and
tableView:numberOfRowsInSection: of class PlaybackViewController. (Part 1 of 2.)

[player pause]; // pause the audio player

[[AVAudioSession sharedInstance] setCategory:
 AVAudioSessionCategorySoloAmbient error:nil];

Download from <www.wowebook.com>

ptg

336 Chapter 14 Voice Recorder App

Method tableView:cellForRowAtIndexPath: of Class PlaybackViewCon-
troller

Method tableView:cellForRowAtIndexPath: (Fig. 14.27) returns a cell in a UITable-
View specified by an NSIndexPath. Line 162 creates a new NSString that identifies the
type of UITableViewCell in our table. Lines 160–161 call UITableViewCell’s dequeueRe-
usableCellWithIdentifier: to request a currently unused cell of that type. If there are
no unused cells available (line 169), lines 171–172 create a new UITableViewCell.

151 // called by the table view to determine the number of rows in a section
152 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
153 (NSInteger)section
154 {
155 return files.count; // return the number of files
156 } // end method tableView:numberOfRowsInSection:
157

158 // called by the table view to get a cell for the given index path
159 - (UITableViewCell *)tableView:(UITableView *)tableView
160 cellForRowAtIndexPath:(NSIndexPath *)indexPath
161 {
162 static NSString *ID = @"Cell"; // create a cell identifier
163
164 // get a reused cell using the identifier
165 UITableViewCell *cell =
166 [tableView dequeueReusableCellWithIdentifier:ID];
167
168 // if there were no cells available for reuse
169 if (cell == nil)
170 // create a new cell
171 cell = [[[UITableViewCell alloc] initWithStyle:
172 UITableViewCellStyleDefault reuseIdentifier:ID] autorelease];
173
174 // get the file name for this cell
175 NSString *text =
176 [[files objectAtIndex:indexPath.row] lastPathComponent];
177
178 // delete the .caf from the path
179 cell.textLabel.text = [text stringByDeletingPathExtension];
180
181 // load the e-mail icon
182 UIImage *mailImage = [UIImage imageNamed:@"envelope.png"];
183
184 // create a new button
185 UIButton *mailButton =
186 [[UIButton alloc] initWithFrame:CGRectMake(0, 0, 32, 32)];
187

Fig. 14.27 | Method tableView:cellForRowAtIndexPath: of class
PlaybackViewController. (Part 1 of 2.)

Fig. 14.26 | Methods stopSound, numberOfSectionsInTableView: and
tableView:numberOfRowsInSection: of class PlaybackViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

14.4 Building the App 337

Lines 175–176 get the file name of the recording specified by the indexPath using
NSMutableArray’s objectAtIndex: method. NString’s lastPathComponent method is
used to remove the file name from the full path that is returned. Line 179 removes the
.caf extension from the file name using NSString’s stringByDeletingPathExtension
method. We then create a new Button with the e-mail icon (lines 185–186) and make it
this cell’s accessoryView (line 197)—a view that’s displayed at the right side of the cell’s
contents. We use the tag property of UIView to store the row in which the Button is being
added (line 190). This property helps identify the view. We retrieve this value in the mail-
ButtonTouched: method to identify the row in which the touched Button resides, so we
know which audio recording to add to the e-mail.

Method tableView:commitEditingStyle:forRowAtIndexPath: of Class Play-
backViewController

The tableView:commitEditingStyle:forRowAtIndexPath: method (Fig. 14.28) of the
UITableViewDataSource protocol is called when the user edits a cell in our UITableView.
Line 207 checks whether the user deleted a cell, which is the only type of editing our
UITableView is configured to allow. Line 210 gets the default NSFileManager and line 213
gets the file name from files specified by the given indexPath.

188 // use the email icon for the button
189 [mailButton setImage:mailImage forState:UIControlStateNormal];
190 mailButton.tag = indexPath.row; // tag the button with the current row
191
192 // make the button call the mailButtonTouched: method when touched
193 [mailButton addTarget:self action:@selector(mailButtonTouched:)
194 forControlEvents:UIControlEventTouchUpInside];
195
196 // make the button the accessory view of the cell
197
198 return cell; // return the configured cell
199 } // end method tableView:cellForRowAtIndexPath:
200

201 // called when the user edits the table view
202 - (void)tableView:(UITableView *)tableView commitEditingStyle:
203 (UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:
204 (NSIndexPath *)indexPath
205 {
206 // if the user deleted the element
207 if (editingStyle == UITableViewCellEditingStyleDelete)
208 {
209 // get the default file manager
210 NSFileManager *fileManager = [NSFileManager defaultManager];

Fig. 14.28 | Method tableView:commitEditingStyle:forRowAtIndexPath: of class
PlaybackViewController. (Part 1 of 2.)

Fig. 14.27 | Method tableView:cellForRowAtIndexPath: of class
PlaybackViewController. (Part 2 of 2.)

cell.accessoryView = mailButton;

Download from <www.wowebook.com>

ptg

338 Chapter 14 Voice Recorder App

Before deleting the file, we first check if the file is currently playing (line 216). If it is,
we stop the playback and release player so that the sound file can be deleted. NSFileMan-
ager’s removeItemAtPath method deletes the audio recording from the app. Line 226
removes the corresponding file name from the files NSMutableArray. We then call
UITableView’s deleteRowsAtIndexPaths:withRowAnimation: to remove the deleted
entry from tableView. Passing UITableViewRowAnimationRight specifies that the deleted
row will slide out to the right before being removed from the screen.

Method tableView:didSelectRowAtIndexPath: of Class PlaybackViewCon-
troller

Method tableView:didSelectRowAtIndexPath: (Fig. 14.29) of the UITableViewDele-
gate protocol is called when the user touches any of the tableView’s rows. Line 239 re-
trieves the file path at the given indexPath. We then use NSURL’s static URLWithString:
method to create a new NSURL using the file path.

211
212 // get the path for the deleted recording
213 NSString *path = [files objectAtIndex:indexPath.row];
214
215 // if the recording being deleted is also being played
216 if ([[player.url path] isEqualToString:path])
217 {
218 [self stopSound]; // stop the playback
219 [player release]; // release the player AVAudioPlayer
220 player = nil; // set player to nil
221 } // end if
222
223 [fileManager removeItemAtPath:path error:nil]; // delete recording
224
225 // remove the entry from files
226 [files removeObjectAtIndex:indexPath.row];
227
228 // remove the row from the table
229 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:
230 indexPath] withRowAnimation:UITableViewRowAnimationRight];
231 } // end if
232 } // end method tableView:commitEditingStyle:forRowAtIndexPath:
233

234 // called when the user touches a row of the table view
235 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
236 (NSIndexPath *)indexPath
237 {

Fig. 14.29 | Method tableView:didSelectRowAtIndexPath: of class
PlaybackViewController. (Part 1 of 2.)

Fig. 14.28 | Method tableView:commitEditingStyle:forRowAtIndexPath: of class
PlaybackViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

14.4 Building the App 339

Line 243 releases the old player and line 246 reinitializes player as a new AVAudio-
Player using the selected file path. We set player’s volume property equal to the position
of the volume Slider’s thumb (line 247). Line 250 sets progressSlider’s maximumValue
to player’s duration, so that the position of the Slider’s thumb always corresponds to the
current location in the playback. Lines 251–252 call our playSound method to play the
newly created recording and enable the playButton, respectively.

Methods mailButtonTouched: and mailComposeController:didFinishWith-
Result:error: of Class PlaybackViewController
Method mailButtonTouched (Fig. 14.30, lines 256–277) displays an e-mail dialog when
the user touches the Button next to a file’s name. Line 259 retrieves the file path that cor-
responds to the touched Button. When we added the Button to the UITableViewCell, we
set its tag property to be its row in the table, so here we can retrieve the Button’s tag and
use it to identify the row. We then create an NSData object containing the contents of the
selected audio file using NSData’s static dataWithContentsOfFile: method. NSData ob-
jects represent stored data (byte buffers).

238 // get the file name for the touches row
239 NSString *file = [files objectAtIndex:indexPath.row];
240
241 // create a URL with the file's path
242 NSURL *url = [NSURL URLWithString:file];
243 [player release]; // release the player AVAudioPlayer
244
245 // create a new AVAudioPlayer with the URL
246
247
248
249 // set the maximum value of the slider to reflect the recording length
250 progressSlider.maximumValue = player.duration;
251 [self playSound]; // play the selected recording
252 playButton.enabled = YES; // enable the play/pause button
253 } // end method tableView:didSelectRowAtIndexPath:
254

255 // called when the user touches the mail button on a cell
256 - (void)mailButtonTouched:sender
257 {
258 // get the file for the touched row
259 NSString *file = [files objectAtIndex:[sender tag]];
260
261 // create an NSData object with the selected recording
262

Fig. 14.30 | Methods tableView:accessoryButtonTappedForRowWithIndexPath: and
mailComposeController:didFinishWithResult:error: of class PlaybackViewController.
(Part 1 of 2.)

Fig. 14.29 | Method tableView:didSelectRowAtIndexPath: of class
PlaybackViewController. (Part 2 of 2.)

player = [[AVAudioPlayer alloc] initWithContentsOfURL:url error:nil];
player.volume = volumeSlider.value; // set player's volume

NSData *data = [NSData dataWithContentsOfFile:file];

Download from <www.wowebook.com>

ptg

340 Chapter 14 Voice Recorder App

Lines 265–266 create a new MFMailComposeViewController which controls an e-
mail dialog View, allowing the user to send e-mail without leaving the app. MFMail-
ComposeViewController’s addAttachmentData:mimeType:fileName: method adds the
selected audio file (the NSData object created in line 262) as an e-mail attachment. We get
the file’s name using NSString’s lastPathComponent method and pass that as the file-
Name argument. Line 273 sets controller’s mailComposeDelegate to self so that this
PlaybackViewController will receive a mailComposeController:didFinishWithRe-
sult:error: message (from the protocol MFMailComposeViewControllerDelegate pro-
tocol) when the user finishes with the e-mail dialog. Line 276 calls UIViewController’s
presentModalViewController:animated: method to display the e-mail dialog.

The mailComposeController:didFinishWithResult:error: method is called when
the user finishes with the e-mail dialog box, either by sending an e-mail or by touching
Cancel. Line 284 hides the MFMailComposeViewController by calling UIViewCon-
troller’s dismissModalViewControllerAnimated: method.

263
264 // create an MFMailComposeViewController for sending an e-mail
265
266
267
268 // add the recording as an attachment
269
270
271
272 // set controller's delegate to this object
273
274
275 // show the MFMailComposeViewController
276 [self presentModalViewController:controller animated:YES];
277 } // end method tableView:accessoryButtonTappedForRowWithIndexPath:
278
279 // called when the user finishes sending an e-mail
280
281
282 {
283 // make the MFMailComposeViewController disappear
284 [self dismissModalViewControllerAnimated:YES];
285 } // end method mailComposeController:didFinishWithResult:error:
286
287 // release this object's memory
288 - (void)dealloc
289 {
290 [player release]; // release the player AVAudioPlayer
291 [files release]; // release the files NSMutableArray
292 [super dealloc]; // call the superclass's dealloc method
293 } // end method dealloc
294 @end // end implementation of PlaybackViewController

Fig. 14.30 | Methods tableView:accessoryButtonTappedForRowWithIndexPath: and
mailComposeController:didFinishWithResult:error: of class PlaybackViewController.
(Part 2 of 2.)

MFMailComposeViewController *controller =
 [[MFMailComposeViewController alloc] init];

[controller addAttachmentData:data mimeType:@"audio/mp4" fileName:
 [file lastPathComponent]];

controller.mailComposeDelegate = self;

- (void)mailComposeController:(MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result error:(NSError*)error

Download from <www.wowebook.com>

ptg

14.5 Speech Synthesis and Recognition 341

14.5 Speech Synthesis and Recognition
The iPhone 3.x APIs are divided into two sections—public and private. Public APIs are
documented on Apple’s website and are free for any developer to use. Private APIs are not
documented, and Apple will not approve any app that uses them. The iPhone currently
supports both speech recognition and speech synthesis, but the APIs used to access them
are private. There are currently no public APIs for speech recognition, and speech synthe-
sis is available only through the UI Accessibility framework. This framework allows visu-
ally impaired users to hear descriptions of screen components, but does not allow you to
access the iPhone speech synthesis capabilities programmatically. Apple may make these
APIs public in the future.

14.6 Wrap-Up
The Voice Recorder app used the AV Foundation framework and an AVAudioRecorder to
record sounds using the iPhone’s microphone, then save them for playback later. The
AVAudioSessionCategoryRecord audio session silenced any playback while we were re-
cording. When playing back recordings we used the AVAudioSessionCategoryPlayback
audio session to set the iPhone’s ringer to silent and to continue playback while the iPhone
is locked. The flipside of the app contained a UITableView displaying the name of each
saved audio recording. AVAudioPlayers were used to play the files.

The NSPredicate class and a regular expression were used to verify that the user
entered a valid file name for each saved recording—disallowing invalid characters such as
spaces and punctuation. We also converted saved audio files to NSData objects that could
be attached to e-mails. We used the MFMailComposeViewController to open an e-mail
dialog allowing the user to send e-mail from the app.

Download from <www.wowebook.com>

ptg

15
Enhanced Address Book App

Managing and Transferring Persistent Data

O B J E C T I V E S
In this chapter you’ll learn:

■ To use the Core Data framework to separate our data
model from the rest of the app according to the Model-
View-Controller design pattern.

■ To visually design our data model using the data model
editor.

■ To use an NSManagedObject to programmatically
interact with the Core Data model.

■ To use an NSFetchedResultsController to
coordinate between the app’s data and its
UITableViews.

■ To use the Game Kit framework and the GKSession
class to transfer data between two devices using
Bluetooth.

■ To allow the user to choose from nearby peers using a
GKPeerPickerController.

Download from <www.wowebook.com>

ptg

15.1 Introduction 343

O
u

tl
in

e

15.1 Introduction
The Enhanced Address Book app is an enhanced version of the Address Book app created
in Chapter 10. This version allows the user to transfer contacts between iPhones using
Bluetooth technology. [Note: The Bluetooth capabilities do not work in the iPhone Sim-
ulator.] When viewing a single contact (Fig. 15.1), touching the Button in the top-right
corner of the app searches for nearby iPhones and iPod Touches that are running the
Enhanced Address Book app (Fig. 15.2 (a)). The app shows a list of all nearby devices
(Fig. 15.2 (b)). The user touches the device’s name to send the contact, then the receiving
device receives a Connection Request alert (Fig. 15.3). Touching Accept transfers the con-
tact and adds it to that device’s Enhanced Address Book.

15.1 Introduction

15.2 Test-Driving the Enhanced Address Book App

15.3 Technologies Overview

15.4 Building the App

15.4.1 Building the Core Data Model

15.4.2 Class ContactViewController

15.4.3 Class RootViewController

15.5 Wrap-Up

Fig. 15.1 | Viewing a contact.

Transfer contact’s
information to another
iPhone

Download from <www.wowebook.com>

ptg

344 Chapter 15 Enhanced Address Book App

Fig. 15.2 | Requesting a connection.

Fig. 15.3 | Getting a Bluetooth Connection Request.

a) b)

Name of
a nearby
device

Connection Request alert

Download from <www.wowebook.com>

ptg

15.2 Test-Driving the Enhanced Address Book App 345

15.2 Test-Driving the Enhanced Address Book App
Opening the Completed App
Open the directory containing the Enhanced Address Book app project and double click
EnhancedAddressBook.xcodeproj to open the project in Xcode. To test the Bluetooth ca-
pabilities of this app you’ll need to run the app simultaneously on at least two iPhones (or
Bluetooth-enabled iPod Touches). The iPhone Simulator does not support Bluetooth.

Sending a Contact
Run the Enhanced Address Book app on two iPhones in close proximity. Create a new
contact on one of the iPhones then touch the new contact’s name to view it in more detail.
Touch the Button in the top-right corner of the app to search for nearby iPhones.
When the list of nearby devices appears, touch the name of the other iPhone and wait for
a Connection Request alert to appear on the receiving iPhone. Touch Accept on the receiv-
ing iPhone and the transferred contact appears in both iPhone’s list of contacts.

15.3 Technologies Overview
The Core Data framework allows us to graphically define our app’s data model in a man-
ner similar to building GUIs in Interface Builder. The framework allows apps to follow
the Model-View-Controller design pattern by completely separating the data model from
the controller. A Core Data data model is known as a managed object model and is created
visually. The managed object model defines model objects (also known as entities) and
their relationships. The Enhanced Address Book has a simple managed object model con-
sisting of only the Person entity for storing a contact’s information. Each entity typically
has several attributes. For example, our Person entity contains name, address and phone
number attributes. The interface between the managed object model and our code is the
Managed Object Context, which is represented by class NSManagedObjectContext. We use
an object of this class to add, retrieve and update information in the data model.

Entities are represented by class NSEntityDescription. To create a new object repre-
senting a data object you must use class NSManagedObject. In this app, an individual con-
tact’s data is represented by an NSManagedObject received from the NSEntityDescription
representing the Person entity. You manipulate this object in Objective-C code then
insert it back into the data model.

Information is retrieved using fetch requests (represented by class NSFetchRequest).
This works similarly to querying databases, in that you specify the exact kind of data that’s
returned. For example, in the Enhanced Address Book app we could construct a fetch
request asking for all people from the state of Alaska, or all people whose first name begins
with the letter M. We use a FetchedRequestController to update both the Core Data
stored information and our UITableView displaying the contact information. We use one
instance of class NSFetchRequest which is shared in the RootViewController.

The Game Kit framework allows multiple iPhones to interact via Bluetooth. [Note:
App users might need to enable Bluetooth on their devices.] We use the GKPeerPickerCon-
troller class to create a view displaying nearby iPhones running the Enhanced Address
Book app. We specify whether or not the iPhone is receiving or transmitting data using a
GKSession. An NSKeyedArchiver is used to serialize the NSMutableArray representing a
contact’s information to an NSData object that we can transmit between iPhones using
GKSession’s sendDataToAllPeers:withDataMode: method.

Download from <www.wowebook.com>

ptg

346 Chapter 15 Enhanced Address Book App

15.4 Building the App
Create a new project named EnhancedAddressBook.xcodeproj using the Navigation-
based Application template. Make sure the Use Core Data for storage checkbox is checked
when you choose the template so that you can use Core Data functionality in the app.

15.4.1 Building the Core Data Model
The Core Data data model is stored in EnhancedAdressBook.xcdatamodel, under the
Resources group in Xcode’s Groups and Files window. Double-click this file to open it in
the data model editor (Fig. 15.4). Click the Event entity class. In the top-right corner of
the screen, rename the entity Person. Select the timeStamp attribute, rename it to Name in
the top-right corner of the screen and change its type to String. Click the plus button in
the center of the screen to add a new attribute. Name the new attribute Email. Add three
more attributes named City, Phone and Street then close the data model editor.
Figure 15.4 shows the completed data model.

15.4.2 Class ContactViewController
Class ContactViewController (Fig. 15.5) is a subclass of UIViewController which im-
plements the UITableViewDataSource protocol (lines 7–8). ContactViewController also
implements the GKSessionDelegate protocol (line 8) so that it can receive messages when
a visible peer device changes its state. This class also implements the GKPeerPickerCon-
trollerDelegate protocol (line 8) so that it can respond to messages from a GKPeerPick-
erController, which provides a standard user interface for connecting to other iPhones.

Fig. 15.4 | Data model editor.

Used to name the selected
entity or attributePerson entity class

Touch to add new
attribute City attribute

Download from <www.wowebook.com>

ptg

15.4 Building the App 347

ContactViewController has an NSManagedObject instance variable representing the
Core Data object for the selected contact (line 10). Line 13 declares the NSManagedObject
as a property. The updateTitle method (line 15) updates the navigation bar’s title to dis-
play the contact’s name.

Methods viewDidLoad and send of Class ContactViewController
The viewDidLoad method (Fig. 15.6, lines 10–17) sets up ContactViewController’s
view. Lines 13–15 create a new UIBarButtonItem that, when touched, calls the send
method to allow the user to send a contact to another iPhone. We pass UIBarButtonSys-
temItemAction enum constant as the BarButtonSystemItem parameter to get a system
item action Button (). Line 16 calls UINavigationItem’s setRightBarButtonItem:
method to add the Button to the right side of the navigation bar.

The send method (lines 20–28) is called when the user touches the UIBarButtonItem
in the top-right corner of the app. Lines 23–24 create a new GKPeerPickerController to
display all nearby iPhones. We set peerPicker’s delegate to self (line 25) so this Con-
tactViewController will receive a message when the user chooses a peer. Line 26 sets
peerPicker’s connectionTypesMask property to GKPeerPickerConnectionTypeNearby,
which indicates that we’d like to see a list of the devices that are reachable via a Bluetooth
connection. Line 27 calls peerPicker’s show method to displays the peerPicker’s view.

1 // ContactViewController.h
2 // Controller that displays the contact information for a created contact.
3 // Implementation in ContactViewController.m
4 #import <UIKit/UIKit.h>

5
6
7 @interface ContactViewController : UIViewController
8 <UITableViewDataSource, , >
9 {

10
11 } // end instance variable declaration
12
13 @property(retain) NSManagedObject* person; // declare person as a property
14
15 - (void)updateTitle; // updates the navigation item's title from person
16 @end // end interface ContactViewController

Fig. 15.5 | Controller that displays the contact information for a created contact.

1 // ContactViewController.m
2 // Implementation of ContactViewController.
3 #import "ContactViewController.h"

4
5 @implementation ContactViewController
6
7 @synthesize person; // generate get and set methods for person
8

Fig. 15.6 | Methods viewDidLoad and send of class ContactViewController. (Part 1 of 2.)

#import <GameKit/GameKit.h>

GKSessionDelegate GKPeerPickerControllerDelegate

NSManagedObject *person; // the person we’re loading information from

Download from <www.wowebook.com>

ptg

348 Chapter 15 Enhanced Address Book App

Method peerPickerController:didConnectPeer:toSession: of Class
ContactViewController

The peerPickerController:didConnectPeer:toSession: method (Fig. 15.7) of the GK-
PeerPickerControllerDelegate protocol is called when the user chooses a peer device to
which contact information should be sent. Line 35 retrieves an NSDictionary containing
the selected contact’s information. NSManagedObject’s entity method gets an NSEntity-
Description representing the Person entity. NSEntityDescription’s propertiesByName
method returns an NSDictionary containing the names of the entity’s properties as keys
and NSAttributeDescriptions as the values. We initialize a new NSMutableDictionary
to store the information that will be sent to the peer device. Next, we iterate through the
keys in personDictionary and use those keys to retrieve the corresponding values from
the person object. We add these keys and values to the NSMutableDictionary. Line 47
serializes the dictionary to an NSData object using NSKeyedArchiver’s archivedDataWith-
RootObject: method. We then call the given GKSession’s sendDataToAllPeers:with-
DataMode: method to send the serialized contact information to the connected devices.
The GKSendReliable argument specifies that the data will be continuously sent until it all
arrives successfully or the connection times out.

9 // setup the view once it’s loaded
10 - (void)viewDidLoad
11 {
12 // create the button for sending a contact
13 UIBarButtonItem *sendButton = [[UIBarButtonItem alloc]
14 initWithBarButtonSystemItem:UIBarButtonSystemItemAction target:self
15 action:@selector(send)];
16 [self.navigationItem setRightBarButtonItem:sendButton];
17 } // end method viewDidLoad
18
19 // displays a list of other iPhones to send this contact to
20 - (void)send
21 {
22
23
24
25
26
27
28 } // end method send
29

30 // called when the user chooses a peer to send this contact to
31 - (void)peerPickerController:(GKPeerPickerController *)picker
32 didConnectPeer:(NSString *)peerID toSession:(GKSession *)session
33 {

Fig. 15.7 | Method peerPickerController:didConnectPeer:toSession: of class
ContactViewController. (Part 1 of 2.)

Fig. 15.6 | Methods viewDidLoad and send of class ContactViewController. (Part 2 of 2.)

// create a new GKPeerPickerController for connecting to a peer
GKPeerPickerController *peerPicker =
 [[GKPeerPickerController alloc] init];
peerPicker.delegate = self; // set the delegate to this object
peerPicker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;
[peerPicker show]; // show the peer picker

Download from <www.wowebook.com>

ptg

15.4 Building the App 349

Methods peerPickerControllerDidCancel:, updateTitle and
tableView:numberOfRowsInSection: of Class ContactViewController
The peerPickerControllerDidCancel: method (Fig. 15.8, lines 57–61) of the GKPeer-
PickerControllerDelegate protocol calls the GKPeerPickerController’s dismiss

method to hide its view when the user touches the “Cancel” Button. The updateTitle
method (lines 64–68) sets the navigation bar’s title to the contact’s name using UINavi-
gationItem’s setTitle: method.

34 // get the property names from person
35
36
37 // create a new NSMutableDictionary to store the data
38 NSMutableDictionary *dictionary = [[NSMutableDictionary alloc] init];
39
40 // iterate through each property name in person
41 for (NSString *key in [personDictionary allKeys])
42
43 // add the property and its value in person to the dictionary
44 [dictionary setValue:[person valueForKey:key] forKey:key];
45
46 // archive dictionary
47 NSData *data = [NSKeyedArchiver archivedDataWithRootObject:dictionary];
48
49 // send the data to all connected peers
50
51
52 [picker dismiss]; // dismiss the peer picker
53 [picker release]; // release the picker GKPeerPickerController
54 } // end method peerPickerController:didConnectPeer:toSession:
55

56 // called when the user touches the cancel button of the peer picker
57 - (void)peerPickerControllerDidCancel:(GKPeerPickerController *)picker
58 {
59 [picker dismiss]; // dismiss the peer picker
60 [picker release]; // release the picker GKPeerPickerController
61 } // end method peerPickerControllerDidCancel:
62
63 // set the navigation item's title depending on person
64 - (void)updateTitle
65 {
66 // set the title to the contact's name
67 [self.navigationItem setTitle:[person valueForKey:@"Name"]];
68 } // end method updateTitle
69

Fig. 15.8 | Methods peerPickerControllerDidCancel:, updateTitle and
tableView:numberOfRowsInSection: of class ContactViewController. (Part 1 of 2.)

Fig. 15.7 | Method peerPickerController:didConnectPeer:toSession: of class
ContactViewController. (Part 2 of 2.)

NSDictionary *personDictionary = [[person entity] propertiesByName];

[session sendDataToAllPeers:data withDataMode:GKSendDataReliable
 error:nil];

Download from <www.wowebook.com>

ptg

350 Chapter 15 Enhanced Address Book App

Method tableView:numberOfRowsInSection: (lines 71–75) returns the number of
rows in ContactViewController’s UITableView. We get an NSEntityDescription on
which we call the properties method to obtain an NSArray containing all of the fields in
the person data model (line 74). We then use the NSArray’s count property to determine
the number of rows in the UITableView.

Method tableView:cellForRowAtIndexPath: of Class ContactViewController
Method tableView:cellForRowAtIndexPath: (Fig. 15.9, lines 78–101) returns the UI-
TableViewCell at the given NSIndexPath in the UITableView. Lines 81–90 attempt to re-
use an existing cell from the UITableView. We retrieve person’s NSEntityDescription
then call its propertiesByName method to get an NSDictionary representing person’s
properties (line 93). Lines 93–94 use NSDictionary’s allKeys method to obtain an NSAr-
ray of the dictionary’s keys, then use the NSIndexPath’s row property to get the selected
key from the array. Line 95 gets the value for the selected key from the person object. Line
96 gets the UILabel of the selected UITableViewCell using its textLabel method. Lines
99–100 update the UITableViewCell’s UILabel with the contact information then return
the configured cell.

70 // called by the table view to find the number of rows in a given section
71 - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
72 (NSInteger)section
73 {
74
75 } // end method tableView:numberOfRowsInSection:
76

77 // called by the table view to get a cell for the given index path
78 - (UITableViewCell *)tableView:(UITableView *)tableView
79 cellForRowAtIndexPath:(NSIndexPath *)indexPath
80 {
81 static NSString *identifier = @"NormalCell";
82
83 // get a reused cell
84 UITableViewCell *cell =
85 [tableView dequeueReusableCellWithIdentifier:identifier];
86
87 // if there are no cells to be reused, create one
88 if (cell == nil)
89 cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero
90 reuseIdentifier:identifier] autorelease];
91
92
93
94

Fig. 15.9 | Method tableView:cellForRowAtIndexPath: of class
ContactViewController. (Part 1 of 2.)

Fig. 15.8 | Methods peerPickerControllerDidCancel:, updateTitle and
tableView:numberOfRowsInSection: of class ContactViewController. (Part 2 of 2.)

return [[person entity] properties].count; // return number of fields

// get the key at the appropriate index in the dictionary
NSString *key = [[[[person entity] propertiesByName] allKeys]
 objectAtIndex:indexPath.row];

Download from <www.wowebook.com>

ptg

15.4 Building the App 351

15.4.3 Class RootViewController
Class RootViewController (Fig. 15.10) implements the NSFetchedResultsController-
Delegate protocol (line 8) so that it can respond to messages from an NSFetchedResults-
Controller, which updates a UITableView with information fetched from Core Data
objects. The class also implements the GKSessionDelegate protocol (line 8) so that it can
receive messages when a visible peer device changes its state.

95
96 UILabel *label = [cell textLabel]; // get the label for the cell
97
98 // update the text of the label
99 label.text = [NSString stringWithFormat:@"%@: %@", key, value];
100 return cell; // return the configured cell
101 } // end method tableView:cellForRowAtIndexPath:
102
103 // determines what orientations the view supports
104 - (BOOL)shouldAutorotateToInterfaceOrientation:
105 (UIInterfaceOrientation)interfaceOrientation
106 {
107 // we only support the portrait orientation
108 return (interfaceOrientation == UIInterfaceOrientationPortrait);
109 } // end method shouldAutorotateToInterfaceOrientation:
110
111 // release this object's memory
112 - (void)dealloc
113 {
114 [person release]; // release the person NSManagedObject
115 [super dealloc]; // call the superclass's dealloc method
116 } // end method dealloc
117 @end // end implementation ContactViewController

1 // RootViewController.h
2 // Controls the main View of the Enhanced Address Book app.
3 #import <GameKit/GameKit.h>
4 #import "AddViewController.h"

5
6 // begin RoorViewController interface
7 @interface RootViewController : UITableViewController
8 <NSFetchedResultsControllerDelegate, AddViewControllerDelegate,
9 GKSessionDelegate>

10 {
11 GKSession *serverSession; // session other devices can connect to
12 NSString *connectingPeerID; // the ID of the connecting peer
13
14 // provides the data for the UITableView
15
16

Fig. 15.10 | Controls the main view of the Enhanced Address Book app. (Part 1 of 2.)

Fig. 15.9 | Method tableView:cellForRowAtIndexPath: of class
ContactViewController. (Part 2 of 2.)

NSString *value = [person valueForKey:key]; // get the value

NSFetchedResultsController *fetchedResultsController;

Download from <www.wowebook.com>

ptg

352 Chapter 15 Enhanced Address Book App

We declare a GKSession (line 11) to connect to other iPhones (peers) via Bluetooth.
Line 12 declares an NSString used to identify the iPhone which is trying to send a contact.
We use an NSFetchedResultsController (line 15) to populate RootViewController’s
UITableView with information from our Core Data model. Line 18 declares an NSManaged-
ObjectContext, which enables the app to interact with the Core Data services. Lines 22–
25 declare our NSFetchedResultsController and NSManagedObjectContext as properties.

Method viewDidLoad of Class RootViewController
The viewDidLoad method (Fig. 15.11) sets up RootViewController’s view when it loads.
Line 16 adds the “Edit” Button to the left-side of the navigation bar using UINavigation-
Item’s leftBarButtonItem property. We then create the Button and add it to the
right-side of the navigation bar (lines 19–24). Line 28 creates an NSError pointer to an
object representing error information. We pass this to our NSFetchedResultsCon-
troller’s performFetch: method (line 31). If this method fails to retrieve data from our
Core Data model (line 31), we write to console detailing the error using the NSLog func-
tion (line 32). Lines 35–36 initialize a new GKSession, passing GKSessionModeServer as
the sessionMode parameter. This type of GKSession informs nearby devices of this
iPhone’s peer ID and that it’s ready to receive information. We set the GKSession’s del-
egate to self then call its setDataReceiveHandler:withContext: method to specify that
this RootViewController gets any data received during the GKSession (lines 37–40). Line
41 sets the GKSession’s available property to YES to begin accepting connections.

17 // the managed object context fetchedResultsController was created from
18
19 } // end instance variable declaration
20
21 // declare fetchedResultsController and managedObjectContext as properties
22 @property (nonatomic, retain) NSFetchedResultsController
23 *fetchedResultsController;
24 @property (nonatomic, retain) NSManagedObjectContext
25 *managedObjectContext;
26 @end // end interface RootViewController

1 // RootViewController.m
2 // RootViewController class implementation
3 #import "RootViewController.h"

4 #import "ContactViewController.h"

5
6 @implementation RootViewController
7
8 @synthesize fetchedResultsController, managedObjectContext;
9

10 // set up the View once it initializes
11 - (void)viewDidLoad
12 {

Fig. 15.11 | Method viewDidLoad of class RootViewController. (Part 1 of 2.)

Fig. 15.10 | Controls the main view of the Enhanced Address Book app. (Part 2 of 2.)

NSManagedObjectContext *managedObjectContext;

Download from <www.wowebook.com>

ptg

15.4 Building the App 353

Method session:didReceiveConnectionRequestFromPeer: of Class
RootViewController

The session:didReceiveConnectionRequestFromPeer: method (Fig. 15.12) of the GK-
SessionDelegate protocol is called when this app’s GKSession receives a connection re-
quest from another device. Line 48 saves the NSString representing the connecting
iPhone’s peer ID. We get that iPhone’s display name (as set by its owner) using GKSes-
sion’s displayNameForPeer: method. Lines 54–61 create a new UIAlertView informing
the user which iPhone is requesting to connect and providing “Allow” and “Deny” Buttons.

13 [super viewDidLoad]; // call the superclass's viewDidLoad method
14
15 // set up the edit and add buttons
16 self.navigationItem.leftBarButtonItem = self.editButtonItem;
17
18 // create the plus button
19 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
20 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
21 action:@selector(insertNewObject)];
22
23 // add the plus button to the navigation bar's right side
24 self.navigationItem.rightBarButtonItem = addButton;
25 [addButton release]; // release the addButton UIBarButtonItem
26
27
28 NSError *error; // create a new NSError
29
30
31
32 NSLog(@"Could not load data: %@", [error description]);
33
34
35
36
37 serverSession.delegate = self; // set the delegate to this object
38
39
40
41
42 } // end method viewDidLoad
43

44 // called when the GKSession receives a connection request
45 - (void)session:(GKSession *)session didReceiveConnectionRequestFromPeer:
46 (NSString *)peerID
47 {
48 connectingPeerID = peerID; // save peerID
49

Fig. 15.12 | Method session:didReceiveConnectionRequestFromPeer: of class
RootViewController. (Part 1 of 2.)

Fig. 15.11 | Method viewDidLoad of class RootViewController. (Part 2 of 2.)

// if fetchedResultsController failed to retrieve data
if (![[self fetchedResultsController] performFetch:&error])

// initialize serverSession as a server
serverSession = [[GKSession alloc] initWithSessionID:nil
 displayName:nil sessionMode:GKSessionModeServer];

// this object will receive data from serverSession
[serverSession setDataReceiveHandler:self withContext:NULL];
serverSession.available = YES; // begin accepting connections

Download from <www.wowebook.com>

ptg

354 Chapter 15 Enhanced Address Book App

Methods alertView:clickedButtonAtIndex: and alertViewCancel: of Class
RootViewController

The alertView:clickedButtonAtIndex: method (Fig. 15.13, lines 65–70) is called
when the user touches the “Accept” Button on the Connection Request UIAlertView. Line
69 calls GKSession’s acceptConnectionFromPeer:error: method to accept the connec-
tion and receive contact information from the sending iPhone. The alertViewCancel:
method (lines 73–77) calls GKSession’s denyConnectionFromPeer: method to not con-
nect to the requesting device (line 76).

Method receiveData:fromPeer:inSession:context: of Class RootViewCon-
troller

The receiveData:fromPeer:inSession:context: method (Fig. 15.14) is called by the
GKSession when the app receives data from a connected device. Lines 84–85 deserialize

50 // get the display name for the connecting peer
51
52
53 // display an alert prompting the user if the peer can connect
54 NSString *message =
55 [NSString stringWithFormat:@"%@ wishes to connect", name];
56
57 // create the UIAlertView
58 UIAlertView *connectionAlert = [[UIAlertView alloc] initWithTitle:
59 @"Connection Request" message:message delegate:self
60 cancelButtonTitle:@"Deny" otherButtonTitles:@"Allow", nil];
61 [connectionAlert show]; // show the alert
62 } // end method session:didRecieveConnectionRequestFromPeer:
63

64 // called when the user touches a button of the alert view
65 - (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
66 (NSInteger)buttonIndex
67 {
68 // accept the connection request
69 [serverSession acceptConnectionFromPeer:connectingPeerID error:nil];
70 } // end method alertView:clickedButtonAtIndex:
71
72 // called when the user touches the cancel button of the alert view
73 - (void)alertViewCancel:(UIAlertView *)alertView
74 {
75 // deny the connection request
76 [serverSession denyConnectionFromPeer:connectingPeerID];
77 } // end method alertViewCancel:
78

Fig. 15.13 | Methods alertView:clickedButtonAtIndex: and alertViewCancel: of class
RootViewController.

Fig. 15.12 | Method session:didReceiveConnectionRequestFromPeer: of class
RootViewController. (Part 2 of 2.)

NSString *name = [session displayNameForPeer:connectingPeerID];

Download from <www.wowebook.com>

ptg

15.4 Building the App 355

the given NSData object into an NSMutableDictionary containing contact information.
We know the NSData object represents an NSMutableDictionary because that’s the only
type of object we transfer in this app.

Lines 88–89 use NSFetchedResultsController’s managedObjectContext method to
get the app’s NSManagedObjectContext. Lines 92–93 get the NSEntityDescription from
the NSFetchedResultsController. We then create a new NSManagedObject to represent
the received contact’s information (lines 96–98). Lines 101–104 loop through the key–
value pairs in the NSDictionary and add them to the NSManagedObject using its set-
Value:forKey: method. Lines 106–112 call NSManagedObject’s save method to add this
data to the Core Data model, and if an error occurs, write a message to the console with
function NSLog. Otherwise, we call UITableView’s insertRowsAtIndexPaths: method to
insert a new empty row into RootViewController’s UITableView (lines 114–119). Line
120 calls UITableView’s reloadData method to load in a new contact into the empty row.

79 // called when we receive data from a connected peer
80 - (void)receiveData:(NSData *)data fromPeer:(NSString *)peer inSession:
81 (GKSession *)session context:(void *)context
82 {
83 // extract the NSDictionary from the received data
84 NSDictionary *dictionary =
85 [NSKeyedUnarchiver unarchiveObjectWithData:data];
86
87 // get the managed object context from the fetched results controller
88 NSManagedObjectContext *objectContext =
89 [fetchedResultsController managedObjectContext];
90
91 // get the entity description from the fetched results controller
92 NSEntityDescription *entity =
93 [[fetchedResultsController fetchRequest] entity];
94
95
96
97
98
99
100 // loop through all the keys in the received dictionary
101 for (NSString *key in [dictionary allKeys])
102
103 // update the values in the new managed object we’re inserting
104 [newManagedObject setValue:[dictionary valueForKey:key] forKey:key];
105
106 NSError *error; // declare an NSError for the save operation
107
108 // if the context doesn't save properly
109 if (![objectContext save:&error])
110 {
111 // log the error
112 NSLog(@"Error saving context: %@", [error description]);
113 } // end if

Fig. 15.14 | Method receiveData:fromPeer:inSession:context: of class
RootViewController. (Part 1 of 2.)

// insert a new object into objectContext with the given name
NSManagedObject *newManagedObject =
 [NSEntityDescription insertNewObjectForEntityForName:entity.name
 inManagedObjectContext:objectContext];

Download from <www.wowebook.com>

ptg

356 Chapter 15 Enhanced Address Book App

Methods insertNewObject and addViewControllerDidFinishAdding: of Class
RootViewController

The insertNewObject method (Fig. 15.15, lines 125–133) allows the user to enter a new
contact when they touch the Button in the top-right corner of the app. We create a
new AddViewController and set its delegate to self (lines 128–129). We call UIView-
Controller’s presentModalViewController:animated: method to show AddViewCon-
troller’s view (line 132).

114 else

115 {
116 // insert a new row in the table view for the new object
117 [self.tableView insertRowsAtIndexPaths:[NSArray arrayWithObject:
118 [NSIndexPath indexPathForRow:0 inSection:0]] withRowAnimation:
119 UITableViewRowAnimationLeft];
120 [self.tableView reloadData]; // refresh the table view
121 } // end else
122 } // end method receiveData:fromPeer:inSession:context:
123

124 // called when the user touches the plus button
125 - (void)insertNewObject
126 {
127 // create new AddViewController
128 AddViewController *controller = [[AddViewController alloc] init];
129 controller.delegate = self; // set controller’s delegate to self
130
131 // show the new controller
132 [self presentModalViewController:controller animated:YES];
133 } // end method insertNewObject
134
135 // called when the user touches the Done button in the AddViewController
136 - (void)addViewControllerDidFinishAdding:(AddViewController *)controller
137 {
138 // get the managed object context from the fetched results controller
139 NSManagedObjectContext *objectContext =
140 [fetchedResultsController managedObjectContext];
141
142 // get the entity description from the fetched results controller
143 NSEntityDescription *entity =
144 [[fetchedResultsController fetchRequest] entity];
145
146 // insert a new object into objectContext with the given name
147 NSManagedObject *newManagedObject =
148 [NSEntityDescription insertNewObjectForEntityForName:entity.name
149 inManagedObjectContext:objectContext];

Fig. 15.15 | Methods insertNewObject and addViewControllerDidFinishAdding: of
class RootViewController. (Part 1 of 2.)

Fig. 15.14 | Method receiveData:fromPeer:inSession:context: of class
RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

15.4 Building the App 357

Method addViewControllerDidFinishAdding: (lines 136–168) from our AddView-
ControllerDelegate protocol (Fig. 10.14) is called when the user has finished adding a
new contact and touches the “Done” Button in AddViewController’s view. Lines 139–149
get the app’s NSManagedObjectContext, NSEntityDescription and NSManagedObject.
We then get the NSDictionary representing the new contact information from the Root-
ViewController (line 151). Lines 154–157 loop through the key–value pairs and add
them to the NSManagedObject using its setValue:forKey: method. Lines 159–163 call
NSManagedObject’s save method to save the data, writing to NSLog if the save fails. We
then hide the AddViewController and refresh the UITableView (lines 166–167).

Methods numberOfSectionsInTableView: and tableView:numberOfRowsIn-
Section: of Class RootViewController
The numberOfSectionsInTableView: method (Fig. 15.16, lines 171–181) returns the
number of sections in the given UITableView. Line 174 calls NSFretchedResultsCon-
troller’s sections method to get an NSArray representing the UITableView’s sections.
We call NSArray’s count method to get the number of sections. If count is 0, we set it to
1 (lines 177–178). We do this to fix an incompatability between the NSFetchResultsCon-
troller and UITableView class in iPhone OS 3.x. For more information, visit

developer.apple.com/iPhone/library/documentation/CoreData/Reference/
 NSFetchedResultsController_Class/Reference/Reference.html

Method tableView:numberOfRowsInSection: (lines 184–203) returns the number
of rows in the given UITableView’s section specified by the supplied NSInteger. We start
by getting an NSArray representing the UITableView’s sections by calling NSFetched-
ResultsController’s sections method (line 188). If this array contains at least one sec-

150
151 NSDictionary *values = [controller values]; // get the entered data
152
153 // loop through the field names in the entered data
154 for (NSString *key in values)
155
156 // add the contact's information to the object under the key
157 [newManagedObject setValue:[values valueForKey:key] forKey:key];
158
159 NSError *error; // declare an NSError for the save operation
160
161 // if the context doesn't save properly
162 if (![objectContext save:&error])
163 NSLog(@"Error saving context: %@", [error description]);
164
165 // dismiss the AddViewController
166 [self dismissModalViewControllerAnimated:YES];
167 [self.tableView reloadData]; // refresh the table view's data
168 } // end method addViewControllerDidFinishAdding
169

Fig. 15.15 | Methods insertNewObject and addViewControllerDidFinishAdding: of
class RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

358 Chapter 15 Enhanced Address Book App

tion (line 192), we get the object at the given NNSInteger (lines 195–196). This object
implements the NSFetchedResultsSectionInfo protocol (line 195) and we call its num-
berOfObjects method to get the number of rows in the selected UITableView section.

Methods tableView:cellForRowAtIndexPath: and tableView:didSelectRow-
AtIndexPath: of Class RootViewController
Method tableView:cellForRowAtIndexPath: (Fig. 15.17, lines 206–234) attempts to
reuse an existing UITableViewCell using the dequeueReusableCellWithIdentifier:
method (lines 209–221). Lines 224–225 call the NSFetchedResultsController’s
objectAtIndexPath: method to get the NSManagedObject at the specified NSIndexPath.

The tableView:didSelectRowAtIndexPath: method (lines 237–255) is called when
the user touches one of the UITableView’s rows. Lines 241–242 create a new Contact-

170 // called by the table view to find the number of secitons it has
171 - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
172 {
173 // get the number of sections from the fetched results controller
174 NSUInteger count = [[fetchedResultsController sections] count];
175
176 // if the fetched results controller reports 0 sections
177 if (count == 0)
178 count = 1; // change count to 1
179
180 return count; // return the number of sections
181 } // end method numberOfSectionsInTableView:
182
183 // called by the table view to find the number of rows in a given section
184 - (NSInteger)tableView:(UITableView *)tableView
185 numberOfRowsInSection:(NSInteger)section
186 {
187 // get all the sections in the fetched results controller
188 NSArray *sections = [fetchedResultsController sections];
189 NSUInteger count = 0; // initialize count to 0
190
191 // if sections contains at least one object
192 if ([sections count])
193 {
194 // get the object at the given index
195 id <NSFetchedResultsSectionInfo> sectionInfo =
196 [sections objectAtIndex:section];
197
198 // get the number of rows in the section
199 count = [sectionInfo numberOfObjects];
200 } // end if
201
202 return count; // return the number of rows in the section
203 } // end method tableView:numberOfRowsInSection:
204

Fig. 15.16 | Methods numberOfSectionsInTableView: and
tableView:numberOfRowsInSection: of class RootViewController.

Download from <www.wowebook.com>

ptg

15.4 Building the App 359

ViewController. We use NSFetchedResultsController’s objectAtIndexPath: method
to get the NSManagedObject specified by the given NSIndexPath. Lines 249–250 set the
ContactViewController’s person property to the NSManagedObject then call its update-
Title method. We call UINavigationController’s pushViewController:animated:
method to display the ContactViewController’s view. Line 232 sets cell’s accessory-
Type property to UITableViewCellAccessoryDisclosureIndicator to indicate that
more details will be displayed when the UITableViewCell is touched.

205 // called by the UITableView to get a cell for the given index path
206 - (UITableViewCell *)tableView:(UITableView *)tableView
207 cellForRowAtIndexPath:(NSIndexPath *)indexPath
208 {
209 static NSString *CellIdentifier = @"Cell"; // normal cell identifier
210
211 // get a reused cell
212 UITableViewCell *cell =
213 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
214
215 // if no reusable cells are available
216 if (cell == nil)
217
218 // create a new cell
219 cell = [[[UITableViewCell alloc]
220 initWithStyle:UITableViewCellStyleDefault
221 reuseIdentifier:CellIdentifier] autorelease];
222
223
224
225
226
227 // update the text in the cell with the contact's name
228 cell.textLabel.text =
229 [[managedObject valueForKey:@"Name"] description];
230
231 // make the cell display an arrow on the right side
232 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
233 return cell; // return the configured cell
234 } // end method tableView:cellForRowAtIndexPath:
235
236 // called when the user touches one of the rows in the table view
237 - (void)tableView:(UITableView *)tableView
238 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
239 {
240 // create a new ContactViewController
241 ContactViewController *controller = [[ContactViewController alloc]
242 initWithNibName:@"ContactViewController" bundle:nil];
243
244 // get the managed object at the given index path
245 NSManagedObject *selectedObject =
246 [[self fetchedResultsController] objectAtIndexPath:indexPath];

Fig. 15.17 | Methods tableView:cellForRowAtIndexPath: and
tableView:didSelectRowAtIndexPath: of class RootViewController. (Part 1 of 2.)

// get the managed object for the given index path
NSManagedObject *managedObject =
 [fetchedResultsController objectAtIndexPath:indexPath];

Download from <www.wowebook.com>

ptg

360 Chapter 15 Enhanced Address Book App

Methods tableView:commitEditingStyle:forRowAtIndexPath: and
tableView:canMoveRowAtIndexPath: of Class RootViewController
The tableView:commitEditingStyle:forRowAtIndexPath: method (Fig. 15.18, lines
258–283) is called when the user deletes a row from RootViewController’s UITableView.
Line 263 checks if the given UITableViewCellEditingStyle is UITableViewCellEdit-
ingStyleDelete. If so, we call NSFetchedResultsController’s managedObjectContext
method to get the app’s NSManagedObjectContext (lines 266–267). Lines 270–271 delete
the contact from our data using NSManagedObjectContext’s deleteObject: method. We
then save this change using NSManageObjectContext’s save: method and write an error
message with NSLog if save fails (lines 273–277). Lines 280–281 call UITableView’s del-
eteRowsAtIndexPaths:withRowAnimation: method to remove the deleted cell. Method
tableView:canMoveRowAtIndexPath: (lines 286–290) returns NO to indicate that the
UITableViewCells cannot be reordered.

247
248 // set the ContactViewController's person to be the managed object
249 controller.person = selectedObject;
250 [controller updateTitle]; // update the title in controller
251
252 // show the ContactViewController
253 [self.navigationController pushViewController:controller animated:YES];
254 [controller release]; // release the controller ContactViewContorller
255 } // end method tableView:didSelectRowAtIndexPath:
256

257 // called when the user edits a cell in the table view
258 - (void)tableView:(UITableView *)tableView
259 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
260 forRowAtIndexPath:(NSIndexPath *)indexPath
261 {
262 // if the user deleted a cell
263 if (editingStyle == UITableViewCellEditingStyleDelete)
264 {
265 // get the managed object context
266 NSManagedObjectContext *context =
267 [fetchedResultsController managedObjectContext];
268
269 // delete the managed object in the context at the given index path
270 [context deleteObject:
271 [fetchedResultsController objectAtIndexPath:indexPath]];
272
273 NSError *error; // declare an NSError for the save operation
274

Fig. 15.18 | Methods tableView:commitEditingStyle:forRowAtIndexPath: and
tableView:canMoveRowAtIndexPath: of class RootViewController. (Part 1 of 2.)

Fig. 15.17 | Methods tableView:cellForRowAtIndexPath: and
tableView:didSelectRowAtIndexPath: of class RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

15.4 Building the App 361

Method fetchedResultsController of Class RootViewController
Method fetchedResultsController (Fig. 15.19) is auto-generated by Xcode to initialize
the NSFetchedResultsController used throughout the app. We customize this method
to our data model as highlighted in the source code.

275 // if the context fails to save
276 if (![context save:&error])
277 NSLog(@"Error saving context: %@", [error description]);
278
279 // delete the row from the table view
280 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:
281 indexPath] withRowAnimation:UITableViewRowAnimationFade];
282 } // end if
283 } // end method tableView:commitEditingStyle:forRowAtIndexPath:
284
285 // called by the table view to determine if a given row is re-orderable
286 - (BOOL)tableView:(UITableView *)tableView
287 canMoveRowAtIndexPath:(NSIndexPath *)indexPath
288 {
289 return NO; // none of the cells in this table can be moved
290 } // end method tableView:canMoveRowAtIndexPath:
291

292 // returns the fetched results controller that controls this table
293 - (NSFetchedResultsController *)fetchedResultsController
294 {
295 // if a fetched results controller has already been initialized
296 if (fetchedResultsController != nil)
297 return fetchedResultsController; // return the controller
298
299 // create the fetch request for the entity
300 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
301
302 // edit the entity name as appropriate.
303 NSEntityDescription *entity = [NSEntityDescription entityForName:
304 inManagedObjectContext:managedObjectContext];
305 [fetchRequest setEntity:entity];
306
307 // edit the sort key as appropriate.
308 NSSortDescriptor *sortDescriptor =
309 [[NSSortDescriptor alloc] initWithKey: ascending:YES];
310 NSArray *sortDescriptors =
311 [[NSArray alloc] initWithObjects:sortDescriptor, nil];
312
313 [fetchRequest setSortDescriptors:sortDescriptors];
314

Fig. 15.19 | Method fetchedResultsController of class RootViewController. (Part 1 of 2.)

Fig. 15.18 | Methods tableView:commitEditingStyle:forRowAtIndexPath: and
tableView:canMoveRowAtIndexPath: of class RootViewController. (Part 2 of 2.)

@"Person"

@"Name"

Download from <www.wowebook.com>

ptg

362 Chapter 15 Enhanced Address Book App

Line 296 checks whether fetchedResultsController is already initialized. If so, this
method has already been called and we return the existing NSFetchedResultsController.
Otherwise, line 300 creates a new NSFetchRequest. Lines 303–304 declare the NSEntity-
Description representing the entity to be stored in the table. The Person entity was cre-
ated by us to store contact information, so we pass Person as the entityForName
argument. NSFetchedRequest’s setEntity method sets the Person entity as the one that
the NSFetchedRequest is currently manipulating.

Lines 308–309 create a new NSSortDescriptor, which is used to sort the Person enti-
ties by their Name attributes. Lines 310–311 add the NSSortDescriptor to a new NSArray
and pass this to NSFetchRequest’s setSortDescriptors: method to specify the sorting
order of the fetches.

Lines 317–322 initialize an NSFetchedResultsController and set its delegate to
this RootViewController. We then assign the new NSFetchedResultsController to
RootViewController’s fetchedResultsController property.

15.5 Wrap-Up
In the Enhanced Address Book app, we used the Core Data framework to separate our data
model from the rest of the app according to the Model-View-Controller design pattern.
We visually designed a Person entity, which contained attributes representing a contact’s
name, e-mail and address. We programmatically interacted with the data model via an NS-

315 // edit the section name key path and cache name if appropriate
316 // nil for section name key path means "no sections"
317 NSFetchedResultsController *aFetchedResultsController =
318 [[NSFetchedResultsController alloc] initWithFetchRequest:
319 fetchRequest managedObjectContext:managedObjectContext
320 sectionNameKeyPath:nil cacheName:@"Root"];
321
322 aFetchedResultsController.delegate = self;
323 self.fetchedResultsController = aFetchedResultsController;
324
325 [aFetchedResultsController release]; // release temporary controller
326 [fetchRequest release]; // release fetchRequest NSFetcheRequest
327 [sortDescriptor release]; // release sortDescriptor NSSortDescriptor
328 [sortDescriptors release]; // release sortDescriptor NSArray
329
330 return fetchedResultsController;
331 } // end method fetchedResultsController
332
333 // releases this object's memory
334 - (void)dealloc
335 {
336 [fetchedResultsController release]; // release fetchedResultsController
337 [managedObjectContext release]; // release managedObjectContext
338 [super dealloc]; // call the superclass's dealloc method
339 } // end method dealloc
340 @end // end class RootViewController

Fig. 15.19 | Method fetchedResultsController of class RootViewController. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

15.5 Wrap-Up 363

ManagedObject. Xcode generated an NSFetchedResultsController which allowed us to
make fetch requests to update our UITableView. We used the Game Kit framework to
transfer contact information among multiple iPhones using Bluetooth technology. The
GKPeerPickerController class displayed a view that enabled the user to choose a nearby
iPhone to which a contact would be transferred. We then used a GKSession to transmit
an NSData object representing the contact information.

In Chapter 16, we’ll build the Twitter® Discount Airfares app which uses Twitter web
services to display current discounted jetBlue® flights. We’ll use an NSURLConnection to
receive an Atom feed (similar to an RSS Feed) from Twitter then parse the feed using an
NSXMLParser. We’ll also use a Web View to allow the user to view the jetBlue web page
where discounted flights can be purchased.

Download from <www.wowebook.com>

ptg

16
Twitter® Discount Airfares

App
Internet Enabled Applications

O B J E C T I V E S
In this chapter you’ll learn:

■ To use Twitter web services to search for tweets that
match a given criterion.

■ To use the NSURLConnection class to connect to
Twitter and retrieve data.

■ To use the NSXMLParser class to read the XML data
provided by Twitter.

■ To use the UIWebView class to display a web page in
your app.

■ To create a custom UITableViewCell that includes
labels and an image.

Download from <www.wowebook.com>

ptg

16.1 Introduction 365

O
u

tl
in

e

16.1 Introduction
The Twitter® Discount Airfares app (Fig. 16.1) uses Twitter web services to discover dis-
count airfares from jetBlue®. Typically, these discounts expire at the end of the business
day on which the tweet occurred. The app’s main screen displays a list of the discounted
flights retrieved from Twitter. Each entry contains four pieces of data—the origin airport,
the destination airport, the flight cost and the full tweet that describes the deal. The origin
and destination airports are given by their three-letter codes, which can be found at

www.world-airport-codes.com

The airport codes appear in blue at the top of each table, with an icon of an airplane flying
from the origin to the destination airport. The trip cost appears to the right in green, and
the tweet that provides the airfare information appears under the other items in black.

A refresh Button () appears in the upper-left corner. When the user presses it, the
app refreshes the list of tweets to display any new jetBlue tweets since the last update.
While the tweets are refreshing, the refresh button turns into an Activity Indicator ()—
a small component that spins to indicate a task is in progress. When the user touches an
entry in the table, a Web View appears—if the deal’s still active, the Web View allows the
user to buy tickets for that flight.

16.1 Introduction
16.2 Test-Driving the Twitter Discount Airfares App
16.3 Technologies Overview
16.4 Building the App
16.5 Wrap-Up

Fig. 16.1 | Twitter Discount Airfares app showing several discount airfares.

Download from <www.wowebook.com>

ptg

366 Chapter 16 Twitter® Discount Airfares App

16.2 Test-Driving the Twitter Discount Airfares App
Opening the Completed Application
Open the directory containing the Twitter Discount Airfares app project. Double click the
file TwitterDiscountAirfares.xcodeproj to open the project in Xcode.

Viewing the Discounted Flights List
Click the Build and Go button to run the app in the iPhone Simulator. When the app
loads, it automatically refreshes the list of jetBlue discount-airfare tweets. You should see
the Activity Indicator () spinning in the app’s top-left corner. The Activity Indicator stops
spinning when the list is populated with flights, at which point the Activity Indicator is re-
placed with a refresh Button ().

Booking a Flight
If a flight looks interesting to you, touch its entry in the table. Another view will appear
and load a website for buying tickets. Touch the “Discount Airfares” Button to return to
the list of flights.

16.3 Technologies Overview
The Twitter Discount Airfares app connects to Twitter using class NSURLConnection. We
construct a Twitter URL and pass it to the NSURLConnection, which handles the network-
ing issues. NSURLConnection informs its delegate object when events occur, such as receiv-
ing a response from the server, an authentication request or when the connection ends. We
receive responses from Twitter in Atom format—an XML vocabulary that’s a popular RSS
alternative. We then parse the XML using the class NSXMLParser. We store the parsed data
in an NSMutableArray and display it in a UITableView with custom UITableViewCells.
When the user touches a cell, we display a web page where the user can view the discount-
ed airfare deal and purchase tickets if the deal has not expired. We display the page using
a UIWebView, which takes any URL and displays the web site.

16.4 Building the App
Open Xcode and create a new project. Select the Navigation-based Application template
and name the project TwitterDiscountAirfares.

Declaring the Airfare Interface
We begin by creating the Airfare class to store information about a single airfare
(Fig. 16.2). The class consists of four properties—the flights’s cost, the origin airport, the
destination airport and the tweet that contains the deal.

1 // Fig. 16.2: Airfare.h
2 // Class that represents an airfare.
3 // Implementation in Airfare.m
4 #import <Foundation/Foundation.h>
5

Fig. 16.2 | Class that represents an airfare. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

16.4 Building the App 367

Airfare Class Implementation
The Airfare class’s implementation (Fig. 16.3) consists of four @synthesize directives
(lines 7–10) that generate get and set methods for the properties.

Declaring the RootViewController interface
The files RootViewController.h and RootViewController.m are automatically created
by the Navigation-based Application template. The RootViewController class (Fig. 16.4)
manages the table of discounted flights. This is the app’s main view.

6 @interface Airfare : NSObject
7 {
8 NSString *tweet; // the tweet that this airfare came from
9 NSString *cost; // the flight's cost

10 NSString *origin; // the flight's origin airport
11 NSString *destination; // the flight's destination
12 } // end instance variable declaration
13
14 // declare all the instance variables as properties
15 @property (nonatomic, retain) NSString *tweet;
16 @property (nonatomic, retain) NSString *cost;
17 @property (nonatomic, retain) NSString *origin;
18 @property (nonatomic, retain) NSString *destination;
19 @end

1 // Fig. 16.3: Airfare.m
2 // Implementation of class Airfare.
3 #import "Airfare.h"

4
5 @implementation Airfare
6
7 @synthesize tweet; // generate get and set methods for tweet
8 @synthesize cost; // generate get and set methods for cost
9 @synthesize origin; // generate get and set methods for origin

10 @synthesize destination; // generate get and set methods for destination
11 @end

Fig. 16.3 | Implementation of class Airfare.

1 // Fig. 16.4: RootViewController.h
2 // Controller for the root view of the Twitter Discount Airfares app.
3 // Implementation in RootViewController.m
4 #import "TwitterConnection.h"

5 #import "AirfareFinder.h"

6 #import "AirfareCell.h"

7
8 // begin RootViewController interface declaration
9 @interface RootViewController : UITableViewController

Fig. 16.4 | Controller for the root View of the Twitter Discount Airfares app. (Part 1 of 2.)

Fig. 16.2 | Class that represents an airfare. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

368 Chapter 16 Twitter® Discount Airfares App

Class RootViewController is a subclass of UITableViewController (line 9). It con-
tains three instance variables—an AirfareFinder (line 12) for finding new airfares, an
NSArray for storing the airfares (line 13) and a UIActivityIndicatorView for telling the
user that the app is refreshing the data (line 14). A UIActivityIndicatorView is a com-
ponent that displays a spinning animation to indicate that the app is performing a task.
RootViewController.h declares the refreshFares method (line 20), which refreshes the
list by searching Twitter.

RootViewController Class Implementation
Our RootViewController implementation (Fig. 16.5) begins by declaring the constant
rowHeight (line 6), which specifies the height of each row in the table. You’ll see where we
got this number when we discuss the AirfareCell class (Figs. 16.18–16.19).

10 <AirfareFinderDelegate>
11 {
12 AirfareFinder *airfareFinder; // finds and parses the tweets
13 NSArray *airfares; // the Airfare objects returned from airfareFinder
14
15 } // end instance variable declarations
16
17 // declare airfares as a property
18 @property (nonatomic, retain) NSArray *airfares;
19
20 - (void)refreshFares; // refreshes the list of fares
21 @end // end interface RootViewController

1 // Fig. 16.5: RootViewController.m
2 // RootViewController class implementation.
3 #import "RootViewController.h"

4 #import "WebViewController.h"

5
6 static const int rowHeight = 117; // the height of each row in the table
7
8 @implementation RootViewController
9

10 @synthesize airfares; // generate get and set methods for airfares
11
12 // called when the main view finishes loading
13 - (void)viewDidLoad
14 {
15 [super viewDidLoad]; // call the superclass's viewDidLoad method
16 self.tableView.rowHeight = rowHeight; // set the table's row height
17
18 // create activityView
19
20
21

Fig. 16.5 | RootViewController class implementation. (Part 1 of 2.)

Fig. 16.4 | Controller for the root View of the Twitter Discount Airfares app. (Part 2 of 2.)

UIActivityIndicatorView *activityView; // indicates the app is working

activityView = [[UIActivityIndicatorView alloc] initWithFrame:
 CGRectMake(0, 0, 20, 20)];

Download from <www.wowebook.com>

ptg

16.4 Building the App 369

The viewDidLoad method (lines 13–25) sets up the interface. Line 16 sets the
rowHeight of tableView and lines 19–20 initialize activityView. We then initialize air-
fareFinder (an object of class AirFareFinder which is declared in Figs. 16.11–16.17)
and set this RootViewController as its delegate (lines 22–23). Then we call method
refreshFares to get data from Twitter and update the rows in tableView.

The refreshFares method (lines 27–38) first creates a UIBarButtonItem to contain
the activityView using UIBarButtonItem’s initWithCustomView: method. We add this
item to the navigation bar’s left side (line 34) and start activityView’s spinning anima-
tion (line 36). Then we call the getAirfares method of AirfareFinder to start searching
Twitter for new airfares.

When the AirfareFinder finishes finding airfares, it calls the airfareFinder:did-
FindAirfares: method (lines 41–56). We assign the found flights to the airfares
NSArray (line 44), then stop the activityView’s spinning animation (line 45). Lines 48–

22 airfareFinder = [[AirfareFinder alloc] init]; // create airfareFinder
23 airfareFinder.delegate = self; // set airfareFinder's delegate
24 [self refreshFares]; // refresh the list of fares
25 } // end method viewDidLoad
26
27 - (void)refreshFares
28 {
29 // create a button to display the activity indicator
30
31
32
33 // place the button on the left side of the bar
34 self.navigationItem.leftBarButtonItem = activityButton;
35 [activityButton release]; // release the activitybutton UIBarButtonItem
36
37 [airfareFinder getAirfares]; // get the new list of airfares
38 } // end method refreshFares
39
40 // delegate method of AirfareFinder, called when it finds airfares
41 - (void)airfareFinder:(AirfareFinder *)finder
42 didFindAirfares:(NSArray *)fares
43 {
44 self.airfares = fares; // update airfares with the new items
45
46
47 // create a new button to replace the activity view
48 UIBarButtonItem *refreshButton = [[UIBarButtonItem alloc]
49 initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh target:self
50 action:@selector(refreshFares)];
51
52 // place the new button in place of the activity view
53 self.navigationItem.leftBarButtonItem = refreshButton;
54 [refreshButton release]; // release the refreshButton UIBarButtonItem
55 [self.tableView reloadData]; // refresh table to display new entries
56 } // end method airfareFinder:didFindAirfares:
57

Fig. 16.5 | RootViewController class implementation. (Part 2 of 2.)

UIBarButtonItem *activityButton =
 [[UIBarButtonItem alloc] initWithCustomView:activityView];

[activityView startAnimating]; // start the activity view spinning

[activityView stopAnimating]; // stop the activity view spinning

Download from <www.wowebook.com>

ptg

370 Chapter 16 Twitter® Discount Airfares App

50 create a new UIBarButtonItem (a refresh Button) to replace the activityView (the
Activity Indicator). We replace the navigation bar’s left UIBarButtonItem with the new
UIBarButtonItem (line 53), then refresh the table to display the new airfares (line 55).

UITableView Delegate and Data Source Methods of Class RootViewController
The next three methods of RootViewController are the delegate and data source methods
of UITableView (Fig. 16.6). In tableView:numberOfRowsInSection: (lines 59–63) we re-
turn the size of the airfares array because we want the table to have one row for each
airfare.

58 // called by the table view to find how many rows are in a given section
59 - (NSInteger)tableView:(UITableView *)tableView
60 numberOfRowsInSection:(NSInteger)section
61 {
62 return airfares.count; // return the number of total airfares
63 } // end method tableView:numberOfRowsInSection:
64
65 // called by the table view to get a cell for the given index path
66 - (UITableViewCell *)tableView:(UITableView *)tableView
67 cellForRowAtIndexPath:(NSIndexPath *)indexPath
68 {
69 static NSString *CellIdentifier = @"AirfareCell";
70
71 // get an AirfareCell by reusing an old one
72 AirfareCell *cell = (AirfareCell *)
73 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
74
75 // if there weren't any cells available for reuse
76 if (cell == nil)
77
78 // create a new AirfareCell
79 cell = [[[AirfareCell alloc] initWithStyle:
80 UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
81 autorelease];
82
83 // get the Airfare object for the cell at the given index
84 Airfare *fare = [airfares objectAtIndex:indexPath.row];
85
86 // set all the labels on the cell to correspond with the Airfare
87 cell.originLabel.text = fare.origin; // set the origin label
88 cell.destinationLabel.text = fare.destination; // set destination label
89 cell.priceLabel.text = fare.cost; // set the price label
90 cell.tweetLabel.text = fare.tweet; // set the tweet label
91 return cell; // return the configured cell
92 } // end method tableView:cellForRowAtIndexPath:
93
94 // called when the user touches a cell
95 - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
96 (NSIndexPath *)indexPath
97 {

Fig. 16.6 | UITableView delegate and data source methods of class RootViewController.
(Part 1 of 2.)

Download from <www.wowebook.com>

ptg

16.4 Building the App 371

The tableView:cellForRowAtIndexPath: method (lines 66–92) returns a custom-
ized UITableViewCell for a given table row. This table uses objects of class AirfareCell
(Figs. 16.18–16.19). First, we create a new AirfareCell or reuse an existing one (lines
72–81). Line 84 gets the Airfare at the correct index and updates the cell’s labels to cor-
respond to the Airfare’s properties (lines 87–90). Line 91 returns the customized cell.

The tableView:didSelectRowAtIndexPath: method (lines 95–105) is called when
the user touches one of the UITableView’s rows. Lines 99–100 create a WebViewCon-
troller, a subclass of UIViewController that displays a web page. Line 103 displays the
WebViewController.

Declaring the WebViewController Class
In Xcode, create a new UIViewController subclass. Ensure that With XIB for user interface
is checked to automatically generate the nib file. The finished WebViewController.h is
shown in Fig. 16.7. We add as outlets a UIWebView (line 8) and a UIActivityIndicator-
View. UIWebView is a subclass of UIView that displays a webpage. Once you’ve updated
WebViewController.h, open the file WebViewController.xib in Interface Builder. Dou-
ble-click View to open it in a separate window. Drag a Web View from the Library window
onto View and resize it to fill the entire window. Also drag an Activity Indicator and position
it in the middle of the Web View. Connect the webView outlet of File’s Owner to the new
Web View and the activity outlet to the Activity Indicator. Also, connect the delegate
outlet of the Web View to File’s Owner.

98 // create a new WebViewController
99 WebViewController *controller = [[WebViewController alloc]
100 initWithNibName:@"WebViewController" bundle:nil];
101
102 // show the controller
103 [self.navigationController pushViewController:controller animated:YES];
104 [controller release]; // release the controller WebViewController
105 } // end method tableView:didSelectRowAtIndexPath:
106
107 // release the RootViewController's memory
108 - (void)dealloc
109 {
110 [airfareFinder release]; // release airfareFinder
111 [airfares release]; // release the airfares NSMutableArray
112 [activityView release]; // release activityView
113 [super dealloc]; // call the superclass's dealloc method
114 } // end method dealloc
115 @end

1 // Fig. 16.7: WebViewController.h
2 // View that displays the website for purchasing flight tickets.
3 #import <UIKit/UIKit.h>

Fig. 16.7 | View that displays the website for purchasing flight tickets. (Part 1 of 2.)

Fig. 16.6 | UITableView delegate and data source methods of class RootViewController.
(Part 2 of 2.)

Download from <www.wowebook.com>

ptg

372 Chapter 16 Twitter® Discount Airfares App

WebViewController Class Implementation
In WebViewController.m (Fig. 16.8), we override the viewDidLoad method (lines 11–21).
Line 16 creates an NSURL for the website where users can buy tickets. We then create an
NSURLRequest from the NSURL (line 19) and call the UIWebView’s loadRequest: method
(line 20), which receives the NSURLRequest and displays the URL’s contents. Line 21 an-
imates the UIActivityIndicator to indicate that the UIWebView is loading a page.

4
5 // begin interface WebViewConroller declaration
6 @interface WebViewController : UIViewController
7 {
8
9 IBOutlet UIActivityIndicatorView *activity; // shows page is loading

10 } // end instance variable declaration
11
12 // declare webView as a property
13 @property (nonatomic,retain) IBOutlet UIWebView *webView;
14 @property (nonatomic,retain) IBOutlet UIActivityIndicatorView *activity;
15 @end // end interface WebViewController

1 // Fig. 16.8: WebViewController.m
2 // View that displays a website for purchasing flight tickets.
3 #import "WebViewController.h"

4
5 @implementation WebViewController
6
7 // generate get and set methods for our property
8 @synthesize webView;
9

10 // load the website in the web view
11 - (void)viewDidLoad
12 {
13 [super viewDidLoad]; // call the superclass's viewDidLoad method
14
15 // create an NSURL from the url string
16 NSURL *url = [NSURL URLWithString:@"http://bit.ly/mobilecheeps"];
17
18 // create an NSURLRequest from the NSURL
19 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];
20
21
22 } // end method viewDidLoad
23
24 // called when webView finishes loading the page
25 - (void)webViewDidFinishLoad:(UIWebView *)webView
26 {
27
28
29 } // end method webViewDidFinishLoad:

Fig. 16.8 | View that displays a website for purchasing flight tickets. (Part 1 of 2.)

Fig. 16.7 | View that displays the website for purchasing flight tickets. (Part 2 of 2.)

IBOutlet UIWebView *webView; // view for displaying web page

[webView loadRequest:urlRequest]; // show the website in webView
[activity startAnimating]; // animate the activity indicator

[activity stopAnimating]; // stop the activity indicator’s animation
activity.hidden = YES; // hide the activity indicator

Download from <www.wowebook.com>

ptg

16.4 Building the App 373

The UIWebView delegate method webViewDidFinishLoad: (lines 25–29) is called
when the UIWebView finishes loading the web page. We use this method to stop and hide
the UIActivityIndicator when the web page finishes loading.

Declaring the TwitterConnection Class
The TwitterConnection class is declared in TwitterConnection.h (Fig. 16.9). Twitter-
Connection connects to Twitter and returns any received data to its delegate. The delegate
is declared as an object of type id that conforms to the TwitterConnectionDelegate pro-
tocol (line 11). Instance variable receivedData stores the data received from Twitter. Its
type is NSMutableData—the mutable counterpart of NSData. The performSearch: meth-
od (line 17) begins a Twitter search using its NSString argument. When the object finishes
receiving data from Twitter, it calls the twitterConnection:didReceiveData: method
(lines 23–24) of the TwitterConnectionDelegate.

30
31 // release this object's memory
32 - (void)dealloc
33 {
34 [webView release]; // release the webView UIWebView
35 [activity release]; // release the activity UIActivityIndicatorView
36 [super dealloc]; // call the superclass’s dealloc method
37 } // end method dealloc
38 @end

1 // Fig. 16.9: TwitterConnection.h
2 // Class that connects with Twitter web services and returns data.
3 // Implementation in TwitterConnection.m
4 #import <Foundation/Foundation.h>
5
6 @protocol TwitterConnectionDelegate;
7
8 // begin TwitterConnection interface declaration
9 @interface TwitterConnection : NSObject

10 {
11 id <TwitterConnectionDelegate> delegate; // this class's delegate
12
13 } // end instance variable declarations
14
15 // declare delegate as a property
16 @property (nonatomic, assign) id <TwitterConnectionDelegate> delegate;
17 - (void)performSearch:(NSString *)search; // performs a Twitter search
18 @end // end interface TwitterConnection
19
20 @protocol TwitterConnectionDelegate
21

Fig. 16.9 | Class that connects with Twitter web services and returns data. (Part 1 of 2.)

Fig. 16.8 | View that displays a website for purchasing flight tickets. (Part 2 of 2.)

NSMutableData *receivedData; // the data received from Twitter

Download from <www.wowebook.com>

ptg

374 Chapter 16 Twitter® Discount Airfares App

TwitterConnection Class Implementation
In TwitterConnection.m (Fig. 16.10), the performSearch: method (lines 9–39) per-
forms a Twitter web service call with the given NSString. First, lines 12–13 URL encode
the string for security purposes by escaping any special characters in the string. We then
create an NSURL object by concatenating the search query to the Twitter search URL. The
URLs can be found in the Twitter API documentation at:

apiwiki.twitter.com/Twitter-API-Documentation

Line 20 creates an NSURLRequest using the NSURL and lines 23–24 create an NSURL-
Connection using the NSURLRequest. An NSURLConnection loads a URL then informs the
delegate of any responses from the server. If the NSURLConnection was created successfully
(line 28), we initialize receivedData (line 31). We also display the standard activity indi-
cator in the status bar by setting UIApplication’s networkActivityIndicatorVisible
property to YES (lines 34–35). This icon indicates that the iPhone is performing network
activity. If the NSURLConnection was not created successfully (line 37), we log an error
message.

22 // called when the TwitterConnection finishes receiving data
23 - (void)twitterConnection:(TwitterConnection *)connection
24 didReceiveData:(NSData *)data;
25 @end // end protocol TwitterConnectionDelegate

1 // Fig. 16.10: TwitterConnection.m
2 // Implementation of class TwitterConnection.
3 #import "TwitterConnection.h"

4
5 @implementation TwitterConnection
6
7 @synthesize delegate; // generate get and set methods for delegate
8
9 - (void)performSearch:(NSString *)search

10 {
11
12
13
14
15 // create the NSURL for performing the specified search
16 NSURL *searchURL = [NSURL URLWithString:[NSString stringWithFormat:
17 @"http://search.twitter.com/search.atom?q=%@", search]];
18
19 // create an NSURLRequest from the created NSURL
20 NSURLRequest *request = [[NSURLRequest alloc] initWithURL:searchURL];
21
22 // create an NSURLConnection object with the created NSURLRequest
23
24

Fig. 16.10 | Implementation of TwitterConnection. (Part 1 of 2.)

Fig. 16.9 | Class that connects with Twitter web services and returns data. (Part 2 of 2.)

// encode the search string with percent escapes
search = [search stringByAddingPercentEscapesUsingEncoding:

NSUTF8StringEncoding];

NSURLConnection *connection =
 [[NSURLConnection alloc] initWithRequest:request delegate:self];

Download from <www.wowebook.com>

ptg

16.4 Building the App 375

25 [request release]; // release the request NSURLRequest
26
27 // if the NSURLConnection was successfully created
28 if (connection)
29 {
30 // create received data
31 receivedData = [[NSMutableData data] retain];
32
33
34
35
36 } // end if
37 else

38 NSLog(@"search \"%@\" could not be performed", search);
39 } // end method performSearch:
40
41 // called when the NSURLConnection receives a response to the connection
42
43
44 {
45 receivedData.length = 0; // reset the data
46 } // end method connection:didReceiveResponse:
47
48 // called when the NSURLConnection receives data
49
50
51 {
52 [receivedData appendData:data]; // append the data to receivedData
53 } // end method connection:didRecieveData:
54
55 // called when the NSURLConnection fails
56
57
58 {
59 [receivedData release]; // release the receivedData NSMutableData
60 [connection release]; // release the connection NSURLConnection
61 } // end method connection:didFailWithError:
62
63 // called when the NSURLConnection finishes
64
65 {
66
67
68
69 // pass the received data to the delegate
70 [delegate twitterConnection:self didReceiveData:receivedData];
71 [receivedData release]; // release the receivedData NSMutableData
72 [connection release]; // release the connection NSURLConnection
73 } // end method connectionDidFinishLoading:
74 @end

Fig. 16.10 | Implementation of TwitterConnection. (Part 2 of 2.)

// display the standard network activity indicator in the status bar
[UIApplication sharedApplication].networkActivityIndicatorVisible =

YES;

- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

// hide the network activity indicator in the status bar
[UIApplication sharedApplication].networkActivityIndicatorVisible = NO;

Download from <www.wowebook.com>

ptg

376 Chapter 16 Twitter® Discount Airfares App

The last four methods of class TwitterConnection are the delegate methods called by
NSURLConnection. Method connection:didReceiveResponse: (lines 42–46) is called
when the NSURLConnection receives a response from the server. We reset receivedData
(line 45) to discard any data we might have received before this response. The connec-
tion:didReceiveData: method (lines 49–50) is called when the NSURLConnection
receives data from Twitter. This method can be called multiple times before the connec-
tion closes, so we accumulate all the received data by appending the new data to received-
Data (line 52). The connection:didFailWithError: message (lines 56–57) is called when
the connection fails—we simply release the objects we allocated. The connectionDidFin-
ishLoading: method is called when the connection finishes loading successfully. This
means our Twitter search request has completed, so we stop the activity indicator, pass the
received data to our delegate (line 70) and release the instance variables we allocated (lines
71–72).

Declaring the AirfareFinder Interface
AirfareFinder.h declares the AirfareFinder class (Fig. 16.11). This class gets tweets
from Twitter using the TwitterConnection class, then parses each tweet for the flight cost,
origin and destination. The AirfareFinder compiles a list of Airfare objects and passes
the list to its delegate after parsing all the tweets.

1 // Fig. 16.11: AirfareFinder.h
2 // Class that gets tweets and parses them for information.
3 // Implementation in AirfareFinder.m
4 #import <Foundation/Foundation.h>
5 #import "TwitterConnection.h"

6 #import "Airfare.h"

7
8 @protocol AirfareFinderDelegate;
9

10 // begin AirfareFinder interface declaration
11 @interface AirfareFinder : NSObject <TwitterConnectionDelegate>
12 {
13 id <AirfareFinderDelegate> delegate; // this class’s delegate
14 NSMutableArray *airfares; // all the Airfares constructed so far
15 Airfare *currentAirfare; // the Airfare currently in progress
16 NSMutableString *currentString; // the string currently in progress
17 BOOL isAirfare; // is the current entry an airfare?
18 } // end instance variable declarations
19
20 // declare delegate as a property
21 @property (nonatomic, assign) id <AirfareFinderDelegate> delegate;
22
23 - (void)getAirfares; // begins the process of finding the airfares
24 @end // end interface AirfareFinder
25
26 @protocol AirfareFinderDelegate // begin AirfareFinderDelegate declaration
27

Fig. 16.11 | Class that gets tweets and parses them for information. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

16.4 Building the App 377

AirfareFinder’s delegate adheres to the AirfareFinderDelegate protocol (line 13).
It also contains an NSMutableArray (line 14), which stores the Airfares objects as they’re
created. The remaining instance variables (lines 15–17) store data as we parse the XML
returned by the Twitter web service. The currentAirfare variable stores the Airfare cur-
rently being processed, currentString stores the string we’ll use to display the data and
isAirfare stores whether or not the current tweet has information about an airfare.

The getAirfares method (lines 23) begins the process of connecting to Twitter and
parsing the returned XML. The airfareFinder:didFindAirfares: delegate method is
called when the AirfareFinder finishes parsing all the XML. AirfareFinder.h also
declares some new methods for NSString (lines 33–37). The parseCost method looks for
a price in the current string and returns it. The parseLocations method searches for air-
port names in the string and returns them, and the removeLink method looks for a link
and returns a string without it.

Defining the AirfareFinder Class Implementation
The getAirfares method (Fig. 16.12, lines 10–20) begins the process of getting new air-
fares from Twitter. We initialize the instance variables (lines 12–13), then create a new
TwitterConnection (line 16). Line 18 performs a search that will yield tweets about dis-
counted airfares from the Twitter account jetbluecheeps.

28 // called when the AirfareFinder finishes finding airfares
29 - (void)airfareFinder:(AirfareFinder *)finder
30 didFindAirfares:(NSArray *)fares;
31 @end // end protocol AirfareFinderDelegate
32
33 @interface NSString (parsing) // begin parsing category declaration
34 - (NSString *)parseCost; // parses the flight cost from the tweet
35 - (NSArray *)parseLocations; // parses the origin and destination
36 - (NSString *)removeLink; // removes the link from the tweet's end
37 @end // end parsing category declaration

1 // Fig. 16.12: AirfareFinder.m
2 // AirfareFinder class implementation.
3 #import "AirfareFinder.h"
4
5 @implementation AirfareFinder
6
7 @synthesize delegate; // generate get and set methods for delegate
8
9 // creates a new connection to Twitter and performs the search

10 - (void)getAirfares
11 {
12 airfares = [[NSMutableArray alloc] init]; // initialize airfares
13 isAirfare = YES; // initialize isAirfare to YES
14

Fig. 16.12 | AirfareFinder class implementation. (Part 1 of 2.)

Fig. 16.11 | Class that gets tweets and parses them for information. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

378 Chapter 16 Twitter® Discount Airfares App

The twitterConnection:didReceiveData: method is called after the Twitter-
Connection receives data from Twitter. We requested that Twitter return the data in
Atom format (Fig. 16.10, lines 12–13). To view a sample of the returned data, open a web
browser, enter search.twitter.com/search.atom?q=searchTerms and view the page’s
source. The XML data contains an entry element for each returned tweet. Figure 16.13
shows the structure of an entry element containing data about a tweet.

To retrieve the data from the XML, we use the class NSXMLParser—an event-driven
XML parser included in Cocoa. NSXMLParser sends messages to its delegate as it parses
XML data, informing the delegate of each start tag, the text within a tag and and each end
tag. We initialize parser (Fig. 16.12, line 27), set its delegate to this object (line 28) and
begin parsing by calling the parse method (line 29).

15 // create a new TwitterConnection
16 TwitterConnection *connection = [[TwitterConnection alloc] init];
17 connection.delegate = self; // set the TwitterConnection's delegate
18 [connection performSearch:@"from:jetbluecheeps"]; // search for tweets
19 [connection release]; // release the connection TwitterConnection
20 } // end method getAirfares
21
22 // called when the TwitterConnection receives all the data from Twitter
23 - (void)twitterConnection:(TwitterConnection *)connection
24 didReceiveData:(NSData *)data
25 {
26 // create a new NSXMLParser with the given data
27
28
29
30 [parser release]; // release the parser NSXMLParser
31 } // end method twitterConnection:didReceiveData:
32

1 <entry>
2 <id>id of tweet</id>
3 <published>date the tweet was published</published>
4 <link type="text/html" href=link to tweet rel="alternate"/>
5 <title>title of tweet</title>
6 <content type="html">text of tweet</content>
7 <updated>date the tweet was updated</updated>
8 <link type=format of image href=link to profile image rel="image"/>
9 <twitter:source>applicatoin that posted the tweet</twitter:source>

10 <twitter:lang>the language of the tweet</twitter:lang>
11 <author>
12 <name>name of the twitter account</name>
13 <uri>link for the twitter account</uri>
14 </author>
15 </entry>

Fig. 16.13 | XML containing information about a single tweet.

Fig. 16.12 | AirfareFinder class implementation. (Part 2 of 2.)

NSXMLParser *parser = [[NSXMLParser alloc] initWithData:data];
parser.delegate = self; // set the parser's delegate to this object
[parser parse]; // begin parsing the data

Download from <www.wowebook.com>

ptg

16.4 Building the App 379

Implementing NSXMLParser Delegate Methods
The next three methods of AirfareFinder (Fig. 16.14) are the delegate methods called by
the NSXMLParser. Method parser:didStartElement:namespaceURI:qualifiedName:at-
tributes: (lines 34–51) is called for an element’s start tag. Method parser:didEndEle-
ment:namespaceURI:qualifiedName: (lines 54–96) is called for an element’s end tag.
Method parser:foundCharacters: (lines 101–108) is called for the text between an ele-
ment’s start and end tags. It simply appends the tweet’s text to currentString.

33 // called when the NSXMLParser begins a new XML element
34
35
36
37
38 {
39 // if the parser found a <entry> tag
40 if ([elementName isEqualToString:@"entry"])
41 {
42 currentAirfare = [[Airfare alloc] init]; // initialize new Airfare
43 isAirfare = YES; // initialize isAirfare to YES
44 } // end if
45
46 // if the parser found a <content> tag
47 else if ([elementName isEqualToString:@"content"])
48
49 // initialize currentString with a capacity of 50
50 currentString = [[NSMutableString alloc] initWithCapacity:50];
51 } // end parser:didStartElement:namespaceURI:qualifiedName:attributes:
52
53 // called when the NSXMLParser ends an XML tag
54
55
56 {
57 // if the parser found a </entry> tag
58 if ([elementName isEqualToString:@"entry"])
59 {
60 // if the current entry is an airfare
61 if (isAirfare)
62 [airfares addObject:currentAirfare]; // add object to airfares
63 [currentAirfare release]; // release the currentAirfare Airfare
64 currentAirfare = nil; // assign currentAirfare a value of nil
65 } // end if
66
67 // if the parser found a </content> tag
68 else if ([elementName isEqualToString:@"content"])
69 {
70 // find the entire tweet minus the link at the end
71 currentAirfare.tweet = [currentString removeLink];
72
73 // find how much the flight costs from the tweet
74 currentAirfare.cost = [currentString parseCost];
75

Fig. 16.14 | NSXMLParser delegate methods. (Part 1 of 2.)

- (void)parser:(NSXMLParser *)parser didStartElement:
 (NSString *)elementName namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName attributes:
 (NSDictionary *)attributeDict

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName

Download from <www.wowebook.com>

ptg

380 Chapter 16 Twitter® Discount Airfares App

In method parser:didStartElement:namespaceURI:qualifiedName:attributes:,
we begin by checking if the element is an entry element (40–44). If so, we initialize a new
Airfare (line 42) to hold the entry. If it was a content tag, we initialize currentString
to hold the text of the tweet (line 50).

In parser:didEndElement:namespaceURI:qualifiedName:, we first check if the end
tag terminates an entry element (line 58). If so, and if isAirfare is YES, we add the cre-
ated Airfare object to airfares (line 62). (Some tweets are not discount airfares.) If it
was a content tag (line 68), we update the current working Airfare with currentString
(lines 71–85). First we get the full tweet minus the hyperlink by calling the removeLink
method (line 71). Then we get the flight cost using the parseCost method (line 74) of our
parsing category. If the parser couldn’t find a cost, we set isAirfare to NO (line 78)—
meaning that the tweet was not about a discount airfare. We then get the origin and des-
tination airports in an array using the parseLocations method (line 81) of our parsing
category, then update currentAirfare with them (lines 84–85). Line 89 checks for the
end of a feed tag, which indicates the end of the XML document. In this case, line 92 calls

76 // if the tweet didn't include a price
77 if (currentAirfare.cost == nil)
78 isAirfare = NO; // this tweet is not an airfare
79
80 // get the origin and destination from the tweet
81 NSArray *locations = [currentString parseLocations];
82
83 // assign the origin and destination to the Airfare
84 currentAirfare.origin = [locations objectAtIndex:0];
85 currentAirfare.destination = [locations objectAtIndex:1];
86 } // end else
87
88 // if the parser found a </feed> tag
89 else if ([elementName isEqualToString:@"feed"])
90 // pass the found airfares to the delegate
91 [delegate airfareFinder:self didFindAirfares:
92 [airfares autorelease]];
93
94 [currentString release]; // release the currentString NSMutableString
95 currentString = nil; // assign currentString a value of nil
96 } // end method parser:didEndElement:namespaceURI:qualifiedName:
97
98 // called when the NSXMLParser finds characters inside an element
99
100 {
101 // if currentString has been initialized
102 if (currentString != nil)
103
104 // append the found characters to currentString
105 [currentString appendString:string];
106 } // end method parser:foundCharacters:
107 @end

108

Fig. 16.14 | NSXMLParser delegate methods. (Part 2 of 2.)

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string

Download from <www.wowebook.com>

ptg

16.4 Building the App 381

the delegate method with the found Airfares. We autorelease airfares so the delegate is
not responsible for releasing the object.

Implementing the parsing Category’s parseCost Method
Method parseCost (Fig. 16.15) finds the price in the tweet. First, we get the index of a $
sign in the tweet (line 115) using the rangeOfString: method. Then, we find the index
of the next non-digit character (lines 120–129) and create a substring using the sub-
stringWithRange: method (line 136), which we pass index as the starting position and
the difference between index and i as the length. Line 138 returns the substring.

Implementing the parsing Category’s parseLocations Method
The parseLocations method (Fig. 16.16) of the parsing category returns an NSArray in
which the first element is the origin airport and the second is the destination. Because the
tweets give three-letter airport codes, we find the airports by searching for sequences of
three capital letters. First, we initialize origin, destination and capitalCount (lines
145–146). Then lines 149–174 iterate through each character in the tweet. If the character

109 @implementation NSString (parsing) // begin category parsing of NSString
110
111 // returns the cost of the airfare, if one is found
112 - (NSString *)parseCost
113 {
114 // get the index of the $ sign
115 int index = [self rangeOfString:@"$"].location;
116 int i = index + 1; // initalize i
117 BOOL found = NO; // initalize found to NO
118
119 // while a character other than a digit hasn’t been found
120 while (!found && i < self.length)
121 {
122 char c = [self characterAtIndex:i]; // get the character at index i
123
124 // if the character is not a digit
125 if (c <= '0' || c >= '9')
126 found = YES; // a non-digit has been found
127
128 ++i; // increment i
129 } // end while
130
131 NSString *cost = nil; // initialize cost to nil
132
133 // if a dollar sign was found
134 if (index < self.length)
135 // get the $ plus the digits
136 cost = [self substringWithRange:NSMakeRange(index, i - index)];
137
138 return cost; // return the result
139 } // end method parseCost
140

Fig. 16.15 | Method parseCost of category parsing of class NSString.

Download from <www.wowebook.com>

ptg

382 Chapter 16 Twitter® Discount Airfares App

is in uppercase (line 154), we increment capitalCount. If we’ve found three capital letters
in a row (line 160), we assign those characters to origin (line 165) or destination (line
170) depending on whether each has been assigned a value—the origin will always be as-
signed a value before the destination. We then construct an NSArray with origin as the
first value and destination as the second (line 181) and return it (line 183).

141 // return the origin and destination of the airfare
142 - (NSArray *)parseLocations
143 {
144 // initialize origin and destination to nil
145 NSString *origin = nil, *destination = nil;
146 int capitalCount = 0; // found zero capital letters so far
147
148 // iterate through each character in the string
149 for (int i = 0; i < self.length; i++)
150 {
151 char c = [self characterAtIndex:i]; // get the character at index i
152
153 // if the character is a capital letter
154 if (c >= 'A' && c <= 'Z')
155 ++capitalCount; // increment capitalCount
156 else
157 capitalCount = 0; // reset capitalCount
158
159 // if three sequential capital letters have been found
160 if (capitalCount == 3)
161 {
162 // if a origin hasn't been found yet
163 if (origin == nil)
164 // assign the three capital letters to origin
165 origin = [self substringWithRange:NSMakeRange(i - 2, 3)];
166
167 // if a destination hasn't been found yet
168 else if (destination == nil)
169 // assign the three capital letters to destination
170 destination = [self substringWithRange:NSMakeRange(i - 2, 3)];
171
172 capitalCount = 0; // reset capitalCount
173 } // end if
174 } // end for
175
176 NSArray *locations = nil; // initialize locations to nil
177
178 // if both a origin and a destination were found
179 if (origin != nil && destination != nil)
180 // create locations with the origin and destination
181 locations = [NSArray arrayWithObjects:origin, destination, nil];
182
183 return locations; // return the found locations
184 } // end method parseLocations
185

Fig. 16.16 | Method parseLocation of category parsing of class NSString.

Download from <www.wowebook.com>

ptg

16.4 Building the App 383

Implementing the parsing Category’s removeLink Method
Method removeLink (Fig. 16.17) searches for a link in the tweet and returns the portion
of the tweet’s text that appears before the link. Line 190 gets the location where the link
begins. Line 196 gets the portion of the string that comes before the link and line 198 re-
turns it. We subtract 3 from index to remove the word Go before the link.

Declaring the AirfareCell Interface
Class AirfareCell (Fig. 16.18) is a subclass of UITableView that displays information
about a single airfare. It consists of four UILabels and a UIImageView. The priceLabel
UILabel (line 8) displays the flight’s cost, originLabel (line 9) displays the origin airport,
destinationLabel (line 10) displays the destination airport and tweetLabel (line 11) dis-
plays the tweet’s text. The planeView UIImageView (line 12) displays a directional image
of an airplane flying from the origin airport to the destination airport. All four UILabels
are declared as readonly properties (lines 16–19). This allows other objects to change the
text in the UILabels, but not the UILabels themselves.

186 // removes the part of the tweet containing a link
187 - (NSString *)removeLink
188 {
189 // find the location of the link
190 int index = [self rangeOfString:@"<a href="].location;
191 NSString *substring = nil; // initialize substring to nil
192
193 // if a link was found
194 if (index < self.length)
195 // create substring that doesn't include the link
196 substring = [self substringWithRange:NSMakeRange(0, index - 3)];
197
198 return substring; // return the substring
199 } // end method removeLink
200 @end // end category parsing of class NSString

Fig. 16.17 | Method removeLink of category parsing of class NSString.

1 // Fig. 16.18: AirfareCell.h
2 // UITableViewCell that displays information about an airfare.
3 // Implementation in AirfareCell.m
4 #import <UIKit/UIKit.h>
5
6 @interface AirfareCell : UITableViewCell
7 {
8 UILabel *priceLabel; // label that shows the airfare price
9 UILabel *originLabel; // label that shows the origin airport

10 UILabel *destinationLabel; // label that shows the destination
11 UILabel *tweetLabel; // shows the tweet the airfare came from
12 UIImageView *planeView; // shows a directional image of a plane
13 } // end instance variable declarations
14

Fig. 16.18 | UITableViewCell that displays information about an airfare. (Part 1 of 2.)

Download from <www.wowebook.com>

ptg

384 Chapter 16 Twitter® Discount Airfares App

Class AirfareCell Implementation
Lines 7–10 of AirfareCell.m (Fig. 16.19) synthesize the four properties we declared in the
header file. Method initWithStyle:reuseIdentifier: (lines 13–72) initializes an Air-
fareCell. We initialize originLabel and destinationLabel first (lines 21–24). To get the
configuration information for the frames of the GUI components in AirfareCell, we cre-
ated a temporary nib file with a UITableViewCell in it. We laid out all the cell’s compo-
nents in Interface Builder, then used the Inspector window to view each component’s
location, width and height. Next, we used those values programmatically in Xcode (lines
21–24). You can also load UITableViewCells directly from a nib file. Apple provides a
guide for this under the heading Loading Custom Table-View Cells From Nib Files at:

developer.apple.com/iphone/library/documentation/UserExperience/
 Conceptual/TableView_iPhone/TableViewCells/TableViewCells.html

15 // declare all the UILabel instance variables as properties
16 @property (nonatomic, readonly) UILabel *priceLabel;
17 @property (nonatomic, readonly) UILabel *originLabel;
18 @property (nonatomic, readonly) UILabel *destinationLabel;
19 @property (nonatomic, readonly) UILabel *tweetLabel;
20 @end // end interface AirfareCell

1 // Fig. 16.19: AirfareCell.m
2 // AirfareCell class implementation.
3 #import "AirfareCell.h"

4
5 @implementation AirfareCell
6
7 @synthesize priceLabel; // generate get and set methods for priceLabel
8 @synthesize originLabel; // generate get and set methods for originLabel
9 @synthesize destinationLabel; // get and set methods for destinationLabel

10 @synthesize tweetLabel; // generate get and set methods for tweetLabel
11
12 // initializes the AirfareCell
13 - (id)initWithStyle:(UITableViewCellStyle)style
14 reuseIdentifier:(NSString *)reuseIdentifier
15 {
16 // if the superclass initializes properly
17 if (self =
18 [super initWithStyle:style reuseIdentifier:reuseIdentifier])
19 {
20 // create the origin and destination labels
21 originLabel =
22 [[UILabel alloc] initWithFrame:CGRectMake(20, 5, 70, 64)];
23 destinationLabel =
24 [[UILabel alloc] initWithFrame:CGRectMake(171, 5, 70, 64)];
25

Fig. 16.19 | AirfareCell class implementation. (Part 1 of 3.)

Fig. 16.18 | UITableViewCell that displays information about an airfare. (Part 2 of 2.)

Download from <www.wowebook.com>

ptg

16.4 Building the App 385

26 // create the font for the origin and destination labels
27 UIFont *locationFont =
28 [UIFont fontWithName:@"CourierNewPS-BoldMT" size:33];
29 originLabel.font = locationFont; // apply font to originLabel
30 destinationLabel.font = locationFont; // apply font to destination
31
32 // set the text color of originLabel to dark blue
33 originLabel.textColor =
34 [UIColor colorWithRed:0 green:0 blue:0.8 alpha:1];
35
36 // set the text color of destinationLabel to dark blue
37 destinationLabel.textColor =
38 [UIColor colorWithRed:0 green:0 blue:0.8 alpha:1];
39
40 // create the price label
41 priceLabel =
42 [[UILabel alloc] initWithFrame:CGRectMake(250, 2, 83, 64)];
43
44 priceLabel.font = [UIFont systemFontOfSize:30]; // set label's font
45
46 // set priceLabel's text color
47 priceLabel.textColor =
48 [UIColor colorWithRed:0 green:0.95 blue:0 alpha:1];
49
50 // create tweetLabel
51 tweetLabel =
52 [[UILabel alloc] initWithFrame:CGRectMake(20, 55, 280, 61)];
53 tweetLabel.font = [UIFont systemFontOfSize:14]; // set label's font
54 tweetLabel.numberOfLines = 3; // set the number of lines in label
55
56 // create the plane image
57 UIImage *plane = [UIImage imageNamed:@"plane.png"];
58
59 // create an image view for the image
60 planeView = [[UIImageView alloc] initWithImage:plane];
61 planeView.frame = CGRectMake(102, 20, 51, 34); // set the frame
62
63 // add the views to the contentView
64 [self.contentView addSubview:originLabel];
65 [self.contentView addSubview:destinationLabel];
66 [self.contentView addSubview:priceLabel];
67 [self.contentView addSubview:tweetLabel];
68 [self.contentView addSubview:planeView];
69 } // end if
70
71 return self; // return this object
72 } // end method initWithStyle:reuseIdentifer:
73
74 // release the AirfareCell's memory
75 - (void)dealloc
76 {
77 [originLabel release]; // release the originLabel UILabel

Fig. 16.19 | AirfareCell class implementation. (Part 2 of 3.)

Download from <www.wowebook.com>

ptg

386 Chapter 16 Twitter® Discount Airfares App

We next create the font to use with originLabel and destinationLabel (lines 27–
28). We apply it to the UILabels (lines 29–30), then set the text color (lines 33–38). We
initialize priceLabel (lines 41–42) and set its font (line 44) and text color (lines 47–48).
Next, we initialize tweetLabel (lines 51–52) and set its font (line 53). We also set its
numberOfLines property (line 54) so the label has three lines of text. We initialize plane-
View with a plane image stored in our app’s Resources group (lines 57–61), then add all
the initialized components to the cell’s contentView (lines 64–68).

16.5 Wrap-Up
In the Twitter Discount Airfares app, we interacted with Twitter web services using the
NSURLRequest and NSURLConnection classes. We used NSURLConnection’s delegate meth-
ods to retrieve data and determine when the connection closed. We then parsed the re-
trieved XML data with an NSXMLParser. We searched the parsed data for useful
information, such as the origin airport, destination airport and cost of the flight, then dis-
played the data in a Table View. We used custom UITableViewCells to present the data in
a user-friendly format. We also used the UIWebView class to display a the web page linked
to each discount airfare tweet.

We hope you enjoyed iPhone for Programmers as much as we enjoyed writing it. We’d
appreciate your feedback. Please send your comments, suggestions or corrections to
deitel@deitel.com. Check out our growing list of iPhone-related Resource Centers at
www.deitel.com/ResourceCenters.html. To stay up-to-date with the latest news about
Deitel publications and corporate training, sign up for the free weekly Deitel® Buzz Online
e-mail newsletter at www.deitel.com/newsletter/subscribe.html, and follow us on
Facebook (www.deitel.com/deitelfan) and Twitter (@deitel). To learn more about
Deitel & Associates’ worldwide on-site programming training for your company or orga-
nization, visit www.deitel.com/training or e-mail deitel@deitel.com.

78 [destinationLabel release]; // release the destinationLabel UILabel
79 [priceLabel release]; // release the priceLabel UILabel
80 [tweetLabel release]; // release the tweetLabel UILabel
81 [super dealloc]; // call the superclass's dealloc method
82 } // end method dealloc
83 @end

Fig. 16.19 | AirfareCell class implementation. (Part 3 of 3.)

Download from <www.wowebook.com>

ptg

Symbols
!= operator 80
?: operator 182
(CSR) Certificate Signing Re-

quest 26
@"string" NSString literal 80
@encode compiler directive 177
@selector 98
@synthesize directive 176
* operator 81
/ operator 81
& (address of) operator 177
preprocessor operator 72
#import macro 72
% operator 81
- operator 81
+ operator 81
< operator 81
<= operator 81
== operator 80
> operator 81
>= operator 81

Numerics
148Apps app review site 46

A
absoluteString method of

class NSURL 297
Abstract Factory design pattern

10
abstract factory design pattern

91
accelerometer 6
acceptConnection-

FromPeer:error: method of
class GKSession 354

access a property with dot (.)
notation 79

accessibility 7, 32

Accessibility Programming Guide
for iPhone OS 35

accessories 13, 14
accessoryView property of class

UITableViewCell 337
action 73
actionSheet:clickedBut-

tonAtIndex: of protocol UI-
ActionSheetDelegate 272

Ad 25
Ad Hoc distribution 25, 29, 32
addAttachmentData:mime-

Type:fileName: method of
class MFMailComposeView-
Controller 340

addition 81
addObject: method of class NS-

MutableArray 248, 292
Address Book 12
Address Book app xxx, 15
Address Book UI 11
address of (&) operator 177
addSubView: method of class

UIView 233
addTarget:action:forCon-

trolEvents: method of a
GUI component 98, 100

addTarget:action:forCon-

trolEvents: of class UICon-
trol 216

AdMob 37, 47
advertising revenue 37
AdWhirl 37, 47
alertView:clickedButtonAt-

Index: of protocol UIAlert-
ViewDelegate 183

allKeys method of class NSDic-
tionary 350

allObjects of class NSSet 182
allowMetering property of class

AVAudioRecorder 320

allowsImageEditing property
of class UIImagePickerCon-
troller 270, 295

allowsPickingMultipleItems

property of class MPMedia-
PickerController 272

alpha property of class
UIImageView 260

alpha transparency 20
alphabetical order 84
altitude 224
Amazon Mobile app 37
Android 49
Anecdotes 48
animation 132

manually perform with timer
events 156

API 11
apiwiki.twitter.com/ 49
app xxxv
app approval process 24
app delegate 302
app development xxxv
app distribution 29
App ID 25, 27
app review sites

148Apps 46
AppCraver 46
Apple iPhone School 46
Appletell 46
Apptism 46
AppVee 46
Ars Technica 46
Fresh Apps 46
Gizmodo 46
iPhone App reviews 45
iPhone Toolbox 46
iusethis 46
Macworld 46

Index

Download from <www.wowebook.com>

ptg

388 Index

app review sites (cont.)
The App Podcast 46
What’s on iPhone 45

App Store xxxi, xxxv, 3, 7, 24,
25, 37, 41, 45
Books category 7
Business category 7
Education category 7
Entertainment category 7
Finance category 7
Games category 7
Healthcare and Fitness cate-

gory 7
Lifestyle category 7
Medical category 7
Music category 7
Navigation category 7
News category 8
Photography category 8
Productivity category 8
Reference category 8
Social Networking category

8
Sports category 8
Travel category 8
Utilities category 8
Weather category 8

App Store 5
App Store distribution 25, 29,

32
AppCraver app review site 46
app-driven approach xxx, 2
Apple developer account xxxv
Apple Inc. 9
Apple iPhone School app review

site 46
Apple Macintosh 9
Apple online documentation 2
Apple Push Notification 13, 32
Appletell app review site 46
applicationMusicPlayer

method of class MPMusic-
PlayerController 262

apps
Amazon Mobile 37
Bank of America 37
Comcast Mobile 37
ESPN ScoreCenter 37
Nationwide Mobile 37

Apptism app review site 46

AppVee app review site 46
archivedDataWithRootOb-

ject: method of class NS-
KeyedArchiver 348

archiveRootObject:toFile:

method of class NSKeyed-
Archiver 303

archiving 282
arithmetic operators 81
Ars Technica app review site 46
arstechnica.com/apple/

iphone/apps/ 46
assign keyword 124
association 17
Atom format 366
attribute 16
attribute of an entity (Core Da-

ta) 345
audio xxxi
audio book 14
audio messages 9
Audio Toolbox 12
Audio Unit 12
audiobooks 9
autofocus camera 6
autorelease message 122
autorelease method of class

NSObject 122
autorelease pool 122
autoresizingMask property of

class UIView 258
AV Foundation 12
AV Foundation framework 314
available property of class GK-

Session 352
availableMediaTypesFor-

SourceType method of class
UIImagePickerController

295
AVAudioPlayer class 132, 133,

158, 314, 334
currentTime property 333
pause method 335
volume property 332

AVAudioRecorder class 315
allowMetering property

320
averagePowerForChannel:

method 321

AVAudioRecorder class (cont.)
prepareToRecord method

320
record method 320
updateMeters method 321

AVAudioSession class 314, 334
category property 316
setCategory: method 317,

319
sharedInstance method

316
AVaudioSession class

setCategory: method 334
AVAudioSessionCategory-

Playback 334
AVAudioSessionCategory-

Playback class 314
AVAudioSessionCategory-

Record 319
AVAudioSessionCategory-

Record class 314
AVAudioSessionCategory-

SoloAmbient 317, 335
averagePowerForChannel:

method of class
AVAudioRecorder 321

AVFoundation framework 132
awakeFromNib message 79
awakeFromNib method 78

B
backBarButtonItem property of

class UINavigationItem 198
backgroundColor of class

UIView 190
backgroundColor property of

class UIView 191, 226
Bank of America app 37
Bar Button Item 86
becomeFirstResponder meth-

od of a GUI component 79
becomeFirstResponder meth-

od of class UITextField 286,
324

becomeFirstResponder meth-
od of class UIViewCon-
troller 185

Before You Begin xxxv

Download from <www.wowebook.com>

ptg

Index 389

beginAnimations:context:

method of class UIView 138,
190, 208

behavior 16
binary 40
Bing 49
bitwise OR operator 259, 305
BlackBerry 49
blog.wundrbar.com/ 48
Blogger 44
blogging 44
Bluetooth 7, 13, 14
brand awareness 37
Build and Debug button (Xcode)

18, 55
Build and Go button (Xcode) 18,

55, 61
Build and Run button (Xcode)

18, 55
Bundle Indentifier 27
Bundle Programming Guide 34,

50
Bundle Seed ID 27
Button 18, 86

C
C# xxx
C++ xxx
CALayer class 132, 141, 145

presentationLayer

method 141
removeAllAnimations

method 146
Calculator 5
CalDAV 9
Calendar 9
Calendar 5
call a function after a specified

delay 132
Camera 5
camera 4, 6
camera, autofocus 6
canBecomeFirstResponder of

class UIResponder 183
Cannon Game app xxx, xxxi, 12,

15
category 91, 101, 121, 198, 204,

257, 288
enhance an existing class 91

category (cont.)
methods added to a class at

runtime 91

category property of class
AVAudioSession 316

Certificate Signing Request
(CSR) 26

Certificates 26, 27, 29

CFNetwork 13

CGAffineTransformIdentity

237
CGColorGetComponents func-

tion 190
CGContext class 168

CGContextAddLineToPoint

function of CGContext Ref-
erence 229

CGContextDrawImage function
of CGContext Reference 169

CGContextMoveToPoint func-
tion of CGContext Refer-
ence 169, 229, 328

CGContextRestoreCGState

function of the CoreGraph-
ics framework 230

CGContextRotateCTM function
of the CoreGraphics frame-
work 230

CGContextSaveGState function
of the CoreGraphics frame-
work 230

CGContextScaleCTM function
168

CGContextSelectFont function
of CGContext Reference
169

CGContextSetLineWidth func-
tion of the CoreGraphics
framework 227

CGContextSetRGBFillColor

function of
CGContextReference 169

CGContextSetRGBStrokeColor

function of
CGContextReference 328

CGContextSetRGBStrokeColor

function of the CoreGraph-
ics framework 229

CGContextShowTextAtPoint

function of
CGContextReference 169

CGContextStrokePath function
180

CGContextStrokePath function
of CGContext Reference
169, 328

CGContextStrokePath function
of the CoreGraphics frame-
work 230

CGContextTranslateCTM

function 168
CGContextTranslateCTM func-

tion of the CoreGraphics
framework 230

CGImage class 169
CGImage property of class

UIView 169
CGMakeRect function of CGGe-

ometry Reference 169
CGPoint 96, 176
CGPoint class 227, 229
CGPointMake function of CGGe-

ometry Reference 230
CGRect class 96, 169, 257, 263
CGRectMake function of CGGe-

ometry Reference 169
CGSize class 96, 99, 327
CGSizeMake 99
Chain-of-Responsibility design

pattern 10, 141
characteristics of great apps 35
chat 14
choosing photos from the

iPhone’s photo library 245
Chrome 49
class 16

interface 72
Class Actions 91
class cluster 91
class declaration 65
class implementation 65
class library 10
Class Outlets 91
Classes

AVAudioPlayer 132, 133,
158, 314, 334

AVAudioRecorder 315
AVAudioSession 314, 334

Download from <www.wowebook.com>

ptg

390 Index

Classes (cont.)
AVAudioSessionCategory-

Playback 314
AVAudioSessionCatego-

ryRecord 314
CALayer 132, 141, 145
CGContext 168
CGImage 169
CGPoint 227, 229
CGRect 96, 169, 257, 263
CGSize 96, 99, 327
CLHeading 224, 232
CLLocation 224, 226, 229,

230
CLLocationManager 224,

232, 236, 237
FetchedRequestCon-

troller 345
FlipsideViewController

188
GKPeerPickerController

345, 346, 347
GKSession 345, 348, 352,

354
MFMailComposeViewCon-

troller 314, 340
MKAnnotationView 236
MKMapView 224, 226
MPMediaItemCollection

245, 257, 267, 287
MPMediaPickerController

245, 267, 272
MPMoviePlayerController

282
MPMusicPlayer 262
MPMusicPlayerController

245, 257, 262
NSArray 91, 207
NSAutoreleasePool 122
NSBundle 112
NSCoder 282, 284, 288
NSData 339, 348, 355
NSDate 224, 232
NSDictionary 90, 98, 200,

296, 348, 350, 355
NSEntityDescription 345,

348, 350, 355
NSError 352

Classes (cont.)
NSFetchedResultsCon-

troller 351, 352, 355,
358

NSFetchRequest 345
NSFileManager 94, 198,

298, 332
NSIndexPath 202, 214, 249,

251, 293, 300, 350, 358
NSKeyedArchiver 282, 303,

348
NSKeyedUnarchiver 292
NSLocale 80
NSManagedObject 345, 347,

348, 358
NSManagedObjectContext

345, 352
NSMutableArray 86, 91,

133, 178, 198, 226, 246,
252, 288, 292, 326, 327

NSMutableData 373
NSMutableDictionary 86,

90, 178, 200, 348, 355
NSNotificationCenter 308
NSNumber 111, 137, 326,

328
NSNumberFormatter 80
NSObject 112
NSPredicate 314, 325
NSSet 140
NSSortDescriptor 362
NSString 73, 297, 332
NSTimer 156, 158, 161,

262, 315
NSURL 100, 297, 298, 372
NSURLConnection 366, 374
NSURLRequest 372
NSUserDefault 137
NSValue 177
NSXMLParser 366, 378
UIActionSheet 245, 267,

299
UIActivityIndicatorView

368
UIAlertView 118, 353
UIApplication 259, 262,

302
UIBarButtonItem 198, 245,

247, 267, 334, 347, 369
UIButton 97, 253, 315

Classes (cont.)
UIColor 174, 188, 226
UIImage 132, 169, 249, 258,

288, 294, 296, 305
UIImagePickerController

245, 267, 270, 282, 295
UIImageView 53, 59, 132,

257, 259, 262, 305
UILabel 53, 350
UINavigationController

245, 247, 248, 251, 259,
293, 359

UINavigationItem 247,
349, 352

UIScrollView 88
UISlider 190
UITableView 196, 201, 202,

214, 247, 248, 249, 293,
296, 332, 350, 351, 355,
366

UITableViewCell 197, 210,
249, 293, 300, 350, 358,
366

UITableViewCellEditing-

Style 203
UITableViewController

198, 246
UITextField 216, 286, 322,

324
UIToolbar 245, 267
UITouch 132, 140, 182
UIView 178, 187, 190, 198,

225, 233, 257, 258, 262,
325

UIViewController 111,
198, 200, 264, 292, 296,
315, 322, 346

UIWebView 366, 371
Classes group 55, 71, 89
classified listings 17
clearColor method of class UI-

Color 226
CLHeading class 224, 232

trueHeading property 237
ClickPress 46
client of a class 16
CLLocation class 224, 226, 229,

230
getDistanceFrom: method

236

Download from <www.wowebook.com>

ptg

Index 391

CLLocation class (cont.)
latitude property 230
longitude property 230

CLLocationManager class 224,
232, 236, 237
startUpdatingHeading

method 235
startUpdatingLocation

method 235
stopUpdatingHeading

method 234
stopUpdatingLocation

method 234, 237

CLLocationManagerDelegate

protocol 231, 236, 237

locationManager:did-

FailWithError: 237
locationManager:didUp-

dateHeading: 237
locationManager:didUp-

dateToLocation:from-

Location: 236

Cocoa xxix, xxx, xxxi, 2, 10, 11,
16

frameworks 10, 11
Cocoa frameworks 55, 56

Address Book 12

Address Book UI 11
Audio Toolbox 12

Audio Unit 12

AV Foundation 12

CFNetwork 13
Cocoa Touch Layer 11
Core Audio 12

Core Data 12

Core Foundation 12

Core Graphics 12

Core Location 12
Core OS Layer 13
Core Services Layer 12
External Accessory 13

Foundation 12
Map Kit 11

Media Layer 12
Media Player 12
Message UI 11

Cocoa frameworks (cont.)
Mobile Core Services 12
OpenGL ES 12
Quartz Core 12
Security 13
Store Kit 13
System 13
System Configuration 13
UIKit 11

Cocoa Touch 10
Cocoa Touch Class 71
Cocoa Touch Layer 11
code examples xxxv
code highlighting 2
code license xxix
code walkthrough 2
code.google.com 49
code.google.com/chromium/

49
Comcast Mobile app 37
Command design pattern 10,

100
commitAnimations method of

class UIView 138, 190, 208
Compass 5
compass 6
compass heading 224
component 15
Components

Flexible Space Bar Button Item

225
Composite design pattern 10
connection:didFailWithEr-

ror: of protocol NSURLCon-
nectionDelegate 376

connection:didReceiveData:

of protocol NSURLConnec-
tionDelegate 376

connection:didReceiveRe-

sponse: of protocol NSURL-
ConnectionDelegate 376

connectionDidFinishLoad-

ing: of protocol NSURLCon-
nectionDelegate 376

connectionTypesMask property
class GKPeerPickerCon-
troller 347

const qualifier 110
constant 89, 158
consumables 42

Contacts 4, 5
contentView property of class

UIView 254
continue audio when the screen

locks 316
contract information 34
Contracts, Tax & Banking In-

formation 43
controller (in MVC) 71
Controls

Button 18
Label 18
Slider 18
View 18

convertCoordinate:toPoint-

ToView: method of class MK-
MapView 229

copy and paste 8
copy text 8
copyItemAtPath:newPath:er-

ror: method of class NSFile-
Manager 298

copyright xxix
Core Animation 260, 282, 309
Core Animation block 138,

190, 306
Core Animation framework

132, 156
Core Animation Layer 132
Core Audio 12
Core Audio File 319
Core Data 12, 351
Core Data data model 345
Core Data framework xxxi, 345
Core Data object 347
Core Foundation 12
Core Graphics 12
Core Graphics framework 157
Core Location 12
Core Location framework xxxi,

224, 232
Core OS Layer 13
Core Services Layer 12
count property 335
count property of class NSMut-

ableArray 335
CPU usage xxxi
CraigsList (www.craigs-

list.org) 17
create derivative apps xxix

Download from <www.wowebook.com>

ptg

392 Index

cStringUsingEncoding meth-
od of class NSString 169

current system time 319
currentTime property of class

AVAudioPlayer 332, 333
cut and paste 8
cut text 8

D
dailymobile.se/2009/02/11/

iphone-humor-cell-phone-

reunion/ 49
data model editor 346
dataSource of class

UITableView 201
dataWithContentsOfFile:

method of class NSData 339
Decktrade 48
decodeIntForKey: method of

class NSCoder 285
decodeObjectForKey method

of class NSCoder 285, 288
decoding 282
Decorator design pattern 10,

121
Default Apps 4

App Store 5
Calculator 5
Calendar 5
Camera 5
Compass 5
Contacts 5
iPod 5
iTunes 5
Mail 5
Maps 5
Messages (SMS/MMS) 5
Notes 5
Phone 5
Photos 5
Safari 5
Settings 5
Stocks 5
Voice Memos 5
Weather 5
YouTube 5

default install location for the
SDK xxxvi

defaultCenter of class NSNoti-
ficationCenter 308

defaultManager method of class
NSFileManager 198, 332

Deitel® Buzz Online Newsletter
(www.deitel.com/
newsletter/

subscribe.html) xxxiii,
xxxvi, 17, 386

Deitel® Training (deitel.com/
training) 386

delay before calling a function
132

delegate 121
delegate protocol 121
deleteObject: method of class

NSManagedObjectContext

360
deleteRowsAtIndex-

Paths:withRowAnimation:

method of class UITableView
203, 338

Delicious (www.delicious.com)
17, 44

denyConnectionFromPeer:

method of class GKSession
354

dequeReusableCellWithIden-

tifier: method of class
UITableView 249, 293

dequeueReusableCellWithI-

dentifier: method of class
UITableView 197, 202, 210,
214, 358

deserialized 282
Design patterns xxxi, 10, 71

Abstract Factory 10, 91
Chain of Responsibility 10
Command 10, 100
Composite 10
Decorator 10, 121
Facade 10
Memento 11
Model View Controller 10
Singleton 11, 94
Template Method 11, 79

Detail Disclosure Button 86
detect performance problems

169
developer.apple.com/ 14, 53
developer.apple.com/cocoa/

11, 56

developer.apple.com/

documentation/Cocoa/

Conceptual/

CocoaFundamentals/

CocoaFundamentals.pdf 3
developer.apple.com/

documentation/Cocoa/

Conceptual/

CodingGuidelines/

CodingGuidelines.pdf 3
developer.apple.com/

documentation/Cocoa/

Conceptual/

ObjCRuntimeGuide/

ObjCRuntimeGuide.pdf 3
developer.apple.com/

documentation/Cocoa/

Conceptual/ObjectiveC/

ObjC.pdf 3
developer.apple.com/

documentation/

DeveloperTools/

Conceptual/

Xcode_Overview/

Contents/Resources/

en.lproj/

Xcode_Overview.pdf 3
developer.apple.com/

documentation/

DeveloperTools/

Conceptual/

XcodeDebugging/

Xcode_Debugging.pdf 3
developer.apple.com/

documentation/

UserExperience/

Conceptual/

AppleHIGuidelines/

XHIGIntro/XHIGIntro.html

3
developer.apple.com/

iphone/ xxxii, 2, 25, 43
developer.apple.com/

iphone/index.action#

downloads xxxv
developer.apple.com/

iphone/library/

documentation/Cocoa/

Conceptual/Strings/

introStrings.html 80

Download from <www.wowebook.com>

ptg

Index 393

developer.apple.com/

iphone/library/

documentation/

CoreFoundation/

Conceptual/CFBundles/

Introduction/

Introduction.html 50
developer.apple.com/

iphone/library/

documentation/iPhone/

Conceptual/

iPhoneOSProgrammingGuide

/Introduction/

Introduction.html 50

developer.apple.com/

iphone/library/

documentation/

userexperience/

conceptual/mobilehig/

Introduction/

Introduction.html 3, 50,
30

developer.apple.com/

iphone/library/

documentation/Xcode/

Conceptual/

iphone_development/000-

Introduction/

introduction.html) 50

developer.apple.com/

iPhone/library/

navigation/Frameworks/

index.html 11

developer.apple.com/

iphone/library/

navigation/index.html 50

developer.apple.com/

iphone/program/start/

register/ xxxv

developer.apple.com/tools/

xcode/xcodeprojects.html

3

developer.myspace.com/

community/ 50

developer.palm.com/ 49
developer.symbian.org/ 49

developer.yahoo.com 49

developers.facebook.com/ 49
Development Certificate 26

Development Provisioning Pro-
file 27

development tool xxxvi
device name 27
dictionaryWithDictionary:

of class NSDictionary 208
Digg 44
directoryContentsAtPath:

method of class NSFileMan-
ager 332

dismissModalViewControlle-

rAnimated: method of class
UIViewController 120, 200,
248, 292, 296

display the keyboard 265
display the numeric keyboard 79
displayNameForPeer: method

of class GKSession 353
distribution certificate 29
Distribution Provisioning Pro-

file 29, 30
division 81
Dock Connector 4, 13, 14
dot (.) notation 79

cannot be used to invoke
methods 79

double tap 4, 15
drag 4, 15
drawRect: of class UIView 227
drive sales 37
dynamic binding 100
dynamically typed 73

E
earnings 37
ease of use 30
EditableCellDelegate proto-

col 205
editButtonItem property of

class UIViewController 247
encapsulation 16
encodeInt:forKey: method of

class NSCoder 285, 289
encodeObject:forKey: meth-

od of class NSCoder 285, 289
encodeWithCoder: method of

protocol NSCoder 282
encoding 282
@end keyword 73

Enhanced Address Book app xxx,
9, 11, 12, 14

Enhanced Slideshow app xxx
entity in a managed object mod-

el 345
entity method of class NSMan-

agedObject 348
enum 282
enum constant 282
enum keyword 287
enum type 256
enumeration constant 287
equality 80
ESPN ScoreCenter app 37
evaluateWithObject: method

of class NSPredicate 325
event 75
Events

Editing Changed 75
Value Changed 75

events 10
Examples xxxvi
Examples.zip xxxvi
External Accessory 13

F
Facade design pattern 10
FaceBook 17
Facebook xxxiii, 44, 49

fan 45
fan page 44
friend 45
www.deitel.com/deitel-

fan 386
factory settings 6
fan in Facebook 45
fan page in Facebook 44
Favorite Twitter Searches app xxx,

10, 11, 12
fee-based app 8
fetch request 345
FetchedRequestController

class 345
fetchedResultsController

method 361
fileExistsAtPath

94
fileURLWithPath: method of

class NSURL 298
Financial Reports 43

Download from <www.wowebook.com>

ptg

394 Index

financial transaction 41
Find My iPhone 6
Finder xxxvi
Finder window 18
Flag Quiz Game app xxx, xxxi, 10
Flexible Space Bar Button Item

component 225, 267
flick 4, 15
Flickr 17, 44
flipside view 106, 191

used for settings 106
FlipsideViewController class

188
FlipsideViewControllerDel-

egate protocol 109, 123
float 227, 327
floatValue method of class

NSNumber 328
for...in operator 95
format specifier 80, 100
formatting string objects 80
Foundation 12
frame property 96
frame property of class UIView

257
Frameworks

AV Foundation 314
AVFoundation 132
Core Animation 132, 156
Core Data 345
Core Graphics 157
Core Location 224
Game Kit 345
Map Kit 224, 226
Store Kit 41
UIKit 56

free app 8, 36, 41
Free Applications contract 34
Fresh Apps app review site 46
friend 45
friend in Facebook 45
frontside view 106
function 16

G
Game Kit 32
Game Kit framework xxxi, 14,

345
games 14, 35
generic pointer 80

gesture 4
Gestures

double tap 4
drag 4
flick 4
pinch 4
swipe 4
tap 4
touch and hold 4

getDistanceFrom: method of
class CLLocation 236

getValue: method of class NS-
Value 180

Gizmodo app review site 46
gizmodo.com/5300060/find-

my-iphone-saved-my-

phone-from-a-thief 49
gizmodo.com/tag/iphone-

apps-directory/ 46
GKPeerPickerConnection-

TypeNearby constant 347
GKPeerPickerController class

345, 346, 347
connectionTypesMask

property 347
show method 347

GKPeerPickerControllerDel-

egate protocol 346, 348, 349
peerPickerCon-

troller:didConnect-

Peer:toSession:

method 348
peerPickerController-

DidCancel: method 349
GKSendReliable constant 348
GKSession class 345, 348, 352,

354
acceptConnection-

FromPeer:error: meth-
od 354

available property 352
denyConnectionFromPeer:

method 354
displayNameForPeer:

method 353
initialize 352
sendDataToAllPeers:

withDataMode: method
345, 348

GKSession class (cont.)
setDataReceiveHan-

dler:withContext:

method 352
GKSessionDelegate protocol

346, 351, 353
session:didReceiveCon-

nectionRequest-

FromPeer: method 353
GKSessionModeServer 352
global variables 109
Google 49
Google Maps xxxi, 13
Google Maps web services 226
Google Mobile Maps Service 14
GPS 224
Graphical User Interface (GUI)

9
graphics xxxi
graphics context 168, 178, 227
greater than 81
greater than or equal to 81
Groups and Files window 55, 71,

108, 109, 122
guesture 15
GUI (Grahical User Interface) 9
GUI Components

Bar Button Item 86
Button 86
Detail Disclosure Button 86
Image View 53, 86, 107
Info Button 106, 108, 125
Label 53, 67, 86, 107, 133
Rounded Rect Button 86, 87
Scroll View 86, 88
Segmented Control 106, 110,

127
Slider 65, 68, 86, 190
Switch 123
Tab Bar 86
Tab Bar Item 86
Text Field 66, 87, 285
Toolbar 86
View 86

GUI design 35

H
hashtag 45
header file 71, 108
heading, compass 224

Download from <www.wowebook.com>

ptg

Index 395

headset jack 4
hearing impaired 7
Home button 4
Humor 49

I
i-Newswire 47
IBAction 73
IBOutlet 72
icon 32, 33
icon design firms

icondesign 33
IconDrawer 33
Razorianfly Graphic Design

33
The Iconfactory 33

id <ProtocolName> 124
id generic pointer type 80
id type 73

implicit 97
IDE (integrated development

environment) xxxi, 14
if...else keyword 80
image picker 245, 296
image property of class

UIImageView 132, 141
image transition 245
Image View 53, 59, 61, 86
Image View GUI component 107
imagePickerController:did-

FinishPickingImage:edit-

ingInfo method of protocol
UIImagePickerCon-

trollerDelegate 271
images xxxi
implementation file 78
@implementation keyword 78
in-app advertising 36, 37
In App Purchase 13, 32, 41, 42
in-game voice communication

14
indexPathForCell: method of

class UITableView 293
indexPathForCell: of class

UITableView 208
inequality 80
info button 18, 31
Info Button GUI Component

106, 108, 125
information hiding 16

inheritance 16, 65, 72, 111
inherits 72
init method 92
init of class NSMutableDic-

tionary 94
initialize an NSFetched-

ResultsController 361
initWithCapacity: method of

class NSMutableArray 111,
326

initWithCapacity: of class NS-
MutableDictionary 207

initWithCoder: method of
class NSObject 159

initWithCoder: method of
class UIView 177

initWithCoder: method of

protocol NSCoder 282
initWithCoder: method of

protocol NSCoding 288
initWithContentsOfFile

94
initWithContentsOfFile:

method of class NSMutable-
Array 198

initWithCustomView: of class
UIBarButtonItem 369

initWithNibName:bundle: of
class UIViewController 207

initWithObjects: method of
class NSArray 207

initWithString: method of
class NSString 94

initWithStyle:reuseIdenti-

fier: method of class
UITableViewCell 202, 384

initWithTitle:dele-

gate:cancelButtonTi-

tle:destructiveButtonTit

le:otherButtonTitles:

method of class UIAction-
Sheet 299

insertRowsAtIndexPaths

method of class
UITableView 355

Inspector window 61, 66, 73,
87, 91, 122

instance 16
instance method 73

instance variable 16, 71, 73,
133, 198

instantiated 16
Instruments tool xxxi, 53, 169

Activity Monitor template
169

checking for memory leaks
118

integrated development envi-
ronment (IDE) xxxi, 14

Intel-based Mac xxxv
interface 16, 78
Interface Builder 9, 10, 14, 53
interface of a class 72
international App Stores 32
Internet Public Relations

ClickPress 46
i-Newswire 47
InternetNewsBureau.com

47
Marketwire 46
openPR 47
PR Leap 46
Press Release Writing 47
PRLog 47
PRWeb 46
PRX Builder 47

Internet telephony 17
Internet tethering 7
InternetNewsBureau.com 47
invalidate method of class

NSTimer 166
iPhone 3G xxix, 3
iPhone 3GS xxix, 3
iPhone App Reviews 45
iPhone Application Programming

Guide 34, 50
iPhone Developer Center 43
iPhone Developer Program 2,

24, 25
iPhone Developer Program Por-

tal 25, 26, 27, 28, 29
iPhone Developer University

Program 3
iPhone Development Certificate

26
iPhone Development Guide 32,

50
iPhone Development Team 25

Download from <www.wowebook.com>

ptg

396 Index

iPhone Distribution Certificate
29

iPhone for Programmers website
www.deitel.com/books/

iPhoneFP/ xxix
iPhone Human Interface Guide-

lines 24, 30, 33, 34, 50
iPhone OS 3 Readiness Checklist

32
iPhone OS 3.0 8
iPhone OS 3.x 41
iPhone OS 3.x compatible 32
iPhone Reference Library 50
iPhone sales 3
iPhone SDK xxxv, xxxvi, 14
iPhone SDK 3.x xxix, xxxi, 13
iPhone simulator 14, 52

rotate left 245
rotate right 245

iPhone Toolbox app review site
46

iphone.iusethis.com/ 46
iPhoneSDK.mpkg xxxvi
iphonetoolbox.com/catego-

ry/application/ 46
iPod 3, 9
iPod 4, 5
iPod library access xxxi, 14, 32
iPod music library 267, 281,

298
iPod Touch 2, 8
iterate through the items in a

collection 95
iTunes 4, 7, 9, 39, 42
iTunes 5
iTunes Connect 24, 41, 42
iTunes Connect Developer Guide

32, 33, 34, 42
iTunes Connect Modules 43
iTunes Store 9
itunesconnect.apple.com 38,

42
iusethis app review site 46

J
Java xxx
Jobs, Steve 9

K
kCLLocationAccuracyBest

constant 233
keyboard 4

how to display 79
how to set the type 210
layout 9

Keychain Access 26, 27, 29
Keywords 32, 33

for...in 95
id 73
if...else 80
nil 93
self 92
struct 158
super 92

kuTypeImage class 296

L
Label GUI Component 18, 53,

61, 67, 86, 107, 133, 191
landscape keyboard 6, 8
language support 9
lastObject method of class NS-

MutableArray 230
lastPathComponent method of

class NSString 112, 297
latitude 224
latitude property of class CL-

Location 230
launch image 32, 34, 34
layer property of class UIView

141, 145
leftBarButtonItem property of

class UINavigationItem 352
less than 81
less than or equal to 81
Library window 59, 67, 87, 91,

122
LinkedIn 44, 50
literal

NSString 80
loadView method of class

UIView 257
local variable

declared static 79
localization 40
locate your iPhone 6
location (GPS) 224
location-based app 14

locationInView: method of
class UIView 141

locationManager:didFail-

WithError: of protocol CL-
LocationManagerDelegate

237
locationManager:didUpdate-

Heading: of protocol CLLo-
cationManagerDelegate

237
locationManager:didUpdate-

ToLocation:fromLocation:

of protocol CLLocationMan-
agerDelegate 236

lock the iPhone 4
longitude 224
longitude property of class CL-

Location 230

M
Mac xxx
Mac OS X xxx, xxxv, 8, 9
Macintosh 9
Macworld app review site 46
Mail 4, 5
mailComposeController:did-

FinishWithResult:error:

method of protocol MFMail-
ComposeViewCon-

trollerDelegate 340
mailComposeDelegate property

of class MFMailComposeView-
Controller 340

mainBundle method of class
NSBundle 112

Manage Users 43
Manage Your Applications 43
Managed Object Context 345
managed object model 345
managedObjectContext meth-

od of class NSFetched-
ResultsController 355

map 14
Map Kit 11
Map Kit framework xxxi, 14,

224, 226
Maps 5
mapType property of class MK-

MapView 235

Download from <www.wowebook.com>

ptg

Index 397

mapView:regionDidChangeAn-

imated: of protocol MK-
MapViewDelegate 231

mapView:regionWillChange-

Animated: of protocol MK-
MapViewDelegate 231

marketing xxxi
Marketwire 46
mashup 13
Media Layer 12
Media Player 12
Media Player framework xxxi,

14
Medialets 47
mediaPicker:didPickMedia-

Items: of protocol MPMedia-
PickerControllerDelegate

272
mediaTypes property of class

UIImagePickerController

282, 295
Memento design pattern 11
memory leak xxxi
memory limitation 30
memory management 106, 107

developer.apple.com/

iPhone/library/

documentation/Cocoa/

Conceptual/

MemoryMgmt/

MemoryMgmt.html 107
menu name xxxv
Menus

Build 54
Subclass of 71

message 75, 79
Message UI 11
Messages (SMS/MMS) 5
method implementations that

enhance an existing class 91
method of a class 16, 71
MFMailComposeViewCon-

troller class 314, 340
addAttachmentData:mime-

Type:fileName: method
340

mailComposeDelegate

property 340

MFMailComposeViewCon-

trollerDelegate protocol
340
mailComposeController:

didFinishWithResult:

error: method 340
micro blogging 44, 45
microphone 4, 8
Microsoft Exchange ActiveSync

9
MKAnnotationView class 236
MKCoordinateRegion struct

237
MKCoordinateSpan struct

237
MKCoordinateSpanMake func-

tion of MapKit 236
MKMapTypeSatellite map type

constant 235
MKMapTypeStandard map type

constant 235
MKMapView class 224, 226

 transform property 237
convertCoordi-

nate:toPointToView:

method 229
mapType property 235
scrollEnabledproperty 234
zoomEnabledproperty 234

MKMapViewDelegate protocol
226
mapView:regionDid-

ChangeAnimated: 231
mapView:regionWill-

ChangeAnimated: 231
MKTypeHybrid map type con-

stant 235
MMS (Multimedia Messaging

Service) 9
mobile advertising network 37,

47
AdMob 37, 47
AdWhirl 37, 47
Decktrade 48
Medialets 47
Pinch Media 38
PinchMedia 48
Quattro Wireless 47
Tapjoy 37, 48

Mobile Core Services 12

MobileMe 6, 49
modalTransitionStyle proper-

ty of class UIViewController
121, 186

model (in MVC) 71
Model-View-Controller (MVC)

design pattern xxxi, 10, 71,
286, 345

modulus operator 116
monetization 47
monetize apps 37
monetizing apps 24
motionEnded:withEvent: of

class UIResponder 183
mount xxxvi
mounted image xxxvi
moveItemAtPath:toPath:

method of class NSFileMan-
ager 321

movies 9
MPMediaItemCollection class

245, 257, 267, 287
MPMediaPickerController

class 245, 267, 272
allowsPickingMulti-

pleItems property 272
MPMediaPickerController-

Delegate protocol
mediaPicker:didPick-

MediaItems: 272
MPMoviePlayerController

class 282
MPMusicPlayer class 262

play method 262
setQueueWithItemCollec-

tion: method 262
MPMusicPlayerController

class 245, 257, 262
MPMusicShuffleModeNone 262
MPMusicShuffleModeOff 262
msdn.microsoft.com/en-us/

windowsmobile/

default.aspx 49
MSMutableArray class

removeAllObjects method
327

multi-touch events 132
Multi-Touch screen 4, 11
multimedia xxxi

Download from <www.wowebook.com>

ptg

398 Index

Multimedia Messaging Service
(MMS) 9

multiplayer game 14
multiplication 81
music 14
music library 9
mutableCopy method of class

NSMutableArray 335
mutableCopy method of class

NSObject 112
mutually exclusive options 106
MVC (Model-view-controller)

xxxi
MySpace 17, 44, 50

N
na.blackberry.com/eng/

services/appworld/? 49
Nationwide Mobile app 37
navigate between an app’s

screens 245
navigation bar 198, 347, 349,

352
Navigation-based Application

template 197, 204, 366
navigationController proper-

ty of class UIViewController
197

navigationItem property of
class UIViewController 198,
246

network activity xxxi
networkActivityIndicator-

Visible of classl UIApplica-
tion 374

New App ID button 27
New Project dialog 53
NeXT 9, 56
NeXT Interface Builder 14
NeXTSTEP operating system 9
NeXTSTEP programming envi-

ronment 56
nib file 14, 56, 92
Nike + iPod Sensor 14
nil keyword 93
nonatomic keyword 109
non-consumables 42
Notes 5, 9
nouns in a system specification

17

NSArray class 91, 207
initWithObjects: method

207
NSAutoreleasePool class 122
NSBundle class 112

mainBundle method 112
pathForResource:ofType:

method 112, 134
NSCoder class 282, 284, 288

decodeInt:forKey: meth-
od 285

decodeObject:forKey

method 285, 288
encodeInt:forKey: meth-

od 285, 289
encodeObject:forKey:

method 285, 289
encodeWithCoder: method

282
initWithCoder: method

282
NSCoding protocol 282, 288

initWithCoder: method
288

NSData class 339, 355
dataWithContentsOfFile:

method 339
NSDataclass 348
NSDate class 224, 232

timeIntervalSinceNow

method 235
NSDictionary class 90, 98, 198,

200, 296, 348, 350, 355
allKeys method 350
dictionaryWithDiction-

ary: 208
valueForKey: method 296
writeToFile:atomically:

method 98
NSEntityDescription class

345, 348, 350, 355
properties method 350
propertiesByName method

348, 350
NSError class 352
NSFetchedResultsController

class 351, 352, 355, 358
initialize 361
managedObjectContext

method 355

NSFetchedResultsController

class (cont.)
objectAtIndexPath: meth-

od 358
performFetch: method 352
sections method 357

NSFetchedResultsCon-

trollerDelegate protocol
351

NSFetchedResultsSectionIn-

fo protocol 358
numberOfObjects method

358
NSFetchRequest class 345

setSortDescriptors:

method 362
NSFileManager class 94, 198,

298, 332
copyItemAtPath:new-

Path:error: method 298
defaultManager method

198, 332
directoryContentsAt-

Path: method 332
moveItemAtPath:toPath:

method 321
NSIndexPath class 202, 214,

249, 251, 293, 300, 350, 358
row property 293, 350

NSKeyedArchiver class 282,
303, 348
archivedDataWithRootOb-

ject: method 348
archiveRootObject:to-

File: method 303
NSKeyedUnarchiver class 292

unarchiveObjectWith-

File: method 292
NSLocale class 80
NSLog function of the Founda-

tion framework 352, 355
NSManagedObject class 345,

347, 348, 358
entity method 348
save method 355, 357
setValue:forKey: method

355
NSManagedObjectContext class

345, 352
deleteObject: method 360

Download from <www.wowebook.com>

ptg

Index 399

NSMutableArray 198
NSMutableArray class 86, 91,

133, 178, 198, 226, 246, 252,
288, 292, 326, 327, 335
addObject: method 248,

292
initWithCapacity: meth-

od 111, 326
initWithContentsOfFile:

method 198
lastObject method 230
mutableCopy method 335
objectAtIndex: method

328
removeAllObjects method

230
removeObjectAtIndex:

method 252, 327
sortUsingSelector: meth-

od 99
NSMutableData class 373
NSMutableDictionary class 86,

90, 178, 200, 348, 355
init 94
initWithCapacity: 207
removeAllObjects method

178
setValue:forKey: 97
writeToFile:atomically:

200
NSNotificationCenter class

308
defaultCenter 308
removeObserver: 309

NSNumber class 111, 137, 326,
328
floatValue method 328
numberWithBool: method

111
NSNumberFormatter class 80
NSObject class 112

autorelease 122
initWithCoder: method

159
mutableCopy method 112
release method 107, 112
retain method 107, 112

NSObject class performSelec-
tor:withObject:AfterDe-

lay: method 116, 137

NSPredicate class 314, 325
evaluateWithObject:

method 325
predicateWithFormat:

method 325
NSSearchPathForDirecto-

riesInDomains function
319, 331

NSSearchPathForDirecto-

riesInDomains funtion of
the Foundation framework
198, 291

NSSet class 140
allObjects 182

NSSortDescriptor class 362
NSString class 73, 297, 332

@"string" literal 80
cStringUsingEncoding

method 169
initWithString: method

94
lastPathComponent meth-

od 112, 297
pathExtension method 332
rangeOfString: method

381
sizeWithFont: 218
stringByAddingPercent-

EscapesUsingEncoding:

method 374
stringByAppendingPath-

Component: method 94,
298, 332

stringByDeletingLast-

PathComponent method
320

stringWithFormat: meth-
od 333

substringWithRange:

method 381
NSString literal 80
NSTemporaryDirectory func-

tion 297
NSTimer class 156, 158, 161,

262, 315
invalidate method 166

NSURL class 100, 297, 298, 372
absoluteString method

297

NSURL class (cont.)
fileURLWithPath: method

298
path method 320
URLWithString: method

338
NSURLConnection class 366,

374
NSURLConnectionDelegate

protocol
connection:didFailWith-

Error: 376
connection:didReceive-

Data: 376
connection:didReceive-

Response: 376
connectionDidFinish-

Loading: 376
NSURLRequest class 372
NSUserDefault class 137

setValue:forKey: method
146

valueForKey: method 137
NSValue class 177

getValue: method 180
valueWithBytes:objC-

Type: 177
valueWithPointer: 182

NSXMLParser class 366, 378
NSXMLParserDelegate protocol

parser:didEndEle-

ment:namespa-

ceURI:qualifiedName:

379
parser:didStartEle-

ment:namespa-

ceURI:qualifiedName:a

ttributes: 379
parser:foundCharacters:

379
numberOfObjects method of

protocol NSFetched-
ResultsSectionInfo 358

numberOfSectionsIn-

TableView: method of class
UITableViewController

210, 248
numberWithBool: method of

class NSNumber 111
numeric keyboard, display 79

Download from <www.wowebook.com>

ptg

400 Index

O
Object 91
object 15, 16
object (or instance) 16
object graph 282, 292, 303
object messaging 100
object-oriented design (OOD)

16
object-oriented language 16
object-oriented programming

(OOP) 9, 16
object serialization 282, 309
object technology 15
objectAtIndex: method of class

NSMutableArray 94, 328
objectAtIndexPath: method

of class NSFetchedResults-
Controller 358

Objective-C xxix, xxx, 2, 9
Objective-C code xxxv
Objective-C command xxxv
on-screen component xxxv
OOD (object-oriented design)

16
OOP (object-oriented program-

ming) 9, 16
Open GL ES 2.0 12, 32
openPR 47
OpenStep 11
openURL method of class UIAp-

plication 101
operating system 8
operating system requirements

xxxv
Operators

- 81
!= 80
?: 182
* 81
/ 81
% 81
+ 81
< 81
<= 81
== 80
> 81
>= 81

Orkut 44
OS X 9

outlet 72, 109, 124, 186, 232,
264, 315, 328

P
paid app 41
Paid Applications contract 34
Painter app xxx, 17
Parental Controls 9, 32, 39
parser:didEndEle-

ment:namespaceURI:quali-

fiedName: of protocol
NSXMLParserDelegate 379

parser:didStartEle-

ment:namespaceURI:quali-

fiedName:attributes: of
protocol NSXMLParserDele-
gate 379

parser:foundCharacters: of
protocol NSXMLParserDele-
gate 379

paste text 8
path method of class NSURL 320
pathExtension method of class

NSString 332
pathsForResourcesOfType:

method of class NSBundle
112, 134

pause method of class AVAudio-
Player 335

payment 42
peer ID 353
peerPickerController:did-

ConnectPeer:toSession:

method of protocol GKPeer-
PickerControllerDelegate

348
peerPickerControllerDid-

Cancel: method of protocol
GKPeerPickerCon-

trollerDelegate 349
peer-to-peer connectivity 14
peer-to-peer games 9
Performance and Threading

(developer.apple.com/
documentation/Cocoa/Con-

ceptual/ObjectiveC/Arti-

cles/ocProperties.html#/

/apple_ref/doc/uid/

TP30001163-CH17-SW12) 109

performance problems, detect
169

performFetch: method of class
NSFetchedResultsCon-

troller 352
performSelector:withOb-

ject:AfterDelay: method
of NSObject 116, 137

Phone 4, 5
Photo API 245
photo sharing 17, 44
Photos 5
photos 4
pinch 4, 15
Pinch Media 38, 48
play method of class MPMusic-

Player 262
.plist extension 98
plist file 198
plist format 98
podcast 14
pointer

generic 80
pointer to the sender compo-

nent 80
popViewControllerAnimated:

method of class UINaviga-
tionController 259

power the iPhone 4
PR Leap 46
predicateWithFormat: meth-

od of class NSPredicate 325
prepareToRecord method of

class AVAudioRecorder 320
preprocessor 72
presentationLayer method of

class CALayer 141
presentModalViewCon-

troller:animated: method
of class UIViewController
200, 248, 317

Press Release Writing 47
price 8, 36
price tier 40
Pricing Matrix 40
primary screenshot 34
privacy 6
PRLog 47
Programatically update user in-

terface 96

Download from <www.wowebook.com>

ptg

Index 401

programmatically select a com-
ponent 79

programming languages
Objective-C 10

project 53
Project Structure group 55
properties method of class

NSEntityDescription 350
propertiesByName method of

class NSEntityDescription
348, 350

property 109, 257, 264, 322
access with dot (.) notation

79
readonly 175

property-list format 98
property of an object 16
protocol 109

delegate 121
similar to an interface in oth-

er programming languages
109

Protocols
CLLocationManagerDele-

gate 236, 237
EditableCellDelegate 205
GKPeerPickerCon-

trollerDelegate 348,
349

GKSessionDelegatel 353
MFMailComposeViewCon-

trollerDelegate 340
NSFetchedResultsSec-

tionInfo 358
UITableViewDataSource

201, 205, 212, 328
UITableViewDelegate 201,

328
UITextFieldDelegate 215,

322, 325
Provisioning 28
Provisioning Profile 25, 27
PRWeb 46
PRX Builder 47
public relations 46
purchase 41
purchasing interface 42
Push Notification 2, 13

pushViewController:animat-

ed: method of class UINavi-
gationController 202, 248,
251, 293, 359

Q
Quartz Core 12
Quattro Wireless 47

R
radio button 106
random number generator 111
rangeOfString: method of

class NSString 381
rating apps 39
react to incoming calls 316
readonly 383
readonly property 175
receive data from a connected

device 354
receiveData:fromPeer:

inSession:context: method
354

receiver 79
record method of class AVAu-

dioRecorder 320
Registered iPhone Developer 2
regular expression 325
relational operators 80
release date 40
release method of class NSOb-

ject 107, 112
reloadData method of class

UITableView 247, 332, 355
remainder operator, % 81
Remote Wipe 6
removeAllAnimations method

of class CALayer 146
removeAllObjects method of

class NSMutableArray 95,
230, 327

removeAllObjects method of
class NSMutableDictionary
178

removeAllObjects of class NS-
MutableDictionary 178

removeFromSuperView method
of class UIView 95, 112, 145,
261, 262

removeObjectAtIndex: meth-
od of class NSMutableArray
252, 327

removeObserver: of class NSNo-
tificationCenter 309

Request Promotional Codes 43
resignFirstResponder meth-

od of class UIViewCon-
troller 185

resignFirstResponder meth-
od of class UIResponder 218

Resource Centers
(www.deitel.com/
ResourceCenters.html) 17

Resources group 55, 58
responder chain 141
REST xxxi
retain count 106, 112
retain counting 106
retain keyword 109
retain method of class NSOb-

ject 107, 112
reuse 17
reuse UITableViewCells 197
RGB values 87, 191, 229
Rhapsody 11
Ring/Silent switch 4
rotate left (iPhone simulator)

245
rotate right (iPhone simulator)

245
Rounded Rect Button 86, 87
Route Tracker app xxx, 2, 6, 11,

12, 14, 15
row property of class NSIndex-

Path 293, 350
run loop 122

S
Safari 4, 5, 9
Sales/Trend Reports 43
Salesforce 17
save data on the iPhone 84
save method of class NSManage-

dObject 355, 357
scheduledTimerWith-

TimeInterval:target:se-

lect:userInfo:repeats:

method of class NSTimer 161
screen size 30

Download from <www.wowebook.com>

ptg

402 Index

screenshot 32
scroll 4
Scroll View 86, 88
scrollEnabledproperty of class

MKMapView 234
scrollToRowAtIndex-

Path:atScrollPosi-

tion:animated: of class
UITableView 208

SDK (Software Development
Kit) xxxv

SDK beta xxxv
SDK documentation xxxv
search 9
Second Life 17
sections method of class NS-

FetchedResultsController

357
Security 13
seed (random number genera-

tion) 111
Segmented Control GUI Compo-

nent 106, 110, 122, 127
dynamically created 115

select a component program-
matically 79

selectedSegmentIndex proper-
ty of class UISegmentedCon-
trol 235

selectionStyle property of
class UITableViewCell 249,
293

self keyword 92
sendDataToAllPeers:with-

DataMode: method of class
GKSession 345, 348

sender of an event 80
serialized object 282
session

didReceiveConnectionRe-
questFromPeer: method
of protocol GKSessionDe-
legate 353

set the keyboard type 210
setAnimationCurve: method

of class UIView 139, 208
setAnimationDidStopSelec-

tor: method of class UIView
139, 144

setAnimationDuration: meth-
od of class UIView 139, 190,
208

setBackBarButtonItem: meth-
od of class UINavigation-
Item 247

setCategory: method of class
AVAudioSession 317, 319,
334

setContentSize: method of
class UIScrollView 99

setDataReceiveHan-

dler:withContext: method
of class GKSession 352

setIdleTimerDisabled: of
class UIApplication 234,
235

setNavigationBarHidden:an-

imated: method of class UI-
NavigationController 247

setNeedsDisplay method of
class UIView 165, 178, 230

setNeedsDisplayInRect:

method of class UIView 182
setQueueWithItemCollec-

tion: method of class MPMu-
sicPlayer 262

setRegion: method of class
UIMapView 237

setRightBarButtonItem:

method of class UINaviga-
tionItem 347

setSortDescriptors: method
of class NSFetchRequest 362

setStatusBarHidden: method

of class UIApplication

259
setStatusBarHidden: method

of class UIApplication 262
Settings 5
setTitle: method of class UI-

NavigationItem 246, 349
setValue: method of class UIS-

lider 190
setValue:animated: method

of class UISlider 333
setValue:forKey: method of

class NSManagedObject 355
setValue:forKey: method of

class NSUserDefault 146

setValue:forKey: of class NS-
MutableDictionary 97

Shake to Shuffle 9
sharedApplication method of

class UIApplication 101,
259

sharedInstance method of
class AVAudioSession 316

sheet 57
shine effect 33
shouldAutorotateToInter-

faceOrientation: method
of class UIViewController
204, 262

show method of class GKPeer-
PickerController 347

SIM card tray 4
simulator 32
singleton 262, 302, 314, 316
Singleton design pattern 11, 94,

101, 314
sizeWithFont: of class NS-

String 218
Skype 17
Sleep/Awake button 4
Slider 18, 65, 68, 86, 191
Slider GUI component 190
Slideshow app xxx, 6, 12, 14
social bookmarking 17, 44
social media 44
social media sites

Blogger 44
Delicious 44
Digg 44
Flickr 44
LinkedIn 44
Squidoo 44
StumbleUpon 44
Tip’d 44
Wordpress 44
YouTube 44

social networking 17, 44
social news 44
Software Development Kit

(SDK) xxxv
sort an NSMutableArray 91
sortUsingSelector: method

of class NSMutableArray 99
sound 132
source code 2

Download from <www.wowebook.com>

ptg

Index 403

source-code listing 2
sourceType property of class

UIImagePickerController

271, 295
speaker 4
speech recognition xxxi
speech synthesis xxxi
Spotlight 9
Spot-On Game app xxx, 10, 12,

20
Squidoo 44
srandom library method 111
stackoverflow.com/ques-

tions/740127/how-was-

your-iphone-developer-

experience 48
standardUserDefaults meth-

od 137
startUpdatingHeading meth-

od of class CLLocationMan-
ager 235

startUpdatingLocation meth-
od of class CLLocationMan-
ager 235

static global variable 110
static keyword

local variable 79
Static method 73
staticly typed object 73
status bar 259
StepStone 9
Stocks 5
stopUpdatingHeading method

of class CLLocationManager
234

stopUpdatingLocation meth-
od of class CLLocationMan-
ager 234, 237

Store Kit 2, 13, 32
Store Kit framework 13, 41, 42
Store Kit Framework Reference 42
Store Kit Programming Guide 42
string format specifier 169
string formatting 80
string literal that begins with @

80
stringByAddingPercentEs-

capesUsingEncoding: meth-
od of class NSString 374

stringByAppendingPathCom-

ponent: method of class NS-
String 94, 298, 332

stringByDeletingLastPath-

Component method of class
NSString 320

stringWithFormat: method of
class NSString 333

struct keywords 158
structure 96, 157, 158
structure members 158
structure tag 158
stucture type 158
StumbleUpon 44
subscription 42
substringWithRange: method

of class NSString 381
subtraction 81
subview 95
subviews property 95
super keyword 92
superview 95
swipe 4, 15
Switch GUI Component 123
Symbian 49
sync 7, 9
syntax shading 2
synthesize a property 111
@synthesize directive 177, 367
@synthesize keyword 111
System 13
System Configuration 13

T
Tab Bar 86
Tab Bar Item 86
tableView:canMoveRowAtIn-

dexPath: method of class
UITableViewController

252
tableView:cellForRowAtIn-

dexPath: method of class
UITableView 249, 293, 300

tableView:cellForRowAtIn-

dexPath: method of protocol
UITableViewDataSource

202, 214, 275, 350, 371

tableView:commitEditing-

Style:forRowAtIndexPath:

method of class
UITableViewController

251
tableView:commitEditing-

Style:forRowAtIndexPath:

method of protocol
UITableViewDataSource

203, 275, 337
tableView:didSelectRowAt-

IndexPath: method of proto-
col UITableViewDelegate
202, 338, 371

tableView:moveAtIndex-

Path:toIndexPath: method
of class UITableViewCon-
troller 252

tableView:moveRowAtIndex-

Path:toIndexPath: of pro-
tocol
UITableViewDataSource

275, 302
tableView:numberOfRowsIn-

Section: method of class
UITableView 213

tableView:numberOfRowsIn-

Section: method of class
UITableViewController

248
tableView:numberOfRowsIn-

Section: method of protocol
UITableViewDataSource

201, 274, 350, 370
tableView:numberOfRowsIn-

Section: of class
UITableViewDataSource

210
tableView:titleForHeader-

InSection: method of proto-
col UITableViewDataSource
210

tag property of class UIView
337

tap 4, 15
tapCount property of class

UITouch 171
Tapjoy 37, 48
Team Admin 25, 26, 34
Team Agent 25, 29

Download from <www.wowebook.com>

ptg

404 Index

Team Member 25, 26
template 54
Template Method design pat-

tern 11, 79
testing xxxv
Text Field 66, 87, 285
textField:should-

ChangeCharactersIn-

Range:replacementString:

method of protocol UIText-
FieldDelegate 325

textFieldDidBeginEditing:

of protocol UITextFieldDel-
egate 215

textFieldDidEndEditing: of
protocol UITextFieldDele-
gate 215

textLabel method of class
UITableViewCell 350

The App Podcast app review site
46

theapppodcast.com/ 46
time library function 111
timeIntervalSinceNow meth-

od of class NSDate 235
Tip Calculator app xxx, 10, 11, 15
Tip’d 44
tipd.com/ 44
title property of class UIBut-

ton 234
Toolbar 86
touch and hold 4, 15
touch handling 132
Touch Up Inside event 92
touchesBegan method of class

UIView 132
touchesBegan:withEvent:

method of class UIResponder
139

touchesBegan:withEvent: of
class UIResponder 182

touchesEnded:withEvent: of
class UIResponder 183

transform property of class MK-
MapView 237

trueHeading property of class
CLHeading 237

TV shows 9
tweet 45

Twitter xxxi, xxxiii, 17, 45, 49,
100
@deitel 386
hashtag 45
tweet 45

Twitter app xxx
Twitter Discount Airfares app 13
Twitter search 84

operators 84
typedef keyword 282
typedef specifier 158

U
UDID (Unique Device Identifi-

er) 27
UIActionSheet class 245, 267,

299
initWithTitle:dele-

gate:cancelButtonTi-

tle:destructiveButton

Title:otherButtonTi-

tles: method 299
UIActionSheetDelegate proto-

col
actionSheet:clickedBut-

tonAtIndex: 272
UIActivityIndicatorView

class 368
UIAlertView class 118, 353
UIAlertViewDelegate protocol

alertView:clickedBut-

tonAtIndex: 183
UIApplication class 100, 259,

262, 302
networkActivityIndica-

torVisible 374
openURL method 101
setIdleTimerDisabled:

234, 235
setStatusBarHidden:

method 259
setStatusBarHidden:

method 262
sharedApplication meth-

od 259
UIApplicationDelegate

protocol 302
UIBarButtonItem class 198,

245, 247, 267, 334, 347, 369
initWithCustomView: 369

UIBarButtonSystemItemAc-

tion 347
UIButton class 97, 253, 315

title property 234
UIColor class 174, 188, 226

clearColor method 226
UIControl class

addTarget:action:for-

ControlEvents: 216
UIControlTouchUpInside 98
UIGraphicsGetCurrentCon-

text function 168
UIGraphicsGetCurrentCon-

text function of CGContext
Reference 327

UIGraphicsGetCurrentCon-

text function of the UIKit
framework 227

UIImage class 132, 169, 249,
258, 288, 294, 296, 305

UIImagePickerController

class 245, 267, 270, 282, 295
allowsImageEditing 270
allowsImageEditing prop-

erty 295
availableMediaTypesFor-

SourceType method 295
mediaTypes property 282,

295
sourceType 271
sourceType property 295

UIImagePickerCon-

trollerDelegate protocol
imagePickerCon-

troller:didFinish-

PickingImage:editingI

nfo: 271
UIImagePickerControllerEd-

itedImage 296
UIImagePickerControllerMe-

diaURL 297
UIImagePickerController-

SourceTypePhotoLibrary

295
UIImagePNGRepresentation

function 291
UIImageView class 53, 59, 132,

257, 259, 262, 305
alpha property 260
image property 132, 141

Download from <www.wowebook.com>

ptg

Index 405

UIImageView class (cont.)
removeFromSuperView

method 261, 262
UIKeyboardType 197
UIKit 11
UIKit framework 56
UIKit header file 72
UILabel class 53, 350
UIMapView class

setRegion: method 237
UIModalTransitionStyle-

CrossDissolve 321
UIModalTransitionStyle-

FlipHorizontalUIModal-

TransitionStyle 121
UINavigationController class

245, 247, 248, 251, 259, 293,
359
pushViewController:

animated: method 202,
248, 251, 259, 293, 359

setNavigationBarHidden:

animated: method 247
viewController property

302
UINavigationItem class 247,

349, 352
backBarButtonItem proper-

ty 198
leftBarButtonItem proper-

ty 352
setBackBarButtonItem:

method 247
setRightBarButtonItem:

method 347
setTitle: method 246, 349

UIResponder class
canBecomeFirstResponder

183
motionEnded:withEvent:

183
resignFirstResponder 218
touchesBegan:withEvent:

182
touchesEnded:withEvent:

139, 183
UIScrollView 88
UISegmentedControl class

selectedSegmentIndex

property 235

UISlider class 190
setValue: method 190
setValue:animated: meth-

od 333
value property 190

UITable ViewCell class
customized 371

UITableView class 196, 197,
201, 202, 247, 248, 249, 293,
296, 332, 350, 351, 355, 366
dataSource 201
deleteRowsAtIndex-

Paths:withRowAnima-

tion: method 203, 338
dequeueReusableCell-

WithIdentifier:

method 202, 210, 214,
249, 293, 358

indexPathForCell: meth-
od 208, 293

insertRowsAtIndexPaths

method 355
reloadData method 247,

355
scrollToRowAtIndex-

Path:atScrollPosi-

tion:animated: 208
tableView:cellForRowAt-

IndexPath: method 249,
293, 300

tableView:numberOfRow-

sInSection: method 213
UITableViewCallSelection-

StyleNone 249, 293
UITableViewCell class 197,

202, 210, 214, 249, 252, 293,
300, 350, 358, 366
accessoryView property 337
initWithStyle:reuse-

Identifier: method
202, 384

selectionStyle property
249, 293

textLabel method 350
UITableViewCellEditing-

Style class 203
UITableViewController class

198, 246
numberOfSectionsIn-

TableView: method 248

UITableViewController class
(cont.)
tableView:canMoveRowAt-

IndexPath: method 252
tableView:commitEdit-

ingStyle:forRowAtIn-

dexPath: method 251
tableView:moveAtIndex-

Path:toIndexPath:

method 252
tableView:numberOfRow-

sInSection: method 248
UITableViewDataSource proto-

col 201, 205, 212, 328, 346
numberOfSectionsIn-

TableView: 210
tableView:cellForRowAt-

IndexPath: method 202,
214, 275, 350, 371

tableView:commitEdit-

ingStyle:forRowAtIn-

dexPath: method 203,
275, 337

tableView:moveRowAtIn-

dexPath:toIndexPath:

275, 302
tableView:numberOfRows-

InSection: method 201,
210, 274, 350, 370

tableView:titleForHea-

derInSection: 210
UITableViewDelegate class

tableView:didSelectRow-

AtIndexPath: 202, 371
UITableViewDelegate proto-

col 201, 328
tableView:didSelectRo-

wAtIndexPath: method
338

UITextField class 216, 286,
322, 324
becomeFirstResponder

method 286, 324
UITextFieldDelegate class

textFieldDidBeginEdit-

ing: 215
textFieldDidEndEditing:

215
UITextFieldDelegate proto-

col 215, 322, 325

Download from <www.wowebook.com>

ptg

406 Index

UITextFieldDelegate proto-
col (cont.)
textField:should-

ChangeCharactersIn-

Range:replacementStri

ng: method 325
UIToolbar class 245, 267
UITouch class 132, 140, 182

tapCount property 171
UIView class 178, 187, 190, 198,

225, 233, 257, 258, 262, 325
addSubView: method 233
autoresizingMask proper-

ty 258
backgroundColor 190
backgroundColor property

191, 226
beginAnimation:withCon-

text: method 138
beginAnimations:con-

text: 208
beginAnimations:con-

text: method 190
CGImage property 169
commitAnimations 208
commitAnimations method

138, 190
contentView property 254
drawRect: 227
frame property 257
initWithCoder: method

177
layer property 141, 145
loadView method 257
locationInView: method

141
removeFromSuperView

method 112, 145
setAnimationCurve: meth-

od 139, 208
setAnimationDidStopSe-

lector: method 139,
144

setAnimationDuration:

method 139, 190, 208
setNeedsDisplay method

165, 178, 230
setNeedsDisplayInRect:

182

UIView class (cont.)
tag property 337
touchesBegan method 132
viewDidAppear method 190
viewDidLoad method 134

UIViewController class 111,
198, 200, 264, 292, 296, 315,
322, 346
becomeFirstResponder

method 185
dismissModalViewCon-

trollerAnimated: meth-
od 120, 200, 248, 292,
296

editButtonItem property
247

initWithNibName:bundle:

method 207
modalTransitionStyle

property 121, 186
navigationController

property 197
navigationItem property

198, 246
presentModalViewCon-

troller:animated:

method 200, 248, 317
resignFirstResponder

method 185
shouldAutorotateToInt-

erfaceOrientation:

method 204, 262
viewDidAppear: method

184, 269
viewDidDisappear: meth-

od 184
viewDidLoad method 198,

286, 291, 324, 347
viewWillAppear: method

247
viewWillDisappear: meth-

od 269
UIWebView class 366, 371
UIWebViewDelegate protocol

webViewDidFinishLoad:

373
unarchiveObjectWithFile:

method of class NSKeyed-
Unarchiver 292

unarchiving 282

Unique Device Identifier
(UDID) 27

unlock the iPhone 4
updateMeters method of class

AVAudioRecorder 321
upload finished apps xxxv
URL encode a string 374
URLWithString: method of

class NSURL 338
utilities 35
Utility Application template 107,

109, 120, 123, 175

V
value property of class UISlid-

er 190
valueForKey 97
valueForKey: method of class

NSDictionary 296
valueForKey: method of class

NSUserDefault 137
valueWithBytes:objCType: of

class NSValue 177
valueWithPointer: of class NS-

Value 182
video xxxi, 4, 6
video sharing 17, 44
View 18, 86
view (in MVC) 71
view controller 106
viewController property of

class UINavigationCon-
troller 302

viewDidAppear method of class
UIView 190

viewDidAppear: of class
UIViewController 184, 269

viewDidDisappear: of class
UIViewController 184

viewDidLoad method of class
UIView 134

viewDidLoad method of class
UIViewController 198, 286,
291, 324, 347, 352

viewWillAppear: method of
class UIViewController 247

viewWillDisappear: of class
UIViewController 269

viral marketing 44
virtual goods 41, 47

Download from <www.wowebook.com>

ptg

Index 407

virtual world 17
visible peer 346, 351
vision impaired 7
Viximo 41
voice controls 9
Voice Memos 9
Voice Memos 5
Voice Recorder app xxx
VoiceOver 7
Volume buttons 4
volume property of class AVAu-

dioPlayer 332

W
Weather 5
Web 2.0 17
web services xxxi, 13, 226
webOS 49
webViewDidFinishLoad: of

protocol UIWebViewDelegate
373

Welcome app xxx, 11, 14, 15
Welcome to Xcode window 53
What’s on iPhone app review

site 45
Wi-Fi 9
Wikipedia 17
Window-based Application tem-

plate 54, 56, 66, 86, 225
Windows xxxv
Windows Mobile 49
word-of-mouth marketing 44
Wordpress 44
Wozniak, Steve 9
writeToFile:atomically:

method of class NSDiction-
ary 98

writeToFile:atomically:

method of class NSMutable-
Dictionary 200

WWDR intermediate certificate
27, 29

www.148apps.com/ 46
www.admob.com/ 37
www.adwhirl.com/ 47
www.appcraver.com/ 46
www.apple.com/downloads/

macosx/

development_tools/

iphonesdk.html xxxv

www.apple.com/iphone/apps-

for-iphone/ 8
www.apple.com/iphone/

iphone-3gs/

accessibility.html 7
www.apple.com/iphone/

softwareupdate/ 8
www.appleiphoneschool.com/

46
www.appletell.com/apple/

tag/iphone+app+reviews/

46
www.apptism.com/ 46
www.appvee.com/ 46
www.bing.com/developers 49
www.bis.doc.gov/licensing/

exportingbasics.htm 38
www.blogger.com 44
www.clickpress.com 46
www.craigslist.org 13
www.deitel.com xxxvi, 22
www.deitel.com/books/

iPhoneFP/ (iPhone for
Programmers website) xxix,

www.deitel.com/books/

iPhonefp/ (iPhone for
Programmers website) xxxii,
xxxiii

www.deitel.com/Cocoa/

(Cocoa Resource Center)
xxxii

www.deitel.com/deitelfan/

(Deitel Facebook Page) xxxiii
www.deitel.com/internetpr/

46
www.deitel.com/iPhone/

(iPhone Resource Center)
xxxii, xxxv, xxxvi, 2

www.deitel.com/newsletter/

subscribe.htm (Deitel Buzz
Online newsletter) xxxiii,
xxxvi

www.deitel.com/ObjectiveC/

(Objective-C Resource
Center) xxxii

www.deitel.com/

ResourceCenters.html

(Deitel Resource Centers)
xxxii

www.deitel.com/training 386

www.delicious.com 44
www.digg.com 44
www.facebook.com 44
www.flickr.com 44
www.freshapps.com/ 46
www.google.com/mobile/

#p=android 49
www.housingmaps.com 13
www.i-newswire.com/ 47
www.internetnewsbureau.com

/ 47
www.iphoneappreviews.net/

45
www.iphonebuzz.com/

category/apple-iphone-

humor 49
www.khronos.org/opengles 54
www.linkedin.com 44
www.linkedin.com/

static?key=developers_wi

dgets&trk=hb_ft_widgets

50
www.macworld.com/appguide/

index.html 46
www.marketwire.com 46
www.myspace.com 44
www.openpr.com 47
www.orkut.com 44
www.press-release-

writing.com/ 47
www.prleap.com/ 46
www.prlog.org/pub/ 47
www.prweb.com 46
www.prxbuilder.com/x2/ 47
www.squidoo.com 44
www.stumbleupon.com 44
www.techcrunch.com/2009/02/

15/experiences-of-a-

newbie-iphone-developer/

48
www.touchtip.com/iphone-

and-ipod-touch/worlds-

youngest-iphone-

developer/ 48
www.twitter.com 44
www.whatsoniphone.com/ 45
www.wired.com/gadgets/

wireless/magazine/16-02/

ff_iphone?currentPage=al

l 48

Download from <www.wowebook.com>

ptg

408 Index

www.wordpress.com 44
www.youtube.com 44

X
Xcode xxix, xxxv, 2, 10, 14, 18,

34
Build and Debug button 18
Build and Run button 18

Xcode Groups
Classes 55, 71
Project Structure 55
Resources 55, 58

Xcode toolbar 54
Xcode toolset xxxv
Xcode Windows

Groups and Files 71, 108,
109, 122

Groups and Files window 55
Inspector 61, 73, 87, 91, 122
Library 59, 67, 87, 91, 122
Welcome to Xcode 53

Xerox PARC (Palo Alto Re-
search Center) 9

.xib 56

Y
Yahoo 49
Yellow Box API 11
YouTube 6, 9, 17, 44
YouTube app 5

Z
zoom 4
zoomEnabled property of class

MKMapView 234

Download from <www.wowebook.com>

	iPhone® for Programmers: An App-Driven Approach
	Contents
	Illustrations
	Preface
	Before You Begin
	1 Introduction to iPhone App Development
	1.1 Introduction to iPhone for Programmers
	1.2 iPhone Overview
	1.3 Key New iPhone 3GS and OS 3.x Features and Enhancements
	1.4 Downloading Apps from the App Store
	1.5 iPhone OS 3.x
	1.6 Objective-C Programming Language
	1.7 Design Patterns
	1.8 Cocoa Frameworks
	1.9 New iPhone SDK 3 Features
	1.10 Xcode Toolset
	1.11 Basics of Object Technology
	1.12 Web 2.0
	1.13 Test-Driving the Painter App in the iPhone Simulator
	1.14 Wrap-Up
	1.15 Deitel Resource Centers

	2 iPhone App Store and App Business Issues
	2.1 Introduction
	2.2 iPhone Developer Program: Setting Up Your Profile for Testing and Submitting Apps
	2.2.1 Setting Up Your iPhone Development Team
	2.2.2 Getting an iPhone Development Certificate
	2.2.3 Registering Devices for Testing
	2.2.4 Creating App IDs
	2.2.5 Creating a Provisioning Profile
	2.2.6 Using the Provisioning Profile to Install an App on an iPhone or iPod Touch
	2.2.7 Submitting Your App for Distribution

	2.3 iPhone Human Interface Guidelines
	2.4 Testing Your App
	2.5 Preparing Your App for Submission through iTunes Connect
	2.6 Characteristics of Great iPhone Apps
	2.7 Avoiding Rejection of Your App
	2.8 Pricing Your App: Free or Fee
	2.9 Adding an App to iTunes Connect
	2.10 Monetizing Paid Apps: Using In App Purchase to Sell Virtual Goods
	2.11 Using iTunes Connect to Manage Your Apps
	2.12 Marketing Your App
	2.13 iPhone Anecdotes and Humor
	2.14 Other Platforms
	2.15 iPhone Developer Documentation
	2.16 Wrap-Up

	3 Welcome App: Dive-Into® Xcode, Cocoa and Interface Builder
	3.1 Introduction
	3.2 Overview of the Technologies
	3.3 Xcode 3.x IDE and Cocoa
	3.4 Building the Application
	3.5 Building the GUI with Interface Builder
	3.6 Running the Welcome App
	3.7 Wrap-Up

	4 Tip Calculator App: Introducing Objective-C Programming
	4.1 Introduction
	4.2 Test-Driving the Tip Calculator App
	4.3 Overview of the Technologies
	4.4 Building the App
	4.5 Adding Functionality to Your App
	4.6 Connecting Objects in Interface Builder
	4.7 Implementing the Class's Methods
	4.8 Wrap-Up

	5 Favorite Twitter® Searches App: Collections and Cocoa GUI Programming
	5.1 Introduction
	5.2 Test-Driving the Favorite Twitter Searches App
	5.3 Technologies Overview
	5.4 Building the App
	5.5 Wrap-Up

	6 Flag Quiz Game App: Controllers and the Utility Application Template
	6.1 Introduction
	6.2 Test-Driving the Flag Quiz Game App
	6.3 Technologies Overview
	6.4 Building the App
	6.4.1 The MainView and Class MainViewController
	6.4.2 The FlipsideView and Class FlipsideViewController

	6.5 Wrap-Up

	7 Spot-On Game App: Using UIView and Detecting Touches
	7.1 Introduction
	7.2 Test-Driving the Spot-On Game App
	7.3 Overview of the Technologies
	7.4 Building the App
	7.5 Wrap-Up

	8 Cannon Game App: Animation with NSTimer and Handling Drag Events
	8.1 Introduction
	8.2 Test-Driving the Cannon Game app
	8.3 Overview of the Technologies
	8.4 Building the App
	8.5 Wrap-Up

	9 Painter App: Using Controls with a UIView
	9.1 Introduction
	9.2 Overview of the Technologies
	9.3 Building the App
	9.4 Wrap-Up

	10 Address Book App: Tables and UINavigationController
	10.1 Introduction
	10.2 Test-Driving the Address Book App
	10.3 Technologies Overview
	10.4 Building the App
	10.4.1 Class RootViewController
	10.4.2 Class AddViewController
	10.4.3 Class ContactViewController
	10.4.4 Class EditableCell

	10.5 Wrap-Up

	11 Route Tracker App: Map Kit and Core Location (GPS and Compass)
	11.1 Introduction
	11.2 Test-Driving the Route Tracker App
	11.3 Technologies Overview
	11.4 Building the App
	11.4.1 Class TrackingMapView
	11.4.2 Class Controller

	11.5 Wrap-Up

	12 Slideshow App: Photos and iPod Library Access
	12.1 Introduction
	12.2 Test-Driving the Slideshow App
	12.3 Technologies Overview
	12.4 Building the App
	12.4.1 Class RootViewController
	12.4.2 Class SlideshowViewController
	12.4.3 Class NameViewController
	12.4.4 Class SlideshowDataViewController

	12.5 Wrap-Up

	13 Enhanced Slideshow App: Serialization Data with NSCoder and Playing Video
	13.1 Introduction
	13.2 Test-Driving the Enhanced Slideshow App
	13.3 Overview of the Technologies
	13.4 Building the App
	13.4.1 Class MediaItem
	13.4.2 Class Slideshow
	13.4.3 Class RootViewController
	13.4.4 Class SlideshowDataViewController
	13.4.5 Class EnhancedSlideshowAppDelegate
	13.4.6 Class SlideshowViewController

	13.5 Suggested Enhancements
	13.6 Wrap-Up

	14 Voice Recorder App: Audio Recording and Playback
	14.1 Introduction
	14.2 Test-Driving the Voice Recorder App
	14.3 Overview of the Technologies
	14.4 Building the App
	14.4.1 Class VoiceRecorderViewController
	14.4.2 Class NameRecordingViewController
	14.4.3 Class Visualizer
	14.4.4 Class PlaybackViewController

	14.5 Speech Synthesis and Recognition
	14.6 Wrap-Up

	15 Enhanced Address Book App: Managing and Transferring Persistent Data
	15.1 Introduction
	15.2 Test-Driving the Enhanced Address Book App
	15.3 Technologies Overview
	15.4 Building the App
	15.4.1 Building the Core Data Model
	15.4.2 Class ContactViewController
	15.4.3 Class RootViewController

	15.5 Wrap-Up

	16 Twitter® Discount Airfares App: Internet Enabled Applications
	16.1 Introduction
	16.2 Test-Driving the Twitter Discount Airfares App
	16.3 Technologies Overview
	16.4 Building the App
	16.5 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

