
iPhone OS Programming Guide

2008-07-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon,
Cocoa, Cover Flow, Dashcode, iPod, iTunes,
Keychain, Mac, Mac OS, Macintosh, New
York, Objective-C, Pages, Quartz, Safari,
Sand, WebObjects, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder, iPhone, and Multi-Touch are
trademarks of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction 13

Who Should Read This Document? 14
Organization of This Document 14
Providing Feedback 15
See Also 15

Chapter 1 iPhone OS Overview 17

iPhone OS Feature Summary 17
Development Tools 19
About iPhone Development 19

Application Styles 20
Application Basics 23
The Multi-Touch Interface 25
Windows and Drawing 26
Key Integration Features 28

Before You Go Any Further 31

Chapter 2 iPhone OS Technologies 33

Cocoa Touch 33
Media 34

Graphics Technologies 34
Core Audio 35
OpenAL 36
Video Technologies 36

Core Services 37
Address Book 37
Core Foundation 37
Core Location 38
CFNetwork 38
Security 38
SQLite 39
XML Support 39

Core OS 39

3
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

Chapter 3 Development Environment 41

The Development Process 41
Creating Your Project and Writing Code 42

Beginnings 43
Using Code Completion 48
Using API Reference Lookup 49
Accessing Documentation 51
Setting Your Application’s Icon 52
Building and Running Your Application 52

Working with the iPhone Simulator 53
Building Your Application for the iPhone Simulator 53
Running Your Application on the Simulator 53
Capabilities of the iPhone Simulator 55

Working with a Device 55
Preparing Devices for Development 55
Building Your Application for a Device 60
Running Your Application on a Device 60
Using the Organizer 60
Backing Up Your Digital Identifications 62

Debugging Your Code and Measuring Performance 63
Debugging with Xcode 63
Tuning Application Performance 65

Conditional Linking to System Frameworks 66
Managing Application Data 67

Chapter 4 Application Design Guidelines 69

The Runtime Environment 69
Fast Launch, Short Use 70
The Virtual Memory System 70

Managing Your Memory Usage 70
Reducing Your Application’s Memory Footprint 71
Allocating Memory Wisely 71
Observing Low-Memory Notifications 72

Performance and Responsiveness 73
Using Memory Efficiently 73
Improving Drawing Performance 73
Reducing Power Consumption 74
Tuning Your Code 74

Security 74
The Application Sandbox 74
Using the Available Security Technologies 75

File and Data Management 76
Application Directory Structure 76
Backup and Restore 77

4
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Getting Paths to Application Directories 78
Reading and Writing File Data 79
File Access Guidelines 83
Saving State Information 83
Case Sensitivity 84

Networking 84
User Interface Design Considerations 84

Chapter 5 The Application Environment 87

Core Application Architecture 87
The Event and Drawing Cycle 87
The Application Life Cycle 90
Application Interruptions 92

The Application Bundle 93
Application Configuration 95

The Information Property List 95
Custom URL Schemes and Interapplication Communication 98
Application Icon and Launch Images 102
The Settings Bundle 102

Launching in Landscape Mode 102
Internationalizing Applications 105

Chapter 6 Windows and Views 109

What Are Windows and Views? 109
The Role of UIWindow 109
The Role of UIView 110
UIKit View Classes 111
The Role of View Controllers 114

View Architecture and Geometry 114
The View Interaction Model 114
The View Rendering Architecture 117
View Coordinate Systems 119
The Relationship of the Frame, Bounds, and Center 120
Coordinate System Transformations 121
Content Modes and Scaling 122
Autoresizing Behaviors 124

Creating and Managing the View Hierarchy 125
Creating a View Object 127
Adding and Removing Subviews 127
Converting Coordinates in the View Hierarchy 129
Tagging Views 130

Modifying Views at Runtime 131
Animating Views 131
Responding to Layout Changes 133

5
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Redrawing Your View’s Content 134
Hiding Views 134

Creating a Custom View 134
Initializing Your Custom View 135
Drawing Your View’s Content 135
Responding to Events 136
Cleaning Up After Your View 137

Chapter 7 Event Handling 139

Events and Touches 140
Event Delivery 141

Responder Objects and the Responder Chain 141
Regulating Event Delivery 142

Handling Multi-Touch Events 143
The Event-Handling Methods 143
Handling Single and Multiple Tap Gestures 144
Detecting Swipe Gestures 146
Handling a Complex Multi-Touch Sequence 147
Event-Handling Techniques 148

Chapter 8 Graphics and Drawing 151

Quartz Concepts and Terminology 151
The View Drawing Cycle 152
The Native Coordinate System 152
Graphics Contexts 153
Points Versus Pixels 154
Color and Color Spaces 155
Supported Image Formats 155

Drawing Tips 156
Deciding When to Use Custom Drawing Code 156
Improving Drawing Performance 156
Maintaining Image Quality 157

Drawing with Quartz and UIKit 157
Configuring the Graphics Context 158
Creating and Drawing Images 160
Creating and Drawing Paths 161
Drawing Text 161
Creating Patterns, Gradients, and Shadings 161

Drawing with OpenGL ES 162
Setting Up a Rendering Surface 162
Best Practices 164
Implementation Details 166
For More Information 169

Applying Core Animation Effects 170

6
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

About Layers 170
About Animations 171

Chapter 9 Audio and Video Technologies 173

Using Sound in iPhone OS 173
Audio Sessions 174
Playing Short Sounds Using System Sound Services 174
Playing Sounds with Control Using Audio Queue Services 176
Playing Sounds with Positioning Using OpenAL 179
Recording Audio 179
Parsing Streamed Audio 180
Mixing and Processing Sounds 180
Audio Unit Support in iPhone OS 181
Triggering Vibration 181
Tips for Manipulating Audio 181
Preferred Audio Formats in iPhone OS 182

Playing Video Files 183

Chapter 10 Device Features 185

Accessing Accelerometer Events 185
Choosing an Appropriate Update Interval 186
Isolating the Gravity Component From Acceleration Data 187
Isolating Instantaneous Motion From Acceleration Data 187
Getting the Current Device Orientation 188

Getting the User’s Current Location 188
Taking Pictures with the Camera 190
Picking a Photo from the Photo Library 192

Chapter 11 Application Preferences 193

Guidelines for Preferences 193
The Preferences Interface 194
The Settings Bundle 195

The Settings Page File Format 196
Hierarchical Preferences 197
Localized Resources 198

Adding the Settings Bundle to Your Application 198
Editing Settings Pages 199
Creating Settings Page Files 203

Accessing Your Preferences 204
Debugging Preferences for Simulated Applications 205

7
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Appendix A Apple Applications URL Schemes 207

Mail Links 207
Phone Links 208
Map Links 209
YouTube Links 210
iTunes Links 210

Document Revision History 211

8
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures, Tables, and Listings

Chapter 1 iPhone OS Overview 17

Figure 1-1 A productivity application 21
Figure 1-2 A utility application 22
Figure 1-3 A full-screen media player application 22
Figure 1-4 The model-view-controller design pattern 25
Figure 1-5 Using touch events to detect gestures 26
Figure 1-6 Measuring the force of gravity using the accelerometers 28
Figure 1-7 Accessing the user’s contacts 29
Figure 1-8 Accessing the built-in camera 30

Chapter 2 iPhone OS Technologies 33

Figure 2-1 Layers of iPhone OS 33
Table 2-1 2D and 3D graphics technologies 35
Table 2-2 Core Audio frameworks 35

Chapter 3 Development Environment 41

Figure 3-1 Project window 45
Figure 3-2 Text editor in a window 46
Figure 3-3 Using code completion 48
Figure 3-4 Viewing API reference in the Documentation window 49
Figure 3-5 Viewing API reference in the Research Assistant 50
Figure 3-6 The Documentation window 51
Figure 3-7 Preparing computers and devices for iPhone development 56
Listing 3-1 Method to draw “Hello, World!” on a view 47
Listing 3-2 Conditionalizing code for the iPhone Simulator or a device 54

Chapter 4 Application Design Guidelines 69

Table 4-1 Tips for reducing your application’s memory footprint 71
Table 4-2 Tips for allocating memory 72
Table 4-3 Directories of an iPhone application 76
Table 4-4 Environment variables for the application sandbox 77
Listing 4-1 Getting a file-system path to the application’s Documents/ directory 78
Listing 4-2 Converting a property-list object to an NSData object and writing it to storage

80

9
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

Listing 4-3 Reading a property-list object from the application’s Documents directory
80

Listing 4-4 Writing data to the application’s Documents directory 82
Listing 4-5 Reading data from the application’s Documents directory 82

Chapter 5 The Application Environment 87

Figure 5-1 The event and drawing cycle 88
Figure 5-2 The main event loop 89
Figure 5-3 Application life cycle 91
Figure 5-4 The Properties pane of a target’s Info window 96
Figure 5-5 Information property list editor 97
Figure 5-6 Defining a custom URL scheme in the Info.plist file 100
Figure 5-7 Coordinates used when laying out in landscape mode 104
Figure 5-8 The Language preference view 106
Figure 5-9 The contents of a language-localized subdirectory 106
Table 5-1 A typical application bundle 93
Table 5-2 Important keys in the Info.plist file 97
Table 5-3 Keys and values of the CFBundleURLTypes property 99
Listing 5-1 The main function of an iPhone application 88
Listing 5-2 Handling a URL request based on a custom scheme 101
Listing 5-3 Reorienting a view to landscape mode 104

Chapter 6 Windows and Views 109

Figure 6-1 View class hierarchy 112
Figure 6-2 UIKit interactions with your view objects 115
Figure 6-3 View coordinate system 119
Figure 6-4 Relationship between a view's frame and bounds 120
Figure 6-5 Altering a view's bounds 121
Figure 6-6 View scaled using the scale-to-fill content mode 122
Figure 6-7 Content mode comparisons 123
Figure 6-8 View autoresizing mask constants 125
Figure 6-9 Layered views in the Clock application 126
Figure 6-10 View hierarchy for the Clock application 126
Figure 6-11 Converting values in a rotated view 130
Table 6-1 Autoresizing mask constants 124
Table 6-2 Animatable properties 131
Listing 6-1 Creating a window with views 128
Listing 6-2 Initializing a view subclass 135
Listing 6-3 Drawing method 136
Listing 6-4 Implementing the dealloc method 137

10
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

Chapter 7 Event Handling 139

Figure 7-1 A multi-touch sequence and touch phases 140
Figure 7-2 Relationship of a UIEvent object and its UITouch objects 141
Listing 7-1 Handling a double-tap gesture 145
Listing 7-2 Tracking a swipe gesture in a view 146
Listing 7-3 Handling a complex multi-touch sequence 147

Chapter 8 Graphics and Drawing 151

Figure 8-1 The default coordinate system 153
Table 8-1 Supported image formats 155
Table 8-2 Tips for improving drawing performance 156
Table 8-3 Core graphics functions for modifying graphics state 158
Table 8-4 Usage scenarios for images 160

Chapter 9 Audio and Video Technologies 173

Figure 9-1 Media player interface with transport controls 183
Table 9-1 Supported audio units 181
Table 9-2 Audio tips 182
Listing 9-1 Playing a short sound 175
Listing 9-2 Creating an audio queue object 177
Listing 9-3 Setting playback level directly 178
Listing 9-4 The AudioQueueLevelMeterState structure 178
Listing 9-5 Playing full screen movies. 183

Chapter 10 Device Features 185

Table 10-1 Common update intervals for acceleration events 186
Listing 10-1 Configuring the accelerometer 185
Listing 10-2 Receiving an accelerometer event 186
Listing 10-3 Isolating the effects of gravity from accelerometer data 187
Listing 10-4 Getting the instantaneous portion of movement from accelerometer data 187
Listing 10-5 Initiating and processing location updates 189
Listing 10-6 Displaying the interface for taking pictures 191
Listing 10-7 Delegate methods for the image picker 191

Chapter 11 Application Preferences 193

Figure 11-1 Organizing preferences using child panes 197
Figure 11-2 A root Settings page 200
Table 11-1 Preference element types 194
Table 11-2 Contents of the Settings.bundle directory 195
Table 11-3 Root-level keys of a preferences Settings Page file 196

11
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

Listing 11-1 Accessing preference values in an application 204

Appendix A Apple Applications URL Schemes 207

Table A-1 Supported Google Map parameters 209
Listing A-1 Turning telephone number detection off 208

12
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

iPhone OS comprises the operating system and technologies that you use to run applications natively
on iPhone and iPod touch devices. iPhone OS is a new platform but builds upon the knowledge and
technology that went into the creation of Mac OS X. Because the needs of a mobile device are different
than those of a Macintosh computer, iPhone OS was built with mobile users in mind. iPhone OS
introduces new design concepts and technologies that provide a more intuitive user experience while
also providing the performance and battery life users expect. iPhone OS also incorporates technologies,
such as the Multi-Touch interface, that are simply not present on desktop computers.

The iPhone SDK contains the code, information, and tools you need to develop, test, run, debug, and
tune applications for the iPhone OS platform. The Xcode tools have been updated to support
development for the iPhone OS platform. In addition to providing the basic editing, compilation, and
debugging environment for your code, Xcode also provides the launching point for testing your
applications on an iPhone or iPod touch device. It also lets you run applications in the iPhone simulator,
which mimics the basic iPhone OS environment on your local Macintosh computer.

13
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

Who Should Read This Document?

This document is targeted at developers who are new to the iPhone OS platform and who want to
understand the available technologies and how to use those technologies to build applications.
Although many of the technologies described in this document are also present in Mac OS X, this
document does not assume any familiarity with Mac OS X or its technologies.

iPhone Programming Guide is an essential guide for anyone looking to develop software for iPhone
and iPod touch devices. It provides an overview of the technologies and tools that have an impact
on the development process and provides you with important technical information about how to
build applications for the platform. You should use this document to do the following:

 ■ Orient yourself to the iPhone OS platform

 ■ Learn about iPhone software technologies, why you might want to use them, and when.

 ■ Learn how to create applications and run them in iPhone OS.

 ■ Get tips and guidance on the best ways to design and implement your applications.

Organization of This Document

This document has the following chapters and appendix.

 ■ “iPhone OS Overview” (page 17) provides a conceptual overview of iPhone OS and how you
create applications.

 ■ “iPhone OS Technologies” (page 33) provides an overview of the technologies in iPhone OS and
where you can go to get more information about them.

 ■ “Development Environment” (page 41) provides an overview of Xcode tools and how you use
them to develop applications for iPhone OS.

 ■ “Application Design Guidelines” (page 69) provides guidance to help you design applications
that will run efficiently and be easy for users to understand.

 ■ “The Application Environment” (page 87) contains information about how to use and configure
the UIApplication object, which is at the heart of every iPhone application.

 ■ “Windows and Views” (page 109) describes the iPhone windowing model and shows you how
you use views to organize your user interface.

 ■ “Event Handling” (page 139) describes the iPhone event model and shows you how to handle
Multi-Touch events.

 ■ “Graphics and Drawing” (page 151) describes the graphics architecture of iPhone OS and shows
you how to draw shapes and images and incorporate animations into your content.

 ■ “Audio and Video Technologies” (page 173) shows you how to use the audio and video technologies
available in iPhone OS.

 ■ “Device Features” (page 185) shows you how to integrate features such as location tracking, the
accelerometers, and the built-in camera into your application.

14 Who Should Read This Document?
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

 ■ “Application Preferences” (page 193) shows you how to implement the interface for your
application preferences.

 ■ “Apple Applications URL Schemes” (page 207) provides information about the system-supported
URL schemes that are used to launch other applications.

Providing Feedback

If you have feedback about the documentation, you can provide it using the built-in feedback form
at the bottom of every page.

If you encounter bugs in Apple software or documentation, you are encouraged to report them to
Apple. You can also file enhancement requests to indicate features you would like to see in future
revisions of a product or document. To file bugs or enhancement requests, go to the Bug Reporting
page of the ADC website, which is at the following URL:

http://developer.apple.com/bugreporter/

You must have a valid ADC login name and password to file bugs. You can obtain a login name for
free by following the instructions found on the Bug Reporting page.

See Also

The following documents provide additional information related to iPhone development:

 ■ UIKit Framework Reference provides reference information for the classes discussed in this document.

 ■ Cocoa Fundamentals Guide provides information on the design patterns and practices used by
iPhone applications.

 ■ View Controller Programming Guide for iPhone OS provides information on the use of view controllers
in creating interfaces for iPhone applications.

 ■ iPhone Human Interface Guidelines provides information about how to design the user interface of
an iPhone application.

 ■ The Objective-C 2.0 Programming Language introduces Objective-C and the Objective-C runtime
system, which is the basis of much of the dynamic behavior and extensibility of iPhone OS.

Providing Feedback 15
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

http://developer.apple.com/bugreporter/

16 See Also
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

iPhone OS is the platform used to develop applications for iPhone and iPod touch devices. iPhone
OS complements the existing support for web applications by providing an environment for running
applications natively on a device. The applications you create live side by side with the system
applications, such as the Phone, iPod, Stocks, and Weather applications and are built using most of
the same frameworks. Native applications provide a natural performance advantage over web
applications that can be used to create more advanced applications such as games. They also let you
interact with features that might not be available in a web-based application, such as the accelerometers.

If you are an existing Mac OS X developer, some aspects of iPhone OS should seem very familiar.
Many of the same underlying technologies used to build Mac OS X applications are also used to build
iPhone applications. iPhone OS leverages the maturity of the Mac OS X architecture and framework
stack to provide a reliable and already tested platform for developing applications. Even the newer
frameworks that do not have direct analogs in Mac OS X still borrow from the basic structure and
design methodologies that have already been proven on that platform.

In addition to the platform technologies, the development environment in Mac OS X is based on
another proven technology: the Xcode development tools. Xcode makes it easy to develop and test
your iPhone applications locally, on your Mac OS X development system, and on a device. When you
build an application, you tell Xcode whether you want to build and run that application and run it
on a device or in the iPhone simulator. The simulator mimics most of the iPhone OS environment,
providing a way for you to get your application up and running quickly. Of course, some features
require you to do your testing on a device, but going back and forth between the simulator and device
is easy.

All of the tools and technologies you need to develop applications for iPhone OS are included with
the iPhone SDK.

iPhone OS Feature Summary

The following list is a high-level summary of some of the features available in iPhone OS. Because
the technology stack in iPhone OS is rich, this list does not call out every feature, but instead tries to
call out some of the more specialized features that you might be interested in as an application
developer. For a specific list of frameworks and technologies available in iPhone OS, see “iPhone OS
Technologies” (page 33).

 ■ Infrastructure

 ❏ High-level infrastructure for running your application’s main processing loop

iPhone OS Feature Summary 17
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

 ❏ Support for interface abstractions such as windows and views

 ❏ Support for handling Multi-Touch events

 ❏ Support for security features such as encryption, certificate management, and trust policies

 ❏ Support for internationalizing your software

 ❏ Support for communicating between applications using URL schemes

 ❏ Access to low-level features such as threads, ports, and standard I/O

 ❏ Support for basic data types such as collections

 ■ Media Handling

 ❏ Support for rendering 2D and 3D graphics

 ❏ Support for managing, displaying, and creating images

 ❏ Support for playing back and recording audio

 ❏ Support for playing back full-screen video content

 ❏ Support for game development

 ❏ Support for animating your user interface

 ❏ Support for displaying web-based content from your application’s interface

 ■ Hardware Access

 ❏ Access to the accelerometer data

 ❏ Support for taking pictures with the camera, where available

 ■ Networking

 ❏ Support for BSD sockets and higher-level socket abstractions

 ❏ Support for encrypted network connections

 ❏ Support for resolving DNS hosts

 ❏ Support for Bonjour services

 ❏ Support for registering custom URL schemes

 ■ Data Management

 ❏ User interface elements for organizing and displaying data

 ❏ Access to the user’s contact information

 ❏ Access to the user’s photo library

 ❏ Access to the user’s current location information

 ❏ Support for SQLite databases

 ❏ Support for XML parsing

 ❏ Support for application preferences

18 iPhone OS Feature Summary
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Development Tools

Xcode, Interface Builder, and Instruments are the main tools you use to manage your iPhone source
files, build them, and run them. Xcode is an integrated development environment (IDE) that provides
the main work environment for your project. You use this program daily for writing, compiling,
running, and debugging your code. It has all of the features you would expect in an advanced code
development application and many more. Among the main features are the following:

 ■ A project management system for defining software products

 ■ A code editing environment that includes features such as syntax coloring, code completion, and
symbol indexing

 ■ An advanced documentation window for viewing and searching iPhone OS documentation

 ■ An advanced build system with dependency checking and build rule evaluation

 ■ Integrated source-level debugging using GDB

 ■ Support for running iPhone applications in a simulator or on a device

Interface Builder is a tool you use in conjunction with Xcode to reduce the amount of time it takes
to build and test your application’s user interface. Interface Builder is a graphical application that
you use to assemble your application’s interface visually. From the Interface Builder editing
environment, you drag and drop standard system components (such as views and controls) into a
window, arrange them, and configure their attributes, all in a matter of seconds. The resulting interface
reflects both the visual appearance and the object relationships that will exist in your application at
runtime. All of this information is then saved in a special resource file that you load in your application
when you need that particular interface.

Instruments is an advanced debugging and performance analysis application that you use to gather
information about the runtime behavior of your application once it is built. Instruments lets you run
your application in the simulator or on a device and track the amount of memory you are using, look
for leaks, and find out other information about your application’s activity. You can also compare the
data you gather from several different runs to track your application’s improvement.

For more information about Xcode and the other tools you use to build and run your projects, see
“Development Environment” (page 41).

About iPhone Development

If you typically develop applications for desktop operating systems, such as Mac OS X or Windows,
you may find developing for iPhone OS requires you to rethink your overall design. Many of the
features you might expect to find in a desktop operating system may simply be irrelevant or impractical
in iPhone OS. For example, the text-system facilities in iPhone OS are geared toward the needs of
mobile users, who typically write email or take notes, not generate long reports. The lack of some
features typically present in desktop applications is intentional and has been done to optimize the
experience of working on a mobile device.

More important than the features that are not present are the ones that are. Part of the iPhone user
experience is the ability to interact with iPhone and iPod touch devices in ways that you cannot
interact with desktop applications. The Multi-Touch interface is a revolutionary new way to receive

Development Tools 19
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

events, reporting on each separate finger that touches the screen and making it possible to handle
multifinger gestures and other complex input easily. Built-in hardware features such as the
accelerometers, although present in some desktop systems, are used more extensively in iPhone OS
to track the screen’s current orientation and adjust your content accordingly.

The following sections provide you with a high-level introduction to some of the fundamental design
practices used in iPhone OS. This list is not exhaustive but touches on the practices that may alter the
way you approach your application’s design. And although some of these practices will be familiar
to existing Mac OS X programmers, many will also be new.

Application Styles

Much of the success of iPhone and iPod touch lies in the user experience. The integration of the
hardware with the system software and built-in system applications provides a single, coherent
experience for the user that focuses on the user’s needs in the moment. While on the go, a user does
not want to spend time digging through screen after screen of data looking for information. The user
needs to find the required information quickly and move on to the next task.

The first step in designing your own applications is to decide what style of application you plan to
provide. The application style is the key to determining which types of views and controls you should
use in your interface and how information should be organized. iPhone OS defines three basic styles
for applications:

 ■ Productivity style

 ■ Utility style

 ■ Immersive style

The following sections provide an overview of these styles and the types of content for which they
are suited. For more information about picking the actual controls to use in your interface, see iPhone
Human Interface Guidelines.

Note: Many application styles can also be implemented using HTML and JavaScript and delivered
via the web. Web-based applications can often perform many of the same tasks typically performed
by native applications, even though they may not have access to the exact same set of features. Because
they are often simpler and faster to create, web-based applications should be considered as an option
for development over native applications.

You can create such applications using Dashcode or using your favorite HTML development tools.
For information and guidance about how to create web-based applications, see Safari Web Content
Guide for iPhone OS. For information about using Dashcode to create your web-based applications,
see Dashcode User Guide.

Productivity Applications

In a productivity application, the focus is on the organization and manipulation of detailed
information. Information in productivity applications is usually text-based, but may also be image
based if the content is more visually oriented. To facilitate the navigation of the information,
productivity applications tend to use multiple screens and make use of system controls to handle the
navigation from screen to screen. The Settings application (Figure 1-1) is an example of a productivity
application that uses a hierarchical navigation model to navigate from general to specific preferences.

20 About iPhone Development
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Figure 1-1 A productivity application

General… …Specific

Because the focus in productivity applications is on data and organization, productivity applications
typically rely on system views and controls for their presentation and do little or no custom drawing.
Table views are commonly used in productivity applications, as are text fields, labels, and other
data-oriented views. Productivity applications are also the main clients of navigation bars and toolbars,
which provide the behavior for the primary navigational models.

Utility Applications

Utility applications perform a targeted task that requires relatively little user input. Users open a
utility application to see a quick summary of information or to perform a simple task on a small
number of objects. The interface for a utility application should be a visually appealing and uncluttered
to make it easier to spot the needed information quickly. The Weather application (Figure 1-2) is an
example of a utility application, as is the Stocks application.

About iPhone Development 21
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Figure 1-2 A utility application

The key to designing a utility application is the focused use of appropriate graphics. And although
utility applications should have a pleasing visual appearance, their actual drawing needs should be
minimal. As a result, utility applications can use any of the iPhone drawing technologies (Quartz,
Core Animation, or OpenGL ES) to draw their content.

Immersive Applications

Immersive applications offer a full-screen, visually rich environment that’s focused on the content
and the user’s experience with that content. This style of application is most commonly used for
implementing games and multimedia-centric applications. Because they are graphics oriented,
immersive applications often present custom interfaces, relying less on standard system views and
controls. They also hide the status bar, as shown in Figure 1-3.

Figure 1-3 A full-screen media player application

Games and media rich applications that require frequent screen updates typically use OpenGL ES to
draw content, because it provides good performance for full-screen content at high frame rates. Many
game developers are also familiar with OpenGL for desktop operating systems, so OpenGL ES is
often a good match for those types of developers looking to create games in iPhone OS.

22 About iPhone Development
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Application Basics

If you decide that building a native iPhone application is the right approach for your project, you
should understand the basic concepts that underlie iPhone development. Writing a native iPhone
application is not like writing a Mac OS X application. Although there are similarities between the
two processes, developing for iPhone OS requires a much tighter integration with the overall system.
This integration permeates everything from your basic programming practices to the technologies
you use. The following sections describe some of the ways in which your application interacts with
iPhone OS and how you can organize your application to take advantage of that environment.

The Runtime Environment

The applications you create reside side-by-side with the system applications on the user’s Home
screen. When the user taps your application’s icon, it launches and becomes the visible application,
filling the entire screen with its content. Besides the kernel, the only other programs that run while
your application is running are the background daemons needed to manage critical system behaviors.
When the user presses the Home button or performs an action that would require the launching of
a different application, the system quits your application.

Because most applications are run for very short periods of time, good performance is essential. Your
application should launch and quit quickly, doing as little during those transition times as possible.
Even while your application is running, you should always pay attention to its performance.
Performance is critical if you want users to accept your application and use it regularly. If it takes too
long to launch your application or perform key tasks, the user is going to be less inclined to use it.
Moreover, your application’s workflow and user interface need to be well laid out to make it easier
for the user to find key information quickly.

Although your application typically runs only for short periods of time, you should still make it
appear as though your application never quit. Whenever your application quits, you should save out
any state information you would need to put your application in the same configuration the next
time it launches. This sort of behavior provides consistency for the user and also reduces the amount
of repetitive navigation needed each time your application launches.

For more information about performance and managing state information, see “Application Design
Guidelines” (page 69).

Application Security

Security is an important concern for users, especially on a mobile device. Users store personal files
and contact information on these devices and do not want that information to be used for malicious
purposes. Despite the best efforts of application developers, however, hackers still manage to find
ways to gain control of applications via the network and other means. For this reason, iPhone OS
automatically runs applications in a protected, “sandboxed” environment.

The sandbox environment used by iPhone OS prevents applications from accessing resources outside
of their own domain. For example, the sandbox prevents your application from modifying system
files and the files of other applications. It also prevents your application from connecting to low-number
network ports or any other resources that typically require root-level privileges. Thus, if an attacker
were to compromise your code and attempt to modify any protected resources, the attempts would
simply fail.

About iPhone Development 23
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Even with the sandbox environment in place, you should not be lax in your own security planning.
The presence of a sandbox does not protect your own code from direct attacks by malicious entities.
If you accept input from the user, you should always validate it. If there is an exploitable buffer
overflow in your input-handling code, an attacker might be able to crash your program or use it to
execute the attacker’s code. The sandbox limits the damage an attacker can cause, but does not prevent
such attacks from happening.

Memory Management

iPhone OS is primarily an object-oriented system, so most of the memory you create is in the form of
Objective-C objects. Objects in iPhone OS use a reference-counting scheme to know when it is safe to
free up the memory occupied by the object. When you first create an object, it starts off with a reference
count of 1. Clients receiving that object can opt to retain it, thereby incrementing its reference count
by 1. When a client no longer needs an object, it releases it, thereby decrementing its reference count
by 1. When an object’s reference count equals 0, the system automatically reclaims the memory for
the object.

Note: iPhone OS does not support memory management using the garbage collection feature that is
in Mac OS X v10.5 and later.

If you want to allocate plain blocks of memory—that is, memory not associated with an object—you
can do so using the standard Malloc library of calls. As is the case with any memory you allocate
using malloc, you are responsible for releasing that memory when you are done with it by calling
the free function. The system does not release Malloc-based blocks for you.

Regardless of how you allocate memory, managing your overall memory usage is more important
in iPhone OS than it is on Mac OS X. Although iPhone OS has a virtual memory system, it does not
use a swap file. This means that code pages can be flushed as needed but your application’s data
must all fit into memory at the same time. The system monitors the overall amount of free memory
and does what it can to give your application the memory it needs. If memory usage becomes too
critical though, the system may terminate your application. However, this option is only used as a
last resort to ensure that the system has enough memory to perform critical operations such as receiving
phone calls.

For more information about how to allocate objects in iPhone OS, see Cocoa Fundamentals Guide. For
information and tips on how to improve your application’s memory usage, see “Managing Your
Memory Usage” (page 70).

Application Structure

The structure of iPhone applications is based on the Model-View-Controller (MVC) design pattern
because it benefits object-oriented programs in several ways. MVC–based programs tend to be more
adaptable to changing requirements—in other words, they are more easily extensible than programs
that do not use MVC. Furthermore, the objects in these programs tend to be more reusable and their
interfaces tend to be better defined.

In the MVC design pattern, the model layer consists of objects that represent the data your application
manages. The objects in this layer should be organized in the way that makes the most sense for the
data. External interactions with model objects occur through a well-defined set of interfaces, whose
job is to ensure the integrity of the underlying data at all times.

24 About iPhone Development
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

The view layer defines the presentation format and appearance of the application. This layer consists
of your application’s windows, views, and controls. The views can be standard system views or
custom views you create. You configure these views to display the data from your model objects in
an appropriate way. In addition, your view objects need to generate notifications in response to events
and user interactions with that data.

The controller layer acts as the bridge between the model and view layers. It receives the notifications
generated by the view layer and uses them to make the corresponding changes in the data model.
Similarly, if the data in the data layer changes for other reasons (perhaps because of some internal
computation loop), it notifies an appropriate controller object, which then updates the views. Figure
1-4 shows the basic model-view-controller relationships.

Figure 1-4 The model-view-controller design pattern

ControllerController

ViewView

Update

Update

User action

Notify

ModelModel

The Multi-Touch Interface

The Multi-Touch interface in iPhone OS makes it possible for your application to recognize and
respond to distinct events generated by multiple fingers touching the device. The ability to respond
to multiple fingers offers considerable power but represents a significant departure from the way
traditional mouse-based event-handling systems operate. Handling touch events may require you to
rethink the way users should interact with your application’s data.

As each finger touches the surface of the device, the touch sensor generates a new touch event. While
the finger remains in contact with the device, additional touch events are generated to indicate the
finger’s new position. When the finger loses contact with the device surface, the system delivers a
touch ended event.

While one finger is down and moving around the surface of the device, it is perfectly reasonable for
the user to place another finger on the device and begin moving it. When this happens, the event
system generates another new touch event and delivers it with the original touch event in a single
event object. Each touch event is distinct and continues tracking one of the fingers, relaying information
about that finger’s location and tracking state. Because the events arrive together, you can correlate
them to one another and use them to identify trends. For example, if the events indicate the user is
performing a pinch-close or pinch-open gesture (as shown in Figure 1-5) and the underlying view
supports magnification, you could use those events to change the current zoom level.

About iPhone Development 25
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Figure 1-5 Using touch events to detect gestures

For information about handling touch events in your code, see “Event Handling” (page 139).

Windows and Drawing

iPhone applications use high-quality graphics, instead of large amounts of text, to create a more
pleasant user experience. The presentation of your application’s content is an important part of
distinguishing your application and making it fun to use. It can also be a way to convey useful
information to the user. The following sections describe several key aspects of the visual portion of
your application’s user interface that you need to take into account as you proceed with your design.

The Full-Screen Window

Because only one application is visible at a time, every iPhone application is a full-screen application.
Windows in iPhone OS are not user-resizable, cannot be closed by the user, and do not have a title
bar. Instead, the window simply provides the background on which you present your application’s
content. As a result, your application needs to create only one window that spans the entire screen.
You use that window to present all of your application’s contents, including information that appears
to span multiple screens. When you want to present a new screen of information, you use views, not
windows, to slide that new information into place.

Although your window occupies the entire screen, there are still some options you need to consider
before creating it:

 ■ Does your application display the device’s status bar?

 ■ Which window orientations does your application support?

With the exception of immersive applications, most applications display a status bar. The presence
of the status bar affects how you lay out the contents of your window. You can configure the status
bar to be either totally opaque or partially transparent. For an opaque status bar, you would typically
position your window’s content view so that it is not obscured by the status bar. For a transparent
status bar, however, your content view would fill the entire window.

When it comes to window orientations, applications can support portrait mode, landscape mode, or
both. Supporting both orientations is not required and for most applications is not recommended.
Orientation modes should reflect a way of presenting data that is unique to that orientation. For

26 About iPhone Development
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

example, the iPod application uses portrait mode to display songs and videos hierarchically but uses
landscape mode to display them using Cover Flow. In your own applications, you should support
both orientations only when doing so lets you enhance the user experience.

The Importance of Animation

Animation may seem like eye candy in many situations, but in iPhone OS it plays a very important
role. Animation is used extensively to provide the user with contextual information and immediate
feedback. For example, when the user navigates hierarchical data in a productivity style application,
rather than just replace one screen with another, iPhone applications animate the movement of each
new screen into place. The direction of movement indicates whether the user is moving up or down
in the hierarchy and also provides a visual cue that there is new information to look at.

Because of its importance, support for animation is built-in to the low-level drawing infrastructure
of iPhone OS. All windows and views are backed by Core Animation layers, which provide the basic
drawing surface needed to create animations. In addition, many view-based properties are inherently
animatable—meaning that changing the value of the property generates Core Animation commands
to animate the change. All an application has to do to run these animations is specify the start and
end of the animation block and the rest is handled for you. The infrastructure also means that it is
very easy to augment the built-in animations with explicit animations that you create.

For information about using the built-in view-based animations, see “Animating Views” (page 131).
For more information about Core Animation, see “Applying Core Animation Effects” (page 170).

Update-Based Drawing

Views provide the infrastructure for rendering your application’s custom content to the screen. Views
use an on-demand update model for flushing changes to the screen. Your code can request updates
to all or part of your view in response to user interactions or changes to your application’s data. As
part of its regular housekeeping chores, the application gathers any pending update requests and
delivers them to the appropriate view, coalescing duplicate requests into a single request.

Using the standard system views and controls simplifies the work you have to do by eliminating the
need for you to draw anything at all. If you have custom content you want to draw, however, you
can also define custom view objects and use UIKit and Quartz. UIKit provides high-level interfaces
for performing typical drawing operations such as displaying and animating text, images, views, and
simple rectangles. Quartz provides a vector-based drawing environment that you can use to draw
path-based shapes, gradients, patterns, text, images, and PDFs.

Developers that prefer OpenGL for their drawing must also use views but they use them only to
provide the underlying drawing surface. The EAGL framework provides a bridge between the native
views of UIKit and the drawing surface model used by OpenGL ES. OpenGL ES provides a low-level
but powerful drawing interface that you can use to create custom 2D and 3D content such as the type
found in games and other media-centric applications.

For information about the drawing technologies in iPhone OS and for tips on how to draw your
custom content, see “Graphics and Drawing” (page 151).

About iPhone Development 27
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Key Integration Features

There are many features associated with iPhone and iPod touch that users take for granted. Some of
these features are hardware related, such as the automatic adjustment of views in response to a change
in a device’s orientation. Others are software related, like the fact that all iPhone applications share
a single list of contacts. Because so many of these features are integral to the basic user experience,
you should consider them during your initial design to see how they might fit into your application.

Accelerometers

The accelerometers in iPhone and iPod touch provide valuable input for the system and for your own
custom applications. An accelerometer measures changes in velocity along a single linear axis. Both
iPhone and iPod touch have 3 accelerometers to measure changes along each of the primary axes in
three-dimensional space, which allows you to detect motion in any direction. In addition, because
gravity applies a constant acceleration straight down, the accelerometers can be used to detect the
current orientation of a device, as shown in Figure 1-6.

Figure 1-6 Measuring the force of gravity using the accelerometers

The system uses the accelerometers to monitor a device’s current orientation and to notify applications
when that orientation changes. Each application can decide whether or not it wants to change the
orientation of its interface when these notifications occur. Some applications may look better in either
portrait or landscape mode but not both. Applications like Safari and the iPod use orientation changes
to adjust the way they present their content. For applications that support orientation changes, UIKit
makes handling those changes easier by providing support for automatically adjusting the size and
orientation of your window’s content.

In addition to handling orientation changes, applications that want to access the accelerometer data
directly can also do so using UIKit. Games and other types of applications can use the raw
accelerometer data to detect motion and use it as input. The system delivers accelerometer updates
at regular (and configurable) intervals, making it suitable for use by many types of applications.

For information about using view controllers to handle orientation changes, see View Controller
Programming Guide for iPhone OS. For information about receiving accelerometer events directly, see
“Accessing Accelerometer Events” (page 185).

28 About iPhone Development
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Core Location

iPhone OS–based devices are meant for users on the go. Therefore the software you write should also
take this fact into account. And because the Internet and web make it possible to do business anywhere,
being able to tailor information for the user’s current location can make for a compelling user
experience. After all, why list coffee shops in New York for someone who is thirsty and currently in
Los Angeles? That’s where the Core Location framework can help.

The Core Location framework monitors signals coming from cell phone towers and Wi-Fi hotspots
and uses them to triangulate the user’s current position. Using this framework, you can specify the
desired accuracy of the location information along with the threshold for reporting changes in the
current location. The framework generates an initial position fix for you but thereafter reports updates
only when the desired threshold is exceeded or when a more accurate position fix becomes available.
Of course, receiving continuous updates does require the use of the device’s onboard radios, which
if left on for too long can drain the user’s battery. Therefore, you should always use this framework
judiciously to get the information you need but then turn off location updates when you do not need
them.

For an example showing you how to get location data in your application, see “Getting the User’s
Current Location” (page 188).

Contacts

The user’s list of contacts is an important resource that all system applications share. The Phone, Mail,
and SMS Text applications use it to identify people the user needs to contact and to facilitate basic
interactions such as starting a phone call, email, or text message. Your own applications can access
this list of contacts for similar purposes or to get other information relevant to your application’s
needs.

Figure 1-7 Accessing the user’s contacts

iPhone OS provides both direct access to the user’s contacts and indirect access through a set of
standard picker interfaces. Using the direct access, you can obtain the contact information directly
from the contacts database. You might use this information in cases where you want to present contact

About iPhone Development 29
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

information in a different way or filter it based on application-specific criteria. In cases where you do
not need custom interface, however, iPhone OS also provides the set of standard system interfaces
for picking and creating contacts. Incorporating these interfaces into your applications requires little
effort but makes your application look and feel like it’s part of the system.

You access the user’s contact information using the Address Book and Address Book UI frameworks.
For more information about these frameworks, see Address Book Framework Reference and Address Book
UI Framework Reference.

The Camera and Photo Library

The Camera application on iPhone lets users take new pictures and store them in a centralized photo
library along with the other pictures they upload from their computer. And although the iPod touch
has no camera, it does have a photo library to hold the user’s uploaded pictures. iPhone OS provides
access to both of these features through classes in the UIKit framework.

Figure 1-8 Accessing the built-in camera

Through the camera and photo library support in UIKit, you can incorporate system-provided picker
interfaces into your application. These interfaces provide standard system views for selecting a photo
from the user’s photo library or taking a picture using the camera. When the user dismisses the picker
interface, it returns the selected image back to your application. Because it is the standard picker
interface, it has all the same user controls available in the Camera or Photos applications, including
the ability to edit and crop the selected image. Thus, the behavior of your application stays consistent
with other system-supplied applications.

For information on how to use the picker interface to take pictures and access the user’s photos, see
“Taking Pictures with the Camera” (page 190) and “Picking a Photo from the Photo Library” (page
192).

30 About iPhone Development
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

Before You Go Any Further

The iPhone OS platform use the Objective-C language as the primary language for application
development. Objective-C is an object-oriented language that is a superset of the C language. Although
most of its basic syntax is the same as C, the syntax for working with objects may be new to many C
and C++ developers. Over time, this has also lead to the use of many design patterns that simplify
application development but which may be new to some developers. Understanding these patterns
will make it easier for you to create applications that work with the system frameworks rather than
fight them.

Although you use Objective-C primarily for your interface-related code, you may continue to use
other programming languages for developing other parts of your application. Because it is based on
C, the Objective-C language supports integration with both C and C++ code. You may also use any
libraries that are supported by the Xcode tools and can be linked to your Objective-C code modules.

Information about both the Objective-C language and design patterns can be found in Cocoa
Fundamentals Guide. This one book is a great primer that you can use to get up to speed quickly. After
reading this document, you should have enough information to start exploring the iPhone OS
frameworks and the rest of this document. Of course, if you want additional information about the
Objective-C language, and how you can mix C, C++, and Objective-C source files, read The Objective-C
2.0 Programming Language.

Before You Go Any Further 31
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

32 Before You Go Any Further
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

iPhone OS Overview

The implementation of iPhone OS can be viewed as a set of layers, which are shown in Figure 2-1. At
the lower layers of the system are the fundamental services on which all applications rely, while
higher-level layers contain more sophisticated services and technologies.

Figure 2-1 Layers of iPhone OS

Core OS

Core Services

Media

Cocoa Touch

As you write your code, you should prefer the use of higher-level frameworks over lower-level
frameworks whenever possible. The higher-level frameworks are there to provide object-oriented
abstractions for lower-level constructs. These abstractions generally make it much easier to write code
because they reduce the number of lines of code you have to write and encapsulate potentially complex
features, such as sockets and threads. Although they abstract out lower-level technologies, they do
not mask those technologies from you. The lower-level frameworks are still available for developers
who prefer using them or who want to use aspects of those frameworks that are not exposed at the
higher level.

The following sections provide more detail about what is in each of the exposed layers of iPhone OS,
starting with the topmost layers and working downward.

Cocoa Touch

The Cocoa Touch layer is one of the most important layers in iPhone OS. It comprises the UIKit and
Foundation frameworks (UIKit.framework and Foundation.framework), which provide the basic
tools and infrastructure you need to implement graphical, event-driven applications in iPhone OS.
It also includes several other frameworks that provide key services for accessing device features, such
as the user’s contacts.

Cocoa Touch 33
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

The UIKit framework (UIKit.framework) is an Objective-C framework that provides the key
infrastructure for implementing graphical, event-driven applications in iPhone OS. Every application
in iPhone OS uses this framework to implement this core set of features:

 ■ Application management

 ■ Graphics and windowing support

 ■ Event-handling support

 ■ User interface management

 ■ Objects representing the standard system views and controls

 ■ Support for text and web content

In addition to providing the fundamental code for building your application, UIKit also incorporates
support for some device-specific features, such as the following:

 ■ Accelerometer data

 ■ The built-in camera (where present)

 ■ The user’s photo library

 ■ Device-specific information

For information about the classes of the Foundation and UIKit frameworks, see Foundation Framework
Reference and UIKit Framework Reference.

Media

The graphics and media technologies in iPhone OS are geared toward creating the best multimedia
experience available on a mobile device. More importantly, these technologies were designed to make
it easy for you to build good-looking and -sounding applications quickly. The high-level frameworks
in iPhone OS make it easy to create advanced graphics and animations quickly, while the low-level
frameworks provide you with access to the tools you need to do things exactly the way you want.

Graphics Technologies

High-quality graphics are an important part of all iPhone applications, and iPhone OS provides
several key technologies to do your 2D and 3D drawing. Table 2-1 lists the technologies available for
you to use in iPhone OS.

34 Media
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

Table 2-1 2D and 3D graphics technologies

ServicesFramework

The OpenGL ES framework (OpenGLES.framework) is based on the
OpenGL ES v1.1 specification and provides tools for drawing 2D and 3D
content. It is a C-based framework that works closely with the device
hardware to provide high frame rates for full screen game-style
applications. You always use this framework in conjunction with the
EAGL framework.

For details about the available OpenGL ES support, see “Drawing with
OpenGL ES” (page 162).

OpenGLES.framework

The EAGL framework provides the interface between your OpenGL ES
drawing code and the native window objects of your application.

EAGL.framework

Core Animation (QuartzCore.framework) is an advanced animation
and compositing technology that uses an optimized rendering path to
implement complex animations and visual effects. It provides a high-level,
Objective-C interface for configuring animations and effects that are then
rendered in hardware for performance. Core Animation is integrated
into many parts of iPhone OS, including UIKit classes such as UIView,
providing animations for many standard system behaviors. You can also
use the Objective-C interface in this framework to create custom
animations.

QuartzCore.framework

Quartz (CoreGraphics.framework) is the same advanced, vector-based
drawing engine that is used in Mac OS X for drawing. It provides support
for path-based drawing, anti-aliased rendering, gradients, images, colors,
coordinate-space transformations, and PDF document creation, display,
and parsing. Although the API is C-based, it uses object-based abstractions
to represent fundamental drawing objects, making it easy to store and
reuse your graphics content.

Core-
Graphics.framework

For more information about the available graphics technologies, including examples of how to use
them, see “Graphics and Drawing” (page 151).

Core Audio

Native support for audio is provided by the Core Audio family of frameworks, listed in Table 2-2.
Core Audio is a low-latency C-based interface that supports the manipulation of multichannel audio.
You can use Core Audio in iPhone OS to generate, record, mix, and play audio in your applications.
You can also use Core Audio to access the vibrate capability on devices that support it.

Table 2-2 Core Audio frameworks

ServicesFramework

Provides audio type and file format information.CoreAudio.framework

Media 35
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

ServicesFramework

Provides playback and recording services for audio files and streams.
This framework also provides support for managing audio files and
playing system alert sounds.

AudioToolbox.framework

Provides services for using audio units, which are audio processing
modules.

AudioUnit.framework

For information about using Core Audio to play and record audio, see “Using Sound in iPhone
OS” (page 173).

OpenAL

In addition to Core Audio, iPhone OS includes support for the Open Audio Library (OpenAL). The
OpenAL interface is a cross-platform standard for delivering 3D audio in applications. You can use
it to implement high-performance positional audio in games and other programs that require
high-quality audio output. Because OpenAL is a cross-platform standard, the code modules you write
using OpenAL in iPhone OS can be ported to run on many other platforms.

For information about OpenAL, including how to use it, see http://www.openal.org.

Video Technologies

iPhone OS provides support for full-screen video playback through the Media Player framework
(MediaPlayer.framework). This framework supports the playback of movie files with the .mov, .mp4,
.m4v, and .3gp filename extensions and using the following compression standards:

 ■ H.264 Baseline Profile Level 3.0 video, up to 640 x 480 at 30 fps. Note that B frames are not
supported in the Baseline profile.

 ■ MPEG-4 Part 2 video (Simple Profile)

 ■ Numerous audio formats, including:

 ❏ AAC

 ❏ Apple Lossless (ALAC)

 ❏ A-law

 ❏ IMA/ADPCM (IMA4)

 ❏ linear PCM

 ❏ µ-law

For information on how to use this framework, see “Playing Video Files” (page 183).

36 Media
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

http://www.openal.org

Core Services

The Core Services layer provides the fundamental system services that all applications use. Even if
you do not use these technologies directly, every other technology in the system is built on top of
them.

Address Book

The Address Book framework (AddressBook.framework) provides programmatic access to the
contacts stored on a user’s device. Applications that need access to this information, such as email
and chat programs, can use this framework to access the data stored in contact records directly. Those
programs can use the information internally or provide a custom user interface for displaying that
data. For information about the functions in this framework, see Address Book Framework Reference.

The Address Book UI framework (AddressBookUI.framework) complements the Address Book
framework by providing a graphical interface for accessing the user’s contacts. You use the Objective-C
classes in this framework to present the system standard interfaces for picking existing contacts and
creating new contacts. For information about the classes in this framework, see Address Book UI
Framework Reference.

Core Foundation

The Core Foundation framework (CoreFoundation.framework) is a set of C-based interfaces that
provide basic data management and service features for iPhone applications. This framework includes
support for the following:

 ■ Collection data types (arrays, sets, and so on)

 ■ Bundle support

 ■ String management

 ■ Date and time management

 ■ Raw data block management

 ■ Preferences management

 ■ URL and Stream manipulation

 ■ Thread and run loop support

 ■ Port and socket communication

The Core Foundation framework is closely related to the Foundation framework, which provides
Objective-C interfaces for the same basic features. In situations where you need to mix Foundation
objects and Core Foundation types, you can take advantage of the “toll-free bridging” that exists
between the two frameworks. Toll-free bridging means that you can use some Core Foundation and
Foundation types interchangeably in the methods and functions of either framework. This support
is available for many of the data types, including the collection and string data types. The class and
type descriptions for each framework list whether an object is toll-free bridged and, if so, what object
it is bridged with.

Core Services 37
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

For more information about this framework, see Core Foundation Framework Reference.

Core Location

The Core Location framework (CoreLocation.framework) lets you determine the current latitude
and longitude of a device. The framework uses the available hardware to triangulate the user’s position
based on nearby signal information. The Maps application uses this feature to show the user’s current
position on a map, and you can incorporate this technology into your own applications to provide
position-based information to the user. For example, a service that searched for nearby restaurants,
shops, or facilities could base that search on the user’s current location. For information about how
to use this framework to get the user’s location, see “Getting the User’s Current Location” (page 188).

CFNetwork

The CFNetwork framework (CFNetwork.framework) is a high-performance, C-based framework that
provides a set of object-oriented abstractions for working with network protocols. These abstractions
give you detailed control over the protocol stack and make it easy to use lower-level constructs such
as BSD sockets. You can use this framework to simplify tasks such as communicating with FTP and
HTTP servers or resolving DNS hosts. Here are some of the tasks you can perform with the CFNetwork
framework. You can:

 ■ Use BSD sockets

 ■ Create encrypted connections using SSL or TLS

 ■ Resolve DNS hosts

 ■ Work with HTTP, authenticating HTTP and HTTPS servers

 ■ Work with FTP servers

 ■ Publish, resolve, and browse Bonjour services

CFNetwork is based, both physically and theoretically, on BSD sockets. For information on how to
use CFNetwork, see CFNetwork Programming Guide and CFNetwork Framework Reference.

Security

In addition to its built-in security features, iPhone OS also provides an explicit Security framework
(Security.framework) that you can use to guarantee the security of the data your application manages.
This framework provides interfaces for managing certificates, public and private keys, and trust
policies. It supports the generation of cryptographically secure, pseudo-random numbers. It also
supports the storage of certificates and cryptographic keys in the keychain, which is a secure repository
for sensitive user data.

Note: OpenSSL is not supported for third party development, nor are the libssl or libcrypto
libraries.

For information about the functions and features associated with the Security framework, see Security
Framework Reference.

38 Core Services
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

SQLite

The SQLite library lets you embed a lightweight SQL database into your application without running
a separate remote database server process. From your application, you can create local database files
and manage the tables and records in those files. The library is designed for general purpose use but
is still optimized to provide fast access to database records.

The header file for accessing the SQLite library is located in
<Xcode>/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS2.0.sdk/usr/include/sqlite3.h,
where <Xcode> is the path to your Xcode installation directory. For more information about using
SQLite, go to http://www.sqlite.org.

XML Support

Support for manipulating XML content is provided by the libXML2 and libxslt libraries. These are
open source libraries that you can use to parse or write arbitrary XML data quickly and transform
XML content to HTML.

The header files for accessing the libXML2 library are located in
<Xcode>/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS2.0.sdk/usr/include/libxml2/,
where <Xcode> is the path to your Xcode installation directory. The headers for the libxslt library
are in
<Xcode>/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS2.0.sdk/usr/include/libxslt/.
For more information about using libXML2 and libxslt, go to http://xmlsoft.org/index.html.

Core OS

The Core OS layer encompasses the kernel environment, drivers, and basic interfaces of the operating
system. The kernel itself is based on Mach and is responsible for every aspect of the operating system.
It manages the virtual memory system, threads, file system, network, and inter-process communication.
The drivers at this layer also provide the interface between the available hardware and the system
frameworks that vend hardware features. Access to kernel and drivers is restricted to a limited set of
system frameworks and applications.

iPhone OS provides a set of interfaces for accessing many low-level features of the operating system.
Your application accesses these features through the LibSystem library. The interfaces are C-based
and provide support for the following:

 ■ Threading (POSIX threads)

 ■ Networking (BSD sockets)

 ■ File-system access

 ■ Standard I/O

 ■ Bonjour and DNS services

 ■ Locale information

 ■ Memory allocation

Core OS 39
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

http://www.sqlite.org
http://xmlsoft.org/index.html

 ■ Math computations

For information about the functions available in the LibSystem library, see iPhone OS Manual Pages
in the iPhone Reference Library.

40 Core OS
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

iPhone OS Technologies

To develop compelling iPhone applications you use Xcode, Apple’s premier integrated development
environment (IDE).

In this chapter, you first see an overview of the development process. The rest of the chapter expands
on this process, from using Xcode to develop your code, to testing your iPhone application using the
iPhone Simulator or a device. You also learn how to use the Xcode tools to debug and to fine-tune
your application’s performance.

The Development Process

Xcode is a suite of software development tools used to create iPhone OS and Mac OS X applications.
This suite includes applications, command-line tools, frameworks, and libraries you use to develop
software products. The centerpiece of the suite is the Xcode application, which provides an elegant,
powerful user interface for creating and managing software development projects. You use Xcode to
organize and edit your source files, view documentation, build your application, debug your code,
and optimize your application’s performance.

The iPhone application development process is divided into these major steps:

1. Create your project.

Xcode provides several predefined project templates that get you started. You choose the template
that implements the type of application you want to develop.

2. Design the user interface.

Interface Builder lets you design your application’s user interface graphically and save those
designs as resource files that you load into your program at runtime.

If you do not wish to use Interface Builder, you may layout your user interface programmatically.

3. Write code.

Xcode provides several features that help you to write code fast, including class and data modeling,
code completion, direct access to documentation, refactoring, and more.

4. Build and run your application.

The Development Process 41
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

You build your application on your computer and run it on the iPhone Simulator or your device.

The iPhone Simulator implements the iPhone OS interfaces, providing an environment that closely
resembles the environment devices provide. It allows you to run your applications in Mac OS X,
providing a way to quickly test your application’s functionality without the need for an iPhone
OS–based device. However, running applications in the Simulator is not the same as running
them in actual devices.

First, the Simulator uses Mac OS X versions of the low-level system frameworks instead of the
versions that run on the devices. Secondly, there may be hardware-based functionality that’s
unavailable on the Simulator. But, in general, the Simulator is a great tool to perform initial testing
of your applications.

To compile and debug your code, Xcode relies on open-source tools, such as GCC and GDB.
Xcode also supports team-based development with source control systems, such as Subversion,
CVS, and Perforce.

5. Create your application’s default image.

This is the image displayed while your application loads, after the user taps your application’s
icon. See “Capturing Screenshots” (page 61) for details.

6. Create your application’s Preferences schema files.

Preferences schema files define the interface the Settings application displays when a user of your
application navigates to its root preference page. For more information about defining application
preferences pages, see “Application Preferences” (page 193).

7. Measure and tune application performance.

Instruments is a dynamic performance analysis tool that lets you peer into your code as it’s
running and gather important metrics about what it is doing. You can view and analyze the data
Instruments collects in real time, or you can save that data and analyze it later. You can collect
data about your application’s use of the CPU, memory, the file system, and the network, among
other resources.

Shark is another tool that helps you find performance bottlenecks in your code. It produces profiles
of hardware and software performance events and shows how your code works as a whole and
its interaction with iPhone OS.

With Instruments and Shark, you can find and eliminate performance bottlenecks in your code.

The rest of this chapter takes you through the development process.

Creating Your Project and Writing Code

These sections describe the process of creating an iPhone application project and writing code for it.

42 Creating Your Project and Writing Code
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Beginnings

Xcode provides several iPhone application project templates to get you up and running developing
your application. You can choose from these types of application:

 ■ Navigation-Based Application. An application that uses a navigation controller.

 ■ OpenGL ES Application. An application that uses an OpenGL ES–based view.

 ■ Tab Bar Application. An application that uses a tab bar.

 ■ Utility Application. An application that has a main view and a flipside view.

 ■ View-Based Application. An application that uses a single view.

 ■ Window-Based Application. A starting point for any application, containing an application
delegate and a window.

To create a project, follow these steps:

1. Launch Xcode.

2. Choose File > New Project.

3. Select the Window-Based Application template and click Choose.

4. Name your project and choose a location for it on your file system.

5. Add the MyView class to the project.

Creating Your Project and Writing Code 43
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

a. Choose File > New File.

b. Select the Cocoa Touch UIView subclass template and click Next.

c. In the File Name text field, enter MyView.m.

d. Select the “Also create "MyView.h"” option and click Finish.

6. Select the SDK to use to develop your application.

The Active SDK setting specifies whether Xcode builds your application for a device or the iPhone
Simulator. If you have a development device plugged in at the time you create the project, Xcode
sets the Active SDK setting to build for your device. Otherwise, it sets it to build for the simulator.

To develop an iPhone application, you work on an Xcode project. And you do most of your work on
projects through the project window, which displays and organizes your source files and other
resources needed to build your application. It allows you to access and edit all the pieces of your
project. Figure 3-1 shows the project window.

44 Creating Your Project and Writing Code
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Figure 3-1 Project window

Toolbar

Groups & Files list

Status bar

Detail view

The project window contains the following key controls for navigating your project:

 ■ Groups & Files list. Provides an outline view of your project contents. You can move files and
folders around and organize your project contents in this list. The current selection in the Groups
& Files list controls the contents displayed in the detail view.

 ■ Detail view. Shows the item or items selected in the Groups & Files list. You can browse your
project’s contents in the detail view, search them using the Search field, or sort them according
to column. The detail view helps you rapidly find and access your project’s contents.

 ■ Toolbar. Provides quick access to the most common Xcode commands.

 ■ Status bar. Displays status messages for the project. During an operation—such as building or
indexing—Xcode displays a progress indicator in the status bar to show the progress of the current
task.

 ■ Favorites bar. Lets you store and quickly return to commonly accessed locations in your project.
The favorites bar is not displayed by default. To display the favorites bar use the View > Layout
menu.

The main tool you use to write your code in Xcode is the Xcode text editor, shown in Figure 3-2. You
can also edit files directly in the project window.

Creating Your Project and Writing Code 45
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Figure 3-2 Text editor in a window

Focus ribbon

Folded text

Focus box

This is an advanced text editor that provides several convenient features:

 ■ Header-file lookup. By Command–double-clicking a symbol, you can view the header file that
declares the symbol.

 ■ API reference lookup. By Option–double-clicking a symbol, you get access to API reference that
provides information about the symbol’s usage.

 ■ Code completion. As you type code, you can have the editor help out by inserting text for you
that completes the name of the symbol Xcode thinks you’re going to enter. Xcode does this in an
unobtrusive and overridable manner.

 ■ Code folding. With code folding, you can collapse code that you’re not working on and display
only the code that requires your attention. Figure 3-2 illustrates how code folding can be used to
focus on a particular section of code.

To learn more about creating projects, see Xcode Project Management Guide.

In Xcode, the text editor is where you spend most of your time. You can write code, build your
application, and debug your code. Let’s see how Xcode assists you in the first task.

First, modify the HelloWorldAppDelegate class to use the MyView class:

1. In the Groups & Files list, select the HelloWorld group.

2. In the detail view, double-click HelloWorldAppDelegate.m.

46 Creating Your Project and Writing Code
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

3. In the HelloWorldAppDelegate editor window:

a. Add the following code line below the existing #import line.

#import "MyView.h"

b. Add the following code lines to the applicationDidFinishLaunching: method, bellow the
override-point comment.

MyView *view = [[MyView alloc] initWithFrame:[window frame]];
[window addSubview:view];
[view release];

After making these changes, the code in the HelloWorldAppDelegate.m file should look like this:

#import "HelloWorldAppDelegate.h"
#import "MyView.h"

@implementation HelloWorldAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

// Override point for customization after app launch
MyView *view = [[MyView alloc] initWithFrame:[window frame]];
[window addSubview:view];
[view release];

[window makeKeyAndVisible];
}

- (void)dealloc {
[window release];
[super dealloc];

}

@end

Listing 3-1 shows code that draws text on your application’s window. The following sections show
how to add this code to your project using code completion and API reference lookup.

Listing 3-1 Method to draw “Hello, World!” on a view

- (void) drawRect:(CGRect) rect {
/* Draw "Hello, World!" */
NSString *hello = @"Hello, World!";
CGPoint location = CGPointMake(10, 20);
UIFont *font = [UIFont systemFontOfSize:24];
[[UIColor whiteColor] set];
[hello drawAtPoint:location withFont:font];

}

During development, you may need fast access to reference for a particular symbol or high-level
documentation about API usage or an iPhone OS technology. Xcode gives you easy access to such
resources through the Research Assistant and the Documentation window.

Creating Your Project and Writing Code 47
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

For more information about editing source code, see Xcode Workspace Guide.

Using Code Completion

This section shows how code completion can reduce the amount of typing needed to write your code.
When code completion is active, Xcode uses both text you have typed and the context into which
you have typed it to provide suggestions for completing the token it thinks you intend to type. For
new Xcode users, code completion is not active by default.

To activate code completion:

1. Open the Xcode Preferences window.

Choose Xcode > Preferences (or press Command–,).

2. In the Code Sense pane and under the Code Completion section, choose Immediate from the
Automatically Suggest pop-up menu.

3. Click OK.

In a Custom iPhone application project, you would add this code to the MyView.m file in your project.
Double-clicking that file in the detail view opens a text editor window with the contents of that file.
Figure 3-3 shows how that window may look as you add that code to the file.

Figure 3-3 Using code completion

Note how code completion works in the code line that starts with CGPoint. As you type the name of
the CGPointMake function, Xcode recognizes that symbol and offers a suggestion. You can accept the
highlighted part of the suggestion by pressing Tab. However, because Xcode has suggested the
function needed in this case, you can enter the value for the parameters instead.

48 Creating Your Project and Writing Code
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

To jump to the first parameter, choose Edit > Select Next Placeholder (or press Control–/), and type
10. The Select Next Placeholder command moves you among the arguments in function or method
calls that Xcode suggests as completions to the text you’re typing.

Repeat the command to jump to the second argument, and type 20. As you can see, code completion
can be an invaluable tool as you write code.

Make sure to enter the semicolon (;) at the end of the line and press Return.

Using API Reference Lookup

As you write code and learn the iPhone OS API, you may need to consult API reference to find out
how to use a class, function, or constant. The text editor provides direct access to API reference.

In MyView.m, enter UIFont below the line that starts with CGPoint. At this point you may not know
much about the UIFont class.

To display the UIFont reference, select the class name and choose Help > Find Selected Text in API
Reference (you can also Option–double-click the class name). This command searches for the selected
symbol in the API reference for your project’s SDK and displays it in the Documentation window,
shown in Figure 3-4.

Figure 3-4 Viewing API reference in the Documentation window

In the Documentation window you can learn all aspects of the UIFont class, such as the tasks you
can perform with it and how it relates and all the methods you can use on it or its instances.

Creating Your Project and Writing Code 49
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

While the Documentation window is a great tool, sometimes you may not want to take your focus
away from the text editor while you write code, but need basic information about a symbol in a
condensed way. The Research Assistant provides such information in a small and unobtrusive window
as you write code.

To display the Research Assistant, choose Help > Show Research Assistant.

Continue entering the line that starts with UIFont, by entering:

UIFont *font = [UIFont systemFontOfSize:24];

When the Research Assistant recognizes that you’re typing the systemFontOfSize: method of the
UIFont class, it displays its reference, as shown in Figure 3-5. All you have to do is glance at the
Research Assistant to get essential details about the method.

Figure 3-5 Viewing API reference in the Research Assistant

From the Research Assistant you can quickly jump to more comprehensive reference for the method,
the UIFont class, or even view the UIFont.h header file to view the method declaration.

Enter the last lines of the drawRect: instance method:

[[UIColor whiteColor] set];
[hello drawAtPoint:location withFont:font];

To learn more abut code completion, API reference look-up, or other features the text editor provides,
see Xcode Workspace Guide.

50 Creating Your Project and Writing Code
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Accessing Documentation

Documentation is an important resource of the software development process. As you develop iPhone
applications in Xcode, you’re likely to use documentation to learn about iPhone OS and its technologies,
read about system frameworks, and look-up API reference. Xcode provides two ways to access
documentation:

 ■ The Research Assistant

 ■ The Documentation window

The Research Assistant is a lightweight window, shown in Figure 3-5 (page 50), that provides a
condensed view of the API reference for the selected item, without taking your focus away from the
editor in which the item is located.

This window provides an unobtrusive way to consult API reference without using the Documentation
window. However, when you need to delve deeper into the reference, the Documentation window
is just a click away.

The Documentation window (Figure 3-6) lets you browse and search the developer documentation
(which includes API reference, guides, and article collections about particular tools or technologies)
installed on your computer. It provides access to a wider and more detailed view of the documentation
than the Research Assistant, for the times when you need additional help.

Figure 3-6 The Documentation window

Creating Your Project and Writing Code 51
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

For more information about accessing documentation in Xcode, see Xcode Workspace Guide.

Setting Your Application’s Icon

One of your application’s resources is its icon, which appears in a user’s home screen to identify your
application.

After adding your icon file to your project, you must set the CFBundleIconFile property in the
Info.plist file to your icon’s filename.

Building and Running Your Application

Building your application involves the following steps:

 ■ Compiling your source files and generating your application binary.

 ■ Placing the binary on the iPhone Simulator or your device.

Xcode performs these tasks for you when you execute the Build command.

Simulator

Device

Xcode

Your project

To learn more about building applications, see Xcode Project Management Guide.

52 Creating Your Project and Writing Code
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Working with the iPhone Simulator

The iPhone Simulator facilitates desktop-based iPhone application development. The iPhone Simulator
provides a runtime environment that is very similar to the environment a device provides. You can
use the iPhone Simulator to test your application just as it would run on a device, but with the
convenience of your desktop; you have both your project and your application running on one screen.
However, the environments are not identical; the simulator doesn’t emulate devices.

Many of your application’s performance aspects, such as CPU and network usage, can be measured
effectively only on devices. But you can measure some aspects, such as your application’s memory
usage and object allocation, reliably on the Simulator because they are not tied to the runtime
environment.

The following sections show how to use the iPhone Simulator SDK to build your application and run
it on the iPhone Simulator.

Building Your Application for the iPhone Simulator

To build your application for the iPhone Simulator:

1. Select the iPhone Simulator SDK from the Project > Set Active SDK menu or the Overview toolbar
item.

2. Choose Build > Build (or Build > Build and Run).

The status bar in the project window indicates whether the build was successful or whether there
are build errors or warnings. You can view build errors and warnings in the text editor or the
project window.

Running Your Application on the Simulator

To run the application you built in “Building Your Application for the iPhone Simulator” (page 53),
choose Run > Run.

Xcode launches the iPhone Simulator and starts your application.

Working with the iPhone Simulator 53
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Just like a device, you can go to the home screen on the iPhone Simulator and use the applications
installed in it. Using its Hardware menu, you can rotate and lock the simulator. You can also use the
Option key to pinch the simulator screen.

There may be times when you need to run code on the Simulator but not on a device, and the other
way around. In those occasions, you can use the TARGET_IPHONE_SIMULATOR preprocessor macro,
which evaluates to true when your application runs on the Simulator.

For example, change the drawRect: method in MyView.m so that it prints “Hello, Simulator!” when
run on the iPhone Simulator and “Hello, Device!” when it runs on a device. Modify the highlighted
lines in Listing 3-2 to implement this change.

Listing 3-2 Conditionalizing code for the iPhone Simulator or a device

- (void) drawRect:(CGRect) rect {
/* Draw "Hello, World!" */
#if TARGET_IPHONE_SIMULATOR

NSString *hello = @"Hello, iPhone Simulator!";
#else

NSString *hello = @"Hello, Device!";
#endif

54 Working with the iPhone Simulator
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

CGPoint location = CGPointMake(10, 20);
UIFont *font = [UIFont systemFontOfSize:24];
[[UIColor whiteColor] set];
[hello drawAtPoint:location withFont:font];

}

Now when you build and run the application in the iPhone Simulator, the message targeted at the
Simulator appears on the screen. In order for your application to build for the simulator and for your
device, you may also need to conditionalize framework linking. “Conditional Linking to System
Frameworks” (page 66)describes this process.

To view your application’s Console output use the Organizer, as described in “Preparing Devices for
Development” (page 55).

Capabilities of the iPhone Simulator

The iPhone Simulator makes it easy to test your applications using the power and convenience of
your desktop or laptop computer. Although, your development computer may not simulate
complicated touch events, such as multifinger touches, the Simulator lets you perform pinches. To
perform a pinch, hold Option while tapping on the Simulator screen.

iPhone OS supports the Objective-C runtime introduced in Mac OS X v10.5 except for access to
Objective-C class metadata. This means that, if your application accesses Objective-C class metadata,
it may not run on the simulator. See Objective-C 2.0 Runtime Reference for more information.

Working with a Device

Building your application for an iPhone OS–based device provides the most realistic environment
for you to test its operation and efficiency. Xcode makes building the application, transferring it to
the device, and launching it a simple affair.

The following sections describe how to build and run your application for iPhone OS–based devices
and how to manage them in the Organizer.

Preparing Devices for Development

In order to test your application on a device, you must configure your computer and your device for
iPhone OS development. In this process, you create or obtain the following digital assets.

 ■ Certificate signing request. A certificate signing request (CSR) contains personal information
used to generate your development certificate. You submit this request to the iPhone Developer
Program Portal.

 ■ Development certificate. A development certificate identifies an iPhone application developer.
After the CSR is approved, you download your developer certificate from the portal and add it
to your Keychain.

When you build your iPhone application with Xcode, it looks for your development certificate
in your Keychain; if it finds the certificate, Xcode signs your application, otherwise, it reports a
build error.

Working with a Device 55
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

 ■ Provisioning profile. A provisioning profile associates one or more development certificates,
devices, and an iPhone application ID (a unique identifier for the iPhone applications you or your
organization develop under an iPhone Developer Program contract).

To be able to install iPhone applications signed with your development certificate on a device,
you must install at least one provisioning profile on the device. This provisioning profile must
identify you (through your development certificate) and your device (by listing its unique device
identifier). If you’re part of an iPhone Developer team, other members of your team, with
appropriately defined provisioning profiles, may run applications you build on their devices.

Figure 3-7 illustrates the relationship between these digital assets.

Figure 3-7 Preparing computers and devices for iPhone development

Provisioning Profile
(is stored on device)Development Certificate

(is stored on computer) Development certificates

Device identifiers

App ID

Digital identity

Public key

Computer

Certificate Signing Request

Keychain

Xcode Organizer

iPhone Developer Program Portal

These are the requirements your computer and your development device must meet so that you can
build iPhone applications that run on your device:

 ■ Your computer must have your development certificate in your Keychain.

 ■ Your device must contain at least one provisioning profile that contains your developer certificate
and identifies your device.

 ■ Your development device must have iPhone OS 2.0 or later installed.

These are the steps you must follow to configure your computer and development device for iPhone
development:

1. Become an iPhone Developer Program member

2. Register your device with the Program Portal

3. Install iPhone OS on your device

56 Working with a Device
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

4. Obtain your development certificate

5. Add your development certificate to your Keychain

6. Obtain your provisioning profile

7. Add your provisioning profile to Xcode

8. Install your provisioning profile on your device

The following sections describe these tasks in detail.

Becoming an iPhone Developer Program Member

In order to become an iPhone Developer Program member you, or an agent of your organization,
enroll in the program through the iPhone Dev Center.

Important: To have access to the iPhone Developer Program Portal from the iPhone Dev Center, you
must be a member of the iPhone Developer Program.

If you’re part of an organization that enrolled in the iPhone Developer program, a team admin must
add you as a member of your organization’s team.

After becoming a member of the iPhone Developer Program, you must get an iPhone application
ID. This ID is used by iPhone OS to identify the applications you create. Therefore, if you plan on
creating more than one application, you should create an ID prefix (an application ID with an asterisk
at the end), which can be shared by your applications; each application specifies its full ID in its
information property list (Info.plist) file (see “The Information Property List” (page 95) for details).

In the following sections iPhone Developer Program members that are sole developers are identified
as sole members. Members that are part of a team are known as team members.

Registering Your Device with the Program Portal

To register your development device with the portal:

1. Launch Xcode.

2. Choose Window > Organizer to open the Organizer window.

3. Plug-in your device and select it in the devices list.

4. Copy your device UDID from the Identifier text field in the Summary pane.

5. If you’re a sole member, go to the portal to register your device. Otherwise, send your team admin
your device UDID so that they can register it on the Portal.

Installing iPhone OS on Your Device

To run applications you develop using the iPhone SDK, your device must be running iPhone OS 2.0
or later.

Working with a Device 57
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

To learn how to install iPhone OS on your device, see “Restoring System Software” (page 61).

Obtaining Your Development Certificate

Xcode uses your development certificate to code-sign your application before it uploads it to your
device for testing.

Start by generating a certificate signing request (CSR) on your computer:

1. Launch Keychain Access, located in /Applications/Utilities.

2. Choose Keychain Access > Certificate Assistant > Request a Certificate From a Certificate Authority.

3. In the Certificate Information window:

a. In the User Email Address field, enter your email address.

b. In the Common Name field, enter your name.

c. In the “Request is” group, select the “Saved to disk” option.

d. Select “Let me specify key pair information.”

e. Click Continue.

f. Choose a location for the CSR file.

g. In the Key Pair Information pane, choose 2048 as the key size and RSA as the algorithm.

The Certificate Assistant saves a CSR file to your Desktop.

This process creates a public/private key pair. The public key is stored in your development
certificate. Your private key is stored in your Keychain. You must ensure that you don’t loose
your private key and that only you have access to it. Therefore, it’s a good idea to backup your
private key. Backing up your private key may also help if you need to use more than one computer
to develop iPhone applications. See “Backing Up Your Digital Identifications” (page 62) for more
information.

4. Open the CSR file in a text editor and copy the entire text, including the enclosing tags.

5. Submit the CSR to the Program Portal.

6. If you’re a sole member, approve your CSR. Otherwise, wait for approval.

After the CSR is approved, you can download your development certificate from the Program Portal.
As with your private key, you should backup your development certificate in case you need to develop
iPhone applications on another computer. See “Backing Up Your Digital Identifications” (page 62)
for details.

Adding Your Development Certificate to Your Keychain

Your development certificate must be in your Keychain so that Xcode can digitally sign your iPhone
applications.

58 Working with a Device
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

To add your development certificate to your Keychain, in your computer:

1. Open your development certificate with the Keychain Access application by double-clicking it
or dragging onto the Keychain Access application icon.

2. In the Add Certificates dialog, ensure Keychain is set to “login” and click OK.

Obtaining Your Provisioning Profile

To obtain your provisioning profile:

1. If you’re a sole member, create your provisioning profile in the Program Portal. Otherwise, your
team admin creates one or more provisioning profiles for your team.

2. Download your provisioning profile from the Program Portal.

Adding Your Provisioning Profile to the Xcode Organizer

You use the Organizer to add provisioning profiles to your development device.

To an a provisioning profile to Xcode:

1. Drag the provisioning profile file onto the Xcode icon in the Dock.

2. Restart Xcode.

After this operation, the ~/Library/MobileDevice/Provisions directory should contain your
provisioning profile and it should also appear in the Organizer > Summary > Provisioning pane.

Installing Your Provisioning Profile on Your Device

After adding your provisioning profile to the Organizer, you can add it to your device:

1. Open the Organizer window.

Your provisioning profile should appear in the Summary > Provisioning pane. If you don’t see
it there, follow the instructions in “Adding Your Provisioning Profile to the Xcode Organizer” (page
59).

2. Plug-in your device and select it in the devices list.

3. Click the checkbox next to the provisioning profile to install it on your device.

Once installed, a checkmark should appear in the checkbox next to the provisioning profile. If
the checkmark doesn’t appear, ensure that the provisioning profile includes your device UDID,
your development certificate, and a valid application ID. Go to the Program Portal or contact
your team admin to verify that the provisioning profile contains this information. You need to
go back to the “Obtaining Your Provisioning Profile” (page 59) step if changes are made to your
profile.

Working with a Device 59
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Building Your Application for a Device

To build your application for a device:

1. Select the device SDK from the Project > Set Active SDK menu or the Overview toolbar item.

2. Choose Build > Build (or Build > Build and Run).

The status bar in the project window indicates whether the build was successful or whether there
are build errors or warnings. You can view build errors and warnings in the text editor or the
project window.

iPhones and iPod touches support two instruction sets, ARM and Thumb. Xcode uses Thumb
instructions by default because using Thumb typically reduces code size by about 35 percent relative
to ARM. Applications that have extensive floating point code might perform better if they use ARM
instructions rather than Thumb. You can turn off Thumb for your application by turning off the
Compile for Thumb build setting.

Running Your Application on a Device

To run the application you built in “Building Your Application for a Device” (page 60), choose Run
> Run. If you have more than one devices attached to your computer, you can choose the device onto
which Xcode puts the built application using the Project > Set Active Executable menu.

Once running, you can test that your application performs as you intend using all the capabilities of
your device. You should especially ensure that your application uses the device’s resources—CPU,
memory, battery, and so on—as efficiently as possible. See “Tuning Application Performance” (page
65) for more information.

Using the Organizer

To view your application’s Console logs or crash information, or to take screenshots of your application
as it runs, you use the Xcode Organizer window.

The following sections show how to use the Organizer to perform these tasks.

Viewing Console and Crash Logs

To view a device’s console output:

1. Open the Organizer window.

2. Select the device whose console log you want to view.

3. Click Console.

You can use the search field to filter log entries. You can also save the log to a file.

60 Working with a Device
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

The Crash Log pane in the Organizer contains information about application crashes. You may have
to unplug and replug your device to refresh the crash list.

Capturing Screenshots

Screenshots help to document your application. This is also how you create your application’s default
image, which iPhone OS displays when the user taps your application’s icon.

To capture a screenshot:

1. Configure your application’s screen for the screenshot.

Depending on your application’s workflow, you may need to place breakpoint in your code and
run your application until it reaches that point.

2. Open the Organizer window, select your device, and click Screenshots.

3. Click Capture.

To make that screenshot your application’s default image, click Save As Default Image.

Restoring System Software

When you develop applications use a particular version of the iPhone SDK, such as iPhone SDK 2.0,
you should test those applications on devices running the iPhone OS version the SDK targets, such
as iPhone OS 2.0.

The iPhone SDK contains the iPhone OS software for which you can develop applications.

To restore a device:

1. Launch Xcode and open the Organizer window.

2. Plug the device into your computer.

3. Select the device in the Devices list.

4. From the Software Version pop-up menu, choose the version of iPhone OS you want to place on
the device.

If the version you want to install is not listed in the Software Version pop-up menu:

a. Download the iPhone OS release you want to install on the device from http://developer.ap-
ple.com.

b. From the Software Version pop-up menu, choose “Other Version.”

c. Navigate to the disk image containing the iPhone OS developer software and click Open.

Xcode extracts the iPhone OS software from the disk image. You can dispose of the disk image
you downloaded.

d. From the Software Version pop-up menu, choose the newly downloaded iPhone OS version.

Working with a Device 61
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

http://developer.apple.com
http://developer.apple.com

5. Click Reset iPhone or Reset iPod, depending on your device’s type.

6. Use iTunes to name your device.

Backing Up Your Digital Identifications

When you create a certificate signing request (CSR) to obtain your development certificate, you
generated a public/private key pair. The public key is included in your development certificate. The
private key is stored in your Keychain. With these two items in your computer, Xcode can code-sign
the iPhone applications you build with it. If you need to use another computer to develop iPhone
applications, you must transfer these items to the other computer and add them to your Keychain.

This section shows how to export your private key from your Keychain in your development computer,
store your private key and development certificate in a protected disk image, and add both items to
a second computer for iPhone development.

To export your private key from your Keychain:

1. Launch Keychain Access.

2. In the category list, select Keys.

3. Select the private key you use for iPhone development.

4. Choose Export from the private key shortcut menu.

(To display the private key shortcut menu, Control-click the selected row.)

5. Enter a password to protect the private key.

6. Select a location for the private key and use the Personal Information Exchange (.p12) format for
the file.

To generate a protected disk image containing your private key and development certificate:

1. Place your private key and development certificate file in a newly created folder, named iPhone
Developer Identifications.

2. Launch the Disk Utility application, located in /Applications/Utilities.

3. Choose File > New > Disk Image from Folder.

4. Choose the iPhone Developer Identifications directory you created earlier.

5. Select a location for the new protected disk image.

6. From the Encryption pop-up menu, choose “256-AES encryption”.

7. In the dialog that appears, enter a password for the disk image.

You should deselect the “Remember password in my keychain” option. Otherwise, anybody with
access to your computer may open the disk image.

62 Working with a Device
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

8. Place the protected disk image in a secure location.

Now, when you need to develop iPhone applications on another computer:

1. Copy the iPhone Developer Identifications.dmg disk-image file to the second computer.

2. On the second computer:

a. Open the disk image.

b. Import the private key into your Keychain:

a. Launch Keychain Access.

b. Choose File > Import Items.

c. Choose the private key file to import.

3. Add the development certificate to your Keychain. See “Adding Your Development Certificate
to Your Keychain” (page 58) for details.

Debugging Your Code and Measuring Performance

Debugging with Xcode

Xcode provides several debugging environments you can use to find and squash bugs in your code:

 ■ The text editor. The text editor allows you to debug your code right in your code. It provides
most of the debugging features you need. You can

 ❏ Add and set breakpoints

 ❏ View your call stack per thread

 ❏ View the value of variables by hovering the mouse pointer over them

 ❏ Execute a single line of code

 ❏ Step in to, out of, or over function or method calls

Debugging Your Code and Measuring Performance 63
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Debugger strip

Debugger datatip

Gutter

 ■ The Debugger window. When you need to perform more focused debugging, the Debugger
window provides all the debugging features the text editor provides using a traditional interface.
This window provides lists that allow you to see your call stack and the variables in scope at a
glance.

Toolbar

Status bar

Thread list

Variable list

Text editor

 ■ The GDB Console. A GDB console window is available for text-based debugging.

For more information about the Xcode debugging facilities, see Xcode Debugging Guide.

64 Debugging Your Code and Measuring Performance
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Tuning Application Performance

Optimizing your application’s performance is an important phase of the development, more so in
iPhone OS–based devices, which, although powerful computing devices, do not have the memory
or CPU power that desktop or laptop computers possess. You also have to pay attention to your
application’s battery use, as it directly impacts in your customer’s battery-life experience.

The Instruments application lets you gather a variety of application performance metrics, such as
memory and network use. It lets you gather data from iPhone applications running on the Simulator
or on devices.

Simulator

Device

Instruments

Your project

To complement the performance data Instruments collects, the Shark application lets you view
system-level events, such as system calls, thread scheduling decisions, interrupts, and virtual memory
faults. You can see how your code’s threads interact with each other and how your code interacts
with iPhone OS. See Shark User Guide to learn more about general Shark usage.

To learn more about measuring and analyzing application performance, see Instruments User Guide.
This document provides general information about Instruments.

It is important that your iPhone applications use the resources of iPhone OS–based devices as efficiently
as possible to provide their users a compelling experience. For example, your application should not
use resources in a way that makes the application feel sluggish to the user or drains their batteries
too quickly. Applications that use too much memory run slower. Applications that rely on the network
for their operation, must use it as sparingly as possible because powering up the radios for network
communications is a significant drag on the battery.

Debugging Your Code and Measuring Performance 65
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

The Instruments application provides an advanced data gathering interface that lets you know exactly
how your application uses resources, such as the CPU, memory, file system, and so on.

Instruments uses probes, known as instruments, to collect performance data. An instrument collects
a specific type of data, such as network activity or memory usage. You find which instruments are
available for iPhone OS in the Instruments Library.

To measure your application’s performance:

1. Build and run your application on the device as described in “Working with a Device” (page 55).

2. Launch Instruments.

The Instruments application is located at <Xcode>/Applications. (<Xcode> refers to the
installation location of the development tools.)

3. Choose a template, such as Activity Monitor, to create the trace document.

A trace document contains one or more instruments that collect data about a process.

4. From the Default Target toolbar item, select the iPhone OS–based device containing the application
from which you want to collect performance data.

5. Add or remove instruments from the trace document to collect the desired data.

6. Use the Default Target toolbar item, to launch or attach to the target application.

7. Click Record to start collecting data and use your application, exercising the areas whose you
want to examine.

For more information about using Instruments to measure performance, see Instruments User Guide.

When performance problems in your code are more related to the interaction between your code,
iPhone OS, and the hardware architecture of the device, you may use Shark to get information about
those interactions and find performance bottlenecks. For information about using Shark on your
iPhone applications, see Shark User Guide.

Conditional Linking to System Frameworks

There may be occasions when you need to configure your application target so that it links against
one framework to run on the iPhone Simulator and another framework to run on a device. For example,
the CFNetwork API is a stand-alone framework (CFNetwork.framework) in the iPhone SDK for a
device but a subframework of the Core Services framework (CoreServices.framework) on the iPhone
SDK for the iPhone Simulator.

In this case, you need to specify the framework linking details for the CFNetwork API separately for
the simulator and for a device. Follow these steps:

1. In Xcode, choose Project > Edit Active Target “<application_target>” to open the target editor.

2. Click the Build tab to display the build settings editor.

66 Conditional Linking to System Frameworks
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

3. From the Show pop-up menu, choose All Settings.

4. Select Linking > Other Linker Flags.

5. Add the device linking details:

a. Select the Linking > Other Linker Flags build setting.

b. Choose Add Build Setting Condition from the Action (gear) pop-up menu.

c. In the Value column, enter -framework CFNetwork.

d. From the Any SDK pop-up menu in the Title column, choose Device - iPhone.

6. Add the simulator linking details:

a. Select the Linking > Other Linker Flags build setting.

b. Choose Add Build Setting Condition from the Action (gear) pop-up menu.

c. In the Value column, enter -framework CoreServices.

d. From the Any SDK pop-up menu in the Title column, choose Simulator - iPhone.

Managing Application Data

As you develop your application, you might need to rely on user settings and application data to
remain on the iPhone Simulator or your development device between builds. Xcode doesn’t remove
any user settings or application data as you build your project and install the application on its host.
But you may need to erase that information as part of testing your application the way users will use
it. You may also need to remove application data after performing a clean build, to ensure that the
newly installed application reflects structural changes the application may have, such as reorganized
localized resources.

To remove all application data from the iPhone Simulator or a device, remove the application from
the Home screen. See "Uninstalling Applications" in iPhone Simulator Programming Guide for details.

Managing Application Data 67
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

68 Managing Application Data
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Development Environment

Designing applications for iPhone OS is not like designing applications for Mac OS X or other desktop
operating systems. The iPhone and iPod touch are designed to be carried in a pocket but still provide
much of the same behavior as a much larger desktop computer. They must also be able to communicate
over Wi-Fi or cell networks and still be able to run for extended periods of time on battery power.
They must also be fast and responsive to the user, rather than spend a lot of time booting the system
or launching applications. All of these factors require you to take a slightly different approach when
creating your own applications.

Although the iPhone and iPod touch have great power for their size, they are not as powerful as a
Macintosh computer. iPhone OS goes to great lengths to ensure that the underlying system code runs
at peak efficiency and conserves the available resources. That said, your own applications must also
be designed with similar efficiency in mind. In addition to managing power, your application must
moderate its use of system resources, such as memory, disk space, graphics, and CPU.

Beyond just managing resources, your applications also need to take a different approach when it
comes to design. Efficiency comes in many forms, and an efficient workflow is one way to improve
both resource usage and overall acceptance by users. You must create an application that can be used
quickly by the user, providing relevant information right away rather than forcing the user to navigate
endless screens of data. Your application’s interface must be tailored not only to run on a smaller
screen but also to use an entirely different set of interaction techniques. The Multi-Touch event model
gives you options for interacting with the user that are simply not possible in a desktop application,
and are a great strength of iPhone OS.

This chapter describes the design considerations that must go into creating an iPhone application.
All of the information in this chapter is crucial for ensuring that your application runs well in iPhone
OS and will be successful with users.

The Runtime Environment

The runtime environment of iPhone OS is designed for the fast and secure execution of programs.
The following sections describe the key aspects of this runtime environment and provide guidance
on how best to operate within it.

The Runtime Environment 69
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Fast Launch, Short Use

The strength of iPhone OS–based devices is their immediacy. A typical user pulls a device out of a
pocket or bag and uses it for a few seconds, or maybe a few minutes, before putting it away again.
The user might be taking a phone call, looking up a contact, changing the current song, or getting
some piece of information during that time. If it takes a long time to do any of these things, the user
is less likely to use the device. Because of this, your applications should be designed to launch and
perform tasks quickly.

In addition to launching quickly, your application must be prepared to exit quickly too. Whenever
the user leaves the context of your application, whether by pressing the Home button or using a
feature that opens content in another application, iPhone OS tells your application to quit. At that
time, you need to save any unsaved changes to disk and exit as quickly as possible, because if your
application takes longer than 5 seconds to quit, it may be terminated outright. Because write speeds
for the disk are typically slower than read speeds, you should be frugal in choosing what information
you want to save.

In addition to saving out changes to user data, you should save out any application state information
that is needed to return the user to the same place in your application when it is relaunched. Returning
your application to the same state gives users the impression that your application never quit and
makes it easier for them to pick up where they left off. Forcing users to navigate through the same
set of screens each time your application launches is a frustrating experience.

The Virtual Memory System

To manage program memory, iPhone OS uses essentially the same virtual memory system found in
traditional desktop systems. In iPhone OS, each program still has its own virtual address space, but
the amount of usable virtual memory in iPhone OS is constrained by the amount of physical memory
available. This is because iPhone OS does not write volatile pages to disk when memory gets full.
Instead, the virtual memory system frees up nonvolatile memory, as needed, to make sure the running
application has the space it needs. It does this by removing memory pages that are not being used
and that contain read-only contents, such as code pages. Such pages can always be loaded back into
memory later if they are needed again.

If memory continues to be constrained, the system may also send notifications to the running
applications, asking them to free up additional memory. All applications should respond to this
notification and do their part to help relieve the memory pressure. For information on how to handle
such notifications in your application, see “Observing Low-Memory Notifications” (page 72).

Managing Your Memory Usage

Because the iPhone OS virtual memory model does not include disk swap space, you must be careful
to allocate no more memory than is available on the device. iPhone OS warns the running application
when low-memory conditions occur and may terminate the application if the problem persists. Being
responsive about your application’s memory usage and cleaning up memory in a timely manner are
therefore crucial.

The following sections provide guidance on how to use memory efficiently and how to respond when
there is only a small amount of available memory.

70 Managing Your Memory Usage
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Reducing Your Application’s Memory Footprint

Table 4-1 lists some tips on how to reduce your application’s overall memory footprint. Starting off
with a low footprint gives you more room for the data you need to manipulate.

Table 4-1 Tips for reducing your application’s memory footprint

Actions to takeTip

Because memory is a critical resource in iPhone OS, your application should
not have any memory leaks. Allowing leaks to exist means your application
may not have the memory it needs later. You can use the Instruments
application to track down leaks in your code, both in the simulator and on
actual devices. For more information on using Instruments, see Instruments
User Guide.

Eliminate memory
leaks.

Files reside on the disk but must be loaded into memory before they can be
used. Property list files and images are two resource types where you can
save space with some very simple actions. To reduce the space used by
property list files, write those files out in a binary format using the
NSPropertyListSerialization class. For images, compress all image files
to make them as small as possible. (To compress PNG images—the preferred
image format for iPhone applications—use the pngcrush tool.)

Make resource files as
small as possible.

If your application manipulates large amounts of structured data, store it
in a SQLite database instead of in a flat file. SQLite provides efficient ways
to manage large data sets without requiring the entire set to be in memory
all at once.

Use SQLite for large
data sets.

You should never load a resource file until it is actually needed. Prefetching
resource files may seem like a way to save time, but actually slows down
your application right away. In addition, if you end up not using the
resource, loading it simply wastes memory.

Load resources lazily.

Adding the -mthumb compiler flag can reduce the size of your code by up
to 35%. Be sure to turn this option off for floating-point intensive code
modules, however, because the use of Thumb on these modules can cause
performance to degrade.

Build your program
using Thumb.

Allocating Memory Wisely

iPhone applications use a managed memory model, whereby you must explicitly retain and release
objects. Table 4-2 lists tips for allocating memory inside your program.

Managing Your Memory Usage 71
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Table 4-2 Tips for allocating memory

Actions to takeTip

Objects released using the autorelease method stay in memory until you
explicitly drain the autorelease pool or until the next time around your event
loop. Whenever possible, avoid using the autorelease method when you
can instead use the release method to reclaim the memory occupied by the
object immediately. If you must create moderate numbers of autoreleased
objects, create a local autorelease pool and drain it periodically to reclaim the
memory for those objects before the next event loop.

Reduce your use of
autoreleased objects.

Avoid loading large resource files when a smaller one will do. Instead of
using a high-resolution image, use one that is appropriately sized for iPhone
OS–based devices. If you must use large resource files, find ways to load only
the portion of the file that you need at any given time. For example, rather
than load the entire file into memory, use the mmap and munmap functions to
map portions of the file into and out of memory. For more information about
mapping files into memory, see File-System Performance Guidelines.

Impose size limits
on resources.

Unbounded problem sets might require an arbitrarily large amount of data
to compute. If the set requires more memory than is available, your application
may be unable to complete the calculations. Your applications should avoid
such sets whenever possible and work on problems with known memory
limits.

Avoid unbounded
problem sets.

For detailed information on how to allocate memory in iPhone applications, and for more information
on autorelease pools, see Cocoa Objects in Cocoa Fundamentals Guide.

Observing Low-Memory Notifications

When the system dispatches a low-memory notification to your application, heed the warning. iPhone
OS notifies the frontmost application whenever the amount of free memory dips below a safe threshold.
If your application receives this notification, it must free up as much memory as it can by releasing
objects it does not need or clearing out memory caches that it can recreate easily later.

UIKit provides several ways to receive low-memory notifications, including the following:

 ■ Implement the applicationDidReceiveMemoryWarning: method of your application delegate.

 ■ Override the didReceiveMemoryWarning method in your custom UIViewController subclass.

 ■ Register to receive the UIApplicationDidReceiveMemoryWarningNotification notification.

Upon receiving any of these notifications, your handler method should respond by immediately
freeing up any unneeded memory. View controllers should purge any views that are currently
offscreen, and your application delegate should release any data structures it can or notify other
application objects to release memory they own.

If your custom objects have known purgeable resources, you can have those objects register for the
UIApplicationDidReceiveMemoryWarningNotification notification and release their purgeable
resources directly. Registering for the UIApplicationDidReceiveMemoryWarningNotification

72 Managing Your Memory Usage
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

notification is appropriate if you have a few objects that manage most of your purgeable resources
and it is appropriate to purge all of those resources. If you have many purgeable objects or want to
coordinate the release of only a subset of those objects, however, you might want to use your
application delegate to release the desired objects.

Important: Like the system applications, your applications should always handle low-memory
warnings, even if they do not receive those warnings during your testing. System applications consume
small amounts of memory while processing requests. When a low-memory condition is detected, the
system delivers low-memory warnings to all running programs (including your application) and
may terminate some background applications (if necessary) to ease memory pressure. If not enough
memory is released—perhaps because your application is leaking or still consuming too much
memory—the system may still terminate your application.

Performance and Responsiveness

Performance and responsiveness are two areas that must be factored into your designs for iPhone
applications. When an application uses the network frequently or is not optimized for the tasks its
performing, it wastes precious battery power. In addition, an application that is inefficient risks
looking sluggish. On mobile devices, users expect the software to respond quickly and may stop
using applications that do not.

The following sections offer tips and guidance on how to make sure your iPhone OS-based applications
are efficient, responsive, and good at conserving power.

Using Memory Efficiently

An effective way to improve the performance of your application is to reduce the amount of resident
private memory you use as much as possible. Because the system does not use a swap file, your own
code should monitor its memory usage, eliminate leaks, and respond to low-memory warnings when
they arrive. For more information, see “Managing Your Memory Usage” (page 70).

Improving Drawing Performance

Creating high-quality graphics is a processor-intensive task. You should spend plenty of time
optimizing your application’s drawing code to ensure that it is as fast and efficient as possible. Check
your drawing code for hot spots using the Instruments application. If your drawing code is written
using OpenGL ES, you can also use the OpenGL ES instrument to gather OpenGL–specific statistics.

Applications have two main paths for drawing: OpenGL and the native platform technologies. The
OpenGL path is well suited for game developers and applications that need to produce quality
graphics with high frame rates. The native technologies such as Quartz and UIKit provide higher-level
drawing interfaces and are well suited for applications that perform on-demand updates and
detail-oriented drawing. Core Animation is another native technology that is used to animate rendered
content using a highly-optimized rendering path. For best performance, you should never mix OpenGL
drawing surfaces with views that draw using native platform technologies.

For additional tips on how to optimize your overall drawing code, see “Drawing Tips” (page 156).

Performance and Responsiveness 73
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Reducing Power Consumption

Power consumption on mobile devices is always an issue. The power management system in iPhone
OS conserves power by shutting down any hardware features that are not currently being used. Your
application can help improve battery life by minimizing the amount of time you spend using these
features. Here are some actions that you should take to minimize your hardware usage:

 ■ Connect to the external servers via the network only when needed. Avoid polling.

 ■ When you must connect to the network, transmit the smallest amount of data possible.

 ■ If you obtain the user’s current location using the Core Location framework, disable location
updates as soon as you have a position fix.

Tuning Your Code

iPhone OS comes with several applications for tuning the performance of your application. Most of
these tools run on Mac OS X and are suitable for tuning some aspects of your code while it runs in
the simulator. For example, you can use the simulator to eliminate memory leaks and make sure your
overall memory usage is as low as possible. You can also remove any hotspots in your code that might
be caused by an inefficient algorithm or a previously unknown bottleneck.

After you have tuned your code in the simulator, you should then use the Instruments application
to further tune your code on a device. Running your code on an actual device is the only way to tune
your code fully. Because the simulator runs in Mac OS X, it has the advantage of a faster CPU and
more usable memory, so its performance is generally much better than the performance on an actual
device. And using Instruments to trace your code on an actual device may point out additional
performance bottlenecks that need tuning.

Security

Protecting the integrity of the user’s data on any computer system is everyone’s responsibility. iPhone
OS provides several levels of security to help prevent malicious users from taking advantage of flaws
in your application. At the same time, you should do everything possible to eliminate vulnerabilities
in your code by engaging in secure coding practices.

The following sections detail the security provided by iPhone OS and what you can do in your own
code to foil hacker attacks.

The Application Sandbox

For security reasons, iPhone OS restricts an application and its preferences and data to a unique
location in the file system. This location is part of the security feature known as the application’s
“sandbox.” The sandbox is a set of fine-grained controls limiting access to files, preferences, network
resources, hardware, and so on. In iPhone OS, an application and its data reside in a secure location
that no other application can access. When an application is installed, the system computes a unique

74 Security
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

opaque identifier for the application. Using a root application directory and this identifier, the system
constructs a path to the application’s home directory. Thus an application’s home directory could be
depicted as having the following structure:

/ApplicationRoot/ApplicationID/

As part of the installation process, the system configures the runtime environment of the application,
copies the application bundle to its home directory, and creates the subdirectories of the home
directory. By providing a unique location for an application and its data, the application sandbox
simplifies operations such as backup-and-restore and uninstallation.

It’s important to note that the sandbox does not protect your application from direct attacks by
malicious entities. For example, if you accept input from the user, don’t validate it, and there is an
exploitable buffer overflow in your input-handling code, an attacker might be able to cause your
program to crash or even take control of the program so that it executes the attacker’s code. The
sandbox limits the damage an attacker can cause, but it cannot prevent attacks.

For more information about accessing the application-specific directories created for each application,
see “Application Directory Structure” (page 76).

Using the Available Security Technologies

The following sections describe the security-related interfaces and show how you would use them
in your applications.

Certificate, Key, and Trust Services

You use the Certificate, Key, and Trust Services API to do the following:

 ■ Evaluate trust for a certificate

 ■ Retrieve information from a certificate

 ■ Convert between a DER (Distinguished Encoding Rules) representation of a certificate and a
certificate keychain item

 ■ Retrieve the certificate associated with a specific cryptographic identity

 ■ Retrieve the private key that’s associated with a specific cryptographic identity

 ■ Create a pair of asymmetric keys

 ■ Use a private key to generate a digital signature for a block of data

 ■ Use a public key to verify a signature

 ■ Use a public key to encrypt a block of data

 ■ Use a private key to decrypt a block of data

 ■ Retrieve the value of a trust policy

 ■ Set anchor certificates

For more information on how to use these services, see Certificate, Key, and Trust Services Programming
Guide and Certificate, Key, and Trust Services Reference.

Security 75
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Keychain Services

You can use the keychain to store certificates and cryptographic keys, or store passwords and other
data. You can create, modify, and delete items in the keychain. Each keychain item has a number of
attributes that specify the purpose of the item, whether it is encrypted, when it was created and by
whom, and so forth. You can search for items with any combination of attributes.

iPhone OS gives you access only to your application’s own keychain items (with the exception of
items for which another application has passed you a persistent reference). For this reason, the user
is never asked to authorize access to a keychain item.

For more information about accessing the keychain, see Keychain Services Programming Guide and
Keychain Services Reference.

Randomization Services

Randomization services provides a cryptographically secure pseudo random number generator. You
can use this feature to generate unique IDs or passwords or use it in any situation where the standard
rand function call (in the LibSystem library) is not sufficiently random.

For more information about randomization services, see Randomization Services Reference.

File and Data Management

Files in iPhone OS share space on the flash-based memory with the user’s media and personal files.
For security purposes, your application is placed in its own directory and is limited to reading and
writing files in that directory only. The following sections describe the structure of your application’s
local file system and several techniques for reading and writing files.

Application Directory Structure

For security purposes, an application has only a few locations in which it can write its data and
preferences. When an application is installed on a device, a home directory is created for the application.
(For more information about the application home directory itself, see “The Application Sandbox” (page
74).) Inside that directory are several custom subdirectories, which are listed in Table 4-3. Some
directories, such as the application bundle directory, cannot be modified by your code, but others
can.

Table 4-3 Directories of an iPhone application

DescriptionDirectory

This is the bundle directory containing the
application itself. Because an application must be
signed, you must not make changes to the contents
of this directory at runtime. Doing so may prevent
your application from launching later.

<Application_Home>/AppName.app

76 File and Data Management
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

DescriptionDirectory

This is the directory you should use to write any
application-specific data files. For information about
how to get the path of this directory, see “Getting
Paths to Application Directories” (page 78).

<Application_Home>/Documents/

This directory contains the preferences file for the
application. You should not create files in this
directory yourself. Instead, use the NSUserDefaults
class or CFPreferences API to access the application
preferences. For more information, see “Accessing
Your Preferences” (page 204).

<Application_Home>/Library/Preferences/

This is the directory you should use to write any
temporary files. Your application is responsible for
cleaning up the contents of this directory; there is
no automatic cleanup mechanism. For information
about how to get the path of this directory, see
“Getting Paths to Application Directories” (page
78).

Remember that the contents of this directory are
not backed up automatically.

<Application_Home>/tmp/

Except for the tmp directory, the contents of the directories in Table 4-3 (page 76) are backed up
automatically when the user syncs the device to iTunes. For more information about the backup and
restore process, see “Backup and Restore” (page 77).

When the system installs an application, it also sets environment variables for some of the application’s
directories. (An environment variable is a process-global symbol that represents some constant value.)
Table 4-4 lists the environment variables that are set. Although you can use these environment variables
for constructing paths to use for reading and writing data and preferences, there are programmatic
alternatives that provide a better solution. For information about those programmatic solutions, see
“Getting Paths to Application Directories” (page 78).

Table 4-4 Environment variables for the application sandbox

Environment variableDirectory

HOMEApplication Home/

TMPDIRApplication Home/tmp/

Backup and Restore

You do not have to prepare your application in any way for backup and restore operations. When a
device is plugged into a computer and synced, iTunes automatically backs up the applications and
data on that device. The host computer copies everything in each application directory (minus the
temporary directory) to a location on the host. If you wipe the device at a later date, iTunes will then
ask you if you want to restore your applications and data from the backup data located on the host.

File and Data Management 77
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Getting Paths to Application Directories

At various levels of the system, there are programmatic ways to obtain file-system paths to the
directory locations of an application’s sandbox. However, the preferred way to retrieve these paths
is with the Cocoa programming interfaces. The NSHomeDirectory function (in the Foundation
framework) returns the path to the top-level home directory—that is, the directory containing the
application, Documents, Library, and tmp directories. In addition to that function, you can also use
the NSSearchPathForDirectoriesInDomains and NSTemporaryDirectory functions to get the paths
to your Documents and tmp directories.

Both the NSHomeDirectory and NSTemporaryDirectory functions return the properly formatted
path information in an NSString object. You can use the path-related methods of NSString to modify
the path information or create new path strings. For example, upon retrieving the temporary directory
path, you could append a file name and use the resulting string to create a file with the given name
in the temporary directory. If you are using frameworks with ANSI C programmatic
interfaces—including those that take paths—recall that NSString objects are “toll-free bridged” with
their Core Foundation counterparts. This means that you can cast a NSString object (such as the
return by one of the above functions) to a CFStringRef type, as shown in the following example:

CFStringRef homeDir = (CFStringRef)NSHomeDirectory();

Note: Many (but not all) Foundation types are toll-free bridged with their Core Foundation
counterparts. For information on whether a Foundation class is toll-free bridged, see the overview
for that class. For more information on toll-free bridging in general, see Carbon-Cocoa Integration Guide.

The NSSearchPathForDirectoriesInDomains function of the Foundation framework lets you obtain
the full path to the application’s Documents/ directory. Because this function was designed originally
for Cocoa applications, it returns an array of paths representing the potential Documents directories
on the system. To use it in iPhone OS, specify NSDocumentDirectory for the first parameter and
NSUserDomainMask for the second parameter. The resulting array should contain the single path to
your application’s Documents directory. Listing 4-1 shows a typical use of this function.

Listing 4-1 Getting a file-system path to the application’s Documents/ directory

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

Note: You can call NSSearchPathForDirectoriesInDomains using directory and domain-mask
parameters other than NSDocumentDirectory and NSUserDomainMask, but the application will be
unable to write to any of the returned directory locations. For example, if you specify
NSApplicationDirectory as the directory parameter and NSSystemDomainMask as the domain-mask
parameter, you get the path /Applications returned (on the device), but your application cannot
write any files to this location.

Another consideration to keep in mind is the difference in directory locations between platforms. The
paths returned by NSSearchPathForDirectoriesInDomains, NSHomeDirectory,
NSTemporaryDirectory, and similar functions differ depending on whether you’re running your
application on the device or on the Simulator. For example, take the function call shown in Listing
4-1. On the device, the returned path (documentsDirectory) is similar to the following:

78 File and Data Management
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

/var/mobile/Applications/30B51836-D2DD-43AA-BCB4-9D4DADFED6A2/Documents

However, on the Simulator, the returned path takes the following form:

/Volumes/Stuff/Users/johnDoe/Library/Application Support/iPhone
Simulator/User/Applications/118086A0-FAAF-4CD4-9A0F-CD5E8D287270/Documents

To read and write user preferences, use the NSUserDefaults class or the CFPreferences API. These
interfaces eliminate the need for you to construct a path to the Library/Preferences/ directory and
read and write preference files directly. For more information on using these interfaces, see “Accessing
Your Preferences” (page 204).

If your application contains sound, image, or other resources in the application bundle, you should
use the NSBundle class or CFBundle opaque type to load those resources. Bundles have an inherent
knowledge of where resources live inside the application. In addition, bundles are aware of the user’s
language preferences and are able to choose localized resources over default resources automatically.
For more information on bundles, see “The Application Bundle” (page 93).

Reading and Writing File Data

The iPhone OS provides several ways to read, write, and manage files.

 ■ Foundation framework:

 ❏ If you can represent your application’s data as a property list, convert the property list to an
NSData object using the NSPropertyListSerialization API. You can then write the data
object to disk using the methods of the NSData class.

 ❏ If your application’s model objects adopt the NSCoding protocol, you can archive a graph of
these model objects using the NSKeyedArchiver class, and especially its
archivedDataWithRootObject: method.

 ❏ The NSFileHandle class in Foundation framework provides random access to the contents
of a file.

 ❏ The NSFileManager class in Foundation framework provides methods to create and
manipulate files in the file system.

 ■ Core OS calls:

 ❏ Calls such as fopen, fread, and fwrite also let you read and write file data either sequentially
or via random access.

 ❏ The mmap and munmap calls provide an efficient way to load large files into memory and access
their contents.

Note: The preceding list of Core OS calls is just a sample of the more commonly-used calls. For a
more complete list of the available functions, see the list of functions in section 3 of iPhone OS Manual
Pages.

The following sections show examples of how to use some of the higher-level techniques for reading
and writing files. For additional information about the file-related classes of the Foundation framework,
see Foundation Framework Reference.

File and Data Management 79
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Reading and Writing Property List Data

A property list is a form of data representation that encapsulates several Foundation (and Core
Foundation) data types, including dictionaries, arrays, strings, dates, binary data, and numerical and
Boolean values. Property lists are commonly used to store structured configuration data. For example,
the Info.plist file found in every Cocoa and iPhone applications is a property list that stores
configuration information about the application itself. You can use property lists yourself to store
additional information, such as the state of your application when it quits.

In code, you typically construct a property list starting with either a dictionary or array as a container
object. You then add other property-list objects, including (possibly) other dictionaries and arrays.
The keys of dictionaries must be string objects. The values for those keys are instances of NSDictionary,
NSArray, NSString, NSDate, NSData, and NSNumber.

For an application whose data can be represented by a property-list object (such as an NSDictionary
object), you could write that property list to disk using a method such as the one shown in Listing
4-2. This method serializes the property list object into an NSData object, then calls the
writeApplicationData:toFile:method (the implementation for which is shown in Listing 4-4 (page
82)) to write that data to disk.

Listing 4-2 Converting a property-list object to an NSData object and writing it to storage

- (BOOL)writeApplicationPlist:(id)plist toFile:(NSString *)fileName {
NSString *error;
NSData *pData = [NSPropertyListSerialization dataFromPropertyList:plist

format:NSPropertyListBinaryFormat_v1_0 errorDescription:&error];
if (!pData) {

NSLog(@"%@", error);
return NO;

}
return ([self writeApplicationData:pData toFile:(NSString *)fileName]);

}

When writing property list files in iPhone OS, it is important to store your files in binary format. You
do this by specifying the NSPropertyListBinaryFormat_v1_0 key in the format parameter of the
dataFromPropertyList:format:errorDescription: method. The binary property-list format is
much more compact than the other format options, which are text based. This compactness not only
minimizes the amount of space taken up on the user’s device, it also improves the time it takes to
read and write the property list.

Listing 4-5 shows the corresponding code for loading a property-list file from disk and reconstituting
the objects in that property list.

Listing 4-3 Reading a property-list object from the application’s Documents directory

- (id)applicationPlistFromFile:(NSString *)fileName {
NSData *retData;
NSString *error;
id retPlist;
NSPropertyListFormat format;

retData = [self applicationDataFromFile:fileName];
if (!retData) {

NSLog(@"Data file not returned.");
return nil;

}

80 File and Data Management
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

retPlist = [NSPropertyListSerialization propertyListFromData:retData
mutabilityOption:NSPropertyListImmutable format:&format errorDescription:&error];

if (!retPlist){
NSLog(@"Plist not returned, error: %@", error);

}
return retPlist;

}

For more on property lists and the NSPropertyListSerialization class, see Property List Programming
Guide for Cocoa.

Using Archivers to Read and Write Data

An archiver converts an arbitrary collection of objects into a stream of bytes. Although this may sound
similar to the process employed by the NSPropertyListSerialization class, there is an important
difference. A property-list serializer can convert only a limited set of (mostly scalar) data types.
Archivers can convert arbitrary Objective-C objects, scalar types, arrays, structures, strings, and more.

The key to the archiving process is in the target objects themselves. The objects manipulated by an
archiver must conform to the NSCoding protocol, which defines the interface for reading and writing
the object’s state. When an archiver encodes a set of objects, it sends an encodeWithCoder: message
to each one, which the object then uses to write out its critical state information to the corresponding
archive. The unarchiving process reverses the flow of information. During unarchiving, each object
receives an initWithCoder: message, which it uses to initialize itself with the state information
currently in the archive. Upon completion of the unarchiving process, the stream of bytes is
reconstituted into a new set of objects that have the same state as the ones written to the archive
previously.

The Foundation framework supports two kinds of archivers—sequential and keyed. Keyed archivers
are more flexible and are recommended for use in your application. The following example shows
how to archive a graph of objects using a keyed archiver. The representation method of the
_myDataSource object returns a single object (possibly an array or dictionary) that points to all of the
objects to be included in the archive. The data object is then written to a file whose path is specified
by the myFilePath variable.

NSData *data = [NSKeyedArchiver archivedDataWithRootObject:[_myDataSource
representation]];
[data writeToFile:myFilePath atomically:YES];

Note: You could also send send a archiveRootObject:toFile: message to the NSKeyedArchiver
object to create the archive and write it to storage in one step.

To load the contents of an archive from disk, you simply reverse the process. After loading the data
from disk, you use the NSKeyedUnarchiver class and its unarchiveObjectWithData: class method
to get back the model-object graph. For example, to unarchive the data from the previous example,
you could use the following code:

NSData* data = [NSData dataWithContentsOfFile:myFilePath];
id rootObject = [NSKeyedUnarchiver unarchiveObjectWithData:data];

For more information on how to use archivers and how to make your objects support the NSCoding
protocol, see Archives and Serializations Programming Guide for Cocoa.

File and Data Management 81
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Writing Data to Your Documents Directory

Once you have an NSData object encapsulating the application data (either as an archive or a serialized
property list), you can call the method shown in Listing 4-4 to write that data to the application
Documents directory.

Listing 4-4 Writing data to the application’s Documents directory

- (BOOL)writeApplicationData:(NSData *)data toFile:(NSString *)fileName {
NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];
if (!documentsDirectory) {

NSLog(@"Documents directory not found!");
return NO;

}
NSString *appFile = [documentsDirectory

stringByAppendingPathComponent:fileName];
return ([data writeToFile:appFile atomically:YES]);

}

Reading Data from the Documents Directory

To read a file from your application’s Documents directory, construct the path for the file name and
use the desired method to read the file contents into memory. For relatively small files—that is, files
less than a few memory pages in size—you could use the code in Listing 4-5 to obtain a data object
for the file contents. This example constructs a full path to the file in the Documents directory, creates
a data object from it, and then returns that object.

Listing 4-5 Reading data from the application’s Documents directory

- (NSData *)applicationDataFromFile:(NSString *)fileName {
NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];
NSString *appFile = [documentsDirectory

stringByAppendingPathComponent:fileName];
NSData *myData = [[[NSData alloc] initWithContentsOfFile:appFile]

autorelease];
return myData;

}

For files that would require multiple memory pages to hold in memory, you should avoid loading
the entire file all at once. This is especially important if you plan to use only part of the file. For larger
files, you should consider mapping the file into memory using either the mmap function or the
initWithContentsOfMappedFile: method of NSData.

Choosing when to map files versus load them directly is up to you. It is relatively safe to load a file
entirely into memory if it requires only a few (3-4) memory pages. If your file requires several dozen
or a hundred pages, however, you would probably find it more efficient to map the file into memory.
As with any such determination, though, you should measure your application’s performance and
determine how long it takes to load the file and allocate the necessary memory.

82 File and Data Management
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

File Access Guidelines

When creating files or writing out file data, keep the following guidelines in mind:

 ■ Minimize the amount of data you write to the disk. File operations are relatively slow and involve
writing to the Flash disk, which has a limited lifespan. Some specific tips to help you minimize
file-related operations include:

 ❏ Write only the portions of the file that changed, but aggregate changes when you can. Avoid
writing out the entire file just to change a few bytes.

 ❏ When defining your file format, group frequently modified content together so as to minimize
the overall number of blocks that need to be written to disk each time.

 ❏ If your data consists of structured content that is randomly accessed, store it in a SQLite
database. This is especially important if the amount of data you are manipulating could grow
to be more than a few megabytes in size.

 ■ Avoid writing cache files to disk. The only exception to this rule is when your application quits
and you need to write state information that can be used to put your application back into the
same state when it is next launched.

Saving State Information

When the user presses the Home button, iPhone OS quits your application and returns to the Home
screen. Similarly, if your application opens a URI whose scheme is handled by a different application,
iPhone OS quits your application and opens the URI in the other application. In other words, any
action that would cause your application to suspend or go to the background in Mac OS X causes
your application to quit in iPhone OS. Because these actions happen regularly on mobile devices,
your application must change the way it manages volatile data and application state.

Unlike most desktop applications, where the user manually chooses when to save files to disk, your
application should save changes automatically at key points in your workflow. Exactly when you
save data is up to you, but there are two potential options. Either you can save each change immediately
as the user makes it, or you can batch changes on the same page together and save them when the
page is dismissed, a new page is displayed, or the application quits. Under no circumstances should
you let the user navigate to a new page of content without saving the data on the previous page.

When your application is asked to quit, you should save the current state of your application to a
temporary cache file or to the preferences database. The next time the user launches your application,
use that information to restore your application to its previous state. The state information you save
should be as minimal as possible but still let you accurately restore your application to an appropriate
point. You do not have to display the exact same screen the user was manipulating previously if
doing so would not make sense. For example, if a user edits a contact and then leaves the Phone
application, upon returning, the Phone application displays the top-level list of contacts, rather than
the editing screen for the contact.

File and Data Management 83
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Case Sensitivity

The file system for iPhone OS–based devices is case sensitive. Whenever you work with filenames,
you should be sure that the case matches exactly or your code may be unable to open or access the
file.

Networking

Applications that want to communicate over the network have several different options for doing so,
including the NSStream classes in the Foundation framework, the CFNetwork framework, and the
low-level functions in the Core OS layer of the system. When implementing code to receive or transmit
across the network, remember that doing so is one of the most power-intensive operations on a device.
Minimizing the amount of time spent transmitting or receiving helps improve battery life. To that
end, you should consider the following tips when writing your network-related code:

 ■ For protocols you control, define your data formats to be as compact as possible.

 ■ Avoid communicating using chatty protocols.

 ■ Transmit data packets in bursts whenever you can.

The cellular and WiFi radios are designed to power down when there is no activity. Doing so can
take several seconds though, depending on the radio. If your application transmits small bursts of
data every few seconds, the radios may stay powered up and continue to consume power, even when
they are not actually doing anything. Rather than transmit small amounts of data more often, it is
better to transmit a larger amount of data once or at relatively large intervals.

When communicating over the network, it is also important to remember that packets can be lost at
any time. When writing your networking code, you should be sure to make it as robust as possible
when it comes to failure handling. It is perfectly reasonable to implement handlers that respond to
changes in network conditions, but do not be surprised if those handlers are not called consistently.
For example, the Bonjour networking callbacks may not always be called immediately in response
to the disappearance of a network service. The Bonjour system service does immediately invoke
browsing callbacks when it receives a notification that a service is going away, but network services
can disappear without notification. This might occur if the device providing the network service
unexpectedly loses network connectivity or the notification is lost in transit.

For more information about the objects of the CFNetwork framework, see CFNetwork Framework
Reference.

User Interface Design Considerations

A good user interface design requires making appropriate choices about the information you choose
to present to the user and the workflow you use to present it. Remember to think about the needs of
the user on the go. Think about the information that is most relevant and how you can deliver that
information quickly and with a minimal of screens. Use the presentation patterns that are most
appropriate for the type of data you are presenting. And remember to make your interface visually
appealing.

84 Networking
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

Creating an application that works well in iPhone OS involves following these high-level principles:

 ■ Focus on what the user needs at any given moment

 ■ Provide a well organized and easy-to-follow workflow

 ■ Provide a clean and uncluttered layout for each screen in your workflow

 ■ Use graphics effectively in your content

 ■ Optimize your code for maximum performance

 ■ Support standard iPhone paradigms, graphics, and gestures

 ■ Provide appropriate feedback to the user

 ■ Integrate appropriately with the system and other applications

 ■ Minimize text entry

In an iPhone application, you must use space efficiently but not be so intent on fitting every last
feature onto the screen that your interface is hard to use. Your designs should be clean and well
organized, providing exactly the right information with just a few taps. If you are creating an iPhone
OS version of an existing desktop application, this might mean leaving out less-important features.
Porting applications feature for feature from the desktop is not recommended. Not only can it be hard
to fit all of the necessary content on the smaller screen, it loses sight of the principle that you should
focus on what the user needs at the moment. In a mobile context, providing information that is
appropriate is more important than having lots of features.

For detailed information about designing your user interface, see iPhone Human Interface Guidelines.

User Interface Design Considerations 85
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

86 User Interface Design Considerations
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Design Guidelines

An iPhone application executes in a runtime and physical environment that determines its life cycle,
where it reads and writes its data, and how it accesses its resources. The following sections describe
this environment.

Core Application Architecture

An iPhone application executes in an runtime environment where it is continuously receiving events
from the system and responding to those events, often by changing how it presents itself to the user.
This continuous pattern of getting events and responding to them appropriately is called the event
and drawing cycle. In these cycles, certain objects of an iPhone application play key roles. An iPhone
application also has a runtime life cycle (described “The Application Life Cycle” (page 90)) that marks
the key junctures from the moment it launches to the moment it quits.

The Event and Drawing Cycle

When an application starts running in iPhone OS, the operating system calls the standard entry point:
the main function. The main function must always do three things:

1. Create a top-level autorelease pool.

2. Call the UIApplicationMain function.

3. Release the autorelease pool after UIApplicationMain returns.

When you create a project for an iPhone application in Xcode, the project template includes a main
function with the above structure.

Note: An autorelease pool is used in memory management. It is a Cocoa mechanism for the deferred
release of objects created during a functional block of code. For more on autorelease pools, see Memory
Management Programming Guide for Cocoa. Also see “Application Design Guidelines” (page 69) for
specific memory-management guidelines related to autorelease pools.

Listing 5-1 shows you what the main function of a typical iPhone application looks like.

Core Application Architecture 87
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Listing 5-1 The main function of an iPhone application

#import <UIKit/UIKit.h>

int main(int argc, char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int retVal = UIApplicationMain(argc, argv, nil, nil);
[pool release];
return retVal;

}

In addition to the argc and argv parameters passed into main, the UIApplicationMain function
includes string parameters that identify the principal class (that is, the class of the application object)
and the class for the delegate of the application object. If you specify nil for the principal class, UIKit
assumes it to be UIApplication. If you specify nil for the delegate, be sure to provide an instance
of your delegate object in the application’s main nib file.

For reasons described later in this chapter, the application object must have a delegate that implements
methods of the UIApplicationDelegate protocol. The principal class can be UIApplication or a
subclass of it; if you specify a subclass, you can specify the name of that subclass as the delegate class.
When you do, iPhone OS automatically sends the instance of your subclass the application-delegate
messages.

The principal job of the UIApplicationMain function is to set up the application’s event and drawing
cycle. Figure 5-1 depicts this cycle. The operating system detects touch events occurring on the device
and places them in the application’s event queue. The application object takes an event off the top of
the queue and ensures that it is delivered to the object in the application that is best suited to handle
it. In response to the handling of the event, one or more objects of the application might update the
application’s user interface appropriately.

Figure 5-1 The event and drawing cycle

Operating
system

Event queue

Application
object

Application

Core objects

88 Core Application Architecture
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

In order for it to establish the event and drawing cycle, an application must establish a connection
with the underlying system and to set up the main event loop. The main event loop is the run loop
of the application’s main thread with one input source set up for events coming from the underlying
operating system. As events arrive, they are placed in a first-in first-out queue. Figure 5-2 illustrates
the conceptual outlines of the main event loop.

Figure 5-2 The main event loop

Main run loop

Event source
event

event

event
event
event

SystemPort

Note: A run loop monitors sources of input to a process, such as an application. When these sources
are ready for processing, the run loop dispatches control; when processing concludes, control passes
back to the run loop, which then waits for the next event. Run loops can have multiple input sources,
including ports and timers. Each thread of a process has its own run loop. You can use the NSRunLoop
class of the Foundation framework to manage run loops. For more on NSRunLoop and run loops in
general, see Threading Programming Guide.

The application gets an event from the event queue and dispatches it to the object that should next
handle it. In most cases, that object is the UIWindow object representing the application’s main window.
The window object, in turn, forwards the event to the first responder. The first responder is typically
the view object (UIView) of the application on which the touches associated with the event are taking
place.

In iPhone OS’s Multi-Touch event model, one or more fingers touching the screen—while possibly
moving in different directions—constitute a discrete event that is encapsulated as a UIEvent object.
An event object contains a set of UITouch objects that represent the finger touches associated with
the event. The system tracks touches through the various phases of the event—touch down, touch
moved, touch up—and modifies the state of each touch object as the touch progresses through the
phases. The UIResponder class is the base class for all objects that respond to events, which include
UIApplication, UIWindow, UIView, and all UIView subclasses. To respond to an event, a responder
object implements one or more UIRespondermethods that correspond to the event phases for touches.

The UIResponder class also defines the programmatic structure of the responder chain, a Cocoa
mechanism for cooperative event handling. The responder chain is a linked series of responder objects
in an application. For a typical event, the chain starts with the first responder; if this responder object
cannot handle the event, it passes it to the next responder in the chain. The message travels up the
chain—toward higher-level responder objects such as the window, the application, and the application’s
delegate—until the event is handled. If the event isn't handled, it is discarded.

Core Application Architecture 89
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

The responder object that handles the event tends to set in motion a series of programmatic actions
that result in the application redrawing all or a portion of its user interface (as well as other possible
outcomes, such as the playing of a sound). For example, the first responder could be a control object
(that is, an object inheriting from UIControl), and a control object handles an event by sending an
action message to an object controlling a view. This controller object then asks the view to redraw or
otherwise visually adjust a region of itself.

A central paradigm of UIKit is the view hierarchy, which underpins both the responder chain and
the way in which an application draws its views. A view hierarchy is a hierarchical arrangement of
views in a window, with a UIWindow object (itself a subclass of UIView) at the root of the hierarchy.
Every view has a to-one relationship to its superview—the view above it in the hierarchy—and it also
has a potentially to-many relationship to its subviews. Visually, the relationship between a view and
its subviews is enclosure: a view encloses or contains its subviews, and they are positioned and sized
within the coordinate system of their superview. This hierarchical structure for views allows you to
construct complex views from an assortment of smaller views, and it is also the basis for the drawing
order of a window’s views (generally, from superview to subview).

After the application handles an event, the application object fetches the next event from the event
queue and the cycle begins again.

Note: “Event Handling” (page 139) discusses event objects, touch objects, responder objects, and the
responder chain in more detail. “Windows and Views” (page 109) provides complete descriptions of
the the view hierarchy, view management, and the drawing cycle in an iPhone application.

The Application Life Cycle

You can think of an application during a runtime session as having a life cycle. Most of the time it
runs in its event and drawing cycle, getting events and responding to them in some way. But external
events can disrupt this processing at any time. For example, the user presses the Home button or, on
the iPhone, the device receives a phone call. The system responds to such an event by launching the
application that can handle the event. Because only one iPhone application can be running at any
given moment, the application that is currently running must quit.

Figure 5-3 depicts the life cycle of an iPhone application. Note that it does not show all the possible
notifications of external events an application might receive, only the more important ones.

90 Core Application Architecture
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Figure 5-3 Application life cycle

User taps application icon

UIApplicationMain()

applicationDidFinishLaunching:

User presses Home button

applicationWillTerminate:

Application execution terminates

Application
receives

and responds
to events

applicationDidReceiveMemoryWarning:

An iPhone application goes through several stages from the moment it is launched to the moment it
ceases execution.

1. The application launches.

Figure 5-3 (page 91) shows the user tapping an application icon in the Home screen. Although
this is the most common way of launching an application, other external events might be the
cause. For example, the Safari application is launched when another application passes it a web
site’s URL for handling.

2. The system calls the application’s main entry point, which calls the UIApplicationMain function.
The function instantiates the singleton application object (and the delegate object if a class name
is specified for it) and loads the application’s main nib file, the name of which is obtained from
the Info.plist file.

The UIApplicationMain function also starts the application’s main event loop.

3. The application sends applicationDidFinishLaunching: to its delegate, which does the
following:

 ■ It loads and restores application state and any data that it stored during the previous session
of execution. See “Application Design Guidelines” (page 69) for a discussion of requirements
and approaches for saving restoring application state and data.

 ■ It creates and lays out the views for its initial presentation, updating it with the appropriate
bits of state and model data.

Core Application Architecture 91
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

While the application delegate is doing this, the system loads the launch image file from the
application bundle and temporarily displays it. See “Application Icon and Launch Images” (page
102) for information about the launch image.

4. The application receives events and responds to them, often by redrawing or otherwise altering
its user interface.

While the application is running, the application delegate may receive an
applicationDidReceiveMemoryWarning:message. It should respond to this message by releasing
objects or freeing resources the application doesn’t need immediately and can recreate or reload,
if necessary. If the delegate does not respond to this message, or does not free sufficient memory,
the application may be terminated.

5. User presses the Home button.

Pressing the Home button is the most common case, but (as noted earlier) other external factors
may result in an application being asked to terminate execution.

6. The application sends applicationWillTerminate: to its delegate. In this method, the application
should save current application state and data to storage. It should also delete any temporary
files it has created.

7. The application terminates its execution.

Application Interruptions

In addition to the user pressing the Home button, there are other ways for the system to interrupt
your application. An application can be interrupted by an incoming phone call, an SMS message, a
calendar alert, or by the user pressing the Sleep button on a device. Unlike pressing the Home button,
however, these interruptions may be only temporary. If the user decides to take a call or reply to an
SMS message, however, doing so causes the termination of your application.

The following steps describe what happens when a phone call arrives. The same set of steps are also
followed for the arrival of SMS messages and calendar alerts, with the only difference being the type
of information presented to the user.

1. The system detects an incoming phone call.

2. The system calls your application delegate’s applicationWillResignActive: method. The
system also disables the delivery of touch events to your application.

You can use this method to disable timers, throttle back your OpenGL frame rates (if using
OpenGL), and generally put your application into a sleep state. For example, if you are a game
developer, you would use this notification to pause the game. While in the sleep state, your
application should not do any significant work.

3. The system displays an alert panel with information about the phone call. The system also prompts
the user to accept or ignore the call.

4. If the user ignores the call, the system calls your application delegate’s
applicationDidBecomeActive: method.

92 Core Application Architecture
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

At this point, your application can reenable timers and other timer-related activities and begin
running again. The system also resumes the delivery of touch events to your application.

5. If the user takes the call, the system calls your application delegate’s applicationWillTerminate:
method. Your application should terminate as usual, saving any needed contextual information
to return the user to the same place in your application upon your next launch.

Depending on what the user does while answering a phone call, the system may launch your
application again upon completion of the interruption. For example, if the user simply takes the call
and then hangs up, the system relaunches your application. If while on the call, the user goes back
to the Home screen and then launches another application, the system does not relaunch your
application.

Important: When the user takes a call and then launches an application while on the call, the height
of the status bar grows to reflect the fact that the user is on a call. Similarly, when the user ends the
call, the status bar height shrinks back to its regular size. Your own applications should be prepared
for these changes in the status bar height and adjust their content area accordingly. View controllers
handle this behavior for you automatically. If you lay out our user interface programmatically,
however, you need to take the status bar height into account when laying out your views and
implement the layoutSubviews method to handle dynamic layout changes.

If the user presses the Sleep/Wake button on the phone while running your application, the system
calls your application delegate’s applicationWillResignActive: method but does not prompt the
user for any information. Your application goes to sleep and should not perform any activity at this
time. Upon waking the device, the system similarly calls your application delegate’s
applicationDidBecomeActive: method. At that point, you can restart any timers and processing
you were doing.

The Application Bundle

When you build an application, Xcode packages it as a bundle. A bundle is a directory in the file
system that groups related resources together in one place. The application bundle contains the
application executable and any resources used by the application (for instance, the application icon,
other images, and localized content). Table 5-1 lists the contents of a typical application bundle, which
for demonstration purposes here is called MyApp). This example is for illustrative purposes only. Some
of the files listed in this table may not appear in your own application bundles.

Table 5-1 A typical application bundle

DescriptionFile

The executable file containing your application’s code. The name of this file
is the same as your application name minus the .app extension. This file is
required.

MyApp

The settings bundle is a file package that you use to add application
preferences to the Settings application. This bundle contains property lists
and other resource files to configure and display your preferences. See “The
Settings Bundle” (page 102) for more information.

Settings.bundle

The Application Bundle 93
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

DescriptionFile

The 57 x 57 pixel icon used to represent your application on the device home
screen. This icon should not contain any glossy effects. The system adds
those effects for you automatically. This file is required. For information
about this image file, see “Application Icon and Launch Images” (page 102).

Icon.png

The 29 x 29 pixel icon used to represent your application in the Settings
application. If your application includes a settings bundle, this icon is
displayed next to your application name in the Settings application. If you
do not specify this icon file, the Icon.png file is scaled and used instead. For
information about this image file, see “The Settings Bundle” (page 102).

Icon-Settings.png

The application’s main nib file contains the default interface objects to load
at application launch time. Typically, this nib file contains the application’s
main window object and an instance of the application delegate object. Other
interface objects are then either loaded from additional nib files or created
programmatically by the application. (The name of the main nib file can be
changed by assigning a different value to the NSMainNibFile key in the
Info.plist file. See “The Information Property List” (page 95) for further
information.)

MainWindow.nib

The 480 x 320 pixel image to display when your application is launched. The
system uses this file as a temporary background until your application loads
its window and user interface. For information about this image file, see
“Application Icon and Launch Images” (page 102).

Default.png

Also known as the information property list, this file is a property list defining
key values for the application, such as bundle ID, version number, and display
name. See “The Information Property List” (page 95) for further information.
This file is required.

Info.plist

Nonlocalized resources are placed at the top level of the bundle directory
(sun.png represents a nonlocalized image file in the example). The application
uses nonlocalized resources regardless of the language setting chosen by the
user.

sun.png (or other
resource files)

Localized resources are placed in subdirectories with an ISO language
abbreviation for a name plus an .lproj suffix. (For example, the en.lproj,
fr.lproj, and es.lproj directories contain resources localized for English,
French, and Spanish.) For more information, see “Internationalizing
Applications” (page 105).

en.lproj

fr.lproj

es.lproj

other
language-specific
project directories

An application might not have nonlocalized resources, but it should be internationalized and have a
language.lproj folder for each language it supports.

You use the methods of the NSBundle class or functions of the CFBundle opaque type to obtain paths
to localized and nonlocalized image and sound resources stored in the application bundle. For example,
to get a path to the image file sun.png (shown in “Application Interruptions” (page 92)) and create
an image file from it would require two lines of Objective-C code:

94 The Application Bundle
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

NSString* imagePath = [[NSBundle mainBundle] pathForResource:@"sun"
ofType:@"png"];
UIImage* sunImage = [[UIImage alloc] initWithContentsOfFile:imagePath];

Calling the mainBundle class method returns an object representing the application bundle. See
Resource Programming Guide for information on loading resources.

Application Configuration

The application bundle contains several components that you must configure for your application to
execute successfully when launched. You must specify a range of properties that both identify the
application to the system and identify the preferences users can make. You must also provide images
that the system looks for when it presents your application to users.

The Information Property List

The information property list is a file named Info.plist that is included with every iPhone application
project created by Xcode. It is a property list whose key-value pairs specify essential
runtime-configuration information for the application. The elements of the information property list
are organized in a hierarchy in which each node is an entity such as an array, dictionary, string, or
other scalar type.

Note: To learn more about information property lists, see Runtime Configuration Guidelines.

In Xcode, you can access the information property list by choosing “Edit Active Target TargetName”
from the Project menu. Then in the target’s Info window, click the Properties control. Xcode displays
a pane of information similar to the example in Figure 5-4.

Application Configuration 95
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Figure 5-4 The Properties pane of a target’s Info window

The Properties pane shows you some, but not all, of the properties of the application bundle. When
you click the “Open Info.plist as File” button, or when you select the Info.plist file in your Xcode
project, Xcode displays a property list editor window similar to the one in Figure 5-5. You can use
this window to edit the property values and add new key-value pairs.

96 Application Configuration
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Figure 5-5 Information property list editor

Xcode automatically sets the value of some of these properties, but others you need to set explicitly.
Table 5-2 lists some of the important keys you might want to include in your application’s Info.plist
file. For a complete list of properties you can include in this file, see Runtime Configuration Guidelines.

Table 5-2 Important keys in the Info.plist file

ValueKey

The name to display underneath the application icon. This value should
be localized for all supported languages.

CFBundleDisplayName

An identifier string that specifies the application type of the bundle. This
string should be a uniform type identifier (UTI). For example, if your
company name is Ajax and the application is named Hello, the bundle
identifier would be com.Ajax.Hello.

The bundle identifier is used in validating the application signature.

CFBundleIdentifier

An array of URL types that the application can handle. Each URL type
is a dictionary that defines the schemes (for example , such as “http” or
“mailto”) that the application can handle. This property allows
applications to register custom URL schemes.

CFBundleURLTypes

A string that specifies the build version number of the bundle. This value
is a monotonically increased string, comprised of one or more
period-separated integers. This value cannot be localized.

CFBundleVersion

Application Configuration 97
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

ValueKey

A Boolean value that indicates whether the bundle can run on iPhone
OS only. Xcode adds this key automatically and sets its value to true.
You should not change the value of this key.

LSRequiresIPhoneOS

A string that identifies the name of the application’s main nib file. If you
want to use a nib file other than the default one created for your project,
associate the name of that nib file with this key. The name of the nib file
should not include the .nib filename extension.

NSMainNibFile

A string that identifies the style of the status bar as the application
launches. This value is based on the Status Bar Style Constants
constants declared in UIApplication.h header file. The default style is
UIBarStyleDefault. The application can change this initial status-bar
style when it finishes launching.

UIStatusBarStyle

A Boolean value that determines whether the status bar is initially hidden
when the application launches. Set it to true to hide the status bar. The
default value is false.

UIStatusBarHidden

A string that identifies the initial orientation of the application’s user
interface. This value is based on the Interface Orientation Constants
constants declared in the UIApplication.h header file. The default style
is UIInterfaceOrientationPortrait.

For more information on launching your application in landscape mode,
see “Launching in Landscape Mode” (page 102).

UIInterface-
Orientation

A Boolean value that indicates whether the application icon already
includes gloss and bevel effects. This property is false by default. Set it
to true if you do not want the system to add these effects to your artwork.

UIPrerenderedIcon

A Boolean value that notifies the system that the application uses the
WiFi network for communication. Applications that use WiFi for any
period of time must set this key to true; otherwise, after 30 minutes, the
device shuts down WiFi connections to save power. Setting this flag also
lets the system know that it should display the network selection dialog
when WiFi is available but not currently being used. The default value
is false.

UIRequiresPersistent-
WiFi

Properties with string values that are displayed in the user interface should be localized. Specifically,
the string value in Info.plist should be a key to a localized string in the InfoPlist.strings file
of a language-localized subdirectory. See “Internationalizing Applications” (page 105) for details.

Custom URL Schemes and Interapplication Communication

You can register URL types for your application that include custom URL schemes. A custom URL
scheme is a mechanism through which third-party applications can interact with each other and with
the system. Through a custom URL scheme, an application can make its services available to other
applications.

98 Application Configuration
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Once you have registered a scheme, another application can send an openURL:message to its singleton
UIApplication object, passing in an NSURL object that represents a URL incorporating your registered
scheme. The system then launches your application, and your application delegate can handle the
URL resource in its application:handleOpenURL: method (which is discussed in Table 5-3 (page
99)). The following code fragment illustrates how one application can request the services of another
application (“todolist” in this example is a hypothetical custom scheme registered by an application):

NSURL *myURL = [NSURL URLWithString:@"todolist://www.acme.com?Quarterly
Report#200806231300"];
[[UIApplication sharedApplication] openURL:myURL];

Important: If your URL type includes a scheme that is identical to one defined by Apple, the
Apple-provided application that handles a URL with that scheme (for example, “mailto”) is launched
instead of your application. If a URL type registered by your application includes a scheme that
conflicts with a scheme registered by another third-party application, the application that launches
for a URL with that scheme is undefined.

Registering Custom URL Schemes

To register a URL type for your application, you must specify the subproperties of the
CFBundleURLTypes property, which was introduced in “The Information Property List” (page 95).
The CFBundleURLTypes property is an array of dictionaries in the application’s Info.plist file, with
each dictionary defining a URL type the application supports. Table 5-3 describes the keys and values
of a CFBundleURLTypes dictionary.

Table 5-3 Keys and values of the CFBundleURLTypes property

ValueKey

A string that is the abstract name for the URL type. To ensure uniqueness,
it is recommended that you specify a reverse-DNS style of identifier, for
example, “com.acme.Foo”.

The URL-type name provided here is used as a key to a localized string in
the InfoPlist.strings file in a language-localized bundle subdirectory.
The localized string is the human-readable name of the URL type in a given
language.

CFBundleURLName

An array of URL schemes for URLs belonging to this URL type. Each scheme
is a string. URLs belonging to a given URL type are characterized by their
scheme components.

CFBundleURLSchemes

Figure 5-6 shows a definition of the CFBundleURLTypes property (“URL types”) using the built-in
Xcode editor for Info.plist files. “URL identifier” is the editor’s label for the CFBundleURLName
property and “URL Schemes” is the label for the CFBundleURLSchemes property.

Application Configuration 99
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Figure 5-6 Defining a custom URL scheme in the Info.plist file

Once you have registered a URL type with a custom scheme by defining the CFBundleURLTypes
property, you can test the scheme in the following way:

1. Build, install, and run your application.

2. Go the the Home screen and launch Safari. (In the iPhone simulator you can go to the Home
screen by selecting Hardware > Home from the menu.)

3. Type a URL that uses your custom scheme in the address bar of Safari.

4. Verify that your application launches and the application delegate is sent a
application:handleOpenURL: message.

Handling URL Requests

The delegate of an application handles URL requests routed to the application by implementing the
application:handleOpenURL: method. You especially need to implement this method if you have
registered custom URL schemes for your application.

A URL request based on a custom scheme assumes a kind of protocol understood by those applications
requesting the services of your application. The URL contains information of some kind that the
scheme-registering application is expected to process or respond to in some way. Objects of the NSURL
class, which are passed into the application:handleOpenURL:method, represent URLs in the Cocoa
Touch framework. NSURL conforms to the RFC 1808 specification; it includes methods that return the
various parts of a URL as defined by RFC 1808, including user, password, query, fragment, and
parameter string. The “protocol” for your custom scheme can use these URL parts for conveying
various kinds of information.

In the example implementation of application:handleOpenURL: shown in Listing 5-2, the passed-in
URL object conveys application-specific information in its query and fragment parts. The delegate
extracts this information—in this case, the name of a to-do task and the date the task is due—and
with it creates a model object of the application.

100 Application Configuration
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Listing 5-2 Handling a URL request based on a custom scheme

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
if ([[url scheme] isEqualToString:@"todolist"]) {

ToDoItem *item = [[ToDoItem alloc] init];
NSString *taskName = [url query];
if (!taskName || ![self isValidTaskString:taskName]) { // must have a

task name
[item release];
return NO;

}
taskName = [taskName

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

item.toDoTask = taskName;
NSString *dateString = [url fragment];
if (!dateString || [dateString isEqualToString:@"today"]) {

item.dateDue = [NSDate date];
} else {

if (![self isValidDateString:dateString]) {
[item release];
return NO;

}
// format: yyyymmddhhmm (24-hour clock)
NSString *curStr = [dateString substringWithRange:NSMakeRange(0,

4)];
NSInteger yeardigit = [curStr integerValue];
curStr = [dateString substringWithRange:NSMakeRange(4, 2)];
NSInteger monthdigit = [curStr integerValue];
curStr = [dateString substringWithRange:NSMakeRange(6, 2)];
NSInteger daydigit = [curStr integerValue];
curStr = [dateString substringWithRange:NSMakeRange(8, 2)];
NSInteger hourdigit = [curStr integerValue];
curStr = [dateString substringWithRange:NSMakeRange(10, 2)];
NSInteger minutedigit = [curStr integerValue];

NSDateComponents *dateComps = [[NSDateComponents alloc] init];
[dateComps setYear:yeardigit];
[dateComps setMonth:monthdigit];
[dateComps setDay:daydigit];
[dateComps setHour:hourdigit];
[dateComps setMinute:minutedigit];
NSCalendar *calendar = [NSCalendar currentCalendar];
NSDate *itemDate = [calendar dateFromComponents:dateComps];
if (!itemDate) {

[dateComps release];
return NO;

}
item.dateDue = itemDate;
[dateComps release];

}

[(NSMutableArray *)self.list addObject:item];
[item release];
return YES;

}
return NO;

}

Application Configuration 101
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Be sure to validate the input you get from URLs passed to your application; see Validating Input in
Secure Coding Guide to find out how to avoid problems related to URL handling. To learn about URL
schemes defined by Apple, see “Apple Applications URL Schemes” (page 207).

Application Icon and Launch Images

The file for the icon displayed in the user’s Home screen has the default name of Icon.png (although
the CFBundleIconFile property in the Info.plist file lets you rename it). It should be a PNG image
file located in the top level of the application bundle. The application icon should be a 57 x 57 pixel
image without any shine or round beveling effects. Typically, the system applies these effects to the
icon before displaying it. You can override that behavior, however, by including the
UIPrerenderedIcon key in your application’s Info.plist file; for more information, see Table
5-2 (page 97).

The file for the application’s launch image is named Default.png. This image should closely resemble
the application’s initial user interface; the system displays the launch image before an application is
ready to display its user interface, giving the impression of a quick launch. The launch image should
also be a PNG image file, located in the lop level of the application bundle. If the application is launched
through a URL, the system looks for a launch image named Default-scheme.png, where scheme is
the scheme of the URL. If that file is not present, it chooses Default.png instead.

To add an image file to a project in Xcode, choose Add to Project from the Project menu, locate the
file in the browser, and click Add.

The Settings Bundle

The Settings bundle is named Settings.bundle and is located in the top level of the application
bundle. The Settings bundle is an opaque directory that contains information that the Settings
application uses when it displays your application’s preferences to users. The Settings bundle contains
one or more schema files that provide detailed information about your application’s preferences. It
may also include other support files needed to display your preferences, such as images or localized
strings. When the user supplies values for your application’s preferences, the Settings application
updates the preferences database. At runtime, your application can retrieve those values using the
NSUserDefaults or CFPreferences APIs.

The file for the icon displayed for your custom application preferences in the Settings applications
has the name Icon-Settings.png. This file should be a 29 x 29 pixel PNG image file located in the
top level of the application bundle. If your application has a settings bundle, but you do not provide
this file, the Settings application uses the application icon (Icon.png) by default.

For more information on application preferences and the Settings bundle, see “Application
Preferences” (page 193).

Launching in Landscape Mode

Applications in iPhone OS normally launch in portrait mode to match the orientation of the Home
screen. If you have an application that you want to launch in landscape mode, however, you must
perform several steps to make it launch in that orientation.

102 Launching in Landscape Mode
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

 ■ Set the UIInterfaceOrientation key to an appropriate value in your application’s Info.plist
file. You can set the value for this key to UIInterfaceOrientationLandscapeLeft or
UIInterfaceOrientationLandscapeRight.

 ■ Lay out your content in landscape mode or make sure that your content’s autoresizing options
are set correctly.

 ■ When your view is loaded, you must manually reorient it to landscape mode.

Important: These steps are only needed if you intend to run your application in landscape mode all
the time. If you are creating an application that can toggle between landscape and portrait modes,
you should launch your application in portrait mode and then use the built-in view controller support
to rotate your interface as needed.

The UIInterfaceOrientation key provides a hint to iPhone OS that it should set the orientation of
the application status bar (if one is displayed) to the specified orientation at launch time. This is
equivalent to calling the setStatusBarOrientation:animated: method of UIApplication early in
the execution of your applicationDidFinishLaunching: method. Setting this orientation affects
only the status bar orientation, however, and does not affect the orientation of your views or default
launch image.

Because the UIInterfaceOrientation key does not alter the orientation of your content, you must
present that content in the desired orientation when it is loaded. If you are using Interface Builder to
lay out your views, you can reorient the design surface for landscape-right mode and lay things out
graphically there. You can also lay out your views in portrait mode and let the view autoresizing
behavior adjust the layout to landscape mode for you. When rotating the design surface from portrait
to landscape mode, Interface Builder respects the autoresizing behaviors set for each view and adjusts
their position on the design surface. You can therefore test the behavior of your views inside Interface
Builder before loading them into your application.

Regardless of how you orient the design surface in Interface Builder, it is important to remember that
nib files themselves have no concept of interface orientation. Views are blank canvases that can be
used for many purposes, such as presenting content in a scroll view. Therefore, the size of a view
does not change its orientation at load time; it is always loaded in portrait mode. It is up to you to
rotate your views to the appropriate orientation after they are loaded. When you do this depends on
how you construct your application. If you construct your application using view controllers, you
can perform this operation in the viewDidLoad method of your view controller objects. If you are not
using view controllers, you can perform it in the applicationDidFinishLaunching: method after
creating your views or after loading them from a nib file.

Important: Interface orientation changes must always be performed on your views and not on your
application’s main window. The graphics system expects the window to be in portrait orientation at
all times. Changing the transform of your window object could prevent your views from drawing
their contents correctly.

After your views are loaded into memory, you need to reorient them to landscape mode by doing
the following:

1. Find the center point of your application’s content area.

2. Rotate your views 90 degrees around that center point.

Launching in Landscape Mode 103
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

The exact center point of your application’s content area can vary and is dependent on your interface
design. Full-screen applications or applications that display a translucent status bar typically have a
content area that matches the screen bounds. Applications that display an opaque status bar typically
have a content area that does not include the area occupied by the status bar. This latter scenario is
more common and is also a little more difficult to implement correctly. As a result, the rest of this
section shows you how to perform a rotation on an interface that uses an opaque status bar.

When your landscape view is loaded from its nib file, its center point is initially set to match the center
point of the screen, as shown in Figure 5-7. Because the view in the example does not occupy the area
under the status bar, however, the initial center point is incorrect. Determining the correct center
point requires computing the actual rectangle that the view will fill and determining the center of it.
This is where the frame of the status bar can help. The x-origin point and height of the status bar
correspond to the width and height of the rectangle the view will fill. The origin of this rectangle is
fixed at (0, 0) because it corresponds to the origin of the window’s coordinate system. From the
resulting rectangle, you can get the center point, assign it to the center property of your view, and
then apply the rotation transform.

Figure 5-7 Coordinates used when laying out in landscape mode

Centered on screen Application rotated

Screen

Content area

Relocate the center point of
the view to match the center
point of the content area,
then rotate the view

Center point of screen

Center point of content area

Listing 5-3 shows the viewDidLoad method of a controller object whose views are oriented for
landscape-right mode at launch. This method uses the status bar frame rectangle to compute the
visible content area and then get the center of that rectangle. It then shifts the center of the view to
that location and rotates the view into the proper orientation.

Listing 5-3 Reorienting a view to landscape mode

- (void)viewDidLoad {

104 Launching in Landscape Mode
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

UIInterfaceOrientation orientation = [[UIApplication sharedApplication]
statusBarOrientation];

[super viewDidLoad];

if (orientation == UIInterfaceOrientationLandscapeRight) {
CGAffineTransform transform = self.view.transform;

// Use the status bar frame to determine the center point of the window's
content area.

CGRect statusBarFrame = [[UIApplication sharedApplication]
statusBarFrame];

CGRect bounds = CGRectMake(0, 0, statusBarFrame.size.height,
statusBarFrame.origin.x);

CGPoint center = CGPointMake(bounds.size.height / 2.0, bounds.size.width
/ 2.0);

// Set the center point of the view to the center point of the window's
content area.

self.view.center = center;

// Rotate the view 90 degrees around its new center point.
transform = CGAffineTransformRotate(transform, (M_PI / 2.0));
self.view.transform = transform;

}
}

Internationalizing Applications

Ideally, the text, images, and other content that iPhone applications display to users should be localized
for multiple languages. The text that an alert dialog displays, for example, should be in the preferred
language of the user. The process of preparing a project for content localized for particular languages
is called internationalization. Project components that are candidates for localization include:

 ■ Code-generated text, including locale-specific aspects of date, time, and number formatting

 ■ Static text—for example, an HTML file loaded into a web view for displaying application help

 ■ Icons and other images when those images either contain text or have some culture-specific
meaning

 ■ Sound files containing spoken language

 ■ Nib files

Using the Settings application, users select the language they want to see in applications' user interfaces
from the Language preferences view (see Figure 5-8) They get to this view from the International
group of settings, accessed from General settings.

Internationalizing Applications 105
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Figure 5-8 The Language preference view

The chosen language is associated with a subdirectory of the bundle. The subdirectory name has two
components: an ISO 639-1 language code and a .lproj suffix. The language code may also modified
with a particular region by appending (after an underscore) an ISO 3166-1 region designator. For
example, to designate resources localized to English as spoken in the United States, the bundle would
be named en_US.lproj. By convention, these language-localized subdirectories are called lproj
folders.

Note: You may use ISO 639-2 language codes instead of those defined by IOS 639-1. See “Language
and Locale Designations” in Internationalization Programming Topics for descriptions of language and
region codes.

An lproj folder contains all the localized content for a given language and, possibly, a given region.
You use the facilities of the NSBundle class or the CFBundle opaque type to locate (in one of the
application’s lproj folders) resources localized for the currently selected language. Figure 5-9 gives
an example of such a directory containing content localized for English (en).

Figure 5-9 The contents of a language-localized subdirectory

en.lproj/

InfoPlist.strings

Localizable.strings

sign.png

This subdirectory example has the following items:

106 Internationalizing Applications
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

 ■ The InfoPlist.strings file contains strings assigned as localized values of certain properties
in the project’s Info.plist file (such as CFBundleDisplayName). For example, the
CFBundleDisplayName key for an application named Battleship in the English version would
have this entry in InfoPlist.strings in the fr.lproj subdirectory:

CFBundleDisplayName = "Cuirassé";

 ■ The Localizable.strings file contains localized versions of strings generated by application
code.

 ■ The sign.png file in this example is a file containing a localized image.

To internationalize strings in your code for localization, use the NSLocalizedString macro in place
of the string. This macro has the following declaration:

NSString *NSLocalizedString(NSString *key, NSString *comment);

The first parameter is a unique key to a localized string in a Localizable.strings file in a given
lproj folder. The second parameter is comment to assist in translation. For example, suppose you
are setting the content of a label (UILabel object) in your user interface. The following code would
internationalize the label’s text:

label.text = NSLocalizedString(@"City", @"Label for City text field");

You can then create a Localizable.strings file for a given language and add it to the proper lproj
folder. For the above key, this file would have an entry similar to the following:

"City" = "Ville";

Note: Alternatively, you can insert NSLocalizedString calls in your code where appropriate and
then run the genstrings command-line tool. This tool generates a Localizable.strings template
that includes the key and comment for each string requiring translation. For further information about
genstrings, see the genstrings(1) man page.

To find out more about internationalization, see Internationalization Programming Topics.

Internationalizing Applications 107
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

108 Internationalizing Applications
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

The Application Environment

Windows and views are the visual components you use to construct the interface of your iPhone
application. Windows provide the background platform for displaying content but views do most of
the work of drawing that content and responding to user interactions. Although this chapter covers
the concepts associated with both windows and views, it focuses more on views because of their
importance to the system.

Because views play such a vital role in iPhone applications, there is no way to cover every aspect of
them in a single chapter. This chapter focuses on the basic properties of windows and views, their
relationships to each other, and how you create and manipulate them in your application. This chapter
does not cover how views respond to touch events or draw custom content. For more information
about those subjects, see “Event Handling” (page 139) and “Graphics and Drawing” (page 151)
respectively.

What Are Windows and Views?

Like Mac OS X, iPhone OS uses windows and views to present graphical content on the screen.
Although there are many similarities between the window and view objects on both platforms, the
roles played by both windows and views are slightly different on each platform.

The Role of UIWindow

Although windows play an important role in the development of Mac OS X applications, in iPhone
applications, that role is reduced significantly. A typical iPhone application has only one window,
represented by an instance of the UIWindow class. Your application creates this window at launch
time (or loads it from a nib file), adds one or more views to it, and displays it. After that, you rarely
need to refer to the window object again.

A window object has no visual adornments such as a close box or title bar and cannot be closed or
manipulated directly by the user. All manipulations to a window occur through its programmatic
interfaces. The application also uses the window to facilitate the delivery of events to your application.
For example, the window object keeps track of its current first responder object and dispatches events
to it when asked to do so by the UIApplication object.

What Are Windows and Views? 109
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

One thing that experienced Mac OS X developers may find unusual about the UIWindow class is its
inheritance. In Mac OS X, the parent class of NSWindow is NSResponder. In iPhone OS, the parent class
of UIWindow is UIView. Thus, in iPhone OS, a window is also a view object. Despite its parentage,
you typically treat windows in iPhone OS the same as you would in Mac OS X. You typically do not
manipulate the view-related properties of a UIWindow object directly.

When creating your application window, you should always set its initial frame size to fill the entire
screen. If you load your window from a nib file, Interface Builder does not permit you to create a
window smaller than the screen size. If you create your window programmatically, however, you
must specifically pass in the desired frame rectangle at creation time. There is no reason to pass in
any rectangle other than the screen rectangle, which you can get from the UIScreen object as shown
here:

UIWindow* aWindow = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]] autorelease];

Although iPhone OS supports layering windows on top of each other, your application should never
create more than one window. The system itself uses additional windows to display the system status
bar, important alerts, and other types of messages on top of your application’s windows. If you want
to display alerts on top of your content, use the alert views provided by UIKit rather than creating
additional windows.

The Role of UIView

A view, an instance of the UIView class, defines a rectangular area on the screen. In iPhone applications,
views play a key role in both presenting your interface and responding to interactions with that
interface. Each view object has the responsibility of rendering content within its rectangular area and
for responding to touch events in that area. This dual behavior means that views are the primary
mechanism for interacting with the user in your application. In a Model-View-Controller application,
view objects obviously are the View portion of the application.

In addition to displaying its own contents and handling events, a view may also manage one or more
subviews. A subview is simply a view object embedded inside the frame of the original view object,
which is referred to as the parent view or superview. Views arranged in this manner form what is
known as a view hierarchy and may contain any number of views. Views can also be nested at
arbitrarily deep levels by adding subviews to subviews. The organization of views inside the view
hierarchy controls what appears on screen, as each subview is displayed on top of its parent view.
The organization also controls how the views react to events and changes. Each parent view is
responsible for managing its direct subviews, by adjusting their position and size as needed and even
responding to events that its subviews do not handle.

Because view objects are the main way your application interacts with the user, they have a number
of responsibilities. Among the responsibilities of views are the following:

 ■ Drawing and animation

 ❏ Views draw content in their rectangular area.

 ❏ Some view properties can be animated to new values.

 ■ Layout and subview management

 ❏ Views manage a list of subviews.

110 What Are Windows and Views?
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

 ❏ Views define their own resizing behaviors in relation to their parent view.

 ❏ Views can manually change the size and position of their subviews as needed.

 ❏ Views can convert points in their coordinate system to the coordinate systems of other views
or the window.

 ■ Event handling

 ❏ Views receive touch events.

 ❏ Views participate in the responder chain.

In iPhone applications, views work closely with view controllers to manage several aspects of the
views behavior. View controllers handle the loading and unloading of views, interface rotations
caused by the user physically rotating the device, and interactions with the high-level navigation
objects used to construct complex user interfaces. For more information, see “The Role of View
Controllers” (page 114).

Most of this chapter is dedicated to explaining these responsibilities and showing you how to tie your
own custom code into the existing UIView behaviors.

UIKit View Classes

The UIView class defines the basic properties of a view but does not define any specific visual
representation for views. Instead, UIKit uses subclasses to define the specific appearance and behavior
for standard system elements such as text fields, buttons, and toolbars. Figure 6-1 shows the class
hierarchy diagram for all of the views in UIKit. With the exception of the UIView and UIControl
classes, most of the views in this hierarchy are designed to be used as-is or in conjunction with a
delegate object.

What Are Windows and Views? 111
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Figure 6-1 View class hierarchy

UIControl

UITableViewCell

UINavigationBar

UIToolbar

UIImageView

UIActivityIndicatorVIew

UIProgressView

UIPickerView

UILabel

UIWindowUIView

UIResponder

UIAlertView

UIActionSheet

UIWebView

UITabBar

UISearchBar

UIScrollView

UITextView

UITableView

UIDatePicker

UIPageControl

UIButton

UITextField

UISlider

UISegmentedControl

UISwitch

NSObject

The preceding set of views can be broken down into the following broad categories:

 ■ Containers

112 What Are Windows and Views?
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Container views enhance the function of other views, or provide additional visual separation of
the content. For example, the UIScrollView class is used to display views whose contents are
too large to fit onscreen all at once. The UITableView class is a subclass of UIScrollView that
manages lists of data. Because table rows are selectable, tables are commonly used for hierarchical
navigation too—for example, to drill down into a hierarchy of objects.

 ■ Controls

The majority of a typical application's user interface is created using controls. A control is a special
type of view that inherits from the UIControl superclass. Controls typically display a specific
value and handle all of the user interactions required to modify that value. Controls also use
standard system paradigms, such as target-action and delegation, to notify your application when
user interactions occur. Controls include buttons, text fields, sliders, and switches.

 ■ Display views

Although controls and many other types of views provide interactive behavior, UIKit does provide
some views for simply displaying information. These classes include UIImageView, UILabel,
UIProgressView, and UIActivityIndicatorView.

 ■ Text and web views

Text and web views provide a more sophisticated way to display multiline text content in your
application. The UITextView class supports the display and editing of multiple lines of text in a
scrollable area. The UIWebView class provides a way to display HTML content, which lets you
incorporate graphics and advanced text-formatting options and lay out your content in custom
ways.

 ■ Alert views and action sheets

Alert views and action sheets are used to get the user’s attention immediately. They present a
message to the user along with one or more optional buttons that the user can use to respond to
the message. Alert views and action sheets are similar in function but look and behave differently.
The UIAlertView class displays a blue alert box that pops up on the screen; the UIActionSheet
class displays a box that slides in from the bottom of the screen.

 ■ Navigation views

Tab bars and navigation bars work in conjunction with view controllers to provide tools for
navigating from one screen of your user interface to another. You typically do not create UITabBar
and UINavigationBar items directly but configure them through the appropriate controller
interface or using Interface Builder instead.

Unlike tab bars and navigation bars, you do create and manage toolbars in your user interface.
A UIToolbar object displays buttons for commonly used commands along the bottom of the
screen. The Safari, Mail, and Photos applications all use toolbars for portions of their user interfaces.
Toolbars can be shown all the time or only as needed by the application. You can also display
toolbars in conjunction with tab bars and navigation bars.

 ■ The window

A window provides a surface for drawing content and is the root container for all other views.
There is typically only one window per application. For more information, see “The Role of
UIWindow” (page 109).

In addition to views, UIKit provides view controllers to manage those objects. For more information,
see “The Role of View Controllers” (page 114).

What Are Windows and Views? 113
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

The Role of View Controllers

Applications running in iPhone OS have many options for organizing their content and presenting
it to the user. An application with multiple screens worth of information presents multiple sets of
views to display those screens. Managing those views behind the scenes is a view controller object.

A view controller object, an instance of the UIViewController class, provides the underlying logic
for managing and displaying a screen’s worth of content. The base view controller class provides a
workflow for creating a set of views programmatically or loading them from a nib file. It also works
with the operating system to flush those views from memory during low-memory situations and
then reconstitute them if they are needed later. View controllers provide automatic support for some
standard system behaviors, such as interface orientation changes caused by the user rotating the
device and the temporary display of other views on top of the current content.

In addition to the base UIViewController class, UIKit includes more advanced subclasses for handling
some of the sophisticated interface behaviors common to the platform. For example, navigation
controllers manage the display of multiple hierarchical screens worth of content. Tab bar controllers
let the user switch between different sets of screens, each of which represents a different operating
mode for the application.

For information on how to use view controllers to manage the views in your user interface, see View
Controller Programming Guide for iPhone OS.

View Architecture and Geometry

Because they are focal objects in iPhone applications, it is important to understand a little about how
views interact with other parts of the system. The standard view classes in UIKit provide a considerable
amount of behavior “for free” to your application. They also provide well-defined integration points
where you can customize that behavior and do what you need to do for your application.

The following sections explain the standard behavior of views and call out the high-level integration
points. For information about the integration points of specific classes, see the reference document
for that class. You can get a list of all the class reference documents in UIKit Framework Reference.

The View Interaction Model

Any time the user interacts with your user interface, or your own code programmatically changes
something, a complex sequence of events takes place inside of UIKit to handle that interaction. At
specific points during that sequence, UIKit calls out to your view classes and gives them a chance to
respond on behalf of your application. Understanding these callout points is important to
understanding where your views fit into the system. Figure 6-2 shows the basic sequence of events
that starts with the user touching the screen and ends with the graphics system updating the screen
content in response. Programmatic events follow the same basic steps without the initial user
interaction.

114 View Architecture and Geometry
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Figure 6-2 UIKit interactions with your view objects

Your Application
iPhone OS

Touches

• Buffers
• Images
• Attributes
• Geometry
• Animations

touches

layoutSubviews

drawRect

Draw images, text, etc.Compositor

Touch Framework

Graphics hardware

UIKit

setNeedsDisplay
frame, alpha, etc.

setNeedsLayout
setNeedsDisplay
frame, alpha, etc.

The following steps break the event sequence down even further and explain what happens at each
stage and how your application might want to react in response.

1. The user touches the screen.

2. The hardware reports the touch event to the UIKit framework.

3. The UIKit framework packages the touch into a UIEvent object and dispatches it to the appropriate
view. (For a detailed explanation of how UIKit delivers events to your views, see “Event
Delivery” (page 141).)

4. The event-handling methods of your view might respond to the event by doing any of the
following:

 ■ Adjust the properties (frame, bounds, alpha, and so on) of the view or its subviews.

 ■ Mark the view (or its subviews) as needing a change in its layout.

 ■ Mark the view (or its subviews) as needing to be redrawn.

 ■ Notify a controller about changes to some piece of data.

Of course, it is up to the view to decide which of these things must be done and call the appropriate
methods to do it.

5. If a view is marked as requiring layout, UIKit calls the view’s layoutSubviews method.

You can override this method in your custom views and use it to adjust the position and size of
any subviews. For example, a view that provides a large scrollable area would need to use several
subviews as “tiles” rather than create one large view, which is not likely to fit in memory anyway.
Overriding this method would give that view the opportunity to hide subviews that are now
offscreen or reposition them and use them to draw newly exposed content. As part of this process,
the view could also mark the new tiles as needing to be redrawn.

View Architecture and Geometry 115
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

6. If any part of the view is marked as needing to be redrawn, UIKit calls the view’s drawRect:
method.

UIKit calls this method for only those views that need it. Each view’s implementation of this
method should redraw the specified area as quickly as possible. Each view should draw only its
own contents and not the contents of any subviews. Views should not attempt to make any further
changes to their properties or layout at this point.

7. Any updated views are composited with the rest of visible content and sent to the graphics
hardware for display.

8. The graphics hardware transfers the rendered content to the screen.

Note: The preceding update model applies primarily to applications that use native views and drawing
techniques. If your application draws its content using OpenGL ES, you would typically configure a
single full-screen view and then draw directly to your OpenGL graphics context. Your view would
still handle touch events, but it would not need to lay out subviews or implement a drawRect:method.
For more information about using OpenGL ES, see “Drawing with OpenGL ES” (page 162).

Given the preceding set of steps, the primary integration points for your own custom views are as
follows:

1. The event-handling methods:

 ■ touchesBegan:withEvent:

 ■ touchesMoved:withEvent:

 ■ touchesEnded:withEvent:

 ■ touchesCancelled:withEvent:

2. The layoutSubviews method

3. The drawRect: method

These are the methods that most custom views implement to get the behavior they want. Depending
on what you are trying to do, you may not need to override all of these methods. For example, if you
are implementing a view whose size never changes, you might not need to override the
layoutSubviews method. Similarly, views that display simple content, such as text and images, can
often avoid drawing altogether by simply embedding UIImageView and UILabel objects as subviews.

It is also important to remember that these are the primary integration points but not the only ones.
Several methods of the UIView class are designed to be override points for subclassers. You should
look at the method descriptions in UIView Class Reference to see which methods might be appropriate
for you to override in your custom implementations.

116 View Architecture and Geometry
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

The View Rendering Architecture

Although you use views to represent content on the screen, the UIView class itself actually relies
heavily on another object for much of its basic behavior. Each view object in UIKit is backed by a Core
Animation layer object, which is an instance of the CALayer class. This layer class provides the
fundamental support for the layout and rendering of the view’s contents and for compositing and
animating the contents of the view.

Unlike Mac OS X, where Core Animation support is optional, in iPhone OS, it is integrated into the
heart of the view rendering implementation. Although it plays a central role, UIKit hides that
implementation wherever possible to streamline the programming experience for developers. As a
result, most developers can forget that layers even exist and can simply manage their visual content
using the methods and properties of the UIView class. Where Core Animation becomes important,
however, is when the UIView class simply does not provide everything you need. At that point, you
can dive down into the Core Animation layers and do some pretty sophisticated rendering for your
application.

The following sections provide an introduction to Core Animation and describe some of the features
it provides to you for free through the UIView class. For more detailed information about how to use
Core Animation for advanced rendering, see Core Animation Programming Guide.

Core Animation Basics

Core Animation takes advantage of hardware acceleration and an optimized architecture to implement
fast rendering and real-time animations. The first time a view’s drawRect: method is called, the
results are captured into a bitmap, which is then managed by the underlying layer. Subsequent redraw
calls use this cached bitmap whenever possible to avoid calling the drawRect: method, which can
be expensive. This process allows Core Animation to optimize its compositing operations and deliver
the desired performance.

The layers associated with your view objects are stored in a hierarchy referred to as the layer tree.
Like views, each layer in the layer tree has a single parent and can have any number of embedded
sublayers. By default, the organization of objects in the layer tree matches the organization of the
views in your view hierarchy. You can add layers, however, without adding a corresponding view.
You might do this to implement special visual effects for which a view is not required.

Layer objects are actually the driving force behind the rendering and layout system in iPhone OS,
and most view properties are actually thin wrappers for properties on the underlying layer object.
When you change the property of a layer in the layer tree (directly using the CALayer object), the
changed value is reflected immediately in the layer object. If the change triggers a corresponding
animation, however, that change may not be reflected onscreen immediately; instead, it must be
animated onto the screen over time. To manage these sorts of animations, Core Animation maintains
two additional sets of layer objects in what are referred to as the presentation tree and the render
tree.

The presentation tree reflects the state of the layers as they are currently presented to the user. When
you animate the changing of a layer value, the presentation layer reflects the old value until the
animation commences. As the animation progresses, Core Animation updates the value in the
presentation-tree layer based on the current frame of the animation. The render tree then works
together with the presentation tree to render the changes on the screen. Because the render tree runs
in a separate process or thread, the work it does does not impact your application’s main run loop.
While both the layer tree and the presentation tree are public, the render tree is a private API.

View Architecture and Geometry 117
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

The placement of layer objects behind your views has many important implications for the performance
of your drawing code. The most important is that most geometry changes to your views do not require
redrawing. For example, changing the position and size of a view does not require the system to
redraw the contents of a view; it can simply reuse the cached bitmap created by the layer. Animating
this cached content is significantly more efficient than trying to redraw that content every time.

The downside to using layers is that the additional cached data can add memory pressure to your
application. If your application creates too many views or creates very large views, you could run
out of memory quickly. You should not be afraid to use views in your application, but do not create
new view objects if you have existing views that can be reused. In other words, pursue approaches
that minimize the number of views you keep in memory at the same time.

For a more detailed overview of Core Animation, the object trees, and how you create animations,
see Core Animation Programming Guide.

Changing the Layer of a View

Because views are required to have an associated layer object in iPhone OS, the UIView class creates
this layer automatically at initialization time. You can access the layer that is created through the
layer property of the view, but you cannot change the layer object after the view is created.

If you want a view to use a different type of layer, you must override the view’s layerClass class
method and return the class object for the layer you want it to use. The most common reason to return
a different layer class is to implement an OpenGL-based application. To use OpenGL drawing
commands, the layer for the underlying view must be an instance of the CAEAGLLayer class. This type
of layer interacts with the OpenGL rendering calls to present the desired content on the screen.

You should never modify the delegate property of a view’s layer, it references the view and should
be considered private. Similarly, a view can only operate as a delegate for a single layer. You must
not create additional layer instance and set the view object as their delegate, doing so will cause your
application to crash.

Animation Support

One of the benefits of having a layer object behind every view is that it makes it easier to animate
content in iPhone OS. It is important to remember that animation is not necessarily about creating
visual eye candy. Animations provide the user with a context for any changes that occur in your
application’s user interface. For example, the use of transitions from one screen to another implies
the relationship between those screens. The system provides automatic support for many of the most
commonly used animations, but you can also create animations for other parts of your interface.

Many properties of the UIView class are considered to be animatable. An animatable property is one
for which there is semiautomatic support for animating from one value to another. You must still tell
UIKit that you want to perform the animation, but Core Animation assumes full responsibility for
running the animation once it has begun. Among the properties you can animate on a UIView object
are the following:

 ■ frame

 ■ bounds

 ■ center

 ■ transform

118 View Architecture and Geometry
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

 ■ alpha

Even though other view properties are not directly animatable, you can create explicit animations for
some of them. Explicit animations require you to do more of the work in managing the animation
and the rendered contents but they still use the underlying Core Animation infrastructure to obtain
good performance.

For more information about creating animations using the UIView class, see “Animating Views” (page
131). For more information about creating explicit animations, see Core Animation Programming Guide.

View Coordinate Systems

Coordinates in UIKit are based on a coordinate system whose origin is in the top-left corner and
whose coordinate axes extend down and to the right from that point. Coordinate values are represented
using floating-point numbers, which allows for precise layout and positioning of content and allows
for resolution independence. Figure 6-3 (page 119) shows this coordinate system relative to the screen,
but this coordinate system is also used by the UIWindow and UIView classes. This particular orientation
was chosen to make it easier to lay out controls and content in user interfaces, even though it differs
from the default coordinate systems in use by Quartz and Mac OS X.

Figure 6-3 View coordinate system

Standard coordinates

y

x
(0,0)

As you write your interface code, you need to be aware of the coordinate system currently in effect.
Every window and view object maintains its own local coordinate system. All drawing in a view
occurs relative to the view’s local coordinate system. The frame rectangle for each view, however, is
specified using the coordinate system of its parent view, and coordinates delivered as part of an event
object are specified relative to the enclosing window's coordinate system. For convenience, the
UIWindow and UIView classes each provide methods to convert back and forth between the coordinate
systems of different objects.

View Architecture and Geometry 119
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Although the coordinate system used by Quartz does not use the top-left corner as the origin point,
for many Quartz calls this is not a problem. Before invoking your view’s drawRect: method, UIKit
automatically configures the drawing environment to use a top-left origin. Quartz calls made within
this environment draw correctly in your view. The only time you need to worry about different
coordinate systems is when you set up the drawing environment yourself using Quartz.

For more information about coordinate systems, Quartz, and drawing in general, see “Graphics and
Drawing” (page 151).

The Relationship of the Frame, Bounds, and Center

A view object tracks its size and location using its frame, bounds, and center properties. The frame
property contains a rectangle that specifies the view’s location and size relative to its parent view’s
coordinate system. The bounds property contains a rectangle that defines the view’s position and size
relative to its own local coordinate system and whose origin is typically set to (0, 0) but need not be.
The center property contains the center point of the frame rectangle.

You use the frame, bounds, and center properties for different purposes in your code. Because the
bounds rectangle represents the view’s local coordinate system, you use it most often during drawing
or event-handling code when you need to know where in your view something happened. The center
point represents the known center point of your view and is always the best way to manipulate the
position of your view. The frame rectangle is a convenience value that is computed using the bounds
and center point and is valid only when the view’s transform is set to the identity transform.

Figure 6-4 shows the relationship between the frame and bounds rectangles. The complete image on
the right is drawn drawn in the view starting at (0, 0). Because the size of the bounds does not match
the full size of the image, however, only part of the image outside the bounds rectangle is clipped
automatically. When the view is composited with its parent view, the position of the view inside its
parent is determined by the origin of the view’s frame rectangle, which in this case is (5, 5). As a result,
the view’s contents appear shifted down and to the right from the parent view’s origin.

Figure 6-4 Relationship between a view's frame and bounds

Frame rectangle at (5.0, 5.0), size (73.0, 98.0)

Superview

Bounds rectangle at (0.0, 0.0), size (73.0, 98.0)

When there is no transform applied to the view, the location and size of the view is determined by
these three interrelated properties. The frame property of a view is set when a view object is created
programmatically using the initWithFrame:method. That method also initializes the bounds rectangle
to originate at (0.0, 0.0) and have the same size as the view's frame. The center property is then set
to the center point of the frame.

120 View Architecture and Geometry
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Although you can set the values of these properties independently, setting the value for one changes
the others in the following ways:

 ■ When you set the frame property, the size of the bounds property is set to match the size of the
frame property. The center property is also adjusted to match the center point of the new frame.

 ■ When you set the center property, the origin of the frame changes accordingly.

 ■ When you set the size of the bounds rectangle, the size of the frame rectangle changes to match.

You can set the bounds origin without changing the other two properties. When you change the
bounds origin, you change which part of the view you want to display. In Figure 6-4 (page 120), the
original bounds origin is set to (0.0, 0.0). In Figure 6-5, that origin is moved to (8.0, 24.0). As a result,
a different portion of the underlying image is displayed by the view. Because the frame rectangle did
not change, however, the new content is displayed in the same location inside the parent view as
before.

Figure 6-5 Altering a view's bounds

Note: By default, a view’s frame is not clipped to its parent view’s frame. If you want to force a view
to clip its subviews, set the view’s clipsToBounds property to YES.

Coordinate System Transformations

Although coordinate system transformations are commonly used in a view’s drawRect: method to
facilitate drawing, in iPhone OS, you can also use them to implement visual effects for your view.
The UIView class includes a transform property that lets you apply different types of translation,
scaling, and zooming effects to the entire view. By default, the value of this property is the identity
transform, which causes no changes to the view. To add transformations, get the CGAffineTransform
structure stored in this property, use the corresponding Core Graphics functions to apply the
transformations, and then assign the modified transform structure back to the view’s transform
property.

View Architecture and Geometry 121
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Note: When applying transforms to a view, all transformations are performed relative to the center
point of the view.

Translating a view shifts all subviews along with the drawing of the view's content. Because their
coordinate systems inherit and build on these alterations, scaling also affects the drawing of the
subviews. For more information about how to control the scaling of view content, see “Content Modes
and Scaling” (page 122).

Warning: If the transform property is not the identity transform, the value of the frame property
is undefined and must be ignored. After setting the transform, use the bounds and center
properties to get the position and size of the view.

For information about using transforms in conjunction with your drawRect:method, see “The Native
Coordinate System” (page 152). For information about the functions you use to modify the
CGAffineTransform struct, see CGAffineTransform Reference.

Content Modes and Scaling

When you change the bounds of a view or apply a scaling factor to the transform property of a view,
the frame rectangle is changed by a commensurate amount. Depending on the content mode associated
with the view, the view’s content may also be scaled or repositioned to account for the changes. The
view’s contentMode property determines the effect that bounds changes and scaling operations have
on the view. By default, the value of this property is set to UIViewContentModeScaleToFill, which
always causes the view’s contents to be scaled to fit the new frame size. For example, Figure 6-6 shows
what happens when the horizontal scaling factor of the view is doubled.

Figure 6-6 View scaled using the scale-to-fill content mode

View with transform set Bounds rectangle at (0.0, 0.0), size (73.0, 98.0)

Superview

Scaling of your view’s content occurs because the first time a view is shown, its rendered contents
are cached in the underlying layer. Rather than force the view to redraw itself every time its bounds
change or a scaling factor is applied, UIKit uses the view’s content mode to determine how to display
the cached content. Figure 6-7 compares the results of changing the bounds of a view or applying a
scaling factor to it using several different content modes.

122 View Architecture and Geometry
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Figure 6-7 Content mode comparisons

UIViewContentModeScaleToFill

Distorting

Nondistorting

UIViewContentModeScaleAspectFit

UIViewContentModeScaleAspectFill

Nondistorting

Although applying a scaling factor always scales the view’s contents, there are content modes that
do not scale the view’s contents when the bounds of the view change. Several UIViewContentMode
constants (such as UIViewContentModeTop and UIViewContentModeBottomRight) display the current
content in different corners or along different edges of the view. There is also a mode for displaying
the content centered inside the view. Changing the bounds rectangle with one of these content modes
in place simply moves the existing contents to the appropriate location inside the new bounds rectangle.

One place where you might use content modes is in the implementation of resizable controls. Buttons
and segmented controls typically use several images to create the appearance of the control. In addition
to two fixed-size end cap images, a button that can grow horizontally uses a stretchable center image
that is only 1 pixel wide. By displaying each image in its own image view and setting the content
mode of the stretchable middle image to UIViewContentModeScaleToFill, the button can grow in
size without distorting the appearance of the end caps. More importantly, the images associated with
each image view can be cached by Core Animation and animated without any custom drawing code,
which results in much better performance.

Although content modes are good to avoid redrawing the contents of your view, you can also use
the UIViewContentModeRedraw content mode in situations where you specifically want control over
the appearance of your view during scaling and resizing operations. Setting your view’s content mode
to this value forces Core Animation to invalidate your view’s contents and call your view’s drawRect:
method rather than scale or resize them automatically.

View Architecture and Geometry 123
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Autoresizing Behaviors

When you change the frame rectangle of a view, the position and size of embedded subviews often
needs to change to match the new size of the original view. If the autoresizesSubviews property of
a view is set to YES, its subviews are automatically resized according to the values in the
autoresizingMask property. (By default, the autoresizesSubviews property is NO so you need set
this to YES to use this feature.) In many cases simply configuring the autoresizing mask for a view
provides the appropriate behavior for an application. Otherwise, it is the application's responsibility
to reposition and resize the subviews by overriding the layoutSubviews method.

To set a view’s autoresizing behaviors, combine the desired autoresizing constants using a bitwise
OR operator and assign the resulting value to the view’s autoresizingMask property. Table 6-1 lists
the autoresizing constants and describes how each one affects the size and placement of a given view.
For example, to keep a view pinned to the lower-left corner of its superview, add the
UIViewAutoresizingFlexibleRightMarginandUIViewAutoresizingFlexibleTopMargin constants
and assign them to the autoresizingMask property. When more than one aspect along an axis is
made flexible, the resize amount is distributed evenly among them.

Table 6-1 Autoresizing mask constants

DescriptionAutoresizing mask

If set, the view doesn’t autoresize.UIViewAutoresizingNone

If set, the view's height changes proportionally to the change in the
superview's height. Otherwise, the view's height does not change
relative to the superview's height.

UIViewAutoresizing-
FlexibleHeight

If set, the view's width changes proportionally to the change in the
superview's width. Otherwise, the view's width does not change
relative to the superview's width.

UIViewAutoresizing-
FlexibleWidth

If set, the view's left edge is repositioned proportionally to the
change in the superview's width. Otherwise, the view's left edge
remains in the same position relative to the superview's left edge.

UIViewAutoresizing-
FlexibleLeftMargin

If set, the view's right edge is repositioned proportionally to the
change in the superview's width. Otherwise, the view's right edge
remains in the same position relative to the superview.

UIViewAutoresizing-
FlexibleRightMargin

If set, the view's bottom edge is repositioned proportionally to the
change in the superview's height. Otherwise, the view's bottom
edge remains in the same position relative to the superview.

UIViewAutoresizing-
FlexibleBottomMargin

If set, the view's top edge is repositioned proportionally to the
change in the superview's height. Otherwise, the view's top edge
remains in the same position relative to the superview.

UIViewAutoresizing-
FlexibleTopMargin

Figure 6-8 provides a graphical representation of the position of the constant values. When one of
these constants is omitted, the view's layout is fixed in that aspect; when a constant is included in the
mask, the view's layout is flexible in that aspect.

124 View Architecture and Geometry
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Figure 6-8 View autoresizing mask constants

UIViewAutoresizingFlexibleWidth

UIViewAutoresizingFlexibleRightMargin

UIViewAutoresizingFlexibleBottomMargin

UIViewAutoresizingFlexibleHeight

Superview

View

UIViewAutoresizingFlexibleTopMargin

UIViewAutoresizingFlexibleLeftMargin

(0.0, 0.0)

If you are using Interface Builder to configure your views, you can set the autoresizing behavior for
each view using the Autosizing controls in the Size inspector. Although the flexible width and height
constants from the preceding figure have the same behavior as the Interface Builder springs located
in the same position have, the behavior of the margin constants is effectively reversed. In other words,
to apply the flexible right margin autoresizing behavior to a view in Interface Builder, you must leave
the space on that side of the Autosizing control empty, not place a strut there. Fortunately, Interface
Builder provides an animation to show you how changes to the autoresizing behaviors affect your
view.

If the autoresizesSubviews property of a view is set to NO, any autoresizing behaviors set on the
immediate subviews of that view are ignored. Similarly, if a subview’s autoresizing mask is set to
UIViewAutoresizingNone, it does not change size and so its immediate subviews are never resized
either.

Note: For autoresizing to work correctly, the view’s transform property must be set to the identity
transform. The behavior is undefined if it is not.

Although autoresizing behaviors may be suitable for some layout needs, if you want more control
over the layout of your views, you should override the layoutSubviews method in the appropriate
view classes. For more information about managing the layout of your views, see “Responding to
Layout Changes” (page 133).

Creating and Managing the View Hierarchy

Managing the view hierarchy of your user interface is a crucial part of developing your application’s
user interface. The organization of your views defines not only the way your application appears
visually but also how your application responds to changes. The parent-child relationships in the
view hierarchy help define the chain of objects that is responsible for handling touch events in your
application. When the user rotates the device, parent-child relationships also help define how each
view’s size and position are altered by changes to the user interface orientation.

Figure 6-9 shows a simple example of how the layering of views creates a desired visual effect. In the
case of the Clock application, tab-bar and navigation-bar views are mixed together with a custom
view to implement the overall interface.

Creating and Managing the View Hierarchy 125
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Figure 6-9 Layered views in the Clock application

Navigation bar

Status bar

Window

Tab bar

Custom view

If you look at the object relationships for the views in the Clock application, you see that they look
something like the relationships shown in “Changing the Layer of a View.” The window object acts
as the root view for the tab bar, navigation bar, and custom view of the application.

Figure 6-10 View hierarchy for the Clock application

UIViewUITabBar UINavigationBar

UIWindow

There are several ways to build view hierarchies in iPhone applications, including graphically in
Interface Builder and programmatically in your code. The following sections show you how to
assemble your view hierarchies and, having done that, how to find views in the hierarchy and convert
between different view coordinate systems.

126 Creating and Managing the View Hierarchy
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Creating a View Object

The simplest way to create views is to use Interface Builder and load them from the resulting nib file.
From Interface Builder’s graphical environment, you can drag new views out of the library and drop
them onto a window or another view and build your view hierarchies quickly. Because Interface
Builder uses live view objects, building your interface graphically shows you exactly how it will look
when you load it at runtime. It also eliminates the need for you to write tedious code to allocate and
initialize each view in your view hierarchy.

If you prefer not to use Interface Builder and nib files to create your views, you can create them
programmatically. To create a new view object, allocate memory for the view object and send that
object an initWithFrame:message to initialize it. For example, to create a new instance of the UIView
class, which you could use as a container for other views, you would use the following code:

CGRect viewRect = CGRectMake(0, 0, 100, 100);
UIView* myView = [[UIView alloc] initWithFrame:viewRect];

Note: Although all system objects support the initWithFrame: message, some may have a preferred
initialization method that you should use instead. For information about any custom initialization
methods, see the reference documentation for the class.

The frame rectangle you specify when you initialize the view represents the position and size of the
view relative to its intended parent view. You must add views to a window or to another view to
make them appear on the screen. When doing so, UIKit uses the frame rectangle you specify to place
the view inside its parent. For information on how to add views to your view hierarchy, see “Adding
and Removing Subviews” (page 127).

Adding and Removing Subviews

Interface Builder is the most convenient way to build view hierarchies because it lets you see exactly
how those views will appear at runtime. It then saves the view objects and their hierarchical
relationships in a nib file, which the system uses at runtime to recreate the objects and relationships
in your application. When a nib file is loaded, the system automatically calls the UIView methods
needed to recreate the view hierarchy.

If you prefer not to use Interface Builder and nib files to create your view hierarchies, you can create
them programmatically instead. A view that has required subviews should create them in its own
initWithFrame: method to ensure that they are present and initialized with the view. Subviews that
are part of your application design (and not required for the operation of your view) should be created
outside of your view’s initialization code. In iPhone applications, the two most common places to
create views and subviews programmatically are the applicationDidFinishLaunching: method
of your application delegate and the loadView method of your view controllers.

To manipulate views in the view hierarchy, you use the following methods:

 ■ To add a subview to a parent, call the addSubview: method of the parent view. This method adds
the subview to the end of the parent’s list of subviews.

 ■ To insert a subview in the middle of the parent’s list of subviews, call any of the
insertSubview:... methods of the parent view.

Creating and Managing the View Hierarchy 127
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

 ■ To reorder existing subviews inside their parent, call the bringSubviewToFront:,
sendSubviewToBack:, or exchangeSubviewAtIndex:withSubviewAtIndex: methods of the
parent view. These methods are faster than removing the subviews and reinserting them.

 ■ To remove a subview from its parent, call the removeFromSuperview method of the subview (not
the parent view).

When adding subviews, the current frame rectangle of the subview is used as the initial position of
that view inside its parent. You can change that position at any time by changing the frame property
of the subview. Subviews whose frame lies outside of their parent’s visible bounds are not clipped
by default. To enable clipping, you must set the clipsToBounds property of the parent view to YES.

Listing 6-1 shows a sample applicationDidFinishLaunching: method of an application delegate
object. In this example, the application delegate creates its entire user interface programmatically at
launch time. The interface consists of two generic UIView objects, which display primary colors. Each
view is then embedded inside a window, which is also a subclass of UIView and can therefore act as
a parent view. Because parents retain their subviews, this method releases the newly created views
to prevent them from being overretained.

Listing 6-1 Creating a window with views

- (void)applicationDidFinishLaunching:(UIApplication *)application {
// Create the window object and assign it to the
// window instance variable of the application delegate.
window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
window.backgroundColor = [UIColor whiteColor];

// Create a simple red square
CGRect redFrame = CGRectMake(10, 10, 100, 100);
UIView *redView = [[UIView alloc] initWithFrame:redFrame];
redView.backgroundColor = [UIColor redColor];

// Create a simple blue square
CGRect blueFrame = CGRectMake(10, 150, 100, 100);
UIView *blueView = [[UIView alloc] initWithFrame:blueFrame];
blueView.backgroundColor = [UIColor blueColor];

// Add the square views to the window
[window addSubview:redView];
[window addSubview:blueView];

// Once added to the window, release the views to avoid the
// extra retain count on each of them.
[redView release];
[blueView release];

// Show the window.
[window makeKeyAndVisible];

}

128 Creating and Managing the View Hierarchy
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Important: When you’re considering memory management, think of the subviews as any other
collection object. Specifically, when you insert a view as a subview using addSubview:, that subview
is retained by its superview. Inversely, when you remove the subview from its superview using the
removeFromSuperview method, the subview is autoreleased. Releasing views after adding them to
your view hierarchy prevents them being overretained, which could cause memory leaks.

For more information about Cocoa memory management conventions, see Memory Management
Programming Guide for Cocoa.

When you add a subview to a parent view, UIKit sends several messages to both the parent and child
to let them know what is happening. You can override methods such as willMoveToSuperview:,
willMoveToWindow:, willRemoveSubview:, didAddSubview:, didMoveToSuperview and
didMoveToWindow in your custom views to process changes before and after they occur and to update
the state information in your view accordingly.

After you create a view hierarchy, you can use the superview property of a view to get its parent or
the subviews property to get its children. You can also use the isDescendantOfView: method to
determine whether a view is in the view hierarchy of a parent view. Because the root view in a view
hierarchy has no parent, its superview property is set to nil. For views currently onscreen, the
window object is typically the root view of the hierarchy.

You can use the window property of a view to get a pointer to the window that currently contains the
view (if any). This property is set to nil if the view is not currently attached to a window.

Converting Coordinates in the View Hierarchy

At various times, particularly when handling events, an application may need to convert coordinate
values from one frame of reference to another. For example, touch events usually report the touch
location using the window’s coordinate system, but view objects need that information in the view’s
local coordinate space, which may be different. The UIView class defines the following methods for
converting coordinates to and from the view’s local coordinate system:

 ■ convertPoint:fromView:

 ■ convertRect:fromView:

 ■ convertPoint:toView:

 ■ convertRect:toView:

The convert...:fromView: methods convert coordinates to the view’s local coordinate system,
while the convert...:toView:methods convert coordinates from the view’s local coordinate system
to the coordinate system of the specified view. If you specify nil as the reference view for any of the
methods, the conversions are made to and from the coordinate system of the window that contains
the view.

In addition to the UIView conversion methods, the UIWindow class also defines several conversion
methods. These methods are similar to the UIView versions except that instead of converting to and
from a view’s local coordinate system, these methods convert to and from the window’s coordinate
system.

 ■ convertPoint:fromWindow:

Creating and Managing the View Hierarchy 129
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

 ■ convertRect:fromWindow:

 ■ convertPoint:toWindow:

 ■ convertRect:toWindow:

Coordinate conversions are straightforward when neither view is rotated or when dealing only with
points. When converting rectangles or sizes between views with different rotations, the geometric
structure must be altered in a reasonable way so that the resulting coordinates are correct. When
converting a rectangle, the UIView class assumes that you want to guarantee coverage of the original
screen area. To this end, the converted rectangle is enlarged so that when located in the appropriate
view, it completely covers the original rectangle. Figure 6-11 shows the conversion of a rectangle in
the rotatedView object's coordinate system to that of its superview, outerView.

Figure 6-11 Converting values in a rotated view

Rectangle in
rotatedView
coordinate system

Rectangle converted to
outerView
coordinate system

outerView

superview
subviews
frame

rotatedView

superview
subviews
frame

When converting size information, UIView simply treats it as a delta offset from (0.0, 0.0) that you
need to convert from one view to another. Though the offset distance remains the same, the balance
along the two axes shifts according to the rotation. When converting sizes, UIKit always returns sizes
that consist of positive numbers.

Tagging Views

The UIView class contains a tag property that you can use to tag individual view objects with an
integer value. You can use tags to uniquely identify views inside your view hierarchy and to perform
searches for those views at runtime. (Tag-based searches are faster than iterating the view hierarchy
yourself.) The default value for the tag property is 0.

To search for a tagged view, use the viewWithTag: method of UIView. This method searches the
receiver’s subviews using a depth-first search, starting with the receiver itself.

130 Creating and Managing the View Hierarchy
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Modifying Views at Runtime

As applications receive input from the user, they adjust their user interface in response to that input.
An application might rearrange the views in its interface, refresh existing views that contain changed
data, or load an entirely new set of views. Which techniques you choose to use depends on your
interface and what you are trying to achieve. How you initiate these techniques, however, is the same
for all applications. The following sections describe these techniques and how you use them to update
your user interface at runtime.

Note: For background information about how UIKit moves events and messages between itself and
your custom code, see “The View Interaction Model” (page 114) before proceeding.

Animating Views

Animations are a way to provide fluid visual transitions between different states of your user interface.
In iPhone OS, animations are used extensively to reposition views, change their size, and even change
their alpha value to make them fade in or out. Because this support is crucial for making easy-to-use
applications, UIKit simplifies the process of creating animations by integrating support for them
directly into the UIView class.

The UIView class defines several properties that are inherently animatable—that is, the view provides
built-in support for animating changes in the property from their current value to a new value.
Although the work needed to perform the animation is handled for you automatically by the UIView
class, you must still let the view know that you want the animation to happen. You do this by wrapping
changes to the given property in an animation block.

An animation block starts with a call to the beginAnimations:context: class method of UIView
and ends with a call to the commitAnimations class method. In between these calls is where you
configure the animation parameters and change the properties you want to animate. As soon as you
call the commitAnimationsmethod, UIKit kicks off the animations, animating any changes from their
current values to the new values you just set. Animation blocks can be nested, but nested animations
do not start until the outermost animation block is committed.

Table 6-2 lists the animatable properties of the UIView class.

Table 6-2 Animatable properties

DescriptionProperty

The view’s frame rectangle, in superview coordinates.frame

The view’s bounding rectangle, in view coordinates.bounds

The center of the frame, in superview coordinates.center

The transform applied to the view, relative to the center of its bounds.transform

The view’s alpha value, which determines the view’s level of transparency.alpha

Modifying Views at Runtime 131
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Configuring Animation Parameters

In addition to changing property values inside an animation block, you can configure additional
parameters that determine how you want the animation to proceed. You do this by calling the following
class methods of UIView:

 ■ Use the setAnimationStartDate: method to set the start date of the animations after the
commitAnimations method returns. The default behavior starts animations immediately.

 ■ Use the setAnimationDelay: method to set a delay between the time the commitAnimations
method returns and the animations actually begin.

 ■ Use the setAnimationDuration:method to set the number of seconds over which the animations
occur.

 ■ Use the setAnimationCurve:method to set the relative speed of the animations over their course.
For example, the animations can gradually speed up at the beginning, gradually slow down near
the end, or remain the same speed throughout.

 ■ Use the setAnimationRepeatCount: method to set the number of times the animations repeat.

 ■ Use the setAnimationRepeatAutoreverses: method to set whether the animations reverse
automatically when they reach their target value. Combined with the setAnimationRepeatCount:
method, you can use this method to toggle each property between its initial and final values
smoothly over a period of time.

The commitAnimations class method returns immediately and before the animations begin. UIKit
runs animations in a separate thread and away from your application’s main event loop. The
commitAnimations method posts its animations to this separate thread where they are queued up
until they are ready to execute. By default, Core Animation finishes the currently running animation
block before starting animations currently on the queue. You can override this behavior and start
your animation immediately, however, by passing YES to the setAnimationBeginsFromCurrentState:
class method within your animation block. This causes the current in-flight animation to stop and
the new animation to begin from the current state.

By default, all animatable property changes within an animation block are animated. If you want to
prevent some changes made within the block from being animated, use the setAnimationsEnabled:
method to disable animations temporarily, make your changes, and then reenable them. Any changes
made after a setAnimationsEnabled: call with the value NO are not animated until a matching call
with the value YES occurs or you commit the animation block. Use the areAnimationsEnabledmethod
to determine if animations are currently enabled.

Configuring an Animation Delegate

You can assign a delegate to an animation block and use that delegate to receive messages when the
animations begin and end. You might do this to perform additional tasks immediately before and
after the animation. You set the delegate using the setAnimationDelegate: class method of UIView
and use the setAnimationWillStartSelector: and setAnimationDidStopSelector: methods to
specify the selectors that will receive the messages. The signatures of the corresponding methods are
as follows:

- (void)animationWillStart:(NSString *)animationID context:(void *)context;
- (void)animationDidStop:(NSString *)animationID finished:(NSNumber *)finished
context:(void *)context;

132 Modifying Views at Runtime
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

The animationID and context parameters for both methods are the same parameters that were
passed to the beginAnimations:context: method at the beginning of the animation block:

 ■ animationID—an application-supplied string used to identify animations in an animation block.

 ■ context—another application-supplied object you can use to pass additional information to the
delegate.

The setAnimationDidStopSelector: selector method has an additional argument—a Boolean value
that is YES if the animation ran to completion and was not canceled or stopped prematurely by another
animation.

Responding to Layout Changes

Whenever the layout of your views changes, UIKit applies each view’s autoresizing behaviors and
then calls its layoutSubviews method to give it a chance to adjust the geometry of its contained
subviews further. Layout changes can occur when any of the following happens:

 ■ The size of a view’s bounds rectangle changes.

 ■ The content offset value (the origin of the visible content region) of a scroll view changes.

 ■ The transform associated with the view changes.

 ■ The set of sublayers associated with the view’s layer change.

 ■ Your application forces layout to occur by calling the setNeedsLayout or layoutIfNeeded
methods of the view.

 ■ Your application forces layout by calling the setNeedsLayout method of the view’s underlying
layer.

A view’s autoresizing behaviors handle the initial job of positioning any subviews. Applying these
behaviors guarantees that your views are close to their intended size. For information about how
autoresizing behaviors affect the size and position of your views, see “Autoresizing Behaviors” (page
124).

There are a few situations where you might want to adjust the layout of subviews manually using
layoutSubviews, rather than rely exclusively on autoresizing behaviors. If you are implementing a
custom control that is built from several subview elements, adjusting the subviews manually would
let you precisely configure the appearance for your control over a range of sizes. Alternately, a view
representing a large scrollable content area could display that content by tiling a set of subviews.
During scrolling, views going off one edge of the screen would be recycled and repositioned at the
incoming screen edge along with any new content.

Note: You can also use the layoutSubviewsmethod to adjust the size and position of custom CALayer
objects attached as sublayers to your view’s layer. Managing custom layer hierarchies behind your
view lets you perform advanced animations directly using Core Animation. For more information
about using Core Animation to manage layer hierarchies, see Core Animation Programming Guide.

When writing your layout code, be sure to test your code in each of your application’s supported
interface orientations. Applications that support both landscape and portrait orientations should
verify that layout is handled properly in each orientation. Similarly, your application should be

Modifying Views at Runtime 133
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

prepared to deal with other system changes, such as the height of the status bar changing. This occurs
when a user uses your application while on an active phone call and then hangs up. At hang up time,
the managing view controller may resize its view to account for the shrinking status bar size. Such a
change would then filter down to the rest of the views in your application.

Redrawing Your View’s Content

When changes to your application’s data model require changes to the corresponding user interface,
the way you make those changes is to mark the corresponding views as dirty and in need of an update
using either the setNeedsDisplay or setNeedsDisplayInRect: methods. Marking views as dirty,
as opposed to simply creating a graphics context and drawing, gives the system a chance to process
drawing operations more efficiently. For example, if you mark several regions of the same view as
dirty during a given cycle, the system coalesces the dirty regions into a single call to the view’s
drawRect: method. This results in only one graphics context being created to draw all of the affected
regions, which is much more efficient than creating several graphics contexts in quick succession.

Views that implement a drawRect: method should always check the rectangle passed to the method
and use it to limit the scope of their drawing operations. Because drawing is a relatively expensive
operation, limiting drawing in this way is a good way to improve performance.

By default, geometry changes to a view do not automatically cause the view to be redrawn. Instead,
most geometry changes are handled automatically by Core Animation. Specifically, when you change
the frame, bounds, center, or transformproperties of the view, Core Animation applies the geometry
changes to the cached bitmap associated with the view’s layer. In many cases, this approach is perfectly
acceptable, but if you find the results undesirable, you can force UIKit to redraw your view instead.
To prevent Core Animation from applying geometry changes implicitly, set your view’s contentMode
property to UIViewContentModeRedraw. For more information about content modes, see “Content
Modes and Scaling” (page 122).

Hiding Views

You can hide or show a view by changing the value in the view’s hidden property. Setting this
property to YES hides the view whereas setting it to NO shows it. Hiding a view also hides any
embedded subviews as if their own their hidden property were set.

When you hide a view, it remains in the view hierarchy, but its contents are not drawn and it does
not receive touch events. Because it remains in the view hierarchy, a hidden view continues to
participate in autoresizing and other layout operations. If you hide a view that is currently the first
responder, the view does not automatically resign its first responder status. Events targeted at the
first responder are still delivered to the hidden view.

Creating a Custom View

The UIView class provides the underlying support for displaying content on the screen and for
handling touch events, but its instances won’t draw anything but a background color using an alpha
value and its subviews. If your application needs to display custom content or handle touch events
in a specific manner, you must create a custom subclass of UIView.

134 Creating a Custom View
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

The following sections describe some of the key methods and behaviors you might implement in
your custom view objects. For additional subclassing information, see UIView Class Reference.

Initializing Your Custom View

Every new view object you define should include a custom initWithFrame: method. This method
is responsible for initializing the class at creation time and putting your view object into a known
state. You use this method when creating instances of your view programmatically in your code.

Listing 6-2 shows a skeletal implementation of a standard initWithFrame: method. This method
calls the inherited implementation of the method first and then initializes the instance variables and
state information of the class before returning the initialized object. Calling the inherited
implementation is traditionally performed first so that if there is a problem, you can simply abort
your own initialization code and return nil.

Listing 6-2 Initializing a view subclass

- (id)initWithFrame:(CGRect)aRect {
self = [super initWithFrame:aRect];
if (self) {

// setup the initial properties of the view
...

}
return self;

}

If you plan to load instances of your custom view class from a nib file, you should be aware that in
iPhone OS, the nib-loading code does not use the initWithFrame: method to instantiate new view
objects. Instead, it uses the initWithCoder: method that is defined as part of the NSCoding protocol.

Even if your view adopts the NSCoding protocol, Interface Builder does not know about your view’s
custom properties and therefore does not encode those properties into the nib file. As a result, your
own initWithCoder: method does not have the information it needs to properly initialize the class
when it is loaded from a nib file. To solve this problem, you can implement the awakeFromNibmethod
in your class and use it to initialize your class specifically when it is loaded from a nib file.

Drawing Your View’s Content

As you make changes to your view’s content, you notify the system that parts of that view need to
be redrawn using the setNeedsDisplay or setNeedsDisplayInRect:methods. When the application
returns to its run loop, it coalesces any drawing requests and computes the specific parts of your
interface that need to be updated. It then begins traversing your view hierarchy and sending drawRect:
messages to the views that require updates. The traversal starts with the root view of your hierarchy
and proceeds down through the subviews, processing them from back to front. Views that display
custom content inside their visible bounds must implement the drawRect: method to render that
content.

Prior to calling your view’s drawRect: method, UIKit configures the drawing environment for your
view. It creates a graphics context and adjusts its coordinate system and clipping region to match the
coordinate system and bounds of your view. Thus, by the time your drawRect: method is called, you

Creating a Custom View 135
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

can simply begin drawing using UIKit classes and functions, Quartz functions, or a combination of
them all. If you need to access the current graphics context, you can get a pointer to it using the
UIGraphicsGetCurrentContext function.

Important: It is important to remember that the current graphics context is valid only for the duration
of one call to your view’s drawRect: method. UIKit may create a different graphics context for each
subsequent call to this method, so you should not try to cache the object and use it later.

Listing 6-3 shows a simple implementation of a drawRect: method that draws a 10-pixel wide red
border around the view. Because UIKit drawing operations use Quartz for their underlying
implementations, you can mix drawing calls as shown here and still get the results you expect.

Listing 6-3 Drawing method

- (void)drawRect:(CGRect)rect {
CGContextRef context = UIGraphicsGetCurrentContext();
CGRect myFrame = self.bounds;

CGContextSetLineWidth(context, 10);

[[UIColor redColor] set];
UIRectFrame(myFrame);

}

If you know that your view’s drawing code always covers the entire surface of the view with opaque
content, you can improve the overall efficiency of your drawing code by setting the opaque property
of your view to YES. Marking a view as opaque lets UIKit avoid drawing content that is located
immediately behind your view. This not only reduces the amount of time spent drawing but also
minimizes the work that must be done to composite that content together. You should set this property
to YES only if you know your view provides opaque content. If your view cannot guarantee that its
contents are always opaque, you should set the property to NO.

Another way to improve drawing performance, especially during scrolling, is to set the
clearsContextBeforeDrawing property of your view to NO. When this property is set to YES, UIKIt
automatically fills the area to be updated by your drawRect: method with transparent black before
calling your method. Setting this property to NO eliminates the overhead for that fill operation but
puts the burden on your application to completely redraw the portions of your view inside the update
rectangle passed to your drawRect: method. Such an optimization is usually a good tradeoff during
scrolling, however.

Responding to Events

The UIView class is a subclass of UIResponder and is therefore capable of receiving touch events
corresponding to user interactions with the view’s contents. Touch events start at the view in which
the touch occurred and are passed up the responder chain until they are handled. Because views are
themselves responders, they participate in the responder chain and are therefore capable of receiving
touch events dispatched to them from any of their associated subviews.

Views that handle touch events typically implement all of the following methods, which are described
in more detail in “Event Handling” (page 139).

 ■ touchesBegan:withEvent:

136 Creating a Custom View
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

 ■ touchesMoved:withEvent:

 ■ touchesEnded:withEvent:

 ■ touchesCancelled:withEvent:

It is important to remember that, by default, views respond to only one touch at a time. If the user
puts a second finger down, the system ignores the touch event and does not report it to your view.
If you plan to track multifinger gestures from your view’s event-handler methods, you need to reenable
multi-touch events by setting the multipleTouchEnabled property of your view to YES.

Some views, such as labels and images, disable event handling altogether initially. You can control
whether a view handles events at all by changing the value of the view’s userInteractionEnabled
property. You might temporarily set this property to NO to prevent the user from manipulating the
contents of your view while a long operation is pending. To prevent events from reaching any of your
views, you can also use the beginIgnoringInteractionEvents and endIgnoringInteractionEvents
methods of the UIApplication object. These methods affect the delivery of events for the entire
application, not just for a single view.

As it handles touch events, UIKit uses the hitTest:withEvent: and pointInside:withEvent:
methods of UIView to determine whether a touch event occurred in a given view. Although you rarely
need to override these methods, you could do so to implement custom touch behaviors for your view.
For example, you could override them to prevent subviews from handling touch events.

Cleaning Up After Your View

If your view class allocates any memory, stores references to any custom objects, or holds resources
that must be released when the view is released, you must implement a dealloc method. The system
calls the dealloc method when your view’s retain count reaches zero and your view is about to be
deallocated itself. Your implementation of this method should release the objects and resources it
holds and then call the inherited implementation, as shown in Listing 6-4.

Listing 6-4 Implementing the dealloc method

- (void)dealloc {
// Release a retained UIColor object
[color release];

// Call the inherited implementation
[super dealloc];

}

Creating a Custom View 137
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

138 Creating a Custom View
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Windows and Views

Events in iPhone OS are based on a Multi-Touch model. Instead of using a mouse and a keyboard,
users touch the screen of the device to manipulate objects, enter data, and otherwise convey their
intentions. iPhone OS recognizes one or more fingers touching the screen as part of a Multi-Touch
sequence. This sequence begins when the first finger touches down on the screen and ends when the
last finger is lifted from the screen. iPhone OS tracks fingers touching the screen throughout a
multi-touch sequence and records the characteristics of each of them, including the location of the
finger on the screen and the time the touch occurred. Applications often recognize certain combinations
of touches as gestures and respond to them in ways that are intuitive to users, such as zooming in on
content in response to a pinching gesture and scrolling through content in response to a flicking
gesture.

Note: A finger on the screen affords a much different level of precision than a mouse pointer. When
a user touches the screen, the area of contact is actually elliptical and tends to be offset below the
point where the user thinks he or she touched. This “contact patch” also varies in size and shape
based on which finger is touching the screen, the size of the finger, the pressure of the finger on the
screen, the orientation of the finger, and other factors. The underlying Multi-Touch system analyzes
all of this information for you and computes a single touch point.

Many classes in UIKit handle multi-touch events in ways that are distinctive to objects of the class.
This is especially true of subclasses of UIControl, such as UIButton and UISlider. Objects of these
subclasses—known as control objects—are receptive to certain types of gestures, such as a tap or a
drag in a certain direction; when properly configured, they send an action message to a target object
when that gesture occurs. Other UIKit classes handle gestures in other contexts; for example,
UIScrollView provides scrolling behavior for table views, text views, and other views with large
content areas.

Some applications may not need to handle events directly; instead, they can rely on the classes of
UIKit for that behavior. However, if you create a custom subclass of UIView—a common pattern in
iPhone OS development—and if you want that view to respond to certain touch events, you need to
implement the code required to handle those events. Moreover, if you want a UIKit object to respond
to events differently, you have to create a subclass of that framework class and override the appropriate
event-handling methods.

139
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

Events and Touches

In iPhone OS, a touch is the presence or movement of a finger on the screen that is part of a unique
multi-touch sequence. For example, a pinch-close gesture has two touches: two fingers on the screen
moving toward each other from opposite directions. There are simple single-finger gestures, such as
a tap, or a double-tap, or a flick (where the user quickly swipes a finger across the screen). An
application might recognize even more complicated gestures; for example, an application might have
a custom control in the shape of a dial that users “turn” with multiple fingers to fine-tune some
variable.

An event is an object that the system continually sends to an application as fingers touch the screen
and move across its surface. The event provides a snapshot of all touches during a multi-touch
sequence, most importantly the touches that are new or have changed for a particular view. A
multi-touch sequence begins when a finger first touches the screen. Other fingers may subsequently
touch the screen, and all fingers may move across the screen. The sequence ends when the last of
these fingers is lifted from the screen. An application receives event objects during each phase of any
touch.

Touches have both temporal and spatial aspects. The temporal aspect, called a phase, indicates when
a touch has just begun, whether it is moving or stationary, and when it ends—that is, when the finger
is lifted from the screen (see Figure 7-1). A touch also has the current location in a view or window
and the previous location (if any). When a finger touches the screen, the touch is associated with a
window and a view and maintains that association throughout the life of the event. If multiple touches
arrive at once, they are treated together only if they are associated with the same view. Likewise, if
two touches arrive in quick succession, they are treated as a multiple tap only if they are associated
with the same view.

Figure 7-1 A multi-touch sequence and touch phases

UITouchPhaseEndedUITouchPhaseBegan

Touch 1
down

UITouchPhaseBegan

Touch 2
down

UITouchPhaseMoved

Touch 1 and 2
moved

Touch 1 and 2
up

In iPhone OS, a UITouch object represents a touch, and a UIEvent object represents an event. An event
object contains all touch objects for the current multi-touch sequence and can provide touch objects
specific to a view or window (see Figure 7-2). A touch object is persistent for a given finger during a
sequence, and UIKit mutates it as it tracks the finger throughout it. The touch attributes that change
are the phase of the touch, its location in a view, its previous location, and its timestamp.
Event-handling code evaluates these attributes to determine how to respond to the event.

140 Events and Touches
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

Figure 7-2 Relationship of a UIEvent object and its UITouch objects

UIEvent

UITouch

phase = UITouchPhaseBegan
locationInView = (35,50)

view = ViewA

phase = UITouchPhaseMoved
locationInView = (35,20)

view = ViewA

UITouch

phase = UITouchPhaseEnded
locationInView = (120,87)

view = ViewB

UITouch

The system can cancel a multi-touch sequence at any time and an event-handling application must
be prepared to respond appropriately. Cancellations can occur as a result of overriding system events,
such as an incoming phone call.

Event Delivery

The delivery of an event to an object for handling occurs along a specific path. As described in “Core
Application Architecture” (page 87), when users touch the screen of a device, iPhone OS recognizes
the set of touches and packages them in a UIEvent object that it places in the current application’s
event queue. The event object encapsulates the touches for a given moment of a multi-touch sequence.
The singleton UIApplication object that is managing the application takes an event from the top of
the queue and dispatches it for handling. Typically, it sends the event to the application’s key
window—the window currently the focus for user events—and the UIWindow object representing
that window sends the event to the first responder for handling. (The first responder is described in
“Responder Objects and the Responder Chain.”)

An application uses hit-testing to find the first responder for an event; it recursively calls
hitTest:withEvent: on the views in the view hierarchy (going down the hierarchy) to determine
the subview in which the touch took place. The touch is associated with that view for its lifetime,
even if it subsequently moves outside the view. “Event-Handling Techniques” (page 148) discusses
some of the programmatic implications of hit-testing.

The UIApplication object and each UIWindow object dispatches events in the sendEvent: method.
(Both classes declare an identically named method). Because these methods are funnel points for
events coming into an application, you can subclass UIApplication or UIWindow and override the
sendEvent:method to monitor events or perform special event handling. However, most applications
have no need to do this.

Responder Objects and the Responder Chain

A responder object is an object that can respond to events and handle them. UIResponder is the base
class for all responder objects. It defines the programmatic interface not only for event handling but
for common responder behavior. UIApplication, UIView, and all UIKit classes that descend from
UIView (including UIWindow) inherit directly or indirectly from UIResponder.

Event Delivery 141
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

The first responder is the responder object in the application (usually a UIView object) that is the
current recipient of touches. A UIWindow objects sends the first responder an event in a message,
giving it the first shot at handling the event. If the first responder doesn’t handle the event, it passes
the event (via message) to the next responder in the responder chain to see if it can handle it.

The responder chain is a linked series of responder objects. It allows responder objects to delegate
responsibility for handling an event to other, higher-level objects. An event proceeds up the responder
chain as the application looks for an object capable of handling the event. The responder chain consists
of a series of “next responders” in the following sequence:

1. The first responder passes the event to its view controller (if it has one) and then on to its
superview.

2. Each subsequent view in the hierarchy similarly passes to its view controller first (if it has one)
and then to its superview.

3. The topmost enclosing view passes the event to the UIWindow object.

4. The UIWindow object passes the event to the singleton UIApplication object.

If the application finds no responder object to handle the event, it discards the event.

Any responder object in the responder chain may implement a UIResponder event-handling method
and thus receive an event message. But a responder may decline to handle a particular event or may
handle it only partially. In that case, it can forward the event message to the next responder in a
message similar to the following one:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
UITouch* touch = [touches anyObject];
NSUInteger numTaps = [touch tapCount];
if (numTaps <= 2) {

[self.nextResponder touchesBegan:touches withEvent:event];
} else {

[self handleDoubleTap:touch];
}

}

Note: If a responder object forwards event-handling messages to the next responder for the initial
phase of multi-touch sequence (in touchesBegan:withEvent:), it should forward all other
event-handling messages for that sequence.

Action messages also make use of the responder chain. When users manipulate a UIControl object
such as button or page control, the control object (if properly configured) sends an action message to
a target object. But if nil is specified as the target, the application initially routes the message as it
does an event message: to the first responder. If the first responder doesn’t handle the action message,
it sends it to its next responder, and so on up the responder chain.

Regulating Event Delivery

UIKit gives applications programmatic means to simplify event handling or to turn off the stream of
events completely. The following list summarizes these approaches:

142 Event Delivery
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

 ■ Turning off delivery of events. By default, a view receives touch events, but you can set its
userInteractionEnabled property to NO to turn off delivery of events. A view also does not
receive events if it’s hidden or if it’s transparent.

 ■ Turning off delivery of events for a period. An application can call the UIApplication method
beginIgnoringInteractionEvents and later call the endIgnoringInteractionEventsmethod.
The first method stops the application from receiving touch event messages entirely; the second
method is called to resume the receipt of such messages. You sometimes want to turn off event
delivery when your code is performing animations.

 ■ Turning on delivery of multiple touches. By default, a view ignores all but the first touch during
a multi-touch sequence. If you want the view to handle multiple touches you must enable multiple
touches for the view. This can be done programmatically by setting the multipleTouchEnabled
property of your view to YES, or in Interface Builder using the inspector for the related view.

 ■ Restricting event delivery to a single view. By default, a view’s exclusiveTouch property is set
to NO. If you set the property to YES, you mark the view so that, if it is tracking touches, it is the
only view in the window that is tracking touches. Other views in the window cannot receive
those touches. However, a view that is marked “exclusive touch” does not receive touches that
are associated with other views in the same window. If a finger contacts an exclusive-touch view,
then that touch is delivered only if that view is the only view tracking a finger in that window.
If a finger touches a non-exclusive view, then that touch is delivered only if there is not another
finger tracking in an exclusive-touch view.

 ■ Restricting event delivery to subviews. A custom UIView class can override hitTest:withEvent:
to restrict the delivery of multi-touch events to its subviews. See “Event-Handling
Techniques” (page 148) for a discussion of this technique.

Handling Multi-Touch Events

To handle multi-touch events, your custom UIView subclass (or, less frequently, your custom
UIApplication or UIWindow subclass), must implement at least one of the UIResponder methods for
event handling. The following sections describe these methods, discuss approaches for handling
common gestures, show an example of a responder object that handles a complex sequence of
multi-touch events, and suggest some techniques for event handling.

The Event-Handling Methods

During a multi-touch sequence, the application dispatches a series of event messages. To receive and
handle these messages, the class of a responder object must implement at least one of the following
methods declared by UIResponder:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

The application sends these messages when there are new or changed touches for a given touch phase:

 ■ It sends the touchesBegan:withEvent: message when one or more fingers touch down on the
screen.

Handling Multi-Touch Events 143
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

 ■ It sends the touchesMoved:withEvent: message when one or more fingers move.

 ■ It sends the touchesEnded:withEvent:message when one or more fingers lift up from the screen.

 ■ It sends the touchesCancelled:withEvent: message when the touch sequence is cancelled by
a system event, such as an incoming phone call.

Each of these methods is associated with a touch phase (for example, UITouchPhaseBegan), which
for any UITouch object you can find out by evaluating its phase property.

Each message that invokes an event-handling method passes in two parameters. The first is a set of
UITouch objects that represent new or changed touches for the given phase. The second parameter
is a UIEvent object representing this particular event. From the event object you can get all touch
objects for the event (allTouches) or a subset of those touch objects filtered for specific views or
windows. Some of these touch objects represent touches that have not changed since the previous
event message or that have changed but are in different phases.

A responder object frequently handles an event for a given phase by getting one or more of the
UITouch objects in the passed-in set and then evaluating their properties or getting their locations.
(If any of the touch objects will do, it can send the NSSet object an anyObjectmessage.) One important
method is locationInView:, which, if passed a parameter of self, yields the location of the touch
in the responder object’s coordinate system (assuming the responder is a UIView object and the view
passed as a parameter is not nil). A parallel method tells you the previous location of the touch
(previousLocationInView:). Properties of the UITouch instance tell you how many taps have been
made (tapCount), when the touch was created or last mutated (timestamp), and what phase it is in
(phase).

A responder class does not have to implement all three of the event methods listed above. For example,
if it is looking for only fingers when they’re lifted from the screen, it need only implement
touchesEnded:withEvent:.

If a responder creates persistent objects while handling events during a multi-touch sequence, it
should implement touchesCancelled:withEvent: to dispose of those objects when the system
cancels the sequence. Cancellation often occurs when an external event—for example, an incoming
phone call—disrupts the current application’s event processing. Note that a responder object should
also dispose of those same objects when it receives the last touchesEnded:withEvent: message for
a multi-touch sequence. (See “Event-Handling Techniques” (page 148) to find out how to determine
the last touch-up in a sequence.)

Handling Single and Multiple Tap Gestures

A very common gesture in iPhone applications is the tap: the user taps an object with his or her finger.
A responder object can respond to a single tap in one way, a double-tap in another, and possibly a
triple-tap in yet another way. To determine the number of times the user tapped a responder object,
you get the value of the tapCount property of a UITouch object.

The best places to find this value are the methods touchesBegan:withEvent: and
touchesEnded:withEvent:. In many cases, the latter method is preferred because it corresponds to
the touch phase in which the user lifts a finger from a tap. By looking for the tap count in the touch-up
phase (UITouchPhaseEnded), you ensure that the finger is really tapping and not, for instance, touching
down and then dragging.

144 Handling Multi-Touch Events
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

In Listing 7-1, the touchesEnded:withEvent: method implementation responds to a double-tap
gesture by zooming in on (or out from) the content shown in a scroll view.

Listing 7-1 Handling a double-tap gesture

- (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event
{

UIScrollView *scrollView = (UIScrollView*)[self superview];
UITouch *touch = [touches anyObject];
CGSize size;
CGPoint point;

if([touch tapCount] == 2) {
if(![_viewController _isZoomed]) {

point = [touch locationInView:self];
size = [self bounds].size;
point.x /= size.width;
point.y /= size.height;

[_viewController _setZoomed:YES];

size = [scrollView contentSize];
point.x *= size.width;
point.y *= size.height;
size = [scrollView bounds].size;
point.x -= size.width / 2;
point.y -= size.height / 2;
[scrollView setContentOffset:point animated:NO];

}
else
[_viewController _setZoomed:NO];

}
}

A complication arises when a responder object wants to handle a single-tap and a double-tap gesture
in different ways. For example, a single tap might select the object and a double tap might display a
view for editing the item that was double-tapped. How is the responder object to know that a single
tap is not the first part of a double tap? Here is how a responder object could handle this situation
using the event-handling methods just described:

1. In touchesEnded:withEvent:, when the tap count is one, the responder object sends itself a
performSelector:withObject:afterDelay: message. The selector identifies another method
implemented by the responder to handle the single-tap gesture; the object for the second parameter
is the related UITouch object; the delay is some reasonable interval between a single- and a
double-tap gesture.

2. In touchesBegan:withEvent:, if the tap count is two, the responder object cancels the pending
delayed-perform invocation by sending itself a cancelPreviousPerformRequestsWithTarget:
message. If the tap count is not two, the method identified by the selector in the previous step
for single-tap gestures is invoked after the delay.

3. In touchesEnded:withEvent:, if the tap count is two, the responder performs the actions necessary
for handling double-tap gestures.

Handling Multi-Touch Events 145
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

Detecting Swipe Gestures

Horizontal and vertical swipes are a simple type of gesture that you can track easily from your own
code and use to perform actions. To detect a swipe gesture, you have to track the movement of the
user’s finger along the desired axis of motion, but it is up to you to determine what constitutes a
swipe. In other words, you need to determine if the user’s finger moved far enough, if it moved in a
straight enough line, and if it went fast enough. You do that by storing the initial touch location and
comparing it to the location reported by subsequent touch-moved events.

Listing 7-2 shows some basic tracking methods you could use to detect horizontal swipes in a view.
In this example, the view stores the initial location of the touch in a startTouchPosition member
variable. As the user’s finger moves, the code compares the current touch location to the starting
location to determine if it is a swipe. If the touch moves too far vertically, it is not considered to be a
swipe and is processed differently. If it continues along its horizontal trajectory, however, the code
continues processing the event as if it were a swipe. The processing routines could then trigger an
action once the swipe had progressed far enough horizontally to be considered a complete gesture.
To detect swipe gestures in the vertical direction, you would use similar code but would swap the x
and y components.

Listing 7-2 Tracking a swipe gesture in a view

#define HORIZ_SWIPE_DRAG_MIN 12
#define VERT_SWIPE_DRAG_MAX 4

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

UITouch *touch = [touches anyObject];
startTouchPosition = [touch locationInView:self];

}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{

UITouch *touch = touches.anyObject;
CGPoint currentTouchPosition = [touch locationInView:self];

// If the swipe tracks correctly.
if (fabsf(startTouchPosition.x - currentTouchPosition.x) >=

HORIZ_SWIPE_DRAG_MIN &&
fabsf(startTouchPosition.y - currentTouchPosition.y) <=

VERT_SWIPE_DRAG_MAX)
{

// It appears to be a swipe.
if (startTouchPosition.x < currentTouchPosition.x)

[self myProcessRightSwipe:touches withEvent:event];
else

[self myProcessLeftSwipe:touches withEvent:event];
}
else
{

// Process a non-swipe event.
}

}

146 Handling Multi-Touch Events
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

Handling a Complex Multi-Touch Sequence

Taps and swipes are simple gestures. Handling a multi-touch sequence that is more complicated—in
effect, interpreting an application-specific gesture—depends on what the application is trying to
accomplish. You may have to track all touches through all phases, recording the touch attributes that
have changed and altering internal state appropriately.

The best way to convey how you might handle a complex multi-touch sequence is through an example.
Listing 7-3 shows how a custom UIView object responds to touches by animating the movement of a
“Welcome” placard around the screen as a finger moves it and changing the language of the welcome
when the user makes a double-tap gesture. (The code in this example comes from the MoveMe sample
code project, which you can examine to get a better understanding of the event-handling context.)

Listing 7-3 Handling a complex multi-touch sequence

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

UITouch *touch = [[event allTouches] anyObject];
// Only move the placard view if the touch was in the placard view
if ([touch view] != placardView) {

// On double tap outside placard view, update placard's display string
if ([touch tapCount] == 2) {

[placardView setupNextDisplayString];
}
return;

}
// "Pulse" the placard view by scaling up then down
// Use UIView's built-in animation
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
CGAffineTransform transform = CGAffineTransformMakeScale(1.2, 1.2);
placardView.transform = transform;
[UIView commitAnimations];

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
transform = CGAffineTransformMakeScale(1.1, 1.1);
placardView.transform = transform;
[UIView commitAnimations];

// Move the placardView to under the touch
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.25];
placardView.center = [self convertPoint:[touch locationInView:self]

fromView:placardView];
[UIView commitAnimations];

}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{

UITouch *touch = [[event allTouches] anyObject];

// If the touch was in the placardView, move the placardView to its location
if ([touch view] == placardView) {

CGPoint location = [touch locationInView:self];
location = [self convertPoint:location fromView:placardView];

Handling Multi-Touch Events 147
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

placardView.center = location;
return;

}
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{

UITouch *touch = [[event allTouches] anyObject];

// If the touch was in the placardView, bounce it back to the center
if ([touch view] == placardView) {

// Disable user interaction so subsequent touches don't interfere with
animation

self.userInteractionEnabled = NO;
[self animatePlacardViewToCenter];
return;

}
}

Note: Custom views that redraw themselves in response to events they handle generally should only
set drawing state in the event-handling methods and perform all of the drawing in the drawRect:
method. To learn more about drawing view content, see “Graphics and Drawing” (page 151).

Event-Handling Techniques

Here are some event-handling techniques you can use in your code.

 ■ Tracking the mutations of UITouch objects

In your event-handling code you can store relevant bits of touch state for later comparison with
the mutated UITouch instance. As an example, say you want to compare the final location of each
touch with its original location. In the touchesBegan:withEvent: method, you can obtain the
original location of each touch from the locationInView: method and store those in a
CFDictionary object using the addresses of the UITouch objects as keys. Then, in the
touchesEnded:withEvent: method you can use the address of each passed-in UITouch object
to obtain the object’s original location and compare that with its current location. (You should
use a CFDictionary object rather than an NSDictionary object; the latter copies its keys, but the
UITouch class does not adopt the NSCopying protocol, which is required for object copying.)

 ■ Hit-testing for a touch on a subview or layer

A custom view can use the hitTest:withEvent: method of UIView or the hitTest: method of
CALayer to find the subview or layer that is receiving a touch, and handle the event appropriately.
The following example detects when an “Info” image in a layer of the custom view is tapped.

- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
CGPoint location = [[touches anyObject] locationInView:self];
CALayer *hitLayer = [[self layer] hitTest:[self convertPoint:location

fromView:nil]];

if (hitLayer == infoImage) {
[self displayInfo];

}
}

148 Handling Multi-Touch Events
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

If you have a custom view with subviews, you need to determine whether you want to handle
touches at the subview level or the superview level. If the subviews do not handle touches by
implementing touchesBegan:withEvent:, touchesEnded:withEvent:, or
touchesMoved:withEvent:, then these messages propagate up the responder chain to the
superview. However, because multiple taps and multiple touches are associated with the subviews
where they first occurred, the superview won’t receive these touches. To ensure reception of all
kinds of touches, the superview should override hitTest:withEvent: to return itself rather than
any of its subviews.

 ■ Determining when the last finger in a multi-touch sequence has lifted

When you want to know when the last finger in a multi-touch sequence is lifted from a view,
compare the number of UITouch objects in the passed in set with the number of touches for the
view maintained by the passed-in UIEvent object. For example:

- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
if ([touches count] == [[event touchesForView:self] count]) {

// last finger has lifted....
}

}

Handling Multi-Touch Events 149
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

150 Handling Multi-Touch Events
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Event Handling

High-quality graphics are an important part of your application’s user interface. Providing high-quality
graphics not only makes your application look good, but it also makes your application look like a
natural extension to the rest of the system. iPhone OS provides two primary paths for creating
high-quality graphics in your system: OpenGL or native rendering using Quartz, Core Animation,
and UIKit.

The OpenGL frameworks are geared primarily toward game development or applications that require
high frame rates. OpenGL is a C-based interface used to create 2D and 3D content on desktop
computers. iPhone OS supports OpenGL drawing through the OpenGL ES framework, which is based
on the OpenGL ES v1.1 specification and is designed specifically for use on embedded hardware
systems. This version differs in many ways from desktop versions of OpenGL, so you should be sure
to follow the advice for using it later in this chapter.

For developers who want a more object-oriented drawing approach, iPhone OS provides Quartz,
Core Animation, and the graphics support in UIKit. Quartz is the main drawing interface, providing
support for path-based drawing, anti-aliased rendering, gradient fill patterns, images, colors,
coordinate-space transformations, and PDF document creation, display, and parsing. UIKit provides
Objective-C wrappers for Quartz images and color manipulations. Core Animation provides the
underlying support for animating changes in many UIKit view properties and can also be used to
implement custom animations.

This chapter provides an overview of the drawing process for iPhone applications, along with specific
drawing techniques for each of supported drawing technologies. This chapter also provides tips and
guidance on how to optimize your drawing code for the iPhone OS platform.

Quartz Concepts and Terminology

In iPhone OS, all drawing—regardless of whether it involves OpenGL, Quartz, UIKit, or Core
Animation—occurs within the confines of a UIView object. Views define the portion of the screen in
which drawing occurs. If you use system-provided views, this drawing is handled for you
automatically. If you define custom views, however, you must provide the drawing code yourself.
For applications that draw using OpenGL, once you set up your rendering surface, you use the
drawing model specified by OpenGL.

For Quartz, Core Animation, and UIKit, you use the drawing concepts described in the following
sections.

Quartz Concepts and Terminology 151
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

The View Drawing Cycle

The basic drawing model for UIView objects involves updating content on demand. The UIView class
makes the update process easier and more efficient, however, by gathering the update requests you
make and delivering them to your drawing code at the most appropriate time.

Whenever a portion of your view needs to be redrawn, the UIView object’s built-in drawing code
calls its drawRect: method. It passes this method a rectangle indicating the portion of your view that
needs to be redrawn. You override this method in your custom view subclasses and use it to draw
the contents of your view. The first time your view is drawn, the rectangle passed to the drawRect:
method contains your view’s entire visible area. During subsequent calls, however, this rectangle
represents only the portion of the view that actually needs to be redrawn. There are several actions
that can trigger a view update:

 ■ Moving or removing another view that was partially obscuring your view

 ■ Making a previously hidden view visible again by setting its hidden property to NO

 ■ Scrolling a view off the screen and then back on

 ■ Explicitly calling the setNeedsDisplay or setNeedsDisplayInRect: method of your view

After calling your drawRect: method, the view marks itself as updated and waits for new actions to
arrive and trigger another update cycle. If your view displays static content, then all you need to do
is respond to changes in your view’s visibility caused by scrolling and the presence of other views.
If you update your view’s content periodically, however, you must determine when to call the
setNeedsDisplay or setNeedsDisplayInRect: method to trigger an update. For example, if you
were updating content several times a second, you might want to set up a timer to update your view.
You might also update your view in response to user interactions or the creation of new content in
your view.

The Native Coordinate System

In UIKit, the origin of a window or view is located in its top-left corner, and positive coordinate values
extend down and to the right of this origin. Figure 8-1 shows this coordinate system in action. When
you write your drawing code, you use this coordinate system to specify the location of individual
points.

152 Quartz Concepts and Terminology
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

Figure 8-1 The default coordinate system

Standard coordinates

y

x
(0,0)

You can make changes to the default coordinate system by modifying the current transformation
matrix. The current transformation matrix (CTM) is a mathematical matrix that maps points in your
view’s coordinate system to points on the device’s screen. When your view’s drawRect: method is
first called, the CTM is configured so that the origin of the coordinate system matches the your view’s
origin and is oriented as shown in Figure 8-1 (page 153). You can modify the CTM by adding scaling,
rotation, and translation factors to it and thereby change the size, orientation, and position of the
default coordinate system relative to the screen.

Modifying the CTM is the standard technique used to draw content in your view because it involves
much less work. If you want to draw a 10 x 10 square starting at the point (20, 20) in the current
drawing system, you could create a path that moves to (20, 20) and then draw the needed set of lines
to complete the square. If you decide later that you want to move that square to the point (10, 10),
however, you would have to recreate the path with the new starting point. In fact, you would have
to recreate the path every time you changed the origin. Creating paths is a relatively expensive
operation, but creating a square whose origin is at (0, 0) and modifying the CTM to match the desired
drawing origin is cheap by comparison.

In the Core Graphics framework, there are two ways to modify the CTM. You can modify the CTM
directly using the CTM manipulation functions defined in CGContext Reference. You can also create
a CGAffineTransform opaque type, apply any transformations you want, and then concatenate that
transform onto the CTM. Using an affine transform lets you group transformations and then apply
them to the CTM all at once. You can also evaluate and invert affine transforms and use them to
modify point, size, and rectangle values in your code. For more information on using affine transforms,
see CGAffineTransform Reference.

Graphics Contexts

Before calling your custom drawRect: method, the view object automatically configures its drawing
environment so that your code can start drawing immediately. As part of this configuration, the
UIView object creates a graphics context (a CGContextRef opaque type) for the current drawing

Quartz Concepts and Terminology 153
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

environment. This graphics context contains the information the drawing system needs to perform
any subsequent drawing commands. It defines basic drawing attributes such as the colors to use
when drawing, the clipping area, line width and style information, font information, compositing
options, and several others.

You can create custom graphics context objects in situations where you want to draw somewhere
other than your view. In Quartz, you primarily do this when you want to capture a series of drawing
commands and use them to create an image or a PDF file. To create the context, you use the
CGBitmapContextCreate or CGPDFContextCreate function. Once you have the context, you can pass
it to the drawing functions needed to create your content.

When creating custom contexts, the coordinate system for those contexts is different than the native
coordinate system used by iPhone OS. Instead of the origin being in the upper-left corner of the
drawing surface, it is in the lower-left corner and the axes point up and to the right. The coordinates
you specify in your drawing commands must take this into consideration or the resulting image or
PDF file may appear wrong when rendered.

Important: Because you use a lower-left origin when drawing into a bitmap or PDF context, you must
compensate for that coordinate system when rendering the resulting content into a view. In other
words, if you create an image and draw it using the CGContextDrawImage function, the image will
appear upside down by default. To correct for this, you must invert the y axis of the CTM (by
multiplying it by -1) and shift the origin from the lower-left corner to the upper-left corner of the
view.

If you use a UIImage object to wrap a CGImageRef you create, you do not need to modify the CTM.
The UIImage object automatically compensates for the inverted coordinate system of the CGImageRef
type.

For more information about graphics contexts, modifying the graphics state information, and using
graphics contexts to create custom content, see Quartz 2D Programming Guide. For a list of functions
used in conjunction with graphics contexts, see CGContext Reference, CGBitmapContext Reference, and
CGPDFContext Reference.

Points Versus Pixels

The Quartz drawing system uses a vector-based drawing model. Compared to a raster-based drawing
model, in which drawing commands operate on individual pixels, drawing commands in Quartz are
specified using a fixed-scale drawing space, known as the user coordinate space. iPhone OS then
maps the coordinates in this drawing space onto the actual pixels of the device. The advantage of this
model is that graphics drawn using vector commands continue to look good when scaled up or down
using an affine transform.

In order to maintain the precision inherent in a vector-based drawing system, drawing coordinates
are specified using floating-point values instead of integers. The use of floating-point values for
coordinates makes it possible for you to specify the location of your program's content very precisely.
For the most part, you do not have to worry about how those values are eventually mapped to the
device’s screen.

154 Quartz Concepts and Terminology
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

The user coordinate space is the environment that you use for all of your drawing commands. The
units of this space are measured in points. The device coordinate space refers to the native coordinate
space of the device, which is measured in pixels. By default, one point in user coordinate space is
equal to one pixel in device space, which results in 1 point equaling 1/160th of an inch. You should
not assume that this 1-to-1 ratio will always be the case, however.

Color and Color Spaces

iPhone OS supports the full range of color spaces available in Quartz; however, most applications
should need only the RGB color space. Because iPhone OS is designed to run on embedded hardware
and display graphics on a screen, the RGB color space is the most appropriate one to use.

The UIColor object provides convenience methods for specifying color values using RGB, HSB, and
grayscale values. When creating colors in this way, you never need to specify the color space. It is
determined for you automatically by the UIColor object.

You can also use the CGContextSetRGBStrokeColor and CGContextSetRGBFillColor functions in
the Core Graphics framework to create and set colors. Although the Core Graphics framework includes
support for creating colors using other color spaces, and for creating custom color spaces, using those
colors in your drawing code is not recommended. Your drawing code should always use RGB colors.

Supported Image Formats

Table 8-1 lists the image formats supported directly by iPhone OS. Of these formats, the PNG format
is the one most recommended for use in your applications.

Table 8-1 Supported image formats

Filename extensionsFormat

.pngPortable Network Graphic (PNG)

.tiff, .tifTagged Image File Format (TIFF)

.jpeg, .jpgJoint Photographic Experts Group (JPEG)

.gifGraphic Interchange Format (GIF)

.bmp, .BMPfWindows Bitmap Format (DIB)

.icoWindows Icon Format

.curWindows Cursor

.xbmXWindow bitmap

Quartz Concepts and Terminology 155
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

Drawing Tips

The following sections provide tips on how to write quality drawing code while ensuring that your
application looks appealing to end users.

Deciding When to Use Custom Drawing Code

Depending on the type of application you are creating, it may be possible to use little or no custom
drawing code. Although immersive applications typically make extensive use of custom drawing
code, utility and productivity applications can often use standard views and controls to display their
content.

The use of custom drawing code should be limited to situations where the content you display needs
to change dynamically. For example, a drawing application would need to use custom drawing code
to track the user’s drawing commands and a game would be updating the screen constantly to reflect
the changing game environment. In those situations, you would need to choose an appropriate
drawing technology and create a custom view class to handle events and update the display
appropriately.

On the other hand, if the bulk of your application’s interface is fixed, you can render the interface in
advance to one or more image files and display those images at runtime using UIImageView objects.
You can layer image views with other content as needed to build your interface. For example, you
could use UILabel objects to display configurable text and include buttons or other controls to provide
interactivity.

Improving Drawing Performance

Drawing is a relatively expensive operation on any platform, and optimizing your drawing code
should always be an important step in your development process. Table 8-2 lists several tips for
ensuring that your drawing code is as optimal as possible. In addition to these tips, you should always
use the available performance tools to test your code and remove hotspots and redundancies.

Table 8-2 Tips for improving drawing performance

ActionTip

During each update cycle, you should update only the portions of your
view that actually changed. If you are using the drawRect: method of
UIView to do your drawing, use the update rectangle passed to that
method to limit the scope of your drawing. For OpenGL drawing, you
must track updates yourself.

Draw minimally

Compositing a view whose contents are opaque requires much less
effort than compositing one that is partially transparent. To make a
view opaque, the contents of the view must not contain any
transparency and the opaque property of the view must be set to YES.

Mark opaque views as
such

156 Drawing Tips
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

ActionTip

If every pixel of a PNG image is opaque, removing the alpha channel
avoids the need to blend the layers containing that image. This simplifies
compositing of the image considerably and improves drawing
performance.

Remove alpha channels
from opaque PNG files

Creating new views during scrolling should be avoided at all costs.
Taking the time to create new views reduces the amount of time
available for updating the screen, which leads to uneven scrolling
behavior.

Reuse table cells and views
during scrolling

By default, UIKit clears a view’s current context buffer prior to calling
its drawRect: method to update that same area. If you are responding
to scrolling events in your view, clearing this region repeatedly during
scrolling updates can be expensive. To disable the behavior, you can
change the value in the clearsContextBeforeDrawing property to NO.

Avoid clearing the
previous content during
scrolling

Changing the graphics state requires effort by the window server. If
you need to draw content that uses similar state information, try to
draw that content together to reduce the number of state changes
needed.

Minimize graphics state
changes while drawing

Maintaining Image Quality

Providing high-quality images for your user interface should be a priority in your design. Images
provide a reasonably efficient way to display complicated graphics and should be used wherever
they are appropriate. When creating images for your application, keep the following guidelines in
mind:

 ■ Use the PNG format for images. The PNG format provides high-quality image content and is
the preferred image format for iPhone OS. In addition, iPhone OS includes an optimized drawing
path for PNG images that is typically more efficient than other formats.

 ■ Create images so that they do not need resizing. If you plan to use an image at a particular size,
be sure to create the corresponding image resource at that size. Do not create a larger image and
scale it down to fit, because scaling requires additional CPU cycles and requires interpolation. If
you need to present an image at variable sizes, include multiple versions of the image at different
sizes and scale down from an image that is relatively close to the target size.

Drawing with Quartz and UIKit

Quartz is the general name for the native window server and drawing technology in iPhone OS. The
Core Graphics framework is at the heart of Quartz, and is the primary interface you use for drawing
content. This framework provides data types and functions for manipulating the following:

 ■ Graphics contexts

 ■ Paths

Drawing with Quartz and UIKit 157
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

 ■ Images and bitmaps

 ■ Transparency layers

 ■ Colors, pattern colors, and color spaces

 ■ Gradients and shadings

 ■ Fonts

 ■ PDF content

UIKit builds on the basic features of Quartz by providing a focused set of classes for graphics-related
operations. The UIKit graphics classes are not intended as a comprehensive set of drawing tools—Core
Graphics already provides that. Instead, they provide drawing support for other UIKit classes. UIKit
support includes the following classes and functions:

 ■ UIImage, which implements an immutable class for displaying images

 ■ UIColor, which provides basic support for device colors

 ■ UIFont, which provides font information for classes that need it

 ■ UIScreen, which provides basic information about the screen

 ■ Functions for generating a JPEG or PNG representation of a UIImage object

 ■ Functions for drawing rectangles and clipping the drawing area

 ■ Functions for changing and getting the current graphics context

For information about the classes and methods that comprise UIKit, see UIKit Framework Reference.
For more information about the opaque types and functions that comprise the Core Graphics
framework, see Core Graphics Framework Reference.

Configuring the Graphics Context

By the time your drawRect: method is called, your view’s built-in drawing code has already created
and configured a default graphics context for you. You can retrieve a pointer to this graphics context
by calling the UIGraphicsGetCurrentContext function. This function returns a reference to a
CGContextRef type, which you pass to Core Graphics functions to modify the current graphics state.
Table 8-3 lists the main functions you use to set different aspects of the graphics state. For a complete
list of functions, see CGContext Reference. This table also lists UIKit alternatives where they exist.

Table 8-3 Core graphics functions for modifying graphics state

UIKit alternativesCore Graphics functionsGraphics state

CGAffineTransform
class

CGContextRotateCTM

CGContextScaleCTM

CGContextTranslateCTM

CGContextConcatCTM

Current transformation matrix
(CTM)

NoneCGContextClipToRectClipping area

158 Drawing with Quartz and UIKit
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

UIKit alternativesCore Graphics functionsGraphics state

NoneCGContextSetLineWidth

CGContextSetLineJoin

CGContextSetLineCap

CGContextSetLineDash

CGContextSetMiterLimit

Line: Width, join, cap, dash, miter
limit

NoneCGContextSetFlatnessAccuracy of curve estimation
(flatness)

NoneCGContextSetAllowsAntialiasingAnti-aliasing setting

UIColor classCGContextSetRGBFillColor

CGContextSetRGBStrokeColor

Color: Fill and stroke settings

NoneCGContextSetAlphaAlpha value (transparency)

NoneCGContextSetRenderingIntentRendering intent

NoneCGContextSetFillColorSpace

CGContextSetStrokeColorSpace

Color space: Fill and stroke
settings

UIFont classCGContextSetFont

CGContextSetFontSize

CGContextSetCharacterSpacing

Text: Font, font size, character
spacing, text drawing mode

The UIImage class and
various drawing
functions let you specify
which blend mode to
use.

CGContextSetBlendModeBlend mode

The graphics context contains a stack of saved graphics states. When Quartz creates a graphics context,
the stack is empty. Using the CGContextSaveGState function pushes a copy of the current graphics
state onto the stack. Thereafter, modifications you make to the graphics state affect subsequent drawing
operations but do not affect the copy stored on the stack. When you are done making modifications,
you can return to the previous graphics state by popping the saved state off the top of the stack using
the CGContextRestoreGState function. Pushing and popping graphics states in this manner is a fast
way to return to a previous state and eliminates the need to undo each state change individually. It
is also the only way to restore some aspects of the state, such as the clipping path, back to their original
settings.

For general information about graphics contexts and using them to configure the drawing environment,
see Graphics Contexts in Quartz 2D Programming Guide.

Drawing with Quartz and UIKit 159
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

Creating and Drawing Images

iPhone OS provides support for loading and displaying images using both the UIKit and Core Graphics
frameworks. How you determine which classes and functions to use to draw images depends on how
you intend to use them. Whenever possible, though, it is recommended that you use the classes of
UIKit for representing images in your code. Table 8-4 lists some of the usage scenarios and the
recommended options for handling them.

Table 8-4 Usage scenarios for images

Recommended usageScenario

Use a UIImageView class to load and display the image. This option
assumes that your view’s only content is an image. You can still
layer other views on top of the image view to draw additional
controls or content.

Display an image as the content
of a view

Load and draw the image using the UIImage class.Display an image as an
adornment for part of a view

Use the CGBitmapContextCreate function to create a bitmap
graphics context and draw the image contents into it. Then use
theCGBitmapContextCreateImage function to create aCGImageRef
from the bitmap context. You can then use this type to initialize a
UIImage object.

Save some bitmap data into an
image object

Create a UIImage object from the original image data. Call the
UIImageJPEGRepresentation or UIImagePNGRepresentation
function to get an NSData object, and use that object’s methods to
save the data to a file.

Save an image as a JPEG or
PNG file

The following example shows how to load an image from your application’s bundle. You can
subsequently use this image object to initialize a UIImageView object, or you can store it and draw it
explicitly in your view’s drawRect: method.

NSString* imagePath = [[NSBundle mainBundle] pathForResource:@"myImage"
ofType:@"png"];
UIImage* myImageObj = [[UIImage alloc] initWithContentsOfFile:imagePath];

To draw an image explicitly in your view’s drawRect: method, you can use any of the drawing
methods available in UIImage. These methods let you specify where in your view you want to draw
the image and therefore do not require you to create and apply a separate transform prior to drawing.
Assuming you stored the previously loaded image in a member variable called anImage, the following
example draws that image at the point (10, 10) in the view.

- (void)drawRect:(CGRect)rect
{

[anImage drawAtPoint:CGPointMake(10, 10)];
}

160 Drawing with Quartz and UIKit
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

Important: If you use the CGContextDrawImage function to draw bitmap images directly, the image
data is inverted along the y axis by default. This is because Quartz images assume a coordinate system
with a lower-left corner origin and positive coordinate axes extending up and to the right from that
point. Although you can apply a transform before drawing, the simpler (and recommended) way to
draw Quartz images is to wrap them in a UIImage object, which compensates for this difference in
coordinate spaces automatically.

Creating and Drawing Paths

A path is a description of a 2D geometric scene that uses a sequence of lines and Bézier curves to
represent that scene. UIKit includes the UIRectFrame and UIRectFill functions (among others) for
creating drawing simple paths such as rectangles in your views. Core Graphics also includes
convenience functions for creating simple paths such as rectangles and ellipses. For more complex
paths, you must create the path yourself using the functions of the Core Graphics framework.

To create a path, you use the CGContextBeginPath function to configure the graphics context to
receive path commands. After calling that function, you use other path-related functions to set the
path’s starting point, draw lines and curves, add rectangles and ellipses, and so on. When you are
done specifying the path geometry, you can paint the path directly or create a CGPathRef or
CGMutablePathRef data type to store a reference to that path for later use.

When you want to draw a path in your view, you can stroke it, fill it, or do both. Stroking a path with
a function such as CGContextStrokePath creates a line centered on the path using the current stroke
color. Filling the path with the CGContextFillPath function uses the current fill color or fill pattern
to fill the area enclosed by the path’s line segments.

For more information on how to draw paths, including information about how you specify the points
for complex path elements, see Paths in Quartz 2D Programming Guide. For information on the functions
you use to create paths, see CGContext Reference and CGPath Reference.

Drawing Text

When you need to draw custom text strings in your interface, use the methods of NSString to do so.
UIKit includes extensions to the basic NSString class that allow you to draw strings in your views.
These methods allow you to adjust the position of the rendered text precisely and blend it with the
rest of your view’s content. The methods of this class also let you compute the bounding rectangle
for your text in advance based on the desired font and style attributes.

For information about the drawing methods of NSString, see NSString UIKit Additions Reference.

Creating Patterns, Gradients, and Shadings

The Core Graphics framework includes additional functions for creating patterns, gradients, and
shadings. You use these types to create non monochrome colors and use them to fill the paths you
create. Patterns are created from repeating images or content. Gradients and shadings provide different
ways to create smooth transitions from color to color.

Drawing with Quartz and UIKit 161
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

The details for creating and using patterns, gradients, and shadings are all covered in Quartz 2D
Programming Guide.

Drawing with OpenGL ES

The Open Graphics Library (OpenGL) is a cross-platform C-based interface used to create 2D and
3D content on desktop systems. It is typically used by games developers or anyone needing to perform
drawing with high frame rates. You use OpenGL functions to specify primitive structures such as
points, lines, and polygons and the textures and special effects to apply to those structures to enhance
their appearance. The functions you call send graphics commands to the underlying hardware, where
they are then rendered. Because rendering is done mostly in hardware, OpenGL drawing is usually
very fast.

OpenGL for Embedded Systems is a pared-down version of OpenGL that is designed for mobile
devices and takes advantage of modern graphics hardware. If you want to create OpenGL content
for iPhone OS–based devices—that is, iPhone or iPod Touch—you’ll use OpenGL ES. The OpenGL
ES framework (OpenGLES.framework) provided with iPhone OS conforms to the OpenGL ES v1.1
specification. You can find out more about OpenGL ES by reading Polygons In Your Pocket: Introduc-
ing OpenGL ES.

This section is designed to get you started writing OpenGL ES applications for iPhone OS–based
devices. “Setting Up a Rendering Surface” (page 162) provides step-by-step instructions for creating
a surface that you can draw to using OpenGL ES. But before you start writing the OpenGL ES portion
of your application, you’ll want to read “Implementation Details” (page 166) to learn about the
capabilities of iPhone OS–based devices and the specifics of the OpenGL ES implementation in iPhone
OS. “Best Practices” (page 164) provides coding guidelines that can help your application perform
optimally.

Setting Up a Rendering Surface

The setup for drawing with OpenGL ES is straightforward and requires the same types of tasks you’d
perform to draw to surfaces on a Macintosh computer. The primary difference is that you’ll use the
EAGL API to set up the window surface instead of an API such as CGL or AGL. The EAGL API
provides the interface between the OpenGL ES renderer and the windows and views of an iPhone
application. (See OpenGL ES Framework Reference.)

When you set up your Xcode project, make sure you link to OpenGLES.framework. Then, set up a
surface for rendering by following these steps:

1. Subclass UIView and set up the view appropriately for your iPhone application.

2. Override the layerClass method of the UIView class so that it returns a CAEAGLLayer object
rather than a CALayer object.

+ (Class) layerClass
{

return [CAEAGLLayer class];
}

3. Get the layer associated with the view by calling the layer method of UIView.

162 Drawing with OpenGL ES
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

http://khronos.org/opengles/1_X/
http://khronos.org/opengles/1_X/
http://www.opengl.org/pipeline/article/vol003_2/
http://www.opengl.org/pipeline/article/vol003_2/

myEAGLLayer = (CAEAGLLayer*)self.layer;

4. Set the layer properties.

For optimal performance, it’s recommended that you mark the layer as opaque by setting the
opaque property provided by the CALayer class. See “Best Practices” (page 164).

5. Optionally configure the surface properties of the rendering surface by assigning a new dictionary
of values to the drawableProperties property of the CAEAGLLayer object.

The EAGL framework lets you specify custom color formats and whether or not the native surface
retains its contents after presenting them. You identify these properties in the dictionary using
the kEAGLDrawablePropertyColorFormat and kEAGLDrawablePropertyRetainedBacking keys.
For a list of values for these keys, see the EAGLDrawable protocol.

6. Create a new EAGLContext object to manage the drawing context. You typically create and
initialize this object as follows:

EAGLContext* myContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1];

If you want to share objects (texture objects, vertex buffer objects, and so forth) between multiple
contexts, use the initWithAPI:sharegroup: initialization method instead. For each context that
should share a given set of objects, pass the same EAGLSharegroup object in the sharegroup
parameter.

7. Make your EAGLContext object the context for the current thread using the setCurrentContext:
class method.

You can have one current context per thread.

8. Create and bind a new render buffer to the GL_RENDERBUFFER_OES target. (Typically you would
do this in a two-step process using the glGenRenderbufferOES function to allocate an unused
name and the glBindRenderbufferOES functions create and bind the render buffer to that name.)

9. Attach the newly created render buffer target to your view’s layer object using the
renderBufferStorage:fromDrawable:method of your EAGLContext object. (The layer provides
the underlying storage for the render buffer.) For example, given the context created previously,
you would use the following code to bind the buffer to the view’s layer (obtained previously and
stored in the myEAGLLayer variable):

[myContext renderbufferStorage:GL_RENDERBUFFER_OES fromDrawable:myEAGLLayer];

The width, height, and format of the render buffer storage are derived from the bounds and
properties of the CAEAGLLayer object at the moment you call the
renderbufferStorage:fromDrawable: method. If you change the layer’s bounds later, Core
Animation scales the content by default. To avoid scaling, you must recreate the renderbuffer
storage by calling renderbufferStorage:fromDrawable:.

10. Configure your frame buffer as usual and bind your render buffer to the attach points of your
frame buffer.

Drawing with OpenGL ES 163
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

Best Practices

To create great OpenGL ES applications that run optimally, whenever possible follow the guidelines
discussed in this section. You’ll also want to read “Implementation Details” (page 166) to see how
your code can take advantage of the specific features of the GPU.

General Guidelines

When developing OpenGL ES applications for iPhone OS–based devices:

 ■ Use an EAGL surface that is the same size as size of the screen. Read the bounds property of the
UIScreen class to get the screen size.

 ■ Do not apply any Core Animation transforms to the CAEAGLLayer object that contains the EAGL
window surface.

 ■ Set the opaque property of the CALayer class to mark the CAEAGLLayer object as opaque.

 ■ Do not place any other Core Animation layers or UIKit views above the CAEAGLLayer object that
you’re rendering to.

 ■ If your application needs to present landscape content, avoid transforming the layer. Instead, set
the OpenGL ES state to rotate everything by changing the Model/View/Projection transform,
and swapping the width and height arguments to the glViewport and glScissor functions.

 ■ Limit interactions between OpenGL ES and UIKit or Core Animation rendering. For example,
avoid rendering with OpenGL ES while you render notifications, messages, or any other user
interface controls provided by UIKit or Core Animation.

 ■ Economize memory usage. iPhone OS–based devices use a shared memory system. Memory used
by your application’s graphics is not available for the system. For example, after loading GL
textures, free your copy of the pixel data if you no longer need to use it. (See “Memory” (page
168))

 ■ To implement transparency, use alpha blending instead of alpha testing. Alpha testing is
considerably more expensive than alpha blending.

 ■ Disable unused or unnecessary features. For instance, do not enable lighting or blending if you
do not need them.

 ■ Minimize scissor state changes. They are considerably more expensive on OpenGL ES for iPhone
OS than they are on OpenGL for Mac OS X.

 ■ Minimize the number of times you call the EAGLContext class method setCurrentContext:
during a rendering frame. Changing the current surface on OpenGL ES for iPhone OS is
considerably more expensive than it is on OpenGL for Mac OS X. Rather than using multiple
contexts, consider using multiple frame buffer objects instead.

 ■ Operations that depend on completing previous rendering commands (such as glTexSubImage,
glCopyTexImage, glCopyTexSubImage, glReadPixels, glFlush, glFinish, or
setCurrentContext:) can be very expensive if you perform them in the middle of a frame. If
you need these operations, perform them at the beginning or end of a frame.

164 Drawing with OpenGL ES
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

CPU Usage

Respecifying OpenGL ES state can cause the CPU to perform unnecessary work. Use techniques to
reduce CPU usage. For example, use a texture atlas. This allows you to perform additional draw calls
without changing the texture binding. (Or even better, collapse multiple draw calls into one.) If you
create a texture atlas, you also need to sort state calls to avoid rebinding the texture. Otherwise, you
won’t see a performance benefit.

Vertex Data

When creating geometry:

 ■ Reduce overall geometry by doing such things as using indexed triangle strips and providing
only as much detail as the user can see.

 ■ To achieve fine detail in your drawing without increasing the vertex count, consider using DOT3
lighting or textures.

 ■ Memory bandwidth is limited, so use the smallest acceptable type for your data. Specify vertex
colors using 4 unsigned byte values. Specify texture coordinates with 2 or 4 unsigned byte or
short values instead of floating-point values, if you can.

Textures

To get the best performance with textures:

 ■ Use textures with the smallest size per pixel that you can afford. If possible, use 565 textures
instead of 8888.

 ■ Use compressed textures stored in the PVRTC format. See the specification for the extension
GL_IMG_texture_compression_pvrtc.

 ■ Use mipmapping with the LINEAR_MIPMAP_NEAREST option.

 ■ Create and load all textures prior to rendering. Don’t upload or modify textures during a frame.
Specifically, avoid calling the functions glTexSubImage or glCopyTexSubImage in the middle of
a frame.

 ■ Use multitexturing rather than applying textures over multiple passes.

Drawing Order

Drawing order is important for hardware that uses tile based deferred rendering. (See “Rendering
Path” (page 168).)

 ■ Don’t waste CPU time sorting objects front to back. The tile based deferred rendering model used
by the GPU makes sorting unnecessary.

 ■ Draw opaque objects first; draw alpha blended objects last.

Lighting

Simplify lighting as much as possible.

Drawing with OpenGL ES 165
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

 ■ Use the fewest lights possible and the simplest lighting type for your application. For example,
consider using directional lights instead of spot lighting, which incurs a higher performance cost.

 ■ If you can, precompute lighting. Static lighting gives better performance than dynamic. You can
compute the lighting ahead of time and store the result in textures or color arrays that you can
look up later.

Debugging and Tuning

The Instruments application includes an OpenGL ES instrument that you can use to gather information
about the runtime behavior of your OpenGL code. In addition, you can set a breakpoint on the
opengl_error_break symbol in GDB to see when OpenGL errors are generated.

Implementation Details

Understanding the features of the hardware and the specifics of the implementation of OpenGL ES
can help you tailor your code to get the best performance. Use the information in this section, along
with “Best Practices” (page 164), as you design your OpenGL ES application.

OpenGL ES Implementation

The OpenGL ES implementation in iPhone OS differs from other implementations of OpenGL ES in
the following ways:

 ■ The maximum texture size is 1024 x 1024.

 ■ 2D texture targets are supported; other texture targets are not.

 ■ Stencil buffers aren’t available.

Hardware Capabilities

When developing any OpenGL application, it’s important to check for the functionality that your
application uses and have a contingency in place if the hardware doesn’t support the particular feature
or extension that you want to use. This is true for Macintosh computers and it is even more important
when writing OpenGL ES applications for iPhone OS–based devices. It’s essential that you understand
the capabilities of the specific hardware that you are writing for. Keep in mind that, unlike OpenGL
on Macintosh computers, there is no software rendering fallback option for iPhone OS–based devices.

The graphics hardware for iPhone OS–based devices has the following limitations:

 ■ The texture magnification and magnification filters (within a texture level) must match. For
example:

 ❏ Supported: GL_TEXTURE_MAG_FILTER =GL_LINEAR, GL_TEXTURE_MIN_FILTER =
GL_LINEAR_MIPMAP_LINEAR

 ❏ Supported: GL_TEXTURE_MAG_FILTER = GL_NEAREST, GL_TEXTURE_MIN_FILTER =
GL_LINEAR_MIPMAP_NEAREST

 ❏ Not Supported: GL_TEXTURE_MAG_FILTER = GL_NEAREST, GL_TEXTURE_MIN_FILTER =
GL_LINEAR_MIPMAP_LINEAR

166 Drawing with OpenGL ES
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

There are a few, rarely used texture environment operations that aren’t available:

 ■ If the value of GL_COMBINE_RGB is GL_MODULATE, only one of the two operands may read from an
GL_ALPHA source.

 ■ If the value of GL_COMBINE_RGB is GL_INTERPOLATE, GL_DOT3_RGB, or GL_DOT3_RGBA, then several
combinations of GL_CONSTANT and GL_PRIMARY_COLOR sources and GL_ALPHA operands do not
work properly.

 ■ If the value of GL_COMBINE_RGB or GL_COMBINE_ALPHA is GL_SUBTRACT, then GL_SCALE_RGB or
GL_SCALE_ALPHA must be 1.0.

 ■ If the value of GL_COMBINE_ALPHA is GL_INTERPOLATE or GL_MODULATE, only one of the two sources
can be GL_CONSTANT.

 ■ The value of GL_TEXTURE_ENV_COLOR must be the same for all texture units.

Supported Extensions

These are the OpenGL ES extensions that you can use when developing OpenGL ES applications for
iPhone OS–based devices:

 ■ GL_OES_blend_subtract

 ■ GL_OES_compressed_paletted_texture

 ■ GL_OES_depth24

 ■ GL_OES_draw_texture

 ■ GL_OES_framebuffer_object

 ■ GL_OES_mapbuffer

 ■ GL_OES_matrix_palette

 ■ GL_OES_point_size_array

 ■ GL_OES_point_sprite

 ■ GL_OES_read_format

 ■ GL_OES_rgb8_rgba8

 ■ GL_OES_texture_mirrored_repeat

 ■ GL_EXT_texture_filter_anisotropic

 ■ GL_EXT_texture_lod_bias

 ■ GL_IMG_read_format

 ■ GL_IMG_texture_compression_pvrtc

 ■ GL_IMG_texture_format_BGRA8888

Drawing with OpenGL ES 167
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

http://khronos.org/registry/gles/extensions/OES/OES_blend_subtract.txt
http://khronos.org/registry/gles/extensions/OES/OES_compressed_paletted_texture.txt
http://khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://khronos.org/registry/gles/extensions/OES/OES_framebuffer_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://khronos.org/registry/gles/extensions/OES/OES_point_size_array.txt
http://khronos.org/registry/gles/extensions/OES/OES_point_sprite.txt
http://khronos.org/registry/gles/extensions/OES/OES_read_format.txt
http://khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://khronos.org/registry/gles/extensions/OES/OES_texture_mirrored_repeat.txt
http://khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt

Memory

OpenGL ES applications should use no more than 24 MB of memory for both textures and surfaces.
This 24 MB is not dedicated graphics memory but comes from the main system memory. Because
main memory is shared with other iPhone applications and the system, your application should use
as little of it as possible. “Best Practices” (page 164) provides several guidelines for ways to use memory
economically. In particular, see “General Guidelines” (page 164) and “Vertex Data” (page 165).

Rendering Path

The GPU in the iPhone and iPod touch is a PowerVR MBX Lite. This GPU uses a technique known
as Tile Based Deferred Rendering (TBDR). When you submit OpenGL ES commands for rendering,
TBDR behaves very differently from a streaming renderer. A streaming renderer simply executes
rendering commands in order, one after another. In contrast, a TBDR defers any rendering until it
accumulates a large number of rendering commands, and then operates on this command list as a
single scene. The framebuffer is divided up into a number of tiles, and the scene is drawn once for
each tile, each time drawing only the content that is actually visible within that tile. The TBDR approach
has several advantages and disadvantages compared to streaming renderers. Understanding these
differences will help you write better performing software.

The most significant advantage of TBDR is that it can make much more efficient use of available
bandwidth to memory. Constraining rendering to only one tile allows the GPU to more effectively
cache the framebuffer, making depth testing blending much more efficient. Otherwise, the memory
bandwidth consumed by these framebuffer operations often becomes a significant performance
bottleneck.

When using deferred rendering, some operations become more expensive. For example, if you call
the function glTexSubImage in the middle of a frame, the accumulated command list may include
commands from both before and after the call to glTexSubImage. This command list needs to reference
both the old and new version of the texture image at the same time, forcing the entire texture to be
duplicated even if only a small portion of the texture is updated. Duplication can make functions
such as glTexSubImage significantly more expensive on a deferred renderer than a streaming renderer.

The PowerVR GPU relies on more than just TBDR to optimize performance; it performs hidden surface
removal before fragment processing. If the GPU determines that a pixel won’t be visible, it discards
the pixel without performing texture sampling or fragment color calculations. Removing hidden
pixels can significantly improve performance for scenes that have obscured content. To gain the most
benefit from this feature, you should try to draw as much of the scene with opaque content as possible
and minimize use of blending and alpha testing.

For more information on exactly how these features are implemented and how your application can
best take advantage of them, see PowerVR Technology Overview and PowerVR MBX 3D Application
Development Recommendations.

Simulator Capabilities

The iPhone simulator includes a complete and conformant implementation of OpenGL ES 1.1 that
you can use for your application development. This implementation differs in a few ways from the
implementation found in iPhone OS–based devices. In particular, the simulator does not have the
same limitations regarding texture magnification filters or texture environment operations that are
described in “Hardware Capabilities” (page 166). In addition, the simulator supports antialiased lines
while iPhone OS–based devices do not.

168 Drawing with OpenGL ES
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

http://www.imgtec.com/powervr/mbx.asp
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20MBX.3D%20Application%20Development%20Recommendations.1.0.67a.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20MBX.3D%20Application%20Development%20Recommendations.1.0.67a.External.pdf

Important: It is important to understand that the rendering performance of OpenGL ES in the simulator
has no relation to the performance of OpenGL ES on an actual device. The simulator provides an
optimized software rasterizer that takes advantage of the vector processing capabilities of your
Macintosh computer. As a result, your OpenGL ES code may run faster or slower in Mac OS X
(depending on your computer and what you are drawing) than on an actual device. Therefore, you
should always profile and optimize your drawing code on a real device and not assume that the
simulator reflects real-world performance.

The following sections provide additional details about the OpenGL ES support available in the
iPhone simulator.

Supported Extensions

The iPhone simulator supports all of the OpenGL ES 1.1 core functionality and most of the extensions
supported by iPhone OS–based devices. The following extensions are not supported by the simulator,
however:

 ■ GL_OES_draw_texture

 ■ GL_OES_matrix_palette

 ■ GL_EXT_texture_filter_anisotropic

 ■ GL_IMG_texture_compression_pvrtc

For a list of the extensions supported by the hardware, see “Supported Extensions” (page 167).

Memory

On a device, OpenGL ES applications can use no more than 24 MB of memory for both textures and
surfaces. The simulator does not enforce this limit. As a result, your code can allocate as much memory
as your computer’s rendering hardware supports. Be sure to keep track of the size of your assets
during development.

Rendering Path

In contrast to the Tile Based Deferred Rendering technique used in devices, the simulator’s software
rasterizer uses a traditional streaming model for OpenGL ES commands. Objects are transformed
and rendered immediately as you specify them. Consequently, the performance of some operations
can differ significantly from that on actual devices.

As with any two different implementations of OpenGL ES, there may be small differences between
the pixels rendered by the simulator and those rendered by the device. For example, OpenGL ES
allows some calculations, such as color interpolation and texture mipmap filtering, to be approximated.
In general, the two implementations will produce similar results, but do not rely on them to be
bit-for-bit identical.

For More Information

You may want to consult these resources as you develop OpenGL ES applications for iPhone OS–based
devices:

Drawing with OpenGL ES 169
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

http://khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt

 ■ OpenGL ES 1.X Specification is the official definition of this technology provided by the Khronos
Group. You’ll also find other useful information on this website.

 ■ PowerVR MBX OpenGL ES 1.x SDK page provides information about the specific OpenGL ES
implementation supported by the PowerVR MBX graphics hardware.

 ■ OpenGL ES 1.1 Reference Pages provides a complete reference to OpenGL ES specification,
indexed alphabetically as well as by theme.

 ■ OpenGL ES Framework Reference describes the functions and constants that provide the interface
between OpenGL ES and the iPhone user interface.

Applying Core Animation Effects

Core Animation is an Objective-C framework that provides infrastructure for creating fluid, real-time
animations quickly and easily. Core Animation is not a drawing technology itself, in the sense that
it does not provide primitive routines for creating shapes, images, or other types of content. Instead,
it is a technology for manipulating and displaying content that you created using other technologies.

Most applications can benefit from using Core Animation in some form in iPhone OS. Animations
provide feedback to the user about what is happening. For example, when the user navigates through
the Settings application, screens slide in and out of view based on whether the user is navigating
further down the preferences hierarchy or back up to the root node. This kind of feedback is important
and provides contextual information for the user. It also enhances the visual style of an application.

In most cases, you may be able to reap the benefits of Core Animation with very little effort. For
example, several properties of the UIView class (including the view’s frame, center, color, and
opacity—among others) can be configured to trigger animations when their values change. You have
to do some work to let UIKit know that you want these animations performed, but the animations
themselves are created and run automatically for you. For information about how to trigger the
built-in view animations, see “Animating Views” (page 131).

When you go beyond the basic animations, you must interact more directly with Core Animation
classes and methods. The following sections provide information about Core Animation and show
you how to work with its classes and methods to create typical animations in iPhone OS. For additional
information about Core Animation and how to use it, see Core Animation Programming Guide.

About Layers

The key technology in Core Animation is the layer object. Layers are lightweight objects that are
similar in nature to views, but that are actually model objects that encapsulate geometry, timing, and
visual properties for the content you want to display. The content itself is provided in one of three
ways:

 ■ You can assign a CGImageRef to the contents property of the layer object.

 ■ You can assign a delegate to the layer and let the delegate handle the drawing.

 ■ You can subclass CALayer and override one of the display methods.

170 Applying Core Animation Effects
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

http://www.khronos.org/opengles/1_X/
http://www.khronos.org/
http://www.khronos.org/
http://www.imgtec.com/powervr/insider/sdk/KhronosOpenGLES1xMBX.asp
http://www.khronos.org/opengles/documentation/opengles1_1/gl_egl_ref_1_1_20041110/index.html

When you manipulate a layer object’s properties, what you are actually manipulating is the model-level
data that determines how the associated content should be displayed. The actual rendering of that
content is handled separately from your code and is heavily optimized to ensure it is fast. All you
must do is set the layer content, configure the animation properties, and then let Core Animation take
over.

For more information about layers and how they are used, see Core Animation Programming Guide.

About Animations

When it comes to animating layers, Core Animation uses separate animation objects to control the
timing and behavior of the animation. The CAAnimation class and its subclasses provide different
types of animation behaviors that you can use in your code. You can create simple animations that
migrate a property from one value to another, or you can create complex keyframe animations that
track the animation through the set of values and timing functions you provide.

Core Animation also lets you group multiple animations together into a single unit, called a transaction.
The CATransaction object manages the group of animations as a unit. You can also use the methods
of this class to set the duration of the animation.

For examples of how to create custom animations, see Animation Types and Timing Programming Guide.

Applying Core Animation Effects 171
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

172 Applying Core Animation Effects
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Graphics and Drawing

iPhone OS supports audio features in your application through the Core Audio and OpenAL
frameworks, and provides video playback support using the Media Player framework. Core Audio
provides an advanced interface for playing, recording, and manipulating sound and for parsing
streamed audio. If you are a game developer and already have code that takes advantage of OpenAL,
you can use your code in iPhone OS.

This chapter provides a quick introduction to audio in iPhone OS. For a more in-depth description,
see Core Audio Overview.

Using Sound in iPhone OS

Core Audio offers a rich set of tools for working with sound in your application. These tools are
arranged into three frameworks: The Audio Toolbox framework, the Audio Unit framework, and the
Core Audio framework (which is not an umbrella framework but rather provides data types used by
all Core Audio services).

In addition to Core Audio, you can use the OpenAL framework in iPhone OS to provide positional
audio playback in your application. OpenAL 1.1 support in iPhone OS is built on top of Core Audio.

Together, and in concert with other iPhone OS frameworks, the Core Audio interfaces enable you to:

 ■ Play audio (see “Playing Short Sounds Using System Sound Services” (page 174), “Playing Sounds
with Control Using Audio Queue Services” (page 176), and “Playing Sounds with Positioning
Using OpenAL” (page 179))

 ■ Record audio (see “Recording Audio” (page 179))

 ■ Parse audio streams from a network (see “Parsing Streamed Audio” (page 180))

 ■ Mix sounds, control levels, and position sounds in a stereo field (see “Mixing and Processing
Sounds” (page 180))

 ■ Trigger vibration for tactile feedback (iPhone only) (see “Triggering Vibration” (page 181)

You select among the various Core Audio APIs based on the needs of your application. This chapter
describes how to do all of these sound-related tasks in iPhone OS, and directs you to further
information.

Be sure to read the following two sections as well:

Using Sound in iPhone OS 173
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

 ■ “Tips for Manipulating Audio” (page 181) offers important guidelines for success with using
sound in iPhone OS.

 ■ “Preferred Audio Formats in iPhone OS” (page 182) lists the audio formats and file formats to use
for best performance and best user experience.

Audio Sessions

In iPhone OS, your application runs on a device that sometimes has more important things to do,
such as take a phone call. If your application is playing sound and a call comes in, or an event alarm
comes due, the iPhone needs to do the right thing. An audio session is the iPhone OS software
abstraction that represents the audio behavior of your application, in context, on an iPhone or iPod
touch.

Every iPhone OS application that uses audio should adopt Audio Session Services. To learn how,
read Core Audio Essentials in Core Audio Overview.

Playing Short Sounds Using System Sound Services

For playback, Core Audio offers two mechanisms, both available in the Audio Toolbox framework:

 ■ To play short sound files of under 30 seconds duration when you do not need level control or
other control, use System Sound Services, as described in this section.

 ■ To play longer sound files, to exert control over playback including level adjustments, or to play
multiple sounds simultaneously, use Audio Queue Services, described in the next section.

Use the AudioServicesPlaySystemSound function from System Sound Services to very simply play
short sound files. The simplicity carries with it a few restrictions. Your sound files must be:

 ■ Shorter than 30 seconds in duration

 ■ In linear PCM or IMA/ADPCM (IMA4) format

 ■ Packaged in a .caf, .aif, or .wav file

In addition, when you use the AudioServicesPlaySystemSound function:

 ■ Sounds play at the current system audio level

 ■ Sounds play immediately

 ■ Looping and stereo positioning are unavailable

Note: System-supplied alert sounds and system-supplied user-interface sound effects are not available
in iPhone OS. For example, using the kSystemSoundID_UserPreferredAlert constant as a parameter
to the AudioServicesPlayAlertSound function will not play anything.

To play a sound with the AudioServicesPlaySystemSound function, you first register your sound
file as a system sound by creating a sound ID object. You can then play the sound. In typical use,
which includes playing a sound occasionally or repeatedly, retain the sound ID object until your

174 Using Sound in iPhone OS
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

application quits. If you know that you will use a sound only once—for example, in the case of a
startup sound—you can destroy the sound ID object immediately after playing the sound, freeing
memory.

When you need lowest-latency playback, for example when playing sound effects in games or playing
time-critical user feedback sounds in applications, make use of the IO audio unit directly. (Audio
units are plug-ins that can add audio features to your application at run time. See “Audio Unit Support
in iPhone OS” (page 181).) The most straightforward way to use the IO unit is to use OpenAL, which
employs this audio unit for low-latency playback. See “Playing Sounds with Positioning Using
OpenAL” (page 179).

Listing 9-1 shows a minimal program that uses the interfaces in System Sound Services to play a
sound. The sound completion callback, and the call that installs it, are primarily useful when you
want to free memory after playing a sound in cases where you know you will not be playing the
sound again.

Listing 9-1 Playing a short sound

#include <AudioToolbox/AudioToolbox.h>
#include <CoreFoundation/CoreFoundation.h>

// Define a callback to be called when the sound is finished
// playing. Useful when you need to free memory after playing.
static void MyCompletionCallback (

SystemSoundID mySSID,
void * myURLRef

) {
AudioServicesDisposeSystemSoundID (mySSID);
CFRelease (myURLRef);
CFRunLoopStop (CFRunLoopGetCurrent());

}

int main (int argc, const char * argv[]) {
// Set up the pieces needed to play a sound.
SystemSoundID mySSID;
CFURLRef myURLRef;
myURLRef = CFURLCreateWithFileSystemPath (

kCFAllocatorDefault,
CFSTR ("../../ComedyHorns.aif"),
kCFURLPOSIXPathStyle,
FALSE

);

// create a system sound ID to represent the sound file
OSStatus error = AudioServicesCreateSystemSoundID (myURLRef, &mySSID);

// Register the sound completion callback.
// Again, useful when you need to free memory after playing.
AudioServicesAddSystemSoundCompletion (

mySSID,
NULL,
NULL,
MyCompletionCallback,
(void *) myURLRef

);

// Play the sound file.

Using Sound in iPhone OS 175
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

AudioServicesPlaySystemSound (mySSID);

// Invoke a run loop on the current thread to keep the application
// running long enough for the sound to play; the sound completion
// callback later stops this run loop.
CFRunLoopRun ();
return 0;

}

Playing Sounds with Control Using Audio Queue Services

The preceding examples using System Sound Services are sufficient for playing a short sound when
you do not need to control playback. Use Audio Queue Services instead if you want to do any of the
following:

 ■ Play a sound that is longer than 30 seconds in duration

 ■ Precisely schedule when a sound plays

 ■ Play multiple sounds simultaneously

 ■ Loop a sound

 ■ Control relative playback level

 ■ Position a sound in a stereo field

Audio Queue Services lets you play sound in any audio format available in iPhone OS. These formats
include:

 ■ AAC

 ■ AMR (Adaptive Multi-Rate, a format for speech)

 ■ Apple Lossless (ALAC)

 ■ iLBC (internet Low Bitrate Codec, another format for speech)

 ■ IMA/ADPCM (IMA-4)

 ■ linear PCM

 ■ µ-law and a-law

 ■ MP3

This section provides an overview of using Audio Queue Services for playback. For more information,
see Audio Queue Services Programming Guide and Audio Queue Services Reference. For sample code, see
the SpeakHere sample in the iPhone Dev Center. (For a Mac OS X implementation, see the
AudioQueueTools project available in the Core Audio SDK. When you install Xcode tools in Mac OS
X, the AudioQueueTools project is available at
/Developer/Examples/CoreAudio/SimpleSDK/AudioQueueTools.)

Creating an Audio Queue Object

To create an audio queue object for playback, perform these three steps:

176 Using Sound in iPhone OS
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

http://developer.apple.com/iphone/

1. Create a data structure to manage information needed by the audio queue, such as the audio
format for the data you want to play.

2. Define a callback function for managing audio queue buffers. The callback uses Audio File Services
to read the file you want to play.

3. Instantiate the playback audio queue using the AudioQueueNewOutput function.

Listing 9-2 illustrates these steps:

Listing 9-2 Creating an audio queue object

static const int kNumberBuffers = 3;
// Create a data structure to manage information needed by the audio queue
struct myAQStruct {

AudioFileID mAudioFile;
CAStreamBasicDescription mDataFormat;
AudioQueueRef mQueue;
AudioQueueBufferRef mBuffers[kNumberBuffers];
SInt64 mCurrentPacket;
UInt32 mNumPacketsToRead;
AudioStreamPacketDescription *mPacketDescs;
bool mDone;

};
// Define a playback audio queue callback function
static void AQTestBufferCallback(

void *inUserData,
AudioQueueRef inAQ,
AudioQueueBufferRef inCompleteAQBuffer

) {
myAQStruct *myInfo = (myAQStruct *)inUserData;
if (myInfo->mDone) return;
UInt32 numBytes;
UInt32 nPackets = myInfo->mNumPacketsToRead;

AudioFileReadPackets (
myInfo->mAudioFile,
false,
&numBytes,
myInfo->mPacketDescs,
myInfo->mCurrentPacket,
&nPackets,
inCompleteAQBuffer->mAudioData

);
if (nPackets > 0) {

inCompleteAQBuffer->mAudioDataByteSize = numBytes;
AudioQueueEnqueueBuffer (

inAQ,
inCompleteAQBuffer,
(myInfo->mPacketDescs ? nPackets : 0),
myInfo->mPacketDescs

);
myInfo->mCurrentPacket += nPackets;

} else {
AudioQueueStop (

myInfo->mQueue,
false

Using Sound in iPhone OS 177
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

);
myInfo->mDone = true;

}
}
// Instantiate an audio queue object
AudioQueueNewOutput (

&myInfo.mDataFormat,
AQTestBufferCallback,
&myInfo,
CFRunLoopGetCurrent(),
kCFRunLoopCommonModes,
0,
&myInfo.mQueue

);

Controlling Playback Level

Audio queue objects give you two ways to control playback level.

To set playback level directly, use the AudioQueueSetParameter function with the
kAudioQueueParam_Volume parameter, as shown in Listing 9-3. Level change takes effect immediately.

Listing 9-3 Setting playback level directly

Float32 volume = 1;
AudioQueueSetParameter (myAQstruct.audioQueueObject, kAudioQueueParam_Volume,
volume);

You can also set playback level for an audio queue buffer, using the
AudioQueueEnqueueBufferWithParameters function. This lets you assign audio queue settings that
are, in effect, carried by an audio queue buffer as you enqueue it. Such changes take effect when the
audio queue buffer begins playing.

In both cases, level changes for an audio queue remain in effect until you change them again.

Indicating Playback Level

You can obtain the current playback level from an audio queue object by:

1. Enabling metering for the audio queue object by setting its
kAudioQueueProperty_EnableLevelMetering property to true

2. Querying the audio queue object’s kAudioQueueProperty_CurrentLevelMeter property

The value of this property is an array of AudioQueueLevelMeterState structures, one per channel.
Listing 9-4 shows this structure:

Listing 9-4 The AudioQueueLevelMeterState structure

typedef struct AudioQueueLevelMeterState {
Float32 mAveragePower;
Float32 mPeakPower;

}; AudioQueueLevelMeterState;

178 Using Sound in iPhone OS
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

Playing Multiple Sounds Simultaneously

To play multiple sounds simultaneously, create one playback audio queue object for each sound. For
each audio queue, schedule the first buffer of audio to start at the same time using the
AudioQueueEnqueueBufferWithParameters function.

Audio format is critical when you play sounds simultaneously on iPhone or iPod touch. To play
simultaneous sounds of the same use linear PCM or IMA4 audio. This restriction maximizes CPU
performance and battery life.

The following list describes how iPhone OS supports audio formats for individual or multiple playback:

 ■ Linear PCM and IMA/ADPCM (IMA4) audio You can play multiple linear PCM or IMA4 format
sounds simultaneously in iPhone OS without incurring CPU resource problems. The same is true
for the AMR and iLBC speech formats, and for the µ-law and a-law formats.

 ■ AAC, MP3, and Apple Lossless (ALAC) audio Playback for AAC, MP3, and Apple Lossless
(ALAC) sounds uses efficient hardware-based decoding on iPhone and iPod touch, but these
codecs all share a single hardware path. You can play only a single instance of one of these formats
at a time.

Playing Sounds with Positioning Using OpenAL

The open-sourced OpenAL audio API, available in iPhone OS in the OpenAL framework, provides
an interface optimized for positioning sounds during playback. Playing, positioning, and moving
sounds is very simple when you use OpenAL. OpenAL also lets you mix sounds. In addition, OpenAL
uses Core Audio’s IO audio unit directly, resulting in the lowest latency playback.

For all of the reasons, OpenAL is your best choice for playing sound effects in game applications on
iPhone and iPod touch. However, OpenAL is also a good choice for general iPhone OS application
audio needs.

OpenAL 1.1 support in iPhone OS is built on top of Core Audio. The iPhone implementation of
OpenAL provides a panning model that maximizes performance and battery life.

For OpenAL documentation, see the OpenAL website at http://openal.org.

Recording Audio

Core Audio provides support in iPhone OS for recording audio using Audio Queue Services. This
interface does the work of connecting to the audio hardware, managing memory, and employing
codecs as needed. You can record audio in the following formats:

 ■ Apple Lossless

 ■ iLBC (internet Low Bitrate Codec, for speech)

 ■ IMA/ADPCM (IMA-4)

 ■ linear PCM

 ■ µ-law and a-law

Using Sound in iPhone OS 179
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

http://openal.org/

To record audio, your application configures the recording session, instantiates a recording audio
queue object, and provides a callback function. The callback stores the audio data in memory for
immediate use or writes it to a file for long-term storage.

Recording takes place at a fixed level in iPhone OS. The system records from the audio source that
the user has chosen—namely, the built-in microphone or, if connected, the headset microphone.

Just as with playback, you can obtain the current recording level from an audio queue object by
querying its kAudioQueueProperty_CurrentLevelMeter property. See “Indicating Playback
Level” (page 178).

For detailed examples of how to use Audio Queue Services to record audio, see Recording Audio in
Audio Queue Services Programming Guide. For sample code, see the SpeakHere sample in the iPhone
Dev Center.

Parsing Streamed Audio

To play streamed audio content, such as from a network connection, use Audio File Stream Services
in concert with Audio Queue Services. You can play streamed audio in any of the formats supported
by Audio Queue Services, as listed in “Playing Sounds with Control Using Audio Queue
Services” (page 176).

For best performance, network streaming applications should use data from Wi-Fi connections only.
iPhone OS lets you determine which networks are reachable and available through its System
Configuration framework and its SCNetworkReachability.h interfaces. For sample code, see the
Reachability project in the iPhone OS Reference Library.

Audio File Stream Services works by enabling you to parse audio packets and metadata from a
network stream. To connect to a network stream you can use interfaces from Core Foundation in
iPhone OS, such as CFHTTPMesaage in the CF Network interface. You parse the network packets to
recover audio packets using Audio File Stream Services. You then buffer the audio packets and send
them to a playback audio queue object.

Audio File Stream Services relies on interfaces from Audio File Services, such as the
AudioFramePacketTranslation structure and the AudioFilePacketTableInfo structure. You can
also use Audio File Stream Services to read files from disk.

For more information on using streams, refer to Audio File Stream Services Reference and Audio File
Services Reference. For sample code, see the AudioFileStream sample project located in the
<Xcode>/Examples/CoreAudio/Services/ directory, where <Xcode> is the path to your developer
tools directory.

Mixing and Processing Sounds

iPhone OS offers two interfaces for mixing sounds. You can use OpenAL (as described in “Playing
Sounds with Positioning Using OpenAL” (page 179)) or you can use the 3D Mixer audio unit.

The 3D Mixer unit combines sounds into a single stream which you then send to the IO unit. For
sample code, see the oalTouch sample in the iPhone Dev Center.

180 Using Sound in iPhone OS
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/
http://developer.apple.com/iphone/

Audio Unit Support in iPhone OS

iPhone OS provides a core set of audio plug-ins, known as audio units, that you can use in any
application. The interfaces in the Audio Unit framework enable you to open, connect, and use audio
units in iPhone OS. You cannot, however, create your own audio units for iPhone OS.

“Supported audio units” lists the audio units provided in iPhone OS.

Table 9-1 Supported audio units

DescriptionAudio unit

The 3D Mixer unit, of type AU3DMixerEmbedded, lets you mix multiple audio
streams.

3D Mixer unit

The Converter unit, of type AUConverter, lets you convert audio data from one
format to another.

Converter unit

The IO unit, of type RemoteIO, lets you connect to audio input and output
hardware and supports realtime I/O.

IO unit

The iPod EQ unit, of type AUiPodEQ, provides a simple, preset-based equalizer
you can use in your application.

iPod EQ unit

The Stereo Mixer unit allows any number of mono or stereo inputs, each of
which can be 16-bit linear or 8.24-bit fixed-point PCM.

Stereo Mixer unit

Triggering Vibration

Applications running on iPhone—but not the iPod touch—can trigger vibration using System Sound
Services. You specify the vibrate option with the kSystemSoundID_Vibrate identifier. To trigger it,
use the AudioServicesPlaySystemSound function, as shown here.

#import <AudioToolbox/AudioToolbox.h>
#import <UIKit/UIKit.h>
- (void)vibratePhone
{

AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);
}

If your application is running on an iPod touch, this code will produce a brief buzzing sound using
the device’s piezoelectric transducer.

Tips for Manipulating Audio

Table 9-2 lists some basic tips to remember when manipulating audio content in iPhone OS.

Using Sound in iPhone OS 181
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

Table 9-2 Audio tips

ActionTip

For AAC, MP3, and Apple Lossless audio, decoding takes place in
hardware and, while efficient, is limited to one audio file at a time. If
you need to play multiple sounds simultaneously, store those sounds
using the IMA4 or linear PCM format.

Use compressed audio
appropriately

The afconvert tool in Mac OS X lets you convert to a wide range of
audio data formats and file types. See “Preferred Audio Formats in
iPhone OS” (page 182) and the afconvert man page.

Convert to the data format
and file format you need

When playing sound with Audio Queue Services, you write a callback
that sends short segments of audio data to audio queue buffers. In some
cases, loading an entire sound file to memory for playback, which
minimizes disk access, is best. In other cases, loading just enough data
at a time to keep the buffers full is best. Test and evaluate which strategy
is best for your application.

Evaluate audio memory
issues

Sample rates and the number of bits per sample have a direct impact
on the size of your uncompressed audio. If you need to play many such
sounds, consider reducing these values to reduce the memory footprint
of the audio data. For example, rather than use 44.1 kHz sampling rate
for sound effects, you could use a 32 kHz (or possibly lower) sample
rate and still provide reasonable quality.

Reduce audio file sizes by
limiting sample rates and
bit depths

Use Core Audio’s System Audio Services to play short sounds when
you don’t need scheduling or level control. Use OpenAL when you want
a convenient, high-level interface for positioning sounds in a stereo field.
To parse audio packets from a file or a network stream, use Audio File
Stream Services. For all other audio applications, use Audio Queue
Services.

Pick the appropriate
technology

For the lowest possible playback latency, use OpenAL or use the IO
Remote audio unit directly.

Code for low latency

Preferred Audio Formats in iPhone OS

For uncompressed (highest quality) audio, use 16-bit, little endian, linear PCM audio data packaged
in a CAF file. You can convert an audio file to this format in Mac OS X using the afconvert
command-line tool.

/usr/bin/afconvert -f caff -d LEI16 {INPUT} {OUTPUT}

The afconvert tool lets you convert to a wide range of audio data formats and file types. See the
afconvert man page, and enter afconvert -h at a shell prompt, for more information.

For compressed audio when playing one sound at a time, use the AAC format packaged in a CAF or
m4a file.

182 Using Sound in iPhone OS
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

For less memory usage when you need to play multiple sounds simultaneously, use IMA/ADPCM
(IMA4) compression. This reduces file size but entails minimal CPU impact during decompression.
As with linear PCM data, package IMA4 data in a CAF file.

Playing Video Files

iPhone OS supports the ability to play back video files directly from your application using the Media
Player framework (MediaPlayer.framework). Video playback is supported in full screen mode only
and can be used by game developers who want to play cut scene animations or by other developers
who want to play media files. When you start a video from your application, the media player interface
takes over, fading the screen to black and then fading in the video content. You can play a video with
or without user controls for adjusting playback; enabling some or all of these controls (shown in
Figure 9-1) gives the user the ability to change the volume, change the playback point, or start and
stop the video. If you disable all of these controls, the video plays until completion.

Figure 9-1 Media player interface with transport controls

To initiate video playback, you must know the URL of the file you want to play. For files your
application provides, this would typically be a pointer to a file in your application’s bundle; however,
it can also be a pointer to a file on a remote server. You use this URL to instantiate a new instance of
the MPMoviePlayerController class. This class presides over the playback of your video file and
manages user interactions, such user taps in the transport controls (if shown). To initiate playback,
simply call the play method of the controller.

Listing 9-5 shows a sample method that plays back the video at the specified URL. The play method
is an asynchronous call that returns control to the caller while the movie plays. The movie controller
loads the movie in a full-screen view, and animates the movie into place on top of the application’s
existing content. When playback is finished, the movie controller sends a notification to the object,
which releases the movie controller now that it is no longer needed.

Listing 9-5 Playing full screen movies.

-(void)playMovieAtURL:(NSURL*)theURL
{

MPMoviePlayerController* theMovie = [[MPMoviePlayerController alloc]
initWithContentURL:theURL];

theMovie.scalingMode = MPMovieScalingModeAspectFill;
theMovie.moveControlMode = MPMovieControlModeHidden;

Playing Video Files 183
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

// Register for the playback finished notification.
[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(myMovieFinishedCallback:)
name:MPMoviePlayerPlaybackDidFinishNotification
object:theMovie];

// Movie playback is asynchronous, so this method returns immediately.
[theMovie play];

}

// When the movie is done, release the controller.
-(void)myMovieFinishedCallback:(NSNotification*)aNotification
{

MPMoviePlayerController* theMovie = [aNotification object];

[[NSNotificationCenter defaultCenter] removeObserver:self
name:MPMoviePlayerPlaybackDidFinishNotification
object:theMovie];

// Release the movie instance created in playMovieAtURL:
[theMovie release];

}

For more information about the classes of the Media Player framework, see Media Player Framework
Reference. For a list of supported video formats, see “Video Technologies” (page 36).

184 Playing Video Files
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Audio and Video Technologies

iPhone OS supports a variety of features that make the mobile computing experience compelling for
users. Through iPhone OS, your applications can access hardware features, such as the accelerometers
and camera, and software features, such as the user’s photo library. The following sections describe
these features and show you how to integrate them into your own applications.

Accessing Accelerometer Events

An accelerometer measures changes in velocity over time along a given linear path. The iPhone and
iPod touch each contain three accelerometers, one along each of the primary axes of the device. This
combination of accelerometers lets you detect movement of the device in any direction. You can use
this data to track both sudden movements in the device and the device’s current orientation relative
to gravity.

Every application has a single UIAccelerometer object that can be used to receive acceleration data.
You get the instance of this class using the sharedAccelerometer class method of UIAccelerometer.
Using this object, you set the desired reporting interval and a custom delegate to receive acceleration
events. You can set the reporting interval to be as small as 10 milliseconds, which corresponds to a
100 Hz update rate, although most applications can operate sufficiently with a larger interval. As
soon as you assign your delegate object, the accelerometer starts sending it data. Thereafter, your
delegate receives data at the requested update interval.

Listing 10-1 shows the basic steps for configuring the accelerometer. In this example, the update
frequency is 50 Hz, which corresponds to an update interval of 20 milliseconds. The myDelegateObject
is a custom object that you define; it must support the UIAccelerometerDelegate protocol, which
defines the method used to receive acceleration data.

Listing 10-1 Configuring the accelerometer

#define kAccelerometerFrequency 50 //Hz
-(void)configureAccelerometer
{

UIAccelerometer* theAccelerometer = [UIAccelerometer sharedAccelerometer];
theAccelerometer.updateInterval = 1 / kAccelerometerFrequency;

theAccelerometer.delegate = self;
// Delegate events begin immediately.

}

Accessing Accelerometer Events 185
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

The shared accelerometer delivers event data at regular intervals to your delegate’s
accelerometer:didAccelerate:method, shown in Listing 10-2. You can use this method to process
the accelerometer data however you want. In general it is recommended that you use some sort of
filter to isolate the component of the data in which you are interested.

Listing 10-2 Receiving an accelerometer event

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration
{

UIAccelerationValue x, y, z;
x = acceleration.x;
y = acceleration.y;
z = acceleration.z;

// Do something with the values.
}

To stop the delivery of acceleration events, set the delegate of the shared UIAccelerometer object to
nil. Setting the

The acceleration data you receive in your delegate method represents the instantaneous values
reported by the accelerometer hardware. Even when a device is completely at rest, the values reported
by this hardware can fluctuate slightly. When using these values, you should be sure to account for
these fluctuations by averaging out the values over time or by calibrating the data you receive. For
example, the Bubble Level sample application provides controls for calibrating the current angle
against a known surface. Subsequent readings are then reported relative to the calibrated angle. If
your own code requires a similar level of accuracy, you should also include some sort of calibration
option in your user interface.

Choosing an Appropriate Update Interval

When configuring the update interval for acceleration events, it is best to choose an interval that
minimizes the number of delivered events while still meeting the needs of your application. Few
applications need acceleration events delivered 100 times a second. Using a lower frequency prevents
your application from running as often and can therefore improve battery life. Table 10-1 lists some
typical update frequencies and what you can do with the acceleration data generated at that frequency.

Table 10-1 Common update intervals for acceleration events

UsageEvent frequency (Hz)

Suitable for use in determining the vector representing the current orientation
of the device.

10-20

Suitable for games and other applications that use the accelerometers for
real-time user input.

30-60

Suitable for applications that need to detect high-frequency motion. For
example, you might use this interval to detect the user hitting the device or
shaking it very quickly.

70-100

186 Accessing Accelerometer Events
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

Isolating the Gravity Component From Acceleration Data

If you are using the accelerometer data to detect the current orientation of a device, you need to be
able to filter out the portion of the acceleration data that is caused by gravity from the portion that is
caused by motion of the device. To do this, you can use a low-pass filter to reduce the influence of
sudden changes on the accelerometer data. The resulting filtered values would then reflect the more
constant effects of gravity.

Listing 10-3 shows a simplified version of a low-pass filter. This example uses a low-value filtering
factor to generate a value that uses 10 percent of the unfiltered acceleration data and 90 percent of
the previously filtered value. The previous values are stored in the accelX, accelY, and accelZ
member variables of the class. Because acceleration data comes in regularly, these values settle out
quickly and respond slowly to sudden but short-lived changes in motion.

Listing 10-3 Isolating the effects of gravity from accelerometer data

#define kFilteringFactor 0.1

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {

// Use a basic low-pass filter to keep only the gravity component of each
axis.

accelX = (acceleration.x * kFilteringFactor) + (accelX * (1.0 -
kFilteringFactor));

accelY = (acceleration.y * kFilteringFactor) + (accelY * (1.0 -
kFilteringFactor));

accelZ = (acceleration.z * kFilteringFactor) + (accelZ * (1.0 -
kFilteringFactor));

// Use the acceleration data.
}

Isolating Instantaneous Motion From Acceleration Data

If you are using accelerometer data to detect just the instant motion of a device, you need to be able
to isolate sudden changes in movement from the constant effect of gravity. You can do that with a
high-pass filter.

Listing 10-4 shows a simplified high-pass filter computation. The acceleration values from the previous
event are stored in the accelX, accelY, and accelZ member variables of the class. This example
computes the low-pass filter value and then subtracts it from the current value to obtain just the
instantaneous component of motion.

Listing 10-4 Getting the instantaneous portion of movement from accelerometer data

#define kFilteringFactor 0.1

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {

// Subtract the low-pass value from the current value to get a simplified
high-pass filter

accelX = acceleration.x - ((acceleration.x * kFilteringFactor) + (accelX
* (1.0 - kFilteringFactor)));

Accessing Accelerometer Events 187
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

accelY = acceleration.y - ((acceleration.y * kFilteringFactor) + (accelY
* (1.0 - kFilteringFactor)));

accelZ = acceleration.z - ((acceleration.z * kFilteringFactor) + (accelZ
* (1.0 - kFilteringFactor)));

// Use the acceleration data.
}

Getting the Current Device Orientation

If you need to know only the general orientation of the device, and not the exact vector of orientation,
you should use the methods of the UIDevice class to retrieve that information. Using the UIDevice
interface is simpler and does not require you to calculate the orientation vector yourself.

Before getting the current orientation, you must tell the UIDevice class to begin generating device
orientation notifications by calling the beginGeneratingDeviceOrientationNotificationsmethod.
Doing so turns on the accelerometer hardware (which may otherwise be off to conserve power).

Shortly after enabling orientation notifications, you can get the current orientation from the
orientation property of the shared UIDevice object. You can also register to receive
UIDeviceOrientationDidChangeNotificationnotifications, which are posted whenever the general
orientation changes. The device orientation is reported using the UIDeviceOrientation constants,
which indicate whether the device is in landscape or portrait mode or whether the device is face up
or face down. These constants indicate the physical orientation of the device and need not correspond
to the orientation of your application’s user interface.

When you no longer need to know the orientation of the device, you should always disable orientation
notifications by calling the endGeneratingDeviceOrientationNotificationsmethod of UIDevice.
Doing so gives the system the opportunity to disable the accelerometer hardware if it is not in use
elsewhere.

Getting the User’s Current Location

The Core Location framework lets you locate the current position of the device and use that information
in your application. The framework takes advantage of the device’s built-in hardware, triangulating
a position fix from available signal information. It then reports the location to your code and
occasionally updates that position information as it receives new or improved signals.

If you do use the Core Location framework, be sure to do so sparingly and to configure the location
service appropriately. Gathering location data involves powering up the onboard radios and querying
the available cell towers, WiFi hotspots, or GPS satellites, which can take several seconds. In addition,
requesting more accurate location data may require the radios to remain on for a longer period of
time. Leaving this hardware on for extended periods of time can drain the device’s battery. Given
that position information does not change too often, it is usually sufficient to establish an initial
position fix and then acquire updates periodically after that. If you are sure you need regular position
updates, you can also configure the service with a minimum threshold distance to minimize the
number of position updates your code must process.

188 Getting the User’s Current Location
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

To retrieve the user’s current location, create an instance of the CLLocationManager class and configure
it with the desired accuracy and threshold parameters. To begin receiving location notifications, assign
a delegate to the object and call the startUpdatingLocation method to start the determination of
the user’s current location. When new location data is available, the location manager notifies its
assigned delegate object. If a location update has already been delivered, you can also get the most
recent location data directly from the CLLocationManager object without waiting for a new event to
be delivered.

Listing 10-5 shows implementations of a custom startUpdates method and the
locationManager:didUpdateToLocation:fromLocation: delegate method. The startUpdates
method creates a new location manager object (if one does not already exist) and uses it to start
generating location updates. (In this case, the locationManager variable is a member variable declared
by the MyLocationGetter class, which also conforms to the CLLocationManagerDelegate protocol.)
The handler method uses the timestamp of the event to determine how recent it is. If it is an old event,
the handler ignores it and waits for a more recent one, at which point it disables the location service.

Listing 10-5 Initiating and processing location updates

@implementation MyLocationGetter
- (void)startUpdates
{

// Create the location manager if this object does not
// already have one.
if (nil == locationManager)

locationManager = [[CLLocationManager alloc] init];

locationManager.delegate = self;
locationManager.desiredAccuracy = kCLLocationAccuracyKilometer;

// Set a movement threshold for new events
locationManager.distanceFilter = 500;

[locationManager startUpdatingLocation];
}

// Delegate method from the CLLocationManagerDelegate protocol.
- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation

{
// If it's a relatively recent event, turn off updates to save power
NSDate* eventDate = newLocation.timestamp;
NSTimeInterval howRecent = [eventDate timeIntervalSinceNow];
if (abs(howRecent) < 5.0)
{

[manager stopUpdatingLocation];

printf("latitude %+.6f, longitude %+.6f\n",
newLocation.coordinate.latitude,
newLocation.coordinate.longitude);

}
// else skip the event and process the next one.

}
@end

Getting the User’s Current Location 189
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

Checking the timestamp of an event is recommended because the location service often returns the
last cached location event immediately. It can take several seconds to obtain a rough location fix so
the old data simply serves as a way to reflect the last known location. You can also use the accuracy
as a means of determining whether you want to accept an event. As it receives more accurate data,
the location service may return additional events, with the accuracy values reflecting the improvements
accordingly.

Note: The Core Location framework records timestamp values at the beginning of each location query,
not when that query returns. Because Core Location uses several different techniques to get a location
fix, queries can sometimes come back in a different order than their timestamps might otherwise
indicate. As a result, it is normal for new events to sometimes have timestamps that are slightly older
than those from previous events. The framework concentrates on improving the accuracy of the
location data with each new event it delivers, regardless of the timestamp values.

For more information about the objects and methods of the Core Location framework, see Core Location
Framework Reference.

Taking Pictures with the Camera

UIKit provides access to a device’s camera through the UIImagePickerController class. This class
displays the standard system interface for taking pictures using the available camera. It also supports
optional controls for resizing and cropping the image after the user takes it. This class can also be
used to select photos from the user’s photo library.

The view representing the camera interface is a modal view that is managed by the
UIImagePickerController class. You should never access this view directly from your code. To
display it, you must call the presentModalViewController:animated: method of the currently
active view controller, passing a UIImagePickerController object as the new view controller. Upon
being installed, the picker controller automatically slides the camera interface into position, where it
remains active until the user approves the picture or cancels the operation. At that time, the picker
controller notifies its delegate of the user’s choice.

Interfaces managed by the UIImagePickerController class may not be available on all devices.
Before displaying the camera interface, you should always make sure that the interface is available
by calling the isSourceTypeAvailable: class method of the UIImagePickerController class. You
should always respect the return value of this method. If this method returns NO, it means that the
current device does not have a camera or that the camera is currently unavailable for some reason.
If the method returns YES, you display the camera interface by doing the following:

1. Create a new UIImagePickerController object.

2. Assign a delegate object to the picker controller.

In most cases, the current view controller acts as the delegate for the picker, but you can use an
entirely different object if you prefer. The delegate object must conform to the
UIImagePickerControllerDelegate protocol.

3. Set the picker type to UIImagePickerControllerSourceTypeCamera.

4. Optionally, enable or disable the picture editing controls by assigning an appropriate value to
the allowsImageEditing property.

190 Taking Pictures with the Camera
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

5. Call the presentModalViewController:animated: method of the current view controller to
display the picker.

Listing 10-6 shows the code representing the preceding set of steps. As soon as you call the
presentModalViewController:animated method, the picker controller takes over, displaying the
camera interface and responding to all user interactions until the interface is dismissed. To choose
an existing photo from the user’s photo library, all you have to do is change the value in the sourceType
property of the picker to UIImagePickerControllerSourceTypePhotoLibrary.

Listing 10-6 Displaying the interface for taking pictures

-(BOOL)startCameraPickerFromViewController:(UIViewController*)controller
usingDelegate:(id<UIImagePickerControllerDelegate>)delegateObject
{

if ((![UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])

|| (delegateObject == nil) || (controller == nil))
return NO;

UIImagePickerController* picker = [[UIImagePickerController alloc] init];
picker.sourceType = UIImagePickerControllerSourceTypeCamera;
picker.delegate = delegateObject;
picker.allowsImageEditing = YES;

// Picker is displayed asynchronously.
[controller presentModalViewController:picker animated:YES];
return YES;

}

When the user taps the appropriate button to dismiss the camera interface, the
UIImagePickerController notifies the delegate of the user’s choice but does not dismiss the interface.
The delegate is responsible for dismissing the picker interface. (Your application is also responsible
for releasing the picker when done with it, which you can do in the delegate methods.) It is for this
reason that the delegate is actually the view controller object that presented the picker in the first
place. Upon receiving the delegate message, the view controller would call its
dismissModalViewControllerAnimated: method to dismiss the camera interface.

Listing 10-7 shows the delegate methods for dismissing the camera interface displayed in Listing
10-6 (page 191). These methods are implemented by a custom MyViewController class, which is a
subclass of UIViewController and, for this example, is considered to be the same object that displayed
the picker in the first place. The useImage: method is an empty placeholder for the work you would
do in your own version of this class and should be replaced by your own custom code.

Listing 10-7 Delegate methods for the image picker

@implementation MyViewController (ImagePickerDelegateMethods)

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingImage:(UIImage *)image
editingInfo:(NSDictionary *)editingInfo

{
[self useImage:image];

// Remove the picker interface and release the picker object.
[[picker parentViewController] dismissModalViewControllerAnimated:YES];

Taking Pictures with the Camera 191
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

[picker release];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{

[[picker parentViewController] dismissModalViewControllerAnimated:YES];
[picker release];

}

// Implement this method in your code to do something with the image.
- (void)useImage:(UIImage*)theImage
{
}
@end

If image editing is enabled and the user successfully picks an image, the image parameter of the
imagePickerController:didFinishPickingImage:editingInfo: method contains the edited
image. You should treat this image as the selected image, but if you want to store the original image,
you can get it (along with the crop rectangle) from the dictionary in the editingInfo parameter.

Picking a Photo from the Photo Library

UIKit provides access to the user’s photo library through the UIImagePickerController class. This
controller displays a photo picker interface, which provides controls for navigating the user’s photo
library and selecting an image to return to your application. You also have the option of enabling
user editing controls, which let the user the pan and crop the returned image. This class can also be
used to present a camera interface.

Because the UIImagePickerController class is used to display the interface for both the camera and
the user’s photo library, the steps for using the class are almost identical for both. The only difference
is that you assign the UIImagePickerControllerSourceTypePhotoLibrary value to the sourceType
property of the picker object. The steps for displaying the camera picker are discussed in “Taking
Pictures with the Camera” (page 190).

Note: As you do for the camera picker, you should always call the isSourceTypeAvailable: class
method of the UIImagePickerController class and respect the return value of the method. You
should never assume that a given device has a photo library. Even if the device has a library, this
method could still return NO if the library is currently unavailable.

192 Picking a Photo from the Photo Library
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Device Features

In traditional desktop applications, preferences are application-specific settings used to configure the
behavior or appearance of an application. iPhone OS also supports application preferences, although
not as an integral part of your application. Instead of each application displaying a custom user
interface for its preferences, all application-level preferences are displayed using the system-supplied
Settings application.

In order to integrate your custom application preferences into the Settings application, you must
include a specially formatted settings bundle in the top-level directory of your application bundle.
This settings bundle provides information about your application preferences to the Settings
application, which is then responsible for displaying those preferences and updating the preferences
database with any user-supplied values. At runtime, your application retrieves these preferences
using the standard retrieval APIs. The sections that follow describe both the format of the settings
bundle and the APIs you use to retrieve your preferences values.

Guidelines for Preferences

Adding your application preferences to the Settings application is most appropriate for
productivity-style applications and in situations where you have preference values that are typically
configured once and then rarely changed. For example, the Mail application uses these preferences
to store the user’s account information and message-checking settings. Because the Settings application
has support for displaying preferences hierarchically, manipulating your preferences from the Settings
application is also more appropriate when you have a large number of preferences. Providing the
same set of preferences in your application might require too many screens and might cause confusion
for the user.

When your application has only a few options or has options that the user might want to change
regularly, you should think carefully about whether the Settings application is the right place for
them. For instance, utility applications provide custom configuration options on the back of their
main view. A special control on the view flips it over to display the options and another control flips
the view back. For simple applications, this type of behavior provides immediate access to the
application’s options and is much more convenient for the user than going to Settings.

For games and other full-screen applications, you can use the Settings application or implement your
own custom screens for preferences. Custom screens are often appropriate in games because those
screens are treated as part of the game’s setup. You can also use the Settings application for your
preferences if you think it is more appropriate for your game flow.

Guidelines for Preferences 193
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

Note: You should never spread your preferences across the Settings application and custom application
screens. For example, a utility application with preferences on the back side of its main view should
not also have configurable preferences in the Settings application. If you have preferences, pick one
solution and use it exclusively.

The Preferences Interface

The Settings application implements a hierarchical set of pages for navigating application preferences.
The main page of the Settings application displays the system and third-party applications whose
preferences can be customized. Selecting a third-party application takes the user to the preferences
for that application.

Each application has at least one page of preferences, referred to as the main page. If your application
has only a few preferences, the main page may be the only one you need. If the number of preferences
gets too large to fit on the main page, however, you can add more pages. These additional pages
become child pages of the main page. The user accesses them by tapping on a special type of preference,
which links to the new page.

Each preference you display must be of a specific type. The type of the preference defines how the
Settings application displays that preference. Most preference types identify a particular type of
control that is used to set the preference value. Some types provide a way to organize preferences,
however. Table 11-1 lists the different element types supported by the Settings application and how
you might use each type to implement your own preference pages.

Table 11-1 Preference element types

DescriptionElement Type

The text field type displays an optional title and an editable text field. You can use
this type for preferences that require the user to specify a custom string value.

The key for this type is PSTextFieldSpecifier.

Text Field

The title type displays a read-only string value. You can use this type to display
read-only preference values. (If the preference contains cryptic or nonintuitive
values, this type lets you map the possible values to custom strings.)

The key for this type is PSTitleValueSpecifier.

Title

The toggle switch type displays an ON/OFF toggle button. You can use this type
to configure a preference that can have only one of two values. Although you
typically use this type to represent preferences containing Boolean values, you can
also use it with preferences containing non-Boolean values.

The key for this type is PSToggleSwitchSpecifier.

Toggle Switch

The slider type displays a slider control. You can use this type for a preference that
represents a range of values. The value for this type is a real number whose
minimum and maximum you specify.

The key for this type is PSSliderSpecifier.

Slider

194 The Preferences Interface
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

DescriptionElement Type

The multi value type lets the user select one value from a list of values. You can
use this type for a preference that supports a set of mutually exclusive values. The
values can be of any type.

The key for this type is PSMultiValueSpecifier.

Multi value

The group type is a way for you to organize groups of preferences on a single page.
The group type does not represent a configurable preference. It simply contains a
title string that is displayed immediately before one or more configurable
preferences.

The key for this type is PSGroupSpecifier.

Group

The child pane type lets the user navigate to a new page of preferences. You use
this type to implement hierarchical preferences. For more information on how you
configure and use this preference type, see “Hierarchical Preferences” (page 197).
The key for this type is PSChildPaneSpecifier.

Child Pane

For detailed information about the format of each preference type, see Settings Application Schema
Reference. To learn now to create and edit Setting page files, see “Adding the Settings Bundle to Your
Application” (page 198).

The Settings Bundle

In iPhone OS, you specify your application’s preferences through a special settings bundle. This
bundle has the name Settings.bundle and resides in the top-level directory of your application’s
bundle. This bundle contains one or more Settings Page files that provide detailed information about
your application’s preferences. It may also include other support files needed to display your
preferences, such as images or localized strings. Table 11-2 lists the contents of a typical settings
bundle.

Table 11-2 Contents of the Settings.bundle directory

DescriptionItem name

The Settings Page file containing the preferences for the root page. The
contents of this file are described in more detail in “The Settings Page File
Format” (page 196).

Root.plist

If you build a set of hierarchical preferences using child panes, the contents
for each child pane are stored in a separate Settings Page file. You are
responsible for naming these files and associating them with the correct
child pane.

Additional .plist files.

These directories store localized string resources for your Settings Page
files. Each directory contains a single strings file, whose title is specified
in your Settings Page. The strings files provide the localized content to
display to the user for each of your preferences.

One or more .lproj
directories

The Settings Bundle 195
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

DescriptionItem name

If you use the slider control, you can store the images for your slider in
the top-level directory of the bundle.

Additional images

In addition to the settings bundle, your application bundle can contain a custom icon for your
application settings. If a file with the name Icon-Settings.png is located in the top of your
application’s bundle directory, that icon is used to identify your application preferences in the Settings
application. If no such image file is present, the Settings application uses your application’s icon file
(Icon.png by default) instead, scaling it as necessary. Your Icon-Settings.png file should be a 29
x 29 pixel image.

When the Settings application launches, it checks each custom application for the presence of a settings
bundle. For each custom bundle it finds, it loads that bundle and displays the corresponding
application’s name and icon in the Settings main page. When the user taps the row belonging to your
application, Settings loads the Root.plist Settings Page file for your settings bundle and uses that
file to display your application’s main page of preferences.

In addition to loading your bundle’s Root.plist Settings Page file, the Settings application also loads
any language-specific resources for that file, as needed. Each Settings Page file can have an associated
.strings file containing localized values for any user-visible strings. As it prepares your preferences
for display, the Settings application looks for string resources in the user’s preferred language and
substitutes them into your preferences page prior to display.

The Settings Page File Format

Each Settings Page file in your settings bundle is stored in the iPhone Settings property-list file format,
which is a structured file format. The simplest way to edit Settings Page files is using Xcode’s built
in editor facilities; see “Editing Settings Pages” (page 199). You can also edit property-list files using
the Property List Editor application that comes with the Xcode tools.

Note: Xcode automatically converts any XML-based property files in your project to binary format
when building your application. This conversion saves space and is done for you automatically at
build time.

The root element of each Settings Page file contains the keys listed in Table 11-3. Only one key is
actually required, but it is recommended that you include both of them.

Table 11-3 Root-level keys of a preferences Settings Page file

ValueTypeKey

The value for this key is an array of dictionaries, with each
dictionary containing the information for a single preference
element. For a list of element types, see Table 11-1 (page 194). For
a description of the keys associated with each element type, see
Settings Application Schema Reference.

ArrayPreferenceSpecifiers
(required)

196 The Settings Bundle
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

ValueTypeKey

The name of the strings file associated with this file. A copy of
this file (with appropriate localized strings) should be located in
each of your bundle’s language-specific project directories. If you
do not include this key, the strings in this file are not localized.
For information on how these strings are used, see “Localized
Resources” (page 198).

StringStringsTable

Hierarchical Preferences

If you plan to organize your preferences hierarchically, each page you define must have its own
separate .plist file. Each .plist file contains the set of preferences displayed only on that page.
Your application’s main preferences page is always stored in the Root.plist file. Additional pages
can be given any name you like.

To specify a link between a parent page and a child page, you include a child pane element in the
parent page. The child pane element contains a property whose value is the name of the .plist file
for the child page. When the user taps the row represented by the child pane element, the Settings
application loads the associated .plist file and displays the new page. It also provides navigation
controls on the child page that allow the user to navigate back to the parent page.

Figure 11-1 shows how this hierarchical set of pages works. The left side of the figure shows the
.plist files, and the right side shows the relationships between the corresponding pages.

Figure 11-1 Organizing preferences using child panes

Sounds

New Voicemail
Group 1

Group 2

New Email
Sent Mail

Ringtones

Sounds page

Settings

Group 1
Usage

Sounds
Group 2

Group 3

Brightness
Wallpaper

General

Root page

Sounds.plist

Root.plist

General.plist

General page

General

Date & Time
Group 1

Network
Keyboard

The Settings Bundle 197
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

Localized Resources

Because preferences contain user-visible strings, you should provide localized versions of those strings
with your settings bundle. Each page of preferences can have an associated .strings file for each
localization supported by your bundle. When the Settings application encounters a key that supports
localization, it checks the appropriately localized .strings file for a matching key. If it finds one, it
displays the value associated with that key.

When looking for localized resources such as .strings files, the Settings application follows the the
same rules that Mac OS X applications do. It first tries to find a localized version of the resource that
matches the user’s preferred language setting. If a resource does not exist for the user’s preferred
language, an appropriate fallback language is selected.

For information about the format of strings files, language-specific project directories, and how
language-specific resources are retrieved from bundles, see Internationalization Programming Topics.

Adding the Settings Bundle to Your Application

Xcode provides a template for adding a Settings bundle to your current project. The default settings
bundle contains a Root.plist file and a default language directory for storing any localized resources.
You can then expand this bundle to include additional property list files and resources needed by
your Settings bundle.

To add a Settings bundle to your Xcode project, do the following:

1. Choose File > New File.

2. Choose the iPhone OS > Settings > Settings Bundle template.

3. Name the file Settings.bundle.

In addition to adding a new Settings bundle to your project, Xcode automatically adds that bundle
to the Copy Bundle Resources build phase of your application target. Thus, all you have to do is
modify the property list files of your Settings bundle and add any needed resources.

The newly added Settings.bundle bundle has the following structure:

Settings.bundle/
Root.plist
en.lproj/

Root.strings

To add additional Settings Page files or other resources to your Settings bundle, add them directly
to the the Settings bundle in the Finder or in a shell editor.

198 Adding the Settings Bundle to Your Application
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

Note: You cannot modify the structure of your Settings bundle—by adding or removing files or
directories—in the Groups & Files list.

Editing Settings Pages

After creating your Settings bundle using the Settings Bundle template, open the root Settings page
file:

1. In the Groups & Files list, select Settings.bundle.

2. In the Detail View, double-click Root.plist.

3. Choose View > Property List Type > iPhone Settings plist.

Now you can design your own Settings page. The remainder of this section shows how to edit
Root.plist to create a Settings page like the one in Figure 11-2.

Adding the Settings Bundle to Your Application 199
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

Figure 11-2 A root Settings page

1. You should change the title of the root Settings page to the name of your application. Just
double-click YOUR_PROJECT_NAME and enter the new title.

2. The first group of settings has a pair of sound-related settings. Therefore, this group should be
titled “Sound.”

a. Disclose item 1 of Preference Items.

b. Change the value of the Title key from Group to Sound.

The Settings application groups the elements that follow this item (except for another group)
under a group titled “Sound.”

3. The first sound-related setting specifies whether the application should play sounds. Its title is
“Play Sounds.”

a. Move item 3 of Preference Items to item 2:

a. Select item 3 of Preference Items.

b. Choose Edit > Cut.

c. Select item 1.

d. Choose Edit > Paste.

You can also use drag-and-drop to move items.

b. Disclose item 2.

200 Adding the Settings Bundle to Your Application
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

c. Change the value of the Title key to Play Sounds.

d. Change the value of the Identifier key to play_sounds_preference.

4. The second sound-related setting is 3D Sound.

a. Select item 2.

b. Choose Edit > Copy.

c. Choose Edit > Paste.

d. Disclose item 3.

e. Change the value of the Title key to 3D Sound.

f. Change the value of the Identifier key to 3d_sound_preference.

5. The second settings group contains user information.

a. Select item 3 and press Return.

Adding the Settings Bundle to Your Application 201
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

b. Choose Group from the dictionary type menu of item 4.

c. Disclose item 4.

d. Set the value of the Title key to User Info.

6. The template configuration of item 5 is appropriate for this page.

7. The second user-related setting is Experience Level.

a. Select item 5 and press Return to create a multi value element.

b. Set the title to “Experience Level”.

c. Set the identifier to “experience_preference”.

d. Set the default value to zero.

e. Click the plus (+) button (or press Return) to add a Titles item.

f. With the Titles item selected, press Option-Return.

g. Enter Beginner, Expert, and Master as the items of the Titles array.

h. Close the Titles item.

i. Select the Titles item and press Return to add the Values item.

202 Adding the Settings Bundle to Your Application
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

j. Add 0, 1, and 2 as the items of the Values array.

8. Select item 6 and press Return to add a Group item and set its title to “Gravity”.

Creating Settings Page Files

The Settings Bundle template includes the Root.plist file, which defines your application’s top
Settings page. If you need to define additional Settings pages, you need to add additional property
list files to your Settings bundle.

To add a property list file to your Settings bundle:

1. Launch Property List Editor.

2. Choose File > New.

3. Save the File to your project directory.

4. Move the new plist file into the Settings.bundle directory:

a. In the Finder, navigate to your project directory.

b. Select the Settings.bundle file.

c. Choose Show Package Contents from the shortcut menu.

Adding the Settings Bundle to Your Application 203
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

5. Drag the new plist file to the Settings.bundle directory.

Accessing Your Preferences

iPhone applications get and set preferences values using either the Foundation and Core Foundation
frameworks. In the Foundation framework, you use the NSUserDefaults class to get and set preference
values. In the Core Foundation framework, you use several preferences-related functions to get and
set values.

Listing 11-1 shows a simple example of how to read a preference value from your application. This
example uses the NSUserDefaults class to read a Boolean value from preferences and assign it to an
application-specific instance variable.

Listing 11-1 Accessing preference values in an application

- (void)applicationDidFinishLaunching:(UIApplication *)application
{

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
[self setMyAppBoolProperty:[defaults boolForKey:MY_BOOL_PREF_KEY]];

// Finish app initialization...
}

204 Accessing Your Preferences
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

For information about the NSUserDefaults methods used to read and write preferences, see
NSUserDefaults Class Reference. For information about the Core Foundation functions used to read
and write preferences, see Preferences Utilities Reference.

Debugging Preferences for Simulated Applications

When running your application, the iPhone Simulator stores any preferences values for your application
in ~/Library/Application Support/iPhone
Simulator/User/Applications/<APP_ID>/Library/Preferences, where <APP_ID> is a
programmatically generated directory name that iPhone OS uses to identify your application.

Each time you reinstall your application, iPhone OS performs a clean install, which deletes any
previous preferences. In other words, building or running your application from Xcode always installs
a new version, replacing any old contents. To test preference changes between successive executions,
you must run your application directly from the simulator interface and not from Xcode.

Debugging Preferences for Simulated Applications 205
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

206 Debugging Preferences for Simulated Applications
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Application Preferences

Both Safari on iPhone and native applications can integrate seamlessly with other iPhone applications
to provide a rich user experience using URL schemes. You access other applications by adding phone,
mail, map, iTunes, and YouTube links to your webpages or by launching the corresponding
applications from a native application.

Although most of the examples in this appendix are HTML, iPhone applications can also launch other
applications using these same URL schemes by sending the openURL: message to their shared
UIApplication object.

This appendix describes the different URL schemes for Apple applications only.

Mail Links

When the user taps a mail link in Safari on iPhone, an email compose sheet opens in Mail with the
address filled in. Simply use the standard mailto URL as follows in HTML:

John Frank

If you want to launch Mail from a native application, just pass the URL—for example,
mailto:frank@wwdcdemo.example.com—to the openURL: method.

You can also include multiple recipients, a subject field, a from field, and a message in the mailto
URL as follows:

mailto:foo@example.com?cc=bar@example.com&subject=
Greetings%20from%Cupertino!&body=Wish%20you%20were%20here!

Clicking a mail link in Safari on iPhone displays an unsupported dialog if the Mail application is not
installed on the device.

For more information on the format of the mailto scheme, see RFC 2368.

Mail Links 207
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

Apple Applications URL Schemes

http://www.ietf.org/rfc/rfc2368.txt

Phone Links

Safari on iPhone automatically converts any number on your webpage that takes the form of a phone
number to a phone link. When the user taps a phone link, a dialog appears asking whether the user
wants to dial that phone number. If the user taps the Call button in the dialog, the Phone application
launches and dials the phone number. You can also add your own phone links to your webpage or
disable telephone number detection.

The syntax of a telephone link in HTML is:

1-408-555-5555

Telephone number detection is on by default in Safari on iPhone. Therefore, if your webpage contains
numbers that can be interpreted as phone numbers, but are not phone numbers, you can turn off
telephone number detection. You might also turn off telephone number detection to prevent the DOM
document from being modified when parsed by the browser.

To turn off telephone number detection in Safari on iPhone, use the format-detection meta tag as
follows:

<meta name = "format-detection" content = "telephone=no">

For example, in Listing A-1, automatic telephone number detection is off. Therefore, the 408-555-5555
telephone number does not appear as a link when rendered by Safari on iPhone. However, the
1-408-555-5555 number does appear as a link because it is in a phone link.

Listing A-1 Turning telephone number detection off

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >
<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Telephone Number Detection</title>
<meta name = "viewport" content = "width=device-width">
<!-- Turn off telephone number detection. -->

<meta name = "format-detection" content = "telephone=no">
</head>
<body>

<!-- Then use phone links to explicitly create a link. -->
<p>A phone number: 1-408-555-5555</p>
<!-- Otherwise, numbers that look like phone numbers are not links. -->
<p>Not a phone number: 1-408-555-5511</p>

</body>
</html>

Clicking a phone link displays an unsupported dialog in Safari on iPhone if the Phone application is
not installed on the device.

If you are launching the Phone application from a native application, make sure that the phone number
is in the correct format by using the stringByAddingPercentEscapesUsingEncoding: method in
NSString.

208 Phone Links
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

Apple Applications URL Schemes

Map Links

When the user taps a map link in Safari on iPhone, a Google map opens containing the destination—for
example, a map showing Cupertino, California is displayed when the user taps this link:

Cupertino

The following URL provides directions between two points, San Francisco and Cupertino:

http://maps.google.com/maps?daddr=San+Francisco,+CA&saddr=cupertino">Directions

Clicking a map link redirects to the Google Maps website if the Maps application is not installed on
the device.

However, not all Google Map parameters and queries are supported in iPhone OS. The rules for
creating a valid map link are:

 ■ The domain must be google and the subdomain must be maps or ditu.

 ■ The path must be /, /maps, /local, or /m if the query contains site as the key and local as the
value.

 ■ The path cannot be /maps/*.

 ■ All parameters must be supported. See “Supported Google Map parameters” for list of
supported parameters.

 ■ A parameter cannot be q=* if the value is a URL (so KML is not picked up).

 ■ The parameters cannot include view=text or dirflg=r.

Table A-1 lists the parameters supported by iPhone OS along with a brief description of each. For a
complete description of these parameters, see Google Map Parameters.

Table A-1 Supported Google Map parameters

NotesParameter

The query parameter. This parameter is treated as if it had been typed into the query
box by the user on the maps.google.com page. q=* is not supported

q=

The location part of the query.near=

The latitude and longitude points (in decimal format, comma separated, and in that
order) for the map center point.

ll=

The latitude and longitude points from which the business search should be performed.sll=

The approximate latitude and longitude span.spn=

A custom latitude and longitude span format used by Google.sspn=

The type of map to display.t=

The zoom level.z=

Map Links 209
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

Apple Applications URL Schemes

http://mapki.com/wiki/Google_Map_Parameters

NotesParameter

The source address, which is used when generating driving directionssaddr=

The destination address, which is used when generating driving directions.daddr=

A custom ID format that Google uses for identifying businesses.latlng=

A custom ID format that Google uses for identifying businesses.cid=

YouTube Links

When the user taps a YouTube URL in Safari on iPhone, the YouTube application launches and plays
the movie specified in the URL.

The supported YouTube URL formats are as follows, where you replace <video identifier> with
the YouTube video identifier and the preceding www. is optional:

http://www.youtube.com/watch?v=<video identifier>
http://www.youtube.com/v/<video identifier>

A warning message appears if the YouTube video cannot be viewed on the device.

iTunes Links

You can link to the iTunes music store from your web content or launch iTunes from a native
application using a URL. The iTunes URL is complicated to construct, so you create it using an online
tool called iTunes Link Maker. The tool allows you to select a country destination and media type,
and then search by song, album, or artist. After you select the item you want to link to, it generates
the corresponding URL. For example, this HTML fragment links to a song:

<img height="15" width="61" alt="Randy Newman - Toy Story
- You've Got a Friend In Me"
src="http://ax.phobos.apple.com.edgesuite.net/images/
badgeitunes61x15dark.gif">

Go to iTunes Link Maker FAQ for more information on creating iTunes links. This webpage contains
a link to the iTunes Link Maker tool.

210 YouTube Links
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

Apple Applications URL Schemes

http://www.apple.com/itunes/linkmaker/faq/

This table describes the changes to iPhone OS Programming Guide.

NotesDate

New document that describes iPhone OS and the development process
for iPhone applications.

2008-07-08

211
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

212
2008-07-08 | © 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

	iPhone OS Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	iPhone OS Overview
	iPhone OS Feature Summary
	Development Tools
	About iPhone Development
	Application Styles
	Productivity Applications
	Utility Applications
	Immersive Applications

	Application Basics
	The Runtime Environment
	Application Security
	Memory Management
	Application Structure

	The Multi-Touch Interface
	Windows and Drawing
	The Full-Screen Window
	The Importance of Animation
	Update-Based Drawing

	Key Integration Features
	Accelerometers
	Core Location
	Contacts
	The Camera and Photo Library

	Before You Go Any Further

	iPhone OS Technologies
	Cocoa Touch
	Media
	Graphics Technologies
	Core Audio
	OpenAL
	Video Technologies

	Core Services
	Address Book
	Core Foundation
	Core Location
	CFNetwork
	Security
	SQLite
	XML Support

	Core OS

	Development Environment
	The Development Process
	Creating Your Project and Writing Code
	Beginnings
	Using Code Completion
	Using API Reference Lookup
	Accessing Documentation
	Setting Your Application’s Icon
	Building and Running Your Application

	Working with the iPhone Simulator
	Building Your Application for the iPhone Simulator
	Running Your Application on the Simulator
	Capabilities of the iPhone Simulator

	Working with a Device
	Preparing Devices for Development
	Becoming an iPhone Developer Program Member
	Registering Your Device with the Program Portal
	Installing iPhone OS on Your Device
	Obtaining Your Development Certificate
	Adding Your Development Certificate to Your Keychain
	Obtaining Your Provisioning Profile
	Adding Your Provisioning Profile to the Xcode Organizer
	Installing Your Provisioning Profile on Your Device

	Building Your Application for a Device
	Running Your Application on a Device
	Using the Organizer
	Viewing Console and Crash Logs
	Capturing Screenshots
	Restoring System Software

	Backing Up Your Digital Identifications

	Debugging Your Code and Measuring Performance
	Debugging with Xcode
	Tuning Application Performance

	Conditional Linking to System Frameworks
	Managing Application Data

	Application Design Guidelines
	The Runtime Environment
	Fast Launch, Short Use
	The Virtual Memory System

	Managing Your Memory Usage
	Reducing Your Application’s Memory Footprint
	Allocating Memory Wisely
	Observing Low-Memory Notifications

	Performance and Responsiveness
	Using Memory Efficiently
	Improving Drawing Performance
	Reducing Power Consumption
	Tuning Your Code

	Security
	The Application Sandbox
	Using the Available Security Technologies
	Certificate, Key, and Trust Services
	Keychain Services
	Randomization Services

	File and Data Management
	Application Directory Structure
	Backup and Restore
	Getting Paths to Application Directories
	Reading and Writing File Data
	Reading and Writing Property List Data
	Using Archivers to Read and Write Data
	Writing Data to Your Documents Directory
	Reading Data from the Documents Directory

	File Access Guidelines
	Saving State Information
	Case Sensitivity

	Networking
	User Interface Design Considerations

	The Application Environment
	Core Application Architecture
	The Event and Drawing Cycle
	The Application Life Cycle
	Application Interruptions

	The Application Bundle
	Application Configuration
	The Information Property List
	Custom URL Schemes and Interapplication Communication
	Registering Custom URL Schemes
	Handling URL Requests

	Application Icon and Launch Images
	The Settings Bundle

	Launching in Landscape Mode
	Internationalizing Applications

	Windows and Views
	What Are Windows and Views?
	The Role of UIWindow
	The Role of UIView
	UIKit View Classes
	The Role of View Controllers

	View Architecture and Geometry
	The View Interaction Model
	The View Rendering Architecture
	Core Animation Basics
	Changing the Layer of a View
	Animation Support

	View Coordinate Systems
	The Relationship of the Frame, Bounds, and Center
	Coordinate System Transformations
	Content Modes and Scaling
	Autoresizing Behaviors

	Creating and Managing the View Hierarchy
	Creating a View Object
	Adding and Removing Subviews
	Converting Coordinates in the View Hierarchy
	Tagging Views

	Modifying Views at Runtime
	Animating Views
	Configuring Animation Parameters
	Configuring an Animation Delegate

	Responding to Layout Changes
	Redrawing Your View’s Content
	Hiding Views

	Creating a Custom View
	Initializing Your Custom View
	Drawing Your View’s Content
	Responding to Events
	Cleaning Up After Your View

	Event Handling
	Events and Touches
	Event Delivery
	Responder Objects and the Responder Chain
	Regulating Event Delivery

	Handling Multi-Touch Events
	The Event-Handling Methods
	Handling Single and Multiple Tap Gestures
	Detecting Swipe Gestures
	Handling a Complex Multi-Touch Sequence
	Event-Handling Techniques

	Graphics and Drawing
	Quartz Concepts and Terminology
	The View Drawing Cycle
	The Native Coordinate System
	Graphics Contexts
	Points Versus Pixels
	Color and Color Spaces
	Supported Image Formats

	Drawing Tips
	Deciding When to Use Custom Drawing Code
	Improving Drawing Performance
	Maintaining Image Quality

	Drawing with Quartz and UIKit
	Configuring the Graphics Context
	Creating and Drawing Images
	Creating and Drawing Paths
	Drawing Text
	Creating Patterns, Gradients, and Shadings

	Drawing with OpenGL ES
	Setting Up a Rendering Surface
	Best Practices
	General Guidelines
	CPU Usage
	Vertex Data
	Textures
	Drawing Order
	Lighting
	Debugging and Tuning

	Implementation Details
	OpenGL ES Implementation
	Hardware Capabilities
	Supported Extensions
	Memory
	Rendering Path

	Simulator Capabilities
	Supported Extensions
	Memory
	Rendering Path

	For More Information

	Applying Core Animation Effects
	About Layers
	About Animations

	Audio and Video Technologies
	Using Sound in iPhone OS
	Audio Sessions
	Playing Short Sounds Using System Sound Services
	Playing Sounds with Control Using Audio Queue Services
	Creating an Audio Queue Object
	Controlling Playback Level
	Indicating Playback Level
	Playing Multiple Sounds Simultaneously

	Playing Sounds with Positioning Using OpenAL
	Recording Audio
	Parsing Streamed Audio
	Mixing and Processing Sounds
	Audio Unit Support in iPhone OS
	Triggering Vibration
	Tips for Manipulating Audio
	Preferred Audio Formats in iPhone OS

	Playing Video Files

	Device Features
	Accessing Accelerometer Events
	Choosing an Appropriate Update Interval
	Isolating the Gravity Component From Acceleration Data
	Isolating Instantaneous Motion From Acceleration Data
	Getting the Current Device Orientation

	Getting the User’s Current Location
	Taking Pictures with the Camera
	Picking a Photo from the Photo Library

	Application Preferences
	Guidelines for Preferences
	The Preferences Interface
	The Settings Bundle
	The Settings Page File Format
	Hierarchical Preferences
	Localized Resources

	Adding the Settings Bundle to Your Application
	Editing Settings Pages
	Creating Settings Page Files

	Accessing Your Preferences
	Debugging Preferences for Simulated Applications

	Appendix A: Apple Applications URL Schemes
	Mail Links
	Phone Links
	Map Links
	YouTube Links
	iTunes Links

	Revision History

