
Document1 2008-12-13

iPhone Dev Center > iPhone Reference Library > iPhone Application Programming
Guide > Graphics and Drawing >

< Previous PageNext Page > Show TOC
Drawing with OpenGL ES

The Open Graphics Library (OpenGL) is a cross-platform C-based interface used
to create 2D and 3D content on desktop systems. It is typically used by games
developers or anyone needing to perform drawing with high frame rates. You use
OpenGL functions to specify primitive structures such as points, lines, and
polygons and the textures and special effects to apply to those structures to
enhance their appearance. The functions you call send graphics commands to the
underlying hardware, where they are then rendered. Because rendering is done
mostly in hardware, OpenGL drawing is usually very fast.

OpenGL for Embedded Systems is a pared-down version of OpenGL that is designed
for mobile devices and takes advantage of modern graphics hardware. If you
want to create OpenGL content for iPhone OS–based devices—that is, iPhone or
iPod Touch—you’ll use OpenGL ES. The OpenGL ES framework (OpenGLES.framework)
provided with iPhone OS conforms to the OpenGL ES v1.1 specification. You can
find out more about OpenGL ES by reading Polygons In Your Pocket: Introducing
OpenGL ES.

This section is designed to get you started writing OpenGL ES applications for
iPhone OS–based devices. “Setting Up a Rendering Surface” provides step-by-
step instructions for creating a surface that you can draw to using OpenGL ES.
But before you start writing the OpenGL ES portion of your application, you’ll
want to read “Implementation Details” to learn about the capabilities of
iPhone OS–based devices and the specifics of the OpenGL ES implementation in
iPhone OS. “Best Practices” provides coding guidelines that can help your
application perform optimally.
Setting Up a Rendering Surface

The setup for drawing with OpenGL ES is straightforward and requires the same
types of tasks you’d perform to draw to surfaces on a Macintosh computer. The
primary difference is that you’ll use the EAGL API to set up the window
surface instead of an API such as CGL or AGL. The EAGL API provides the
interface between the OpenGL ES renderer and the windows and views of an
iPhone application. (See OpenGL ES Framework Reference.)

When you set up your Xcode project, make sure you link to OpenGLES.framework.
Then, set up a surface for rendering by following these steps:

1.

Subclass UIView and set up the view appropriately for your iPhone
application.

2.

Override the layerClass method of the UIView class so that it returns a
CAEAGLLayer object rather than a CALayer object.

+ (Class) layerClass

{

return [CAEAGLLayer class];

}

1

Document1 2008-12-13

3.

Get the layer associated with the view by calling the layer method of
UIView.

myEAGLLayer = (CAEAGLLayer*)self.layer;

4.

Set the layer properties.

For optimal performance, it’s recommended that you mark the layer as
opaque by setting the opaque property provided by the CALayer class. See
“Best Practices.”

5.

Optionally configure the surface properties of the rendering surface by
assigning a new dictionary of values to the drawableProperties property
of the CAEAGLLayer object.

The EAGL framework lets you specify custom color formats and whether or
not the native surface retains its contents after presenting them. You
identify these properties in the dictionary using the
kEAGLDrawablePropertyColorFormat and
kEAGLDrawablePropertyRetainedBacking keys. For a list of values for
these keys, see the EAGLDrawable protocol.

6.

Create a new EAGLContext object to manage the drawing context. You
typically create and initialize this object as follows:

EAGLContext* myContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1];

If you want to share objects (texture objects, vertex buffer objects,
and so forth) between multiple contexts, use the initWithAPI:sharegroup:
initialization method instead. For each context that should share a
given set of objects, pass the same EAGLSharegroup object in the
sharegroup parameter.

7.

Make your EAGLContext object the context for the current thread using
the setCurrentContext: class method.

You can have one current context per thread.
8.

Create and bind a new render buffer to the GL_RENDERBUFFER_OES target.
(Typically you would do this in a two-step process using the
glGenRenderbufferOES function to allocate an unused name and the
glBindRenderbufferOES functions create and bind the render buffer to
that name.)

9.

Attach the newly created render buffer target to your view’s layer
object using the renderBufferStorage:fromDrawable: method of your
EAGLContext object. (The layer provides the underlying storage for the
render buffer.) For example, given the context created previously, you
would use the following code to bind the buffer to the view’s layer
(obtained previously and stored in the myEAGLLayer variable):

2

Document1 2008-12-13

[myContext renderbufferStorage:GL_RENDERBUFFER_OES
fromDrawable:myEAGLLayer];

The width, height, and format of the render buffer storage are derived
from the bounds and properties of the CAEAGLLayer object at the moment
you call the renderbufferStorage:fromDrawable: method. If you change the
layer’s bounds later, Core Animation scales the content by default. To
avoid scaling, you must recreate the renderbuffer storage by calling
renderbufferStorage:fromDrawable:.

10.

Configure your frame buffer as usual and bind your render buffer to the
attach points of your frame buffer.

Best Practices

To create great OpenGL ES applications that run optimally, whenever possible
follow the guidelines discussed in this section. You’ll also want to read
“Implementation Details” to see how your code can take advantage of the
specific features of the GPU.
General Guidelines

When developing OpenGL ES applications for iPhone OS–based devices:

*

Use an EAGL surface that is the same size as size of the screen. Read
the bounds property of the UIScreen class to get the screen size.

*

Do not apply any Core Animation transforms to the CAEAGLLayer object
that contains the EAGL window surface.

*

Set the opaque property of the CALayer class to mark the CAEAGLLayer
object as opaque.

*

Do not place any other Core Animation layers or UIKit views above the
CAEAGLLayer object that you’re rendering to.

*

If your application needs to present landscape content, avoid
transforming the layer. Instead, set the OpenGL ES state to rotate
everything by changing the Model/View/Projection transform, and swapping
the width and height arguments to the glViewport and glScissor
functions.

*

Limit interactions between OpenGL ES and UIKit or Core Animation
rendering. For example, avoid rendering with OpenGL ES while you render
notifications, messages, or any other user interface controls provided
by UIKit or Core Animation.

*

Economize memory usage. iPhone OS–based devices use a shared memory
system. Memory used by your application’s graphics is not available for
the system. For example, after loading GL textures, free your copy of
the pixel data if you no longer need to use it. (See “Memory”)

*

To implement transparency, use alpha blending instead of alpha testing.

3

Document1 2008-12-13

Alpha testing is considerably more expensive than alpha blending.
*

Disable unused or unnecessary features. For instance, do not enable
lighting or blending if you do not need them.

*

Minimize scissor state changes. They are considerably more expensive on
OpenGL ES for iPhone OS than they are on OpenGL for Mac OS X.

*

Minimize the number of times you call the EAGLContext class method
setCurrentContext: during a rendering frame. Changing the current
surface on OpenGL ES for iPhone OS is considerably more expensive than
it is on OpenGL for Mac OS X. Rather than using multiple contexts,
consider using multiple frame buffer objects instead.

*

Operations that depend on completing previous rendering commands (such
as glTexSubImage, glCopyTexImage, glCopyTexSubImage, glReadPixels,
glFlush, glFinish, or setCurrentContext:) can be very expensive if you
perform them in the middle of a frame. If you need these operations,
perform them at the beginning or end of a frame.

CPU Usage

Respecifying OpenGL ES state can cause the CPU to perform unnecessary work.
Use techniques to reduce CPU usage. For example, use a texture atlas. This
allows you to perform additional draw calls without changing the texture
binding. (Or even better, collapse multiple draw calls into one.) If you
create a texture atlas, you also need to sort state calls to avoid rebinding
the texture. Otherwise, you won’t see a performance benefit.
Vertex Data

When creating geometry:

*

Reduce overall geometry by doing such things as using indexed triangle
strips and providing only as much detail as the user can see.

*

To achieve fine detail in your drawing without increasing the vertex
count, consider using DOT3 lighting or textures.

*

Memory bandwidth is limited, so use the smallest acceptable type for
your data. Specify vertex colors using 4 unsigned byte values. Specify
texture coordinates with 2 or 4 unsigned byte or short values instead of
floating-point values, if you can.

Textures

To get the best performance with textures:

*

Use textures with the smallest size per pixel that you can afford. If
possible, use 565 textures instead of 8888.

*

Use compressed textures stored in the PVRTC format. See the

4

Document1 2008-12-13

specification for the extension GL_IMG_texture_compression_pvrtc.
*

Use mipmapping with the LINEAR_MIPMAP_NEAREST option.
*

Create and load all textures prior to rendering. Don’t upload or modify
textures during a frame. Specifically, avoid calling the functions
glTexSubImage or glCopyTexSubImage in the middle of a frame.

*

Use multitexturing rather than applying textures over multiple passes.

Drawing Order

Drawing order is important for hardware that uses tile based deferred
rendering. (See “Rendering Path.”)

*

Don’t waste CPU time sorting objects front to back. The tile based
deferred rendering model used by the GPU makes sorting unnecessary.

*

Draw opaque objects first; draw alpha blended objects last.

Lighting

Simplify lighting as much as possible.

*

Use the fewest lights possible and the simplest lighting type for your
application. For example, consider using directional lights instead of
spot lighting, which incurs a higher performance cost.

*

If you can, precompute lighting. Static lighting gives better
performance than dynamic. You can compute the lighting ahead of time and
store the result in textures or color arrays that you can look up later.

Debugging and Tuning

The Instruments application includes an OpenGL ES instrument that you can use
to gather information about the runtime behavior of your OpenGL code. In
addition, you can set a breakpoint on the opengl_error_break symbol in GDB to
see when OpenGL errors are generated.
Implementation Details

Understanding the features of the hardware and the specifics of the
implementation of OpenGL ES can help you tailor your code to get the best
performance. Use the information in this section, along with “Best Practices,”
as you design your OpenGL ES application.
OpenGL ES Implementation

The OpenGL ES implementation in iPhone OS differs from other implementations
of OpenGL ES in the following ways:

*

The maximum texture size is 1024 x 1024.
*

5

Document1 2008-12-13

2D texture targets are supported; other texture targets are not.
*

Stencil buffers aren’t available.

Hardware Capabilities

When developing any OpenGL application, it’s important to check for the
functionality that your application uses and have a contingency in place if
the hardware doesn’t support the particular feature or extension that you want
to use. This is true for Macintosh computers and it is even more important
when writing OpenGL ES applications for iPhone OS–based devices. It’s
essential that you understand the capabilities of the specific hardware that
you are writing for. Keep in mind that, unlike OpenGL on Macintosh computers,
there is no software rendering fallback option for iPhone OS–based devices.

The graphics hardware for iPhone OS–based devices has the following
limitations:

*

The texture magnification and magnification filters (within a texture
level) must match. For example:

o

Supported: GL_TEXTURE_MAG_FILTER =GL_LINEAR, GL_TEXTURE_MIN_FILTER
= GL_LINEAR_MIPMAP_LINEAR

o

Supported: GL_TEXTURE_MAG_FILTER = GL_NEAREST,
GL_TEXTURE_MIN_FILTER = GL_LINEAR_MIPMAP_NEAREST

o

Not Supported: GL_TEXTURE_MAG_FILTER = GL_NEAREST,
GL_TEXTURE_MIN_FILTER = GL_LINEAR_MIPMAP_LINEAR

There are a few, rarely used texture environment operations that aren’t
available:

*

If the value of GL_COMBINE_RGB is GL_MODULATE, only one of the two
operands may read from an GL_ALPHA source.

*

If the value of GL_COMBINE_RGB is GL_INTERPOLATE, GL_DOT3_RGB, or
GL_DOT3_RGBA, then several combinations of GL_CONSTANT and
GL_PRIMARY_COLOR sources and GL_ALPHA operands do not work properly.

*

If the value of GL_COMBINE_RGB or GL_COMBINE_ALPHA is GL_SUBTRACT, then
GL_SCALE_RGB or GL_SCALE_ALPHA must be 1.0.

*

If the value of GL_COMBINE_ALPHA is GL_INTERPOLATE or GL_MODULATE, only
one of the two sources can be GL_CONSTANT.

*

The value of GL_TEXTURE_ENV_COLOR must be the same for all texture
units.

6

Document1 2008-12-13

Supported Extensions

These are the OpenGL ES extensions that you can use when developing OpenGL ES
applications for iPhone OS–based devices:

*

GL_OES_blend_subtract
*

GL_OES_compressed_paletted_texture
*

GL_OES_depth24
*

GL_OES_draw_texture
*

GL_OES_framebuffer_object
*

GL_OES_mapbuffer
*

GL_OES_matrix_palette
*

GL_OES_point_size_array
*

GL_OES_point_sprite
*

GL_OES_read_format
*

GL_OES_rgb8_rgba8
*

GL_OES_texture_mirrored_repeat
*

GL_EXT_texture_filter_anisotropic
*

GL_EXT_texture_lod_bias
*

GL_IMG_read_format
*

GL_IMG_texture_compression_pvrtc
*

GL_IMG_texture_format_BGRA8888

Memory

OpenGL ES applications should use no more than 24 MB of memory for both
textures and surfaces. This 24 MB is not dedicated graphics memory but comes
from the main system memory. Because main memory is shared with other iPhone

7

Document1 2008-12-13

applications and the system, your application should use as little of it as
possible. “Best Practices” provides several guidelines for ways to use memory
economically. In particular, see “General Guidelines” and “Vertex Data.”
Rendering Path

The GPU in the iPhone and iPod touch is a PowerVR MBX Lite. This GPU uses a
technique known as Tile Based Deferred Rendering (TBDR). When you submit
OpenGL ES commands for rendering, TBDR behaves very differently from a
streaming renderer. A streaming renderer simply executes rendering commands in
order, one after another. In contrast, a TBDR defers any rendering until it
accumulates a large number of rendering commands, and then operates on this
command list as a single scene. The framebuffer is divided up into a number of
tiles, and the scene is drawn once for each tile, each time drawing only the
content that is actually visible within that tile. The TBDR approach has
several advantages and disadvantages compared to streaming renderers.
Understanding these differences will help you write better performing
software.

The most significant advantage of TBDR is that it can make much more efficient
use of available bandwidth to memory. Constraining rendering to only one tile
allows the GPU to more effectively cache the framebuffer, making depth testing
blending much more efficient. Otherwise, the memory bandwidth consumed by
these framebuffer operations often becomes a significant performance
bottleneck.

When using deferred rendering, some operations become more expensive. For
example, if you call the function glTexSubImage in the middle of a frame, the
accumulated command list may include commands from both before and after the
call to glTexSubImage. This command list needs to reference both the old and
new version of the texture image at the same time, forcing the entire texture
to be duplicated even if only a small portion of the texture is updated.
Duplication can make functions such as glTexSubImage significantly more
expensive on a deferred renderer than a streaming renderer.

The PowerVR GPU relies on more than just TBDR to optimize performance; it
performs hidden surface removal before fragment processing. If the GPU
determines that a pixel won’t be visible, it discards the pixel without
performing texture sampling or fragment color calculations. Removing hidden
pixels can significantly improve performance for scenes that have obscured
content. To gain the most benefit from this feature, you should try to draw as
much of the scene with opaque content as possible and minimize use of blending
and alpha testing.

For more information on exactly how these features are implemented and how
your application can best take advantage of them, see PowerVR Technology
Overview and PowerVR MBX 3D Application Development Recommendations.
Simulator Capabilities

The iPhone simulator includes a complete and conformant implementation of
OpenGL ES 1.1 that you can use for your application development. This
implementation differs in a few ways from the implementation found in iPhone
OS–based devices. In particular, the simulator does not have the same
limitations regarding texture magnification filters or texture environment
operations that are described in “Hardware Capabilities.” In addition, the
simulator supports antialiased lines while iPhone OS–based devices do not.

Important: It is important to understand that the rendering performance of
OpenGL ES in the simulator has no relation to the performance of OpenGL ES on
an actual device. The simulator provides an optimized software rasterizer that
takes advantage of the vector processing capabilities of your Macintosh
computer. As a result, your OpenGL ES code may run faster or slower in Mac OS
X (depending on your computer and what you are drawing) than on an actual

8

Document1 2008-12-13

device. Therefore, you should always profile and optimize your drawing code on
a real device and not assume that the simulator reflects real-world
performance.

The following sections provide additional details about the OpenGL ES support
available in the iPhone simulator.
Supported Extensions

The iPhone simulator supports all of the OpenGL ES 1.1 core functionality and
most of the extensions supported by iPhone OS–based devices. The following
extensions are not supported by the simulator, however:

*

GL_OES_draw_texture
*

GL_OES_matrix_palette
*

GL_EXT_texture_filter_anisotropic
*

GL_IMG_texture_compression_pvrtc

For a list of the extensions supported by the hardware, see “Supported
Extensions.”
Memory

On a device, OpenGL ES applications can use no more than 24 MB of memory for
both textures and surfaces. The simulator does not enforce this limit. As a
result, your code can allocate as much memory as your computer’s rendering
hardware supports. Be sure to keep track of the size of your assets during
development.
Rendering Path

In contrast to the Tile Based Deferred Rendering technique used in devices,
the simulator’s software rasterizer uses a traditional streaming model for
OpenGL ES commands. Objects are transformed and rendered immediately as you
specify them. Consequently, the performance of some operations can differ
significantly from that on actual devices.

As with any two different implementations of OpenGL ES, there may be small
differences between the pixels rendered by the simulator and those rendered by
the device. For example, OpenGL ES allows some calculations, such as color
interpolation and texture mipmap filtering, to be approximated. In general,
the two implementations will produce similar results, but do not rely on them
to be bit-for-bit identical.
For More Information

You may want to consult these resources as you develop OpenGL ES applications
for iPhone OS–based devices:

*

OpenGL ES 1.X Specification is the official definition of this
technology provided by the Khronos Group. You’ll also find other useful
information on this website.

*

PowerVR MBX OpenGL ES 1.x SDK page provides information about the
specific OpenGL ES implementation supported by the PowerVR MBX graphics

9

Document1 2008-12-13

hardware.
*

OpenGL ES 1.1 Reference Pages provides a complete reference to OpenGL ES
specification, indexed alphabetically as well as by theme.

*

OpenGL ES Framework Reference describes the functions and constants that
provide the interface between OpenGL ES and the iPhone user interface.

< Previous PageNext Page > Show TOC

Last updated: 2008-11-12

Did this document help you?
Yes: Tell us what works for you.

It’s good, but: Report typos, inaccuracies, and so forth.

It wasn’t helpful: Tell us what would have helped.

Get information on Apple products.
Visit the Apple Store online or at retail locations.
1-800-MY-APPLE

Copyright © 2007 Apple Inc.
All rights reserved. | Terms of use | Privacy Notice

10

