Wrox Programmer to Programmern

Professional

iPhone" and iPod touch

Programming
Building Applications for Mobile Safari”

Richard Wagner

Wrox: Updates, source code, and Wrox technical support at www.wrox.com

Professional

iPhone™ and iPod® touch
Programming

Chapter 1: Introducing the iPhone and iPod touch Development Platform 1

Chapter 2: DesigningaUseriInterfaceicuu.n 13
Chapter 3: Implementing thelnterface. 33
Chapter4: Stylingwith CSS. i ittt ettt s nnns 83
Chapter 5: Handling Touch Interactionsand Events 101
Chapter 6: Advanced Programming Topics: Canvas and Video 121
Chapter 7: Integrating with iPhone Services. 153
Chapter 8: Enabling and Optimizing Web Sites
foriPhone andiPodtouch.................. .. oot 179
Chapter 9: Bandwidth and Performance Optimizations 209
Chapter 10: Packaging Apps as Bookmarks:
BookmarkletsandDataURLso 221
Chapter 11: Case Studies: Beyond Edge-to-Edge Design 237
Chapter 12: Testingand Debugging i it nnnns 261

Professional

iPhone™ and iPod® touch
Programming

Building Applications for Mobile Safari™

Richard Wagner

WILEY
Wiley Publishing, Inc.

Professional iPhone™ and iPod® touch Programming:
Building Applications for Mobile Safari™

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-25155-3

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
or online at http:/ /www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may make. Further,
readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress

are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. iPhone, iPod, and Safari are trademarks or registered
trademarks of Apple Computer, Inc. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

www.wiley.com

To Kim and the J-boys

About the Author

Richard Wagner is an experienced Web designer and developer as well as author of several Web-related
books on the underlying technologies of the Mobile Safari platform. These books include XSLT For
Dummies, Creating Web Pages All-In-One Desk Reference For Dummies, XML All-In-One Desk Reference For
Dummies, Web Design Before & After Makeovers, and JavaScript Unleashed (1st, 2nd ed.). Before moving into
full-time authoring, Richard was an experienced programmer and head of engineering. He was also
inventor and chief architect of the award-winning NetObjects ScriptBuilder. A versatile author with a
wide range of interests, he is also author of The Myth of Happiness. Richard can be located online at
tech.digitalwalk.net.

About the Technical Editor

Ishan Anand is cofounder and developer for AppMarks.com, a Web desktop for iPhone. Prior to
AppMarks, he worked at Digidesign, a division of Avid. Ishan has a B.S. in Computer Science,
Electrical Engineering and Mathematics from M.LT. He can be reached through his Web site at
http://ishananand. com.

Credits

Executive Editor Vice President and Executive Group Publisher
Chris Webb Richard Swadley

Development Editor Vice President and Executive Publisher
Kenyon Brown Joseph B. Wikert

Technical Editor Project Coordinator, Cover

Ishan Anand Lynsey Stanford

Copy Editor Proofreader

Mildred Sanchez Christopher M. Jones

Editorial Manager Indexer

Mary Beth Wakefield Johnna VanHoose Dinse

Production Manager
Tim Tate

Contents

Acknowledgments Xvii
Introduction Xix

Chapter 1: Introducing the iPhone and iPod touch Development Platform 1

Discovering the Mobile Safari Platform 1
Four Ways to Develop for iPhone and iPod touch 5
The Finger Is Not a Mouse 8
Limitations and Constraints 9
Accessing Files on a Local Wi-Fi Network 11
Chapter 2: Designing a User Interface 13
The iPhone Viewport 14
Exploring Native iPhone Applications 15
Navigation List-Based Ul Design 18
Application Modes 20
Screen Layout: Emulating Apple Design 20
Titlebar 20
Edge-to-Edge Navigation Lists 23
Rounded Rectangle Design Destination Pages 24
Button Bar 24
Designing for Touch 24
Working with Fonts 27
Best Practices in iPhone Ul Design 28
Chapter 3: Implementing the Interface 33
Top Level of Application 34
Creating irealtor.html 35
Examining Top-Level Styles in iui.css 35
Adding the Top Toolbar to irealtor.html 36
Adding a Top-Level Navigation Menu in irealtor.html 38
Displaying a Panel with an Internal URL 40
Displaying AJAX Data from an External URL 42
Designing for Long Navigation Lists 45

Creating a Destination Page 46

Contents

Adding a Dialog 50
Designing a Contact Us Page with Integrated iPhone Services 55
Scripting Ul Behavior with iui.js 68
On Document Load 68
Loading a Standard iUl Page 69
Handling Link Clicks 71
Handling AJAX Links 72
Loading an iUl Dialog 74
Chapter 4: Styling with CSS 83
CSS Selectors Supported in Mobile Safari 83
Text Styles 85
Controlling Text Sizing with -webkit-text-size-adjust 85
Handling Overflowed Text with text-overflow 87
Subtle Shadows with text-shadow 89
Styling Block Elements 920
Image-Based Borders with -webkit-border-image 90
Rounded Corners with -webkit-border-radius 91
Gradient Push Buttons with -webkit-appearance 91
Multiple Background Images 93
Setting Transparencies 94
Creating CSS-Based iPhone Buttons 95
Identifying Incompatibilities 929
Chapter 5: Handling Touch Interactions and Events 101
How iPhone Handles Events 101
Detecting an Orientation Change 103
Changing a Style Sheet When Orientation Changes 106
Changing Element Positioning Based on Orientation Change 111
Capturing Two-Finger Scrolling 113
Simulating a Drag-and-Drop Action 117
Trapping for Key Events with the On-Screen Keyboard 120
Chapter 6: Advanced Programming Topics: Canvas and Video 121
Identifying the User Agent for iPhone and iPod touch 121
Programming the iPhone Canvas 123
Defining the Canvas Element 124
Getting a Context 124
Drawing a Simple Rectangle 125

Xii

Contents

Drawing an Image
Adding Gradients

Adding Shadows

Canvas in Action
Working with Video

Sending Emails

iPhone and iPod touch

Media Queries
Text Size Adjustment
Case Study

Tier 4: Parallel Sites

Drawing Other Shapes 127

131

Adding Color and Transparency 136

136

Creating an Image Pattern 140

140

Transforming a Canvas State 142

Saving and Restoring State 144

Creating an Animation 144

146

146

Preparing iPhone/iPod touch—Friendly Video 146

Embedding Video or Audio Files 151

Chapter 7: Integrating with iPhone Services 153

Preparing the iProspector Application Shell 154

Creating the Contact Header 157

Creating the cui.css Style Sheet 158

Making Phone Calls from Your Application 159

Creating Service Links 161

164

Pointing on Google Maps 167

Creating a Contacts Address Box 170

Creating Service Buttons 171
Chapter 8: Enabling and Optimizing Web Sites for

179

Tier 1: iPhone/iPod touch Compatibility 180

Tier 2: Navigation-Friendly Web Sites 183

Working with the Viewport 183

Turning Your Page into Blocks 187

Defining Multiple Columns (Future Use) 190

Tier 3: Custom iPhone/iPod touch Styles 190

191

191

192

197

Avoid Handcuffs, Offer Freedom 197

Transform a Site to an iPhone/iPod touch Design 200

Xiii

Contents

Chapter 9: Bandwidth and Performance Optimizations 209
Your Optimization Strategy 209
Best Practices to Minimize Bandwidth 210

General 210
Images 210
CSS and JavaScript 211
Compressing Your Application 211
Gzip File Compression 212
JavaScript Code Compression 212
JavaScript Performance Optimizations 214
Smart DOM Access 214
Local and Global Variables 216
Dot Notation and Property Lookups 217
Avoiding Nested Properties 217
Accessing a Named Object 217
Property Lookups Inside Loops 217
String Concatenation 218
What to Do and Not to Do 219

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets
and Data URLs 221
Bookmarklets 221

Adding a Bookmarklet to Mobile Safari 223
Exploring How Bookmarklets Can Be Used 224
Storing an Application in a Data URL 226
Constraints and Issues with Using Data URLs 227
Creating an Offline iPhone/iPod touch Application 227

Chapter 11: Case Studies: Beyond Edge-to-Edge Design 237

Case Study: iRealtor 2.0 237
Customizing the Application Toolbar 238
Creating and Styling the Photos Page 240
Programming the Photos Page 242
Attaching the Photos Page to iRealtor 244

Case Study: Mobile WYFFL 245
Text-Based Destination Pages 249
Table-Based Destination Pages 251
Game Day Navigation List Page 254

Xiv

Contents

Chapter 12: Testing and Debugging 261
iPhone and iPod touch Debug Console 261
Working with Desktop Safari Debugging Tools 262

Enabling the Debug Menu 262
Working with the Safari Web Inspector 264
Working with the JavaScript Console 267
Industrial Strength Debugging with Drosera 268
Preparing Drosera for Safari 268
Working with Drosera 269
Simulating Mobile Safari on Your Desktop 271
Using Safari for Mac or Windows 271
Using iPhoney 272
Debugging Inside Mobile Safari 274
Firebug for iPhone 274
DOM Viewer 276
Index 279

XV

Acknowledgments

I extend a heartfelt tip of the hat to Kenyon Brown for his flawless management of this project. Thanks
also to Ishan Anand for his technical insights and prowess, which made a strong impact on the accuracy
and coverage of the book. Finally, I thank Chris Webb for getting this project off the ground and for his
support throughout the process.

Introduction

The amazing success of iPhone and iPod touch is a clear indication that application developers are
entering a brave new world of sophisticated, multifunctional mobile applications. No longer do
applications and various media need to live in separate silos. Instead, applications on these Apple
devices can bring together elements of Web 2.0 apps, traditional desktop apps, multimedia video and
audio, and the cell phone.

Professional iPhone™ and iPod touch® Programming: Building Applications for Mobile Safari™ covers the
various aspects of developing Web-based applications for the iPhone and iPod touch environments.
Specifically, you will discover how to create a mobile application from the ground up, utilize existing
open source libraries in your code, emulate the look and feel of built-in Apple applications, capture
finger-touch interactions, using AJAX to load external pages, and optimize applications for Wi-Fi and
the EDGE network.

Whom This Book Is For

This book is aimed primarily at Web developers already experienced in Web 2.0 technologies who want
to build new applications for iPhone and iPod touch or migrate existing Web apps to this new platform.
Readers should have a working knowledge of the following technologies:

Q HTML/XHTML
a Gcss

Q JavaScript
Q AJAX

What This Book Covers

Professional iPhone and iPod touch Programming introduces readers to the Web application platform for
iPhone and iPod touch. The book guides readers through the process of building new applications from
scratch and migrating existing Web 2.0 applications to this new mobile platform. As it does so, it helps
readers design a user interface that is optimized for iPhone’s touch-screen display and integrates their
applications with iPhone services, including Phone, Mail, and Google Maps.

The chapter-level breakdown is as follows:

Q Chapter 1, “Introducing the iPhone and iPod touch Development Platform”: Explores the
Mobile Safari development platform and walks you through the four ways you can develop for
iPhone and iPod touch.

Q Chapter 2, “Designing an iPhone and iPod touch User Interface”: Provides an overview of the
key design concepts and principles you need to use when developing a highly usable interface
for Mobile Safari.

Introduction

Q

Chapter 3, “Implementing an iPhone Interface”: Provides a code-level look at developing an
iPhone and iPod touch application interface.

Chapter 4, “Styling with CSS”: Discusses WebKit-specific styles that are useful for developing
applications for iPhone and iPod touch.

Chapter 5, “Handling Touch Interactions and Events”: The heart of iPhone and iPod touch is
its touch-screen interface. This chapter explores how to handle touch interactions and capture
JavaScript events.

Chapter 6, “Advanced Programming Topics: Canvas and Video”: Discusses how the Mobile
Safari browser provides full support for canvas drawing and painting, therefore opening up
opportunities for developers. What’s more, the built-in iPod for each mobile device enables tight
video integration.

Chapter 7, “Integrating with iPhone Services”: Discusses how a Web application can integrate
with core iPhone services, including Phone, Mail, and Google Maps.

Chapter 8, “Enabling and Optimizing Web Sites for iPhone and iPod touch”: Covers how to
make an existing Web site compatible with Mobile Safari and how to optimize the site for use as
a full-fledged application.

Chapter 9, “Bandwidth and Performance Optimizations”: Deals with the all-important issue of
performance of Web-based applications and what techniques developers can use to minimize
constraints and maximize bandwidth and app execution performance.

Chapter 10, “Packaging Apps as Bookmarks: Bookmarklets and Data URLs”: iPhone and iPod
touch require applications to be based remotely. Well almost. This Chapter explains how you can
use two little-used Web technologies to support limited offline support.

Chapter 11, “Case Studies: Beyond Edge-to-Edge Design”: Explores the creation of two
applications that go beyond the basic edge-to-edge structure.

Chapter 12, “Testing and Debugging”: Discusses various methods of debugging Mobile Safari
applications.

What You Need to Use This Book

In order to work with the examples of the book, you will need the following;:

XX

a
a

iPhone or iPod touch (iPhone is needed for Chapter 7)
Mobile Safari for Mac or Windows

The complete source code for the examples is available for download from this book’s Web site at
WwWw . WroX . Ccom.

Introduction

Conventions

I'have used several conventions throughout this book to help you get the most from the text.

O New terms are italicized when I introduce them.
Q URLs and code within the text is given a monospaced font, such as <div class="panel">.

Q Within blocks of source code, I occasionally want to highlight a specific section of the code. To
do so, I use a gray background. For example:

addEventListener ("load", function(event) {
convertSrcToImage (0) ;
photoEnabled = true;
showPhoto (1) ;
}, false);

Source Code

As you work through the examples in the book, you can type all of the code manually or download the
source code files from the Wrox Web site (www .wrox . com). At the site, locate the book’s detail page using
Search or by browsing through the title listings. On the page, click the Download Code link and you are
ready to go.

You may find it easiest to search by ISBN. This book’s ISBN is 978-0-470-25155-3.

Errata

The editors and I worked hard to ensure that the contents of this book are accurate and there are no
errors either in the text or in the code examples. However, because of the fluid “early adaptor” nature of
developing applications for iPhone and iPod touch right now, Apple is regularly updating the capabili-
ties of the Mobile Safari browser. As a result, some things that worked at the time of writing might get
broken, and some new functionality may be introduced that makes the life of the developer easier.

Therefore, to find the errata page for this book, go to www.wrox . com and locate its details page. Once on
the book details page, look for the Book Errata link. You will be taken to a page that lists all errata that
has been submitted for the book and posted by Wrox editors.

If you discover an issue that is not found on the errata page, I would be grateful for you to let us know
about it. To do so, go to www.wrox.com/contact/techsupport.shtml and provide this information in
the online form. The Wrox team will double-check your information and, as appropriate, post it on the
errata page as well as correct the problem in future versions of the book.

XXi

Professional

iPhone™ and iPod® touch
Programming

Introducing the iPhone
and iPod touch
Development Platform

The introduction of the iPhone and subsequent unveiling of the iPod touch revolutionized the way
people interacted with handheld devices. No longer did users have to use a keypad for screen
navigation or browse the Web through “dumbed down” pages. These Apple devices brought
touch screen input, a revolutionary interface design, and a fully functional Web browser right into
the palms of people’s hands. However, the question in the developer community in the months
leading up to the release of the iPhone was: Will Apple allow third-party developers to develop
custom applications for this new mobile platform? Apple’s response was one that made Web
developers happy and Objective-C programmers sad — iPhone and iPod touch applications
would be Safari-based apps that are built using standard Web technologies. Apple opted for this
solution as a way to provide developers with the freedom to create custom apps, all the while
maintaining control of the user experience of these two devices.

Discovering the Mobile Safari Platform

An iPhone and iPod touch application runs inside of the built-in Safari browser that is based on
Web standards, including:

Q

Q
a
a
a

HTML/XHTML (HTML 4.01 and XHTML 1.9, XHTML mobile profile document types)
CSS (CSS 2.1 and partial CSS3)

JavaScript (ECMAScript 3, JavaScript 1.4)

AJAX (e.g., XMLHTTPRequest)

Ancillary technologies (video and audio media, PDF, and so on)

Chapter 1: The iPhone and iPod touch Development Platform

Safari on iPhone and iPod touch (which I refer to throughout the book as Mobile Safari) becomes the
platform upon which you develop applications and becomes the shell in which your apps must operate
(see Figure 1-1).

-l ATET = 12:38 PM =

URL bar

Viewport

[I] [—B Toolbar

Figure 1-1: Mobile Safari user interface

Mobile Safari is built with the same open source WebKit browser engine as Safari for OS X and Safari for
Windows. However, while the Safari family of browsers is built on a common framework, you’ll find it
helpful to think of Mobile Safari as a close sibling to its Mac and Windows counterparts, not an identical
twin to either of them. Mobile Safari, for example, does not provide the full extent of CSS or JavaScript
functionality that its desktop counterpart does.

In addition, Mobile Safari provides only a limited number of settings that users can configure. As

Figure 1-2 shows, users can turn off and on support for JavaScript, plug-ins, and a pop-up blocker. Users
can also choose whether they want to always accept cookies, accept cookies only from sites they visit, or
never accept cookies. A user can also manually clear the history, cookies, and cache from this screen.

Chapter 1: The iPhone and iPod touch Development Platform

. ATET = 12:53 PM

=]

Settings Safari

General

Search Engine Google > J

Security

JavaScript m
Plug-ins m|
Block Pop-ups m

Accept Cookies From visited »

Clear History

Clear Cookies

Figure 1-2: Mobile Safari preferences

Quite obviously, there are important differences between an iPhone/iPod touch application running
inside of Mobile Safari and a native application. From a developer standpoint, the major difference is the
programming language — utilizing Web technologies rather than Objective-C. However, there are also
key end-user implications, including:

Q Performance: The performance of a Safari-based application is not going to be as responsive
as a native compiled application, both because of the interpretive nature of the programming
languages as well as the fact that the application operates over Wi-Fi and EDGE networks.
(Remember, iPod touch supports Wi-Fi access only.) However, in spite of the technological
constraints, you can perform many optimizations to achieve acceptable performance. (Several of
these techniques are covered in Chapter 10.)

Chapter 1: The iPhone and iPod touch Development Platform

Table 1-1 shows the bandwidth performance of Wi-Fi and EDGE networks.

Table 1-1: Network Performance

Network Bandwidth
Wi-Fi 54 Mbps
EDGE 70-135 Kbps, 200 Kbps burst

Q Launching: While the built-in applications are all launched from the main Springboard screen of
the iPhone and iPod touch (see Figure 1-3), Web developers do not have access to this area for
their applications. Instead, a user can only access your application by entering its URL or by
selecting a bookmark from the Bookmarks list (see Figure 1-4). Unfortunately, there is absolutely
nothing a Web developer can do to emulate the native application launch process.

12:19 PM [T [ATET = 12:21 PM [—
Bookmarks
A Leaflets
A JiveTalk AIM
1 ESPN PodCenter
YouTube
A Mobilizelt
Caleulator Notes m Gﬂngle Reader

1 Facebook
M Google/m
A Earthcomber

Figure 1-3: Built-in applications launch from the Figure 1-4: Web applications launch from the

main Springboard. Bookmarks list.

4

Chapter 1: The iPhone and iPod touch Development Platform

Q User interface (Ul): The built-in iPhone and iPod touch applications adhere to very specific
Apple Ul design guidelines. As Chapters 3 and 4 explain in detail, you can closely emulate
native application design using a combination of HTML, CSS, and JavaScript. The only
constraint to complete emulation is the ever present bottom toolbar in Mobile Safari. Figures 1-5
and 1-6 compare the Ul design of a native application and a Safari-based application.

.l ATET = 1:05 PM

-_

. ATE&T =

1:26 PM -

Now

Good Charlotte - Good Mor...
Harry Gregson-Williams »...

James Bond 007

Figure 1-5: Edge-to-edge navigation pane in the
iPod app

W

Playlists Playing
Emery
Evermore - Dreams
Explosions in the Sky
Good Charlotte

b4

James Horner » Field of Dre... >

Movies... .

Leominster 10 ?
Regal (Hoyts) Cinemas §
Westborough 12

Hegal {Huyts) Clnemas g

Donate

Theaters

Showcase Cinemas

Worcester North :
West Boylston Cinema >
Blackstone Valley 14: N

Cinema de Lux
Elm Draughthouse Cinema >

Entertainment Cinemas -

Figure 1-6: Edge-to-edge navigation pane in a custom
application

Four Ways to Develop for iPhone

and iPod touch

A Web application that you can run in any browser and an iPhone/iPod touch application are certainly
made using the same common ingredients — HTML, CSS, JavaScript, and AJAX — but they are not
identical. In fact, there are four approaches to developing for iPhone and iPod touch:

Chapter 1: The iPhone and iPod touch Development Platform

Q

Level 1: Fully compatible Web site/application: The ground level approach is to develop a Web site/
app that is “iPhone/iPod touch—friendly” and is fully compatible with the Apple mobile devices
(see Figure 1-7). These sites avoid using technologies that the Apple mobile devices do not
support, including Flash, Java, and other plug-ins. The basic structure of the presentation layer
also maximizes use of blocks and columns to make it easy for users to navigate and zoom within
the site. This basic approach does not do anything specific for iPhone/iPod touch users, but
makes sure that there are no barriers to a satisfactory browsing experience. (See Chapter 8 for
converting a Web site to be friendly for iPhone and iPod touch users.)

No Service = 1:16 PM -_

s ol http://del.icio.us/
.. dal,lc!u.us

* all your bookmarks in one place
+ bookmark things for yourself and friends

* check out what other people are
bookmarking

Wann mara. » gEt started «

seq also: popular | recant

Mational Do Not Call Reglsiry save this 725 [
Sl pasted by BUENSGNT 3 P‘hDI‘Iﬂ dDI‘M:IIv.‘.E" FIHVHE_V [*TT)
lelemarkeling government

Mark Vidler # Go Home Productions B

gava this

et i i music mashup mpd mashups @

remix
PEEEmes | essWatis.org - Saving Power on intel B
systems with Linux zave this
Sk sty et linux powsr intal hardware =9
pafarmmanca

Figure 1-7: Site is easy to navigate.

Level 2: Web site/application optimized for Safari: The second level of support for iPhone and iPod
touch is to not only provide a basic level of experience for the Mobile Safari user, but also to
provide an optimized user experience for users who use Safari browsers, such as utilizing some
of the enhanced WebKit CSS properties supported by Safari.

Level 3: Dedicated iPhone/iPod touch Web site/application: A third level of support is to provide a
Web site tailored to the viewport dimensions of the iPhone and iPod touch and provide a strong

Chapter 1: The iPhone and iPod touch Development Platform

Web browsing experience for Apple device users (see Figures 1-8 and 1-9). However, while these
sites are tailored for iPhone/iPod touch viewing, they do not always seek to emulate Apple Ul
design. And, in many cases, these are often stripped-down versions of a fuller Web site or

application.
- ATET = 1:18 PM = |l ATET = 1:29 PM ™
amaw Status facebook Search
i 1
Welcome Richard Wagner! Home Profile Friends Inbox
[Welcome to the iPhone beta :_iiln! Please tap here to wvisit]
He FoEke) News Feed Events Requests (1)

| search | You do not have any upcoming events.

PE=E:

Pre-order Halo 3 today! Check out
the most anticipated video game
and cool accessories!

Category Top Sellers

[Books BCGDD B |

Facebook © 2007 Logout

Figure 1-8: Amazon’s iPhone site Figure 1-9: Facebook closely emulates Apple Ul design.

Q Level 4: Native-looking iPhone/iPod touch application: The final approach is to provide a Web
application that is designed exclusively for iPhone and iPod touch and closely emulates the
UI design of native applications (see Figure 1-10). One of the design goals is to minimize user
awareness that they are even inside of a browser environment. Moreover, a full-fledged iPhone
application will, as is relevant, integrate with iPhone-specific services, including Phone,
Mail, and Google Maps.

Therefore, as you consider your application specifications, be sure to identify which level of user
experience you wish to provide iPhone and iPod touch users and design your application accordingly. In
this book, I'll focus primarily on developing native-looking applications.

Chapter 1: The iPhone and iPod touch Development Platform

il ATET = 1:24 PM =™

Movies.app Donate

Find Showtimes - Buy Tickets -

Watch Trailers - Get Maps
[Zip Code 01520 ﬁ
Date Today (3121 [+]
N - &)

——t—e]

Figure 1-10: Application emulating Apple Ul design

The Finger Is Not a Mouse

As you develop applications for iPhone and iPod touch, one key design consideration that you need to
drill into your consciousness is that the finger is not a mouse. On the desktop, a user can use a variety of
input devices — such as an Apple Mighty Mouse, a Logitech trackball, or a laptop touchpad. But, on
screen, the mouse pointer for each of these pieces of hardware is always identical in shape, size, and
behavior. However, on iPhone and iPod touch, the pointing device is always going to be unique.
Ballerinas, for example, will probably input with tiny, thin fingers, while NFL players will use big, fat
input devices. Most of the rest of us will fall somewhere in between. Additionally, fingers are also not
nearly as precise as mouse pointers are, making interface sizing and positioning issues very important,
whether you are creating an iPhone/iPod touch—friendly Web site or a full-fledged iPhone/iPod touch
application.

Additionally, finger input does not always correspond to a mouse input. A mouse has a left click, right
click, scroll, and mouse move. In contrast, a finger has a tap, flick, drag, and pinch. However, as an
application developer, you will want to manage what types of gestures your application supports. Some

Chapter 1: The iPhone and iPod touch Development Platform

of the gestures that are used for browsing Web sites (such as the double-tap zoom) are actually not
something you want to support inside of an iPhone and iPod touch application. Table 1-2 displays the
gestures that are supported on iPhone and iPod touch as well as an indication as to whether this type
of gesture should be supported on a Web site or application. (However, as Chapter 5 explains in detail,
you will not have programmatic access to managing all of these inputs inside of Mobile Safari.)

Table 1-2: Finger Gestures

Gesture Result Web site App
Tap Equivalent to a mouse click Yes Yes
Drag Moves around the viewport Yes Yes
Flick Scrolls up and down a page or list Yes Yes
Double-tap Zooms in and centers a block of content Yes No
Pinch open Zooms in on content Yes No
Pinch close Zooms out to display more of a page Yes No
Touch and hold Displays an info bubble Yes No
Two-finger scroll Scrolls up and down an i frame or element Yes Yes
with CSS overflow:auto property

Finally, several mouse actions have no finger touch equivalents on iPhone and iPod touch. These

include:

Qa

a
a
a
a

No right-click

No text selection

No cut, copy, and paste
No hover

No drag-and-drop (though I offer a technique to roughly emulate it in Chapter 5)

Limitations and Constraints

Since iPhone and iPod touch are mobile devices, they are obviously going to have resource constraints
that you need to be fully aware of as you develop applications. Table 1-3 lists the resource limitations
and technical constraints. What’s more, certain technologies (listed in Table 1-4) are unsupported, and
you will need to steer away from them when you develop for iPhone and iPod touch.

Chapter 1: The iPhone and iPod touch Development Platform

Table 1-3: Resource Constraints

Resource

Limitation

JavaScript files)
JPEG images

Animated GIFs

10

PNG, GIF, and TIFF images

Non-streamed media files
PDF, Word, Excel documents
JavaScript stack and object allocation

JavaScript execution limit

Open pages in Mobile Safari

Downloaded text resource (HTML, CSS, 10MB

128MB (all JPEG images over 2MB are
subsampled—decoding the image to
16x fewer pixels)

8MB (in other words, width*height *4<8MB)

Less than 2MB ensures that frame rate is
maintained (over 2MB, only first frame
is displayed)

10MB
30MB and up (very slow)
10MB

5 seconds for each top-level entry point
(catch is called after 5 seconds in a
try/catch block)

8 pages

Table 1-4: Technologies not Supported by iPhone and iPod touch

Area

Technologies not supported

Web technologies

Mobile technologies
File access
Text interaction

Embedded video

Security

JavaScript events
JavaScript commands
Bookmark icons
HTML

Css

Flash media, Java applets, SOAP, XSLT, SVG, and Plug-in
installation

WML
Local file system access
Text selection, Cut/Copy/Paste

In-place video (tapping an embedded element will put
iPhone/iPod touch into video playback mode)

Diffie-Hellman protocol, DSA keys, self-signed certificates,
and custom x.509 certificates

Several mouse-related events (see Chapter 5)
showModalDialog (), print ()

.ico files

input type="file", tool tips

Hover styles, position: fixed

Chapter 1: The iPhone and iPod touch Development Platform

Accessing Files on a Local Wi-Fi Network

Since iPhone and iPod touch do not allow you to access the local file system, you cannot place your

application directly onto the device itself. As a result, you need to access your Web application through
another computer. On a live application, you will obviously want to place your application on a publicly
accessible Web server. However, testing is another matter. If you have a Wi-Fi network at your office or

home, I recommend running a Web server on your main desktop computer to use as your test server

during deployment.

If you are running Mac OS X, you already have Apache Web server installed on your system. To enable
iPhone and iPod touch access, go to System Preferences = Sharing = Services and turn the Personal Web
Sharing option on (see Figure 1-11). When this feature is enabled, the URL for the Web site is shown at
the bottom of the window. You'll use this base URL to access your Web files from iPhone or iPod touch.

eAn Sharing

|« » | Show All Q

Computer Name: | trufflehunter

Other computers on your local subnet can access

your computer at trufflehunter-2.local [Edit...)

Il-Ser'nrivm.es» | Firewall = Internet |

Select a service to change its settings.

On | Service | Personal Web Sharing On
Personal File Sharing
Windows Sharing

Personal Web Sharing Click Stop to prevent users of other

: computers from accessing Web pages in the
Remote Login sites folders on this computer.

FTP Access

Apple Remote Desktop
Remote Apple Events
Printer Sharing

Xgrid

DROODODOO-RERE

10.0.1,136 /~rich/

g]
u_ Click the lock to prevent further changes.

Figure 1-11: Turn on Personal Web Sharing.

View this computer's website at http://10.0.1,196/ or your perscnal website at http,// <———

)

web site

— URL for selected

11

Chapter 1: The iPhone and iPod touch Development Platform

You can add files either in the computer’s Web site directory (/Library/WebServer/Documents) or
your personal Web site directory (/Users/YourName/Sites) and then access them from the URL bar
on your iPhone or iPod touch (see Figure 1-12).

e ol Http://10.0.1.199/ipd/services/ ... G

iProsp... Sales Leads Search

ack Armitage > |
Jason Armstrong >

O ——
Bob Balancia >
Sara Billingsly >
Uri Bottle >
Larry Brainlittle >

Figure 1-12: Accessing desktop files from iPhone

If your users experience crashing or instability inside Mobile Safari, direct them to clear the cache by
tapping the Clear Cache button in the Safari Settings pane.

12

|

Designing a User Interface

User interface design has been evolutionary rather than revolutionary over the past decade. Most
would argue that Mac OS X and Windows Vista both have much more refined Uls than their
predecessors. As true as that may be, their changes improve upon existing ideas rather than offer
groundbreaking new ways of interacting with the computer. Web design is no different. All of the
innovations that have transpired — such as AJAX and XHTML — have revolutionized the
structure and composition of a Web site, but not how users interact with it. Moreover, mobile and
handheld devices offered a variety of new platforms to design for, but these were either
lightweight versions of a desktop OS or a simplistic character-based menu.

Enter iPhone and iPod touch.

An iPhone/iPod touch interface (I'll refer to it as an “iPhone interface” for short) is not a
traditional desktop interface, though it is has a codebase closely based on Mac OS X. It is not a
traditional mobile interface, though iPhone and iPod touch are mobile devices. Despite the fact
that you build apps using Web technologies, an iPhone interface is not a normal Web application
interface either. iPhone is clearly the first groundbreaking UI platform that many developers will
have ever worked with.

Because the underlying guts of iPhone applications are based on Web 2.0 technologies, many Web
developers will come to the iPhone platform and naturally think they are just creating a Web
application that runs on a new device. That’s why the biggest mindset change for developers is to
grasp that they are creating iPhone applications, not Web applications that run on iPhone. The
difference is significant. In many ways, iPhone applications are far more like Mac or Windows
desktop applications — users have a certain look and feel and core functionality that they will
expect to see in your iPhone application.

On the Web, users expect every interface design to be one-offs. Navigation, controls, and other
functionality are unique to each site. However, when working on a platform — be it Windows,
Mac OS X, or iPhone — the expectation is much different. Users anticipate a common way to do
tasks — from application to application. Operating systems provide application program interfaces
(APIs) for applications to call to display a common graphical user interface (GUI). Since the iPhone
does not have such a concept, it is up to the application developer to implement such consistency.

Chapter 2: Designing a User Interface

This chapter will provide the high-level details and specifications you need to consider when designing a Ul
for iPhone. Chapter 4 continues on by diving into the actual code needed to implement these user interfaces.

The iPhone Viewport

A viewport is a rectangular area of screen space within which an application is displayed. Traditional
Windows and Mac desktop applications are contained inside their own windows. Web apps are displayed
inside a browser window. A user can manipulate what is seen inside of the viewport by resizing the
window, scrolling its contents, and in many cases, changing the zoom level. The actual size of the viewport
depends entirely on the user, though an average size for a desktop browser is roughly 1000 x 700 pixels.

The entire iPhone display is 320 x 480 pixels in portrait mode and 480 x 320 in landscape. However,
application developers don’t have access to all of that real estate. Instead, the viewport in which an
iPhone developer is free to work with is a smaller rectangle: 320 x 416 in portrait mode without URL bar
displayed (320 x 356 with the URL bar shown), and 480 x 268 in landscape mode (480 x 208 with URL
bar). Figures 2-1 and 2-2 show the dimensions of the iPhone viewport in both orientations.

-l ATET =

142

diggs

digg it

battletops

11:55 AM

Topics

Login

iMovie '08: It's not
that bad

iMovie '08 has gnnan a bad rap
lately so | decided to put it
lhrnugh it's paces and see what
all the fuss was about. NGW, I'm
not protasslﬂnal video editor --
just your average Josephine --
but, frankly, | think the new
iMovie kinda rocks.

Made popular 12 minutes ago
Source: Www.tUaw.com
Topic: Apple

Submitter: obeezy

Top 5 Comments

+4

17 hours 2 minutes ago

[k} Status bar: 20 pixels

} URL bar: 60 pixels

r Content: 356 pixels

Width: 356 pixels

Figure 2-1: Portrait viewport

14

} Button bar: 44 pixels

Chapter 2: Designing a User Interface

il ATET = 11:55 AM 2|} Status bar: 20 pixels

14£ iMovie '08 has gotten a bad rap lately so | decided to put it
diggs through it's paces and see what all the fuss was about.
Now, I'm not professional video editor -- just your average
Josephine -- but, frankly, | think the new iMovie kinda
rocks.

digg it
: r Content: 208 pixels
Made popular 12 minutes ago
Source: www.tuaw.com
Topic: Apple

Submitter: obeezy

Top 5 Comments

battletops
17 hours 2 minutes ago +4

} Button bar: 32 pixels

Width: 480 pixels
Figure 2-2: Landscape viewport

Users can scroll around the viewport with their fingers. However, they cannot resize it. To use desktop
lingo, an iPhone application is always “maximized” and takes up the full available space.

If the on-screen keyboard is displayed, the visibility of the viewport is further restricted with the
keyboard overlay, as shown in Figures 2-3 and 2-4.

Because users have a much smaller viewport than they are used to working with on their desktop, the
iPhone viewport has a scale property that can be manipulated. When Mobile Safari loads a Web page, it
automatically defines the page width as 980 pixels, a common size for most fixed width pages. It then
scales the page to fit inside of the 320 or 480 pixel width viewport. While 980 pixels may be acceptable
for browsing a scaled down version of ESPN.com or CNN.com, an iPhone application will almost
certainly want to avoid this type of scaling by customizing the meta viewport element. You learn how
this is done in Chapter 4.

Exploring Native iPhone Applications

Before you begin designing your iPhone application, a valuable exercise is exploring the built-in
Apple applications that come with the iPhone right out of the box. As you do so, you can consider how Apple
designers handled a small viewport as well as how to design an intuitive interface for touch screen input.

However, to fully appreciate the design decisions that went into these applications, you need to
understand the differences in the way in which users use iPhone applications compared to their desktop

15

Chapter 2: Designing a User Interface

.. ATT = 2:27 AM =} Status bar: 20 pixels

=B hitp://digg.com/iphone#_2939... [el [URL bar: 60 pixels

Login

r Content: 140 pixels

Password...

Next Done } Form assistant: 44 pixels

afwle[r|T]v]u]1]ofr]
Als|ofFlanfsK|L]
llz|x|c|v]s|n|mil.

Width: 356 pixels
Figure 2-3: Forms in Portrait viewport

r Keyboard: 216 pixels

.. AT&T = 2:29 AM =} Status bar: 20 pixels

Cancel

r URL bar: 60 pixels

Form assistant: 44 pixels

o\ e

ojwlejrjTjvjujijojr
ooGannnin
« BRENONN <

r Keyboard: 180 pixels

oz [N I IEZN -

Width: 480 pixels
Figure 2-4: Landscape viewport

16

Chapter 2: Designing a User Interface

counterparts. After all, consider the types of applications that you will find installed on your desktop
computer. An overly simplistic categorization is as follows:

a

Task-based applications: The typical desktop application, whether it is on Mac, Windows, or Linux,
is designed to solve a particular problem or perform a specific task. These applications, (such as
Word, Excel, PowerPoint, Photoshop, or iCal) tend to act upon one file or a few files at a time.
The UI for these applications is often quite similar, including a top-level menu, toolbar, common
dialogs for open/save, main destination window, and side panels.

Aggregators: The second category of desktop application is aggregators — those applications that
manage considerable amounts of data and you tend to work with many pieces of data at a time
rather than just one or two. iTunes manages your songs and videos. iPhoto and Picasa manage
your photos, and Outlook and Apple Mail store your emails. The UI for aggregator applications
is typically navigation-based, consisting of top-level navigable categories in a left-side panel
(playlists in iTunes, folders in Mail, albums in iPhoto) and scrolling listings in the main window.

Widgets: A third category is “widget” style applications, which are mini applications that display sys-
tem or other information (battery status meter, weather, world clock), or perform a very specific task
(lyrics grabber, radio tuner). A widget UI typically consists of a single screen and a settings pane.

On the desktop, task-based applications have traditionally been the dominant category, though
aggregators have become more and more important over the past decade with the increasing need to
manage digital media. While widgets are quite popular now that Apple and Microsoft have added this
functionality directly into their OS, they remain far less important.

When you look at built-in iPhone applications, you can see that they generally fall into these three
categories as well. However, because of iPhone’s viewport and file storage constraints, task-based
applications take a back seat role to the aggregators (see Table 2-1).

Table 2-1: Categorizing Apple’s iPhone Applications

Aggregators Task-based Widgets
Mail Safari Stocks
SMS Phone Weather
Photos Camera Clock
YouTube Calendar Calculator
Notes Maps

Contacts (Address Book)

iPod

While the document is the primary point of focus in a traditional desktop application, a document is
often consumable and non-permanent on the iPhone device. Most of the documents that users work
with are consumable: Web pages, SMS messages, YouTube videos, quick notes, Google maps. Even
Word, Excel, and Acrobat documents are read-only and only accessible as email attachments. What's
more, for the more permanent storage pieces of information, you tend to sync with a master copy on
your desktop — iPod songs, videos, and photos. In fact, there are only three cases in which you actually

17

Chapter 2: Designing a User Interface

create data on the iPhone that you then store permanently — calendar appointments, emailed photos,
and contacts.

The focus of iPhone usage is consuming information far more than creating information. If your
application conforms to this usage model, your Ul design needs to account for that reality.

Navigation List-Based Ul Design

Since the focus of the iPhone is to consume various amounts of information, navigation list-based design
becomes an essential way to present large amounts of information to users. As I mentioned earlier,
desktop applications typically relegate navigation lists to a side panel on the left of the main window,
but many iPhone applications use “edge-to-edge” navigation as the primary driver of the Ul

Not all navigation list designs are equal. In fact, the iPhone features at least eight distinct varieties of
navigation lists. For example, the Contacts list uses a single line to display the name of a contact in bold
letters (see Figure 2-5), whereas Mail uses a 4-line list style to display both message header information
and optional text preview (see Figure 2-6). Finally, YouTube sports a wealth of information in its 2-line
item (see Figure 2-7). Table 2-2 lists each of the various navigation style lists.

_____ ATET = 2:29 AM E=b| |l ATET = 2:31 AM —

All Contacts

Mailboxes

| — . BackcountryOutlet.c... 12:05 am
Joe wagner Last Call - Semi-Annual Sale Ends Today 3

Backcountry.com | September 3, 2007
Semi-Annual Sale Ends Today. | View...

Jordan Wagner Jordan Wagner Yesterday

book pic

http/fwww.audible.com/adbl/site/products/Pr
oductDetail.jsp?productiD=BK_TANT_000...

Keith Wagner

HMNLS S <CHWIDDOZErXce—IOTMOO D]

Kim Wagner Choice Privileges Yesterday
Choice Hotels Fall Promotion
Get ready to book. "Stay 2
Matt Wagner Times" is back. Starting September 1st,...
Skype Yesterday
Merle Wagner Skype - free video calling N
See this email as a webpage:
Rich wagner http/feww.skype.com/email/q3_2007_mac...
espnfantasy @fantas... vesterday
TDm Wagner Check out this site

This email was sent by Richard Wagner: —-- |

C Updated S/3/07 2:30 AN E’

Contacts

Figure 2-5: Contacts’ 1-line navigation list Figure 2-6: Mail's 4-line navigation list

18

Chapter 2: Designing a User Interface

Table 2-2: Different Types of Navigation Lists

il ATET = 2:32 AM

=

Featured

Featured

‘ Harmonica + Beatbox...
h Hdok 711719 views ()
01:13 yurilane

1950s TV in Outer Sp...

W

04:04 walterrobot

Mary Win - Riverside...
R ki 316163 views e
04:12 marywinmusic

Alive in Baghdad - Ar...
WO W

03:23 AlivelnBaghdad

129431 views ()

169268 views ()

Figure 2-7: YouTube’s 2-line navigation list

Application Style Displays

Contacts 1 line Name of contact (last name bolded)
Mail 2.7 lines (default 4) Message title and optional text preview
Google Maps List 2 lines Location name, address

SMS 3 lines Message title and text preview

Table continued on following page

19

Chapter 2: Designing a User Interface

Table 2-2 (continued)

Application Style Displays

Photos 1 line Album title and thumbnail image

YouTube 3 lines Thumbnail, title, rating, length, views, and
submitter

Notes 1 line First line of note text

iPod Playlists 1 line Playlist name

Settings 1 line Grouped items with icons

However, no matter the style of the navigation lists, they are each designed to quickly take you to a
destination page in as few interactions as possible.

Application Modes

Built-in iPhone applications also often have modes or views to the information or functionality

with which you can work. These modes are usually displayed as icons on the bottom toolbar

(see Figure 2-8), although on exception they are displayed on the top toolbar (see Figure 2-9). Table 2-3
details these modes.

Therefore, as you begin to examine how the UI of your application should be designed, look to see what
parallels there are with the built-in iPhone application design and emulate its general look and feel.

Screen Layout: Emulating Apple Design

By the time you have studied and evaluated the UI design of the built-in applications, you can then
begin to determine what parallels may exist with the type of application in which you are building.

For applications that need to use a navigation list design, you will want to download Joe Hewitt’s iUI
framework. iUI enables you to easily implement edge-to-edge navigation list-based applications. iUI
consists of a . css style sheet, a . js code library, and a set of images that can easily be integrated into
your applications. (Chapter 4 discusses iUI in more detail.)

The four common components of a typical iPhone application are a titlebar, a navigation list,
a destination page, and a button bar.

Titlebar

Most Safari-based iPhone applications will want to include a titlebar to emulate the look of the standard
titlebar available in nearly all built-in iPhone applications. When the URL bar is hidden (and I explain

20

Chapter 2: Designing a User Interface

il ATET = 2:33 AM b |-l ATET = 2:34 AM

=k

Today List Day Month

| September 2007

Sun Mon Tua Wed Thu Fri

Field of Dreams (Original Film...

o James Homer E 26 2?. 2.8 29 30 31

4 5 6 7

Five Score and Seven Years Ago
Relient K

=
-
1
8

2

9 10 11 12 13 14 15
Good Morning Revival : -
Good Charlotte 16 17 1.8. 19 2.0 21 2.2
' gﬁ-atest Hits '93-'03 23 24 2.5 26 2.7 28 29
30 12|34 5|6

= The Hollywood Saloon
“® Andy Siems John Jansen

Figure 2-8: Bottom toolbar in iPod provides different Figure 2-9: iCal puts its calendar views up on top.
views of a digital media library.

Table 2-3: Application Modes and Ul Access

Application Modes UI controls
iCal List, Day, Month Top toolbar
Phone Favorites, Recents, Contacts, Keypad, Voicemail Bottom toolbar
iPod Playlists, Podcasts, Albums, Videos, and so on Bottom toolbar
YouTube Featured, Most Viewed, Bookmarks, Search Bottom toolbar
Clock World Clock, Alarm, Stopwatch, Timer Bottom toolbar

21

Chapter 2: Designing a User Interface

how to do this in Chapter 4), then the custom titlebar will appear just below the status bar at the top of
the viewport (see Figure 2-10). The titlebar includes the following elements:

O Back button: A back button should be placed on the left-hand side of the toolbar to allow the
user to return to the previous page. The name of the button should be the same name as the title
of the previous screen. This “bread crumbs” technique lets the user know how they got to the
page and how to get back. If the page is at the top level of the application, then remove the back
button completely.

O Screen title: Each screen should have a title displayed in the center of the toolbar. The title of the
page should be one word and appropriately describe the content of the current screen. You will
not want to include the application name in each screen title of the application, as you will for a
standard Web application.

Q Command button: For some screens, you will want to employ a common command, such as
Cancel, Edit, Search, or Done. If you need this functionality, place a command button at the top
right of the titlebar.

Back button Command button

Artists

The Beatles >
Belle & Sebastian >

Crowded House »

Jenny Lewis >

John Mayer >

‘

Zero 7 >

< A]

Figure 2-10: Titlebar

22

Chapter 2: Designing a User Interface

As discussed in Chapter 4, you will want to programmatically ensure that the titlebar stays in place
whether iPhone is in portrait or landscape orientation.

Edge-to-Edge Navigation Lists

If your application aggregates or organizes lists of information, you will typically want your UI to
emulate iPhone’s edge-to-edge navigation list design, as shown in Figure 2-11. Each of the cells,

or subsections, is extra large to allow for easy touch input. In addition, to ensure that a user never loses
context and gets lost, the title shows the current page, while a back button indicates the screen in which
the user can return to if they chose to. And, when a list item expands to a destination page or another
list, an arrow is placed on the right side indicating a next page is available to the right.

When a list item is selected, the navigation list should emulate Apple’s slide-in animation, appearing as
if the new page is coming in from the right side of the screen replacing the old.

Table 2-4 lists each of the specific metrics to emulate the same look and feel of the Apple design in
edge-to-edge navigation lists. Note that iUI defines navigation lists based on these specifications and
also implements the slide-in animation effect.

-l ATAT = 2:38 AM —

iSchoor. | Public - State

Alabama > } Cell height: 44 pixels
A
Font: Helvetica A'ﬂSkﬂ ’
20 point bold . A
Arizona > ™ Horizontal line color: #d9d9d9
Arkansas >
California >
Control alignment: Right
Colorado »
Connecticut »

Wash. DC >

Delaware >

Figure 2-11: Emulating Apple’s edge-to-edge navigation design

23

Chapter 2: Designing a User Interface

Table 2-4: Metrics for Apple’s Edge-to-Edge Design

Item

Value

Cell height (including bottom line)
Cell width
Font

Font color

Horizontal lines (between cells)
Left padding

Bottom padding

Control height

Control alignment

Control shape

Control text

Background color

44px
320px (portrait), 480px (landscape)

Helvetica, 20pt bold (normal text acceptable
for less important text)

Black

#d9d9d9 (RGB=217, 217, 217)

10px

14px

29px

Right, 10px

Rounded Rectangle of 7-degree radius
Helvetica, 12pt

White

Rounded Rectangle Design Destination Pages

In a navigation list UI design, a user will ultimately wind up at a destination page that provides a full
listing of the specific piece of information in which they were looking. Apple implements a rounded
rectangle design, as shown in Figure 2-12. Labels are displayed on a blue background, while items are

grouped together logically and surrounded by a rounded rectangle box. Table 2-5 describes the
specifications you should follow to implement this Apple design.

Button Bar

While you can use a JavaScript technique to hide the URL bar, there is no way to programmatically hide
the Mobile Safari bottom button bar (see Figure 2-13). Therefore, your application needs to account for
the fact that these 44 pixels of real estate (32px in landscape) are dead weight to your application. Given

that reality, emulating a black “mode/view bar” like the iPod application becomes much more
challenging unless you want to eat up considerable space to controls.

Designing for Touch

One of the most critical design considerations you need to take into account is that that you are

designing an interface that will interact with a finger, not a mouse or other mechanical pointing device.
While a mouse pointer has a small point just a couple pixels in height, a finger can touch 40 pixels or

24

No Service = 2:49 AM [
Contact
Jack Armitage
IBM Corp. '
¥ -
office (765) 555-1212 } Cell height: 44 pixels

mobile /{7&5} 545-1211

\\
ery‘y/ jack@ibmcorp.com ™~
.k" "J.

Horizontal line color: #d9d9d9

/

Font: Helvetica
20 point bold

1520 Main Street

work
Boston, MA 0121;\\

-

™~ Control alignment: Right

-

<

Map To Office

~

A @

Figure 2-12: Implement rounded rectangle design for destination pages.

Table 2-5: Metrics for Apple’s Rounded Rectangle Design

Cell text position

Background color

Item Value

Cell height 44px

Rounded rectangle corner radius 10px x 10px radius (-webkit-border-radius:10px)
Rounded rectangle left and right margins 10px

Rounded rectangle top and bottom margins 17px

Horizontal lines (between cells) #d9d9d9 (RGB=217, 217, 217)

Label font Helvetica 17pt, bold

Label font color #4c566¢ (RGB=76, 86, 108)

Cell font Helvetica 17pt, bold

Cell font color Black

10px from left edge, 14px bottom edge
#cSced3 (RGB= 197, 204, 211)

25

Chapter 2: Designing a User Interface

26

il ATET = 2:51 AM =k

Topics Login

111 Chocolate Does Mot Contain

Caffeine ’
411 The Ancient and Modern Egypt >
(PIC)
427 Camera Captures Mid-Air Collision >

{4 pics)

421 Water Temperature Warning {Pic) >

362 Taliban thanks South Korea for $20

milllon, will use it for terrorism ?
434 Now British police are told they
>
can use Taser guns on children
2099 Extraordinary, Close-up View of a
Hurricane's Eye and Eyewall >

Structure

Thansande ~f ~eirmas b nedsed0e

} Button bar

Figure 2-13: Like it or not, you are stuck with the bottom toolbar.

more of the screen during a typical click action. Therefore, when laying out controls in an application,
make sure the height of controls and spacing between controls are easy to use even for someone with
large fingers.

Since iPhone is a mobile device, keep in mind that users may be on the go when they are interacting
with your application. Maybe they are walking down the street, waiting in line at Starbucks, or perhaps
even jogging. Therefore, you will want to allow enough space in your Ul to account for shaky fingers in
those use case scenarios.

Standard navigation list cells should be 44px in height. Buttons should be sized about the size of a finger,
typically 40px in height or more and have sufficient space around them to prevent accidental clicks.

You can get by with a button of 29-30 pixels in height if no other buttons are around it, but be careful.
Table 2-6 lists the recommended sizes of the common elements.

In addition to sizing and spacing issues, another important design decision is to minimize the need for
text entry. Use select lists rather than input fields where possible. What’s more, use cookies to remember
last values entered to prevent constant data reentry.

Chapter 2: Designing a User Interface

Table 2-6: Metrics for Touch Input Screen

Element metric Recommended size
Element height 40px (min. 29px)
Element width Min. 30px

Select, Input height 30px

Navigation list cell height 44px

Spacing between elements 20px

Working with Fonts

With its 160 pixels-per-inch display and anti-aliasing support, iPhone is an ideal platform to work with
typefaces. Quality fonts will render beautifully on the iPhone display, enhancing the overall
attractiveness of your application’s UL

Helvetica, Apple’s font of choice for iPhone, should generally be the default font of your application.
However, iPhone does offer several font choices for the developer. Unlike a typical Web environment in
which you must work with font families, iPhone allows you make some assumptions on the exact fonts
that users will have when they run your application. Table 2-7 lists the fonts that are supported on iPhone.

Table 2-7: iPhone Fonts

Name Example

American Typewriter BOld I t&]l C alld Bo.ld I ta.lic
(no italics)

Arial Bold /talic and Bold Italic
Arial Rounded MT Bold BOld ltahc and BO’d ’talic

(no italics)
Courier New Bold Italic and Bold Italic
Georgia Bold Italic and Bold Italic

Table continued on following page

27

Chapter 2: Designing a User Interface

Table 2-7 (continued)

Name

Example

Helvetica Bold /talic and Bold Italic
Marker Felt BOId Haﬁﬂ a“d Bﬂld I f alia
Times New Roman Bold /talic and Bold Italic

Trebuchet MS Bold /talic and Bold Italic
Verdana Bold Italic and Bold Italic

Bl Jullo and Bl Jewdlo

Mobile Safari will automatically substitute three unsupported fonts with their built-in counterparts.
Courier New is substituted when Courier is specified. Helvetica is substituted for Helvetica Neue, and
Times New Roman is used in place of Times.

Best Practices in iPhone Ul Design

When you are designing for iPhone, there are several best practices to keep in mind:

Q

28

Remember the touch! Perhaps no tip is more critical in iPhone UI design than always double-
checking every design decision you make with the reality of touch input. For example, ESPN’s
Podcenter, shown in Figure 2-14, uses a Ul that roughly simulates the Apple navigation list
design. However, the rows are thinner, making it harder to touch the correct podcast item,
especially if the user is walking or performing another physical activity.

Make sure you design your application UI to work equally well in portrait and landscape modes. Some
native applications, such as Mail, optimize their UI for portrait mode and ignore any changes
the user makes to orientation. Third-party iPhone developers do not have that same level of
control. Therefore, any Ul design you create needs to work in both orientation modes.

Avoid Ul designs that require horizontal scrolling. If your interface design requires the user to scroll
from side to side within a single display screen, change it. Horizontal scrolling is confusing to
users and leaves them feeling disoriented within your application.

Chapter 2: Designing a User Interface

il ATET = 2:52 AM =k

PODCENTER

ESPN: Fantasy Focus Football b
ESPN Baseball Today >
ESPN: The B.S. Report with Bill >
Simmons

ESPN: PTI >
ESPN Radio: Best of Mike and Mike >
ESPN: Football Today >
ESPN Radio SportsCenter >
ESPN Radio: 4 Downs >
ESPN Radio Daily Podcast 5

Figure 2-14: The shorter cells make it easy for fat
or shaky fingers to select the wrong choice.

Keep your design simple. As attractive as the iPhone interface is, perhaps its most endearing
quality is its ease of use and simplicity. Your UI design should follow suit. Avoid adding
complexity where you do not need to — either in functionality or design (see Figure 2-15).

Use standard iPhone terminology. You know the saying, “When in Rome...” Well, when designing
for iPhone, be sure you do not bring along the Ul baggage you are used to in the Windows, Mac,
or the Web world. For example, “Preferences” are “Settings” and “OK” should be “Done.”

Use iUl and other Ul frameworks, but use them wisely. The iUI framework is a major asset to the
iPhone developer community and provides a major head start in developing applications.
However, don’t automatically assume that an edge-to-edge navigation list design is the best
way to go for your application. You may find another approach is better for your specific needs.

29

Chapter 2: Designing a User Interface

30

il ATET = 2:58 AM =F
Fruit

Veggies

Bakery and deli
Meat and seafood
Frozen

Drinks

Household items

Special

Saved items...

Type itin...

< >

Figure 2-15: Multi-color list makes for hard reading.

Restrict use of a black button bar. A translucent black button bar (such as the one used by the iPod
app in Figure 2-8) should only be used in your application for displaying modes or views, not
for commands. Use the other button types for commands.

Minimize the rabbit trail. Because iPhone users are primarily concerned with consuming data, you
will want to get them to their destination page as soon as possible. Therefore, make sure you are

optimally organizing the information in a way that enables a user to get to the data they need in

just a couple of flicks and clicks.

Place text entry fields at the top of the page. When your application requires data entry fields, work
to place these input fields as near to the top of the page as possible. Top positioning of text entry
fields helps minimize the chances of the user losing context when the on-screen keyboard
suddenly appears at the bottom of the screen when the user selects the field.

Communicate status. Because your application may be running via an EDGE connection, its
response may be slow. As a result, be sure to provide status to the user when performing a
function that requires server processing. This visual clue helps users feel confident that your
application is working as expected and is not in a hung state.

Chapter 2: Designing a User Interface

Label the titlebar appropriately. Make sure each screen/page has its own title. The Back button
should always be named the name of the previous screen.

Unselect previously selected items. When a user clicks the Back button in a navigation-list UI, be
sure that the previously selected item is unchecked.

Break the rules — competently. While you should generally adhere to the Apple UI design
guidelines that I've been discussing in this chapter, not every iPhone application Ul needs to
rigidly conform to a design implemented already by Apple. You may have an application in
which a different look-and-feel works best for its target users. However, if you decide to employ
a unique design, be sure it complements overall iPhone design, not clashes with it.

31

Implementing the Interface

The previous chapter surveyed the Ul standards and guidelines that you need to keep in mind as
you design an application that works well on iPhone and iPod touch. With these design principles
in hand, you are ready to apply them as you develop and program your application.

In order to demonstrate how to implement an iPhone interface, I will walk you through a case
study application I am calling iRealtor. The concept of iRealtor is to provide a mobile house-hunter
application for potential buyers. The current pattern for Internet-based house hunting is to search
MLS listings online, print out individual listing addresses, get directions, and then travel to these
houses. However, with iRealtor, all of those tasks can be done on the road with an iPhone-based
application. The design goals of iRealtor are to provide a way for users to:

0 Browse and search the MLS listings of a local realtor.
0O Getamap of an individual listing directly from its listing page.

O Access information about the realtor and easily contact the realtor using iPhone phone or
mail services.

0 Browse other helpful tools and tips.

As you look at these overall objectives, an edge-to-edge navigation design looks like an obvious
choice given the task-based nature of the application. Joe Hewitt’s iUI (code . google.com/p/
iui/) will serve as the underlying framework for the user interface. iUl is designed to retrieve and
format HTML fragments and automatically handle many application events, such as phone rota-
tion. The realtor information will be relatively static, but the MLS listings will need to be database-
driven. Therefore, you will take advantage of the AJAX capabilities of iUI to seamlessly integrate
listing data into the application.

The initial version of iUl should be used only in iPhone and iPod touch—specific applications. It is
not compatible with Internet Explorer, Firefox, and earlier versions of Safari for Mac.

Chapter 3: Implementing the Interface

Here’s an overview of the technologies that will be used for iRealtor:

a

a
a
a

XHTML/HTML and CSS for presentation layer
JavaScript for client-side logic
AJAX for loading data into the application

PHP or other server-side technology to serve MLS listing data (not included in case study
example)

As I'walk you through the application, I'll examine both the custom code I am writing for iRealtor as
well as the underlying iUl styles and code that power it. Therefore, even if you decide not to use iUI,
then you at least will have a solid grasp on the key design issues you will need to consider.

Top Level of Application

The top level of iRealtor is best presented as an edge-to-edge navigation style list that contains links to
the different parts of the application. When assembled, the design will look like what is shown in
Figure 3-1.

34

|l ATET = 2:11 PM =
iRealtor | .Search. .. div as toolbar
Featured Listings >

All Listings >
Buying & Tips >
Mortgage Calculator > | lul 1ist displayed
as a navigation list
Meet Our Team >
Contact Us >

Visit Our Web Site >

Figure 3-1: iRealtor top-level page

Chapter 3: Implementing the Interface

Creating irealtor.html

To build the initial page, start off with a basic XHTML document, linking the iUI style sheet and script-
ing library files:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>iRealtor</title>

<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-

scale=1.0; user-scalable=0;"/>

<style type="text/css" media="screen">@import "../iui/iui.css";</style>

<script type="application/x-javascript" src="../iui/iuil.js"></script>

</head>

<body>

</body>

</html>

The viewport meta tag tells Mobile Safari exactly how to scale the page and sets 1.0 scale and does not
change layout on reorientation. It also specifies that the width of the viewport is the size of the device
(device-width is a constant).

These properties ensure that iRealtor behaves like an application, not a Web page. (Chapters 2 and 8
provide additional details on the viewport.)

Examining Top-Level Styles in iui.css

The iui.css style sheet sets up several top-level styles. The body style sets up the default margin,
font-family, and colors. It also uses -webkit-user-select and -webkit-text-size-adjust to
ensure that iRealtor behaves as an application rather than a Web page. (See Chapter 4 for more on these
-webkit styles.) Here’s the definition:

body {
margin: 0;
font-family: Helvetica;
background: #FFFFFF;
color: #000000;
overflow-x: hidden;
-webkit-user-select: none;
-webkit-text-size-adjust: none;

For iPhone/iPod touch applications, it is important to assign -webkit-text-size-adjust: none to
override the default behavior.

35

Chapter 3: Implementing the Interface

All elements, except for the . toolbar class, are assigned the following properties:

body > *:not(.toolbar) {
display: none;
position: absolute;
margin: 0;
padding: 0;
left: 0;
top: 45px;
width: 100%;
min-height: 372px;

In landscape mode, the min-height changes for these elements:

body[orient="landscape"] > *:not(.toolbar) {
min-height: 268px;
}

The orient attribute changes when the orientation of the viewport changes between portrait and
landscape. You’'ll see how this works later in the chapter.

iUl uses a selected attribute to denote the current page of the application. From a code standpoint, the
page is typically either a div or a ul list:

body > *[selected="true"] {
display: block;
}

Links also are assigned the selected attribute:

al[selected], a:active {
background-color: #194fdb !important;
background-image: url(listArrowSel.png), url(selection.png) !important;
background-repeat: no-repeat, repeat-x;
background-position: right center, left top;
color: #FFFFFF !important;
}
al[selected="progress"] {
background-image: url(loading.gif), url(selection.png) !important;
}

The a[selected="progress"] style is used to display an animated GIF showing the standard iPhone
loading animation.

Adding the Top Toolbar to irealtor.html

The first Ul element to add is the top toolbar, which serves a common UI element throughout the appli-
cation. To create the toolbar, use a div element assigning it the iUl toolbar class:

36

Chapter 3: Implementing the Interface

<!-- Top iUI toolbar -->
<div class="toolbar">
<hl id="pageTitle"></hl>

Search
</div>

The h1 element serves as a placeholder for displaying the active page’s title. The a backbutton is not
shown at the top level of the application, but is used on subsequent pages to go back to the previous
page. The Search button allows access to the search form anywhere within the application. Here are the
corresponding style definitions in iui.css for each of these elements:

body > .toolbar {
box-sizing: border-box;
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
border-bottom: lpx solid #2d3642;
border-top: lpx solid #6d84a2;
padding: 10px;
height: 45px;
background: url (toolbar.png) #6d84a2 repeat-x;
}
.toolbar > hl {
position: absolute;
overflow: hidden;
left: 50%;
margin: lpx 0 0 -75px;
height: 45px;
font-size: 20px;
width: 150px;
font-weight: bold;
text-shadow: rgba(0, 0, 0, 0.4) Opx -1lpx 0;
text-align: center;
text-overflow: ellipsis;
white-space: nowrap;
color: #FFFFFF;
}
body[orient="landscape"] > .toolbar > hl {
margin-left: -125px;
width: 250px;
}
.button {
position: absolute;
overflow: hidden;
top: 8px;
right: 6px;
margin: 0;
border-width: 0 5px;
padding: 0 3px;
(continued)

37

Chapter 3: Implementing the Interface

(continued)
width: auto;
height: 30px;
line-height: 30px;
font-family: inherit;

font-size:

12px;

font-weight: bold;

color: #FFFFFF;

text-shadow: rgba(0, 0, 0, 0.6) Opx -1lpx 0;
text-overflow: ellipsis;

text-decoration: none;

white-space: nowrap;

background:

none;

-webkit-border-image: url (toolButton.png) 0 5 0 5;

}
#backButton {

display: none;

left: 6px;

right: auto;

padding: 0;

max-width:

55px;

border-width: 0 8px 0 1l4px;
-webkit-border-image: url (backButton.png) 0 8 0 14;

The body > .toolbar class style is set to 45px in height. The . toolbar > hl header emulates the
standard look of an application caption when in portrait mode and body [orient="1landscape"] >
.toolbar > hl updates the position for landscape mode. Notice that the limited width of the iPhone
and iPod touch viewport dictate use of overflow:hidden and text-overflow:ellipsis.

Notice that the toolbar class includes both box-sizing and -webkit-box-sizing definitions.
Mobile Safari under iPhone 1.0 supported box-sizing, but 1.1.1 replaced support for that property
with -webkit-box-sizing instead. For maximum compatibility, I recommend defining both.

Adding a Top-Level Navigation Menu
in irealtor.html

Once the toolbar is created, then the top-level navigation menu needs to be created. Under the iUI
framework, use a ul list, such as the following;:

38

<ul id="home" title="iRealtor" selected="true">

<a
<a
<a
<a
<a
<a
Featured Listings</1li>
href="listings.html">All Listings
href="tips.html">Buying & Tips
href="calc.html">Mortgage Calculator</1li>
href="#meet_our_team">Meet Our Team
href="contact_us.html">Contact Us

href="index.html" target="_self">Visit our Web Site</1li>

Chapter 3: Implementing the Interface

The title attribute is used by iUl to display in the toolbar’s h1 header. The selected attribute

indicates that this ul element is the active block when the application loads. Each of the menu items is
defined as a link inside of 1i items. The href attribute can point to either another div or ul block inside
of the same file (called a panel) using an anchor reference (such as #meet_our_team). Alternatively, you

can also use AJAX to load a block element from an external URL. Table 3-1 displays the four types of

links you can work with inside of iUL

Table 3-1: iUl Link Types

Link type Description Syntax
Internal URL Loads a panel that is
defined inside of the same
HTML page
AJAX URL Loads document fragment
via AJAX
AJAX URL Replace Loads document fragment <a href="listingsl.html"
via AJAX replacing con- target="_replace">
tents of the calling link
External URL Loads external Web link

The styles for the list items and links are as follows:

body > ul > 1i {
position: relative;
margin: 0;
border-bottom: 1lpx solid #EOEOEO;
padding: 8px 0 8px 10px;
font-size: 20px;
font-weight: bold;
list-style: none;

}

body > ul > 1i > a {
display: block;
margin: -8px 0 -8px -10px;
padding: 8px 32px 8px 10px;
text-decoration: none;
color: inherit;

background: url(listArrow.png) no-repeat right center;

}

Notice that the listArrow.png is displayed at the right side of the list item’s a link.

39

Chapter 3: Implementing the Interface

D

40

isplaying a Panel with an Internal URL

If you are linking to another block section inside of the same page, then you simply need to add the
code. For example, the Meet Our Team item links to the following div:

<div id="meet_our_team" class="panel" title="Meet Our Team">
<h2>J-Team Reality</h2>
<fieldset>
<p class="normalText">Lorem ipsum dolor sit amet, consect etuer adipis cing
elit. Suspend isse nisl. Vivamus a ligula vel quam tinci dunt posuere. Integer
venen atis blandit est. Phasel lus ac neque. Quisque at augue. Phasellus purus. Sed
et risus. Suspe ndisse laoreet consequat metus. Nam nec justo vitae tortor
fermentum interdum. Aenean vitae quam eu urna pharetra ornare.</p>
<p class="normalText">Pellent esque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Aliquam congue. Pel lentesque pretium
fringilla quam. Integer libero libero, varius ut, faucibus et, facilisis vel, odio.
Donec quis eros eu erat ullamc orper euismod. Nam aligquam turpis. Nunc convallis
massa non sem. Donec non odio. Sed non lacus eget lacus hend rerit sodales.</p>
</fieldset>
</div>

The id attribute value of the block element is identical to the href value of the source link (except for
the # sign). The div element is assigned the panel class, and the title attribute supplies the new page
title for the application. Inside of the div element, the h2 element provides a header, while the fieldset
element, which is commonly used as a container inside of iUI destination pages, is used to house the
content. Figure 3-2 displays the results (based in part on additional styles that will be described shortly).

The panel class and fieldset styles are shown in the following code. In addition, the default h2 style is
provided (though I will be updating this style in my own irealtor.css file):

body > .panel {
box-sizing: border-box;
-webkit-box-sizing: border-box;
padding: 10px;
background: #c8c8c8 url(pinstripes.png);
}
.panel > fieldset {
position: relative;
margin: 0 0 20px 0;
padding: 0;
background: #FFFFFF;
-webkit-border-radius: 10px;
border: 1lpx solid #999999;
text-align: right;
font-size: 16px;
}
.panel > h2 {
margin: 0 0 8px 14px;
font-size: inherit;
font-weight: bold;
color: #444d70;
text-shadow: rgba (255, 255, 255, 0.75) 2px 2px 0;

Chapter 3: Implementing the Interface

iUl updates the caption and
functionality automatically Taken from the tit1e attribute

/ /

J-Team Reality

-

<——— Panel style for destination pages

Lorem ipsum dolor sit amet, consec
etuer adipis cing elit. Suspend isse
nisl. Vivamus a ligula vel quam tinci
dunt posuere. Integer venen atis

t

blandit est. Phasel lus ac neque.
Quisque at augue. Phasellus purus.
Sed et risus. Suspe ndisse laoreet

tortor fermentum interdum. Aenean
vitae quam eu urna pharetra ornare

consequat metus. Nam nec justo vitae

Pellent esque habitant morbi tristique

fieldset container box

senectus et netus et malesuada fames
ac turpis egestas. Aliqguam congue. Pel
lentesque pretium fringilla quam.

Integer libero libero, varius ut, faucibus

et, facilisis vel, odio. Donec quis eros

< (R o

Figure 3-2: Destination page

The panel class property displays the vertical pinstripes, which is a standard background for iPhone
and iPod touch applications. The fieldset, used primarily for displaying rows, is used because it

provides a white background box around the text content the page will display. However, because the

iui.css styles did not display the margin/padding properties of h2 or p text as I needed it to, I linked
irealtor.html with a new style sheet by placing the following declaration below the iui.css declaration:

<style type="text/css" media="screen">@import "irealtor.css";</style>

41

Chapter 3: Implementing the Interface

Inside of irealtor.css, the following styles are defined:

.panel p.normalText {
text-align: left;
padding: 0 10px 0 10px;

}

.panel > h2 {

margin: 3px 0 10px 10px;
}

Displaying AJAX Data from an
External URL

42

You could create an entire iPhone/iPod touch application inside of a single HTML page using

internal links. However, this single-page approach breaks down when you begin to deal with large
amounts of data. Therefore, iUI enables you to break up your application into chunks, yet still maintain
the same integrated look and feel of a single page app. When you use AJAX, iUI allows you to load
content into your application on demand by providing an external URL. However, the document that is
retrieved needs to be a document fragment, not a complete HTML page.

iUI fully encapsulates xMLHt tpRequest () for you. Therefore, when you supply an external URL in a
link that does not have target="_self" defined, it will retrieve the document fragment and display it
within iUIL

In iRealtor, tapping the Featured Listings menu item (<1i>Featured
Listings</11i>) should display a list of special homes that are being featured by this fictional local
realtor. The contents of the file named featured.html are shown below:

<ul id="featuredListings" title="Featured">

30 Bellview Ave, Bolton
21 Milford Ave, Brandon
10 Main St, Leominster
12 Smuggle Lane, Marlboro
34 Main Ave, Newbury
33 Infinite Loop, Princeton</1li>
233 Melville Road, Rutland
320 Muffly, Sliver

1 One Road, Zooly

The result is a basic navigation list, as shown in Figure 3-3. Each list item specifies a unique URL in
which iUI will load using AJAX when selected. You'll see this MLS listing destination page shortly.

The All Listings menu item illustrates some additional capabilities that you can add to a navigation list.
Figure 3-4 displays the additional details added to the navigation list item, including a thumbnail picture
and summary details in a second line.

Chapter 3: Implementing the Interface

il ATET = 4:23 PM B Ll ATET = 9:32 PM E=

-rﬁealmr Featured | Search |

“iReattor | Current Listings e
30 Bellview Ave, Bolton > 20 May Lane
Acton, MA%SIB.DGU. Ranch »
21 Milford Ave, Brandon > H 221 Bellingham | :
10 Main SI, LE'DITIiI'IStEI' > Borland, MA, $328,000, Colonial
210 Burlington
12 Smuggle Lane, Marlboro > - Borland, MA, $:1?99{JEU. Ranch ;
34 Main Ave, Newbury | (M i
. Holden, MA, $520,000, Colonial
233 Melville Road, Rutland >
B 3 George Road 3
320 Mu‘fﬂv, Sl iver > Holden, MA, $350,000, Saltbox
39 Bubble Boy Road
1 One Road, Zooly > H Rutland, MA, $959,000, gﬂlonial 4

Figure 3-3: Listing data coming from AJAX Figure 3-4: Enhanced navigational menu items

The document fragment that is loaded via AJAX is as follows:

<ul id="listings" title="Current Listings">

20 May Lane
<p class="listingDetails">Acton, MA, $318,000, Ranch</p>
</1li>

221 Bellingham
<p class="listingDetails">Borland, MA, $329,000, Colonial</p>
</1li>

210 Burlington
<p class="listingDetails">Borland, MA, $379,000, Ranch</p>
</1li>

(continued)

43

Chapter 3: Implementing the Interface

(continued)

1 Happy Bosco Lane
<p class="listingDetails">Borland, MA, $429,000, Ranch</p>
</1li>

34 Kramerica Blvd
<p class="listingDetails">Holden, MA, $529,000, Colonial</p>
</1li>

3 George Road
<p class="listingDetails">Holden, MA, $359,000, Saltbox</p>
</1li>

39 Bubble Boy Road
<p class="listingDetails">Rutland, MA, $959,000, Colonial</p>
</1li>

98 Muffin Top Road
<p class="listingDetails">Rutland, MA, $99,000, Ranch</p>
</1li>
<1li>

1291 Blackjack Lane
<p class="listingDetails">Zambo, MA, $159,000, Saltbox</p>
</1li>

Each element inside of the 11 element has a class style assigned to it. The following CSS styles are
located in the irealtor.css file:

a.listing {
padding-left: 54px;
padding-right: 40px;
min-height: 34px;

img.listingImg {
display: block;
position: absolute;
margin: 0;

left: 6px;
top: Tpx;
width: 35px;

height: 27px;
padding: 7px 0 10px O0;
}
p.listingDetails {
display: block;
position: absolute;
margin: 0;
left: b54px;
top: 27px;

44

Chapter 3: Implementing the Interface

text-align: left;
font-size: 12px;
font-weight: normal;
color: #666666;
text-decoration: none;
width: 100%;
height: 13px;
padding: 3px 0 0 0;

}

The img.1listingImg class positions the thumbnail at the far left side of the item. The
p.listingDetails class positions the summary text just below the main link.

Designing for Long Navigation Lists

While a document fragment such as the one shown previously works fine for small amounts of data, the
performance would quickly drag with long lists. To deal with this issue, iUI allows you to break large lists
into manageable chunks by loading an initial set of items, and then providing a link to the next set (see
Figure 3-5). This design emulates the way the iPhone Mail application works with incoming messages.

.l ATET = 9:44 PM [Fh
. 210 ELII'lII'IQtOI'I >
Borland. MA, $379,000, Ranch

1 Happy Bosco Lane 3

Borland, MA, $429,000, Ranch

34 Kramerica Blvd 3
Holden, MA, $520,000, Colonial

3 George Road >
Holden, MA, $359,000, Saltbox

39 Bubble Boy Road 3

Rutland. MA, %959 000, Colonial

98 Muffin Top Road 3

Rutland, MA, 533,000, Ranch

|I'r Ilii Illl II! IIII I%l

1291 Blackjack Lane >

Zambo, MA, $159 000, Saltbox

Get 10 More Listings...

Figure 3-5: Loading additional listing

45

Chapter 3: Implementing the Interface

C

46

To provide this functionality in your application, create a link and add target="_replace" as an attri-
bute. iUI will load the items from the URL replacing the current link. As with other AJAX links, the URL
needs to point to a document fragment, not a complete HTML file. Here’s the link added to the bottom
of the listings u1l list:

Get 10 More Listings...

When using the target="_replace" attribute, you need to use a fragment of a ul element and not a
different structure. For example, the following document fragment is valid to use with a _replace
request:

item 1</1i>
item 2</1i>
item 3</1i>

However, the following document fragment would not be correct because it is not valid inside of a
ul element:

item 1</1i>
item 2</1i>
item 3</1i>

reating a Destination Page

Each of the MLS listings in iRealtor has its own individual destination page that is accessed by an
AJAX-based link, such as:

20 May Lane
The design goal of the page is to provide a picture and summary details of the house listing. But, taking
advantage of iPhone’s services, you also want to add a button for looking up the address in the Map app
and an external Web link to a site providing town information. Figures 3-6 and 3-7 show the end design
for this destination page.

The document fragment for this page is as follows:

<div title="20 May Lane" class="panel">

<div>

</div>
<h2>Details</h2>
<fieldset>

<div class="row">
<label>mls #</label>
<p>406509171</p>
</div>

Chapter 3: Implementing the Interface

<div class="row">
<label>address</label>
<p>20 May Lane</p>
</div>
<div class="row">
<label>city</label>
<p>Acton</p>
</div>
<div class="row">
<label>price</label>
<p>$318,000</p>
</div>
<div class="row">
<label>type</label>
<p>Single Family</p>
</div>
<div class="row">
<label>acres</label>
<p>0.27</p>
</div>
<div class="row">
<label>rooms</label>
<p>6</p>
</div>
<div class="row">
<label>bath (f)</label>
<p>1l</p>
</div>
<div class="row">
<label>bath (h)</label>
<p>0</p>
</div>
</fieldset>
<fieldset>
<div class="row">
<a class="serviceButton" target="_self"
href="http://maps.google.com/maps?g=20+May+Lane, +Acton, +MA">Map To House
</div>
<div class="row">
<a class="serviceButton" target="_self"
href="http://www.mass.gov/?pageID=mg2localgovccpage&L=3&L0=Home&Ll=State%20Government
&L2=Local%20Government&sid=massgov2&selectCity=Acton">View Town Info
</div>
</fieldset>
</div>

There are several items of note. First, the div element is assigned the panel class, just as you did for the
Meet Our Team page earlier in the chapter. Second, the individual items of the MLS listing data are con-
tained in div elements with the row class. The set of div row elements is contained in a fieldset.
Third, the button links to the map and external Web page are assigned a serviceButton class.

Chapter 8, which is devoted to iPhone service integration, discusses these types of button links.

47

Chapter 3: Implementing the Interface

ail- AT&T =

10:15 PM

Earen 20 May Lane

ail- AT&T = ~10:15 PM

Details
13
mis # 406509171
address 20 May Lane
city Acton
price $318,000

Figure 3-6: Top of listing page

The styles for this page come from both iui.css and irealtor.css. First, here are the row class and label

CILy G U

price $318,000

type Single Family

acres 0.27
rooms 6
bath (f) 1
bath (h) 0

Map To House

View Town Info

Figure 3-7: Bottom of listing page

styles in iui.css (if you recall, the fieldset is defined earlier in the chapter):

.row {

position: relative;
min-height: 42px;

border-bottom: 1px solid #999999;

-webkit-border-radius: 0;
text-align: right;

}
fieldset >

border-bottom: none !important;

}

.row:last-child {

.row > label {
position: absolute;

margin

: 0 0 0 14px;

line-height: 42px;
font-weight: bold;

48

Chapter 3: Implementing the Interface

The row class emulates the general look of an iPhone/iPod touch list row found in such locations as the
built-in Settings and Contacts apps. The . row: last-child style removes the bottom border of the

final rowin a fieldset. The .row > label style defined in iui.css emulates the look of iPhone Settings,
but as you will see in the following example, the code overrides this formatting to more closely emulate
the Contacts look (right-aligned, black font).

The following styles are defined in irealtor.css to augment the base iUI styles:

.panel img {
display: block;
margin-left: auto;
margin-right: auto;
margin-bottom: 10px;
border: 2px solid #666666;
-webkit-border-radius: 6px;

}

.row > p {
display: block;
margin: 0;
border: none;
padding: 12px 10px 0 110px;
text-align: left;
font-weight: bold;
text-decoration: inherit;
height: 42px;
color: inherit;
box-sizing: border-box;

}

.row > label {
text-align: right;
width: 80px;
position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;
font-weight: bold;
color: #7388a5;

}

.serviceButton {
display: block;
margin: 0;
border: none;
padding: 12px 10px 0 Opx;
text-align: center;
font-weight: bold;
text-decoration: inherit;
height: 42px;
color: #7388a5;
box-sizing: border-box;
-webkit-box-sizing: border-box;

49

Chapter 3: Implementing the Interface

The .panel > img centers the image withmargin-left:auto and margin-right:auto and rounds
the edges of the rectangle with -webkit-border-radius. (See Chapter 4 for more on this CSS style.)

The .row > p styleis used to format the values of each MLS listing information. It is left-aligned and
starts at 110px to the right of the left border of the element. The .row > label style adds specific
formatting to emulate the Contacts UI look. The . serviceButton class style defines a link with a
button look.

Adding a Dialog

The application pages that have been displayed have either been edge-to-edge navigation lists or
destination panels for displaying content. iUI also enables you to define a modal dialog. When a user is
in a dialog, they need to either perform the intended action (such as a search or submittal) or cancel out.
Just like in any desktop environment, a dialog is ideal for form entry.

iRealtor needs dialog boxes for two parts of the application — Search and the Mortgage Calculator. The
Search dialog is accessed by tapping the Search button on the top toolbar. Here’s the calling link:

Search

The link displays the internal link #searchForm. This references the form element with an id of
searchForm:

<form id="searchForm" class="dialog" action="search.php">
<fieldset>
<hl>Search Listings</hl>
Cancel
Search
<select name="proptype" size="1">
<option value="">Property Type</option>
<option value="SF">Single-Family</option>
<option value="CC">Condo</option>
<option value="MF">Multi-Family</option>
<option value="LD">Land</option>
<option value="CI">Commercial</option>
<option value="MM">Mobile Home</option>
<option value="RN">Rental</option>
<option value="BU">Business Opportunity</option>
</select>
<label class="altLabel">Min $:</label>
<input class="altInput" type="text" name="minPrice"/>
<label class="altLabel">Max $:</label>
<input class="altInput" type="text" name="maxPrice"/>
<label class="altLabel">MLS #:</label>
<input class="altInput" type="text" name="mlsNumber"/>
</fieldset>
</form>

50

Chapter 3: Implementing the Interface

The dialog class indicates that the form is a dialog. The form elements are wrapped inside of a
fieldset. The action buttons for the dialog are actually defined as links. To be specific, the Cancel and
Search links are defined as button leftButton and button blueButton classes respectively. iUI will
display these two action buttons in the top toolbar of the dialog. It will also display the h1 content as the
dialog title.

A select list defines the type of properties that the user wants to choose from. Three input fields are
defined for additional search criteria. Because the margin and padding styles are unique for this Search
dialog, unique styles are specified for the 1abel and input elements. You'll define those in a moment.

il ATET = 11:51 PM | |l ATET = 11:52 PM =

cancel ~ Search Listings search ' cancel | Search Listings search |

v Property Type

Single-Family

Condo

Figure 3-8: Search dialog box Figure 3-9: Select list items

51

Chapter 3: Implementing the Interface

Figure 3-8 shows the form when displayed in the viewport. Per iPhone/iPod touch guidelines,
the bottom part of the form is shaded to obscure the background page. Figure 3-9 displays the
iPhone-specific selection list that is automatically displayed for you when the user taps into

the select element. Finally, Figure 3-10 shows the pop-up keyboard that is displayed when the
user taps into the input fields.

11:52 PM

il ATET =

cancel Search Listings search

‘aperty
Min $:]
Max &

MLS #:

Previous Mext Done

ojwle|r|T|vjuji]o]P
Als|oFlejujsfk]L
cllz|x]c|velnmi

Figure 3-10: Text input of a form

Consider the CSS styles that are used to display this dialog. From iui.css, there are several rules to pay
attention to:

body > .dialog {
top: 0O;
width: 100%;
min-height: 417px;
z-index: 2;
background: rgba(0, 0, 0, 0.8);
padding: 0;
text-align: right;

52

Chapter 3: Implementing the Interface

.dialog > fieldset {
box-sizing: border-box;
-webkit-box-sizing: border-box;
width: 100%;
margin: 0;
border: none;
border-top: lpx solid #6d84a2;
padding: 10px 6px;
background: url (toolbar.png) #7388a5 repeat-x;
}
.dialog > fieldset > hl {
margin: 0 10px 0 10px;
padding: 0;
font-size: 20px;
font-weight: bold;
color: #FFFFFF;
text-shadow: rgba(0, 0, 0, 0.4) Opx -1lpx 0;
text-align: center;
}
.dialog > fieldset > label {
position: absolute;
margin: 1é6px 0 0 6px;
font-size: 14px;
color: #999999;
}
input {
box-sizing: border-box;
-webkit-box-sizing: border-box;
width: 100%;
margin: 8px 0 0 0;
padding: 6px 6px 6px 44px;
font-size: 16px;
font-weight: normal;
}
.blueButton {
-webkit-border-image: url (blueButton.png) 0 5 0 5;
border-width: 0 5px;
}
.leftButton {
left: 6px;
right: auto;

The body > .dialog rule places the form over the entire application, including the top toolbar. It also
defines a black background with .8 opacity. Notice the way in which the .dialog > fieldset >
label style is defined so that the 1abel element appears to be part of the input element. The
.blueButton and .leftButton styles define the action button styles.

Second, there are three styles that are defined in irealtor.css as an extension of iui.css:

.altLabel {
position: absolute;
margin: 16px 15px 0 6px;
font-size: 14px;

(continued)

53

Chapter 3: Implementing the Interface

(continued)

color: black;

}

.altInput {
padding-left: 60px;

}

select {
box-sizing: border-box;
-webkit-box-sizing: border-box;
width: 100%;
margin: 15px 0 0 0;
padding: 6px 6px 6px 144px;
font-size: 16px;
font-weight: normal;

The altLabel and altInput rules are used to appropriately size and position the 1abel and input
elements. The select rule styles the select element.

When you submit this form, it is submitted via AJAX to allow the results slide from the side to provide a
smooth transition.

You may, however, have other uses for dialogs beyond form submissions. For example, iRealtor will
include a JavaScript-based mortgage calculator that is accessible from the top-level navigation
menu. Here’s the link:

Mortgage Calculator</1li>
The link accesses the document fragment contained in an external URL that contains the following form:

<form id="calculator" class="dialog">
<fieldset>
<hl>Mortgage Calculator</hl>
Back
<label class="altLabel">Loan amount</label>
<input class="calc" type="text" name="amt_zip" id="amt"/>
<label class="altLabel">Interest rate</label>
<input class="calc" type="text" name="ir_zip" id="ir"/>
<label class="altLabel">Years</label>
<input class="calc" type="text" name="amt_zip" id="term" onblur="calc()"/>
<label class="altLabel">Monthly payment</label>
<input class="calc" type="text" readonly="true" id="payment"/>
<label class="altLabel">Total payment</label>
<input class="calc" type="text" readonly="true" id="total"/>
</fieldset>
</form>

54

Chapter 3: Implementing the Interface

All of the styles have been discussed already except for an additional one in irealtor.css:

input.calc {
padding: 6px 6px 6px 120px;
}

This class style overrides the default padding to account for the longer labels used in the calculator.

The three input elements have a dummy name attribute that includes zip in it. The zip string
prompts the numeric keyboard to display rather than the alphabet keyboard.

The purpose of the form is for the user to enter information in the first three input elements and
then call the JavaScript function calc (), which then displays the results in the bottom two input

fields. Because the calculation is performed inside of a client-side JavaScript, no submittal is needed
with the server.

The JavaScript function calc () needs to reside in the document head of the main irealtor.html file, not
the document fragment. Here’s the scripting code:

<script type="application/x-javascript">
function calc() {
var amt = document.getElementById('amt') .value;
var ir = document.getElementById('ir').value / 1200;
var term = document.getElementById('term').value * 12;
var total=1l;
for (1=0;i<term;i++) {
total = total * (1 + ir);
}
var mp = amt * ir / (1 - (1/total));
document .getElementById('payment') .value = Math.round (mp*100)/100;
document .getElementById('total').value = Math.round(mp * term *100)/100
}

</script>

i

This routine performs a standard mortgage calculation and returns the results to the payment and total
input fields. Figure 3-11 shows the result.

Designing a Contact Us Page with
Integrated iPhone Services

The final destination page of iRealtor is a Contact Us page that provides basic contact information for the
local realtor and integrates with the Mail, Phone, and Map services of iPhone. The code is shown here.
iPhone service integration is fully explained in Chapter 7.

55

Chapter 3: Implementing the Interface

The document fragment that is loaded by an AJAX external link is as follows:

<div id="contact" title="Contact Us" class="panel">
<div class="cuiHeader">

<hl class="cui" style="text-overflow:ellipsis;">Jordan Willmark</hl>
<h2 class="cui">J-Team Reality</h2>
</div>
<fieldset>
<div class="row">
<label class="cui">office</label>
<a class="cuiServiceLink" target="_self" href="tel: (978) 555-1212"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(978) 555-1212
</div>
<div class="row">
<label class="cui">mobile</label>
<a class="cuiServiceLink" target="_self" href="tel: (978) 545-1211"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(978) 545-1211
</div>
<div class="row">
<label class="cui">e-mail</label>
<a class="cuiServiceLink" target="_self"
href="mailto:jordan@jteam3.com" onclick="return
(navigator.userAgent.indexOf ('iPhone') != -1)">jordan@jteam3.com
</div>
</fieldset>
<fieldset>
<div class="rowCuiAddressBox">
<label class="cui">work</label>
<p class="cui">15 Louls Street</p>
<p class="cui">Princeton, MA 01541</p>
</div>
</fieldset>
<fieldset>
<div class="row">
<a class="serviceButton" target="_self"
href="http://maps.google.com/maps?g=15+Louis+St, +Princeton, +MA+ (J-Team+Office) ">Map
To Office
</div>
</fieldset>
</div>

You'll notice that the code listing displays several styles prefixed with cui. These are defined in a sepa-
rate style sheet called cui.css, which is fully explained in Chapter 7. However, in order to use these styles,

the following style element needs to be added to the document head of irealtor.html:

<style type="text/css" media="screen">@import "../iui/cui.css";</style>

56

Chapter 3: Implementing the Interface

Figure 3-12 shows the panel when displayed on iPhone.

il ATET = 12:37 AM [} -l ATET =

iRealtor " _CnniactUS Search ‘

“sack Mortgage Calculator

Loan amount 300000
AN Jordan Willmark

J-Team Reali
nterest rate 6.35 L/

office (978) 555-1212

Monthly payment 1866.71
DSl Rymen mobile (978) 545-1211

Total payment 672014.56
email jordan@jteam3.com

15 Louis Street
Princeton, MA 01541

work

Map To Office

Figure 3-11: Text input of a form Figure 3-12: iPhone-enabled Contact Us page

The following three listings provide a full code view of the major source files that have been discussed.
Listing 3-1 displays irealtor.html, Listing 3-2 provides iui.css, and Listing 3-3 contains irealtor.css.

Listing 3-1: irealtor.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>iRealtor</title>

(continued)

57

Chapter 3: Implementing the Interface

Listing 3-1 (continued)

<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=0;"/>

<style type="text/css" media="screen">@import "../iui/iui.css";</style>
<style type="text/css" media="screen">@import "../iui/cui.css";</style>
<style type="text/css" media="screen">@import "irealtor.css";</style>
<script type="application/x-javascript" src="../iui/iui.js"></script>

<script type="application/x-javascript">
function calc() {
var amt = document.getElementById('amt') .value;
var ir = document.getElementById('ir').value / 1200;
var term = document.getElementById('term').value * 12;
var total=1l;
for (i=0;i<term;i++) {
total = total * (1 + ir);
}
var mp = amt * ir / (1 - (1/total));
document .getElementById('payment') .value = Math.round (mp*100)/100;
document .getElementById('total') .value = Math.round(mp * term *100)/100 ;
}
</script>
</head>
<body>
<!-- Top toolbar -->
<div class="toolbar">
<hl id="pageTitle"></hl>

Search
</div>
<!-- Home menu -->
<ul id="home" title="iRealtor" selected="true">
Featured Listings</1li>
All Listings
Buying & Tips
Mortgage Calculator</1li>
Meet Our Team
Contact Us</1li>
Visit Our Web Site

<div id="meet_our_team" class="panel" title="Meet Our Team">
<h2>J-Team Reality</h2>
<fieldset>
<p class="normalText">Lorem ipsum dolor sit amet, consect etuer adipis cing
elit. Suspend isse nisl. Vivamus a ligula vel quam tinci dunt posuere. Integer
venen atis blandit est. Phasel lus ac neque. Quisque at augue. Phasellus purus. Sed
et risus. Suspe ndisse laoreet consequat metus. Nam nec justo vitae tortor
fermentum interdum. Aenean vitae quam eu urna pharetra ornare.</p>
<p class="normalText">Pellent esque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Aliquam congue. Pel lentesque pretium
fringilla quam. Integer libero libero, varius ut, faucibus et, facilisis vel, odio.
Donec quis eros eu erat ullamc orper euismod. Nam aliquam turpis. Nunc convallis
massa non sem. Donec non odio. Sed non lacus eget lacus hend rerit sodales.</p>

58

Chapter 3: Implementing the

Interface

</fieldset>
</div>

<form id="searchForm" class="dialog" action="search.php">

<fieldset>
<hl>Search Listings</hl>

Cancel
Search
<select name="proptype" size="1">

<option value="">Property Type</option>

<option value="SF">Single-Family</option>

<option value="CC">Condo</option>

<option value="MF">Multi-Family</option>

<option value="LD">Land</option>

<option value="CI">Commercial</option>

<option value="MM">Mobile Home</option>

<option value="RN">Rental</option>

<option value="BU">Business Opportunity</option>

</select>

<label class="altLabel">Min $:</label>
<input type="text" name="minPrice"/>
<label class="altLabel">Max $:</label>
<input type="text" name="maxPrice"/>
<label class="altLabel">MLS #:</label>
<input type="text" name="mlsNumber"/>

</fieldset>
</form>
</body>
</html>

Listing 3-2: iui.css

body {

}

margin: 0;

font-family: Helvetica;
background: #FFFFFF;

color: #000000;

overflow-x: hidden;
-webkit-user-select: none;
-webkit-text-size-adjust: none;

body > *:not(.toolbar) {

}

display: none;
position: absolute;
margin: 0;

padding: 0;

left: 0;

top: 45px;

width: 100%;
min-height: 372px;

body[orient="landscape"] > *:not(.toolbar)

min-height: 268px;

(continued)

59

Chapter 3: Implementing the Interface

60

Listing 3-2 (continued)

body > *[selected="true"] {

}

display: block;

al[selected], a:active {

}

background-color: #194fdb !important;

background-image: url(listArrowSel.png), url(selection.png) !important;
background-repeat: no-repeat, repeat-x;

background-position: right center, left top;

color: #FFFFFF !important;

al[selected="progress"] {

}

background-image: url(loading.gif), url(selection.png) !important;

/*******~k***~k***~k***~k********~k***~k***~k************~k*******~k************‘k*******‘k***

*X*****‘k***‘k***/

body > .toolbar {

}

box-sizing: border-box;

-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;

border-bottom: 1px solid #2d3642;

border-top: 1lpx solid #6d84a2;

padding: 10px;

height: 45px;

background: url (toolbar.png) #6d84a2 repeat-x;

.toolbar > hl {

}

position: absolute;
overflow: hidden;

left: 50%;

margin: 1px 0 0 -75px;
height: 45px;

font-size: 20px;

width: 150px;
font-weight: bold;
text-shadow: rgba(0, 0, 0, 0.4) Opx -1lpx 0;
text-align: center;
text-overflow: ellipsis;
white-space: nowrap;
color: #FFFFFF;

body[orient="1landscape"] > .toolbar > hl {

}

margin-left: -125px;
width: 250px;

.button {

position: absolute;
overflow: hidden;
top: 8px;

right: 6px;

margin: 0;
border-width: 0 5px;
padding: 0 3px;

Chapter 3: Implementing the Interface

width: auto;

height: 30px;

line-height: 30px;

font-family: inherit;

font-size: 12px;

font-weight: bold;

color: #FFFFFF;

text-shadow: rgba(0, 0, 0, 0.6) Opx -1lpx 0;

text-overflow: ellipsis;

text-decoration: none;

white-space: nowrap;

background: none;

-webkit-border-image: url (toolButton.png) 0 5 0 5;
}
.blueButton {

-webkit-border-image: url (blueButton.png) 0 5 0 5;

border-width: 0 5px;

}

.leftButton {
left: 6px;
right: auto;

}

#backButton {
display: none;
left: 6px;
right: auto;
padding: 0;
max-width: 55px;
border-width: 0 8px 0 1l4px;
-webkit-border-image: url (backButton.png) 0 8 0 14;
}
.whiteButton,
.grayButton {
display: block;
border-width: 0 12px;
padding: 10px;
text-align: center;
font-size: 20px;
font-weight: bold;
text-decoration: inherit;
color: inherit;
}
.whiteButton {
-webkit-border-image: url(whiteButton.png) 0 12 0 12;
text-shadow: rgba (255, 255, 255, 0.7) 0 1lpx 0;
}
.grayButton {
-webkit-border-image: url (grayButton.png) 0 12 0 12;
color: #FFFFFF;
}

/***********************'k**

*‘k********‘k***/

(continued)

61

Chapter 3: Implementing the Interface

Listing 3-2 (continued)

body > ul > 1i {
position: relative;
margin: 0;
border-bottom: 1px solid #EOEOEO;
padding: 8px 0 8px 10px;
font-size: 20px;
font-weight: bold;
list-style: none;
}
body > ul > li.group {
position: relative;
top: -1px;
margin-bottom: -2px;
border-top: 1lpx solid #7d47d74d;
border-bottom: 1px solid #999999;
padding: 1lpx 10px;
background: url (listGroup.png) repeat-x;
font-size: 17px;
font-weight: bold;
text-shadow: rgba(0, 0, 0, 0.4) 0 1px 0;
color: #FFFFFF;
}
body > ul > li.group:first-child {
top: 0;
border-top: none;
}
body > ul > 11 > a {
display: block;
margin: -8px 0 -8px -10px;
padding: 8px 32px 8px 10px;
text-decoration: none;
color: inherit;
background: url(listArrow.png) no-repeat right center;
}
altarget="_replace"] {
box-sizing: border-box;
-webkit-box-sizing: border-box;
padding-top: 25px;
padding-bottom: 25px;
font-size: 18px;
color: cornflowerblue;
background-color: #FFFFFF;
background-image: none;

}

/**
********‘k***k‘k*/
body > .dialog {

top: 0O;

width: 100%;

min-height: 417px;

62

Chapter 3: Implementing the

Interface

}

z-index: 2;

background: rgba(0, 0, 0, 0.8);
padding: 0;

text-align: right;

.dialog > fieldset {

}

box-sizing: border-box;
-webkit-box-sizing: border-box;
width: 100%;

margin: 0;

border: none;

border-top: lpx solid #6d84a2;
padding: 10px 6px;

background: url(toolbar.png) #7388a5 repeat-x;

.dialog > fieldset > hl {

}

margin: 0 10px 0 10px;

padding: 0;

font-size: 20px;

font-weight: bold;

color: #FFFFFF;

text-shadow: rgba(0, 0, 0, 0.4)
text-align: center;

.dialog > fieldset > label {

}

position: absolute;
margin: 16px 0 0 6px;
font-size: 14px;
color: #999999;

input {

}

box-sizing: border-box;
-webkit-box-sizing: border-box;
width: 100%;

margin: 8px 0 0 0;

padding: 6px 6px 6px 44px;
font-size: 16px;

font-weight: normal;

Opx -1lpx 0;

/**

**************/

body > .panel ({

}

box-sizing: border-box;
-webkit-box-sizing: border-box;
padding: 10px;

background: #c8c8c8 url (pinstripes.png);

.panel > fieldset {

position: relative;
margin: 0 0 20px 0;
padding: 0;

(continued)

63

Chapter 3: Implementing the Interface

Listing 3-2 (continued)

background: #FFFFFF;
-webkit-border-radius: 10px;
border: 1px solid #999999;
text-align: right;
font-size: 1l6px;

}

.row {
position: relative;
min-height: 42px;
border-bottom: 1px solid #999999;
-webkit-border-radius: 0;
text-align: right;

}

fieldset > .row:last-child {
border-bottom: none !important;

}

.row > input {
box-sizing: border-box;
-webkit-box-sizing: border-box;
margin: 0;
border: none;
padding: 12px 10px 0 110px;
height: 42px;
background: none;

}

.row > label {
position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;
font-weight: bold;

}

.row > .toggle {
position: absolute;
top: 6px;
right: 6px;
width: 100px;
height: 28px;

}

.toggle {
border: 1lpx solid #888888;
-webkit-border-radius: 6px;
background: #FFFFFF url(toggle.png) repeat-x;
font-size: 19px;
font-weight: bold;
line-height: 30px;

}

.toggle[toggled="true"] {
border: 1px solid #143fae;
background: #194fdb url(toggleOn.png) repeat-x;

64

Chapter 3: Implementing the Interface

.toggleOn {

}

display: none;
position: absolute;
width: 60px;
text-align: center;
left: 0;

top: 0;

color: #FFFFFF;
text-shadow: rgba (0,

.toggleOff {

}

position: absolute;
width: 60px;
text-align: center;
right: 0;

top: 0;

color: #666666;

.toggle[toggled="true"]

}

display: block;

.toggle[toggled="true"]

}

display: none;

.thumb {

}

position: absolute;
top: -1lpx;

left: -1px;

width: 40px;
height: 28px;

>

>

0, 0, 0.4) Opx -1px 0;

.toggleOn {

.toggleOff {

border: 1lpx solid #888888;
-webkit-border-radius: 6px;
background: #ffffff url(thumb.png) repeat-x;

.toggle[toggled="true"]

}

left: auto;
right: -1px;

.panel > h2 {
margin: 0 0 8px ldpx;

}

font-size: inherit;
font-weight: bold;
color: #4d4d70;

>

.thumb {

text-shadow: rgba (255, 255, 255, 0.75) 2px 2px 0;

/**‘k************‘k***‘k***‘k**‘k‘k********‘k***‘k******‘k‘k****‘k***‘k‘k**‘k‘k***‘k*‘k‘k‘k****‘k***‘k**

**************/

#preloader {

display: none;

background-image: url(loading.gif), url(selection.png),
url (blueButton.png), url(listArrowSel.png), url(listGroup.png);

iui.css is open source code under the “new” Berkeley Software Distribution (BSD) license.

65

Chapter 3: Implementing the Interface

Listing 3-3: irealtor.css

a.listing {
padding-left: 54px;
padding-right: 40px;
min-height: 34px;

img.listingImg {
display: block;
position: absolute;
margin: 0;

left: 6px;
top: Tpx;
width: 35px;

height: 27px;
padding: 7px 0 10px 0;
}
p.listingDetails {
display: block;
position: absolute;
margin: 0;
left: b54px;
top: 27px;
text-align: left;
font-size: 12px;
font-weight: normal;
color: #666666;
text-decoration: none;
width: 100%;
height: 13px;
padding: 3px 0 0 0;
}
.panel img {
display: block;
margin-left: auto;
margin-right: auto;
margin-bottom: 10px;
border: 2px solid #666666;
-webkit-border-radius: 6px;
}
.row > p {
display: block;
margin: 0;
border: none;
padding: 12px 10px 0 110px;
text-align: left;
font-weight: bold;
text-decoration: inherit;
height: 42px;
color: inherit;
box-sizing: border-box;
-webkit-box-sizing: border-box;

66

Chapter 3:

Implementing the Interface

.row > label {
text-align: right;
width: 80px;
position: absolute;
margin: 0 0 0 1l4dpx;
line-height: 42px;
font-weight: bold;
color: #7388a5;

}

.serviceButton {
display: block;

margin: 0;
border: none;
padding: 12px 10px 0 Opx;

text-align: center;
font-weight: bold;
text-decoration: inherit;
height: 42px;
color: #7388a5;
box-sizing: border-box;
-webkit-box-sizing: border-box;
i*********‘k*‘k‘k‘k*‘k‘k‘k**‘k‘k**‘k*‘k*‘k‘k‘k*‘k/
.panel p.normalText {
text-align: left;
padding: 0 10px 0 10px;
}
.panel > h2 {
margin: 3px 0 10px 10px;
}
input.calc {
padding: 6px 6px 6px 120px;
i*********************************/
.altLabel {
position: absolute;
margin: 16px 15px 0 6px;
font-size: 14px;
color: black;
}
.altInput {
padding-left: 60px;
}
select {
box-sizing: border-box;
-webkit-box-sizing: border-box;
width: 100%;
margin: 15px 0 0 0;
padding: 6px 6px 6px 144px;
font-size: 16px;
font-weight: normal;

67

Chapter 3: Implementing the Interface

Scripting Ul Behavior with iui.js

When you use the iUI framework, iui.js powers all of the Ul behavior for you once you include it in your
document head. However, because the iUI framework does take control over many aspects of the
environment, it is important that you have a solid understanding of the library’s internals.

The iui.js consists of a JSON object window. iui, three listeners for 1oad and click events, and several
supporting routines. All of the JavaScript code is enclosed in an anonymous function with several
constants and variables defined:

(function() {

var slideSpeed = 20;

var slideInterval = 0;

var currentPage = null;

var currentDialog = null;

var currentWidth = 0;

var currentHash = location.hash;
var hashPrefix = "#_";

var pageHistory = [];

var newPageCount = 0;

var checkTimer;

// **** REST OF IUI CODE HERE ****
IEON

The anonymous function creates a local scope to allow private semi-global variables and avoid name
conflicts with applications that use iui.js.

On Document Load
When the HTML document loads, the following listener function is triggered:

addEventListener ("load", function(event)
{

var page = iui.getSelectedPage();

if (page)

iui.showPage (page) ;

setTimeout (preloadImages, 0);

setTimeout (checkOrientAndLocation, 0);

checkTimer = setInterval (checkOrientAndLocation, 300);
}, false);

The getselectedPage () method of the JSON object iui is called to get the selected page — the block
element node that contains a selected="true" attribute. This node is then passed to iui.showPage (),

which is the core routine to display content.

As Chapter 5 explains, setTimeout () is often used when calling certain JavaScript routines to prevent
timing inconsistencies. Using setTimeout (), iUI calls an image preloader function to load application

68

Chapter 3: Implementing the Interface

images and then a routine called checkOrientAndLocation (), which is an event handler used for
detecting and handling viewport orientation changes. (Orientation change events are fully covered in
Chapter 5.) The setInterval function then calls checkOrientAndLocation () every 300ms when the
application runs. Note that the checkOrientAndLocation () also contains the code to hide the URL bar.

The iPhone update 1.1.1 added an orientationchange event. However, for maximum compatibility
with iPhone 1.0, I recommend continuing to use the checkOrientAndLocation () event.

Getting back to iui.showPage (), its code is as follows:

showPage: function(page, backwards)
{
if (page)
{
if (currentDialog)
{
currentDialog.removeAttribute ("selected") ;
currentDialog = null;
}
if (hasClass (page, "dialog"))
showDialog (page) ;
else
{
var fromPage = currentPage;
currentPage = page;
if (fromPage)
setTimeout (slidePages, 0, fromPage, page, backwards);
else
updatePage (page, fromPage) ;

}

The currentDialog semi-global variable is evaluated to determine whether a dialog is already
displayed. (currentDialog is set in the showDialog () function.) This variable would be null when
the document initially loads because of the line var currentDialog = null; earlier in iuijs, which
runs every time the document loads.

The node is then evaluated to determine whether it is a dialog (containing class="dialog" as an
attribute) or a normal page. While the opening page of an iPhone/iPod touch is often a normal page,
you may wish to have a login or initial search dialog.

Loading a Standard iUl Page

For normal pages, iUI will assign the value of currentPage to the variable frompage and then reassign
currentPage to the page parameter. If fromPage is not null (i.e., every page after the initial page), then
iUI performs a slide-in animation with a function called s1idePages (). The fromPage, page, and
backwards variables are passed to slidePages ().

69

Chapter 3: Implementing the Interface

However, because this is the first time running this routine (and frompage will equal nul1l), the
updatePage () function is called:

function updatePage(page, fromPage)
{
if (!page.id)
page.id = "__" + (++newPageCount) + "__";
location.href = currentHash = hashPrefix + page.id;
pageHistory.push (page.id) ;
var pageTitle = $("pageTitle");
if (page.title)
pageTitle.innerHTML = page.title;
if (page.localName.toLowerCase() == "form" && !page.target)
showForm (page) ;
var backButton = $("backButton");
if (backButton)
{
var prevPage = $(pageHistory[pageHistory.length-21);
if (prevPage && !page.getAttribute("hideBackButton"))
{
backButton.style.display = "inline";
backButton.innerHTML = prevPage.title ? prevPage.title : "Back";
}
else
backButton.style.display = "none";

The updatePage () function is responsible for updating the pageHistory array, which is required for
enabling the Mobile Safari Back button to work even in single-page applications. The value of the node’s
title attribute is then assigned to be the innerHTML of the top toolbar’s hl pageTitle.

If the page name contains the string formin it, then the showForm() function is called. Otherwise, the
routine continues on, looking to see if a backButton element is defined in the toolbar. If so, then
the page history is updated and button title is updated.

Subsequent pages will always bypass the direct call to updatePage () and use the slidePages ()
function instead. Here is the code:

function slidePages (fromPage, toPage, backwards)
{

var axis = (backwards ? fromPage : toPage) .getAttribute("axis");
if (axis == "y")
(backwards ? fromPage : toPage).style.top = "100%";
else
toPage.style.left = "100%";
toPage.setAttribute("selected", "true");

scrollTo (0, 1);
clearInterval (checkTimer) ;
var percent = 100;

70

Chapter 3: Implementing the Interface

slide();
var timer = setInterval(slide, slideInterval);
function slide()

{

percent -= slideSpeed;

if (percent <= 0)

{
percent = 0;
if (!'hasClass(toPage, "dialog"))

fromPage.removeAttribute ("selected") ;

clearInterval (timer) ;
checkTimer = setInterval (checkOrientAndLocation, 300);
setTimeout (updatePage, 0, toPage, fromPage);

}

if (axis == "y")

{
backwards

? fromPage.style.top = (100-percent) + "%"
toPage.style.top = percent + "%";

}

else

{
fromPage.style.left = (backwards ? (100-percent) : (percent-100)) + "%";
toPage.style.left = (backwards ? -percent : percent) + "%";

}

}

The primary purpose of slidePages () is to emulate the standard iPhone/iPod touch slide animation
effect when you move between pages. It achieves this by using JavaScript timer routines to incrementally
update the style.left property of the fromPage and the toPage. The updatePage () function
(discussed previously) is called inside of a setTimeout routine.

Handling Link Clicks

Because most of the user interaction with an iPhone/iPod touch application is tapping the interface to
navigate the application, iUI’s event listener for link clicks is, in many ways, the “mission control center”
for iui.jss. Check out the code:

addEventListener ("click", function(event)

{

var link = findParent (event.target, "a");

if (link)

{
function unselect () { link.removeAttribute("selected"); }
if (link.href && link.hash && link.hash != "#")
{

link.setAttribute("selected", "true");

iui.showPage ($ (link.hash.substr(1)));
setTimeout (unselect, 500);

(continued)

71

Chapter 3: Implementing the Interface

(continued)

else if (link == $("backButton"))
history.back();

else if (link.getAttribute("type") == "submit")
submitForm(findParent (1ink, "form"));

else if (link.getAttribute("type") == "cancel")
cancelDialog(findParent (link, "form"));

else if (link.target == "_replace")

{
link.setAttribute ("selected", "progress");
iui.showPageByHref (link.href, null, null, link, unselect);

}

else if (!link.target)

{
link.setAttribute("selected", "progress");
iui.showPageByHref (link.href, null, null, null, unselect);

}

else
return;

event .preventDefault () ;

}

}, true);
This routine evaluates the type of link that it is:

Q Ifitis an internal URL, then the page is passed to iui.showPage ().
Q If the backButton is tapped, then history.back() is triggered.

Q Dialog forms typically contain a Submit and Cancel button. If a Submit button is tapped,
then submitForm() is called. If a Cancel button is tapped, then cancelDialog () is called.
(The submitForm() and cancelDialog () functions are discussed later in the chapter.)

Q External URLs that have target="_replace" or that do not have target defined are AJAX
links. Both of these call the iui.showPageByHref () method.

Q Ifitis none of these, then it is an external link with a target="_self" attribute defined and the
default iUI behavior is suspended and the link is treated as normal.

Handling AJAX Links

When an AJAX link is tapped by the user, the click event listener (shown previously) calls the
iui.showPageByHref () method:

showPageByHref: function(href, args, method, replace, cb)
{
var req = new XMLHttpRequest();

reqg.onerror = function()
{
if (cb)
cb(false);

Y
req.onreadystatechange = function()
{

if (req.readyState == 4)

72

Chapter 3: Implementing the Interface

{
if (replace)
replaceElementWithSource (replace, reqg.responseText);
else
{
var frag = document.createElement ("div");
frag.innerHTML = req.responseText;
iui.insertPages (frag.childNodes) ;
}
if (cb)
setTimeout (cb, 1000, true);
}
Y
if (args)
{
req.open(method || "GET", href, true);
req.setRequestHeader ("Content-Type", "application/x-www-form-
urlencoded") ;
req.setRequestHeader ("Content-Length", args.length);
reqg.send(args.join("&"));
}
else

{
req.open (method || "GET", href, true);
reqg.send(null) ;

The routine calls XMLHt tpRequest () to assign the req object. If the args parameter is not null
(that is, when an AJAX form is submitted), then the form data is sent to the server. If args isnull,
then the supplied URL is sent to the server. The processing of incoming text takes place inside of the
onreadystatechange handler.

If replace is true (meaning that target="_replace" is specified in the calling link), then the
replaceElementWithSource () function is called. As the following code shows, the calling link
node (the replace parameter) is replaced with the source (the AJAX document fragment):

function replaceElementWithSource(replace, source)
{
var page = replace.parentNode;
var parent = replace;
while (page.parentNode != document.body)
{
page = page.parentNode;
parent = parent.parentNode;
}
var frag = document.createElement (parent.localName) ;
frag.innerHTML = source;
page.removeChild (parent) ;
while (frag.firstChild)
page.appendChild(frag.firstChild) ;

73

Chapter 3: Implementing the Interface

If a click is generated from a normal AJAX link, then the contents of the external URL will be displayed
in a new page. Therefore, a div is created and the document fragment is added as the innerHTML of the
element. The iui.insertPages () method adds the new nodes to create a new page, and then this page
is passed to iui.showPage ():

insertPages: function (nodes)
{
var targetPage;
for (var 1 = 0; i < nodes.length; ++i)
{
var child = nodes[i];
if (child.nodeType == 1)
{
if (!child.id)
child.id = "__" + (++newPageCount) + "__";
var clone = $(child.id);
if (clone)
clone.parentNode.replaceChild(child, clone);
else
document .body.appendChild(child) ;
if (child.getAttribute("selected") == "true" || !targetPage)
targetPage = child;
-1

}

if (targetPage)
iui.showPage (targetPage) ;

Loading an iUl Dialog

If the node that is passed into the main showPage () function is a dialog (class="dialog"), then the
showDialog () function is called, which in turn calls showForm (). These two functions are shown in the
following code:

function showDialog (page)
{
currentDialog = page;
page.setAttribute("selected", "true");
if (hasClass(page, "dialog") && !page.target)
showForm (page) ;
}
function showForm(form)
{
form.onsubmit = function(event)
{
event.preventDefault () ;
submitForm(form) ;

Y

74

Chapter 3: Implementing the Interface

form.onclick = function(event)
{
if (event.target == form && hasClass(form, "dialog"))
cancelDialog (form) ;

Y

The showForm() function assigns event handlers to the onsubmit and onclick events of the form.
When a form is submitted, the submitForm () function submits the form data via AJAX. When an
element on the form is clicked, then the dialog is closed. The following code shows the routines that
are called:

function submitForm(form)

{
iui.showPageByHref (form.action || "POST", encodeForm(form), form.method);
}
function cancelDialog (form)
{
form.removeAttribute ("selected") ;
}
function encodeForm(form)
{
function encode (inputs)
{
for (var i = 0; i < inputs.length; ++i)
{
if (inputs[i].name)
args.push(inputs[i] .name + "=" + escape(inputs[i].value));
}
}
var args = [];
encode (form.getElementsByTagName ("input")) ;
encode (form.getElementsByTagName ("select")) ;
return args;
}

The entire code for iui.js is provided in Listing 3-4.

Listing 3-4: iui.js

(function() {
var slideSpeed = 20;
var slideInterval = 0;
var currentPage = null;
var currentDialog = null;
var currentWidth = 0;
var currentHash = location.hash;
var hashPrefix = "#_";
var pageHistory = [];
var newPageCount = 0;
var checkTimer;

//

IR R I R S I I S I R I Rk R Rk R Ik kR I

khkkkkhkkkhkkkhkkkxkkx

(continued)

75

Chapter 3: Implementing the Interface

Listing 3-4 (continued)

window.iui =
{
showPage: function(page, backwards)
{
if (page)
{
if (currentDialog)
{
currentDialog.removeAttribute ("selected") ;
currentDialog = null;

if (hasClass(page, "dialog"))
showDialog (page) ;

else

{
var fromPage = currentPage;
currentPage = page;
if (fromPage)

setTimeout (slidePages, 0, fromPage, page, backwards);

else

updatePage (page, fromPage) ;

}
+,
showPageById: function (pageld)
{
var page = $(pageld);
if (page)
{
var index = pageHistory.indexOf (pageId) ;
var backwards = index != -1;
if (backwards)
pageHistory.splice(index, pageHistory.length) ;
iui.showPage (page, backwards) ;

I
showPageByHref: function(href, args, method, replace, cb)
{

var req = new XMLHttpRequest();

reqg.onerror = function()

{

if (cb)
cb(false);
Y

req.onreadystatechange = function()

if (req.readyState == 4)
{
if (replace)
replaceElementWithSource (replace, req.responseText);

76

Chapter 3: Implementing the Interface

else

{
var frag = document.createElement ("div");
frag.innerHTML = req.responseText;
iui.insertPages (frag.childNodes) ;

}

if (cb)
setTimeout (cb, 1000, true);
}
Y
if (args)
{
req.open (method || "GET", href, true);
req.setRequestHeader ("Content-Type", "application/x-www-form-
urlencoded") ;
req.setRequestHeader ("Content-Length", args.length);
req.send(args.join("&"));
}
else
{
req.open(method || "GET", href, true);
reqg.send(null) ;
}
.,
insertPages: function (nodes)
{
var targetPage;
for (var i = 0; i < nodes.length; ++1i)
{
var child = nodes[i];
if (child.nodeType == 1)
{
if (!child.id)
child.id = "__" + (++newPageCount) + "__";
var clone = $(child.id);
if (clone)
clone.parentNode.replaceChild(child, clone);
else
document .body.appendChild(child) ;
if (child.getAttribute("selected") == "true" || !targetPage)
targetPage = child;
——i:
}
}
if (targetPage)
iui.showPage (targetPage) ;
},
getSelectedPage: function()
{
for (var child = document.body.firstChild; child; child = child.
nextSibling)

(continued)

77

Chapter 3: Implementing the Interface

Listing 3-4 (continued)

if (child.nodeType == 1 && child.getAttribute("selected") == "true")
return child;

Y
//

EIE R R I S S S R R R S R S S R R R S R I S S R Rk I Rk Rk S S o

*khkkkhkkkkkkkkkk*k

addEventListener ("load", function (event)
{
var page = iuil.getSelectedPage() ;
if (page)
iui.showPage (page) ;
setTimeout (preloadImages, 0);
setTimeout (checkOrientAndLocation, 0);
checkTimer = setInterval (checkOrientAndLocation, 300);

}, false);
addEventListener ("click", function (event)
{
var link = findParent (event.target, "a");
if (link)
{
function unselect() { link.removeAttribute("selected"); }
if (link.href && link.hash && link.hash != "#")
{
link.setAttribute("selected", "true");

iui.showPage ($ (link.hash.substr(1)));
setTimeout (unselect, 500);

}

else 1f (link == $("backButton"))
history.back();

else if (link.getAttribute("type") == "submit")
submitForm(findParent (1link, "form"));

else if (link.getAttribute("type") == "cancel")
cancelDialog(findParent (link, "form"));

else if (link.target == "_replace")

{
link.setAttribute("selected", "progress");
iui.showPageByHref (link.href, null, null, link, unselect);

}

else if (!link.target)

{
link.setAttribute("selected", "progress");
iui.showPageByHref (link.href, null, null, null, unselect);

}

else
return;

event.preventDefault () ;

78

Chapter 3: Implementing the Interface

}
}, true);
addEventListener ("click", function(event)
{
var div = findParent (event.target, "div");
if (div && hasClass(div, "toggle"))
{
div.setAttribute("toggled", div.getAttribute("toggled") != "true");
event .preventDefault () ;
}
}, true);
function checkOrientAndLocation ()
{
if (window.innerWidth != currentWidth)
{
currentWidth = window.innerWidth;
var orient = currentWidth == 320 ? "profile" : "landscape";
document .body.setAttribute ("orient", orient);
setTimeout (scrollTo, 100, 0, 1);
}
if (location.hash != currentHash)
{
var pageIld = location.hash.substr (hashPrefix.length)
iui.showPageById (pageld) ;
}
}
function showDialog (page)
{
currentDialog = page;
page.setAttribute("selected", "true");
if (hasClass(page, "dialog") && !page.target)
showForm (page) ;
}
function showForm(form)
{
form.onsubmit = function (event)
{
event.preventDefault () ;
submitForm(form) ;
}i
form.onclick = function(event)
{
if (event.target == form && hasClass(form, "dialog"))
cancelDialog (form) ;
}i
}
function cancelDialog (form)
{
form.removeAttribute ("selected") ;
}

(continued)

79

Chapter 3: Implementing the Interface

80

Listing 3-4 (continued)

function updatePage(page, fromPage)

if (!page.id)
page.id = "__ " + (++newPageCount) + "__";
location.href = currentHash = hashPrefix + page.id;
pageHistory.push (page.id) ;
var pageTitle = $("pageTitle");
if (page.title)
pageTitle.innerHTML = page.title;
if (page.localName.toLowerCase() == "form" && !page.target)
showForm (page) ;
var backButton = $("backButton");
if (backButton)
{
var prevPage = $(pageHistory[pageHistory.length-2]);
if (prevPage && !page.getAttribute("hideBackButton"))
{
backButton.style.display = "inline";
backButton.innerHTML = prevPage.title ? prevPage.title
}
else
backButton.style.display = "none";

function slidePages (fromPage, toPage, backwards)

var axis = (backwards ? fromPage : toPage) .getAttribute("axis");
if (axis == "y")
(backwards ? fromPage : toPage).style.top = "100%";
else
toPage.style.left = "100%"
toPage.setAttribute("selected", "true");

scrollTo (0, 1);
clearInterval (checkTimer) ;
var percent = 100;
slide();
var timer = setlInterval(slide, slidelInterval);
function slide()
{
percent -= slideSpeed;
if (percent <= 0)
{
percent = 0;
if ('hasClass(toPage, "dialog"))
fromPage.removeAttribute ("selected") ;
clearInterval (timer) ;
checkTimer = setInterval (checkOrientAndLocation, 300);
setTimeout (updatePage, 0, toPage, fromPage);

"Back";

Chapter 3: Implementing the Interface

if (axis == "y")
{
backwards
? fromPage.style.top = (100-percent) + "%"
toPage.style.top = percent + "§%";
}
else
{
fromPage.style.left = (backwards ? (100-percent) : (percent-100)) + "%";
toPage.style.left = (backwards ? -percent : percent) + "%";
}
}
}
function preloadImages ()
{
var preloader = document.createElement ("div");
preloader.id = "preloader";
document .body.appendChild (preloader) ;
}
function submitForm(form)
{
iui.showPageByHref (form.action |\ "POST", encodeForm(form), form.method);
}
function encodeForm(form)
{
function encode (inputs)
{
for (var i = 0; i < inputs.length; ++i)
{
if (inputs[i].name)
args.push(inputs([i] .name + "=" + escape(inputs[i].value));
}
}
var args = [];
encode (form.getElementsByTagName ("input")) ;
encode (form.getElementsByTagName ("select")) ;
return args;
}
function findParent (node, localName)
{
while (node && (node.nodeType != 1 |\ node.localName. toLowerCase () !=
localName))
node = node.parentNode;
return node;
}
function hasClass(self, name)
{
var re = new RegExp (" ("|\\s)"+name+" ($[\\s)");
return re.exec (self.getAttribute("class")) != null;
}

(continued)

81

Chapter 3: Implementing the Interface

Listing 3-4 (continued)

function replaceElementWithSource (replace, source)
{
var page = replace.parentNode;
var parent = replace;
while (page.parentNode != document.body)
{
page = page.parentNode;
parent = parent.parentNode;
}
var frag = document.createElement (parent.localName) ;
frag.innerHTML = source;
page.removeChild(parent) ;
while (frag.firstChild)
page.appendChild(frag.firstChild) ;
}
function $(id) { return document.getElementById(id); }
function ddd() { console.log.apply(console, arguments); }

IDNON

iui.js is open source code under the BSD license.

82

7
Styling with CSS

Like its Mac and Windows cousins, Mobile Safari provides some of the best CSS support of all
Web browsers. As you develop iPhone and iPod touch applications, you can utilize CSS to make
powerful user interfaces.

Mobile Safari provides support for several of the more advanced -webkit- styles that are not part
of the W3C CSS standard. (A -webkit- prefix is added to the names of these properties.) For a
normal Web application, developers will typically stay away from these experimental properties or
at least not rely upon them for their application's design. However, because you know that an
iPhone and iPod touch user will be using Mobile Safari, you can safely use these more advanced
styles as you create your UL

CSS Selectors Supported in Mobile Safari

Many would contend that the real power of CSS is not so much in the properties that you can
apply, but in CSS's ability select the exact elements within a DOM that you want to work with. If
you have worked with CSS before, you are probably well familiar with the standard type, class,
and id selectors. However, Mobile Safari provides selector support that includes many new
selectors that are part of the CSS3 specification. Table 4-1 lists a set of CSS selectors that Mobile
Safari provides support for, while Table 4-2 lists the set of pseudo-classes and pseudo-elements
that Mobile Safari works with.

Note that the following CSS3 selectors are not supported with Mobile Safari:

a :last-child Q only-of-type

4 :only-child a :nth-of-type()

d nth-child() a :nth-last-of-type ()
d nth-last-child() d empty

4 last-of-type

Chapter 4: Styling with CSS

84

Table 4-1: Mobile Safari CSS Selectors

Elattr=val]

Elattr~=val]
Elattr|=vall
Elattr~=val]
ElattrS=val]

Elattr*=val]

Selector Definition

E Type selector

.class Class selector

#id 1D selector

* Universal selector (all elements)
EF Descendant selector

E>F Child selector

E + F Adjacent sibling selector

E~F Indirect adjacent selector”
Elattr] attr is defined

attr value matches val

One of many attribute value selectors’

attr value is a hyphen-separated list and begins with val’
attr value begins with val?

attr value ends with val®

attr value contains at least one instance of val®’

“New to CSS3

"Case sensitive, even when unnecessary

Table 4-2: Mobile Safari Pseudo-Classes and Pseudo-Elements

Pseudo-Class/ Pseudo-Element

Definition

E:1link

E:visited

E:before

E: :before

E:after

E::after

E:lang([Code])

E:first-letter

Unvisited link
Visited link
Selector content uses the language code specified

Content before an element

Content before an element (new double-colon notation in

CSs3)

Content after an element

Content after an element (new double-colon notation in

Css3)

First letter of element

Chapter 4: Styling with CSS

Pseudo-Class/ Pseudo-Element

Definition

E::first-letter

E:first-line
E::first-line

E:first-child

First letter of element (new double-colon notation in
CSS3)”

First line of element
First line of element (new double-colon notation in CSS3)*

First child®

E:first-of-type First child of type*’
E:root Root”
E:not () Negation®
E:target Target”
E:enabled Enabled state”
E:disabled Disabled state”
E:checked Checked state”
"New to CSS3

"When new first child/child of type is created programmatically using JavaScript, the previous maintains the : first-childor

: first-of-type attributes.

Text Styles

When you are styling text inside your iPhone and iPod touch applications, keep in mind three
text-related styles that are important to effective UI design: -webkit-text-size-adjust,
text-overflow, and text-shadow. These properties are explained in this section.

Controlling Text Sizing with -webkit-text-size-adjust

When a page is rendered, Mobile Safari will automatically size the page's text based on the width of the
text block. However, by using the -webkit-text-size-adjust property, you can override this setting.
The none option turns off auto-sizing of text:

body { -webkit-text-size-adjust: none; }

Or, you can specify a specific multiplier:

body { -webkit-text-size-adjust:

140%; 1}

85

Chapter 4: Styling with CSS

Finally, you can set it to the default value of auto:
body { -webkit-text-size-adjust: auto; }

Figures 4-1, 4-2, and 4-3 show the results of these three options on the same page.

12:21 AM

Sales Leads

Sales Leads Search

Jack Armitage > |Jack Armitage 2
Jason Armstrong ?

R | esonAmMEteng #
Bob Balancia > El

Sara Billingsly > Bob Balancia >

iProsp... Sales Leads Search

A |
Jack Armitage >
Jason Armstrong >
Bob Balancia >
Sara Billingsly >

< m |

Figure 4-3: Text is adjusted based on width of the
content block.

For a normal Web site, -webkit-text-size-adjust: auto is recommended for improving

the readability of text. However, if you are developing an application, you will almost always want to
use -webkit-text-size-adjust: none to maintain precise control over the text sizing, particularly
when you go between portrait and landscape modes.

86

Chapter 4: Styling with CSS

Handling Overflowed Text with text-overflow

Because the width of the viewport in Mobile Safari is either 320 (portrait) or 480 (landscape) pixels,
effectively managing the physical length of dynamic text on UI elements can be tricky. This is
particularly important for headings or button text in which a fixed amount of real estate is available.
The best example of the need to handle text overflow is in the top toolbar that is a standard part of
iPhone application interface. By default, any content that does not fit inside of the container box of the
element is clipped, which can potentially lead to confusion, such as the example shown in Figure 4-4.

il ATET = 12:40 AM)

" Help Meo Cn"ege of West search |

College of West Africa (10230N) is the
oldest school in Liberia and is located in
downtown Monrovia. It presently shares
the buildings with the UM University. It is
one of the premier high schools in
Liberia and has a current enroliment of
450 (Grades 10-12). Home Economics,
Drafting, Business are the major
 vocational programs at CWA.

Figure 4-4: Text is clipped if it does not fit into available
space.

Therefore, to prevent this situation from happening, you will want to provide a visual hint that the text
has been clipped. Fortunately, the text-overflow property enables developers to specify what they
wish to have done when the text runs on. The two values are ellipsis and clip. The ellipsis value
trims the content and adds an ellipsis character (. . .) to the end. Suppose you assign the following
property to the toolbar’s button and heading element:

text-overflow: ellipsis;

87

Chapter 4: Styling with CSS

Now, when text overflows, an ellipsis is added, as shown in Figure 4-5.

|..nl_ ATET + 12:38 AM =

Help ... College of W...

College of West Africa (10230N) is the
oldest school in Liberia and is located in
downtown Monrovia. It presently shares
the buildings with the UM University. It is
one of the premier high schools in
Liberia and has a current enroliment of
450 (Grades 10-12). Home Economics,
Drafting, Business are the major
'vocational programs at CWA.

Figure 4-5: Ellipsis provides a visual indicator that the
text has been clipped.

The text-overflow property is particularly useful for iPhone and iPod touch because a heading that
displays fully in landscape mode may need to be clipped in the much thinner portrait mode.

The use of text-overflow may require specifying additional CSS properties to display as intended. The
following code, for example, needs to have overflow or white-space properties set to ensure that the
text-overflow property works:

<html>

<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;">
<style>

.ellipsis {

text-overflow: ellipsis;

width: 200px;

88

Chapter 4: Styling with CSS

white-space: nowrap;

overflow: hidden;

}

.ellipsisBrokenl ({

text-overflow: ellipsis;

width: 200px;

/* white-space: nowrap; */

overflow: hidden;

}

.ellipsisBroken2 ({

text-overflow: ellipsis;

width: 200px;

white-space: nowrap;

/* overflow: hidden; */

}

</style>

<body>

<div class="ellipsis"> this is a test this is a test this is a test
this is a test this is a test this is a testthis is a test </div>

<div class="ellipsisBrokenl"> this is a test this is a test this is a test
this is a test this is a test this is a testthis is a test </div>

<div class="ellipsisBroken2"> this is test this is a test this is a test
this is a test this is a test this is a testthis is a test </div>
</body>

</html>

[\

Subtle Shadows with text-shadow

In the iPhone UI, Apple makes subtle use of text shadows, particularly on buttons and larger heading
text. In addition to aesthetics, text shadows are also useful in making text more readable by increasing its
contrast with the background.

You can add drop shadows to your text through the text-shadow property. The basic declaration is as
follows:

text-shadow: #666666 Opx -1lpx 0;

The first value is the color of the shadow. The next two give the shadow’s offset position — the second
value being the x-coordinate and the third is the y-coordinate. (Negative values move the shadow left
and up.) The fourth parameter indicates the shadow’s Gaussian blur radius. So, in the preceding
example, a gray shadow is added 1px above the element’s text with no blur.

However, text shadows can be a distraction and look tacky if they are too noticeable. Therefore, an rgba
(red, green, blue, alpha) color value can be used in place of a solid color value in order to define the
transparency value of the shadow. (See the “Setting Transparencies” section later in this chapter.)
Therefore, the following declaration defines a white shadow with a .7 alpha value (0.0 is fully
transparent, while 1.0 is fully opaque) that is positioned 1 pixel under the element’s text:

text-shadow: rgba (255, 255, 255, 0.7) 0 1lpx 0;

89

Chapter 4: Styling with CSS

Figures 4-6 and 4-7 show the subtle difference of adding a text shadow.

oc:mobi Search |

Figure 4-6: No text shadow defined Figure 4-7: Text shadow defined

Styling Block Elements

There are several styles that you can apply to block elements to transform their appearance that go
beyond the typical CSS2 styles. These include three so-called experimental properties (-webkit-
border-image, ~-webkit-border-radius, and -webkit-appearance) and a CSS3 enhancement of the
background property. These are described in this section.

Image-Based Borders with -webkit-border-image

The -webkit-border-image property enables you to use an image to specify the border rather than the
border-style properties. The image appears behind the content of the element, but on top of the
background. For example:

-webkit-border-image: url(image.png) 7 7 7 7;

The four numbers that follow the image URL represent the number of pixels in the image that should be
used as the border. The first number indicates the height of the top (both the corners and edge) of the
image used. Per CSS conventions, the remaining three numbers indicate the right, bottom, and left sides.
Pixel is the default unit, though you can specify percentages.

If the image URL you provide cannot be located or the style is set to none, then border-style
properties are used instead.

One or two keywords can be optionally specified at the end of the declaration. These determine how the
images for the sides and the middle are scaled and tiled. The valid keywords are stretch or round. If
stretch is used as the first keyword, the top, middle, and bottom parts of the image are scaled to the
same width as the element's padding box. Far less common for iPhone use, round can also be used as
the first keyword. When used, the top, middle, and bottom images are reduced in width so that a whole
number of the images fit in the width of the padding box. The second keyword acts on the height of the
left, middle, and right images. If both keywords are omitted, then stretch stretch isimplied.

When rendered, the Mobile Safari browser looks at the -webkit-border-image property and divides
up the image based on the four numbers specified.

The -webkit-border-image property plays an important role in creating CSS-based iPhone buttons,
which is explained later in this chapter.

20

Chapter 4: Styling with CSS

Rounded Corners with -webkit-border-radius

The -webkit-border-radius is used to specify the radius of the corners of an element. Using this
property, you can easily create rounded corners on your elements rather than resorting to image-based
corners. For example:

-webkit-border-radius: 10px;

This declaration specifies a 10px radius for the element, which is the standard radius value for the
Rounded Rectangle design for destination pages (see Chapter 3). You can also specify the radius of each
individual corner using the following properties:

-webkit-border-top-left-radius
-webkit-border-top-right-radius
-webkit-border-bottom-left-radius
-webkit-border-bottom-right-radius

If, for example, you wanted to create a div with rounded top corners, but square bottom corners, the
style code would look like the following:

div.roundedTopBox {
-webkit-border-top-left-radius: 10px;
-webkit-border-top-right-radius: 10px;
-webkit-border-bottom-left-radius: Opx;
-webkit-border-bottom-right-radius: 0px;
}

Results are shown in Figure 4-8.

Gradient Push Buttons with -webkit-appearance

The -webkit-appearance property is designed to transform the appearance of an element into a
variety of different controls. Mobile Safari supports just two of the possible values: push-button and
button. But it is the push-button that holds the most promise for iPhone application developers.
Suppose, for example, you would like to turn a link element into a gradient push button. You could do it
with an image, but -webkit-appearance: push-button allows you to do it entirely within CSS. To
demonstrate, begin with a link assigned to a class named special:

Call Headquarters
Then, define the a. special style:

a.special {
display: block;
width: 246px;
font-family: Helvetica;
font-size: 20px;
font-weight: bold;
color: #000000;
text-decoration: none;
text-shadow: rgba (255, 255, 255, 0.7) 0 1lpx 0;

(continued)

91

Chapter 4: Styling with CSS

92

(continued)
text-align: center;
line-height: 36px;
margin: 15px auto;
-webkit-border-radius:10px;
-webkit-appearance: push-button;

[-uil ATET = 3:39 AM =

| College of W...

Schoals

' College of West Africa
(10230N) is the oldest
school in Liberia and is
located in downtown
Monrovia. It presently
shares the buildings with the UM
University. It is one of the premier high
schools in Liberia and has a current
enroliment of 450 (Grades 10-12).
Home Economics, Drafting, Business
are the major vocational programs at
CWA.

Figure 4-8: Rounded top, square bottom

The display:block and width:246px properties give the link a wide rectangular block shape.

The -webkit-appearance: push-button property transforms the appearance to have a gradient gray
push button look. The -webkit-border-radius rounds the edges using the standard 10px value.
While the shape of the push button is now set, the text needs to be tweaked using not just standard text

Chapter 4: Styling with CSS

formatting properties, but also a 1ine-height property of 36px, which vertically centers the 20px text in
the middle of the push button. If you add a simple background-color: #000000 style to the body tag,
then you get the result shown in Figure 4-9.

il ATET = 3:42 AM =
SIS

I T L WL s o

http://10.0.1.19%/ipd/css/appe...

Figure 4-9: Gradient push button

Multiple Background Images

In earlier versions of CSS, there was always a 1:1 correspondence between an element and a
background image. While that capability worked for most purposes, some page designs could not
work effectively with a single background image defined. So, in order to get around the 1:1 limitation,
designers would resort to adding extra div tags here or there just to achieve the intended

visual design.

CSS3 addresses this issue by giving you the ability to define multiple background images for a given

element. Most browsers don't support this feature yet, but fortunately for iPhone application developers,
Mobile Safari does.

93

Chapter 4: Styling with CSS

You define a set of background images by listing them in order after the background property name
declaration. Images are rendered with the first one declared on top, the second image behind the first,
and so on. You can also specify the background-repeat and background-position values for each of
the images. If background-color is defined, then this color is painted below all of the images. For
example:

div.banner {

background: url (header_top.png) top left no-repeat,
url (banner_main.png) top 6px no-repeat,
url (header_bottom.png) bottom left no-repeat,
url (middle.png) left repeat-y;

}

In this code, the header_top.png serves as the background image aligned to the top left portion of
the div element. The banner_main.png is positioned 6px from the top, while the header_bottom.png
image is positioned at the bottom of the div. Finally, the middle.png is treated as a repeating
background.

Setting Transparencies

94

Developers have long used rgb to specify an RGB color value for text and backgrounds. CSS3 adds
the ability to set an alpha value when specifying an RGB color with the new rgba declaration. Using
the rgba declaration, you can add translucent color overlays without transparent PNGs or GIFs. The
syntax is:

rgba(r, g, b, alpha)

The r, g, and b values are integers between 0-255 that represent the red, green, and blue values, while
alpha is a value between 0 and 1 (0.0 is fully transparent, while 1.0 is fully opaque). For example, to set a
red background with a 50 percent transparency, you would use:

background: rgba (255, 0, 0, 0.5);

The alpha value in the rgba declaration is not the same as the opacity property. rgba sets the
opacity value only for the current element, while opacity sets the value for the element and its
descendants.

The following example shows five div elements, each with a different alpha value for the black
background:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>RGBA Declaration</title>

Chapter 4: Styling with CSS

<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<style type="text/css" media="screen">
div.colorBlock {
width: 50px;
height: 50px;
float: left;
margin-bottom: 10px;
font-family: Helvetica;
font-size: 20px;
text-align:center;
color:white;
text-shadow: rgba (0,0, 0, 0.7) 0 1lpx 0;
line-height: 46px;
}
</style>
</head>
<body>
<div style="margin: 10px 0 0 30px;">
<div class="colorBlock" style="background: rgba(0, 0, 0, 0.2);">20%</div>
<div class="colorBlock" style="background: rgba(0, 0, O,
0.4); ">40%</div>
<div class="colorBlock" style="background: rgba(0, 0, O,
0.6); ">60%</div>
<div class="colorBlock" style="background: rgba(0, 0, 0,
0.8); ">80%</div>
<div class="colorBlock" style="background: rgba(0, 0, 0, 1.0)
; ">100%</div>
</div>
</body>
</html>

Figure 4-10 shows the page in Mobile Safari.

Creating CSS-Based iPhone Buttons

Using -webkit-border-image, you can create push buttons that closely emulate Apple’s standard
push button design. This technique, inspired by developer Matthew Krivanek, involves using a pill-
shaped button image (available for download at www . wrox . com), stretching the middle of the button
image, but ensuring that the left and side sides of the button are not distorted in the process.

Begin by defining a normal link with a fullSizedButton class:

Send to Client

95

Chapter 4: Styling with CSS

Ll ATET = 3:44 AM (=

& ol hitp://10.0.1.199/ipd/css/rgba.... G

2SS 40% 60% 80

Figure 4-10: Alpha value can be set using the rgha
declaration.

Next, define the a. fullSizedButton style:

a .fullsSizedButton {
font-family: Helvetica;
font-size: 20px;
display: block;
width: 246px;
line-height: 46px;
margin: 15px auto;
text-align:center;
text-decoration: none;
font-weight: bold;
color: #000000;
text-shadow: rgba (255, 255, 255, 0.7) 0 1lpx 0;
border-width: 0 14px 0 14px;
-webkit-border-image: url (images/whiteButton.png) 0 14 0 14;

96

Chapter 4: Styling with CSS

In the preceding code, the display property is set to block and the width is set to 246px, the width of
the buttons used by Apple. The 1ine-height is set to 46px, which gives the block element the standard
height and vertically centers the button text. A border-width property sets the left and right borders
to 14px and eliminates the borders for the top and bottom by defining their values as 0.

Now that everything else is set up, look at the -webkit-border-image property definition. In this
example, 0 pixels are used from whiteButton.png on the top and bottom. However, the first 14 pixels of
the image are used for the left border of the element, while the 14 rightmost pixels are used for the right
border. Because the whiteButton.png image is 29 pixels in width, a 1-pixel section is used as the middle
section. This middle section is then repeated over and over to fill the width of the element. Figure 4-11
shows how -webkit-border-image divides up the image.

Middle (1px)

14

f

0
Figure 4-11: Carving up an image
for a border

Figure 4-12 shows the button when rendered by Mobile Safari.

Here is the full source code for this example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Basic Button/title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<style type="text/css" media="screen">
a.fullSizedButton {
font-family: Helvetica;
font-size: 20px;
display: block;
width: 246px;
margin: 15px auto;
text-align:center;
(continued)

97

Chapter 4: Styling with CSS

(continued)

text-decoration: none;
line-height: 46px;
font-weight: bold;
color: #000000;
text-shadow: rgba (255, 255, 255, 0.7) 0 1lpx O;
border-width: 0 14px 0 14px;
-webkit-border-image: url (images/whiteButton.png) 0 14 0 14;
}
body {
background-color: black;

}

</style>
</head>
<body>
Send to Client
</body>
</html>
=il ATET 5 3:46 AM -
Basic Button/title=
R P T e B W W e o

http://10.0.1.199/pd/css/bini....

Figure 4-12: A border image

98

Chapter 4: Styling with CSS

Identifying Incompatibilities

While Mobile Safari is closely related to its Mac and Windows counterparts, it is not identical in terms of
CSS support. The latest versions of Safari for Mac and Windows support most of the newer CSS3 and
experimental properties (prefixed with -webkit-). Mobile Safari provides limited support of several
properties.

The following CSS properties are not supported (or have limited support) in Mobile Safari:

U box-shadow
-webkit-box-shadow
text-stroke
-webkit-text-stroke
text-fill-color

-webkit-text-fill-color

U 0000 U0

-website-appearance (push-button supported, but no other values are)

29

Handling Touch Interactions
and Events

An essential part of any Web 2.0 application is the ability to respond to events triggered by the
user or by a condition that occurs on the client. The clicking of a button. The pressing of a key. The
scrolling of a window. While the user interacts with an HTML element, the entire document, or the
browser window, JavaScript serves as the watchful eye behind the scenes that monitors all of this
activity taking place and fires off events as they occur.

With its touch screen interface, iPhone is all about direct interactivity with the user. As a result,
you would expect any iPhone/iPod touch application you create to be able to handle the variety of
finger taps, flicks, swipes, and pinches that a user naturally performs as they interact with their
mobile device. However, because of the current capabilities of Mobile Safari browser, you have to
work with these interactions differently than what you might expect.

How iPhone Handles Events

When working with touch interactions and events for iPhone, keep in mind that the finger is not a
mouse. As a result, the traditional event model that Web developers are so used to working with
does not always apply in this new context. This is both good news and bad news for the applica-
tion developer. The good news is that much of the touch interaction that iPhone and iPod touch
are famous for is built right into Mobile Safari. As a result, you do not need to write any code to
handle the basic touch interactions of the user. Flick-scrolling, pinching and unpinching, and one-
finger scrolling are those sorts of user inputs that come for free. The bad news is that the developer
is greatly constrained in his or her ability to work with the full suite of JavaScript events and
override built-in behavior. As a result, certain user interactions that have become a staple to Web
developers now are impossible to utilize or require tricky, dumbed-down workarounds.

Chapter 5: Handling Touch Interactions and Events

The general rule of thumb for iPhone event handling is that no events trigger until the user’s finger
leaves the touch screen. The implications are significant:

O The onmousedown event handler fires only after a mouse up event occurs (but before
onmouseup is triggered). As a result, the onmousedown event is rendered useless.

O The onmousemove event handler is unsupported. However, on rare occasions, our tests show
that Mobile Safari may trigger an onmousemove event, so developers should not assume that
these handlers will never be called.

a :hover does not work.

In addition, you cannot trap for zoom events associated with the window. First, Mobile Safari provides
no built-in event handler support for zooming out or zooming in. Second, you cannot perform a work-
around by polling the window for width changes, since the width remains the same regardless of the
current zoom factor.

You cannot trap for events associated with a user switching between pages in Mobile Safari. The
onfocus and onblur events of the window object are not triggered when the focus moves off or on a
page. Additionally, when another page becomes the active page, JavaScript events (including polling
events created with setInterval ()) are not fired. However, the onunload event of the window object is
triggered when the user loads a new page in the current window.

Table 5-1 lists the events that are fully supported and unsupported. Table 5-2 identifies the events that
are partially supported.

Table 5-1: JavaScript Event Compatibility

Supported events Unsupported events
formfield.onblur document . onkeydown
formfield.onchange document .onkeypress
formfield.onclick document . onkeyup
formfield.onfocusformfield.onkeydown form.onsubmit
formfield.onkeyup formfield.ondblclick
formfield.onkeypress formfield.onmouseenter
formfield.onmouseout formfield.onmouseleave
formfield.onmouseover formfield.onmousemove
formfield.onmouseup formfield.onselect
form.onreset window.oncontextmenu
window.onload window.onerror
window.onmousewheel window.onresize
window.onorientationchange window.onscroll

102

Chapter 5: Handling Touch Interactions and Events

Table 5-2: Partially Supported JavaScript Events

Event Level of support

document . onmousedown Occurs after a mouseup event occurs but before onmouseup is fired

Besides the anomaly of the timing of the onmousedown event, the rest of the supported mouse and key
events fire in Mobile Safari in the same sequence as a standard Web browser. Table 5-3 shows the event
sequences that occur when both a block level element and a form element are clicked. The form element
column also displays the order of key events if the user types in the on-screen keyboard.

Table 5-3: Event Sequencing

Block-level elements (e.g., div) Form element (e.g., textarea, input)
onmouseover onmouseover
onmousedown onmousedown
onmouseup onfocus
onclick onmouseup
onmouseout onclick
onkeydown
onkeypress
onkeyup
onchange
onblur
onmouseout

Detecting an Orientation Change

One of the unique events that an iPhone application developer will need to be able to trap for is the
change between vertical and horizontal orientation. Newer versions of Mobile Safari (iPhone 1.1.1 and
later) provide support for the onorientationchange event handler of the window object. This event is
triggered each time the device is rotated by the user. The following code shows how to configure the
onorientationchange event:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Orientation Change Example</title>

(continued)

103

Chapter 5: Handling Touch Interactions and Events

(continued)
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<script type="application/x-javascript">
function orientationChange() {
var str = "Orientation: ";
switch(window.orientation) {
case 0:
str += "Portrait";
break;

case -90:
str += "Landscape (right, screen turned clockwise)";
break;

case 90:
str += "Landscape (left, screen turned counterclockwise)";
break;

case 180:
str += "Portrait (upside-down portrait)";
break;

}

document .getElementById("mode") .innerHTML = str;

}
</script>
</head>
<body onload="orientationChange();" onorientationchange="orientationChange();">
<h4 id="mode">Ras sed nibh.</h4>
<p>
Donec semper lorem ac dolor ornare interdum. Praesent condimentum. Suspendisse
lacinia interdum augue. Nunc venenatis ipsum sed ligula. Aenean vitae lacus. Sed
sit amet neque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Duis laoreet lorem quis nulla. Curabitur enim erat, gravida
ac, posuere sed, nonummy in, tortor. Donec id orci id lectus convallis egestas.
Duis ut dui. Aliquam dignissim dictum metus.
</p>
</body>
</html>

An onorientationchange attribute is added to the body element and assigned the JavaScript function
orientationChange (). The orientationChange () function evaluates the window.orientation
property to determine the current state: 0 (Portrait), -90 (Landscape, clockwise), 90 (Landscape
counterclockwise), or 180 (Portrait, upside down). The current state string is then output to the
document.

However, note that the onorientationchange event is not triggered when the document loads.
Therefore, in order to evaluate the document orientation at this time, assign the orientationChange ()
function to the onload event.

While the onorientationchange event works great for iPhone 1.1.1 and later, earlier versions of

Mobile Safari did not support this event. Therefore, if you are designing an application that works on all
versions of Mobile Safari, you need to perform a workaround to emulate this functionality.

104

Chapter 5: Handling Touch Interactions and Events

The window. onresize event handler would seem like a logical candidate to trap for an orientation
change. For example, consider the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<head>
<title>On Resize</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<script type="application/x-javascript">

window.onresize = function() {

alert("window.onresize detected: "+ document.body.offsetWidth +"x"+

document .body.offsetHeight);

Y
</script>
</head>
<body>
<hl>Cras sed nibh.</hl>
<p>
Donec semper lorem ac dolor ornare interdum. Praesent condimentum. Suspendisse
lacinia interdum augue. Nunc venenatis ipsum sed ligula. Aenean vitae lacus. Sed
sit amet neque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Duis laoreet lorem quis nulla. Curabitur enim erat, gravida
ac, posuere sed, nonummy in, tortor. Donec id orci id lectus convallis egestas.
Duis ut dui. Aliquam dignissim dictum metus.
</p>
</body>
</html>

In this example, a function is added as the handler for window.onresize, which calls an alert ()
dialog box each time a window resize is detected. While this is a logical option, the problem with using
window.onresize to detect an orientation change is that this event is triggered inconsistently. It does
not fire off every time. In fact, it usually does not fire until after the third time the orientation changes.
As a result, until Mobile Safari corrects this issue, avoid using onresize.

A much better solution is to poll the browser for orientation changes using the setInterval () function.
Here’s a basic example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Orientation Change Example #l</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<script type="application/x-javascript">

// add timer event

addEventListener ("load", function() {

setTimeout (orientationChange, 0);
}, false);
var currentWidth = 0;

(continued)

105

Chapter 5: Handling Touch Interactions and Events

(continued)

// handler for orientation changes
function orientationChange() {

if (window.innerWidth != currentWidth) {
currentWidth = window.innerWidth;
var orient = (currentWidth == 320) ? "portrait" : "landscape";
// do something useful here
document .getElementById('mode') .innerHTML = 'Current mode: ' + orient;

}
setInterval (orientationChange, 400);

</script>
</head>
<body>
<h4 id="mode">Ras sed nibh.</h4>
<p>
Donec semper lorem ac dolor ornare interdum. Praesent condimentum. Suspendisse
lacinia interdum augue. Nunc venenatis ipsum sed ligula. Aenean vitae lacus. Sed
sit amet neque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Duis laoreet lorem quis nulla. Curabitur enim erat, gravida
ac, posuere sed, nonummy in, tortor. Donec id orci id lectus convallis egestas.
Duis ut dui. Aliguam dignissim dictum metus.
</p>
</body>
</html>

addEventListener () is used to fire the orientationChange () function when the window is loaded.
The orientationChange () function is then called continuously using setInterval () at the end of
the script to poll the browser.

The orientationChange () function itself works by detecting changes in the innerwidth property of
the window. The function compares the innerwWidth against its previously known value, which is stored
in the currentwidth variable. If the innerwidth has changed, then the currentwidth variable is
updated to the new innerwidth value and the orient variable is set with the current orientation. If the
currentWidth equals 320 (the width of iPhone when held in portrait mode), then the orient variable is
assigned the string value of portrait. Otherwise, it receives a string value of 1andscape. For this
example, the orient string value is added to the innerHTML property of the h4 element in the text.

When the vast majority of iPhone users have upgraded to 1.1.1 and later, use of onorientationchange
is recommended. However, until then, the setInterval () workaround is a safer solution.

Changing a Style Sheet When Orientation Changes

The most common procedure that iPhone developers will want to use an orientationChange ()
handler for is to specify a style sheet based on the current viewport orientation. To do so, you can
expand upon the previous orientationChange () handler by updating the orient attribute of the
body element based on the current orientation, and then updating the active CSS styles off of that
attribute value.

106

Chapter 5: Handling Touch Interactions and Events

To add this functionality, you first begin with a basic XHTML document. The following code, based on
Joe Hewitt’s liquid layout template, uses a series of div elements to imitate a basic iPhone interface,
consisting of a top toolbar, content area, and bottom toolbar. The content inside of the center divis
going to be used for testing purposes only. Here’s the code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Change Stylesheet based on Orientation</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
</head>
<body>
<div id="canvasMain" class="container">
<div class="toolbar anchorTop">
<div class="main">
<div class="header">AppTop</div>
</div>
</div>
<div class="center">
<p>Orientation mode:</p>
<p>Width:</p>
<p>Height:</p>
<p>Bottom toolbar height:</p>
<p>Bottom toolbar top:</p>
</div>
<div id="bottomToolbar" class="toolbar anchorBottom">
<div class="main">
<div class="header">

AppBottom
</div>
</div>
</div>
</div></body>

</html>

Next, add CSS rules to the document head. However, notice the selector for the final four rules are
dependent upon the state of the orient attribute of body:

<style type="text/css" media="screen">
body {

margin: 0;
padding: 0;
width: 320px;
height: 416px;
font-family: Helvetica;
-webkit-user-select: none;
cursor: default;
-webkit-text-size-adjust: none;

background: #000000;

(continued)

107

Chapter 5: Handling Touch Interactions and Events

(continued)

color: #FFFFFF;
}
.container {
position: absolute;
width: 100%;
}
.toolbar {
position: absolute;
width: 100%;
height: 60px;
font-size: 28pt;
}
.anchorTop {
top: 0;
}
.anchorBottom {
bottom: 0;
}
.center {
position: absolute;
top: 60px;
bottom: 60px;
}
.main {
overflow: hidden;
position: relative;
}
.header {
position: relative;
height: 44px;
-webkit-box-sizing: border-box;
box-sizing: border-box;
background-color: rgb(111, 135, 168);
border-top: 1lpx solid rgb(179, 186, 201);
border-bottom: 1px solid rgb(73, 95, 144);
color: white;
font-size: 20px;
text-shadow: rgba(0, 0, 0, 0.6) 0 -1lpx 0;
font-weight: bold;
text-align: center;
line-height: 42px;
}
/* Styles adjusted based on orientation */
body[orient="portrait'] .container {
height: 436px;
}
body[orient='landscape'] .container ({
height: 258px;

108

Chapter 5: Handling Touch Interactions and Events

}
body[orient='landscape'] .toolbar {
30px;
lé6pt;
}
body[orient="landscape'] .center ({
bottom: 30px;
}
</style>

Based on the body element’s orient value, the container CSS class changes its height, the top and
bottom toolbars adjust their height and font-size, and the main content area (the center class)
is repositioned to fit with the sizing changes around it.

With the XHTML and CSS styles in place, you are ready to add the JavaScript code inside of the

document head:

<script type="application/x-javascript">

addEventListener ('load', function() {

I

var currentWidth = 0;

setTimeout (orientationChange, 0);

function orientationChange() {

+ 'px';

(window. innerWidth != currentWidth) {
currentWidth = window.innerWidth;

= currentWidth == 320 ? 'portrait' : 'landscape’;

document .body.setAttribute('orient', orient);
setTimeout (function() {

document .getElementById('iMode') .innerHTML = orient;
document.getElementById('iWidth') .innerHTML = currentWidth

document.getElementById('iHeight') .innerHTML =

document .getElementById('canvasMain') .offsetHeight + 'px';

document .getElementById('iToolbarHeight') .innerHTML =

document .getElementById('bottomToolbar') .offsetHeight +'px';

document .getElementById('iToolbarTop') .innerHTML =

document .getElementById('bottomToolbar') .offsetTop +'px';

}
}

setTimeout (function ()
window.scrollTo (0, 1);

{

setInterval (orientationChange, 400);

</script>

109

Chapter 5: Handling Touch Interactions and Events

If you worked through the previous example, the shell of this code looks pretty familiar. The
orientationChange () function is called by the addEventListener () function when the window
is loaded, and then setInterval () is used to poll the browser every 400 milliseconds. The
orientationChange () function evaluates window.innerWidth, checking to see if any change has
occurred since the previous test. If a change is detected, then the body element’s orient attribute is
updated to either portrait or landscape.

This example also outputs some of the changing div size and position values into a series of span
elements for information purposes. Notice that the getElementById () calls are enclosed inside of a
setTimeout () function. Without setTimeout (), the values do not correctly display the first time
orientationChange () is called when the document loads.

Finally, to hide the URL bar, window.scrollTo () is called. Once again, to prevent timing problems, this
call is enclosed inside of a setTimeout () function.

Figures 5-1 and 5-2 show the document loaded in both portrait and landscape modes, respectively.

_____ ATET = 12:12 AM -

Orientation mode:portrait
Width:320px

Height:436px

Bottom toolbar height:60px

Bottom toolbar top:376px

AppBottom

Figure 5-1: Portrait mode

110

Chapter 5: Handling Touch Interactions and Events

AppTop

Orientation mode:landscape

Bottom toolbar height:30px

Bottom toolbar top:228px

AppBotiom

Figure 5-2: Landscape mode

Changing Element Positioning
Based on Orientation Change

Once you begin to understand the basic interaction between an orientationChange () polling function
and orientation-dependent styles, you can begin to dynamically position elements of the Ul based on
whether the current viewport is in portrait or landscape mode. Suppose, for example, you would like to
align an arrow image to the bottom left side of a page. Here’s the img declaration:

To align the graphic in portrait mode, you could specify the CSS rule as:

#pushbtn {
position: absolute;
left: 10px;
top: 360px;

}

However, if you leave the positioning as is, the button would go offscreen when the user tilted the
viewport to landscape mode. Therefore, a second landscape-specific rule is needed for the button image
with an adjusted top value:

body[orient="landscape"] #pushBtn ({
left: 10px;

top: 212px;
}

To adjust the image positioning based on the orientation, add the core orientationChange () polling
functionality:

addEventListener ("load", function() {
setTimeout (orientationChange, 0);
}, false);

(continued)

111

Chapter 5: Handling Touch Interactions and Events

(continued)

var currentWidth = 0;
function orientationChange() {

if (window.innerWidth != currentWidth) {
currentWidth = window.innerWidth;
var orient = (currentWidth == 320) ? "portrait" : "landscape";

document .body.setAttribute('orient', orient);
setTimeout (function() {
window.scrollTo (0, 1);
}, 100);
}
}

setInterval (orientationChange, 400);

As Figures 5-3 and 5-4 show, the button image aligns to the bottom left of the page document in both
portrait and landscape modes respectively.

_____ ATET = 12:18 AM =

Figure 5-3: Push button aligned in portrait mode

112

Chapter 5: Handling Touch Interactions and Events

_____ ATET = 12:19 AM =

Figure 5-4: Push button aligned in landscape mode

Capturing Two-Finger Scrolling

Pinching and flicking are arguably the most popular touch inputs for iPhone and iPod touch, but as a
developer, you have no way to capture these events for your own purposes. You have to go along with
what Mobile Safari does by default. However, you do have a way to manipulate a less popular touch
input — the two-finger scroll. While a one-finger scroll is used to move an entire page around, the
two-finger scroll can be used to scroll inside any scrollable region of a page, such as a textarea. Because
Mobile Safari supports the overriding of the window. onmousewheel event, you can use the two-finger
scroll for your own purposes.

Suppose, for example, you would like to control the vertical position of a ball image based on the
two-finger scroll input of the user inside of a scrollable region. When the user scrolls up, you want the
ball to move up. When the user scrolls down, you want the ball to move down. Figure 5-5 shows the Ul
layout for this example.

Start with the page layout and styles:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>ScrollPad</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<style type="text/css" media="screen">

body {

margin: 0;

padding: 0;

width: 320px;

height: 416px;

font-family: Helvetica;

-webkit-user-select: none;

cursor: default;

(continued)

113

Chapter 5: Handling Touch Interactions and Events

(continued)
-webkit-text-size-adjust: none;
background: #000000;
color: #FFFFFF;
}
#leftPane {
position: absolute;
width: 160px;
height: 100%;
}
#rightPane {
position: absolute;
width: 140px;
left: 1l6lpx;
height:100%;
}
#scrollPad {
width: 148px;
top: 3px;
height: 300px;
border-style: none;
background-image: url('fs.png');

}

#blueDot {
position: absolute;
left: 50px;
top: 10px;
}
</style>
</head>
<body>

<div id="leftPane">
<p>Use a two-finger scroll in the scrollpad to move the blue dot.</p>
<form>
<textarea id="scrollPad" readonly="readonly" disabled="true"></textarea>
</form>
</div>
<div id="rightPane">

</div>
</body>
</html>

The scrollPad textarea element is used as the hot scrollable region. It is enclosed inside of a div on
the left half of the page and sized large enough so that a two-finger scroll is easy for people to perform
inside of its borders. To ensure that the textarea is easy to identify on the screen, an arrow PNG is
added as the background image and a solid border is defined. The disabled="true" attribute value
must be added to prevent keyboard input in the control. On the other side of the page, the blueDot img
is enclosed inside of a div on the right.

The interactivity comes by capturing window . onmousewheel, which is the event Mobile Safari triggers
when a user performs a two-finger scroll. You do that through an addEventListener () call:

114

Chapter 5: Handling Touch Interactions and Events

_____ ATET = 12:22 AM =k

Use a two-finger scroll
in the scrollpad to
move the blue dot.

Figure 5-5: Ul for the ScrollPad application

addEventListener ('load', function() {

window.onmousewheel = twoFingerScroll;
setTimeout (function() {

window.scrollTo (0, 1);
Y, 100);
}, false);

As shown in the preceding example, a function called twoFingersScroll () is assigned to be the
event handler for window. onmousewheel. And, as is now typical for iPhone applications, a
window.scrollTo () is called inside setTimeout () to hide the URL bar.

Next, here’s the code for twoFingerScroll ():

function twoFingerScroll (wEvent) ({

var delta = wEvent.wheelDelta/120;
scrollBall (delta) ;
return true;

115

Chapter 5: Handling Touch Interactions and Events

The wheelDelta property returns -120 when the scroll movement is upward and a positive 120 when
the movement is downward. This value is divided by 120 and assigned to the delta variable, which
is then passed onto the scrol1Ball () function.

The scrollBall () function is used to manipulate the vertical position of the ball:

var currentTop = 1;
var INC = 8
function scrollBall (delta) {
currentTop = document.getElementById('blueDot').offsetTop;
if (delta < 0)
currentTop = currentTop-INC;
else if (delta > 0)
currentTop = currentTop+INC;
if (currentTop > 390)
currentTop = 390;
else if (currentTop < 1)
currentTop = 1;
document .getElementById('blueDot') .style.top = currentTop + 'px';
setTimeout (function() {
window.scrollTo (0, 1);
}, 100);

The currentTop variable is used to store the current top position of the blueDot img. The delta
variable is then evaluated. If the number is less than 0, then currentTop decreases by the value of INC.
If greater than 0, then it increases by the same amount. While INC can be any value, 8 seems the most
natural for touch interaction in this example. To ensure the blueDot does not scroll off the top or bottom
of the viewport, the currentTop value is evaluated and adjusted as needed. The blueDot style.top
property is updated to the new value. Finally, to ensure that inadvertent touch inputs do not cause the
URL bar to display, window.scrollTo () is called.

This technique enables you to effectively utilize the two-finger scroll in your own applications. However,
there are two caveats to using this touch input:

O The biggest downfall to implementing the two-finger scroll in your application is that it is a
tricky touch input for a user to pull off consistently. If one of the fingers lifts up off of the glass
surface, Mobile Safari is unforgiving. It immediately thinks the user is performing a one-finger
scroll and begins to scroll the entire page.

O There is no way to effectively program a flicking action in association with a two-finger scroll
to accelerate the rate of movement of the element you are manipulating. Instead, there is

always a 1:1 correspondence between the firing of an onmousescroll event and the position
of the element.

Finally, I should mention that this demo works only in portrait mode and is not enabled for landscape.

116

Chapter 5: Handling Touch Interactions and Events

Simulating a Drag-and-Drop Action

I'mentioned already that Mobile Safari does not provide support for drag-and-drop actions.

However, it is possible to use the two-finger scrolling technique to implement a poor man’s version of
drag-and-drop. Therefore, instead of manipulating another object as shown in the previous example, you
can dynamically reposition the scrollable region when the user performs a two-finger scroll on it. How-
ever, in addition to the two-finger scroll limitations previously discussed, keep in mind the following
constraints to simulating drag-and-drop:

QO Atwo-finger scroll is not a standard drag- and-drop input for iPhone.

0 The dragging element can only move around in a vertical position. There is no way to program-
matically move in a horizontal position based on a user’s two-finger scroll input.

QO Because the two-finger scroll is happening on the element being moved, this interaction has a
tendency to cause inadvertent page scrolling.

With those constraints in mind, consider the following example, which uses a two-finger scroll to move a
globe image (see Figure 5-6) from the top to the bottom of a page. As the globe hits the bottom of the
page, the image is changed to simulate the animation of a melting globe (see Figure 5-7).

_____ ATET = 12:25 AM —

Figure 5-6: The globe can move up or down based
on a two-finger scroll.

117

Chapter 5: Handling Touch Interactions and Events

_____ ATET = 12:26 AM =k

Figure 5-7: When the globe hits the bottom of the
viewport, it begins to melt.

The full source code for this example follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Poor Man's Drag & Drop</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<style type="text/css" media="screen">
body {
margin: 0;
padding: 0;
width: 320px;
height: 416px;
font-family: Helvetica;

118

Chapter 5: Handling Touch Interactions and Events

-webkit-user-select: none;
cursor: default;
-webkit-text-size-adjust: none;
background: #000000;
color: #FFFFFF;
}
#dropItem {
position: absolute;
left: 10px;
top: 10px;
width: 300px;
height: 303px;
border-color: #000000;
background-image: url('globe.png');
}
</style>
<script type="application/x-javascript">
addEventListener ('load', function() {
setTimeout (function() {
window.scrollTo (0, 1);

}, 100);
}, false);
</script>
</head>
<body>
<form>

<textarea id="dropItem" readonly="readonly" disabled="true"></textarea>
</form>
<script type="application/x-javascript">
var droplItem = document.getElementById('dropltem') ;
window.onmousewheel = moveltem;
function moveItem(wEvent) ({
var delta = wEvent.wheelDelta/120;

var currentTop = parselnt (dropItem.style.top) || 0;
currentTop = currentTop + delta;
dropItem.style.top = (currentTop) + "px";

setTimeout (function() {
if (currentTop > 195)

dropItem.style.backgroundImage = 'url(globemelt.png)';
else if (currentTop < 195)
dropItem.style.backgroundImage = 'url(globe.png)';
}, 100);
setTimeout (function() {
window.scrollTo (0, 1);
}, 100);
}
</script>
</body>
</html>

119

Chapter 5: Handling Touch Interactions and Events

Since it provides support for a two-finger scroll, a textarea is used as the draggable element. It is sized
big enough (300 x 303px) so that an average user can easily place two-fingers on it. (If you make the
element too small — say 60 x 60 — then it becomes virtually impossible to get two-fingers on it.) The
border of the element is hidden and a background image is assigned to it. A disabled="true" attribute
value is added to textarea to prevent the keyboard from displaying when the user selects the element.

Next, this example shows an alternative way to trap for the window. onmousewheel event. Note that the
JavaScript code is placed in a script element at the bottom of the page rather than in the document
header so that it loads after everything else on the page. The moveItem() function is used to adjust the
vertical positioning of the textarea based on the wheelDelta value received from the onmousewheel
event. The current position is then evaluated to determine the correct background image to display. This
code is wrapped inside of a setTimeout () to prevent timing issues from occurring.

Trapping for Key Events
with the On-Screen Keyboard

As with an ordinary Web page, you can validate keyboard input by trapping the onkeydown event. To
illustrate, suppose you have an input field in which you wish to prevent the user from entering in a
numeric value. To trap for this, begin by adding an onkeydown handler to the input element:

<input onkeydown="return validate(event)" />
In the document header, add a script element with the following code inside of it:

function validate(e) {
var keynum = e.which;
var keychar = String.fromCharCode (keynum) ;
var chk = /\d/;
return !chk.test (keychar)
}

As a standard JavaScript validation routine, this function tests the current character code value to

determine whether it is a number. If a non-number is found, then true is returned to the input field.
Otherwise, a false is sent back and the character is disallowed.

120

Advanced Programming
Topics: Canvas and Video

The unique platform capabilities of iPhone and iPod touch enable developers to create innovative
applications inside of Mobile Safari that go beyond the normal “Web app” fare. Mobile Safari’s
support for the canvas element opens drawing and animation capabilities in an ordinary HTML
page that was previously available only by using Flash or Java. What’s more, deep inside the heart
of these two Apple devices lies the best portable audio and video media player that money can
buy. As an application developer, you can take advantage of these iPod capabilities by seamlessly
integrating multimedia into your mobile applications.

However, once you begin to open up these capabilities of Mobile Safari or the device itself, you
need to be sure that you are working with an iPhone and iPod touch rather than a desktop
browser. So, I'll start by showing you how to identify the user agent for iPhone and iPod touch.

Identifying the User Agent
for iPhone and iPod touch

When you are trying to identify the capabilities of the browser requesting your Web site or
application, you generally want to avoid detecting the user agent and use object detection instead.
However, if you are developing an application designed exclusively for iPhone/iPod touch or
need Safari-specific features, such as canvas, then user agent detection is a valid option. Therefore,
this chapter assumes you are creating a Mobile Safari—specific application. Chapter 8 discusses
using media queries in general Web contexts.

Chapter 6: Advanced Programming Topics: Canvas and Video

The Mobile Safari user agent string for iPhone closely resembles the user agent for Safari on other
platforms. However, it contains an iPhone platform name and the mobile version number. Depending on
the version of Mobile Safari, it will look something like this:

Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1A543a Safari/419.3

Here’s a breakdown of the various components of the user agent:

QO The platform string: (iPhone; U; CPU like Mac 0S X; en).Notice the “like Mac 0S X”
line, which reveals some the underpinnings of the iPhone.

O The WebKit engine build number: AppleWebkit/420+. This Safari version number is provided
on all platforms (including Mac and Windows).

O The marketing version: (Version/3.0). This Safari version number is provided on all platforms
(including Mac and Windows).

0 OS X build number: Mobile/1A543a.

O Safari build number: Safari/419.3.
The iPod touch user agent is similar, but distinct with iPod as the platform:

Mozila/5.0 (iPod; U; CPU like Mac 0S X; en) AppleWebKit/420.1 (KHTML, like Geckto)
Version/3.0 Mobile/3Al0la Safari/419.3

The version numbers will change, obviously, when Apple updates Mobile Safari, but the string structure
stays the same.

To test to whether the device is an iPhone/iPod touch or not, you need to perform a string search on
iPhone and iPod. The following function returns true if the user agent is either an iPhone or iPod touch:

function isAppleMobile() {
result ((navigator.platform.indexOf ("iPhone") != -1) ||
(navigator.userAgent.indexOf ('iPod') != -1))

Be sure not to test for the string Mobile within the user agent, because a non-Apple mobile device (such
as Nokia) might be based on the WebKit-based browser.

If you need to do anything beyond basic user agent detection and test for specific devices or browser versions,
however, consider using WebKit’s own user agent detection script available for download at trac.webkit
.org/projects/webkit/wiki/DetectingWebKit. By linking WebKitDetect js to your page, you can test
for specific devices (iPhone and iPod touch) as well as software versions. Here’s a sample detection script:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>User Agent Detection via WebKit Script</title>

<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;

user-scalable=0; ">

<script type="application/x-javascript" src="WebKitDetect.js"></script>

</head>

122

Chapter 6: Advanced Programming Topics: Canvas and Video

<body>
<p id="log"></p>
</body>
<script type="application/x-javascript">
function addTextNode (str) {
var t = document.createTextNode (str) ;
var p = document.getElementById("log") ;
p.appendChild(t) ;
}
if (WebKitDetect.isMobile()) {
var device = WebKitDetect.mobileDevice() ;
// String found in Settings/General/About/Version
var minSupport = WebKitDetect.mobileVersionIsAtLeast ("1C28");
switch(device) {
case 'iPhone'
if (minSupport) {
addTextNode ('If this were a real app, I launch its URL right now.');
break;
}
else {
addTextNode (' Please upgrade your iPhone to the latest update before
running this application.');
break;
}
case 'iPod'
addTextNode ('If this were a real app, I would launch its iPod touch
version.');
default
addTextNode ('This mobile device is not supported by this application.
Go to your nearest Apple store and get an iPhone.');
}
}
else {
addTextNode ('Desktop computers are so 1990s. Go to your nearest Apple store and
get an iPhone.');
}
</script>
</html>

With the WebKitDetect js script included, the webKitDetect object is accessible. Begin by calling its
isMobile () method to determine whether the device is or is not a mobile device. Next, check to ensure
that the mobile version is the latest release and save that result in the minSupport variable. The switch
statement then evaluates the mobile devices. If it is an iPhone, then it checks to see if minSupport is true. If
so, then a real application would begin here. If minSupport is false, then the user is notified to update his
or her iPhone to the latest software version. The remaining two case statements evaluate for an iPhone or
else an unknown mobile device. The final else statement is called if the device is not a mobile computer.

Programming the iPhone Canvas

C++ and other traditional software programmers have long worked with a canvas on which they could
draw graphics. In contrast, Web developers typically program the presentation layer using HTML and
CSS. But unless they used Flash or Java, they had no real way to actually draw graphical content on a

123

Chapter 6: Advanced Programming Topics: Canvas and Video

Web page. However, both desktop and mobile versions of Safari support the canvas element to provide
a resolution-dependent bitmap region for drawing arbitrary content. The canvas element defines a
drawing region on your Web page that you then draw on using a corresponding JavaScript canvas
object. The canvas element is part of the Web Hypertext Application Technology Working Group
(WHATWG) specification for HTML 5.0.

The canvas frees you up as an application developer to not only draw anything you want to, but also to
use canvas as a way to render graphs, program games, or add special effects. On Mac OS X, the canvas is
often used for creating Dashboard widgets. On iPhone, Apple makes use of the canvas for both the Clock
and Stocks built-in applications.

Canvas programming can be a mindset difference for Web developers used to manipulating existing
graphics rather than creating them from scratch. It is the loose equivalent of a Photoshop expert
beginning to create content using an Adobe Illustrator-like program in which all of the graphics are
created in a nonvisual manner.

Defining the Canvas Element

The canvas is defined using the canvas element:

<canvas id="theCanvas" width="300" height="300"/>
Except for the src and alt attributes, the canvas element supports all of the same attributes as the img
tag. However, the 1d, width, and height attributes are not required, but should be defined as a sound
programming practice. The width and height are usually defined in pixels, although it could also be a

percentage of the viewport.

You can place multiple canvas elements on a page, just as long as each one has its own unique id.

Getting a Context

Once a canvas region is defined on your Web page, you can then draw inside of the flat two-dimensional
surface using JavaScript. Just like a Web page, the canvas has an origin (0,0) in the top left corner. By
default, all of the x,y coordinates you specify are relative to this position.

As the first step in working with the canvas, you first need to geta 2d context object. This object,
which is responsible for managing the canvas’ graphics state, is obtained by calling the getContext ()

method of the canvas object:

var canvas = document.GetElementById("theCanvas");
var context = canvas.getContext ("2d");

Or, because you don’t normally work directly with the canvas object, you can also combine the
two lines:

var context = document.GetElementById("theCanvas") .getContext ("2d");

All of the drawing properties and methods you work with are called from the context object. The
context object has many properties (see Table 6-1) that determine how the drawing looks on the page.

124

Chapter 6: Advanced Programming Topics: Canvas and Video

Table 6-1: Context Properties

globalCompositeOperation

lineCap

lineJdoin

linewidth

miterLimit

shadowBlur
shadowColor

shadowOffsetX

shadowOffsetY

strokeStyle

Property Description

fillstyle Provides CSS color or style (gradient, pattern) of the fill of a
path.

globalAlpha Specifies the level of transparency of content drawn on the

canvas. Floating point value is between 0.0 (fully
transparent) and 1.0 (fully opaque).

Specifies the compositing mode to determine how the
canvas is displayed relative to background content.

Values include copy, darker, destination-atop,
destination-in, destination-out,
destination-over, lighten, source-atop, source-in,
source—out, source-over, Xor.

Defines the end style of a line. String values include butt
for flat edge, round for rounded edge, square for square
ends. (Defaults to butt.)

Specifies the way lines are joined together. String values
include round, bevel, miter. (Defaults tomiter.)

Specifies the line width. Floating point value is greater than 0.

Specifies the miter limit for drawing a juncture between
line segments.

Defines the width that a shadow covers.
Provides CSS color for the shadow.

Specifies the horizontal distance of the shadow from the
source.

Specifies the vertical distance of the shadow from the source.

Defines the CSS color or style (gradient, pattern) when
stroking paths.

Drawing a Simple Rectangle

There are several techniques for drawing on the canvas. Perhaps the most straightforward is by drawing
a rectangle. To do so, you work with three context methods:

O context.fillRect (x,y,w,h) draws a filled rectangle.

0 context.strokeRect (x,y,w,h) draws a rectangular outline.

0 context.clearRect(x,y,w, h) clears the specified rectangle and makes it transparent.

125

Chapter 6: Advanced Programming Topics: Canvas and Video

For example, suppose you would like to draw a rectangular box with a set of squares inside of it and a
rectangular outline on the outside. Here’s a JavaScript function that draws that shape:

function draw() {

var canvas

var context
context.
context.
context.
context.
context.)
context.)
.clearRect (70,100,30,30)
0

context

context.

}

= document .getElementById('myCanvas') ;
= canvas.getContext('2d');
strokeRect (10,10,150,140) ;
fillRect (15,15,140,130);
clearRect (30,30,30,30);
clearRect (70,30,30,30);
clearRect (110,30,30,30
clearRect (30,100,30,30
(
(

i

7

clearRect (110,100,30,30);

Once the context is obtained, then strokeRect () creates a rectangular outline starting at the
coordinate (10,10) and is 150 x 140 pixels in size. The £i11Rect () method paints a 140 x 130 rectangle
starting at coordinate (15,15). The six clearRect () calls clear areas previously painted by fillRect ().
Figure 6-1 shows the result.

126

| B 11:43 PM =

s ol http://10.0.1.196/ipd/canvas/b... G

Figure 6-1: Rectangular blocks drawn on a canvas

Chapter 6: Advanced Programming Topics: Canvas and Video

The full page source is shown in the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Draw Box</title>

<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;

user-scalable=0; ">

<script type="application/x-javascript">

function draw() {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
context.strokeRect (10,10,150,140);
context.fillRect (15,15,140,130);
context.clearRect (30,30,30,30);
context.clearRect (70,30,30,30);
context.clearRect (110,30,30,30)
context.clearRect (30,100,30,30)
context.clearRect (70,100,30,30)
context.clearRect (110,100,30,30

i

’

)i

}

</script>

</head>

<body onload="draw() ">

<canvas id="myCanvas" width="300" height="300" style="position:absolute; left:0px;
top:0px; z-index:1"/>

</body>

</html>

Drawing Other Shapes

Non-rectangular shapes are drawn by creating a path for that shape, and then either stroking (drawing) a
line along the specified path or else filling (painting) in the area inside of the path. Much like an Etch A
Sketch drawing, paths are composed of a series of subpaths, such as a straight line or an arc that together
form a shape.

When you work with paths, the following methods are used for drawing basic shapes:

O beginPath() creates a new path in the canvas and sets the starting point to the
coordinate (0,0).

O closePath() closes an open path and attempts to draw a straight line from the current point to
the starting point of the path. The use of closePath () is optional.

0 stroke() draws a line along the current path.

QO £i11() closes the current path and paints the area within it. (Because £111 () closes the path
automatically, you don’t need to call closePath () when you use it.)

127

Chapter 6: Advanced Programming Topics: Canvas and Video

U 1lineTo(x,y) adds aline segment from the current point to the specified coordinate.

U moveTo (x,y) moves the starting point to a new coordinate specified by the x,y values.

Using these methods, you can create a list of subpaths to form a shape. For example, the following code
creates two triangles next to each other; one is empty and one is filled. An outer rectangle surrounds
both triangles. Here’s the code:

function drawTriangles () {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
// Empty triangle
context.beginPath() ;
context.moveTo (10,10) ;
context.lineTo(10,75);
context.lineTo(100,40);
context.lineTo(10,10);
context.stroke() ;
context.closePath() ;
// Filled triangle
context.beginPath() ;
context.moveTo (110,10) ;
context.lineTo(110,75);
context.lineTo(200,40)
context.lineTo(110,10)
context.fill();
// Outer rectangle
context.strokeRect (3,3,205,80);

i

i

Figure 6-2 shows the results.

If you are new to canvas programming, drawing complex shapes on the canvas can take some getting
used to. You may find it helpful initially to go low tech and use a piece of graph paper to sketch out the
shapes you are trying to draw and calculate the x,y coordinates using the paper grid.

The JavaScript canvas enables you to go well beyond drawing with straight lines, however. You can use
the following methods to create more advanced curves and shapes:

O arc(x, y, radius, startAngle, endAngle, clockwise) adds an arc to the current sub-
path using a radius and specified angles (measured in radians).

O arcTo(xl, yl, x2, y2, radius) adds an arc of a circle to the current subpath by using a
radius and tangent points.

U quadratricCurveTo(cpx, cpy, x, y) addsa quadratic Bezier curve to the current subpath.
It has a single control point (the point outside of the circle that the line curves toward) repre-
sented by cpx, cpy. The x,y values represent the new ending point.

128

Chapter 6: Advanced Programming Topics: Canvas and Video

= 11:47 PM

s ol hitp://10.0.1.196/ipd/canvas/p... G

4 m)

Figure 6-2: Drawing two triangles

U bezierCurveTo(cplx, cply, cp2x, cp2y, x, y) addsa cubic Bezier curve to the current

subpath using two control points.

Using arc (), I can create a filled circle inside of an empty circle using the following code:

function drawCircles () {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
// Create filled circle
context.beginPath() ;
context.arc(125,65,30,0, 2*pi, 0);
context.fill();

(continued)

129

Chapter 6: Advanced Programming Topics: Canvas and Video

(continued)
// Create empty circle
context.beginPath() ;
context.arc(125,65,35,0, 2*pi, 0);
context.stroke() ;
context.endPath() ;
}

The arc () method starts the arc shape at coordinate (125,65) and draws a 30px radius starting at 0
degrees and ending at 360 degrees at a counterclockwise path.

Figure 6-3 displays the circle shapes that are created when this script is run.

il ATET = 11:49 P -

s ol http://10.0.1.196/ipd/canvas/a... C

< m o

Figure 6-3: Using arc() to draw a circle

130

Chapter 6: Advanced Programming Topics: Canvas and Video

Drawing an Image

In addition to lines and other shapes, you can also draw an image onto your canvas by using the
drawImage () method. The image can reference either an external image or another canvas element on
the page. There are actually three ways in which you can call this method. The first variant simply draws
an image at the specified coordinates using the size of the image:

context.drawImage (image, X, Vy)

The second method enables you to specify the dimensions of the image with the w and h arguments:

context.drawImage (image, x, y, width, height)

To do a basic image draw, define the Image object and assign an src. Next, you want to draw the image,
but only after you are certain the image is fully loaded. Therefore, the drawImage () method is placed
inside of the image’s onload handler:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Draw Image</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<script type="application/x-javascript">
function drawImg () {

var canvas = document.getElementById('myCanvas') ;

var context = canvas.getContext('2d');

var img = new Image();

img.src = 'images/beach.jpg';

img.onload = function() {

context.drawImage(img, 0, 0);

}

}

</script>

</head>

<body onload="drawlImg()">

<canvas id="myCanvas" width="300" height="300" style="position:absolute; left:0px;
top:0px; z-index:1"/>

</body>

</html>

Figure 6-4 shows the image displayed inside of the canvas. Keep in mind that this is not an HTML img
element, but the external image file drawn onto the context of the canvas.

131

Chapter 6: Advanced Programming Topics: Canvas and Video

s ATET = 3:37 PM

< ' FA 2]

Figure 6-4: Drawing an image onto the canvas

Additionally, there is a final drawImage () option that is slightly more complex:

context.drawImage (image, sourcex, sourcey, sourceWidth, sourceHeight, destx, desty,
destWidth, destHeight)

In this variant, the method draws a subsection of the image specified by the source rectangle (sourcex,
sourcey, sourceWidth, sourceHeight)onto a destination rectangle specified by the final arguments
(destx, desty, destWidth, destHeight).For example, suppose you just wanted to display the
rock thrower in Figure 6-4 rather than the entire picture. Using this expanded syntax of drawImage (),
you want to extract a 79 x 131px rectangle from the original picture starting at the coordinate

(151, 63). You then paint the same sized rectangle at coordinate (10, 10) on the canvas. Here is the
updated code:

function drawImg () {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
var img = new Image();

132

Chapter 6: Advanced Programming Topics: Canvas and Video

img.src = 'images/beach.jpg';
img.onload = function() {
context.drawImage(img, 151, 63, 79, 131, 10, 10, 79, 131);
}
}

Figure 6-5 shows the result.

< M ©
Figure 6-5: Painting a portion of an image
You can also use a data: URI encoded image (see Chapter 10 for more details on data: URI encoding) to
eliminate the need for an external image file altogether for canvas painting. For example, start with an

online image encoder, such as the one available at www. scalora.org/projects/uriencoder. Using
this tool, you encode the image, as shown in Figure 6-6.

133

Chapter 6: Advanced Programming Topics: Canvas and Video

data: LRI image ercader

data: URI image encoder

Over 10241 fies encoded.

Image

var img_src = dataiimage/jpeq;basesd,’
' {91/ ANADEKTIR k TANRRIY £+ AADKE Kb 2T LG £/BAIOA" 4
‘o 2 COONCO0 T MegNDve tmliARyRrKynr® o
*RyncEwEIChg. 7053007 +

‘KysrRysrRysc/BAAE0AIAZEAVELARIRAQNRAL / EATEAAREFAQEDARAAARAANAARAT BANQF ngm.cu:a .

o SHITX
UVECOhTpdrunlF Imy S IESGOORATVRET. e e vys DCTEVELABKT u= ES’ +
i i 57 s.uoﬁrao Ikiiak
T4nYES FUBHEEICNe PEINNE" +
LTI RIGARYRC i TEERLALALNAREY® +
52EkeF21edDXPOT 0K BAELHLY 2/ KV 36 abxknvil/ Sy / LKyFPNAqpuTC” ¢
Jﬁan rzgh' +
" I aMS ISR FREVKDE, AMDR *

‘Ldygl
*SHapLARIAETRYREA 0¥ /L
' REGAVE+TImd tydTathdnd
R xuMdw Vo pl RGx

95 1

X8 oxt ENY SCpApUVUCHY Sansbi Lo
jageg TiNas)

i o 3w
i THtUaxhlly!"lkﬂbu!m;B;luCt(glClk\" +
v i 1IFauls?, .

L83b/ MMgngeruEYvh/SB/ IRRIPHEURE+§1
DBk JASOONEREW/ £ XL 1M+ EdykT 4 /BIVC M+ Earlavﬂ]wuﬂ
Thxi iw

0CanayR1Epbd] fauced

Ta0pt1JJIKSSuLe

Figure 6-6: Encoding an image

The outputted encoded string can then be integrated into the script code as the image object’s source
(much of the encoded text for this example has been removed for space reasons):

134

function drawImg () {

var img_src = 'data:image/jpeg;base6d,’' +

' /93 /4AAQSkZIRGABAgGAAZABKAAD/ 7AARRHVja3kAAQAEAAAAMAAA /+4ADKFkb2J1AGTAAAAAAT /DATIQA
' CQYGBgcGCQCcHCQO IBwgNDwsJCQsPEQ40Dw40OERENDg40Dg0RERQUFhQUEROaHBWaGiYmJ 1 YmKysrKysr'
' Ky srKwEJCAgJICgkMCgoMDwwODASTDg40DhMVDg4 PDg4VGhMREREREX0XGhYWFhoXHR0aGh0dJCQFIJCQr '
'KysrKysrKysr/8AAEQUA4AESAWEIAATRAQMRAT /EAJS8AAAEFAQEBAAAAAAAAAAAAAATBAWQFBgAHCAEA
' AWEBAQAAAAAAAAAAAAAAAAECAWQFEAABAWI EAWUFBQCEAQUAAAABAATDEQQhMRIFQVETYXGBIgaRoTIj '
'FLFCUnIzwdFiQyQO0B+GCkhWy01lODNRCRAAICAQMCBAUDBAMAAAAAAAABEQTIhMRIDQVFhcYEikaGXEWTB'
' MKLw4VIjOWKC/90ADAMBAATIRAXEAPWDYO2 t 5TARAVIbgHFaWRKETZzCMz ia8VSMEocxw+HVg5WgTke Ovy '
' ZKLmtk6Ke 0t YmgRNAYypglK6MU1iaOQXEKCgSkS1ImIRWcA+U3uVaFaQj5be5AMKi61VegQKS1iJIgBKLKG!'
' 5ACLkg5ACLKg5ACIEQS5ACIKIVYABXFKkQAIQhKUIiAEKSI IpKIAAhCQjSEIAAOCSEZQl1AgaL.gJaJQEDGbhg '
'VhcOYTOOAIN/ IHBPX £ 6DuSDtbKQUPBxr7kpyOMDI9x+1 / 8pWQ/m+P7VsLr+3k/KV] /wCZ4p9GLsT/APpI"
'OmIIzR8p0jsSHErPNY1jOxowbgpW5TOudxk fm2LyN7zi5R8u5I1vIJAPYhPVRHNDKfSTEXnpOl tXXcu4X'
'rOpY7TC671j0T3g6YYj+Z5CsLL1B61vPUCTTdyPmmmal8IPyg2vnb08tLWlXendsu7v08+K2idI7cdwg’
'h10jAQwMMzIRACThmrgT07centnvNyaz6ned2010b8NvHI+oWEiIriV2cfHEZV11Je+2zX0+BwcvLlx77Q"
'0Ws/9dE/r4z1M5u8zX7zaQwnRbwuj6IpgOrKZtQH+9Qt7AG87g0C1LmYAf8AyOVptdplvU9iJcI7S0G4 "
'm1cGQRN1d/4gpguDcbgb4108zPkmdg/FROgPtWPIpTnG6+PRE3N+PDUZ28cv/wBP+wF8a3cnGhDa9rQG'
'n7FHfknnwyCBk7h5JX0ODXE4Aktpqw8V13Z3VgY23MToTK3gMDsKtOFfaFg02248fidCaSSnw+AwWESFHJK
' SMYKUOPIADMKS8AOKft7a7EzIxZ0On1kAfHG5j6uacjpbQlpVlJuh28 fTRWVtb3rD/AFB60sUFCI/nl3eV!
' VeNRNnCXgTbkcxVbm/H5kaBn09 jNcwQNuomPZFLAPIDWudiGRsqCa0zPSUKW7nl1FCQxnFjAGtFewLZv9 '
'Y3EOxWt4yxtRNPM+JwODSTGOfMOtpj51RyerdzeySLo2jYpfijFtHT3hbcleNKgXI9JhV7/mPF£1s7N8S"
'wd127Y£QoySSTmTxS0XONXF1AKmtAKDWCTCg5TgDMO0jm6SQR1 i ATQDTNRABRKEQG2wwhF3euK5AAkJT7 !
' 1yRACJOK41CD57] jkgQYXNEkhp5R4ApNWkVGaCpOJ zKcBIuCRKkOaBirgmlOGAF1SuwSGenAp+U/IPco4K'
'dubhls9xya0krZHPOKbc7k9NlowdyCslPw8vFAZQgDLioUTnTSumdm817hwVrbUHgsnlnVvbak6BoACL !

+ o+ + A+ A+ o+ o+ o+ o+ o+ o+ o+ o+ +

Chapter 6: Advanced Programming Topics: Canvas and Video

'tywUWM44J8091pCZz60VLve/Tt3mvBWssoaM1nN3c65kZA30V7WD/calYkZ6 /wBpvdvbFJcN8103gxyD' +
' I6vNpPaFDIBHby5r1q9261vLF1jcN1RaQ0c2loolze0LzDddtn2y8fazCtMWP4PacnBJCsoK84Yc8ihd!' +
' 4HNE7t45psk6gDmEyGeibFul7snog07tdIDhcyOLhUJROSUMOHZ51VbDv04Xd/ fyXtw+46110JNZgMhS ' +
'jchSvB0O31yGf4422AHGa5fXuY6R32kLP7XeiyuxM8F0T2vi1Az0SNOmnaM1 2X5HW3Cpagqglb7Z0OKnErU" +
'57bU709knlwzf£7 Bt 9pDPudwDNdbna6YoWsLi2GFjWSup/E61exQrR8M/pg93G7gbd3AANBFAuYGOdEG' +
' 1zHUAWAJ Iw7 1QWPg7dbadMshbdQuPmhkGAYRpc2NwoWvbhhgrrbmnfrXc4LS5kc6b6ZvSdGyIsMQKNWM ' +
'axxaaCuQF fFaU5aXxxTWLe3u9ZMr 8N+NbrvE19yelU4 jwKpkcMVtbXWirLG0bcVPGaSWRsbSPzmvclX+3' +
'emYtw2 fZru9A0NdNeX9w8+YxF3UaxleD8yqrcd22yz3C92gelN3tzGQWvy39INANsDVZTjm5xVZuXgndL ' +
'xs9tFK6322UgMtGkUaxrQxrNVK0o3FZ7+Ljb3eb6Ft2r /ACX6YNAnNyJbfzL3bn/jZaefuZ6BZ+p9svLlG' +
'43Nhi+rtnTR2keHUERLWMCWA6tJzPYsp61sWTGHeLZ8cwlAivei7Wlk1ARjn5gciskCpdhul /t7nus5] "' +
' D1BpKAALXDhVrgRUcCov+WuSuy9YT6rv3gv]/D+1ffx2yuj0jtJ03d4isLHbgaZzbQPM7eI11DZHA%0rp ' +
' 8FUpQ/W8ulJLnnU5+bgnEnE41SEAUOMtQCcKUPJc17bnPTReSwdVK7axqg8tvxeWcVyTi1lUFnL1y5AHJIC' +
'1JQ1AjkhPtSoCUWEJQB2LkVvFNu8rimhMPVg8EtUDCKA1iJAPpCqghOaXguSKOCVCi4I6h0P/9k=";

var canvas = document.getElementById('myCanvas') ;

var context = canvas.getContext ('2d');

var img = new Image();

img.src = img_src;

img.onload = function() {

context.drawImage(img, 10, 10);

}

Figure 6-7 shows the rendered image.

[ATRT = 4:31 PM =

E ol http://10.0.1.19%/ipd/canvasii... G

Figure 6-7: Encoded image

135

Chapter 6: Advanced Programming Topics: Canvas and Video

Adding Color and Transparency

The £il1Style and strokeStyle properties of the context object provides a way for you to set the
color, alpha value, or style of the shape or line you are drawing. (See Table 6-1 for a list of all context
properties.) If you would like to set a color value, you can use any CSS color, such as:

context.fillStyle="#666666";
context.strokeStyle=rgb(125,125,125);

Once you set £i11Style or strokeStyle, it becomes the default value for all new shapes in the canvas
until you reassign it.

You can also use rgba (r, g, b, a) to assign an alpha value to the shape you are filling in. The r, g, and b
parameters take an integer value between 0-255, while a is a float value between 0.0 and 1.0 (0.0 being fully
transparent, and 1.0 being fully opaque). For example, the following code draws two circles in the canvas. The
large circle has a 90 percent transparency value, while the smaller circle has a 30 percent transparency value:

function drawTransCircles() {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
// Large circle - 90% transparency
context.fillStyle = "rgba(13,44,50, 0.9)";
context.beginPath() ;
context.arc(95,90,60,0, 2*pi, 0);
context.fill();
// Smaller circle - 30% transparency
context.fillStyle = "rgba(0,0,255, 0.3)";
context.beginPath() ;
context.arc(135,120,40,0, 2*pi, 0);
context.fill();

}

Figure 6-8 shows the two colored, semitransparent circles. Alternatively, you can set the context
.globalAlpha property to set a default transparency value for all stroke or fill styles. Once again,
value should be a float number between 0.0 and 1.0.

Adding Gradients

You can create both linear and radial gradients by using the following methods of the context object:

0 createLinerGradient (x1,yl,x2,y2) creates a gradient from the starting point (x1,y1) to the
end point (x2,y2).

U createRadialGradient(x1l,yl,rl,x2,y2,r2) creates a gradient circle. The first circle is
based on the x1, y1, and r1 values and the second circle based on the x2, y2, and r2 values.

Both of these methods return a canvasGradient object that can have colors assigned to it with the
addColorsStop (position, color) method. The position argument is a float number between 0.0
and 1.0 that indicates the position of the color in the gradient. The color argument is any CSS color.

136

Chapter 6: Advanced Programming Topics: Canvas and Video

[-_.ATET = 11:54 PM =]

E ol hitp://10.0.1.196/ipd/canvas/al... C

Figure 6-8: Working with alpha values

In the following example, a linear gradient is added to a square box on the canvas. The gradient starts on
the left side, transitions to blue, and ends on the right in red. Here is the code for the entire HTML page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.o0rg/1999/xhtml">
<head>
<title>Draw Gradient</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<script type="application/x-javascript">
function drawGradient () {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
var lg = context.createLinearGradient(0,125,250,125);
context.globalAlpha="0.8";
lg.addColorStop (0, 'white');
lg.addColorStop(0.75, 'blue') ;

(continued)

137

Chapter 6: Advanced Programming Topics: Canvas and Video

(continued)

lg.addColorStop (1, 'red') ;
context.fillStyle = 1lg;
context.strokeStyle="#666666";
context.lineWidth=".5";
context.fillRect (10,10,250,250);
context.strokeRect (10,10,250,250) ;

}

</script>

</head>

<body onload="drawGradient () ">

<canvas id="myCanvas" width="300" height="300" style="position:absolute; left:0px;

top:0px; z-index:1"/>

</body>

</html>

The first color stop is set to white, while the second is set to blue, and the third red. Once you assign
these using the addColorStop () method, the 1g linearGradient object is assigned as the £i11Style
for the context. The £i11Rect () method is then called to paint the block. A gray border is added using
the strokeRect () method. Figure 6-9 shows the results.

Ll ATET =

s ol http://10.0.1.199/ipd/canvas/g... G

4:.44 PM =

< A s]
Figure 6-9: Linear gradient can be set on the canvas.

138

Chapter 6: Advanced Programming Topics: Canvas and Video

Aradial gradient is created by using the createRadialGradient () method, and then adding color
stops at the appropriate position. For example:

}

function drawRadialGradient () {

var canvas = document.getElementById('myCanvas') ;

var context = canvas.getContext('2d');

var rg = context.createRadialGradient (45,45,10,52,50,35);
rg.addColorStop (0, '#95b800');

rg.addColorStop (0.9, '#428800');

rg.addColorStop(1l, 'rgba(220,246,196,0)"');
context.fillStyle = rg;

context.fillRect (0,0,250,250);

The createRadialGradient () defines two circles, one with a 10px radius and the second with a 35px
radius. Three color stops are added using addColorStop (), and then the rg radialGradient objectis
assigned to the £111Style property. See Figure 6-10.

il ATET = 11:59 PM =

S ol hitp://10.0.1.196/ipd/canvasir... C

< /M m

Figure 6-10: Creating a radial gradient

139

Chapter 6: Advanced Programming Topics: Canvas and Video

Creating an Image Pattern

You can use an external image to create an image pattern on the back of a canvas element using the
createPattern () method. The syntax is:

patternObject = context.createPattern(image, type)

The image argument references an Image object or else a different canvas element. The type argument
is one of the familiar CSS pattern types: repeat, repeat-x, repeat-y, and no-repeat. The method
returns a Pattern object, as shown in the following example:

function drawPattern() {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
var pImg = new Image();
pImg.src = 'images/tech.jpg';
// call when image is fully loaded
pImg.onload = function() {
var pat = context.createPattern(pImg, 'repeat');
context.fillStyle = pat;
context.fillRect (0,0,300,300)
}
}

In this code, an Image object is created and assigned a source. However, before this image can be used in
the pattern, you need to ensure it is loaded. Therefore, you place the rest of the drawing code inside of the
Image object’s onload event handler. Much like the gradient examples shown earlier, the Pattern object
that is created with createPattern () is then assigned to £i11Style. Figure 6-11 shows the results.

Adding Shadows

The context object provides four properties that you can use for defining shadows on the canvas:

O shadowColor defines the CSS color of the shadow.

O shadowBlur specifies the width of the shadow blur.

O shadowOffsetX defines the horizontal offset of the shadow.
Q

shadowOffsetY specifies the vertical offset of the shadow.

The following code uses these properties to define a blurred shadow for an image:
function drawImg () {

var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');

140

Chapter 6: Advanced Programming Topics: Canvas and Video

context.shadowColor = "black";
context.shadowBlur = "10";
context.shadowOffsetX 5T g
context.shadowOffsetY W50 o
var img3 = new Image();
img3.src = 'images/nola.jpg';
img3.onload = function() {
context.drawImage(img3, 20, 30);
}
}

+ c
A (W Wi (PG o

e WA N (W o

A W WG W G

A P W WG o

Figure 6-11: An image pattern drawn on a canvas

141

Chapter 6: Advanced Programming Topics: Canvas and Video

Figure 6-12 shows the result.

|..|II ATET = 4:51 PM e

e ol hitp://10.0.1.199/ipd/canvasfs... o

Figure 6-12: Shadow effects

Transforming a Canvas State

The context object has three methods you can use for transforming the state of a canvas:

U translate(x, y) changes the origin coordinate (0,0) of the canvas.
U rotate(angle) rotates the canvas around the current origin of a specified number of radians.

O scale(x, y) adjusts the scale of the canvas. The x parameter is a positive number that scales
horizontally, while the y parameter scales vertically.

The following example uses translate () and scale () as it draws a circle successive times onto the
canvas. Each time these methods are called, their parameters are adjusted:

142

Chapter 6: Advanced Programming Topics: Canvas and Video

function transform() {

var canvas

= document.getElementById('myCanvas') ;

var context = canvas.getContext('2d');

var s=1;

for (i=1;i<6;i++){
var t=1*8;

context

context.
context.
context.
LE111 () ;

context

.translate(t,t);
context.

scale(s,s);

fillStyle = "rgba(" + t*4 + ","+ t*6 + "," + t*8 + ",

beginPath() ;
arc(50,50,40,0,2*pi , false);

s=s-0.05;

}

The t variable is 8 times the current iteration of the for loop, and then is used as the parameters for

translate (). The scale () method uses the s variable, which is decremented by 0. 05 after each pass.
The £illStyle () method also uses the t variable to adjust the rgb color values for each circle drawn.
Figure 6-13 shows the result of the transformation.

Ll ATET =

S ol hitp://10.0.1.196/ipd/canvasitr... 0

12:06 AM =B

< ' A

Figure 6-13: A series of transformed circles

143

Chapter 6: Advanced Programming Topics: Canvas and Video

The rotate () method rotates the canvas based on the specified angle. For example, in the following
code, an image is drawn on the canvas three times, and each time the translate() and rotate()
parameter values and the globalAlpha property are changed:

function rotateImg() {
var canvas = document.getElementById('myCanvas') ;
var context = canvas.getContext('2d');
context.globalAlpha="0.5";

var r=1;
var img = new Image();
img.src = 'images/jared.jpg';

img.onload = function() {
for (i=1;1i<4;1i++) {
context.translate(50,-15);
context.rotate(.15*r);
context.globalAlpha=i*.33;
context.drawImage (img, 20, 20);
r+=1;

}

Figure 6-14 shows the layered result. Note the difference in transparency of the bottommost image to
the topmost.

Saving and Restoring State

When you begin to work with more advanced drawings on the canvas, you will need to manage the
drawing state. A drawing state includes the current path, the values of the major context properties (such
as fillStyle and globalAlpha), and any transformations (such as rotating) that have been applied.

To this end, you can use the save () and restore () methods. The save () method saves a snapshot of
the canvas, which can then be retrieved later using the restore () method. The save () and restore()
methods enable you to return to a default drawing state with minimal additional code and without
needing to painstakingly recreate every setting.

Creating an Animation

You can use the context drawing capabilities discussed earlier in combination with JavaScript timer
routines to create animations on the canvas. On first take, the potential for creating canvas-based
animation sounds like a perfect lightweight substitute for Flash for iPhone and iPod touch. For some
purposes, it can be ideal. However, any such excitement needs to be kept in reasonable check. Perhaps
the chief shortcoming of the canvas drawing in JavaScript is that you need to repaint the entire canvas
for each frame of your animation. As a result, complex animations risk becoming jerky on the mobile
device. That being said, canvas animation can be a powerful tool to add to your development toolbox.

Like a motion picture or video clip, an animation is a series of frames that, when viewed one after the
other, gives the appearance of movement. Therefore, when you code, your job is to show a drawing,
clear it, draw the next frame in the series, clear it, and so on until your animation is completed or it loops
back to the start. If you are changing any context settings and need to reset them for each new frame,
you need to use the save () and restore () methods.

144

Chapter 6: Advanced Programming Topics: Canvas and Video

Ll ATET =

4:55 PM £

e ol hitp://10.0.1.199/ipd/canvasir... G

< AA 3]

Figure 6-14: Image rotated using rotate()

The following HTML page shows a simple animation program in which a circle moves diagonally
from the top left to the bottom right part of the canvas:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Animate</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0; ">
<script type="application/x-javascript">
function init() {
setInterval (animate, 100);
}
var p = 0;
function animate() {
var canvas = document.getElementById('myCanvas') ;

(continued)

145

Chapter 6: Advanced Programming Topics: Canvas and Video

(continued)
var context = canvas.getContext('2d');
context.clearRect (0, 0, 300, 300);
context.fillStyle = "rgba(0,0,255, 0.3)";
context.beginPath() ;
context.arc (50+p,50+p,40,0, 2*pi, false);
context.fill();
p+=1;
}
</script>
</head>
<body onload="init()">
<canvas id="myCanvas" width="300" height="300" style="position:absolute; left:0px;
top:0px"/>
</body>
</html>

The init () function is called when the document is loaded, which sets off a timer to call animate ()
every 100 milliseconds. The animate () function clears the canvas, moves the orientation point, and
draws a filled circle. The p variable is then incremented by one before repeating.

Canvas in Action

Several open source libraries that use canvas programming to create sophisticated charts and image
effects, such as reflections, are available on the Web. Two particularly noteworthy libraries are the
PlotKit and Reflection.js. PlotKit (see Figure 6-15) is a JavaScript Chart Plotting library (available at
www.liquidx.net/plotkit), and Reflection.js enables you to add reflections to your images (available
at cow.neondragon.net/stuff/reflection). The Reflection js library uses canvas to render the
reflection, but allows you to use it simply by adding a reflect class to an image.

Working with Video

If you are creating an application that incorporates multimedia, certainly one of the great benefits of
developing for iPhone and iPod touch is their strong video and audio support. However, in order to take
full advantage of streaming movies over Wi-Fi and EDGE networks, there are several issues that you
need to keep in mind as you prepare your video for Internet usage.

Preparing iPhone/iPod touch-Friendly Video

iPhone and iPod touch support a variety of video formats, including H.264 (Baseline Profile Level 3.0),
QuickTime, and MPEG-4 Part 2 (simple profile), and video files with the following extensions

(.mov, .mp4, .m4v, and .3gp). However, in order to optimize the movie for Wi-Fi and EDGE networks,
you should use videos encoded with the H.264 codec. H.264 is an open standard that is strong in
providing high-quality video and audio in as small a file size as possible. However, because H.264 is not
the native format for most video editing software, you will need to export or convert the media file for
this codec.

146

Chapter 6: Advanced Programming Topics: Canvas and Video

_____ ATET = 12:29 AM -

Figure 6-15: Plot dynamic graphs using PlotKit.

Deciding on Video Size and Bit Rate

Two critical factors that you need to decide upon when exporting videos for playback on iPhone or iPod
touch are resolution (video size) and bit rate. When you play video, the native resolution of the iPhone
and iPod touch screen is 480 x 320 pixels in landscape mode. However, as Table 6-2 shows, the device is
actually able to handle video resolutions up to 640 x 480, converting the higher resolution to a suitable
output resolution for playback on the device.

Table 6-2: iPhone and iPod touch Video Support

Type Maximum Size and Bit Rate
Output on iPhone and iPod touch display 480 x 320

H.264 videos 640 x 480, 1.5 Mbps

MPEG-4 videos 640 x 480, 2.5 Mbps

147

Chapter 6: Advanced Programming Topics: Canvas and Video

The bit rate refers to the amount of data that is encoded into one second of video. In general, it is the bit
rate that largely determines the file size — the higher the bit rate, the higher the file size. Standard
iPod-content is at 1.5 Mbps, although, as will be discussed shortly, any content you wish to stream over
the Internet should be done so at a lower bit rate. That’s because the bit rate often is the key determinant
in the quality of playback when streaming over the Internet.

As you would expect, the higher the resolution and bit rates, the better quality the video will be.
However, if your users will only be streaming the videos for playback on iPhone and iPod touch
displays, then it makes no sense to set the resolution and bit rates beyond their capabilities. As
mentioned, the iPhone and iPod touch will scale down videos that are larger than their native 480 x 320
resolutions anyway, so encoding them at a higher resolution is a waste of bandwidth.

Considering Aspect Ratio

An additional issue to consider when working with video is the aspect ratio of the video. The aspect ratio
is the width:height ratio of the video image. Table 6-3 lists the three standard aspect ratios.

Table 6-3: Popular Video Aspect Ratios

Aspect ratio Description

16:9 (1.78:1) Widescreen TV. Widescreen aspect ratio usually used by HDTV and widescreen
televisions.

4:3 (or 1.33:1) Standard TV . Traditional “box” aspect ratio standard for TV.

2:35:1 Cinemascope widescreen. A “super widescreen” aspect ratio used in Cinemascope
and Panavision motion pictures.

The aspect ratio of the video may not directly correspond with the aspect ratio of the display. In
particular, the iPhone and iPod touch displays have an aspect ratio of 1.5:1 (480/320=1.5). To display for
1.78:1 and 2.35:1 aspect ratios, iPhone or iPod touch will letterbox, or add black bars to the top and
bottom. To display standard 1.33:1 videos, the device will pillarbox, or add black bars to the left and right
sides of the video.

However, iPhone and iPod touch also allow users to crop the video to fit the 1.5:1 aspect ratio of the
display by clicking the zoom button in video playback mode (see Figure 6-16). Zooming crops the video
image to fill the entire screen in any aspect ratio. Widescreen content is expanded in height to fill the
display and has its width chopped off that cannot fit into the display. For 4:3 videos, the top and bottom
are cut off so that the sides go edge to edge on the display.

When you are deciding the resolution size of your video, you will want to preserve the original aspect
ratio of your video, and then choose a resolution based on your needs (see Table 6-4). If your goal is
usability over the Internet, then choose a recommended size from the Wi-Fi or EDGE columns. Or, if
your objective is highest possible quality (perhaps for output display on a television), then choose the
maximum resolution supported for your aspect ratio.

148

Chapter 6: Advanced Programming Topics: Canvas and Video

il ATET = 12:40 AM Cm) - Zoom button
Done | 00:46:00 T s -00:44:42 ™y

Figure 6-16: Zoom button toggles between original
aspect ratio and cropped.

Table 6-4: Aspect Ratios for iPhone and iPod touch

Maximum resolution Recommended resolution Recommended resolution
Aspect ratio supported for Wi-Fi videos for EDGE videos
16:9 (1.78:1) 640 x 360 480 x 260 176 x 99
4:3 (or 1.33:1) 640 x 480 480 x 360 176 x 144
2.35:1 640 x 272 480 x 204 176 x 75

Some newer video tools and devices support anamorphic encoding. When a video is anamorphic encoded,
it does not have a single hardcoded aspect ratio. Instead, the output device processes the anamorphic
pixel aspect ratio (PAR) information stored in the video and displays it based on its native aspect ratio.
However, currently iPhone and iPod touch cannot handle PAR and will display any anamorphic videos
in a distorted manner. Therefore, avoid anamorphic encoded videos.

Exporting for Wi-Fi and EDGE

If users of your application will access the videos over both Wi-Fi and EDGE networks, you will want to
export two different versions of the video — one that is optimized for Wi-Fi and one optimized for
EDGE. The easiest solution is to use QuickTime Pro 7.2, which supports a Movie to iPhone export
command to optimize the movie for Wi-Fi and a Movie to iPhone (Cellular) to prepare a movie for EDGE
network. (Note that QuickTime Pro is paid program.) If you are using another exporting tool, refer to
Table 6-5 to see the recommended settings for the two media files.

iPhone and iPod touch do not support RTP/RTSP streaming. Therefore, if you are using an earlier
version of QuickTime or a third-party tool, be sure to turn off any streaming option that uses RTP/RTSP.

149

Chapter 6: Advanced Programming Topics: Canvas and Video

Table 6-5: Optimizing Video for iPhone and iPod touch

Connection Video Audio File type

Wi-Fi H.264 Baseline 128kbit, AAC-LC .mév
900 kbit bit rate
480 x 360 resolution
30 fps
Preserve aspect ratio: Fit within size

EDGE H.264 16kbit, AAC-LC .3gp
64 kbit bit rate
176 x 144 resolution
10 or 15fps
Preserve aspect ratio: Letterbox or crop

Creating a Reference Movie

Because you are creating Wi-Fi and EDGE versions of the same video, you could provide links to each of
these files in your application and leave it up to the user to determine which one to play back. However,
quite obviously, that’s a weak solution. A much better option is to embed a reference movie that manages
the versioning for you. A reference movie is a movie file that points to other movie files, each of which is at
a different data rate (the EDGE .3gp file, the Wi-Fi .m4v file). When Mobile Safari requests the reference
movie, QuickTime tests each of the movie URLs and determines which version is most appropriate
based on the current network speed. Once a movie URL is found that best passes the tests, then that
movie is sent to iPhone or iPod touch, which is then opened in the movie playback mode.

MakeRefMovie is a free downloadable OS X tool developed by Apple that you can use to create reference
movies. You can add file or URL references from the Movies > Add URL menu item, rank their priority
by dragging and dropping them to the appropriate position on the list, and even specify whether or not
the movie is only available on iPhone (and iPod touch) in its Mobility option (see Figure 6-17). Once you
save this file, you then reference it in your application. You can download MakeRefMovie at developer
.apple.com/quicktime/quicktimeintro/tools. At the time of this writing, MakeRefMovie is not
available for Microsoft Windows platforms.

A second alternative for making reference movies is with the PhpMovieRef (www . zkm.de/static/
phprefmovie.html). At the cost of more complexity, it’s free, cross-platform, and can generate reference
movies dynamically.

Make sure the Web server that hosts the video files supports byte-range requests (which are sometimes
referred to as content-range or partial-range requests). And, as indicated before, RTP/RTSP is not
supported.

In addition, configure your server to send the correct MIME type for the following file types: .mov
(video/QuickTime), .mp4 (video/mp4), .m4v (video/x-m4v), and .3gp (video/3gpp). For example on
Apache, you can set these by configuring your mime.types file or using the AddType directive in a
.htaccess file.

150

Chapter 6: Advanced Programming Topics: Canvas and Video

enA malnmv.mav
Narmie Dhata Ratr Sire Dimensions
low.3gp
Name: high.mdw
Location: hittp: { fwww. mymaovie.com/high.mAay { Change..)
Speed: [1s Mbps T1[fintranet/l AM'T! (" Set Newwork Status |
Priority: | First Cholce ™ Choke: | Choke To Movie Data Rate 1%
Language: '.-English ﬂ Bytes per secor d
CPU Speed: | 5 (fastest) Tl Version: | Unspacifiad W
Mobility: [bnl\a on IPhone = I Flatten into output

Figure 6-17: MakeRefMovie

Embedding Video or Audio Files

Once you have the video files converted, reference movie created, and your Web server configured to
handle video files (see the “Hosting Media Files” section), you are ready to reference them in your Web
page or application.

You link a video or audio file to your Web page using an embed element. The embed element is
defined as:

<embed href="http://www.mysite.com/vid2.md4v" type="video/x-mdv" src="video.png"
target="myself" height="84" width="84" scale="1"/>

At the time of this writing, using embed with a poster image and specifying a relative URL for the href
attribute produced inconsistent results. I recommend using an absolute path.

The href and type define the source and MIME type of the video file. The src attribute allows you

to optionally define a poster image to display in the embed block. If no src attribute is displayed, then
a QuickTime box is displayed. The height and width are used to determine the dimensions of the
poster image.

151

Chapter 6: Advanced Programming Topics: Canvas and Video

Because iPhone and iPod touch do not support inline playback, media playback does not begin until the
user enters movie playback mode. As a result, to play the video, a user clicks the play button displayed
on the embed element to enter playback mode. The target="myself" attribute-value pair is used for
this linkage.

Here’s a code snippet from a page that references both video and audio media:

<embed href="vid-ref.mov" src="vid.png" type="video/quicktime" target="myself"
height="84" width="84" scale="1"/>

<embed href="aud.mp3" src="aud.png" type="audio/x-mp3" target="myself" height="84"
width="84" scale="1"/>

Figure 6-18 shows how Mobile Safari renders these embedded elements inside of a page. Figure 6-19
then shows the iPhone displayed in playback mode.

il ATET = 12:50 AM LY a1 ATET 12:50 AM
email jack@ibmcorp.com

Done 00:01 i —— 0341

1520 Main Street
Boston, MA 01210

Map To Office
Directions To Office ()

Email Reminder

work

http:/10.0.1.196/ipd/av/aud.mp3

Figure 6-18: Poster images displayed of video and Figure 6-19: Playback mode when embedded
audio media element is pressed

152

Integrating with
iPhone Services

One of the most intriguing ideas when creating a Web 2.0 application for iPhone is integrating the
application with core mobile services, such as dialing phone numbers or sending e-mails. After all,
once you break those inside the browser barriers, the application becomes more than just a Web
app and extends its functionality across the mobile device.

However, iPhone service integration is a mixed bag; it’s a “good news, bad news” situation.
On the upside, perhaps the three most important mobile functions (Phone, Mail, and Google
Maps) are accessible to the developer. On the downside, there are no means of tapping into
other core services, such as SMS messaging, Calendar, Address Book, Camera, Clock, iPod,
and Settings.

In order to demonstrate the integration with iPhone services, you'll be working with a sample
application called iProspector, which is a mocked up contact management system that emulates
the iPhone Contact UI (see Figure 7-1). To create the UI, you will be starting with Joe Hewitt’s iUI
framework, which is discussed fully in Chapter 3. However, because it does not provide support
for the specific controls needed for the Contact Ul, this chapter will show you how to extend iUI
as service integration is discussed.

Because iPod touch does not provide support for Phone and Mail services, any iPhone-specific
integration should degrade gracefully when running on iPod touch.

Chapter 7: Integrating with iPhone Services

Contact header

i ATET = 1:51 PM (]

e Cn n't'act ("Seoren|
Jack Armitage
IBM Corp.
(765) 555-1212 \
mobile (765) 545-1211 r Services link
email jack@ibmcorp.com

1520 Main Street
work <— Address book box
Boston, MA 01210
Map To Office <— Services button

Figure 7-1: Contact Ul

Preparing the iProspector Application Shell

Before integrating services and adding custom UI controls for them, you first need to prepare the
iProspector application shell. The following XHTML document contains a standard iUI setup for a
hierarchical list-based, side-scrolling interface:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>iProspector</title>

<meta name="viewport" content="width=device-width; initial-scale=1.0;

maximum-scale=1.0; user-scalable=0;"/>

<style type="text/css" media="screen">@import "../iui/iui.css";</style>

154

Chapter 7: Integrating with iPhone Services

<style type="text/css" media="screen">@import "../iui/cui.css";</style>
<script type="application/x-javascript" src="../iui/iui.js"></script>
</head>
<body>

<!-- Top iUI toolbar -->

<div class="toolbar">
<hl id="pageTitle"></hl>

Search

</div>
<!-- Top-level menu -->
<!-- Customers, Orders, Settings, and About menus not enabled for this sample -->

<ul id="home" title="iProspector" selected="true">
Sales Leads
Customers</1li>
0Order Fulfillment</1li>
Settings</1li>
About</1i>

<!-- Sales Leads menu -->

<ul id="leads" title="Sales Leads">
<1li class="group">A</1li>
Jack Armitage</1li>
Jason Armstrong
<1li class="group">B</1li>
Bob Balancia
Sara Billingsly</1li>
Uri Bottle
Larry Brainlittle
<li class="group">C</1li>
Carl Carlsson</1li>
John Charleston</1li>
<1li class="group">D</1li>
Bill Drake
Randy Dulois</1li>

<!-- Contact panel -->

<div id="Jack_Armitage" title="Contact" class="panel">
<h2>This page is intentionally blank.</h2>

</div>
<!-- iUI Search form -->
<form id="searchForm" class="dialog" action="search.php">
<fieldset>
<hl>Contact Search</hl>
Cancel
Search
<label>Name:</label>
<input type="text" name="name"/>
<label>Company:</label>
<input type="text" name="company"/>
</fieldset>
</form>
</body>
</html>

155

Chapter 7: Integrating with iPhone Services

In the document head, begin by adding a link to a style sheet named cui.css, stored in the same directory
as iui.css. You'll begin defining cui.css shortly.

The iUI framework uses a series of ul lists to compose a list-based navigation UI. The home ul list
provides the top-level menu for the iProspector application (see Figure 7-2). Because you're concerned
here with the functionality of working with a specific contact rather than the nuts and bolts of an entire
contact management system, the Sales Leads link is the only one defined.

[-al. ATET = 4:40 PM ==

iProspector Search

Sales Leads >
Customers >
Order Fulfililment >
Settings >
About >

Figure 7-2: iProspector top-level menu

The leads ul list provides a canned list of sales leads (see Figure 7-3). Each of the list items contains a
link that, in the real world, would be mapped to a unique Contact panel. The Jack_Armitage link is
connected to the one Contact panel provided in the example document. From a code standpoint, the
Contact panel is a div element with the panel class assigned to it, which displays a generic iPhone-style
page (see Figure 7-4).

156

Chapter 7: Integrating with iPhone Services

iProsp... Sales Leads

A
Jack Armitage >
Jason Armstrong >

B —|
Bob Balancia >

Sara Billingsly >
Uri Bottle >
Larry Brainlittle >

Carl Carlsson >

Figure 7-3: List of sales leads Figure 7-4: Empty Contact panel

Creating the Contact Header

With the application shell functionality in place, the Contact panel is now ready to be filled in. At the top
of a typical iPhone Contacts page is a thumbnail image of the contact along with the contact name and
company. The HTML document is set up by replacing the dummy h2 text with a div element with a
cuiHeader class that you'll define shortly. Inside of the div, three elements are defined, each of which is
assigned a cui class. Here’s the code:

<div id="Jack_Armitage" title="Contact" class="panel">
<div class="cuiHeader">

<hl class="cui">Jack Armitage</hl>
<h2 class="cui">IBM Corp.</h2>
</div>
</div>

157

Chapter 7: Integrating with iPhone Services

The img element will hold the thumbnail image. The h1 element will contain the name, while the h2
element will show the company.

Creating the cui.css Style Sheet

Next, it is time to create the cui.css file (or download it from www.wiley.com). When you use the

style conventions originally defined in iui.css, four additional rules are defined for the Contact
header:

.panel hl.cui {
margin: 5px 0 Opx 80px;
font-size: 20px;
font-weight: bold;
color: black;
text-shadow: rgba (255, 255
top: 5px;
clear: none;

, 255, 0.75) 2px 2px 0;

}
.panel h2.cui {
margin: 0 0 30px 80px;
font-size: 14px;
font-weight: normal;
color: black;
text-shadow: rgba (255, 255, 255, 0.75) 2px 2px 0;
top: 43px;
clear: none;
}
.panel img.cui {
margin: Opx 15px 5px 0px;
border: 1lpx solid #666666;
float: left;
-webkit-border-radius: 5px;
}
.panel > div.cuiHeader {
position: relative;
margin-bottom: Opx Opx 10px 1l4dpx;

The first three rules position the h1, h2, and img elements in the appropriate location. The final rule adds

spacing between the header panel and the rest of the page. Figure 7-5 shows the current state of the
Contact panel.

With all of the preparatory Ul in place, you can begin to add the service integration.

158

Chapter 7: Integrating with iPhone Services

Figure 7-5: Adding the Contact header

Making Phone Calls
from Your Application

You can make a phone call from your application simply through a special telephone link. A telephone
link is specified through the tel: protocol. The basic syntax is:

1-507.555-5555

When a user clicks the link, the phone does not automatically dial. Instead, iPhone displays a
confirmation box (see Figure 7-6) that allows the user to click Call or Cancel.

159

Chapter 7: Integrating with iPhone Services

(765) 555-1212

(765) 555-1212

Cancel

Figure 7-6: User needs to confirm a telephone link
before a call is initiated.

Telephone links can go beyond ordinary numbers. iPhone provides partial support for the RFC 2086
protocol (www . ietf.org/rfc/rfc2806. txt), which enables you to develop some sophisticated
telephone-based URLs. For example, the following link calls the U.S. Postal Service, pauses for

2 seconds, and then presses 2 to get a Spanish version:

USPS (Espanol)

Note that p creates a 1-second pause, so pp will cause a 2-second pause before continuing. Mobile Safari
will also automatically create telephone links for you in your pages. Any number that takes the form of
a phone is displayed as a link. Therefore, if you ever have a situation in which you do not want to link a
telephone number (or a number that could be interpreted as a phone number), then add the
format-detection meta tag (for iPhone 1.1.1 and above) to the document head:

160

Chapter 7: Integrating with iPhone Services

<meta name = "format-detection" content = "telephone=no">

For legacy support, you can also break up the number sequence using a span element. For example,

<p>Your ID is 5083212202.</p>
would become

<p>Your ID is 5083212202.</p>

Creating Service Links

In adding this telephone link functionality into iProspector, you want to emulate the telephone links
inside of the iPhone Contact UI. To do so, begin by adding a fieldset in prospectorhtml and

enclosing two row div elements inside of it. Inside of the div elements, add a label and a link.
Here’s the code:

<fieldset>
<div class="row">
<label class="cui">office</label>
<a class="cuiServiceLink" target="_self" href="tel: (765) 555-1212"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 555-1212
</div>
<div class="row">
<label class="cui">mobile</label>
<a class="cuiServiceLink" target="_self" href="tel:(765) 545-1211"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 545-1211
</div>
</fieldset>

The a links, which are referred to as service links in this book, are assigned a cuiServiceLink class and
use the tel: protocol in the href value. The target="_self" attribute is needed to override default
iUI behavior, which would prevent the link from calling the Phone application. Also, to degrade
gracefully when running on iPod touch, the onclick handler ensures that the link works only if running
on iPhone. Finally, the 1abel is assigned a cui class.

The fieldset and row class styling are already defined in the iui.css. However, several additional styles
need to be defined inside of the cui.css file. First, styles need to be defined for the labels and service
links. Second, a set of styles needs to be added to emulate the push-down effect of the services link when
a user presses it with a finger. The rules are shown in the following code:

.row > label.cui {
position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;
font-weight: bold;
color: #7388a5;

(continued)

161

Chapter 7: Integrating with iPhone Services

(continued)

.cuiServiceLink {

The bottom three rules are used to change the row and label styling when the row div hasa
cuiSelected attribute set to true (the element’s background becomes blue, and the label font is set

}

display: block;

margin: 0;

border: none;

padding: 12px 10px 0 80px;
text-align: left;
font-weight: bold;
text-decoration: inherit;
height: 42px;

color: inherit;
box-sizing: border-box;

.row[cuiSelected] {

}

position: relative;

min-height: 42px;

border-bottom: 1px solid #999999;
-webkit-border-radius: 0;

text-align: right;

background-color: #194fdb !important;
color: #FFFFFF !important;

.row[cuiSelected] > label.cui {

}

position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;

font-weight: bold;

color: #FFFFFF;

fieldset > .row[cuiSelected]:last-child

border-bottom: none !important;

to white).

Although the styles are now ready for these elements, the service links are not yet functional within the
iUI framework. By default, iUl intercepts all link click events inside of iui.js in order to change a link’s
selection state and to disable the default action of a link. Therefore, you need to add a handler for service
link buttons coming through this routine. Here’s the modified version of the addEventListener

("click", function(event)) handler:

162

addEventListener ("click", function(event)
{

var link = findParent (event.target,

if (link)
{

function unselect () { link.removeAttribute("selected");

}

Chapter 7: Integrating with iPhone Services

}

if (link.href && link.hash && link.hash != "#")

{
link.setAttribute("selected", "true");
iui.showPage ($ (link.hash.substr(1)));
setTimeout (unselect, 500);

}

// Begin cui insertion

else if (link.getAttribute("class") == "cuiServiceLink")
{
var curRow = findParent(link, "div");
curRow.setAttribute("cuiSelected", "true");
setTimeout (function() {
curRow.removeAttribute ("cuiSelected") ;
}, 500);
return;
}
// End cui insertion
else if (link == $("backButton"))
history.back();
else if (link.getAttribute("type") == "submit")
submitForm(findParent (1link, "form"));
else if (link.getAttribute("type") == "cancel")
cancelDialog (findParent (1link, "form"));
else if (link.target == "_replace")
{
link.setAttribute("selected", "progress");
iui.showPageByHref (link.href, null, null, link, unselect);
}
else if (!link.target)
{
link.setAttribute("selected", "progress");
iui.showPageByHref (link.href, null, null, null, unselect);
}
else
return;
event .preventDefault () ;

}, true);

The first else if conditional block is inserted to check for all links that have a class of
cuiServiceLink. If so, then the parent div is retrieved and its instance assigned to curRow. A
cuiSelected attribute is then added to the curRow and then removed. When paired with the styles
set up in cui.css, this code changes the colors of the service link’s parent div for 500 milliseconds, and
then sets them back to normal. The visual effect simulates, as much as possible, the default behavior
of iPhone. Finally, a return statement is added at the end of the block to ensure that the
preventDefault () command is not called (which would prevent the services link from

working correctly).

163

Chapter 7: Integrating with iPhone Services

The telephone links of the Contact panel, shown in Figure 7-7, are now styled and fully functional.

| _____ ATET = 11:57 PM)

SaesL. | Contact [

Jack Armitage
IBM Corp.

office (765) 555-1212 ‘

mobile (765) 545-1211 ‘

Figure 7-7: Telephone links added to the Contact panel

Sending Emails

Emails can also be sent from your application through links using the familiar mailto: protocol, as
shown in the following example:

Jack Armitage
When this link is clicked by the user, Mail opens and a new message window is displayed, as shown in
Figure 7-8. The user can then fill out the subject and body of the message and send it. As you would

expect, you cannot automatically send an email message using the mailto: protocol without user
intervention. Themailto: protocol always takes the user to a new message window.

164

Chapter 7: Integrating with iPhone Services

Following the mailto

cancel New Message

il ATET = 12:05 AM E3

To: jack@ibmecorp.com

Cc:

Subject: |

a|w|e|rjTivfuji]o]P
Als|oFlajufsfk]L

L z|x]c|v]slnmil

return

=
Figure 7-8: Sending a mail message from an
application

: protocol, you can also include parameters to specify the subject, cc address, bec

address, and message body. Table 7-1 lists these options.

Table 7-1: Optional mailto: Attributes

Cc recipients

Message text

Option Syntax
Multiple recipients , (comma separating email addresses)
Message subject subject=Subject Text

Bcc recipients bcc=name@address.com

cc=name@address.com

body=Message text

Per HTTP conventions, precede the initial parameter with a ? (such as ?subject=) and precede any
additional parameters with an &.

165

Chapter 7: Integrating with iPhone Services

The mailto: protocol normally allows line breaks in the body attribute value using $0A for a line break
and %0A%0A for a line break followed by a blank line. However, iPhone ignores the $0A codes and puts
all of the text on one line.

As a work-around, iPhone enables you to embed HTML in your message body, therefore enabling you to
add br tags for line breaks and even other tags (such as strong) for formatting.

When you combine several parameters, the following element provides everything a user needs to send
a reminder message:

<a class="cuiServiceButton" target="_self" onclick="return
(navigator.userAgent.indexOf ('iPhone') != -1)"
href="mailto:jack@ibmcorp.com?subject=Meeting&body=Dear Jack,
I look forward to
our upcoming meeting together this Friday at

8am.
Sincerely,
Jason Malone&cc=jason@iphogcorp.com">Email
Reminder

As Figure 7-9 shows, all the user needs to do is press the Send button.

[-ol ATET = 1:08 PM =]

4

Cancel Meeting

To: jack@ibmecorp.com

Cc: jason@iphogcorp.com
Subject: Meeting

Dear Jack,
| look forward to our upcoming meeting
_together this Friday at 8am.

a|w|e|r[Tivfuli]o]P
Als|o|Flejujs]K]L

L z|x]c|v]slnjmil

return

Figure 7-9: Populating an email message data from an
application

166

Chapter 7: Integrating with iPhone Services

Adding an email link to the iProspector application is straightforward. Because the look and
functionality of an email link are identical to those of telephone links in the native iPhone Contact UI,
you can piggyback on top of the styles and functionality you already defined earlier in this chapter.
With that in mind, add an email link just under the two telephone links inside of the same fieldset:

<fieldset>
<div class="row">
<label class="cui">office</label>
<a class="cuiServiceLink" target="_self" href="tel: (765) 555-1212"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 555-1212
</div>
<div class="row">
<label class="cui">mobile</label>
<a class="cuiServiceLink" target="_self" href="tel: (765) 545-1211"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 545-1211
</div>
<div class="row">
<label class="cui">email</label>
<a class="cuiServiceLink" target="_self" onclick="return
(navigator.userAgent.indexOf ('iPhone') != -1)" href="mailto:jack@ibmcorp.com">
jack@ibmcorp.com
</div>

</fieldset>

Pointing on Google Maps

While Google Maps does not have its own custom href protocol, Mobile Safari on iPhone is smart
enough to reroute any request to maps . google. com to the built-in Maps application rather than going
to the public Google Web site. (On iPod touch, Mobile Safari links directly to the public Google Web site.)
As a result, you can create a link to specify either a specific location or driving directions between two
geographical points.

You cannot specify whether to display the map in Map or Satellite view. The location you specify will be
displayed in the last selected view of the user.

Keep in mind the basic syntax conventions when composing a Google Maps URL:

QO For normal destinations, start with the g= parameter, and then type the location as you would a
normal address, substituting + signs for blank spaces.

Q For clarity, include commas between address fields.
Here’s a basic URL to find a location based on city and state:
Boston
Here’s the syntax used for a full street address:

Jack
Armitage's Office

167

Chapter 7: Integrating with iPhone Services

When the address shown previously is located in Google Maps, the marker is generically labeled 1000
Massachusetts Ave Boston MA. However, you can specify a custom label by appending the URL with
+(Label+Text), as shown in the following example:

<a href="http://maps.google.com/maps?g=1000+Massachusetts+Ave, +Boston, +MA+ (Jack
+Armitage's+0ffice) ">Jack Armitage's Office

Figure 7-10 shows the custom label in Google Maps.

-l ATET = 1:08 AM =

I) 1000 Massachusetts Ave, Boston... @I
= 5 ~ 7

(4 .
quq& G & VWiliam|Eustic Iy
¥

:'% e o . Rlayground i
3

Figure 7-10: Customizing the Google Maps label

You can specify a location using latitude and longitude coordinates as well:

Jack's Summer Retreat

168

Chapter 7: Integrating with iPhone Services

To get directions, use the saddr= parameter to indicate the starting address and daddr= parameter to
specify the destination address, as shown in the following example:

<a href="http://maps.google.com/maps?saddr=Holden+MA&daddr=1000+Massachusetts+Ave,
+Boston, +MA">Directions To Office

Figure 7-11 displays the map view when this link is clicked.

il ATET 5 2:15 AM
" 56.0 miles
1 hour 10 minutes

Edit

(2) Leominster. -
S".‘ # |-' i

O

d A5 b

: . G® % W ekion
how- 57 — -'—}W@pﬂsnckel s, A o)
3 S ; W e

Map Satellite List

Figure 7-11: Programming driving directions

Google Maps on its public Web site has an extensive set of parameters. However, except where noted
previously, none of these are supported at this time. You cannot, for example, use the t= parameter to
specify the Satellite map, the z= parameter to indicate the map zoom level, or even layer=t to turn on
the Traffic display. The user needs to perform those steps interactively.

169

Chapter 7: Integrating with iPhone Services

In order to add Google Maps integration with iProspector, two new capabilities need to be added to its
Contact panel. First, multiline, read-only address information needs to be displayed in its own box.
Second, a new action button style needs to be created to emulate the button functionality of the native

iPhone Contact Ul

Creating a Contacts Address Box

To define an address box, define a div with a new style named rowCuiAddressBox. Inside of it, add a

cui label and then cui p elements for each line of the address:

<fieldset>
<div class="rowCuiAddressBox">
<label class="cui">work</label>
<p class="cui">1520 Main Street</p>
<p class="cui">Boston, MA 01210</p>
</div>
</fieldset>

Next, going back to cui.css, four new styles need to be defined:

170

.rowCuiAddressBox {

}

position: relative;

min-height: 24px;

border-bottom: 1px solid #999999;
-webkit-border-radius: 0;
text-align: left;

.rowCuiAddressBox > p.cui {

}

}

box-sizing: border-box;
margin: 0;

border: none;

text-align: left;
padding: 2px 10px 0 80px;
height: 30px;

background: none;
font-weight: bold;

fieldset > .rowCuiAddressBox:first-child {

padding-top: 12px;
border-bottom: none !important;

fieldset > .rowCuiAddressBox:last-child {

min-height: 25px;
text-align: left;
border-bottom: none !important;

Chapter 7: Integrating with iPhone Services

The : first-child and :last-child styles are used to ensure proper padding and sizing of the
contents of the box.

To style the address box label, one additional selector needs to be added onto the previously defined
.row > label.cui rule:

.row > label.cui, .rowCuiAddressBox > label.cui {
position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;
font-weight: bold;
color: #7388a5;

The display-only address box is now ready.

Creating Service Buttons

Two new links are needed to add Google Maps integration. One link will display a map of the contact
and a second will provide driving directions. Here is the fieldset definition:

<fieldset>
<div class="row">
<a class="cuiServiceButton" target="_self"

href="http://maps.google.com/maps?g=1000+Massachusetts+Ave, +Boston, +MA">Map To
Office

</div>
<div class="row">
<a class="cuiServiceButton" target="_self"
href="http://maps.google.com/maps?saddr=Holden+MA&daddr=1000+Massachusetts+Ave,
+Boston, +MA">Directions To Office
</div>
</fieldset>

These two links are assigned to the cuiServiceButton class. The first link displays a map of the
specified address in Boston, while the second link provides driving directions between Holden, MA
and the Boston address. Once again, to get around the way iUl handles events in iui.jss, you need to
specify the target="_self" parameter.

Back over in cui.css, one new style needs to be added:

.cuiServiceButton {
display: block;
margin: 0;
border: none;
padding: 12px 10px 0 Opx;

(continued)

171

Chapter 7: Integrating with iPhone Services

(continued)
text-align: center;
font-weight: bold;
text-decoration: inherit;
height: 42px;
color: #7388a5;
box-sizing: border-box;

This style emulates the look of the action buttons (centered blue text, and so on) in the native iPhone
Contact UL

There is one final tweak that needs to be made to iui.jss before the cuiServiceButton links work as
expected. If you recall, an else if condition is added to trap for service links inside of the
addEventListener ("click", event(function)) function. Youneed to add an additional test so
that both cuisServiceLink and cuiServiceButton classes are evaluated. To do so, modify the line of
code as specified here:

else if ((link.getAttribute("class") == "cuiServiceLink") ||
(link.getAttribute("class") == "cuiServiceButton"))

Now that the cuiServiceButton link class is ready to go, you need to add one last button to the
iProspector Contact panel to finish it off — a services button that automatically composes a reminder
email to the Contact. The following HTML code combines mailto: link functionality and the
cuiServiceButton style:

<fieldset>
<div class="row">
<a class="cuiServiceButton" target="_self" href="mailto:
jack@ibmcorp.com?subject=Meeting&body=Dear Jack, I look forward to our
upcoming meeting together this Friday at 8am. Sincerely, Jason
Malone&cc=jason@iphogcorp.com">Email Reminder
</div>
</fieldset>

Figure 7-12 shows the display of these cuiserviceButton links inside of iProspector.

The iProspector Contact panel is now fully enabled to emulate both the look and functionality of the
built-in iPhone Contact UL

Listing 7-1 displays the prospector.html file, Listing 7-2 displays the cui.css file, and Listing 7-3 displays
the modified function block inside of iui jss.

172

Chapter 7: Integrating with iPhone Services

il ATET = 11:04 AM -
office (765) 555-1212

mobile (765) 545-1211

email jack@ibmcorp.com

1520 Main Street

work
Boston, MA 01210
Map To Office
Directions To Office
v 3
Email Reminder
. i

Figure 7-12: Enabled Contact buttons that integrate
with Google Maps and Mail

Listing 7-1: prospector.htmli

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>iProspector</title>

<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;

user-scalable=0;"/>

<style type="text/css" media="screen">@import "../iui/iui.css";</style>
<style type="text/css" media="screen">@import "../iui/cui.css";</style>
<script type="application/x-javascript" src="../iui/iuil.js"></script>
</head>
<body>

<!-- Top iUI toolbar -->

<div class="toolbar">
<hl id="pageTitle"></hl>

(continued)

173

Chapter 7: Integrating with iPhone Services

Listing 7-1 (continued)

Search

</div>
<!-- Top-level menu -->
<!-- Customers, Orders, Settings, and About menus not enabled for this sample -->

<ul id="home" title="iProspector" selected="true">
Sales Leads
Customers</1li>
Order Fulfillment</1li>
Settings</1li>
About</1i>

<!-- Sales Leads menu -->
<ul id="leads" title="Sales Leads">
<1li class="group">A</1li>
Jack Armitage
Jason Armstrong
<1li class="group">B</1li>
Bob Balancia
Sara Billingsly</1li>
Uri Bottle
Larry Brainlittle</1li>
<1li class="group">C
Carl Carlsson</1li>
John Charleston</1li>
<1li class="group">D</1li>
Bill Drake
Randy Dulois</1li>

<!-- Contact panel -->
<div id="Jack_Armitage" title="Contact" class="panel">
<div class="cuiHeader">

<hl class="cui">Jack Armitage</hl>
<h2 class="cui">IBM Corp.</h2>
</div>
<fieldset>
<div class="row">
<label class="cui">office</label>

<a class="cuiServiceLink" target="_self" href="tel: (765) 555-1212"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 555-1212
</div>
<div class="row">
<label class="cui">mobile</label>
<a class="cuiServicelLink" target="_self" href="tel: (765) 545-1211"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 545-1211

</div>
<div class="row">
<label class="cui">email</label>
<a class="cuiServiceLink" target="_self"
href="mailto:jack@ibmcorp.com" onclick="return
(navigator.userAgent.indexOf ('iPhone') != -1)">jack@ibmcorp.com
</div>

174

Chapter 7: Integrating with iPhone Services

</fieldset>
<fieldset>
<div class="rowCuiAddressBox">
<label class="cui">work</label>
<p class="cui">1520 Main Street</p>
<p class="cui">Boston, MA 01210</p>
</div>
</fieldset>
<fieldset>
<div class="row">
<a class="cuiServiceButton" target="_self"
href="http://maps.google.com/maps?g=1000+Massachusetts+Ave, +Boston, +MA">Map To
Office
</div>
<div class="row">
<a class="cuiServiceButton" target="_self"
href="http://maps.google.com/maps?saddr=Holden+MA&daddr=1000+Massachusetts+Ave,
+Boston, +MA">Directions To Office
</div>
</fieldset>
<fieldset>
<div class="row">
<a class="cuiServiceButton" target="_self" onclick="return
(navigator.userAgent.indexOf ('iPhone') != -1)"href="mailto:jack@ibmcorp.com?subject
=Meeting&body=Dear Jack,
I look forward to our upcoming meeting together
this Friday at 8am.
Sincerely,
Jason Malone&cc=jason@
iphogcorp.com">Email Reminder
</div>
</fieldset>
</div>
<!-- iUI Search form -->
<form id="searchForm" class="dialog" action="search.php">
<fieldset>
<hl>Contact Search</hl>
Cancel
Search
<label>Name:</label>
<input type="text" name="name"/>
<label>Company:</label>
<input type="text" name="company"/>
</fieldset>
</form>
</body>
</html>

Listing 7-2: cui.css

/* cul Contacts Extension to Joe Hewitt's iUI */
/* Contact Header */
.panel hl.cui {

margin: 5px 0 Opx 80px;

font-size: 20px;

font-weight: bold;

(continued)

175

Chapter 7: Integrating with iPhone Services

Listing 7-2 (continued)

color: black;

text-shadow: rgba (255, 255, 255, 0.75) 2px 2px 0;
top: 5px;

clear: none;

}

.panel h2.cui {
margin: 0 0 30px 80px;
font-size: 14px;
font-weight: normal;
color: black;
text-shadow: rgba (255, 255, 255, 0.75) 2px 2px 0;
top: 43px;
clear: none;

}

.panel img.cui {
margin: Opx 15px 5px 0pXx;
border: 1lpx solid #666666;
float: left;
-webkit-border-radius: 5px;

}

.panel > div.cuiHeader {
position: relative;
margin-bottom: Opx Opx 10px 1l4px;

}

/* Contact Fields */

.row > label.cui, .rowCuiAddressBox > label.cui {

position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;

font-weight: bold;

color: #7388a5;

}

.cuiServiceLink {

display: block;

margin: 0;

border: none;

padding: 12px 10px 0 80px;
text-align: left;

font-weight: bold;

text-decoration: inherit;

height: 42px;

color: inherit;

box-sizing: border-box;

}

.cuiServiceButton {

display: block;

margin: 0;

border: none;

padding: 12px 10px 0 Opx;
text-align: center;

font-weight: bold;

text-decoration: inherit;

176

Chapter 7: Integrating with iPhone Services

height: 42px;
color: #7388a5;
box-sizing: border-box;
}
a[cuiSelected], a:active {
background-color: #194fdb !important;
color: #FFFFFF !important;
}
.row[cuiSelected] {
position: relative;
min-height: 42px;
border-bottom: 1lpx solid #999999;
-webkit-border-radius: 0;
text-align: right;
background-color: #194fdb !important;
color: #FFFFFF !important;
}
.row[cuiSelected] > label.cui {
position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;
font-weight: bold;
color: #FFFFFF;
}
fieldset > .row[cuiSelected]:last-child ({
border-bottom: none !important;
}
/* Contact Address Box (Display-only) */
.rowCuiAddressBox {
position: relative;
min-height: 24px;
border-bottom: 1lpx solid #999999;
-webkit-border-radius: 0;
text-align: left;
}
.rowCuiAddressBox > p.cuil ({
box-sizing: border-box;
margin: 0;
border: none;
text-align: left;
padding: 2px 10px 0 80px;
height: 30px;
background: none;
font-weight: bold;
}
fieldset > .rowCuiAddressBox:first-child {
padding-top: 12px;
border-bottom: none !important;
}
fieldset > .rowCuiAddressBox:last-child {
min-height: 25px;
text-align: left;
border-bottom: none !important;

177

Chapter 7: Integrating with iPhone Services

Listing 7-3: Modified portion of iui.js

addEventListener ("click", function (event)
{

var link = findParent (event.target, "a");

if (link)
{
function unselect () { link.removeAttribute("selected"); }
if (link.href && link.hash && link.hash != "#")
{
link.setAttribute("selected", "true");

iui.showPage ($ (link.hash.substr(1)));
setTimeout (unselect, 500);

}
// Begin cui insertion
else if ((link.getAttribute("class") == "cuiServiceLink") || (link
.getAttribute("class") == "cuiServiceButton"))
{
var curRow = findParent(link, "div");
curRow.setAttribute ("cuiSelected", "true");
setTimeout (function() {
curRow.removeAttribute ("cuiSelected") ;
}, 500);
return;
}

// End cui insertion

else 1if (link == $("backButton"))
history.back();

else if (link.getAttribute("type") == "submit")
submitForm(findParent (1link, "form"));

else if (link.getAttribute("type") == "cancel")
cancelDialog(findParent (1ink, "form"));

else if (link.target == "_replace")

{
link.setAttribute ("selected", "progress");

iui.showPageByHref (link.href, null, null, link, unselect);
}
else if (!link.target)
{
link.setAttribute("selected", "progress");
iui.showPageByHref (link.href, null, null, null, unselect);
}
else
return;
}

}, true);

178

Enabling and Optimizing
Web Sites for iPhone
and iPod touch

Oh, the irony. On the same day that I began writing a chapter on enabling Web sites for iPhone and
iPod touch, I would realize firsthand the frustration of browsing sites that just don’t work with my
iPhone. My boys and I were watching the third quarter of a Monday Night Football game when
the electricity suddenly went out because of a town-wide outage. Because my son’s favorite team
was playing, he was frantic. What’s happening in the game? Are the Titans still winning? I immediately
pulled out my iPhone and confidently launched Mobile Safari in search of answers. But upon
going to NFL.com, I discovered that its live updating scoreboard is Flash only. I was left with a
gray box with a Lego-like block in its place. I then pointed the browser to the official Tennessee
Titans site, only to discover useless Lego blocks scattered across its front page as well. We then
spent the rest of the outage scouring the Web, looking for a site to help us.

If you manage a Web site, Apple’s release of iPhone and iPod touch introduce a whole new way of
thinking in the design and development of a site. In the past, you could design a minimalist, text-
only style sheet for mobile users — fully expecting your normal Web site to be viewed only by
desktop browsers. However, expectations of iPhone and iPod touch users are not so modest. They
are expecting to view the full Web in the palm of their hands. Therefore, as you design and develop
your Web site, you will want to consider the level of support you wish to provide for these Apple
devices — whether to offer mere compatibility, device friendliness, or even a design specifically
targeting them. This chapter goes over the four tiers of enabling your Web site for Mobile Safari:

O Tier 1: Compatibility

0 Tier 2: Navigation friendliness

Q Tier 3: Device-specific style sheets
a

Tier 4: Dedicated alternative site

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

Tier 1: iPhone/iPod touch Compatibility

The first tier of support for iPhone and iPod touch is simply making your Web site work for iPhone and
iPod touch. Fortunately, because Mobile Safari is a sophisticated browser, far closer in capability to a
desktop than a mobile browser, this is usually not problematic. However, there are some gotchas that
you need to avoid. These include:

Q

0O 00000

Flash media

Java applets

Scalable vector graphics (SVG)

Plug-ins

CSS property position: fixed

JavaScript functions showModalDialog () and print () and several mouse events (see Chapter 5)

HTML element input type="file"

Given its widespread popularity and desktop install base, Flash is the thorniest incompatibility for many
Web designers and developers. Until the iPhone’s release, Flash support was typically considered a
given except for a relatively small percentage of users. In fact, many designers could take it for granted
that if a user was coming to their site without Flash support, then they probably were not a target visitor
anyway and so they could either ignore them or simply refer them to the Adobe download page. How-
ever, with the release of iPhone and iPod touch, those assumptions are now invalid. Web designers are
thus forced to rethink their reliance on a technology that they had become dependent upon. Figures 8-1

180

= Zeramation renegade design com
L)] bt feven. sercenativn.co.uk seramtion] sem b

|7 Lo it e sersemation, .k (axramasson (a0 M, compseresd 5 & G nva = E——]

Figure 8-1: Flash-based site that attracts desktop users . ..

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

and 8-2 demonstrate the harsh reality, in which a state-of-the-art Web site that looks amazing in Safari for
Mac OS X never accounts for iPhone and iPod touch users.

[al ATET = 8:43 PM =

e ol hitp:/fwww.zeromotion.co.uk/z... G

Figure 8-2: ... leaves iPhone/iPod touch users out
in the cold.

Therefore, if you plan on using Flash for an interactive portion of a page, then you should plan to
degrade gracefully to a static graphic or alternative content. At a minimum, you should at least do what
Adobe does (see Figure 8-3) in placing a disclaimer over Flash content. It’s not ideal, but it is better than
the Lego block. Or, if you have a Flash-driven site (such as the one shown in Figure 8-1), then you should
consider an alternative HTML site or, if warranted, even an iPhone/iPod touch-specific site.

In order to detect Flash support, one solution is to use SWFObject, an open source JavaScript library that
is used for detecting and embedding Flash content (available at blog.deconcept.com/swfobject).
SWEODbject is not iPhone /iPod-touch specific, but encapsulates the Flash Player detection logic, making
it easy for you to degrade gracefully for Mobile Safari. For example, the following code will display a

181

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

il ATET =

r"‘- | v desmen | o | L s v
et

Fusd the brill dapatiencs on adebe.com, phaie nalall
e Batess werson o the free Adote Flah Plsyes,

Dloridcuscd th [lasd Fapet now «

[P - i Prie s fusl -
. . F"? [T P —— = h_-:vn-u
= = W ot wa o ke wh R
e Aot Packon hop Basmers prifapte
§ e A Provmans Ga s 4 [
Prinity
kit Ernative e 4
[P F e
inibancics, s, or 0l b Aty
E—_————— v —
frave rimy iy
i e .
P Yt
iy il
Ty aclling v sk s
Aot i, Tm ui4ncen -
[imu ey frostee

e [T T ——

s mn (T e e A —

L rHm

e yr cesign sgmns

_,“,.’..‘m [P a——

- [r——

e s S [y ——

[eRe———— [

[

L — R

P fres - Hri‘h

Do Pross s s, £ 200 "

CaMERm iRciink
Fernia e e —

Zrdes mivass e p—— [T —
Bkt o i il R Dol el e e
P e— Yottt e

Figure 8-3: Adobe homepage

Flash file for Flash-enabled desktop browsers, but will display a splash .png graphic for non-Flash
visitors, including iPhone and iPod touch users:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Company XY Home Page</title>
<meta name="viewport" content="width=780">
<script type="text/javascript" src="swfobject.js"></script>
</head>
<body>
<div id="splashintro">

</div>

182

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

<script type="text/javascript">
var so = new SWFObject("csplash.swf", "company_intro", "300", "240", "8",
"#338899") ;
so.write("splashintro");
</script>
</body>
</html>

As you can see, the swfobject.js library file is added to the homepage. When Flash is available, the script
replaces the content of the splashintro div with Flash media. But, when Flash is not supported, then
appropriate content is substituted inside the splashintro div.

Therefore, at a minimum, you should seek to make your Web site fully aware and compatible for Mobile
Safari users.

Tier 2: Navigation-Friendly Web Sites

Once your Web site degrades gracefully for iPhone and iPod touch users, you have achieved a base level
of support for these mobile devices. However, while a user may be able to see all of the content on a Web
site, that does not mean that it is easy for Mobile Safari users to navigate and read. A wide section of text,
for example, becomes a stumbling block for iPhone and iPod touch users to read because horizontal
scrolling is required when the user zooms in to read it. With this in mind, the second tier of support is

to structure the site in a manner that is easy for Mobile Safari to zoom and navigate.

Working with the Viewport

As mentioned in Chapter 2, a viewport is a rectangular area of screen space within which a Web page

is displayed. It determines how content is displayed and scaled to fit onto the iPhone and iPod touch.
Using the viewport is analogous to looking at a panoramic scenic view of a mountain range through

a camera zoom lens. If you want to see the entire mountainside, then you zoom out using the wide
angle zoom. As you do so, you see everything, but the particulars of each individual mountain becomes
smaller and harder to discern. Or, if you want to see a close-up picture of one of the peaks, then you
zoom in with the Telephoto lens. Inside of the camera’s viewfinder, you can no longer see the range as a
whole, but the individual mountain is shown in terrific detail. The viewport meta tag in Mobile Safari
works much the same way, allowing you to determine how much of the page to display, its zoom
factor, and whether you want the user to zoom in and out or whether they need to browse using one
scale factor.

The way in which Mobile Safari renders the page is largely based on the width (and/or initial-scale)
property of the viewport meta tag. With no viewport tag present, Mobile Safari will consider the Web
page it is loading as being 980 pixels in width, and then shrinks the page scaling so that the entire page
width can fit inside of the 320-pixel viewport (see Figure 8-4). Here is the default declaration:

<meta name="viewport" content="width=980;user-scalable=1;"/>

183

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

3:42 PM

=B hitp://www.boston.com/sports/... il &8
e e

m/sp

el

Aud Sco. Patriots Cefics Brurm Revoution Cobages High sctenl Ohars
HERH < T Ekgs * Calbaariar -Bhwip i

adrt Lale Pk s e %
e s 0

i il i il
wio Fad ook of 29 and 3} pands againsl
e Bili Bundiy, naalize hi was jusl
Aeliiradfg oides.

PATRIOTS 38, BILLS 7

For tha third straigii waei. Tom Erady,
Feansy Miris and i Mo Enﬂ.ﬂdﬂl’w
iyl WA this oppssiion This e, Thay
erpirwihiideal M unchi imanied Eits.
[Bowion Gzt

= VIRTUAL MEPLAY: Wileh e Pulfsts
lay of 5 gams

= Phelos = By ol the gams degrem -

Figure 8-4: A 980px-wide Web page scaled to fit
in iPhone

Suppose your Web site is only 880 pixels wide. If you let Mobile Safari stick with its default 980-pixel
setting, then the page is scaling more than it needs to. Therefore, to adjust the viewport magnification,
you can specify a width optimized for your site:

<meta name="viewport" content="width=880"/>

Figures 8-5 and 8-6 show the noticeable difference between a 980- and an 880-width viewport for an
880-pixel width site.

With this declaration, instead of trying to fit 980 pixels into the 320 pixels of width, it only needs to shrink
880 pixels. Less scaling of content is needed (.363 scale instead of .326), making the site easier to use for
iPhone and iPod touch users. Note that the viewport meta tag will not affect the rendering of the page
in a normal desktop browser.

184

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

ATET <= 6:02 PM -l ATE&T = 5

E

+ http:/fwww.gbgm-umc.org/ope... G + hitp:/fwww.gbgm-umc.orglope... G

E =] :58 PM =

operation classroom

Hawu yini sl 1o ths OO ofice o gen pour E ¥

ekl lor tha 20ih year celabraion on Sunday
Delssar 2ET i avarnl will e hald ai s
Jornatian Byrd Calalirs b Oraamwood (N,
Tha awening begins at 500 with a gethenng
timva il e dinead dnd piogeam Gl o
B:00pim. The foioe of ihe seel b 52500, Wiite
b i O offics @l PO Boe 248, Colan, IN
AB095 lof piul Bhal Phass ntuids par
etk for $a Bckais A& ruimbes ol

parsons Bos Lbers and Bl Laona wil b

Hawe you san ta the OC affics to gal your
lickel fer e 201 year eddatralion an Sunday
Oedober 287 the event wil be held al the
Jonalhan Byrd Caleleria in Greenwoad IN.
The evaring begine &t 500 wilh a gaiharing
time and the dinner and pragram sarts sl

a pan of ta avning
E:00pm. The price of the meal is $25.00.Wnle
to the OC office al PO Bax 246, Calfax, IN
eckta by nel wapner at 12:38 pm 48035 for your bickat. Please include your

check far tha tickets, A mimber ol
parsons from Libera and Sierra Lears will ba

De. sk 1o afased feicuati Sehcal 2 piit of the svaning.

Dr. Dannls Marka has Bsan

accepted ai the Loma Linda
Univarsity, Califarmia, to
ansnd grafuate school 10 gal & Magters in
Pubilic Healir, Dr. Marks fas been tha

posied by nch wagner at 1238 prm

Figure 8-5: The default width creates empty Figure 8-6: The Viewport is adjusted to better fit the
space on the right side. Web page.

In addition to the width property, you can also programmatically control the scale of the viewport when
the page initially loads through the initial-scale parameter. For example, if you wanted to set the
initial scale to be .90, the declaration would be:

<meta name="viewport" content="initial-scale=.9;user-scalable=1;"/>
Once the page loads, however, the user is able to change the scale factor as they want using pinch and
double-tap gestures as long as the user-scalable property is set to true (the default). If you want to

limit the scale range, you can use the minimum-scale and maximum-scale properties:

<meta name="viewport" content="initial-scale=.9;maximum-scale=1.0;minimum-
scale=.8;user-scalable=1;"/>

In this way, the user has the ability to pinch and zoom, but only to the extent that you want to allow.

185

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

If you develop a site or application specifically for iPhone/iPod touch, you want to size the page to the
viewport (as discussed in Chapters 2 and 3) by setting the width=device-width (device-widthis a
constant) and initial-scale=1.0. Because the scale is 1.0, you don’t want the user to be able to rescale
the application interface, so the user-scalable property should be disabled. Here’s the declaration:

<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-

scale=1.0; user-scalable=0;">

Table 8-1 lists the viewport properties. You don’t need to set every property. Mobile Safari will infer
values based on the properties you have set.

Keep in mind that the width attribute does not refer to the size of the Mobile Safari browser window,
but instead the perceived size of the page in which Mobile Safari shrinks down to be displayed properly

on the mobile device.

Table 8-1: viewport Meta Tag Properties

initial-scale

user-scalable

minimum-scale

maximum-scale

ratio

fit to screen

1 (yes)

minimum-scale

0 (no)

>0

>0

maximum-scale

1 (yes)

10

10

Minimum Maximum
Property Default Value Value Value Description
width 980 200 10000 Width of viewport
height based on aspect 223 10000 Height of viewport

Scale to render when
page loads

If yes, user can change
scale through pinch
and double-tap

Use to set the lower
end for scaling

Use to set the higher
end for scaling

Although it’s not generally recommended, you can specify the width of the content to be greater than the
viewport width, but that will require the user to scroll horizontally.

Note that iPhone 1.1.1 and above support two new width and height constants: device-width (width of
device in pixels or 320) and device-height (height of device in pixels or 480).

186

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

Turning Your Page into Blocks

One of the most important ways to make your Web site friendly for iPhone and iPod touch users is turn
your Web page into a series of columns and blocks. Columns make your page readable like a newspaper
and help you avoid wide blocks of text that cause users to horizontally scroll left and right to read.

When an element is double-tapped, iPhone looks at element that is double-tapped and finds its closest
block (div, o1, ul, table, and so on.) or image ancestor. If a block is found, then Safari zooms the con-
tent to fit the block’s content based on the viewport tag’s width property value and then centers it. If an

image is tapped, then Mobile Safari zooms to fit the image and centers it. If already zoomed, then zoom
out occurs.

Figure 8-7 shows a sample page with a relatively simple structure, but one that makes it difficult for the
iPhone/iPod touch to zoom in on. The table is defined at a fixed width of 1000px, and the first column
takes up 875px of that space. The text above the table spans the full document width, but because it is
outside of any block, Mobile Safari can do no zooming when the text is double-tapped. The user is

forced to go to landscape mode and pinch to get readable text, but it still scrolls off the right of the
screen (see Figure 8-8).

Ltz igpmiirn dolor st asl, conseviacr ddipecing ol Erss el s Etlam Blis. Cre aligeey
ermlades iprum. Acean el leo. Pellenesque Baboans mocbd pristique senecus of oo of malesuads
astiars e Dufpis cicsind. Acsoan puineic veiatall magme. Sed susclph tnddun beem. Mol st
elin. Dhils |l conscctelier jdato. Masonss sod lorem. Morbi mlls ailih, wempus que. solets:
et, oty o, Bean. Praceent allgudm. Proin nos s

Columsnl

oras non cls vimse lacws placerar suzior. Meen epen wma bd estmallis aliques. Nune
e amile, pellentesges i, curms ac, ulivicies &, ipae Donee ahrioes, mius o
berluipar aliquet. dolor e aucter nisl, o cursus &2 uma sel magna. Cre senummy 12
joorsus pede. Pellemesgue ar menis. Phasellus vel guass. Nullam id velin. Eiam porta.
Pase cotigie, nulla b loos e cssvean, s quan phavesm Solod, o oersis signe
em o sl Aeneos lorem seque, socumsss o, sodales pulvinee, pellenicopee i,
istn. Praceent egesie saples @ nisl Ut convallis. Asnean aligues elin son guan
podales tritque. Vesei o vite bios

Piells focilist. Mulls docwlic lucnes ma Algues o Lo s ko commodo e
BFellcmees que hbaant morts metique seseciis el nebus el maksusda lmes oo ampls g
peaesias ¥ estibadum sd el Curabiner locnes sapen indolor. Moaecenas aliguam. En o)
fuabdnsse plotea dicossves Mullam b resss sgel jese posuae comsequat O urabairn
nollis, urna sitames wices Seugiat, lelis sapen sodales sapies, ot eeendan cdic
ibero nee eme Carsbiur dioen tepis sget menss. Camabiog leeus libeo, sscior s
vt s et aliguet ui, sreu. Mam onane fpes o nes. Asnes @1 diam at kcus
iverma cgesias. Sed id mssa. Acnean maec leo, sodales ac, suseipin sl bbendeen ne,
| AT

Pz femientum portn Gelor. Morkd bibendesn ferm s orel. Prassent telles du
osrnus seal, comavealo vel, impendien sit mel, e, Dl consequas ques vel dolor
Pelorid Tebis asie, Mandit seossrean, eulsmad ai, Blandit sit amet, nuoe. Duls varius
meiih b Bl Dionec e asvel s, Allquam ipsum [seus, lecinis s s,
jootadime e W, Tesciing d, diam. Mollees ormare cosseqeal ipsum. |sseger mi mi,

e llen in, elemeemum nes, hibendom i, Teis. Miauiris jusio pede, pretass cu,
Jssctaor viel, laculis aget, erar

Figure 8-7: Unfriendly page on page load

187

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

__ATET = 9:33 PM =
Lorem ipsum dolor sit amet, consectetuer adipisci
sodales ipsum. Aenean et leo. Pellentesque habita
malesuada fames ac turpis egestas. Aenean posue,
lorem. Morbi at velit. Duis iaculis consectetuer ju
tempus quis, molestie et, nonummy a, libero. Prag

Column

|Cras non elit vitae lacus placerat auctor. Nam ¢

Figure 8-8: Zooming to a cell

However, with a few simple tweaks, you can transform the page into something far easier for iPhone
and iPod touch to work with. First, you can add a viewport meta tag to gain greater control over
the width:

<meta name="viewport" content="width=950"/>

Next, you enclose the paragraph into a div block element and transform it into a column (say 50 percent
of page):

<div style="width:50%">
</div>

In the real world, you would obviously want to tailor the entire page design around a more column-
based approach.

Third, you make the table to be sized by percentage (90 percent of width) rather than the fixed width
of 1000px:

<table width="90%" border="1" cellspacing="1" cellpadding="1">
<tr>
<th width="75%" valign="top" scope="col"><div align="center">Columnl</div></th>
<th width="25%" valign="top" scope="col">Column2</th>
</tr>
<tr>

</table>

188

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

Even with these rudimentary changes, the page becomes easier to browse when you double-tap the
page, as shown in Figure 8-9.

il ATET = 918 P (-

S ol http:/110.0.1.199/ipd/ws/bad.ht... C

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Etiam sed est. Etiam felis. Cras
aliquet sodales ipsum. Aenean et leo.
Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.
Aenean posuere venenatis magna. Sed suscipit
tincidunt lorem. Morbi at velit. Duis iaculis
consectetuer justo. Maecenas sed lorem. Morbi
nulla nibh, tempus quis, molestie et, nonummy
a, libero. Praesent aliquam. Proin non purus.

Columnl

[Cras non elit vitae lacus placerat auctor. Nai
id est mollis aliquet. Nunc enim ante, pellen
[cursus ac, ultricies a, ipsum. Donec ultrices
volutpat aliquet, dolor dui auctor nisl, et cur
|eget magna. Cras nonummy cursus pede. Pg
metus. Phasellus vel quam. Nullam id velit.

Figure 8-9: The text block is now readable.

Figure 8-10 shows the model block-based Web page that is easily navigated with double-tap and pinch
gestures of iPhone and iPod touch.

189

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

<div>
<div>
<div> <div>
<div>
<div>
<table>

Figure 8-10: The prototype structure of an
easy-to-browse page

Defining Multiple Columns (Future Use)

Safari 3 and Mozilla-based browsers provide support for new CSS3 properties that enable you to create
newspaper-like, multicolumn layouts. For a content block, you can specify the number of columns,
width of the columns, and the gap between them. Because Internet Explorer does not currently support
multiple columns, these style properties are prefixed with -webkit and -moz:

-webkit-column-count: 2;
-moz-column-count: 2;
-webkit-column-width: 200px;
-moz-column-width: 200px;
-webkit-column-gap: 13px;
-moz-column-gap: 13pXx;

Unfortunately, the current version of Mobile Safari does not support these properties. However, be
watching for their future support. When Mobile Safari does support multicolumns, it can offer an easy
way to transform existing content into the columnar structure that iPhone and iPod touch users love.

Tier 3: Custom iPhone/iPod touch Styles

An iPhone and iPod touch user can navigate a Tier 2 Web site with double-tap, pinch, and flick gestures,
but that does not necessarily mean that it is easy or enjoyable to do so. Panning and scrolling across the
screen can become quickly tiresome after the excitement over the “full Web” wears off. Users will
quickly find themselves returning to sites that provide a richer, more tailored experience for Mobile
Safari. The easiest way to do this is to create custom styles specifically for iPhone and iPod touch.

190

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

Media Queries

If you wish to specify a style sheet for iPhone and iPod touch usage, you can use a CSS3 media query.
iPhone and iPod touch do not support the dumbed down handheld or print media types. Instead, iPhone
and iPod touch look for the screen media type. You can then use the 1ink element to set specific styles

for iPhone and iPod touch by looking only for devices that support screen and have a maximum width

of 480px:

<link media="only screen and (max-device-width: 480px)"
rel="stylesheet" type="text/css" href="iphone-ipod.css"/>

Or, to set iPhone/iPod touch-specific styles inside a particular CSS style sheet, you could use:

@media only screen and (max-device-width: 480px) {
/* Add styles here */
}

The 1ink element and the CSS rule would apply only to devices that have a maximum width of 480
pixels. And, for browsers that do not support the only keyword, they will ignore the rule anyway:.
However, the problem is that, under certain situations, Internet Explorer 6 and 7 fail to ignore this rule
and will render the page anyway using the iPhone/iPod touch-specific style sheet. As a result, you need
to guard against this possibility by using IE’s conditional comments:

<!--[if !IE]>-->

<link media="only screen and (max-device-width: 480px)"
rel="stylesheet" type="text/css" href="iphone-ipod.css"/>

<l--<![endif]-->

Internet Explorer will now ignore this link element, because the [if !IE] indicates that the enclosed
code should only be executed outside of IE.

Therefore, if you would like to have a default style sheet for normal browsers and a custom style sheet
for iPhone and iPod touch users, you would use the following combination:

<link media="screen and (min-device-width: 481px)"
rel="stylesheet" type="text/css" href="default.css"/>

<!--[if !IE]>-->

<link media="only screen and (max-device-width: 480px)"
rel="stylesheet" type="text/css" href="iphone-ipod.css"/>

<l--<![endif]-->

Text Size Adjustment

Normally, the font size of a Web page adjusts automatically when the viewport is adjusted. For instance,
after a double-tap gesture, Mobile Safari looks at the zoomed width of the content block and adjusts the
text to zoom in proportion. This behavior makes the text easier to read for typical uses, though it can
affect absolute positioning and fixed layouts. However, if you would like to prevent the text from
resizing, then use the following CSS rule:

-webkit-text-size-adjust: none;

191

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

In general, for most Web site viewing, you will want to keep this property enabled. For iPhone/iPod
touch-specific applications in which you want more control over scaling and sizing, you will want to
disable this option.

Case Study

Consider a case study example, the Web site of Operation Classroom, a nonprofit organization doing
educational work in Africa. Keep in mind that the style sheet of each Web site will need to be optimized
in a unique manner, but this case study will demonstrate some of the common issues that will crop up.

Figure 8-11 displays a page from the site with a basic viewport meta tag set at width=780, which gives
it the best scale factor for the existing page structure. However, even when the viewport setting is
optimized, a user will still need to double-tap in order to read any of the text on the page. What’s more,
the top-level links are difficult to tap unless you pinch and zoom first.

. AT&T = 11:02 PM ==

Schools & Programs

hams > schaols kb programe

Scholarships Are Nesded For Sludents

Students attending sehaals in Liberie and
Sierra Leone have to pay school fees,
Operation Classroom pravides 100 work
stucly-grants/scholarships for each of their
schools, For $75 you can pravide the
achools fees far & needy atudent wha
withaut your help would fct be able to
attend schaal. upemunn Clagsroom
provides the spongor @ picturs and & ba of
the student. Make your checks payabls to
:}pmrjm Classrocm. Pictures and bios

Figure 8-11: The prototype structure of an
easy-to-browse page

192

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

However, by creating an iPhone and iPod touch-specific style sheet, you can transform the usability site
for Mobile Safari users without impacting any of the HTML code. Looking at the page (see Figure 8-12),
you'll notice that several transformations need to occur:

O Shrink the page width.

0 Shrink the Operation Classroom logo at the top of the page.

O Increase the font size for the menu links, page header, rabbit trail links, and body text.
Q

Move the sidebar to appear below body text.

Shrink page width

... ATET = 11:02 PM =

Shrink header

]» Enlarge menu links

Schools & Programs

hemd > selbasis b programa

vooolional Wmuma medical

Scholarships Are Neadad For Sludents

Students attending 2chools in Liberia and
Sierra Leons have to pay school fees,
Operation Classroom provides 100 work
study -grantsy/scholarships for sach of their
schopls, For 75 you can provide the
schopls fees for & needy student who
withaut your heldp would nct be able to
attend schaol. Operation Classmom
provides the sponsar & picturs and & bia of
the stidant. Make your checks payabls to
Operation Classroom. Pictures and bics

Increase font sizes
r Move sidebar content

Figure 8-12: Transforming the structure using CSS

193

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

As a first step, add a media query to the document head of each page in the site:

<link media="screen and (min-device-width: 481px)"
rel="stylesheet" type="text/css" href="css/oc-normal.css"/>

<!--[if !IE]>-->

<link media="only screen and (max-device-width: 480px)"
rel="stylesheet" type="text/css" href="css/oc-iphone-ipod.css"/>

<!--<![endif]-->

Next, inside of the HTML files, change the viewport meta tag to a smaller width:
<meta name="viewport" content="width=490"/>

The 490px width is wide enough to be compatible with the existing site structure, but small enough to
minimize the scaling.

That’s all of the work that you need to do to the HTML files.

To create the new custom style sheet, you will begin with the default style sheet already being used and
then save as a new name — oc-iphone-ipod.css. Your first task is to change the width of the document
from 744px to 490px. Here’s the updated style:

@media all {

#wrap {
position:relative;
top:4px;
left:4px;
background: #ab8;
width:490px;
margin:0 auto;
text-align:left;

Next, you change the original font-size:small property defined in body to a more specific pixel size:

body {
background: #cdb;
margin:0;
padding:10px 0 14px;
font-family: Verdana, Sans-serif;
text-align:center;
color:#333;
font-size: 15px;

}
While this size is not as large as what an iPhone/iPod touch application would use, it is the largest font

size that works with the current structure of the Operation Classroom Web site. Fortunately, the rabbit
trail (pathway) and page header fonts are relative to the body font:

194

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

#pathway {
margin-top:3px;
margin-bottom: 25px;
letter-spacing : .18em;
color: #666666;

font-size: .8em;

}

#pageheader {
font-family:Helvetica,Arial,Verdana, Sans-serif;
font-weight: bold;
font-size: 2.2em;
margin-bottom: 1px;
margin-top: 3px;

The next issue is to shrink the size of the banner at the top of the page. Here’s the style for the
banner text:

#banner-text{
background:url ("../images/bg_header.jpg") no-repeat left top;
margin:0;
padding:40px 0 0;
font:bold 275%/97px Helvetica,Arial,Verdana, Sans-serif;
text-transform:lowercase;

}

The two properties you need to try and shrink are the padding and the font size. Here’s a
workable solution:

#banner-title {
background:url ("../images/bg_header.jpg") no-repeat left top;
margin:0;
padding:10px 0 10px;
font: Bold 35px Helvetica,Arial,Verdana, Sans-serif;
text-transform:lowercase;

}

The final and perhaps most important change is to enable the sidebar to follow the main text rather than
float along side of it. Here’s the original definition:

#sidebar {
background: #565 url("..images/corner_sidebar.gif") no-repeat left top;
width: 254px;
float: right;
padding:0;
color: #cdb;
}

To move the sidebar content below the main body text, you remove the float property and add a
clear: both declaration to prevent the sidebar from any side wrapping. You also change the small

195

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

width of 254px to 100 percent, which enables it to take up the entire contents of the content div. Here’s
the code:

#sidebar {
background:#565 url("../images/corner_sidebar.gif") no-repeat left top;
width:100%;
clear: both;
padding:0;
color:#cdb;
}

Figures 8-13, 8-14, and 8-15 show the results of the transformation.

-l AT&T = 2:25 AM [Ep

s ol Nittp://10.0.1.199/ipd/oc/school. .. G

operation
classroom

Home |
| Workteams |
Shipping | Supplies |

Resources |

Schools & Programs

home > schools & programs

< m |

Figure 8-13: The top banner is smaller, but the link
sizes are larger.

196

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

il ATET = 2:26 AM |-l ATET = 2:27 AM)
and return to the school to teach. You
Schools & Prugrams can help. A scholarship costs around

home > schools & programs

$1,300 to send a student to college in
Liberia or Sierra Leone. Funds can be
sent to the OC office.

{operationclassroom General 12922.).

Scholarships Are Needed For Students

Students attending schools in Liberia and Secondary Schools
Sierra Leone have to pay school fees. Viocational Training
Operation Classroom provides 100 work WATTS Trauma Training
study-grants/scholarships for each of Dperation Doctor

their schools. For $75 you can provide
the schools fees for a needy student who
without your help would not be able to
attend school. Operation Classroom

provides the sponsor a picture and a bio

Contact Us
of the student. Make your checks Copyright ©2007 Operation Classroom, All
payable to Operation Classroom. Pictures rights reserved.

and bios should be available around

S
Figure 8-14: Text is easily readable without the need Figure 8-15: Sidebar content now follows main
for double-tap or pinch gestures. body text.

Tier 4: Parallel Sites

Unless you are creating an iPhone or iPod touch application, developing for Tier 2 or 3 support will
provide sufficient support for most sites. However, you might find a compelling need to actually
develop a site specifically written for iPhone/iPod touch. The content may be the same, but it needs
to be structured in a manner discussed in Chapters 2 and 3.

Avoid Handcuffs, Offer Freedom

If you are going to offer an iPhone/iPod touch version of your site, you want to offer your users the
freedom to choose between the customized site and your normal site. Don’t auto-redirect based on user
agent. Because Mobile Safari can navigate a normal Web site, you should always allow users to make the
decision themselves. Amazon.com provides a good model. As Figure 8-16 shows, when you access their
homepage on your iPhone, it clearly notifies you of the alternative site, but does not handcuff you into
using it.

197

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

2:46 AM

= ol hitp://www.amazon.com/gp/a... G
PR ——

Halls, Richard Wagser. We have moommendations for . mot Richard Wagnar,
elick Perg.)

=

Welcome, Richard Wagner.
Tap here to try our beta iPhone site.

P e s Pning e e
AR Py -
Jurp e ———y—)

EE

T Beautiful New Sony Bravia
ey 1080p LCO HOTVs

Macy's Jewelry Sale: Save 20%
to 50% on Select Items

Figure 8-16: Amazon offers freedom to use the
normal site or an iPhone-specific version.

To add a similar functionality to a Web site, begin by adding an empty div element at the top of your
content, just below the top menu:

<div id="iphone-ipod-notify"></div>

This element will serve as the placeholder for the message that you will display to iPhone and iPod
touch users.

Next, add the following script:

<script type="application/x-javascript">
function isAppleMobile() {
result ((navigator.platform.indexOf ("iPhone") != -1) ||
(navigator.userAgent.indexOf ('iPod') != -1))

}

function init() {

198

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

if

(isAppleMobile)

var o = document.getElementById (
0.innerHTML = "<hl style='text-align:center;border:
10px; '>Tap here to go to

webkit-border-radius:
our
iPhone/iPod touch web site.</hl>";

}
}

</script>

{

'iphone-ipod-notify'
lpx solid #a23el4d; -

The init () function calls isAppleMobile () function to determine whether the user agent is an Apple
mobile device. If so, then HTML content is added to the placeholder div element. If not, then nothing is
added. The init () function is then called from the onload handler of the body. Figure 8-17 shows the
results when viewed from an iPhone or iPod touch.

Figure 8-17: Offering a freedom of choice to your users

Schools & Programs

hafis = gehaals b progiame

! = rmuma E
Scholarships Are Nesded For Sludents
Students attending =chools in Liberia and
Siarra Leone have to pay school fees,
Operation Classroom provides 100 work
study-grants/scholarships for each aof their
schools. For 375 you can provide the
schools fees for B nesdy student whao

withaut your help wauld net be able to
e e

il ATET = 10:50 AM

Tap here to go to our
iPhone/iPod touch web site.

199

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

Transform a Site to an iPhone/iPod touch Design

Once you decide to create a companion site specifically for Mobile Safari users, you have to decide
how existing content best fits inside of an iPhone and iPod touch UI design. You need to determine
whether you want to create your own custom design or model after the standard edge-to-edge naviga-
tion. (See Chapters 2 and 3 for more on Ul design.) The edge-to-edge design scheme works well for
many Web sites, as you'll see here.

As a case study, you'll turn once again to the Operation Classroom Web site, the homepage of which is
shown in Figure 8-18. Several aspects of this site lend itself to using the edge-to-edge navigation Ul
First, the site hierarchy could be easily converted to a series of nested list items. Second, the news entries
and quick links entries also work great as lists.

News
entries

] G

a8 OC ofics 8t PO Box 246, Coltax, IN 46005 for your sckat. Planss inshuss
VOUF ERac e | A mana
il 8 8 DA ef 8 mvaning

Pebtted By e magrar at 198 pm

Or. Marke to attend Graduate School

the Lams Linsa
, Calformin, 1o ateend gracste achnl 10 gt &

Fasters In ke Heats, G, Marke fas boen te Coief.

Mesical Cficer it the Kisty Hepital sirce 1754 and mil

croen
card, hiote th on e conection o Lhe RS Noe of the page, All Gifts A tex
cocuctitie.

Puiste ty ich magrer af 4113 pm

It effaring lasatisns 1 46 10 T Lisod 4
PAMIERIDY I8 & warkham a1 the Besen Mamansl Pimiey Eehosl & Kisky.. Thats
trams oamibar o
Easiname 85 the ehedl perarity Bt Y
£00 2 plicat 60 the st builgingt. The projects wil Inciuds casnng st

w0, BAINING, RO AUACHICl work 3 COMNATIGR. The Acheduls for th
thamg e
Dictabar 11 1 36 -- flah Fionar frim Uniaamn, A lasder
Pewambes 4 b 17 Rick Chandis of Canmal, feam laasar

Figure 8-18:

Operation Classroom homepage

Top menu

— Quick links section

Using the iUI framework and the cUI extension (see Chapter 7), you'll create a new HTML page contain-
ing the top-level menu. Here’s the initial code:

<body>
<!-- Top iUI toolbar -->
<div class="toolbar">

<hl id="pageTitle"></hl>

200

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

</div>
<!-- Top-level menu -->
<ul id="home" title="0C for iPhone" selected="true">
News</1li>
Quick Links</1li>
Schools and Programs
Workteams</1i>
Shipping</1i>
Supplies</1li>
Resources</1li>
About 0C
Return to Regular Web Site

</body>

The top list items include both the top-level links from the regular site, along with news entries, quick
links, as well as a link back to the regular Web site. Figure 8-19 shows the top-level menu when
displayed on the iPhone.

|1 ATET = 1:16 PM)

OC for iPhone

News >
Quick Links >
Schools and Programs >
Workteams >
Shipping >
Supplies >
Resources b

About OC »

W

Return to Regular Web Site

Figure 8-19: OC for iPhone/iPod touch

201

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

The news entries from the regular homepage are converted to their own list of new articles. Notice that
the entries are organized by date (see Figure 8-20) using the iUI class group:

202

<!-- News menu -->
<ul id="news" title="Latest News">

<1li class="group">Sept. 20, 2007</1li>

20 Year Celebration Coming Soon

<1li class="group">Aug. 18, 2007</1li>

Dr. Marke To Attend Graduate School

Workteam Scheduled for Kissy Clinic</1li>

<1li class="group">June 23, 2007</1i>

Special Speakers Coming to Indiana in October</1li>
<1li class="group">May 24, 2007</1li>

Combat Malnutrition in Sierra Leone

12:58 PM = =

L1l ATAT =

Soon
-,M = 00

Dr. Marke To Attend "
Graduate School
Workteam Scheduled for "

Kissy Clinic

Special Speakers Coming to
Indiana in October

Figure 8-20: News entries by date

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

Each of these links is connected with a destination page:

<div id="newsl" class="panel" title="0OC News">

<h2>20 Year Celebration Coming Soon</h2>

<p>Have you sent to the OC office to get your ticket for the 20th year celebration
on Sunday October 28? The event will be held at JB's Cafeteria in Greeley, IN. The
evening begins at 5:00pm with a gathering time and the dinner and program starts at
6:00pm. The price of the meal is $25.00. Email the OC office for your ticket.
Please include your check for the tickets. A number of persons from Liberia and
Sierra Leone will be a part of the evening.</p>

</div>

Figure 8-21 displays the results of this page.

il ATET = 1:07 PM (= =

(Latest ... OC News

20 Year Celebration Coming Soon

Have you sent to the OC office to get your
ticket for the 20th year celebration on
Sunday October 28?7 The event will be
held at JB's Cafeteria in Greeley, IN. The
evening begins at 5:00pm with a
gathering time and the dinner and
program starts at 6:00pm. The price of the
meal is $25.00. Email the OC office for
your ticket. Please include your check for
the tickets. A number of persons from
Liberia and Sierra Leone will be a part of
the evening.

Figure 8-21: News article as a destination page

203

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

iPhone services integration offers you some special things with Contact Us pages. For example, when
displaying contact information for the organization, you use a cUI destination page, which is discussed
in Chapter 7:

<!-- Contact panel -->
<div id="about" title="About Us" class="panel">
<div class="cuiHeader">

<hl class="cui">Operation Classroom</hl>
<h2 class="cui">Partnering in Sierra Leone and Liberia</h2>
</div>
<fieldset>
<div class="row">
<label class="cui">office</label>
<a class="cuiServiceLink" target="_self" href="tel: (765) 555-1212"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 555-1212
</div>
<div class="row">
<label class="cui">mobile</label>
<a class="cuiServiceLink" target="_self" href="tel: (765) 545-1211"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 545-1211
</div>
<div class="row">
<label class="cui">email</label>
<a class="cuiServiceLink" target="_self"
href="mailto:info@operationclassroom.org" onclick="return
(navigator.userAgent.indexOf ('iPhone') != -1)">infoRoc.org
</div>
</fieldset>
<fieldset>
<div class="rowCuiAddressBox">
<label class="cui">office</label>
<p class="cui">P.0. Box 120208.N</p>
<p class="cui">Colfax, IN 46035</p>
</div>
</fieldset>
<fieldset>
<div class="row">
<a class="cuiServiceButton" target="_self"
href="http://maps.google.com/maps?g=2012+Main, +Lapel, +IN">Map To Warehouse
</div>
</fieldset>
</div>

The top div contains a thumbnail image and a place for company name and tagline. The next fieldset

provides telephone and email links (see Figure 8-22). iPod touch users will not be able to link to Phone or
Mail applications, so an onclick handler is added to each link to enable the link only if it is running on

204

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

an iPhone. (That’s also why the text label for the email link displays the actual address instead of “Email
Us.”) The middle fieldset provides static address information, while the bottom fieldset contains a
Google Maps link to the Operation Classroom warehouse (see Figure 8-23). If running on an iPhone, the
Maps application will open. If running on an iPod touch, the Google Maps Web site is displayed.

[0l ATET = 1:35 PM #

ot I T e

Partnering in Sierra Leone
and Liberia

Operation
Classroom

Partnering in Sierra Leone .]
and Liberia office (765) 555-1212

mobile (765) 545-1211

office (765) 555-1212

email info@oc.org

mobile (765) 545-1211

email info@oc.org office P-0- Box 120209-N
i Colfax, IN 46035

P.0O. Box 120209-N)
Colfax, IN 46035 .. Map To Warehouse

office

Figure 8-22: iPhone service integration Figure 8-23: The link to Google Maps works in both
iPhone and iPod touch.

The following code shows the full source code for the sample OC for iPhone/iPod touch site. Note that
many sections are not shown for this example that would need to be implemented for a live site.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.o0rg/1999/xhtml">

<head>

<title>Operation Classroom</title>

<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;

user-scalable=0;"/>

(continued)

205

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

(continued)
<style type="text/css" media="screen">@import "../iui/iui.css";</style>
<style type="text/css" media="screen">@import "../iui/cui.css";</style>
<script type="application/x-javascript" src="../iui/iui.js"></script>
</head>
<body>

<!-- Top iUI toolbar -->
<div class="toolbar">
<hl id="pageTitle"></hl>

</div>
<!-- Top-level menu -->
<ul id="home" title="0OC for iPhone" selected="true">
News</1li>
Quick Links</1li>
Schools and Programs
Workteams</1i>
Shipping</1i>
Supplies</1li>
Resources</1li>
About 0OC
Return to Regular Web Site

<!-- News menu -->
<ul id="news" title="Latest News">
<1li class="group">Sept. 20, 2007</1i>
20 Year Celebration Coming Soon
<1li class="group">Aug. 18, 2007</1li>
Dr. Marke To Attend Graduate School</1li>
Workteam Scheduled for Kissy Clinic</1li>
<1li class="group">June 23, 2007</1i>
Special Speakers Coming to Indiana in October
<li class="group">May 24, 2007</1i>
Combat Malnutrition in Sierra Leone

<div id="newsl" class="panel" title="0C News">
<h2>20 Year Celebration Coming Soon</h2>
<p>
Have you sent to the OC office to get your ticket for the 20th year celebration on
Sunday October 28? The event will be held at JB's Cafeteria in Greeley, IN. The
evening begins at 5:00pm with a gathering time and the dinner and program starts at
6:00pm. The price of the meal is $25.00. Email the OC office for your ticket.
Please include your check for the tickets. A number of persons from Liberia and
Sierra Leone will be a part of the evening. </p>
</div>
<!-- More content would appear here -->
<!-- About Us panel -->
<div id="about" title="About Us" class="panel">
<div class="cuiHeader">

<hl class="cui">Operation Classroom</hl>
<h2 class="cui">Partnering in Sierra Leone and Liberia</h2>
</div>

206

Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch

<fieldset>
<div class="row">
<label class="cui">office</label>
<a class="cuiServiceLink" target="_self" href="tel: (765) 555-1212"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 555-1212
</div>
<div class="row">
<label class="cui">mobile</label>
<a class="cuiServiceLink" target="_self" href="tel: (765) 545-1211"
onclick="return (navigator.userAgent.indexOf ('iPhone') != -1)">(765) 545-1211
</div>
<div class="row">
<label class="cui">email</label>
<a class="cuiServiceLink" target="_self"
href="mailto:info@operationclassroom.org" onclick="return
(navigator.userAgent.indexOf ('iPhone') != -1)">info@oc.org
</div>
</fieldset>
<fieldset>
<div class="rowCuiAddressBox">
<label class="cui">office</label>
<p class="cui">P.0. Box 120208.N</p>
<p class="cui">Colfax, IN 46035</p>
</div>
</fieldset>
<fieldset>
<div class="row">
<a class="cuiServiceButton" target="_self"
href="http://maps.google.com/maps?g=2012+Main, +Lapel, +IN">Map To Warehouse

</div>
</fieldset>
</div>
</body>
</html>

207

Bandwidth and Performance
Optimizations

Once Apple made the strategic decision to support Web-based applications for iPhone and iPod
touch rather than native applications, optimization emerged as a front burner issue for application
developers. With native applications, programmers can code in their personal style, efficient or
not, because the actual performance hit is negligible, even on a mobile device like iPhone. What's
more, in a decade where broadband is now the norm, many Web developers have fallen into those
same tendencies and allow their sites and applications to be composed of ill-formed HTML,
massive JavaScript libraries, and multiple CSS style sheets.

However, when you are developing applications for iPhone and iPod touch, you need to refocus
your programming and development efforts toward optimization and efficiency. What makes it
different from normal Web 2.0 apps is that the developer can no longer rely on the fact that the
user is accessing the application from a broadband connection. iPhone users may be coming to
your application using Wi-Fi or a much slower EDGE connection.

Therefore, as you develop your applications, you will want to formulate an optimization strategy
that makes the most sense for your context. You'll want to think about both bandwidth and code
performance optimizations.

Your Optimization Strategy

If you spend much time at all researching optimization strategy and techniques, you quickly
discover that there are two main schools of thought. The first camp is referred to as hyper-optimizers
in this book. A hyper-optimizer will do almost anything to save a byte or an unneeded call to the
Web server. They are far more concerned with saving milliseconds than they are about the read-
ability of the code that they are optimizing. The second camp, perhaps best described as relaxed
optimizers, are interested in optimizing their applications. But, they are not interested in sacrificing
code readability and manageability in an effort to save a nanosecond here or there.

Chapter 9: Bandwidth and Performance Optimizations

Decide which camp you fall into. But at the same time, don’t go through complex optimization hoops
unless you prove that your steps are going to make a substantive difference in the usability of your
application. Many optimization techniques you’ll find people advocating may merely make your code
harder to work with and don’t offer any notable performance boost.

Best Practices to Minimize Bandwidth

Arguably the greatest bottleneck of any iPhone and iPod touch application is the time it takes to
transport data from the Web server to Mobile Safari, especially if your application is running over
EDGE. Therefore, consider the following techniques as you assemble your Web application.

General

Q

Qa

Separate your page content into separate .css, .js, and .html files so that each file can be cached
by Mobile Safari.

Reduce white space (tabs and spaces) wherever possible. Although this might seem like a
nominal issue, the amount of excess white space can add up, particularly on a larger-scale Web
application with dozens of files.

Remove useless tags, and unused styles and JavaScript functions in your HTML, CSS style
sheets, and JavaScript library files.

Remove unnecessary comments. However, keep in mind the following caveat: Removing
comments can reduce file size, but it can make it harder to manage your code in the future.

Use shorter filenames. For example, it is much more efficient to reference tb2.png than
TopBannerAlternate2_980.png.

Minimize the total number of external style sheets and JavaScript library files you include with
your page. Because browsers typically make just two requests at a given time, every additional
file that a browser has to wait on for the request to complete will create latency.

Write well-formed and standard XHTML code. While not a bandwidth issue, well-formed
XHTML requires less passes and parsing by Mobile Safari before it renders the page. As a result,
the time from initial request to final display can be improved through this coding practice.

Consider using gzip compression when you serve your application. (See the following section
for more on compression options.)

Consider using a JavaScript compressor on your JavaScript libraries. You could then work with
a normal, un-optimized JavaScript library for development (mylibrary,js) and then output a
compressed version for runtime purposes (mylibrary-c.js). (See the following section for more
on compression options.)

Images

Q

210

Large image sizes are a traditional bottleneck to always target for your applications.
Be meticulous in optimizing the file size of your images. Shaving off 5kb or so from several
images in your application can make a notable performance increase.

Chapter 9: Bandwidth and Performance Optimizations

Q

Make sure your images are sized appropriately for display on the iPhone and iPod touch
viewport. Never ever rely on browser scaling. Instead, match image size to image presentation.

Image data is more expensive than text data. Therefore, consider using canvas drawing in
certain cases.

Instead of using image borders, consider using CSS borders instead, particularly with the
enhanced -webkit-border-radius property.

Instead of using one large background image, consider using a small image and tiling it.

CSS and JavaScript

Q

Combine rules to create more efficient style declarations. For example, the second declaration is
much more space efficient than the first one is:

// Less efficient
div #content {

}

font-family: Helvetica, Arial, sans-serif;

font-size: 12px; /* Randy: do we want this as px or pt? */
line-height: 1.2em; /* Let's try this for now...*/
font-weight: bold;

// More efficient
div #content {font: bold 12px/l1.2em Helvetica, Arial, sans-serif};

Qa

Consider using shorter CSS style names and JavaScript variable and function names. After all,
the longer your identifiers are, the more space your files will take. But, at the same time, do not
make your identifiers so short that they become hard to work with. For example, consider the
trade-offs with the following three declarations:

/* Inefficient */
#homepage-blog-subtitle-alternate-version{letter-spacing:.lem;}
/* Efficient, but cryptic */

#hbsa{letter-spacing:.lem;}

/* Happy medium */

#blog-subtitle-alt{letter-spacing:.lem;}

As you work through these various strategies and test results, a good way to check the total page size is
to save the page as a Web archive in a desktop version of Safari. The file size of the archive file indicates
the HTML page size with all of the external resources (images, style sheets, and script libraries)
associated with it.

Compressing Your Application

Normally, an iPhone/iPod touch Web application will be launched when a user types the URL in their
Mobile Safari browser. The Web server will respond to the HTTP request and serve the HTML file and
each of the many supporting files that are used in the display and execution of the Web app. While
image files may have been optimized as much as possible to minimize bandwidth, each uncompressed
HTML file, CSS style sheet, and JavaScript library file requested will always take up much more space

211

Chapter 9: Bandwidth and Performance Optimizations

than if it were compressed. Therefore, with that idea in mind, several options are available to compress
files and/or JavaScript code on the fly on the server.

Gzip File Compression

Mobile Safari provides support for gzip compression, a compression option offered by many Web
servers. Using gzip compression, you can reduce the size of HTML, CSS, and JavaScript files and
reduce the total download size by up to 4 to 5 times. However, because Mobile Safari must uncompress
the resources when it receives them, be sure to test to ensure that this overhead does not eliminate the
benefits gained.

To turn on gzip compression in PHP, use the following code:

<?php

ob_start ("ob_gzhandler") ;

?>

<html>

<body>

<p>This page has been compressed.</p>
</body>

</html>

JavaScript Code Compression

In addition to reducing the total file size of your Web site, another technique is to focus on JavaScript
code. These compression strategies go far beyond the manual coding techniques described in this
chapter and seek to compress and minify — remove all unnecessary characters — your JavaScript
code. In fact, using these automated solutions, you can potentially reduce the size of your scripts by
3040 percent.

There are a variety of open source solutions that you turn to that tend to take two different approaches.
The safe optimizers remove whitespace and comments from code, but do not seek to actually change
naming inside of your source code. The aggressive optimizers go a step further and seek to crunch
variable and function names. While the aggressive optimizers achieve greater compression ratios, they
are not as safe to use in certain situations. For example, if you have eval () or with in your code (not
recommended anyway), these routines will be broken during the compression process. What’s more,
some of the optimizers, such as Packer, use an eval-based approach to compress and uncompress.
However, there is a performance hit in the uncompression process and it could actually slow down your
script under certain conditions.

Here are some of the options available (ranked in order of conservatism employed in their algorithms):

Q JSMin (JavaScript Minifier; www . crockford.com/javascript/jsmin.html) is perhaps the
best-known JavaScript optimizer. It is the most conservative of the optimizers, focusing on
simply removing whitespace and comments from JavaScript code.

O YUI Compressor (www.julienlecomte.net/blog/2007/08/13/introducing-the-
yui-compressor) is a recently introduced optimizer that claims to offer a happy medium
between the conservative JSMin and the more aggressive ShrinkSafe and Packer listed next.

212

Chapter 9: Bandwidth and Performance Optimizations

Q Dojo ShrinkSafe (alex.dojotoolkit.org/shrinksafe) optimizes and crunches local variable
names to achieve greater compression ratios.

Q Dean Edwards’s Packer (dean. edwards .name/packer) is an aggressive optimizer that
achieves high compression ratios.

Deciding which of these options to use should depend on your specific needs and the nature of your
source code. I recommend starting on the safe side and moving up as needed.

If you decide to use one of these optimizers, make sure you use semicolons to end your lines in your
source code. Besides being good programming practice, most optimizers need them to accurately
remove excess whitespace.

Additionally, while Packer requires semicolons, Dojo ShrinkSafe does not require them and will actually
insert missing semicolons for you. So you can pre-process a JavaScript file through ShrinkSafe before

using it in a semicolon requiring compressor like Packer.

To demonstrate the compression ratios that you can achieve, I ran the iULjs JavaScript library file
through several of these optimizing tools. Table 9-1 displays the results.

Table 9-1: Benchmark of Compression of iUl.js File

JavaScript compression With gzip compression
Compressor (bytes) (bytes)
No compression 100% (11284) 26% (2879)
JSMin 65% (7326) 21% (2403)
Dojo ShrinkSafe 58% (6594) 21% (2349)
YUI Compressor 64% (7211) 21% (2377)
YUI Compressor (w/Munged) 46% (5199) 18% (2012)
YUI Compressor (w/Preserve All 64% (7277) 21% (2389)
Semicolons)
YUI Compressor (w/Munged and 47% (5265) 18% (2020)
Preserve All Semicolons)

One final option worth considering is a PHP-based open source project called Minify. Minify

combines, minifies, and caches JavaScript and CSS files to decrease the number of page requests that a
page has to make. To do so, it combines multiple style sheets and script libraries into a single download
(code.google.com/p/minify).

213

Chapter 9: Bandwidth and Performance Optimizations

JavaScript Performance Optimizations

The performance of JavaScript on iPhone and iPod touch is much slower than on the Safari desktop
counterparts. For example, consider the following simple DOM-access performance test:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Performance Test</title>
</head>
<body>
<form id="forml">
<input id="il" value="zero" type="text">
</form>
<div id="output"></div>
</body>
<script type="application/x-javascript">
var i = 0;
var startl = new Date().getTime();
divs = document.getElementsByTagName ('div');
for(i = 0; i < 80000; i++)
{
var d = divs[0];
}
var start2 = new Date().getTime();
var deltal = start2 - startl;
document .getElementById("output") .innerHTML = "Time: " + deltal;
</script>
</html>

Safari for Mac OS X executes this script in 529 milliseconds, while Safari for iPhone takes 13,922
milliseconds. That’s over 26 times longer! Therefore, in addition to the optimizations that can be made in
shrinking the overall file size of your application, you should also give priority to making performance
gains in execution based on your coding techniques. Here several best practices to consider.

Smart DOM Access

When working with client-side JavaScript, accessing the DOM can be at the heart of almost anything you
do. However, as essential as these DOM calls may be, it is important to remember that DOM access is
expensive from a performance standpoint and so should be done with forethought.

Cache DOM References

Cache references that you make to avoid multiple lookups on the same object or property. For example,
compare the following inefficient and efficient routines:

// Ineffecient

var str = document.createTextNode ("Farther up, further in");
document .getElementById("paral") .appendChild(str) ;

document .getElementById("paral") .className="special";

// More efficient

214

Chapter 9: Bandwidth and Performance Optimizations

var str = document.createTextNode ("Farther up, further in");
var p = document.getElementById("paral");
p.appendChild(str);

p.className="special";

What's more, if you make a sizeable number of references to a document or another common DOM
object, cache them, too. For example, compare the following:

// Less efficient

var ll=document.createTextNode('Line 1');
var l2=document.createTextNode('Line 2');
// More efficient

var d=document;

var 1ll=d.createTextNode('Line 1');

var 12=d.createTextNode('Line 2');

If you reference document a handful of times, then it is probably not practical to go through this trouble.
But if you find yourself writing document a thousand times in your code, the efficiency gains make this
practice a definite consideration.

Offline DOM Manipulation

When you are writing to the DOM, assemble your subtree of nodes outside of the actual DOM, and then
insert the subtree once at the end of the process. For example, consider the following;:

var comments=customBlog.getComments ('index');

var c=comments.count;

var entry;

var commentDiv = document.createElement ('div');

document .body.appendChild (commentDiv) ;

for (var i1=0;i<c;i++) {
entry=document.createElement ('p"');
entry.appendChild(document.createTextNode (comments[i]) ;
commentDiv.appendChild(entry);

}

Consider the placement of the grayed, highlighted line. Because you add the new div element to the
DOM before you add children to it, the document must be updated for each new paragraph added.
However, you can speed up the routine considerably by moving the offending line to the end:

var comments=customBlog.getComments ('index');

var c=comments.count;

var entry;

var commentDiv = document.createElement ('div');

for (var 1=0;i<c;i++) {
entry=document.createElement ('p"');
entry.appendChild(document.createTextNode (comments[i]) ;
commentDiv.appendChild(entry);

}

document . body . appendChild (commentDiv) ;

With the restructured code, the document display only needs to be updated once instead of
multiple times.

215

Chapter 9: Bandwidth and Performance Optimizations

Combining document.write() calls

Along the same line, you should avoid excessive document .write () calls. Each call is a performance
hit. Therefore, a much better practice is to assemble a concatenated string variable first. For example,
compare the following:

// Inefficient

document .write('<div class="row">");

document.write('<label class="cui">office</label>"');

document .write('<a class="cuiServiceLink" target="_self" href="tel: (765) 555-
1212">(765) 555-1212");

document .write('</div>");

// More efficient

var s = '<div class="row">' + '<label class="cui">office</label>"' +

'(765) 555-
1212"' + '</div>';

document .write(s) ;

Using the Window Object

The window object is faster to use because Mobile Safari does not have to navigate the DOM to respond
to your call. The following window reference is more efficient than the top three:

// Inefficient

var h=document.location.href;
var h=document.URL;

var h=location.href;

// More efficient

var h=window.location.href

Local and Global Variables

One of the most important practices JavaScript coders should implement in their code is to use local
variables and avoid global variables. When Mobile Safari processes a script, local variables are always
looked for first in the local scope. If it can’t find a match, then it moves up the next level, then next, until
it hits the global scope. So global variables are the slowest in a lookup. For example, defining variable a
at the global level in the following code is much more expensive than defining it as a local variable
inside of the for routine:

216

// Inefficient
var a=1;
function myFunction () {
for(var 1=0;1<10;1i++) {
var t = a+i;
// do something with t
}
}
//More efficient
function myFunction () {
for(var i=0,a=1;1<10;1++) {
var t = a+i;
// do something with t
}

Chapter 9: Bandwidth and Performance Optimizations

Dot Notation and Property Lookups

Accessing objects and properties by dot notation is never efficient. Therefore, consider some alternatives.

Avoiding Nested Properties

Aim to keep the levels of dot hierarchy small. Nested properties, such as document . property
.property.property, cause the biggest performance problems and should be avoided or accessed

as few times as possible.

// Inefficient
m.n.o.p.doThis () ;
m.n.o.p.doThat () ;
// More efficient
var d = m.n.o.p;
d.doThis () ;
d.doThat () ;

Accessing a Named Object

If you access a named object, it is more efficient to use getElementById () rather than access it via dot
notation. For example, compare the following:

// Inefficient

document . forml.addressLinel.value

// More efficient

document .getElementById('addressLinel').value;

Property Lookups Inside Loops

When accessing a property inside of a loop, it is much better practice to cache the property reference
first, and then access the variable inside of the loop. For example, compare the following:

// Inefficient

for(i = 0; 1 <10; i++) {

var v = document.object.property (i) ;
var y = myCustonObject.property (i) ;
// do something

}

// More efficient

var p = document.object.property;
var cp = myCustonObject.property (i) ;
for(i = 0; 1 <10; 1i++) {

var v= p(i);

var y=cp(i);

// do something

}

217

Chapter 9: Bandwidth and Performance Optimizations

Here’s another example of using the 1ength property of an object in the condition of a for loop:

// Inefficient

for (i=0;i<myObject.length;i++) {
// Do something

}

// More efficient

for (i=0,var j=myObject.length;i<j;i++) {
// Do something

Similarly, if you are using arrays inside of loops and using its 1ength as a conditional, you want to
assign its length to a variable rather than evaluating at each pass. Check this out:

// Inefficient

myArray = new Array();

for (i=0;i<myArray.length;i++) {
// Do something

}

// More efficient

myArray = new Array();

len = myArray.length;

for (i=0;i<len;i++) {
// Do something

}

String Concatenation

Another traditional problem area in JavaScript is string concatenation. In general, you should try to
avoid an excessive number of concatenations and an excessively large string that you are appending to.
For example, suppose you are trying to construct a table in code and then write out the code to the
document once you are finished. The stringTable () function in the following code is less efficient than
the second function intermStringTable (), because the latter uses an intermediate string variable row
as a buffer in the for loop.

<html>
<script type="text/javascript" language="javascript">
function stringTable() {

var start = new Date() .getTime();

var buf = "<table>";
for (var i1=0; 1i<10000;i++){
buf += "<tr>";
for (var j=0;3<40;j++){
buf += "<td><i>" + "content" + "</i></td>";
}

buf += "</tr>";

}

buf += "</table>";

var duration = new Date() .getTime() - start;

document.write('String concat method: ' + duration + '</br>');

218

Chapter 9: Bandwidth and Performance Optimizations

function intermStringTable() {

var start = new Date().getTime();

var buf = "<table>";

for (var i=0; i<10000;i++){
var row = "<tr>";
for (var j=0;3<40;7j++){

row += "<td><i>" + "content" + "</i></td>";

}
row += "</tr>";
buf += row

}
buf += "</table>";
var duration = new Date() .getTime() - start;
document .write('Intermediate concat method: ' + duration + '</br>');
}
</script>
<body>
</body>
<script type="text/javascript" language="javascript">
stringTable() ;
intermStringTable() ;
</script>
</html>

What to Do and Not to Do

You will want to be sure to avoid with statements, which slow down the processing of the related code
block. In addition to the fact that wi th is inefficient, it has also been depreciated in the JavaScript stan-
dard. Second, avoid using eval () in your scripts. It is very expensive from a performance standpoint.
Besides, you should be able to develop a more efficient solution rather than resorting to eval ().

Comments add to readability and manageability, but be wise in their usage. For example, minimize their use
inside of loop routines, functions, and arrays. If possible, place before or after to ensure greater efficiency.

// Inefficient

var a=0,c=100;

for (var 1=0;i<c;i++) {
// Assign d the value of the next div in the current document
var d = document.getElementByTagName ('div') [i];
// Perform some math for a

a=i*1.2;
// Perform some math for b
b=(a+1)/3;

}
// More efficient
// Assign val of d to 100 divs and perform y on them
// based on val of a and b.
var a=0,c=100;
for (var 1=0;i<c;i++) {
var d = document.getElementByTagName ('div') [1];
a=i*1.2;
b=(a+1)/3;
}

219

10

Packaging Apps as
Bookmarks: Bookmarklets
and Data URLs

Because iPhone and iPod touch applications function inside of the Mobile Safari environment,
there are two seemingly obvious restrictions for the Web developer: You must live with the built-in
capabilities of the Mobile Safari browser; and you need a constant Wi-Fi (or, for iPhone, EDGE)
connection in order to run any application.

The truth is that you can get around these limitations by taking advantage of two lesser-known
technologies — bookmarklets and data URLs. These technologies have actually been around for
years, but they have tended to exist on the periphery of mainstream Web development. However,
developers are now reexamining these two developer tools to maximize the potential of the iPhone
application platform.

Bookmarklets (short for bookmark applets) are mini JavaScript “applets” that can be stored as a
bookmark inside of Safari. A data URL is a technique for storing an entire Web page or application
(pages, styles, images, data, and scripts) inside of a single URL, which can then be saved as an
iPhone/iPod touch Bookmark. This application-in-a-bookmark can then be accessed in

offline mode.

Bookmarklets

A bookmarklet is JavaScript stored as a URL and saved as a bookmark in the browser. It is typically
used as a one-click applet that performs a very specific task or performs an action on the current
Web page. A bookmarklet uses the javascript: protocol followed by script code. For instance,
here’s the simplest of examples:

javascript:alert ('iPhone"')

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

Because the scripting code for a bookmarklet is housed inside of a URL, the script must be condensed
into one long string of code. Therefore, to enter multiple statements, separate each line with a semicolon:

javascript:alert ('Bookmarklet 1');alert('Bookmarklet 2')

As you can see, there are spaces inside each of the strings. You can either substitute $20 for a blank space
or let Safari do the conversion for you.

If the script returns a value, then it should be enclosed inside of void () to ensure that the JavaScript
code runs as expected. For example, the following Search Wikipedia bookmarklet displays a JavaScript
prompt dialog box (see Figure 10-1), and then calls a Wikipedia search URL using the user’s value as the
search term:

javascript:t=prompt ('Search

Wikipedia:',getSelection());if(t)void(location.href="http://en.wikipedia.org/w/wiki
.phtml?search="+escape(t))

JavaScript
Search Wikipedia:

Tour de france

/.

Cancel OK

R
o|w|elrjT]v]u]iJofr

Als|ofFlafu]i]k]L
cll z|x[c]vi]n]mit

return

Figure 10-1: Search Wikipedia bookmarklet

Here’s a second example that provides a front-end onto Google’s define service:

javascript:d=prompt ('Define:',getSelection());if(d)void(location.href="http://
www.google.com/search?g=define: '+escape(d))

222

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

Adding a Bookmarklet to Mobile Safari

Bookmarklets are normally added in a standard browser through a drag-and-drop action. However,
because that user input is not available in Mobile Safari, you need to add the bookmarklet through the
following process:

1. Onyour main computer, create your bookmarklet script and test it by pasting it into the URL
box of Safari.

2. Once the functionality works as expected, drag the javascript: URL onto your Bookmarks
bar in Safari. If you are going to have a set of bookmarklets, you may wish to create a special
Bookmarklets folder to store these scripts.

Or, if your bookmarklet is contained within the href of an a link, then drag the link onto the
Bookmarks bar instead.

3. Synch the bookmarks of your iPhone and main computer through iTunes.

4. Access the bookmarklet in the Bookmarks inside Mobile Safari (see Figure 10-2).

[-uutl ATET = 12:13 AM ==

Bookmarks Bar Tools

Open in New Tab

Open in Same Tab
Copy Url

Paste Url

Display Images
Display Microformats

View Source

B B 8 8 B8 B|8

Search Wikipedia

Figure 10-2: Accessing a bookmarklet from iPhone

223

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

Alternatively, you can add a bookmarklet directly into Mobile Safari’s Bookmarks by creating a link to
any normal Web page, and then editing the URL of the bookmark.

Exploring How Bookmarklets Can Be Used

While bookmarklets can be used for these sorts of general purposes, their real usefulness to the iPhone
application developer is turning JavaScript into a macro language for Mobile Safari to extend the
functionality of the browser. For example, Mobile Safari always opens normal links in the existing
window, replacing the existing page. Richard Herrera from doctyper.com wrote a bookmarklet that
transforms the links of a page and forces them to open in a new tab. Here is the script, which is tricky to
read because it is contained within a one-line, encoded URL:

javascript: (function () {var%20a=document .getElementsByTagName ('a') ; for (var%20i=0, j=a
.length;i%3Cj;i++) {a[i] .setAttribute('target', '_blank');var%20img=document.createEl
ement ('img') ;img.setAttribute('class', %20 'new-

window') ;img.setAttribute('src', 'data:image/gif;baseb4, '+'RO1IGODIhEAAMALMLAL66tBISE
JExXMdTQyBoaGjs70yUlJWZmZgAAAMzMzP////// /WAAAAAAAAAAAAAA '+ ' ACHSBAEAAASALAAAAAAQAAWAA
AQ/cM1Zgr2Tps13yVIBjOT4gYairgohCTDMsu4 iHHgwr 7UA/LgdopZS ' + ' DBBIpGG51BQHOGgLtUIXNI9IXZ1
cnsNicRADs="') ;img.setAttribute('style', 'width:16px!important;height:12px!important;
border:none!important; ');ali].appendChild(img);1}}) ();

At the time of this writing, Windows Safari has several issues working with bookmarklets. In order
for this bookmarklet to work on an iPhone synched with Windows Safari, it must be completely
URI encoded:

javascript: (function () %$7Bvar%20a%3Ddocument .getElementsByTagName ('a')%$3Bfor (var%201i
%$3D0%2Cj%3Da.length%3Bi%3Cj%3Bi%2B%2B) %$7Ba%5Bi%5D.setAttribute ('target'%2C'_blank')
%3Bvar%20img%3Ddocument .createElement ('img') %$3Bimg.setAttribute('class'%2C 'new-
window')$%3Bimg.setAttribute('src'%$2C'data%3Aimage%2Fgif%3Bbase64%2C'%$2B' RO1IGOD1hEAA
MALMLAL66tBISEjEXMATQyBoaGjs70yUlIJWZmZgAAAMzZMZzP%2F%2F%$2F%$2F%2F%2F$2FWAAAAAAAAAAAAAA
'$2B' ACH5BAEAAASALAAAAAAQAAWAAAQY2FCcM1Zqr2Tps13yVJIBjOT4gYairqohCTDMsu4 iHHgwr 7UA%2FL
gdopZS ' %2B'DBBIPGG51BQHOGOtUIXNIIXZ1cnsNicRADs%3D') $3Bimg. setAttribute ('style'%2C'w
idth%3Al6px! important$3Bheight%3A12px!important%3Bborder%3Anone! important%3B') %3Ba%
5Bi%5D.appendChild(img) $3B%$7D%7D) () %$3B

Note that while this URI encoded script works on iPhone, it (along with other iPhone-specific bookmark-
lets in this chapter) still will not work on Windows Safari. Additionally, when you synch with Windows
Safari, iPhone bookmarklets can occasionally behave unexpectedly.

An iPhone user can then use this self-contained “applet” on any page in which they wish to transform
the links. Notice that the image itself is encoded in a data URL, so that the script is not dependent on any
external files.

While the entire script needs to be condensed into a single string of commands, Safari is actually

smart enough to convert the hard breaks for you when a multilined script is pasted into the URL box.
Just make sure each statement is separated by a semicolon. Therefore, the following code, which is much
easier to work with and debug, would still execute properly when pasted directly into the URL box:

224

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

javascript: (
function() {
var a=document.getElementsByTagName('a') ;
for(var i1=0,j=a.length;i%3Cj;i++) {
ali] .setAttribute('target', '_blank');
var img=document.createElement ('img');
img.setAttribute('class', 'new-window') ;
img.setAttribute('src', 'data:image/gif;basebd, '+'ROLGOD1IhEAAMALMLAL66tBISE]EXMATQY
BoaGjs70yUlJWZmZgAAAMzMzP////// /WAAAARAAAAAAAAAA '+ ' ACHSBAEAAASALAAAAAAQAAWAAAQ/cM1Zg
r2Tpsl13yVIBjOT4gYairqohCTDMsu4iHHgwr 7UA/LgdopZS ' + ' DBBIPGG51BQHOGGtUIXNJIIXZ1cnsNicRA

Ds="');
img.setAttribute('style', 'width:16px!important;
height:12px!important;
border:none!important; ') ;
ali] .appendChild (img) ;
}
I EON

Bookmarklets can be handy developer tools to assist in testing and debugging on iPhone. For example,
the following bookmarklet, based on a script created at iPhoneWebDev.com, gives you View Source
functionality (see Figure 10-3) on iPhone itself:

javascript:

var sourceWindow = window.open ("about:blank");

var newDoc = sourceWindow.document;

newDoc.open () ;

newDoc.write (

"<html><head><title>Source of " + document.location.href +

"</title><meta name=\"viewport\" id=\"viewport\" content=\"initial-scale=1.0;" +
"user-scalable=0;maximum-scale=0.6667;width=480\"/><script>function do_onload()" +
"{setTimeout (function () {window.scrollTo(0,1);},100);}if (navigator.userAgent.indexOf
" + "(\"iPhone\") !=-
1)window.onload=do_onload;</script></head><body></body></html>") ;

newDoc.close() ;

var pre = newDoc.body.appendChild(newDoc.createElement ("pre")); pre.

appendChild (newDoc.createTextNode (document .documentElement . innerHTML)) ;

If your iPhone is synching with Windows, you would want to fully URI encode the script:

javascript:var%20sourceWindow%3Dwindow.open%28%27about%3Ablank%27%29%3B%0Avar%20new
Doc%3DsourceWindow.document$3B%0AnewDoc . open%28%29%3B%0AnewDoc . write%28%27%3Chtml %3
E%3Chead%3E%3Ctitle%3ESource%200£%20%27%2Bdocument.location.href%$2B%27%3C/title%3E%
3Cmeta%20name%$3D%22viewport%22%201id%3D%22viewport%22%20content%3D%22initial-
scale%3D1.0%3B%20user-scalable%3D0%3B%20maximum-
scale%3D0.6667%3B%20width%3D480%22/%3E%$3Cscript¥3Efunction%20do_onload%28%29%7BsetT
imeout%28function%28%29%7Bwindow.scrollTo%280,1%29%3B%7D,100%29%3B%7Dif%28navigator
.userAgent.index0f%28%221Phone%22%29!%3D-
%29window.onload%3Ddo_onload%3B%3C/script%3E%3C/head%$3E%$3Cbody%$3E%3C/body%3E%3C/ht
ml%3E%27%29%3B%0AnewDoc.close%28%29%3B%0Avar%20pre%3DnewDoc . body.appendChild%28newD
oc.createElement%28%22pre%22%29%29%3B%0Apre.appendChild%28newDoc.createTextNode%28d
ocument .documentElement . innerHTML%29%29%3B

225

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

Ll ATET = 12:19 AM F=

“hiaads
<title>ilI Music Demo</titlal>
<mata namaz="viawport" content="width=320; initial-secala=1_d;
<style type='"text/css" media="screen":{import " _fiuifial.cs
<script typa=“application/x-javascript® sroc=<../iuifiol. js=>|
</haad><body oriant="profile=
<div class="tooclbar">
<hl id="pagaTitla“>Husic</hi>
<a id="backButton® class="button® hraf="f" styla="di
Saarch
< fdiv

<ul id="home® title="Music" salectad=*trua®:
liz<a href="fartists*»Artists<S a=</Llix
<lizEettings</a=></1i>
€lirEtats</ax</1li>
€liz<a hraf="http://www.joshawitt.con® target=" solf
<lizNothing -
<ful>
<ul id="artists" ticle="Artista"“>
<11 class="group®>E<f1li>
Tha Baatlas</Sfa></lix
<lizBelle & Sebastiand
21t class="groop®>C</1i>
<lizCrowdad Housa< a></lis
<li class="group®>J</1i>
€lizJanny Lewis<d/a>< lis
€li>John Mayer</a=</1i>
€1i class="group®>Z</1i>
<lizZarc T<fa></liz
<ful=
<ul id="TheBaatles" title="Tha Besatlaes®>
¢lizAbbey Road
<lizHalp!</a®></14>
<lizRubber Soul<fa>
€lizsSgt, Pappar's</a=</1i>
<lizWhite Album</az
<ful=
<ul id="BglleSebastian® title="Baslla kamp; Sabastian™>
4lir<a href="fsongs"rBoy With Tha Arab Btrap</1{
i srmgg i sDag e

tastro i gazslasa]

Figure 10-3: Viewing a page’s source on iPhone

Go to www.wrox. com for a useful set of bookmarklets that you can use.

Storing an Application in a Data URL

In addition to JavaScript functionality, you can also store a Web page or even a complete application
inside of a bookmark. The data: protocol allows you to encode an entire page’s content — HTML, CSS,
JavaScript, and images — inside a single URL. To be clear, data URLs store, not a simple link to a remote
page, but the actual contents of the page. This data URL can then be saved as a bookmark. When users
access this bookmark, they can interact with the page whether or not they have Internet access. The
implications are significant — you can use data URLs to package certain types of Web applications and
get around the live Internet connection requirement.

226

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

Constraints and Issues with Using Data URLs

While the potential of data URLs is exciting for the developer, make sure you keep the following
constraints and issues in mind before working with them:

O You can store client-side technologies — such as HTML, CSS, JavaScript, and XML — inside a
data URL. However, you cannot package PHP, MYSQL, or any server-side applications in a
bookmark.

0 Any Web application that requires server access for data or application functionality will need to
have a way to pack and go: (1) use client-side JavaScript for application functionality, and (2)
package up a snapshot of the data and put it in a form accessible from a client script.

Q The application must be entirely self-contained. Therefore, every external resource the
application needs, such as images, style sheets, and .js libraries, must be encoded inside of the
main HTML file.

Q External resources that are referenced multiple times cannot be cached. Therefore, each separate
reference must be encoded and embedded in the file.

Q Images must be encoded as base64, though the conversion will increase their size by
approximately 33 percent.

Q The maximum size of a data URL in Mobile Safari is technically 128KB, though in actual
practice, you can work with URLs much larger, at least up to several megabytes. However,
performance of the Mobile Safari Bookmark manager suffers significantly when large amounts
of data are stored inside of a bookmark. Therefore, think thin for data URL-based applications.

Q Mobile Safari has issues working with complex JavaScript routines embedded in a data URL
application. For example, at the time of this writing, certain parts of the iUI framework are not
functional inside of a data URL, thus greatly limiting the potential for Web developers to take
advantage of offline storage.

Creating an Offline iPhone/iPod touch Application

After examining these constraints, it is clear that the best candidates for offline iPhone/iPod touch
applications are those that are relatively small in both scope and overall code base. A tip calculator, for
example, is a good example applet because its UI would be simple and its programming logic would be
straightforward and not require accessing complex JavaScript libraries. I'll walk you through the steps
needed to create an offline application.

After reviewing the constraints and making sure that your application will likely work in an offline
mode, you will want to begin by designing and programming as if it were a normal iPhone/iPod touch
application. For this sample applet, the interface of the tip calculator is based on a subset of the iUI
framework. (Because the functionality inside iui.js is not compatible with data URLs, I am not including
any references to this external file.) Figure 10-4 shows the Tipster application interface that you will be
constructing.

227

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

The Tipster

your pain and

or vou
UpP 105 you.

Bill amount:

Rating:

Final total:

Figure 10-4: Tipster application design

The following source file shows the core HTML and JavaScript code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Tipster</title>
<meta name="viewport" content="width=320; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0;"/>
<style type="text/css" media="screen">@import "../iui/iui.css";</style>
<script type="application/x-javascript">
addEventListener ('load', function() {

setTimeout (function() {

window.scrollTo (0, 1);

}, 100);

}, false);
function checkTotal (£1d) {

228

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

var x=fld.value;
var n=/("\d+$) | ("\d+\.\d+$)/;
if (n.test(x)) {

if (fldTipPercent.selectedIndex != 0) getRec();
}
else {
alert ('Please enter a valid total')
clearTotal (f14d) ;
}
}
function clearTotal (f1d) {
fld.value = '';
}
function getRec() {
if (fldTipPercent.selectedIndex == 0) { alert('Please rate the service first.');

return; }
var selPercent = Number(eval(fldTipPercent.
var billAmount = Number(eval(f1dBillTotal.value));
var tipAmount = (selPercent*billAmount) ;
var finalP = tipAmount + billAmount;
fldTipRec.value = 'S$' + tipAmount.toFixed(2);

fldFinalTotal.value = '$' + finalP.toFixed(2);
}
</script>
</head>
<body>
<div class="toolbar">
<hl id="pageTitle">The Tipster</hl>

</div>
<div id="main" title="Tipster" class="panel" selected="true">
<h2 class="tip">Let the Tipster ease your pain and calculate the tip for
you.</h2>

<fieldset>
<div class="row">
<label>Bill amount:</label>
<input type="text" id="fldBillTotal" value="20.00" tabindex="1"
onfocus="clearTotal (this)" onchange="checkTotal (this)"/>
</div>
<div class="row">
<label>Rating:</label>
<select id="fldTipPercent" onchange="getRec ()"
tabindex="2">
<option value="0">(Rate service)</option>
<option value="10">Very poor</option>
<option value="12.5">Poor</option>
<option value="15">Just as
expected</option>
<option value="17.5">Above
average</option>
<option value="20">Exceptional</option>
<option value="25">Wow!</option>
</select>
</div>
</fieldset>

(continued)

229

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

(continued)

<fieldset>
<div class="row">
<label>Tip: </label>
<input type="text" id="fldTipRec" value="0.00" readonly="true"
disabled="true"/>
</div>
<div class="row">
<label>Final total:</label>
<input type="text" id="fldFinalTotal" value="0.00" readonly="true"
disabled="true"/>

</div>
</fieldset>
</div>
</body>
</html>

The £1dBillTotal input field captures the total before the tip. The £1dTipPercent select list displays
a set of ratings for the service, each corresponding with a percentage value (see Figure 10-5). These two
factors are then calculated together to generate the output values in the £1dTipRec and f1dFinalTotal
input fields.

... ATET = 12:48 AM =

The Tipster

Let the Tipster ease your pain and
calculate the tip for you.

‘ Bill amount: $45 ‘

Rating: Wow!

Previous

Above average

Exceptional
v Wow!

Figure 10-5: Scrolling through the select list
230

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

Because iUI does not provide all of the styles you need for the control layout you are using, tip classes
are defined for the h2, 1abel, input, select elements. A style element is added to the document head
to contain these styles:

<style type="text/css" media="screen">

h2.tip {

}

margin-top: 10px;
margin-bottom: 20px;

.row > label.tip {

}

position: absolute;
margin: 0 0 0 1l4px;
line-height: 42px;
font-weight: bold;
color: #7388a5;

.row > input.tip {

}

display: block;

margin: 0;

border: none;

padding: 12px 10px 0 160px;
text-align: left;
font-weight: bold;
text-decoration: inherit;
height: 42px;

color: inherit;

box-sizing: border-box;

.row > select.tip {

}

display: inline;
text-align: left;
font-weight: bold;
font-size: 12px;
text-decoration: inherit;
height: 36px;

color: inherit;

border: none;

padding: 12px 0 0 10px;
float: none;

position: absolute;
left: 150px;

top: 3px;

width: 140px;

</style>

Embedding External Styles and Scripts

The UI and functionality of the Tipster application is now complete. However, it will not run in offline
mode. Given that, the next step is to turn it into a standalone offline application. To begin, change the

@import reference of iui.css into an embedded style sheet. At the same time, to minimize the size of

231

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

the encoded styles, keep only the iUI styles that you are using for this mini application. Here is the new
style element that replaces the iui.css reference:

<style type="text/css" media="screen">
body {
margin: 0;
font-family: Helvetica;
background: #FFFFFF;
color: #000000;
overflow-x: hidden;
-webkit-user-select: none;
-webkit-text-size-adjust: none;
}
body > .toolbar ({
box-sizing: border-box;
-moz-box-sizing: border-box;
border-bottom: 1lpx solid #2d3642;
border-top: lpx solid #6d84a2;
padding: 10px;
height: 45px;
background: url (toolbar.png) #6d84a2 repeat-x;
}
.toolbar > hl {
position: absolute;
overflow: hidden;
left: 50%;
margin: lpx 0 0 -75px;
height: 45px;
font-size: 20px;
width: 150px;
font-weight: bold;
text-shadow: rgba(0, 0, 0, 0.4) Opx -1px 0;
text-align: center;
text-overflow: ellipsis;
white-space: nowrap;
color: #FFFFFF;
}
input {
box-sizing: border-box;
width: 100%;
margin: 8px 0 0 0;
padding: 6px 6px 6px 44px;
font-size: 16px;
font-weight: normal;
}
body > .panel {
box-sizing: border-box;
padding: 10px;
background: #c8c8c8 url (pinstripes.png);
}
.panel > fieldset {
position: relative;
margin: 0 0 20px 0;
padding: 0;

232

Chapter 10: Packaging Apps as Bookmarks:

Bookmarklets and Data URLs

background: #FFFFFF;
-webkit-border-radius: 10px;
border: 1lpx solid #999999;
text-align: right;
font-size: 16px;

}

.row {
position: relative;
min-height: 42px;
border-bottom: 1lpx solid #999999;
-webkit-border-radius: 0;
text-align: right;

}

fieldset > .row:last-child ({
border-bottom: none !important;

}

.row > input {
box-sizing: border-box;

margin: 0;

border: none;

padding: 12px 10px 0 110px;
height: 42px;

background: none;

}

.row > label {
position: absolute;
margin: 0 0 0 14px;
line-height: 42px;
font-weight: bold;
}

.panel > h2 {
margin: 0 0 8px 1l4dpx;
font-size: inherit;
font-weight: bold;

color: #4d4d70;

text-shadow: rgba (255, 255, 255, 0.75)
}
</style>

Encoding Images

2px 2px 0;

While you now have all of the styles and scripting code inside of the HTML document, there is one last
issue. Two of the styles reference external images for backgrounds. Therefore, in order to use them, you
need to encode these images first. The easiest way to do this is to use an online converter, such as the
data: URI Image Encoder available at www.scalora.org/projects/uriencoder. This service
performs a base64 encoding of a local file or a URL. You can then replace the image file reference with

the attached encoded string:

body > .toolbar {
box-sizing: border-box;
-moz-box-sizing: border-box;
border-bottom: 1lpx solid #2d3642;
border-top: lpx solid #6d84a2;

(continued)

233

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

(continued)

padding: 10px;

height: 45px;

background: url (
"data:image/png;base64, iVBORWOKGgOAAAANSUhEUgAAAAEAAAATCATAAAA2QHWOAAAAGXRFWHRTD27Z0
d2FyZQBBZG91ZSBIbWFNZVJI1YWR5ccl1PAAAAEIJREFUCNAdjDEOgGEAQAgn/ /5l tYWFnb1GB4vdSy4WBAY
StKyb9+00FIMYyjMyMWCC351JM71r6vF1P07 /1FSEfPx6ZxNLcylHtihzpA/RWcOj0z1DhAAAAAEIFTkSuUQm
cc

) #6d84a2 repeat-x;
}
body > .panel {

box-sizing: border-box;

padding: 10px;

background: #c8c8c8
url ('data:image/png;base64, iVBORWOKGgoAAAANSUhEUgAAAACAAAABCATAAACJaSOZAAAAGXRFWHRT
027Z0d2FyZQBBZG91ZSBILbWFNnZVJI1YWR5cc1l1PAAAABAJREFUeNpi PHrmCgMC /GNj YwWNSAAEGADANA3dnzP1
QAAAAAE1FTkSUQmMCC') ;

}

Now that all external resources are embedded, the application is fully standalone. However, you are not
there yet. You now need to get it into a form that is accessible when the browser is offline.

Converting Your Application to a Data URL

You are now ready to convert your Web application into an encoded URL. Fortunately, several free tools
can automate this process for you:

234

Q Thedata: URI Kitchen (software.hixie.ch/utilities/cgi/data/data). This is probably the

best-known encoder on the Web (see Figure 10-6). It will convert source code, URL, or a local file
to a data URL.

Q Url2iphone (www . somewhere . com/url2iphone.html). This enables you to convert a URL into a

bookmark. The most powerful aspect of this tool is that it will look for images, style sheets, and
other files that are referenced are encode these as well.

Q data: URI image encoder (www . scalora.org/projects/uriencoder). This tool is great for

encoding images into base64 format. You can specify a URL or upload a local file.

Q Filemark Maker (www . insanelygreattees.com/news/?p=51). This is a free Mac-based utility

that is oriented toward storing Word, Excel, and PDF documents as data URLs. However, it can
also be used for HTML pages.

Q Encoding bookmarklet. Developer David Lindquist developed a handy bookmarklet that grabs the

current page’s source, generates a data: URL, and loads the URL. You can then drag the
generated URL onto your Bookmarks bar. Here’s the JavaScript code:

javascript:x=new

XMLHttpRequest () ;x.onreadystatechange=function() {if (x.readyState==4)location="'data:
text/html;charset=utf-

8;baseb4d, '+btoa (x.responseText) } ;x.open('GET',location) ;x.send('");

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

The data: URI kitchen

Type: text/htmlcharset=utf-8 [base64

<IDOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0/ /EN">

<html lang="en">
<head>
<title>Test</title>
<style type="text/css">
«fatyles

«/head>

<body>

<p=<fp=

<[body>

<{humi>

Alternatively, give an HTTP URI to use as input:
If you use the URI option, the MIME type will be taken from the remote site, not the type field above.

Alternatively, upload a file: no file selected ® Trust UA-provided MIME type, if any.
If you don't trust the UA-provided type, then the type you provide in the text field at the top will be used instead.
See RFC 2387.

HTML4.0 DOCTYPE: <I!DOCTYPE HTML PUBLIC "=-//W3C//DTD BTML 4.0//EN">
XHTML1 namespace: http://www.w3.org/1090/xhtml

e E————— —]
Figure 10-6: Encoding a Web application

O Perl. The following Perl syntax turns HTML into a data URL:

perl -0777 -e 'use MIME::Base64; Stext = <>; $text = encode_basebd (Stext); Stext =~
s/\s+//g; print "data:text/html;charset=utf-8;base64,$text\n";"

QO PHP. In PHP, you could create a function to do the same thing;:

<?php
function data_url(sfile)
{
Scontents = file_get_contents($file);
Sbase64 = base64_encode ($contents) ;
return ('data:text/html;charset=utf-8;base64,' . $baseb64d);
}

?>

235

Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs

Once you have used one of these tools to create a data URL, make sure it is in the URL bar of Safari.
Then, drag the URL onto your Bookmarks bar. Synch up with your iPhone and your application is now
ready to run in offline mode. Figure 10-7 shows a fully functional Tipster.

The Tipster

your pain and

r you.

Bill amount:

Rating:

Tip:

Final total:

Figure 10-7: The Tipster application

236

11

Case Studies: Beyond
Edge-to-Edge Design

Throughout this book, you’ve focused on building iPhone and iPod touch applications that
generally adhere to the edge-to-edge navigation UI model. For example, Chapter 3 used the
standard UI model for iRealtor, a home buyers application. Chapter 7 did the same for iPros-
pector, a contact manager. However, not all applications that you wish to create lend themselves
to standard navigation lists and destination pages. Just a quick scan of built-in applications on
iPhone and iPod touch shows a variety of different UI design models.

This chapter walks you through two case study applications that offer new takes on extending the
normal application models. The first application extends iRealtor to provide an iPhone-like photo
viewer to display home photos. The second application, WYFFL Online, demonstrates more tech-
niques on converting a standard Web site into an iPhone/iPod touch application. Both of these
case studies show you how to extend the iUI application framework for your own custom needs.

Case Study: iRealtor 2.0

Chapter 3 showcased iRealtor as a mobile application for home buyers. Perhaps its greatest limita-
tion was only providing a single picture of the house on its listings page. To overcome that
limitation, you wanted to add a photo viewer inside of iRealtor. Though there are limitations
because of the Mobile Safari environment, you want to emulate the basic look of the built-in
Photo application (see Figure 11-1) with its black background and toolbar and Next and Previous
buttons. However, you want to do this customization without leaving the basic iUI framework

of the application.

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

Al ATET = 7:37 PM 1l ATET = 7:48 PM —

cameraRoll 154 of 161 iRealtor Photos

Figure 11 -1: Photos application Figure 11-2: Emulating Photos inside of Mobile Safari

Figure 11-2 shows the final look of the page that the case study is building.

The first step is to create a new style sheet called photo.css and add a link to the style from the main
Web page:

<style type="text/css" media="screen">@import "../iui/photo.css";</style>

Next, the following div element is added to the irealtor.html file to serve as the Photos page, assigning a
class of photoPanel:

<div id="photos" class="photoPanel" title="Photos">
</div>

Customizing the Application Toolbar

Once those preliminary tasks are completed, you are ready to create the graphics and style rules necessary
for displaying a black toolbar rather than the default blue one. The standard iUI toolbar uses the blue-colored
backButton.png and toolButton.png for the background of the back and search buttons. Using Photoshop,

238

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

you recreated those buttons in black and called them blackButton.png and blackToolButton.png. You also
created a black background image for the entire toolbar called blackToolbar.png.

Rather than creating a second black toolbar, it is much easier to customize the look of the standard tool-
bar when the application enters a photo state (a photo attribute on the body element). Here’s the new
rule for the new toolbar class selector:

body [photo="true"] > .toolbar {
background: url (blackToolbar.png) #000000 repeat-x !important;
border-bottom: 1px solid #000000 !important;

Next, the button class selector and backButton id selector are customized for the photo state:

body [photo="true"] .button {
-webkit-border-image: url (blackToolButton.png) 0 5 0 5;
}
body [photo="true"] #backButton {
-webkit-border-image: url (blackButton.png) 0 8 0 14;
}

In order for the application to change into photo state, it is necessary to customize the showPage function
inside of iui.js:

showPage: function(page, backwards)
{
if (page)
{

if (currentDialog)

{
currentDialog.removeAttribute ("selected") ;
currentDialog = null;

}

if (hasClass (page, "dialog"))
showDialog (page) ;

else

{
var fromPage = currentPage;
currentPage = page;
if (hasClass (page, "photoPanel"))

document .body.setAttribute ("photo", "true");
else
document .body . removeAttribute ("photo") ;
if (fromPage)
setTimeout (slidePages, 0, fromPage, page, backwards);
else
updatePage (page, fromPage) ;

239

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

Using the support function hasClass (), the function checks to see whether the page element (a div) is
assigned the photoPanel class. If so, then photo attribute is added to body. The else statement
removes the photo attribute from body for all other pages.

No more changes are needed to enable iui.js for this new application state.

Creating and Styling the Photos Page

The next step is to create a rule for the photoPanel class in photo.css:

body > .photoPanel {
box-sizing: border-box;
padding: 10px;
background: #000000;
width: 100%;
min-height: 417px;

The Photos page contains an image element and buttons for moving between photos. Because a links are
heavily controlled by iUI (onclick events and styles), input elements are used for the Next and Pre-
vious buttons to eliminate potential conflicts. Here’s the HTML code:

<div id="photos" class="photoPanel" title="Photos">

<div class="controlbar">
<input class="previousControlButton" type="button" id="prevButton">
<input class="nextControlButton" type="button" id="nextButton">
</div>
</div>

The two input buttons are each assigned specific styles, which are housed in a div element assigned to
a controlbar class.

Returning to photo.css, styles are added for each of these elements:

.photoPanel img {
display: block;
margin: 10px auto Opx auto;
width:300px;

}

.photoPanel .controlbar {
display: block;
margin-top:30px;
width: 100%;
height: 40px;
text-align: center;

}

.previousControlButton {
display: inline-block;
height: 40px;
width: 36px;
margin: 0 20px;

240

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

background: url (prev.png) no-repeat;
border-style: none;
}
.nextControlButton {
display: inline-Dblock;
margin: 0 auto;
height: 40px;
width: 36px;
background: url(next.png) no-repeat;
border-style: none;

Each of the images has a physical width of 300px. The image rule is assigned a width of 300px and is
centered in the viewport.

Because developers cannot hide the bottom toolbar in Mobile Safari, the positioning of the div controlbar
is better suited to be displayed higher inside the application than in the built-in Photo app. The style rule sets

the controlbar to display 30px below the image. The buttons are positioned inside of the controlbar.

Listing 11-1 displays the entire source of the photo.css style sheet.

Listing 11-1: photo.css

body[photo="true"] > .toolbar {
background: url (blackToolbar.png) #000000 repeat-x !important;
border-bottom: 1px solid #000000 !important;

}
body [photo="true"] .button {
-webkit-border-image: url (blackToolButton.png) 0 5 0 5;
}
body [photo="true"] #backButton {
-webkit-border-image: url (blackButton.png) 0 8 0 14;
}

body > .photoPanel {
box-sizing: border-box;
padding: 10px;
background: black;
width: 100%;
min-height: 417px;

}

.photoPanel img {
display: block;
margin: 10px auto Opx auto;

width:300px;

}

.photoPanel .controlbar {
display: block;
margin-top:30px;
width: 100%;
height: 40px;
text-align: center;

(continued)

241

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

Listing 11-1 (continued)

.previousControlButton {

}

display: inline-block;

height: 40px;

width: 36px;

margin: 0 20px;

background: url (prev.png) no-repeat;
border-style: none;

.nextControlButton {

display: inline-block;

margin: 0 auto;

height: 40px;

width: 36px;

background: url (next.png) no-repeat;
border-style: none;

Programming the Photos Page

With the HTML and CSS code ready to go, the photo page needs to be scripted to display pictures.
However, because bandwidth is a critical issue, you want to implement a scheme that preloads photos

to minimize delay, but only does one image ahead of time to minimize bandwidth.

In the document head of irealtor.html, you begin by adding a link to the JavaScript library that you will

be constructing:

The next step is to create a photo.js file and enter the code shown in Listing 11-2. To save time, you can

download the photo.js from this book’s Web site.

<script type="application/x-javascript" src="../iui/photo.js"></script>

Listing 11-2: photo.js

(function() {

242

var photoEnabled = false;

var current = -1;

var nextPhoto;

var photoFiles = new Array (
'images/3202-001.3jpg",
'images/3202-002.3jpg",
'images/3202-003.jpg",
'images/3202-004.jpg",
'images/3202-005.3jpg",
'images/3202-006.3jpg",
'images/3202-007.jpg",
'images/3202-008.Jpg"') ;

function showPhoto (direction) {
if (photoEnabled) {

nextPhoto=current+direction;

document .getElementById('prevButton') .disabled =

(nextPhoto ==

)

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

document .getElementById('nextButton') .disabled = (nextPhoto ==
(photoFiles.length-1));
if ((nextPhoto>=0) && (nextPhoto<photoFiles.length)) {
document .getElementById('photoImage').src = photoFiles[nextPhoto].src;
current=nextPhoto++;
if (direction==1) fetchNext () ;
}
return true;
}
}
function pollStatus() {
if (photoFiles[nextPhoto].complete)
photoEnabled = true;
else
setTimeout (pollStatus, 200);
return true;
}
function fetchNext () {
if ((nextPhoto<photoFiles.length) && (typeof photoFiles[nextPhoto] == 'string'))

photoEnabled = false;
convertSrcToImage (nextPhoto) ;
pollStatus();
}
return true;
}
function convertSrcToImage (idx) {
var i = new Image();
i.src = photoFiles[idx];
photoFiles[idx] = 1i;
}
addEventListener ("load", function(event) {
convertSrcToImage (0) ;
photoEnabled = true;
showPhoto (1) ;
}, false);
addEventListener ("click", function(event) ({
var input = findParent (event.target, "input");
if (input) {
if (input.id=='nextButton')
showPhoto (1)
else if (input.id=='prevButton')
showPhoto (-1) ;
}

}, false);
function findParent (node, localName) {
while (node && (node.nodeType != 1 || node.localName.toLowerCase() !=
localName))

node = node.parentNode;
return node;

243

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

There are several aspects of this code to touch upon. To begin, notice that all of the code is contained
within an anonymous function to keep the variables private to this .js file. Next, the photos for this
example are contained within a JavaScript array. However, for real world use, you could modify this to
be stored in an XML file and loaded using AJAX. Also, there are two event listeners — one for document
load and the other to listen for click events by the input elements.

When the load event listener is triggered when the page opens, it calls the support function
convertSrcToImg () that converts the first item in the photoFiles array from a string into an
Image object. The photoEnabled variable is set to true and then showPhoto () is called initially
to display the first photo.

The showPhoto () function is the controller of which photo is displayed inside of the Photos page. It
disables the Previous button if there are no images that appear before it. It disables the Next button if the
last image in the photoFiles array is already displayed. Once this has been completed, it attempts to
load the image file for the next image in the array. If the Next button was clicked, then the fetchNext ()
support function is called to attempt to download the next image in the array.

The fetchNext () function evaluates whether the item in the photoFiles array is a string or not. If it
is a string, then it attempts to download and cache the image by calling convertSrcToImage (). If not,
then it knows that the image is already cached. The pollSstatus () function is called, which monitors
the download. Once the download is completed, then the photoEnabled variable is set to true.

The click event listener captures the click event of the input elements on the Photos page. If
nextButton is the source, then showPhoto (1) is called. If prevButton is the source, then
showPhoto (-1) is called. Note that the click event handler uses an i f-else-if conditional so that
the handler only calls showPhoto () when the id of the button is matched.

The Photos page of iRealtor is now enabled and ready for use.

Attaching the Photos Page to iRealtor

There are a variety of locations in which the Photos page feature could be integrated into the iRealtor
application. However, perhaps the most natural is to simply add a link from the image displayed on an
MLS listing page (likely a document fragment integrated using AJAX). Here’s the MLS listing page with
the new a link added:

<div title="20 May Lane" class="panel">
<div>

</div>
<h2>Details</h2>
<fieldset>
<div class="row">
<label>mls #</label>
<p>406509171</p>
</div>
<div class="row">
<label>address</label>
<p>20 May Lane</p>
</div>

244

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

<div class="row">
<label>city</label>
<p>Acton</p>
</div>
<div class="row">
<label>price</label>
<p>$318,000</p>
</div>
<div class="row">
<label>type</label>
<p>Single Family</p>
</div>
<div class="row">
<label>acres</label>
<p>0.27</p>
</div>
<div class="row">
<label>rooms</label>
<p>6</p>
</div>
<div class="row">
<label>bath (f)</label>
<p>1</p>
</div>
<div class="row">
<label>bath (h)</label>
<p>0</p>
</div>
</fieldset>
<fieldset>
<div class="row">
<a class="serviceButton" target="_self"
href="http://maps.google.com/maps?g=20+May+Lane, +Acton, +MA">Map To House
</div>
<div class="row">
<a class="serviceButton" target="_self"
href="http://www.mass.gov/?pageID=mg2localgovccpage&lL=3&L0=Home&Ll=State%20
Government&L2=Local%20Government&sid=massgov2&selectCity=Acton">View Town Info
</div>
</fieldset>
</div>

Therefore, once this functionality is enabled, users can click an MLS house image to invoke the Photos
page viewer. When they are finished, then they can tap the Back button to return to the main iRealtor
application.

Case Study: Mobile WYFFL

A second case study demonstrates how you can turn a plain vanilla Web site with minimal functionality
into a useful mobile Web application. For this example, you'll venture out of the corporate world to trans-
form a community sports Web site, as shown in Figure 11-3. The use for this mobile app is that parents

245

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

and coaches of the sports league will have fingertip access to the league schedule, game results, league
news, and the rule book — either at the games or else en route to them.

Wachusett Youth Flag Football League

¥ 1' .ﬂ htp: f fwww.wachusettflagfootball.com/ "’Q- Inguisitor

A Holden Youth Flag Foeotball Organization

[WYFFL

YA ATAYAYAYATATAT A 8@@@@@ VAW AW AW AW AW W AW A AW
WEEK 5: OCT. 13
Seniors
1 EAGLES 4 PATS 9 RAVENS 7 BROWNS | STEELERS
B SAINTS & JETS 10 BILLS 5 COLTS i1 BEARS
B:00 AM 5:00 AM 10:00 AM 11:00 AM 12:00 PM
Junlors
1 DOLFHINS !/ RAMS 5 REDSKINS 10 GIANTS 4 TITANS
1 COWBOYS & PANTHERS 3 VIKINGS O PACKERS # A9ERS
B:00 AM D:00 AM 10:00 AM 11:00 AM 12:00 PM
League News Sponsors

WRHS Field Opening - Players Invited Run onto the Field

Players are invited to attend the WRHS Field Opening this Friday, October 12th vs.
Leominster HS. Teams are meeting at 6:30 in the Cym at the High School. Parents need to
stay and will he respansible for their child (no drop -offs)

Here are the details: If you would like to run onto the field prior to the apening kickaff,
please meer in the Gymnasium ar 6:30. All youth players and coaches will meer in the
bleachers. Please wear your game shirt and sneakers. The schedule will be as follows

® 6:30 - meet in the HS Gymnasium, sit in the stands with your team.

® 645 - yuick introduction by H5 Cuach Mike Dubzinski.

® 6:50 - listen to Pre-game speech o WRHS Varsity Tean.

® 655 - WRHS Varsity will lead everyone onto the feld followed by JV,
Freshmen, and Youth teams. Varsity [[V will proceed to the sideline. WRHS
Freshmen will run the entire length of field followed by youth teams and
coaches. National Anthem to be played. At conclusion, youth teams will
proceed o the stands.

7:00 - Coin toss [Kick Off

Top Ranked Teams Set to Battle on Oct. 13

The #1 and #2 teams of both the junior and Senior divisions will square off on Saturday,
October 13. These games will have major implications on the season rankings heading
into the playoffs. In the Junior division, the high flying #1 Dolphins (4-0) meet the
upstart #7 Cowhoys (4-0) at Bam. In the Senior division, the defensive powerhouse 81
Steelers (4-0) will barde the #2 Bears (3-0-1) ar 12pm. Professional Property
Management

al

Figure 11-3: Community sports Web site ready for iPhonification

The screenshots displayed in this section were captured on Safari for Mac OS X, not on iPhone or iPod
touch. The results are not fully identical to the optimized Ul when viewed under Mobile Safari.

246

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

Given the traditional site structure of the site, an edge-to-edge navigation scheme is an ideal design
model for the entry-level page. The iUI framework will be used in the implementation. However, as
you'll see later on, Mobile WYFFL will employ some design ideas not included with iUI to give parts of
the application a fresh look, but one that remains consistent with Apple’s built-in applications.

Each of the links on the top-level menu will be translated to a menu item on the Mobile WYFFL applica-
tion. However, note the scoreboard at the top of the homepage. It serves a double purpose. Before games,
it provides a game schedule for the current week. Then, after the games are completed each Saturday, the
scoreboard is then used to display the scoring results. To display this information in Mobile WYFFL,
you’ll add a menu item called Gameday.

Not all of the content on the main Web site makes sense to include in the mobile version of the applica-
tion. For example, the Documents page containing downloadable forms is not useful in iPhone or iPod
touch. Therefore, in these cases, you will simply refer them to the main Web site by adding a final link to
it in the initial list. Here is the initial code for the primary HTML page of the application:

I'DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>WYFFL Mobile</title>

<meta name="viewport" content="width=300; initial-scale=1.0; maximum-scale=1.0;

user-scalable=0;"/>

<style type="text/css" media="screen">@import "../iui/iui.css";</style>
<style type="text/css" media="screen">@import "../iui/iuiadd.css";</style>
<script type="application/x-javascript" src="../iui/iuil.js"></script>
</head>

<body>

<div class="toolbar">
<hl id="pageTitle"></hl>

</div>
<ul id="home" title="WYFFL Mobile" selected="true">
Latest News</1li>
Game Day</1li>
Standings</1i>
Schedule</1i>
Rules</1li>
About WYFFL
Visit Web
Site</1i>

</body>
</html>

Note the link to the iuiadd.css style sheet, which will be used to extend the default iUI style rules.
Figure 11-4 displays the opening page of the application.

247

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

WYFFL Mobile
'WYFFL Mobile

Latest News >
Game Day A
Standings |
Schedule >
Rules "
About WYFFL >
Visit Web Site >

— =

Figure 11-4: Mobile WYFFL (as shown in Safari for Mac)

There are three types of links represented in the navigation list: AJAX links (Latest News, Game Day,
Standings, and About); Page links (Schedule and Rules); and External links (Visit Web Site).
The Standings and Schedule pages on the regular Web site are lengthy. Therefore, for the mobile version,
these pages are broken into small readable sections. These sections are displayed as second tier menus:

<ul id="schedule" title="Schedules">

Seniors</1li>

Juniors</1li>

Freshman</1i>

Instructional</1li>

<ul id="rules" title="Rules">

Fields and Players

Game</1i>

Time</1i>

Penalties</1li>

Enforcement of Penalties

Figures 11-5 and 11-6 show these two submenus.

248

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

WYFFL Mobile = | & WYFFL Mobile

Seniors > Fields and Players >
Juniors » Game >
Freshman > Time >
Instructional > Penalties >
Enforcement of Penalties >

v v

36 to “http:jtruffiehunter-Z local/ipd fwyfflfjumiorshtml®] [T =

Figure 11-5: Schedule submenu (as shown in Figure 11-6: Rules submenu (as shown in
Safari for Mac) Safari for Mac)

Text-Based Destination Pages

The Latest News page is a destination page that is designed for readability of short, bite-sized articles.
Here’s the document fragment used for this purpose:

<div id="news" class="panel" title="News">

<fieldset>

<h3>Top Ranked Teams Set to Battle on Oct. 13</h3>

<p>The #1 and #2 teams of both the Junior and Senior divisions will square off on
Saturday, October 13. These games will have major implications on the season
rankings heading into the playoffs. In the Junior division, the high flying #1
Dolphins (4-0) meet the upstart #2 Cowboys (4-0) at 8am. In the Senior division,
the defensive powerhouse #1 Steelers (4-0) will battle the #2 Bears (3-0-1) at
12pm.</p>

<h3>No Games on Columbus Day Weekend</h3>

<p>Just a reminder that there will be no games this week due to the holiday
weekend. Have a great weekend.</p>

<h3>0Open Practices for Junior and Senior Divisions</h3>

<p>Open Practices are on Wednesday evenings from 5:30-7:00pm for both Junior and
Senior Divisions, but not Freshman Division. The Open Practices will be held at the
Jefferson School Fields in Holden.</p>

<h3>Wachusettflagfootball.com - Your Best Source for Weather Info</h3>

(continued)

249

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

(continued)
<p>Be sure to come to this web site throughout the year in case it looks rainy
outside on a Saturday morning. Throughout the season, the league will post any rain
postponement or cancellation announcements here by 7:00am on gameday.</p>
<h3>Dick's Sporting Goods as Community Partner</h3>
<p>Wachusett Youth Flag Football would like to thank and recognize Dick's Sporting
Goods as a sponsor and community partner.</p>
</fieldset>
</div>

As is standard for iUl apps, a div with class="panel" is used to contain this type of destination page.
A fieldset is used as a container for the rest of the content to take advantage of the iUI styles. Custom
styles are set inside of iuiadd.css for the h3, p, and a styles:

.panel p, .panel a {
text-align: left;
padding: 0 10px 0 10px;

}

.panel h3 {
margin: 3px 0 10px 10px;
text-align: left;
font-size: 1.2em;

}

Figure 11-7 shows the page displayed in Safari.

WYFFL Mobile

Top Ranked Teams Set to Battle on
Oct. 13

The #1 and #2 teams of both the Junior and
Senior divisions will square off on Saturday,
October 13. These games will have major
implications on the season rankings heading "
into the playofts. In the Junior division, the high
flying #1 Dolphins (4-0) meet the upstart #2
Cowboys (4-0) at 8am. In the Senior division,
the defensive powerhouse #1 Steelers (4-0)
will battle the #2 Bears (3-0-1) at 12pm.

No Games on Columbus Day
Weekend

Just a reminder that there will be no games this
week due to the holiday weekend. Have a
great weekend.

Figure 11-7: Latest News (as shown in Safari for Mac)

250

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

The text-based Rules page and About page employ the same div element structure and the same
style rules.

Table-Based Destination Pages

Because of the tabular nature of the information they present, the Standings and Schedule pages are
implemented as table-based destination pages. Here is a portion of the document fragment for the
Standings page:

<div id="standings" class="panel" title="Standings">
<table border="1" cellpadding="0" cellspacing="0">
<tr class="first" >

<th >Seniors</td>

<th >W</td>

<th>L</td>

<th>T</td>

<th>PS</td>

<th>PA</td>

</tr>
<tr class="row-a" >

<td>Steelers</td>

<td >4</td>

<td >0</td>

<td >0</td>

<td >74</td>

<td >6</td>

</tr>
<tr class="row-b" >
<td>Bears</td>

<td >3</td>
<td >0</td>
<td >1</td>
<td >92</td>
<td >36</td>

</tr>
<tr class="row-a" >
<td>Eagles</td>

<td >3</td>
<td >1</td>
<td >0</td>
<td >104</td>
<td >b4</td>

</tr>
<tr class="row-b" >
<td>Pats</td>

<td >2</td>

<td >1</td>

<td >1</td>

<td >81l</td>
<td >61</td>
</tr>

(continued)

251

Chapter 11: Case Studies:

Beyond Edge-to-Edge Design

(continued)
<tr class="row-a" >
<td>Colts</td>

<td >2</td>
<td >1</td>
<td >1</td>
<td >51</td>
<td >36</td>

</tr>
<tr class="row-a" >
<td>Jets</td>

<td >2</td>
<td >2</td>
<td >0</td>
<td >74</td>
<td >100</td>

</tr>
<tr class="row-b" >
<td>Browns</td>

<td >1</td>
<td >3</td>
<td >0</td>
<td >53</td>
<td >93</td>

</tr>
<tr class="row-a" >
<td>Saints</td>

<td >1</td>
<td >3</td>
<td >0</td>
<td >62</td>
<td >81</td>

</tr>
<tr class="row-b" >
<td>Ravens</td>

<td >0</td>
<td >3</td>
<td >1</td>
<td >43</td>
<td >97</td>

</tr>
<tr class="row-a" >
<td>Bills</td>

<td >0</td>
<td >4</td>
<td >0</td>
<td >38</td>
<td >108</td>
</tr>

</table>

</div>

252

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

Style rules need to be added to iuiadd.css in order to effectively display this information inside of a
Mobile Safari viewport:

table {
width: 100%;
font-size: 14px;
border-collapse: collapse;
color: #305A6D;
text-align: left;

th {
height: 29px;
padding-left: 1lpx;
padding-right: 1lpx;
color: #FFFFFF;
text-align: left;
margin: 0 0 8px 1l4dpx;
font-size: inherit;
font-weight: bold;
color: #4d4d70;
text-shadow: rgba (255, 255, 255, 0.75) 2px 2px 0;
padding-left: 2px;

}

td {
height: 2em;
padding: 1lpx;
padding-left: 2px;

}

tr.row-a {
background: #F8F8FS;

}

tr.row-b {
background: #EFEFEF;

}

The table is set to 100 percent of the div container. The remaining rules set basic formatting properties
for the th, td, and tr elements. You will notice that the font size is smaller (14px) than is normal for
Mobile Safari applications. The reason is twofold. First, no links are added to these tables, so users will
never need to tap onto the smaller text. Second, the 14px size is large enough for easy reading, but small
enough to display several columns of tabular information. Figure 11-8 shows the Standings page

under Safari.

The four Schedule pages use the identical styles, except that the HTML table declaration specifies a
border="0" attribute to display a slightly different look (see Figure 11-9).

253

Chapter 11: Case Studies: Beyond Edge-to-Edge Design
WYFFL Mobile = X = WYFFL Mobile Tg

Stand... ‘Standings , “Sched... | Seniors .
|
Seniors w B il PS PA Date Time Home Visitor :
Steelers 4 o o |74 |6 8-Sep B:00 AM Bills Browns :
Bears 3 0 3 92 36 9:00 AM Colts Bears
Eagles 3 1 0 104 54 10:00 AM Pats Steelers
Pats 2 1 1 81 61 11:00 AM Jets Saints
Colts 2 1 1 51 38 12:00 PM Eagles Ravens
Jets 2 2 0 74 100
Browns 1 3 0 53 a3 15-Sep B8:00 AM Colts Bills
Saints 1 3 0 62 a1 9:00 AM Ravens Saints
PR 0 3 1 43 a7 10:00 AM Pats Browns
Bills 0 4 0 a8 108 11:00 AM Bears Eagles
" 12:00 PM Jets Steelers L
v v
PP P P P > __ _
Figure 11-8: Standings page (as shown in Safari Figure 11-9: Schedule page without a border
for Mac) (as shown in Safari for Mac)

Game Day Navigation List Page

While the Game Day content could be displayed in a table structure much like the Schedule pages, a
much more attractive solution would be to consider an alternative UI design for this destination page.
The three pieces of information that need to be displayed for a given game are the game time,

teams, and their scores. In considering alternatives, I looked around at the native Apple

applications and was intrigued with the idea of using the World Clock app as an inspiration

with its large clocks displayed in a list. Figure 11-10 shows the end result of what you are

going to build under Safari for Mac.

254

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

Game Day

Seniors

Figure 11-10: Game Day page (as shown in Safari for Mac)

The HTML document fragment used to display this page is as follows:

<ul id="gameday" title="Game Day">
<1li class="group">Seniors
<1li class="grayrow">

<p class="team team-visitor">Eagles</p>
<p class="team team-home">Saints</p>
<p class="score score-visitor">10</p>
<p class="score score-home">36</p>
</1i>
<1li class="grayrow">

<p class="team team-visitor">Pats</p>
<p class="team team-home">Jets</p>
<p class="score score-visitor">43</p>
<p class="score score-home">6</p>
</1i>
<1li class="grayrow">

<p class="team team-visitor">Ravens</p>

(continued)

255

Chapter 11: Case Studies: Beyond Edge-to-Edge

Design

(continued)
<p class="team team-home">Bills</p>
<p class="score score-visitor"></p>
<p class="score score-home"></p>
</1i>
<1li class="grayrow">

<p class="team team-visitor">Browns</p>
<p class="team team-home">Colts</p>
<p class="score score-visitor"></p>
<p class="score score-home"></p>
</1li>
<li class="grayrow">

<p class="team team-visitor">Steelers</p>
<p class="team team-home">Browns</p>
<p class="score score-visitor"></p>
<p class="score score-home"></p>
</1li>
<1li class="group">Juniors
<1li class="grayrow">

<p class="team team-visitor">Dolphins</p>
<p class="team team-home">Cowboys</p>
<p class="score score-visitor">20</p>
<p class="score score-home">32</p>
</1li>
<1li class="grayrow">

<p class="team team-visitor">Rams</p>
<p class="team team-home">Panthers</p>
<p class="score score-visitor"></p>
<p class="score score-home"></p>
</1i>
<1li class="grayrow">

<p class="team team-visitor">Redskins</p>
<p class="team team-home">Vikings</p>
<p class="score score-visitor"></p>
<p class="score score-home"></p>
</1i>
<li class="grayrow">

<p class="team team-visitor">Giants</p>
<p class="team team-home">Packers</p>
<p class="score score-visitor"></p>
<p class="score score-home"></p>
</1li>
<1li class="grayrow">

<p class="team team-visitor">Titans</p>

256

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

<p class="team team-home">49ers</p>
<p class="score score-visitor"></p>
<p class="score score-home"></p>

</1li>

Instead of a div element, a ul element is used given the list-based nature of the content. You

assign the id="gameday". The Senior and Junior league games are divided by the group list item
(<liclass="group">), which is a style that is a standard part of the iui.css style sheet. The remaining
list items are assigned the grayrow class. The grayrow class provides the sizing and formatting needed

for this 90px high item:

body > ul > li.grayrow {
position: relative;
top: -1lpx;
margin-bottom: -2px;
border-top: lpx solid #eeeeef;

border-bottom: 1lpx solid #9c9eab5;

padding: lpx 10px;

background: url (grayrow.png) repeat-x;

font-size: 17px;
font-weight: bold;

text-shadow: rgba (255, 255, 255,

color: #000000;
line-height: 90px;
height: 90px;

}

body > ul > li.grayRow:first-child {

top: 0;
border-top: none;

Each list item contains an a link to display the clock and p elements to display the teams and scores.
Several styles are used for positioning and formatting these elements. The following style rules are used

for displaying the clock image at the left side of the item:

1i .clock {
display: block;
position: absolute;
margin: 0;
left: 3px;
top: Opx;
width: 76px;
height: 90px;

}

.clock8 {

background: url(clock8.png) no-repeat;

}
.clock9 {

background: url(clock9.png) no-repeat;

}

(continued)

257

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

(continued)
.clockl0 {

}

background: url(clockl0.png)

.clockll {

}

background: url(clockll.png)

.clockl2 {

}

background: url(clockl2.png)

no-repeat;

no-repeat;

no-repeat;

The base clock class formats and positions the element, while the remaining styles customize the
background image. Each item then calls the base class plus one of the others. For example:

While images are being used to display the clock, you could also use the canvas object to render the
clocks. Canvas drawing would not only allow greater flexibility for displaying times, but also cut down

on bandwidth needed to render the page.

Next, the rules for the team name text are shown in the following code:

1i

}

.team {
display: block;
position: absolute;
top: 1px;
margin-top: 5px;
line-height: 20px;
font-size: 19px;
width: 70px;
text-overflow: clip;
text-align: center;

.team-visitor {

}

left: 120px;

.team-home {

}

left: 215px;

The team class sets most of the properties, while the team-visitor and team-home styles are used to

horizontally position the two paragraphs.

Finally, the score, score-visitor, and score-home classes follow the same pattern for the

score boxes:
1i .score {
display: block;
top: 28px;

258

position: absolute;
margin: 0;
margin-top: 2px;

Chapter 11: Case Studies: Beyond Edge-to-Edge Design

text-align: center;
font-size: 1.8em;
color: #6d84a2;
font-weight: bold;
text-decoration: none;
width: 70px;
height: 48px;
line-height: 50px;
background-color:rgba(255, 255, 255, 0.7);
-webkit-border-radius: 16px;
border: 1px solid #bdbdb4;

}

.score-visitor {
left: 120px;

}

.score-home {
left: 215px;

}

259

|

Testing and Debugging

Get in, get out. That’s the attitude that most developers have in testing and debugging their
applications. Few developers look forward to these tasks during the development cycle, and so
they want to efficiently get into the code, figure out what’s working and what’s not, fix any
problems, and then move on.

Given the heterogeneous nature of Web applications, debugging has always been challenging,
particularly when trying to work with client-side JavaScript. To address this need, fairly
sophisticated debugging tools have emerged over the past few years among the developer
community, most notably Firebug and other add-ons to Firefox. However, the problem is that most
of these testing tools that Web developers have come to rely on for desktop browsers are not yet
compatible with the iPhone and iPod touch platform.

Many iPhone developers, unsure of where else to turn, end up resorting to alert () debugging —
you know, adding alert () throughout the body of the script code to determine programmatic
flow and variable values. However, not only is this type of debugging painful, but it can also
throw off the timing of your script, making it difficult or impossible to simulate real world results.
While the number of debugging and testing tools are indeed limited right now for Mobile Safari,
you still have options that either work directly inside Mobile Safari or emulate Mobile Safari on
your desktop. You will probably want to incorporate aspects of both as part of your regular
debugging and testing process.

iPhone and iPod touch Debug Console

The 1.1.1 update of iPhone and the initial release of iPod touch introduced a Debug Console
inside of Mobile Safari. If active, the Debug Console displays below the URL bar when a scripting
error occurs. You can click the right arrow to display a list of console messages. The errors can be
filtered by JavaScript, HTML, or CSS. You can enable the Debug Console from Settings = Safari =
Developer and turn toggling on the Debug Console option.

Chapter 12: Testing and Debugging

Working with Desktop Safari
Debugging Tools

Firefox has often been considered the browser of choice for Web application developers because of its
support for third-party tools and add-ons, such as Firebug. However, when creating an application
specifically for iPhone or iPod touch, you will usually want to work with Safari-specific tools.
Fortunately, because Mobile Safari is so closely related to the newer desktop versions of Safari, you can
take advantage of the debugging tools that are provided with Safari for Windows and Mac. Because
you are working with a close relative to Mobile Safari, you will still need to perform a second round

of testing and debugging on an iPhone and iPod touch, but these tools will help you during initial
Safari testing.

Enabling the Debug Menu

The Safari debug tools are accessible through a Debug menu, which is hidden by default when you
install Safari. If you are running on a Mac, you can type the following command in a terminal window
(when Safari is closed):

% defaults write com.apple.Safari IncludeDebugMenu 1

Or, if you are working with Safari for Windows, you will want to edit the Preferences.plist file when
Safari is closed. This .plist file is found in the following locations. For Windows Vista:

C:\Users\ [Your Name] \AppData\Roaming\Apple Computer\Safari
For Windows XP:

C:\Documents and Settings\[Your Username]\Application Data\Apple Computer\Safari
The file itself is an XML document, so use Notepad or another text editor to open it. When you open it,
modify the following key element at the end of the document, just before the final </dict> and

</plist> closing tags:

<key>IncludeDebugMenu</key>
<true/>

Alternatively, in Safari for Windows, you can also enable or disable the Debug menu through
command-line arguments: /enableDebugMenu displays the menu and /disableDebugMenu hides it.
(These arguments are case sensitive.) Once you define this switch, Safari will remember the setting until
you change it back.

262

Chapter 12: Testing and Debugging

Open the browser and the new menu appears, as shown in Figure 12-1. Many of these menu items are

not relevant to Mobile Safari development, but a few are worth mentioning (see Table 12-1).

[N Debug
Open Page With

Security
User Agent

r

yrwyywy

Turn Off Site-Specific Hacks

Show Web Inspector

Show Render Tree

Show View Tree

Force Repaint + ¥R

Show Snippet Editor
Show Caches Window
Show Page Load Test Window 38

Use Transparent Window

Always Check for World Leaks
v Use Back/Forward Cache

Use Threaded Image Decoding

Use ATSU For All Text

v Log JavaScript Exceptions
Show JavaScript Console {+38)
v Enable Runaway JavaScript Timer

Keyboard and Mouse Shortcuts

Start Profiling With Sample
Stop Profiling With Sample
Use Shark for Profiling

Populate History
Co to about:blank Soon
Turn Off RSS Support...

Figure 12-1: Safari’s Debug menu

263

Chapter 12: Testing and Debugging

Table 12-1: Useful Safari Debug Commands for the iPhone Developer

Name Description

User Agent Spoof another browser (though current version does
not include a Mobile Safari user agent string).

Show Web Inspector View and search the DOM (currently Mac OS X only).

Show Snippet Editor Get instant rendering of an HTML snippet.

Log JavaScript Exceptions Turn on to log exceptions.

Show JavaScript Console View JavaScript errors occurring on a page.

Enable Runaway JavaScript Timer Toggle the timer that halts long-running scripts.

The two Safari debug features worth special attention are the Web Inspector and JavaScript Console.

Working with the Safari Web Inspector

The best debugging feature available in Safari is certainly the Web Inspector. The Web Inspector, shown
in Figure 12-2, enables you to browse and inspect the DOM of the current Web page. You can access this
feature through the Debug menu. However, the handiest way to use it is to right-click an element in your
document and choose the Inspect Element menu item. The Web Inspector is displayed, showing the
element in the context that you selected in the browser window.

At the time of this writing, the Web Inspector is only available on Mac OS X. Howeuver, expectations are
that a cross-platform version of this developer tool will be available in the future.

Here are the basic functions of the Web Inspector:

Q

264

Selecting a node to view: When you click on a node in the inspector pane, two things happen.
First, the bottom pane displays node and attribute details, style hierarchy, style metrics, and
property values. Second, if the selected node is a visible element in the browser window, the
selected block is highlighted with a red border in Safari.

Changing the root: To avoid messing with a massive nested DOM hierarchy, you can change

the context of the Web Inspector. Double-clicking a node makes it the hierarchical “root” in the
inspector pane. Later, if you want to move back up the document hierarchy, use the up arrow or
the drop-down combo box above.

Searching the DOM.: You can use the Search box to look for any node of the DOM — element
names, node attributes, even content. Results of the search are shown in the inspector pane,
displaying the line on which a match was found. If you want to get a better idea at the exact
node you are working with, select it and then look for the red outlined box in the Safari window.

Chapter 12: Testing and Debugging

Move down Node Ancestors list

Veb Inspector

Move up

r Inspector window

tings, and About me...

Node, Style, Metrics,
and Properties

Node Name: BO details panes

Namespace URI: http 3 9 xhtml|
Element Attributes
orient = "landscape”

Figure 12-2: Web Inspector in Safari

Viewing node details: The Node pane provides basic node information, including type, name,
namespace, and attribute details.

Viewing CSS properties: The Style pane displays CSS rules that are applied to the selected

node (see Figure 12-3). It shows the computed style of the selected element by showing you all
of the declarations that are used in determining the final style rendering. The rules are lists in
cascade order. Any properties that have been overridden are displayed with strikethrough text.

265

Chapter 12: Testing and Debugging

Web Inspector 0

Node E Metrics Properties
Computed Style

div

row

Figure 12-3: Style rules for the selected node

Q Viewing style metrics: The Metrics pane displays the current element as a rectangular block
displaying the width x height dimensions, as well as the padding and margin settings
(see Figure 12-4).

Q Viewing all properties: The Properties pane displays all of the DOM properties (such as id and
innerHTML) for the selected node. Because you cannot drill down on object types, this pane is
less useful than the others.

266

Chapter 12: Testing and Debugging

Web Inspector (3]

:

Figure 12-4: An element’s metrics are easily seen
in the Metrics pane.

Working with the JavaScript Console

Safari also sports a JavaScript Console, as shown in Figure 12-5; you can use it to display exceptions as
you test your iPhone application on your desktop. However, the actual usefulness of the console is fairly
modest. It does allow you to find the basic details of an error (type, file, line number), but other than
that, you are on your own. But if you plan on doing anything more than looking for the occasional
syntax error, I recommend using Drosera, which is discussed in the next section.

267

Chapter 12: Testing and Debugging

0o JavaScript Console

SyntaxErrar: Parse error

file:/ f {Library WebServer/Documents/ipd/iui fiui.js Lina: 159

1 message >

Figure 12-5: Safari’s JavaScript Console

Industrial Strength Debugging with Drosera

If you recall from Chapter 1, Safari is built on top of the open source WebKit browser engine. Drosera is a
high-powered JavaScript debugger that is included with the WebKit nightly builds, but is not part of
Safari itself. However, if you are running Mac OS X, you can download the latest nightly build of WebKit
at www.webkit.org and take advantage of using Drosera. At the time of this writing, Drosera is not
available on Microsoft Windows platforms. Refer to www.webkit . org for the latest compatibility
information.

As you would expect from a full-fledged debugger, Drosera enables you to set breakpoints, step into/
out/over functions, and view variable state at a point of execution.

Preparing Drosera for Safari

After downloading the latest nightly WebKit build and installing it to your Applications folder, you first
need to prepare your environment. Drosera works by attaching itself to a running WebKit browser.
However, by default, it does not recognize Safari. Therefore, follow these instructions to enable it:

1. Be sure Safari, WebKit, and Drosera are all closed.
2. Enter the following into a terminal window:
defaults write com.apple.Safari WebKitScriptDebuggerEnabled -bool true

3. Launch Safari and navigate to your application URL.
4. Launch Drosera.

5. Inthe Attach dialog box, select Safari from the list and click Attach.

268

Chapter 12: Testing and Debugging

The Drosera debugger is shown in Figure 12-6.

CXENE] Safari - Debugger
e W
Pause :
Files # Function Variable Value

b 84 hup: | fwww.google.com
Wi file: i/ [Library/WebServer /Dacum

= | = | fediiLibrarf ipdfivifivijs 2| «<Noselected symbols 2
| setTimeout(preloadImages, 83;
setTimeout{checkDrientAndLocation, 8);
setInterval{checkOrientAndlocation, 384);
1|}, False);

| addEwentListensr{"click”, functionCeventd

var link = findParent(event.target, "a");
if (link)
{

Function unselect() { link.removeAtiribute("selected™d; }
if (link.href B& Llink.hosh 88 Link.hash 1= "7
link.setAtbributel"selected”, "brue");

iui.showPage(S(link.hash. substr(133); [

setTimeout{unselect, 500);

}
£ Begin cui insertion
else if { (link.getAtbributel{"closs") == "cwilervicelink” 3 |1 link.getAbtribute("closs®™) == "cwiServiceButton") 3
- vor curfow = FindParent{ link, "div" };
; curRom. sobAtbribute! cuiSelocted”, "trus);

setTimeout{function() {
curRon. resoveAttribute("cuiSelected");
b 5eR);
return;
,
£/ End cul insertion
else 1f (link == $("bockButton®))
history.back();
alse if (link.getAttribute(type™) == "submit®)
submitFornl FindParent{link, "form"));

! else if (link.gotAttribute(typs™) == "cancel”)
concelDiolog{FindParent{link, “Form"}};
else if (link.target == "_replace™)

L!
link.setAttribute("selected”, “progress");
tui . showPogeSyhiref (Link_href, null, null, link, unselect);
}
else if {1link.target)
. {

ol |

Figure 12-6: Drosera debugger

Working with Drosera

When you open your application URL, the source files will be automatically loaded into the Drosera
window. You can then view the JavaScript source code in the code window.

Q Setting breakpoints and stepping through code: You can set a breakpoint in your code by clicking the
line number on the left margin of the code window. As Figure 12-7 shows, an arrow is displayed
on the breakpoint line. When the line code is executed, then the breakpoint is triggered. You can
then step through the script as desired by clicking the Step into, Step Out, and Step Over but-
tons. As you step through the code, Drosera will update its state for each line executed.

269

Chapter 12: Testing and Debugging

Safari - Debugger

ene (=]
® v 00 e [
Continue Pause Step Into Step Out Step Over Console
Files # Function Variable Value
b 64w goosle com P undetined
!'ﬁhle,:.f;.lJl;lnrirwme:Mrmo(um 1 (glabal seope) —— [object MouseEvent]
[y —— link [object HTMLAnchartlement]
[$hitte:/ (blog.wired.com function unselect)
[4 bt/ fad doubleclick net imeeec I
- $8 http:/ fview.atdmt.com link.removeArtribute selecied™)
= #4 bitp. | fomd atdmicom
44 hmp: fcore.insightexpressal.com
o 4 hmup: / fwww.google -analytics.com |
- | = | fedii ipdiifivijs 3| «<Noselected symbols 3
sekTimeout(preloadlmages, 2); .
| setTimeout{checklrientAndLocation, 8); -
= setlnterval (checkOricntAndlocation, 308);
154}, Folsed;
15| addEventListener{"click”, functionfewent)
ar| {
1 war link = findParent(event. target, “a"};
iF (link)
5 {
Ul Function unselect() { link.removeAttribute("selected™); }
" i1f (link.href 8& Llink.bosh 86 Link.hash |= "4}
" [
link.setAttribute("selected”, "true");
iui.shosPage($(link. hosh.substr(133);
setTimeout{unselect, 500);
. /4 Begin cui insertion
else if { (link.getAttribute("closs™) == "cuilervicelink” 3 |1 { link.getAbtribute("closs™) == "cuiServiceButton™) 3
{
= wvar_curRaw = FindParent(Tink, “div" 3; -
m| curRow. sebAbbribute(cuiSelocted”, "true”);
setTimeout{ function() {
curRow. remsaveAttribute("cuiSelected");
b, 5eR;
return;
,
| £/ End cul insertion
else if (link == ${"bockButton®))
" history.back();
else if (link.getAttribute(type™) == “submit®)
s submitForn{ findPorent(link, “form"));
.| else if (link, geeheeribute(type™) = "cancel”)
L1 concelDiologl FindParent{link, "Fform"}};
e else if (link target — "_replace™)
i {
e link.setAttribute("selected”, “progress™);
s tui_shomPugeSytref(link href, null, null, link, unselect);
0| }
L else if {!link. target)
w v

Figure 12-7:

Setting a breakpoint

Inspecting variables: The variable box at the top of the Drosera window displays the variables in
scope. You can inspect these variables by right-clicking them and choosing Inspect Element. The
WeDbKit version of the Web Inspector is displayed on top of the Drosera window, as shown in
Figure 12-8. The features of the Web Inspector are equivalent to the Safari Web Inspector
discussed earlier in viewing a node in its hierarchy along with style, metric, and property
details. Close the Web Inspector to return to the debugging session.

While Drosera does not work directly with Mobile Safari, it does serve as the most powerful debugging
option that the iPhone and iPod touch application developers have in their toolkit.

270

Chapter 12: Testing and Debugging

aeane Safari - Debugger

® W @ @

Continue Fause Steplnto Step Out Step Over

2
]
Console

app/Contents /Ry

[Drosera.app/Contents [Resour...

(0~
COF THIS SOFTWARE, EVEN IF ADVISED OF THE 2| ¥ Styles
_ POSSIBILITY OF SUCH DAMAGE. --> r
- dubuggerhtmd ¥ <html xmins ="http: | fwww.w3.00g /1995 xhtm|” Computed Style

IAGpicatans (Dfeteraine’ xmllang="en” lang="en"> I Show implicit properties.

e ¥ <head> display: table-cell:

ok iopic v <body onload ="ioaded”> height: 21px;
= ¥ <dlv d="masterMain™> averflow-x. hidden;

ewerflow-y: hisden;

FATYLESHEETS. » e “‘_'"“'f‘_““" = padding-bottom; 3px;
¥ <eliv i = "main®> padding-left: Opx;
= IMAGES v <div id="Info"> padding - right: 7pa;
& cdiv id ="leftPane”> padding-top; 3px;
Wernen v <div id="rightPane"> vertical -align: middie;
= i white-space: nowrap:
<dr i ="infaDivider™s width: $T8px:
¥ cdiv id="variables*> webkit- bo - sizing: barder-bax;
b <tabie |d = variablesT -5 -select: none;
¥ cdiv [d="varisblesBody™>
<div class = “Infobackground”> d

¥ <table id ="variablesTable™
¥ <ar glass ="current>
<td class ="variable™>

- 3px Tpx 3px Spx,

* padd
n::"TN”m’ height 15px;
<td=[object &
LOHED ~webkit-box - sizing: border-bax;
HIM ement] </ud> ~webkit-user-select: none;
=fw » ewerflow: Aull;
»ar> temt-overflow ellipsis;
>t white-space: nowrap:
» e
«[tables :'ll- 4
</div> et sirlesheet
<fdive display: table-cell;
=fdiva vertical - align: inherit;
<div id = divider >
<ldiv>) ¥ Metries
» <div id = Body"s » Properties
«[divs
</div>
= (bodya

|
<fhmi> -

hady) degmasterMain | divemain) divainfo

Figure 12-8: Inspecting the current state of an element in a debugging session

Simulating Mobile Safari on Your Desktop

In addition to using the debugging tools available for Safari for Mac and Safari for Windows, you can
also simulate running Mobile Safari on your desktop. This will enable you to look at the Ul as it will look
in Mobile Safari as well as test to see how a Web application or site responds when it identifies the
browser as Mobile Safari. You can either customize the desktop version of Safari or you can use a free
tool named iPhoney.

Using Safari for Mac or Windows

Because Mobile Safari is closely related to its Mac and Windows desktop counterparts, you can perform
initial testing and debugging right on your desktop. However, before doing so, you will want to turn
Safari into an iPhone simulator by performing two actions — change the user agent string and resize the
browser window.

271

Chapter 12: Testing and Debugging

Changing Safari’s User Agent String

Safari allows you to set the user agent provided by the browser through the Debug = User Agent list. At
the time of this writing, Safari 3.0 does not display Mobile Safari on its preset user agent list. However,
you can specify a CustomUserAgent in Safari’s preferences file to provide this custom string.

To do so on a Mac, navigate to the com.apple.Safari.plist in your /Users/ [Username] /Library/
preferences folder. Double-click it to open the Properties List editor.

Next, add a new CustomUserAgent property in these files and give it the following value:

Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1A538b Safari/419.3

Alternatively, if you are using a Mac, you can type the following in the terminal window when Safari
is closed:

defaults write com.apple.Safari 'CustomUserAgent' '"Mozilla/5.0 (iPhone; U; CPU
like Mac 0S X; en) AppleWebKit/420+ (KHTML, like Gecko) Version/3.0 Mobile/1A538b
Safari/419.3"!

You can then keep this as your default user agent setting until you change it back to normal through the
Debug = User Agent menu.

To delete the custom user agent on a Mac system, you can enter the following as a command line:

defaults delete com.apple.Safari 'CustomUserAgent'

Changing the Window Size

To get the same viewport dimensions in Safari, you will want to create a bookmarklet (see Chapter 10),
and then add it to your Bookmarks bar. The code for the bookmarklet is as follows:

javascript:window.resizeTo(320,480)

Using iPhoney

Rather than messing around with the settings of your desktop browser, however, you can use iPhoney, a
free open source iPhone web simulator created by Marketcircle (www.marketcircle.com/iphoney).
iPhoney (see Figure 12-9) is a great tool to use when you are initially designing an iPhone or iPod touch
Ul as well as when you are performing early testing. One of the handy features of iPhoney is that you
can easily change orientations between portrait and landscape (see Figure 12-10). iPhoney also allows
you to spoof with the iPhone user agent, hide the URL bar, and turn off Flash and other add-ins.

272

Chapter 12: Testing and Debugging

Abbey Road

Help!

Rubber Soul
Sgt. Pepper's
White Album

Figure 12-9: iPhoney simulates the iPhone on your
Mac desktop.

273

Chapter 12: Testing and Debugging

il ATET =

Abbey Road

Help!
Rubber Soul

Sgt. Pepper's
White Album

o e— —

Figure 12-10: Rotating iPhoney to landscape mode

Debugging Inside Mobile Safari

So far,you’ve seen how to test and debug your iPhone and iPod touch applications on your desktop
using desktop-based solutions. While those tools are good for general testing or specific problem
solving, you will want to spend a good part of your time debugging directly on the iPhone or iPod touch
devices themselves. Unfortunately, no robust debugging tools such as Drosera are available, but there
are several community-based debugging tools that should be a standard part of your Mobile Safari
development toolkit.

Firebug for iPhone

Joe Hewitt — developer of the popular Firefox debugger, Firebug — has developed a debugger for
iPhone and iPod touch called Firebug for iPhone. This debugger is a Python-based Web server running
on your desktop computer. It connects Mobile Safari on your iPhone to a Firebug console running on
your desktop. When code is executed inside of the Mobile Safari browser, Firebug for iPhone logs the
details directly to the Firebug console.

At the time of this writing, the Firebug console was not functional inside Safari 3.0 for Mac beta.
Therefore, if you experience problems, be sure to run it inside of Firefox on your desktop machine.

Before beginning, you will need to download the free, open source file at www. joehewitt.com/blog/
firebug_for_iph.php. You will also need to make sure you have Python installed on your
computer. Mac systems already have it. If you are running Windows, you can download it

at www.python.org/download.

274

Chapter 12: Testing and Debugging

Launching Firebug for iPhone

Once you have downloaded the zip file and unzipped it into a folder on your computer, open a terminal
window in Mac or a command window in Windows. Change to the directory into which you placed the
files. Then, enter the following command line:

python ibug.py launch

Your browser will load with the Firebug for iPhone page displayed. (If the console is opened in Safari,
simply copy and paste the URL in Firefox and then continue.) See Figure 12-11.

|06 iPhone Firebug =
(] @ hip://10.0.1.196: 1840/ firebug.htm v | %] (1G]~ Google Q) 3
X Disable* ® Cookies™ €I C55™ @ Forms~™ ¥y limages™ § Information~ 5 Miscellaneous ™ # Outline™ == Resize™ # Tools™ < View Source™ {}Op
2 0 iPhone Firebug (x] | [x]
Clear iPhone Firebug
o Paste this into the head of any HTML pages you want to debug on your iPhone:
<script type="application/x-javascript" src="http://10.0.1.196:1848/1bug.js"></script>

>»> alert("jj"

&) Parse error 148 (line 1)
=== alert("");

g

& Images: 0/0 Loaded: O KB 0 KB/s Time: 0:00 Transferring data from 10.0.1.196... e 0.890s @ (/]

Figure 12-11: Firebug for iPhone

Adding a Script Tag to Your Page

The Firebug console provides a script tag that you need to copy and paste into the head of each page of
your iPhone application. The tag will look something like this:

<script type="application/x-javascript"
src="http://10.0.1.196:1840/ibug.js"></script>

275

Chapter 12: Testing and Debugging

Note that if you are running a firewall, you may need to open the port (specified after the colon in the
script tag) that Firebug uses. In the previous example, Firebug is using the 1840 port.

Debugging with Firebug for iPhone

Once you have the Firebug console running, you are ready to begin testing. To test, simply interact
with your application on your iPhone or iPod touch. Firebug will log any exceptions or errors on
your desktop.

Firebug for iPhone also provides a command line in which you can enter JavaScript code and have it
execute on the iPhone. As a simple example, enter alert ("Hello world") into the command line and
the alert box is displayed on the iPhone.

Terminating the Debug Session

When you are done, close the running instance of Python by pressing Ctrl+C in the Terminal window.

DOM Viewer

The DOM Viewer, available from Brainjar.com, is a Web-based DOM viewer that you can work with
directly inside of Mobile Safari. The DOM Viewer provides an expandable tree structure that lists all of
the properties of a given node. When a property of a node is another node, then you can view its
properties by clicking its name. The tree expands to show these details. The DOM Viewer is housed in a
separate HTML page that is launched in a separate window from the original page.

While DOM Viewer does not have the robust capabilities of the desktop Safari’s Web Inspector, it does
have the assurance that all of the information you are looking at comes directly from Mobile Safari itself,
not its desktop cousins.

Starting the DOM Viewer
To use DOM Viewer, follow these steps:

1. Download the source file at brainjar.com/dhtml /domviewer/domviewer . html. Save the file
in the same folder as your application.
2. Add a test link to your page to launch the viewer:
View in DOM Viewer
Alternatively, you can add a script to the end of your HTML page in which you wish to inspect:

<script type="application/x-javascript">
window.open ('domviewer .html') ;
</script>

The problem with this solution, however, is that iUl gets in the way of the default open action if
you are using an iUI-based application.

3. Save the file.
4. Open the page inside of Mobile Safari. If needed, click the View in DOM Viewer link.

276

Chapter 12: Testing and Debugging

The DOM Viewer is displayed in a new pane inside of Mobile Safari (see Figure 12-12). Interact
with it as desired.

il ATET '-Er" 1:49 AH -

oo - TroTTT Lu|
o rIDL'um:nL:lnnbul&. =null

p documentbgColor =
r documentbody = [object BODY

® document body ATTRIBUTE_MNODE = 2

document.body. CDATA SECTION NODE =4
document.body CDMMENT NODE = 8

document.body. DDE‘UMENT FRAGMENT NODE =11
document.body DCICUM[.NT NODE =9

document. body. DOCUMENT TYPE NODE = 10
document.body ELEMENT NODE = 1

document.body ENTITY | NODE = 6

document. budy ENT'TY REFERENCE NODE =5

document. body. NDTATION NODE = 12

document.| buva’RDC[.SSING INSTRUCTION _NODE =7
document.body. TEXT NODE = 3

document.body aLink =

document.body. addEventListener = function addEventListenen|
document. body. appendChild = function appendChild() | [nativg
document.body. attributes = [object NamedMNodeMap]
document.body background =

document_body bgColor =

document.body blur = function blur() { [native code] }
document body childNodes = [ohject ModeList
document.body.children = [object Collection
document body classMName =

document. body clientHeight = 45

documentbody clientWidth = 320

document.body. cloneNode = function cloneNode() | [native co
document.body contains = function contains() | [native code]
document. body. contentEditable = false

document. body dir =

Figure 12-12: DOM Viewer

Specifying a Root Node

One of the things you will immediately notice when working with the DOM Viewer inside of the small
iPhone viewport is the sheer amount of information you have to scroll through to find what you are
looking for. To address this issue, DOM Viewer allows you to specify a particular node (identified by id)
as the document root (see Figure 12-13). Here’s the code to add, specifying the desired element as the
getElementById () parameter:

<script type="application/x-javascript">
var DOMViewerObj = document.getElementById("Jack_Armitage")
var DOMViewerName = null;

</script>

277

Chapter 12: Testing and Debugging

Ll ATET = 2:40 AM =

DM Viewsr

m Jack_Armitage ATTRIBUTE_NODE = 2

m Jack_Armitage. CDATA_SECTION_NODE = 4

B lack Asrmiage COMMENT _NODE = §

P Jack Armitage DOCUMENT _FRAGMENT NODE = 11

B Jock Armitage DOCUMENT NODE = &

P Jack Armitage DOCUMENT TYPE_NODE = 10

P Jack Armitage ELEMENT NODE = 1

P Jack Armitage ENTITY NODE = &

P Jock Armitage ENTITY _REFERENCE NODE = 5

m Jock Armitage MOTATION _NODE = 12

P Jack Armitage PROCESSING INSTRUCTION _NODE =9

P Jack Armitage TEXT NODE = 3

P lack ArmitageaddEventListener = function addEventListenen|) | [native code]
P Jack Armitage.align =

P Jack Armitage.appendChild = function app:ml.ﬁlllll:l | [mative code] |

P Jack Armitage arributes = [phjec

P lack Armitage.blur = function blur() | [nave cn-de] 1

P Jack Armitage.child™oedes = [object Nodelist]

P lack Asrmitage.children = [ohject Collection]

P Jack Armilage clazsMaine = panel

P lack Armitage cliemHeght = 521

P oJack Armitage chemWidlh = 320

P lack Armitage cloneMode = function clone™ode() { [native code] |

P Jock Armitage.containg = function containg) | [native code] |

P Jack Armitage contemBEdiable = flse

B Jack Armutage.dic =

B lack Armitage disparchEvent = funetion dumu-hEmmu 1 [native code]

P Jack Armitage document =

P lack Armitage fiestChild =

B Jack Armitage focus = (unetion focus) | [native code] §

B Jack Armitage getAttnbute = fusction gerAtributel) | [native code] |

B Jack Armitage gerAttrbute™S = function getAtabueMS)) | [native code] |

B Jack Armitage gerAinbuteMode = function getAnributeModed) | [native code]
B Jack Armitage getAinibuteMNodeMS = functon gerAnnbuteModeNS| | { [native 4
B Jack Armitage getElementsBy TagMame = (unciion getElementsBy Taghams|) |

B Jack Armitage getElenentsBy TagMameNS = function getElementsBy TagMName|

Figure 12-13: Specifying a root node for the DOM Viewer

Because it will reference the desired element directly by getElementById(),

Go to brainjar.com/dhtml/domviewer for full details on the DOM Viewer.

278

you can add this code in
your HTML page after the element you wish to examine in the body but not before it.

A

addColorstop () method, 138
addEventListener function, 68-69,
71-72,106
aggregators, 17
AJAX
external URLs and, 42-45
links, 72-74
animation, creating, 144-146
Apple Mighty Mouse, 8
applications
aggregators, 17
categories, 17
data URLs and, 226
constraints, 227
issues with, 227
modes, 20
Ul access, 21
native, 15
aggregators, 17
task-based, 17
widgets, 17
offline, 227-231
converting to data URLs, 234-236
embedding external styles and scripts,
231-233
images, encoding, 233-234
phone calls from, 159-161
task-based, 17
widgets, 17
arcs, 128-130
aspect ratio, video, 148-149
audio files, embedding, 151-152

Back button, 22
background, multiple images, 93-94
bandwidth

Index

CSS and, 211
images and, 210
JavaScript and, 211
minimizing, 210-211
beginpath () function, 127
best practices in design, 28-31
bit rate, video, 147-148
block elements
gradient push buttons, 91-93
image-based borders, 90
rounded corners, 91
blocks, 187-190
bookmarklets, 221
adding, 223-224
uses, 224-226
borders, image-based, 90
button bar, 24
buttons, CSS-based, 95-98

C

canvas, 123-124
animation, 144-146
context, 124-125
properties, 125
drawing shapes, 127-130
images, drawing, 131-135
rectangles, 125-127
state, 142-144
canvas element, 124
canvasGradient object, 136
case studies
iRealtor 2.0, 237-238
attaching photos page, 244-245
creating photos page, 240-242
photo.css, 241-242
photo.js, 242-244
programming photos page, 242-244
styling photos page, 240-242
toolbar, 238-240

Index

case studies (continued)

case studies (continued) breakpoints, 269
Mobile WYFFL, 245-249 inspecting variables, 270
game day navigation list page, 254-259 preparing, 268-269
table-based destination pages, 251-254 stepping through code, 269
text-based destination pages, 249-251 Firebug for iPhone, 274-276
checkOrientAndLocation () event handler, 69 JavaScript Console and, 267-268
clicks, link clicks, 71-72 simulating Mobile Safari on desktop,
closepPath () function, 127 271-274
color, adding, 136 Web Inspector, 264-267
columns, 187-190 design, best practices, 28-31
multiple, 190 desktop, simulating Mobile Safari on,
Command button, 22 272-274
compatibility, 180-183 destination pages, creating, 46-50
compression, 211 developing, levels of development, 5-8
gzip, 212 dialog class, 51
iUl.js file, 213 dialogs
JavaScript code, 212-213 adding, 50-55
concatenation, 218-219 iul, loading, 74-75
constraints, 9-10 div element, empty, 198
corners, rounded, 91 document loading, addEventListener
createPattern () method, 140 function, 68-69
createRadialGradient () method, 139 Dojo ShrinkSafe, 213
CSS (cascading style sheets) DOM, access
CSS-based buttons, 95-98 cache references, 214-215
cui.css style sheet, 158-159 offline DOM manipulation, 215-216
media queries, 191 DOM Viewer, 276-278
orientation changes and, 106-111 dot notation
selectors named objects, 217
Mobile Safari, 84 nested properties and, 217
supported, 83-85 drag-and-drop, simulating, 117-120
cui.css style sheet, 158-159 drawImage () method, 131
iProspector, 175-177 drawing
cuiServicelink class, 161 images, 131-135
curves, 128-129 shapes, 127-130
Drosera
breakpoints, 269
D inspecting variables, 270
preparing, 268-269
data URLs stepping through code, 269

applications and, 226
constraints, 227

issues with, 227 E
converting offline applications, 234-236
Dean Edwards’s Packer, 213 EDGE, video export and, 149-150
Debug commands, 264 edge-to-edge navigation lists, 23-24
Debug Console, 261 elements
Debug menu, enabling, 262-264 canvas, 124
debugging defining, 124
DOM Viewer, 276-278 position, orientation and, 111-113
Drosera and, 268 email, sending with iProspector, 164-167

280

iRealtor

embedding
audio files, 151-152
video files, 151-152
Encoding bookmarklet, 234
event handling, 101-103
events
JavaScript compatibility, 102
orientation change, 103
sequencing, 103
trapping for with keyboard, 120
external URLs, AJAX data, 42-45

F

Filemark Maker, 234
files, accessing, Wi-Fi, 11-12
£i11 () function, 127
filling areas, 127
fillRect () method, 126, 138
fillStyle property, 136
finger gestures, 9
finger input, 8
finger is not a mouse, 8-9
fingers, designing for, 24-27
Firebug for iPhone, 274-276
Flash, 180-181

SWFObject and, 181
fonts, 27-28
functions, addEventListener, 68-69

G

getSelectedPage () method, 68
global variables, 216
Google Maps, 167-169
iProspector and, 170-178
gradient push buttons, 91-93
gradients
adding, 136-139
radial, 139
gzip compression, 212

H.264, 146
hot scrollable region, 114

HTML, document loading, addEventListener
function, 68-69

iCal, 21
image patterns, creating, 140
image-based borders, 90
images
background, multiple, 93-94
bandwidth and, 210
encoding, offline applications, 233-234
incompatibilities, identifying, 99
init () function, 199
internal URLs, panels and, 40-42
iPhoney, 272-274
iProspector
application shell, 154-157
Contact header, 157-158
cui.css style sheet, 158-159
Contacts address box, 170-171
cui.css, 175-177
email, sending, 164-167
Google Maps and, 170-178
iui.js, 178
prospector.ntml, 173-175
service buttons, 171-173
service links, 161-164
iRealtor, 33
Contact Us page, integrated with services,
55-67
destination pages, 46-50
dialogs, adding, 50-55
Featured Listings menu item, 42
internal URLs, 40-42
irealtor.css, 44-45
full code view, 66-67
irealtor.html, 35
full code view, 57-59
navigation menu, 38-39
jui.css, 35-36
full code view, 59-65
iui.js, 68
navigation lists, 45-46
styles, 35-36
toolbar, 36-38
top level, 34-39
URLs
external, 42-45
internal, 40-42

iRealtor 2.0

iRealtor 2.0
photo.css, 241-242
photo.js, 242-244
photos page
attaching, 242-244
creating, 240-242
programming, 242-244
styling, 240-242
toolbar, 238-240
isAppleMobile () function, 199

iul
dialogs, loading, 74-75
link types, 38
pages, loading, 69-71
iui.css, 35-36
rules, 52-53
iUl.js, compression benchmark, 213
iui.js

addEventListener function, 68-69

AJAX links, 72-74

code, 75-82

full code view, 75-82

iProspector, 178

iUl pages, loading, 69-71

link clicks, 71-72
iui.showPageByHref () method, 72-73

J-K

JavaScript
bandwidth and, 211
code compression, 212-213
events, compatibility, 102
performance optimization, 214
DOM access, 214-216

JavaScript Console, debugging and, 267-268

JSMin, 212
JSON
iui.js and, 68
window.iui object, 68
keyboard, trapping for key events, 120

L

landscape viewport, 15
limitations, 9-10
links

282

AJAX, 72-74
link clicks, 71-72
service links, 161-164
telephone links, 159-160
local variables, 216
loops, property lookups and, 217

mailto: protocol, 164-166
MakeRefMovie, 150
media queries, 191
mega tag, viewport, properties, 186
min-height, 36
minimizing bandwidth, 210-211
Mobile Safari, 1-5
CSS
selectors, 84
selectors supported, 83-85
launching, 4
Mac and, 2
performance, 3
programming language, 3-5
pseudo-classes, 84-85
pseudo-elements, 84-85
simulating on desktop, 271-274
Ul (User Interface), 5
user agent, 122
Web pages, scale, 15
Windows and, 2
Mobile WYFFL
destination pages
table-based, 251-254
text-based, 249-251
game day navigation list page, 254-259
mouse, finger and, 8-9

N

named objects, dot notation and, 217
navigation
edge-to-edge lists, 23-24
lists, 19-20
edge-to-edge, 23-24
long, 45-46
navigation-friendly web sites, 183-190
nested properties, dot notation and, 217

subpaths

o

objects, named, dot notation and, 217
offline applications, 227-231
converting to data URLs, 234-236
external scripts, embedding, 231-233
external styles, embedding, 231-233
images, encoding, 233-234
onmousedown event handler, 102
onmousemove event handler, 102
onorientationchange event handler,
103-104
Operation Classroom, 192-197
optimization, strategies, 209-210
orient attribute, 36
orientation
change, detecting, 103-113
element position and, 111-113
style sheets, 106-111
changing, 106-111
orientationChange () function, 106
overflowed text, 87-89

P

Packer (Dean Edwards), 213
pages
iul, loading, 69-71
sizing to viewport, 186
panel class property, 41
panels, internal URLs and, 40-42
parallel sites, 197-207
paths
beginPath () function, 127
closePath () function, 127
subpaths, 127
phone calls, from application,
159-161
PhpMovieRef, 150
portrait viewport, 14
Preferences.plist file, 262
properties
canvas context, 125
nested, dot notation and, 217
property lookups, loops and, 217
psuedo-classes, 84-85
psuedo-elements, 84-85
push buttons, gradient, 91-93

radial gradients, 139
rectangles, drawing on canvas,
125-127

reference movie, 150

resources, constraints, 10

rotate () method, 144

rounded corners, 91

rounded rectangle design, 24
metrics for, 25

RTP/RTSP streaming, 149-150

S

screen, titlebar, 20-23
screen title, 22
scrollBar () function, 116
scrolling
drag-and-drop and, 117-120
hot scrollable region, 114
two-finger, capturing, 113-116
viewport, 15
selected attribute, 36
service links, 161-164
setInterval function, 69, 105
shadowed text, 89
shadows, 140-142
shapes, drawing, 127-130
showDialog () function, 74-75
showForm () function, 75
slidePages () function, 70
state of canvas, 142-144
strings, concatenation, 218-219
stroke () function, 127
strokeRect () method, 126
strokeStyle property, 136
stroking lines, 127
style sheets
media queries, 191
orientation and, 106-111
text, size, 191-192
styles
custom, 190
case study, 192-197
media queries, 191
text size, 191-192
subpaths, 127

x
[<H)
©
c

task-based applications

T

task-based applications, 17
technologies not supported, 10
telephone links, 159-160
text

overflowed, 87-89

shadowed, 89

size, 191-192

styles, sizing, 85-86
titlebar, 20-23

Back button, 22

Command button, 22

Screen title, 22
toolbar, 21

iRealtor, 36-38
touch, designing for, 24-27
transform() function, 142-143
transparencies, setting, 94-95
transparency, adding, 136
trapping events, with keyboard, 120
two-finger scrolling

capturing, 113-116

drag-and-drop and, 117-120
twoFingerScroll () function, 115

U

Ul design, navigation list based,
18-20
updatePage () function, 70
URI image encoder, 234
URI Kitchen, 234
Url2iphone, 234
URLs (uniform resource locators)
external, AJAX data, 42-45
internal, panels and, 40-42
user agent
components, 122
identifying, 121-123
iPod, 122

284

Vv

variables
global, 216
local, 216
video
aspect ratio, 148-149
bit rate, 147-148
EDGE and, 149-150
embedding files, 151-152
H.264, 146
reference movie, 150
size, 147-148
support, 147
Wi-Fi and, 149-150
viewport, 14-15
default size, 184
mega tag, properties, 186
scale, 185
sizing pages to, 186
viewport meta tag, 183
void() function, 222

w

Web Inspector, 264-267
-webkit-appearance, 91-93
-webkit-border-image, 90
-webkit-border-radius, 91
Wi-Fi

file access, 11-12

video export and, 149-150
widgets, 17
window.onresize event handler, 105
with statements, 219

X-Y-Z

XMLHttpRequest, 42, 73
YUI Compressor, 212

Programmer to Programmer™
!

¥

E

F

(]

3 ez
—

i

wdngg A I

L3N
yduodsgp |
g
=
x

B 111y~ ~———
[@eooz ranan'

n
mn
n=s
2 o0zwedx

Take your library

wherever you go.

Now you can access more than 200 complete Wrox books Find books on

online, wherever you happen to be! Every diagram, description, « ASP.NET « .NET
mple i vailable with your o C#/C++ * Open Source
screen capture, and code sample is available y o e - PHP/MYSQL

subscription to the Wrox Reference Library. For answers when « General « SQL Server

and where you need them, go to wrox.books24x7.com and . f\z‘;g : w:gal Basic

subscribe today! Microsoft Office * XML

WWW.wrox.com

	Professional iPhone and iPod Touch Programming
	About the Author
	Credits
	Contents
	Acknowledgments
	Introduction
	Chapter 1: Introducing the iPhone and iPod touch Development Platform
	Chapter 2: Designing a User Interface
	Chapter 3: Implementing the Interface
	Chapter 4: Styling with CSS
	Chapter 5: Handling Touch Interactions and Events
	Chapter 6: Advanced Programming Topics: Canvas and Video
	Chapter 7: Integrating with iPhone Services
	Chapter 8: Enabling and Optimizing Web Sites for iPhone and iPod touch
	Chapter 9: Bandwidth and Performance Optimizations
	Chapter 10: Packaging Apps as Bookmarks: Bookmarklets and Data URLs
	Chapter 11: Case Studies: Beyond Edge-to-Edge Design
	Chapter 12: Testing and Debugging
	Index

