
UIKit Framework Reference
Cocoa Touch Layer: UIKit

2008-05-18

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPod, Mac,
Objective-C, Pages, Quartz, Safari, and
Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

iPhone, Multi-Touch, and Numbers are
trademarks of Apple Inc.

Helvetica and Times are registered
trademarks of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction 17

Part I Classes 21

Chapter 1 NSBundle UIKit Additions Reference 23

Overview 23
Tasks 23
Instance Methods 23
Constants 24

Chapter 2 NSCoder UIKit Additions Reference 27

Overview 27
Tasks 27
Instance Methods 28

Chapter 3 NSIndexPath UIKit Additions 35

Overview 35
Tasks 35
Properties 36
Class Methods 36

Chapter 4 NSObject UIKit Additions Reference 39

Overview 39
Tasks 39
Instance Methods 39

Chapter 5 NSString UIKit Additions Reference 41

Overview 41
Tasks 41
Instance Methods 42
Constants 50

3
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

Chapter 6 NSValue UIKit Additions Reference 53

Overview 53
Tasks 53
Class Methods 54
Instance Methods 56

Chapter 7 UIAcceleration Class Reference 59

Overview 59
Tasks 60
Properties 61
Constants 62

Chapter 8 UIAccelerometer Class Reference 63

Overview 63
Tasks 64
Properties 64
Class Methods 65

Chapter 9 UIActionSheet Class Reference 67

Overview 67
Tasks 67
Properties 69
Instance Methods 71
Constants 74

Chapter 10 UIActivityIndicatorView Class Reference 77

Overview 77
Tasks 77
Properties 78
Instance Methods 79
Constants 80

Chapter 11 UIAlertView Class Reference 83

Overview 83
Tasks 83
Properties 84
Instance Methods 86

4
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 12 UIApplication Class Reference 89

Overview 89
Tasks 90
Properties 92
Class Methods 96
Instance Methods 97
Constants 101
Notifications 104

Chapter 13 UIBarButtonItem Class Reference 107

Overview 107
Tasks 107
Properties 108
Instance Methods 110
Constants 112

Chapter 14 UIBarItem Class Reference 117

Overview 117
Tasks 117
Properties 118

Chapter 15 UIButton Class Reference 121

Overview 121
Tasks 121
Properties 123
Class Methods 129
Instance Methods 129
Constants 136

Chapter 16 UIColor Class Reference 139

Overview 139
Tasks 139
Properties 142
Class Methods 142
Instance Methods 150

Chapter 17 UIControl Class Reference 157

Overview 157
Tasks 159
Properties 160

5
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Instance Methods 163
Constants 169

Chapter 18 UIDatePicker Class Reference 175

Overview 175
Tasks 175
Properties 176
Instance Methods 180
Constants 180

Chapter 19 UIDevice Class Reference 183

Overview 183
Tasks 183
Properties 184
Class Methods 187
Instance Methods 188
Constants 189
Notifications 190

Chapter 20 UIEvent Class Reference 191

Overview 191
Tasks 192
Properties 192
Instance Methods 192

Chapter 21 UIFont Class Reference 195

Overview 195
Tasks 195
Properties 197
Class Methods 199
Instance Methods 203

Chapter 22 UIImage Class Reference 205

Overview 205
Tasks 206
Properties 208
Class Methods 210
Instance Methods 212
Constants 216

6
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 23 UIImagePickerController Class Reference 219

Overview 219
Tasks 220
Properties 220
Class Methods 221
Constants 222

Chapter 24 UIImageView Class Reference 223

Overview 223
Tasks 223
Properties 224
Instance Methods 226

Chapter 25 UILabel Class Reference 229

Overview 229
Tasks 229
Properties 231
Instance Methods 237

Chapter 26 UINavigationBar Class Reference 239

Overview 239
Tasks 240
Properties 240
Instance Methods 243

Chapter 27 UINavigationController Class Reference 245

Overview 245
Tasks 246
Properties 247
Instance Methods 249
Constants 253

Chapter 28 UINavigationItem Class Reference 255

Overview 255
Tasks 256
Properties 256
Instance Methods 259

7
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 29 UIPageControl Class Reference 263

Overview 263
Tasks 264
Properties 264
Instance Methods 266

Chapter 30 UIPickerView Class Reference 267

Overview 267
Tasks 268
Properties 269
Instance Methods 270

Chapter 31 UIProgressView Class Reference 275

Overview 275
Tasks 275
Properties 276
Instance Methods 277
Constants 277

Chapter 32 UIResponder Class Reference 279

Overview 279
Tasks 279
Instance Methods 280

Chapter 33 UIScreen Class Reference 287

Overview 287
Tasks 287
Properties 288
Class Methods 288

Chapter 34 UIScrollView Class Reference 289

Overview 289
Tasks 290
Properties 292
Instance Methods 301
Constants 304

Chapter 35 UISearchBar Class Reference 305

Overview 305

8
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Tasks 305
Properties 306

Chapter 36 UISegmentedControl Class Reference 311

Overview 311
Tasks 311
Properties 313
Instance Methods 314
Constants 321

Chapter 37 UISlider Class Reference 323

Overview 323
Tasks 324
Properties 325
Instance Methods 329

Chapter 38 UISwitch Class Reference 335

Overview 335
Tasks 335
Properties 336
Instance Methods 336

Chapter 39 UITabBar Class Reference 339

Overview 339
Tasks 339
Properties 340
Instance Methods 341

Chapter 40 UITabBarController Class Reference 345

Overview 345
Tasks 346
Properties 346
Instance Methods 349

Chapter 41 UITabBarItem Class Reference 351

Overview 351
Tasks 351
Properties 352
Instance Methods 352
Constants 353

9
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 42 UITableView Class Reference 357

Overview 357
Tasks 358
Properties 361
Instance Methods 366
Constants 378
Notifications 380

Chapter 43 UITableViewCell Class Reference 381

Overview 381
Tasks 382
Properties 384
Instance Methods 394
Constants 396

Chapter 44 UITableViewController Class Reference 401

Overview 401
Tasks 402
Properties 402
Instance Methods 402

Chapter 45 UITextField Class Reference 405

Overview 405
Tasks 406
Properties 408
Instance Methods 415
Constants 419
Notifications 420

Chapter 46 UITextView Class Reference 423

Overview 423
Tasks 424
Properties 425
Instance Methods 427
Notifications 428

Chapter 47 UIToolbar Class Reference 429

Overview 429
Tasks 429
Properties 430

10
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Instance Methods 431

Chapter 48 UITouch Class Reference 433

Overview 433
Tasks 433
Properties 434
Instance Methods 436
Constants 437

Chapter 49 UIView Class Reference 439

Overview 439
Tasks 440
Properties 445
Class Methods 453
Instance Methods 463
Constants 477

Chapter 50 UIViewController Class Reference 483

Overview 483
Tasks 484
Properties 486
Instance Methods 491

Chapter 51 UIWebView Class Reference 503

Overview 503
Tasks 504
Properties 505
Instance Methods 507
Constants 511

Chapter 52 UIWindow Class Reference 513

Overview 513
Tasks 513
Properties 514
Instance Methods 515
Constants 519
Notifications 520

11
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Part II Protocols 523

Chapter 53 UIAccelerometerDelegate Protocol Reference 525

Overview 525
Tasks 525
Instance Methods 525

Chapter 54 UIActionSheetDelegate Protocol Reference 527

Overview 527
Tasks 528
Instance Methods 528

Chapter 55 UIAlertViewDelegate Protocol Reference 533

Overview 533
Tasks 534
Instance Methods 534

Chapter 56 UIApplicationDelegate Protocol Reference 539

Overview 539
Tasks 539
Instance Methods 540

Chapter 57 UIImagePickerControllerDelegate Protocol Reference 547

Overview 547
Tasks 547
Instance Methods 548
Constants 549

Chapter 58 UINavigationBarDelegate Protocol Reference 551

Overview 551
Tasks 551
Instance Methods 552

Chapter 59 UIPickerViewDataSource Protocol Reference 555

Overview 555
Tasks 555
Instance Methods 555

12
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 60 UIPickerViewDelegate Protocol Reference 557

Overview 557
Tasks 557
Instance Methods 558

Chapter 61 UIScrollViewDelegate Protocol Reference 561

Overview 561
Tasks 561
Instance Methods 562

Chapter 62 UISearchBarDelegate Protocol Reference 569

Overview 569
Tasks 569
Instance Methods 570

Chapter 63 UITabBarControllerDelegate Protocol Reference 575

Overview 575
Tasks 575
Instance Methods 576

Chapter 64 UITableViewDataSource Protocol Reference 577

Overview 577
Tasks 578
Instance Methods 579

Chapter 65 UITableViewDelegate Protocol Reference 587

Overview 587
Tasks 587
Instance Methods 589

Chapter 66 UITextFieldDelegate Protocol Reference 599

Overview 599
Tasks 599
Instance Methods 600

Chapter 67 UITextInputTraits Protocol Reference 605

Overview 605
Tasks 605

13
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Properties 606
Constants 608

Chapter 68 UITextViewDelegate Protocol Reference 613

Overview 613
Tasks 613
Instance Methods 614

Chapter 69 UIWebViewDelegate Protocol Reference 619

Overview 619
Tasks 619
Instance Methods 620

Part III Data Types 623

Chapter 70 UIKit Data Types Reference 625

Overview 625
Data Types 625

Part IV Constants 627

Chapter 71 UIKit Constants Reference 629

Overview 629
Constants 629

Part V Other References 631

Chapter 72 UIKit Function Reference 633

Overview 633
Functions by Task 633
Functions 635

Document Revision History 651

Index 653

14
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures and Tables

Introduction Introduction 17

Figure I-1 UIKit class hierarchy 19

Chapter 7 UIAcceleration Class Reference 59

Figure 7-1 Orientation of the device axes 60

Chapter 22 UIImage Class Reference 205

Table 22-1 Supported file formats 206

15
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

16
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

F I G U R E S A N D T A B L E S

Framework /System/Library/Frameworks/UIKit.framework

Header file directories /System/Library/Frameworks/UIKit.framework/Headers

Declared in: UIAccelerometer.h
UIActivityIndicatorView.h
UIAlert.h
UIApplication.h
UIBarButtonItem.h
UIBarItem.h
UIButton.h
UIColor.h
UIControl.h
UIDatePicker.h
UIDevice.h
UIEvent.h
UIFont.h
UIGeometry.h
UIGraphics.h
UIImage.h
UIImagePickerController.h
UIImageView.h
UIInterface.h
UILabel.h
UINavigationBar.h
UINavigationController.h
UINibLoading.h
UIPageControl.h
UIPickerView.h
UIProgressView.h
UIResponder.h
UIScreen.h
UIScrollView.h
UISearchBar.h
UISegmentedControl.h
UISlider.h
UIStringDrawing.h
UISwitch.h
UITabBar.h
UITabBarController.h
UITabBarItem.h

17
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

UITableView.h
UITableViewCell.h
UITableViewController.h
UITextField.h
UITextInputTraits.h
UITextView.h
UIToolbar.h
UITouch.h
UIView.h
UIViewController.h
UIWebView.h
UIWindow.h

The UIKit framework provides the classes needed to construct and manage an application’s user
interface for iPhone and iPod touch. It provides an application object, event handling, drawing model,
windows, views, and controls specifically designed for a touch screen interface. Figure I-1 (page 19)
illustrates the classes in this framework.

18
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

Figure I-1 UIKit class hierarchy

UIControl

UITableViewCell

UINavigationBar

UIToolbar

UIImageView

UIActivityIndicatorVIew

UIProgressView

UIPickerView

UILabel

UIWindowUIView

UIApplication

UIResponder

NSObject

UIAlertView

UIActionSheet

UIWebView

UITabBar

UITabBarController

UISearchBar

UIScrollView

UITextView

UITableView

UIDatePicker

UIPageControl

UIButton

UITextField

UISlider

UISegmentedControl

UISwitch

UIViewController

UIDevice

UIAccelerometer

UIBarItem

UIAcceleration

UINavigationItem

UIScreen

UIImage

UIColor

UIFont

UIEvent

UITouch

UITableViewController

UITabBarItem

UIBarButtonItem

UIImagePickerController

UINavigationController

19
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

20
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction

21
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I

Classes

22
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I

Classes

Inherits from: NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: NSNibLoading.h

Overview

This category adds methods to the Foundation framework’s NSBundle class. The method in this
category provides support for loading nib files into your application.

Tasks

Loading Nib Files

– loadNibNamed:owner:options: (page 23)
Unarchives the contents of a nib file located in the receiver's bundle.

Instance Methods

loadNibNamed:owner:options:
Unarchives the contents of a nib file located in the receiver's bundle.

- (NSArray *)loadNibNamed:(NSString *)name owner:(id)owner options:(NSDictionary
*)options

Overview 23
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSBundle UIKit Additions Reference

Parameters

name
The name of the nib file, which need not include the .nib extension.

owner
The object to assign as the nib’s File's Owner object.

options
A dictionary containing the options to use when opening the nib file. For a list of available
keys for this dictionary, see “Nib File Loading Options” (page 24).

Return Value
An array containing the top-level objects in the nib file. The array does not contain references to the
File’s Owner or any proxy objects; it contains only those objects that were instantiated when the nib
file was unarchived. You should retain either the returned array or the objects it contains manually
to prevent the nib file objects from being released prematurely.

Discussion
You can use this method to load user interfaces and make the objects available to your code. During
the loading process, this method unarchives each object, initializes it, sets its properties to their
configured values, and reestablishes any connections to other objects. (To establish outlet connections,
this method uses the setValue:forKey: method, which may cause the object in the outlet to be
retained automatically.) For detailed information about the nib-loading process, see Resource
Programming Guide.

If the nib file contains any proxy objects beyond just the File’s Owner proxy object, you can specify
the runtime replacement objects for those proxies using the options dictionary. In that dictionary,
add the UINibProxiedObjectsKey key and set its value to a dictionary containing the names of any
proxy objects (the keys) and the real objects to use in their place. The proxy object’s name is the string
you assign to it in the Name field of the Interface Builder inspector window.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINibLoading.h

Constants

Nib File Loading Options
The options that can be specified during nib loading.

24 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSBundle UIKit Additions Reference

extern NSString * const UINibProxiedObjectsKey;

Constants
UINibProxiedObjectsKey

The value for this key is a dictionary that contains the runtime replacement objects for any
proxy objects used in the nib file. In this dictionary, the keys are the names associated with the
proxy objects and the values are the actual objects from your code that should be used in their
place.

Available in iPhone OS 2.0 and later.

Declared in UINibLoading.h

Constants 25
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSBundle UIKit Additions Reference

26 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSBundle UIKit Additions Reference

Inherits from: NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIGeometry.h

Overview

This category adds methods to the Foundation framework’s NSCoder class. The methods in this
category let you encode and decode geometry-based data used by the UIKit framework.

Tasks

Encoding Data

– encodeCGPoint:forKey: (page 31)
Encodes a point and associates it with the specified key in the receiver’s archive.

– encodeCGRect:forKey: (page 31)
Encodes a rectangle and associates it with the specified key in the receiver’s archive.

– encodeCGSize:forKey: (page 32)
Encodes size information and associates it with the specified key in the receiver’s archive.

– encodeCGAffineTransform:forKey: (page 30)
Encodes an affine transform and associates it with the specified key in the receiver’s archive.

– encodeUIEdgeInsets:forKey: (page 32)
Encodes edge inset data and associates it with the specified key in the receiver’s archive.

Overview 27
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

Decoding Data

– decodeCGPointForKey: (page 29)
Decodes and returns the CGPoint structure associated with the specified key in the receiver’s
archive.

– decodeCGRectForKey: (page 29)
Decodes and returns the CGRect structure associated with the specified key in the receiver’s
archive.

– decodeCGSizeForKey: (page 29)
Decodes and returns the CGSize structure associated with the specified key in the receiver’s
archive.

– decodeCGAffineTransformForKey: (page 28)
Decodes and returns the CGAffineTransform structure associated with the specified key in
the receiver’s archive.

– decodeUIEdgeInsetsForKey: (page 30)
Decodes and returns the UIEdgeInsets structure associated with the specified key in the
receiver’s archive.

Instance Methods

decodeCGAffineTransformForKey:
Decodes and returns the CGAffineTransform structure associated with the specified key in the
receiver’s archive.

- (CGAffineTransform)decodeCGAffineTransformForKey:(NSString *)key

Parameters

key
The key that identifies the affine transform.

Return Value
The affine transform.

Discussion
Use this method to decode size information that was previously encoded using the
encodeCGAffineTransform:forKey: method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeCGAffineTransform:forKey: (page 30)

Declared In
UIGeometry.h

28 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

decodeCGPointForKey:
Decodes and returns the CGPoint structure associated with the specified key in the receiver’s archive.

- (CGPoint)decodeCGPointForKey:(NSString *)key

Parameters

key
The key that identifies the point.

Return Value
The CGPoint structure.

Discussion
Use this method to decode a point that was previously encoded using the encodeCGPoint:forKey:
method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeCGPoint:forKey: (page 31)

Declared In
UIGeometry.h

decodeCGRectForKey:
Decodes and returns the CGRect structure associated with the specified key in the receiver’s archive.

- (CGRect)decodeCGRectForKey:(NSString *)key

Parameters

key
The key that identifies the rectangle.

Return Value
The CGRect structure.

Discussion
Use this method to decode a rectangle that was previously encoded using the encodeCGRect:forKey:
method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeCGRect:forKey: (page 31)

Declared In
UIGeometry.h

decodeCGSizeForKey:
Decodes and returns the CGSize structure associated with the specified key in the receiver’s archive.

Instance Methods 29
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

- (CGSize)decodeCGSizeForKey:(NSString *)key

Parameters

key
The key that identifies the size information.

Return Value
The CGSize structure.

Discussion
Use this method to decode size information that was previously encoded using the
encodeCGSize:forKey: method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeCGSize:forKey: (page 32)

Declared In
UIGeometry.h

decodeUIEdgeInsetsForKey:
Decodes and returns the UIEdgeInsets structure associated with the specified key in the receiver’s
archive.

- (UIEdgeInsets)decodeUIEdgeInsetsForKey:(NSString *)key

Parameters

key
The key that identifies the edge insets.

Return Value
The edge insets data.

Discussion
Use this method to decode size information that was previously encoded using the
encodeUIEdgeInsets:forKey: method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeUIEdgeInsets:forKey: (page 32)

Declared In
UIGeometry.h

encodeCGAffineTransform:forKey:
Encodes an affine transform and associates it with the specified key in the receiver’s archive.

- (void)encodeCGAffineTransform:(CGAffineTransform)transform forKey:(NSString *)key

30 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

Parameters

transform
The transform information to encode.

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the keyparameter to the corresponding
decodeCGAffineTransformForKey: method to retrieve the data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeCGAffineTransformForKey: (page 28)

Declared In
UIGeometry.h

encodeCGPoint:forKey:
Encodes a point and associates it with the specified key in the receiver’s archive.

- (void)encodeCGPoint:(CGPoint)point forKey:(NSString *)key

Parameters

point
The point to encode.

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the keyparameter to the corresponding
decodeCGPointForKey: method to retrieve the data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeCGPointForKey: (page 29)

Declared In
UIGeometry.h

encodeCGRect:forKey:
Encodes a rectangle and associates it with the specified key in the receiver’s archive.

- (void)encodeCGRect:(CGRect)rect forKey:(NSString *)key

Parameters

rect
The rectangle to encode.

Instance Methods 31
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the keyparameter to the corresponding
decodeCGRectForKey: method to retrieve the data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeCGRectForKey: (page 29)

Declared In
UIGeometry.h

encodeCGSize:forKey:
Encodes size information and associates it with the specified key in the receiver’s archive.

- (void)encodeCGSize:(CGSize)size forKey:(NSString *)key

Parameters

size
The size information to encode.

key
The key identifying the data.

Discussion
When decoding the data from the archive, you pass the value in the keyparameter to the corresponding
decodeCGSizeForKey: method to retrieve the data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeCGSizeForKey: (page 29)

Declared In
UIGeometry.h

encodeUIEdgeInsets:forKey:
Encodes edge inset data and associates it with the specified key in the receiver’s archive.

- (void)encodeUIEdgeInsets:(UIEdgeInsets)insets forKey:(NSString *)key

Parameters

insets
The edge insets data to encode.

key
The key identifying the data.

32 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

Discussion
When decoding the data from the archive, you pass the value in the keyparameter to the corresponding
decodeUIEdgeInsetsForKey: method to retrieve the data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeUIEdgeInsetsForKey: (page 30)

Declared In
UIGeometry.h

Instance Methods 33
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

34 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSCoder UIKit Additions Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)
NSCoding
NSCopying

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITableView.h

Overview

The UIKit framework adds programming interfaces to the NSIndexPath class of the Foundation
framework to facilitate the identification of rows and sections in UITableView objects.

The API consists of a class factory method and two properties. The
indexPathForRow:inSection: (page 36) method creates an NSIndexPath object from row and
section index numbers. The properties return the row index number and the section index number
from such objects.

Tasks

Creating an Index Path Object

+ indexPathForRow:inSection: (page 36)
Returns an index-path object initialized with the indexes of a specific row and section in a table
view.

Overview 35
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSIndexPath UIKit Additions

Getting the Row and Section Indexes

row (page 36) property
An index number identifying a row in a section of a table view. (read-only)

section (page 36) property
An index number identifying a section in a table view. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

row
An index number identifying a row in a section of a table view. (read-only)

@property(readonly) NSUInteger row

Discussion
The section the row is in is identified by the value of section (page 36).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

section
An index number identifying a section in a table view. (read-only)

@property(readonly) NSUInteger section

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

Class Methods

indexPathForRow:inSection:
Returns an index-path object initialized with the indexes of a specific row and section in a table view.

+ (NSIndexPath *)indexPathForRow:(NSUInteger)row inSection:(NSUInteger)section

36 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSIndexPath UIKit Additions

Parameters

row
An index number identifying a row in a UITableView object in a section identified by section.

section
An index number identifying a section in a UITableView object.

Return Value
An NSIndexPath object or nil if the object could not be created. The returned object is autoreleased.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

Class Methods 37
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSIndexPath UIKit Additions

38 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSIndexPath UIKit Additions

Inherits from: none

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: NSNibLoading.h

Overview

This category adds methods to the Foundation framework’s NSObject class. The method in this
category provides support for loading nib files into your application.

Tasks

Responding to Being Loaded from a Nib File

– awakeFromNib (page 39)
Prepares the receiver for service after it has been loaded from an Interface Builder archive, or
nib file.

Instance Methods

awakeFromNib
Prepares the receiver for service after it has been loaded from an Interface Builder archive, or nib file.

- (void)awakeFromNib

Overview 39
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSObject UIKit Additions Reference

Discussion
The nib-loading infrastructure sends an awakeFromNib message to each object recreated from a nib
archive, but only after all the objects in the archive have been loaded and initialized. When an object
receives an awakeFromNib message, it is guaranteed to have all its outlet and action connections
already established.

You must call the super implementation of awakeFromNib to give parent classes the opportunity to
perform any additional initialization they require. Although the default implementation of this method
does nothing, many UIKit classes provide non-empty implementations. You may call the super
implementation at any point during your own awakeFromNib method.

Note: During Interface Builder’s test mode, this message is also sent to objects instantiated from
loaded Interface Builder plug-ins. Because plug-ins link against the framework containing the object
definition code, Interface Builder is able to call their awakeFromNib method when present. The same
is not true for custom objects that you create for your Xcode projects. Interface Builder knows only
about the defined outlets and actions of those objects; it does not have access to the actual code for
them.

During the instantiation process, each object in the archive is unarchived and then initialized with
the method befitting its type. Objects that conform to the NSCoding protocol (including all subclasses
of UIView and UIViewController) are initialized using their initWithCoder: method. All objects
that do not conform to the NSCoding protocol are initialized using their initmethod. After all objects
have been instantiated and initialized, the nib-loading code reestablishes the outlet and action
connections for all of those objects. It then calls the awakeFromNib method of the objects. For more
detailed information about the steps followed during the nib-loading process, see Nib Files and Cocoa
in Resource Programming Guide.

Important: Because the order in which objects are instantiated from an archive is not guaranteed,
your initialization methods should not send messages to other objects in the hierarchy. Messages to
other objects can be sent safely from within an awakeFromNib method.

Typically, you implement awakeFromNib for objects that require additional set up that cannot be done
at design time. For example, you might use this method to customize the default configuration of any
controls to match user preferences or the values in other controls. You might also use it to restore
individual controls to some previous state of your application.

Availability
Available in iPhone OS 2.0 and later.

See Also
awakeAfterUsingCoder: (NSObject class)
initWithCoder: (NSCoding protocol)
initialize (NSObject class)

Declared In
UINibLoading.h

40 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSObject UIKit Additions Reference

Inherits from: NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIStringDrawing.h

Overview

The UIKit framework adds methods to NSString to support the drawing of strings and to compute
the bounding box of a string prior to drawing.

By default, strings are drawn using the native coordinate system of iPhone OS, where content is
drawn down and to the right from the specified origin point. Whenever you are positioning string
content, you should keep this orientation in mind and use the upper-left corner of the string’s bounding
box as the origin point for drawing.

Tasks

Getting the Drawing Rect of a String

– sizeWithFont: (page 47)
Returns the size of the string if it were to be rendered with the specified font.

– sizeWithFont:forWidth:lineBreakMode: (page 48)
Returns the size of the string if it were to be rendered with the specified font and line attributes.

– sizeWithFont:constrainedToSize: (page 47)
Returns the size of the string if it were rendered and constrained to the specified size.

– sizeWithFont:constrainedToSize:lineBreakMode: (page 48)
Returns the size of the string if it were rendered with the specified constraints.

Overview 41
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

– sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode: (page 49)
Returns the size of the string if it were rendered with the specified constraints, including a
variable font size.

Drawing String Objects

– drawAtPoint:withFont: (page 45)
Draws a single line of text at the specified point in the current context using the specified font.

– drawAtPoint:forWidth:withFont:lineBreakMode: (page 43)
Draws a single line of text at the specified point in the current context using the specified font
and attributes.

– drawAtPoint:forWidth:withFont:fontSize:lineBreakMode:baselineAdjustment: (page 42)
Draws the string at the specified point in the current context using the specified font and
attributes.

– drawAtPoint:forWidth:withFont:minFontSize:actualFontSize:lineBreakMode:baselineAdjustment:(page
44)

Draws the string with the specified font and attributes, adjusting the font attributes as needed
to render as much of the text as possible.

– drawInRect:withFont: (page 45)
Draws the string in the current context using the specified bounding rectangle and font.

– drawInRect:withFont:lineBreakMode: (page 46)
Draws the string in the current context using the specified bounding rectangle, font, and
attributes.

– drawInRect:withFont:lineBreakMode:alignment: (page 46)
Draws the string in the current context using the specified bounding rectangle, font and
attributes.

Instance Methods

drawAtPoint:forWidth:withFont:fontSize:lineBreakMode:baselineAdjustment:
Draws the string at the specified point in the current context using the specified font and attributes.

- (CGSize)drawAtPoint:(CGPoint)point forWidth:(CGFloat)width withFont:(UIFont *)font
fontSize:(CGFloat)fontSize lineBreakMode:(UILineBreakMode)lineBreakMode
baselineAdjustment:(UIBaselineAdjustment)baselineAdjustment

Parameters

point
The location (in the coordinate system of the current graphics context) at which to draw the
string. This point represents the top-left corner of the string’s bounding box.

width
The maximum width of the string.

font
The font to use for rendering.

42 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

fontSize
The font size to use instead of the one associated with the font object in the font parameter.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

baselineAdjustment
Specifies the vertical text-adjustment rule to use. This rule is used to determine the position of
the text in cases where the text must be drawn at a smaller size.

Return Value
The actual size of the rendered string.

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the
given font and constraints. This method does not perform any line wrapping during drawing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode: (page 49)

Declared In
UIStringDrawing.h

drawAtPoint:forWidth:withFont:lineBreakMode:
Draws a single line of text at the specified point in the current context using the specified font and
attributes.

- (CGSize)drawAtPoint:(CGPoint)point forWidth:(CGFloat)width withFont:(UIFont *)font
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters

point
The location (in the coordinate system of the current graphics context) at which to draw the
string. This point represents the top-left corner of the string’s bounding box.

width
The maximum width of the string.

font
The font to use for rendering.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

Return Value
The actual size of the rendered string.

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the
given font and constraints. This method does not perform any line wrapping during drawing.

Instance Methods 43
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

If the value in the width parameter is smaller than actual width of the string, truncation may occur.
In that situation, the options in the lineBreakMode parameter determine where to end the text.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

drawAtPoint:forWidth:withFont:minFontSize:actualFontSize:lineBreakMode:
baselineAdjustment:
Draws the string with the specified font and attributes, adjusting the font attributes as needed to
render as much of the text as possible.

- (CGSize)drawAtPoint:(CGPoint)point forWidth:(CGFloat)width withFont:(UIFont *)font
minFontSize:(CGFloat)minFontSize actualFontSize:(CGFloat *)actualFontSize
lineBreakMode:(UILineBreakMode)lineBreakMode
baselineAdjustment:(UIBaselineAdjustment)baselineAdjustment

Parameters

point
The location (in the coordinate system of the current graphics context) at which to draw the
string. This point represents the top-left corner of the string’s bounding box.

width
The maximum width of the string.

font
The font to use for rendering.

minFontSize
The minimum size to which the font may be reduced before resorting to truncation of the text.

actualFontSize
On input, a pointer to a floating-point value. On return, this value contains the actual font size
that was used to render the string.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

baselineAdjustment
Specifies the vertical text-adjustment rule to use. This rule is used to determine the position of
the text in cases where the text must be drawn at a smaller size.

Return Value
The actual size of the rendered string.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

44 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

drawAtPoint:withFont:
Draws a single line of text at the specified point in the current context using the specified font.

- (CGSize)drawAtPoint:(CGPoint)point withFont:(UIFont *)font

Parameters

point
The location (in the coordinate system of the current graphics context) at which to draw the
string. This point represents the top-left corner of the string’s bounding box.

font
The font to use for rendering.

Return Value
The actual size of the rendered string.

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the
given font. This method does not perform any line wrapping during drawing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

drawInRect:withFont:
Draws the string in the current context using the specified bounding rectangle and font.

- (CGSize)drawInRect:(CGRect)rect withFont:(UIFont *)font

Parameters

rect
The bounding rectangle (in the current context) in which to draw the string.

font
The font to use for rendering.

Return Value
The actual size of the rendered string.

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the
given font and constraints. This method uses word-based line wrapping and the text is drawn
left-aligned.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

Instance Methods 45
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

drawInRect:withFont:lineBreakMode:
Draws the string in the current context using the specified bounding rectangle, font, and attributes.

- (CGSize)drawInRect:(CGRect)rect withFont:(UIFont *)font
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters

rect
The bounding rectangle (in the current context) in which to draw the string.

font
The font to use for rendering.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

Return Value
The actual size of the rendered string.

Discussion
This method draws only a single line of text, drawing as much of the string as possible using the
given font, line break mode, and size constraints. The text is drawn left-aligned.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

drawInRect:withFont:lineBreakMode:alignment:
Draws the string in the current context using the specified bounding rectangle, font and attributes.

- (CGSize)drawInRect:(CGRect)rect withFont:(UIFont *)font
lineBreakMode:(UILineBreakMode)lineBreakMode alignment:(UITextAlignment)alignment

Parameters

rect
The bounding rectangle (in the current context) in which to draw the string.

font
The font to use for rendering.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

alignment
The alignment of the text inside the bounding rectangle. For a list of possible values, see
“UITextAlignment” (page 51).

Return Value
The actual size of the rendered string.

Availability
Available in iPhone OS 2.0 and later.

46 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

Declared In
UIStringDrawing.h

sizeWithFont:
Returns the size of the string if it were to be rendered with the specified font.

- (CGSize)sizeWithFont:(UIFont *)font

Parameters

font
The font to use for computing the string size.

Return Value
The width and height of the resulting string’s bounding box.

Discussion
This method does not perform any line wrapping and returns the absolute width of the string using
the specified font.

This method does not actually draw the string. You can use it to obtain the layout metrics you need
to draw the receiver in your user interface.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

sizeWithFont:constrainedToSize:
Returns the size of the string if it were rendered and constrained to the specified size.

- (CGSize)sizeWithFont:(UIFont *)font constrainedToSize:(CGSize)size

Parameters

font
The font to use for computing the string size.

size
The maximum acceptable size for the string. This value is used to calculate where line breaks
and wrapping would occur.

Return Value
The width and height of the resulting string’s bounding box.

Discussion
This method does not actually draw the string. You can use it to obtain the layout metrics you need
to draw the receiver in your user interface. Although this method uses the size parameter to compute
the size based on where line breaks would occur, it does not actually wrap the text to multiple lines.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 47
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

Declared In
UIStringDrawing.h

sizeWithFont:constrainedToSize:lineBreakMode:
Returns the size of the string if it were rendered with the specified constraints.

- (CGSize)sizeWithFont:(UIFont *)font constrainedToSize:(CGSize)size
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters

font
The font to use for computing the string size.

size
The maximum acceptable size for the string. This value is used to calculate where line breaks
and wrapping would occur.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

Return Value
The width and height of the resulting string’s bounding box.

Discussion
This method wraps the receiver’s text and truncates it, as needed, to fit the specified size. It then
returns the actual size of the resulting text. If the height specified in the size parameter is less than
a single line of text, this method may return a height value that is bigger than the one specified.

This method does not actually draw the string. You can use it to obtain the layout metrics you need
to draw the receiver in your user interface.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

sizeWithFont:forWidth:lineBreakMode:
Returns the size of the string if it were to be rendered with the specified font and line attributes.

- (CGSize)sizeWithFont:(UIFont *)font forWidth:(CGFloat)width
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters

font
The font to use for computing the string size.

width
The maximum acceptable width for the string. This value is used to calculate where line breaks
would be placed.

48 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

Return Value
The width and height of the resulting string’s bounding box.

Discussion
This method returns the width and height of the string constrained to the specified width. Although
it computes where line breaks would occur, this method does not actually wrap the text to additional
lines; therefore, drawing the string with the returned information may result in truncation.

This method does not actually draw the string. You can use it to obtain the layout metrics you need
to draw the receiver in your user interface.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode:
Returns the size of the string if it were rendered with the specified constraints, including a variable
font size.

- (CGSize)sizeWithFont:(UIFont *)font minFontSize:(CGFloat)minFontSize
actualFontSize:(CGFloat *)actualFontSize forWidth:(CGFloat)width
lineBreakMode:(UILineBreakMode)lineBreakMode

Parameters

font
The font to use for computing the string size.

minFontSize
The minimum size to which the font may be reduced before resorting to truncation of the text.

actualFontSize
On input, a pointer to a floating-point value. On return, this value contains the actual font size
that was used to compute the size of the string.

width
The maximum acceptable width for the string. This value is used to calculate where line breaks
would be placed.

lineBreakMode
The line break options for computing the size of the string. For a list of possible values, see
“UILineBreakMode” (page 50).

Return Value
The width and height of the resulting string’s bounding box.

Discussion
Although it computes where line breaks would occur, this method does not actually wrap the text to
additional lines. If the entire string does not fit within the given width using the initial font size, this
method reduces the font size until the string does fit or it reaches the specified minimum font size. If
it reaches the minimum size, this method begins truncating the text to fit.

Instance Methods 49
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

This method does not actually draw the string. You can use it to obtain the layout metrics you need
to draw the receiver in your user interface.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIStringDrawing.h

Constants

UILineBreakMode
Options for wrapping and truncating text.

typedef enum {
UILineBreakModeWordWrap = 0,
UILineBreakModeCharacterWrap,
UILineBreakModeClip,
UILineBreakModeHeadTruncation,
UILineBreakModeTailTruncation,
UILineBreakModeMiddleTruncation,

} UILineBreakMode;

Constants
UILineBreakModeWordWrap

Wrap or clip the string only at word boundaries. This is the default wrapping option.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UILineBreakModeCharacterWrap
Wrap or clip the string at the closest character boundary.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UILineBreakModeClip
Clip the text when the end of the drawing rectangle is reached. This option could result in a
partially rendered character at the end of a string.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UILineBreakModeHeadTruncation
Truncate text (as needed) from the beginning of the line. For multiple lines of text, only text
on the first line is truncated.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

50 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

UILineBreakModeTailTruncation
Truncate text (as needed) from the end of the line. For multiple lines of text, only text on the
last line is truncated.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UILineBreakModeMiddleTruncation
Truncate text (as needed) from the middle of the line. For multiple lines of text, text is truncated
only at the midpoint of the line.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

Discussion
For methods that draw at a specified point (as opposed to those that draw in a rectangular region),
these options specify the clipping behavior that is applied to the string.

Declared In
UIStringDrawing.h

UITextAlignment
Options for aligning text horizontally.

typedef enum {
UITextAlignmentLeft,
UITextAlignmentCenter,
UITextAlignmentRight,

} UITextAlignment;

Constants
UITextAlignmentLeft

Align text along the left edge.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UITextAlignmentCenter
Align text equally along both sides of the center line.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UITextAlignmentRight
Align text along the right edge.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

Declared In
UIStringDrawing.h

UIBaselineAdjustment
Vertical adjustment options.

Constants 51
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

typedef enum {
UIBaselineAdjustmentAlignBaselines,
UIBaselineAdjustmentAlignCenters,
UIBaselineAdjustmentNone,

} UIBaselineAdjustment

Constants
UIBaselineAdjustmentAlignBaselines

Adjust text relative to the position of its baseline.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UIBaselineAdjustmentAlignCenters
Adjust text based relative to the center of its bounding box.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

UIBaselineAdjustmentNone
Adjust text relative to the top-left corner of the bounding box. This is the default adjustment.

Available in iPhone OS 2.0 and later.

Declared in UIStringDrawing.h

Discussion
Baseline adjustment options determine how to adjust the position of text in cases where the text must
be drawn using a different font size than the one originally specified. For example, with the
UIBaselineAdjustmentAlignBaselines option, the position of the baseline remains fixed at its
initial location while the text appears to move toward that baseline. Similarly, the
UIBaselineAdjustmentNone option makes it appear as if the text is moving upwards towards the
top-left corner of the bounding box.

Declared In
UIStringDrawing.h

52 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSString UIKit Additions Reference

Inherits from: NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIGeometry.h

Overview

This category adds methods to the Foundation framework’s NSValue class. The methods in this
category let you represent geometry-based data using an NSValue object.

Tasks

Creating an NSValue

+ valueWithCGPoint: (page 54)
Creates and returns a value object that contains the specified point structure.

+ valueWithCGRect: (page 55)
Creates and returns a value object that contains the specified rectangle structure.

+ valueWithCGSize: (page 55)
Creates and returns a value object that contains the specified size structure.

+ valueWithCGAffineTransform: (page 54)
Creates and returns a value object that contains the specified affine transform data.

+ valueWithUIEdgeInsets: (page 56)
Creates and returns a value object that contains the specified edge inset data.

Overview 53
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSValue UIKit Additions Reference

Accessing Data

– CGPointValue (page 56)
Returns a point structure representing the data in the receiver.

– CGRectValue (page 57)
Returns a rectangle structure representing the data in the receiver.

– CGSizeValue (page 57)
Returns a size structure representing the data in the receiver.

– CGAffineTransformValue (page 56)
Returns an affine transform structure representing the data in the receiver.

– UIEdgeInsetsValue (page 57)
Returns an edge insets structure representing the data in the receiver.

Class Methods

valueWithCGAffineTransform:
Creates and returns a value object that contains the specified affine transform data.

+ (NSValue *)valueWithCGAffineTransform:(CGAffineTransform)transform

Parameters

transform
The value for the new object.

Return Value
A new value object that contains the affine transform data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– CGAffineTransformValue (page 56)

Declared In
UIGeometry.h

valueWithCGPoint:
Creates and returns a value object that contains the specified point structure.

+ (NSValue *)valueWithCGPoint:(CGPoint)point

Parameters

point
The value for the new object.

Return Value
A new value object that contains the point information.

54 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSValue UIKit Additions Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– CGPointValue (page 56)

Declared In
UIGeometry.h

valueWithCGRect:
Creates and returns a value object that contains the specified rectangle structure.

+ (NSValue *)valueWithCGRect:(CGRect)rect

Parameters

rect
The value for the new object.

Return Value
A new value object that contains the rectangle information.

Availability
Available in iPhone OS 2.0 and later.

See Also
– CGRectValue (page 57)

Declared In
UIGeometry.h

valueWithCGSize:
Creates and returns a value object that contains the specified size structure.

+ (NSValue *)valueWithCGSize:(CGSize)size

Parameters

size
The value for the new object.

Return Value
A new value object that contains the size information.

Availability
Available in iPhone OS 2.0 and later.

See Also
– CGSizeValue (page 57)

Declared In
UIGeometry.h

Class Methods 55
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSValue UIKit Additions Reference

valueWithUIEdgeInsets:
Creates and returns a value object that contains the specified edge inset data.

+ (NSValue *)valueWithUIEdgeInsets:(UIEdgeInsets)insets

Parameters

insets
The value for the new object.

Return Value
A new value object that contains the edge inset data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– UIEdgeInsetsValue (page 57)

Declared In
UIGeometry.h

Instance Methods

CGAffineTransformValue
Returns an affine transform structure representing the data in the receiver.

- (CGAffineTransform)CGAffineTransformValue

Return Value
An affine transform structure containing the receiver’s value.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ valueWithCGAffineTransform: (page 54)

Declared In
UIGeometry.h

CGPointValue
Returns a point structure representing the data in the receiver.

- (CGPoint)CGPointValue

Return Value
A point structure containing the receiver’s value.

Availability
Available in iPhone OS 2.0 and later.

56 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSValue UIKit Additions Reference

See Also
+ valueWithCGPoint: (page 54)

Declared In
UIGeometry.h

CGRectValue
Returns a rectangle structure representing the data in the receiver.

- (CGRect)CGRectValue

Return Value
A rectangle structure containing the receiver’s value.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ valueWithCGRect: (page 55)

Declared In
UIGeometry.h

CGSizeValue
Returns a size structure representing the data in the receiver.

- (CGSize)CGSizeValue

Return Value
A size structure containing the receiver’s value.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ valueWithCGSize: (page 55)

Declared In
UIGeometry.h

UIEdgeInsetsValue
Returns an edge insets structure representing the data in the receiver.

- (UIEdgeInsets)UIEdgeInsetsValue

Return Value
An edge insets structure containing the receiver’s value.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 57
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSValue UIKit Additions Reference

See Also
+ valueWithUIEdgeInsets: (page 56)

Declared In
UIGeometry.h

58 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSValue UIKit Additions Reference

Inherits from: NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIAccelerometer.h

Overview

The UIAcceleration class stores the data associated with an acceleration event. When your application
receives an accelerometer notification, an instance of this class is stored in the object field of the
notification. For information on how to receive accelerometer notifications, see UIAccelerometer
class.

Each acceleration event relays the current acceleration readings along the three axes of the device
(shown in Figure 7-1). Acceleration values for each axis are reported directly by the hardware as
G-force values. Therefore, a value of 1.0 represents a load of about +1g along a given axis while a
value of -1.0 represents -1g.

Overview 59
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

UIAcceleration Class Reference

Figure 7-1 Orientation of the device axes

+ Z

– Z

+ Y

– Y

+ X

– X

Note: The values reported by the accelerometers are approximate and should not be used to make
precise measurements. It is recommended that you average accelerometer data over time to extract
the values you need for your usage.

Tasks

Accessing the Acceleration Data

x (page 61) property
The acceleration value for the x axis of the device. (read-only)

y (page 61) property
The acceleration value for the y axis of the device. (read-only)

z (page 62) property
The acceleration value for the z axis of the device. (read-only)

timestamp (page 61) property
The relative time at which the information was recorded. (read-only)

60 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

UIAcceleration Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

timestamp
The relative time at which the information was recorded. (read-only)

@property(nonatomic, readonly) NSTimeInterval timestamp

Discussion
This value records the time relative to the CPU time base register. You should not use it to determine
the exact time at which the event occurred but should instead compare it to the timestamp of another
acceleration event to determine the elapsed time between the events.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

x
The acceleration value for the x axis of the device. (read-only)

@property(nonatomic, readonly) UIAccelerationValue x

Discussion
With the device held in portrait orientation and the screen facing you, the x axis runs from left to
right across the face of the device.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

y
The acceleration value for the y axis of the device. (read-only)

@property(nonatomic, readonly) UIAccelerationValue y

Discussion
With the device held in portrait orientation and the screen facing you, the y axis runs from top to
bottom across the face of the device.

Availability
Available in iPhone OS 2.0 and later.

Properties 61
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

UIAcceleration Class Reference

Declared In
UIAccelerometer.h

z
The acceleration value for the z axis of the device. (read-only)

@property(nonatomic, readonly) UIAccelerationValue z

Discussion
With the device held in portrait orientation and the screen facing you, the z axis runs from back to
front through the device.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

Constants

UIAccelerationValue
The amount of acceleration in a single linear direction.

typedef double UIAccelerationValue;

Discussion
This type is used to store acceleration values, which are specified as G-force values. For example, the
value 1.0 corresponds to the normal acceleration caused by gravity.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

62 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

UIAcceleration Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIAccelerometer.h

Overview

The UIAccelerometer class lets you register to receive acceleration-related data from the onboard
hardware. As a device moves, its hardware reports linear acceleration changes along the primary
axes in three-dimensional space. You can use this data to detect both the current orientation of the
device (relative to the ground) and any instantaneous changes to that orientation. You might use
instantaneous changes as input to a game or to initiate some action in your application.

You do not create accelerometer objects directly. Instead, you use the shared UIAccelerometer object
to specify the interval at which you want to receive events and then set its delegate property. Upon
assigning your delegate object, the accelerometer object begins delivering acceleration events to your
delegate immediately at the specified interval. Events are always delivered on the main thread of
your application.

The maximum frequency for accelerometer updates is based on the available hardware. You can
request updates less frequently but cannot request them more frequently than the hardware maximum.
Once you assign your delegate, however, updates are delivered regularly at the frequency you
requested, whether or not the acceleration data actually changed. Your delegate is responsible for
filtering out any unwanted updates and for ensuring that the amount of change is significant enough
to warrant taking action.

For more information about the data delivered to your observer, see UIAcceleration Class Reference.
For information about implementing your delegate object, see UIAccelerometerDelegate Protocol Reference.

Overview 63
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

UIAccelerometer Class Reference

Tasks

Getting the Shared Accelerometer Object

+ sharedAccelerometer (page 65)
Returns the shared accelerometer object for the system.

Accessing the Accelerometer Properties

updateInterval (page 64) property
The interval at which to deliver acceleration data to the delegate.

delegate (page 64) property
The delegate object you want to receive acceleration events.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

delegate
The delegate object you want to receive acceleration events.

@property(nonatomic, assign) id<UIAccelerometerDelegate> delegate

Discussion
The UIAccelerometerDelegate is a formal protocol, so your delegate object must implement the
method it defines. The shared accelerometer object delivers the acceleration data to your delegate at
the specified interval. It delivers these events on the main thread of your application when it is in the
NSDefaultRunLoopMode run loop mode.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

updateInterval
The interval at which to deliver acceleration data to the delegate.

64 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

UIAccelerometer Class Reference

@property(nonatomic) NSTimeInterval updateInterval

Discussion
This property is measured in seconds. The value of this property is capped to certain minimum and
maximum values. The maximum value is determined by the maximum frequency supported by the
hardware. To ensure that it can deliver device orientation events in a timely fashion, the system
determines the appropriate minimum value based on its needs.

Changes to this property are delivered synchronously to the accelerometer hardware. You may change
this property while the delegate is non-nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

Class Methods

sharedAccelerometer
Returns the shared accelerometer object for the system.

+ (UIAccelerometer *)sharedAccelerometer

Return Value
The systemwide accelerometer object.

Discussion
Always use this method to retrieve the shared system accelerometer object. Do not create new instances
of the UIAccelerometer class.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

Class Methods 65
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

UIAccelerometer Class Reference

66 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

UIAccelerometer Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIAlert.h

Overview

Use the UIActionSheet class to implement an action sheet that displays a message and presents
buttons that let the user decide how to proceed. An action sheet is similar in function but differs in
appearance from an alert view.

Use the properties and methods in this class to set the message, set the style, set the delegate, configure
the buttons, and display the action sheet. You must set a delegate if you add custom buttons. The
delegate should conform to the UIActionSheetDelegateprotocol. When you display an action sheet,
you can optionally animate it from the bottom bar or an arbitrary view. How the action sheet is
animated depends on the bar style or the action sheet style you set.

Tasks

Creating Action Sheets

– initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles: (page
72)

Convenience method for initializing an action sheet.

Overview 67
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

Setting Properties

delegate (page 69) property
The receiver’s delegate or nil if it doesn’t have a delegate.

title (page 70) property
The string that appears in the receiver’s title bar.

visible (page 71) property
A Boolean value that indicates whether the receiver is displayed. (read-only)

actionSheetStyle (page 69) property
The receiver’s style.

Configuring Buttons

– addButtonWithTitle: (page 71)
Adds a button to the receiver with the given title.

numberOfButtons (page 70) property
The number of buttons on the action sheet. (read-only)

– buttonTitleAtIndex: (page 71)
Returns the title of the button at the given index.

cancelButtonIndex (page 69) property
The index number of the cancel button.

destructiveButtonIndex (page 70) property
The index number of the destructive button.

firstOtherButtonIndex (page 70) property
The index of the first other button. (read-only)

Displaying

– showFromTabBar: (page 73)
Displays the receiver using animation by originating it from the specified tab bar.

– showFromToolbar: (page 73)
Displays the receiver using animation by originating it from the specified toolbar.

– showInView: (page 74)
Displays the receiver using animation by originating it from the specified view.

Dismissing

– dismissWithClickedButtonIndex:animated: (page 72)
Dismisses the receiver, optionally with animation.

68 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

actionSheetStyle
The receiver’s style.

@property(nonatomic) UIActionSheetStyle actionSheetStyle

Discussion
See UIActionSheetStyle (page 74) for the possible values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

cancelButtonIndex
The index number of the cancel button.

@property(nonatomic) NSInteger cancelButtonIndex

Discussion
The button indices start at 0. If -1, then the index is not set.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

@property(nonatomic, assign) id<UIActionSheetDelegate> delegate

Discussion
See UIActionSheetDelegate Protocol Reference for the methods this delegate should implement.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

Properties 69
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

destructiveButtonIndex
The index number of the destructive button.

@property(nonatomic) NSInteger destructiveButtonIndex

Discussion
The button indices start at 0. If -1, then the index is not set. This property is ignored if there is only
one button. The default value is -1.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

firstOtherButtonIndex
The index of the first other button. (read-only)

@property(nonatomic, readonly) NSInteger firstOtherButtonIndex

Discussion
The button indices start at 0. If -1, then the index is not set. This property is ignored if there are no
other buttons. The default value is -1.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

numberOfButtons
The number of buttons on the action sheet. (read-only)

@property(nonatomic, readonly) NSInteger numberOfButtons

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

title
The string that appears in the receiver’s title bar.

@property(nonatomic, copy) NSString *title

Availability
Available in iPhone OS 2.0 and later.

70 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

Declared In
UIAlert.h

visible
A Boolean value that indicates whether the receiver is displayed. (read-only)

@property(nonatomic, readonly, getter=isVisible) BOOL visible

Discussion
If YES, the receiver is displayed; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

Instance Methods

addButtonWithTitle:
Adds a button to the receiver with the given title.

- (NSInteger)addButtonWithTitle:(NSString *)title

Parameters

title
The title of the new button.

Return Value
The index of the new button. Button indices start at 0 and increase in the order they are added.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIActionSheet (page 67)

Declared In
UIAlert.h

buttonTitleAtIndex:
Returns the title of the button at the given index.

- (NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex

Parameters

buttonIndex
The index of the button. The button indices start at 0.

Instance Methods 71
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

Return Value
The title of the button specified by index buttonIndex.

Availability
Available in iPhone OS 2.0 and later.

See Also
– showInView: (page 74)

Declared In
UIAlert.h

dismissWithClickedButtonIndex:animated:
Dismisses the receiver, optionally with animation.

- (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex animated:(BOOL)animated

Parameters

buttonIndex
The index of the button that was clicked just before invoking this method. The button indices
start at 0.

animated
YES if the receiver should be removed by animating it first; otherwise, NO if it should be removed
immediately with no animation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:
otherButtonTitles:
Convenience method for initializing an action sheet.

- (id)initWithTitle:(NSString *)title delegate:(id < UIActionSheetDelegate >)delegate
cancelButtonTitle:(NSString *)cancelButtonTitle destructiveButtonTitle:(NSString
*)destructiveButtonTitle otherButtonTitles:(NSString *)otherButtonTitles, ...

Parameters

title
The string that appears in the receiver’s title bar.

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

cancelButtonTitle
The title of the cancel button or nil if there is no cancel button.

Using this argument is equivalent to setting the cancel button index to the value returned by
invoking showInView: (page 74) specifying this title.

72 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

destructiveButtonTitle
The index number of the destructive button.

otherButtonTitles,
The title of another button.

Using this argument is equivalent to invoking showInView: (page 74) with this title to add
more buttons.

...
Titles of additional buttons to add to the receiver.

Return Value
Newly initialized action sheet.

Availability
Available in iPhone OS 2.0 and later.

See Also
– showInView: (page 74)

Declared In
UIAlert.h

showFromTabBar:
Displays the receiver using animation by originating it from the specified tab bar.

- (void)showFromTabBar:(UITabBar *)view

Parameters

view
The tab bar that the receiver originates from.

Discussion
The style of the animation depends on the style of the tab bar, not the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– showFromToolbar: (page 73)

Declared In
UIAlert.h

showFromToolbar:
Displays the receiver using animation by originating it from the specified toolbar.

- (void)showFromToolbar:(UIToolbar *)view

Parameters

view
The toolbar that the receiver originates from.

Instance Methods 73
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

Discussion
The style of the animation depends on the style of the toolbar, not the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– showFromTabBar: (page 73)

Declared In
UIAlert.h

showInView:
Displays the receiver using animation by originating it from the specified view.

- (void)showInView:(UIView *)view

Parameters

view
The view that the receiver originates from.

Discussion
The style of the animation depends on the actionSheetStyle (page 69) property.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

Constants

UIActionSheetStyle
Specifies the style of an action sheet.

typedef enum {
UIActionSheetStyleAutomatic = -1,
UIActionSheetStyleDefault = UIBarStyleDefault,
UIActionSheetStyleBlackTranslucent = UIBarStyleBlackTranslucent,
UIActionSheetStyleBlackOpaque = UIBarStyleBlackOpaque,

} UIActionSheetStyle;

Constants
UIActionSheetStyleAutomatic

Takes the appearance of the bottom bar if specified; otherwise, same as
UIActionSheetStyleDefault (page 75).

Available in iPhone OS 2.0 and later.

Declared in UIAlert.h

74 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

UIActionSheetStyleDefault
The default style.

Available in iPhone OS 2.0 and later.

Declared in UIAlert.h

UIActionSheetStyleBlackTranslucent
A black translucent style.

Available in iPhone OS 2.0 and later.

Declared in UIAlert.h

UIActionSheetStyleBlackOpaque
A black opaque style.

Available in iPhone OS 2.0 and later.

Declared in UIAlert.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

Constants 75
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

76 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

UIActionSheet Class Reference

Inherits from: UIView

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIActivityIndicatorView.h

Overview

The UIActivityIndicatorView class creates and manages an indicator showing the indeterminate
progress of a task. Visually, this indicator is a “gear” that is animated to spin.

You control when the progress indicator animates with the startAnimating (page 80) and
stopAnimating (page 80) methods. If the hidesWhenStopped (page 78) property is set to YES, the
indicator is automatically hidden when animation stops.

Tasks

Initializing an UIActivityIndicatorView Object

– initWithActivityIndicatorStyle: (page 79)
Initializes and returns an activity-indicator object.

Managing the Activity Indicator

– startAnimating (page 80)
Starts the animation of the progress indicator.

Overview 77
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

UIActivityIndicatorView Class Reference

– stopAnimating (page 80)
Stops the animation of the progress indicator.

– isAnimating (page 79)
Returns whether the receiver is animating.

hidesWhenStopped (page 78) property
A Boolean value that controls whether the receiver is hidden when the animation is stopped.

Managing the Indicator Style

activityIndicatorViewStyle (page 78) property
The style of the indeterminate progress indicator.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

activityIndicatorViewStyle
The style of the indeterminate progress indicator.

@property UIActivityIndicatorViewStyle activityIndicatorViewStyle

Discussion
See UIActivityIndicatorStyle (page 80) for valid constants. The default value is
UIActivityIndicatorViewStyleWhite (page 81).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIActivityIndicatorView.h

hidesWhenStopped
A Boolean value that controls whether the receiver is hidden when the animation is stopped.

@property BOOL hidesWhenStopped

Discussion
If the value of this property is YES (the default), the receiver sets its hidden (page 450) property (UIView)
to YES when receiver is not animating. If the hidesWhenStopped (page 78) property is NO, the receiver
is not hidden when animation stops. You stop an animating progress indicator with the
stopAnimating (page 80) method.

Availability
Available in iPhone OS 2.0 and later.

78 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

UIActivityIndicatorView Class Reference

Declared In
UIActivityIndicatorView.h

Instance Methods

initWithActivityIndicatorStyle:
Initializes and returns an activity-indicator object.

- (id)initWithActivityIndicatorStyle:(UIActivityIndicatorViewStyle)style

Parameters

style
A constant that specifies the style of the object to be created. See
UIActivityIndicatorStyle (page 80) for descriptions of the style constants.

Return Value
An initialized UIActivityIndicatorView object or nil if the object couldn’t be created.

Discussion
UIActivityIndicatorView sizes the returned instance according to the specified style. You can set
and retrieve the style of a activity indicator through the activityIndicatorViewStyle (page 78)
property.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIActivityIndicatorView.h

isAnimating
Returns whether the receiver is animating.

- (BOOL)isAnimating

Return Value
YES if the receiver is animating, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– startAnimating (page 80)
– stopAnimating (page 80)

Declared In
UIActivityIndicatorView.h

Instance Methods 79
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

UIActivityIndicatorView Class Reference

startAnimating
Starts the animation of the progress indicator.

- (void)startAnimating

Discussion
When the progress indicator is animated, the gear spins to indicate indeterminate progress. The
indicator is animated until stopAnimating (page 80) is called.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIActivityIndicatorView.h

stopAnimating
Stops the animation of the progress indicator.

- (void)stopAnimating

Discussion
Call this method to stop the animation of the progress indicator started with a call to
startAnimating (page 80). When animating is stopped, the indicator is hidden, unless unless
hidesWhenStopped (page 78) is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIActivityIndicatorView.h

Constants

UIActivityIndicatorStyle
The visual style of the progress indicator.

typedef enum {
UIActivityIndicatorViewStyleWhiteLarge,
UIActivityIndicatorViewStyleWhite,
UIActivityIndicatorViewStyleGray,

} UIActivityIndicatorViewStyle;

Constants
UIActivityIndicatorViewStyleWhiteLarge

The large white style of indicator.

Available in iPhone OS 2.0 and later.

Declared in UIActivityIndicatorView.h

80 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

UIActivityIndicatorView Class Reference

UIActivityIndicatorViewStyleWhite
The standard white style of indicator (the default).

Available in iPhone OS 2.0 and later.

Declared in UIActivityIndicatorView.h

UIActivityIndicatorViewStyleGray
The standard gray style of indicator.

Available in iPhone OS 2.0 and later.

Declared in UIActivityIndicatorView.h

Discussion
You set the value of the activityIndicatorViewStyle (page 78) property with these constants.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIActivityIndicatorView.h

Constants 81
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

UIActivityIndicatorView Class Reference

82 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

UIActivityIndicatorView Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIAlert.h

Overview

Use the UIAlertView class to display an alert message to the user. An alert view functions similar to
but differs in appearance from an alert sheet.

Use the properties and methods defined in this class to set the title, message, and delegate of an alert
view and configure the buttons. You must set a delegate if you add custom buttons. The delegate
should conform to the UIAlertViewDelegate protocol. Use the show (page 88) method to display
an alert view once it is configured.

Tasks

Creating Alert Views

– initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles: (page 88)
Convenience method for initializing an alert view.

Setting Properties

delegate (page 85) property
The receiver’s delegate or nil if it doesn’t have a delegate.

Overview 83
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

UIAlertView Class Reference

title (page 86) property
The string that appears in the receiver’s title bar.

message (page 85) property
Descriptive text that provides more details than the title.

visible (page 86) property
A Boolean value that indicates whether the receiver is displayed. (read-only)

Configuring Buttons

– addButtonWithTitle: (page 86)
Adds a button to the receiver with the given title.

numberOfButtons (page 85) property
The number of buttons on the alert view. (read-only)

– buttonTitleAtIndex: (page 87)
Returns the title of the button at the given index.

cancelButtonIndex (page 84) property
The index number of the cancel button.

firstOtherButtonIndex (page 85) property
The index of the first other button. (read-only)

Displaying

– show (page 88)
Displays the receiver using animation.

Dismissing

– dismissWithClickedButtonIndex:animated: (page 87)
Dismisses the receiver, optionally with animation.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

cancelButtonIndex
The index number of the cancel button.

@property(nonatomic) NSInteger cancelButtonIndex

Discussion
The button indices start at 0. If -1, then the index is not set.

84 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

UIAlertView Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

@property(nonatomic, assign) id delegate

Discussion
See UIAlertViewDelegate Protocol Reference for the methods this delegate should implement.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

firstOtherButtonIndex
The index of the first other button. (read-only)

@property(nonatomic, readonly) NSInteger firstOtherButtonIndex

Discussion
The button indices start at 0. If -1, then the index is not set. This property is ignored if there are no
other buttons. The default value is -1.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

message
Descriptive text that provides more details than the title.

@property(nonatomic, copy) NSString *message

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

numberOfButtons
The number of buttons on the alert view. (read-only)

Properties 85
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

UIAlertView Class Reference

@property(nonatomic, readonly) NSInteger numberOfButtons

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

title
The string that appears in the receiver’s title bar.

@property(nonatomic, copy) NSString *title

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

visible
A Boolean value that indicates whether the receiver is displayed. (read-only)

@property(nonatomic, readonly, getter=isVisible) BOOL visible

Discussion
If YES, the receiver is displayed; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

Instance Methods

addButtonWithTitle:
Adds a button to the receiver with the given title.

- (NSInteger)addButtonWithTitle:(NSString *)title

Parameters

title
The title of the new button.

Return Value
The index of the new button. Button indices start at 0 and increase in the order they are added.

86 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

UIAlertView Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property message (page 85)

Declared In
UIAlert.h

buttonTitleAtIndex:
Returns the title of the button at the given index.

- (NSString *)buttonTitleAtIndex:(NSInteger)buttonIndex

Parameters

buttonIndex
The index of the button. The button indices start at 0.

Return Value
The title of the button specified by index buttonIndex.

Availability
Available in iPhone OS 2.0 and later.

See Also
“Displaying” (page 84)

Declared In
UIAlert.h

dismissWithClickedButtonIndex:animated:
Dismisses the receiver, optionally with animation.

- (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex animated:(BOOL)animated

Parameters

buttonIndex
The index of the button that was clicked just before invoking this method. The button indices
start at 0.

animated
YES if the receiver should be removed by animating it first; otherwise, NO if it should be removed
immediately with no animation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

Instance Methods 87
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

UIAlertView Class Reference

initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:
Convenience method for initializing an alert view.

- (id)initWithTitle:(NSString *)title message:(NSString *)message
delegate:(id)delegate cancelButtonTitle:(NSString *)cancelButtonTitle
otherButtonTitles:(NSString *)otherButtonTitles, ...

Parameters

title
The string that appears in the receiver’s title bar.

message
Descriptive text that provides more details than the title.

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

cancelButtonTitle
The title of the cancel button or nil if there is no cancel button.

Using this argument is equivalent to setting the cancel button index to the value returned by
invoking addButtonWithTitle: (page 86) specifying this title.

otherButtonTitles,
The title of another button.

Using this argument is equivalent to invoking addButtonWithTitle: (page 86) with this title
to add more buttons.

...
Titles of additional buttons to add to the receiver.

Return Value
Newly initialized alert view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addButtonWithTitle: (page 86)

Declared In
UIAlert.h

show
Displays the receiver using animation.

- (void)show

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

88 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

UIAlertView Class Reference

Inherits from: UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIApplication.h

Overview

The UIApplication class provides a centralized point of control and coordination for applications
running on iPhone OS.

Every application must have exactly one instance of UIApplication (or a subclass of UIApplication
). When an application is launched, the UIApplicationMain (page 640) function is called; among its
other tasks, this function create a singleton UIApplication object. Thereafter you can access this
object by invoking the sharedApplication (page 96) class method.

A major role of a UIApplication object is to handle the initial routing of incoming user events. It
also dispatches action messages forwarded to it by control objects (UIControl) to the appropriate
target objects. In addition, the UIApplication object maintains a list of all the windows (UIWindow
objects) currently open in the application, so through those it can retrieve any of the application’s
UIView objects. The application object is typically assigned a delegate, an object that the application
informs of significant runtime events—for example, application launch, low-memory warnings, and
application termination—giving it an opportunity to respond appropriately.

Applications can cooperatively handle a resource such as an email or an image file through the
openURL: (page 98) method. For example, an application opening an email URL with this method
may cause the mail client to launch and display the message.

UIApplication defines a delegate that must adopt the UIApplicationDelegate protocol implement
one or more of the methods.

Overview 89
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

The programmatic interfaces of UIApplication and UIApplicationDelegate also allow you to
manage behavior that is specific to the device. You can control application response to changes in
interface orientation, temporarily suspend incoming user events, and turn proximity sensing (of the
user’s face) off and on again.

Subclassing Notes

You might decide to subclass UIApplication to override sendEvent: (page 99) or
sendAction:to:from:forEvent: (page 98) to implement custom event and action dispatching.

Tasks

Getting the Application Instance

+ sharedApplication (page 96)
Returns the singleton application instance.

Getting Application Windows

keyWindow (page 93) property
The application’s key window. (read-only)

windows (page 96) property
The application’s visible windows. (read-only)

Controlling and Handling Events

– sendEvent: (page 99)
Dispatches an event to the appropriate responder objects in the application.

– sendAction:to:from:forEvent: (page 98)
Sends an action message identified by selector to a specified target.

– beginIgnoringInteractionEvents (page 97)
Tells the receiver to suspend the handling of touch-related events.

– endIgnoringInteractionEvents (page 97)
Tells the receiver to resume the handling of touch-related events.

– isIgnoringInteractionEvents (page 97)
Returns whether the receiver is ignoring events initiated by touches on the screen.

proximitySensingEnabled (page 94) property
A Boolean value that determines whether proximity sensing is enabled.

90 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Opening a URL Resource

– openURL: (page 98)
Opens the resource at the specified URL.

Managing Application Activity

idleTimerDisabled (page 92) property
A Boolean value that controls whether the idle timer is disabled for the application.

Managing Status Bar Orientation

– setStatusBarOrientation:animated: (page 100)
Sets the application’s status bar to the specified orientation, optionally animating the transition.

statusBarOrientation (page 95) property
The current orientation of the application’s status bar.

statusBarOrientationAnimationDuration (page 95) property
The animation duration in seconds for the status bar during a 90 degree orientation change.
(read-only)

Controlling Application Appearance

– setStatusBarHidden:animated: (page 99)
Hides or shows the status bar, optionally animating the transition.

statusBarHidden (page 94) property
A Boolean value that determines whether the status bar is hidden.

– setStatusBarStyle:animated: (page 101)
Sets the style of the status bar, optionally animating the transition to the new style

statusBarStyle (page 95) property
The current style of the status bar.

statusBarFrame (page 94) property
The frame rectangle defining the area of the status bar. (read-only)

networkActivityIndicatorVisible (page 93) property
A Boolean value that turns an indicator of network activity on or off.

applicationIconBadgeNumber (page 92) property
The number currently set as the badge of the application icon in Springboard.

Setting and Getting the Delegate

delegate (page 92) property
The delegate of the application object.

Tasks 91
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

applicationIconBadgeNumber
The number currently set as the badge of the application icon in Springboard.

@property(nonatomic) NSInteger applicationIconBadgeNumber

Discussion
Set to 0 (zero) to hide the badge number. The default is 0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

delegate
The delegate of the application object.

@property(nonatomic, assign) id<UIApplicationDelegate> delegate

Discussion
The delegate must adopt the UIApplicationDelegate formal protocol. UIApplication assigns and
does not retain the delegate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

idleTimerDisabled
A Boolean value that controls whether the idle timer is disabled for the application.

@property(nonatomic, getter=isIdleTimerDisabled) BOOL idleTimerDisabled

Discussion
The default value of this property is NO. When most applications have no touches as user input for a
short period, the system puts the device into a “sleep” state where the screen dims. This is done for
the purposes of conserving power. However, applications that don't have user input except for
the accelerometer—games, for instance—can, by setting this property to YES, disable the “idle timer”
to avert system sleep.

92 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Important: You should set this property only if necessary and should be sure to reset it to NO when
the need no longer exists. Most applications should let the system turn off the screen when the idle
timer elapses. The only applications that should disable the idle time are mapping applications, games,
or similar programs with sporadic user interaction in the form of touches.

Availability
Available in iPhone OS 2.0 and later.

See Also

Declared In
UIApplication.h

keyWindow
The application’s key window. (read-only)

@property(nonatomic, readonly) UIWindow *keyWindow

Discussion
This property holds the UIWindow object in the windows (page 96) array that is most recently sent the
makeKeyAndVisible (page 518) message.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property windows (page 96)

Declared In
UIApplication.h

networkActivityIndicatorVisible
A Boolean value that turns an indicator of network activity on or off.

@property(nonatomic, getter=isNetworkActivityIndicatorVisible) BOOL
networkActivityIndicatorVisible

Discussion
Specify YES if the application should show network activity and NO if it should not. The default value
is NO. A spinning indicator in the status bar shows network activity. The application may explicitly
hide or show this indicator.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

Properties 93
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

proximitySensingEnabled
A Boolean value that determines whether proximity sensing is enabled.

@property(nonatomic, getter=isProximitySensingEnabled) BOOL proximitySensingEnabled

Discussion
YES if proximity sensing is enabled; otherwise NO. Enabling proximity sensing tells iPhone OS that it
may need to blank the screen if the user’s face is near it. Proximity sensing is disabled by default.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

statusBarFrame
The frame rectangle defining the area of the status bar. (read-only)

@property(nonatomic, readonly) CGRect statusBarFrame

Discussion
The value of this property is CGRectZero if the status bar is hidden.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property statusBarHidden (page 94)
@property statusBarStyle (page 95)

Declared In
UIApplication.h

statusBarHidden
A Boolean value that determines whether the status bar is hidden.

@property(nonatomic, getter=isStatusBarHidden) BOOL statusBarHidden

Return Value
YES means the status bar is hidden; NO means it’s visible.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setStatusBarHidden:animated: (page 99)

Declared In
UIApplication.h

94 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

statusBarOrientation
The current orientation of the application’s status bar.

@property(nonatomic) UIInterfaceOrientation statusBarOrientation

Discussion
The value of this property is a constant that indicates an orientation of the receiver’s status bar. See
UIInterfaceOrientation (page 101) for details. Setting this property rotates the status bar to the specified
orientation without animating the transition. If your application has rotatable window content,
however, you should not arbitrarily set status-bar orientation using this method. The status-bar
orientation set by this method does not change if the device changes orientation. For more on rotatable
window view, see the UIWindow class reference.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setStatusBarOrientation:animated: (page 100)

Declared In
UIApplication.h

statusBarOrientationAnimationDuration
The animation duration in seconds for the status bar during a 90 degree orientation change. (read-only)

@property(nonatomic, readonly) NSTimeInterval statusBarOrientationAnimationDuration

Discussion
You should double the value of this property for a 180 degree orientation change in the status bar.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setStatusBarOrientation:animated: (page 100)

Declared In
UIApplication.h

statusBarStyle
The current style of the status bar.

@property(nonatomic) UIStatusBarStyle statusBarStyle

Discussion
The value of the property is a statusBarOrientationAnimationDuration (page 95) constant that
indicates the style of status; see UIStatusBarStyle (page 102) for a description of these constants. The
default style is UIStatusBarStyleDefault (page 102). The animation slides the status bar out for the
old orientation and slides it in for the new orientation.

Properties 95
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property statusBarHidden (page 94)
@property statusBarFrame (page 94)

Declared In
UIApplication.h

windows
The application’s visible windows. (read-only)

@property(nonatomic, readonly) NSArray *windows

Discussion
This property is an array holding the application’s visible windows; the windows are ordered front
to back.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property keyWindow (page 93)

Declared In
UIApplication.h

Class Methods

sharedApplication
Returns the singleton application instance.

+ (UIApplication *)sharedApplication

Return Value
The application instance is created in the UIApplicationMain (page 640) function.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

96 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Instance Methods

beginIgnoringInteractionEvents
Tells the receiver to suspend the handling of touch-related events.

- (void)beginIgnoringInteractionEvents

Discussion
You typically call this method before starting an animation or transition. Calls are nested with the
endIgnoringInteractionEvents (page 97) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isIgnoringInteractionEvents (page 97)

Declared In
UIApplication.h

endIgnoringInteractionEvents
Tells the receiver to resume the handling of touch-related events.

- (void)endIgnoringInteractionEvents

Discussion
You typically call this method when, after calling the beginIgnoringInteractionEvents (page 97)
method, the animation or transition concludes. Nested calls of this method should match nested calls
of the beginIgnoringInteractionEvents method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isIgnoringInteractionEvents (page 97)

Declared In
UIApplication.h

isIgnoringInteractionEvents
Returns whether the receiver is ignoring events initiated by touches on the screen.

- (BOOL)isIgnoringInteractionEvents

Return Value
YES if the receiver is ignoring interaction events; otherwise NO. The method returns YES if the nested
beginIgnoringInteractionEvents (page 97) and endIgnoringInteractionEvents (page 97) calls
are at least one level deep.

Instance Methods 97
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

openURL:
Opens the resource at the specified URL.

- (BOOL)openURL:(NSURL *)url

Parameters

url
An object representing a URL (Universal Resource Locator). UIKit supports the http:, https:,
tel:, and mailto: schemes.

Return Value
YES if the resource located by the URL was successfully opened; otherwise NO.

Discussion
The URL can locate a resource in the same or other application. If the resource is another application,
invoking this method may cause the calling application to quit so the other one can be launched.

Availability
Available in iPhone OS 2.0 and later.

See Also
– application:handleOpenURL: (page ?)

Declared In
UIApplication.h

sendAction:to:from:forEvent:
Sends an action message identified by selector to a specified target.

- (BOOL)sendAction:(SEL)action to:(id)target from:(id)sender forEvent:(UIEvent
*)event

Parameters

action
A selector identifying an action method. See the discussion for information on the permitted
selector forms.

target
The object to receive the action message. If target is nil, the application sends the message
to the first responder, from whence it progresses up the responder chain until it is handled.

sender
The object that is sending the action message. The default sender is the UIControl object that
invokes this method.

event
A UIEvent object that encapsulates information about the event originating the action message.

98 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Return Value
YES if a responder object handled the action message, NO if no object in the responder chain handled
the message.

Discussion
Normally, this method is invoked by a UIControl object that the user has touched. The default
implementation dispatches the action method to the given target object or, if no target is specified,
to the first responder. Subclasses may override this method to perform special dispatching of action
messages.

By default, this method pushes two parameters when calling the target. These last two parameteres
are optional for the receiver because it is up to the caller (usually a UIControl object) to remove any
parameters it added. This design enables the action selector to be one of the following:

- (void)action

- (void)action:(id)sender

- (void)action:(id)sender forEvent:(UIEvent *)event

Availability
Available in iPhone OS 2.0 and later.

See Also
– sendEvent: (page 99)

Declared In
UIApplication.h

sendEvent:
Dispatches an event to the appropriate responder objects in the application.

- (void)sendEvent:(UIEvent *)event

Parameters

event
A UIEvent object encapsulating the information about an event, including the touches involved.

Discussion
Subclasses may override this method to intercept incoming events for inspection and special
dispatching. Apsen calls this method for public events only.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sendAction:to:from:forEvent: (page 98)

Declared In
UIApplication.h

setStatusBarHidden:animated:
Hides or shows the status bar, optionally animating the transition.

Instance Methods 99
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

- (void)setStatusBarHidden:(BOOL)hidden animated:(BOOL)animated

Parameters

hidden
YES if the status bar should be hidden, NO if it should be visible. The default value is NO.

animated
YES if the transition to or from a hidden state should be animated, NO otherwise.

Discussion
The animation slides the status bar out toward the top of the interface.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property statusBarHidden (page 94)

Declared In
UIApplication.h

setStatusBarOrientation:animated:
Sets the application’s status bar to the specified orientation, optionally animating the transition.

- (void)setStatusBarOrientation:(UIInterfaceOrientation)interfaceOrientation
animated:(BOOL)animated

Parameters

interfaceOrientation
A specific orientation of the status bar. See UIInterfaceOrientation (page 101) for details. The
default value is UIInterfaceOrientationPortrait (page 101).

animated
YES if the transition to the new orientation should be animated; NO if it should be immediate,
without animation.

Discussion
Calling this method changes the value of the statusBarOrientation (page 95) property and rotates
the status bar, animating the transition if animated is YES . If your application has rotatable window
content, however, you should not arbitrarily set status-bar orientation using this method. The status-bar
orientation set by this method does not change if the device changes orientation.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property statusBarOrientation (page 95)
@property statusBarOrientationAnimationDuration (page 95)

Declared In
UIApplication.h

100 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

setStatusBarStyle:animated:
Sets the style of the status bar, optionally animating the transition to the new style

- (void)setStatusBarStyle:(UIStatusBarStyle)statusBarStyle animated:(BOOL)animated

Parameters

statusBarStyle
A constant that specifies a style for the status bar. See the descriptions of the constants in
UIStatusBarStyle (page 102) for details.

animated
YES if the transition to the new style should be animated; otherwise NO .

Discussion
The animation slides the status bar out toward the top of the interface.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property statusBarStyle (page 95)

Declared In
UIApplication.h

Constants

UIInterfaceOrientation
The orientation of the application’s user interface.

typedef enum {
UIInterfaceOrientationPortrait = UIDeviceOrientationPortrait,
UIInterfaceOrientationPortraitUpsideDown = UIDeviceOrientationPortraitUpsideDown,
UIInterfaceOrientationLandscapeLeft = UIDeviceOrientationLandscapeLeft,
UIInterfaceOrientationLandscapeRight = UIDeviceOrientationLandscapeRight

} UIInterfaceOrientation;

Constants
UIInterfaceOrientationPortrait

Displays the user interface in regular portrait mode (home button on the bottom).

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

UIInterfaceOrientationPortraitUpsideDown
Displays the user interface in upside-down portrait mode (home button on the top).

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

Constants 101
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

UIInterfaceOrientationLandscapeLeft
Displays the user interface in landscape mode with the home button on the left).

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

UIInterfaceOrientationLandscapeRight
Displays the user interface in landscape mode with the home button on the right).

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

Discussion
You use these constants in the statusBarOrientation (page 95) property and the
setStatusBarOrientation:animated: (page 100) method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIStatusBarStyle
The style of the device’s status bar.

typedef enum {
UIStatusBarStyleDefault,
UIStatusBarStyleBlackTranslucent,
UIStatusBarStyleBlackOpaque

} UIStatusBarStyle;

Constants
UIStatusBarStyleDefault

A gray style (the default).

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

UIStatusBarStyleBlackTranslucent
A transparent black style (specifically, black with an alpha of 0.5).

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

UIStatusBarStyleBlackOpaque
An opaque black style.

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

102 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Run Loop Mode for Tracking
Mode while tracking in controls is taking place.

UIKIT_EXTERN NSString *UITrackingRunLoopMode;

Constants
UITrackingRunLoopMode

The mode set while tracking in controls takes place. You can use this mode to add timers that
fire during tracking.

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

Declared In
UIApplication.h

Interface Orientation Conveniences
Convenience macros for determining interface orientation status.

#define UIDeviceOrientationIsValidInterfaceOrientation(orientation) ((orientation)
== UIDeviceOrientationPortrait || (orientation) ==

UIDeviceOrientationPortraitUpsideDown || (orientation) ==
UIDeviceOrientationLandscapeLeft || (orientation) ==
UIDeviceOrientationLandscapeRight)
#define UIInterfaceOrientationIsPortrait(orientation) ((orientation) ==
UIInterfaceOrientationPortrait || (orientation) ==
UIInterfaceOrientationPortraitUpsideDown)
#define UIInterfaceOrientationIsLandscape(orientation) ((orientation) ==
UIInterfaceOrientationLandscapeLeft || (orientation) ==
UIInterfaceOrientationLandscapeRight)

Constants
UIDeviceOrientationIsValidInterfaceOrientation

Returns a Boolean value indicating whether the current orientation constant is valid.

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

UIInterfaceOrientationIsPortrait
Returns a Boolean value indicating whether the current orientation is portrait.

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

UIInterfaceOrientationIsLandscape
Returns a Boolean value indicating whether the current orientation is landscape.

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

Declared In
UIApplication.h

Notification UserInfo Dictionary Keys
Keys used to access values in the userInfo dictionary of some UIApplication-posted notifications.

Constants 103
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

UIKIT_EXTERN NSString *const UIApplicationStatusBarOrientationUserInfoKey;
UIKIT_EXTERN NSString *const UIApplicationStatusBarFrameUserInfoKey;

Constants
UIApplicationStatusBarOrientationUserInfoKey

Accesses an NSNumber object that encapsulates a UIInterfaceOrientation value indicating
the current orientation (see UIInterfaceOrientation (page 101)). This key is used with
UIApplicationDidChangeInterfaceOrientationNotification (page 104) and
UIApplicationWillChangeInterfaceOrientationNotification (page 105) notifications.

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

UIApplicationStatusBarFrameUserInfoKey
Accesses an NSValue object that encapsulates a CGRect structure expressing the location and
size of the new status bar frame. This key is used with
UIApplicationDidChangeStatusBarFrameNotification (page 105) and
UIApplicationWillChangeStatusBarFrameNotification (page 106) notifications.

Available in iPhone OS 2.0 and later.

Declared in UIApplication.h

Declared In
UIApplication.h

Notifications

All UIApplication notifications are posted by the application instance returned by
sharedApplication (page 96).

UIApplicationDidBecomeActiveNotification
Posted when the application becomes active.

An application is active when it is receiving events. An active application can be said to have focus. It
gains focus after being launched, loses focus when an overlay window pops up or when the device
is locked, and gains focus when the device is unlocked.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIApplicationDidChangeInterfaceOrientationNotification
Posted when the orientation of the application’s user interface changes.

The userInfo dictionary contains an NSNumber object that encapsulates a UIInterfaceOrientation
value (see UIInterfaceOrientation (page 101)). Use
UIApplicationStatusBarOrientationUserInfoKey (page 104) to access this value

104 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

UIApplicationDidChangeStatusBarFrameNotification
Posted when the frame of the status bar changes.

The userInfo dictionary contains an NSValue object that encapsulates a CGRect structure expressing
the location and size of the new status bar frame. Use
UIApplicationStatusBarFrameUserInfoKey (page 104) to access this value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIApplicationDidFinishLaunchingNotification
Posted immediately after the application finishes launching.

This notification does not contain a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIApplicationDidReceiveMemoryWarningNotification
Posted when the application receives a warning from the operating system about low memory
availability.

This notification does not contain a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIApplicationSignificantTimeChangeNotification
Posted when there is a significant change in time, for example, change to a new day (midnight), carrier
time update, and change to or from daylight savings time.

This notification does not contain a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIApplicationWillChangeInterfaceOrientationNotification
Posted when the application is about to change the orientation of its interface.

Notifications 105
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

The userInfo dictionary contains an NSNumber that encapsulates a UIInterfaceOrientation value
(see UIInterfaceOrientation (page 101)). UseUIApplicationStatusBarOrientationUserInfoKey (page
104) to access this value.

UIApplicationWillChangeStatusBarFrameNotification
Posted when the application is about to change the frame of the status bar.

The userInfo dictionary contains an NSValue object that encapsulates a CGRect structure expressing
the location and size of the new status bar frame. Use
UIApplicationStatusBarFrameUserInfoKey (page 104) to access this value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIApplicationWillResignActiveNotification
Posted when the application is no longer active and loses focus.

An application is active when it is receiving events. An active application can be said to have focus. It
gains focus after being launched, loses focus when an overlay window pops up or when the device
is locked, and gains focus when the device is unlocked.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIApplicationWillTerminateNotification
Posted when the application is about to terminate.

This notification does not contain a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

106 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

UIApplication Class Reference

Inherits from: UIBarItem : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIBarButtonItem.h

Overview

The UIBarButtonItem class encapsulates the properties and behaviors of items added to UIToolbar
and UINavigationBar objects. It inherits basic button behavior from its parent class. This class defines
additional initialization methods and properties for use on tab bars and navigation bars that allow
more custom views.

Tasks

Initializing an Item

– initWithBarButtonSystemItem:target:action: (page 110)
Creates and returns a new item containing the specified system item.

– initWithCustomView: (page 110)
Creates and returns a new item using the specified custom view.

– initWithImage:style:target:action: (page 111)
Creates and returns a new item using the specified image and other properties.

– initWithTitle:style:target:action: (page 111)
Creates and returns a new item using the specified title and other properties.

Overview 107
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

Getting and Setting Properties

target (page 109) property
The object that receives an action when the item is selected.

action (page 108) property
The selector defining the action message to send to the target object when the user taps this
bar button item.

style (page 109) property
The style of the item.

possibleTitles (page 109) property
Collection of possible titles to display on the bar.

width (page 110) property
The width of the item.

customView (page 108) property
A custom view representing the item.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

action
The selector defining the action message to send to the target object when the user taps this bar button
item.

@property(nonatomic) SEL action

Discussion
If the value of this property is NULL, no action message is sent. The default value is NULL.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property target (page 109)

Declared In
UIBarButtonItem.h

customView
A custom view representing the item.

@property(nonatomic, retain) UIView *customView

Availability
Available in iPhone OS 2.0 and later.

108 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

Declared In
UIBarButtonItem.h

possibleTitles
Collection of possible titles to display on the bar.

@property(nonatomic, copy) NSSet *possibleTitles

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarButtonItem.h

style
The style of the item.

@property(nonatomic) UIBarButtonItemStyle style

Discussion
One of the constants defined in UIBarButtonItemStyle (page 115). The default value is
UIBarButtonItemStylePlain (page 116).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarButtonItem.h

target
The object that receives an action when the item is selected.

@property(nonatomic, assign) id target

Discussion
If nil, an object in the responder chain can respond to the
initWithBarButtonSystemItem:target:action: (page 110) message. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property action (page 108)

Declared In
UIBarButtonItem.h

Properties 109
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

width
The width of the item.

@property(nonatomic) CGFloat width

Discussion
If this property value is positive, the width of the combined image and title are fixed. If the value is
0.0 or negative, the item sets the width of the combined image and title to fit. This property is ignored
if the style uses radio mode. The default value is 0.0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarButtonItem.h

Instance Methods

initWithBarButtonSystemItem:target:action:
Creates and returns a new item containing the specified system item.

- (id)initWithBarButtonSystemItem:(UIBarButtonSystemItem)systemItem target:(id)target
action:(SEL)action

Parameters

systemItem
The system item to use as the first item on the bar. One of the constants defined in
UIBarButtonSystemItem (page 112).

target
The object that receives the action message.

action
The action to send to target when this item is selected.

Return Value
A newly initialized item containing the specified system item. The item’s target is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithImage:style:target:action: (page 111)
– initWithTitle:style:target:action: (page 111)

Declared In
UIBarButtonItem.h

initWithCustomView:
Creates and returns a new item using the specified custom view.

110 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

- (id)initWithCustomView:(UIView *)customView

Parameters

customView
A custom view representing the item.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarButtonItem.h

initWithImage:style:target:action:
Creates and returns a new item using the specified image and other properties.

- (id)initWithImage:(UIImage *)image style:(UIBarButtonItemStyle)style
target:(id)target action:(SEL)action

Parameters

image
The item’s image. If nil an image is not displayed.

The images displayed on the bar are derived from this image. If this image is too large to fit
on the bar, it is scaled to fit. Typically, the size of a toolbar and navigation bar image is 20 x 20
points. The alpha values in the source image are used to create the images—opaque values are
ignored.

style
The style of the item. One of the constants defined in UIBarButtonItemStyle (page 115).

target
The object that receives the action message.

action
The action to send to target when this item is selected.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithBarButtonSystemItem:target:action: (page 110)
– initWithTitle:style:target:action: (page 111)

Declared In
UIBarButtonItem.h

initWithTitle:style:target:action:
Creates and returns a new item using the specified title and other properties.

Instance Methods 111
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

- (id)initWithTitle:(NSString *)title style:(UIBarButtonItemStyle)style
target:(id)target action:(SEL)action

Parameters

title
The item’s title. If nil a title is not displayed.

style
The style of the item. One of the constants defined in UIBarButtonItemStyle (page 115).

target
The object that receives the action message.

action
The action to send to target when this item is selected.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithBarButtonSystemItem:target:action: (page 110)
– initWithImage:style:target:action: (page 111)

Declared In
UIBarButtonItem.h

Constants

UIBarButtonSystemItem
Defines system defaults for commonly used items.

112 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

typedef enum {
UIBarButtonSystemItemDone,
UIBarButtonSystemItemCancel,
UIBarButtonSystemItemEdit,
UIBarButtonSystemItemSave,
UIBarButtonSystemItemAdd,
UIBarButtonSystemItemFlexibleSpace,
UIBarButtonSystemItemFixedSpace,
UIBarButtonSystemItemCompose,
UIBarButtonSystemItemReply,
UIBarButtonSystemItemAction,
UIBarButtonSystemItemOrganize,
UIBarButtonSystemItemBookmarks,
UIBarButtonSystemItemSearch,
UIBarButtonSystemItemRefresh,
UIBarButtonSystemItemStop,
UIBarButtonSystemItemCamera,
UIBarButtonSystemItemTrash,
UIBarButtonSystemItemPlay,
UIBarButtonSystemItemPause,
UIBarButtonSystemItemRewind,
UIBarButtonSystemItemFastForward,

} UIBarButtonSystemItem;

Constants
UIBarButtonSystemItemDone

The system Done button. Localized.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemCancel
The system Cancel button. Localized.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemEdit
The system Edit button. Localized.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemSave
The system Save button. Localized.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemAdd

The system plus button containing an icon of a plus sign.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

Constants 113
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

UIBarButtonSystemItemFlexibleSpace
Blank space to add between other items. The space is distributed equally between the other
items. Other item properties are ignored when this value is set.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemFixedSpace
Blank space to add between other items. Only the width (page 110) property is used when this
value is set.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemCompose

The system compose button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemReply

The system reply button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemAction

The system action button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemOrganize

The system organize button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemBookmarks

The system bookmarks button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemSearch

The system search button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemRefresh

The system refresh button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

114 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

UIBarButtonSystemItemStop

The system stop button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemCamera

The system camera button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemTrash

The system trash button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemPlay

The system play button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemPause

The system pause button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemRewind

The system rewind button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonSystemItemFastForward

The system fast forward button.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarButtonItem.h

UIBarButtonItemStyle
Specifies the style of a item.

Constants 115
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

typedef enum {
UIBarButtonItemStylePlain,
UIBarButtonItemStyleBordered,
UIBarButtonItemStyleDone,

} UIBarButtonItemStyle;

Constants
UIBarButtonItemStylePlain

Glows when tapped. The default item style.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonItemStyleBordered
A simple button style with a border.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

UIBarButtonItemStyleDone
The style for a done button—for example, a button that completes some task and returns to
the previous view.

Available in iPhone OS 2.0 and later.

Declared in UIBarButtonItem.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarButtonItem.h

116 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

UIBarButtonItem Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIBarItem.h

Overview

UIBarItem is an abstract superclass for items added to a bar that appears at the bottom of the screen.
Items on a bar behave in a way similar to buttons. They have a title, image, action, and target. You
can also enable and disable an item on a bar.

Tasks

Getting and Setting Properties

enabled (page 118) property
A Boolean value indicating whether the item is enabled.

image (page 118) property
The image used to represent the item.

imageInsets (page 118) property
The image inset or outset for each edge.

title (page 119) property
The title displayed on the item.

tag (page 119) property
The receiver’s tag, an application-supplied integer that you can use to identify bar item objects
in your application.

Overview 117
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

UIBarItem Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

enabled
A Boolean value indicating whether the item is enabled.

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion
If YES, the item appears dim. The default value is YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarItem.h

image
The image used to represent the item.

@property(nonatomic, retain) UIImage *image

Discussion
This image can be used to create other images to represent this item on the bar—for example, a selected
and unselected image may be derived from this image. You should set this property before adding
the item to a bar. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property imageInsets (page 118)

Declared In
UIBarItem.h

imageInsets
The image inset or outset for each edge.

@property(nonatomic) UIEdgeInsets imageInsets

Discussion
The default value is UIEdgeInsetsZero (page 629).

Availability
Available in iPhone OS 2.0 and later.

118 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

UIBarItem Class Reference

See Also
@property image (page 118)

Declared In
UIBarItem.h

tag
The receiver’s tag, an application-supplied integer that you can use to identify bar item objects in
your application.

@property(nonatomic) NSInteger tag

Discussion
The default value is 0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarItem.h

title
The title displayed on the item.

@property(nonatomic, copy) NSString *title

Discussion
You should set this property before adding the item to a bar. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIBarItem.h

Properties 119
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

UIBarItem Class Reference

120 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

UIBarItem Class Reference

Inherits from: UIControl : UIView : UIResponder : NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIButton.h

Overview

The UIButton class is a UIControl subclass that implements a button on the touch screen. A button
intercepts touch events and sends an action message to a target object when it’s tapped. Methods for
setting the target and action are inherited from UIControl. This class provides methods for setting
the title, image, and other appearance properties of a button. By using the set methods, you can specify
a different appearance for each button state.

Tasks

Creating Buttons

+ buttonWithType: (page 129)
Creates and returns a new button of the specified type.

Configuring Button Title

buttonType (page 124) property
The button type. (read-only)

Overview 121
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

font (page 126) property
The font used to display text on the button.

lineBreakMode (page 127) property
The line break mode to use when drawing text.

titleShadowOffset (page 129) property
The offset of the shadow used to display the receiver’s title.

reversesTitleShadowWhenHighlighted (page 127) property
A Boolean value that determines whether the title shadow changes when the button is
highlighted.

– setTitle:forState: (page 133)
Sets the title to use for the specified state.

– setTitleColor:forState: (page 133)
Sets the color of the title to use for the specified state.

– setTitleShadowColor:forState: (page 134)
Sets the color of the title shadow to use for the specified state.

– titleColorForState: (page 134)
Returns the title color used for a state.

– titleForState: (page 134)
Returns the title used for a state.

– titleShadowColorForState: (page 135)
Returns the shadow color of the title used for a state.

Configuring Button Images

adjustsImageWhenHighlighted (page 124) property
A Boolean value that determines whether the image changes when the button is highlighted.

adjustsImageWhenDisabled (page 123) property
A Boolean value that determines whether the image changes when the button is disabled.

showsTouchWhenHighlighted (page 128) property
A Boolean value that determines whether tapping the button causes it to glow.

– backgroundImageForState: (page 129)
Returns the background image used for a button state.

– imageForState: (page 131)
Returns the image used for a button state.

– setBackgroundImage:forState: (page 132)
Sets the background image to use for the specified button state.

– setImage:forState: (page 132)
Sets the image to use for the specified state.

Configuring Edge Insets

titleEdgeInsets (page 128) property
The title inset or outset for each edge.

122 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

imageEdgeInsets (page 127) property
The image inset or outset for each edge.

contentEdgeInsets (page 124) property
The content inset or outset for each edge.

Getting the Current State

currentTitle (page 125) property
The current title that is displayed on the button. (read-only)

currentTitleColor (page 126) property
The color used to display the title. (read-only)

currentTitleShadowColor (page 126) property
The color of the title’s shadow. (read-only)

currentImage (page 125) property
The current image displayed on the button. (read-only)

currentBackgroundImage (page 125) property
The current background image displayed on the button. (read-only)

Getting Dimensions

– backgroundRectForBounds: (page 130)
Returns the rectangle where the receiver draws its background.

– contentRectForBounds: (page 130)
Returns the rectangle where the receiver draws its entire content.

– titleRectForContentRect: (page 135)
Returns the rectangle where the receiver draws its title.

– imageRectForContentRect: (page 131)
Returns the rectangle where the receiver draws its image.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

adjustsImageWhenDisabled
A Boolean value that determines whether the image changes when the button is disabled.

@property(nonatomic) BOOL adjustsImageWhenDisabled

Discussion
If YES, the image is drawn darker when the button is disabled. The default value is YES.

Availability
Available in iPhone OS 2.0 and later.

Properties 123
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

See Also
@property adjustsImageWhenHighlighted (page 124)

Declared In
UIButton.h

adjustsImageWhenHighlighted
A Boolean value that determines whether the image changes when the button is highlighted.

@property(nonatomic) BOOL adjustsImageWhenHighlighted

Discussion
If YES, the image is drawn lighter when the button is highlighted. The default value is YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property adjustsImageWhenDisabled (page 123)

Declared In
UIButton.h

buttonType
The button type. (read-only)

@property(nonatomic, readonly) UIButtonType buttonType

Discussion
See UIButtonType (page 136) for the possible values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIButton.h

contentEdgeInsets
The content inset or outset for each edge.

@property(nonatomic) UIEdgeInsets contentEdgeInsets

Discussion
If the values for each edge are positive, specifies the inset; otherwise, specifies the outset. An inset is
a margin around the drawing rectangle; each side (left, right, top, and bottom) can have a different
value. Use the UIEdgeInsetsMake (page 642) function to set this property. The default value is
UIEdgeInsetsZero (page 629).

Availability
Available in iPhone OS 2.0 and later.

124 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

See Also
@property imageEdgeInsets (page 127)

Declared In
UIButton.h

currentBackgroundImage
The current background image displayed on the button. (read-only)

@property(nonatomic, readonly, retain) UIImage *currentBackgroundImage

Discussion
This value can be nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property currentImage (page 125)

Declared In
UIButton.h

currentImage
The current image displayed on the button. (read-only)

@property(nonatomic, readonly, retain) UIImage *currentImage

Discussion
This value can be nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property currentBackgroundImage (page 125)

Declared In
UIButton.h

currentTitle
The current title that is displayed on the button. (read-only)

@property(nonatomic, readonly, retain) NSString *currentTitle

Discussion
This value may be nil.

Availability
Available in iPhone OS 2.0 and later.

Properties 125
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

See Also
@property currentTitleColor (page 126)
@property currentTitleShadowColor (page 126)

Declared In
UIButton.h

currentTitleColor
The color used to display the title. (read-only)

@property(nonatomic, readonly, retain) UIColor *currentTitleColor

Discussion
This value is guaranteed not to be nil. The default value is white.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property currentTitle (page 125)
@property currentTitleShadowColor (page 126)

Declared In
UIButton.h

currentTitleShadowColor
The color of the title’s shadow. (read-only)

@property(nonatomic, readonly, retain) UIColor *currentTitleShadowColor

Discussion
The default value is white.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property currentTitle (page 125)
@property currentTitleColor (page 126)

Declared In
UIButton.h

font
The font used to display text on the button.

126 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

@property(nonatomic, retain) UIFont *font

Discussion
If nil, a system font is used. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIButton.h

imageEdgeInsets
The image inset or outset for each edge.

@property(nonatomic) UIEdgeInsets imageEdgeInsets

Discussion
If the values for each edge are positive, specifies the inset; otherwise, specifies the outset. An inset is
a margin around the drawing rectangle; each side (left, right, top, and bottom) can have a different
value. Use the UIEdgeInsetsMake (page 642) function to set this property. The default value is
UIEdgeInsetsZero (page 629).

Availability
Available in iPhone OS 2.0 and later.

See Also
@property titleEdgeInsets (page 128)

Declared In
UIButton.h

lineBreakMode
The line break mode to use when drawing text.

@property(nonatomic) UILineBreakMode lineBreakMode

Discussion
This property is one of the constants described in UILineBreakMode (page 50). The default value is
UILineBreakModeMiddleTruncation (page 51).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIButton.h

reversesTitleShadowWhenHighlighted
A Boolean value that determines whether the title shadow changes when the button is highlighted.

Properties 127
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

@property(nonatomic) BOOL reversesTitleShadowWhenHighlighted

Discussion
If YES, the shadow changes from engrave to emboss appearance when highlighted. The default value
is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIButton.h

showsTouchWhenHighlighted
A Boolean value that determines whether tapping the button causes it to glow.

@property(nonatomic) BOOL showsTouchWhenHighlighted

Discussion
If YES, the button glows when tapped; otherwise, it does not. The image and button behavior is not
changed by the glow. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property adjustsImageWhenHighlighted (page 124)

Declared In
UIButton.h

titleEdgeInsets
The title inset or outset for each edge.

@property(nonatomic) UIEdgeInsets titleEdgeInsets

Discussion
If the values for each edge are positive, specifies the inset; otherwise, specifies the outset. An inset is
a margin around the drawing rectangle; each side (left, right, top, and bottom) can have a different
value. Use the UIEdgeInsetsMake (page 642) function to set this property. The default value is
UIEdgeInsetsZero (page 629).

Availability
Available in iPhone OS 2.0 and later.

See Also
@property imageEdgeInsets (page 127)

Declared In
UIButton.h

128 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

titleShadowOffset
The offset of the shadow used to display the receiver’s title.

@property(nonatomic) CGSize titleShadowOffset

Discussion
The horizontal and vertical offset values, specified using the width and height fields of the CGSize
data type. Positive values always extend up and to the right from the user's perspective. The default
value is CGSizeZero.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIButton.h

Class Methods

buttonWithType:
Creates and returns a new button of the specified type.

+ (id)buttonWithType:(UIButtonType)buttonType

Parameters

buttonType
The button type. See UIButtonType (page 136) for the possible values.

Return Value
A newly created button.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIButton.h

Instance Methods

backgroundImageForState:
Returns the background image used for a button state.

- (UIImage *)backgroundImageForState:(UIControlState)state

Parameters

state
The state that uses the background image. Possible values are described in
UIControlState (page 174).

Class Methods 129
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

Return Value
The background image used for the specified state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setBackgroundImage:forState: (page 132)

Declared In
UIButton.h

backgroundRectForBounds:
Returns the rectangle where the receiver draws its background.

- (CGRect)backgroundRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The rectangle where the receiver draws its background.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentRectForBounds: (page 130)

Declared In
UIButton.h

contentRectForBounds:
Returns the rectangle where the receiver draws its entire content.

- (CGRect)contentRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle for the receiver.

Return Value
The rectangle where the receiver draws its entire content.

Discussion
The content rectangle is the area needed to display the image and title including any padding and
adjustments for alignment and other settings.

Availability
Available in iPhone OS 2.0 and later.

130 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

See Also
– titleRectForContentRect: (page 135)
– imageRectForContentRect: (page 131)
– backgroundRectForBounds: (page 130)

Declared In
UIButton.h

imageForState:
Returns the image used for a button state.

- (UIImage *)imageForState:(UIControlState)state

Parameters

state
The state that uses the image. Possible values are described in UIControlState (page 174).

Return Value
The image used for the specified state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setImage:forState: (page 132)

Declared In
UIButton.h

imageRectForContentRect:
Returns the rectangle where the receiver draws its image.

- (CGRect)imageRectForContentRect:(CGRect)contentRect

Parameters

contentRect
The content rectangle for the receiver.

Return Value
The rectangle where the receiver draws its image.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentRectForBounds: (page 130)
– titleRectForContentRect: (page 135)

Declared In
UIButton.h

Instance Methods 131
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

setBackgroundImage:forState:
Sets the background image to use for the specified button state.

- (void)setBackgroundImage:(UIImage *)image forState:(UIControlState)state

Parameters

image
The background image to use for the specified state.

state
The state that uses the specified image. The values are described in UIControlState (page
174).

Discussion
In general, if a property is not specified for a state, the default is to use the
UIControlStateNormal (page 173) value. If the UIControlStateNormal value is not set, then the
property defaults to a system value. Therefore, at a minimum, you should set the value for the normal
state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– backgroundImageForState: (page 129)

Declared In
UIButton.h

setImage:forState:
Sets the image to use for the specified state.

- (void)setImage:(UIImage *)image forState:(UIControlState)state

Parameters

image
The image to use for the specified state.

state
The state that uses the specified title. The values are described in UIControlState (page 174).

Discussion
In general, if a property is not specified for a state, the default is to use the
UIControlStateNormal (page 173) value. If the UIControlStateNormal value is not set, then the
property defaults to a system value. Therefore, at a minimum, you should set the value for the normal
state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– imageForState: (page 131)

Declared In
UIButton.h

132 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

setTitle:forState:
Sets the title to use for the specified state.

- (void)setTitle:(NSString *)title forState:(UIControlState)state

Parameters

title
The title to use for the specified state.

state
The state that uses the specified title. The values are described in UIControlState (page 174).

Discussion
In general, if a property is not specified for a state, the default is to use the
UIControlStateNormal (page 173) value. If the value for UIControlStateNormal is not set, then the
property defaults to a system value. Therefore, at a minimum, you should set the value for the normal
state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– titleForState: (page 134)

Declared In
UIButton.h

setTitleColor:forState:
Sets the color of the title to use for the specified state.

- (void)setTitleColor:(UIColor *)color forState:(UIControlState)state

Parameters

color
The color of the title to use for the specified state.

state
The state that uses the specified color. The values are described in UIControlState (page 174).

Discussion
In general, if a property is not specified for a state, the default is to use the
UIControlStateNormal (page 173) value. If the UIControlStateNormal value is not set, then the
property defaults to a system value. Therefore, at a minimum, you should set the value for the normal
state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– titleColorForState: (page 134)

Declared In
UIButton.h

Instance Methods 133
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

setTitleShadowColor:forState:
Sets the color of the title shadow to use for the specified state.

- (void)setTitleShadowColor:(UIColor *)color forState:(UIControlState)state

Parameters

color
The color of the title shadow to use for the specified state.

state
The state that uses the specified color. The values are described in UIControlState (page 174).

Discussion
In general, if a property is not specified for a state, the default is to use the
UIControlStateNormal (page 173) value. If the UIControlStateNormal value is not set, then the
property defaults to a system value. Therefore, at a minimum, you should set the value for the normal
state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– titleShadowColorForState: (page 135)

Declared In
UIButton.h

titleColorForState:
Returns the title color used for a state.

- (UIColor *)titleColorForState:(UIControlState)state

Parameters

state
The state that uses the title color. Possible values are described in UIControlState (page 174).

Return Value
The color of the title for the specified state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTitleColor:forState: (page 133)

Declared In
UIButton.h

titleForState:
Returns the title used for a state.

- (NSString *)titleForState:(UIControlState)state

134 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

Parameters

state
The state that uses the title. Possible values are described in UIControlState (page 174).

Return Value
The title for the specified state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTitle:forState: (page 133)

Declared In
UIButton.h

titleRectForContentRect:
Returns the rectangle where the receiver draws its title.

- (CGRect)titleRectForContentRect:(CGRect)contentRect

Parameters

contentRect
The content rectangle for the receiver.

Return Value
The rectangle where the receiver draws its title.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentRectForBounds: (page 130)
– imageRectForContentRect: (page 131)

Declared In
UIButton.h

titleShadowColorForState:
Returns the shadow color of the title used for a state.

- (UIColor *)titleShadowColorForState:(UIControlState)state

Parameters

state
The state that uses the title shadow color. Possible values are described in UIControlState (page
174).

Return Value
The color of the title’s shadow for the specified state.

Instance Methods 135
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTitleShadowColor:forState: (page 134)

Declared In
UIButton.h

Constants

UIButtonType
Specifies the style of a button.

typedef enum {
UIButtonTypeCustom = 0,
UIButtonTypeRoundedRect,
UIButtonTypeDetailDisclosure,
UIButtonTypeInfoLight,
UIButtonTypeInfoDark,
UIButtonTypeContactAdd,

} UIButtonType;

Constants
UIButtonTypeCustom

No button style.

Available in iPhone OS 2.0 and later.

Declared in UIButton.h

UIButtonTypeRoundedRect
A rounded-rectangle style button.

Available in iPhone OS 2.0 and later.

Declared in UIButton.h

UIButtonTypeDetailDisclosure
A detail disclosure button.

Available in iPhone OS 2.0 and later.

Declared in UIButton.h

UIButtonTypeInfoLight
An information button that has a light background.

Available in iPhone OS 2.0 and later.

Declared in UIButton.h

UIButtonTypeInfoDark
An information button that has a dark background.

Available in iPhone OS 2.0 and later.

Declared in UIButton.h

136 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

UIButtonTypeContactAdd
A contact add button.

Available in iPhone OS 2.0 and later.

Declared in UIButton.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIButton.h

Constants 137
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

138 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

UIButton Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIColor.h
UIInterface.h

Overview

A UIColor object represents color and sometimes opacity (alpha value). You can use UIColor objects
to store color data, and during drawing you can use them to set the current fill and stroke colors.

Many methods in UIKit require you to specify color data using a UIColor object, and for general
color needs it should be your main way of specifying colors. The color spaces used by this object are
optimized for use on iPhone OS–based devices and are therefore appropriate for most drawing needs.
If you prefer to use Core Graphics colors and color spaces instead, however, you may do so.

Most developers should have no need to subclass UIColor. The only time doing so might be necessary
is if you require support for additional colorspaces or color models.

Tasks

Creating a UIColor Object from Component Values

+ colorWithWhite:alpha: (page 145)
Creates and returns a color object using the specified opacity and grayscale values.

Overview 139
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

+ colorWithHue:saturation:brightness:alpha: (page 144)
Creates and returns a color object using the specified opacity and HSB color space component
values.

+ colorWithRed:green:blue:alpha: (page 145)
Creates and returns a color object using the specified opacity and RGB component values.

+ colorWithCGColor: (page 143)
Creates and returns a color object using the specified Quartz color reference.

+ colorWithPatternImage: (page 144)
Creates and returns a color object using the specified image.

– colorWithAlphaComponent: (page 150)
Creates and returns a color object that has the same color space and component values as the
receiver, but has the specified alpha component.

Initializing a UIColor Object

– initWithWhite:alpha: (page 153)
Initializes and returns a color object using the specified opacity and grayscale values.

– initWithHue:saturation:brightness:alpha: (page 151)
Initializes and returns a color object using the specified opacity and HSB color space component
values.

– initWithRed:green:blue:alpha: (page 152)
Initializes and returns a color object using the specified opacity and RGB component values.

– initWithCGColor: (page 151)
Initializes and returns a color object using the specified Quartz color reference.

– initWithPatternImage: (page 152)
Initializes and returns a color object using the specified Quartz color reference.

Creating a UIColor with Preset Component Values

+ blackColor (page 142)
Returns a color object whose grayscale value is 0.0 and whose alpha value is 1.0.

+ darkGrayColor (page 146)
Returns a color object whose grayscale value is 1/3 and whose alpha value is 1.0.

+ lightGrayColor (page 148)
Returns a color object whose grayscale value is 2/3 and whose alpha value is 1.0.

+ whiteColor (page 150)
Returns a color object whose grayscale value is 1.0 and whose alpha value is 1.0.

+ grayColor (page 147)
Returns a color object whose grayscale value is 0.5 and whose alpha value is 1.0.

+ redColor (page 149)
Returns a color object whose RGB values are 1.0, 0.0, and 0.0 and whose alpha value is 1.0.

+ greenColor (page 147)
Returns a color object whose RGB values are 0.0, 1.0, and 0.0 and whose alpha value is 1.0.

140 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

+ blueColor (page 142)
Returns a color object whose RGB values are 0.0, 0.0, and 1.0 and whose alpha value is 1.0.

+ cyanColor (page 146)
Returns a color object whose RGB values are 0.0, 1.0, and 1.0 and whose alpha value is 1.0.

+ yellowColor (page 150)
Returns a color object whose RGB values are 1.0, 1.0, and 0.0 and whose alpha value is 1.0.

+ magentaColor (page 148)
Returns a color object whose RGB values are 1.0, 0.0, and 1.0 and whose alpha value is 1.0.

+ orangeColor (page 149)
Returns a color object whose RGB values are 1.0, 0.5, and 0.0 and whose alpha value is 1.0.

+ purpleColor (page 149)
Returns a color object whose RGB values are 0.5, 0.0, and 0.5 and whose alpha value is 1.0.

+ brownColor (page 143)
Returns a color object whose RGB values are 0.6, 0.4, and 0.2 and whose alpha value is 1.0.

+ clearColor (page 143)
Returns a color object whose grayscale and alpha values are both 0.0.

System Colors

+ lightTextColor (page 148)
Returns the system color used for displaying text on a dark background.

+ darkTextColor (page 147)
Returns the system color used for displaying text on a light background.

+ groupTableViewBackgroundColor (page 147)
Returns the system color used for the background of a grouped table.

+ viewFlipsideBackgroundColor (page 149)
Returns the system color used for the back side of a view while it is being flipped.

Retrieving Color Information

CGColor (page 142) property
The Quartz color reference that corresponds to the receiver’s color. (read-only)

Drawing Operations

– set (page 154)
Sets the color of subsequent stroke and fill operations to the color that the receiver represents.

– setFill (page 154)
Sets the color of subsequent fill operations to the color that the receiver represents.

– setStroke (page 154)
Sets the color of subsequent stroke operations to the color that the receiver represents.

Tasks 141
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

CGColor
The Quartz color reference that corresponds to the receiver’s color. (read-only)

@property(nonatomic,readonly) CGColorRef CGColor

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

Class Methods

blackColor
Returns a color object whose grayscale value is 0.0 and whose alpha value is 1.0.

+ (UIColor *)blackColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

blueColor
Returns a color object whose RGB values are 0.0, 0.0, and 1.0 and whose alpha value is 1.0.

+ (UIColor *)blueColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

142 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

brownColor
Returns a color object whose RGB values are 0.6, 0.4, and 0.2 and whose alpha value is 1.0.

+ (UIColor *)brownColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

clearColor
Returns a color object whose grayscale and alpha values are both 0.0.

+ (UIColor *)clearColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

colorWithCGColor:
Creates and returns a color object using the specified Quartz color reference.

+ (UIColor *)colorWithCGColor:(CGColorRef)cgColor

Parameters

cgColor
A reference to a Quartz color.

Return Value
The color object. The color information represented by this object is in the native colorspace of the
specified Quartz color.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithCGColor: (page 151)

Declared In
UIColor.h

Class Methods 143
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

colorWithHue:saturation:brightness:alpha:
Creates and returns a color object using the specified opacity and HSB color space component values.

+ (UIColor *)colorWithHue:(CGFloat)hue saturation:(CGFloat)saturation
brightness:(CGFloat)brightness alpha:(CGFloat)alpha

Parameters

hue
The hue component of the color object in the HSB color space, specified as a value from 0.0 to
1.0.

saturation
The saturation component of the color object in the HSB color space, specified as a value from
0.0 to 1.0.

brightness
The brightness (or value) component of the color object in the HSB color space, specified as a
value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
The color object. The color information represented by this object is in the device RGB colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithHue:saturation:brightness:alpha: (page 151)

Declared In
UIColor.h

colorWithPatternImage:
Creates and returns a color object using the specified image.

+ (UIColor *)colorWithPatternImage:(UIImage *)image

Parameters

image
The image to use when creating the pattern color.

Return Value
The pattern color.

Discussion
You can use pattern colors to set the fill or stroke color just as you would a solid color. During drawing,
the image in the pattern color is tiled as necessary to cover the given area.

144 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

By default, the phase of the returned color is 0, which causes the top-left corner of the image to be
aligned with the drawing origin. To change the phase, make the color the current color and then use
the CGContextSetPatternPhase function to change the phase.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithPatternImage: (page 152)

Declared In
UIColor.h

colorWithRed:green:blue:alpha:
Creates and returns a color object using the specified opacity and RGB component values.

+ (UIColor *)colorWithRed:(CGFloat)red green:(CGFloat)green blue:(CGFloat)blue
alpha:(CGFloat)alpha

Parameters

red
The red component of the color object, specified as a value from 0.0 to 1.0.

green
The green component of the color object, specified as a value from 0.0 to 1.0.

blue
The blue component of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
The color object. The color information represented by this object is in the device RGB colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithRed:green:blue:alpha: (page 152)

Declared In
UIColor.h

colorWithWhite:alpha:
Creates and returns a color object using the specified opacity and grayscale values.

+ (UIColor *)colorWithWhite:(CGFloat)white alpha:(CGFloat)alpha

Class Methods 145
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

Parameters

white
The grayscale value of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
The color object. The color information represented by this object is in the device gray colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithWhite:alpha: (page 153)

Declared In
UIColor.h

cyanColor
Returns a color object whose RGB values are 0.0, 1.0, and 1.0 and whose alpha value is 1.0.

+ (UIColor *)cyanColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

darkGrayColor
Returns a color object whose grayscale value is 1/3 and whose alpha value is 1.0.

+ (UIColor *)darkGrayColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

146 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

darkTextColor
Returns the system color used for displaying text on a light background.

+ (UIColor *)darkTextColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

grayColor
Returns a color object whose grayscale value is 0.5 and whose alpha value is 1.0.

+ (UIColor *)grayColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

greenColor
Returns a color object whose RGB values are 0.0, 1.0, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)greenColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

groupTableViewBackgroundColor
Returns the system color used for the background of a grouped table.

+ (UIColor *)groupTableViewBackgroundColor

Return Value
The UIColor object.

Class Methods 147
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

lightGrayColor
Returns a color object whose grayscale value is 2/3 and whose alpha value is 1.0.

+ (UIColor *)lightGrayColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

lightTextColor
Returns the system color used for displaying text on a dark background.

+ (UIColor *)lightTextColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

magentaColor
Returns a color object whose RGB values are 1.0, 0.0, and 1.0 and whose alpha value is 1.0.

+ (UIColor *)magentaColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

148 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

orangeColor
Returns a color object whose RGB values are 1.0, 0.5, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)orangeColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

purpleColor
Returns a color object whose RGB values are 0.5, 0.0, and 0.5 and whose alpha value is 1.0.

+ (UIColor *)purpleColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

redColor
Returns a color object whose RGB values are 1.0, 0.0, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)redColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

viewFlipsideBackgroundColor
Returns the system color used for the back side of a view while it is being flipped.

+ (UIColor *)viewFlipsideBackgroundColor

Return Value
The UIColor object.

Class Methods 149
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

whiteColor
Returns a color object whose grayscale value is 1.0 and whose alpha value is 1.0.

+ (UIColor *)whiteColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

yellowColor
Returns a color object whose RGB values are 1.0, 1.0, and 0.0 and whose alpha value is 1.0.

+ (UIColor *)yellowColor

Return Value
The UIColor object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

Instance Methods

colorWithAlphaComponent:
Creates and returns a color object that has the same color space and component values as the receiver,
but has the specified alpha component.

- (UIColor *)colorWithAlphaComponent:(CGFloat)alpha

Parameters

alpha
The opacity value of the new UIColor object.

Return Value
The new UIColor object.

150 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

Discussion
A subclass with explicit opacity components should override this method to return a color with the
specified alpha.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIColor.h

initWithCGColor:
Initializes and returns a color object using the specified Quartz color reference.

- (UIColor *)initWithCGColor:(CGColorRef)cgColor

Parameters

cgColor
A reference to a Quartz color.

Return Value
An initialized color object. The color information represented by this object is in the native colorspace
of the specified Quartz color.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ colorWithCGColor: (page 143)

Declared In
UIColor.h

initWithHue:saturation:brightness:alpha:
Initializes and returns a color object using the specified opacity and HSB color space component
values.

- (UIColor *)initWithHue:(CGFloat)hue saturation:(CGFloat)saturation
brightness:(CGFloat)brightness alpha:(CGFloat)alpha

Parameters

hue
The hue component of the color object in the HSB color space, specified as a value from 0.0 to
1.0.

saturation
The saturation component of the color object in the HSB color space, specified as a value from
0.0 to 1.0.

brightness
The brightness (or value) component of the color object in the HSB color space, specified as a
value from 0.0 to 1.0.

Instance Methods 151
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
An initialized color object. The color information represented by this object is in the device RGB
colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ colorWithHue:saturation:brightness:alpha: (page 144)

Declared In
UIColor.h

initWithPatternImage:
Initializes and returns a color object using the specified Quartz color reference.

- (UIColor *)initWithPatternImage:(UIImage *)image

Parameters

image
The image to use when creating the pattern color.

Return Value
The pattern color.

Discussion
You can use pattern colors to set the fill or stroke color just as you would a solid color. During drawing,
the image in the pattern color is tiled as necessary to cover the given area.

By default, the phase of the returned color is 0, which causes the top-left corner of the image to be
aligned with the drawing origin. To change the phase, make the color the current color and then use
the CGContextSetPatternPhase function to change the phase.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ colorWithPatternImage: (page 144)

Declared In
UIColor.h

initWithRed:green:blue:alpha:
Initializes and returns a color object using the specified opacity and RGB component values.

- (UIColor *)initWithRed:(CGFloat)red green:(CGFloat)green blue:(CGFloat)blue
alpha:(CGFloat)alpha

152 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

Parameters

red
The red component of the color object, specified as a value from 0.0 to 1.0.

green
The green component of the color object, specified as a value from 0.0 to 1.0.

blue
The blue component of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
An initialized color object. The color information represented by this object is in the device RGB
colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ colorWithRed:green:blue:alpha: (page 145)

Declared In
UIColor.h

initWithWhite:alpha:
Initializes and returns a color object using the specified opacity and grayscale values.

- (UIColor *)initWithWhite:(CGFloat)white alpha:(CGFloat)alpha

Parameters

white
The grayscale value of the color object, specified as a value from 0.0 to 1.0.

alpha
The opacity value of the color object, specified as a value from 0.0 to 1.0.

Return Value
An initialized color object. The color information represented by this object is in the device gray
colorspace.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ colorWithWhite:alpha: (page 145)

Declared In
UIColor.h

Instance Methods 153
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

set
Sets the color of subsequent stroke and fill operations to the color that the receiver represents.

- (void)set

Discussion
If you subclass UIColor, you must implement this method in your subclass. Your custom
implementation should modify both the stroke and fill color in the current graphics context by setting
them both to the color represented by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setFill (page 154)
– setStroke (page 154)

Declared In
UIColor.h

setFill
Sets the color of subsequent fill operations to the color that the receiver represents.

- (void)setFill

Discussion
If you subclass UIColor, you must implement this method in your subclass. Your custom
implementation should modify the fill color in the current graphics context by setting it to the color
represented by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– set (page 154)

Declared In
UIColor.h

setStroke
Sets the color of subsequent stroke operations to the color that the receiver represents.

- (void)setStroke

Discussion
If you subclass UIColor, you must implement this method in your subclass. Your custom
implementation should modify the stroke color in the current graphics context by setting it to the
color represented by the receiver.

Availability
Available in iPhone OS 2.0 and later.

154 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

See Also
– set (page 154)

Declared In
UIColor.h

Instance Methods 155
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

156 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

UIColor Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIControl.h

Overview

UIControl is the base class for controls: objects such as buttons and sliders that are used to convey
user intent to the application. You cannot use UIControl directly to instantiate controls. It instead
defines the common interface and behavioral structure for all subclasses of it.

The main role of UIControl is to define an interface and base implementation for preparing action
messages and initially dispatching them to their targets when specified events occur. (See “The
Target-Action Mechanism” (page 157) for an overview.) It also includes methods for getting and setting
control state (for example, for determining whether a control is enabled or highlighted) and it defines
methods for tracking touches within a control (the latter group of methods are for overriding by
subclasses).

The Target-Action Mechanism

The design of the target-action mechanism in the UIKit framework is based on the Multi-Touch event
model. In iPhone OS the user’s fingers (or touches) convey intent (instead of mouse clicks and drags),
and there can be multiple touches at any moment on a control going in different directions.

Overview 157
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

Note: For more information on the Multi-Touch event model, see Event Handling in iPhone OS
Programming Guide.

The UIControl.h header file declares a large number of control events as constants for a bit mask
described in “Control Events” (page 169). Some control events specify the behavior of touches in
and around the control—various permutations of actions such a finger touching down in a control,
dragging into and away from a control, and lifting up from a control. Other control events specify
editing phases initiated when a finger touches down in a text field. And yet another control event,
UIControlEventValueChanged (page 170), is for controls such as sliders, where a value continuously
changes based on the manipulation of the control. For any particular action message, you can specify
one or more control events as the trigger for sending that message. For example, you could request
a certain action message be sent to a certain target when a finger touches down in a control or is
dragged into it (UIControlEventTouchDown (page 169) | UIControlEventTouchDragEnter (page
170)).

You prepare a control for sending an action message by calling
addTarget:action:forControlEvents: (page 164) for each target-action pair you want to specify.
This method builds an internal dispatch table associating each target-action pair with a control event.
When a user touches the control in a way that corresponds to one or more specified events, UIControl
sends itself sendActionsForControlEvents: (page 168). This results in UIControl sending the action
to UIApplication in a sendAction:to:from:forEvent: (page 98) message. UIApplication is the
centralized dispatch point for action messages; if a nil target is specified for an action message, the
application sends the action to the first responder where it travels up the responder chain until it
finds an object willing to handle the action message—that is, object that implements a method
corresponding to the action selector. (Event Handling gives an overview of the first responder and
the responder chain.)

UIKit allows three different forms of action selector:

- (void)action

- (void)action:(id)sender

- (void)action:(id)sender forEvent:(UIEvent *)event

The sendAction:to:fromSender:forEvent: method of UIApplication pushes two parameters
when calling the target. These last two parameters are optional for the application because it's up to
the caller (usually a UIControl object) to remove any parameters it added.

Subclassing Notes

You may want to extend a UIControl subclass for two basic reasons:

 ■ To observe or modify the dispatch of action messages to targets for particular events

To do this, override sendAction:to:forEvent: (page 167), evaluate the passed-in selector, target
object, or “Note” (page 158) bit mask and proceed as required.

 ■ To provide custom tracking behavior (for example, to change the highlight appearance)

To do this, override one or all of the following methods:
beginTrackingWithTouch:withEvent: (page 165),
continueTrackingWithTouch:withEvent: (page 166),endTrackingWithTouch:withEvent: (page
166).

158 Overview
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

Tasks

Preparing and Sending Action Messages

– sendAction:to:forEvent: (page 167)
In response to a given event, forwards an action message to the application object for dispatching
to a target.

– sendActionsForControlEvents: (page 168)
Sends action messages for the given control events.

– addTarget:action:forControlEvents: (page 164)
Adds a target and action for a particular event (or events) to an internal dispatch table.

– removeTarget:action:forControlEvents: (page 167)
Removes a target and action for a particular event (or events) from an internal dispatch table.

– actionsForTarget:forControlEvent: (page 163)
Returns the actions that are associated with a target and a particular control event.

– allTargets (page 165)
Returns all target objects associated with the receiver.

– allControlEvents (page 165)
Returns all control events associated with the receiver.

Setting and Getting Control Attributes

state (page 162) property
A Boolean value that indicates the state of the receiver. (read-only)

enabled (page 161) property
A Boolean value that determines whether the receiver is enabled.

selected (page 162) property
A Boolean value that determines the receiver’s selected state.

highlighted (page 161) property
A Boolean value that determines whether the receiver is highlighted.

contentVerticalAlignment (page 160) property
The vertical alignment of content (text or image) within the receiver.

contentHorizontalAlignment (page 160) property
The horizontal alignment of content (text or image) within the receiver.

Tracking Touches and Redrawing Controls

– beginTrackingWithTouch:withEvent: (page 165)
Sent the control when a touch related to the given event enters its bounds.

– continueTrackingWithTouch:withEvent: (page 166)
Sent continuously to the control as it tracks a touch related to the given event within its bounds.

Tasks 159
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

– endTrackingWithTouch:withEvent: (page 166)
Sent to the control when the last touch for the given event leaves its bounds, telling it to stop
tracking.

– cancelTrackingWithEvent: (page 166)
Tells the control to cancel tracking related to the given event.

tracking (page 163) property
A Boolean value that indicates whether the receiver is currently tracking touches related to an
event. (read-only)

touchInside (page 163) property
A Boolean value that indicates whether a touch is inside the bounds of the receiver. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

contentHorizontalAlignment
The horizontal alignment of content (text or image) within the receiver.

@property(nonatomic) UIControlContentHorizontalAlignment contentHorizontalAlignment

Parameters

contentAlignment
A constant that specifies the alignment of text or image within the receiver. See “Horizontal
Content Alignment” (page 172) for descriptions of valid constants.

Discussion
The value of this property is a UIControlContentAlignment constant that specifies the alignment
of text or image within the receiver. The default is UIControlContentHorizontalAlignmentLeft (page
172).

Availability
Available in iPhone OS 2.0 and later.

See Also
@property contentVerticalAlignment (page 160)

Declared In
UIControl.h

contentVerticalAlignment
The vertical alignment of content (text or image) within the receiver.

160 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

@property(nonatomic) UIControlContentVerticalAlignment contentVerticalAlignment

Parameters

contentAlignment
A constant that specifies the alignment of text or image within the receiver. See “Vertical
Content Alignment” (page 171) for descriptions of valid constants.

Discussion
This value of this property is a UIControlContentAlignment constant that specifies the alignment
of text or image within the receiver. The default is UIControlContentVerticalAlignmentTop (page
171).

Availability
Available in iPhone OS 2.0 and later.

See Also
@property contentHorizontalAlignment (page 160)

Declared In
UIControl.h

enabled
A Boolean value that determines whether the receiver is enabled.

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion
Specify YES to make the control enabled; otherwise, specify NO to make it disabled. The default value
is YES. If the enabled state is NO, the control ignores touch events and subclasses may draw differently.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property state (page 162)

Declared In
UIControl.h

highlighted
A Boolean value that determines whether the receiver is highlighted.

@property(nonatomic, getter=isHighlighted) BOOL highlighted

Discussion
Specify YES if the control is highlighted; otherwise NO. By default, a control is not highlighted.
UIControl automatically sets and clears this state automatically when a touch enters and exits during
tracking and and when there is a touch up.

Availability
Available in iPhone OS 2.0 and later.

Properties 161
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

See Also
@property state (page 162)

Declared In
UIControl.h

selected
A Boolean value that determines the receiver’s selected state.

@property(nonatomic, getter=isSelected) BOOL selected

Discussion
Specify YES if the control is selected; otherwise NO. The default is NO. For many controls, this state has
no effect on behavior or appearance. But other subclasses (for example, UISwitchControl) or the
application object might read or set this control state.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property state (page 162)

Declared In
UIControl.h

state
A Boolean value that indicates the state of the receiver. (read-only)

@property(nonatomic, readonly) UIControlState state

Discussion
One or more UIControlState (page 174) bit-mask constants that specify the state of the UIControl
object; for information on these constants, see “Control State” (page 173). Note that the control can be
in more than one state, for example, both disabled and selected (UIControlStateDisabled (page
173) | UIControlStateSelected (page 174)).This attribute is read only—there is no corresponding
setter method.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property enabled (page 161)
@property selected (page 162)
@property highlighted (page 161)

Declared In
UIControl.h

162 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

touchInside
A Boolean value that indicates whether a touch is inside the bounds of the receiver. (read-only)

@property(nonatomic, readonly, getter=isTouchInside) BOOL touchInside

Return Value
YES if a touch is inside the receiver’s bounds; otherwise NO.

Discussion
The value is YES if a touch is inside the receiver’s bounds; otherwise the value is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIControl.h

tracking
A Boolean value that indicates whether the receiver is currently tracking touches related to an event.
(read-only)

@property(nonatomic, readonly, getter=isTracking) BOOL tracking

Discussion
The value is YES if the receiver is tracking touches; otherwiseNO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIControl.h

Instance Methods

actionsForTarget:forControlEvent:
Returns the actions that are associated with a target and a particular control event.

- (NSArray *)actionsForTarget:(id)target
forControlEvent:(UIControlEvents)controlEvent

Parameters

target
The target object—that is, the object to which an action message is sent. If this is nil, all actions
associated with the control event are returned.

controlEvent
A single constant of type “Note” (page 158) that specifies a particular user action on the control;
for a list of these constants, see “Control Events” (page 169).

Instance Methods 163
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

Return Value
An array of selector names as NSString objects or nil if there are no action selectors associated with
the control event.

Discussion
Pass in a selector name to the NSSelectorFromString function to obtain the selector (SEL) value.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sendAction:to:forEvent: (page 167)
– sendActionsForControlEvents: (page 168)
– addTarget:action:forControlEvents: (page 164)

Declared In
UIControl.h

addTarget:action:forControlEvents:
Adds a target and action for a particular event (or events) to an internal dispatch table.

- (void)addTarget:(id)target action:(SEL)action
forControlEvents:(UIControlEvents)controlEvents

Parameters

target
The target object—that is, the object to which the action message is sent. If this is nil, the
responder chain is searched for an object willing to respond to the action message.

action
A selector identifying an action message. It cannot be NULL.

controlEvents
A bitmask specifying the control events for which the action message is sent. See “Control
Events” (page 169) for bitmask constants.

Discussion
You may call this method multiple times, and you may specify multiple target-action pairs for a
particular event. The action message may optionally include the sender and the event as parameters,
in that order.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeTarget:action:forControlEvents: (page 167)
– actionsForTarget:forControlEvent: (page 163)

Declared In
UIControl.h

164 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

allControlEvents
Returns all control events associated with the receiver.

- (UIControlEvents)allControlEvents

Return Value
One or more “Note” (page 158) constants that specify the current control events associated with the
receiver; for a list of these constants, see “Control Events” (page 169)list of all events that have at least
one action.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allTargets (page 165)

Declared In
UIControl.h

allTargets
Returns all target objects associated with the receiver.

- (NSSet *)allTargets

Return Value
A set of all targets—that is, the objects to which action messages are sent—for the receiver. The set
may include NSNull to indicate at least one nil target (meaning, the responder chain is searched for
a target).

Availability
Available in iPhone OS 2.0 and later.

See Also
– allControlEvents (page 165)

Declared In
UIControl.h

beginTrackingWithTouch:withEvent:
Sent the control when a touch related to the given event enters its bounds.

- (BOOL)beginTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event

Parameters

touch
A UITouch object that represents a touch on the receiving control during tracking.

event
An event object encapsulating the information specific to the user event.

Instance Methods 165
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

Return Value
YES if the receiver is set to respond continuously or set to respond when a touch is dragged; otherwise
NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIControl.h

cancelTrackingWithEvent:
Tells the control to cancel tracking related to the given event.

- (void)cancelTrackingWithEvent:(UIEvent *)event

Parameters

event
An event object encapsulating the information specific to the user event. This parameter might
be nil, indicating that the cancelation was caused by something other than an event, such as
the view being removed from the window.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIControl.h

continueTrackingWithTouch:withEvent:
Sent continuously to the control as it tracks a touch related to the given event within its bounds.

- (BOOL)continueTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event

Parameters

touch
A UITouch object that represents a touch on the receiving control during tracking.

event
An event object encapsulating the information specific to the user event

Return Value
YES if mouse tracking should continue; otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIControl.h

endTrackingWithTouch:withEvent:
Sent to the control when the last touch for the given event leaves its bounds, telling it to stop tracking.

166 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

- (void)endTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event

Parameters

touches
A UITouch object that represents a touch on the receiving control during tracking.

event
An event object encapsulating the information specific to the user event.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIControl.h

removeTarget:action:forControlEvents:
Removes a target and action for a particular event (or events) from an internal dispatch table.

- (void)removeTarget:(id)target action:(SEL)action
forControlEvents:(UIControlEvents)controlEvents

Parameters

target
The target object—that is, the object to which the action message is sent.

action
A selector identifying an action message. Pass NULL to remove all action messages paired with
target.

controlEvents
A bitmask specifying the control events associated with target and action. See “Control
Events” (page 169) for bitmask constants.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addTarget:action:forControlEvents: (page 164)

Declared In
UIControl.h

sendAction:to:forEvent:
In response to a given event, forwards an action message to the application object for dispatching to
a target.

- (void)sendAction:(SEL)action to:(id)target forEvent:(UIEvent *)event

Parameters

action
A selector identifying an action message. It cannot be NULL.

Instance Methods 167
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

target
The target object—that is, the object to which the action message is sent. If this is nil, the
receiver traverses the responder chain and sends the action message to the first object willing
to respond to it.

event
An object representing the event (typically in a UIControl object) that originated the action
message. The event can be nil if the action is invoked directly instead of being caused by an
event. For example, a value-changed message might be sent for programmatic reasons rather
than as a result of the user touching the control.

Discussion
UIControl implements this method to forward an action message to the singleton UIApplication
object (in its sendAction:to:fromSender:forEvent: method) for dispatching it to the target or, if
there is no specified target, to the first object in the responder chain that is willing to handle it.
Subclasses may override this method to observe or modify action-forwarding behavior. The
implementation of sendActionsForControlEvents: (page 168) might call this method repeatedly,
once for each specified control event.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addTarget:action:forControlEvents: (page 164)
– sendActionsForControlEvents: (page 168)

Declared In
UIControl.h

sendActionsForControlEvents:
Sends action messages for the given control events.

- (void)sendActionsForControlEvents:(UIControlEvents)controlEvents

Parameters

controlEvents
A bitmask whose set flags specify the control events for which action messages are sent. See
“Control Events” (page 169) for bitmask constants.

Discussion
UIControl implements this method to send all action messages associated with controlEvents,
repeatedly invoking sendAction:to:forEvent: (page 167) in the process. The list of targets and
actions it looks up is constructed from prior invocations of
addTarget:action:forControlEvents: (page 164).

Availability
Available in iPhone OS 2.0 and later.

See Also
– sendAction:to:forEvent: (page 167)
– addTarget:action:forControlEvents: (page 164)

Declared In
UIControl.h

168 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

Constants

Control Events
Kinds of events possible for control objects.

enum {
UIControlEventTouchDown = 1 << 0,
UIControlEventTouchDownRepeat = 1 << 1,
UIControlEventTouchDragInside = 1 << 2,
UIControlEventTouchDragOutside = 1 << 3,
UIControlEventTouchDragEnter = 1 << 4,
UIControlEventTouchDragExit = 1 << 5,
UIControlEventTouchUpInside = 1 << 6,
UIControlEventTouchUpOutside = 1 << 7,
UIControlEventTouchCancel = 1 << 8,

UIControlEventValueChanged = 1 << 12,

UIControlEventEditingDidBegin = 1 << 16,
UIControlEventEditingChanged = 1 << 17,
UIControlEventEditingDidEnd = 1 << 18,
UIControlEventEditingDidEndOnExit = 1 << 19,

UIControlEventAllTouchEvents = 0x00000FFF,
UIControlEventAllEditingEvents = 0x000F0000,
UIControlEventApplicationReserved = 0x0F000000,
UIControlEventSystemReserved = 0xF0000000,
UIControlEventAllEvents = 0xFFFFFFFF

};

Constants
UIControlEventTouchDown

A touch-down event in the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventTouchDownRepeat
A repeated touch-down event in the control; for this event the value of the UITouch tapCount
method is greater than one.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventTouchDragInside
An event where a finger is dragged inside the bounds of the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventTouchDragOutside
An event where a finger is dragged just outside the bounds of the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

Constants 169
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

UIControlEventTouchDragEnter
An event where a finger is dragged into the bounds of the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventTouchDragExit
An event where a finger is dragged from within a control to outside its bounds.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventTouchUpInside
A touch-up event in the control where the finger is inside the bounds of the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventTouchUpOutside
A touch-up event in the control where the finger is outside the bounds of the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventTouchCancel
A system event canceling the current touches for the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventValueChanged
A touch dragging or otherwise manipulating a control, causing it to emit a series of different
values.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventEditingDidBegin
A touch initiating an editing session in a UITextField object by entering its bounds.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventEditingChanged
A touch making an editing change in a UITextField objet.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventEditingDidEnd
A touch ending an editing session in a UITextField object by leaving its bounds.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventEditingDidEndOnExit
A touch ending an editing session in a UITextField object.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

170 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

UIControlEventAllTouchEvents
All touch events.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventAllEditingEvents
All editing touches for UITextField objects.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventApplicationReserved
A range of control-event values available for application use.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventSystemReserved
A range of control-event values reserved for internal framework use.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlEventAllEvents
All events, including system events.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

Declared In
UIControl.h

Vertical Content Alignment
The vertical alignment of content (text and images) within a control.

typedef enum {
UIControlContentVerticalAlignmentCenter = 0,
UIControlContentVerticalAlignmentTop = 1,
UIControlContentVerticalAlignmentBottom = 2,
UIControlContentVerticalAlignmentFill = 3,

} UIControlContentVerticalAlignment;

Constants
UIControlContentVerticalAlignmentCenter

Aligns the content vertically in the center of the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlContentVerticalAlignmentTop
Aligns the content vertically at the top in the control (the default).

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

Constants 171
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

UIControlContentVerticalAlignmentBottom
Aligns the content vertically at the bottom in the control

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlContentVerticalAlignmentFill
Aligns the content vertically to fill the content rectangle; images may be stretched.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

Discussion
You use these constants as the value of the contentVerticalAlignment (page 160) property.

Declared In
UITouch.h

Horizontal Content Alignment
The horizontal alignment of content (text and images) within a control.

typedef enum {
UIControlContentHorizontalAlignmentCenter = 0,
UIControlContentHorizontalAlignmentLeft = 1,
UIControlContentHorizontalAlignmentRight = 2,
UIControlContentHorizontalAlignmentFill = 3,

} UIControlContentHorizontalAlignment;

Constants
UIControlContentHorizontalAlignmentCenter

Aligns the content horizontally in the center of the control.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlContentHorizontalAlignmentLeft
Aligns the content horizontally from the left of the control (the default).

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlContentHorizontalAlignmentRight
Aligns the content horizontally from the right of the control

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlContentHorizontalAlignmentFill
Aligns the content horizontally to fill the content rectangles; text may wrap and images may
be stretched.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

Discussion
You use these constants as the value of the contentHorizontalAlignment (page 160) property.

Declared In
UIControl.h

172 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

UIControlContentAlignment
The bit-mask type for the content-alignment constants.

typedef NSUInteger UIControlContentAlignment;

Discussion
This is the type for the constants listed in “Vertical Content Alignment” (page 171) and “Horizontal
Content Alignment” (page 172). Use contentVerticalAlignment (page 160) and
contentHorizontalAlignment (page 160) properties to retrieve the current control alignment and
set it.

Declared In
UITouch.h

Control State
The state of a control; a control can have more than one state at a time. States are recognized differently
depending on the control. For example, a UIButton instance may be configured (using the
setImage:forState: (page 132) method) to display one image when it is in its normal state and a
different image when it is highlighted.

enum {
UIControlStateNormal = 0,
UIControlStateHighlighted = 1 << 0,
UIControlStateDisabled = 1 << 1,
UIControlStateSelected = 1 << 2,
UIControlStateApplicationReserved = 0x00FF0000,
UIControlStateReserved = 0xFF000000

};

Constants
UIControlStateNormal

The normal, or default state of a control—that is, enabled but neither selected or highlighted.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlStateHighlighted
Highlighted state of a control. A control enters this state when a touch enters and exits during
tracking and and when there is a touch up. You can retrieve and set this value through the
highlighted (page 161) property.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlStateDisabled
Disabled state of a control. This state indicates that the control is currently disabled. You can
retrieve and set this value through the enabled (page 161) property.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

Constants 173
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

UIControlStateSelected
Selected state of a control. For many controls, this state has no effect on behavior or appearance.
But other subclasses (for example, UISwitchControl). You can retrieve and set this value
through the selected (page 162) property.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

UIControlStateApplicationReserved
Additional control-state flags available for application use.

UIControlStateReserved
Control-state flags reserved for internal framework use.

Available in iPhone OS 2.0 and later.

Declared in UIControl.h

Declared In
UITouch.h

UIControlState
The bit-mask type for control-state constants.

typedef NSUInteger UIControlState;

Discussion
The constants are listed in “Control State” (page 173). Use the state (page 162) property to retrieve
the current state bits set for a control.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIControl.h

174 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

UIControl Class Reference

Inherits from: UIControl : UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIDatePicker.h

Overview

The UIDatePicker class implements an object that uses multiple rotating wheels to allow users to
select dates and times. iPhone examples of a date picker are the Timer and Alarm (Set Alarm) panes
of the Clock application. You may also use a date picker as a countdown timer.

When properly configured, a UIDatePicker object sends an action message when a user finishes
rotating one of the wheels to change the date or time; the associated control event is
UIControlEventValueChanged (page 170). A UIDatePicker object presents the countdown timer but
does not implement it; the application must set up an NSTimer object and update the seconds as
they’re counted down.

UIDatePicker does not inherit from UIPickerView, but it manages a custom picker-view object as
a subview.

Tasks

Managing the Date and Calendar

calendar (page 176) property
The calendar to use for the date picker.

date (page 177) property
The date displayed by the date picker.

Overview 175
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

locale (page 178) property
The locale used by the date picker.

– setDate:animated: (page 180)
Sets the date to display in the date picker, with an option to animate the setting.

timeZone (page 179) property
The time zone reflected in the date displayed by the date picker.

Configuring the Date Picker Mode

datePickerMode (page 177) property
The mode of the date picker.

Configuring Temporal Attributes

maximumDate (page 178) property
The maximum date that a date picker can show.

minimumDate (page 179) property
The minimum date that a date picker can show.

minuteInterval (page 179) property
The interval at which the date picker should display minutes.

countDownDuration (page 177) property
The seconds from which the countdown timer counts down.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

calendar
The calendar to use for the date picker.

@property(nonatomic, copy) NSCalendar *calendar

Discussion
The default value is nil. which means use the user’s current calendar (equivalent to calling the
NSCalendar class method currentCalendar). Calendars specify the details of cultural systems used
for reckoning time; they identify the beginning, length, and divisions of a year.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property locale (page 178)
@property timeZone (page 179)

176 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

Declared In
UIDatePicker.h

countDownDuration
The seconds from which the countdown timer counts down.

@property(nonatomic) NSTimeInterval countDownDuration

Discussion
The NSTimeInterval value of this property indicates the seconds from which the date picker in
countdown-timer mode counts down. If the mode of the date picker is not
UIDatePickerModeCountDownTimer (page 181), this value is ignored. The default value is 0.0 and the
maximum value is 23:59 (86,399 seconds).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDatePicker.h

date
The date displayed by the date picker.

@property(nonatomic, retain) NSDate *date

Discussion
The default is the date when the UIDatePicker object is created. The date is ignored in the mode
UIDatePickerModeCountDownTimer (page 181); for that mode, the date picker starts at 0:00. Setting
this property does not animate the date picker by spinning the wheels to the new date and time; to
do that you must use the setDate:animated: (page 180) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDate:animated: (page 180)

Declared In
UIDatePicker.h

datePickerMode
The mode of the date picker.

Properties 177
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

@property(nonatomic) UIDatePickerMode datePickerMode

Discussion
The value of this property indicates the mode of a date picker. It determines whether the date picker
allows selection of a date, a time, both date and time, or a countdown time. The default mode is
UIDatePickerModeDateAndTime (page 181). See “Date Picker Mode” (page 180) for a list of mode
constants.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDatePicker.h

locale
The locale used by the date picker.

@property(nonatomic, retain) NSLocale *locale

Discussion
The default value is nil. which tells the date picker to use the current locale as returned by
currentLocale (NSLocale) or the locale used by the date picker’s calendar. Locales encapsulate
information about facets of a language or culture, such as the way dates are formatted.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property calendar (page 176)
@property timeZone (page 179)

Declared In
UIDatePicker.h

maximumDate
The maximum date that a date picker can show.

@property(nonatomic, retain) NSDate *maximumDate

Discussion
The property is an NSDate object or nil (the default), which means no maximum date. This property,
along with the minimumDate (page 179) property, lets you specify a valid date range. If the minimum
date value is greater than the maximum date value, both properties are ignored. The minimum and
maximum dates are also ignored in the coundown-timer mode
(UIDatePickerModeCountDownTimer (page 181)).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDatePicker.h

178 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

minimumDate
The minimum date that a date picker can show.

@property(nonatomic, retain) NSDate *minimumDate

Discussion
The property is an NSDate object or nil (the default), which means no minimum date. This property,
along with the maximumDate (page 178) property, lets you specify a valid date range. If the minimum
date value is greater than the maximum date value, both properties are ignored. The minimum and
maximum dates are also ignored in the coundown-timer mode
(UIDatePickerModeCountDownTimer (page 181)).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDatePicker.h

minuteInterval
The interval at which the date picker should display minutes.

@property(nonatomic) NSInteger minuteInterval

Discussion
You can use this property to set the interval displayed by the minutes wheel (for example, 15 minutes).
The interval value must be evenly divided into 60; if it is not, the default value is used. The default
and minimum values are 1; the maximum value is 30.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDatePicker.h

timeZone
The time zone reflected in the date displayed by the date picker.

@property(nonatomic, retain) NSTimeZone *timeZone

Discussion
The default value is nil. which tells the date picker to use the current time zone as returned by
localTimeZone (NSTimeZone) or the time zone used by the date picker’s calendar.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property calendar (page 176)
@property locale (page 178)

Properties 179
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

Declared In
UIDatePicker.h

Instance Methods

setDate:animated:
Sets the date to display in the date picker, with an option to animate the setting.

- (void)setDate:(NSDate *)date animated:(BOOL)animated

Parameters

date
An NSDate object representing the new date to display in the date picker.

animated
YES to animate the setting of the new date, otherwise NO. The animation rotates the wheels
until the new date and time is shown under the highlight rectangle.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property date (page 177)

Declared In
UIDatePicker.h

Constants

Date Picker Mode
The mode of the date picker.

typedef enum {
UIDatePickerModeTime,
UIDatePickerModeDate,
UIDatePickerModeDateAndTime,
UIDatePickerModeCountDownTimer

} UIDatePickerMode;

Constants
UIDatePickerModeTime

The date picker displays hours, minutes, and (optionally) an AM/PM designation. The exact
items shown and their order depend upon the locale set. An example of this mode is [6 | 53
| PM].

Available in iPhone OS 2.0 and later.

Declared in UIDatePicker.h

180 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

UIDatePickerModeDate
The date picker displays months, days of the month, and years. The exact order of these items
depends on the locale setting. An example of this mode is [November | 15 | 2007].

Available in iPhone OS 2.0 and later.

Declared in UIDatePicker.h

UIDatePickerModeDateAndTime
The date picker displays dates (as unified day of the week, month, and day of the month values)
plus hours, minutes, and (optionally) an AM/PM designation. The exact order and format of
these items depends on the locale set. An example of this mode is [Wed Nov 15 | 6 | 53 | PM
].

Available in iPhone OS 2.0 and later.

Declared in UIDatePicker.h

UIDatePickerModeCountDownTimer
The date picker displays hour and minute values, for example [1 | 53]. The application must
set a timer to fire at the proper interval and set the date picker as the seconds tick down.

Available in iPhone OS 2.0 and later.

Declared in UIDatePicker.h

Discussion
The mode determines whether dates, times, or both dates and times are displayed. You can also use
it to specify the appearance of a countdown timer. You can set and retrieve the mode value through
the datePickerMode (page 177) property.

Constants 181
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

182 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

UIDatePicker Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIDevice.h

Overview

The UIDevice class vends a singleton instance representing the current device. From this instance
you can obtain information about the device, such as unique ID, assigned name, device model, and
operating-system name and version.

You can also use the UIDevice class to detect changes in the device’s physical orientation. You can
get the current orientation using the orientation (page 186) property or receive change notifications
by registering for the UIDeviceOrientationDidChangeNotification (page 190) notification. Before
using either of these techniques to get orientation data, you must enable the delivery of the data using
the beginGeneratingDeviceOrientationNotifications (page 188) method. When you no longer
need to track the device orientation, you should similarly use the
endGeneratingDeviceOrientationNotifications (page 188) method to disable the delivery of
notifications.

Tasks

Getting the Shared Device Instance

+ currentDevice (page 187)
Returns an object representing the current device.

Overview 183
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

Identifying the Device and Operating System

uniqueIdentifier (page 187) property
A string unique to each device based on various hardware details. (read-only)

name (page 185) property
The name identifying the device. (read-only)

systemName (page 186) property
The name of the operating system running on the device represented by the receiver. (read-only)

systemVersion (page 186) property
The current version of the operating system. (read-only)

model (page 185) property
The model of the device. (read-only)

localizedModel (page 185) property
The model of the device as a localized string. (read-only)

Getting the Current Device Orientation

orientation (page 186) property
Returns the physical orientation of the device. (read-only)

generatesDeviceOrientationNotifications (page 184) property
A Boolean value that determines whether the receiver generates orientation notifications.
(read-only)

– beginGeneratingDeviceOrientationNotifications (page 188)
Begins the generation of notifications of device orientation changes.

– endGeneratingDeviceOrientationNotifications (page 188)
Ends the generation of notifications of device orientation changes.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

generatesDeviceOrientationNotifications
A Boolean value that determines whether the receiver generates orientation notifications. (read-only)

@property(nonatomic, readonly, getter=isGeneratingDeviceOrientationNotifications)
BOOL generatesDeviceOrientationNotifications

Discussion
If the value of this property is YES, the shared UIDevice object posts a
UIDeviceOrientationDidChangeNotification (page 190) notification when the device changes
orientation. If the value is NO, it generates no orientation notifications. Device orientation notifications
can only be generated between calls to the beginGeneratingDeviceOrientationNotifications
and endGeneratingDeviceOrientationNotifications methods.

184 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– beginGeneratingDeviceOrientationNotifications (page 188)
– endGeneratingDeviceOrientationNotifications (page 188)

Declared In
UIDevice.h

localizedModel
The model of the device as a localized string. (read-only)

@property(nonatomic, readonly, retain) NSString *localizedModel

Discussion
This string would be a localized version of the string returned from model (page 185).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDevice.h

model
The model of the device. (read-only)

@property(nonatomic, readonly, retain) NSString *model

Discussion
Possible examples of model strings are @”iPhone” and @”iPod touch”.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDevice.h

name
The name identifying the device. (read-only)

@property(nonatomic, readonly, retain) NSString *name

Discussion
The value of this property is an arbitrary string that is associated with the device as an identifier. For
example, you can find the name of an iPhone in the General > About settings.

Availability
Available in iPhone OS 2.0 and later.

Properties 185
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

See Also
@property systemName (page 186)

Declared In
UIDevice.h

orientation
Returns the physical orientation of the device. (read-only)

@property(nonatomic, readonly) UIDeviceOrientation orientation

Discussion
The value of the property is a constant that indicates the current orientation of the device. This value
represents the physical orientation of the device and may be different from the current orientation of
your application’s user interface. See “UIDeviceOrientation” (page 189) for descriptions of the possible
values.

The value of this property always returns 0 unless orientation notifications have been enabled by
calling beginGeneratingDeviceOrientationNotifications (page 188).

Availability
Available in iPhone OS 2.0 and later.

See Also
@property generatesDeviceOrientationNotifications (page 184)

– beginGeneratingDeviceOrientationNotifications (page 188)

Declared In
UIDevice.h

systemName
The name of the operating system running on the device represented by the receiver. (read-only)

@property(nonatomic, readonly, retain) NSString *systemName

Availability
Available in iPhone OS 2.0 and later.

See Also
@property systemVersion (page 186)

Declared In
UIDevice.h

systemVersion
The current version of the operating system. (read-only)

186 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

@property(nonatomic, readonly, retain) NSString *systemVersion

Discussion
An example of the system version is @”1.2”.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property systemName (page 186)

Declared In
UIDevice.h

uniqueIdentifier
A string unique to each device based on various hardware details. (read-only)

@property(nonatomic, readonly, retain) NSString *uniqueIdentifier

Discussion
A unique device identifier is a hash value composed from various hardware identifiers such as the
device’s serial number. It is guaranteed to be unique for every device. You can use it, for example, to
store high scores for a game in a central server or to control access to registered products.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDevice.h

Class Methods

currentDevice
Returns an object representing the current device.

+ (UIDevice *)currentDevice

Return Value
A singleton object that represents the current device.

Discussion
You evaluate the properties of the returned UIDevice instance to obtain information about the device.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDevice.h

Class Methods 187
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

Instance Methods

beginGeneratingDeviceOrientationNotifications
Begins the generation of notifications of device orientation changes.

- (void)beginGeneratingDeviceOrientationNotifications

Discussion
You must call this method before attempting to get orientation data from the receiver. This method
enables the device’s accelerometer hardware and begins the delivery of acceleration events to the
receiver. The receiver subsequently uses these events to post
UIDeviceOrientationDidChangeNotification (page 190) notifications when the device orientation
changes and to update the orientation property.

You may nest calls to this method safely, but you should always match each call with a corresponding
call to the endGeneratingDeviceOrientationNotifications method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– endGeneratingDeviceOrientationNotifications (page 188)

@property orientation (page 186)
@property generatesDeviceOrientationNotifications (page 184)

Declared In
UIDevice.h

endGeneratingDeviceOrientationNotifications
Ends the generation of notifications of device orientation changes.

- (void)endGeneratingDeviceOrientationNotifications

Discussion
This method stops the posting of UIDeviceOrientationDidChangeNotification (page 190)
notifications and notifies the system that it can power down the accelerometer hardware if it is not
in use elsewhere. You call this method after a previous call to the
beginGeneratingDeviceOrientationNotifications method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– beginGeneratingDeviceOrientationNotifications (page 188)

Declared In
UIDevice.h

188 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

Constants

UIDeviceOrientation
The physical orientation of the current device.

typedef enum {
UIDeviceOrientationUnknown,
UIDeviceOrientationPortrait,
UIDeviceOrientationPortraitUpsideDown,
UIDeviceOrientationLandscapeLeft,
UIDeviceOrientationLandscapeRight,
UIDeviceOrientationFaceUp,
UIDeviceOrientationFaceDown

} UIDeviceOrientation;

Constants
UIDeviceOrientationUnknown

The orientation of the device cannot be determined.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

UIDeviceOrientationPortrait
The device is in portrait mode, with the device held upright and the home button at the bottom.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

UIDeviceOrientationPortraitUpsideDown
The device is in portrait mode but upside down, with the device held upright and the home
button at the top.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

UIDeviceOrientationLandscapeLeft
The device is in landscape mode, with the device held upright and the home button on the
right side.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

UIDeviceOrientationLandscapeRight
The device is in landscape mode, with the device held upright and the home button on the left
side.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

UIDeviceOrientationFaceUp
The device is held perpendicular to the ground with the screen facing upwards.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

Constants 189
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

UIDeviceOrientationFaceDown
The device is held perpendicular to the ground with the screen facing downwards.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

Discussion
The orientation (page 186) property uses these constants to identify the device orientation. These
constants identify the physical orientation of the device and are not tied to the orientation of your
application’s user interface.

Device Orientation Convenience Macros
Macros for determining whether the device orientation is landscape or portrait.

#define UIDeviceOrientationIsPortrait(orientation) ((orientation) ==
UIDeviceOrientationPortrait || (orientation) ==
UIDeviceOrientationPortraitUpsideDown)
#define UIDeviceOrientationIsLandscape(orientation) ((orientation) ==
UIDeviceOrientationLandscapeLeft || (orientation) ==
UIDeviceOrientationLandscapeRight)

Constants
UIDeviceOrientationIsPortrait

Returns YES if the device orientation is portrait, otherwise returns NO.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

UIDeviceOrientationIsLandscape
Returns YES if the device orientation is landscape, otherwise returns NO.

Available in iPhone OS 2.0 and later.

Declared in UIDevice.h

Notifications

UIDeviceOrientationDidChangeNotification
Posted when the orientation of the device changes.

You can obtain the new orientation by getting the current value of the orientation (page 186) property.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIDevice.h

190 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

UIDevice Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIEvent.h

Overview

A UIEvent object (or, simply, an event object) represents an event in iPhone OS. An event object
contains one or more touches (that is, finger gestures on the screen) that have some relation to the
event. A touch is represented by a UITouch object.

When an event occurs, the system routes it to the appropriate responder and passes in the UIEvent
object in a message invoking a UIResponder method such as touchesBegan:withEvent: (page 283).
The responder can then evaluate the touches for the event or for a particular phase of the event and
handle them appropriately. The methods of UIEvent allow you to obtain all touches for the event
(allTouches (page 192)) or only those for a given view or window (touchesForView: (page 193) or
touchesForWindow: (page 193)). It can also distinguish an event object from objects representing other
events by querying an object for the time of its creation (timestamp (page 192)).

A UIEvent object is persistent throughout a multi-touch sequence; UIKit reuses the same UIEvent
instance for every event delivered to the application. You should never retain an event object or any
object returned from an event object. If you need to keep information from an event around from one
phase to another, you should copy that information from the UITouch or UIEvent object.

See "Event Handling" in iPhone OS Programming Guide for further information on event handling.

Overview 191
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

UIEvent Class Reference

Tasks

Getting the Touches for an Event

– allTouches (page 192)
Returns all touch objects associated with the receiver.

– touchesForView: (page 193)
Returns the touch objects that belong to a given view for the event represented by the receiver.

– touchesForWindow: (page 193)
Returns the touch objects that belong to a given window for the event represented by the
receiver.

Getting Event Attributes

timestamp (page 192) property
The time when the event occurred. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

timestamp
The time when the event occurred. (read-only)

@property(nonatomic, readonly) NSTimeInterval timestamp

Discussion
The property value is the number of seconds since system startup.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIEvent.h

Instance Methods

allTouches
Returns all touch objects associated with the receiver.

- (NSSet *)allTouches

192 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

UIEvent Class Reference

Return Value
A set of UITouch objects representing all touches associated with an event (represented by the receiver).

Discussion
If the touches of the event originate in different views and windows, the UITouch objects obtained
from this method will have different responder objects associated with the touches.

Availability
Available in iPhone OS 2.0 and later.

See Also
– touchesForView: (page 193)
– touchesForWindow: (page 193)

Declared In
UIEvent.h

touchesForView:
Returns the touch objects that belong to a given view for the event represented by the receiver.

- (NSSet *)touchesForView:(UIView *)view

Parameters

view
TheUIView object on which the touches related to the event were made.

Return Value
An set of UITouch objects representing the touches for the specified view related to the event
represented by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allTouches (page 192)
– touchesForWindow: (page 193)

Declared In
UIEvent.h

touchesForWindow:
Returns the touch objects that belong to a given window for the event represented by the receiver.

- (NSSet *)touchesForWindow:(UIWindow *)window

Parameters

window
The UIWindow object on which the touches related to the event were made.

Return Value
An set of UITouch objects representing the touches for the specified window related to the event
represented by the receiver.

Instance Methods 193
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

UIEvent Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– allTouches (page 192)
– touchesForView: (page 193)

Declared In
UIEvent.h

194 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

UIEvent Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIFont.h
UIInterface.h

Overview

The UIFont class provides the interface for getting and setting font information. The class provides
you with access to the font’s characteristics and also provides the system with access to the font’s
glyph information, which is used during layout. You use font objects by passing them to methods
that accept them as a parameter.

You do not create UIFont objects using the alloc and init methods. Instead, you use class methods
of UIFont to look up and retrieve the desired font object. These methods check for an existing font
object with the specified characteristics and return it if it exists. Otherwise, they create a new font
object based on the desired font characteristics.

Tasks

Creating Arbitrary Fonts

+ fontWithName:size: (page 201)
Creates and returns a font object for the specified font name and size.

– fontWithSize: (page 203)
Returns a font object that is the same as the receiver but which has the specified size instead.

Overview 195
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

Creating System Fonts

+ systemFontOfSize: (page 203)
Returns the font object used for standard interface items in the specified size.

+ boldSystemFontOfSize: (page 199)
Returns the font object used for standard interface items that are rendered in boldface type in
the specified size.

+ italicSystemFontOfSize: (page 202)
Returns the font object used for standard interface items that are rendered in italic type in the
specified size.

Getting the Available Font Names

+ familyNames (page 200)
Returns an array of font family names available on the system.

+ fontNamesForFamilyName: (page 201)
Returns an array of font names available in a particular font family.

Getting Font Name Attributes

familyName (page 198) property
Specifies the receiver’s family name. (read-only)

fontName (page 198) property
Specifies the font face name. (read-only)

Getting Font Metrics

pointSize (page 199) property
Specifies receiver’s point size, or the effective vertical point size for a font with a nonstandard
matrix. (read-only)

ascender (page 197) property
Specifies the top y-coordinate, offset from the baseline, of the receiver’s longest ascender.
(read-only)

descender (page 198) property
Specifies the bottom y-coordinate, offset from the baseline, of the receiver’s longest descender.
(read-only)

leading (page 199) property
Specifies the receiver’s leading information. (read-only)

capHeight (page 197) property
Specifies the receiver’s cap height information. (read-only)

xHeight (page 199) property
Specifies the x-height of the receiver. (read-only)

196 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

Getting System Font Information

+ labelFontSize (page 202)
Returns the standard font size used for labels.

+ buttonFontSize (page 200)
Returns the standard font size used for buttons.

+ smallSystemFontSize (page 202)
Returns the size of the standard small system font.

+ systemFontSize (page 203)
Returns the size of the standard system font.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

ascender
Specifies the top y-coordinate, offset from the baseline, of the receiver’s longest ascender. (read-only)

@property(nonatomic, readonly) CGFloat ascender

Discussion
The ascender value is measured in points.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property descender (page 198)

Declared In
UIFont.h

capHeight
Specifies the receiver’s cap height information. (read-only)

@property(nonatomic, readonly) CGFloat capHeight

Discussion
This value measures (in points) the height of a capital character.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

Properties 197
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

descender
Specifies the bottom y-coordinate, offset from the baseline, of the receiver’s longest descender.
(read-only)

@property(nonatomic, readonly) CGFloat descender

Discussion
The descender value is measured in points. This value may be positive or negative. For example, if
the longest descender extends 2 points below the baseline, this method returns -2.0 .

Availability
Available in iPhone OS 2.0 and later.

See Also
@property ascender (page 197)

Declared In
UIFont.h

familyName
Specifies the receiver’s family name. (read-only)

@property(nonatomic, readonly, retain) NSString *familyName

Discussion
A family name is a name such as Times New Roman that identifies one or more specific fonts. The
value in this property is intended for an application’s internal usage only and should not be displayed.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

fontName
Specifies the font face name. (read-only)

@property(nonatomic, readonly, retain) NSString *fontName

Discussion
The font name is a name such as HelveticaBold that incorporates the family name and any specific
style information for the font. The value in this property is intended for an application’s internal usage
only and should not be displayed.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

198 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

leading
Specifies the receiver’s leading information. (read-only)

@property(nonatomic, readonly) CGFloat leading

Discussion
The leading value represents the spacing between lines of text and is measured (in points) from
baseline to baseline.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

pointSize
Specifies receiver’s point size, or the effective vertical point size for a font with a nonstandard matrix.
(read-only)

@property(nonatomic, readonly) CGFloat pointSize

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

xHeight
Specifies the x-height of the receiver. (read-only)

@property(nonatomic, readonly) CGFloat xHeight

Discussion
This value measures (in points) the height of the lowercase character "x".

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

Class Methods

boldSystemFontOfSize:
Returns the font object used for standard interface items that are rendered in boldface type in the
specified size.

Class Methods 199
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

+ (UIFont *)boldSystemFontOfSize:(CGFloat)fontSize

Parameters

fontSize
The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

buttonFontSize
Returns the standard font size used for buttons.

+ (CGFloat)buttonFontSize

Return Value
The standard button font size in points.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

familyNames
Returns an array of font family names available on the system.

+ (NSArray *)familyNames

Return Value
An array of NSString objects, each of which contains the name of a font family.

Discussion
Font family names correspond to the base name of a font, such as Times New Roman. You can pass
the returned strings to the fontNamesForFamilyName: (page 201) method to retrieve a list of font
names available for that family. You can then use the corresponding font name to retrieve an actual
font object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ fontNamesForFamilyName: (page 201)

Declared In
UIFont.h

200 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

fontNamesForFamilyName:
Returns an array of font names available in a particular font family.

+ (NSArray *)fontNamesForFamilyName:(NSString *)familyName

Parameters

familyName
The name of the font family. Use the familyNames method to get an array of the available font
family names on the system.

Return Value
An array of NSString objects, each of which contains a font name associated with the specified family.

Discussion
You can pass the returned strings as parameters to the fontWithName:size: (page 201) method to
retrieve an actual font object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ familyNames (page 200)
+ fontWithName:size: (page 201)

Declared In
UIFont.h

fontWithName:size:
Creates and returns a font object for the specified font name and size.

+ (UIFont *)fontWithName:(NSString *)fontName size:(CGFloat)fontSize

Parameters

fontName
The fully specified name of the font. This name incorporates both the font family name and
the specific style information for the font.

fontSize
The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified name and size.

Discussion
You can use the fontNamesForFamilyName: (page 201) method to retrieve the specific font names for
a given font family.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ familyNames (page 200)
+ fontNamesForFamilyName: (page 201)

Class Methods 201
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

Declared In
UIFont.h

italicSystemFontOfSize:
Returns the font object used for standard interface items that are rendered in italic type in the specified
size.

+ (UIFont *)italicSystemFontOfSize:(CGFloat)fontSize

Parameters

fontSize
The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

labelFontSize
Returns the standard font size used for labels.

+ (CGFloat)labelFontSize

Return Value
The standard label font size in points.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

smallSystemFontSize
Returns the size of the standard small system font.

+ (CGFloat)smallSystemFontSize

Return Value
The standard small system font size in points.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

202 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

systemFontOfSize:
Returns the font object used for standard interface items in the specified size.

+ (UIFont *)systemFontOfSize:(CGFloat)fontSize

Parameters

fontSize
The size (in points) to which the font is scaled. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIFont.h

systemFontSize
Returns the size of the standard system font.

+ (CGFloat)systemFontSize

Return Value
The standard system font size in points.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

Instance Methods

fontWithSize:
Returns a font object that is the same as the receiver but which has the specified size instead.

- (UIFont *)fontWithSize:(CGFloat)fontSize

Parameters

fontSize
The desired size (in points) of the new font object. This value must be greater than 0.0.

Return Value
A font object of the specified size.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 203
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

Declared In
UIFont.h

204 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

UIFont Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIKit/UIImage.h
UIKit/UIInterface.h

Overview

A UIImage object is a high-level way to display image data. You can create images from files, from
Quartz image objects, or from raw image data you receive. The UIImage class also offers several
options for drawing images to the current graphics context using different blend modes and opacity
values.

Image objects are immutable, so you cannot change their properties after creation. This means that
you generally specify an image’s properties at initialization time or rely on the image’s metadata to
provide the property value. In some cases, however, the UIImage class provides convenience methods
for obtaining a copy of the image that uses custom values for a property.

Because image objects are immutable, they also do not provide direct access to their underlying image
data. However, you can get an NSData object containing either a PNG or JPEG representation of the
image data using the UIImagePNGRepresentation (page 646) and UIImageJPEGRepresentation (page
646) functions.

Images and Memory Management

In low-memory situations, image data may be purged from a UIImage object to free up memory on
the system. This purging behavior affects only the image data stored internally by the UIImage object
and not the object itself. When you attempt to draw an image whose data has been purged, the image
object automatically reloads the data from its original file. This extra load step, however, may incur
a small performance penalty.

Overview 205
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

It is a programmer error to create a UIImage object with an image that is greater than 1024 x 1024
pixels in size. Besides the practical considerations of such an image consuming a large amount of
memory, the graphics hardware does not support images greater than that size.

Supported Image Formats

Table 22-1 lists the file formats that can be read by the UIImage class.

Table 22-1 Supported file formats

Filename extensionsFormat

.tiff, .tifTagged Image File Format (TIFF)

.jpg, .jpegJoint Photographic Experts Group (JPEG)

.gifGraphic Interchange Format (GIF)

.pngPortable Network Graphic (PNG)

.bmp, .BMPfWindows Bitmap Format (DIB)

.icoWindows Icon Format

.curWindows Cursor

.xbmXWindow bitmap

Note: Windows Bitmap Format (BMP) files that are formatted as RGB-565 are converted to ARGB-1555
when they are loaded.

Tasks

Cached Image Loading Routines

+ imageNamed: (page 210)
Returns the image object associated with the specified filename.

Creating New Images

+ imageWithContentsOfFile: (page 211)
Creates and returns an image object by loading the image data from the file at the specified
path.

+ imageWithData: (page 211)
Creates and returns an image object that uses the specified image data.

206 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

+ imageWithCGImage: (page 210)
Creates and returns an image object representing the specified Quartz image.

– stretchableImageWithLeftCapWidth:topCapHeight: (page 215)
Creates and returns a new image object with the specified cap values.

Initializing Images

– initWithContentsOfFile: (page 214)
Initializes and returns the image object with the contents of the specified file.

– initWithData: (page 215)
Initializes and returns the image object with the specified data.

– initWithCGImage: (page 214)
Initializes and returns the image object with the specified Quartz image reference.

Image Attributes

imageOrientation (page 208) property
The orientation of the receiver’s image. (read-only)

size (page 209) property
The dimensions of the image, taking orientation into account (read-only)

CGImage (page 208) property
The underlying Quartz image data. (read-only)

leftCapWidth (page 208) property
The horizontal end-cap size. (read-only)

topCapHeight (page 209) property
The vertical end-cap size. (read-only)

Drawing Images

– drawAtPoint: (page 212)
Draws the image at the specified point in the current context.

– drawAtPoint:blendMode:alpha: (page 212)
Draws the entire image at the specified point using the custom compositing options.

– drawInRect: (page 213)
Draws the entire image in the specified rectangle, scaling it as needed to fit.

– drawInRect:blendMode:alpha: (page 213)
Draws the entire image in the specified rectangle and using the specified compositing options.

– drawAsPatternInRect: (page 212)
Draws a tiled Quartz pattern using the receiver’s contents as the tile pattern.

Tasks 207
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

CGImage
The underlying Quartz image data. (read-only)

@property(nonatomic, readonly) CGImageRef CGImage

Discussion
If the image data has been purged because of memory constraints, invoking this method forces that
data to be loaded back into memory. Reloading the image data may incur a performance penalty.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

imageOrientation
The orientation of the receiver’s image. (read-only)

@property(nonatomic, readonly) UIImageOrientation imageOrientation

Discussion
Image orientation affects the way the image data is displayed when drawn. By default, images are
displayed in the “up” orientation. If the image has associated metadata (such as EXIF information),
however, this property contains the orientation indicated by that metadata. For a list of possible values
for this property, see “UIImageOrientation” (page 216).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

leftCapWidth
The horizontal end-cap size. (read-only)

@property(nonatomic, readonly) NSInteger leftCapWidth

Discussion
End caps specify the portion of an image that should not be resized when an image is stretched. This
technique is used to implement buttons and other resizable image-based interface elements. When a
button with end caps is resized, the resizing occurs only in the middle of the button, in the region
between the end caps. The end caps themselves keep their original size and appearance.

208 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

This property specifies the size of the left end cap. The middle (stretchable) portion is assumed to be
1 pixel wide. The right end cap is therefore computed by adding the size of the left end cap and the
middle portion together and then subtracting that value from the width of the image:

rightCapWidth = image.size.width - (image.leftCapWidth + 1);

By default, this property is set to 0, which indicates that the image does not use end caps and the
entire image is subject to stretching. To create a new image with a nonzero value for this property,
use the stretchableImageWithLeftCapWidth:topCapHeight: method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stretchableImageWithLeftCapWidth:topCapHeight: (page 215)

Declared In
UIImage.h

size
The dimensions of the image, taking orientation into account (read-only)

@property(nonatomic, readonly) CGSize size

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

topCapHeight
The vertical end-cap size. (read-only)

@property(nonatomic, readonly) NSInteger topCapHeight

Discussion
End caps specify the portion of an image that should not be resized when an image is stretched. This
technique is used to implement buttons and other resizable image-based interface elements. When a
button with end caps is resized, the resizing occurs only in the middle of the button, in the region
between the end caps. The end caps themselves keep their original size and appearance.

This property specifies the size of the top end cap. The middle (stretchable) portion is assumed to be
1 pixel wide. The bottom end cap is therefore computed by adding the size of the top end cap and
the middle portion together and then subtracting that value from the height of the image:

bottomCapHeight = image.size.height - (image.topCapHeight + 1);

By default, this property is set to 0, which indicates that the image does not use end caps and the
entire image is subject to stretching. To create a new image with a nonzero value for this property,
use the stretchableImageWithLeftCapWidth:topCapHeight: method.

Properties 209
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– stretchableImageWithLeftCapWidth:topCapHeight: (page 215)

Declared In
UIImage.h

Class Methods

imageNamed:
Returns the image object associated with the specified filename.

+ (UIImage *)imageNamed:(NSString *)name

Parameters

name
The name of the file, including its filename extension. If this is the first time the image is being
loaded, the method looks for an image with the specified name in the application’s main bundle.

Return Value
The image object for the specified file, or nil if the method could not find the specified image.

Discussion
This method looks in the system caches for an image object with the specified name and returns that
object if it exists. If a matching image object is not already in the cache, this method loads the image
data from the specified file, caches it, and then returns the resulting object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

imageWithCGImage:
Creates and returns an image object representing the specified Quartz image.

+ (UIImage *)imageWithCGImage:(CGImageRef)cgImage

Parameters

cgImage
The Quartz image object.

Return Value
A new image object for the specified Quartz image, or nil if the method could not initialize the image
from the specified image reference.

210 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

Discussion
This method does not cache the image object. You can use the methods of the Core Graphics framework
to create a Quartz image reference.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

imageWithContentsOfFile:
Creates and returns an image object by loading the image data from the file at the specified path.

+ (UIImage *)imageWithContentsOfFile:(NSString *)path

Parameters

path
The full or partial path to the file.

Return Value
A new image object for the specified file, or nil if the method could not initialize the image from the
specified file.

Discussion
This method does not cache the image object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

imageWithData:
Creates and returns an image object that uses the specified image data.

+ (UIImage *)imageWithData:(NSData *)data

Parameters

data
The image data. This can be data from a file or data you create programmatically.

Return Value
A new image object for the specified data, or nil if the method could not initialize the image from
the specified data.

Discussion
This method does not cache the image object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

Class Methods 211
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

Instance Methods

drawAsPatternInRect:
Draws a tiled Quartz pattern using the receiver’s contents as the tile pattern.

- (void)drawAsPatternInRect:(CGRect)rect

Parameters

rect
The rectangle (in the coordinate system of the graphics context) in which to draw the image.

Discussion
This method uses a Quartz pattern to tile the image in the specified rectangle. The image is tiled with
no gaps and the fill color is ignored. In the default coordinate system, the image tiles are situated
down and to the right of the origin of the specified rectangle. This method respects any transforms
applied to the current graphics context, however.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

drawAtPoint:
Draws the image at the specified point in the current context.

- (void)drawAtPoint:(CGPoint)point

Parameters

point
The point at which to draw the top-left corner of the image.

Discussion
This method draws the entire image in the current graphics context, respecting the image’s orientation
setting. In the default coordinate system, images are situated down and to the right of the specified
point. This method respects any transforms applied to the current graphics context, however.

This method draws the image at full opacity using the kCGBlendModeNormal blend mode.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

drawAtPoint:blendMode:alpha:
Draws the entire image at the specified point using the custom compositing options.

212 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

- (void)drawAtPoint:(CGPoint)point blendMode:(CGBlendMode)blendMode
alpha:(CGFloat)alpha

Parameters

point
The point at which to draw the top-left corner of the image.

blendMode
The blend mode to use when compositing the image.

alpha
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders
the image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are
interpreted as 1.0.

Discussion
This method draws the entire image in the current graphics context, respecting the image’s orientation
setting. In the default coordinate system, images are situated down and to the right of the specified
point. This method respects any transforms applied to the current graphics context, however.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

drawInRect:
Draws the entire image in the specified rectangle, scaling it as needed to fit.

- (void)drawInRect:(CGRect)rect

Parameters

rect
The rectangle (in the coordinate system of the graphics context) in which to draw the image.

Discussion
This method draws the entire image in the current graphics context, respecting the image’s orientation
setting. In the default coordinate system, images are situated down and to the right of the origin of
the specified rectangle. This method respects any transforms applied to the current graphics context,
however.

This method draws the image at full opacity using the kCGBlendModeNormal blend mode.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

drawInRect:blendMode:alpha:
Draws the entire image in the specified rectangle and using the specified compositing options.

- (void)drawInRect:(CGRect)rect blendMode:(CGBlendMode)blendMode alpha:(CGFloat)alpha

Instance Methods 213
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

Parameters

rect
The rectangle (in the coordinate system of the graphics context) in which to draw the image.

blendMode
The blend mode to use when compositing the image.

alpha
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders
the image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are
interpreted as 1.0.

Discussion
This method scales the image as needed to make it fit in the specified rectangle. This method draws
the image in the current graphics context, respecting the image’s orientation setting. In the default
coordinate system, images are situated down and to the right of the origin of the specified rectangle.
This method respects any transforms applied to the current graphics context, however.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

initWithCGImage:
Initializes and returns the image object with the specified Quartz image reference.

- (id)initWithCGImage:(CGImageRef)CGImage

Parameters

CGImage
A Quartz image reference.

Return Value
An initialized UIImage object, or nil if the method could not initialize the image from the specified
data.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

initWithContentsOfFile:
Initializes and returns the image object with the contents of the specified file.

- (id)initWithContentsOfFile:(NSString *)path

Parameters

path
The path to the file. This path should include the filename extension that identifies the type of
the image data.

214 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

Return Value
An initialized UIImage object, or nil if the method could find the file or initialize the image from its
contents.

Discussion
This method loads the image data into memory and marks it as purgeable. If the data is purged and
needs to be reloaded, the image object loads that data again from the specified path.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

initWithData:
Initializes and returns the image object with the specified data.

- (id)initWithData:(NSData *)data

Parameters

data
The data object containing the image data.

Return Value
An initialized UIImage object, or nil if the method could not initialize the image from the specified
data.

Discussion
The data in the data parameter must be formatted to match the file format of one of the system’s
supported image types.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

stretchableImageWithLeftCapWidth:topCapHeight:
Creates and returns a new image object with the specified cap values.

- (UIImage *)stretchableImageWithLeftCapWidth:(NSInteger)leftCapWidth
topCapHeight:(NSInteger)topCapHeight

Parameters

leftCapWidth
The value to use for the left cap width. Specify 0 if you do not want the image to be horizontally
stretchable. For a discussion of how this value affects the image, see the leftCapWidth (page
208) property.

Instance Methods 215
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

topCapHeight
The value to use for the top cap width. Specify 0 if you do not want the image to be vertically
stretchable. For a discussion of how this value affects the image, see the topCapHeight (page
209) property.

Return Value
A new image object with the specified cap values.

Discussion
During scaling or resizing of the image, areas covered by a cap are not scaled or resized. Instead, the
1-pixel wide area not covered by the cap in each direction is what is scaled or resized. This technique
is often used to create variable-width buttons, which retain the same rounded corners but whose
center region grows or shrinks as needed.

You use this method to add cap values to an image or to change the existing cap values of an image.
In both cases, you get back a new image and the original image remains untouched.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

Constants

UIImageOrientation
Specifies the possible orientations of an image.

typedef enum {
UIImageOrientationUp,
UIImageOrientationDown, // 180 deg rotation
UIImageOrientationLeft, // 90 deg CCW
UIImageOrientationRight, // 90 deg CW
UIImageOrientationUpMirrored, // as above but image mirrored along

// other axis. horizontal flip
UIImageOrientationDownMirrored, // horizontal flip
UIImageOrientationLeftMirrored, // vertical flip
UIImageOrientationRightMirrored, // vertical flip

} UIImageOrientation;

Constants
UIImageOrientationUp

The default orientation of images. The image is drawn right-side up, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

UIImageOrientationDown

The image is rotated 180 degrees, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

216 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

UIImageOrientationLeft

The image is rotated 90 degrees counterclockwise, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

UIImageOrientationRight

The image is rotated 90 degrees clockwise, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

UIImageOrientationUpMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationUp

value. In other words, the image is flipped along its horizontal axis, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

UIImageOrientationDownMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationDown
value. This is the equivalent to flipping an image in the “up” orientation along its horizontal

axis and then rotating the image 180 degrees, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

UIImageOrientationLeftMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationLeft
value. This is the equivalent to flipping an image in the “up” orientation along its horizontal

axis and then rotating the image 90 degrees counterclockwise, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

UIImageOrientationRightMirrored
The image is drawn as a mirror version of an image drawn with the UIImageOrientationRight
value. This is the equivalent to flipping an image in the “up” orientation along its horizontal

axis and then rotating the image 90 degrees clockwise, as shown here.

Available in iPhone OS 2.0 and later.

Declared in UIImage.h

Declared In
UIImage.h

Constants 217
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

218 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

UIImage Class Reference

Inherits from: UINavigationController : UIViewController : NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIImagePickerController.h

Overview

The UIImagePickerController class manages the system-supplied user interfaces for choosing and
taking pictures. You use this class in situations where you want to obtain a picture from the user. The
class manages the actual user interactions with the views and reports the results of those interactions
to your delegate object.

Because the UIImagePickerController class handles all of the user interactions, all you have to do
is tell it which user interface to display, tell it to start, and then dismiss it when the user picks an
image or cancels. Before starting an interface, however, you should always verify that the interface
is supported by the current device by calling the isSourceTypeAvailable: (page 221) class method.

You must provide a delegate that conforms to the UIImagePickerControllerDelegate protocol in
order to use this class. After the interface starts, this class notifies your delegate of the user’s actions.
Your delegate is then responsible for dismissing the picker and returning to your application’s views.

Overview 219
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

UIImagePickerController Class Reference

Tasks

Setting the Picker Source

+ isSourceTypeAvailable: (page 221)
Returns a Boolean value indicating whether the device supports picking images using the
specified source.

sourceType (page 221) property
The type of interface displayed by the controller.

Configuring the Picker

delegate (page 220) property
The receiver’s delegate.

allowsImageEditing (page 220) property
A Boolean value indicating whether the user is allowed to edit a selected image.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

allowsImageEditing
A Boolean value indicating whether the user is allowed to edit a selected image.

@property(nonatomic) BOOL allowsImageEditing

Discussion
If you allow the user to edit images, the delegate may receive a dictionary with information about
the edits that were made.

This property is set to NO by default.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImagePickerController.h

delegate
The receiver’s delegate.

220 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

UIImagePickerController Class Reference

@property(nonatomic,assign) id <UINavigationControllerDelegate,
UIImagePickerControllerDelegate> delegate

Discussion
The delegate receives notifications when the user picks an image or exits the picker interface. The
delegate also makes the decision on when to dismiss the picker interface, so you must provide this
object. If this property is nil, the picker is dismissed immediately if you try to show it.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImagePickerController.h

sourceType
The type of interface displayed by the controller.

@property(nonatomic) UIImagePickerControllerSourceType sourceType

Discussion
Prior to running the interface, set this value to the desired interface type. If you change this property
while the picker is visible, the picker interface changes to match the new value in this property.

This property is set to UIImagePickerControllerSourceTypePhotoLibrary by default. For a list of
possible constants, see “UIImagePickerControllerSourceType” (page 222).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImagePickerController.h

Class Methods

isSourceTypeAvailable:
Returns a Boolean value indicating whether the device supports picking images using the specified
source.

+ (BOOL)isSourceTypeAvailable:(UIImagePickerControllerSourceType)sourceType

Parameters

sourceType
The source to use to pick an image.

Return Value
YES if the device supports the given source; NO if the specified source type is not available.

Class Methods 221
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

UIImagePickerController Class Reference

Discussion
Because an image source may not be present or may be unavailable, devices may not always support
all source types. For example, if you attempt to pick an image from the user’s library and the library
is empty, this method returns NO. Similarly, if the camera is already in use, this method returns NO.

Before attempting to use an UIImagePickerController object to pick an image, you must call this
method to ensure that the desired source type is available.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImagePickerController.h

Constants

UIImagePickerControllerSourceType
The source to use when picking an image.

enum {
UIImagePickerControllerSourceTypePhotoLibrary,
UIImagePickerControllerSourceTypeCamera,
UIImagePickerControllerSourceTypeSavedPhotosAlbum

};
typedef NSUInteger UIImagePickerControllerSourceType;

Constants
UIImagePickerControllerSourceTypePhotoLibrary

Pick an image from the device’s photo library.

Available in iPhone OS 2.0 and later.

Declared in UIImagePickerController.h

UIImagePickerControllerSourceTypeCamera
Take a new picture using the device’s built-in camera.

Available in iPhone OS 2.0 and later.

Declared in UIImagePickerController.h

UIImagePickerControllerSourceTypeSavedPhotosAlbum
Pick an image from the device’s camera roll. If the device does not have a camera, pick an
image from the Saved Photos folder on the device.

Available in iPhone OS 2.0 and later.

Declared in UIImagePickerController.h

Discussion
A given source may not always be available on every device. This could be because the source is not
physically present or because it cannot currently be accessed.

222 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

UIImagePickerController Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIImageView.h

Overview

An image view object provides a view-based container for displaying either a single image or for
animating a series of images. For animating the images, the UIImageView class provides controls to
set the duration and frequency of the animation. You can also start and stop the animation freely.

New image view objects are configured to disregard user events by default. If you want to handle
events in a custom subclass of UIImageView, you must explicitly change the value of the
userInteractionEnabled property to YES after initializing the object.

Tasks

Initializing a UIImageView Object

– initWithImage: (page 226)
Returns an image view initialized with the specified image.

Image Data

image (page 225) property
The image displayed in the image view.

Overview 223
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

UIImageView Class Reference

Animating Images

animationImages (page 224) property
An array of UIImage objects to use for an animation.

animationDuration (page 224) property
The amount of time it takes to go through one cycle of the images.

animationRepeatCount (page 225) property
Specifies the number of times to repeat the animation.

– startAnimating (page 227)
Starts animating the images in the receiver.

– stopAnimating (page 227)
Stops animating the images in the receiver.

– isAnimating (page 226)
Returns a Boolean value indicating whether the animation is running.

Setting and Getting Attributes

userInteractionEnabled (page 226) property
A Boolean value that determines whether user events are ignored and removed from the event
queue.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

animationDuration
The amount of time it takes to go through one cycle of the images.

@property(nonatomic) NSTimeInterval animationDuration

Discussion
The time duration is measured in seconds. The default value of this property is equal to the number
of images multiplied by 1/30th of a second. Thus, if you had 30 images, the value would be 1 second.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImageView.h

animationImages
An array of UIImage objects to use for an animation.

224 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

UIImageView Class Reference

@property(nonatomic, copy) NSArray *animationImages

Discussion
The array must contain UIImage objects. You may use the same image object more than once in the
array. Setting this property to a value other than nil hides the image represented by the image
property. The value of this property is nil by default.

The images assigned to this property are scaled, sized to fit, or positioned according to the contentMode
property of the view. It is recommended (but not required) that you use images that are all the same
size. If the images are different sizes, each will be adjusted to fit separately based on that mode.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property image (page 225)
@property contentMode (page 448) (UIView)

Declared In
UIImageView.h

animationRepeatCount
Specifies the number of times to repeat the animation.

@property(nonatomic) NSInteger animationRepeatCount

Discussion
The default value is 0, which specifies to repeat the animation indefinitely.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImageView.h

image
The image displayed in the image view.

@property(nonatomic, retain) UIImage *image

Discussion
The value of this property is nil by default. Setting this property automatically adjusts the frame of
the receiver to match the size of the image.

If the animationImages property contains a value other than nil, the contents of this property are
not used.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property animationImages (page 224)

Properties 225
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

UIImageView Class Reference

Declared In
UIImageView.h

userInteractionEnabled
A Boolean value that determines whether user events are ignored and removed from the event queue.

@property(nonatomic, getter=isUserInteractionEnabled) BOOL userInteractionEnabled

Discussion
This property is inherited from the UIView parent class. This class changes the default value of this
property to NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImageView.h

Instance Methods

initWithImage:
Returns an image view initialized with the specified image.

- (id)initWithImage:(UIImage *)image

Parameters

image
The initial image to display in the image view.

Return Value
An initialized image view object.

Discussion
This method disables user interactions for the image view by default.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImageView.h

isAnimating
Returns a Boolean value indicating whether the animation is running.

- (BOOL)isAnimating

Return Value
YES if the animation is running; otherwise, NO.

226 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

UIImageView Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImageView.h

startAnimating
Starts animating the images in the receiver.

- (void)startAnimating

Discussion
This method always starts the animation from the first image in the list.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImageView.h

stopAnimating
Stops animating the images in the receiver.

- (void)stopAnimating

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImageView.h

Instance Methods 227
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

UIImageView Class Reference

228 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

UIImageView Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UILabel.h

Overview

The UILabel class implements a read-only text view. You can use this class to draw one or multiple
lines of static text, such as those you might use to identify other parts of your user interface. The base
UILabel class provides control over the appearance of your text, including whether it uses a shadow
or draws with a highlight. If needed, you can customize the appearance of your text further by
subclassing.

The default content mode of the UILabel class is UIViewContentModeRedraw (page 479). This mode
causes the view to redraw its contents every time its bounding rectangle changes. You can change
this mode by modifying the inherited contentMode (page 448) property of the class.

New label objects are configured to disregard user events by default. If you want to handle events in
a custom subclass of UILabel, you must explicitly change the value of the userInteractionEnabled
property to YES after initializing the object.

Tasks

Accessing the Text Attributes

text (page 235) property
The text displayed by the label.

Overview 229
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

font (page 232) property
The font of the text.

textColor (page 236) property
The color of the text.

textAlignment (page 236) property
The technique to use for aligning the text.

lineBreakMode (page 233) property
The technique to use for wrapping and truncating the label’s text.

enabled (page 232) property
The enabled state to use when drawing the label’s text.

Sizing the Label’s Text

adjustsFontSizeToFitWidth (page 231) property
A Boolean value indicating whether the font size should be reduced in order to fit the title
string into the label’s bounding rectangle.

baselineAdjustment (page 231) property
Controls how text baselines are adjusted when text needs to shrink to fit in the label.

minimumFontSize (page 234) property
The size of the smallest permissible font with which to draw the label’s text.

numberOfLines (page 234) property
The maximum number of lines to use for rendering text.

Managing Highlight Values

highlightedTextColor (page 233) property
The highlight color applied to the label’s text.

highlighted (page 232) property
A Boolean value indicating whether the receiver should be drawn with a highlight.

Drawing a Shadow

shadowColor (page 235) property
The shadow color of the text.

shadowOffset (page 235) property
The shadow offset (measured in points) for the text.

Drawing and Positioning Overrides

– textRectForBounds:limitedToNumberOfLines: (page 237)
Returns the drawing rectangle for the label’s text.

– drawTextInRect: (page 237)
Draws the receiver’s text (or its shadow) in the specified rectangle.

230 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

Setting and Getting Attributes

userInteractionEnabled (page 236) property
A Boolean value that determines whether user events are ignored and removed from the event
queue.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

adjustsFontSizeToFitWidth
A Boolean value indicating whether the font size should be reduced in order to fit the title string into
the label’s bounding rectangle.

@property(nonatomic) BOOL adjustsFontSizeToFitWidth

Discussion
Normally, the label text is drawn with the font you specify in the font property. If this property is
set to YES, however, and the text in the text property exceeds the label’s bounding rectangle, the
receiver starts reducing the font size until the string fits or the minimum font size is reached.

The default value for this property is NO. If you change it to YES, you should also set an appropriate
minimum font size by modifying the minimumFontSize property.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property font (page 232)
@property minimumFontSize (page 234)

Declared In
UILabel.h

baselineAdjustment
Controls how text baselines are adjusted when text needs to shrink to fit in the label.

@property(nonatomic) UIBaselineAdjustment baselineAdjustment

Discussion
If the adjustsFontSizeToFit property is set to YES, this property controls the behavior of the text
baselines in situations where adjustment of the font size is required. The default value of this property
is UIBaselineAdjustmentAlignBaselines (page 52).

Availability
Available in iPhone OS 2.0 and later.

Properties 231
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

See Also
@property adjustsFontSizeToFit (page 231)

Declared In
UILabel.h

enabled
The enabled state to use when drawing the label’s text.

@property(nonatomic, getter=isEnabled) BOOL enabled

Discussion
This property determines only how the label is drawn. Disabled text is dimmed somewhat to indicate
it is not active. This property is set to YES by default.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property adjustsFontSizeToFit (page 231)

Declared In
UILabel.h

font
The font of the text.

@property(nonatomic, retain) UIFont *font

Discussion
This property applies to the entire text string. The default value for this property is nil, which results
in text being drawing using the 17-point Helvetica plain font.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UILabel.h

highlighted
A Boolean value indicating whether the receiver should be drawn with a highlight.

@property(nonatomic, getter=isHighlighted) BOOL highlighted

Discussion
Setting this property causes the receiver to redraw with the appropriate highlight state. A subclass
implementing a text button might set this property to YES when the user presses the button and set
it to NO at other times. In order for the highlight to be drawn, the highlightedTextColor property
must contain a non-nil value.

232 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

The default value of this property is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property highlightedTextColor (page 233)

Declared In
UILabel.h

highlightedTextColor
The highlight color applied to the label’s text.

@property(nonatomic, retain) UIColor *highlightedTextColor

Discussion
Subclasses that use labels to implement a type of text button can use the value in this property when
drawing the pressed state for the button. This color is applied to the label automatically whenever
the highlighted property is set to YES.

The default value of this property is nil .

Availability
Available in iPhone OS 2.0 and later.

See Also
@property highlighted (page 232)

Declared In
UILabel.h

lineBreakMode
The technique to use for wrapping and truncating the label’s text.

@property(nonatomic) UILineBreakMode lineBreakMode

Discussion
This property is in effect both during normal drawing and in cases where the font size must be reduced
to fit the label’s text in its bounding box. This property is set to
UILineBreakModeTailTruncation (page 51) by default.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property adjustsFontSizeToFit (page 231)

Declared In
UILabel.h

Properties 233
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

minimumFontSize
The size of the smallest permissible font with which to draw the label’s text.

@property(nonatomic) CGFloat minimumFontSize

Discussion
When drawing text that might not fit within the bounding rectangle of the label, you can use this
property to prevent the receiver from reducing the font size to the point where it is no longer legible.

The default value for this property is 0.0. If you enable font adjustment for the label, you should
always increase this value.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property adjustsFontSizeToFit (page 231)

Declared In
UILabel.h

numberOfLines
The maximum number of lines to use for rendering text.

@property(nonatomic) NSInteger numberOfLines

Discussion
This property controls the maximum number of lines to use in order to fit the label’s text into its
bounding rectangle. The default value for this property is 1. To remove any maximum limit, and use
as many lines as needed, set the value of this property to 0.

If you constrain your text using this property, any text that does not fit within the maximum number
of lines and inside the bounding rectangle of the label is truncated using the appropriate line break
mode.

When the receiver is resized using the sizeToFit (page 475) method, resizing takes into account the
value stored in this property. For example, if this property is set to 3, the sizeToFit (page 475) method
resizes the receiver so that it is big enough to display three lines of text.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property enabled (page 232)
@property adjustsFontSizeToFit (page 231)

– sizeToFit (page 475) (UIView)

Declared In
UILabel.h

234 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

shadowColor
The shadow color of the text.

@property(nonatomic, retain) UIColor *shadowColor

Discussion
The default value for this property is nil, which indicates that no shadow is drawn. In addition to
this property, you may also want to change the default shadow offset by modifying the shadowOffset
property. Text shadows are drawn with the specified offset and color and no blurring.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property shadowOffset (page 235)

Declared In
UILabel.h

shadowOffset
The shadow offset (measured in points) for the text.

@property(nonatomic) CGSize shadowOffset

Discussion
The shadow color must be non-nil for this property to have any effect. The default offset size is (0,
-1), which indicates a shadow one point above the text. Text shadows are drawn with the specified
offset and color and no blurring.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property shadowColor (page 235)

Declared In
UILabel.h

text
The text displayed by the label.

@property(nonatomic, copy) NSString *text

Discussion
This string is nil by default.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UILabel.h

Properties 235
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

textAlignment
The technique to use for aligning the text.

@property(nonatomic) UITextAlignment textAlignment

Discussion
This property applies to the entire text string. The default value of this property is
UITextAlignmentLeft.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UILabel.h

textColor
The color of the text.

@property(nonatomic, retain) UIColor *textColor

Discussion
This property applies to the entire text string. The default value for this property is nil, which results
in opaque black text.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UILabel.h

userInteractionEnabled
A Boolean value that determines whether user events are ignored and removed from the event queue.

@property(nonatomic, getter=isUserInteractionEnabled) BOOL userInteractionEnabled

Discussion
This property is inherited from the UIView parent class. This class changes the default value of this
property to NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UILabel.h

236 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

Instance Methods

drawTextInRect:
Draws the receiver’s text (or its shadow) in the specified rectangle.

- (void)drawTextInRect:(CGRect)rect

Parameters

rect
The rectangle in which to draw the text.

Discussion
You should not call this method directly. This method should only be overridden by subclasses that
want to modify the default drawing behavior for the label’s text.

By the time this method is called, the current graphics context is already configured with the default
environment and text color for drawing. In your overridden method, you can configure the current
context further and then invoke super to do the actual drawing or you can do the drawing yourself.
If you do render the text yourself, you should not invoke super.

Note: In cases where the label draws its text with a shadow, this method may be called twice in
succession to draw first the shadow and then the label text.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UILabel.h

textRectForBounds:limitedToNumberOfLines:
Returns the drawing rectangle for the label’s text.

- (CGRect)textRectForBounds:(CGRect)bounds
limitedToNumberOfLines:(NSInteger)numberOfLines

Parameters

bounds
The bounding rectangle of the receiver.

numberOfLines
The maximum number of lines to use for the label. The value 0 indicates there is no maximum
number of lines and that the rectangle should encompass all of the text.

Return Value
The computed drawing rectangle for the label’s text.

Instance Methods 237
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

Discussion
You should not call this method directly. This method should only be overridden by subclasses that
want to change the receiver’s bounding rectangle before performing any other computations. Use
the value in the numberOfLines parameter to limit the height of the returned rectangle to the specified
number of lines of text.

The default implementation of this method returns the original bounds rectangle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UILabel.h

238 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

UILabel Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UINavigationBar.h

Overview

The UINavigationBar class implements a control for navigating hierarchical content. It’s a bar,
typically displayed at the top of the screen, containing buttons for navigating up and down a hierarchy.
The primary properties are a left (back) button, a center title, and an optional right button. You can
specify custom views for each of these.

The navigation bar represents only the bar at the top of the screen, not the view below. The view
below the navigation bar usually lists children or properties of an object represented by the center
title. For example, the user selects an object from a list to drill down in the hierarchy or see more
details. It’s the application’s responsibility to implement this part of the behavior.

You create a navigation bar using the alloc and init methods. You then can specify the appearance
using the barStyle (page 241) property.

A UINavigationBar object uses a stack to manage navigation items (instances of UINavigationItem)
that represent a state of the navigation bar. You change the navigation bar by pushing navigation
items using the pushNavigationItem:animated: (page 243) method or popping navigation items
using the popNavigationItemAnimated: (page 243) method. Methods with an animated: argument
allow you to animate the changes to the display.

You can also set items directly using the items (page 241) property, get the current item using the
topItem (page 242) property, and get the previous item using the backItem (page 240) property.

Overview 239
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

UINavigationBar Class Reference

You should set the delegate property to an object conforming to the UINavigationBarDelegate
protocol. It is the responsibility of the delegate to update other views when items are pushed or
popped from the stack—for example, it should display the previous view when the user clicks the
back button.

Use the UIBarButtonItem class to create custom buttons for navigation items. Read UINavigationItem
Class Reference for how to set custom views for the left, center, and right sides of a navigation bar.

Tasks

Configuring Navigation Bars

barStyle (page 241) property
The appearance of the navigation bar.

tintColor (page 242) property
The color used to tint the bar.

delegate (page 241) property
The navigation bar’s delegate object.

Pushing and Popping Items

– pushNavigationItem:animated: (page 243)
Pushes the given navigation item onto the receiver’s stack and updates the navigation bar.

– popNavigationItemAnimated: (page 243)
Pops the top item from the receiver’s stack and updates the navigation bar.

items (page 241) property
An array of navigation items managed by the navigation bar.

topItem (page 242) property
The navigation item at the top of the navigation bar’s stack. (read-only)

backItem (page 240) property
The navigation item that is next on the navigation bar’s stack. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

backItem
The navigation item that is next on the navigation bar’s stack. (read-only)

240 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

UINavigationBar Class Reference

@property(nonatomic, readonly, retain) UINavigationItem *backItem

Discussion
If the top item doesn’t have a left custom view, the back item’s title is displayed on a back button on
the left side of the navigation bar.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property topItem (page 242)
@property items (page 241)

Declared In
UINavigationBar.h

barStyle
The appearance of the navigation bar.

@property(nonatomic, assign) UIBarStyle barStyle

Discussion
See UIBarStyle (page 625) for possible values. The default value is UIBarStyleDefault.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationBar.h

delegate
The navigation bar’s delegate object.

@property(nonatomic, assign) id delegate

Discussion
The delegate should conform to the UINavigationBarDelegate protocol. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationBar.h

items
An array of navigation items managed by the navigation bar.

Properties 241
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

UINavigationBar Class Reference

@property(nonatomic, copy) NSArray *items

Discussion
The bottom item is at index 0, the back item is at index n-2, and the top item is at index n-1, where
n is the number of items in the array.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backItem (page 240)
@property topItem (page 242)

Declared In
UINavigationBar.h

tintColor
The color used to tint the bar.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationBar.h

topItem
The navigation item at the top of the navigation bar’s stack. (read-only)

@property(nonatomic, readonly, retain) UINavigationItem *topItem

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backItem (page 240)
@property items (page 241)

Declared In
UINavigationBar.h

242 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

UINavigationBar Class Reference

Instance Methods

popNavigationItemAnimated:
Pops the top item from the receiver’s stack and updates the navigation bar.

- (UINavigationItem *)popNavigationItemAnimated:(BOOL)animated

Parameters

animated
YES if the navigation bar should be animated; otherwise, NO.

Return Value
The top item that was popped.

Discussion
Popping a navigation item removes the top item from the stack and replaces it with the back item.
The back item’s title is centered on the navigation bar and its other properties are displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– pushNavigationItem:animated: (page 243)

Declared In
UINavigationBar.h

pushNavigationItem:animated:
Pushes the given navigation item onto the receiver’s stack and updates the navigation bar.

- (void)pushNavigationItem:(UINavigationItem *)item animated:(BOOL)animated

Parameters

item
The navigation item to push on the stack.

animated
YES if the navigation bar should be animated; otherwise, NO.

Discussion
Pushing a navigation item displays the item’s title in the center on the navigation bar. The previous
top navigation item (if it exists) is displayed as a back button on the left side of the navigation bar. If
the new top item has a left custom view, it is displayed instead of the back button.

Availability
Available in iPhone OS 2.0 and later.

See Also
– popNavigationItemAnimated: (page 243)

Declared In
UINavigationBar.h

Instance Methods 243
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

UINavigationBar Class Reference

244 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

UINavigationBar Class Reference

Inherits from: UIViewController : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UINavigationController.h

Companion guide: View Controller Programming Guide for iPhone OS

Overview

The UINavigationController class implements a specialized controller for a navigation bar that
manages all aspects of drilling down a hierarchy of objects. It uses application-supplied view controllers
to configure the navigation bar and display views below it. Each view controller has a navigation
item that provides information on how to set the navigation bar left, middle, and right views.

A navigation controller manages a stack of view controllers much as a navigation bar managing
navigation bar items. You push and pop view controllers onto a navigation controller.

Since the UINavigationController class inherits from the UIViewController class, its instances
also have a view property. A navigation controller’s view contains a navigation bar and its top view
controller’s view in its hierarchy. Therefore, you just need to attach the navigation controller’s view
to a window to display it.

Although, navigation controller uses a navigation bar in its implementation, you should never need
to, nor should you, access the navigation bar directly. You can, however, access the navigation items
that represent the appearance of your view controllers.

You can also add navigation controllers to a toolbar controller. And even, present a navigation
controller as a modal view on top of another view controller. In this case, the top view controller’s
view is displayed when the navigation controller is presented to the user, and its navigation bar covers
any existing navigation bars.

Overview 245
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

When you pop and push view controllers, the navigation controller updates the navigation bar and
view appropriately. At a minimum, the view controller sets the title (page 490) and view (page 491)
properties.

The view should be a resizable view that can be attached to any view hierarchy. The navigation
controller resizes and positions your views depending on where the navigation bar is and whether
a toolbar is displayed. Therefore, set the autoresizingMask (page 446) properties of your views so
they are resized appropriately when displayed by the navigation controller.

Read View Controller Programming Guide for iPhone OS to learn how to use this class.

This class is not intended to be subclassed.

Tasks

Creating Navigation Controllers

– initWithRootViewController: (page 249)
Initializes and returns a newly created navigation controller.

Pushing and Popping Items

topViewController (page 248) property
The view controller at the top of the navigation controller’s stack. (read-only)

visibleViewController (page 249) property
The view controller for the current visible view—that is, the modal view controller or the top
view controller. (read-only)

viewControllers (page 248) property
The view controllers managed by the navigation controller.

– pushViewController:animated: (page 251)
Pushes a view controller onto the receiver’s stack and updates the display.

– popViewControllerAnimated: (page 251)
Pops the top item from the receiver’s stack and updates the display.

– popToRootViewControllerAnimated: (page 249)
Pops all the view controllers on the stack except the root view controller and updates the
display.

– popToViewController:animated: (page 250)
Pops view controllers until the specified view controller is the top view controller and then
updates the display.

Configuring Navigation Bars

navigationBar (page 247) property
The navigation bar managed by the navigation controller. (read-only)

246 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

navigationBarHidden (page 247) property
A Boolean value that determines whether the navigation bar is hidden.

– setNavigationBarHidden:animated: (page 252)
Sets whether the navigation bar is hidden.

Setting the Delegate

delegate (page 247) property
The receiver’s delegate or nil if it doesn’t have a delegate.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

delegate
The receiver’s delegate or nil if it doesn’t have a delegate.

@property(nonatomic, assign) id<UINavigationControllerDelegate> delegate

Discussion
See UINavigationControllerDelegate Protocol Reference for the methods this delegate should implement.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationController.h

navigationBar
The navigation bar managed by the navigation controller. (read-only)

@property(nonatomic, readonly) UINavigationBar *navigationBar

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationController.h

navigationBarHidden
A Boolean value that determines whether the navigation bar is hidden.

Properties 247
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

@property(nonatomic, getter=isNavigationBarHidden) BOOL navigationBarHidden

Discussion
If YES, the navigation bar is hidden. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNavigationBarHidden:animated: (page 252)

Declared In
UINavigationController.h

topViewController
The view controller at the top of the navigation controller’s stack. (read-only)

@property(nonatomic, readonly, retain) UIViewController *topViewController

Availability
Available in iPhone OS 2.0 and later.

See Also
@property visibleViewController (page 249)
@property viewControllers (page 248)

Declared In
UINavigationController.h

viewControllers
The view controllers managed by the navigation controller.

@property(nonatomic, copy) NSArray *viewControllers

Discussion
The bottom view controller is at index 0 in the array, the back view controller is at index n-2, and the
top controller is at index n-1, where n is the number of items in the array.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property topViewController (page 248)
@property visibleViewController (page 249)

Declared In
UINavigationController.h

248 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

visibleViewController
The view controller for the current visible view—that is, the modal view controller or the top view
controller. (read-only)

@property(nonatomic, readonly, retain) UIViewController *visibleViewController

Discussion
Use this property to get either the modal view controller if its view is visible; otherwise, get the top
view controller.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property topViewController (page 248)
@property viewControllers (page 248)

Declared In
UINavigationController.h

Instance Methods

initWithRootViewController:
Initializes and returns a newly created navigation controller.

- (id)initWithRootViewController:(UIViewController *)rootViewController

Parameters

rootViewController
The root view controller that is pushed on the stack with no animation. It cannot be an instance
of tab bar controller.

Return Value
Newly initialized navigation controller.

Discussion
This is a convenience method for initializing the receiver and pushing a view controller on its stack.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationController.h

popToRootViewControllerAnimated:
Pops all the view controllers on the stack except the root view controller and updates the display.

- (NSArray *)popToRootViewControllerAnimated:(BOOL)animated

Instance Methods 249
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

Parameters

animated
Set this value to YES to animate the transition. Pass NO if you are setting up a navigation
controller before its view is displayed.

Return Value
An array of view controllers that are popped from the stack.

Discussion
The root view controller becomes the top view controller.

Availability
Available in iPhone OS 2.0 and later.

See Also
– pushViewController:animated: (page 251)
– popViewControllerAnimated: (page 251)
– popToViewController:animated: (page 250)

Declared In
UINavigationController.h

popToViewController:animated:
Pops view controllers until the specified view controller is the top view controller and then updates
the display.

- (NSArray *)popToViewController:(UIViewController *)viewController
animated:(BOOL)animated

Parameters

viewController
The view controller that was popped from the stack.

animated
Set this value to YES to animate the transition. Pass NO if you are setting up a navigation
controller before its view is displayed.

Return Value
An array of view controllers that were popped from the stack.

Availability
Available in iPhone OS 2.0 and later.

See Also
– pushViewController:animated: (page 251)
– popViewControllerAnimated: (page 251)
– popToRootViewControllerAnimated: (page 249)

Declared In
UINavigationController.h

250 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

popViewControllerAnimated:
Pops the top item from the receiver’s stack and updates the display.

- (UIViewController *)popViewControllerAnimated:(BOOL)animated

Parameters

animated
Set this value to YES to animate the transition. Pass NO if you are setting up a navigation
controller before its view is displayed.

Return Value
The view controller that was popped from the stack.

Discussion
This method removes the top view controller from the stack and makes the next controller the top
view controller. It also replaces the view with the next view controller’s view and updates the
navigation bar accordingly. This method does nothing if the top view controller is the root view
controller—you can’t pop the last item on the stack.

Availability
Available in iPhone OS 2.0 and later.

See Also
– pushViewController:animated: (page 251)
– popToRootViewControllerAnimated: (page 249)
– popToViewController:animated: (page 250)

Declared In
UINavigationController.h

pushViewController:animated:
Pushes a view controller onto the receiver’s stack and updates the display.

- (void)pushViewController:(UIViewController *)viewController animated:(BOOL)animated

Parameters

viewController
The view controller that is pushed onto the stack. It cannot be an instance of tab bar controller.
This method does nothing if the view controller is already on the stack.

animated
Set this value to YES to animate the transition. Pass NO if you are setting up a navigation
controller before its view is displayed.

Discussion
The view controller pushed onto the stack becomes the top view controller. Pushing a view controller
displays the view it manages by replacing the top view controller’s view in the hierarchy and updates
the navigation bar accordingly. Views are always resized to fit between the navigation bar and toolbar
if present before displaying.

The navigation controller updates the left side of the navigation bar as follows:

 ■ The next view controller (if it exists) is represented as a back button on the left side of the navigation
bar unless another view is specified. The back button pops the current view controller.

Instance Methods 251
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

The title (page 490) property is used as the default button title. Set the backBarButtonItem (page
256) property of the next view controller’s navigationItem (page 488) property to specify an
alternate title or button.

 ■ If a custom left view is specified, it is displayed instead of a back button.

Set the leftBarButtonItem (page 257) property of the navigationItem (page 488) property to
specify a custom left view. Use the UIBarButtonItem class to create a custom bar button item for
the navigation item. Use the initWithBarButtonSystemItem:target:action: (page 110) method
to create common system buttons.

The navigation controller updates the middle of the navigation bar as follows:

 ■ The view controller’s title is displayed in the middle of the navigation bar unless it has a custom
title view.

Set the view controller title using the title (page 490) property or if different, set the navigation
item’s title property.

 ■ If a custom title view is specified, it is displayed in the middle of the navigation bar instead of
the title.

Set the titleView (page 259) property of the navigationItem (page 488) property to specify a
custom title view.

The navigation controller updates the right side of the navigation bar as follows:

 ■ If a custom right view is specified, it is displayed on the right side of the navigation bar; otherwise,
nothing is displayed on the right side.

Set the rightBarButtonItem (page 258) property of the navigationItem (page 488) property to
specify a custom right view. Use the UIBarButtonItem class to create a bar button item for the
navigation item. Use the initWithBarButtonSystemItem:target:action: (page 110) method
of UIBarButtonItem to create common system buttons.

The navigation controller updates the navigation bar in the same manner each time the top view
controller changes—for example, when a view controller is popped from the stack and the next view
controller becomes the top view controller, the navigation bar is updated accordingly.

Availability
Available in iPhone OS 2.0 and later.

See Also
– popViewControllerAnimated: (page 251)
– popToRootViewControllerAnimated: (page 249)
– popToViewController:animated: (page 250)

Declared In
UINavigationController.h

setNavigationBarHidden:animated:
Sets whether the navigation bar is hidden.

- (void)setNavigationBarHidden:(BOOL)hidden animated:(BOOL)animated

252 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

Parameters

hidden
YES if the navigation bar should be hidden; otherwise, NO.

animated
YES if the transition should be animated using “Setting the Delegate” (page 247) as the
duration; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property navigationBarHidden (page 247)

Declared In
UINavigationController.h

Constants

UINavigationControllerHideShowBarDuration
A global variable for specifying the duration when animating the navigation bar.

extern CGFloat UINavigationControllerHideShowBarDuration

Constants
UINavigationControllerHideShowBarDuration

Global variable for specifying the duration when animating the navigation bar.

Available in iPhone OS 2.0 and later.

Declared in UINavigationController.h

Constants 253
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

254 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

UINavigationController Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UINavigationBar.h

Overview

The UINavigationItem class encapsulates information about a navigation item pushed on a
UINavigationBar object’s stack. A navigation bar is a control used to navigate hierarchical content.
A UINavigationItem specifies what is displayed on the navigation bar when it is the top item and
also how it is represented when it is the back item.

Use the initWithTitle: (page 259) method to create a navigation item specifying the item’s title. The
item cannot be represented on the navigation bar without a title. Use the backBarButtonItem (page
256) property if you want to use a different title when this item is the back item. The
backBarButtonItem (page 256) property is displayed as the back button unless a custom left view is
specified.

The navigation bar displays a back button on the left and the title in the center by default. You can
change this behavior by specifying either a custom left, center, or right view. Use the
setLeftBarButtonItem:animated: (page 260) and setRightBarButtonItem:animated: (page 261)
methods to change the left and right views; you can specify that the change be animated. Use the
titleView (page 259) method to change the center view to a custom view.

These custom views can be system buttons. Use the UIBarButtonItem class to create custom views
to add to navigation items.

Overview 255
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

Tasks

Initializing an Item

– initWithTitle: (page 259)
Returns a navigation item initialized with the specified title.

Getting and Setting Properties

title (page 258) property
The navigation item’s title displayed in the center of the navigation bar.

prompt (page 258) property
A single line of text displayed at the top of the navigation bar.

backBarButtonItem (page 256) property
The bar button item to use when this item is represented by a back button on the navigation
bar.

hidesBackButton (page 257) property
A Boolean value that determines whether the back button is hidden.

– setHidesBackButton:animated: (page 260)
Sets whether the back button is hidden, optionally animating the transition.

Customizing Views

titleView (page 259) property
A custom view displayed in the center of the navigation bar when this item is the top item.

leftBarButtonItem (page 257) property
A custom bar item displayed on the left of the navigation bar when this item is the top item.

rightBarButtonItem (page 258) property
A custom bar item displayed on the right of the navigation bar when this item is the top item.

– setLeftBarButtonItem:animated: (page 260)
Sets the custom bar item, optionally animating the transition to the view.

– setRightBarButtonItem:animated: (page 261)
Sets the custom bar item, optionally animating the transition to the view.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

backBarButtonItem
The bar button item to use when this item is represented by a back button on the navigation bar.

256 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

@property(nonatomic, retain) UIBarButtonItem *backBarButtonItem

Discussion
When this item is the back item of the navigation bar—when it is the next item below the top item—it
may be represented as a back button on the navigation bar. Use this property to specify the back
button. The target and action of the back bar button item you set should be nil. The default value is
a bar button item displaying the navigation item’s title.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backItem (page 240)
@property hidesBackButton (page 257)

– setHidesBackButton:animated: (page 260)

Declared In
UINavigationBar.h

hidesBackButton
A Boolean value that determines whether the back button is hidden.

@property(nonatomic, assign) BOOL hidesBackButton

Discussion
YES if the back button is hidden when this navigation item is the top item; otherwise, NO. The default
value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backItem (page 240)
@property backBarButtonItem (page 256)

– setHidesBackButton:animated: (page 260)

Declared In
UINavigationBar.h

leftBarButtonItem
A custom bar item displayed on the left of the navigation bar when this item is the top item.

@property(nonatomic, retain) UIBarButtonItem *leftBarButtonItem

Availability
Available in iPhone OS 2.0 and later.

See Also
@property rightBarButtonItem (page 258)

– setLeftBarButtonItem:animated: (page 260)

Properties 257
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

– setRightBarButtonItem:animated: (page 261)

Declared In
UINavigationBar.h

prompt
A single line of text displayed at the top of the navigation bar.

@property(nonatomic, copy) NSString *prompt

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationBar.h

rightBarButtonItem
A custom bar item displayed on the right of the navigation bar when this item is the top item.

@property(nonatomic, retain) UIBarButtonItem *rightBarButtonItem

Availability
Available in iPhone OS 2.0 and later.

See Also
@property leftBarButtonItem (page 257)

– setLeftBarButtonItem:animated: (page 260)
– setRightBarButtonItem:animated: (page 261)

Declared In
UINavigationBar.h

title
The navigation item’s title displayed in the center of the navigation bar.

@property(nonatomic, copy) NSString *title

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTitle: (page 259)
UINavigationItem (page 255)

258 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

@property titleView (page 259)

Declared In
UINavigationBar.h

titleView
A custom view displayed in the center of the navigation bar when this item is the top item.

@property(nonatomic, retain) UIView *titleView

Discussion
If this property value is nil, the navigation item’s title is displayed in the center of the navigation
bar when this item is the top item. If you set this property to a custom title, it is displayed instead of
the title. This property is ignored if leftBarButtonItem (page 257) is not nil.

Custom views can contain buttons. Use the buttonWithType: (page 129) method in UIButton class
to add buttons to your custom view in the style of the navigation bar. Custom title views are centered
on the navigation bar and may be resized to fit.

The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationBar.h

Instance Methods

initWithTitle:
Returns a navigation item initialized with the specified title.

- (id)initWithTitle:(NSString *)title

Parameters

title
The string to set as the navigation item’s title displayed in the center of the navigation bar.

Return Value
A new UINavigationItem object initialized with the specified title.

Discussion
This is the designated initializer for this class.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property title (page 258)

Instance Methods 259
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

Declared In
UINavigationBar.h

setHidesBackButton:animated:
Sets whether the back button is hidden, optionally animating the transition.

- (void)setHidesBackButton:(BOOL)hidesBackButton animated:(BOOL)animated

Parameters

hidesBackButton
YES if the back button is hidden when this navigation item is the top item; otherwise, NO.

animated
YES to animate the transition; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backItem (page 240)
@property backBarButtonItem (page 256)
@property hidesBackButton (page 257)

Declared In
UINavigationBar.h

setLeftBarButtonItem:animated:
Sets the custom bar item, optionally animating the transition to the view.

- (void)setLeftBarButtonItem:(UIBarButtonItem *)item animated:(BOOL)animated

Parameters

item
A custom bar item to display on the left of the navigation bar.

animated
YES to animate the transition to the custom bar item when this item becomes the top item;
otherwise, NO.

Discussion
If two navigation items have the same custom left or right bar items, the views remain stationary
during the transition when an item is pushed or popped.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property leftBarButtonItem (page 257)
@property rightBarButtonItem (page 258)

– setRightBarButtonItem:animated: (page 261)

260 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

Declared In
UINavigationBar.h

setRightBarButtonItem:animated:
Sets the custom bar item, optionally animating the transition to the view.

- (void)setRightBarButtonItem:(UIBarButtonItem *)item animated:(BOOL)animated

Parameters

item
A custom bar item to display on the right of the navigation bar.

animated
YES to animate the transition to the custom bar item when this item becomes the top item;
otherwise, NO.

Discussion
If two navigation items have the same custom left or right bar items, the bar items remain stationary
during the transition when an item is pushed or popped.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property leftBarButtonItem (page 257)
@property rightBarButtonItem (page 258)

– setLeftBarButtonItem:animated: (page 260)

Declared In
UINavigationBar.h

Instance Methods 261
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

262 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

UINavigationItem Class Reference

Inherits from: UIControl : UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIPageControl.h

Overview

You use the UIPageControl class to create and manage page controls. A page control is a succession
of dots centered in the control. Each dot corresponds to a page in the application’s document (or other
data-model entity), with the white dot indicating the currently viewed page.

For an example of a page control, see the Weather application (with a number of locations configured)
or Safari (with a number of tab views set).

When a user taps a page control to move to the next or previous page, the control sends the
UIControlEventValueChanged (page 170) event for handling by the delegate. The delegate can then
evaluate the currentPage (page 264) property to determine the page to display. The page control
advances only one page in either direction.

Overview 263
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

UIPageControl Class Reference

Note: Because of physical factors—namely the size of the device screen and the size and layout of the
page indicators—there is a limit of about 20 page indicators on the screen before they are clipped.

Tasks

Managing the Page Navigation

currentPage (page 264) property
The current page, shown by the receiver as a white dot.

numberOfPages (page 265) property
The number of pages the receiver shows (as dots).

hidesForSinglePage (page 265) property
A Boolean value that controls whether the page indicator is hidden when there is only one
page.

Updating the Page Display

defersCurrentPageDisplay (page 265) property
A Boolean value that controls when the current page is displayed.

– updateCurrentPageDisplay (page 266)
Updates the page indicator to the current page.

Resizing the Control

– sizeForNumberOfPages: (page 266)
Returns the size the receiver’s bounds should be to accommodate the given number of pages.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

currentPage
The current page, shown by the receiver as a white dot.

@property(nonatomic) NSInteger currentPage

Discussion
The property value is an integer specifying the current page shown minus one; thus a value of zero
(the default) indicates the first page. A page control shows the current page as a white dot. Values
outside the possible range are pinned to either 0 or numberOfPages (page 265) minus 1.

264 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

UIPageControl Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPageControl.h

defersCurrentPageDisplay
A Boolean value that controls when the current page is displayed.

@property(nonatomic) BOOL defersCurrentPageDisplay

Discussion
Set the value of this property to YES so that, when the user clicks the control to go to a new page, the
class defers updating the page indicator until it calls updatePageIndicator (page 266). Set the value
to NO (the default) to have the page indicator updated immediately.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPageControl.h

hidesForSinglePage
A Boolean value that controls whether the page indicator is hidden when there is only one page.

@property(nonatomic) BOOL hidesForSinglePage

Discussion
Assign a value of YES to hide the page indicator when there is only one page; assign NO (the default)
to show the page indicator if there is only one page.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPageControl.h

numberOfPages
The number of pages the receiver shows (as dots).

@property(nonatomic) NSInteger numberOfPages

Discussion
The value of the property is the number of pages for the page control to show as dots. The default
value is 0.

Availability
Available in iPhone OS 2.0 and later.

Properties 265
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

UIPageControl Class Reference

Declared In
UIPageControl.h

Instance Methods

sizeForNumberOfPages:
Returns the size the receiver’s bounds should be to accommodate the given number of pages.

- (CGSize)sizeForNumberOfPages:(NSInteger)pageCount

Parameters

pageCount
The number of pages to fit in the receiver’s bounds.

Return Value
The minimum size required to display dots for the page count.

Discussion
Subclasses that customize the appearance of the page control can use this method to resize the page
control when the page count changes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPageControl.h

updateCurrentPageDisplay
Updates the page indicator to the current page.

- (void)updateCurrentPageDisplay

Discussion
This method updates the page indicator so that the current page (the white dot) matches the value
returned from currentPage (page 264). The class ignores this method if the value of
defersPageIndicatorUpdate (page 265) is NO. Setting the currentPage value directly updates the
indicator immediately.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPageControl.h

266 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

UIPageControl Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIPickerView.h

Overview

The UIPickerView class implements objects that use a spinning-wheel or slot-machine motif to show
one or more sets of values. Users select values by rotating the wheels until a row of values is aligned
with a selection indicator.

The UIDatePicker class uses a custom subclass of UIPickerView to display dates and times. To see
an example, tap the add (“+”) button in the the Alarm pane of the Clock application.

A UIPickerView object is a potentially multidimensional user-interface element consisting of rows
and components. A component is a wheel, which has a series of items (rows) at indexed locations on
the wheel. Each component also has an indexed location (left to right) in a picker view. Each row on
a component has content, which is either a string or a view object such as a label (UILabel) or an
image (UIImageView).

A UIPickerView object requires the cooperation of a delegate for constructing its components and a
data source for providing the number of rows and components. The delegate must adopt the
UIPickerViewDelegateprotocol and implement the required methods to return the drawing rectangle
for rows in each component. It also provides the content for each component’s row, either as a string
or a view, and it typically responds to new selections or deselections. The data source must adopt the
UIPickerViewDataSource protocol and implement the required methods to return number of
components and the number of rows in each component.

You can dynamically change the rows of one or all components by calling the reloadComponent: (page
271) or reloadAllComponents (page 271) methods, respectively. These methods cause UIPickerView
to request the delegate to provide new component and row data. You reload a picker view when a

Overview 267
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

selected value in one component changes the set of values in another component; for example, changing
a row value from February to March in one component would change a related component representing
the days of the month.

Tasks

Getting the Dimensions of the View Picker

numberOfComponents (page 269) property
Returns the number of components displayed by the receiver. (read-only)

– numberOfRowsInComponent: (page 270)
Returns the number of rows for a component.

– rowSizeForComponent: (page 271)
Returns the size of a row for a component.

Reloading the View Picker

– reloadAllComponents (page 271)
Reloads all components of the receiver.

– reloadComponent: (page 271)
Reloads a particular component of the receiver.

Selecting Rows in the View Picker

– selectRow:inComponent:animated: (page 272)
Selects a row in a specified component of the receiver.

– selectedRowInComponent: (page 272)
Returns the index of the selected row in a given component.

Returning the View for a Row and Component

– viewForRow:forComponent: (page 273)
Returns the view used by the receiver for a given row and component.

Managing the Delegate

delegate (page 269) property
The delegate for the receiver.

268 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

Managing the Data Source

dataSource (page 269) property
The data source for the receiver.

Managing the Appearance of the Picker View

showsSelectionIndicator (page 270) property
A Boolean value that determines whether the selection indicator is displayed.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

dataSource
The data source for the receiver.

@property(nonatomic, assign) id<UIPickerViewDataSource> dataSource

Discussion
The data source must adopt the UIPickerViewDataSource protocol.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

delegate
The delegate for the receiver.

@property(nonatomic, assign) id<UIPickerViewDelegate> delegate

Discussion
The delegate must adopt the UIPickerViewDelegate protocol.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

numberOfComponents
Returns the number of components displayed by the receiver. (read-only)

Properties 269
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

@property(nonatomic, readonly) NSInteger numberOfComponents

Discussion
UIPickerView fetches the value of this property from the delegate and and caches it. The default
value is zero.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberOfRowsInComponent: (page 270)
– rowSizeForComponent: (page 271)

Declared In
UIPickerView.h

showsSelectionIndicator
A Boolean value that determines whether the selection indicator is displayed.

@property(nonatomic) BOOL showsSelectionIndicator

Discussion
If the value of the property is YES, the picker view shows a clear overlay across the current row. The
default value of this property is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

Instance Methods

numberOfRowsInComponent:
Returns the number of rows for a component.

- (NSInteger)numberOfRowsInComponent:(NSInteger)component

Parameters

component
An index number identifying a component.

Return Value
The number of rows in the given component.

Discussion
UIPickerView fetches the value of this property from the delegate and and caches it. The default
value is zero.

270 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property numberOfComponents (page 269)

– rowSizeForComponent: (page 271)

Declared In
UIPickerView.h

reloadAllComponents
Reloads all components of the receiver.

- (void)reloadAllComponents

Discussion
Calling this method causes the receiver to query the delegate for new data for all components.

Availability
Available in iPhone OS 2.0 and later.

See Also
– reloadComponent: (page 271)

Declared In
UIPickerView.h

reloadComponent:
Reloads a particular component of the receiver.

- (void)reloadComponent:(NSInteger)component

Parameters

component
An index number identifying a component of the receiver.

Discussion
Calling this method causes the receiver to query the delegate for new data for the given component.

Availability
Available in iPhone OS 2.0 and later.

See Also
– reloadAllComponents (page 271)

Declared In
UIPickerView.h

rowSizeForComponent:
Returns the size of a row for a component.

Instance Methods 271
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

- (CGSize)rowSizeForComponent:(NSInteger)component

Parameters

component
An index number identifying a component.

Return Value
The size of rows in the given component. This is generally the size required to display the largest
string or view used as a row in the component.

Discussion
UIPickerView fetches the value of this property from the delegate and and caches it. The default
value is zero.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property numberOfComponents (page 269)

– numberOfRowsInComponent: (page 270)

Declared In
UIPickerView.h

selectedRowInComponent:
Returns the index of the selected row in a given component.

- (NSInteger)selectedRowInComponent:(NSInteger)component

Parameters

component
An index number identifying a component of the picker view.

Return Value
An index number identifying the selected row, or -1 if no row is selected.

Availability
Available in iPhone OS 2.0 and later.

See Also
– selectRow:inComponent:animated: (page 272)

Declared In
UIPickerView.h

selectRow:inComponent:animated:
Selects a row in a specified component of the receiver.

- (void)selectRow:(NSInteger)row inComponent:(NSInteger)component
animated:(BOOL)animated

272 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

Parameters

row
An index number identifying a row of component.

component
An index number identifying a component of the picker view.

animated
YES to animate the selection by spinning the wheel (component) to the new value; if you specify
NO, the new selection is shown immediately.

Availability
Available in iPhone OS 2.0 and later.

See Also
– selectedRowInComponent: (page 272)

Declared In
UIPickerView.h

viewForRow:forComponent:
Returns the view used by the receiver for a given row and component.

- (UIView *)viewForRow:(NSInteger)row forComponent:(NSInteger)component

Parameters

row
The index number of a row of the receiver.

component
The index number of a component of the receiver.

Return Value
The view provided by the delegate in the
pickerView:viewForRow:forComponent:reusingView: (page 559) method. Returns nil if the
specified row of the component is not visible or if the delegate does not implement
pickerView:viewForRow:forComponent:reusingView:.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

Instance Methods 273
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

274 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

UIPickerView Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIProgressView.h

Overview

You use the UIProgressView class to depict the progress of a task over time. An example of a progress
bar is the one shown at the bottom of the Mail application when it’s downloading messages.

The UIProgressView class provides properties for managing the style of the progress bar and for
getting and setting values that are pinned to the progress of a task.

For an indeterminate progress indicator—or, informally, a “spinner”—use an instance of the
UIActivityIndicatorView class.

Tasks

Initializing the UIProgressView Object

– initWithProgressViewStyle: (page 277)
Initializes and returns an progress-view object.

Managing the Progress Bar

progress (page 276) property
The current progress shown by the receiver.

Overview 275
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

UIProgressView Class Reference

Configuring the Bar Style

progressViewStyle (page 276) property
The current graphical style of the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

progress
The current progress shown by the receiver.

@property(nonatomic) float progress

Discussion
The current progress is represented by a floating-point value between 0.0 and 1.0, inclusive, where
1.0 indicates the completion of the task. The default value is 0.0. Values less than 0.0 and greater than
1.0 are pinned to those limits.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIProgressView.h

progressViewStyle
The current graphical style of the receiver.

@property(nonatomic) UIProgressViewStyle progressViewStyle

Discussion
The value of this property is a constant that specifies the style of the progress view. The default style
is UIProgressViewStyleDefault (page 277). For more on these constants, see
UIProgressViewStyle (page 277).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIProgressView.h

276 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

UIProgressView Class Reference

Instance Methods

initWithProgressViewStyle:
Initializes and returns an progress-view object.

- (id)initWithProgressViewStyle:(UIProgressViewStyle)style

Parameters

style
A constant that specifies the style of the object to be created. See UIProgressViewStyle (page
277) for descriptions of the style constants.

Return Value
An initialized UIProgressView object or nil if the object couldn’t be created.

Discussion
UIProgressView sets the height of the returned view according to the specified style. You can set
and retrieve the style of a progress view through the progressViewStyle (page 276) property.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIProgressView.h

Constants

UIProgressViewStyle
The styles permitted for the progress bar.

typedef enum {
UIProgressViewStyleDefault,
UIProgressViewStyleBar,

} UIProgressViewStyle;

Constants
UIProgressViewStyleDefault

The standard progress-view style. This is the default.

Available in iPhone OS 2.0 and later.

Declared in UIProgressView.h

UIProgressViewStyleBar
The style of progress view that is used in a toolbar.

Available in iPhone OS 2.0 and later.

Declared in UIProgressView.h

Instance Methods 277
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

UIProgressView Class Reference

Discussion
You can set and retrieve the current style of progress view through the progressViewStyle (page
276) property.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIProgressView.h

278 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

UIProgressView Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIResponder.h

Overview

The UIResponder class defines an interface for objects that respond to and handle events. It is the
superclass of UIApplication, UIView and its subclasses (which include UIWindow). Instances of these
classes are sometimes referred to as responder objects.

The primary event-handling methods are touchesBegan:withEvent: (page 283),
touchesMoved:withEvent: (page 285), touchesEnded:withEvent: (page 284), and
touchesCancelled:withEvent: (page 283). The parameters of these methods associate touches with
their events—especially touches that are new or have changed—and thus allow responder objects to
track and handle the touches as the delivered events progress through the phases of a multi-touch
sequence. Any time a finger touches the screen, is dragged on the screen, or lifts from the screen, a
UIEvent object is generated. The event object contains UITouch objects for all fingers on the screen
or just lifted from it.

See Event Handling in iPhone OS Programming Guide for further information on event handling.

Tasks

Managing the Responder Chain

– nextResponder (page 282)
Returns the receiver’s next responder, or nil if it has none.

Overview 279
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

– isFirstResponder (page 282)
Returns a Boolean value indicating whether the receiver is the first responder.

– canBecomeFirstResponder (page 281)
Returns a Boolean value indicating whether the receiver can become first responder.

– becomeFirstResponder (page 280)
Notifies the receiver that it’s about to become first responder in its window.

– canResignFirstResponder (page 281)
Returns a Boolean value indicating whether the receiver is willing to relinquish first-responder
status.

– resignFirstResponder (page 282)
Notifies the receiver that it’s been asked to relinquish its status as first responder in its window.

Responding to Events

– touchesBegan:withEvent: (page 283)
Tells the receiver when one or more fingers touch down in a view or window.

– touchesMoved:withEvent: (page 285)
Tells the receiver when one or more fingers associated with an event move within a view or
window.

– touchesEnded:withEvent: (page 284)
Tells the receiver when one or more fingers are raised from a view or window.

– touchesCancelled:withEvent: (page 283)
Sent to the receiver when a system event (such as a low-memory warning) cancels an event.

Instance Methods

becomeFirstResponder
Notifies the receiver that it’s about to become first responder in its window.

- (BOOL)becomeFirstResponder

Discussion
The default implementation returns YES, accepting first responder status. Subclasses can override
this method to update state or perform some action such as highlighting the selection, or to return
NO, refusing first responder status.

Sending this message to a view object, for example a UITextField instance, will cause it to become
the first responder and begin editing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isFirstResponder (page 282)
– canBecomeFirstResponder (page 281)

280 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

Declared In
UIResponder.h

canBecomeFirstResponder
Returns a Boolean value indicating whether the receiver can become first responder.

- (BOOL)canBecomeFirstResponder

Return Value
YES if the receiver can become the first responder, NO otherwise.

Discussion
If a responder object returns YES from this method, it can thereafter join the responder chain and
receive touch events and action messages. Subclasses must override this method to be able to become
first responder.

You must not send this message to a view that is not currently attached to the view hierarchy. The
result is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– becomeFirstResponder (page 280)

Declared In
UIResponder.h

canResignFirstResponder
Returns a Boolean value indicating whether the receiver is willing to relinquish first-responder status.

- (BOOL)canResignFirstResponder

Return Value
YES if the receiver can resign first-responder status, NO otherwise.

Discussion
As an example, a text field in the middle of editing might want to implement this method to return
NO to force the user to finish editing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– resignFirstResponder (page 282)

Declared In
UIResponder.h

Instance Methods 281
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

isFirstResponder
Returns a Boolean value indicating whether the receiver is the first responder.

- (BOOL)isFirstResponder

Return Value
YES if the receiver is the first responder, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– becomeFirstResponder (page 280)
– resignFirstResponder (page 282)

Declared In
UIResponder.h

nextResponder
Returns the receiver’s next responder, or nil if it has none.

- (UIResponder *)nextResponder

Return Value
The next object in the responder chain to be presented with an event for handling.

Discussion
The UIResponder class does not store or set the next responder automatically, instead returning nil
by default. Subclasses must override this method to set the next responder. UIView implements this
method by returning the superview,UIWindow returns the application object, and UIApplication
returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isFirstResponder (page 282)

Declared In
UIResponder.h

resignFirstResponder
Notifies the receiver that it’s been asked to relinquish its status as first responder in its window.

- (BOOL)resignFirstResponder

Discussion
The default implementation returns YES, resigning first responder status. Subclasses can override
this method to update state or perform some action such as unhighlighting the selection, or to return
NO, refusing to relinquish first responder status.

282 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– isFirstResponder (page 282)
– canResignFirstResponder (page 281)

Declared In
UIResponder.h

touchesBegan:withEvent:
Tells the receiver when one or more fingers touch down in a view or window.

- (void)touchesBegan:(NSSet *)touches
withEvent:(UIEvent *)event

Parameters

touches
An set of UITouch instances that represent the touches for the starting phase of the event
represented by event.

event
An object representing the event to which the touches belong.

Discussion
The default implementation of this method does nothing.

Multiple touches are disabled by default. In order to receive multiple touch events you must send a
setMultipleTouchEnabled: message to the corresponding view instance, passing YES as the
parameter.

Availability
Available in iPhone OS 2.0 and later.

See Also
– touchesMoved:withEvent: (page 285)
– touchesEnded:withEvent: (page 284)
– touchesCancelled:withEvent: (page 283)

Declared In
UIResponder.h

touchesCancelled:withEvent:
Sent to the receiver when a system event (such as a low-memory warning) cancels an event.

- (void)touchesCancelled:(NSSet *)touches
withEvent:(UIEvent *)event

Instance Methods 283
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

Parameters

touches
An set of UITouch instances that represent the touches for the ending phase of the event
represented by event.

event
An object representing the event to which the touches belong.

Discussion
This method is invoked when the Cocoa Touch framework receives a system event requiring
cancellation of the user event; for this, it generates a UITouch object with a phase of
UITouchPhaseCancel.

When an object receives a touchesCancelled:withEvent: message it should clean up any state
information that was established in its touchesBegan:withEvent: implementation.

The default implementation of this method does nothing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIResponder.h

touchesEnded:withEvent:
Tells the receiver when one or more fingers are raised from a view or window.

- (void)touchesEnded:(NSSet *)touches
withEvent:(UIEvent *)event

Parameters

touches
An set of UITouch instances that represent the touches for the ending phase of the event
represented by event.

event
An object representing the event to which the touches belong.

Discussion
The default implementation of this method does nothing.

When an object receives a touchesEnded:withEvent:message it should clean up any state information
that was established in its touchesBegan:withEvent: implementation.

Multiple touches are disabled by default. In order to receive multiple touch events you must send a
setMultipleTouchEnabled: message to the corresponding view instance, passing YES as the
parameter.

Availability
Available in iPhone OS 2.0 and later.

See Also
– touchesBegan:withEvent: (page 283)
– touchesMoved:withEvent: (page 285)
– touchesCancelled:withEvent: (page 283)

284 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

Declared In
UIResponder.h

touchesMoved:withEvent:
Tells the receiver when one or more fingers associated with an event move within a view or window.

- (void)touchesMoved:(NSSet *)touches
withEvent:(UIEvent *)event

Parameters

touches
An set of UITouch instances that represent the touches that are moving during the event
represented by event.

event
An object representing the event to which the touches belong.

Discussion
The default implementation of this method does nothing.

Multiple touches are disabled by default. In order to receive multiple touch events you must send a
setMultipleTouchEnabled: message to the corresponding view instance, passing YES as the
parameter.

Availability
Available in iPhone OS 2.0 and later.

See Also
– touchesBegan:withEvent: (page 283)
– touchesEnded:withEvent: (page 284)
– touchesCancelled:withEvent: (page 283)

Declared In
UIResponder.h

Instance Methods 285
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

286 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

UIResponder Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIScreen.h

Overview

A UIScreen object contains the bounding rectangle of the device’s entire screen. When setting up
your application’s user interface, you should use the properties of this object to get the recommended
frame rectangles for your application’s window.

Tasks

Getting the Available Screens

+ mainScreen (page 288)
Returns the screen object representing the device’s screen.

Getting the Bounds Information

bounds (page 288) property
Contains the bounding rectangle of the screen, measured in points. (read-only)

applicationFrame (page 288) property
The frame rectangle to use for your application’s window. (read-only)

Overview 287
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

UIScreen Class Reference

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

applicationFrame
The frame rectangle to use for your application’s window. (read-only)

@property(nonatomic, readonly) CGRect applicationFrame

Discussion
This property contains the screen bounds minus the area occupied by the status bar, if it is visible.
Using this property is the recommended way to retrieve your application’s initial window size. The
rectangle is specified in points.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScreen.h

bounds
Contains the bounding rectangle of the screen, measured in points. (read-only)

@property(nonatomic, readonly) CGRect bounds

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScreen.h

Class Methods

mainScreen
Returns the screen object representing the device’s screen.

+ (UIScreen *)mainScreen

Return Value
The screen object for the device

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScreen.h

288 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

UIScreen Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIScrollView.h

Overview

UIScrollView is the base class for any class that needs to display content that is larger than the size
of the application’s window. It enables users to scroll within that content by making swiping gestures,
and to zoom in and back from portions of the content by making pinching gestures.

UIScrollView is the superclass of several UIKit classes including UITableView and UITextView.

The central notion of a UIScrollView object (or, simply, a scroll view) is that it is a view whose origin
is adjustable over the content view. It clips the content to its frame, which generally (but not necessarily)
coincides that of the application’s main window. A scroll view tracks the movements of fingers and
adjusts the origin accordingly. The view that is showing its content “through” the scroll view draws
that portion of itself based on the new origin, which is pinned to an offset in the content view. The
scroll view itself does no drawing except for displaying vertical and horizontal scroll indicators. The
scroll view must know the size of the content view so it knows when to stop scrolling; by default, it
“bounces” back when scrolling exceeds the bounds of the content.

The object that manages the drawing of content displayed in a scroll view should tile the content’s
subviews so that no view exceeds the size of the screen. As users scroll in the scroll view, this object
should add and remove subviews as necessary.

Because a scroll view has no scroll bars, it must know whether a touch signals an intent to scroll versus
an intent to track a subview in the content. To make this determination, it temporarily intercepts a
touch-down event by starting a timer and, before the timer fires, seeing if the touching finger makes
any movement. If the time fires without a significant change in position, the scroll view sends tracking
events to the touched subview of the content view. If the user then drags his or her finger far enough
before the timer elapses, the scroll view cancels any tracking in the subview and performs the scrolling

Overview 289
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

itself. Subclasses can override the touchesShouldBegin:withEvent:inContentView: (page 302),
pagingEnabled (page 298), and touchesShouldCancelInContentView: (page 303) methods (which
are called by the scroll view) to affect how the scroll view handles scrolling gestures.

A scroll view also handles zooming and panning of content. As the user makes a pinch-in or pinch-out
gesture, the scroll view adjusts the offset and the scale of the content. When the gesture ends, the
object managing the content view should should update subviews of the content as necessary. (Note
that the gesture can end and a finger could still be down.) While the gesture is in progress, the scroll
view does not send any tracking calls to the subview.

The UIScrollView class can have a delegate that must adopt the UIScrollViewDelegate protocol.
For zooming and panning to work, the delegate must implement both
viewForZoomingInScrollView: (page 566) andscrollViewDidEndZooming:withView:atScale: (page
563); in addition, the maximum (maximumZoomScale (page 297)) and minimum (
minimumZoomScale (page 297)) zoom scale must be different.

Tasks

Managing the Display of Content

– setContentOffset:animated: (page 302)
Sets the offset from the content view’s origin that corresponds to the receiver’s origin.

contentOffset (page 294) property
The point at which the origin of the content view is offset from the origin of the scroll view.

contentSize (page 295) property
The size of the content view.

contentInset (page 294) property
The distance that the content view is inset from the enclosing scroll view.

Managing Scrolling

scrollEnabled (page 298) property
A Boolean value that determines whether scrolling is enabled.

directionalLockEnabled (page 296) property
A Boolean value that determines whether scrolling is disabled in a particular direction

scrollsToTop (page 299) property
A Boolean value that controls whether the scroll-to-top gesture is effective

– scrollRectToVisible:animated: (page 301)
Scrolls a specific area of the content so that it is visible in the recevier.

pagingEnabled (page 298) property
A Boolean value that determines whether paging is enabled for the scroll view.

bounces (page 293) property
A Boolean value that controls whether the scroll view bounces past the edge of content and
back again.

290 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

alwaysBounceVertical (page 292) property
A Boolean value that determines whether bouncing always occurs when vertical scrolling
reaches the end of the content.

alwaysBounceHorizontal (page 292) property
A Boolean value that determines whether whether bouncing always occurs when horizontal
scrolling reaches the end of the content view.

– touchesShouldBegin:withEvent:inContentView: (page 302)
Overridden by subclasses to customize the default behavior when a finger touches down in
displayed content.

– touchesShouldCancelInContentView: (page 303)
Returns whether to cancel touches related to the content subview and start dragging.

canCancelContentTouches (page 294) property
A Boolean value that controls whether touches in the content view always lead to tracking.

delaysContentTouches (page 295) property
A Boolean value that determines whether the scroll view delays the handling of touch-down
gestures.

dragging (page 296) property
A Boolean value that indicates whether the user has begun scrolling the content. (read-only)

tracking (page 300) property
Returns whether the user has touched the content to initiate scrolling. (read-only)

decelerating (page 295) property
Returns whether the content is moving in the scroll view after the user lifted his or her finger.
(read-only)

Managing the Scroll Indicator

indicatorStyle (page 297) property
The style of the scroll indicators.

scrollIndicatorInsets (page 299) property
The distance the scroll indicators are inset from the edge of the scroll view.

showsHorizontalScrollIndicator (page 299) property
A Boolean value that controls whether the horizontal scroll indicator is visible.

showsVerticalScrollIndicator (page 300) property
A Boolean value that controls whether the vertical scroll indicator is visible.

– flashScrollIndicators (page 301)
Displays the scroll indicators momentarily.

Zooming and Panning

maximumZoomScale (page 297) property
A floating-point value that specifies the maximum zoom scale.

minimumZoomScale (page 297) property
A floating-point value that specifies the minimum zoom scale.

Tasks 291
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

zoomBouncing (page 300) property
A Boolean value that indicates that zooming has exceeded the scaling limits specified for the
receiver. (read-only)

zooming (page 301) property
A Boolean value that indicates whether the content view is currently zooming in or out.
(read-only)

bouncesZoom (page 293) property
A Boolean value that determines whether the scroll view bounces zooming exceeds the
maximum or minimum limiits.

Managing the Delegate

delegate (page 296) property
The delegate of the scroll-view object.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

alwaysBounceHorizontal
A Boolean value that determines whether whether bouncing always occurs when horizontal scrolling
reaches the end of the content view.

@property(nonatomic) BOOL alwaysBounceHorizontal

Discussion
The default value is NO. if this property is set to YES and bounces (page 293) is YES, horizontal dragging
is allowed even if the content is smaller than the bounds of the scroll view.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property alwaysBounceVertical (page 292)

Declared In
UIScrollView.h

alwaysBounceVertical
A Boolean value that determines whether bouncing always occurs when vertical scrolling reaches
the end of the content.

292 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

@property(nonatomic) BOOL alwaysBounceVertical

Discussion
The default value is NO. if this property is set to YES and bounces (page 293) is YES, vertical dragging
is allowed even if the content is smaller than the bounds of the scroll view.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property alwaysBounceHorizontal (page 292)

Declared In
UIScrollView.h

bounces
A Boolean value that controls whether the scroll view bounces past the edge of content and back
again.

@property(nonatomic) BOOL bounces

Discussion
If the value of the property is YES (the default), the scroll view bounces when it encounters a boundary
of the content. Bouncing visually indicates that scrolling has reached an edge of the content. If the
value is NO, scrolling stops immediately at the content boundary without bouncing.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property alwaysBounceVertical (page 292)
@property alwaysBounceHorizontal (page 292)

Declared In
UIScrollView.h

bouncesZoom
A Boolean value that determines whether the scroll view bounces zooming exceeds the maximum or
minimum limiits.

@property(nonatomic) BOOL bouncesZoom

Discussion
If this property is set to YES and zooming exceeds either the maximum or minimum limits for scaling,
the scroll view temporarily animates the content scaling just past these limits before returning to
them. If the property is set to NO, zooming stops immediately at one a scaling limits. The default is
YES .

Availability
Available in iPhone OS 2.0 and later.

Properties 293
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

See Also
@property maximumZoomScale (page 297)
@property minimumZoomScale (page 297)
@property zoomBouncing (page 300)
@property zooming (page 301)

Declared In
UIScrollView.h

canCancelContentTouches
A Boolean value that controls whether touches in the content view always lead to tracking.

@property(nonatomic) BOOL canCancelContentTouches

Discussion
If the value of the property is YES and a view in the content has begun tracking a finger touching it,
if the user drags the finger enough to initiate a scroll, the view receives a
touchesCancelled:withEvent: (page 283) message and the scroll view handles the touch as a scroll.
If the value of the property is NO, the scroll view does not scroll regardless of finger movement once
the content view starts tracking.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

contentInset
The distance that the content view is inset from the enclosing scroll view.

@property(nonatomic) UIEdgeInsets contentInset

Discussion
Use this property to add to the scrolling area around the content. The unit of size is points. The default
value is UIEdgeInsetsZero.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

contentOffset
The point at which the origin of the content view is offset from the origin of the scroll view.

@property(nonatomic) CGPoint contentOffset

Discussion
The default value is CGPointZero.

294 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– setContentOffset:animated: (page 302)

Declared In
UIScrollView.h

contentSize
The size of the content view.

@property(nonatomic) CGSize contentSize

Discussion
The unit of size is points. The default size is CGSizeZero.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

decelerating
Returns whether the content is moving in the scroll view after the user lifted his or her finger.
(read-only)

@property(nonatomic, readonly, getter=isDecelerating) BOOL decelerating

Discussion
The returned value is YES if user isn't dragging the content but scrolling is still occurring.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

delaysContentTouches
A Boolean value that determines whether the scroll view delays the handling of touch-down gestures.

@property(nonatomic) BOOL delaysContentTouches

Discussion
If the value of this property is YES (the default), the scroll view delays handling the touch-down
gesture until it can determine if scrolling is the intent. if the value is NO , the scroll view immediately
calls touchesShouldBegin:withEvent:inContentView: (page 302). See the class description for a
fuller discussion.

Properties 295
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

delegate
The delegate of the scroll-view object.

@property(nonatomic, assign) id<UIScrollViewDelegate> delegate

Discussion
The delegate must adopt the UIScrollViewDelegate protocol.The UIScrollView class, which does
not retain the delegate, invokes each protocol method the delegate implements.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

directionalLockEnabled
A Boolean value that determines whether scrolling is disabled in a particular direction

@property(nonatomic, getter=isDirectionalLockEnabled) BOOL directionalLockEnabled

Discussion
The default value is NO, which means that scrolling is permitted in both horizontal and vertical
directions. If the value is YES and the user begins dragging in one general direction (horizontally or
vertically), the scroll view disables scrolling in the other direction.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

dragging
A Boolean value that indicates whether the user has begun scrolling the content. (read-only)

@property(nonatomic, readonly, getter=isDragging) BOOL dragging

Discussion
The value held by this property might require some time or distance of scrolling before it is set to
YES.

Availability
Available in iPhone OS 2.0 and later.

296 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

See Also
@property tracking (page 300)

Declared In
UIScrollView.h

indicatorStyle
The style of the scroll indicators.

@property(nonatomic) UIScrollViewIndicatorStyle indicatorStyle

Discussion
The default style is UIScrollViewIndicatorStyleDefault (page 304). See “Scroll Indicator Style” (page
304) for descriptions of these constants.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

maximumZoomScale
A floating-point value that specifies the maximum zoom scale.

@property(nonatomic) float maximumZoomScale

Discussion
This value determines how large the content can be scaled. It must be greater than the minimum
zoom scale for zooming to be enabled. The default value is 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property minimumZoomScale (page 297)
@property zoomBouncing (page 300)
@property bouncesZoom (page 293)
@property zoomBouncing (page 300)
@property zooming (page 301)

Declared In
UIScrollView.h

minimumZoomScale
A floating-point value that specifies the minimum zoom scale.

Properties 297
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

@property(nonatomic) float minimumZoomScale

Discussion
This value determines how small the content can be scaled. The default value is 1.0

Availability
Available in iPhone OS 2.0 and later.

See Also
@property maximumZoomScale (page 297)
@property zoomBouncing (page 300)
@property bouncesZoom (page 293)
@property zoomBouncing (page 300)
@property zooming (page 301)

Declared In
UIScrollView.h

pagingEnabled
A Boolean value that determines whether paging is enabled for the scroll view.

@property(nonatomic, getter=isPagingEnabled) BOOL pagingEnabled

Discussion
If the value of the property is YES, the scroll view stops on multiples of the view bounds when the
user scrolls. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

scrollEnabled
A Boolean value that determines whether scrolling is enabled.

@property(nonatomic, getter=isScrollEnabled) BOOL scrollEnabled

Discussion
If the value of the property is YES , scrolling is enabled, and if it is NO , scrolling is disabled. The default
is YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

298 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

scrollIndicatorInsets
The distance the scroll indicators are inset from the edge of the scroll view.

@property(nonatomic) UIEdgeInsets scrollIndicatorInsets

Discussion
The default value is UIEdgeInsetsZero.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

scrollsToTop
A Boolean value that controls whether the scroll-to-top gesture is effective

@property(nonatomic) BOOL scrollsToTop

Discussion
The scroll-to-top gesture is a tap on the status bar; when this property is YES, the scroll view jumps
to the top of the content when this gesture occurs. The default value of this property is YES. By default,
this gesture works on a single visible scroll view; if there are multiple scroll views (for example, a
date picker) with this property set, or if the delegate returns NO in scrollViewWillScrollToTop: (page
566), UIScrollView ignores the request. After the scroll view scrolls to the top of the content view, it
sends the delegate a scrollViewDidScrollToTop: (page 564) message.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

showsHorizontalScrollIndicator
A Boolean value that controls whether the horizontal scroll indicator is visible.

@property(nonatomic) BOOL showsHorizontalScrollIndicator

Discussion
The default value is YES. The indicator is visible while tracking is underway and fades out after
tracking.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

Properties 299
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

showsVerticalScrollIndicator
A Boolean value that controls whether the vertical scroll indicator is visible.

@property(nonatomic) BOOL showsVerticalScrollIndicator

Discussion
The default value is YES. The indicator is visible while tracking is underway and fades out after
tracking.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

tracking
Returns whether the user has touched the content to initiate scrolling. (read-only)

@property(nonatomic, readonly, getter=isTracking) BOOL tracking

Discussion
The property holds YES if the user has touched the content view but might not have yet have started
dragging it.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property dragging (page 296)

Declared In
UIScrollView.h

zoomBouncing
A Boolean value that indicates that zooming has exceeded the scaling limits specified for the receiver.
(read-only)

@property(nonatomic, readonly, getter=isZoomBouncing) BOOL zoomBouncing

Discussion
The value of this property is YES if the scroll view is zooming back to a minimum or maximum zoom
scaling value; otherwise the value is NO .

Availability
Available in iPhone OS 2.0 and later.

See Also
@property maximumZoomScale (page 297)
@property minimumZoomScale (page 297)
@property zooming (page 301)
@property bouncesZoom (page 293)

300 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

Declared In
UIScrollView.h

zooming
A Boolean value that indicates whether the content view is currently zooming in or out. (read-only)

@property(nonatomic, readonly, getter=isZooming) BOOL zooming

Discussion
The value of this property is YES if user is making a zoom gesture, otherwise it is NO .

Availability
Available in iPhone OS 2.0 and later.

See Also
@property maximumZoomScale (page 297)
@property minimumZoomScale (page 297)
@property zoomBouncing (page 300)
@property bouncesZoom (page 293)

Declared In
UIScrollView.h

Instance Methods

flashScrollIndicators
Displays the scroll indicators momentarily.

- (void)flashScrollIndicators

Discussion
You should call this method whenever you bring the scroll view to front.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

scrollRectToVisible:animated:
Scrolls a specific area of the content so that it is visible in the recevier.

- (void)scrollRectToVisible:(CGRect)rect animated:(BOOL)animated

Parameters

rect
A rectangle defining an area of the content view.

Instance Methods 301
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

animated
YES if the scrolling should be animated, NO if it should be immediate.

Discussion
This method scrolls the content view so that the area defined by rect is just visible inside the scroll
view. If the area is already visible, the method does nothing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

setContentOffset:animated:
Sets the offset from the content view’s origin that corresponds to the receiver’s origin.

- (void)setContentOffset:(CGPoint)contentOffset animated:(BOOL)animated

Parameters

contentOffset
A point (expressed in points) that is offset from the content view’s origin.

animated
YES to animate the transition at a constant velocity to the new offset, NO to make the transition
immediate.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property contentOffset (page 294)

Declared In
UIScrollView.h

touchesShouldBegin:withEvent:inContentView:
Overridden by subclasses to customize the default behavior when a finger touches down in displayed
content.

- (BOOL)touchesShouldBegin:(NSSet *)touches withEvent:(UIEvent *)event
inContentView:(UIView *)view

Parameters

touches
A set of UITouch instances that represent the touches for the starting phase of the event
represented by event.

event
An object representing the event to which the touch objects in touches belong.

view
The subview in the content where the touch-down gesture occurred.

302 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

Return Value
Return NO if you don’t want the scroll view to send event messages to view. If you want view to
receive those messages, return YES (the default).

Discussion
The default behavior of UIScrollView is to invoke the UIResponder event-handling methods of the
target subview that the touches occur in.

Availability
Available in iPhone OS 2.0 and later.

See Also
– touchesShouldCancelInContentView: (page 303)

Declared In
UIScrollView.h

touchesShouldCancelInContentView:
Returns whether to cancel touches related to the content subview and start dragging.

- (BOOL)touchesShouldCancelInContentView:(UIView *)view

Parameters

view
The view object in the content that is being touched.

Return Value
YES to cancel further touch messages to view, NO to have view continue to receive those messages.
The default returned value is YES if view is not a UIControl object; otherwise, it returns NO.

Discussion
The subview calls this method just after it starts sending tracking messages to the content view. If it
receives NO from this method, it stops dragging and forwards the touch events to the content subview.
The subview does not call this method if the value of the canCancelContentTouches (page 294)
property is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– touchesShouldBegin:withEvent:inContentView: (page 302)

Declared In
UIScrollView.h

Instance Methods 303
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

Constants

Scroll Indicator Style
The style of the scroll indicators. You use these constants to set the value of the indicatorStyle (page
297) style.

typedef enum {
UIScrollViewIndicatorStyleDefault,
UIScrollViewIndicatorStyleBlack,
UIScrollViewIndicatorStyleWhite
} UIScrollViewIndicatorStyle;

Constants
UIScrollViewIndicatorStyleDefault

The default style of scroll indicator, which is black with a white border. This style is good
against any content background.

Available in iPhone OS 2.0 and later.

Declared in UIScrollView.h

UIScrollViewIndicatorStyleBlack
A style of indicator which is black smaller than the default style. This style is good against a
white content background.

Available in iPhone OS 2.0 and later.

Declared in UIScrollView.h

UIScrollViewIndicatorStyleWhite
A style of indicator is white and smaller than the default style. This style is good against a
black content background.

Available in iPhone OS 2.0 and later.

Declared in UIScrollView.h

304 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

UIScrollView Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UISearchBar.h

Overview

The UISearchBar class implements a text field control for text-based searches. The control provides
a text field for entering text, a search button, a bookmark button, and a cancel button. You use a
delegate, an object conforming to the UISearchBarDelegateprotocol, to implement the actions when
text is entered and buttons are clicked. The UISearchBar object does not actually perform any searches.

Tasks

Setting Properties

barStyle (page 307) property
The style that specifies the receiver’s appearance.

delegate (page 307) property
The search bar’s delegate object.

placeholder (page 308) property
The string that is displayed when there is no other text in the text field.

prompt (page 308) property
A single line of text displayed at the top of the search bar.

text (page 309) property
The current or starting search text.

Overview 305
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

UISearchBar Class Reference

tintColor (page 309) property
The color used to tint the bar.

Setting Text Input Properties

autocapitalizationType (page 306) property
The auto-capitalization style for the text object.

autocorrectionType (page 306) property
The auto-correction style for the text object.

keyboardType (page 307) property
The keyboard style associated with the text object.

Configuring Buttons

showsBookmarkButton (page 308) property
A Boolean value indicating whether the bookmark button is displayed.

showsCancelButton (page 309) property
A Boolean value indicating whether the cancel button is displayed.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

autocapitalizationType
The auto-capitalization style for the text object.

@property(nonatomic) UITextAutocapitalizationType autocapitalizationType

Discussion
This property determines at what times the Shift key is automatically pressed, thereby making the
typed character a capital letter. The default value for this property is
UITextAutocapitalizationTypeNone (page 608).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

autocorrectionType
The auto-correction style for the text object.

306 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

UISearchBar Class Reference

@property(nonatomic) UITextAutocorrectionType autocorrectionType

Discussion
This property determines whether auto-correction is enabled or disabled during typing. With
auto-correction enabled, the text object tracks unknown words and suggests a replacement candidate
to the user, replacing the typed text automatically unless the user explicitly overrides the action.

The default value for this property is UITextAutocorrectionTypeDefault (page 609), which for most
input methods results in auto-correction being enabled.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

barStyle
The style that specifies the receiver’s appearance.

@property(nonatomic) UIBarStyle barStyle

Discussion
See UIBarStyle (page 625) for possible values. The default value is UIBarStyleDefault.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

delegate
The search bar’s delegate object.

@property(nonatomic, assign) id<UISearchBarDelegate> delegate

Discussion
The delegate should conform to the UISearchBarDelegate protocol. Set this property to further
modify the behavior. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

keyboardType
The keyboard style associated with the text object.

Properties 307
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

UISearchBar Class Reference

@property(nonatomic) UIKeyboardType keyboardType

Discussion
Text objects can be targeted for specific types of input, such as plain text, email, numeric entry, and
so on. The keyboard style identifies what keys are available on the keyboard and which ones appear
by default. The default value for this property is UIKeyboardTypeDefault (page 610).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

placeholder
The string that is displayed when there is no other text in the text field.

@property(nonatomic, copy) NSString *placeholder

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

prompt
A single line of text displayed at the top of the search bar.

@property(nonatomic, copy) NSString *prompt

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

showsBookmarkButton
A Boolean value indicating whether the bookmark button is displayed.

@property(nonatomic) BOOL showsBookmarkButton

Discussion
The default value is NO.

308 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

UISearchBar Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

showsCancelButton
A Boolean value indicating whether the cancel button is displayed.

@property(nonatomic) BOOL showsCancelButton

Discussion
The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

text
The current or starting search text.

@property(nonatomic, copy) NSString *text

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

tintColor
The color used to tint the bar.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The bar style is ignored if this property is not nil. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

Properties 309
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

UISearchBar Class Reference

310 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

UISearchBar Class Reference

Inherits from: UIControl : UIView : UIResponder : NSObject

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UISegmentedControl.h

Overview

A UISegmentedControl object is a horizontal control made of multiple segments, each segment
functioning as a discrete button. A segmented control affords a compact means to group together a
number of controls.

A segmented control can display a title (an NSString object) or an image (UIImage object). The
UISegmentedControl object automatically resizes segments to fit proportionally within their superview
unless they have a specific width set. If you set a segmented control to have a momentary style, a
segment doesn’t show itself as selected (blue background) when the user touches it. The disclosure
button is always momentary and doesn't affect the actual selection. When you add and remove
segments, you can request that the action be animated with sliding and fading effects.

In order to have the segmented control send a target object an action message you should register
the target-action method using the UIControlEventValueChanged constant as shown below.

[segmentedControl addTarget:self
action:@selector(action:)

forControlEvents:UIControlEventValueChanged];

Tasks

Initializing a Segmented Control

– initWithItems: (page 315)
Initializes and returns a segmented control with segments having the given titles or images.

Overview 311
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

Managing Segment Content

– setImage:forSegmentAtIndex: (page 319)
Sets the content of a segment to a given image.

– imageForSegmentAtIndex: (page 315)
Returns the image for a specific segment

– setTitle:forSegmentAtIndex: (page 319)
Sets the title of a segment.

– titleForSegmentAtIndex: (page 320)
Returns the title of the specified segment.

Managing Segments

– insertSegmentWithImage:atIndex:animated: (page 316)
Inserts a segment at a specified position in the receiver and gives it an image as content.

– insertSegmentWithTitle:atIndex:animated: (page 316)
Inserts a segment at a specific position in the receiver and gives it a title as content.

numberOfSegments (page 313) property
Returns the number of segments the receiver has. (read-only)

– removeAllSegments (page 317)
Removes all segments of the receiver

– removeSegmentAtIndex:animated: (page 318)
Removes the specified segment from the receiver, optionally animating the transition.

selectedSegmentIndex (page 314) property
The index number identifying the selected segment (that is, the last segment touched).

Managing Segment Behavior and Appearance

momentary (page 313) property
A Boolean value that determines whether segments in the receiver show selected state.

segmentedControlStyle (page 313) property
The style of the segmented control.

tintColor (page 314) property
The tint color of the segmented control.

– setEnabled:forSegmentAtIndex: (page 319)
Enables the specified segment.

– isEnabledForSegmentAtIndex: (page 317)
Returns whether the indicated segment is enabled.

– setContentOffset:forSegmentAtIndex: (page 318)
Adjusts the offset for drawing the content (image or text) of the specified segment.

– contentOffsetForSegmentAtIndex: (page 314)
Returns the offset for drawing the content (image or text) of the specified segment.

– setWidth:forSegmentAtIndex: (page 320)
Sets the width of the specified segment of the receiver.

312 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

– widthForSegmentAtIndex: (page 321)
Returns the width of the indicated segment of the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

momentary
A Boolean value that determines whether segments in the receiver show selected state.

@property(nonatomic, getter=isMomentary) BOOL momentary

Discussion
The default value of this property is NO. If it is set to YES, segments in the control do not show selected
state and do not update the value of selectedSegment (page 314) after tracking ends.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISegmentedControl.h

numberOfSegments
Returns the number of segments the receiver has. (read-only)

@property(nonatomic, readonly) NSUInteger numberOfSegments

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISegmentedControl.h

segmentedControlStyle
The style of the segmented control.

@property(nonatomic) UISegmentedControlStyle segmentedControlStyle

Discussion
The default style is UISegmentedControlStylePlain (page 322). See “Segmented Control Style” (page
321) for descriptions of valid constants.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISegmentedControl.h

Properties 313
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

selectedSegmentIndex
The index number identifying the selected segment (that is, the last segment touched).

@property(nonatomic) NSInteger selectedSegmentIndex

Discussion
The default value is UISegmentedControlNoSegment (page 322) (no segment selected) until the user
touches a segment. Set this property to UISegmentedControlNoSegment to turn off the current
selection. UISegmentedControl ignores this property when the control is in momentary mode. When
the user touches a segment to change the selection, the control event
UIControlEventValueChanged (page 170) is generated; if the segmented control is set up to respond
to this control event, it sends a action message to its target.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property momentary (page 313)

Declared In
UISegmentedControl.h

tintColor
The tint color of the segmented control.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The default value of this property is nil (no color). UISegmentedControl uses this property only if
the style of the segmented control is UISegmentedControlStyleBar.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISegmentedControl.h

Instance Methods

contentOffsetForSegmentAtIndex:
Returns the offset for drawing the content (image or text) of the specified segment.

- (CGSize)contentOffsetForSegmentAtIndex:(NSUInteger)segment

314 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

Parameters

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Return Value
The offset (specified as a CGSize structure) from the origin of the segment at which to draw the
segment’s content.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setContentOffset:forSegment: (page 318)

Declared In
UISegmentedControl.h

imageForSegmentAtIndex:
Returns the image for a specific segment

- (UIImage *)imageForSegmentAtIndex:(NSUInteger)segment.

Parameters

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Return Value
Returns the image assigned to the receiver as content. If no image has been set, it returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setImage:forSegment: (page 319)

Declared In
UISegmentedControl.h

initWithItems:
Initializes and returns a segmented control with segments having the given titles or images.

- (id)initWithItems:(NSArray *)items

Parameters

items
An array of NSString objects (for segment titles) or UIImage objects (for segment images).

Instance Methods 315
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

Return Value
A UISegmentedControl object or nil if there was a problem in initializing the object.

Discussion
The returned segmented control is automatically sized to fit its content within the width of its
superview.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISegmentedControl.h

insertSegmentWithImage:atIndex:animated:
Inserts a segment at a specified position in the receiver and gives it an image as content.

- (void)insertSegmentWithImage:(UIImage *)image atIndex:(NSUInteger)segment
animated:(BOOL)animated

Parameters

image
An image object to use as the content of the segment.

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it. The new segment is inserted just before the designated one.

animated
YES if the insertion of the new segment should be animated, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertSegment:withTitle:animated: (page 316)
– removeSegment:animated: (page 318)

Declared In
UISegmentedControl.h

insertSegmentWithTitle:atIndex:animated:
Inserts a segment at a specific position in the receiver and gives it a title as content.

- (void)insertSegmentWithTitle:(NSString *)title atIndex:(NSUInteger)segment
animated:(BOOL)animated

Parameters

title
A string to use as the segment’s title.

316 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it. The new segment is inserted just before the designated one.

animated
YES if the insertion of the new segment should be animated, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertSegment:withImage:animated: (page 316)
– removeSegment:animated: (page 318)

Declared In
UISegmentedControl.h

isEnabledForSegmentAtIndex:
Returns whether the indicated segment is enabled.

- (BOOL)isEnabledForSegmentAtIndex:(NSUInteger)segment

Parameters

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Return Value
YES if the given segment is enabled and NO if the segment is disabled. By default, segments are enabled.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setEnabled:forSegment: (page 319)

Declared In
UISegmentedControl.h

removeAllSegments
Removes all segments of the receiver

- (void)removeAllSegments

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeSegment:animated: (page 318)

Instance Methods 317
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

Declared In
UISegmentedControl.h

removeSegmentAtIndex:animated:
Removes the specified segment from the receiver, optionally animating the transition.

- (void)removeSegmentAtIndex:(NSUInteger)segment animated:(BOOL)animated

Parameters

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

animated
YES if the removal of the new segment should be animated, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllSegments (page 317)
– insertSegment:withImage:animated: (page 316)
– insertSegment:withTitle:animated: (page 316)

Declared In
UISegmentedControl.h

setContentOffset:forSegmentAtIndex:
Adjusts the offset for drawing the content (image or text) of the specified segment.

- (void)setContentOffset:(CGSize)offset forSegmentAtIndex:(NSUInteger)segment

Parameters

offset
The offset (specified as a CGSize type) from the origin of the segment at which to draw the
segment’s content. The default offset is (0,0).

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentOffsetForSegment: (page 314)

Declared In
UISegmentedControl.h

318 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

setEnabled:forSegmentAtIndex:
Enables the specified segment.

- (void)setEnabled:(BOOL)enabled forSegmentAtIndex:(NSUInteger)segment

Parameters

enabled
YES to enable the specified segment or NO to disable the segment. By default, segments are
enabled.

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isEnabledForSegment: (page 317)

Declared In
UISegmentedControl.h

setImage:forSegmentAtIndex:
Sets the content of a segment to a given image.

- (void)setImage:(UIImage *)image forSegmentAtIndex:(NSUInteger)segment

Parameters

image
An image object to display in the segment. .

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Discussion
A segment can only have an image or a title; it can’t have both. There is no default image.

Availability
Available in iPhone OS 2.0 and later.

See Also
– imageForSegment: (page 315)

Declared In
UISegmentedControl.h

setTitle:forSegmentAtIndex:
Sets the title of a segment.

Instance Methods 319
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

- (void)setTitle:(NSString *)title forSegmentAtIndex:(NSUInteger)segment

Parameters

title
An string to display in the segment as its title. .

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Discussion
A segment can only have an image or a title; it can’t have both. There is no default title.

Availability
Available in iPhone OS 2.0 and later.

See Also
– titleForSegment: (page 320)

Declared In
UISegmentedControl.h

setWidth:forSegmentAtIndex:
Sets the width of the specified segment of the receiver.

- (void)setWidth:(CGFloat)width forSegmentAtIndex:(NSUInteger)segment

Parameters

width
A float value specifying the width of the segment. The default value is {0.0}, which tells
UISegmentedControl to automatically size the segment.

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Availability
Available in iPhone OS 2.0 and later.

See Also
– widthForSegment: (page 321)

Declared In
UISegmentedControl.h

titleForSegmentAtIndex:
Returns the title of the specified segment.

- (NSString *)titleForSegmentAtIndex:(NSUInteger)segment

320 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

Parameters

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Return Value
Returns the string (title) assigned to the receiver as content. If no title has been set, it returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTitle:forSegment: (page 319)

Declared In
UISegmentedControl.h

widthForSegmentAtIndex:
Returns the width of the indicated segment of the receiver.

- (CGFloat)widthForSegmentAtIndex:(NSUInteger)segment

Parameters

segment
An index number identifying a segment in the control. It must be a number between 0 and the
number of segments (numberOfSegments (page 313)) minus 1; values exceeding this upper
range are pinned to it.

Return Value
A float value specifying the width of the segment. If the value is {0.0}, UISegmentedControl
automatically sizes the segment.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setWidth:forSegment: (page 320)

Declared In
UISegmentedControl.h

Constants

Segmented Control Style
The styles of the segmented control.

Constants 321
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

typedef enum {
UISegmentedControlStylePlain,
UISegmentedControlStyleBordered,
UISegmentedControlStyleBar,

} UISegmentedControlStyle;

Constants
UISegmentedControlStylePlain

The large plain style for segmented controls. This style is the default.

Available in iPhone OS 2.0 and later.

Declared in UISegmentedControl.h

UISegmentedControlStyleBordered
The large bordered style for segmented controls.

Available in iPhone OS 2.0 and later.

Declared in UISegmentedControl.h

UISegmentedControlStyleBar
The small toolbar style for segmented controls. Segmented controls in this style can have a tint
color (see tintColor (page 314)).

Available in iPhone OS 2.0 and later.

Declared in UISegmentedControl.h

Discussion
You use these constants as values for the segmentedControlStyle (page 313) property.

Declared In
UISegmentedControl.h

Segment Selection
A constant for indicating that no segment is selected.

enum {
UISegmentedControlNoSegment = -1

};

Constants
UISegmentedControlNoSegment

A segment index value indicating that there is no selected segment. See selectedSegment (page
314) for further information.

Available in iPhone OS 2.0 and later.

Declared in UISegmentedControl.h

Declared In
UISegmentedControl.h

322 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

UISegmentedControl Class Reference

Inherits from: UIControl : UIView : UIResponder : NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UISlider.h

Overview

A UISlider object is a visual control used to select a single value from a continuous range of values.
Sliders are always displayed as horizontal bars. An indicator, or thumb, notes the current value of
the slider and can be moved by the user to change the setting.

Customizing the Slider’s Appearance

The most common way to customize the slider’s appearance is to provide custom minimum and
maximum value images. These images sit at either end of the slider control and indicate which value
that end of the slider represents. For example, a slider used to control volume might display a small
speaker with no sound waves emanating from it for the minimum value and display a large speaker
with many sound waves emanating from it for the maximum value.

The bar on which the thumb rides is referred to as the slider’s track. Slider controls draw the track
using two distinct images, which are customizable. The region between the thumb and the end of the
track associated with the slider’s minimum value is drawn using the minimum track image. The
region between the thumb and the end of the track associated with the slider’s maximum value is
drawn using the maximum track image. Different track images are used in order to provide context
as to which end contains the minimum value. For example, the minimum track image typically
contains a blue highlight while the maximum track image contains a white highlight. You can assign
different pairs of track images to each of control states of the slder. Assigning different images to each
state lets you customize the appearance of the slider when it is enabled, disabled, highlighted, and
so on.

Overview 323
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

In addition to customizing the track images, you can also customize the appearance of the thumb
itself. Like the track images, you can assign different thumb images to each control state of the slider.

Note: The slider control provides a set of default images for both the track and thumb. If you do not
specify any custom images, those images are used automatically.

Tasks

Accessing the Slider’s Value

value (page 328) property
Contains the receiver’s current value.

– setValue:animated: (page 332)
Sets the receiver’s current value, allowing you to animate the change visually.

Accessing the Slider’s Value Limits

minimumValue (page 328) property
Contains the minimum value of the receiver.

maximumValue (page 327) property
Contains the maximum value of the receiver.

Modifying the Slider’s Behavior

continuous (page 325) property
Contains a Boolean value indicating whether changes in the sliders value generate continuous
update events.

Changing the Slider’s Appearance

minimumValueImage (page 328) property
Contains the image that is drawn on the side of the slider representing the minimum value.

maximumValueImage (page 327) property
Contains the image that is drawn on the side of the slider representing the maximum value.

currentMinimumTrackImage (page 326) property
Contains the minimum track image currently being used to render the receiver. (read-only)

– minimumTrackImageForState: (page 330)
Returns the minimum track image associated with the specified control state.

– setMinimumTrackImage:forState: (page 331)
Assigns a minimum track image to the specified control states.

currentMaximumTrackImage (page 326) property
Contains the maximum track image currently being used to render the receiver. (read-only)

324 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

– maximumTrackImageForState: (page 329)
Returns the maximum track image associated with the specified control state.

– setMaximumTrackImage:forState: (page 331)
Assigns a maximum track image to the specified control states.

currentThumbImage (page 326) property
Contains the thumb image currently being used to render the receiver. (read-only)

– thumbImageForState: (page 333)
Returns the thumb image associated with the specified control state.

– setThumbImage:forState: (page 332)
Assigns a thumb image to the specified control states.

Overrides for Subclasses

– maximumValueImageRectForBounds: (page 329)
Returns the drawing rectangle for the maximum value image.

– minimumValueImageRectForBounds: (page 330)
Returns the drawing rectangle for the minimum value image.

– trackRectForBounds: (page 334)
Returns the drawing rectangle for the slider’s track.

– thumbRectForBounds:trackRect:value: (page 333)
Returns the drawing rectangle for the slider’s thumb image.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

continuous
Contains a Boolean value indicating whether changes in the sliders value generate continuous update
events.

@property(nonatomic, getter=isContinuous) BOOL continuous

Discussion
If YES, the slider sends update events continuously to the associated target’s action method. If NO, the
slider only sends an action event when the user releases the slider’s thumb control to set the final
value.

The default value of this property is YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

Properties 325
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

currentMaximumTrackImage
Contains the maximum track image currently being used to render the receiver. (read-only)

@property(nonatomic, readonly) UIImage *currentMaximumTrackImage

Discussion
Sliders can have different track images for different control states. The image associated with this
property reflects the maximum track image associated with the currently active control state. To get
the maximum track image for a different control state, use the maximumTrackImageForState:method.

If no custom track images have been set using the setMaximumTrackImage:forState: method, this
property contains the value nil. In that situation, the receiver uses the default maximum track image
for drawing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– maximumTrackImageForState: (page 329)
– setMaximumTrackImage:forState: (page 331)

Declared In
UISlider.h

currentMinimumTrackImage
Contains the minimum track image currently being used to render the receiver. (read-only)

@property(nonatomic, readonly) UIImage *currentMinimumTrackImage

Discussion
Sliders can have different track images for different control states. The image associated with this
property reflects the minimum track image associated with the currently active control state. To get
the minimum track image for a different control state, use the minimumTrackImageForState:method.

If no custom track images have been set using the setMinimumTrackImage:forState: method, this
property contains the value nil. In that situation, the receiver uses the default minimum track image
for drawing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minimumTrackImageForState: (page 330)
– setMinimumTrackImage:forState: (page 331)

Declared In
UISlider.h

currentThumbImage
Contains the thumb image currently being used to render the receiver. (read-only)

326 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

@property(nonatomic, readonly) UIImage *currentThumbImage

Discussion
Sliders can have different thumb images for different control states. The image associated with this
property reflects the thumb image associated with the currently active control state. To get the thumb
image for a different control state, use the thumbImageForState: method.

If no custom thumb images have been set using the setThumbImage:forState:method, this property
contains the value nil. In that situation, the receiver uses the default thumb image for drawing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– thumbImageForState: (page 333)
– setThumbImage:forState: (page 332)

Declared In
UISlider.h

maximumValue
Contains the maximum value of the receiver.

@property(nonatomic) float maximumValue

Discussion
If you change the value of this property, and the current value of the receiver is above the new
maximum, the current value is adjusted to match the new maximum value automatically.

The default value of this property is 1.0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

maximumValueImage
Contains the image that is drawn on the side of the slider representing the maximum value.

@property(nonatomic, retain) UIImage *maximumValueImage

Discussion
The image you specify should fit within the bounding rectangle returned by the
maximumValueImageRectForBounds: method. If it does not, the image is scaled to fit. In addition,
the receiver’s track is lengthened or shortened as needed to accommodate the image in its bounding
rectangle.

This default value of this property is nil.

Availability
Available in iPhone OS 2.0 and later.

Properties 327
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

Declared In
UISlider.h

minimumValue
Contains the minimum value of the receiver.

@property(nonatomic) float minimumValue

Discussion
If you change the value of this property, and the current value of the receiver is below the new
minimum, the current value is adjusted to match the new minimum value automatically.

The default value of this property is 0.0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

minimumValueImage
Contains the image that is drawn on the side of the slider representing the minimum value.

@property(nonatomic, retain) UIImage *minimumValueImage

Discussion
The image you specify should fit within the bounding rectangle returned by the
minimumValueImageRectForBounds: method. If it does not, the image is scaled to fit. In addition,
the receiver’s track is lengthened or shortened as needed to accommodate the image in its bounding
rectangle.

This default value of this property is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

value
Contains the receiver’s current value.

@property(nonatomic) float value

Discussion
Setting this property causes the receiver to redraw itself using the new value. To render an animated
transition from the current value to the new value, you should use the setValue:animated: method
instead.

328 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

If you try to set a value that is below the minimum or above the maximum value, the minimum or
maximum value is set instead. The default value of this property is 0.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:animated: (page 332)

Declared In
UISlider.h

Instance Methods

maximumTrackImageForState:
Returns the maximum track image associated with the specified control state.

- (UIImage *)maximumTrackImageForState:(UIControlState)state

Parameters

state
The control state whose maximum track image you want. You should specify only one control
state value for this parameter.

Return Value
The maximum track image associated with the specified state, or nil if an appropriate image could
not be retrieved. This method might return nil if you specify multiple control states in the state
parameter. For a description of track images, see “Customizing the Slider’s Appearance” (page 323).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMaximumTrackImage:forState: (page 331)

Declared In
UISlider.h

maximumValueImageRectForBounds:
Returns the drawing rectangle for the maximum value image.

- (CGRect)maximumValueImageRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the image.

Instance Methods 329
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

Discussion
You should not call this method directly. If you want to customize the rectangle in which the maximum
value image is drawn, you can override this method and return a different rectangle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

minimumTrackImageForState:
Returns the minimum track image associated with the specified control state.

- (UIImage *)minimumTrackImageForState:(UIControlState)state

Parameters

state
The control state whose minimum track image you want. You should specify only one control
state value for this parameter.

Return Value
The minimum track image associated with the specified state, or nil if no image has been set. This
method might also return nil if you specify multiple control states in the state parameter. For a
description of track images, see “Customizing the Slider’s Appearance” (page 323).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMinimumTrackImage:forState: (page 331)

Declared In
UISlider.h

minimumValueImageRectForBounds:
Returns the drawing rectangle for the minimum value image.

- (CGRect)minimumValueImageRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the image.

Discussion
You should not call this method directly. If you want to customize the rectangle in which the minimum
value image is drawn, you can override this method and return a different rectangle.

Availability
Available in iPhone OS 2.0 and later.

330 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

Declared In
UISlider.h

setMaximumTrackImage:forState:
Assigns a maximum track image to the specified control states.

- (void)setMaximumTrackImage:(UIImage *)image forState:(UIControlState)state

Parameters

image
The maximum track image to associate with the specified states.

state
The control state with which to associate the image.

Discussion
The orientation of the track image must match the orientation of the slider control. To facilitate the
stretching of the image to fill the space between the thumb and end point, track images are usually
defined in three regions. A stretchable region sits between two end cap regions. The end caps define
the portions of the image that remain as is and are not stretched. The stretchable region is a 1-point
wide area between the end caps that can be replicated to make the image appear longer.

To define the end cap sizes for a horizontally-oriented slider, assign an appropriate value to the
image’s leftCapWidth (page 208) property. For more information about how this value defines the
regions of the slider, see the UIImage class.

Availability
Available in iPhone OS 2.0 and later.

See Also
– maximumTrackImageForState: (page 329)

Declared In
UISlider.h

setMinimumTrackImage:forState:
Assigns a minimum track image to the specified control states.

- (void)setMinimumTrackImage:(UIImage *)image forState:(UIControlState)state

Parameters

image
The minimum track image to associate with the specified states.

state
The control state with which to associate the image.

Discussion
The orientation of the track image must match the orientation of the slider control. To facilitate the
stretching of the image to fill the space between the thumb and end point, track images are usually
defined in three regions. A stretchable region sits between two end cap regions. The end caps define
the portions of the image that remain as is and are not stretched. The stretchable region is a 1-point
wide area between the end caps that can be replicated to make the image appear longer.

Instance Methods 331
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

To define the end cap sizes for a horizontally-oriented slider, assign an appropriate value to the
image’s leftCapWidth (page 208) property. For more information about how this value defines the
regions of the slider, see the UIImage class.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

setThumbImage:forState:
Assigns a thumb image to the specified control states.

- (void)setThumbImage:(UIImage *)image forState:(UIControlState)state

Parameters

image
The thumb image to associate with the specified states.

state
The control state with which to associate the image.

Availability
Available in iPhone OS 2.0 and later.

See Also
– thumbImageForState: (page 333)

Declared In
UISlider.h

setValue:animated:
Sets the receiver’s current value, allowing you to animate the change visually.

- (void)setValue:(float)value animated:(BOOL)animated

Parameters

value
The new value to assign to the value property

animated
Specify YES to animate the change in value when the receiver is redrawn; otherwise, specify
NO to draw the receiver with the new value only. Animations are performed asynchronously
and do not block the calling thread.

Discussion
If you try to set a value that is below the minimum or above the maximum value, the minimum or
maximum value is set instead. The default value of this property is 0.0.

Availability
Available in iPhone OS 2.0 and later.

332 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

See Also
@property value (page 328)

Declared In
UISlider.h

thumbImageForState:
Returns the thumb image associated with the specified control state.

- (UIImage *)thumbImageForState:(UIControlState)state

Parameters

state
The control state whose thumb image you want. You should specify only one control state
value for this parameter.

Return Value
The thumb image associated with the specified state, or nil if an appropriate image could not be
retrieved. This method might return nil if you specify multiple control states in the state parameter.
For a description of track and thumb images, see “Customizing the Slider’s Appearance” (page 323).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setThumbImage:forState: (page 332)

Declared In
UISlider.h

thumbRectForBounds:trackRect:value:
Returns the drawing rectangle for the slider’s thumb image.

- (CGRect)thumbRectForBounds:(CGRect)bounds trackRect:(CGRect)rect value:(float)value

Parameters

bounds
The bounding rectangle of the receiver.

rect
The drawing rectangle for the receiver’s track, as returned by the trackRectForBounds: (page
334) method.

value
The current value of the slider.

Return Value
The computed drawing rectangle for the thumb image.

Discussion
You should not call this method directly. If you want to customize the thumb image’s drawing
rectangle, you can override this method and return a different rectangle. The rectangle you return
should reflect the size of your thumb image and its current position on the slider’s track.

Instance Methods 333
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

trackRectForBounds:
Returns the drawing rectangle for the slider’s track.

- (CGRect)trackRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the track. This rectangle corresponds to the entire length of the
track between the minimum and maximum value images.

Discussion
You should not call this method directly. If you want to customize the track rectangle, you can override
this method and return a different rectangle. The returned rectangle is used to scale the track and
thumb images during drawing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISlider.h

334 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

UISlider Class Reference

Inherits from: UIControl : UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UISwitch.h

Overview

You use the UISwitch class to create and manage the On/Off buttons you see, for example, in the
preferences (Settings) for such services as Airplane Mode. These objects are known as switches.

The UISwitch class declares a property and a method to control its on/off state. You can also use
methods of the superclass, UISlider. As with UISlider, when the user manipulates the switch control
(“flips” it) a UIControlEventValueChanged (page 170) event is generated, which results in the control
(if properly configured) sending an action message.

The UISwitch class is not customizable.

Tasks

Initializing the Switch Object

– initWithFrame: (page 336)
Returns an initialized switch object.

Overview 335
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

UISwitch Class Reference

Setting the Off/On State

on (page 336) property
A Boolean value that determines the off/on state of the switch.

– setOn:animated: (page 337)
Set the state of the switch to On or Off, optionally animating the transition.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

on
A Boolean value that determines the off/on state of the switch.

@property(nonatomic, getter=isOn) BOOL on

Discussion
This property allows you to retrieve and set (without animation) a value determining whether the
UISwitch object is on or off.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISwitch.h

Instance Methods

initWithFrame:
Returns an initialized switch object.

- (id)initWithFrame:(CGRect)frame

Parameters

frame
A rectangle defining the frame of the UISwitch object. The size components of this rectangle
are ignored.

Return Value
An initialized UISwitch object or nil if the object could not be initialized.

Discussion
UISwitch overrides initWithFrame: (page 469) and enforces a size appropriate for the control.

Availability
Available in iPhone OS 2.0 and later.

336 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

UISwitch Class Reference

Declared In
UISwitch.h

setOn:animated:
Set the state of the switch to On or Off, optionally animating the transition.

- (void)setOn:(BOOL)on animated:(BOOL)animated

Parameters

on
YES if the switch should be turn to the On position; NO if it should be turned to the Off position.
If the switch is already in the designated position, nothing happens.

animated
YES to animate the “flipping” of the switch; otherwise NO.

Discussion
Setting the switch to either position does not result in an action message being sent.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISwitch.h

Instance Methods 337
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

UISwitch Class Reference

338 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

UISwitch Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITabBar.h

Overview

The UITabBar class implements a control for selecting one of two or more buttons, called items. The
most common use of a tab bar is to implement a modal interface where tapping an item changes the
selection. Use a UIToolbar object if you want to momentarily highlight or not change the appearance
of an item when tapped. The UITabBar class provides the ability for the user to customize the tab bar
by reordering, removing, and adding items to the bar. You can use a tab bar delegate to augment this
behavior.

Use the UITabBarItem class to create items and the setItems:animated: (page 343) method to add
them to a tab bar. All methods with an animated: argument allow you to optionally animate changes
to the display. Use the selectedItem (page 341) property to access the current item.

Tasks

Getting and Setting Properties

delegate (page 340) property
The tab bar’s delegate object.

Overview 339
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

UITabBar Class Reference

Configuring Items

items (page 340) property
The items displayed on the tab bar.

selectedItem (page 341) property
The currently selected item on the tab bar.

– setItems:animated: (page 343)
Sets the items on the tab bar, with or without animation.

Customizing Tab Bars

– beginCustomizingItems: (page 341)
Presents a modal view allowing the user to customize the tab bar by adding, removing, and
rearranging items on the tab bar.

– endCustomizingAnimated: (page 342)
Dismisses the modal view used to modify items on the tab bar.

– isCustomizing (page 342)
Returns a Boolean value indicating whether the user is customizing the tab bar.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

delegate
The tab bar’s delegate object.

@property(assign) id<UITabBarDelegate> delegate

Discussion
The delegate should conform to the UITabBarDelegate protocol. Set this property to further modify
the customizing behavior. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBar.h

items
The items displayed on the tab bar.

340 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

UITabBar Class Reference

@property(copy) NSArray *items

Discussion
The items, instances of UITabBarItem, that are visible on the tab bar in the order they appear in this
array. Any changes to this property are not animated. Use the setItems:animated: (page 343) method
to animate changes.

The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property selectedItem (page 341)

– setItems:animated: (page 343)

Declared In
UITabBar.h

selectedItem
The currently selected item on the tab bar.

@property(assign) UITabBarItem *selectedItem

Discussion
Changes to this property show visual feedback in the user interface. The selected and unselected
images displayed by an item are automatically created based on the alpha values in its original image
property that you set. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property items (page 340)

– setItems:animated: (page 343)

Declared In
UITabBar.h

Instance Methods

beginCustomizingItems:
Presents a modal view allowing the user to customize the tab bar by adding, removing, and rearranging
items on the tab bar.

- (void)beginCustomizingItems:(NSArray *)items

Instance Methods 341
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

UITabBar Class Reference

Parameters

items
The items to display on the modal view that can be rearranged.

The items parameter should contain all items that can be added to the tab bar. Visible items
not in items are fixed in place—they can not be removed or replaced by the user.

Discussion
Use this method to start customizing a tab bar. For example, create an Edit button that invokes this
method when tapped. A modal view appears displaying all the items in items with a Done button
at the top. Tapping the Done button dismisses the modal view. If the selected item is removed from
the tab bar, the selectedItem (page 341) property is set to nil. Set the delegate (page 340) property
to an object conforming to the UITabBarDelegate protocol to further modify this behavior.

Availability
Available in iPhone OS 2.0 and later.

See Also
– endCustomizingAnimated: (page 342)
– isCustomizing (page 342)

Declared In
UITabBar.h

endCustomizingAnimated:
Dismisses the modal view used to modify items on the tab bar.

- (BOOL)endCustomizingAnimated:(BOOL)animated

Parameters

animated
If YES, animates the transition; otherwise, does not.

Return Value
YES if items on the tab bar changed; otherwise, NO.

Discussion
Typically, you do not need to use this method because the user dismisses the modal view by tapping
the Done button.

Availability
Available in iPhone OS 2.0 and later.

See Also
– beginCustomizingItems: (page 341)
– isCustomizing (page 342)

Declared In
UITabBar.h

isCustomizing
Returns a Boolean value indicating whether the user is customizing the tab bar.

342 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

UITabBar Class Reference

- (BOOL)isCustomizing

Return Value
YES if the user is currently customizing the items on the tab bar; otherwise, NO. For example, by tapping
an Edit button, a modal view appears allowing users to change the items on a tab bar. This method
returns YES if this modal view is visible.

Availability
Available in iPhone OS 2.0 and later.

See Also
– beginCustomizingItems: (page 341)
– endCustomizingAnimated: (page 342)

Declared In
UITabBar.h

setItems:animated:
Sets the items on the tab bar, with or without animation.

- (void)setItems:(NSArray *)items animated:(BOOL)animated

Parameters

items
The items to display on the tab bar.

animated
If YES, animates the transition to the items; otherwise, does not.

Discussion
If animated is YES, the changes are dissolved or the reordering is animated—for example, removed
items fade out and new items fade in. This method also adjusts the spacing between items.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property items (page 340)
@property selectedItem (page 341)

Declared In
UITabBar.h

Instance Methods 343
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

UITabBar Class Reference

344 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

UITabBar Class Reference

Inherits from: UIViewController : NSObject

Conforms to: UITabBarDelegate
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITabBarController.h

Companion guide: View Controller Programming Guide for iPhone OS

Overview

The UITabBarController class implements a controller that manages all aspects of a radio interface
using a tab bar. It uses view controllers, instances of UIViewController supplied by the application,
to configure the items and display views. Each view controller provides information on how to set
up an item and supplies the view to be displayed when that item is selected. A tab bar controller
manages a set of view controllers much as a tab bar manages items. Although a tab bar controller
uses a tab bar in its implementation, you should never need to, nor should you, access the tab bar
directly.

After you create a tab bar controller, you set its view controllers using the viewControllers (page
348) property. Also set the initial selection for radio interfaces using the selectedViewController (page
348) property. You should then attach a tab bar controller’s view to a window to display the tab bar.
The tab bar controller displays the selected view above the tab bar.

You configure the appearance of the tab bar by setting the properties of the view controllers you add
to the tab bar controller. At a minimum, a view controller added to a tab bar controller should have
the title (page 490) and view (page 491) properties set. Use the tabBarItem (page 490) property to
specify the appearance of the view controller.

The tab bar controller also resizes and positions your views between the tab bar and a navigation bar
(if present); otherwise, between the tab bar and status bar. Therefore, set the autoresizingMask (page
446) properties of your views so they are resized appropriately when displayed by the tab bar controller.

Overview 345
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

UITabBarController Class Reference

If you add more items than can be displayed by a tab bar, a More item automatically appears at the
end of the tab bar. When the user taps the More item, a More view appears listing the items that don’t
fit on the tab bar. The user can select the items by tapping them in the list. If the
customizableViewControllers (page 346) property is not nil, then an Edit button also appears on
the More view allowing the user to customize the tab bar.

If you want to augment the behavior of customizing a tab bar (the user interface for adding, replacing,
and removing items from a tab bar), set the delegate (page 347) property to an object conforming to
the UITabBarControllerDelegate protocol and implement the delegate methods accordingly.

Read View Controller Programming Guide for iPhone OS to learn how to use this class.

This class is not intended to be subclassed.

Tasks

Getting and Setting Properties

delegate (page 347) property
The tab bar controller’s delegate object.

Configuring Items

viewControllers (page 348) property
An array of view controllers corresponding to the items on the tab bar that the receiver manages.

– setViewControllers:animated: (page 349)
Sets the receivers view controllers.

selectedViewController (page 348) property
The view controller, with the currently selected item on the tab bar.

moreNavigationController (page 347) property
The view controller that manages the More item if it exists. (read-only)

customizableViewControllers (page 346) property
The subset of view controllers managed by this tab bar controller that can be customized.

selectedIndex (page 348) property
The index of the view controller, with the currently selected item on the tab bar.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

customizableViewControllers
The subset of view controllers managed by this tab bar controller that can be customized.

346 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

UITabBarController Class Reference

@property(nonatomic, copy) NSArray *customizableViewControllers

Discussion
If you add more items than can be displayed by a tab bar, a More item automatically appears on the
tab bar managed by the moreNavigationController (page 347) property. When the user taps the
More item, a More view appears containing an Edit button that allows items to be rearranged on the
tab bar. Only the items belonging to this array can be customized. None of the items on the tab bar
can be customized if this array is nil.

If you set the viewControllers (page 348) property, this property is also set to its default value. By
default all view controllers are customizable.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property moreNavigationController (page 347)

Declared In
UITabBarController.h

delegate
The tab bar controller’s delegate object.

@property(nonatomic, assign) id<UITabBarControllerDelegate> delegate

Discussion
The delegate should conform to the UITabBarControllerDelegate protocol. The default value is
nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBarController.h

moreNavigationController
The view controller that manages the More item if it exists. (read-only)

@property(nonatomic, readonly) UINavigationController *moreNavigationController

Discussion
This property is nil if a More item does not exist.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property customizableViewControllers (page 346)

Declared In
UITabBarController.h

Properties 347
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

UITabBarController Class Reference

selectedIndex
The index of the view controller, with the currently selected item on the tab bar.

@property(nonatomic) NSUInteger selectedIndex

Discussion
Use this property to change the tab bar’s currently selected item. It’s the index of a view controller in
the viewControllers (page 348) array. Setting this property also sets the
selectedViewController (page 348) property accordingly. The default value is 0—the index of the
first view controller.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property selectedViewController (page 348)

Declared In
UITabBarController.h

selectedViewController
The view controller, with the currently selected item on the tab bar.

@property(nonatomic, assign) UIViewController *selectedViewController

Discussion
Setting this property also sets the selectedIndex (page 348) property accordingly. If the More item
is selected, its view controller is the selected view controller. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property selectedIndex (page 348)

Declared In
UITabBarController.h

viewControllers
An array of view controllers corresponding to the items on the tab bar that the receiver manages.

@property(nonatomic, copy) NSArray *viewControllers

Discussion
If the view controller that manages the More item exists, it is not included in this array. Setting this
property also sets the customizableViewControllers (page 346) property to its default value. The
default value is nil.

Availability
Available in iPhone OS 2.0 and later.

348 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

UITabBarController Class Reference

See Also
– setViewControllers:animated: (page 349)

Declared In
UITabBarController.h

Instance Methods

setViewControllers:animated:
Sets the receivers view controllers.

- (void)setViewControllers:(NSArray *)viewControllers animated:(BOOL)animated

Parameters

viewControllers
An array of view controllers corresponding to the items on the tab bar that the receiver manages.

animated
If YES, the appearance of the selected view controller’s view is animated; otherwise, it is not.

Discussion
Setting the viewControllers (page 348) property also sets the customizableViewControllers (page
346) property to its default value.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property viewControllers (page 348)

Declared In
UITabBarController.h

Instance Methods 349
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

UITabBarController Class Reference

350 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

UITabBarController Class Reference

Inherits from: UIBarItem : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITabBar.h

Overview

The UITabBarItem class implements an item on a tab bar, instances of the UITabBar class. A tab bar
operates strictly in radio mode, where one item is selected at a time—tapping a tab bar item toggles
the view above the tab bar. You can also specify a badge value on the tab bar item for adding additional
visual information—for example, the Phone application uses a badge on the item to show the number
of new messages. This class also provides a number of system defaults for creating items.

Use the initWithTabBarSystemItem:tag: (page 352) method to create one of the system items. Use
the initWithTitle:image:tag: (page 353) method to create a custom item with the specified title
and image.

Tasks

Initializing a Item

– initWithTabBarSystemItem:tag: (page 352)
Creates and returns a new item containing the specified system item.

– initWithTitle:image:tag: (page 353)
Creates and returns a new item using the specified properties.

Overview 351
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

UITabBarItem Class Reference

Getting and Setting Properties

badgeValue (page 352) property
Text that is displayed in the upper-right corner of the item with a surrounding red oval.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

badgeValue
Text that is displayed in the upper-right corner of the item with a surrounding red oval.

@property(nonatomic, copy) NSString *badgeValue

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBarItem.h

Instance Methods

initWithTabBarSystemItem:tag:
Creates and returns a new item containing the specified system item.

- (id)initWithTabBarSystemItem:(UITabBarSystemItem)systemItem tag:(NSInteger)tag

Parameters

systemItem
The system item to use as the first item on the tab bar. One of the constants defined in
UITabBarSystemItem (page 353).

tag
The receiver’s tag, an integer that you can use to identify bar item objects in your application.

Return Value
A newly initialized item containing the specified system item. The item’s target is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTitle:image:tag: (page 353)

352 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

UITabBarItem Class Reference

Declared In
UITabBarItem.h

initWithTitle:image:tag:
Creates and returns a new item using the specified properties.

- (id)initWithTitle:(NSString *)title image:(UIImage *)image tag:(NSInteger)tag

Parameters

title
The item’s title. If nil, a title is not displayed.

image
The item’s image. If nil, an image is not displayed.

The images displayed on the tab bar are derived from this image. If this image is too large to
fit on the tab bar, it is scaled to fit. The size of an tab bar image is typically 30 x 30 points. The
alpha values in the source image are used to create the unselected and selected images—opaque
values are ignored.

tag
The receiver’s tag, an integer that you can use to identify bar item objects in your application.

Return Value
Newly initialized item with the specified properties.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTabBarSystemItem:tag: (page 352)

Declared In
UITabBarItem.h

Constants

UITabBarSystemItem
System items that can be used on a tab bar.

Constants 353
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

UITabBarItem Class Reference

typedef enum {
UITabBarSystemItemMore,
UITabBarSystemItemFavorites,
UITabBarSystemItemFeatured,
UITabBarSystemItemTopRated,
UITabBarSystemItemRecents,
UITabBarSystemItemContacts,
UITabBarSystemItemHistory,
UITabBarSystemItemBookmarks,
UITabBarSystemItemSearch,
UITabBarSystemItemDownloads,
UITabBarSystemItemMostRecent,
UITabBarSystemItemMostViewed,

} UITabBarSystemItem;

Constants
UITabBarSystemItemMore

The more system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemFavorites

The favorites system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemFeatured

The featured system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemTopRated

The top rated system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemRecents

The recents system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemContacts

The contacts system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemHistory

The history system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

354 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

UITabBarItem Class Reference

UITabBarSystemItemBookmarks

The bookmarks system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemSearch

The search system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemDownloads

The downloads system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemMostRecent

The most recent system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

UITabBarSystemItemMostViewed

The most viewed system item.

Available in iPhone OS 2.0 and later.

Declared in UITabBarItem.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBarItem.h

Constants 355
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

UITabBarItem Class Reference

356 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

UITabBarItem Class Reference

Inherits from: UIScrollView : UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITableView.h

Companion guide: Table View Programming Guide for iPhone OS

Overview

An instance of UITableView (or simply, a table view) is a means for displaying and editing hierarchical
lists of information.

A table view in the UIKit framework is limited to a single column because it is designed for a device
with a small screen. UITableView is a subclass of UIScrollView, which allows users to scroll through
the table, although UITableView allows vertical scrolling only. The cells comprising the individual
items of the table are UITableViewCell objects; UITableView uses these objects to draw the visible
rows of the table. Cells have content—titles and images—and can have, near the right edge, accessory
views. Standard accessory views are disclosure indicators or detail disclosure buttons; the former
leads to the next level in a data hierarchy and the latter leads to a detailed view of a selected item.
Accessory views can also be framework controls, such as switches and sliders, or can be custom views.
Table views can enter an editing mode where users can insert, delete, and reorder rows of the table.

A table view is made up of one or more sections, each with its own rows. Sections are identified by
their index number within the table view, and rows are identified by their index number within a
section. Any section can optionally be preceded by a section header, and optionally be followed by
a section footer.

Table views can have one of two styles, UITableViewStylePlain (page 378) and
UITableViewStyleGrouped (page 378). When you create a UITableView instance you must specify
a table style, and this style cannot be changed. In the plain style, section headers and footers float
above the content if the part of a complete section is visible. A table view can have an index that
appears as a bar on the right hand side of the table (for example, "a" through "z"). You can touch a

Overview 357
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

particular label to jump to the target section. The grouped style of table view provides a default
background color and a default background view for all cells. The background view provides a visual
grouping for all cells in a particular section. For example, one group could be a person's name and
title, another group for phone numbers that the person uses, and another group for email accounts
and so on. See the Settings application for examples of grouped tables. Table views in the grouped
style cannot have an index.

Many methods of UITableView take NSIndexPath objects as parameters and return values.
UITableView declares a category on NSIndexPath that enables you to get the represented row index
(row (page 36) property) and section index (section (page 36) property), and to construct an index
path from a given row index and section index (indexPathForRow:inSection: (page 36) method).
Especially in table views with multiple sections, you must evaluate the section index before identifying
a row by its index number.

A UITableView object must have an object that acts as a data source and and object that acts as a
delegate; typically these objects are either the application delegate or, more frequently, a custom
UITableViewController object. The data source must adopt the UITableViewDataSource protocol
and the delegate must adopt the UITableViewDelegateprotocol. The data source provides information
that UITableView needs to construct tables and manages the data model when rows of a table are
inserted, deleted, or reordered. The delegate provides the cells used by tables and performs other
tasks, such as managing accessory views and selections.

When sent a setEditing:animated: (page 377) message (with a first parameter of YES), the table
view enters into editing mode where it shows the editing or reordering controls of each visible row,
depending on the editingStyle (page 387) of each associated UITableViewCell. Clicking on the
insertion or deletion control causes the data source to receive a
tableView:commitEditingStyle:forRowAtIndexPath: (page 581) message. You commit a deletion
or insertion by calling deleteRowsAtIndexPaths:withRowAnimation: (page 366) or
insertRowsAtIndexPaths:withRowAnimation: (page 371), as appropriate. Also in editing mode, if
a table-view cell has its showsReorderControl (page 392) property set to YES, the data source receives
a tableView:moveRowAtIndexPath:toIndexPath: (page 582) message. The data source can selectively
remove the reordering control for cells by implementing tableView:canMoveRowAtIndexPath: (page
580).

UITableView caches table-view cells only for visible rows, but caches row, header, and footer heights
for the entire table. You can create custom UITableViewCell objects with content or behavioral
characteristics that are different than the default cells; “A Closer Look at Table-View Cells" in Table
View Programming Guide for iPhone OS explains how.

Tasks

Initializing a UITableView Object

– initWithFrame:style: (page 371)
Initializes and returns a table view object having the given frame and style.

358 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Configuring a Table View

– dequeueReusableCellWithIdentifier: (page 367)
Returns a reusable table-view cell object located by its identifier.

style (page 365) property
Returns the style of the receiver. (read-only)

– numberOfRowsInSection: (page 372)
Returns the number of rows (table cells) in a specified section.

– numberOfSections (page 373)
Returns the number of sections for the receiver.

rowHeight (page 363) property
The height of each row (table cell) in the receiver.

separatorStyle (page 364) property
The style for table cells used as separators.

separatorColor (page 364) property
The color of separator rows in the table view.

tableHeaderView (page 365) property
Returns an accessory view that is displayed above the table.

tableFooterView (page 365) property
Returns an accessory view that is displayed below the table.

sectionHeaderHeight (page 363) property
The height of section headers in the receiving table view.

sectionFooterHeight (page 363) property
The height of section footers in the receiving table view.

sectionIndexMinimumDisplayRowCount (page 364) property
The number of table rows at which to display the index list on the right edge of the table.

Accessing Cells and Sections

– cellForRowAtIndexPath: (page 366)
Returns the table cell at the specified index path.

– indexPathForCell: (page 369)
Returns an index path representing the row and section of a given table-view cell.

– indexPathForRowAtPoint: (page 369)
Returns an index path identifying the row and section at the given pointt.

– indexPathsForRowsInRect: (page 370)
An array of index paths each representing a row enclosed by a given rectangle.

– visibleCells (page 377)
Returns the table cells that are visible in the receiver.

– indexPathsForVisibleRows (page 370)
Returns an array of index paths each identifying a visible row in the receiver.

Tasks 359
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Scrolling the Table View

– scrollToRowAtIndexPath:atScrollPosition:animated: (page 376)
Scrolls the receiver until a row identified by index path is at a particular location on the screen.

– scrollToNearestSelectedRowAtScrollPosition:animated: (page 375)
Scrolls the row nearest to a specified position in the table view to that position.

Managing Selections

– indexPathForSelectedRow (page 370)
Returns an index path identifying the row and section of the selected row.

– selectRowAtIndexPath:animated:scrollPosition: (page 376)
Selects a row in the receiver identified by index path, optionally scrolling the row to a location
in the receiver.

– deselectRowAtIndexPath:animated: (page 368)
Deselects a given row identified by index path, with an option to animate the deselection.

Inserting and Deleting Cells

– beginUpdates (page 366)
Begin a series of method calls that insert, delete, select, or delete rows and sections of the
receiver.

– endUpdates (page 368)
Conclude a series of method calls that insert, delete, select, or reload rows and sections of the
receiver.

– insertRowsAtIndexPaths:withRowAnimation: (page 371)
Inserts rows in the receiver at the locations identified by an array of index paths, with an option
to animate the insertion

– insertSections:withRowAnimation: (page 372)
Inserts one or more sections in the receiver, with an option to animate the insertion.

– deleteRowsAtIndexPaths:withRowAnimation: (page 366)
Deletes the rows specified by an array of index paths, with an option to animate the deletion.

– deleteSections:withRowAnimation: (page 367)
Deletes one or more sections in the receiver, with an option to animate the deletion.

Managing the Editing of Table Cells

editing (page 362) property
A Boolean value that determines whether the receiver is in editing mode.

– setEditing:animated: (page 377)
Toggles the receiver into and out of editing mode.

allowsSelectionDuringEditing (page 361) property
A Boolean value that determines whether users can select cells while the receiver is in editing
mode.

360 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Reloading the Table

– reloadData (page 375)
Reloads the rows and sections of the receiver.

Accessing Drawing Areas of the Table View

– rectForSection: (page 374)
Returns the drawing area for a specified section of the receiver.

– rectForRowAtIndexPath: (page 374)
Returns the drawing area for a row identified by index path.

– rectForFooterInSection: (page 373)
Returns the drawing area for the footer of the specified section.

– rectForHeaderInSection: (page 374)
Returns the drawin area for the header of the specified section.

Managing the Delegate and the Data Source

dataSource (page 361) property
The object that acts as the data source of the receiving table view.

delegate (page 362) property
The object that acts as the delegate of the receiving table view.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

allowsSelectionDuringEditing
A Boolean value that determines whether users can select cells while the receiver is in editing mode.

@property(nonatomic) BOOL allowsSelectionDuringEditing

Discussion
If the value of this property is YES , users can select rows during editing. The default value is NO .

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

dataSource
The object that acts as the data source of the receiving table view.

Properties 361
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

@property(nonatomic, assign) id<UITableViewDataSource> dataSource

Discussion
The data source must adopt the UITableViewDataSource protocol. The data source is not retained.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property delegate (page 362)

Declared In
UITableView.h

delegate
The object that acts as the delegate of the receiving table view.

@property(nonatomic, assign) id<UITableViewDelegate> delegate

Discussion
The delegate must adopt the UITableViewDelegate protocol. The delegate is not retained.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property dataSource (page 361)

Declared In
UITableView.h

editing
A Boolean value that determines whether the receiver is in editing mode.

@property(nonatomic, getter=isEditing) BOOL editing

Discussion
When the value of this property is YES , the table view is in editing mode: the cells of the table might
show an insertion or deletion control on the left side of each cell and a reordering control on the right
side, depending on how the cell is configured. (SeeUITableViewCell Class Reference for details.) Tapping
a control causes the table view to invoke the data source method
tableView:commitEditingStyle:forRowAtIndexPath: (page 581). The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setEditing:animated: (page 377)

Declared In
UITableView.h

362 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

rowHeight
The height of each row (table cell) in the receiver.

@property(nonatomic) CGFloat rowHeight

Discussion
The row height is in points. You may set the row height for cells if the delegate doesn't implement
the tableView:heightForRowAtIndexPath: (page 593) method. If you do not explicitly set the row
height, UITableView sets it to a standard value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

sectionFooterHeight
The height of section footers in the receiving table view.

@property(nonatomic) CGFloat sectionFooterHeight

Discussion
This value is used only in section group tables, and only if delegate the doesn't implement the
tableView:heightForFooterInSection: (page 591) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property tableFooterView (page 365)

Declared In
UITableView.h

sectionHeaderHeight
The height of section headers in the receiving table view.

@property(nonatomic) CGFloat sectionHeaderHeight

Discussion
This value is used only in section group tables, and only if delegate the doesn't implement the
tableView:heightForHeaderInSection: (page 592) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property tableHeaderView (page 365)

Declared In
UITableView.h

Properties 363
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

sectionIndexMinimumDisplayRowCount
The number of table rows at which to display the index list on the right edge of the table.

@property(nonatomic) NSInteger sectionIndexMinimumDisplayRowCount

Discussion
This property is applicable only to table views in the UITableViewStylePlain (page 378) style. The
default value is NSIntegerMax.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

separatorColor
The color of separator rows in the table view.

@property(nonatomic, retain) UIColor *separatorColor

Discussion
The default color is gray.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property separatorStyle (page 364)

Declared In
UITableView.h

separatorStyle
The style for table cells used as separators.

@property(nonatomic) UITableViewCellSeparatorStyle separatorStyle

Discussion
The value of this property is one of the separator-style constants described in UITableViewCell Class
Reference class reference. UITableView uses this property to set the separator style on the cell returned
from the delegate in tableView:cellForRowAtIndexPath: (page 581).

Availability
Available in iPhone OS 2.0 and later.

See Also
@property separatorColor (page 364)

Declared In
UITableView.h

364 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

style
Returns the style of the receiver. (read-only)

@property(nonatomic, readonly) UITableViewStyle style

Discussion
See “Table View Style” (page 378) for descriptions of the constants used to specify table-view style.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableFooterView
Returns an accessory view that is displayed below the table.

@property(nonatomic, retain) UIView *tableFooterView

Discussion
The default value is nil. The table footer view is different from a section header.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property sectionFooterHeight (page 363)

Declared In
UITableView.h

tableHeaderView
Returns an accessory view that is displayed above the table.

@property(nonatomic, retain) UIView *tableHeaderView

Discussion
The default value is nil. The table header view is different from a section header.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property sectionHeaderHeight (page 363)

Declared In
UITableView.h

Properties 365
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Instance Methods

beginUpdates
Begin a series of method calls that insert, delete, select, or delete rows and sections of the receiver.

- (void)beginUpdates

Discussion
Call this method if you want subsequent insertions, deletion, and selection operations (for example,
cellForRowAtIndexPath: (page 366) and indexPathsForVisibleRows (page 370)) to be animated
simultaneously. This group of methods must conclude with an invocation of endUpdates (page 368).
These method pairs are not nestable. If you do not make the insertion, deletion, and selection calls
inside this block, table attributes such as row count might become invalid. You should not call
reloadData (page 375) within the group; if you call this method within the group, you will need to
perform any animations yourself.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

cellForRowAtIndexPath:
Returns the table cell at the specified index path.

- (UITableViewCell *)cellForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

indexPath
The index path locating the row in the receiver.

Return Value
An object representing a cell of the table or nil if the cell is not visible or indexPath is out of range.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathForCell: (page 369)

Declared In
UITableView.h

deleteRowsAtIndexPaths:withRowAnimation:
Deletes the rows specified by an array of index paths, with an option to animate the deletion.

- (void)deleteRowsAtIndexPaths:(NSArray *)indexPaths
withRowAnimation:(UITableViewRowAnimation)animation

366 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Parameters

indexPaths
An array of NSIndexPath objects identifying the rows to delete.

animation
YES to animate the deletion of rows, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertRowsAtIndexPaths:withRowAnimation: (page 371)

Declared In
UITableView.h

deleteSections:withRowAnimation:
Deletes one or more sections in the receiver, with an option to animate the deletion.

- (void)deleteSections:(NSIndexSet *)sections
withRowAnimation:(UITableViewRowAnimation)animation

Parameters

sections
An index set that specifies the sections to delete from the receiving table view. If a section exists
after the specified index location, it is moved up one index location.

animation
YES to animate the deletion of sections, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertSections:withRowAnimation: (page 372)

Declared In
UITableView.h

dequeueReusableCellWithIdentifier:
Returns a reusable table-view cell object located by its identifier.

- (UITableViewCell *)dequeueReusableCellWithIdentifier:(NSString *)identifier

Parameters

identifier
A string identifying the cell object to be reused. By default, a reusable cell’s identifier is its class
name, but you can change it to any arbitrary value.

Return Value
A UITableViewCell object with the associated identifier or nil if no such object exists in the
reusable-cell queue.

Instance Methods 367
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Discussion
For performance reasons, a table view’s delegate should generally reuse UITableViewCell objects
when it assigns cells to rows in its tableView:cellForRowAtIndexPath: (page 581) method. A table
view maintains a queue or list of UITableViewCell objects that the table view’s delegate has marked
for reuse. It marks a cell for reuse by assigning it a reuse identifier when it creates it (that is, in the
initWithFrame:reuseIdentifier: (page 394) method of UITableViewCell). The delegate can access
specific “template” cell objects in this queue by invoking the dequeueReusableCellWithIdentifier:
method. You can access a cell’s reuse identifier through its reuseIdentifier property, which is
defined by UITableViewCell.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

deselectRowAtIndexPath:animated:
Deselects a given row identified by index path, with an option to animate the deselection.

- (void)deselectRowAtIndexPath:(NSIndexPath *)indexPath animated:(BOOL)animated

Parameters

indexPath
An index path identifying a row in the receiver.

animated
YES if you want to animate the deselection and NO if the change should be immediate.

Discussion
Calling this method does not cause the delegate to receive a
tableView:willSelectRowAtIndexPath: (page 597) ortableView:didSelectRowAtIndexPath: (page
590) message, nor will it send UITableViewSelectionDidChangeNotification (page 380) notifications
to observers.

Calling this method does not cause any scrolling to the deselected row.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathForSelectedRow (page 370)

Declared In
UITableView.h

endUpdates
Conclude a series of method calls that insert, delete, select, or reload rows and sections of the receiver.

- (void)endUpdates

368 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Discussion
You call this method to bracket a series of method calls that began with beginUpdates (page 366) and
that consist of operations to insert, delete, select, and reload rows and sections of the table view. When
you call endUpdates, UITableView animates the operations simultaneously. Invocations of
beginUpdates and endUpdates cannot be nested. If you do not make the insertion, deletion, and
selection calls inside this block, table attributes such as row count might become invalid.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

indexPathForCell:
Returns an index path representing the row and section of a given table-view cell.

- (NSIndexPath *)indexPathForCell:(UITableViewCell *)cell

Parameters

cell
A cell object of the table view.

Return Value
An index path representing the row and section of the cell or nil if the index path is invalid.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cellForRowAtIndexPath: (page 366)

Declared In
UITableView.h

indexPathForRowAtPoint:
Returns an index path identifying the row and section at the given pointt.

- (NSIndexPath *)indexPathForRowAtPoint:(CGPoint)point

Parameters

point
A point in the local coordinate system of the receiver (the table view’s bounds).

Return Value
An index path representing the row and section associated with point or nil if the point is out of
the bounds of any row.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathForCell: (page 369)

Instance Methods 369
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Declared In
UITableView.h

indexPathForSelectedRow
Returns an index path identifying the row and section of the selected row.

- (NSIndexPath *)indexPathForSelectedRow

Return Value
An index path identifying the row and section indexes of the selected row or nil if the index path is
invalid.

Availability
Available in iPhone OS 2.0 and later.

See Also
– selectRowAtIndexPath:animated:scrollPosition: (page 376)

Declared In
UITableView.h

indexPathsForRowsInRect:
An array of index paths each representing a row enclosed by a given rectangle.

- (NSArray *)indexPathsForRowsInRect:(CGRect)rect

Parameters

rect
A rectangle defining an area of the table view in local coordinates.

Return Value
An array of NSIndexPath objects each representing a row and section index identifying a row within
rect. Returns nil if rect is not valid.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathForRowAtPoint: (page 369)

Declared In
UITableView.h

indexPathsForVisibleRows
Returns an array of index paths each identifying a visible row in the receiver.

- (NSArray *)indexPathsForVisibleRows

370 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Return Value
An array of NSIndexPath objects each representing a row index and section index that together
identify a visible row in the table view. Returns nil if no rows are visible.

Availability
Available in iPhone OS 2.0 and later.

See Also
– visibleCells (page 377)

Declared In
UITableView.h

initWithFrame:style:
Initializes and returns a table view object having the given frame and style.

- (id)initWithFrame:(CGRect)frame style:(UITableViewStyle)style

Parameters

frame
A rectangle specifying the initial location and size of the table view in its superview’s
coordinates. The frame of the table view changes as table cells are added and deleted.

style
A constant that specifies the style of the table view. See “Table View Style” (page 378) for
descriptions of valid constants.

Return Value
Returns an initialized UITableView object or nil if the object could not be successfully initialized.

Discussion
You must specify the style of a table view when you create it and you cannot thereafter modify the
style. If you initialize the table view with the UIView method initWithFrame: (page 469), the
UITableViewStylePlain (page 378) style is used as a default.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

insertRowsAtIndexPaths:withRowAnimation:
Inserts rows in the receiver at the locations identified by an array of index paths, with an option to
animate the insertion

- (void)insertRowsAtIndexPaths:(NSArray *)indexPaths
withRowAnimation:(UITableViewRowAnimation)animation

Parameters

indexPaths
An array of NSIndexPath objects each representing a row index and section index that together
identify a row in the table view.

Instance Methods 371
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

animation
A constant that either specifies the kind of animation to perform when inserting the cell or
requests no animation. See “Table Cell Insertion and Deletion Animation” (page 379) for
descriptions of the constants.

Discussion
UITableView call the relevant delegate and data source methods immediately afterwards to get the
cells and other content for visible cells.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertSections:withRowAnimation: (page 372)
– deleteRowsAtIndexPaths:withRowAnimation: (page 366)

Declared In
UITableView.h

insertSections:withRowAnimation:
Inserts one or more sections in the receiver, with an option to animate the insertion.

- (void)insertSections:(NSIndexSet *)sections
withRowAnimation:(UITableViewRowAnimation)animation

Parameters

sections
An index set that specifies the sections to insert in the receiving table view. If a section already
exists at the specified index location, it is moved down one index location.

animation
YES to animate the insertion of sections, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertRowsAtIndexPaths:withRowAnimation: (page 371)
– deleteSections:withRowAnimation: (page 367)

Declared In
UITableView.h

numberOfRowsInSection:
Returns the number of rows (table cells) in a specified section.

- (NSInteger)numberOfRowsInSection:(NSInteger)section

Parameters

section
An index number that identifies a section of the table. Table views in a plain style have a section
index of zero.

372 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Return Value
An index number that identifies a row in the given section.

Discussion
UITableView gets the value returned by this method from its data source and caches it.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberOfSections (page 373)

Declared In
UITableView.h

numberOfSections
Returns the number of sections for the receiver.

- (NSInteger)numberOfSections

Return Value
The number of sections in the table view.

Discussion
UITableView gets the value returned by this method from its data source and caches it.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberOfRowsInSection: (page 372)

Declared In
UITableView.h

rectForFooterInSection:
Returns the drawing area for the footer of the specified section.

- (CGRect)rectForFooterInSection:(NSInteger)section

Parameters

section
An index number identifying a section of the table view. Plain-style table views always have
a section index of zero.

Return Value
A rectangle defining the area in which the table view draws the section footer.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 373
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Declared In
UITableView.h

rectForHeaderInSection:
Returns the drawin area for the header of the specified section.

- (CGRect)rectForHeaderInSection:(NSInteger)section

Parameters

section
An index number identifying a section of the table view. Plain-style table views always have
a section index of zero.

Return Value
A rectangle defining the area in which the table view draws the section header.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

rectForRowAtIndexPath:
Returns the drawing area for a row identified by index path.

- (CGRect)rectForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

indexPath
An index path object that identifies a row by its index and its section index.

Return Value
A rectangle defining the area in which the table view draws the row or CGZeroRect if indexPath is
invalid.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

rectForSection:
Returns the drawing area for a specified section of the receiver.

- (CGRect)rectForSection:(NSInteger)section

Parameters

section
An index number identifying a section of the table view. Plain-style table views always have
a section index of zero.

374 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Return Value
A rectangle defining the area in which the table view draws the section.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

reloadData
Reloads the rows and sections of the receiver.

- (void)reloadData

Discussion
Call this method to reload all the data that is used to construct the table, including cells, section
headers and footers, index arrays, and so on. For efficiency, the table view redisplays only those rows
that are visible. It adjusts offsets if the table shrinks as a result of the reload. The table view’s delegate
or data source calls this method when it wants the table view to completely reload its data. It should
not be called in the methods that insert or delete rows, especially within an animation block
implemented with calls to beginUpdates (page 366) and endUpdates (page 368)

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

scrollToNearestSelectedRowAtScrollPosition:animated:
Scrolls the row nearest to a specified position in the table view to that position.

-
(void)scrollToNearestSelectedRowAtScrollPosition:(UITableViewScrollPosition)scrollPosition
animated:(BOOL)animated

Parameters

scrollPosition
A constant that identifies a relative position in the receiving table view (top, middle, bottom)
for the row when scrolling concludes. See “Table View Scroll Position” (page 378) a descriptions
of valid constants.

animated
YES if you want to animate the change in position, NO if it should be immediate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollToRowAtIndexPath:atScrollPosition:animated: (page 376)

Declared In
UITableView.h

Instance Methods 375
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

scrollToRowAtIndexPath:atScrollPosition:animated:
Scrolls the receiver until a row identified by index path is at a particular location on the screen.

- (void)scrollToRowAtIndexPath:(NSIndexPath *)indexPath
atScrollPosition:(UITableViewScrollPosition)scrollPosition
animated:(BOOL)animated

Parameters

indexPath
An index path that identifies a row in the table view by its row index and its section index.

scrollPosition
A constant that identifies a relative position in the receiving table view (top, middle, bottom)
for row when scrolling concludes. See “Table View Scroll Position” (page 378) a descriptions
of valid constants.

animated
YES if you want to animate the change in position, NO if it should be immediate.

Discussion
Invoking this method does not cause the delegate to receive a

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollToNearestSelectedRowAtScrollPosition:animated: (page 375)

Declared In
UITableView.h

selectRowAtIndexPath:animated:scrollPosition:
Selects a row in the receiver identified by index path, optionally scrolling the row to a location in the
receiver.

- (void)selectRowAtIndexPath:(NSIndexPath *)indexPath animated:(BOOL)animated
scrollPosition:(UITableViewScrollPosition)scrollPosition

Parameters

indexPath
An index path identifying a row in the receiver.

animated
YES if you want to animate the selection and any change in position, NO if the change should
be immediate.

scrollPosition
A constant that identifies a relative position in the receiving table view (top, middle, bottom)
for the row when scrolling concludes. See “Table View Scroll Position” (page 378) a descriptions
of valid constants.

376 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Discussion
Calling this method does not cause the delegate to receive a
tableView:willSelectRowAtIndexPath: (page 597) ortableView:didSelectRowAtIndexPath: (page
590) message, nor will it send UITableViewSelectionDidChangeNotification (page 380) notifications
to observers.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathForSelectedRow (page 370)

Declared In
UITableView.h

setEditing:animated:
Toggles the receiver into and out of editing mode.

- (void)setEditing:(BOOL)editing animated:(BOOL)animate

Parameters

editing
YES to enter editing mode, NO to leave it. The default value is NO .

animate
YES to animate the transition to editing mode, NO to make the transition immediate.

Discussion
When you call this method with the value of editing set to YES, the table view goes into editing
mode by calling setEditing:animated: (page 395) on each visible UITableViewCell object. Calling
this method with editing set to NO turns off editing mode. In editing mode, the cells of the table
might show an insertion or deletion control on the left side of each cell and a reordering control on
the right side, depending on how the cell is configured. (See UITableViewCell Class Reference for details.)
The data source of the table view can selectively exclude cells from editing mode by implementing
tableView:canEditRowAtIndexPath: (page 579).

Availability
Available in iPhone OS 2.0 and later.

See Also
@property editing (page 362)

Declared In
UITableView.h

visibleCells
Returns the table cells that are visible in the receiver.

- (NSArray *)visibleCells

Instance Methods 377
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Return Value
An array containing UITableViewCell objects, each representing a visible cell in the receiving table
view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathsForVisibleRows (page 370)

Declared In
UITableView.h

Constants

Table View Style
The style of the table view.

typedef enum {
UITableViewStylePlain,
UITableViewStyleGrouped

} UITableViewStyle;

Constants
UITableViewStylePlain

A plain table view. Any section headers or footers are displayed as inline separators and float
when the table view is scrolled.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

UITableViewStyleGrouped
A table view whose sections present distinct groups of rows. The section headers and footers
do not float.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

Discussion
You set the table style when you initialize the table view (see initWithFrame:style: (page 371)).
You cannot modify the style thereafter.

Declared In
UITableView.h

Table View Scroll Position
The position in the table view (top, middle, bottom) to which a given row is scrolled.

378 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

typedef enum {
UITableViewScrollPositionNone,
UITableViewScrollPositionTop,
UITableViewScrollPositionMiddle,
UITableViewScrollPositionBottom

} UITableViewScrollPosition;

Constants
UITableViewScrollPositionNone

The table view does not scroll a row to any particular position. This is the default.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

UITableViewScrollPositionTop
The row of interest is scrolled to the top of the visible table view.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

UITableViewScrollPositionMiddle
The row of interest is scrolled to the middle of the visible table view.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

UITableViewScrollPositionBottom
The row of interest is scrolled to the bottom of the visible table view.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

Discussion
You set the scroll position through a parameter of the
selectRowAtIndexPath:animated:scrollPosition: (page 376),
scrollToNearestSelectedRowAtScrollPosition:animated: (page 375),
cellForRowAtIndexPath: (page 366), and indexPathForSelectedRow (page 370) methods.

Declared In
UITableView.h

Table Cell Insertion and Deletion Animation
The type of animation when cells are inserted or deleted.

typedef struct {
UITableViewRowAnimationFade,
UITableViewRowAnimationRight,
UITableViewRowAnimationLeft,
UITableViewRowAnimationTop,
UITableViewRowAnimationBottom

} UITableViewRowAnimation;

Constants
UITableViewRowAnimationFade

The inserted or deleted row or rows fades into or out of the table view.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

Constants 379
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

UITableViewRowAnimationRight
The inserted row or rows slides in from the right; the deleted row or rows slides out to the
right.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

UITableViewRowAnimationLeft
The inserted row or rows slides in from the left; the deleted row or rows slides out to the left.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

UITableViewRowAnimationTop
The inserted row or rows slides in from the top; the deleted row or rows slides out toward the
top.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

UITableViewRowAnimationBottom
he inserted row or rows slides in from the bottom; the deleted row or rows slides out toward
the bottow.

Available in iPhone OS 2.0 and later.

Declared in UITableView.h

Discussion
You specify one of these constants as a parameter of the indexPathsForVisibleRows (page 370),
insertSections:withRowAnimation: (page 372), and deleteSections:withRowAnimation: (page
367) methods.

Declared In
UITableView.h

Notifications

UITableViewSelectionDidChangeNotification
Posted when the selected row in the posting table view changes.

There is no userInfo dictionary associated with this notification.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

380 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

UITableView Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITableViewCell.h

Companion guide: Table View Programming Guide for iPhone OS

Overview

The UITableViewCell class defines the attributes and behavior of the cells that appear in UITableView
objects.

A UITableViewCell object (or table cell) includes properties and methods for managing selected
state, editing state and controls, accessory views, reordering controls, cell background, and content
indentation. There are also properties for associating target objects and action selectors with editing
controls or accessory views. The class additionally includes properties for setting and managing cell
content, specifically text and images.

You have two ways of extending the standard UITableViewCell object. To create cells with multiple,
variously formatted and sized strings and images for content, you can get the cell’s content view
(through its contentView (page 386) property) and add subviews to it. You can also subclass
UITableViewCell to obtain cell characteristics and behavior specific to your application’s needs. See
“A Closer Look at Table-View Cells” in Table View Programming Guide for iPhone OS for details.

Overview 381
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

Tasks

Initializing a UITableViewCell Object

– initWithFrame:reuseIdentifier: (page 394)
Initializes and returns a table-view cell object.

Reusing Cells

reuseIdentifier (page 389) property
A string used to identify a cell that is reusable. (read-only)

– prepareForReuse (page 395)
Prepares a reusable cell for reuse by the table view’s delegate.

Managing Text as Cell Content

text (page 393) property
The text of the cell.

font (page 387) property
The font of the title.

textAlignment (page 393) property
A constant that specifies the alignment of text in the cell.

textColor (page 393) property
The color of the title text.

selectedTextColor (page 391) property
The color of the title text when the cell is selected.

lineBreakMode (page 389) property
The mode for for wrapping and truncating text in the cell.

Managing Images as Cell Content

image (page 388) property
The image to use as content for the cell.

selectedImage (page 390) property
The image to use a cell content when the cell is selected.

Accessing Views of the Cell Object

contentView (page 386) property
Returns the content view of of the cell object. (read-only)

backgroundView (page 385) property
The view used as the background of the cell.

382 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

selectedBackgroundView (page 390) property
The view used as the background of the cell when it is selected.

Managing Cell Selection

selected (page 390) property
A Boolean value that indicates whether the cell is selected.

selectionStyle (page 391) property
The style of selection for a cell.

– setSelected:animated: (page 396)
Sets the selected state of the cell, optionally animating the transition between states.

Managing Targets and Actions

target (page 392) property
The target object to receive action messages.

editAction (page 386) property
The selector defining the action message to invoke when users tap the insert or delete button.

accessoryAction (page 384) property
The selector defining the action message to invoke when users tap the accessory view.

Editing the Cell

editing (page 386) property
A Boolean value that indicates whether the cell is in an editable state.

– setEditing:animated: (page 395)
Toggles the receiver into and out of editing mode.

editingStyle (page 387) property
The editing style of the cell. (read-only)

showingDeleteConfirmation (page 392) property
Returns whether the cell is currently showing the delete-confirmation button. (read-only)

showsReorderControl (page 392) property
A Boolean value that determines whether the cell shows the reordering control.

Managing Accessory Views

accessoryView (page 385) property
A view that is used (typically as a control) on the right side of the cell.

accessoryType (page 384) property
A constant that specifies the type of standard accessory view the cell should use.

hidesAccessoryWhenEditing (page 388) property
A Boolean value that determines whether the accessory view is hidden when the cell is being
edited.

Tasks 383
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

Managing Content Indentation

indentationLevel (page 388) property
Adjusts the indentation level of a cell whose content is indented.

indentationWidth (page 388) property
The width for each level of indentation of a cell’s content.

shouldIndentWhileEditing (page 391) property
A Boolean value that controls whether the cell background is indented when the table view is
in editing mode.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

accessoryAction
The selector defining the action message to invoke when users tap the accessory view.

@property(nonatomic) SEL accessoryAction

Discussion
The accessory view is a UITableViewCell-defined control, framework control, or custom control on
the right side of the cell. It is often used to display a new view related to the selected cell. See
accessoryView (page 385) for more information. If the value of this property is NULL, no action message
is sent.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property target (page 392)
@property editAction (page 386)

Declared In
UITableViewCell.h

accessoryType
A constant that specifies the type of standard accessory view the cell should use.

@property(nonatomic) UITableViewCellAccessoryType accessoryType

Discussion
The accessory view appears in the the right side of the cell. The standard accessory views include the
disclosure chevron; for a description of valid accessoryType constants, see “Cell Accessory
Type” (page 397). The default is UITableViewCellAccessoryNone (page 398). If a custom accessory
view is set through the accessoryView (page 385) property, the value of this property is ignored. If
the cell is enabled, the accessory view tracks touches and, if tapped, sends the accessory action message
set through the accessoryAction (page 384) property.

384 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property hidesAccessoryWhenEditing (page 388)

“Accessing Views of the Cell Object” (page 382)

Declared In
UITableViewCell.h

accessoryView
A view that is used (typically as a control) on the right side of the cell.

@property(nonatomic, retain) UIView *accessoryView

Discussion
If the value of this property is not nil, the UITableViewCell class uses the given view for the accessory
view and ignores the value of the accessoryType (page 384) property. The provided accessory view
can be a framework-provided control or label or a custom view. The accessory view appears in the
the right side of the cell. If the cell is enabled (through the UIView property
userInteractionEnabled (page 453)) , the accessory view tracks touches and, if tapped, sends the
accessory action message set through the accessoryAction (page 384) property.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property hidesAccessoryWhenEditing (page 388)

“Accessing Views of the Cell Object” (page 382)

Declared In
UITableViewCell.h

backgroundView
The view used as the background of the cell.

@property(nonatomic, retain) UIView *backgroundView

Discussion
The default is nil for cells in plain-style tables (UITableViewStylePlain (page 378)) and non-nil for
grouped-style tables UITableViewStyleGrouped (page 378)). UITableViewCell adds the background
view as a subview behind all other views and uses its current frame location.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property contentView (page 386)
@property selectedBackgroundView (page 390)

Properties 385
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

Declared In
UITableViewCell.h

contentView
Returns the content view of of the cell object. (read-only)

@property(nonatomic, readonly, retain) UIView *contentView

Discussion
The content view of a UITableViewCell object is the default superview for content displayed by the
cell. If you want to customize cells by simply adding additional views, you should add them to the
content view so they will be positioned appropriately as the cell transitions into and out of editing
mode.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backgroundView (page 385)

Declared In
UITableViewCell.h

editAction
The selector defining the action message to invoke when users tap the insert or delete button.

@property(nonatomic) SEL editAction

Discussion
When the cell’s table is in editing mode, the cell displays a green insert control or a red delete control
to the left of it. (The selectedBackgroundView (page 390) constant applied to the cell via the
editingStyle (page 387) property determines which control is used.) Typically, the associated
UITableView object sets the editing action for all cells; you can use this property to alter the editing
action for individual cells. If the value of this property is NULL, no action message is sent.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property target (page 392)
@property accessoryAction (page 384)

Declared In
UITableViewCell.h

editing
A Boolean value that indicates whether the cell is in an editable state.

386 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

@property(nonatomic, getter=isEditing) BOOL editing

Discussion
When a cell is in an editable state, it displays the editing controls specified for it: the green insertion
control, the red deletion control, or (on the right side) the reordering control. Use editingStyle (page
387) and showsReorderControl (page 392) to specify these controls for the cell.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

editingStyle
The editing style of the cell. (read-only)

@property(nonatomic, readonly) UITableViewCellEditingStyle editingStyle

Discussion
One of the constants described in “Cell Editing Style” (page 397) is used as the value of this
property; it specifies whether the cell is in an editable state and, if it is, whether it shows an insertion
or deletion control. The default value is UITableViewCellEditingStyleNone (page 397) (not editable).
The delegate returns the value this property for a particular cell in its implementation of the
tableView:editingStyleForRowAtIndexPath: (page 591) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property editing (page 386)

Declared In
UITableViewCell.h

font
The font of the title.

@property(nonatomic, retain) UIFont *font

Discussion
If the value of this property is nil (the default), UITableViewCell uses a standard font optimized
for the device.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

Properties 387
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

hidesAccessoryWhenEditing
A Boolean value that determines whether the accessory view is hidden when the cell is being edited.

@property(nonatomic) BOOL hidesAccessoryWhenEditing

Discussion
The default value is YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

image
The image to use as content for the cell.

@property(nonatomic, retain) UIImage *image

Discussion
The default value of the property is nil (no image). Images are positioned to the left of the title.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property selectedImage (page 390)

Declared In
UITableViewCell.h

indentationLevel
Adjusts the indentation level of a cell whose content is indented.

@property(nonatomic) NSInteger indentationLevel

Discussion
The default value of the property is zero (no indentation). The width for each level of indentation is
determined by the indentationWidth (page 388) property.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

indentationWidth
The width for each level of indentation of a cell’s content.

388 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

@property(nonatomic) CGFloat indentationWidth

Discussion
The default indentation width is 10.0 points.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property indentationLevel (page 388)

Declared In
UITableViewCell.h

lineBreakMode
The mode for for wrapping and truncating text in the cell.

@property(nonatomic) UILineBreakMode lineBreakMode

Discussion
For further information, see the UILineBreakMode (page 50) constants described in NSString UIKit
Additions Reference. The default value is UILineBreakModeTailTruncation (page 51).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

reuseIdentifier
A string used to identify a cell that is reusable. (read-only)

@property(nonatomic, readonly, copy) NSString *reuseIdentifier

Discussion
The reuse identifier is associated with a UITableViewCell object that the table-view delegate creates
with the intent to reuse it as the basis (for performance reasons) for multiple rows of a table view. It
is assigned to the cell object in initWithFrame:reuseIdentifier: (page 394) and cannot be changed
thereafter. A UITableView object maintains a queue (or list) of the currently reusable cells, each with
its own reuse identifier, and makes them available to the delegate in the
dequeueReusableCellWithIdentifier: (page 367) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– prepareForReuse (page 395)

Declared In
UITableViewCell.h

Properties 389
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

selected
A Boolean value that indicates whether the cell is selected.

@property(nonatomic, getter=isSelected) BOOL selected

Discussion
When the the selected state of a cell to YES, it draws the background for selected cells with its title in
white. The default value is is NO. If you set the selection state to YES through this property, the transition
to the new state appearance is not animated. For animated selected-state transitions, see the
setSelected:animated: (page 396) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property selectionStyle (page 391)

Declared In
UITableViewCell.h

selectedBackgroundView
The view used as the background of the cell when it is selected.

@property(nonatomic, retain) UIView *selectedBackgroundView

Discussion
The default is nil for cells in plain-style tables (UITableViewStylePlain (page 378)) and non-nil for
section-group tables UITableViewStyleGrouped (page 378)). UITableViewCell adds the value of this
property as a subview only when the cell is selected. It adds the selected background view as a subview
directly above the background view (backgroundView (page 385)) if it is not nil, or behind all other
views. Calling setSelected:animated: (page 396) causes the selected background view to animate
in and out with an alpha fade.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backgroundView (page 385)

Declared In
UITableViewCell.h

selectedImage
The image to use a cell content when the cell is selected.

@property(nonatomic, retain) UIImage *selectedImage

Discussion
The default value of this property is nil (no image).

390 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property image (page 388)

Declared In
UITableViewCell.h

selectedTextColor
The color of the title text when the cell is selected.

@property(nonatomic, retain) UIColor *selectedTextColor

Discussion
If the value of property is nil (the default), the color of text in a selected cell is white.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

selectionStyle
The style of selection for a cell.

@property(nonatomic) UITableViewCellSelectionStyle selectionStyle

Discussion
The selection style is a backgroundView (page 385) constant that determines the color of a cell when
it is selected. The default value is UITableViewCellSelectionStyleBlue (page 396). See “Cell Selection
Style” (page 396) for a description of valid constants.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property selected (page 390)

– setSelected:animated: (page 396)

Declared In
UITableViewCell.h

shouldIndentWhileEditing
A Boolean value that controls whether the cell background is indented when the table view is in
editing mode.

Properties 391
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

@property(nonatomic) BOOL shouldIndentWhileEditing

Discussion
The default value is YES. This property is unrelated to indentationLevel (page 388). The delegate
can override this value in tableView:shouldIndentWhileEditingRowAtIndexPath: (page 594).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

showingDeleteConfirmation
Returns whether the cell is currently showing the delete-confirmation button. (read-only)

@property(nonatomic, readonly) BOOL showingDeleteConfirmation

Discussion
When users tap the deletion control (the red circle to the left of the cell), the cell displays a "Delete"
button on the right side of the cell; this string is localized.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

showsReorderControl
A Boolean value that determines whether the cell shows the reordering control.

@property(nonatomic) BOOL showsReorderControl

Discussion
The reordering control is gray, multiple horizontal bar control on the right side of the cell. Users can
drag this control to reorder the cell within the table. The default value is NO. If the value is YES , the
reordering control temporarily replaces any accessory view.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

target
The target object to receive action messages.

392 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

@property(nonatomic, assign) id target

Discussion
The target object receives action messages when the user taps a cell’s insert button, delete button, or
accessory view. The default value is nil, which tells the application to go up the responder chain to
find a target. Note that the target is a weak reference.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property editAction (page 386)
@property accessoryAction (page 384)

Declared In
UITableViewCell.h

text
The text of the cell.

@property(nonatomic, copy) NSString *text

Discussion
The default is nil (no text).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

textAlignment
A constant that specifies the alignment of text in the cell.

@property(nonatomic) UITextAlignment textAlignment

Discussion
If the value of the property is nil (the default), the title is left-aligned (UITextAlignmentLeft (page
51)). See the descriptions of the UITextAlignment (page 51) constants for alternative text alignments.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

textColor
The color of the title text.

Properties 393
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

@property(nonatomic, retain) UIColor *textColor

Discussion
If the value of property is nil (the default), the color of text is black.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewCell.h

Instance Methods

initWithFrame:reuseIdentifier:
Initializes and returns a table-view cell object.

- (id)initWithFrame:(CGRect)frame reuseIdentifier:(NSString *)reuseIdentifier

Parameters

frame
The frame rectangle of the cell. Because the table view automatically positions the cell and
makes it the optimal size, you can pass in CGRectZero in most cases. However, if you have a
custom cell with multiple subviews, each with its own autoresizing mask, you must specify a
non-zero frame rectangle; this allows the table view to position the subviews automatically as
the cell changes size.

reuseIdentifier
A string used to identify the cell object if it is to be reused for drawing multiple rows of a table
view. Pass nil if the cell object is not to be reused.

Return Value
An initialized UITableViewCell object or nil if the object could not be created.

Discussion
This method is the designated initializer for the class. The reuse identifier is associated with those
cells (rows) of a table view that have the same general configuration, minus cell content. In its
implementation of tableView:cellForRowAtIndexPath: (page 581), the table view’s delegate calls
the UITableView method dequeueReusableCellWithIdentifier: (page 367), passing in a reuse
identifier, to obtain the cell object to use as the basis for the current row.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property reuseIdentifier (page 389)

Declared In
UITableViewCell.h

394 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

prepareForReuse
Prepares a reusable cell for reuse by the table view’s delegate.

- (void)prepareForReuse

Discussion
If a UITableViewCell object is reusable—that is, it has a reuse identifier—this method is invoked
just before the object is returned from the UITableView method
dequeueReusableCellWithIdentifier: (page 367). For performance reasons, you should only reset
attributes of the cell that are not related to content, for example, alpha, editing, and selection state.
The table view’s delegate in tableView:cellForRowAtIndexPath: (page 581) should always reset all
content when reusing a cell. If the cell object does not have an associated reuse identifier, this method
is not called. If you override this method, you must be sure to invoke the superclass implementation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithFrame:reuseIdentifier: (page 394)

@property reuseIdentifier (page 389)

Declared In
UITableViewCell.h

setEditing:animated:
Toggles the receiver into and out of editing mode.

- (void)setEditing:(BOOL)editing animated:(BOOL)animated

Parameters

editing
YES to enter editing mode, NO to leave it. The default value is NO .

animated
YES to animate the appearance or disappearance of the insertion/deletion control and the
reordering control, NO to make the transition immediate.

Discussion
When you call this method with the value of editing set to YES, and the UITableViewCell object is
configured to have controls, the cell shows an insertion (green plus) or deletion control (red minus)
on the left side of each cell and a reordering control on the right side. This method is called on each
visible cell when the setEditing:animated: (page 377) method of UITableView is invoked. Tapping
a control sends an action message to a target object, which carries out the insertion or deletion. Calling
this method with editing set to NO removes the controls from the cell.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property editing (page 386)

Declared In
UITableViewCell.h

Instance Methods 395
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

setSelected:animated:
Sets the selected state of the cell, optionally animating the transition between states.

- (void)setSelected:(BOOL)selected animated:(BOOL)animated

Parameters

selected
YES to set the cell as selected, NO to set it as unselected. The default is NO.

animated
YES to animate the transition between selected states, NO to make the transition immediate.

Discussion
When the the selected state of a cell to YES, it draws the background for selected cells (“Reusing
Cells” (page 382)) with its title in white.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property selected (page 390)
@property selectionStyle (page 391)

Declared In
UITableViewCell.h

Constants

Cell Selection Style
The style of selected cells.

typedef enum {
UITableViewCellSelectionStyleNone,
UITableViewCellSelectionStyleBlue,
UITableViewCellSelectionStyleGray

} UITableViewCellSelectionStyle;

Constants
UITableViewCellSelectionStyleNone

The cell has no distinct style for when it is selected.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

UITableViewCellSelectionStyleBlue
The cell when selected has a blue background. This is the default value.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

396 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

UITableViewCellSelectionStyleGray
Then cell when selected has a gray background.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

Discussion
You use these constants to to set the value of the selectionStyle (page 391) property.

Declared In
UITableViewCell.h

Cell Editing Style
The editing control used by a cell.

typedef enum {
UITableViewCellEditingStyleNone,
UITableViewCellEditingStyleDelete,
UITableViewCellEditingStyleInsert

} UITableViewCellEditingStyle;

Constants
UITableViewCellEditingStyleNone

The cell has no editing control. This is the default value.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

UITableViewCellEditingStyleDelete
The cell has the delete editing control; this control is a red circle enclosing a minus sign.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

UITableViewCellEditingStyleInsert
The cell has the insert editing control; this control is a green circle enclosing a plus sign.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

Discussion
You use them to to set the value of the editingStyle (page 387) property.

Declared In
UITableViewCell.h

Cell Accessory Type
The type of standard accessory control used by a cell.

Constants 397
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

typedef enum {
UITableViewCellAccessoryNone,
UITableViewCellAccessoryDisclosureIndicator,
UITableViewCellAccessoryDetailDisclosureButton,
UITableViewCellAccessoryCheckmark

} UITableViewCellAccessoryType;

Constants
UITableViewCellAccessoryNone

The cell does not have any accessory view. This is the default value.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

UITableViewCellAccessoryDisclosureIndicator
The cell has an accessory control shaped like a regular chevron. It is intended as a disclosure
indicator. The control doesn't track touches.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

UITableViewCellAccessoryDetailDisclosureButton
The cell has an accessory control that is a blue button with a chevron image as content. It is
intended for configuration purposes. The control tracks touches.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

UITableViewCellAccessoryCheckmark
The cell has a check mark on its right side. This control doesn’t track touches. The delegate of
the table view can manage check marks in a section of rows (possibly limiting the check mark
to one row of the section) in its tableView:didSelectRowAtIndexPath: (page 590) method.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

Discussion
You use these constants when setting the value of the accessoryType (page 384) property.

Declared In
UITableViewCell.h

Cell Separator Style
The style for cells used as separators.

typedef enum {
UITableViewCellSeparatorStyleNone,
UITableViewCellSeparatorStyleSingleLine

} UITableViewCellSeparatorStyle;

Constants
UITableViewCellSeparatorStyleNone

The separator cell has no distinct style.

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

398 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

UITableViewCellSeparatorStyleSingleLine
The separator cell has a single line running across its width. This is the default value

Available in iPhone OS 2.0 and later.

Declared in UITableViewCell.h

Discussion
You use these constants to to set the value of the separatorStyle property defined by UITableView.

Declared In
UITableViewCell.h

Constants 399
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

400 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

UITableViewCell Class Reference

Inherits from: UIViewController : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITableViewController.h

Companion guide: Table View Programming Guide for iPhone OS

Overview

The UITableViewController class creates a controller object that manages a table view. It implements
the following behavior:

 ■ If a nib file is specified via the initWithNibName:bundle: method (which is declared by the
superclass UIViewController), UITableViewController loads the table view archived in the
nib file. Otherwise, it creates an unconfigured UITableView object with the correct dimensions
and autoresize mask. You can access this view through the tableView (page 402) property.

 ■ If a nib file containing the table view is loaded, the data source and delegate become those objects
defined in the nib file (if any). If no nib file is specified or if the nib file defines no data source or
delegate, UITableViewController sets the data source and the delegate of the table view to self.

 ■ When the table view is about to appear, it reloads its data and clears its selection (with or without
animation, depending on the request). The UITableViewController class implements this in the
superclass method viewWillAppear: (page 499).

 ■ When the table view has appeared, the controller flashes the table view’s scroll indicators. The
UITableViewController class implements this in the superclass method viewDidAppear: (page
497).

 ■ It implements the superclass method setEditing:animated: (page 496) so that if a user taps an
Edit|Done button in the navigation bar, the controller toggles the edit mode of the table.

Overview 401
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

UITableViewController Class Reference

You create a custom subclass of UITableViewController for each table view that you want to manage.
When you initialize the controller in initWithStyle: (page 402), you must specify the style of the
table view (plain or grouped) that the controller is to manage. Because the initially created table view
is without table dimensions (that is, number of sections and number of rows per section) or content,
the table view’s data source and delegate—that is, the UITableViewController object itself—must
provide the table dimensions, the cell content, and any desired configurations (as usual). You may
override loadView (page 494) or any other superclass method, but if you do be sure to invoke the
superclass implementation of the method, usually as the first method call.

Tasks

Initializing the UITableViewController Object

– initWithStyle: (page 402)
Initializes a table-view controller to manage a table view of a given style.

Getting the Table View

tableView (page 402) property
Returns the table view managed by the controller object.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

tableView
Returns the table view managed by the controller object.

@property(nonatomic, retain) UITableView *tableView

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewController.h

Instance Methods

initWithStyle:
Initializes a table-view controller to manage a table view of a given style.

402 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

UITableViewController Class Reference

- (id)initWithStyle:(UITableViewStyle)style

Parameters

style
A constant that specifies the style of table view that the controller object is to manage
(UITableViewStylePlain (page 378) or UITableViewStyleGrouped (page 378)).

Return Value
An initialized UITableViewController object or nil if the object couldn’t be created.

Discussion
If you use the standard init method to initialize a UITableViewController object, a table view in
the plain style is created.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableViewController.h

Instance Methods 403
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

UITableViewController Class Reference

404 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

UITableViewController Class Reference

Inherits from: UIControl : UIView : UIResponder : NSObject

Conforms to: UITextInputTraits
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITextField.h

Overview

A UITextField object is a control that displays editable text and sends an action message to a target
object when the user presses the return button. You typically use this class to gather small amounts
of text from the user and perform some immediate action, such as a search operation, based on that
text.

In addition to its basic text-editing behavior, the UITextField class supports the use of overlay views
to display additional information (and provide additional command targets) inside the text field
boundaries. You can use custom overlay views to display features such as a bookmarks button or
search icon. The UITextField class also provides a built-in button for clearing the current text.

A text field object supports the use of a delegate object to handle editing-related notifications. You
can use this delegate to customize the editing behavior of the control and provide guidance for when
certain actions should occur. For more information on the methods supported by the delegate, see
the UITextFieldDelegate protocol.

Managing the Keyboard

When the user taps in a text field, that text field becomes the first responder and automatically asks
the system to display the associated keyboard. Because the appearance of the keyboard has the
potential to obscure portions of your user interface, it is up to you to make sure that does not happen
by repositioning any views that might be obscured. Some system views, like table views, help you

Overview 405
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

by scrolling the first responder into view automatically. If the first responder is at the bottom of the
scrolling region, however, you may still need to resize or reposition the scroll view itself to ensure
the first responder is visible.

It is your application’s responsibility to dismiss the keyboard at the time of your choosing. You might
dismiss the keyboard in response to a specific user action, such as the user tapping a particular button
in your user interface. You might also configure your text field delegate to dismiss the keyboard when
the user presses the “return” key on the keyboard itself. To dismiss the keyboard, send the
resignFirstResponder (page 282) message to the text field that is currently the first responder. Doing
so causes the text field object to end the current editing session (with the delegate object’s consent)
and hide the keyboard.

The appearance of the keyboard itself can be customized using the properties provided by the
UITextInputTraits protocol. Text field objects implement this protocol and support the properties
it defines. You can use these properties to specify the type of keyboard (ASCII, Numbers, URL, Email,
and others) to display. You can also configure the basic text entry behavior of the keyboard, such as
whether it supports automatic capitalization and correction of the text.

Keyboard Notifications

When the system shows or hides the keyboard, it posts several keyboard notifications. These
notifications contain information about the keyboard, including its size, which you can use for
calculations that involve moving views. Registering for these notifications is the only way to get some
types of information about the keyboard. The system delivers the following notifications for
keyboard-related events:

 ■ UIKeyboardWillShowNotification (page 521)

 ■ UIKeyboardDidShowNotification (page 522)

 ■ UIKeyboardWillHideNotification (page 522)

 ■ UIKeyboardDidHideNotification (page 522)

For more information about these notifications, see their descriptions in UIWindow Class Reference.

Tasks

Accessing the Text Attributes

text (page 414) property
The text displayed by the text field.

placeholder (page 413) property
The string that is displayed when there is no other text in the text field.

font (page 411) property
The font of the text.

textColor (page 414) property
The color of the text.

406 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

textAlignment (page 414) property
The technique to use for aligning the text.

Sizing the Text Field’s Text

adjustsFontSizeToFitWidth (page 408) property
A Boolean value indicating whether the font size should be reduced in order to fit the text
string into the text field’s bounding rectangle.

minimumFontSize (page 412) property
The size of the smallest permissible font with which to draw the text field’s text.

Managing the Editing Behavior

editing (page 411) property
A Boolean value indicating whether the text field is currently in edit mode. (read-only)

clearsOnBeginEditing (page 410) property
A Boolean value indicating whether the text field removes old text when editing begins.

Setting the View’s Background Appearance

borderStyle (page 409) property
The border style used by the text field.

background (page 409) property
The image that represents the background appearance of the text field when it is enabled.

disabledBackground (page 411) property
The image that represents the background appearance of the text field when it is disabled.

Managing Overlay Views

clearButtonMode (page 409) property
Controls when the standard clear button appears in the text field.

leftView (page 412) property
The overlay view displayed on the left side of the text field.

leftViewMode (page 412) property
Controls when the left overlay view appears in the text field.

rightView (page 413) property
The overlay view displayed on the right side of the text field.

rightViewMode (page 414) property
Controls when the left overlay view appears in the text field.

Tasks 407
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

Accessing the Delegate

delegate (page 410) property
The receiver’s delegate.

Drawing and Positioning Overrides

– textRectForBounds: (page 418)
Returns the drawing rectangle for the text field’s text.

– drawTextInRect: (page 416)
Draws the receiver’s text in the specified rectangle.

– placeholderRectForBounds: (page 418)
Returns the drawing rectangle for the text field’s placeholder text

– drawPlaceholderInRect: (page 416)
Draws the receiver’s placeholder text in the specified rectangle.

– borderRectForBounds: (page 415)
Returns the receiver’s border rectangle.

– editingRectForBounds: (page 417)
Returns the rectangle in which editable text can be displayed.

– clearButtonRectForBounds: (page 415)
Returns the drawing rectangle for the built-in clear button.

– leftViewRectForBounds: (page 417)
Returns the drawing rectangle of the receiver’s left overlay view.

– rightViewRectForBounds: (page 418)
Returns the drawing location of the receiver’s right overlay view.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

adjustsFontSizeToFitWidth
A Boolean value indicating whether the font size should be reduced in order to fit the text string into
the text field’s bounding rectangle.

@property(nonatomic) BOOL adjustsFontSizeToFitWidth

Discussion
Normally, the text field’s content is drawn with the font you specify in the font property. If this
property is set to YES, however, and the contents in the text property exceed the text field’s bounding
rectangle, the receiver starts reducing the font size until the string fits or the minimum font size is
reached. The text is shrunk along the baseline.

The default value for this property is NO. If you change it to YES, you should also set an appropriate
minimum font size by modifying the minimumFontSize property.

408 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property minimumFontSize (page 412)

Declared In
UITextField.h

background
The image that represents the background appearance of the text field when it is enabled.

@property(nonatomic, retain) UIImage *background

Discussion
When set, the image referred to by this property replaces the standard appearance controlled by the
borderStyle property. Background images are drawn in the border rectangle portion of the image.
Images you use for the text field’s background should be able to stretch to fit.

This property is set to nil by default.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property borderStyle (page 409)
@property disabledBackground (page 411)

Declared In
UITextField.h

borderStyle
The border style used by the text field.

@property(nonatomic) UITextBorderStyle borderStyle

Discussion
The default value for this property is UITextBorderStyleNone. If a custom background image is set,
this property is ignored.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

clearButtonMode
Controls when the standard clear button appears in the text field.

Properties 409
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

@property(nonatomic) UITextFieldViewMode clearButtonMode

Discussion
The standard clear button is displayed at the right side of the text field as a way for the user to remove
text quickly. This button appears automatically based on the value set for this property.

The default value for this property is UITextFieldViewModeNever.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

clearsOnBeginEditing
A Boolean value indicating whether the text field removes old text when editing begins.

@property(nonatomic) BOOL clearsOnBeginEditing

Discussion
If this property is set to YES, the text field’s previous text is cleared when the user selects the text field
to begin editing. If NO, the text field places an insertion point at the place where the user tapped the
field.

Note: Even if this property is set to YES, the text field delegate can override this behavior by returning
NO from its textFieldShouldClear: (page 602) method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

delegate
The receiver’s delegate.

@property(nonatomic, assign) id<UITextFieldDelegate> delegate

Discussion
A text field delegate responds to editing-related messages from the text field. You can use the delegate
to respond to the text entered by the user and to some special commands, such as when the return
button is pressed.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

410 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

disabledBackground
The image that represents the background appearance of the text field when it is disabled.

@property(nonatomic, retain) UIImage *disabledBackground

Discussion
Background images are drawn in the border rectangle portion of the image. Images you use for the
text field’s background should be able to stretch to fit. This property is ignored if the background
property is not also set.

This property is set to nil by default.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property background (page 409)

Declared In
UITextField.h

editing
A Boolean value indicating whether the text field is currently in edit mode. (read-only)

@property(nonatomic, readonly, getter=isEditing) BOOL editing

Discussion
This property is set to YES when the user begins editing text in this text field, and it is set to NO again
when editing ends. Notifications about when editing begins and ends are sent to the text field delegate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

font
The font of the text.

@property(nonatomic, retain) UIFont *font

Discussion
This property applies to the entire text of the text field. It also applies to the placeholder text. The
default font is a 12-point Helvetica plain font.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

Properties 411
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

leftView
The overlay view displayed on the left side of the text field.

@property(nonatomic, retain) UIView *leftView

Discussion
You can use the left overlay view to indicate the intended behavior of the text field. For example, you
might display a magnifying glass in this location to indicate that the text field is a search field.

The left overlay view is placed in the rectangle returned by the leftViewRectForBounds: method
of the receiver. The image associated with this property should fit the given rectangle. If it does not
fit, it is scaled to fit.

If your overlay view does not overlap any other sibling views, it receives touch events like any other
view. If you specify a control for your view, the control tracks and sends actions as usual. If an overlay
view overlaps the clear button, however, the clear button always takes precedence in receiving events.

Availability
Available in iPhone OS 2.0 and later.

See Also
– leftViewRectForBounds: (page 417)

Declared In
UITextField.h

leftViewMode
Controls when the left overlay view appears in the text field.

@property(nonatomic) UITextFieldViewMode leftViewMode

Discussion
The default value for this property is UITextFieldViewModeNever.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

minimumFontSize
The size of the smallest permissible font with which to draw the text field’s text.

@property(nonatomic) CGFloat minimumFontSize

Discussion
When drawing text that might not fit within the bounding rectangle of the text field, you can use this
property to prevent the receiver from reducing the font size to the point where it is no longer legible.

The default value for this property is 0.0. If you enable font adjustment for the text field, you should
always increase this value.

412 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property adjustsFontSizeToFitWidth (page 408)

Declared In
UITextField.h

placeholder
The string that is displayed when there is no other text in the text field.

@property(nonatomic, copy) NSString *placeholder

Discussion
This value is nil by default. The placeholder string is drawn using a 70% grey color.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

rightView
The overlay view displayed on the right side of the text field.

@property(nonatomic, retain) UIView *rightView

Discussion
You can use the right overlay view to provide indicate additional features available for the text field.
For example, you might display a bookmarks button in this location to allow the user to select from
a set of predefined items.

The left overlay view is placed in the rectangle returned by the rightViewRectForBounds: method
of the receiver. The image associated with this property should fit the given rectangle. If it does not
fit, it is scaled to fit.

If your overlay view does not overlap any other sibling views, it receives touch events like any other
view. If you specify a control for your view, that control tracks and sends actions as usual. If an overlay
view overlaps the clear button, however, the clear button always takes precedence in receiving events.
By default, the right overlay view does overlap the clear button.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rightViewRectForBounds: (page 418)

Declared In
UITextField.h

Properties 413
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

rightViewMode
Controls when the left overlay view appears in the text field.

@property(nonatomic) UITextFieldViewMode rightViewMode

Discussion
The default value for this property is UITextFieldViewModeNever.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

text
The text displayed by the text field.

@property(nonatomic, copy) NSString *text

Discussion
This string is nil by default.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textAlignment
The technique to use for aligning the text.

@property(nonatomic) UITextAlignment textAlignment

Discussion
This property applies to the both the main text string and the placeholder string. The default value
of this property is UITextAlignmentLeft (page 51).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textColor
The color of the text.

414 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

@property(nonatomic, retain) UIColor *textColor

Discussion
This property applies to the entire text string. The default value for this property is nil, which results
in opaque black text.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

Instance Methods

borderRectForBounds:
Returns the receiver’s border rectangle.

- (CGRect)borderRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The border rectangle for the receiver.

Discussion
You should not call this method directly. If you want to provide a different border rectangle for
drawing, you can override this method and return that rectangle.

The default implementation of this method returns the original bounds rectangle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

clearButtonRectForBounds:
Returns the drawing rectangle for the built-in clear button.

- (CGRect)clearButtonRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The rectangle in which to draw the clear button.

Instance Methods 415
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

Discussion
You should not call this method directly. If you want to place the clear button in a different location,
you can override this method and return the new rectangle. Your method should call the super
implementation and modify the returned rectangle’s origin only. Changing the size of the clear button
may cause unnecessary distortion of the button image.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

drawPlaceholderInRect:
Draws the receiver’s placeholder text in the specified rectangle.

- (void)drawPlaceholderInRect:(CGRect)rect

Parameters

rect
The rectangle in which to draw the placeholder text.

Discussion
You should not call this method directly. If you want to customize the drawing behavior for the
placeholder text, you can override this method to do your drawing.

By the time this method is called, the current graphics context is already configured with the default
environment and text color for drawing. In your overridden method, you can configure the current
context further and then invoke super to do the actual drawing or do the drawing yourself. If you
do render the text yourself, you should not invoke super.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

drawTextInRect:
Draws the receiver’s text in the specified rectangle.

- (void)drawTextInRect:(CGRect)rect

Parameters

rect
The rectangle in which to draw the text.

Discussion
You should not call this method directly. If you want to customize the drawing behavior for the text,
you can override this method to do your drawing.

416 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

By the time this method is called, the current graphics context is already configured with the default
environment and text color for drawing. In your overridden method, you can configure the current
context further and then invoke super to do the actual drawing or you can do the drawing yourself.
If you do render the text yourself, you should not invoke super.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

editingRectForBounds:
Returns the rectangle in which editable text can be displayed.

- (CGRect)editingRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The computed editing rectangle for the text.

Discussion
You should not call this method directly. If you want to provide a different editing rectangle for the
text, you can override this method and return that rectangle. By default, this method returns a region
in the text field that is not occupied by any overlay views.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

leftViewRectForBounds:
Returns the drawing rectangle of the receiver’s left overlay view.

- (CGRect)leftViewRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The rectangle in which to draw the left overlay view.

Discussion
You should not call this method directly. If you want to place the left overlay view in a different
location, you can override this method and return the new rectangle.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 417
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

Declared In
UITextField.h

placeholderRectForBounds:
Returns the drawing rectangle for the text field’s placeholder text

- (CGRect)placeholderRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the placeholder text.

Discussion
You should not call this method directly. If you want to customize the drawing rectangle for the
placeholder text, you can override this method and return a different rectangle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

rightViewRectForBounds:
Returns the drawing location of the receiver’s right overlay view.

- (CGRect)rightViewRectForBounds:(CGRect)bounds

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The rectangle in which to draw the right overlay view.

Discussion
You should not call this method directly. If you want to place the right overlay view in a different
location, you can override this method and return the new rectangle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textRectForBounds:
Returns the drawing rectangle for the text field’s text.

- (CGRect)textRectForBounds:(CGRect)bounds

418 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

Parameters

bounds
The bounding rectangle of the receiver.

Return Value
The computed drawing rectangle for the label’s text.

Discussion
You should not call this method directly. If you want to customize the drawing rectangle for the text,
you can override this method and return a different rectangle.

The default implementation of this method returns a rectangle that is derived from the control’s
original bounds, but which does not include the area occupied by the receiver’s border or overlay
views.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

Constants

UITextFieldBorderStyle
The type of border drawn around the text field.

typedef enum {
UITextBorderStyleNone,
UITextBorderStyleLine,
UITextBorderStyleBezel,
UITextBorderStyleRoundedRect

} UITextBorderStyle;

Constants
UITextBorderStyleNone

The text field does not display a border.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

UITextBorderStyleLine
Displays a thin rectangle around the text field.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

UITextBorderStyleBezel
Displays a bezel-style border for the text field. This style is typically used for standard data-entry
fields.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

Constants 419
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

UITextBorderStyleRoundedRect
Displays a rounded-style border for the text field. This style is typically used for search buttons.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

UITextFieldViewMode
Defines the times at which overlay views appear in a text field.

typedef enum {
UITextFieldViewModeNever,
UITextFieldViewModeWhileEditing,
UITextFieldViewModeUnlessEditing,
UITextFieldViewModeAlways

} UITextFieldViewMode;

Constants
UITextFieldViewModeNever

The overlay view never appears.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

UITextFieldViewModeWhileEditing
The overlay view is displayed only while text is being edited in the text field.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

UITextFieldViewModeUnlessEditing
The overlay view is displayed only when text is not being edited.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

UITextFieldViewModeAlways
The overlay view is always displayed.

Available in iPhone OS 2.0 and later.

Declared in UITextField.h

Notifications

UITextFieldTextDidBeginEditingNotification
Notifies observers that an editing session began in a text field. The affected text field is stored in the
object parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

420 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

UITextFieldTextDidChangeNotification
Notifies observers that the text in a text field changed. The affected text field is stored in the object
parameter of the notification.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

UITextFieldTextDidEndEditingNotification
Notifies observers that the editing session ended for a text field. The affected text field is stored in
the object parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

Notifications 421
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

422 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

UITextField Class Reference

Inherits from: UIScrollView : UIView : UIResponder : NSObject

Conforms to: UITextInputTraits
NSCoding (UIView)
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITextView.h

Overview

The UITextView class implements the behavior for a scrollable, multiline text region. The class supports
the display of text using a custom font, color, and alignment and also supports text editing. You
typically use a text view to display multiple lines of text, such as when displaying the body of a large
text document.

This class does not support multiple styles for text. The font, color, and text alignment attributes you
specify always apply to the entire contents of the text view. To display more complex styling in your
application, you need to use a UIWebView object and render your content using HTML.

Managing the Keyboard

When the user taps in an editable text view, that text view becomes the first responder and
automatically asks the system to display the associated keyboard. Because the appearance of the
keyboard has the potential to obscure portions of your user interface, it is up to you to make sure that
does not happen by repositioning any views that might be obscured. Some system views, like table
views, help you by scrolling the first responder into view automatically. If the first responder is at
the bottom of the scrolling region, however, you may still need to resize or reposition the scroll view
itself to ensure the first responder is visible.

Overview 423
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

UITextView Class Reference

It is your application’s responsibility to dismiss the keyboard at the time of your choosing. You might
dismiss the keyboard in response to a specific user action, such as the user tapping a particular button
in your user interface. To dismiss the keyboard, send the resignFirstResponder (page 282) message
to the text view that is currently the first responder. Doing so causes the text view object to end the
current editing session (with the delegate object’s consent) and hide the keyboard.

The appearance of the keyboard itself can be customized using the properties provided by the
UITextInputTraits protocol. Text view objects implement this protocol and support the properties
it defines. You can use these properties to specify the type of keyboard (ASCII, Numbers, URL, Email,
and others) to display. You can also configure the basic text entry behavior of the keyboard, such as
whether it supports automatic capitalization and correction of the text.

Keyboard Notifications

When the system shows or hides the keyboard, it posts several keyboard notifications. These
notifications contain information about the keyboard, including its size, which you can use for
calculations that involve repositioning or resizing views. Registering for these notifications is the only
way to get some types of information about the keyboard. The system delivers the following
notifications for keyboard-related events:

 ■ UIKeyboardWillShowNotification (page 521)

 ■ UIKeyboardDidShowNotification (page 522)

 ■ UIKeyboardWillHideNotification (page 522)

 ■ UIKeyboardDidHideNotification (page 522)

For more information about these notifications, see their descriptions in UIWindow Class Reference.

Tasks

Configuring the Text Attributes

text (page 426) property
The text displayed by the text view.

font (page 426) property
The font of the text.

textColor (page 427) property
The color of the text.

editable (page 425) property
A Boolean value indicating whether the receiver is editable.

textAlignment (page 426) property
The technique to use for aligning the text.

– hasText (page 427)
Returns a Boolean value indicating whether the text view currently contains any text.

424 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

UITextView Class Reference

Working with the Selection

selectedRange (page 426) property
The current selection range of the receiver.

– scrollRangeToVisible: (page 427)
Scrolls the receiver until the text in the specified range is visible.

Accessing the Delegate

delegate (page 425) property
The receiver’s delegate.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

delegate
The receiver’s delegate.

@property(nonatomic, assign) id<UITextViewDelegate> delegate

Discussion
A text view delegate responds to editing-related messages from the text view. You can use the delegate
to track changes to the text itself and to the current selection.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

editable
A Boolean value indicating whether the receiver is editable.

@property(nonatomic, getter=isEditable) BOOL editable

Discussion
The default value of this property is YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

Properties 425
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

UITextView Class Reference

font
The font of the text.

@property(nonatomic, retain) UIFont *font

Discussion
This property applies to the entire text string. The default font is a 17-point Helvetica plain font.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

selectedRange
The current selection range of the receiver.

@property(nonatomic) NSRange selectedRange

Discussion
The length of the selection range is always 0, indicating that the selection is actually an insertion point.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

text
The text displayed by the text view.

@property(nonatomic, copy) NSString *text

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

textAlignment
The technique to use for aligning the text.

@property(nonatomic) UITextAlignment textAlignment

Discussion
This property applies to the entire text string. The default value of this property is
UITextAlignmentLeft (page 51).

Availability
Available in iPhone OS 2.0 and later.

426 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

UITextView Class Reference

Declared In
UITextView.h

textColor
The color of the text.

@property(nonatomic, retain) UIColor *textColor

Discussion
This property applies to the entire text string. The default text color is black.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backgroundColor (page 446) (UIView)

Declared In
UITextView.h

Instance Methods

hasText
Returns a Boolean value indicating whether the text view currently contains any text.

- (BOOL)hasText

Return Value
YES if the receiver contains text or NO if it does not.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

scrollRangeToVisible:
Scrolls the receiver until the text in the specified range is visible.

- (void)scrollRangeToVisible:(NSRange)range

Parameters

range
The range to scroll into view. The length of the range is ignored.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 427
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

UITextView Class Reference

Declared In
UITextView.h

Notifications

UITextViewTextDidBeginEditingNotification
Notifies observers that an editing session began in a text view. The affected view is stored in the
object parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

UITextViewTextDidChangeNotification
Notifies observers that the text in a text view changed. The affected view is stored in the object
parameter of the notification.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

UITextViewTextDidEndEditingNotification
Notifies observers that the editing session ended for a text view. The affected view is stored in the
object parameter of the notification. The userInfo dictionary is not used.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

428 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

UITextView Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIToolbar.h

Overview

The UIToolbar class implements a control for selecting one of many buttons, called toolbar items. A
toolbar momentarily highlights or does not change the appearance of an item when tapped. Use the
UITabBar class if you need a radio button style control.

Use the UIBarButtonItem class to create items and the setItems:animated: (page 431) method to
add them to a toolbar. All methods with an animated: argument allow you to optionally animate
changes to the display.

Note that the images used on the toolbar to represent the normal and highlighted states of an item
are derived from the image you set using the inherited image (page 118) property in UIBarItem. For
example, the image is converted to white and then bevelled by adding a shadow for the normal state.

Tasks

Getting and Setting Properties

barStyle (page 430) property
The toolbar style that specifies its appearance.

tintColor (page 431) property
The color used to tint the bar.

Overview 429
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

UIToolbar Class Reference

Configuring Items

items (page 430) property
The items displayed on the toolbar.

– setItems:animated: (page 431)
Sets the items on the toolbar by animating the changes.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

barStyle
The toolbar style that specifies its appearance.

@property(nonatomic) UIBarStyle barStyle

Discussion
See UIBarStyle (page 625) for possible values. The default value is UIBarStyleDefault.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIToolbar.h

items
The items displayed on the toolbar.

@property(nonatomic, copy) NSArray *items

Discussion
The items, instances of UIBarButtonItem, that are visible on the toolbar in the order they appear in
this array. Any changes to this property are not animated. Use the setItems:animated: (page 431)
method to animate changes.

The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setItems:animated: (page 431)

Declared In
UIToolbar.h

430 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

UIToolbar Class Reference

tintColor
The color used to tint the bar.

@property(nonatomic, retain) UIColor *tintColor

Discussion
The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIToolbar.h

Instance Methods

setItems:animated:
Sets the items on the toolbar by animating the changes.

- (void)setItems:(NSArray *)items animated:(BOOL)animated

Parameters

items
The items to display on the toolbar.

animated
A Boolean value if set to YES animates the transition to the items; otherwise, does not.

Discussion
If animated is YES, the changes are dissolved or the reordering is animated—for example, removed
items fade out and new items fade in. This method also adjusts the spacing between items.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property items (page 430)

Declared In
UIToolbar.h

Instance Methods 431
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

UIToolbar Class Reference

432 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

UIToolbar Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITouch.h

Overview

A UITouch object represents the presence or movement of a finger on the screen for a particular event.
You access UITouch objects through UIEvent objects passed into responder objects for event handling.

A UITouch object includes methods for accessing the view or window in which the touch occurred
and for obtaining the location of the touch in a specific view or window. it also lets you find out when
the touch occurred, whether the user tapped more than once, whether the finger is swiped (and if so,
in which direction), and the phase of a touch—that is, whether it began, moved, or ended the gesture,
or whether it was canceled.

A UITouch object is persistent throughout a multi-touch sequence. You should never retain an UITouch
object when handling an event. If you need to keep information about a touch from one phase to
another, you should copy that information from the UITouch object.

See Event Handling in iPhone OS Programming Guide for further information on event handling.

Tasks

Getting the Location of Touches

– locationInView: (page 436)
Returns the current location of the receiver in the coordinate system of the given view.

Overview 433
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

UITouch Class Reference

– previousLocationInView: (page 436)
Returns the previous location of the receiver in the coordinate system of the given view.

view (page 435) property
The view in which the touch initially occurred. (read-only)

window (page 435) property
The window in which the touch initially occurred. (read-only)

Getting Touch Attributes

tapCount (page 434) property
The number of times the finger was tapped for this given touch. (read-only)

timestamp (page 435) property
The time when the touch occurred or when it was last mutated. (read-only)

phase (page 434) property
The type of touch. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

phase
The type of touch. (read-only)

@property(nonatomic, readonly) UITouchPhase phase

Discussion
The property value is a constant that indicates whether the touch began, moved, ended, or was
canceled. For descriptions of possible UITouchPhase values, see “Touch Phase” (page 437).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITouch.h

tapCount
The number of times the finger was tapped for this given touch. (read-only)

@property(nonatomic, readonly) NSUInteger tapCount

Discussion
The value of this property is an integer indicating the number of times the user tapped their fingers
on a certain point within a predefined period. If want to determine whether the user single-tapped,
double-tapped, or event triple-tapped a particular view or window, you should evaluate the value
returned by this method.

434 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

UITouch Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITouch.h

timestamp
The time when the touch occurred or when it was last mutated. (read-only)

@property(nonatomic, readonly) NSTimeInterval timestamp

Discussion
The value of this property is the time, in seconds, since system startup the touch either originated or
was last changed. You can store and compare the initial value of this attribute to subsequent timestamp
values of the UITouch instance to determine the duration of the touch and, if it is being swiped, the
speed of movement.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITouch.h

view
The view in which the touch initially occurred. (read-only)

@property(nonatomic, readonly, retain) UIView *view

Discussion
The value of the property is the view object in which the touch originally occurred. This object might
not be the view the touch is currently in.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property window (page 435)

Declared In
UITouch.h

window
The window in which the touch initially occurred. (read-only)

@property(nonatomic, readonly, retain) UIWindow *window

Discussion
The value of the property is the window object in which the touch originally occurred. This object
might not be the window the touch is currently in.

Properties 435
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

UITouch Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property view (page 435)

Declared In
UITouch.h

Instance Methods

locationInView:
Returns the current location of the receiver in the coordinate system of the given view.

- (CGPoint)locationInView:(UIView *)view

Parameters

view
The view object in whose coordinate system you want the touch located. A custom view that
is handling the touch may specify self to get the touch location in its own coordinate system.
Pass nil to get the touch location in the window’s coordinates.

Return Value
A point specifying the location of the receiver in view.

Discussion
This method returns the current location of a UITouch object in the coordinate system of the specified
view. Because the touch object might have been forwarded to a view from another view, this method
performs any necessary conversion of the touch location to the coordinate system of the specified
view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– previousLocationInView: (page 436)

Declared In
UITouch.h

previousLocationInView:
Returns the previous location of the receiver in the coordinate system of the given view.

- (CGPoint)previousLocationInView:(UIView *)view

436 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

UITouch Class Reference

Parameters

view
The view object in whose coordinate system you want the touch located. A custom view that
is handling the touch may specify self to get the touch location in its own coordinate system.
Pass nil to get the touch location in the window’s coordinates.

Return Value
This method returns the previous location of a UITouch object in the coordinate system of the specified
view. Because the touch object might have been forwarded to a view from another view, this method
performs any necessary conversion of the touch location to the coordinate system of the specified
view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– locationInView: (page 436)

Declared In
UITouch.h

Constants

Touch Phase
The phase of a finger touch.

typedef enum {
UITouchPhaseBegan,
UITouchPhaseMoved,
UITouchPhaseStationary,
UITouchPhaseEnded,
UITouchPhaseCancelled,

} UITouchPhase;

Constants
UITouchPhaseBegan

A finger for a given event touched the screen.

Available in iPhone OS 2.0 and later.

Declared in UITouch.h

UITouchPhaseMoved
A finger for a given event moved on the screen.

Available in iPhone OS 2.0 and later.

Declared in UITouch.h

UITouchPhaseStationary
A finger is touching the surface but hasn't moved since the previous event.

Available in iPhone OS 2.0 and later.

Declared in UITouch.h

Constants 437
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

UITouch Class Reference

UITouchPhaseEnded
A finger for a given event was lifted from the screen.

Available in iPhone OS 2.0 and later.

Declared in UITouch.h

UITouchPhaseCancelled
The system cancelled tracking for the touch, as when (for example) the user puts the device to
his or her face.

Available in iPhone OS 2.0 and later.

Declared in UITouch.h

Discussion
The phase of a UITouch instance changes in a certain order during the course of an event. You access
this value through the phase (page 434) property.

Declared In
UITouch.h

438 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

UITouch Class Reference

Inherits from: UIResponder : NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIView.h

Overview

The UIView class is primarily an abstract superclass that provides concrete subclasses with a structure
for drawing and handling events. You can also create instances of UIView to contain other views.

UIView objects are arranged within an UIWindow object, in a nested hierarchy of subviews. Parent
objects in the view hierarchy are called superviews, and children are called subviews. A view object
claims a rectangular region of its enclosing superview, is responsible for all drawing within that
region, and is eligible to receive events occurring in it as well.

The UIView class provides common methods you use to create all types of views and access their
properties. For example, unless a subclass has its own designated initializer, you use the
initWithFrame: (page 469) method to create a view. The frame (page 449) property specifies the origin
and size of a view in superview coordinates. The origin of the coordinate system for all views is in
the upper-left corner.

You can also use the center (page 447) and bounds (page 446) properties to set the position and size
of a view. The center property specifies the view’s center point in superview’s coordinates. The
bounds property specifies the origin in the view’s coordinates and its size (the view’s content may
be larger than the bounds size). The frame property is actually computed based on the center and
bounds property values. Therefore, you can set any of these three properties and they affect the values
of the others.

It’s important to set the autoresizing properties of views so that when they are displayed or the
orientation changes, the views are displayed correctly within the superview’s bounds. Use the
autoresizesSubviews (page 445) property, especially if you subclass UIView, to specify whether the

Overview 439
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

view should automatically resize its subviews. Use the autoresizingMask (page 446) property with
the constants described in UIViewAutoresizing (page 480) to specify how a view should automatically
resize.

The UIView class provides a number of methods for managing the view hierarchy. Use the
superview (page 452) property to get the parent view and the subviews (page 451) property to get the
child views in the hierarchy. There are also a number of methods, listed in “Managing the View
Hierarchy” (page 442), for adding, inserting, and removing subviews as well as arranging subviews
in front of or in back of siblings.

When you subclass UIView to create a custom class that draws itself, implement the drawRect: (page
467) method to draw the view within the specified region. This method is invoked the first time a view
displays or when an event occurs that invalidates a part of the view’s frame requiring it to redraw
its content.

Normal geometry changes do not require redrawing the view. Therefore, if you alter the appearance
of a view and want to force it to redraw, send setNeedsDisplay (page 473) or
setNeedsDisplayInRect: (page 473) to the view. You can also set the contentMode (page 448) to
UIViewContentModeRedraw (page 479) to invoke the drawRect: (page 467) method when the bounds
change; otherwise, the view is scaled and clipped without redrawing the content.

Subclasses can also be containers for other views. In this case, just override the designated initializer,
initWithFrame: (page 469), to create a view hierarchy. If you want to programmatically force the
layout of subviews before drawing, send setNeedsLayout (page 474) to the view. Then when
layoutIfNeeded (page 471) is invoked, the layoutSubviews (page 471) method is invoked just before
displaying. Subclasses should override layoutSubviews (page 471) to perform any custom arrangement
of subviews.

Some of the property changes to view objects can be animated—for example, setting the frame (page
449), bounds (page 446), center (page 447), and transform (page 452) properties. If you change these
properties in an animation block, the changes from the current state to the new state are animated.
Invoke the beginAnimations:context: (page 454) class method to begin an animation block, set the
properties you want animated, and then invoke the commitAnimations (page 454) class method to
end an animation block. The animations are run in a separate thread and begin when the application
returns to the run loop. Other animation class methods allow you to control the start time, duration,
delay, and curve of the animations within the block.

Use the hitTest:withEvent: (page 468) and pointInside:withEvent: (page 472) methods if you
are processing events and want to know where they occur. The UIView class inherits other event
processing methods from UIResponder. For more information on how views handle events, read
UIResponder Class Reference.

Read Windows and Views in iPhone OS Programming Guide to learn how to use this class.

Tasks

Creating Instances

– initWithFrame: (page 469)
Initializes and returns a newly allocated view object with the specified frame rectangle.

440 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Setting and Getting Attributes

userInteractionEnabled (page 453) property
A Boolean value that determines whether user events are ignored and removed from the event
queue.

Modifying the Bounds and Frame Rectangles

frame (page 449) property
The receiver’s frame rectangle.

bounds (page 446) property
The receiver’s bounds rectangle, which expresses its location and size in its own coordinate
system.

center (page 447) property
The center of the frame.

transform (page 452) property
Specifies the transform applied to the receiver, relative to the center of its bounds.

Converting Coordinates

– convertPoint:toView: (page 464)
Converts a point from the receiver’s coordinate system to that of a given view.

– convertPoint:fromView: (page 464)
Converts a point from the coordinate system of a given view to that of the receiver.

– convertRect:toView: (page 465)
Converts a rectangle from the receiver’s coordinate system to that of another view.

– convertRect:fromView: (page 465)
Converts a rectangle from the coordinate system of another view to that of the receiver.

Resizing Subviews

autoresizesSubviews (page 445) property
A Boolean value that determines whether the receiver automatically resizes its subviews when
its frame size changes.

autoresizingMask (page 446) property
An integer bit mask that determines how the receiver resizes its subviews when its bounds
change.

– sizeThatFits: (page 474)
Calculates and returns a size that best fits the receiver’s subviews.

– sizeToFit (page 475)
Resizes and moves the receiver view so it just encloses its subviews.

contentMode (page 448) property
A flag used to determine how a view lays out its content when its bounds rectangle changes.

Tasks 441
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Managing the View Hierarchy

superview (page 452) property
The receiver’s superview, or nil if it has none. (read-only)

subviews (page 451) property
The receiver’s immediate subviews. (read-only)

window (page 453) property
The receiver’s window object, or nil if it has none. (read-only)

– addSubview: (page 463)
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

– bringSubviewToFront: (page 463)
Moves the specified subview to the front of its siblings.

– sendSubviewToBack: (page 473)
Moves the specified subview to the back of its siblings.

– removeFromSuperview (page 472)
Unlinks the receiver from its superview and its window, and removes it from the responder
chain.

– insertSubview:atIndex: (page 470)
Inserts a subview at the specified index.

– insertSubview:aboveSubview: (page 469)
Inserts a view above another view in the view hierarchy.

– insertSubview:belowSubview: (page 470)
Inserts a view below another view in the view hierarchy.

– exchangeSubviewAtIndex:withSubviewAtIndex: (page 468)
Exchanges the subviews in the receiver at the given indices.

– isDescendantOfView: (page 471)
Returns a Boolean value indicating whether the receiver is a subview of a given view or whether
it is identical to that view.

Searching for Views

tag (page 452) property
The receiver’s tag, an integer that you can use to identify view objects in your application.

– viewWithTag: (page 475)
Returns the view with the specified tag.

Laying out Views

– setNeedsLayout (page 474)
Sets whether subviews need to be rearranged before displaying.

– layoutIfNeeded (page 471)
Lays out the subviews if needed.

– layoutSubviews (page 471)
Lays out subviews.

442 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Displaying

clipsToBounds (page 448) property
A Boolean value that determines whether subviews can be drawn outside the bounds of the
receiver.

backgroundColor (page 446) property
The receiver’s background color.

alpha (page 445) property
The receiver’s alpha value.

opaque (page 451) property
A Boolean value that determines whether the receiver is opaque.

clearsContextBeforeDrawing (page 448) property
A Boolean value that determines whether the receiver’s bounds should be automatically cleared
before drawing.

– drawRect: (page 467)
Draws the receiver’s image within the passed-in rectangle.

– setNeedsDisplay (page 473)
Controls whether the receiver's entire bounds rectangle is marked as needing display.

– setNeedsDisplayInRect: (page 473)
Marks the region of the receiver within the specified rectangle as needing display, increasing
the receiver’s existing invalid region to include it.

+ layerClass (page 455)
Returns the class used to create the layer for instances of this class.

layer (page 450) property
The view’s Core Animation layer used for rendering. (read-only)

hidden (page 450) property
A Boolean value that determines whether the receiver is hidden.

Animating Views

+ beginAnimations:context: (page 454)
Begins an animation block.

+ commitAnimations (page 454)
Ends an animation block and starts animations when this is the outer animation block.

+ setAnimationStartDate: (page 461)
Sets the start time of animating property changes within an animation block.

+ setAnimationsEnabled: (page 460)
Sets whether animations are enabled.

+ setAnimationDelegate: (page 457)
Sets the delegate for animation messages.

+ setAnimationWillStartSelector: (page 462)
Sets the message to send to the animation delegate when animation starts.

+ setAnimationDidStopSelector: (page 458)
Sets the message to send to the animation delegate when animation stops.

Tasks 443
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

+ setAnimationDuration: (page 458)
Sets the duration (in seconds) of animating property changes within an animation block.

+ setAnimationDelay: (page 457)
Sets the delay (in seconds) of animating property changes within an animation block.

+ setAnimationCurve: (page 456)
Sets the curve of animating property changes within an animation block.

+ setAnimationRepeatCount: (page 460)
Sets the number of times animations within an animation block repeat.

+ setAnimationRepeatAutoreverses: (page 459)
Sets whether the animation of property changes within an animation block automatically
reverses repeatedly.

+ setAnimationBeginsFromCurrentState: (page 455)
Sets whether the animation should begin playing from the current state.

+ setAnimationTransition:forView:cache: (page 461)
Sets a transition to apply to a view during an animation block.

+ areAnimationsEnabled (page 453)
Returns a Boolean value indicating whether animations are enabled.

Handling Events

– hitTest:withEvent: (page 468)
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that
contains a specified point.

– pointInside:withEvent: (page 472)
Returns a Boolean value indicating whether the receiver contains the specified point.

multipleTouchEnabled (page 450) property
A Boolean value indicating whether the receiver handles multi-touch events.

exclusiveTouch (page 449) property
A Boolean value indicating whether the receiver handles touch events exclusively.

Observing Changes

– didAddSubview: (page 466)
Tells the view when subviews are added.

– didMoveToSuperview (page 466)
Informs the receiver that its superview has changed (possibly to nil).

– didMoveToWindow (page 466)
Informs the receiver that it has been added to a window.

– willMoveToSuperview: (page 476)
Informs the receiver that its superview is about to change to the specified superview (which
may be nil).

– willMoveToWindow: (page 476)
Informs the receiver that it’s being added to the view hierarchy of the specified window object
(which may be nil).

444 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

– willRemoveSubview: (page 477)
Overridden by subclasses to perform additional actions before subviews are removed from
the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

alpha
The receiver’s alpha value.

@property(nonatomic) CGFloat alpha

Discussion
Changes to this property can be animated. Use the beginAnimations:context: (page 454) class
method to begin and the commitAnimations (page 454) class method to end an animation block.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backgroundColor (page 446)
@property opaque (page 451)

Declared In
UIView.h

autoresizesSubviews
A Boolean value that determines whether the receiver automatically resizes its subviews when its
frame size changes.

@property(nonatomic) BOOL autoresizesSubviews

Discussion
If YES, the receiver adjusts the size of its subviews when the bounds change. The default value is YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property autoresizingMask (page 446)

Declared In
UIView.h

Properties 445
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

autoresizingMask
An integer bit mask that determines how the receiver resizes its subviews when its bounds change.

@property(nonatomic) UIViewAutoresizing autoresizingMask

Discussion
This mask can be specified by combining, using the C bitwise OR operator, any of the options described
in UIViewAutoresizing (page 480).

Where more than one option along an axis is set, the default behavior is to distribute the size difference
as evenly as possible among the flexible portions. For example, if frame (page 449) and
autoresizingMask (page 446) are set and the superview’s width has increased by 10.0 units, the
receiver’s frame and right margin are each widened by 5.0 units. Subclasses of UIView can override
the layoutSubviews (page 471) method to explicitly adjust the position of subviews.

If the autoresizing mask is equal to UIViewAutoresizingNone (page 480), then the receiver doesn’t
resize at all when its bounds changes. The default value is UIViewAutoresizingNone.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property autoresizesSubviews (page 445)

Declared In
UIView.h

backgroundColor
The receiver’s background color.

@property(nonatomic, retain) UIColor *backgroundColor

Discussion
Use thebeginAnimations:context: (page 454) class method to begin and thecommitAnimations (page
454) class method to end an animation block.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property alpha (page 445)
@property opaque (page 451)

Declared In
UIView.h

bounds
The receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.

446 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

@property(nonatomic) CGRect bounds

Discussion
The bounds rectangle determines the origin and scale in the view’s coordinate system within its frame
rectangle. Setting this property changes the value of the frame (page 449) property accordingly.

Changing the frame rectangle automatically redisplay the receiver without invoking the
drawRect: (page 467) method. If you want the drawRect: (page 467) method invoked when the frame
rectangle changes, set the contentMode (page 448) property to UIViewContentModeRedraw (page 479).

Changes to this property can be animated. Use the beginAnimations:context: (page 454) class
method to begin and the commitAnimations (page 454) class method to end an animation block.

The default bounds origin is (0,0) and the size is the same as the frame rectangle’s size.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property frame (page 449)
@property center (page 447)
@property transform (page 452)

Declared In
UIView.h

center
The center of the frame.

@property(nonatomic) CGPoint center

Discussion
The center is specified within the coordinate system of its superview. Setting this property changes
the values of the frame (page 449) properties accordingly.

Changing the frame rectangle automatically redisplay the receiver without invoking the
drawRect: (page 467) method. If you want the drawRect: (page 467) method invoked when the frame
rectangle changes, set the contentMode (page 448) property to UIViewContentModeRedraw (page 479).

Changes to this property can be animated. Use the beginAnimations:context: (page 454) class
method to begin and the commitAnimations (page 454) class method to end an animation block.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property frame (page 449)
@property bounds (page 446)
@property transform (page 452)

Declared In
UIView.h

Properties 447
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

clearsContextBeforeDrawing
A Boolean value that determines whether the receiver’s bounds should be automatically cleared
before drawing.

@property(nonatomic) BOOL clearsContextBeforeDrawing

Discussion
If YES, the current graphics context buffer in the drawRect: (page 467) method is automatically cleared
to transparent black before drawRect: (page 467) is invoked. If NO, it’s the application’s responsibility
to completely fill its content. Drawing performance can be improved if this property is NO—for
example, when scrolling. The default value is YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

clipsToBounds
A Boolean value that determines whether subviews can be drawn outside the bounds of the receiver.

@property(nonatomic) BOOL clipsToBounds

Discussion
YES if subviews should be clipped to the bounds of the receiver; otherwise, NO. The default value is
NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

contentMode
A flag used to determine how a view lays out its content when its bounds rectangle changes.

@property(nonatomic) UIViewContentMode contentMode

Discussion
Set to a value described in UIViewContentMode (page 478). The default value is
UIViewContentModeScaleToFill (page 478).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

448 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

exclusiveTouch
A Boolean value indicating whether the receiver handles touch events exclusively.

@property(nonatomic, getter=isExclusiveTouch) BOOL exclusiveTouch

Discussion
If YES, the receiver blocks other views in the same window from receiving touch events; otherwise,
it does not. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property multipleTouchEnabled (page 450)

Declared In
UIView.h

frame
The receiver’s frame rectangle.

@property(nonatomic) CGRect frame

Discussion
Setting the frame rectangle repositions and resizes the receiver within the coordinate system of its
superview. The origin of the frame is in superview coordinates. Setting this property changes the
values of the center (page 447) and bounds (page 446) properties accordingly.

Changing the frame rectangle automatically redisplays the receiver without invoking the
drawRect: (page 467) method. If you want the drawRect: (page 467) method invoked when the frame
rectangle changes, set the contentMode (page 448) property to UIViewContentModeRedraw (page 479).

Changes to this property can be animated. Use the beginAnimations:context: (page 454) class
method to begin and the commitAnimations (page 454) class method to end an animation block. If
thetransform (page 452) property is also set, use thebounds (page 446) andcenter (page 447) properties
instead; otherwise, animating changes to the frame property does not correctly reflect the actual
location of the view.

Warning: If the transform (page 452) property is not the identity transform, the value of this
property is undefined and therefore should be ignored.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property bounds (page 446)
@property center (page 447)
@property transform (page 452)

Declared In
UIView.h

Properties 449
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

hidden
A Boolean value that determines whether the receiver is hidden.

@property(nonatomic, getter=isHidden) BOOL hidden

Discussion
YES if the receiver should be hidden; otherwise, NO. The default value is NO.

A hidden view disappears from its window and does not receive input events. It remains in its
superview’s list of subviews, however, and participates in autoresizing as usual. Hiding a view with
subviews has the effect of hiding those subviews and any view descendants they might have. This
effect is implicit and does not alter the hidden state of the receiver’s descendants.

Hiding the view that is the window’s current first responder causes the view’s next valid key view
to become the new first responder.

The value of this property reflects the state of the receiver only and does not account for the state of
the receiver’s ancestors in the view hierarchy. Thus this property can be NO if the receiver is hidden
because an ancestor is hidden.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

layer
The view’s Core Animation layer used for rendering. (read-only)

@property(nonatomic, readonly, retain) CALayer *layer

Discussion
This property is never nil. The view is the layer’s delegate.

Warning: Since the view is the layer’s delegate, you should never set the view as a delegate of
another CALayer object. Additionally, you should never change the delegate of this layer.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ layerClass (page 455)

Declared In
UIView.h

multipleTouchEnabled
A Boolean value indicating whether the receiver handles multi-touch events.

450 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

@property(nonatomic, getter=isMultipleTouchEnabled) BOOL multipleTouchEnabled

Discussion
If YES, the receiver handles multi-touch events; otherwise, it does not. If NO, the receiver is sent only
the first touch event in a multi-touch sequence. Other views in the same window can still receive
touch events when this property is NO. Set this property and the exclusiveTouch (page 449) property
to YES if this view should handle multi-touch events exclusively—for example, when tracking a
sequence of multi-touch events. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property exclusiveTouch (page 449)

Declared In
UIView.h

opaque
A Boolean value that determines whether the receiver is opaque.

@property(nonatomic, getter=isOpaque) BOOL opaque

Discussion
YES if it is opaque; otherwise, NO. If opaque, the drawing operation assumes that the view fills its
bounds and can draw more efficiently. The results are unpredictable if opaque and the view doesn’t
fill its bounds. Set this property to NO if the view is fully or partially transparent. The default value
is YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property backgroundColor (page 446)
@property alpha (page 445)

Declared In
UIView.h

subviews
The receiver’s immediate subviews. (read-only)

@property(nonatomic, readonly, copy) NSArray *subviews

Availability
Available in iPhone OS 2.0 and later.

See Also
@property superview (page 452)

– removeFromSuperview (page 472)

Properties 451
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Declared In
UIView.h

superview
The receiver’s superview, or nil if it has none. (read-only)

@property(nonatomic, readonly) UIView *superview

Availability
Available in iPhone OS 2.0 and later.

See Also
@property subviews (page 451)

– removeFromSuperview (page 472)

Declared In
UIView.h

tag
The receiver’s tag, an integer that you can use to identify view objects in your application.

@property(nonatomic) NSInteger tag

Discussion
The default value is 0. Subclasses can set this to individual tags.

Availability
Available in iPhone OS 2.0 and later.

See Also
– viewWithTag: (page 475)

Declared In
UIView.h

transform
Specifies the transform applied to the receiver, relative to the center of its bounds.

@property(nonatomic) CGAffineTransform transform

Discussion
The origin of the transform is the value of the center (page 447) property, or the layer’s anchorPoint
property if it was changed. (Use the layer (page 450) property to get the underlying Core Animation
layer object.) The default value is CGAffineTransformIdentity.

Changes to this property can be animated. Use the beginAnimations:context: (page 454) class
method to begin and the commitAnimations (page 454) class method to end an animation block. The
default is whatever the center value is (or anchor point if changed)

452 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Warning: If this property is not the identity transform, the value of the frame (page 449) property
is undefined and therefore should be ignored.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property frame (page 449)
@property bounds (page 446)
@property center (page 447)

Declared In
UIView.h

userInteractionEnabled
A Boolean value that determines whether user events are ignored and removed from the event queue.

@property(nonatomic, getter=isUserInteractionEnabled) BOOL userInteractionEnabled

Discussion
If NO, user events—such as touch and keyboard—are ignored and removed from the event queue.
The default value is YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

window
The receiver’s window object, or nil if it has none. (read-only)

@property(nonatomic, readonly) UIWindow *window

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

Class Methods

areAnimationsEnabled
Returns a Boolean value indicating whether animations are enabled.

+ (BOOL)areAnimationsEnabled

Class Methods 453
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Return Value
YES if animations are enabled; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setAnimationsEnabled: (page 460)

Declared In
UIView.h

beginAnimations:context:
Begins an animation block.

+ (void)beginAnimations:(NSString *)animationID context:(void *)context

Parameters

animationID
Application-supplied identifier for the animations within a block that is passed to the animation
delegate messages—the selectors set using the setAnimationWillStartSelector: (page 462)
and setAnimationDidStopSelector: (page 458) methods.

context
Additional application-supplied information that is passed to the animation delegate
messages—the selectors set using the setAnimationWillStartSelector: (page 462) and
setAnimationDidStopSelector: (page 458) methods.

Discussion
The visual changes caused by setting some property values can be animated in an animation block.
Animation blocks can be nested. The setAnimation... class methods do nothing if they are not
invoked in an animation block. Use the beginAnimations:context: (page 454) to begin and the
commitAnimations (page 454) class method to end an animation block.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ commitAnimations (page 454)
+ setAnimationWillStartSelector: (page 462)
+ setAnimationDidStopSelector: (page 458)
+ setAnimationDelegate: (page 457)

Declared In
UIView.h

commitAnimations
Ends an animation block and starts animations when this is the outer animation block.

+ (void)commitAnimations

454 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Discussion
If the current animation block is the outer animation block, starts animations when the application
returns to the run loop. Animations are run in a separate thread so the application is not blocked. In
this way, multiple animations can be piled on top of one another. See
setAnimationBeginsFromCurrentState: (page 455) for how to start animations while others are in
progress.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)

Declared In
UIView.h

layerClass
Returns the class used to create the layer for instances of this class.

+ (Class)layerClass

Return Value
The class used to create the view’s layer.

Discussion
Overridden by subclasses to specify a custom class used for rendering. Invoked when creating the
underlying layer for a view. The default value is the CALayer class object.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property layer (page 450)

Declared In
UIView.h

setAnimationBeginsFromCurrentState:
Sets whether the animation should begin playing from the current state.

+ (void)setAnimationBeginsFromCurrentState:(BOOL)fromCurrentState

Parameters

fromCurrentState
YES if animations should begin from their currently visible state; otherwise, NO.

Discussion
If set to YESwhen an animation is in flight, the current view position of the in-flight animation is used
as the starting state for the new animation. If set to NO, the in-flight animation ends before the new
animation begins using the last view position as the starting state. This method does nothing if an

Class Methods 455
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

animation is not in flight or invoked outside of an animation block. Use the
beginAnimations:context: (page 454) class method to start and the commitAnimations (page 454)
class method to end an animation block. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationStartDate: (page 461)
+ setAnimationDuration: (page 458)
+ setAnimationDelay: (page 457)
+ setAnimationCurve: (page 456)
+ setAnimationRepeatCount: (page 460)
+ setAnimationRepeatAutoreverses: (page 459)

Declared In
UIView.h

setAnimationCurve:
Sets the curve of animating property changes within an animation block.

+ (void)setAnimationCurve:(UIViewAnimationCurve)curve

Discussion
The animation curve is the relative speed of the animation over its course. This method does nothing
if invoked outside of an animation block. Use the beginAnimations:context: (page 454) class method
to start and the commitAnimations (page 454) class method to end an animation block. The default
value of the animation curve is UIViewAnimationCurveEaseInOut (page 477).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationStartDate: (page 461)
+ setAnimationDuration: (page 458)
+ setAnimationDelay: (page 457)
+ setAnimationRepeatCount: (page 460)
+ setAnimationRepeatAutoreverses: (page 459)
+ setAnimationBeginsFromCurrentState: (page 455)

Declared In
UIView.h

456 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

setAnimationDelay:
Sets the delay (in seconds) of animating property changes within an animation block.

+ (void)setAnimationDelay:(NSTimeInterval)delay

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 454) class method to start and the commitAnimations (page 454)
class method to end an animation block. The default value of the animation delay is 0.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationStartDate: (page 461)
+ setAnimationDuration: (page 458)
+ setAnimationCurve: (page 456)
+ setAnimationRepeatCount: (page 460)
+ setAnimationRepeatAutoreverses: (page 459)
+ setAnimationBeginsFromCurrentState: (page 455)

Declared In
UIView.h

setAnimationDelegate:
Sets the delegate for animation messages.

+ (void)setAnimationDelegate:(id)delegate

Parameters

delegate
The object that receives the delegate messages set using the
setAnimationWillStartSelector: (page 462) and setAnimationDidStopSelector: (page
458) methods.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 454) class method to start and the commitAnimations (page 454)
class method to end an animation block. The default value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationWillStartSelector: (page 462)
+ setAnimationDidStopSelector: (page 458)

Class Methods 457
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Declared In
UIView.h

setAnimationDidStopSelector:
Sets the message to send to the animation delegate when animation stops.

+ (void)setAnimationDidStopSelector:(SEL)selector

Parameters

selector
The message sent to the animation delegate after animations ends. The selector should have
the following arguments:

animationID
An optional application-supplied identifier. The same argument passed to the
beginAnimations:context: (page 454) method. This argument can be nil.
finished
YES if the animation completed before it stopped; otherwise, NO.
context
An optional application-supplied context. The same argument passed to the
beginAnimations:context: (page 454) method. This argument can be nil.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 454) class method to start and the commitAnimations (page 454)
class method to end an animation block. The default value is NULL.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationDelegate: (page 457)
+ setAnimationWillStartSelector: (page 462)

Declared In
UIView.h

setAnimationDuration:
Sets the duration (in seconds) of animating property changes within an animation block.

+ (void)setAnimationDuration:(NSTimeInterval)duration

Parameters

duration
The period over which the animation occurs.

458 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 454) class method to start and the commitAnimations (page 454)
class method to end an animation block. The default value is 0.2.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationStartDate: (page 461)
+ setAnimationDelay: (page 457)
+ setAnimationCurve: (page 456)
+ setAnimationRepeatCount: (page 460)
+ setAnimationRepeatAutoreverses: (page 459)
+ setAnimationBeginsFromCurrentState: (page 455)

Declared In
UIView.h

setAnimationRepeatAutoreverses:
Sets whether the animation of property changes within an animation block automatically reverses
repeatedly.

+ (void)setAnimationRepeatAutoreverses:(BOOL)repeatAutoreverses

Parameters

repeatAutoreverses
If YES if the animation automatically reverses repeatedly; if NO, it does not.

Discussion
Autoreverses is when the animation plays backward after playing forward and similarly plays forward
after playing backward. Use the setAnimationRepeatCount: (page 460) class method to specify the
number of times the animation autoreverses. This method does nothing if the repeat count is zero or
this method is invoked outside of an animation block. Use the beginAnimations:context: (page
454) class method to start and the commitAnimations (page 454) class method to end an animation
block. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationStartDate: (page 461)
+ setAnimationDuration: (page 458)
+ setAnimationDelay: (page 457)
+ setAnimationCurve: (page 456)
+ setAnimationRepeatCount: (page 460)

Class Methods 459
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

+ setAnimationBeginsFromCurrentState: (page 455)

Declared In
UIView.h

setAnimationRepeatCount:
Sets the number of times animations within an animation block repeat.

+ (void)setAnimationRepeatCount:(float)repeatCount

Parameters

repeatCount
The number of times animations repeat. This value can be a fraction.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 454) class method to start and the commitAnimations (page 454)
class method to end an animation block. By default, animations don’t repeat.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationStartDate: (page 461)
+ setAnimationDuration: (page 458)
+ setAnimationDelay: (page 457)
+ setAnimationCurve: (page 456)
+ setAnimationRepeatAutoreverses: (page 459)
+ setAnimationBeginsFromCurrentState: (page 455)

Declared In
UIView.h

setAnimationsEnabled:
Sets whether animations are enabled.

+ (void)setAnimationsEnabled:(BOOL)enabled

Parameters

enabled
If YES, animations are enabled; if NO, they are not.

Discussion
Animation attribute changes are ignored when animations are disabled. By default, animations are
enabled.

Availability
Available in iPhone OS 2.0 and later.

460 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

See Also
+ areAnimationsEnabled (page 453)

Declared In
UIView.h

setAnimationStartDate:
Sets the start time of animating property changes within an animation block.

+ (void)setAnimationStartDate:(NSDate *)startTime

Parameters

startTime
The time to begin the animations.

Discussion
Use the beginAnimations:context: (page 454) class method to start and the commitAnimations (page
454) class method to end an animation block.

The default start time is the value returned by the CFAbsoluteTimeGetCurrent function.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationDuration: (page 458)
+ setAnimationDelay: (page 457)
+ setAnimationCurve: (page 456)
+ setAnimationRepeatCount: (page 460)
+ setAnimationRepeatAutoreverses: (page 459)
+ setAnimationBeginsFromCurrentState: (page 455)

Declared In
UIView.h

setAnimationTransition:forView:cache:
Sets a transition to apply to a view during an animation block.

+ (void)setAnimationTransition:(UIViewAnimationTransition)transition forView:(UIView
*)view cache:(BOOL)cache

Parameters

transition
A transition to apply to view. Possible values are described in UIViewAnimationTransition (page
481).

view
The view to apply the transition to.

Class Methods 461
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

cache
If YES, the before and after images of view are rendered once and used to create the frames in
the animation; otherwise, the view is rendered to create each frame. Typically, caching improves
performance but you can no longer update the view during the transition—you need to wait
until the transition ends to update the view.

Discussion
If you want to change the appearance of a view during a transition—for example, flip from one view
to another—then use a container view, an instance of UIView, as follows:

1. Begin an animation block.

2. Set the transition on the container view.

3. Remove the subview from the container view.

4. Add the new subview to the container view.

5. Commit the animation block.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

setAnimationWillStartSelector:
Sets the message to send to the animation delegate when animation starts.

+ (void)setAnimationWillStartSelector:(SEL)selector

Parameters

selector
The message sent to the animation delegate before animations start. The default value is NULL.
The selector should have the same arguments as the beginAnimations:context: (page 454)
method, an optional application-supplied identifier and context. Both of these arguments can
be nil.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 454) class method to start and the commitAnimations (page 454)
class method to end an animation block.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ beginAnimations:context: (page 454)
+ commitAnimations (page 454)
+ setAnimationDelegate: (page 457)
+ setAnimationDidStopSelector: (page 458)

462 Class Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Declared In
UIView.h

Instance Methods

addSubview:
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

- (void)addSubview:(UIView *)view

Discussion
This method also sets the receiver as the next responder of view. The receiver retains view. If you use
removeFromSuperview (page 472) to remove view from the view hierarchy, view is released. If you
want to keep using view after removing it from the view hierarchy (if, for example, you are swapping
through a number of views), you must retain it before invoking removeFromSuperview.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertSubview:atIndex: (page 470)
– insertSubview:aboveSubview: (page 469)
– insertSubview:belowSubview: (page 470)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 468)

Declared In
UIView.h

bringSubviewToFront:
Moves the specified subview to the front of its siblings.

- (void)bringSubviewToFront:(UIView *)view

Parameters

view
The subview to move to the front.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sendSubviewToBack: (page 473)

Declared In
UIView.h

Instance Methods 463
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

convertPoint:fromView:
Converts a point from the coordinate system of a given view to that of the receiver.

- (CGPoint)convertPoint:(CGPoint)point fromView:(UIView *)view

Parameters

point
A point specifying a location in the coordinate system of view.

view
The view with point in its coordinate system. If view is nil, this method instead converts
from window base coordinates. Otherwise, both view and the receiver must belong to the same
UIWindow object.

Return Value
The point converted to the coordinate system of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertPoint:toView: (page 464)
– convertRect:toView: (page 465)
– convertRect:fromView: (page 465)

Declared In
UIView.h

convertPoint:toView:
Converts a point from the receiver’s coordinate system to that of a given view.

- (CGPoint)convertPoint:(CGPoint)point toView:(UIView *)view

Parameters

point
A point specifying a location in the coordinate system of the receiver.

view
The view into whose coordinate system point is to be converted. If view is nil, this method
instead converts to window base coordinates. Otherwise, both view and the receiver must
belong to the same UIWindow object.

Return Value
The point converted to the coordinate system of view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertPoint:fromView: (page 464)
– convertRect:toView: (page 465)
– convertRect:fromView: (page 465)

464 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Declared In
UIView.h

convertRect:fromView:
Converts a rectangle from the coordinate system of another view to that of the receiver.

- (CGRect)convertRect:(CGRect)rect fromView:(UIView *)view

Parameters

rect
The rectangle in view's coordinate system.

view
The view with rect in its coordinate system. If view is nil, this method instead converts from
window base coordinates. Otherwise, both view and the receiver must belong to the same
UIWindow object.

Return Value
The converted rectangle.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertPoint:toView: (page 464)
– convertPoint:fromView: (page 464)
– convertRect:toView: (page 465)

Declared In
UIView.h

convertRect:toView:
Converts a rectangle from the receiver’s coordinate system to that of another view.

- (CGRect)convertRect:(CGRect)rect toView:(UIView *)view

Parameters

rect
A rectangle in the receiver's coordinate system.

view
The view that is the target of the conversion operation. If view is nil, this method instead
converts from window base coordinates. Otherwise, both view and the receiver must belong
to the same UIWindow object.

Return Value
The converted rectangle.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertPoint:toView: (page 464)

Instance Methods 465
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

– convertPoint:fromView: (page 464)
– convertRect:fromView: (page 465)

Declared In
UIView.h

didAddSubview:
Tells the view when subviews are added.

- (void)didAddSubview:(UIView *)subview

Parameters

subview
The view that was added as a subview.

Discussion
Overridden by subclasses to perform additional actions when subviews are added to the receiver.
This method is invoked by addSubview: (page 463).

Availability
Available in iPhone OS 2.0 and later.

See Also
– willRemoveSubview: (page 477)
– addSubview: (page 463)

Declared In
UIView.h

didMoveToSuperview
Informs the receiver that its superview has changed (possibly to nil).

- (void)didMoveToSuperview

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever
actions are necessary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willMoveToSuperview: (page 476)

Declared In
UIView.h

didMoveToWindow
Informs the receiver that it has been added to a window.

466 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

- (void)didMoveToWindow

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever
actions are necessary.

The window (page 453) property may be nil when this method is invoked, indicating that the receiver
does not currently reside in any window. This occurs when the receiver has just been removed from
its superview or when the receiver has just been added to a superview that is not attached to a window.
Overrides of this method may choose to ignore such cases if they are not of interest.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willMoveToWindow: (page 476)

Declared In
UIView.h

drawRect:
Draws the receiver’s image within the passed-in rectangle.

- (void)drawRect:(CGRect)rect

Parameters

rect
A rectangle defining the area to restrict drawing to.

Discussion
Subclasses override this method if they actually draw their views. Subclasses need not override this
method if the subclass is a container for other views. The default implementation does nothing. If
your custom view is a direct UIView subclass, you do not need to call the implementation of super.
Note that it is the responsibility of each subclass to totally fill rect if its superclass’s implementation
actually draws and opaque (page 451) is YES.

When this method is invoked, the receiver can assume the coordinate transformations of its frame
and bounds rectangles have been applied; all it needs to do is invoke rendering client functions. Use
the UIGraphicsGetCurrentContext (page 644) function to get the current graphics context for drawing
that also has the coordinate origin in the upper-left corner. Do not retain the graphics context since
it can change between calls to the drawRect: method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNeedsDisplay (page 473)
– setNeedsDisplayInRect: (page 473)

@property contentMode (page 448)

Declared In
UIView.h

Instance Methods 467
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

exchangeSubviewAtIndex:withSubviewAtIndex:
Exchanges the subviews in the receiver at the given indices.

- (void)exchangeSubviewAtIndex:(NSInteger)index1 withSubviewAtIndex:(NSInteger)index2

Parameters

index1
The index of the subview with which to replace the subview at index index2.

index2
The index of the subview with which to replace the subview at index index1.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addSubview: (page 463)
– insertSubview:atIndex: (page 470)
– insertSubview:aboveSubview: (page 469)
– insertSubview:belowSubview: (page 470)

Declared In
UIView.h

hitTest:withEvent:
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains
a specified point.

- (UIView *)hitTest:(CGPoint)point withEvent:(UIEvent *)event

Parameters

point
A point that is in the receiver’s coordinate system.

event
The event that triggered this method or nil if this method is invoked programmatically.

Return Value
A view object that is the farthest descendent of point. Returns nil if the point lies completely outside
the receiver.

Discussion
This method traverses the view hierarchy by sending the pointInside:withEvent: (page 472) message
to each subview to determine which subview should receive a touch event. If
pointInside:withEvent: (page 472) returns YES, then the subview’s hierarchy is traversed; otherwise,
its branch of the view hierarchy is ignored. You rarely need to invoke this method, but you might
override it to hide touch events from subviews.

This method ignores views that are hidden, that have disabled user interaction, or have an alpha level
less than 0.1.

Availability
Available in iPhone OS 2.0 and later.

468 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

See Also
– pointInside:withEvent: (page 472)

Declared In
UIView.h

initWithFrame:
Initializes and returns a newly allocated view object with the specified frame rectangle.

- (id)initWithFrame:(CGRect)aRect

Parameters

aRect
The frame rectangle for the created view object. The origin of the frame is in superview
coordinates. Setting this property changes the values of the center (page 447) and bounds (page
446) properties accordingly.

Return Value
An initialized view object or nil if the object couldn't be created.

Discussion
The new view object must be inserted into the view hierarchy of a window before it can be used. This
method is the designated initializer for the UIView class.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

insertSubview:aboveSubview:
Inserts a view above another view in the view hierarchy.

- (void)insertSubview:(UIView *)view aboveSubview:(UIView *)siblingSubview

Parameters

view
The view to insert above another view. It’s removed from its superview if it’s not a sibling of
siblingSubview.

siblingSubview
The sibling view that will be behind the inserted view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addSubview: (page 463)
– insertSubview:atIndex: (page 470)
– insertSubview:belowSubview: (page 470)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 468)

Instance Methods 469
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Declared In
UIView.h

insertSubview:atIndex:
Inserts a subview at the specified index.

- (void)insertSubview:(UIView *)view atIndex:(NSInteger)index

Parameters

view
The view to insert. This value cannot nil.

index
Subview indices start at 0 and cannot be greater than the number of subviews.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addSubview: (page 463)
– insertSubview:aboveSubview: (page 469)
– insertSubview:belowSubview: (page 470)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 468)

Declared In
UIView.h

insertSubview:belowSubview:
Inserts a view below another view in the view hierarchy.

- (void)insertSubview:(UIView *)view belowSubview:(UIView *)siblingSubview

Parameters

view
The view to insert below another view. It’s removed from its superview if it’s not a sibling of
siblingSubview.

siblingSubview
The sibling view that will be above the inserted view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addSubview: (page 463)
– insertSubview:atIndex: (page 470)
– insertSubview:aboveSubview: (page 469)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 468)

Declared In
UIView.h

470 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

isDescendantOfView:
Returns a Boolean value indicating whether the receiver is a subview of a given view or whether it
is identical to that view.

- (BOOL)isDescendantOfView:(UIView *)view

Parameters

view
The view to test for subview relationship within the view hierarchy.

Return Value
YES if the receiver is an immediate or distant subview of view, or if view is the receiver; otherwise
NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

layoutIfNeeded
Lays out the subviews if needed.

- (void)layoutIfNeeded

Discussion
Use this method to force the layout of subviews before drawing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNeedsLayout (page 474)
– layoutSubviews (page 471)

Declared In
UIView.h

layoutSubviews
Lays out subviews.

- (void)layoutSubviews

Discussion
Overridden by subclasses to layout subviews when layoutIfNeeded (page 471) is invoked. The default
implementation of this method does nothing.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 471
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

See Also
– setNeedsLayout (page 474)
– layoutIfNeeded (page 471)

Declared In
UIView.h

pointInside:withEvent:
Returns a Boolean value indicating whether the receiver contains the specified point.

- (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event

Parameters

point
A point that is in the receiver’s coordinate system.

event
The event that triggered this method or nil if this method is invoked programmatically.

Return Value
YES if point is inside the receiver’s bounds; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– hitTest:withEvent: (page 468)

Declared In
UIView.h

removeFromSuperview
Unlinks the receiver from its superview and its window, and removes it from the responder chain.

- (void)removeFromSuperview

Discussion
The receiver is also released; if you plan to reuse it, be sure to retain it before sending this message
and to release it as appropriate when adding it as a subview of another UIView object.

Never invoke this method while displaying.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property superview (page 452)
@property subviews (page 451)

Declared In
UIView.h

472 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

sendSubviewToBack:
Moves the specified subview to the back of its siblings.

- (void)sendSubviewToBack:(UIView *)view

Parameters

view
The subview to move to the back.

Availability
Available in iPhone OS 2.0 and later.

See Also
– bringSubviewToFront: (page 463)

Declared In
UIView.h

setNeedsDisplay
Controls whether the receiver's entire bounds rectangle is marked as needing display.

- (void)setNeedsDisplay

Discussion
By default, geometry changes to a view automatically redisplays the view without needing to invoke
the drawRect: (page 467) method. Therefore, you need to request that a view redraw only when the
data or state used for drawing a view changes. In this case, send the view the setNeedsDisplay (page
473) message. Any UIView objects marked as needing display are automatically redisplayed when the
application returns to the run loop.

Availability
Available in iPhone OS 2.0 and later.

See Also
– drawRect: (page 467)
– setNeedsDisplayInRect: (page 473)

@property contentMode (page 448)

Declared In
UIView.h

setNeedsDisplayInRect:
Marks the region of the receiver within the specified rectangle as needing display, increasing the
receiver’s existing invalid region to include it.

- (void)setNeedsDisplayInRect:(CGRect)invalidRect

Instance Methods 473
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Parameters

invalidRect
The rectangular region of the receiver to mark as invalid; it should be specified in the coordinate
system of the receiver.

Discussion
By default, geometry changes to a view automatically redisplays the view without needing to invoke
the drawRect: (page 467) method. Therefore, you need to request that a view or a region of a view
redraw only when the data or state used for drawing a view changes. Use this method or the
setNeedsDisplay (page 473) method to mark a view as needing display.

Availability
Available in iPhone OS 2.0 and later.

See Also
– drawRect: (page 467)
– setNeedsDisplay (page 473)

@property contentMode (page 448)

Declared In
UIView.h

setNeedsLayout
Sets whether subviews need to be rearranged before displaying.

- (void)setNeedsLayout

Discussion
If you invoke this method before the next display operation, then layoutIfNeeded (page 471) lays
out the subviews; otherwise, it does not.

Availability
Available in iPhone OS 2.0 and later.

See Also
– layoutIfNeeded (page 471)
– layoutSubviews (page 471)

Declared In
UIView.h

sizeThatFits:
Calculates and returns a size that best fits the receiver’s subviews.

- (CGSize)sizeThatFits:(CGSize)size

Parameters

size
The preferred size of the receiver.

474 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Return Value
A new size that fits the receiver’s subviews.

Discussion
The default implementation returns the size argument.

Subclasses override this method to return a view-specific size. For example, UISwitch returns a fixed
size and UIImageView returns the size of the image.

This method does not resize the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sizeToFit (page 475)

@property frame (page 449)
@property bounds (page 446)

Declared In
UIView.h

sizeToFit
Resizes and moves the receiver view so it just encloses its subviews.

- (void)sizeToFit

Discussion
This method uses the sizeThatFits: (page 474) method to determine the size. Subclasses should
override sizeThatFits: to compute the appropriate size for the receiver. The default implementation
does nothing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sizeThatFits: (page 474)

Declared In
UIView.h

viewWithTag:
Returns the view with the specified tag.

- (UIView *)viewWithTag:(NSInteger)tag

Parameters

tag
The tag used to search for the view.

Return Value
The view in the receiver’s hierarchy that matches tag. The receiver is included in the search.

Instance Methods 475
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property tag (page 452)

Declared In
UIView.h

willMoveToSuperview:
Informs the receiver that its superview is about to change to the specified superview (which may be
nil).

- (void)willMoveToSuperview:(UIView *)newSuperview

Parameters

newSuperview
A view object that will be the new superview of the receiver.

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didMoveToSuperview (page 466)

Declared In
UIView.h

willMoveToWindow:
Informs the receiver that it’s being added to the view hierarchy of the specified window object (which
may be nil).

- (void)willMoveToWindow:(UIWindow *)newWindow

Parameters

newWindow
A window object that will be at the root of the receiver's new view hierarchy.

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didMoveToWindow (page 466)

Declared In
UIView.h

476 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

willRemoveSubview:
Overridden by subclasses to perform additional actions before subviews are removed from the
receiver.

- (void)willRemoveSubview:(UIView *)subview

Parameters

subview
The subview that will be removed.

Discussion
This method is invoked when subview receives a removeFromSuperview (page 472) message or
subview is removed from the receiver because it is being added to another view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didAddSubview: (page 466)
– addSubview: (page 463)

Declared In
UIView.h

Constants

UIViewAnimationCurve
Specifies the animation curve. For example, specifies whether animation changes speed at the beginning
or end.

typedef enum {
UIViewAnimationCurveEaseInOut,
UIViewAnimationCurveEaseIn,
UIViewAnimationCurveEaseOut,
UIViewAnimationCurveLinear

} UIViewAnimationCurve;

Constants
UIViewAnimationCurveEaseInOut

An ease-in ease-out curve causes the animation begins slowly, accelerate through the middle
of its duration, and then slow again before completing.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAnimationCurveEaseIn
An ease-in curve causes the animation to begin slowly, and then speed up as it progresses.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

Constants 477
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

UIViewAnimationCurveEaseOut
An ease-out curve causes the animation to begin quickly, and then slow as it completes.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAnimationCurveLinear
A linear animation curve causes an animation to occur evenly over its duration.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

UIViewContentMode
Specifies how a view resizes its subviews when its size changes.

typedef enum {
UIViewContentModeScaleToFill,
UIViewContentModeScaleAspectFit,
UIViewContentModeScaleAspectFill,
UIViewContentModeRedraw,
UIViewContentModeCenter,
UIViewContentModeTop,
UIViewContentModeBottom,
UIViewContentModeLeft,
UIViewContentModeRight,
UIViewContentModeTopLeft,
UIViewContentModeTopRight,
UIViewContentModeBottomLeft,
UIViewContentModeBottomRight,

} UIViewContentMode;

Constants
UIViewContentModeScaleToFill

Scales the content to fit the size of itself by changing the aspect ratio of the content if necessary.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeScaleAspectFit
Scales the content to fit the size of the view by maintaining the aspect ratio. Any remaining
area of the view’s bounds is transparent.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeScaleAspectFill
Scales the content to fill the size of the view. Some portion of the content may be clipped to fill
the view’s bounds.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

478 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

UIViewContentModeRedraw
Redisplays the view when the bounds change by invoking the setNeedsDisplay (page 473)
method.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeCenter
Centers the content in the view’s bounds, keeping the proportions the same.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeTop
Centers the content aligned at the top in the view’s bounds.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeBottom
Centers the content aligned at the bottom in the view’s bounds.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeLeft
Aligns the content on the left of the view.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeRight
Aligns the content on the right of the view.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeTopLeft
Aligns the content in the top-left corner of the view.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeTopRight
Aligns the content in the top-right corner of the view.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeBottomLeft
Aligns the content in the bottom-left corner of the view.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewContentModeBottomRight
Aligns the content in the bottom-right corner of the view.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

Availability
Available in iPhone OS 2.0 and later.

Constants 479
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Declared In
UIView.h

UIViewAutoresizing
Specifies how a view is automatically resized.

enum {
UIViewAutoresizingNone = 0,
UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
UIViewAutoresizingFlexibleWidth = 1 << 1,
UIViewAutoresizingFlexibleRightMargin = 1 << 2,
UIViewAutoresizingFlexibleTopMargin = 1 << 3,
UIViewAutoresizingFlexibleHeight = 1 << 4,
UIViewAutoresizingFlexibleBottomMargin = 1 << 5

};
typedef NSUInteger UIViewAutoresizing;

Constants
UIViewAutoresizingNone

The view does not resize.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAutoresizingFlexibleLeftMargin
The view resizes by expanding or shrinking in the direction of the left margin.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAutoresizingFlexibleWidth
The view resizes by expanding or shrinking its width.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAutoresizingFlexibleRightMargin
The view resizes by expanding or shrinking in the direction of the right margin.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAutoresizingFlexibleTopMargin
The view resizes by expanding or shrinking in the direction of the top margin.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAutoresizingFlexibleHeight
The view resizes by expanding or shrinking its height.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAutoresizingFlexibleBottomMargin
The view resizes by expanding or shrinking in the direction of the bottom margin.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

480 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

UIViewAnimationTransition
Specifies a transition to apply to a view in an animation block.

typedef enum {
UIViewAnimationTransitionNone,
UIViewAnimationTransitionFlipFromLeft,
UIViewAnimationTransitionFlipFromRight
UIViewAnimationTransitionCurlUp,
UIViewAnimationTransitionCurlDown,

} UIViewAnimationTransition;

Constants
UIViewAnimationTransitionNone

No transition specified.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAnimationTransitionFlipFromLeft
A transition that flips a view around a vertical axis from left to right. The left side of the view
moves towards the front and right side towards the back.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAnimationTransitionFlipFromRight
A transition that flips a view around a vertical axis from right to left. The right side of the view
moves towards the front and left side towards the back.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAnimationTransitionCurlUp
A transition that curls a view up from the bottom.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

UIViewAnimationTransitionCurlDown
A transition that curls a view down from the top.

Available in iPhone OS 2.0 and later.

Declared in UIView.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIView.h

Constants 481
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

482 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

UIView Class Reference

Inherits from: UIResponder

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIViewController.h
UINavigationController.h
UITabBarController.h

Companion guide: View Controller Programming Guide for iPhone OS

Overview

The UIViewController class provides the fundamental view-management model for iPhone. You
use instances of UIViewController, and its subclasses, to manage tab bars, navigation bars, and the
application views you want displayed when items are selected. The UIViewController class also
supports modal views and rotating views when the orientation changes.

The UIViewController class is a superclass for all controllers that manage a full-screen view. For
example, a tab bar controller manages a tab bar and the view above it used to implement radio
interfaces—clicking on tab bar buttons toggles the view above the tab bar. A navigation controller
manages a navigation bar and the view below it used to navigate hierarchically. These specialized
view controllers hide the complexity of using the UITabBar and UINavigationBar classes directly.

You primarily subclass the UIViewController class to create your own custom view controllers that
manage your full-screen views. You can create a single view controller and add its view to a window
just for the benefit of autorotation. Or add the view controller to a tab bar controller or navigation
controller and let those objects manage your full-screen views. What methods you use to configure
your view controller depends on how you plan to use it.

All subclasses of UIViewController should implement the loadView (page 494) method to set the
view (page 491) property unless you load your view from a nib file. The view you create should be a
normal view that can be added to any view hierarchy and resized by the controller. When a view

Overview 483
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

controller is added to a tab bar or navigation controller, its view is resized to fit the available space
between the tab bar and navigation bar if they are present. Use the autoresizesSubviews (page 445)
and autoresizingMask (page 446) properties so that your view and its subviews autoresize gracefully.
You’ll need these properties set to autoresize when the orientation changes too.

A view controller pushed onto the stack of a navigation controller should also set some of the properties
in “Configuring Navigation Items” (page 486) to configure a navigation bar when the view controller
is the top view controller. Specifically, use the navigationItem (page 488) property to configure the
navigation bar. Read UINavigationController Class Reference for details.

Similarly, a view controller that is added to a tab bar controller should set the tabBarItem (page 490)
property used to update the tab bar when the view controller is selected. Read UITabBarController
Class Reference before using the “Configuring Tab Bar Items” (page 486) methods.

View controllers also support autorotation—they slide the tab bar and navigation bar out before the
interface rotates, and slide them in after the interface rotates. You can optionally augment the animation
and even replace the view for different orientations—for example, use a different view for portrait
than for landscape orientation. If your view controller supports orientations other than portrait,
override the shouldAutorotateToInterfaceOrientation: (page 496) method to return YES for the
orientations it supports.

View controllers are inserted after their views in the responder chain. That is, a view controller can
optionally handle an event that its view does not handle. A view controller’s next responder is its
view’s superview.

Read View Controller Programming Guide for iPhone OS to learn how to use this class.

Tasks

Creating a View Controller Using Nib Files

– initWithNibName:bundle: (page 493)
Returns a newly initialized view controller with the nib file in the specified bundle.

nibName (page 489) property
Return the name of the receiver’s nib file if it exists. (read-only)

nibBundle (page 489) property
Return the name of the receiver’s nib bundle if it exists. (read-only)

Configuring Views

view (page 491) property
The view that this controller manages.

– loadView (page 494)
Creates the view that the controller manages.

– viewDidLoad (page 498)
Invoked when the view is finished loading.

484 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

title (page 490) property
A localized string that represents the view that this controller manages.

Observing Views

– viewWillAppear: (page 499)
Sent to the controller before the view appears and any animations begin.

– viewDidAppear: (page 497)
Sent to the controller after the view fully appears and animations end.

– viewWillDisappear: (page 499)
Sent to the controller before the view is dismissed, covered, or otherwise hidden from view.

– viewDidDisappear: (page 498)
Sent to the controller after the view is dismissed, covered, or otherwise hidden from view.

Handling Rotations

interfaceOrientation (page 487) property
The current orientation of the interface. (read-only)

– shouldAutorotateToInterfaceOrientation: (page 496)
Returns a Boolean value indicating whether the view controller autorotates its view.

– rotatingFooterView (page 495)
Returns the footer view that slides in and out before and after the user interface rotates.

– rotatingHeaderView (page 495)
Returns the header view that slides in and out before and after the user interface rotates.

– willRotateToInterfaceOrientation:duration: (page 501)
Sent to the view controller when rotating the user interface begins.

– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 500)
Sent to the view controller before the first half of the user interface rotates.

– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 500)
Sent to the view controller before the second half of the user interface rotates.

– didRotateFromInterfaceOrientation: (page 492)
Sent to the view controller after the user interface rotates.

Handling Memory Warnings

– didReceiveMemoryWarning (page 491)
Sent to the view controller when the application receives a memory warning.

Presenting Modal Views

modalViewController (page 488) property
The controller for a modal view—a view that is temporarily displayed on top of the view
managed by the receiver. (read-only)

Tasks 485
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

parentViewController (page 489) property
The underlying view controller if this view controller is a modal view controller; otherwise,
the enclosing navigation or tab bar controller. nil if none of these are present. (read-only)

– presentModalViewController:animated: (page 494)
Presents a modal view managed by the given view controller to the user.

– dismissModalViewControllerAnimated: (page 492)
Dismisses the receiver’s modal view controller.

Configuring Navigation Items

navigationController (page 488) property
A parent or ancestor that is a navigation controller. (read-only)

navigationItem (page 488) property
The navigation item used to represent the view controller. (read-only)

editing (page 486) property
A Boolean value indicating whether the view controller currently allows the user to edit the
view contents.

– setEditing:animated: (page 496)
Sets whether the view controller shows an editable view.

– editButtonItem (page 493)
Returns a bar button item that toggles its title and associated state between Edit and Done.

hidesBottomBarWhenPushed (page 487) property
A Boolean value indicating whether the bar at the bottom of the screen is hidden when the
view controller is pushed on to a navigation controller.

Configuring Tab Bar Items

tabBarController (page 490) property
A parent or ancestor that is a tab bar controller. (read-only)

tabBarItem (page 490) property
The tab bar item that represents the view controller when added to a tab bar controller.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

editing
A Boolean value indicating whether the view controller currently allows the user to edit the view
contents.

486 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

@property(nonatomic, getter=isEditing) BOOL editing

Discussion
If YES, the view controller currently allows editing; otherwise, NO.

If the view is editable and the associated navigation controller contains an edit-done button, then a
Done button is displayed; otherwise, an Edit button is displayed. Clicking either button toggles the
state of this property. Add an edit-done button by setting the custom left or right view of the navigation
item to the value returned by the editButtonItem (page 493) method. Set the editing property to
the initial state of your view. Use the setEditing:animated: (page 496) method as an action method
to animate the transition of this state if the view is already displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setEditing:animated: (page 496)
– editButtonItem (page 493)

Declared In
UIViewController.h

hidesBottomBarWhenPushed
A Boolean value indicating whether the bar at the bottom of the screen is hidden when the view
controller is pushed on to a navigation controller.

@property(nonatomic) BOOL hidesBottomBarWhenPushed

Discussion
If YES, the bar at the bottom of the screen is hidden; otherwise, NO. If YES, the bottom bar remains
hidden until the view controller is popped from the stack.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationController.h

interfaceOrientation
The current orientation of the interface. (read-only)

@property(nonatomic, readonly) UIInterfaceOrientation interfaceOrientation

Discussion
The possible values are described in Interface Orientation Constants (page 101).

Availability
Available in iPhone OS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 501)

Properties 487
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 500)
– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 500)
– didRotateFromInterfaceOrientation: (page 492)

Declared In
UIViewController.h

modalViewController
The controller for a modal view—a view that is temporarily displayed on top of the view managed
by the receiver. (read-only)

@property(nonatomic, readonly) UIViewController *modalViewController

Discussion
Typically, a modal view is used to present an edit page or additional details of a model object. The
modal view is optionally displayed using a vertical sheet transition.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property parentViewController (page 489)

Declared In
UIViewController.h

navigationController
A parent or ancestor that is a navigation controller. (read-only)

@property(nonatomic, readonly, retain) UINavigationController *navigationController

Discussion
Only returns a navigation controller if the view controller is in its stack. This property is nil if a
navigation controller cannot be found.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property tabBarController (page 490)

Declared In
UINavigationController.h

navigationItem
The navigation item used to represent the view controller. (read-only)

488 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

@property(nonatomic, readonly, retain) UINavigationItem *navigationItem

Discussion
This is a unique instance of UINavigationItem created to represent the view controller when it is
pushed onto a navigation bar. The first time you access this property, the UINavigationItem is
created. Therefore, you shouldn’t access this property if you are not using a navigation controller.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UINavigationController.h

nibBundle
Return the name of the receiver’s nib bundle if it exists. (read-only)

@property(readonly, retain) NSBundle *nibBundle

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithNibName:bundle: (page 493)

@property nibName (page 489)

Declared In
UIViewController.h

nibName
Return the name of the receiver’s nib file if it exists. (read-only)

@property(readonly, copy) NSString *nibName

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithNibName:bundle: (page 493)

@property nibBundle (page 489)

Declared In
UIViewController.h

parentViewController
The underlying view controller if this view controller is a modal view controller; otherwise, the
enclosing navigation or tab bar controller. nil if none of these are present. (read-only)

Properties 489
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

@property(nonatomic, readonly) UIViewController *parentViewController

Availability
Available in iPhone OS 2.0 and later.

See Also
@property modalViewController (page 488)

Declared In
UIViewController.h

tabBarController
A parent or ancestor that is a tab bar controller. (read-only)

@property(nonatomic, readonly, retain) UITabBarController *tabBarController

Discussion
If the receiver is added to a tab bar controller, this property is the tab bar controller. If the receiver’s
navigation controller is added to a tab bar controller, this property is the navigation controller’s tab
bar controller. If no tab bar is present or the receiver is a modal view, this property is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBarController.h

tabBarItem
The tab bar item that represents the view controller when added to a tab bar controller.

@property(nonatomic, retain) UITabBarItem *tabBarItem

Discussion
The default value is a tab bar item that displays the view controller’s title. The first time you access
this property, the UITabBarItem is created. Therefore, you shouldn’t access this property if you are
not using a tab bar controller.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBarController.h

title
A localized string that represents the view that this controller manages.

490 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

@property(nonatomic, copy) NSString *title

Discussion
Subclasses should set the title to a human-readable string that represents the view to the user. If the
receiver is a navigation controller, the default value is the top view controller’s title.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIViewController.h

view
The view that this controller manages.

@property(nonatomic, retain) UIView *view

Discussion
If this property is nil, the controller sends loadView (page 494) to itself to create the view that it
manages. Subclasses should override the loadView method to create any custom views. The default
value is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– loadView (page 494)
– viewDidLoad (page 498)

Declared In
UIViewController.h

Instance Methods

didReceiveMemoryWarning
Sent to the view controller when the application receives a memory warning.

- (void)didReceiveMemoryWarning

Discussion
The default implementation of this method determines whether the view controller implements
loadView (page 494). If the view controller implements this method and its view is not displayed, its
view is released. The next time the view is needed, the loadView method is invoked to recreate the
view. Subclasses should override the loadView method to create the view.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 491
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

See Also
– loadView (page 494)

Declared In
UIViewController.h

didRotateFromInterfaceOrientation:
Sent to the view controller after the user interface rotates.

-
(void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)fromInterfaceOrientation

Parameters

fromInterfaceOrientation
The state of the application’s user interface orientation before the rotation. The possible values
are described in Interface Orientation Constants (page 101).

Discussion
Subclasses optionally override this method to perform additional animations. When this method is
invoked the interfaceOrientation (page 487) property is set to the new orientation. For example,
you might implement this method to resume any activities you turned off in the
willRotateToInterfaceOrientation:duration: (page 501) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 501)
– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 500)
– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 500)

Declared In
UIViewController.h

dismissModalViewControllerAnimated:
Dismisses the receiver’s modal view controller.

- (void)dismissModalViewControllerAnimated:(BOOL)animated

Parameters

animated
If YES, animates the view as it’s dismissed; otherwise, does not.

Discussion
If you dismiss a modal view controller in the middle or bottom of the stack, all the modal view
controllers on top of that view controller are also dismissed. Use the modalViewController (page
488) property before invoking this method if you need to retain the modal view controller.

Availability
Available in iPhone OS 2.0 and later.

492 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

See Also
– presentModalViewController:animated: (page 494)

Declared In
UIViewController.h

editButtonItem
Returns a bar button item that toggles its title and associated state between Edit and Done.

- (UIBarButtonItem *)editButtonItem

Discussion
If one of the custom views of the navigationItem (page 488) property is set to the returned object,
the associated navigation bar displays an Edit button if editing (page 486) is NO and a Done button
if editing (page 486) is YES. The default button action invokes the setEditing:animated: (page 496)
method.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property editing (page 486)

– setEditing:animated: (page 496)

Declared In
UIViewController.h

initWithNibName:bundle:
Returns a newly initialized view controller with the nib file in the specified bundle.

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)nibBundle

Parameters

nibName
The name of the nib file, without any leading path information. If you specify a nib name and
need to set values after the nib file is loaded, then you should override the viewDidLoad (page
498) method to do so. If this argument is nil, the nibName (page 489) property is set to nil. In
this case, you should override the loadView (page 494) method to set the view (page 491)
property.

nibBundle
The bundle in which to search for the nib file. This method looks for the nib file in the bundle's
language-specific project directories first, followed by the Resources directory. If nil, this
method looks for the nib file in the main bundle.

Return Value
A newly initialized UIViewController object.

Discussion
This is the designated initializer for this class.

Instance Methods 493
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property nibName (page 489)
@property nibBundle (page 489)

Declared In
UIViewController.h

loadView
Creates the view that the controller manages.

- (void)loadView

Discussion
This method is only invoked when the view (page 491) property is nil and it is needed for display.
You should not invoke this method directly.

If you create the view that this view controller manages programmatically, then you should override
this method to create your view. The default implementation creates a UIView object with no subviews.

However, if you initialize the view using a nib file—that is, you set thenibName (page 489) and
nibBundle (page 489) properties—then you should not override this method because the default
implementation already reloads the nib file. Instead override the viewDidLoad (page 498) method to
set any properties after the nib file is loaded.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property view (page 491)

– viewDidLoad (page 498)

Declared In
UIViewController.h

presentModalViewController:animated:
Presents a modal view managed by the given view controller to the user.

- (void)presentModalViewController:(UIViewController *)modalViewController
animated:(BOOL)animated

Parameters

modalViewController
The view controller that manages the modal view.

animated
If YES, animates the view as it’s presented; otherwise, does not.

494 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

Discussion
Sets the modalViewController (page 488) property to the specified view controller. Resizes its view
and attaches it to the view hierarchy. The view is animated from below and placed on top of any tab
bars or navigation bars.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dismissModalViewControllerAnimated: (page 492)

Declared In
UIViewController.h

rotatingFooterView
Returns the footer view that slides in and out before and after the user interface rotates.

- (UIView *)rotatingFooterView

Return Value
The footer view.

If the view controller is a tab bar controller, returns a view containing the tab bar. If the view controller
is a navigation controller, returns the top view controller’s footer view. If the keyboard is active,
returns the keyboard; otherwise, it returns nil.

Discussion
In most cases, the header view is the tab bar and the footer view is the navigation bar. If this default
behavior is not desired, subclasses should override this method to return an alternate footer view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shouldAutorotateToInterfaceOrientation: (page 496)
– rotatingHeaderView (page 495)

Declared In
UIViewController.h

rotatingHeaderView
Returns the header view that slides in and out before and after the user interface rotates.

- (UIView *)rotatingHeaderView

Return Value
The header view.

If the view controller is a tab bar controller, returns the selected view controller’s header view. If the
view controller is a navigation controller, returns the view containing the navigation bar. Otherwise,
returns nil. In most cases, the header view is the tab bar and the footer view is the navigation bar.

Instance Methods 495
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

Discussion
In most cases, the header view is the tab bar and the footer view is the navigation bar. If the default
behavior is not desired, subclasses should override this method to return an alternate header view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shouldAutorotateToInterfaceOrientation: (page 496)
– rotatingFooterView (page 495)

Declared In
UIViewController.h

setEditing:animated:
Sets whether the view controller shows an editable view.

- (void)setEditing:(BOOL)editing animated:(BOOL)animated

Parameters

editing
If YES, the view controller should display an editable view; otherwise, NO.

If YES and one of the custom views of the navigationItem (page 488) property is set to the
value returned by the editButtonItem (page 493) method, the associated navigation controller
displays a Done button; otherwise, an Edit button.

animated
If YES, animates the transition; otherwise, does not.

Discussion
Subclasses that use an edit-done button must override this method to change their view to an editable
state if editing (page 486) is YES and a non-editable state if it is NO. This method should invoke super’s
implementation before updating its view.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property editing (page 486)

– editButtonItem (page 493)

Declared In
UIViewController.h

shouldAutorotateToInterfaceOrientation:
Returns a Boolean value indicating whether the view controller autorotates its view.

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation

496 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

Parameters

interfaceOrientation
The orientation of the application’s user interface after the rotation. The possible values are
described in Interface Orientation Constants (page 101).

Return Value
YES if the view controller autorotates its view to the specified orientation; otherwise, NO .

Discussion
By default views display in portrait orientation only. Override this method to change the default
behavior.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rotatingFooterView (page 495)
– rotatingHeaderView (page 495)

Declared In
UIViewController.h

viewDidAppear:
Sent to the controller after the view fully appears and animations end.

- (void)viewDidAppear:(BOOL)animated

Parameters

animated
If YES, the appearance of the view is animated; otherwise, it is not.

Discussion
Subclasses may override this method to take an appropriate action. The default implementation of
this method does nothing.

Warning: If the view belonging to a view controller is added to a view hierarchy directly, the
view controller will not receive this message. If you insert or add a view to the view hierarchy,
and it has a view controller, you should send the associated view controller this message directly.
Failing to send the view controller this message will prevent any associated animation from
being displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– viewWillAppear: (page 499)
– viewWillDisappear: (page 499)
– viewDidDisappear: (page 498)

Declared In
UIViewController.h

Instance Methods 497
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

viewDidDisappear:
Sent to the controller after the view is dismissed, covered, or otherwise hidden from view.

- (void)viewDidDisappear:(BOOL)animated

Parameters

animated
If YES, the disappearance of the view is animated; otherwise, it is not.

Discussion
Subclasses may override this method to take an appropriate action. The default implementation of
this method does nothing.

Warning: If the view belonging to a view controller is added to a view hierarchy directly, the
view controller will not receive this message. If you insert or add a view to the view hierarchy,
and it has a view controller, you should send the associated view controller this message directly.
Failing to send the view controller this message will prevent any associated animation from
being displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– viewWillAppear: (page 499)
– viewDidAppear: (page 497)
– viewWillDisappear: (page 499)

Declared In
UIViewController.h

viewDidLoad
Invoked when the view is finished loading.

- (void)viewDidLoad

Discussion
If a view controller is unarchived from a nib file, this method is invoked after its view is set. Therefore,
subclasses should override this method, not the loadView (page 494) method, to initialize objects
loaded from a nib.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property view (page 491)

– loadView (page 494)

Declared In
UIViewController.h

498 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

viewWillAppear:
Sent to the controller before the view appears and any animations begin.

- (void)viewWillAppear:(BOOL)animated

Parameters

animated
If YES, the appearance of the view is animated; otherwise, it is not.

Discussion
This method is invoked before any animations begin. Subclasses may override this method to take
an appropriate action. The default implementation of this method does nothing.

Warning: If the view belonging to a view controller is added to a view hierarchy directly, the
view controller will not receive this message. If you insert or add a view to the view hierarchy,
and it has a view controller, you should send the associated view controller this message directly.
Failing to send the view controller this message will prevent any associated animation from
being displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– viewDidAppear: (page 497)
– viewWillDisappear: (page 499)
– viewDidDisappear: (page 498)

Declared In
UIViewController.h

viewWillDisappear:
Sent to the controller before the view is dismissed, covered, or otherwise hidden from view.

- (void)viewWillDisappear:(BOOL)animated

Parameters

animated
If YES, the disappearance of the view is animated; otherwise, it is not.

Discussion
Subclasses may override this method to take an appropriate action, for example, commit editing or
resign the view as the first responder. The default implementation of this method does nothing.

Warning: If the view belonging to a view controller is added to a view hierarchy directly, the
view controller will not receive this message. If you insert or add a view to the view hierarchy,
and it has a view controller, you should send the associated view controller this message directly.
Failing to send the view controller this message will prevent any associated animation from
being displayed.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 499
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

See Also
– viewWillAppear: (page 499)
– viewDidAppear: (page 497)
– viewDidDisappear: (page 498)

Declared In
UIViewController.h

willAnimateFirstHalfOfRotationToInterfaceOrientation:duration:
Sent to the view controller before the first half of the user interface rotates.

-
(void)willAnimateFirstHalfOfRotationToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
duration:(NSTimeInterval)duration

Parameters

toInterfaceOrientation
The state of the application’s user interface orientation after the rotation. The possible values
are described in Interface Orientation Constants (page 101).

duration
The duration of the first half of the rotation.

Discussion
Subclasses optionally override this method to perform additional animations—that is, animations
that appear during the first half of the rotation. When this method is invoked the
interfaceOrientation (page 487) property is still set to the old orientation. This method is invoked
within an animation block that begins sliding the header and footer views out. For example, you
might implement this method to adjust the zoom level, scroller position, or other attribute of your
view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 501)
– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 500)
– didRotateFromInterfaceOrientation: (page 492)

Declared In
UIViewController.h

willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration:
Sent to the view controller before the second half of the user interface rotates.

-
(void)willAnimateSecondHalfOfRotationFromInterfaceOrientation:(UIInterfaceOrientation)fromInterfaceOrientation
duration:(NSTimeInterval)duration

500 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

Parameters

fromInterfaceOrientation
The state of the application’s user interface orientation before the rotation. The possible values
are described in Interface Orientation Constants (page 101).

duration
The duration of the second half of the rotation.

Discussion
Subclasses optionally override this method to perform additional animations. When this method is
invoked the interfaceOrientation (page 487) property is set to the new orientation. This method
is invoked within an animation block that begins sliding the header and footer views in. For example,
you might implement this method to adjust the zoom level, scroller position, or other attribute of
your view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willRotateToInterfaceOrientation:duration: (page 501)
– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 500)
– didRotateFromInterfaceOrientation: (page 492)

Declared In
UIViewController.h

willRotateToInterfaceOrientation:duration:
Sent to the view controller when rotating the user interface begins.

-
(void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
duration:(NSTimeInterval)duration

Parameters

toInterfaceOrientation
The state of the application’s user interface orientation after the rotation. The possible values
are described in Interface Orientation Constants (page 101).

duration
The duration of the rotation.

Discussion
Subclasses optionally override this method to perform additional animations—animations that appear
at the beginning of the rotation. For example, you might implement this method to disable views,
stop media playback, or temporarily turn off expensive drawing or live updates. You may also
implement this method to swap the view if it should be different for landscape as compared with
portrait orientation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: (page 500)
– willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration: (page 500)

Instance Methods 501
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

– didRotateFromInterfaceOrientation: (page 492)

Declared In
UIViewController.h

502 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

UIViewController Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIWebView.h

Overview

You use the UIWebView class to embed web content in your application. To do so, you simply create
a UIWebView object, attach it to a window, and send it a request to load web content. You can also
use this class to move back and forward in the history of webpages, and you can even set some web
content properties programmatically.

Use the loadRequest: (page 509) method to begin loading web content, the stopLoading (page 510)
method to stop loading, and the loading (page 506) property to find out if a web view is in the process
of loading.

If you allow the user to move back and forward through the webpage history, then you can use the
goBack (page 507) and goForward (page 508) methods as actions for buttons. Use the canGoBack (page
505) and canGoForward (page 505) properties to disable the buttons when the user can’t move in a
direction.

By default, a web view automatically converts telephone numbers that appear in web content to
Phone links. When a Phone link is tapped, the Phone application launches and dials the number. Set
the detectsPhoneNumbers (page 506) property to NO to turn off this default behavior.

You can also use the request (page 507) property to programmatically set the scale of web content
the first time it is displayed in a web view. Thereafter, the user can change the scale using gestures.

Set the delegate (page 506) property to an object conforming to the UIWebViewDelegate protocol if
you want to track loading web content or be notified when the scale changes.

Overview 503
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

Read Safari Web Content Guide for iPhone OS for how to create web content that is compatible with
and optimized for displaying in Safari on iPhone and your web views.

Tasks

Setting the Delegate

delegate (page 506) property
The receiver’s delegate.

Loading Content

– loadData:MIMEType:textEncodingName:baseURL: (page 508)
Sets the main page contents, MIME type, content encoding, and base URL.

– loadHTMLString:baseURL: (page 508)
Sets the main page content and base URL.

– loadRequest: (page 509)
Connects to a given URL by initiating an asynchronous client request.

request (page 507) property
The URL request identifying the location of the content to load. (read-only)

loading (page 506) property
A Boolean value indicating whether the receiver is done loading content. (read-only)

– stopLoading (page 510)
Stops the loading of any web content managed by the receiver.

– reload (page 509)
Reloads the current page.

Moving Back and Forward

canGoBack (page 505) property
A Boolean value indicating whether the receiver can move backward. (read-only)

canGoForward (page 505) property
A Boolean value indicating whether the receiver can move forward. (read-only)

– goBack (page 507)
Loads the previous location in the back-forward list.

– goForward (page 508)
Loads the next location in the back-forward list.

Setting Web Content Properties

detectsPhoneNumbers (page 506) property
A Boolean value indicating whether telephone number detection is on.

504 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

scalesPageToFit (page 507) property
A Boolean value determining whether the webpage scales to fit the view and the user can
change the scale.

Running JavaScript

– stringByEvaluatingJavaScriptFromString: (page 510)
Returns the result of running a script.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

canGoBack
A Boolean value indicating whether the receiver can move backward. (read-only)

@property(nonatomic, readonly, getter=canGoBack) BOOL canGoBack

Discussion
If YES, able to move backward; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property canGoForward (page 505)

Declared In
UIWebView.h

canGoForward
A Boolean value indicating whether the receiver can move forward. (read-only)

@property(nonatomic, readonly, getter=canGoForward) BOOL canGoForward

Discussion
If YES, able to move forward; otherwise, NO .

Availability
Available in iPhone OS 2.0 and later.

See Also
@property canGoBack (page 505)

Declared In
UIWebView.h

Properties 505
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

delegate
The receiver’s delegate.

@property(nonatomic, assign) id<UIWebViewDelegate> delegate

Discussion
The delegate is sent messages when content is loading and the scale changes. See UIWebViewDelegate
Protocol Reference for the optional methods this delegate may implement.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWebView.h

detectsPhoneNumbers
A Boolean value indicating whether telephone number detection is on.

@property(nonatomic) BOOL detectsPhoneNumbers

Discussion
If YES, telephone number detection is on; otherwise, NO. If a webpage contains numbers that can be
interpreted as phone numbers, but are not phone numbers, you can turn off telephone number
detection by setting this property to NO. The default value is YES on devices that have phone capabilities.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWebView.h

loading
A Boolean value indicating whether the receiver is done loading content. (read-only)

@property(nonatomic, readonly, getter=isLoading) BOOL loading

Discussion
If YES, the receiver is done loading content; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property request (page 507)

– stopLoading (page 510)
– loadRequest: (page 509)
– reload (page 509)

Declared In
UIWebView.h

506 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

request
The URL request identifying the location of the content to load. (read-only)

@property(nonatomic, readonly, retain) NSURLRequest *request

Availability
Available in iPhone OS 2.0 and later.

See Also
– loadRequest: (page 509)
– stopLoading (page 510)

@property loading (page 506)
– reload (page 509)

Declared In
UIWebView.h

scalesPageToFit
A Boolean value determining whether the webpage scales to fit the view and the user can change the
scale.

@property(nonatomic) BOOL scalesPageToFit

Discussion
If YES, the webpage is scaled to fit and the user can zoom in and zoom out. If NO, user zooming is
disabled. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWebView.h

Instance Methods

goBack
Loads the previous location in the back-forward list.

- (void)goBack

Availability
Available in iPhone OS 2.0 and later.

See Also
– goBack (page 507)

Declared In
UIWebView.h

Instance Methods 507
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

goForward
Loads the next location in the back-forward list.

- (void)goForward

Availability
Available in iPhone OS 2.0 and later.

See Also
– goBack (page 507)

Declared In
UIWebView.h

loadData:MIMEType:textEncodingName:baseURL:
Sets the main page contents, MIME type, content encoding, and base URL.

- (void)loadData:(NSData *)data MIMEType:(NSString *)MIMEType
textEncodingName:(NSString *)encodingName baseURL:(NSURL *)baseURL

Parameters

data
The content for the main page.

MIMEType
The MIME type of the content.

encodingName
The IANA encoding name as in utf-8 or utf-16.

baseURL
The base URL for the content.

Availability
Available in iPhone OS 2.0 and later.

See Also
– loadHTMLString:baseURL: (page 508)

Declared In
UIWebView.h

loadHTMLString:baseURL:
Sets the main page content and base URL.

- (void)loadHTMLString:(NSString *)string baseURL:(NSURL *)baseURL

Parameters

string
The content for the main page.

baseURL
The base URL for the content.

508 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– loadData:MIMEType:textEncodingName:baseURL: (page 508)

Declared In
UIWebView.h

loadRequest:
Connects to a given URL by initiating an asynchronous client request.

- (void)loadRequest:(NSURLRequest *)request

Parameters

request
A URL request identifying the location of the content to load.

Discussion
To stop this load, use the stopLoading (page 510) method. To see whether the receiver is done loading
the content, use the loading (page 506) property.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property request (page 507)

– stopLoading (page 510)
@property loading (page 506)

– reload (page 509)

Declared In
UIWebView.h

reload
Reloads the current page.

- (void)reload

Availability
Available in iPhone OS 2.0 and later.

See Also
@property request (page 507)
@property loading (page 506)

– loadRequest: (page 509)
– stopLoading (page 510)

Declared In
UIWebView.h

Instance Methods 509
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

stopLoading
Stops the loading of any web content managed by the receiver.

- (void)stopLoading

Discussion
Stops any content in the process of being loaded by the main frame or any of its children frames. Does
nothing if no content is being loaded.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property request (page 507)
@property loading (page 506)

– loadRequest: (page 509)
– reload (page 509)

Declared In
UIWebView.h

stringByEvaluatingJavaScriptFromString:
Returns the result of running a script.

- (NSString *)stringByEvaluatingJavaScriptFromString:(NSString *)script

Parameters

script
The script to run.

Return Value
The result of running script or nil if it fails.

Discussion
JavaScript execution time is limited to 5 seconds for each top-level entry point. If your script executes
for more than 5 seconds, Safari stops executing the script. This is likely to occur at a random place in
your code, so unintended consequences may result. This limit is imposed because JavaScript execution
may cause the main thread to block, so when scripts are running, the user is not able to interact with
the webpage.

JavaScript allocations are also limited to 10 MB. Safari raises an exception if you exceed this limit on
the total memory allocation for JavaScript.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWebView.h

510 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

Constants

UIWebViewNavigationType
Constant indicating the user’s action.

enum {
UIWebViewNavigationTypeLinkClicked,
UIWebViewNavigationTypeFormSubmitted,
UIWebViewNavigationTypeBackForward,
UIWebViewNavigationTypeReload,
UIWebViewNavigationTypeFormResubmitted,
UIWebViewNavigationTypeOther

};
typedef NSUInteger UIWebViewNavigationType;

Constants
UIWebViewNavigationTypeLinkClicked

User tapped a link.

Available in iPhone OS 2.0 and later.

Declared in UIWebView.h

UIWebViewNavigationTypeFormSubmitted
User submitted a form.

Available in iPhone OS 2.0 and later.

Declared in UIWebView.h

UIWebViewNavigationTypeBackForward
User tapped the back or forward button.

Available in iPhone OS 2.0 and later.

Declared in UIWebView.h

UIWebViewNavigationTypeReload
User tapped the reload button.

Available in iPhone OS 2.0 and later.

Declared in UIWebView.h

UIWebViewNavigationTypeFormResubmitted
User resubmitted a form.

Available in iPhone OS 2.0 and later.

Declared in UIWebView.h

UIWebViewNavigationTypeOther
Some other action occurred.

Available in iPhone OS 2.0 and later.

Declared in UIWebView.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWebView.h

Constants 511
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

512 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

UIWebView Class Reference

Inherits from: UIView : UIResponder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIWindow.h

Overview

The UIWindow class defines objects (known as windows) that manage and coordinate the windows
an application displays on the screen. The two principal functions of a window are to provide an area
for displaying its views and to distribute events to the views. The window is the root view in the view
hierarchy. A window belongs to a level; the windows in one level appear above another level. For
example, alerts appear above normal windows. Typically, there is only one window in an iPhone OS
application.

Read Windows and Views in iPhone OS Programming Guide to learn how to use this class.

Tasks

Configuring Windows

windowLevel (page 515) property
The receiver’s window level.

Overview 513
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

Making Windows Key

keyWindow (page 514) property
A Boolean value that indicates whether the receiver is the key window for the application.
(read-only)

– makeKeyAndVisible (page 518)
Makes the receiver the key window and makes that window visible.

– becomeKeyWindow (page 515)
Invoked automatically to inform the receiver that it has become the key window; never invoke
this method directly.

– makeKeyWindow (page 518)
Makes the receiver the main window.

– resignKeyWindow (page 518)
Invoked automatically when the window resigns key window status; never invoke this method
directly.

Converting Coordinates

– convertPoint:toWindow: (page 516)
Converts a point from the receiver’s coordinate system to that of another window.

– convertPoint:fromWindow: (page 516)
Converts a point from the coordinate system of a given window to that of the receiver.

– convertRect:toWindow: (page 517)
Converts a rectangle from the receiver’s coordinate system to that of another window.

– convertRect:fromWindow: (page 517)
Converts a rectangle from the coordinate system of another window to that of the receiver.

Sending Events

– sendEvent: (page 519)
Dispatches events sent to the receiver by the UIApplication object to its views.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

keyWindow
A Boolean value that indicates whether the receiver is the key window for the application. (read-only)

@property(nonatomic, readonly, getter=isKeyWindow) BOOL keyWindow

Discussion
If YES, the receiver is the key window for the application; otherwise, NO.

514 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– makeKeyAndVisible (page 518)
– becomeKeyWindow (page 515)
– makeKeyWindow (page 518)
– resignKeyWindow (page 518)

Declared In
UIWindow.h

windowLevel
The receiver’s window level.

@property(nonatomic) UIWindowLevel windowLevel

Discussion
Levels are ordered so that each level groups windows within it in front of those in all preceding
groups. For example, alert windows appear in front of all normal-level windows. When a window
enters a new level, it’s ordered in front of all its peers in that level. See “UIWindowLevel” (page 519)
for a list of possible values. The default value is 0.0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

Instance Methods

becomeKeyWindow
Invoked automatically to inform the receiver that it has become the key window; never invoke this
method directly.

- (void)becomeKeyWindow

Discussion
This method reestablishes the receiver’s first responder, sends the becomeKeyWindow (page 515)
message to that object if it responds, and posts UIWindowDidBecomeKeyNotification (page 521) to
the default notification center.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property keyWindow (page 514)

– makeKeyAndVisible (page 518)

Instance Methods 515
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

– makeKeyWindow (page 518)
– resignKeyWindow (page 518)

Declared In
UIWindow.h

convertPoint:fromWindow:
Converts a point from the coordinate system of a given window to that of the receiver.

- (CGPoint)convertPoint:(CGPoint)point fromWindow:(UIWindow *)window

Parameters

point
A point specifying a location in the coordinate system of window.

window
The window with point in its coordinate system. If window is nil, this method instead converts
from the screen’s base coordinates.

Return Value
The point converted to the coordinate system of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertPoint:toWindow: (page 516)

Declared In
UIWindow.h

convertPoint:toWindow:
Converts a point from the receiver’s coordinate system to that of another window.

- (CGPoint)convertPoint:(CGPoint)point toWindow:(UIWindow *)window

Parameters

point
A point specifying a location in the coordinate system of the receiver.

window
The window into whose coordinate system point is to be converted. If nil, it converts the
point to screen coordinates.

Return Value
The point converted to the coordinate system of window.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertPoint:fromWindow: (page 516)

516 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

Declared In
UIWindow.h

convertRect:fromWindow:
Converts a rectangle from the coordinate system of another window to that of the receiver.

- (CGRect)convertRect:(CGRect)rect fromWindow:(UIWindow *)window

Parameters

rect
The rectangle in the window's coordinate system.

window
The window with rect in its coordinate system. If nil, this method instead converts from
screen’s base coordinates.

Return Value
The converted rectangle.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertRect:toWindow: (page 517)

Declared In
UIWindow.h

convertRect:toWindow:
Converts a rectangle from the receiver’s coordinate system to that of another window.

- (CGRect)convertRect:(CGRect)rect toWindow:(UIWindow *)window

Parameters

rect
A rectangle in the receiver's coordinate system.

window
The window that is the target of the conversion operation. If nil, this method instead converts
from screen base coordinates.

Return Value
The converted rectangle.

Availability
Available in iPhone OS 2.0 and later.

See Also
– convertRect:fromWindow: (page 517)

Declared In
UIWindow.h

Instance Methods 517
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

makeKeyAndVisible
Makes the receiver the key window and makes that window visible.

- (void)makeKeyAndVisible

Discussion
This is a convenience method to make the receiver the main window and displays it in front of other
windows. You can also hide and reveal a window using the inherited hidden (page 450) UIView
property.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property keyWindow (page 514)

– becomeKeyWindow (page 515)
– makeKeyWindow (page 518)
– resignKeyWindow (page 518)

Declared In
UIWindow.h

makeKeyWindow
Makes the receiver the main window.

- (void)makeKeyWindow

Availability
Available in iPhone OS 2.0 and later.

See Also
@property keyWindow (page 514)

– makeKeyAndVisible (page 518)
– becomeKeyWindow (page 515)
– resignKeyWindow (page 518)

Declared In
UIWindow.h

resignKeyWindow
Invoked automatically when the window resigns key window status; never invoke this method
directly.

- (void)resignKeyWindow

Discussion
This method sends resignKeyWindow (page 518) to the receiver’s first responder and posts
UIWindowDidResignKeyNotification (page 521) to the default notification center.

518 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
@property keyWindow (page 514)

– makeKeyAndVisible (page 518)
– becomeKeyWindow (page 515)
– makeKeyWindow (page 518)

Declared In
UIWindow.h

sendEvent:
Dispatches events sent to the receiver by the UIApplication object to its views.

- (void)sendEvent:(UIEvent *)event

Parameters

event
The event to process.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

Constants

UIWindowLevel
The positioning of windows relative to each other.

const UIWindowLevel UIWindowLevelNormal;
const UIWindowLevel UIWindowLevelAlert;
const UIWindowLevel UIWindowLevelStatusBar;
typedef CGFloat UIWindowLevel;

Constants
UIWindowLevelNormal

The default level.

Available in iPhone OS 2.0 and later.

Declared in UIWindow.h

UIWindowLevelAlert
The level for an alert view.

Available in iPhone OS 2.0 and later.

Declared in UIWindow.h

Constants 519
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

UIWindowLevelStatusBar
The level for a status window.

Available in iPhone OS 2.0 and later.

Declared in UIWindow.h

Discussion
The stacking of levels takes precedence over the stacking of windows within each level. That is, even
the bottom window in a level obscures the top window of the next level down. Levels are listed in
order from lowest to highest.

Keyboard Notification User Info Keys
Keys used to get values from the user information dictionary of keyboard notifications.

NSString *const UIKeyboardCenterBeginUserInfoKey;
NSString *const UIKeyboardCenterEndUserInfoKey;
NSString *const UIKeyboardBoundsUserInfoKey;

Constants
UIKeyboardCenterBeginUserInfoKey

The key for an NSValue object containing a CGPoint that is the center of the keyboard in screen
coordinates before animation.

Available in iPhone OS 2.0 and later.

Declared in UIWindow.h

UIKeyboardCenterEndUserInfoKey
The key for an NSValue object containing a CGPoint that is the center of the keyboard in screen
coordinates after animation.

Available in iPhone OS 2.0 and later.

Declared in UIWindow.h

UIKeyboardBoundsUserInfoKey
The key for an NSValue object containing a CGRect that is the bounds of the keyboard in screen
coordinates after animation.

Available in iPhone OS 2.0 and later.

Declared in UIWindow.h

Notifications

UIWindowDidBecomeVisibleNotification
Posted when an UIWindow object becomes visible.

The notification object is the window object that has become visible. This notification does not contain
a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

520 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

Declared In
UIWindow.h

UIWindowDidBecomeHiddenNotification
Posted when an UIWindow object becomes hidden.

The notification object is the window object that has become hidden. This notification does not contain
a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

UIWindowDidBecomeKeyNotification
Posted whenever a window object becomes the key window.

The notification object is the window object that has become key. This notification does not contain
a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

UIWindowDidResignKeyNotification
Posted whenever a window object resigns its status as main window.

The notification object is the window object that has resigned its main window status. This notification
does not contain a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

UIKeyboardWillShowNotification
Posted before a window object is displayed.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use
the keys described in “Keyboard Notification User Info Keys” (page 520) to get the location and size
of the keyboard from the userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

Notifications 521
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

UIKeyboardDidShowNotification
Posted after a window object is displayed.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use
the keys described in “Keyboard Notification User Info Keys” (page 520) to get the location and size
of the keyboard from the userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

UIKeyboardWillHideNotification
Posted before a window object is hidden.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use
the keys described in “Keyboard Notification User Info Keys” (page 520) to get the location and size
of the keyboard from the userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

UIKeyboardDidHideNotification
Posted after a window object hide.

The notification object is nil. The userInfo dictionary contains information about the keyboard. Use
the keys described in “Keyboard Notification User Info Keys” (page 520) to get the location and size
of the keyboard from the userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIWindow.h

522 Notifications
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

UIWindow Class Reference

523
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I I

Protocols

524
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I I

Protocols

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIAccelerometer.h

Overview

The UIAccelerometerDelegate protocol defines a single method for receiving acceleration-related
data from the system. Implementation of this method is optional, but expected.

Tasks

Responding to Acceleration Events

– accelerometer:didAccelerate: (page 525) optional method
Delivers the latest acceleration data to the delegate. This method is optional.

Instance Methods

accelerometer:didAccelerate:
Delivers the latest acceleration data to the delegate. This method is optional.

- (void)accelerometer:(UIAccelerometer *)accelerometer didAccelerate:(UIAcceleration
*)acceleration

Parameters

accelerometer
The application-wide accelerometer object.

Overview 525
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

UIAccelerometerDelegate Protocol
Reference

acceleration
The most recent acceleration data.

Discussion
The shared UIAccelerometer object invokes this method at the desired interval, providing your
delegate with updated acceleration data each time.

This method is always invoked on your application’s main thread when it is in the
NSDefaultRunLoopMode run loop mode.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAccelerometer.h

526 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

UIAccelerometerDelegate Protocol Reference

Framework /System/Library/Framework/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIAlert.h

Overview

The UIActionSheetDelegate protocol defines the methods a delegate of a UIActionSheet object
should implement. The delegate implements the button actions and any other custom behavior. Some
of the methods defined in this protocol are optional.

If you add your own buttons or customize the behavior of an action sheet, implement a delegate
conforming to this protocol to handle the corresponding delegate messages. Use the delegate (page
69) property of the action sheet object to specify one of your application objects as the delegate.

If you add your own buttons to an action sheet, the delegate must implement the
actionSheet:clickedButtonAtIndex: (page 528) message to respond when those buttons are clicked;
otherwise, your custom buttons do nothing. The action sheet is automatically dismissed after the
actionSheet:clickedButtonAtIndex: (page 528) delegate method is invoked.

Optionally, you can implement the actionSheetCancel: (page 530) method to take the appropriate
action when the system cancels your action sheet. If the delegate does not implement this method,
the default behavior is to simulate the user clicking the cancel button and closing the view.

You can also optionally augment the behavior of presenting and dismissing action sheets using the
methods in “Customizing Behavior” (page 528).

Overview 527
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

UIActionSheetDelegate Protocol Reference

Tasks

Responding to Actions

– actionSheet:clickedButtonAtIndex: (page 528) optional method
Sent to the delegate when the user clicks a button on an action sheet. This method is optional.

Customizing Behavior

– willPresentActionSheet: (page 530) optional method
Sent to the delegate before an action sheet is presented to the user. This method is optional.

– didPresentActionSheet: (page 530) optional method
Sent to the delegate after an action sheet is presented to the user. This method is optional.

– actionSheet:willDismissWithButtonIndex: (page 529) optional method
Sent to the delegate before an action sheet is dismissed. This method is optional.

– actionSheet:didDismissWithButtonIndex: (page 529) optional method
Sent to the delegate after an action sheet is dismissed from the screen. This method is optional.

Canceling

– actionSheetCancel: (page 530) optional method
Sent to the delegate before an action sheet is canceled. This method is optional.

Instance Methods

actionSheet:clickedButtonAtIndex:
Sent to the delegate when the user clicks a button on an action sheet. This method is optional.

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex

Parameters

actionSheet
The action sheet containing the button.

buttonIndex
The position of the clicked button. The button indices start at 0.

Discussion
The receiver is automatically dismissed after this method is invoked.

Availability
Available in iPhone OS 2.0 and later.

528 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

UIActionSheetDelegate Protocol Reference

Declared In
UIAlert.h

actionSheet:didDismissWithButtonIndex:
Sent to the delegate after an action sheet is dismissed from the screen. This method is optional.

- (void)actionSheet:(UIActionSheet *)actionSheet
didDismissWithButtonIndex:(NSInteger)buttonIndex

Parameters

actionSheet
The action sheet that was dismissed.

buttonIndex
The index of the button that was clicked. The button indices start at 0. If this is the cancel button
index, the action sheet is canceling. If -1, the cancel button index is not set.

Discussion
This method is invoked after the animation ends and the view is hidden.

Availability
Available in iPhone OS 2.0 and later.

See Also
– actionSheet:willDismissWithButtonIndex: (page 529)

Declared In
UIAlert.h

actionSheet:willDismissWithButtonIndex:
Sent to the delegate before an action sheet is dismissed. This method is optional.

- (void)actionSheet:(UIActionSheet *)actionSheet
willDismissWithButtonIndex:(NSInteger)buttonIndex

Parameters

actionSheet
The action sheet that is about to be dismissed.

buttonIndex
The index of the button that was clicked. If this is the cancel button index, the action sheet is
canceling. If -1, the cancel button index is not set.

Discussion
This method is invoked before the animation begins and the view is hidden.

Availability
Available in iPhone OS 2.0 and later.

See Also
– actionSheet:didDismissWithButtonIndex: (page 529)

Instance Methods 529
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

UIActionSheetDelegate Protocol Reference

Declared In
UIAlert.h

actionSheetCancel:
Sent to the delegate before an action sheet is canceled. This method is optional.

- (void)actionSheetCancel:(UIActionSheet *)actionSheet

Parameters

actionSheet
The action sheet that will be canceled.

Discussion
If the action sheet’s delegate does not implement this method, clicking the cancel button is simulated
and the action sheet is dismissed. Implement this method if you need to perform some actions before
an action sheet is canceled. An action sheet can be canceled at any time by the system—for example,
when the user taps the Home button. The actionSheet:willDismissWithButtonIndex: (page 529)
and actionSheet:didDismissWithButtonIndex: (page 529) methods are invoked after this method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

didPresentActionSheet:
Sent to the delegate after an action sheet is presented to the user. This method is optional.

- (void)didPresentActionSheet:(UIActionSheet *)actionSheet

Parameters

actionSheet
The action sheet that was displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willPresentActionSheet: (page 530)

Declared In
UIAlert.h

willPresentActionSheet:
Sent to the delegate before an action sheet is presented to the user. This method is optional.

- (void)willPresentActionSheet:(UIActionSheet *)actionSheet

530 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

UIActionSheetDelegate Protocol Reference

Parameters

actionSheet
The action sheet that is about to be displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didPresentActionSheet: (page 530)

Declared In
UIAlert.h

Instance Methods 531
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

UIActionSheetDelegate Protocol Reference

532 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

UIActionSheetDelegate Protocol Reference

Framework /System/Library/Framework/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIAlert.h

Overview

The UIAlertViewDelegate protocol defines the methods a delegate of a UIAlertView object should
implement. The delegate implements the button actions and any other custom behavior. Some of the
methods defined in this protocol are optional.

If you add your own buttons or customize the behavior of an alert view, implement a delegate
conforming to this protocol to handle the corresponding delegate messages. Use the delegate (page
85) property of an alert view to specify one of your application objects as the delegate.

If you add your own buttons to an alert view, the delegate must implement the
alertView:clickedButtonAtIndex: (page 534) message to respond when those buttons are clicked;
otherwise, your custom buttons do nothing. The alert view is automatically dismissed after the
alertView:clickedButtonAtIndex: (page 534) delegate method is invoked.

Optionally, you can implement the alertViewCancel: (page 536) method to take the appropriate
action when the system cancels your alert view. If the delegate does not implement this method, the
default behavior is to simulate the user clicking the cancel button and closing the view.

You can also optionally augment the behavior of presenting and dismissing alert views using the
methods in “Customizing Behavior” (page 534).

Overview 533
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

UIAlertViewDelegate Protocol Reference

Tasks

Responding to Actions

– alertView:clickedButtonAtIndex: (page 534) optional method
Sent to the delegate when the user clicks a button on an alert view. This method is optional.

Customizing Behavior

– willPresentAlertView: (page 536) optional method
Sent to the delegate before a model view is presented to the user. This method is optional.

– didPresentAlertView: (page 536) optional method
Sent to the delegate after an alert view is presented to the user. This method is optional.

– alertView:willDismissWithButtonIndex: (page 535) optional method
Sent to the delegate before an alert view is dismissed. This method is optional.

– alertView:didDismissWithButtonIndex: (page 535) optional method
Sent to the delegate after an alert view is dismissed from the screen. This method is optional.

Canceling

– alertViewCancel: (page 536) optional method
Sent to the delegate before an alert view is canceled. This method is optional.

Instance Methods

alertView:clickedButtonAtIndex:
Sent to the delegate when the user clicks a button on an alert view. This method is optional.

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex

Parameters

alertView
The alert view containing the button.

buttonIndex
The position of the clicked button. The button indices start at 0.

Discussion
The receiver is automatically dismissed after this method is invoked.

Availability
Available in iPhone OS 2.0 and later.

534 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

UIAlertViewDelegate Protocol Reference

Declared In
UIAlert.h

alertView:didDismissWithButtonIndex:
Sent to the delegate after an alert view is dismissed from the screen. This method is optional.

- (void)alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex

Parameters

alertView
The alert view that was dismissed.

buttonIndex
The index of the button that was clicked. The button indices start at 0. If this is the cancel button
index, the alert view is canceling. If -1, the cancel button index is not set.

Discussion
This method is invoked after the animation ends and the view is hidden.

Availability
Available in iPhone OS 2.0 and later.

See Also
– alertView:willDismissWithButtonIndex: (page 535)

Declared In
UIAlert.h

alertView:willDismissWithButtonIndex:
Sent to the delegate before an alert view is dismissed. This method is optional.

- (void)alertView:(UIAlertView *)alertView
willDismissWithButtonIndex:(NSInteger)buttonIndex

Parameters

alertView
The alert view that is about to be dismissed.

buttonIndex
The index of the button that was clicked. The button indices start at 0. If this is the cancel button
index, the alert view is canceling. If -1, the cancel button index is not set.

Discussion
This method is invoked before the animation begins and the view is hidden.

Availability
Available in iPhone OS 2.0 and later.

See Also
– alertView:didDismissWithButtonIndex: (page 535)

Instance Methods 535
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

UIAlertViewDelegate Protocol Reference

Declared In
UIAlert.h

alertViewCancel:
Sent to the delegate before an alert view is canceled. This method is optional.

- (void)alertViewCancel:(UIAlertView *)alertView

Parameters

alertView
The alert view that will be canceled.

Discussion
If the alert view’s delegate does not implement this method, clicking the cancel button is simulated
and the alert view is dismissed. Implement this method if you need to perform some actions before
an alert view is canceled. An alert view can be canceled at any time by the system—for example, when
the user taps the Home button. The alertView:willDismissWithButtonIndex: (page 535) and
alertView:didDismissWithButtonIndex: (page 535) methods are invoked after this method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIAlert.h

didPresentAlertView:
Sent to the delegate after an alert view is presented to the user. This method is optional.

- (void)didPresentAlertView:(UIAlertView *)alertView

Parameters

alertView
The alert view that was displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willPresentAlertView: (page 536)

Declared In
UIAlert.h

willPresentAlertView:
Sent to the delegate before a model view is presented to the user. This method is optional.

- (void)willPresentAlertView:(UIAlertView *)alertView

536 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

UIAlertViewDelegate Protocol Reference

Parameters

alertView
The alert view that is about to be displayed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didPresentAlertView: (page 536)

Declared In
UIAlert.h

Instance Methods 537
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

UIAlertViewDelegate Protocol Reference

538 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

UIAlertViewDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIApplication.h

Overview

The UIApplicationDelegate protocol declares methods that are implemented by the delegate of the
singleton UIApplication object.

By implementing these methods, the delegate can respond to application launch and termination,
low-memory warnings, the opening of URL resources, changes in status-bar orientation, and other
system events.

Tasks

Opening a URL Resource

– application:handleOpenURL: (page 541) optional method
Asks the delegate to open a resource identified by URL. This method is optional.

Managing Status Bar Orientation

– application:willChangeStatusBarOrientation:duration: (page 542) optional method
Tells the delegate when the interface orientation of the status bar is about to change. This
method is optional.

– application:didChangeStatusBarOrientation: (page 541) optional method
Tells the delegate when the interface orientation of the status bar has changed. This method
is optional.

Overview 539
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

Responding to a Change in Active Status

– applicationWillResignActive: (page 544) optional method
Tells the delegate that the application will become inactive. This method is optional.

– applicationDidBecomeActive: (page 543) optional method
Tells the delegate that the application has become active. This method is optional.

Controlling Application Appearance

– application:willChangeStatusBarFrame: (page 542) optional method
Tells the delegate when the frame of the status bar is about to change. This method is optional.

– application:didChangeStatusBarFrame: (page 540) optional method
Tells the delegate when the frame of the status bar has changed. This method is optional.

Controlling Application Behavior

– applicationDidFinishLaunching: (page 543) optional method
Tells the delegate when the application has finished launching. This method is optional.

– applicationWillTerminate: (page 545) optional method
Tells the delegate when the application is about to terminate. This method is optional.

– applicationDidReceiveMemoryWarning: (page 543) optional method
Tells the delegate when the application receives a memory warning from the system. This
method is optional.

– applicationSignificantTimeChange: (page 544) optional method
Tells the delegate when there is a significant change in the time. This method is optional.

Instance Methods

application:didChangeStatusBarFrame:
Tells the delegate when the frame of the status bar has changed. This method is optional.

- (void)application:(UIApplication *)application
didChangeStatusBarFrame:(CGRect)oldStatusBarFrame

Parameters

application
The delegating application object.

oldStatusBarFrame
The previous frame of the status bar, in screen coordinates.

Availability
Available in iPhone OS 2.0 and later.

See Also
– application:willChangeStatusBarFrame: (page 542)

540 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

Declared In
UIApplication.h

application:didChangeStatusBarOrientation:
Tells the delegate when the interface orientation of the status bar has changed. This method is optional.

- (void)application:(UIApplication *)application
didChangeStatusBarOrientation:(UIInterfaceOrientation)oldStatusBarOrientation

Parameters

application
The delegating application object.

oldStatusBarOrientation
A constant that indicates the previous orientation of the application’s user interface; see
“Controlling Application Behavior” (page 540) for details.

Discussion
The delegate can get the current device orientation from the shared UIDevice object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

application:handleOpenURL:
Asks the delegate to open a resource identified by URL. This method is optional.

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url

Parameters

application
The application object.

url
A object representing a URL (Universal Resource Locator). See the appendix of iPhone OS
Programming Guide for Apple-registered schemes for URLs.

Return Value
YES if the delegate successfully handle the request; NO if the attempt to handle the URL failed.

Discussion
There is no equivalent notification for this delegation method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– openURL: (page 98) (UIApplication)

Declared In
UIApplication.h

Instance Methods 541
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

application:willChangeStatusBarFrame:
Tells the delegate when the frame of the status bar is about to change. This method is optional.

- (void)application:(UIApplication *)application
willChangeStatusBarFrame:(CGRect)newStatusBarFrame

Parameters

application
The delegating application object.

newStatusBarFrame
The changed frame of the status bar, in screen coordinates.

Discussion
The application calls this method when it receives a setStatusBarOrientation:animated: (page
100) message and is about to change the interface orientation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– application:didChangeStatusBarFrame: (page 540)

Declared In
UIApplication.h

application:willChangeStatusBarOrientation:duration:
Tells the delegate when the interface orientation of the status bar is about to change. This method is
optional.

- (void)application:(UIApplication *)application
willChangeStatusBarOrientation:(UIInterfaceOrientation)newStatusBarOrientation

duration:(NSTimeInterval)duration

Parameters

application
The delegating application object.

newStatusBarOrientation
A constant that indicates the new orientation of the application’s user interface; see “Controlling
Application Behavior” (page 540) for details.

duration
The duration of the animation to the new orientation, in seconds.

Discussion
The delegate typically implements this method to prepare its windows and views for the new
orientation. The delegate can get the current device orientation from the shared UIDevice object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

542 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

applicationDidBecomeActive:
Tells the delegate that the application has become active. This method is optional.

- (void)applicationDidBecomeActive:(UIApplication *)application

Parameters

application
The singleton application instance.

Discussion
The delegate can implement this method to make adjustments when the application transitions from
an inactive state to an active state. When an application is inactive, it is executing but is not dispatching
incoming events. This occurs when an overlay window pops up or when the device is locked.

Just after it becomes active, the application also posts a
UIApplicationDidBecomeActiveNotification (page 104).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

applicationDidFinishLaunching:
Tells the delegate when the application has finished launching. This method is optional.

- (void)applicationDidFinishLaunching:(UIApplication *)application

Parameters

application
The delegating application object.

Discussion
This method is the ideal place for the delegate to perform various initialization and configuration
tasks, especially restoring the application to the previous state and setting up the initial windows and
views of the application.

Availability
Available in iPhone OS 2.0 and later.

See Also
– applicationWillTerminate: (page 545)

Declared In
UIApplication.h

applicationDidReceiveMemoryWarning:
Tells the delegate when the application receives a memory warning from the system. This method is
optional.

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application

Instance Methods 543
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

Parameters

application
The delegating application object.

Discussion
Your implementation of this method should free up as much memory as possible by purging cached
data objects that can be recreated (or reloaded from disk) later. You use this method in conjunction
with the didReceiveMemoryWarning of the UIViewController class and the
UIApplicationDidReceiveMemoryWarningNotificationnotification to release memory throughout
your application.

It is strongly recommended that you implement this method. If your application does not release
enough memory during low-memory conditions, the system may terminate it outright.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didReceiveMemoryWarning (page 491) (UIViewController)
UIApplicationDidReceiveMemoryWarningNotification (page 105)

Declared In
UIApplication.h

applicationSignificantTimeChange:
Tells the delegate when there is a significant change in the time. This method is optional.

- (void)applicationSignificantTimeChange:(UIApplication *)application

Parameters

application
The delegating application object.

Discussion
Examples of significant time changes include the arrival of midnight, an update of the time by a
carrier, and the change to daylight savings time. The delegate can implement this method to adjust
any object of the application that displays time or is sensitive to time changes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

applicationWillResignActive:
Tells the delegate that the application will become inactive. This method is optional.

- (void)applicationWillResignActive:(UIApplication *)application

544 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

Parameters

application
The singleton application instance.

Discussion
The delegate can implement this method to make adjustments when the application transitions from
an active state to an inactive state. When an application is inactive, it is executing but is not dispatching
incoming events. This occurs when an overlay window pops up or when the device is locked.

Just before it becomes inactive, the application also posts a
UIApplicationWillResignActiveNotification (page 106).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

applicationWillTerminate:
Tells the delegate when the application is about to terminate. This method is optional.

- (void)applicationWillTerminate:(UIApplication *)application

Parameters

application
The delegating application object.

Discussion
This method is the ideal place for the delegate to perform clean-up tasks, such as freeing allocated
memory, invalidating timers, and storing application state.

Availability
Available in iPhone OS 2.0 and later.

See Also
– applicationDidFinishLaunching: (page 543)

Declared In
UIApplication.h

Instance Methods 545
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

546 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

UIApplicationDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIImagePickerController.h

Overview

TheUIImagePickerControllerDelegateprotocol defines methods that your delegate must implement
to interact with the image picker interface. The methods of this protocol notify your delegate object
when the user either picks an image or cancels the picker operation.

Your delegate methods are responsible for dismissing the picker when the operation completes. You
do this using the dismissModalViewControllerAnimated:method of the parent controller responsible
for displaying the UIImagePickerController object.

Tasks

Closing the Picker

– imagePickerController:didFinishPickingImage:editingInfo: (page 548) optional method
Tells the delegate that the user picked an image. This method is optional.

– imagePickerControllerDidCancel: (page 548) optional method
Tells the delegate that the user cancelled the pick operation. This method is optional.

Overview 547
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

UIImagePickerControllerDelegate Protocol
Reference

Instance Methods

imagePickerController:didFinishPickingImage:editingInfo:
Tells the delegate that the user picked an image. This method is optional.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingImage:(UIImage *)image editingInfo:(NSDictionary *)editingInfo

Parameters

picker
The controller object managing the image picker interface.

image
The image the user picked. If user editing is enabled, this image represents the final image and
may actually be a cropped and adjusted version of the original image. In that case, the original
image and editing information are available in the editingInfo parameter.

editingInfo
A dictionary containing any relevant editing information. If editing is disabled, this parameter
is nil. The keys for this dictionary are listed in “Editing information keys” (page 549).

Discussion
Your delegate’s implementation of this method should pass the specified image on to any custom
code that needs it and then dismiss the picker view.

When user editing is enabled, the picker view presents the user with a preview of the currently selected
image along with controls for modifying it. (This behavior is managed by the picker view prior to
calling this method.) If the user modifies the image, the editing information is returned in the
editingInfo parameter in case your code needs it. If not, you can simply use the image in the image
parameter as is.

Implementation of this method is optional, but expected.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImagePickerController.h

imagePickerControllerDidCancel:
Tells the delegate that the user cancelled the pick operation. This method is optional.

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker

Parameters

picker
The controller object managing the image picker interface.

Discussion
Your delegate’s implementation of this method should dismiss the picker view.

Implementation of this method is optional, but expected.

548 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

UIImagePickerControllerDelegate Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImagePickerController.h

Constants

Editing information keys
These strings identify the possible keys in the editing information dictionary passed to the delegate.

UIKIT_EXTERN NSString *const UIImagePickerControllerOriginalImage;
UIKIT_EXTERN NSString *const UIImagePickerControllerCropRect;

Constants
UIImagePickerControllerOriginalImage

The key specifying the original uncropped image selected by the user. The value for this key
is a UIImage object.

Available in iPhone OS 2.0 and later.

Declared in UIImagePickerController.h

UIImagePickerControllerCropRect
The key specifying the cropping rectangle that was applied to the original image. The value
for this key is an NSValue object containing a CGRect data type.

Available in iPhone OS 2.0 and later.

Declared in UIImagePickerController.h

Constants 549
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

UIImagePickerControllerDelegate Protocol Reference

550 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

UIImagePickerControllerDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UINavigationBar.h

Overview

The UINavigationBarDelegate protocol defines optional methods that a UINavigationBar delegate
should implement to update its views when items are pushed and popped from the stack. The
navigation bar represents only the bar at the top of the screen, not the view below. It’s the application’s
responsibility to implement the behavior when the top item changes.

You can control whether an item should be pushed or popped by implementing the
navigationBar:shouldPushItem: (page 553) and navigationBar:shouldPopItem: (page 553)
methods. These methods should return YES if the action is allowed; otherwise, NO.

The screen should always reflect the top item on the navigation bar. You implement the
navigationBar:didPushItem: (page 552) method to update the view below the navigation bar to
reflect the new item. Similarly, you implement the navigationBar:didPopItem: (page 552) method
to replace the view below the navigation bar.

Tasks

Pushing Items

– navigationBar:shouldPushItem: (page 553) optional method
Returns a Boolean value indicating whether the navigation bar should push an item. This
method is optional.

– navigationBar:didPushItem: (page 552) optional method
Tells the delegate that an item was pushed onto the navigation bar. This method is optional.

Overview 551
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

UINavigationBarDelegate Protocol
Reference

Popping Items

– navigationBar:shouldPopItem: (page 553) optional method
Returns a Boolean value indicating whether the navigation bar should pop an item. This method
is optional.

– navigationBar:didPopItem: (page 552) optional method
Tells the delegate that an item was popped from the navigation bar. This method is optional.

Instance Methods

navigationBar:didPopItem:
Tells the delegate that an item was popped from the navigation bar. This method is optional.

- (void)navigationBar:(UINavigationBar *)navigationBar didPopItem:(UINavigationItem
*)item

Parameters

navigationBar
The navigation bar that the item is being popped from.

item
The navigation item that is being popped.

Discussion
If animating the pop operation, this method is invoked after the animation ends; otherwise, it is
invoked immediately after the pop.

Availability
Available in iPhone OS 2.0 and later.

See Also
– navigationBar:shouldPopItem: (page 553)

Declared In
UINavigationBar.h

navigationBar:didPushItem:
Tells the delegate that an item was pushed onto the navigation bar. This method is optional.

- (void)navigationBar:(UINavigationBar *)navigationBar didPushItem:(UINavigationItem
*)item

Parameters

navigationBar
The navigation bar that the item is being pushed onto.

item
The navigation item that is being pushed.

552 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

UINavigationBarDelegate Protocol Reference

Discussion
If pushing an item onto the navigation bar is animated, this method is invoked after the animation
ends; otherwise, it is invoked immediately after the push.

Availability
Available in iPhone OS 2.0 and later.

See Also
– navigationBar:shouldPushItem: (page 553)

Declared In
UINavigationBar.h

navigationBar:shouldPopItem:
Returns a Boolean value indicating whether the navigation bar should pop an item. This method is
optional.

- (BOOL)navigationBar:(UINavigationBar *)navigationBar
shouldPopItem:(UINavigationItem *)item

Parameters

navigationBar
The navigation bar that the item is being popped from.

item
The navigation item that is being popped.

Return Value
YES if the item should be popped; otherwise, NO.

Discussion
Sent to the delegate before popping an item from the navigation bar.

Availability
Available in iPhone OS 2.0 and later.

See Also
– navigationBar:didPopItem: (page 552)

Declared In
UINavigationBar.h

navigationBar:shouldPushItem:
Returns a Boolean value indicating whether the navigation bar should push an item. This method is
optional.

- (BOOL)navigationBar:(UINavigationBar *)navigationBar
shouldPushItem:(UINavigationItem *)item

Parameters

navigationBar
The navigation bar that the item is being pushed onto.

Instance Methods 553
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

UINavigationBarDelegate Protocol Reference

item
The navigation item that is being pushed.

Return Value
YES if the item should be pushed; otherwise, NO.

Discussion
Sent to the delegate before pushing an item onto the navigation bar.

Availability
Available in iPhone OS 2.0 and later.

See Also
– navigationBar:didPushItem: (page 552)

Declared In
UINavigationBar.h

554 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

UINavigationBarDelegate Protocol Reference

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIPickerView.h

Overview

The UIPickerViewDataSource protocol is adopted by a object that mediates the application’s data
model for a UIPickerView object. The data source provides the UIPickerView object with the number
of rows and components it needs to display the data in the picker view.

Tasks

Providing Content for the Picker

– numberOfComponentsInPickerView: (page 555)
Asks the data source to return the number of components in the given picker view.

– pickerView:numberOfRowsInComponent: (page 556)
Asks the data source to return the number of rows in the given component.

Instance Methods

numberOfComponentsInPickerView:
Asks the data source to return the number of components in the given picker view.

Overview 555
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

UIPickerViewDataSource Protocol
Reference

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView

Parameters

pickerView
An object representing the picker view requesting the data.

Return Value
The number of components (or “columns”) that the picker view should display.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

pickerView:numberOfRowsInComponent:
Asks the data source to return the number of rows in the given component.

- (NSInteger)pickerView:(UIPickerView *)pickerView
numberOfRowsInComponent:(NSInteger)component

Parameters

pickerView
An object representing the picker view requesting the data.

component
An index number identifying a component of pickerView.

Return Value
The number of rows displayed by component.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

556 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

UIPickerViewDataSource Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIPickerView.h

Overview

The delegate of a UIPickerView object must adopt this protocol and implement at least some of its
methods to provide the picker view with the data it needs to construct itself.

The delegate implements the required methods of the protocol to return height, width, row title, and
the view content for the rows in each component. It must also provide the content for each component’s
row, either as a string or a view. Typically the delegate implements other optional methods to respond
to new selections or deselections of component rows.

See the UIPickerView class reference for a discussion of components, rows, row content, and row
selection.

Tasks

Setting the Dimensions of the Picker View

– pickerView:rowHeightForComponent: (page 559) optional method
Asks the delegate to return the row height to use for drawing row content. This method is
optional.

– pickerView:widthForComponent: (page 560) optional method
Asks the delegate to return the row width to use for drawing row content. This method is
optional.

Overview 557
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

UIPickerViewDelegate Protocol Reference

Setting the Content of Component Rows
Although they are marked @optional, you must implement either
pickerView:titleForRow:forComponent: (page 559) or
pickerView:viewForRow:forComponent:reusingView: (page 559) to provide the content of
component rows.

– pickerView:titleForRow:forComponent: (page 559) optional method
Asks the delegate to return the title to use for a given row in a given component. This method
is optional.

– pickerView:viewForRow:forComponent:reusingView: (page 559) optional method
Asks the delegate to return the view to use for a given row in a given component. This method
is optional.

Responding to Row Selection

– pickerView:didSelectRow:inComponent: (page 558) optional method
Asks the delegate to respond to the user selecting a specific row in a component of a picker
view. This method is optional.

Instance Methods

pickerView:didSelectRow:inComponent:
Asks the delegate to respond to the user selecting a specific row in a component of a picker view.
This method is optional.

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row
inComponent:(NSInteger)component

Parameters

pickerView
An object representing the picker view requesting the data.

row
An index number identifying a row of component.

component
An index number identifying a component of pickerView.

Discussion
To determine what value the user selected, the delegate uses the row index to access the value at the
corresponding position in the array used to construct the component.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

558 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

UIPickerViewDelegate Protocol Reference

pickerView:rowHeightForComponent:
Asks the delegate to return the row height to use for drawing row content. This method is optional.

- (CGFloat)pickerView:(UIPickerView
*)pickerViewrowHeightForComponent:(NSInteger)component

Parameters

pickerView
The picker view requesting this information.

component
An index number identifying a component of pickerView.

Return Value
A float value indicating the height of the row in points.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

pickerView:titleForRow:forComponent:
Asks the delegate to return the title to use for a given row in a given component. This method is
optional.

- (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row
forComponent:(NSInteger)component

Parameters

pickerView
An object representing the picker view requesting the data.

row
An index number identifying a row of component.

component
An index number identifying a component of pickerView.

Return Value
The string to use as the title of the indicated component row.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

pickerView:viewForRow:forComponent:reusingView:
Asks the delegate to return the view to use for a given row in a given component. This method is
optional.

Instance Methods 559
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

UIPickerViewDelegate Protocol Reference

- (UIView *)pickerView:(UIPickerView *)pickerView viewForRow:(NSInteger)row
forComponent:(NSInteger)component reusingView:(UIView *)view

Parameters

pickerView
An object representing the picker view requesting the data.

row
An index number identifying a row of component.

component
An index number identifying a component of pickerView.

view
A view object that was previously used for this row, but is now hidden and cached by the
picker view.

Return Value
A view object to use as the content of row. The object can be any subclass of UIView, such as UILabel,
UIImageView, or even a custom view.

Discussion
If the previously used view (the view parameter) is adequate, return that. If you return a different
view, the previously used view is released. The picker view centers the returned view in the rectangle
for row.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

pickerView:widthForComponent:
Asks the delegate to return the row width to use for drawing row content. This method is optional.

- (CGFloat)pickerView:(UIPickerView *)pickerView
widthForComponent:(NSInteger)component

Parameters

pickerView
The picker view requesting this information.

component
An index number identifying a component of the picker view.

Return Value
A float value indicating the width of the row in points.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIPickerView.h

560 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

UIPickerViewDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIScrollView.h

Overview

The methods declared by the UIScrollViewDelegateprotocol allow the adopting delegate to respond
to messages from the UIScrollView class and thus respond to, and in some affect, operations such
as scrolling, zooming, deceleration of scrolled content, and scrolling animations.

Tasks

Responding to Scrolling and Dragging

– scrollViewDidScroll: (page 564) optional method
Tells the delegate when the user scrolls the content view within the receiver. This method is
optional.

– scrollViewWillBeginDragging: (page 565) optional method
Tells the delegate when the scroll view is about to start scrolling the content. This method is
optional.

– scrollViewDidEndDragging:willDecelerate: (page 563) optional method
Tells the delegate when dragging ended in the scroll view. This method is optional.

– scrollViewWillScrollToTop: (page 566) optional method
Asks the delegate if the scroll view should scroll to the top of the content. This method is
optional.

– scrollViewDidScrollToTop: (page 564) optional method
Tells the delegate that the scroll view scrolled to the top of the content. This method is optional.

Overview 561
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

– scrollViewWillBeginDecelerating: (page 565) optional method
Tells the delegate that the scroll view is starting to decelerate the scrolling movement. This
method is optional.

– scrollViewDidEndDecelerating: (page 562) optional method
Tells the delegate that the scroll view has ended decelerating the scrolling movement. This
method is optional.

Managing Zooming

– viewForZoomingInScrollView: (page 566) optional method
Asks the delegate for the view to scale when zooming is about to occur in the scroll view. This
method is optional.

– scrollViewDidEndZooming:withView:atScale: (page 563) optional method
Tells the delegate when zooming of the content in the scroll view completed. This method is
optional.

Responding to Scrolling Animations

– scrollViewDidEndScrollingAnimation: (page 563) optional method
Tells the delegate when a scrolling animation in the scroll view concludes. This method is
optional.

Instance Methods

scrollViewDidEndDecelerating:
Tells the delegate that the scroll view has ended decelerating the scrolling movement. This method
is optional.

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView

Parameters

scrollView
The scroll-view object that is decelerating the scrolling of the content view.

Discussion
The scroll view calls this method when the scrolling movement comes to a halt. The
decelerating (page 295) property of UIScrollView controls deceleration.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewWillBeginDecelerating: (page 565)

Declared In
UIScrollView.h

562 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

scrollViewDidEndDragging:willDecelerate:
Tells the delegate when dragging ended in the scroll view. This method is optional.

- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView
willDecelerate:(BOOL)decelerate

Parameters

scrollView
The scroll-view object that finished scrolling the content view.

decelerate
YES if the scrolling movement will continue, but decelerate, after a touch-up gesture during a
dragging operation. If the value is NO, scrolling stops immediately upon touch-up.

Discussion
The scroll view sends this message when the user’s finger touches up after dragging content. The
decelerating (page 295) property of UIScrollView controls deceleration.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewDidScroll: (page 564)
– scrollViewWillBeginDragging: (page 565)
– scrollViewWillBeginDecelerating: (page 565)

Declared In
UIScrollView.h

scrollViewDidEndScrollingAnimation:
Tells the delegate when a scrolling animation in the scroll view concludes. This method is optional.

- (void)scrollViewDidEndScrollingAnimation:(UIScrollView *)scrollView

Parameters

scrollView
The scroll-view object that is performing the scrolling animation.

Discussion
The scroll view calls this method at the end of its implementations of the UIScrollView and
setContentOffset:animated: (page 302) andscrollRectToVisible:animated: (page 301) methods,
but only if animations are requested.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIScrollView.h

scrollViewDidEndZooming:withView:atScale:
Tells the delegate when zooming of the content in the scroll view completed. This method is optional.

Instance Methods 563
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

- (void)scrollViewDidEndZooming:(UIScrollView *)scrollView withView:(UIView *)view
atScale:(float)scale

Parameters

scrollView
The scroll-view object displaying the content view.

view
The view object representing that part of the content view that needs to be scaled.

scale
The scale factor to use for scaling; this value must be between the limits established by the
UIScrollView properties maximumZoomScale (page 297) and minimumZoomScale (page 297).

Discussion
The scroll view also calls this method after any “bounce” animations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewWillBeginZooming: (page 566)

Declared In
UIScrollView.h

scrollViewDidScroll:
Tells the delegate when the user scrolls the content view within the receiver. This method is optional.

- (void)scrollViewDidScroll:(UIScrollView *)scrollView

Parameters

scrollView
The scroll-view object in which the scrolling occurred.

Discussion
The delegate typically implements this method to obtain the change in content offset from scrollView
and draw the affected portion of the content view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewWillBeginDragging: (page 565)
– scrollViewDidEndDragging:willDecelerate: (page 563)

Declared In
UIScrollView.h

scrollViewDidScrollToTop:
Tells the delegate that the scroll view scrolled to the top of the content. This method is optional.

- (void)scrollViewDidScrollToTop:(UIScrollView *)scrollView

564 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

Parameters

scrollView
The scroll-view object that perform the scrolling operation.

Discussion
The scroll view sends this message when it finishes scrolling to the top of the content. It might call it
immediately if the top of the content is already shown. For the scroll-to-top gesture (a tap on the
status bar) to be effective, the scrollsToTop (page 299) property of the UIScrollView must be set to
YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewWillScrollToTop: (page 566)
– scrollViewDidScroll: (page 564)

Declared In
UIScrollView.h

scrollViewWillBeginDecelerating:
Tells the delegate that the scroll view is starting to decelerate the scrolling movement. This method
is optional.

- (void)scrollViewWillBeginDecelerating:(UIScrollView *)scrollView

Parameters

scrollView
The scroll-view object that is decelerating the scrolling of the content view.

Discussion
The scroll view calls this method as the user’s finger touches up as it is moving during a scrolling
operation; the scroll view will continue to move a short distance afterwards. The decelerating (page
295) property of UIScrollView controls deceleration.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewDidEndDecelerating: (page 562)

Declared In
UIScrollView.h

scrollViewWillBeginDragging:
Tells the delegate when the scroll view is about to start scrolling the content. This method is optional.

- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView

Instance Methods 565
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

Parameters

scrollView
The scroll-view object that is about to scroll the content view.

Discussion
The delegate might not receive this message until dragging has occurred over a small distance.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewDidScroll: (page 564)
– scrollViewDidEndDragging:willDecelerate: (page 563)

Declared In
UIScrollView.h

scrollViewWillScrollToTop:
Asks the delegate if the scroll view should scroll to the top of the content. This method is optional.

- (BOOL)scrollViewWillScrollToTop:(UIScrollView *)scrollView

Parameters

scrollView
The scroll-view object requesting this information.

Return Value
YES to permit scrolling to the top of the content, NO to disallow it.

Discussion
If the delegate doesn’t implement this method, YES is assumed. For the scroll-to-top gesture (a tap
on the status bar) to be effective, the scrollsToTop (page 299) property of the UIScrollView must
be set to YES.

See Also
– scrollViewDidScrollToTop: (page 564)
– scrollViewDidScroll: (page 564)

viewForZoomingInScrollView:
Asks the delegate for the view to scale when zooming is about to occur in the scroll view. This method
is optional.

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView

Parameters

scrollView
The scroll-view object displaying the content view.

Return Value
A UIView object that will be scaled as a result of the zooming gesture. Return nil if you don’t want
zooming to occur.

566 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– scrollViewDidEndZooming:withView:atScale: (page 563)

Declared In
UIScrollView.h

Instance Methods 567
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

568 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

UIScrollViewDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UISearchBar.h

Overview

The UISearchBarDelegate protocol defines the optional methods you implement to make a
UISearchBar control functional. A UISearchBar object provides the user interface for a search field
on a bar, but it’s the application’s responsibility to implement the actions when buttons are tapped.
At a minimum, the delegate needs to perform the actual search when text is entered in the text field.

Tasks

Editing Text

– searchBar:textDidChange: (page 570)
Sent to the delegate after the user changed the search text.

– searchBarShouldBeginEditing: (page 571)
Asks the delegate if editing should begin in the specified search bar.

– searchBarTextDidBeginEditing: (page 572)
Sent to the delegate when the user begins editing the search text.

– searchBarShouldEndEditing: (page 572)
Asks the delegate if editing should stop in the specified search bar.

– searchBarTextDidEndEditing: (page 573)
Sent to the delegate when the user finishes editing the search text.

Overview 569
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

UISearchBarDelegate Protocol Reference

Clicking Buttons

– searchBarBookmarkButtonClicked: (page 570)
Sent to the delegate when the bookmark button is tapped.

– searchBarCancelButtonClicked: (page 571)
Sent to the delegate when the cancel button is tapped.

– searchBarSearchButtonClicked: (page 571)
Sent to the delegate when the search button is tapped.

Instance Methods

searchBar:textDidChange:
Sent to the delegate after the user changed the search text.

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText

Parameters

searchBar
The search bar that is being edited.

searchText
The current text in the search text field.

Discussion
This method is also invoked when text is cleared from the search text field.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

searchBarBookmarkButtonClicked:
Sent to the delegate when the bookmark button is tapped.

- (void)searchBarBookmarkButtonClicked:(UISearchBar *)searchBar

Parameters

searchBar
The search bar that was tapped.

Discussion
There is no automatic bookmark support provided by the search bar. It’s the application’s responsibility
to implement this method to perform some action if the bookmark button is tapped by the user.

Availability
Available in iPhone OS 2.0 and later.

570 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

UISearchBarDelegate Protocol Reference

See Also
@property showsBookmarkButton (page 308)

Declared In
UISearchBar.h

searchBarCancelButtonClicked:
Sent to the delegate when the cancel button is tapped.

- (void)searchBarCancelButtonClicked:(UISearchBar *)searchBar

Parameters

searchBar
The search bar that was tapped.

Discussion
Typically, you implement this method to dismiss the search bar.

Availability
Available in iPhone OS 2.0 and later.

See Also
@property showsCancelButton (page 309)

Declared In
UISearchBar.h

searchBarSearchButtonClicked:
Sent to the delegate when the search button is tapped.

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar

Parameters

searchBar
The search bar that was tapped.

Discussion
You should implement this method to begin the search. Use the text (page 309) property of the search
bar to get the text. You can also send becomeFirstResponder (page 280) to the search bar to begin
editing programmatically.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UISearchBar.h

searchBarShouldBeginEditing:
Asks the delegate if editing should begin in the specified search bar.

Instance Methods 571
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

UISearchBarDelegate Protocol Reference

- (BOOL)searchBarShouldBeginEditing:(UISearchBar *)searchBar

Parameters

searchBar
The search bar that is being edited.

Return Value
YES if an editing session should be initiated; otherwise, NO to disallow editing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchBarTextDidBeginEditing: (page 572)
– searchBarShouldEndEditing: (page 572)
– searchBarTextDidEndEditing: (page 573)

Declared In
UISearchBar.h

searchBarShouldEndEditing:
Asks the delegate if editing should stop in the specified search bar.

- (BOOL)searchBarShouldEndEditing:(UISearchBar *)searchBar

Parameters

searchBar
The search bar that is being edited.

Return Value
YES if editing should stop; otherwise, NO if the editing session should continue

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchBarShouldBeginEditing: (page 571)
– searchBarTextDidBeginEditing: (page 572)
– searchBarTextDidEndEditing: (page 573)

Declared In
UISearchBar.h

searchBarTextDidBeginEditing:
Sent to the delegate when the user begins editing the search text.

- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar

Parameters

searchBar
The search bar that is being edited.

572 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

UISearchBarDelegate Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchBarShouldBeginEditing: (page 571)
– searchBarShouldEndEditing: (page 572)
– searchBarTextDidEndEditing: (page 573)

Declared In
UISearchBar.h

searchBarTextDidEndEditing:
Sent to the delegate when the user finishes editing the search text.

- (void)searchBarTextDidEndEditing:(UISearchBar *)searchBar

Parameters

searchBar
The search bar that is being edited.

Discussion
Typically, you implement this method to perform the text-based search.

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchBarShouldBeginEditing: (page 571)
– searchBarTextDidBeginEditing: (page 572)
– searchBarShouldEndEditing: (page 572)

Declared In
UISearchBar.h

Instance Methods 573
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

UISearchBarDelegate Protocol Reference

574 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

UISearchBarDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITabBarController.h

Companion guide: View Controller Programming Guide for iPhone OS

Overview

You use the UITabBarControllerDelegate protocol when you want to augment the behavior of
customizing a tab bar—the user interface for adding, replacing, and removing items from a tab bar.
For example, if you want to perform some action after the user rearranges items on the tab bar. Use
this protocol by setting the delegate of a UITabBarController object to an object conforming to this
protocol.

Read View Controller Programming Guide for iPhone OS to learn how to use this protocol.

Tasks

Customizing Tab Bars

– tabBarController:didSelectViewController: (page 576)
Sent to the delegate after a view controller is selected.

– tabBarController:didEndCustomizingViewControllers:changed: (page 576)
Sent to the delegate after the customizing sheet is dismissed.

Overview 575
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

UITabBarControllerDelegate Protocol
Reference

Instance Methods

tabBarController:didEndCustomizingViewControllers:changed:
Sent to the delegate after the customizing sheet is dismissed.

- (void)tabBarController:(UITabBarController *)tabBarController
didEndCustomizingViewControllers:(NSArray *)viewControllers changed:(BOOL)changed

Parameters

tabBarController
The tab bar controller that is being customized.

viewControllers
The view controllers that changed.

changed
A Boolean value indicating whether items changed on the tab bar. YES if items changed;
otherwise, NO.

Discussion
Use this method to update the view depending on the items the user selected for the tab bar.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBarController.h

tabBarController:didSelectViewController:
Sent to the delegate after a view controller is selected.

- (void)tabBarController:(UITabBarController *)tabBarController
didSelectViewController:(UIViewController *)viewController

Parameters

tabBarController
The tab bar controller containing viewController.

viewController
The view controller that was selected.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITabBarController.h

576 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

UITabBarControllerDelegate Protocol Reference

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITableView.h

Companion guide: Table View Programming Guide for iPhone OS

Overview

The UITableViewDataSource protocol is adopted by a object that mediates the application’s data
model for a UITableView object. The data source provides the table-view object with the information
it needs to construct and modify a table view.

As a representative of the data model, the data source supplies minimal information about the table
view’s appearance, The table-view object’s delegate—an object adopting the UITableViewDelegate
protocol—provides that information.

The required methods of the protocol provide the cells display to be displayed by the table-view as
well as inform the UITableView object about the number of sections and the number of rows in each
section.

The data source may implement optional methods to configure various aspects of the table view and
to insert, delete, and reorder rows. Many methods take NSIndexPath objects as parameters.
UITableView declares a category on NSIndexPath that enables you to get the represented row index
(row (page 36) property) and section index (section (page 36) property), and to construct an index
path from a given row index and section index (indexPathForRow:inSection: (page 36) class
method). (The first index in each index path identifies the section and the next identifies the row.)

Overview 577
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol
Reference

Tasks

Configuring a Table View

– tableView:cellForRowAtIndexPath: (page 581)
Asks the data source for a cell to insert in a particular location of the table view.

– numberOfSectionsInTableView: (page 579) optional method
Asks the data source to return the number of sections in the table view. This method is optional.

– tableView:numberOfRowsInSection: (page 582)
Tells the data source to return the number of rows in a given section of a table view.

– sectionIndexTitlesForTableView: (page 579) optional method
Asks the data source to return the titles for the sections for a table view. This method is optional.

– tableView:sectionForSectionIndexTitle:atIndex: (page 583) optional method
Asks the data source to return the index of the section having the given title and section title
index. This method is optional.

– tableView:titleForHeaderInSection: (page 584) optional method
Asks the data source for the title of the header of the specified section of the table view. This
method is optional.

– tableView:titleForFooterInSection: (page 584) optional method
Asks the data source for the title of the footer of the specified section of the table view. This
method is optional.

Inserting or Deleting Table Rows

– tableView:commitEditingStyle:forRowAtIndexPath: (page 581) optional method
Asks the data source to commit the insertion or deletion of a specified row in the receiver. This
method is optional.

– tableView:canEditRowAtIndexPath: (page 579) optional method
Asks the data source to verify that the given row is editable. This method is optional.

Reordering Table Rows

– tableView:canMoveRowAtIndexPath: (page 580) optional method
Asks the data source whether a given row can be moved to another location in the table view.
This method is optional.

– tableView:moveRowAtIndexPath:toIndexPath: (page 582) optional method
Tells the data source to move a row at a specific location in the table view to another location.
This method is optional.

578 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

Instance Methods

numberOfSectionsInTableView:
Asks the data source to return the number of sections in the table view. This method is optional.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

Parameters

tableView
An object representing the table view requesting this information.

Return Value
The number of sections in tableView.The default value is 1. Values less than 1 are not valid and will
cause an assertion to fail immediately.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:numberOfRowsInSection: (page 582)

Declared In
UITableView.h

sectionIndexTitlesForTableView:
Asks the data source to return the titles for the sections for a table view. This method is optional.

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView

Parameters

tableView
The table-view object requesting this information.

Return Value
An array of strings that serve as the title of sections in the table view and appear in the index list on
the right side of the table view. The table view must be in the plain style (UITableViewStylePlain).
For example, for an alphabetized list, you could return an array containing strings ”A” through ”Z”.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:sectionForSectionIndexTitle:atIndex: (page 583)

Declared In
UITableView.h

tableView:canEditRowAtIndexPath:
Asks the data source to verify that the given row is editable. This method is optional.

Instance Methods 579
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

- (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:(NSIndexPath
*)indexPath

Parameters

tableView
The table-view object requesting this information.

indexPath
An index path locating a row in tableView.

Return Value
YES if the row indicated by indexPath is editable; otherwise, NO.

Discussion
The method permits the delegate to exclude individual rows from being treated as editable. Editable
rows display the insertion or deletion control in their cells. If this method is not implemented, all
rows are assumed to be editable. Rows that are not editable ignore the editingStyle (page 387)
property of a UITableViewCell object and do no indentation for the deletion or insertion control.
Rows that are editable, but that do not want to have an insertion or remove control shown, can return
UITableViewCellEditingStyleNone (page 397) from the
tableView:editingStyleForRowAtIndexPath: (page ?) delegate method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:canMoveRowAtIndexPath:
Asks the data source whether a given row can be moved to another location in the table view. This
method is optional.

- (BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:(NSIndexPath
*)indexPath

Parameters

tableView
The table-view object requesting this information.

indexPath
An index path locating a row in tableView.

Return Value
YES if the row can be moved; otherwise NO.

Discussion
This method allows the delegate to specify that the reordering control for a the specified row not be
shown. By default, the reordering control is shown if the data source implements the
tableView:moveRowAtIndexPath:toIndexPath: (page 582) method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

580 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

tableView:cellForRowAtIndexPath:
Asks the data source for a cell to insert in a particular location of the table view.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
A table-view object requesting the cell.

indexPath
An index path locating a row in tableView.

Return Value
An object inheriting from UITableViewCell that the table view can use for the specified row. An
assertion is raised if you return nil.

Discussion
The returned UITableViewCell object is frequently one that the application reuses for performance
reasons. You should fetch a previously created cell object that is marked for reuse by sending a
dequeueReusableCellWithIdentifier: (page 367) message totableView. The identifier for a reusable
cell object is assigned when the delegate initializes the cell object by calling the
initWithFrame:reuseIdentifier: (page 394) method of UITableViewCell. Various attributes of a
table cell are set automatically based on whether the cell is a separator and on information the data
source provides, such as for accessory views and editing controls.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:commitEditingStyle:forRowAtIndexPath:
Asks the data source to commit the insertion or deletion of a specified row in the receiver. This method
is optional.

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
The table-view object requesting the insertion or deletion.

editingStyle
The cell editing style corresponding to a insertion or deletion requested for the row specified
by indexPath. Possible editing styles are UITableViewCellEditingStyleInsert (page 397)
or UITableViewCellEditingStyleDelete (page 397).

indexPath
An index path locating the row in tableView.

Instance Methods 581
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

Discussion
When users click the insertion (green plus) or deletion (red minus) control of a UITableViewCell
object in the table view, the table view sends this message to the data source, asking it to commit the
change. The data source commits the insertion or deletion by invoking the UITableView methods
insertRowsAtIndexPaths:withRowAnimation: (page 371) or
deleteRowsAtIndexPaths:withRowAnimation: (page 366), as appropriate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:moveRowAtIndexPath:toIndexPath:
Tells the data source to move a row at a specific location in the table view to another location. This
method is optional.

- (void)tableView:(UITableView *)tableView moveRowAtIndexPath:(NSIndexPath
*)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath

Parameters

tableView
The table-view object requesting this action.

fromIndexPath
An index path locating the row to be moved in tableView.

toIndexPath
An index path locating the row in tableView that is the destination of the move.

Discussion
The UITableView object sends this message to the data source when the user presses the reorder
control in fromRow.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:commitEditingStyle:forRowAtIndexPath: (page 581)

Declared In
UITableView.h

tableView:numberOfRowsInSection:
Tells the data source to return the number of rows in a given section of a table view.

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section

Parameters

tableView
The table-view object requesting this information.

582 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

section
An index number identifying a section in tableView.

Return Value
The number of rows in section.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberOfSectionsInTableView: (page 579)

Declared In
UITableView.h

tableView:sectionForSectionIndexTitle:atIndex:
Asks the data source to return the index of the section having the given title and section title index.
This method is optional.

- (NSInteger)tableView:(UITableView *)tableView sectionForSectionIndexTitle:(NSString
*)title atIndex:(NSInteger)index

Parameters

tableView
The table-view object requesting this information.

title
The title as displayed in the section index of tableView.

index
An index number identifying a section title in the array returned by
sectionIndexTitlesForTableView: (page 579).

Return Value
An index number identifying a section.

Discussion
This method is passed the index number and title of an entry in the section index list and should
return the index of the referenced section. To be clear, there are two index numbers in play here: an
index to an section index title in the array returned by sectionIndexTitlesForTableView:, and an
index to a section of the table view; the former is passed in, and the latter is returned. You implement
this method only for table views with a section index list—which can only be table views created in
the plain style (UITableViewStylePlain (page 378)). Note that the array of section titles returned by
sectionIndexTitlesForTableView: can have fewer items than the actual number of sections in the
table view.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberOfSectionsInTableView: (page 579)

Declared In
UITableView.h

Instance Methods 583
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

tableView:titleForFooterInSection:
Asks the data source for the title of the footer of the specified section of the table view. This method
is optional.

- (NSString *)tableView:(UITableView *)tableView
titleForFooterInSection:(NSInteger)section

Parameters

tableView
The table-view object asking for the title.

section
An index number identifying a section of tableView .

Return Value
A string to use as the title of the section footer. If you return nil , the section will have no title.

Discussion
The table view uses a fixed font style for section footer titles. If you want a different font style, return
a custom view (for example, a UILabel object) in the delegate method
tableView:viewForFooterInSection: (page ?) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:titleForHeaderInSection: (page 584)

Declared In
UITableView.h

tableView:titleForHeaderInSection:
Asks the data source for the title of the header of the specified section of the table view. This method
is optional.

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section

Parameters

tableView
The table-view object asking for the title.

section
An index number identifying a section of tableView .

Return Value
A string to use as the title of the section header. If you return nil , the section will have no title.

Discussion
The table view uses a fixed font style for section header titles. If you want a different font style, return
a custom view (for example, a UILabel object) in the delegate method
tableView:viewForHeaderInSection: (page ?) instead.

Availability
Available in iPhone OS 2.0 and later.

584 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

See Also
– tableView:titleForFooterInSection: (page 584)

Declared In
UITableView.h

Instance Methods 585
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

586 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

UITableViewDataSource Protocol Reference

Conforms to: NSObject (NSObject)
UIScrollViewDelegate

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITableView.h

Companion guide: Table View Programming Guide for iPhone OS

Overview

The delegate of a UITableView object must adopt the UITableViewDelegate protocol. Optional
methods of the protocol allow the delegate to manage selections, configure section headings and
footers, help to delete and reorder cells, and perform other actions.

Many methods of UITableViewDelegate take NSIndexPath objects as parameters and return values.
UITableView declares a category on NSIndexPath that enables you to get the represented row index
(row (page 36) property) and section index (section (page 36) property), and to construct an index
path from a given row index and section index (indexPathForRow:inSection: (page 36) method).
Because rows are located within their sections, you usually must evaluate the section index number
before you can identify the row by its index number.

Tasks

Providing Table Cells for the Table View

– tableView:heightForRowAtIndexPath: (page 593) optional method
Asks the delegate for the height to use for a row in a specified location. This method is optional.

Overview 587
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

– tableView:indentationLevelForRowAtIndexPath: (page 593) optional method
Asks the delegate to return the level of indentation for a row in a given section. This method
is optional.

– tableView:willDisplayCell:forRowAtIndexPath: (page 596) optional method
Tells the delegate the table view is about to draw a cell for a particular row. This method is
optional.

Managing Accessory Views

– tableView:accessoryTypeForRowWithIndexPath: (page 589) optional method
Asks the delegate for the type of standard accessory view to use as a disclosure control for the
specified row. This method is optional.

– tableView:accessoryButtonTappedForRowWithIndexPath: (page 589) optional method
Tells the delegate that the user tapped the accessory (disclosure) view associated with a given
row. This method is optional.

Managing Selections

– tableView:willSelectRowAtIndexPath: (page 597) optional method
Tells the delegate that a specified row is about to be selected. This method is optional.

– tableView:didSelectRowAtIndexPath: (page 590) optional method
Tells the delegate that the specified row is now selected. This method is optional.

Modifying the Header and Footer of Sections

– tableView:viewForHeaderInSection: (page 595) optional method
Asks the delegate for a view object to display in the header of the specified section of the table
view. This method is optional.

– tableView:viewForFooterInSection: (page 595) optional method
Asks the delegate for a view object to display in the footer of the specified section of the table
view. This method is optional.

– tableView:heightForHeaderInSection: (page 592) optional method
Asks the delegate for the height to use for the header of a particular section. This method is
optional.

– tableView:heightForFooterInSection: (page 591) optional method
Asks the delegate for the height to use for the footer of a particular section. This method is
optional.

Editing Table Rows

– tableView:willBeginEditingRowAtIndexPath: (page 596) optional method
Tells the delegate that the table view is about to go into editing mode. This method is optional.

– tableView:didEndEditingRowAtIndexPath: (page 590) optional method
Tells the delegate that the table view has left editing mode. This method is optional.

588 Tasks
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

– tableView:editingStyleForRowAtIndexPath: (page 591) optional method
Asks the delegate for the editing style of a row at a particular location in a table view. This
method is optional.

– tableView:shouldIndentWhileEditingRowAtIndexPath: (page 594)
Asks the delegate whether the background of the specified row should be indented while the
table view is in editing mode.

Reordering Table Rows

– tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath: (page 594)
Asks the delegate to return a new index path to retarget a proposed move of a row.

Instance Methods

tableView:accessoryButtonTappedForRowWithIndexPath:
Tells the delegate that the user tapped the accessory (disclosure) view associated with a given row.
This method is optional.

- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
The table-view object informing the delegate of this event.

indexPath
An index path locating the row in tableView.

Discussion
The delegate usually responds to the the tap on the disclosure button (the accessory view) by displaying
a new view related to the selected row.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:accessoryTypeForRowWithIndexPath:
Asks the delegate for the type of standard accessory view to use as a disclosure control for the specified
row. This method is optional.

- (UITableViewCellAccessoryType)tableView:(UITableView *)tableView
accessoryTypeForRowWithIndexPath:(NSIndexPath *)indexPath

Instance Methods 589
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Parameters

tableView
The table-view object requesting the accessory-view type.

indexPath
An index path locating the row in tableView.

Return Value
A constant identifying a type of standard accessory view. For details, see the “Constants” section in
the class reference for the UITableViewCell class.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:accessoryButtonTappedForRowWithIndexPath: (page 589)

Declared In
UITableView.h

tableView:didEndEditingRowAtIndexPath:
Tells the delegate that the table view has left editing mode. This method is optional.

- (void)tableView:(UITableView *)tableView didEndEditingRowAtIndexPath:(NSIndexPath
*)indexPath

Parameters

tableView
The table-view object providing this information.

indexPath
An index path locating the row in tableView.

Discussion
This method is called when the table view exits editing mode after having been put into the mode by
the user swiping across the row identified by indexPath. (As a result, a Delete button appears in the
row.) When entering editing mode in that way, the table view sends a
tableView:willBeginEditingRowAtIndexPath: (page 596) message to the delegate to allow it to
adjusts its user interface. In editing mode the table displays the insertion, deletion, and reordering
controls that have been associated with rows.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:didSelectRowAtIndexPath:
Tells the delegate that the specified row is now selected. This method is optional.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath

590 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Parameters

tableView
A table-view object informing the delegate about the new row selection.

indexPath
An index path locating the new selected row in tableView.

Discussion
The delegate handles selections in this method. One of the things it can do is exclusively assign the
check-mark image (UITableViewCellAccessoryCheckmark (page 398)) to one row in a section
(radio-list style). See “Managing Selections” in Table View Programming Guide for iPhone OS for further
information (and code examples) related to this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:willSelectRowAtIndexPath: (page 597)

Declared In
UITableView.h

tableView:editingStyleForRowAtIndexPath:
Asks the delegate for the editing style of a row at a particular location in a table view. This method
is optional.

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
The table-view object requesting this information.

indexPath
An index path locating a row in tableView.

Return Value
The editing style of the cell for the row identified by indexPath.

Discussion
This method allows the delegate to customize the editing style of the cell located atindexPath. If the
delegate does not implement this method and the UITableViewCell object is editable (that is, it has
its editing (page 386) property set to YES), the cell has the
UITableViewCellEditingStyleDelete (page 397) style set for it.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:heightForFooterInSection:
Asks the delegate for the height to use for the footer of a particular section. This method is optional.

Instance Methods 591
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

- (CGFloat)tableView:(UITableView *)tableView
heightForFooterInSection:(NSInteger)section

Parameters

tableView
The table-view object requesting this information.

section
An index number identifying a section of tableView .

Return Value
A floating-point value that specifies the height (in points) of the footer for section.

Discussion
This method allows the delegate to specify section footers with varying heights. The table view does
not call this method if it was created in a plain style (UITableViewStylePlain (page 378)).

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath: (page 594)
– tableView:viewForFooterInSection: (page 595)

Declared In
UITableView.h

tableView:heightForHeaderInSection:
Asks the delegate for the height to use for the header of a particular section. This method is optional.

- (CGFloat)tableView:(UITableView *)tableView
heightForHeaderInSection:(NSInteger)section

Parameters

tableView
The table-view object requesting this information.

section
An index number identifying a section of tableView .

Return Value
A floating-point value that specifies the height (in points) of the header for section.

Discussion
This method allows the delegate to specify section headers with varying heights. The table view does
not call this method if it was created in a plain style (UITableViewStylePlain (page 378)).

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:willDisplayCell:forRowAtIndexPath: (page 596)
– tableView:viewForHeaderInSection: (page 595)

592 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Declared In
UITableView.h

tableView:heightForRowAtIndexPath:
Asks the delegate for the height to use for a row in a specified location. This method is optional.

- (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath
*)indexPath

Parameters

tableView
The table-view object requesting this information.

indexPath
An index path that locates a row in tableView.

Return Value
A floating-point value that specifies the height (in points) that row should be.

Discussion
The method allows the delegate to specify rows with varying heights.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:indentationLevelForRowAtIndexPath:
Asks the delegate to return the level of indentation for a row in a given section. This method is optional.

- (NSInteger)tableView:(UITableView *)tableView
indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
The table-view object requesting this information.

indexPath
An index path locating the row in tableView.

Return Value
Returns the depth of the specified row to show its hierarchical position in the section.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

Instance Methods 593
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

tableView:shouldIndentWhileEditingRowAtIndexPath:
Asks the delegate whether the background of the specified row should be indented while the table
view is in editing mode.

- (BOOL)tableView:(UITableView *)tableView
shouldIndentWhileEditingRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
The table-view object requesting this information.

indexPath
An index-path object locating the row in its section.

Return Value
YES if the background of the row should be indented, otherwise NO.

Discussion
If the delegate does not implement this method, the default is YES. This method is unrelated to
tableView:indentationLevelForRowAtIndexPath: (page 593).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath:
Asks the delegate to return a new index path to retarget a proposed move of a row.

- (NSIndexPath *)tableView:(UITableView *)tableView
targetIndexPathForMoveFromRowAtIndexPath:(NSIndexPath *)sourceIndexPath
toProposedIndexPath:(NSIndexPath *)proposedDestinationIndexPath

Parameters

tableView
The table-view object that is requesting this information.

sourceIndexPath
An index-path object identifying the original location of a row (in its section) that is being
dragged.

proposedDestinationIndexPath
An index-path object identifying the currently proposed destination of the row being dragged.

Return Value
An index-path object locating the desired row destination for the move operation. Return
proposedDestinationIndexPath if that location is suitable.

Discussion
This method allows customization of the target row for a particular row as it is being moved up and
down a table view. As the dragged row hovers over a another row, the destination row slides
downward to visually make room for the relocation; this is the location identified by
proposedDestinationIndexPath.

594 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:viewForFooterInSection:
Asks the delegate for a view object to display in the footer of the specified section of the table view.
This method is optional.

- (UIView *)tableView:(UITableView *)tableView
viewForFooterInSection:(NSInteger)section

Parameters

tableView
The table-view object asking for the view object.

section
An index number identifying a section of tableView .

Return Value
A view object to be displayed in the footer of section .

Discussion
The returned object, for example, can be a UILabel or UIImageView object. The table view automatically
adjusts the height of the section footer to accommodate the returned view object. The table view does
not call this method if it was created in a plain style (UITableViewStylePlain (page 378)).

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath: (page 594)
– tableView:heightForFooterInSection: (page 591)

Declared In
UITableView.h

tableView:viewForHeaderInSection:
Asks the delegate for a view object to display in the header of the specified section of the table view.
This method is optional.

- (UIView *)tableView:(UITableView *)tableView
viewForHeaderInSection:(NSInteger)section

Parameters

tableView
The table-view object asking for the view object.

section
An index number identifying a section of tableView .

Instance Methods 595
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Return Value
A view object to be displayed in the header of section .

Discussion
The returned object, for example, can be a UILabel or UIImageView object. The table view automatically
adjusts the height of the section header to accommodate the returned view object. The table view
does not call this method if it was created in a plain style (UITableViewStylePlain (page 378)).

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:willDisplayCell:forRowAtIndexPath: (page 596)
– tableView:heightForHeaderInSection: (page 592)

Declared In
UITableView.h

tableView:willBeginEditingRowAtIndexPath:
Tells the delegate that the table view is about to go into editing mode. This method is optional.

- (void)tableView:(UITableView *)tableView
willBeginEditingRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
The table-view object providing this information.

indexPath
An index path locating the row in tableView.

Discussion
This method is called when the user swipes horizontally across a row; as a consequence, the table
view sets its editing (page 362) property to YES (thereby entering editing mode) and displays a Delete
button in the row identified by indexPath. In editing mode the table view displays the insertion,
deletion, and reordering controls that have been associated with rows. This method gives the delegate
an opportunity to adjust the application’s user interface to editing mode. When the table exits editing
mode (for example, the user taps the Delete button), the table view calls
tableView:didEndEditingRowAtIndexPath: (page 590).

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITableView.h

tableView:willDisplayCell:forRowAtIndexPath:
Tells the delegate the table view is about to draw a cell for a particular row. This method is optional.

- (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell
forRowAtIndexPath:(NSIndexPath *)indexPath

596 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Parameters

tableView
The table-view object informing the delegate of this impending event.

cell
A table-view cell object that tableView is going to use when drawing the row.

indexPath
An index path locating the row in tableView.

Discussion
A table view sends this message to its delegate just before it uses cell to draw a row, thereby
permitting the delegate to customize the cell object before it is displayed. This method gives the
delegate a chance to override state-based properties set earlier by the table view, such as selection
and background color. After the delegate returns, the table view sets only the alpha and frame
properties, and then only when animating rows as they slide in or out.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:cellForRowAtIndexPath: (page 581) (UITableViewDataSource)
– prepareForReuse (page 395) (UITableViewCell)

Declared In
UITableView.h

tableView:willSelectRowAtIndexPath:
Tells the delegate that a specified row is about to be selected. This method is optional.

- (NSIndexPath *)tableView:(UITableView *)tableView
willSelectRowAtIndexPath:(NSIndexPath *)indexPath

Parameters

tableView
A table-view object informing the delegate about the impending selection.

indexPath
An index path locating the row in tableView.

Return Value
An index-path object that confirms or alters the selected row. Return an NSIndexPath object other
than indexPath if you want another cell to be selected. Return nil if you don’t want the row selected.

Discussion
This method is not called until users touch a row and then lift their finger; the row isn’t selected until
then, although it is highlighted on touch-down. You can use UITableViewCellSelectionStyleNone
to disable the appearance of the cell highlight on touch-down.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tableView:didSelectRowAtIndexPath: (page 590)
– tableView:shouldIndentWhileEditingRowAtIndexPath: (page 594)

Instance Methods 597
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Declared In
UITableView.h

598 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

UITableViewDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITextField.h

Overview

The UITextFieldDelegate protocol defines the messages sent to a text field delegate as part of the
sequence of editing its text. All of the methods of this protocol are optional.

Tasks

Managing Editing

– textFieldShouldBeginEditing: (page 601) optional method
Asks the delegate if editing should begin in the specified text field. This method is optional.

– textFieldDidBeginEditing: (page 600) optional method
Tells the delegate that editing began for the specified text field. This method is optional.

– textFieldShouldEndEditing: (page 602) optional method
Asks the delegate if editing should stop in the specified text field. This method is optional.

– textFieldDidEndEditing: (page 601) optional method
Tells the delegate that editing stopped for the specified text field. This method is optional.

Editing the Text Field’s Text

– textField:shouldChangeCharactersInRange:replacementString: (page 600) optional method
Asks the delegate if the specified text should be changed. This method is optional.

– textFieldShouldClear: (page 602) optional method
Asks the delegate if the text field’s current contents should be removed. This method is optional.

Overview 599
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

UITextFieldDelegate Protocol Reference

– textFieldShouldReturn: (page 603) optional method
Asks the delegate if the text field should process the pressing of the return button. This method
is optional.

Instance Methods

textField:shouldChangeCharactersInRange:replacementString:
Asks the delegate if the specified text should be changed. This method is optional.

- (BOOL)textField:(UITextField *)textField
shouldChangeCharactersInRange:(NSRange)range replacementString:(NSString *)string

Parameters

textField
The text field containing the text.

range
The range of characters to be replaced

string
The replacement string.

Return Value
YES if the specified text range should be replaced; otherwise, NO to keep the old text.

Discussion
The text field calls this method whenever the user types a new character in the text field or deletes
an existing character.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textFieldDidBeginEditing:
Tells the delegate that editing began for the specified text field. This method is optional.

- (void)textFieldDidBeginEditing:(UITextField *)textField

Parameters

textField
The text field for which an editing session began.

Discussion
This method notifies the delegate that the specified text field just became the first responder. You can
use this method to update your delegate’s state information. For example, you might use this method
to show overlay views that should be visible while editing.

Implementation of this method by the delegate is optional.

600 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

UITextFieldDelegate Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textFieldDidEndEditing:
Tells the delegate that editing stopped for the specified text field. This method is optional.

- (void)textFieldDidEndEditing:(UITextField *)textField

Parameters

textField
The text field for which editing ended.

Discussion
This method is called after the text field resigns its first responder status. You can use this method to
update your delegate’s state information. For example, you might use this method to hide overlay
views that should be visible only while editing.

Implementation of this method by the delegate is optional.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textFieldShouldBeginEditing:
Asks the delegate if editing should begin in the specified text field. This method is optional.

- (BOOL)textFieldShouldBeginEditing:(UITextField *)textField

Parameters

textField
The text field for which editing is about to begin.

Return Value
YES if an editing session should be initiated; otherwise, NO to disallow editing.

Discussion
When the user performs an action that would normally initiate an editing session, the text field calls
this method first to see if editing should actually proceed. In most circumstances, you would simply
return YES from this method to allow editing to proceed.

Implementation of this method by the delegate is optional. If it is not present, editing proceeds as if
this method had returned YES.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 601
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

UITextFieldDelegate Protocol Reference

Declared In
UITextField.h

textFieldShouldClear:
Asks the delegate if the text field’s current contents should be removed. This method is optional.

- (BOOL)textFieldShouldClear:(UITextField *)textField

Parameters

textField
The text field containing the text.

Return Value
YES if the text field’s contents should be cleared; otherwise, NO.

Discussion
The text field calls this method in response to the user pressing the built-in clear button. (This button
is not shown by default but can be enabled by changing the value in the clearButtonMode (page 409)
property of the text field.) This method is also called when editing begins and the
clearsOnBeginEditing (page 410) property of the text field is set to YES.

Implementation of this method by the delegate is optional. If it is not present, the text is cleared as if
this method had returned YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textFieldShouldEndEditing:
Asks the delegate if editing should stop in the specified text field. This method is optional.

- (BOOL)textFieldShouldEndEditing:(UITextField *)textField

Parameters

textField
The text field for which editing is about to end.

Return Value
YES if editing should stop; otherwise, NO if the editing session should continue

Discussion
This method is called when the text field is asked to resign the first responder status. This might occur
when your application asks the text field to resign focus or when the user tries to change the editing
focus to another control. Before the focus actually changes, however, the text field calls this method
to give your delegate a chance to decide whether it should.

Normally, you would return YES from this method to allow the text field to resign the first responder
status. You might return NO, however, in cases where your delegate detects invalid contents in the
text field. By returning NO, you could prevent the user from switching to another control until the text
field contained a valid value.

602 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

UITextFieldDelegate Protocol Reference

Note: If you use this method to validate the contents of the text field, you might also want to provide
feedback to that effect using an overlay view. For example, you could temporarily display a small
icon indicating the text was invalid and needs to be corrected. For more information about adding
overlays to text fields, see the methods of UITextField.

Be aware that this method provides only a recommendation about whether editing should end. Even
if you return NO from this method, it is possible that editing might still end. For example, this might
happen when the text field is forced to resign the first responder status by being removed from its
parent view or window.

Implementation of this method by the delegate is optional. If it is not present, the first responder
status is resigned as if this method had returned YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

textFieldShouldReturn:
Asks the delegate if the text field should process the pressing of the return button. This method is
optional.

- (BOOL)textFieldShouldReturn:(UITextField *)textField

Parameters

textField
The text field whose return button was pressed.

Return Value
YES if the text field should implement its default behavior for the return button; otherwise, NO.

Discussion
The text field calls this method whenever the user taps the return button. You can use this method
to implement any custom behavior when the button is tapped.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextField.h

Instance Methods 603
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

UITextFieldDelegate Protocol Reference

604 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

UITextFieldDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITextInputTraits.h

Overview

The UITextInputTraits protocol defines features that are associated with keyboard input. All objects
that support keyboard input must adopt this protocol in order to interact properly with the text input
management system. The UITextField and UITextView classes already support this protocol.

Tasks

Managing the Keyboard Behavior

autocapitalizationType (page 606) property
The auto-capitalization style for the text object.

autocorrectionType (page 606) property
The auto-correction style for the text object.

enablesReturnKeyAutomatically (page 606) property
A Boolean value indicating whether the return key is automatically enabled when text is entered
by the user.

keyboardAppearance (page 607) property
The appearance style of the keyboard that is associated with the text object

keyboardType (page 607) property
The keyboard style associated with the text object.

returnKeyType (page 607) property
The contents of the “return” key.

Overview 605
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

secureTextEntry (page 608) property
Identifies whether the text object should hide the text being entered.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C 2.0 Programming Language.

autocapitalizationType
The auto-capitalization style for the text object.

@property(nonatomic) UITextAutocapitalizationType autocapitalizationType

Discussion
This property determines at what times the Shift key is automatically pressed, thereby making the
typed character a capital letter. The default value for this property is
UITextAutocapitalizationTypeNone.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextInputTraits.h

autocorrectionType
The auto-correction style for the text object.

@property(nonatomic) UITextAutocorrectionType autocorrectionType

Discussion
This property determines whether auto-correction is enabled or disabled during typing. With
auto-correction enabled, the text object tracks unknown words and suggests a more suitable
replacement candidate to the user, replacing the typed text automatically unless the user explicitly
overrides the action.

The default value for this property is UITextAutocorrectionTypeDefault, which for most input
methods results in auto-correction being enabled.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextInputTraits.h

enablesReturnKeyAutomatically
A Boolean value indicating whether the return key is automatically enabled when text is entered by
the user.

606 Properties
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

@property(nonatomic) BOOL enablesReturnKeyAutomatically

Discussion
The default value for this property is NO. If you set it to YES, the keyboard disables the return key
when the text entry area contains no text. As soon as the user enters any text, the return key is
automatically enabled.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextInputTraits.h

keyboardAppearance
The appearance style of the keyboard that is associated with the text object

@property(nonatomic) UIKeyboardAppearance keyboardAppearance

Discussion
This property lets you distinguish between the default text entry inside your application and text
entry inside an alert panel. The default value for this property is UIKeyboardAppearanceDefault.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextInputTraits.h

keyboardType
The keyboard style associated with the text object.

@property(nonatomic) UIKeyboardType keyboardType

Discussion
Text objects can be targeted for specific types of input, such as plain text, email, numeric entry, and
so on. The keyboard style identifies what keys are available on the keyboard and which ones appear
by default. The default value for this property is UIKeyboardTypeDefault.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextInputTraits.h

returnKeyType
The contents of the “return” key.

Properties 607
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

@property(nonatomic) UIReturnKeyType returnKeyType

Discussion
Setting this property to a different key type changes the title of the key and typically results in the
keyboard being dismissed when it is pressed. The default value for this property is
UIReturnKeyDefault.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextInputTraits.h

secureTextEntry
Identifies whether the text object should hide the text being entered.

@property(nonatomic, getter=isSecureTextEntry) BOOL secureTextEntry

Discussion
This property is set to NO by default. Setting this property to YES creates a password-style text object,
which hides the text being entered.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextInputTraits.h

Constants

UITextAutocapitalizationType
The auto-capitalization behavior of a text-based view.

typedef enum {
UITextAutocapitalizationTypeNone,
UITextAutocapitalizationTypeWords,
UITextAutocapitalizationTypeSentences,
UITextAutocapitalizationTypeAllCharacters,

} UITextAutocapitalizationType;

Constants
UITextAutocapitalizationTypeNone

Do not capitalize any text automatically.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

608 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

UITextAutocapitalizationTypeWords
Capitalize the first letter of each word automatically.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UITextAutocapitalizationTypeSentences
Capitalize the first letter of each sentence automatically.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UITextAutocapitalizationTypeAllCharacters
Capitalize all characters automatically.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

Discussion
If the script system does not support capitalization, the keyboard input method ignores these constants.

UITextAutocorrectionType
The auto-correction behavior of a text-based view.

typedef enum {
UITextAutocorrectionTypeDefault,
UITextAutocorrectionTypeNo,
UITextAutocorrectionTypeYes,

} UITextAutocorrectionType;

Constants
UITextAutocorrectionTypeDefault

Choose an appropriate auto-correction behavior for the current script system.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UITextAutocorrectionTypeNo
Disable auto-correction behavior.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UITextAutocorrectionTypeYes
Enable auto-correction behavior.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

Discussion
If the script system does not support inline auto-correction, the keyboard input method ignores these
constants.

UIKeyboardType
The type of keyboard to display for a given text-based view.

Constants 609
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

typedef enum {
UIKeyboardTypeDefault,
UIKeyboardTypeASCIICapable,
UIKeyboardTypeNumbersAndPunctuation,
UIKeyboardTypeURL,
UIKeyboardTypeNumberPad,
UIKeyboardTypePhonePad,
UIKeyboardTypeNamePhonePad,
UIKeyboardTypeEmailAddress,

} UIKeyboardType;

Constants
UIKeyboardTypeDefault

Use the default keyboard for the current input method.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardTypeASCIICapable
Use a keyboard that displays standard ASCII characters.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardTypeNumbersAndPunctuation
Use the numbers and punctuation keyboard.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardTypeURL
Use a keyboard optimized for URL entry. This type features “.”, “/”, and “.com” prominently.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardTypeNumberPad
Use a numeric keypad designed for PIN entry. This type features the numbers 0 through 9
prominently.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardTypePhonePad
Use a keypad designed for entering telephone numbers. This type features the numbers 0
through 9 and the “*” and “#” characters prominently.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardTypeNamePhonePad
Use a keypad designed for entering a person’s name or phone number.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardTypeEmailAddress
Use a keyboard optimized for specifying email addresses. This type features the “@”, “.” and
space characters prominently.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

610 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

UIKeyboardAppearance
The appearance of the keyboard used by a text-based view.

typedef enum {
UIKeyboardAppearanceDefault,
UIKeyboardAppearanceAlert,

} UIKeyboardAppearance;

Constants
UIKeyboardAppearanceDefault

Use the default keyboard appearance for the current input method.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIKeyboardAppearanceAlert
Use a keyboard that is suitable for an alert panel.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyType
The text string displayed in the “return” key of a keyboard.

typedef enum {
UIReturnKeyDefault,
UIReturnKeyGo,
UIReturnKeyGoogle,
UIReturnKeyJoin,
UIReturnKeyNext,
UIReturnKeyRoute,
UIReturnKeySearch,
UIReturnKeySend,
UIReturnKeyYahoo,
UIReturnKeyDone,
UIReturnKeyEmergencyCall,

} UIReturnKeyType;

Constants
UIReturnKeyDefault

Set the text of the return key to “return”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyGo
Set the text of the return key to “Go”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyGoogle
Set the text of the return key to “Google”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

Constants 611
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

UIReturnKeyJoin
Set the text of the return key to “Join”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyNext
Set the text of the return key to “Next”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyRoute
Set the text of the return key to “Route”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeySearch
Set the text of the return key to “Search”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeySend
Set the text of the return key to “Send”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyYahoo
Set the text of the return key to “Yahoo”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyDone
Set the text of the return key to “Done”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

UIReturnKeyEmergencyCall
Set the text of the return key to “Emergency Call”.

Available in iPhone OS 2.0 and later.

Declared in UITextInputTraits.h

612 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

UITextInputTraits Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UITextView.h

Overview

The UITextViewDelegate protocol defines a set of optional methods you can use to receive
editing-related messages for UITextView objects. All of the methods in this protocol are optional.
You can use them in situations where you might want to adjust the text being edited (such as in the
case of a spell checker program) or modify the intended insertion point.

Tasks

Responding to Editing Notifications

– textViewShouldBeginEditing: (page 616) optional method
Asks the delegate if editing should begin in the specified text view. This method is optional.

– textViewDidBeginEditing: (page 615) optional method
Tells the delegate that editing of the specified text view has begun. This method is optional.

– textViewShouldEndEditing: (page 617)
Asks the delegate if editing should stop in the specified text view.

– textViewDidEndEditing: (page 616) optional method
Tells the delegate that editing of the specified text view has ended. This method is optional.

Overview 613
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

UITextViewDelegate Protocol Reference

Responding to Text Changes

– textView:shouldChangeTextInRange:replacementText: (page 614) optional method
Asks the delegate whether the specified text should be replaced in the text view. This method
is optional.

– textViewDidChange: (page 615) optional method
Tells the delegate that the text or attributes in the specified text view changed. This method is
optional.

Responding to Selection Changes

– textViewDidChangeSelection: (page 615) optional method
Tells the delegate that the text selection changed in the specified text view. This method is
optional.

Instance Methods

textView:shouldChangeTextInRange:replacementText:
Asks the delegate whether the specified text should be replaced in the text view. This method is
optional.

- (BOOL)textView:(UITextView *)textView shouldChangeTextInRange:(NSRange)range
replacementText:(NSString *)text

Parameters

textView
The text view containing the changes.

range
The current selection range. The length of the range is always 0, so this range reflects the current
insertion point.

text
The text to insert.

Return Value
YES if the old text should be replaced by the new text; NO if the replacement operation should be
aborted.

Discussion
The text view calls this method whenever the user types a new character or deletes an existing
character. Implementation of this method is optional. You can use this method to replace text before
it is committed to the text view storage. For example, a spell checker might use this method to replace
a misspelled word with the correct spelling.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

614 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

UITextViewDelegate Protocol Reference

textViewDidBeginEditing:
Tells the delegate that editing of the specified text view has begun. This method is optional.

- (void)textViewDidBeginEditing:(UITextView *)textView

Parameters

textView
The text view in which editing began.

Discussion
Implementation of this method is optional. A text view sends this message to its delegate immediately
after the user initiates editing in a text view and before any changes are actually made. You can use
this method to set up any editing-related data structures and generally prepare your delegate to
receive future editing messages.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

textViewDidChange:
Tells the delegate that the text or attributes in the specified text view changed. This method is optional.

- (void)textViewDidChange:(UITextView *)textView

Parameters

textView
The text view containing the changes.

Discussion
Implementation of this method is optional.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

textViewDidChangeSelection:
Tells the delegate that the text selection changed in the specified text view. This method is optional.

- (void)textViewDidChangeSelection:(UITextView *)textView

Parameters

textView
The text view whose selection changed.

Discussion
Implementation of this method is optional. You can use the selectedRange (page 426) property of
the text view to get the new selection.

Instance Methods 615
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

UITextViewDelegate Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

textViewDidEndEditing:
Tells the delegate that editing of the specified text view has ended. This method is optional.

- (void)textViewDidEndEditing:(UITextView *)textView

Parameters

textView
The text view in which editing ended.

Discussion
Implementation of this method is optional. A text view sends this message to its delegate after it
closes out any pending edits and resigns its first responder status. You can use this method to tear
down any data structures or change any state information that you set when editing began.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

textViewShouldBeginEditing:
Asks the delegate if editing should begin in the specified text view. This method is optional.

- (BOOL)textViewShouldBeginEditing:(UITextView *)textView

Parameters

textView
The text view for which editing is about to begin.

Return Value
YES if an editing session should be initiated; otherwise, NO to disallow editing.

Discussion
When the user performs an action that would normally initiate an editing session, the text view calls
this method first to see if editing should actually proceed. In most circumstances, you would simply
return YES from this method to allow editing to proceed.

Implementation of this method by the delegate is optional. If it is not present, editing proceeds as if
this method had returned YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

616 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

UITextViewDelegate Protocol Reference

textViewShouldEndEditing:
Asks the delegate if editing should stop in the specified text view.

- (BOOL)textViewShouldEndEditing:(UITextView *)textView

Parameters

textView
The text view for which editing is about to end.

Return Value
YES if editing should stop; otherwise, NO if the editing session should continue

Discussion
This method is called when the text view is asked to resign the first responder status. This might
occur when the user tries to change the editing focus to another control. Before the focus actually
changes, however, the text view calls this method to give your delegate a chance to decide whether
it should.

Normally, you would return YES from this method to allow the text view to resign the first responder
status. You might return NO, however, in cases where your delegate wants to validate the contents of
the text view. By returning NO, you could prevent the user from switching to another control until
the text view contained a valid value.

Be aware that this method provides only a recommendation about whether editing should end. Even
if you return NO from this method, it is possible that editing might still end. For example, this might
happen when the text view is forced to resign the first responder status by being removed from its
parent view or window.

Implementation of this method by the delegate is optional. If it is not present, the first responder
status is resigned as if this method had returned YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UITextView.h

Instance Methods 617
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

UITextViewDelegate Protocol Reference

618 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

UITextViewDelegate Protocol Reference

Framework /System/Library/Frameworks/UIKit.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: UIWebView.h

Overview

The UIWebViewDelegateprotocol defines methods that a delegate of a UIWebView object can optionally
implement to intervene when web content is loaded or the scale changes.

Tasks

Loading Content

– webView:shouldStartLoadWithRequest:navigationType: (page 620) optional method
Sent before a web view begins loading content. This method is optional.

– webViewDidStartLoad: (page 621) optional method
Sent after a web view starts loading content. This method is optional.

– webViewDidFinishLoad: (page 621) optional method
Sent after a web view finishes loading content. This method is optional.

– webView:didFailLoadWithError: (page 620) optional method
Sent if a web view failed to load content. This method is optional.

Overview 619
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

UIWebViewDelegate Protocol Reference

Instance Methods

webView:didFailLoadWithError:
Sent if a web view failed to load content. This method is optional.

- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error

Parameters

webView
The web view that failed to load content.

error
The error that occurred during loading.

Availability
Available in iPhone OS 2.0 and later.

See Also
– webView:shouldStartLoadWithRequest: (page 620)
– webViewDidStartLoad: (page 621)
– webViewDidFinishLoad: (page 621)

Declared In
UIWebView.h

webView:shouldStartLoadWithRequest:navigationType:
Sent before a web view begins loading content. This method is optional.

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:(NSURLRequest
*)request navigationType:(UIWebViewNavigationType)navigationType

Parameters

webView
The web view that is about to load content.

request
The content location.

navigationType
The type of user action that started the load request.

Return Value
YES if the web view should begin loading content; otherwise, NO .

Availability
Available in iPhone OS 2.0 and later.

See Also
– webViewDidStartLoad: (page 621)
– webViewDidFinishLoad: (page 621)
– webView:didFailLoadWithError: (page 620)

620 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

UIWebViewDelegate Protocol Reference

Declared In
UIWebView.h

webViewDidFinishLoad:
Sent after a web view finishes loading content. This method is optional.

- (void)webViewDidFinishLoad:(UIWebView *)webView

Parameters

webView
The web view has finished loading.

Availability
Available in iPhone OS 2.0 and later.

See Also
– webView:shouldStartLoadWithRequest: (page 620)
– webViewDidStartLoad: (page 621)
– webView:didFailLoadWithError: (page 620)

Declared In
UIWebView.h

webViewDidStartLoad:
Sent after a web view starts loading content. This method is optional.

- (void)webViewDidStartLoad:(UIWebView *)webView

Parameters

webView
The web view that has begun loading content.

Availability
Available in iPhone OS 2.0 and later.

See Also
– webView:shouldStartLoadWithRequest: (page 620)
– webViewDidFinishLoad: (page 621)
– webView:didFailLoadWithError: (page 620)

Declared In
UIWebView.h

Instance Methods 621
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

UIWebViewDelegate Protocol Reference

622 Instance Methods
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

UIWebViewDelegate Protocol Reference

623
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I I I

Data Types

624
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I I I

Data Types

Framework: UIKit/UIKit.h

Declared in: UIGeometry.h

Overview

The UIKit framework defines data types that are used in multiple places throughout the framework.

Data Types

UIEdgeInsets
Defines inset distances for views.

typedef struct {
CGFloat top, left, bottom, right;

} UIEdgeInsets;

Discussion
Edge inset values are applied to a rectangle to shrink or expand the area represented by that rectangle.
Typically, edge insets are used during view layout to modify the view’s frame. Positive values cause
the frame to be inset (or shrunk) by the specified amount. Negative values cause the frame to be outset
(or expanded) by the specified amount.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIGeometry.h

UIBarStyle
Defines the stylistic appearance of different types of views.

Overview 625
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

UIKit Data Types Reference

typedef enum {
UIBarStyleDefault = 0,
UIBarStyleBlackOpaque = 1,
UIBarStyleBlackTranslucent = 2,

} UIBarStyle;

Constants
UIBarStyleDefault

Use the default style normally associated with the given view. For example, search bars and
tool bars typically use a blue gradient background.

Available in iPhone OS 2.0 and later.

Declared in UIInterface.h

UIBarStyleBlackOpaque
Use an opaque black style.

Available in iPhone OS 2.0 and later.

Declared in UIInterface.h

UIBarStyleBlackTranslucent
Use a partially transparent black style.

Available in iPhone OS 2.0 and later.

Declared in UIInterface.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIInterface.h

626 Data Types
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

UIKit Data Types Reference

627
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I V

Constants

628
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T I V

Constants

Framework: UIKit/UIKit.h

Declared in: UIGeometry.h

Overview

This document describes constants that are used throughout the UIKit framework.

Constants

UIEdgeInsetsZero
Defines a set of edge insets where all of the values are 0.

extern const UIEdgeInsets UIEdgeInsetsZero;

Constants
UIEdgeInsetsZero

A UIEdgeInsets struct whose top, left, bottom, and right fields are all set to the value 0.

Available in iPhone OS 2.0 and later.

Declared in UIGeometry.h

Overview 629
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

UIKit Constants Reference

630 Constants
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

UIKit Constants Reference

631
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T V

Other References

632
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

P A R T V

Other References

Framework: UIKit/UIKit.h

Declared in: UIGraphics.h
UIGeometry.h
UIApplication.h

Overview

The UIKit framework defines a number of functions, many of them used in graphics and drawing
operations.

Functions by Task

Application Launch

UIApplicationMain (page 640)
This function is called in the main entry point to create the application object and the application
delegate and set up the event cycle.

Image Manipulation

UIImageJPEGRepresentation (page 646)
Returns the data for the specified image in JPEG format.

UIImagePNGRepresentation (page 646)
Returns the data for the specified image in PNG format

UIImageWriteToSavedPhotosAlbum (page 647)
Adds the specified image to the user’s Saved Photos album.

Overview 633
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

Graphics

UIGraphicsGetCurrentContext (page 644)
Returns the current graphics context.

UIGraphicsPushContext (page 645)
Makes the specified graphics context the current context.

UIGraphicsPopContext (page 645)
Removes the current graphics context from the top of the stack, restoring the previous context.

UIGraphicsBeginImageContext (page 643)
Creates a bitmap-based graphics context and makes it the current context.

UIGraphicsGetImageFromCurrentImageContext (page 644)
Returns an image based on the contents of the current bitmap-based graphics context.

UIGraphicsEndImageContext (page 643)
Removes the current bitmap-based graphics context from the top of the stack.

UIRectClip (page 647)
Modifies the current clipping path by intersecting it with the specified rectangle.

UIRectFill (page 648)
Fills the specified rectangle with the current color.

UIRectFillUsingBlendMode (page 649)
Fills a rectangle with the current fill color using the specified blend mode.

UIRectFrame (page 649)
Draws a frame around the inside of the specified rectangle.

UIRectFrameUsingBlendMode (page 650)
Draws a frame around the inside of a rectangle using the specified blend mode.

String Conversions

CGPointFromString (page 636)
Returns a Core Graphics point structure corresponding to the data in a given string.

CGRectFromString (page 636)
Returns a Core Graphics rectangle structure corresponding to the data in a given string.

CGSizeFromString (page 637)
Returns a Core Graphics size structure corresponding to the data in a given string.

CGAffineTransformFromString (page 635)
Returns a Core Graphics affine transform structure corresponding to the data in a given string.

UIEdgeInsetsFromString (page 641)
Returns a UIKit edge insets structure corresponding to the data in a given string.

NSStringFromCGPoint (page 638)
Returns a string object formatted to contain the data from a point.

NSStringFromCGRect (page 638)
Returns a string object formatted to contain the data from a rectangle.

NSStringFromCGSize (page 639)
Returns a string object formatted to contain the data from a size data structure.

634 Functions by Task
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

NSStringFromCGAffineTransform (page 637)
Returns a string object formatted to contain the data from an affine transform.

NSStringFromUIEdgeInsets (page 639)
Returns a string object formatted to contain the data from an edge insets structure.

Setting Edge Insets

UIEdgeInsetsMake (page 642)
Creates an edge inset for a button or view.

UIEdgeInsetsEqualToEdgeInsets (page 640)
Compares two edge insets to determine if they are the same.

UIEdgeInsetsInsetRect (page 641)
Adjusts a rectangle by the given edge insets.

Functions

CGAffineTransformFromString
Returns a Core Graphics affine transform structure corresponding to the data in a given string.

CGAffineTransform CGAffineTransformFromString (
NSString *string

);

Parameters

string
A string object whose contents are of the form “{a, b, c, d, tx, ty}”, where a, b, c, d, tx, and ty are
the floating-point component values of the CGAffineTransform data structure. An example
of a valid string is @”{1,0,0,1,2.5,3.0}”. The string is not localized, so items are always separate
with a comma. For information about the position of each value in the transform array, see
CGAffineTransform Reference.

Return Value
A Core Graphics affine transform structure. If the string is not well-formed, the function returns the
identity transform.

Discussion
In general, you should use this function only to convert strings that were previously created using
the NSStringFromCGAffineTransform function.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromCGAffineTransform (page 637)

Declared In
UIGeometry.h

Functions 635
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

CGPointFromString
Returns a Core Graphics point structure corresponding to the data in a given string.

CGPoint CGPointFromString (
NSString *string

);

Parameters

string
A string object whose contents are of the form “{x,y}”, where x is the x coordinate and y is the
y coordinate. The x and y values can represent integer or float values. An example of a valid
string is @”{3.0,2.5}”. The string is not localized, so items are always separate with a comma.

Return Value
A Core Graphics structure that represents a point. If the string is not well-formed, the function returns
CGPointZero.

Discussion
In general, you should use this function only to convert strings that were previously created using
the NSStringFromCGPoint function.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromCGPoint (page 638)

Declared In
UIGeometry.h

CGRectFromString
Returns a Core Graphics rectangle structure corresponding to the data in a given string.

CGRect CGRectFromString (
NSString *string

);

Parameters

string
A string object whose contents are of the form “{{x,y},{h,w}}”, where x is the x coordinate, y is
the y coordinate, h is the height, and w is the width. These components can represent integer
or float values. An example of a valid string is @”{{3,2},{4,5}}”. The string is not localized, so
items are always separate with a comma.

Return Value
A Core Graphics structure that represents a rectangle. If the string is not well-formed, the function
returns CGRectZero.

Discussion
In general, you should use this function only to convert strings that were previously created using
the NSStringFromCGRect function.

Availability
Available in iPhone OS 2.0 and later.

636 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

See Also
NSStringFromCGRect (page 638)

Declared In
UIGeometry.h

CGSizeFromString
Returns a Core Graphics size structure corresponding to the data in a given string.

CGSize CGSizeFromString (
NSString *string

);

Parameters

string
A string object whose contents are of the form “{h,w}”, where h is the height and w is the width.
The w and w values can be integer or float values. An example of a valid string is @”{3.0,2.5}”.
The string is not localized, so items are always separate with a comma.

Return Value
A Core Graphics structure that represents a size. If the string is not well-formed, the function returns
CGSizeZero.

Discussion
In general, you should use this function only to convert strings that were previously created using
the NSStringFromCGSize function.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromCGSize (page 639)

Declared In
UIGeometry.h

NSStringFromCGAffineTransform
Returns a string object formatted to contain the data from an affine transform.

NSString *NSStringFromCGAffineTransform(CGAffineTransform transform);

Parameters

transform
A Core Graphics affine transform structure.

Return Value
A string object that corresponds to transform. See CGAffineTransformFromString (page 635) for a
discussion of the string format.

Availability
Available in iPhone OS 2.0 and later.

Functions 637
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

See Also
CGAffineTransformFromString (page 635)

Declared In
UIGeometry.h

NSStringFromCGPoint
Returns a string object formatted to contain the data from a point.

NSString * NSStringFromCGPoint (
CGPoint point

);

Parameters

point
A Core Graphics structure representing a point.

Return Value
A string object that corresponds to point. See CGPointFromString (page 636) for a discussion of the
string format.

Availability
Available in iPhone OS 2.0 and later.

See Also
CGPointFromString (page 636)

Declared In
UIGeometry.h

NSStringFromCGRect
Returns a string object formatted to contain the data from a rectangle.

NSString * NSStringFromCGRect (
CGRect rect

);

Parameters

rect
A Core Graphics structure representing a rectangle.

Return Value
A string object that corresponds to rect. See CGRectFromString (page 636) for a discussion of the
string format.

Availability
Available in iPhone OS 2.0 and later.

See Also
CGRectFromString (page 636)

638 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

Declared In
UIGeometry.h

NSStringFromCGSize
Returns a string object formatted to contain the data from a size data structure.

NSString * NSStringFromCGSize (
CGSize size

);

Parameters

size
A Core Graphics structure representing a size.

Return Value
A string object that corresponds to size. See CGSizeFromString (page 637) for a discussion of the
string format.

Availability
Available in iPhone OS 2.0 and later.

See Also
CGSizeFromString (page 637)

Declared In
UIGeometry.h

NSStringFromUIEdgeInsets
Returns a string object formatted to contain the data from an edge insets structure.

NSString *NSStringFromUIEdgeInsets(UIEdgeInsets insets);

Parameters

insets
A UIKit edge insets data structure.

Return Value
A string object that corresponds to insets. See UIEdgeInsetsFromString (page 641) for a discussion
of the string format.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIEdgeInsetsFromString (page 641)

Declared In
UIGeometry.h

Functions 639
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

UIApplicationMain
This function is called in the main entry point to create the application object and the application
delegate and set up the event cycle.

int UIApplicationMain (
int argc,
char *argv[],
NSString *principalClassName,
NSString *delegateClassName

);

Parameters

argc
The count of arguments in argv; this usually is the corresponding parameter to main.

argv
A variable list of arguments; this usually is the corresponding parameter to main.

principalClassName
The name of the UIApplication class or subclass. If you specify nil, UIApplication is
assumed.

delegateClassName
The name of the class from which the application delegate is instantiated. If
principalClassNamedesignates a subclass of UIApplication, you may designate the subclass
as the delegate; the subclass instance receives the application-delegate messages.

Return Value
The value 0. This value is always returned when the function exits successfully. If there are internal
problems, the application code calls the exit system function with an appropriate error code, thus
killing the application immediately without returning from this function.

Discussion
This function instantiates the application object from the principal class and and instantiates the
delegate (if any) from the given class and sets the delegate for the application. It also sets up the main
event loop, including the application’s run loop, and begins processing events. This function returns
only on termination.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIApplication.h

UIEdgeInsetsEqualToEdgeInsets
Compares two edge insets to determine if they are the same.

BOOL UIEdgeInsetsEqualToEdgeInsets (
UIEdgeInsets insets1,
UIEdgeInsets insets2

);

Parameters

insets1
An edge inset to compare with insets2.

640 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

insets2
An edge inset to compare with insets1.

Return Value
YES if the edge insets are the same; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIEdgeInsetsMake (page 642)

Declared In
UIGeometry.h

UIEdgeInsetsFromString
Returns a UIKit edge insets structure corresponding to the data in a given string.

UIEdgeInsets UIEdgeInsetsFromString (
NSString *string

);

Parameters

string
A string object whose contents are of the form “{top, left, bottom, right}”, where top, left, bottom,
right are the floating-point component values of the UIEdgeInsets structure. An example of
a valid string is @”{3.0,8.0,3.0,5.0}”. The string is not localized, so items are always separate
with a comma.

Return Value
An edge insets data structure. If the string is not well-formed, the function returns UIEdgeInsetsZero.

Discussion
In general, you should use this function only to convert strings that were previously created using
the NSStringFromUIEdgeInsets function.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromUIEdgeInsets (page 639)

Declared In
UIGeometry.h

UIEdgeInsetsInsetRect
Adjusts a rectangle by the given edge insets.

Functions 641
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

CGRect UIEdgeInsetsInsetRect (
CGRect rect,
UIEdgeInsets insets

);

Parameters

rect
The rectangle to be adjusted.

insets
The edge insets to be applied to the adjustment.

Return Value
A rectangle that is adjusted by the UIEdgeInsets structure passed in insets. i

Discussion
This inline function increments the origin of rect and decrements the size of rect by applying the
appropriate member values of the UIEdgeInsets structure.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIEdgeInsetsMake (page 642)

Declared In
UIGeometry.h

UIEdgeInsetsMake
Creates an edge inset for a button or view.

UIEdgeInsets UIEdgeInsetsMake (
CGFloat top,
CGFloat left,
CGFloat bottom,
CGFloat right

);

Parameters

top
The inset at the top of an object.

left
The inset on the left of an object

bottom
The inset on the bottom of an object.

right
The inset on the right of an object.

Return Value
An inset for a button or view

Discussion
An inset is a margin around the drawing rectangle where each side (left, right, top, and bottom) can
have a different value.

642 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
UIEdgeInsetsEqualToEdgeInsets (page 640)

Declared In
UIGeometry.h

UIGraphicsBeginImageContext
Creates a bitmap-based graphics context and makes it the current context.

void UIGraphicsBeginImageContext(CGSize size);

Parameters

size
The size of the new bitmap context. This represents the size of the image returned by the
UIGraphicsGetImageFromCurrentImageContext function.

Discussion
You use this function to configure the drawing environment for rendering into a bitmap. This drawing
environment uses the premultiplied RGBA format to store the resulting bitmap data. The environment
also uses the default coordinate system for UIKit views, where the origin is in the upper-left corner
and the positive axes extend down and to the right of the origin. The drawing environment is pushed
onto the graphics context stack immediately.

While the context created by this function is the current context, you can call the
UIGraphicsGetImageFromCurrentImageContext function to retrieve an image object based on the
current contents of the context. When you are done modifying the context, you must call the
UIGraphicsEndImageContext function to clean up the bitmap drawing environment and remove
the graphics context from the top of the context stack. You should not use the UIGraphicsPopContext
function to remove this type of context from the stack.

In most other respects, the graphics context created by this function behaves like any other graphics
context. You can change the context by pushing and popping other graphics contexts. You can also
get the bitmap context using the UIGraphicsGetCurrentContext function.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIGraphicsGetCurrentContext (page 644)
UIGraphicsGetImageFromCurrentImageContext (page 644)
UIGraphicsEndImageContext (page 643)

Declared In
UIGraphics.h

UIGraphicsEndImageContext
Removes the current bitmap-based graphics context from the top of the stack.

Functions 643
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

void UIGraphicsEndImageContext(void);

Discussion
You use this function to clean up the drawing environment put in place by the
UIGraphicsBeginImageContext function and to remove the corresponding bitmap-based graphics
context from the top of the stack. If the current context was not created using the
UIGraphicsBeginImageContext function, this method does nothing.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIGraphicsBeginImageContext (page 643)

Declared In
UIGraphics.h

UIGraphicsGetCurrentContext
Returns the current graphics context.

CGContextRef UIGraphicsGetCurrentContext (
void

);

Return Value
The current graphics context.

Discussion
The current graphics context is nil by default. Prior to calling its drawRect: method, view objects
push a valid context onto the stack, making it current. If you are not using a UIView object to do your
drawing, however, you must push a valid context onto the stack manually using the
UIGraphicsPushContext (page 645) function.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIGraphicsPushContext (page 645)
UIGraphicsPopContext (page 645)

Declared In
UIGraphics.h

UIGraphicsGetImageFromCurrentImageContext
Returns an image based on the contents of the current bitmap-based graphics context.

UIImage* UIGraphicsGetImageFromCurrentImageContext(void);

Return Value
An autoreleased image object containing the contents of the current bitmap graphics context.

644 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

Discussion
You should call this function only when a bitmap-based graphics context is the current graphics
context. If the current context is nil or was not created by a call to UIGraphicsBeginImageContext,
this function returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIGraphicsBeginImageContext (page 643)

Declared In
UIGraphics.h

UIGraphicsPopContext
Removes the current graphics context from the top of the stack, restoring the previous context.

void UIGraphicsPopContext (
void

);

Discussion
Use this function to balance calls to the UIGraphicsPushContext (page 645) function.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIGraphicsPushContext (page 645)

Declared In
UIGraphics.h

UIGraphicsPushContext
Makes the specified graphics context the current context.

void UIGraphicsPushContext (
CGContextRef context

);

Parameters

context
The graphics context to make the current context.

Discussion
You can use this function to save the previous graphics state and make the specified context the
current context. You must balance calls to this function with matching calls to the
UIGraphicsPopContext (page 645) function.

Availability
Available in iPhone OS 2.0 and later.

Functions 645
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

See Also
UIGraphicsPopContext (page 645)

Declared In
UIGraphics.h

UIImageJPEGRepresentation
Returns the data for the specified image in JPEG format.

NSData * UIImageJPEGRepresentation (
UIImage *image,
CGFloat compressionQuality

);

Parameters

image
The original image data.

compressionQuality
The quality of the resulting JPEG image, expressed as a value from 0.0 to 1.0. The value 0.0
represents the maximum compression (or lowest quality) while the value 1.0 represents the
least compression (or best quality).

Return Value
A data object containing the JPEG data, or nil if there was a problem generating the data. This function
may return nil if the image has no data or if the underlying CGImageRef contains data in an
unsupported bitmap format.

Discussion
If the image object’s underlying image data has been purged, calling this method forces that data to
be reloaded into memory.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

UIImagePNGRepresentation
Returns the data for the specified image in PNG format

NSData * UIImagePNGRepresentation (
UIImage *image

);

Parameters

image
The original image data.

Return Value
A data object containing the PNG data, or nil if there was a problem generating the data. This function
may return nil if the image has no data or if the underlying CGImageRef contains data in an
unsupported bitmap format.

646 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

Discussion
If the image object’s underlying image data has been purged, calling this method forces that data to
be reloaded into memory.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImage.h

UIImageWriteToSavedPhotosAlbum
Adds the specified image to the user’s Saved Photos album.

void UIImageWriteToSavedPhotosAlbum(UIImage *image, id completionTarget, SEL
completionSelector, void *contextInfo);

Parameters

image
The image to write to the user’s device.

completionTarget
The object whose selector should be called after the image has been written to the user’s device.

comletionSelector
The selector of the target object to call. This method should be of the form:

- (void)image:(UIImage *)image
didFinishSavingWithError:(NSError *)error
contextInfo:(void *)contextInfo;

contextInfo
An optional pointer to any context-specific data that you want passed to the completion selector.

Discussion
The use of the completionTarget, completionSelector, and contextInfo parameters is optional
and necessary only if you want to be notified asynchronously when the function finishes writing the
image to the user’s Saved Photos album. If you do not want to be notified, pass nil for these
parameters.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIImagePickerController.h

UIRectClip
Modifies the current clipping path by intersecting it with the specified rectangle.

Functions 647
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

void UIRectClip (
CGRect rect

);

Parameters

rect
The rectangle to intersect with the clipping region. If the width or height of the rectangle are
less than 0, this function does not change the clipping path.

Discussion
Each call to this function permanently shrinks the clipping path of the current graphics context using
the specified rectangle. You cannot use this function to expand the clipping region path. If the current
graphics context is nil, this method does nothing.

If you need to return the clipping path to its original shape in your drawing code, you should save
the current graphics context before calling this function. To save the current context, push a new
graphics context onto the top of the stack using the UIGraphicsPushContext (page 645) function.
When you are ready to restore the original clipping region, you can then use the
UIGraphicsPopContext (page 645) function to remove the current context and restore the previous
graphics state.

Availability
Available in iPhone OS 2.0 and later.

See Also
UIGraphicsPushContext (page 645)
UIGraphicsPopContext (page 645)

Declared In
UIGraphics.h

UIRectFill
Fills the specified rectangle with the current color.

void UIRectFill (
CGRect rect

);

Parameters

rect
The rectangle defining the area in which to draw.

Discussion
Fills the specified rectangle using the fill color of the current graphics context and the
kCGBlendModeNormal blend mode.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIGraphics.h

648 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

UIRectFillUsingBlendMode
Fills a rectangle with the current fill color using the specified blend mode.

void UIRectFillUsingBlendMode (
CGRect rect,
CGBlendMode blendMode

);

Parameters

rect
The rectangle defining the area in which to draw.

blendMode
The blend mode to use during drawing.

Discussion
This function draws the rectangle in the current graphics context. If the current graphics context is
nil, this method does nothing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIGraphics.h

UIRectFrame
Draws a frame around the inside of the specified rectangle.

void UIRectFrame (
CGRect rect

);

Parameters

rect
The rectangle defining the area in which to draw.

Discussion
This function draws a frame around the inside of rect in the fill color of the current graphics context
and using the kCGBlendModeNormal blend mode. The width is equal to 1.0 in the current coordinate
system. Since the frame is drawn inside the rectangle, it is visible even if drawing is clipped to the
rectangle. If the current graphics context is nil, this method does nothing.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill
color (not stroke color) when drawing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIGraphics.h

Functions 649
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

UIRectFrameUsingBlendMode
Draws a frame around the inside of a rectangle using the specified blend mode.

void UIRectFrameUsingBlendMode (
CGRect rect,
CGBlendMode blendMode

);

Parameters

rect
The rectangle defining the area in which to draw.

blendMode
The blend mode to use during drawing.

Discussion
This function draws a frame around the inside of rect in the fill color of the current graphics context
and using the specified blend mode. The width is equal to 1.0 in the current coordinate system. Since
the frame is drawn inside the rectangle, it is visible even if drawing is clipped to the rectangle. If the
current graphics context is nil, this method does nothing.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill
color (not stroke color) when drawing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
UIGraphics.h

650 Functions
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

UIKit Function Reference

This table describes the changes to UIKit Framework Reference.

NotesDate

New document that describes the programming interface for constructing
and managing the user interface of iPhone applications.

2008-05-18

651
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

652
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

A

accelerometer:didAccelerate: protocol instance
method 525

accessoryAction instance property 384
accessoryType instance property 384
accessoryView instance property 385
action instance property 108
actionsForTarget:forControlEvent: instance

method 163
actionSheetCancel: protocol instance method 530
actionSheet:clickedButtonAtIndex: protocol

instance method 528
actionSheet:didDismissWithButtonIndex:

protocol instance method 529
actionSheet:willDismissWithButtonIndex:

protocol instance method 529
actionSheetStyle instance property 69
activityIndicatorViewStyle instance property 78
addButtonWithTitle: instance method 71, 86
addSubview: instance method 463
addTarget:action:forControlEvents: instance

method 164
adjustsFontSizeToFitWidth instance property 231,

408
adjustsImageWhenDisabled instance property 123
adjustsImageWhenHighlighted instance property

124
alertViewCancel: protocol instance method 536
alertView:clickedButtonAtIndex: protocol

instance method 534
alertView:didDismissWithButtonIndex:protocol

instance method 535
alertView:willDismissWithButtonIndex:protocol

instance method 535
allControlEvents instance method 165
allowsImageEditing instance property 220
allowsSelectionDuringEditing instance property

361
allTargets instance method 165
allTouches instance method 192

alpha instance property 445
alwaysBounceHorizontal instance property 292
alwaysBounceVertical instance property 292
animationDuration instance property 224
animationImages instance property 224
animationRepeatCount instance property 225
application:didChangeStatusBarFrame:protocol

instance method 540
application:didChangeStatusBarOrientation:

protocol instance method 541
application:handleOpenURL: protocol instance

method 541
application:willChangeStatusBarFrame:protocol

instance method 542
application:willChangeStatusBarOrientation:

duration: protocol instance method 542
applicationDidBecomeActive: protocol instance

method 543
applicationDidFinishLaunching:protocol instance

method 543
applicationDidReceiveMemoryWarning: protocol

instance method 543
applicationFrame instance property 288
applicationIconBadgeNumber instance property 92
applicationSignificantTimeChange: protocol

instance method 544
applicationWillResignActive: protocol instance

method 544
applicationWillTerminate: protocol instance

method 545
areAnimationsEnabled class method 453
ascender instance property 197
autocapitalizationType instance property 306
autocapitalizationType protocol property 606
autocorrectionType instance property 306
autocorrectionType protocol property 606
autoresizesSubviews instance property 445
autoresizingMask instance property 446
awakeFromNib <NSObject> instance method 39

653
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

Index

B

backBarButtonItem instance property 256
background instance property 409
backgroundColor instance property 446
backgroundImageForState: instance method 129
backgroundRectForBounds: instance method 130
backgroundView instance property 385
backItem instance property 240
badgeValue instance property 352
barStyle instance property 241, 307, 430
baselineAdjustment instance property 231
becomeFirstResponder instance method 280
becomeKeyWindow instance method 515
beginAnimations:context: class method 454
beginCustomizingItems: instance method 341
beginGeneratingDeviceOrientationNotifications

instance method 188
beginIgnoringInteractionEvents instance method

97
beginTrackingWithTouch:withEvent: instance

method 165
beginUpdates instance method 366
blackColor class method 142
blueColor class method 142
boldSystemFontOfSize: class method 199
borderRectForBounds: instance method 415
borderStyle instance property 409
bounces instance property 293
bouncesZoom instance property 293
bounds instance property 288, 446
bringSubviewToFront: instance method 463
brownColor class method 143
buttonFontSize class method 200
buttonTitleAtIndex: instance method 71, 87
buttonType instance property 124
buttonWithType: class method 129

C

calendar instance property 176
canBecomeFirstResponder instance method 281
canCancelContentTouches instance property 294
cancelButtonIndex instance property 69, 84
cancelTrackingWithEvent: instance method 166
canGoBack instance property 505
canGoForward instance property 505
canResignFirstResponder instance method 281
capHeight instance property 197
Cell Accessory Type 397
Cell Editing Style 397
Cell Selection Style 396

Cell Separator Style 398
cellForRowAtIndexPath: instance method 366
center instance property 447
CGAffineTransformFromString function 635
CGAffineTransformValue instance method 56
CGColor instance property 142
CGImage instance property 208
CGPointFromString function 636
CGPointValue instance method 56
CGRectFromString function 636
CGRectValue instance method 57
CGSizeFromString function 637
CGSizeValue instance method 57
clearButtonMode instance property 409
clearButtonRectForBounds: instance method 415
clearColor class method 143
clearsContextBeforeDrawing instance property 448
clearsOnBeginEditing instance property 410
clipsToBounds instance property 448
colorWithAlphaComponent: instance method 150
colorWithCGColor: class method 143
colorWithHue:saturation:brightness:alpha:

class method 144
colorWithPatternImage: class method 144
colorWithRed:green:blue:alpha: class method

145
colorWithWhite:alpha: class method 145
commitAnimations class method 454
contentEdgeInsets instance property 124
contentHorizontalAlignment instance property 160
contentInset instance property 294
contentMode instance property 448
contentOffset instance property 294
contentOffsetForSegmentAtIndex: instance

method 314
contentRectForBounds: instance method 130
contentSize instance property 295
contentVerticalAlignment instance property 160
contentView instance property 386
continueTrackingWithTouch:withEvent: instance

method 166
continuous instance property 325
Control Events 169
Control State 173
convertPoint:fromView: instance method 464
convertPoint:fromWindow: instance method 516
convertPoint:toView: instance method 464
convertPoint:toWindow: instance method 516
convertRect:fromView: instance method 465
convertRect:fromWindow: instance method 517
convertRect:toView: instance method 465
convertRect:toWindow: instance method 517
countDownDuration instance property 177

654
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

currentBackgroundImage instance property 125
currentDevice class method 187
currentImage instance property 125
currentMaximumTrackImage instance property 326
currentMinimumTrackImage instance property 326
currentPage instance property 264
currentThumbImage instance property 326
currentTitle instance property 125
currentTitleColor instance property 126
currentTitleShadowColor instance property 126
customizableViewControllers instance property

346
customView instance property 108
cyanColor class method 146

D

darkGrayColor class method 146
darkTextColor class method 147
dataSource instance property 269, 361
date instance property 177
Date Picker Mode 180
datePickerMode instance property 177
decelerating instance property 295
decodeCGAffineTransformForKey: instance method

28
decodeCGPointForKey: instance method 29
decodeCGRectForKey: instance method 29
decodeCGSizeForKey: instance method 29
decodeUIEdgeInsetsForKey: instance method 30
defersCurrentPageDisplay instance property 265
delaysContentTouches instance property 295
delegate instance property 64, 69, 85, 92, 220, 241,

247, 269, 296, 307, 340, 347, 362, 410, 425, 506
deleteRowsAtIndexPaths:withRowAnimation:

instance method 366
deleteSections:withRowAnimation: instance

method 367
dequeueReusableCellWithIdentifier: instance

method 367
descender instance property 198
deselectRowAtIndexPath:animated: instance

method 368
destructiveButtonIndex instance property 70
detectsPhoneNumbers instance property 506
Device Orientation Convenience Macros 190
DIB, format tags 206
didAddSubview: instance method 466
didMoveToSuperview instance method 466
didMoveToWindow instance method 466
didPresentActionSheet:protocol instance method

530

didPresentAlertView: protocol instance method
536

didReceiveMemoryWarning instance method 491
didRotateFromInterfaceOrientation: instance

method 492
directionalLockEnabled instance property 296
disabledBackground instance property 411
dismissModalViewControllerAnimated: instance

method 492
dismissWithClickedButtonIndex:animated:

instance method 72, 87
dragging instance property 296
drawAsPatternInRect: instance method 212
drawAtPoint: instance method 212
drawAtPoint:blendMode:alpha: instance method

212
drawAtPoint:forWidth:withFont:fontSize:

lineBreakMode:baselineAdjustment: instance
method 42

drawAtPoint:forWidth:withFont:lineBreakMode:
instance method 43

drawAtPoint:forWidth:withFont:minFontSize:
actualFontSize:lineBreakMode:baselineAdjustment:
instance method 44

drawAtPoint:withFont: instance method 45
drawInRect: instance method 213
drawInRect:blendMode:alpha: instance method

213
drawInRect:withFont: instance method 45
drawInRect:withFont:lineBreakMode: instance

method 46
drawInRect:withFont:lineBreakMode:alignment:

instance method 46
drawPlaceholderInRect: instance method 416
drawRect: instance method 467
drawTextInRect: instance method 237, 416

E

editable instance property 425
editAction instance property 386
editButtonItem instance method 493
Editing information keys 549
editing instance property 362, 386, 411, 486
editingRectForBounds: instance method 417
editingStyle instance property 387
enabled instance property 118, 161, 232
enablesReturnKeyAutomaticallyprotocol property

606
encodeCGAffineTransform:forKey: instance

method 30
encodeCGPoint:forKey: instance method 31

655
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

encodeCGRect:forKey: instance method 31
encodeCGSize:forKey: instance method 32
encodeUIEdgeInsets:forKey: instance method 32
endCustomizingAnimated: instance method 342
endGeneratingDeviceOrientationNotifications

instance method 188
endIgnoringInteractionEvents instance method

97
endTrackingWithTouch:withEvent: instance

method 166
endUpdates instance method 368
exchangeSubviewAtIndex:withSubviewAtIndex:

instance method 468
exclusiveTouch instance property 449

F

familyName instance property 198
familyNames class method 200
firstOtherButtonIndex instance property 70, 85
flashScrollIndicators instance method 301
font instance property 126, 232, 387, 411, 426
fontName instance property 198
fontNamesForFamilyName: class method 201
fontWithName:size: class method 201
fontWithSize: instance method 203
frame instance property 449

G

generatesDeviceOrientationNotifications
instance property 184

GIF, format tags 206
goBack instance method 507
goForward instance method 508
grayColor class method 147
greenColor class method 147
groupTableViewBackgroundColor class method 147

H

hasText instance method 427
hidden instance property 450
hidesAccessoryWhenEditing instance property 388
hidesBackButton instance property 257
hidesBottomBarWhenPushed instance property 487
hidesForSinglePage instance property 265
hidesWhenStopped instance property 78
highlighted instance property 161, 232

highlightedTextColor instance property 233
hitTest:withEvent: instance method 468
Horizontal Content Alignment 172

I

icon formats 206
idleTimerDisabled instance property 92
image instance property 118, 225, 388
imageEdgeInsets instance property 127
imageForSegmentAtIndex: instance method 315
imageForState: instance method 131
imageInsets instance property 118
imageNamed: class method 210
imageOrientation instance property 208
imagePickerController:didFinishPickingImage:

editingInfo: protocol instance method 548
imagePickerControllerDidCancel: protocol

instance method 548
imageRectForContentRect: instance method 131
imageWithCGImage: class method 210
imageWithContentsOfFile: class method 211
imageWithData: class method 211
indentationLevel instance property 388
indentationWidth instance property 388
indexPathForCell: instance method 369
indexPathForRowAtPoint: instance method 369
indexPathForRow:inSection: class method 36
indexPathForSelectedRow instance method 370
indexPathsForRowsInRect: instance method 370
indexPathsForVisibleRows instance method 370
indicatorStyle instance property 297
initWithActivityIndicatorStyle: instance

method 79
initWithBarButtonSystemItem:target:action:

instance method 110
initWithCGColor: instance method 151
initWithCGImage: instance method 214
initWithContentsOfFile: instance method 214
initWithCustomView: instance method 110
initWithData: instance method 215
initWithFrame: instance method 336, 469
initWithFrame:reuseIdentifier: instance method

394
initWithFrame:style: instance method 371
initWithHue:saturation:brightness:alpha:

instance method 151
initWithImage: instance method 226
initWithImage:style:target:action: instance

method 111
initWithItems: instance method 315
initWithNibName:bundle: instance method 493

656
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

initWithPatternImage: instance method 152
initWithProgressViewStyle: instance method 277
initWithRed:green:blue:alpha: instance method

152
initWithRootViewController: instance method

249
initWithStyle: instance method 402
initWithTabBarSystemItem:tag: instance method

352
initWithTitle: instance method 259
initWithTitle:delegate:cancelButtonTitle:

destructiveButtonTitle:otherButtonTitles:
instance method 72

initWithTitle:image:tag: instance method 353
initWithTitle:message:delegate:cancelButtonTitle:

otherButtonTitles: instance method 88
initWithTitle:style:target:action: instance

method 111
initWithWhite:alpha: instance method 153
insertRowsAtIndexPaths:withRowAnimation:

instance method 371
insertSections:withRowAnimation: instance

method 372
insertSegmentWithImage:atIndex:animated:

instance method 316
insertSegmentWithTitle:atIndex:animated:

instance method 316
insertSubview:aboveSubview: instance method

469
insertSubview:atIndex: instance method 470
insertSubview:belowSubview: instance method

470
Interface Orientation Conveniences 103
interfaceOrientation instance property 487
isAnimating instance method 79, 226
isCustomizing instance method 342
isDescendantOfView: instance method 471
isEnabledForSegmentAtIndex: instance method

317
isFirstResponder instance method 282
isIgnoringInteractionEvents instance method 97
isSourceTypeAvailable: class method 221
italicSystemFontOfSize: class method 202
items instance property 241, 340, 430

J

JPEG, format tags 206

K

Keyboard Notification User Info Keys 520
keyboardAppearance protocol property 607
keyboardType instance property 307
keyboardType protocol property 607
keyWindow instance property 93, 514

L

labelFontSize class method 202
layer instance property 450
layerClass class method 455
layoutIfNeeded instance method 471
layoutSubviews instance method 471
leading instance property 199
leftBarButtonItem instance property 257
leftCapWidth instance property 208
leftView instance property 412
leftViewMode instance property 412
leftViewRectForBounds: instance method 417
lightGrayColor class method 148
lightTextColor class method 148
lineBreakMode instance property 127, 233, 389
loadData:MIMEType:textEncodingName:baseURL:

instance method 508
loadHTMLString:baseURL: instance method 508
loading instance property 506
loadNibNamed:owner:options: instance method 23
loadRequest: instance method 509
loadView instance method 494
locale instance property 178
localizedModel instance property 185
locationInView: instance method 436

M

magentaColor class method 148
mainScreen class method 288
makeKeyAndVisible instance method 518
makeKeyWindow instance method 518
maximumDate instance property 178
maximumTrackImageForState: instance method 329
maximumValue instance property 327
maximumValueImage instance property 327
maximumValueImageRectForBounds: instance

method 329
maximumZoomScale instance property 297
message instance property 85
minimumDate instance property 179

657
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

minimumFontSize instance property 234, 412
minimumTrackImageForState: instance method 330
minimumValue instance property 328
minimumValueImage instance property 328
minimumValueImageRectForBounds: instance

method 330
minimumZoomScale instance property 297
minuteInterval instance property 179
modalViewController instance property 488
model instance property 185
momentary instance property 313
moreNavigationController instance property 347
multipleTouchEnabled instance property 450

N

name instance property 185
navigationBar instance property 247
navigationBar:didPopItem: protocol instance

method 552
navigationBar:didPushItem: protocol instance

method 552
navigationBar:shouldPopItem: protocol instance

method 553
navigationBar:shouldPushItem:protocol instance

method 553
navigationBarHidden instance property 247
navigationController instance property 488
navigationItem instance property 488
networkActivityIndicatorVisible instance

property 93
nextResponder instance method 282
Nib File Loading Options 24
nibBundle instance property 489
nibName instance property 489
Notification UserInfo Dictionary Keys 103
NSStringFromCGAffineTransform function 637
NSStringFromCGPoint function 638
NSStringFromCGRect function 638
NSStringFromCGSize function 639
NSStringFromUIEdgeInsets function 639
numberOfButtons instance property 70, 85
numberOfComponents instance property 269
numberOfComponentsInPickerView: protocol

instance method 555
numberOfLines instance property 234
numberOfPages instance property 265
numberOfRowsInComponent: instance method 270
numberOfRowsInSection: instance method 372
numberOfSections instance method 373
numberOfSectionsInTableView: protocol instance

method 579

numberOfSegments instance property 313

O

on instance property 336
opaque instance property 451
openURL: instance method 98
orangeColor class method 149
orientation instance property 186

P

pagingEnabled instance property 298
parentViewController instance property 489
phase instance property 434
pickerView:didSelectRow:inComponent:protocol

instance method 558
pickerView:numberOfRowsInComponent: protocol

instance method 556
pickerView:rowHeightForComponent: protocol

instance method 559
pickerView:titleForRow:forComponent:protocol

instance method 559
pickerView:viewForRow:forComponent:reusingView:

protocol instance method 559
pickerView:widthForComponent:protocol instance

method 560
placeholder instance property 308, 413
placeholderRectForBounds: instance method 418
PNG, format tags 206
pointInside:withEvent: instance method 472
pointSize instance property 199
popNavigationItemAnimated: instance method 243
popToRootViewControllerAnimated: instance

method 249
popToViewController:animated: instance method

250
popViewControllerAnimated: instance method 251
possibleTitles instance property 109
prepareForReuse instance method 395
presentModalViewController:animated: instance

method 494
previousLocationInView: instance method 436
progress instance property 276
progressViewStyle instance property 276
prompt instance property 258, 308
proximitySensingEnabled instance property 94
purpleColor class method 149
pushNavigationItem:animated: instance method

243

658
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

pushViewController:animated: instance method
251

R

rectForFooterInSection: instance method 373
rectForHeaderInSection: instance method 374
rectForRowAtIndexPath: instance method 374
rectForSection: instance method 374
redColor class method 149
reload instance method 509
reloadAllComponents instance method 271
reloadComponent: instance method 271
reloadData instance method 375
removeAllSegments instance method 317
removeFromSuperview instance method 472
removeSegmentAtIndex:animated: instance method

318
removeTarget:action:forControlEvents: instance

method 167
request instance property 507
resignFirstResponder instance method 282
resignKeyWindow instance method 518
returnKeyType protocol property 607
reuseIdentifier instance property 389
reversesTitleShadowWhenHighlighted instance

property 127
rightBarButtonItem instance property 258
rightView instance property 413
rightViewMode instance property 414
rightViewRectForBounds: instance method 418
rotatingFooterView instance method 495
rotatingHeaderView instance method 495
row instance property 36
rowHeight instance property 363
rowSizeForComponent: instance method 271
Run Loop Mode for Tracking 103

S

scalesPageToFit instance property 507
Scroll Indicator Style 304
scrollEnabled instance property 298
scrollIndicatorInsets instance property 299
scrollRangeToVisible: instance method 427
scrollRectToVisible:animated: instance method

301
scrollsToTop instance property 299
scrollToNearestSelectedRowAtScrollPosition:

animated: instance method 375

scrollToRowAtIndexPath:atScrollPosition:animated:
instance method 376

scrollViewDidEndDecelerating:protocol instance
method 562

scrollViewDidEndDragging:willDecelerate:
protocol instance method 563

scrollViewDidEndScrollingAnimation: protocol
instance method 563

scrollViewDidEndZooming:withView:atScale:
protocol instance method 563

scrollViewDidScroll: protocol instance method
564

scrollViewDidScrollToTop: protocol instance
method 564

scrollViewWillBeginDecelerating: protocol
instance method 565

scrollViewWillBeginDragging: protocol instance
method 565

scrollViewWillScrollToTop: protocol instance
method 566

searchBarBookmarkButtonClicked: protocol
instance method 570

searchBarCancelButtonClicked:protocol instance
method 571

searchBar:textDidChange: protocol instance
method 570

searchBarSearchButtonClicked:protocol instance
method 571

searchBarShouldBeginEditing: protocol instance
method 571

searchBarShouldEndEditing: protocol instance
method 572

searchBarTextDidBeginEditing:protocol instance
method 572

searchBarTextDidEndEditing: protocol instance
method 573

section instance property 36
sectionFooterHeight instance property 363
sectionHeaderHeight instance property 363
sectionIndexMinimumDisplayRowCount instance

property 364
sectionIndexTitlesForTableView: protocol

instance method 579
secureTextEntry protocol property 608
Segment Selection 322
Segmented Control Style 321
segmentedControlStyle instance property 313
selected instance property 162, 390
selectedBackgroundView instance property 390
selectedImage instance property 390
selectedIndex instance property 348
selectedItem instance property 341
selectedRange instance property 426

659
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

selectedRowInComponent: instance method 272
selectedSegmentIndex instance property 314
selectedTextColor instance property 391
selectedViewController instance property 348
selectionStyle instance property 391
selectRowAtIndexPath:animated:scrollPosition:

instance method 376
selectRow:inComponent:animated: instance

method 272
sendAction:to:forEvent: instance method 167
sendAction:to:from:forEvent: instance method

98
sendActionsForControlEvents: instance method

168
sendEvent: instance method 99, 519
sendSubviewToBack: instance method 473
separatorColor instance property 364
separatorStyle instance property 364
set instance method 154
setAnimationBeginsFromCurrentState: class

method 455
setAnimationCurve: class method 456
setAnimationDelay: class method 457
setAnimationDelegate: class method 457
setAnimationDidStopSelector: class method 458
setAnimationDuration: class method 458
setAnimationRepeatAutoreverses: class method

459
setAnimationRepeatCount: class method 460
setAnimationsEnabled: class method 460
setAnimationStartDate: class method 461
setAnimationTransition:forView:cache: class

method 461
setAnimationWillStartSelector: class method

462
setBackgroundImage:forState: instance method

132
setContentOffset:animated: instance method 302
setContentOffset:forSegmentAtIndex: instance

method 318
setDate:animated: instance method 180
setEditing:animated: instance method 377, 395,

496
setEnabled:forSegmentAtIndex: instance method

319
setFill instance method 154
setHidesBackButton:animated: instance method

260
setImage:forSegmentAtIndex: instance method

319
setImage:forState: instance method 132
setItems:animated: instance method 343, 431

setLeftBarButtonItem:animated: instance method
260

setMaximumTrackImage:forState: instance method
331

setMinimumTrackImage:forState: instance method
331

setNavigationBarHidden:animated: instance
method 252

setNeedsDisplay instance method 473
setNeedsDisplayInRect: instance method 473
setNeedsLayout instance method 474
setOn:animated: instance method 337
setRightBarButtonItem:animated: instance

method 261
setSelected:animated: instance method 396
setStatusBarHidden:animated: instance method

99
setStatusBarOrientation:animated: instance

method 100
setStatusBarStyle:animated: instance method

101
setStroke instance method 154
setThumbImage:forState: instance method 332
setTitle:forSegmentAtIndex: instance method

319
setTitle:forState: instance method 133
setTitleColor:forState: instance method 133
setTitleShadowColor:forState: instance method

134
setValue:animated: instance method 332
setViewControllers:animated: instance method

349
setWidth:forSegmentAtIndex: instance method

320
shadowColor instance property 235
shadowOffset instance property 235
sharedAccelerometer class method 65
sharedApplication class method 96
shouldAutorotateToInterfaceOrientation:

instance method 496
shouldIndentWhileEditing instance property 391
show instance method 88
showFromTabBar: instance method 73
showFromToolbar: instance method 73
showingDeleteConfirmation instance property 392
showInView: instance method 74
showsBookmarkButton instance property 308
showsCancelButton instance property 309
showsHorizontalScrollIndicator instance property

299
showsReorderControl instance property 392
showsSelectionIndicator instance property 270
showsTouchWhenHighlighted instance property 128

660
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

showsVerticalScrollIndicator instance property
300

size instance property 209
sizeForNumberOfPages: instance method 266
sizeThatFits: instance method 474
sizeToFit instance method 475
sizeWithFont: instance method 47
sizeWithFont:constrainedToSize: instance

method 47
sizeWithFont:constrainedToSize:lineBreakMode:

instance method 48
sizeWithFont:forWidth:lineBreakMode: instance

method 48
sizeWithFont:minFontSize:actualFontSize:forWidth:

lineBreakMode: instance method 49
smallSystemFontSize class method 202
sourceType instance property 221
startAnimating instance method 80, 227
state instance property 162
statusBarFrame instance property 94
statusBarHidden instance property 94
statusBarOrientation instance property 95
statusBarOrientationAnimationDuration instance

property 95
statusBarStyle instance property 95
stopAnimating instance method 80, 227
stopLoading instance method 510
stretchableImageWithLeftCapWidth:topCapHeight:

instance method 215
stringByEvaluatingJavaScriptFromString:

instance method 510
style instance property 109, 365
subviews instance property 451
superview instance property 452
systemFontOfSize: class method 203
systemFontSize class method 203
systemName instance property 186
systemVersion instance property 186

T

tabBarController instance property 490
tabBarController:didEndCustomizingViewControllers:

changed: protocol instance method 576
tabBarController:didSelectViewController:

protocol instance method 576
tabBarItem instance property 490
Table Cell Insertion and Deletion Animation 379
Table View Scroll Position 378
Table View Style 378
tableFooterView instance property 365
tableHeaderView instance property 365

tableView instance property 402
tableView:

accessoryButtonTappedForRowWithIndexPath:
protocol instance method 589

tableView:accessoryTypeForRowWithIndexPath:
protocol instance method 589

tableView:canEditRowAtIndexPath: protocol
instance method 579

tableView:canMoveRowAtIndexPath: protocol
instance method 580

tableView:cellForRowAtIndexPath: protocol
instance method 581

tableView:commitEditingStyle:forRowAtIndexPath:
protocol instance method 581

tableView:didEndEditingRowAtIndexPath:
protocol instance method 590

tableView:didSelectRowAtIndexPath: protocol
instance method 590

tableView:editingStyleForRowAtIndexPath:
protocol instance method 591

tableView:heightForFooterInSection: protocol
instance method 591

tableView:heightForHeaderInSection: protocol
instance method 592

tableView:heightForRowAtIndexPath: protocol
instance method 593

tableView:indentationLevelForRowAtIndexPath:
protocol instance method 593

tableView:moveRowAtIndexPath:toIndexPath:
protocol instance method 582

tableView:numberOfRowsInSection: protocol
instance method 582

tableView:sectionForSectionIndexTitle:atIndex:
protocol instance method 583

tableView:shouldIndentWhileEditingRowAtIndexPath:
protocol instance method 594

tableView:
targetIndexPathForMoveFromRowAtIndexPath:
toProposedIndexPath:protocol instance method
594

tableView:titleForFooterInSection: protocol
instance method 584

tableView:titleForHeaderInSection: protocol
instance method 584

tableView:viewForFooterInSection: protocol
instance method 595

tableView:viewForHeaderInSection: protocol
instance method 595

tableView:willBeginEditingRowAtIndexPath:
protocol instance method 596

tableView:willDisplayCell:forRowAtIndexPath:
protocol instance method 596

661
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

tableView:willSelectRowAtIndexPath: protocol
instance method 597

tag instance property 119, 452
Tagged Image File Format (TIFF) 206
tapCount instance property 434
target instance property 109, 392
text instance property 235, 309, 393, 414, 426
textAlignment instance property 236, 393, 414, 426
textColor instance property 236, 393, 414, 427
textField:shouldChangeCharactersInRange:

replacementString: protocol instance method
600

textFieldDidBeginEditing: protocol instance
method 600

textFieldDidEndEditing:protocol instance method
601

textFieldShouldBeginEditing: protocol instance
method 601

textFieldShouldClear: protocol instance method
602

textFieldShouldEndEditing: protocol instance
method 602

textFieldShouldReturn:protocol instance method
603

textRectForBounds: instance method 418
textRectForBounds:limitedToNumberOfLines:

instance method 237
textView:shouldChangeTextInRange:replacementText:

protocol instance method 614
textViewDidBeginEditing: protocol instance

method 615
textViewDidChange: protocol instance method 615
textViewDidChangeSelection: protocol instance

method 615
textViewDidEndEditing:protocol instance method

616
textViewShouldBeginEditing: protocol instance

method 616
textViewShouldEndEditing: protocol instance

method 617
thumbImageForState: instance method 333
thumbRectForBounds:trackRect:value: instance

method 333
TIFF, format tags 206
timestamp instance property 61, 192, 435
timeZone instance property 179
tintColor instance property 242, 309, 314, 431
title instance property 70, 86, 119, 258, 490
titleColorForState: instance method 134
titleEdgeInsets instance property 128
titleForSegmentAtIndex: instance method 320
titleForState: instance method 134
titleRectForContentRect: instance method 135

titleShadowColorForState: instance method 135
titleShadowOffset instance property 129
titleView instance property 259
topCapHeight instance property 209
topItem instance property 242
topViewController instance property 248
Touch Phase 437
touchesBegan:withEvent: instance method 283
touchesCancelled:withEvent: instance method

283
touchesEnded:withEvent: instance method 284
touchesForView: instance method 193
touchesForWindow: instance method 193
touchesMoved:withEvent: instance method 285
touchesShouldBegin:withEvent:inContentView:

instance method 302
touchesShouldCancelInContentView: instance

method 303
touchInside instance property 163
tracking instance property 163, 300
trackRectForBounds: instance method 334
transform instance property 452

U

UIAccelerationValue data type 62
UIActionSheetStyle data type 74
UIActionSheetStyleAutomatic constant 74
UIActionSheetStyleBlackOpaque constant 75
UIActionSheetStyleBlackTranslucent constant 75
UIActionSheetStyleDefault constant 75
UIActivityIndicatorStyle data type 80
UIActivityIndicatorViewStyleGray constant 81
UIActivityIndicatorViewStyleWhite constant 81
UIActivityIndicatorViewStyleWhiteLarge

constant 80
UIApplicationDidBecomeActiveNotification

notification 104
UIApplicationDidChangeInterfaceOrientation-

Notification notification 104
UIApplicationDidChangeStatusBarFrameNotification

notification 105
UIApplicationDidFinishLaunchingNotification

notification 105
UIApplicationDidReceiveMemoryWarningNotification

notification 105
UIApplicationMain function 640
UIApplicationSignificantTimeChangeNotification

notification 105
UIApplicationStatusBarFrameUserInfoKey

constant 104

662
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

UIApplicationStatusBarOrientationUserInfoKey
constant 104

UIApplicationWillChangeInterfaceOrientation-
Notification notification 105

UIApplicationWillChangeStatusBarFrameNotification
notification 106

UIApplicationWillResignActiveNotification
notification 106

UIApplicationWillTerminateNotification
notification 106

UIBarButtonItemStyle data type 115
UIBarButtonItemStyleBordered constant 116
UIBarButtonItemStyleDone constant 116
UIBarButtonItemStylePlain constant 116
UIBarButtonSystemItem data type 112
UIBarButtonSystemItemAction constant 114
UIBarButtonSystemItemAdd constant 113
UIBarButtonSystemItemBookmarks constant 114
UIBarButtonSystemItemCamera constant 115
UIBarButtonSystemItemCancel constant 113
UIBarButtonSystemItemCompose constant 114
UIBarButtonSystemItemDone constant 113
UIBarButtonSystemItemEdit constant 113
UIBarButtonSystemItemFastForward constant 115
UIBarButtonSystemItemFixedSpace constant 114
UIBarButtonSystemItemFlexibleSpace constant

114
UIBarButtonSystemItemOrganize constant 114
UIBarButtonSystemItemPause constant 115
UIBarButtonSystemItemPlay constant 115
UIBarButtonSystemItemRefresh constant 114
UIBarButtonSystemItemReply constant 114
UIBarButtonSystemItemRewind constant 115
UIBarButtonSystemItemSave constant 113
UIBarButtonSystemItemSearch constant 114
UIBarButtonSystemItemStop constant 115
UIBarButtonSystemItemTrash constant 115
UIBarStyle data type 625
UIBarStyleBlackOpaque constant 626
UIBarStyleBlackTranslucent constant 626
UIBarStyleDefault constant 626
UIBaselineAdjustment 51
UIBaselineAdjustmentAlignBaselines constant 52
UIBaselineAdjustmentAlignCenters constant 52
UIBaselineAdjustmentNone constant 52
UIButtonType data type 136
UIButtonTypeContactAdd constant 137
UIButtonTypeCustom constant 136
UIButtonTypeDetailDisclosure constant 136
UIButtonTypeInfoDark constant 136
UIButtonTypeInfoLight constant 136
UIButtonTypeRoundedRect constant 136
UIControlContentAlignment data type 173

UIControlContentHorizontalAlignmentCenter
constant 172

UIControlContentHorizontalAlignmentFill
constant 172

UIControlContentHorizontalAlignmentLeft
constant 172

UIControlContentHorizontalAlignmentRight
constant 172

UIControlContentVerticalAlignmentBottom
constant 172

UIControlContentVerticalAlignmentCenter
constant 171

UIControlContentVerticalAlignmentFill constant
172

UIControlContentVerticalAlignmentTop constant
171

UIControlEventAllEditingEvents constant 171
UIControlEventAllEvents constant 171
UIControlEventAllTouchEvents constant 171
UIControlEventApplicationReserved constant 171
UIControlEventEditingChanged constant 170
UIControlEventEditingDidBegin constant 170
UIControlEventEditingDidEnd constant 170
UIControlEventEditingDidEndOnExit constant 170
UIControlEventSystemReserved constant 171
UIControlEventTouchCancel constant 170
UIControlEventTouchDown constant 169
UIControlEventTouchDownRepeat constant 169
UIControlEventTouchDragEnter constant 170
UIControlEventTouchDragExit constant 170
UIControlEventTouchDragInside constant 169
UIControlEventTouchDragOutside constant 169
UIControlEventTouchUpInside constant 170
UIControlEventTouchUpOutside constant 170
UIControlEventValueChanged constant 170
UIControlState data type 174
UIControlStateApplicationReserved constant 174
UIControlStateDisabled constant 173
UIControlStateHighlighted constant 173
UIControlStateNormal constant 173
UIControlStateReserved constant 174
UIControlStateSelected constant 174
UIDatePickerModeCountDownTimer constant 181
UIDatePickerModeDate constant 181
UIDatePickerModeDateAndTime constant 181
UIDatePickerModeTime constant 180
UIDeviceOrientation 189
UIDeviceOrientationDidChangeNotification

notification 190
UIDeviceOrientationFaceDown constant 190
UIDeviceOrientationFaceUp constant 189
UIDeviceOrientationIsLandscape constant 190
UIDeviceOrientationIsPortrait constant 190

663
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

UIDeviceOrientationIsValidInterfaceOrientation
constant 103

UIDeviceOrientationLandscapeLeft constant 189
UIDeviceOrientationLandscapeRight constant 189
UIDeviceOrientationPortrait constant 189
UIDeviceOrientationPortraitUpsideDown constant

189
UIDeviceOrientationUnknown constant 189
UIEdgeInsets structure 625
UIEdgeInsetsEqualToEdgeInsets function 640
UIEdgeInsetsFromString function 641
UIEdgeInsetsInsetRect function 641
UIEdgeInsetsMake function 642
UIEdgeInsetsValue instance method 57
UIEdgeInsetsZero 629
UIEdgeInsetsZero constant 629
UIGraphicsBeginImageContext function 643
UIGraphicsEndImageContext function 643
UIGraphicsGetCurrentContext function 644
UIGraphicsGetImageFromCurrentImageContext

function 644
UIGraphicsPopContext function 645
UIGraphicsPushContext function 645
UIImageJPEGRepresentation function 646
UIImageOrientation 216
UIImageOrientationDown constant 216
UIImageOrientationDownMirrored constant 217
UIImageOrientationLeft constant 217
UIImageOrientationLeftMirrored constant 217
UIImageOrientationRight constant 217
UIImageOrientationRightMirrored constant 217
UIImageOrientationUp constant 216
UIImageOrientationUpMirrored constant 217
UIImagePickerControllerCropRect constant 549
UIImagePickerControllerOriginalImage constant

549
UIImagePickerControllerSourceType 222
UIImagePickerControllerSourceTypeCamera

constant 222
UIImagePickerControllerSourceTypePhotoLibrary

constant 222
UIImagePickerControllerSourceTypeSavedPhotosAlbum

constant 222
UIImagePNGRepresentation function 646
UIImageWriteToSavedPhotosAlbum function 647
UIInterfaceOrientation data type 101
UIInterfaceOrientationIsLandscape constant 103
UIInterfaceOrientationIsPortrait constant 103
UIInterfaceOrientationLandscapeLeft constant

102
UIInterfaceOrientationLandscapeRight constant

102
UIInterfaceOrientationPortrait constant 101

UIInterfaceOrientationPortraitUpsideDown
constant 101

UIKeyboardAppearance 611
UIKeyboardAppearanceAlert constant 611
UIKeyboardAppearanceDefault constant 611
UIKeyboardBoundsUserInfoKey constant 520
UIKeyboardCenterBeginUserInfoKey constant 520
UIKeyboardCenterEndUserInfoKey constant 520
UIKeyboardDidHideNotification notification 522
UIKeyboardDidShowNotification notification 522
UIKeyboardType 609
UIKeyboardTypeASCIICapable constant 610
UIKeyboardTypeDefault constant 610
UIKeyboardTypeEmailAddress constant 610
UIKeyboardTypeNamePhonePad constant 610
UIKeyboardTypeNumberPad constant 610
UIKeyboardTypeNumbersAndPunctuation constant

610
UIKeyboardTypePhonePad constant 610
UIKeyboardTypeURL constant 610
UIKeyboardWillHideNotificationnotification 522
UIKeyboardWillShowNotification notification 521
UILineBreakMode 50
UILineBreakModeCharacterWrap constant 50
UILineBreakModeClip constant 50
UILineBreakModeHeadTruncation constant 50
UILineBreakModeMiddleTruncation constant 51
UILineBreakModeTailTruncation constant 51
UILineBreakModeWordWrap constant 50
UINavigationControllerHideShowBarDuration 253
UINavigationControllerHideShowBarDuration

constant 253
UINibProxiedObjectsKey constant 25
UIProgressViewStyle data type 277
UIProgressViewStyleBar constant 277
UIProgressViewStyleDefault constant 277
UIRectClip function 647
UIRectFill function 648
UIRectFillUsingBlendMode function 649
UIRectFrame function 649
UIRectFrameUsingBlendMode function 650
UIReturnKeyDefault constant 611
UIReturnKeyDone constant 612
UIReturnKeyEmergencyCall constant 612
UIReturnKeyGo constant 611
UIReturnKeyGoogle constant 611
UIReturnKeyJoin constant 612
UIReturnKeyNext constant 612
UIReturnKeyRoute constant 612
UIReturnKeySearch constant 612
UIReturnKeySend constant 612
UIReturnKeyType 611
UIReturnKeyYahoo constant 612

664
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

UIScrollViewIndicatorStyleBlack constant 304
UIScrollViewIndicatorStyleDefault constant 304
UIScrollViewIndicatorStyleWhite constant 304
UISegmentedControlNoSegment constant 322
UISegmentedControlStyleBar constant 322
UISegmentedControlStyleBordered constant 322
UISegmentedControlStylePlain constant 322
UIStatusBarStyle data type 102
UIStatusBarStyleBlackOpaque constant 102
UIStatusBarStyleBlackTranslucent constant 102
UIStatusBarStyleDefault constant 102
UITabBarSystemItem data type 353
UITabBarSystemItemBookmarks constant 355
UITabBarSystemItemContacts constant 354
UITabBarSystemItemDownloads constant 355
UITabBarSystemItemFavorites constant 354
UITabBarSystemItemFeatured constant 354
UITabBarSystemItemHistory constant 354
UITabBarSystemItemMore constant 354
UITabBarSystemItemMostRecent constant 355
UITabBarSystemItemMostViewed constant 355
UITabBarSystemItemRecents constant 354
UITabBarSystemItemSearch constant 355
UITabBarSystemItemTopRated constant 354
UITableViewCellAccessoryCheckmark constant 398
UITableViewCellAccessoryDetailDisclosureButton

constant 398
UITableViewCellAccessoryDisclosureIndicator

constant 398
UITableViewCellAccessoryNone constant 398
UITableViewCellEditingStyleDelete constant 397
UITableViewCellEditingStyleInsert constant 397
UITableViewCellEditingStyleNone constant 397
UITableViewCellSelectionStyleBlue constant 396
UITableViewCellSelectionStyleGray constant 397
UITableViewCellSelectionStyleNone constant 396
UITableViewCellSeparatorStyleNone constant 398
UITableViewCellSeparatorStyleSingleLine

constant 399
UITableViewRowAnimationBottom constant 380
UITableViewRowAnimationFade constant 379
UITableViewRowAnimationLeft constant 380
UITableViewRowAnimationRight constant 380
UITableViewRowAnimationTop constant 380
UITableViewScrollPositionBottom constant 379
UITableViewScrollPositionMiddle constant 379
UITableViewScrollPositionNone constant 379
UITableViewScrollPositionTop constant 379
UITableViewSelectionDidChangeNotification

notification 380
UITableViewStyleGrouped constant 378
UITableViewStylePlain constant 378
UITextAlignment 51

UITextAlignmentCenter constant 51
UITextAlignmentLeft constant 51
UITextAlignmentRight constant 51
UITextAutocapitalizationType 608
UITextAutocapitalizationTypeAllCharacters

constant 609
UITextAutocapitalizationTypeNone constant 608
UITextAutocapitalizationTypeSentences constant

609
UITextAutocapitalizationTypeWords constant 609
UITextAutocorrectionType 609
UITextAutocorrectionTypeDefault constant 609
UITextAutocorrectionTypeNo constant 609
UITextAutocorrectionTypeYes constant 609
UITextBorderStyleBezel constant 419
UITextBorderStyleLine constant 419
UITextBorderStyleNone constant 419
UITextBorderStyleRoundedRect constant 420
UITextFieldBorderStyle 419
UITextFieldTextDidBeginEditingNotification

notification 420
UITextFieldTextDidChangeNotification

notification 421
UITextFieldTextDidEndEditingNotification

notification 421
UITextFieldViewMode 420
UITextFieldViewModeAlways constant 420
UITextFieldViewModeNever constant 420
UITextFieldViewModeUnlessEditing constant 420
UITextFieldViewModeWhileEditing constant 420
UITextViewTextDidBeginEditingNotification

notification 428
UITextViewTextDidChangeNotificationnotification

428
UITextViewTextDidEndEditingNotification

notification 428
UITouchPhaseBegan constant 437
UITouchPhaseCancelled constant 438
UITouchPhaseEnded constant 438
UITouchPhaseMoved constant 437
UITouchPhaseStationary constant 437
UITrackingRunLoopMode constant 103
UIViewAnimationCurve data type 477
UIViewAnimationCurveEaseIn constant 477
UIViewAnimationCurveEaseInOut constant 477
UIViewAnimationCurveEaseOut constant 478
UIViewAnimationCurveLinear constant 478
UIViewAnimationTransition data type 481
UIViewAnimationTransitionCurlDown constant 481
UIViewAnimationTransitionCurlUp constant 481
UIViewAnimationTransitionFlipFromLeft constant

481

665
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

UIViewAnimationTransitionFlipFromRight
constant 481

UIViewAnimationTransitionNone constant 481
UIViewAutoresizing data type 480
UIViewAutoresizingFlexibleBottomMargin

constant 480
UIViewAutoresizingFlexibleHeight constant 480
UIViewAutoresizingFlexibleLeftMargin constant

480
UIViewAutoresizingFlexibleRightMargin constant

480
UIViewAutoresizingFlexibleTopMargin constant

480
UIViewAutoresizingFlexibleWidth constant 480
UIViewAutoresizingNone constant 480
UIViewContentMode data type 478
UIViewContentModeBottom constant 479
UIViewContentModeBottomLeft constant 479
UIViewContentModeBottomRight constant 479
UIViewContentModeCenter constant 479
UIViewContentModeLeft constant 479
UIViewContentModeRedraw constant 479
UIViewContentModeRight constant 479
UIViewContentModeScaleAspectFill constant 478
UIViewContentModeScaleAspectFit constant 478
UIViewContentModeScaleToFill constant 478
UIViewContentModeTop constant 479
UIViewContentModeTopLeft constant 479
UIViewContentModeTopRight constant 479
UIWebViewNavigationType data type 511
UIWebViewNavigationTypeBackForward constant

511
UIWebViewNavigationTypeFormResubmitted

constant 511
UIWebViewNavigationTypeFormSubmitted constant

511
UIWebViewNavigationTypeLinkClicked constant

511
UIWebViewNavigationTypeOther constant 511
UIWebViewNavigationTypeReload constant 511
UIWindowDidBecomeHiddenNotificationnotification

521
UIWindowDidBecomeKeyNotification notification

521
UIWindowDidBecomeVisibleNotification

notification 520
UIWindowDidResignKeyNotification notification

521
UIWindowLevel 519
UIWindowLevelAlert constant 519
UIWindowLevelNormal constant 519
UIWindowLevelStatusBar constant 520
uniqueIdentifier instance property 187

updateCurrentPageDisplay instance method 266
updateInterval instance property 64
userInteractionEnabled instance property 226,

236, 453

V

value instance property 328
valueWithCGAffineTransform: class method 54
valueWithCGPoint: class method 54
valueWithCGRect: class method 55
valueWithCGSize: class method 55
valueWithUIEdgeInsets: class method 56
Vertical Content Alignment 171
view instance property 435, 491
viewControllers instance property 248, 348
viewDidAppear: instance method 497
viewDidDisappear: instance method 498
viewDidLoad instance method 498
viewFlipsideBackgroundColor class method 149
viewForRow:forComponent: instance method 273
viewForZoomingInScrollView: protocol instance

method 566
viewWillAppear: instance method 499
viewWillDisappear: instance method 499
viewWithTag: instance method 475
visible instance property 71, 86
visibleCells instance method 377
visibleViewController instance property 249

W

webView:didFailLoadWithError:protocol instance
method 620

webView:shouldStartLoadWithRequest:navigationType:
protocol instance method 620

webViewDidFinishLoad: protocol instance method
621

webViewDidStartLoad: protocol instance method
621

whiteColor class method 150
width instance property 110
widthForSegmentAtIndex: instance method 321
willAnimateFirstHalfOfRotationToInterfaceOrientation:

duration: instance method 500
willAnimateSecondHalfOfRotationFromInterfaceOrientation:

duration: instance method 500
willMoveToSuperview: instance method 476
willMoveToWindow: instance method 476

666
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

willPresentActionSheet:protocol instance method
530

willPresentAlertView: protocol instance method
536

willRemoveSubview: instance method 477
willRotateToInterfaceOrientation:duration:

instance method 501
window instance property 435, 453
windowLevel instance property 515
Windows Bitmap Format (DIB) 206
Windows Cursor format 206
windows instance property 96

X

x instance property 61
xHeight instance property 199
XWindow bitmap format 206

Y

y instance property 61
yellowColor class method 150

Z

z instance property 62
zoomBouncing instance property 300
zooming instance property 301

667
2008-05-18 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

	UIKit Framework Reference
	Contents
	Figures and Tables
	Introduction
	The UIKit framework provides the classes needed to construct and manage an application’s user interface for iPhone and iPod touch. It provides an application object, event handling, drawing model, windows, views, and controls specifically designed for a touch screen interface. Figure I-1 illustrates the classes in this framework.

	Part I: Classes
	NSBundle UIKit Additions Reference
	Overview
	Tasks
	Loading Nib Files

	Instance Methods
	loadNibNamed:owner:options:

	Constants
	Nib File Loading Options

	NSCoder UIKit Additions Reference
	Overview
	Tasks
	Encoding Data
	Decoding Data

	Instance Methods
	decodeCGAffineTransformForKey:
	decodeCGPointForKey:
	decodeCGRectForKey:
	decodeCGSizeForKey:
	decodeUIEdgeInsetsForKey:
	encodeCGAffineTransform:forKey:
	encodeCGPoint:forKey:
	encodeCGRect:forKey:
	encodeCGSize:forKey:
	encodeUIEdgeInsets:forKey:

	NSIndexPath UIKit Additions
	Overview
	Tasks
	Creating an Index Path Object
	Getting the Row and Section Indexes

	Properties
	row
	section

	Class Methods
	indexPathForRow:inSection:

	NSObject UIKit Additions Reference
	Overview
	Tasks
	Responding to Being Loaded from a Nib File

	Instance Methods
	awakeFromNib

	NSString UIKit Additions Reference
	Overview
	Tasks
	Getting the Drawing Rect of a String
	Drawing String Objects

	Instance Methods
	drawAtPoint:forWidth:withFont:fontSize:lineBreakMode:baselineAdjustment:
	drawAtPoint:forWidth:withFont:lineBreakMode:
	drawAtPoint:forWidth:withFont:minFontSize:actualFontSize:lineBreakMode: baselineAdjustment:
	drawAtPoint:withFont:
	drawInRect:withFont:
	drawInRect:withFont:lineBreakMode:
	drawInRect:withFont:lineBreakMode:alignment:
	sizeWithFont:
	sizeWithFont:constrainedToSize:
	sizeWithFont:constrainedToSize:lineBreakMode:
	sizeWithFont:forWidth:lineBreakMode:
	sizeWithFont:minFontSize:actualFontSize:forWidth:lineBreakMode:

	Constants
	UILineBreakMode
	UITextAlignment
	UIBaselineAdjustment

	NSValue UIKit Additions Reference
	Overview
	Tasks
	Creating an NSValue
	Accessing Data

	Class Methods
	valueWithCGAffineTransform:
	valueWithCGPoint:
	valueWithCGRect:
	valueWithCGSize:
	valueWithUIEdgeInsets:

	Instance Methods
	CGAffineTransformValue
	CGPointValue
	CGRectValue
	CGSizeValue
	UIEdgeInsetsValue

	UIAcceleration Class Reference
	Overview
	Tasks
	Accessing the Acceleration Data

	Properties
	timestamp
	x
	y
	z

	Constants
	UIAccelerationValue

	UIAccelerometer Class Reference
	Overview
	Tasks
	Getting the Shared Accelerometer Object
	Accessing the Accelerometer Properties

	Properties
	delegate
	updateInterval

	Class Methods
	sharedAccelerometer

	UIActionSheet Class Reference
	Overview
	Tasks
	Creating Action Sheets
	Setting Properties
	Configuring Buttons
	Displaying
	Dismissing

	Properties
	actionSheetStyle
	cancelButtonIndex
	delegate
	destructiveButtonIndex
	firstOtherButtonIndex
	numberOfButtons
	title
	visible

	Instance Methods
	addButtonWithTitle:
	buttonTitleAtIndex:
	dismissWithClickedButtonIndex:animated:
	initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle: otherButtonTitles:
	showFromTabBar:
	showFromToolbar:
	showInView:

	Constants
	UIActionSheetStyle

	UIActivityIndicatorView Class Reference
	Overview
	Tasks
	Initializing an UIActivityIndicatorView Object
	Managing the Activity Indicator
	Managing the Indicator Style

	Properties
	activityIndicatorViewStyle
	hidesWhenStopped

	Instance Methods
	initWithActivityIndicatorStyle:
	isAnimating
	startAnimating
	stopAnimating

	Constants
	UIActivityIndicatorStyle

	UIAlertView Class Reference
	Overview
	Tasks
	Creating Alert Views
	Setting Properties
	Configuring Buttons
	Displaying
	Dismissing

	Properties
	cancelButtonIndex
	delegate
	firstOtherButtonIndex
	message
	numberOfButtons
	title
	visible

	Instance Methods
	addButtonWithTitle:
	buttonTitleAtIndex:
	dismissWithClickedButtonIndex:animated:
	initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:
	show

	UIApplication Class Reference
	Overview
	Subclassing Notes

	Tasks
	Getting the Application Instance
	Getting Application Windows
	Controlling and Handling Events
	Opening a URL Resource
	Managing Application Activity
	Managing Status Bar Orientation
	Controlling Application Appearance
	Setting and Getting the Delegate

	Properties
	applicationIconBadgeNumber
	delegate
	idleTimerDisabled
	keyWindow
	networkActivityIndicatorVisible
	proximitySensingEnabled
	statusBarFrame
	statusBarHidden
	statusBarOrientation
	statusBarOrientationAnimationDuration
	statusBarStyle
	windows

	Class Methods
	sharedApplication

	Instance Methods
	beginIgnoringInteractionEvents
	endIgnoringInteractionEvents
	isIgnoringInteractionEvents
	openURL:
	sendAction:to:from:forEvent:
	sendEvent:
	setStatusBarHidden:animated:
	setStatusBarOrientation:animated:
	setStatusBarStyle:animated:

	Constants
	UIInterfaceOrientation
	UIStatusBarStyle
	Run Loop Mode for Tracking
	Interface Orientation Conveniences
	Notification UserInfo Dictionary Keys

	Notifications
	UIApplicationDidBecomeActiveNotification
	UIApplicationDidChangeInterfaceOrientationNotification
	UIApplicationDidChangeStatusBarFrameNotification
	UIApplicationDidFinishLaunchingNotification
	UIApplicationDidReceiveMemoryWarningNotification
	UIApplicationSignificantTimeChangeNotification
	UIApplicationWillChangeInterfaceOrientationNotification
	UIApplicationWillChangeStatusBarFrameNotification
	UIApplicationWillResignActiveNotification
	UIApplicationWillTerminateNotification

	UIBarButtonItem Class Reference
	Overview
	Tasks
	Initializing an Item
	Getting and Setting Properties

	Properties
	action
	customView
	possibleTitles
	style
	target
	width

	Instance Methods
	initWithBarButtonSystemItem:target:action:
	initWithCustomView:
	initWithImage:style:target:action:
	initWithTitle:style:target:action:

	Constants
	UIBarButtonSystemItem
	UIBarButtonItemStyle

	UIBarItem Class Reference
	Overview
	Tasks
	Getting and Setting Properties

	Properties
	enabled
	image
	imageInsets
	tag
	title

	UIButton Class Reference
	Overview
	Tasks
	Creating Buttons
	Configuring Button Title
	Configuring Button Images
	Configuring Edge Insets
	Getting the Current State
	Getting Dimensions

	Properties
	adjustsImageWhenDisabled
	adjustsImageWhenHighlighted
	buttonType
	contentEdgeInsets
	currentBackgroundImage
	currentImage
	currentTitle
	currentTitleColor
	currentTitleShadowColor
	font
	imageEdgeInsets
	lineBreakMode
	reversesTitleShadowWhenHighlighted
	showsTouchWhenHighlighted
	titleEdgeInsets
	titleShadowOffset

	Class Methods
	buttonWithType:

	Instance Methods
	backgroundImageForState:
	backgroundRectForBounds:
	contentRectForBounds:
	imageForState:
	imageRectForContentRect:
	setBackgroundImage:forState:
	setImage:forState:
	setTitle:forState:
	setTitleColor:forState:
	setTitleShadowColor:forState:
	titleColorForState:
	titleForState:
	titleRectForContentRect:
	titleShadowColorForState:

	Constants
	UIButtonType

	UIColor Class Reference
	Overview
	Tasks
	Creating a UIColor Object from Component Values
	Initializing a UIColor Object
	Creating a UIColor with Preset Component Values
	System Colors
	Retrieving Color Information
	Drawing Operations

	Properties
	CGColor

	Class Methods
	blackColor
	blueColor
	brownColor
	clearColor
	colorWithCGColor:
	colorWithHue:saturation:brightness:alpha:
	colorWithPatternImage:
	colorWithRed:green:blue:alpha:
	colorWithWhite:alpha:
	cyanColor
	darkGrayColor
	darkTextColor
	grayColor
	greenColor
	groupTableViewBackgroundColor
	lightGrayColor
	lightTextColor
	magentaColor
	orangeColor
	purpleColor
	redColor
	viewFlipsideBackgroundColor
	whiteColor
	yellowColor

	Instance Methods
	colorWithAlphaComponent:
	initWithCGColor:
	initWithHue:saturation:brightness:alpha:
	initWithPatternImage:
	initWithRed:green:blue:alpha:
	initWithWhite:alpha:
	set
	setFill
	setStroke

	UIControl Class Reference
	Overview
	The Target-Action Mechanism
	Subclassing Notes

	Tasks
	Preparing and Sending Action Messages
	Setting and Getting Control Attributes
	Tracking Touches and Redrawing Controls

	Properties
	contentHorizontalAlignment
	contentVerticalAlignment
	enabled
	highlighted
	selected
	state
	touchInside
	tracking

	Instance Methods
	actionsForTarget:forControlEvent:
	addTarget:action:forControlEvents:
	allControlEvents
	allTargets
	beginTrackingWithTouch:withEvent:
	cancelTrackingWithEvent:
	continueTrackingWithTouch:withEvent:
	endTrackingWithTouch:withEvent:
	removeTarget:action:forControlEvents:
	sendAction:to:forEvent:
	sendActionsForControlEvents:

	Constants
	Control Events
	Vertical Content Alignment
	Horizontal Content Alignment
	UIControlContentAlignment
	Control State
	UIControlState

	UIDatePicker Class Reference
	Overview
	Tasks
	Managing the Date and Calendar
	Configuring the Date Picker Mode
	Configuring Temporal Attributes

	Properties
	calendar
	countDownDuration
	date
	datePickerMode
	locale
	maximumDate
	minimumDate
	minuteInterval
	timeZone

	Instance Methods
	setDate:animated:

	Constants
	Date Picker Mode

	UIDevice Class Reference
	Overview
	Tasks
	Getting the Shared Device Instance
	Identifying the Device and Operating System
	Getting the Current Device Orientation

	Properties
	generatesDeviceOrientationNotifications
	localizedModel
	model
	name
	orientation
	systemName
	systemVersion
	uniqueIdentifier

	Class Methods
	currentDevice

	Instance Methods
	beginGeneratingDeviceOrientationNotifications
	endGeneratingDeviceOrientationNotifications

	Constants
	UIDeviceOrientation
	Device Orientation Convenience Macros

	Notifications
	UIDeviceOrientationDidChangeNotification

	UIEvent Class Reference
	Overview
	Tasks
	Getting the Touches for an Event
	Getting Event Attributes

	Properties
	timestamp

	Instance Methods
	allTouches
	touchesForView:
	touchesForWindow:

	UIFont Class Reference
	Overview
	Tasks
	Creating Arbitrary Fonts
	Creating System Fonts
	Getting the Available Font Names
	Getting Font Name Attributes
	Getting Font Metrics
	Getting System Font Information

	Properties
	ascender
	capHeight
	descender
	familyName
	fontName
	leading
	pointSize
	xHeight

	Class Methods
	boldSystemFontOfSize:
	buttonFontSize
	familyNames
	fontNamesForFamilyName:
	fontWithName:size:
	italicSystemFontOfSize:
	labelFontSize
	smallSystemFontSize
	systemFontOfSize:
	systemFontSize

	Instance Methods
	fontWithSize:

	UIImage Class Reference
	Overview
	Images and Memory Management
	Supported Image Formats

	Tasks
	Cached Image Loading Routines
	Creating New Images
	Initializing Images
	Image Attributes
	Drawing Images

	Properties
	CGImage
	imageOrientation
	leftCapWidth
	size
	topCapHeight

	Class Methods
	imageNamed:
	imageWithCGImage:
	imageWithContentsOfFile:
	imageWithData:

	Instance Methods
	drawAsPatternInRect:
	drawAtPoint:
	drawAtPoint:blendMode:alpha:
	drawInRect:
	drawInRect:blendMode:alpha:
	initWithCGImage:
	initWithContentsOfFile:
	initWithData:
	stretchableImageWithLeftCapWidth:topCapHeight:

	Constants
	UIImageOrientation

	UIImagePickerController Class Reference
	Overview
	Tasks
	Setting the Picker Source
	Configuring the Picker

	Properties
	allowsImageEditing
	delegate
	sourceType

	Class Methods
	isSourceTypeAvailable:

	Constants
	UIImagePickerControllerSourceType

	UIImageView Class Reference
	Overview
	Tasks
	Initializing a UIImageView Object
	Image Data
	Animating Images
	Setting and Getting Attributes

	Properties
	animationDuration
	animationImages
	animationRepeatCount
	image
	userInteractionEnabled

	Instance Methods
	initWithImage:
	isAnimating
	startAnimating
	stopAnimating

	UILabel Class Reference
	Overview
	Tasks
	Accessing the Text Attributes
	Sizing the Label’s Text
	Managing Highlight Values
	Drawing a Shadow
	Drawing and Positioning Overrides
	Setting and Getting Attributes

	Properties
	adjustsFontSizeToFitWidth
	baselineAdjustment
	enabled
	font
	highlighted
	highlightedTextColor
	lineBreakMode
	minimumFontSize
	numberOfLines
	shadowColor
	shadowOffset
	text
	textAlignment
	textColor
	userInteractionEnabled

	Instance Methods
	drawTextInRect:
	textRectForBounds:limitedToNumberOfLines:

	UINavigationBar Class Reference
	Overview
	Tasks
	Configuring Navigation Bars
	Pushing and Popping Items

	Properties
	backItem
	barStyle
	delegate
	items
	tintColor
	topItem

	Instance Methods
	popNavigationItemAnimated:
	pushNavigationItem:animated:

	UINavigationController Class Reference
	Overview
	Tasks
	Creating Navigation Controllers
	Pushing and Popping Items
	Configuring Navigation Bars
	Setting the Delegate

	Properties
	delegate
	navigationBar
	navigationBarHidden
	topViewController
	viewControllers
	visibleViewController

	Instance Methods
	initWithRootViewController:
	popToRootViewControllerAnimated:
	popToViewController:animated:
	popViewControllerAnimated:
	pushViewController:animated:
	setNavigationBarHidden:animated:

	Constants
	UINavigationControllerHideShowBarDuration

	UINavigationItem Class Reference
	Overview
	Tasks
	Initializing an Item
	Getting and Setting Properties
	Customizing Views

	Properties
	backBarButtonItem
	hidesBackButton
	leftBarButtonItem
	prompt
	rightBarButtonItem
	title
	titleView

	Instance Methods
	initWithTitle:
	setHidesBackButton:animated:
	setLeftBarButtonItem:animated:
	setRightBarButtonItem:animated:

	UIPageControl Class Reference
	Overview
	Tasks
	Managing the Page Navigation
	Updating the Page Display
	Resizing the Control

	Properties
	currentPage
	defersCurrentPageDisplay
	hidesForSinglePage
	numberOfPages

	Instance Methods
	sizeForNumberOfPages:
	updateCurrentPageDisplay

	UIPickerView Class Reference
	Overview
	Tasks
	Getting the Dimensions of the View Picker
	Reloading the View Picker
	Selecting Rows in the View Picker
	Returning the View for a Row and Component
	Managing the Delegate
	Managing the Data Source
	Managing the Appearance of the Picker View

	Properties
	dataSource
	delegate
	numberOfComponents
	showsSelectionIndicator

	Instance Methods
	numberOfRowsInComponent:
	reloadAllComponents
	reloadComponent:
	rowSizeForComponent:
	selectedRowInComponent:
	selectRow:inComponent:animated:
	viewForRow:forComponent:

	UIProgressView Class Reference
	Overview
	Tasks
	Initializing the UIProgressView Object
	Managing the Progress Bar
	Configuring the Bar Style

	Properties
	progress
	progressViewStyle

	Instance Methods
	initWithProgressViewStyle:

	Constants
	UIProgressViewStyle

	UIResponder Class Reference
	Overview
	Tasks
	Managing the Responder Chain
	Responding to Events

	Instance Methods
	becomeFirstResponder
	canBecomeFirstResponder
	canResignFirstResponder
	isFirstResponder
	nextResponder
	resignFirstResponder
	touchesBegan:withEvent:
	touchesCancelled:withEvent:
	touchesEnded:withEvent:
	touchesMoved:withEvent:

	UIScreen Class Reference
	Overview
	Tasks
	Getting the Available Screens
	Getting the Bounds Information

	Properties
	applicationFrame
	bounds

	Class Methods
	mainScreen

	UIScrollView Class Reference
	Overview
	Tasks
	Managing the Display of Content
	Managing Scrolling
	Managing the Scroll Indicator
	Zooming and Panning
	Managing the Delegate

	Properties
	alwaysBounceHorizontal
	alwaysBounceVertical
	bounces
	bouncesZoom
	canCancelContentTouches
	contentInset
	contentOffset
	contentSize
	decelerating
	delaysContentTouches
	delegate
	directionalLockEnabled
	dragging
	indicatorStyle
	maximumZoomScale
	minimumZoomScale
	pagingEnabled
	scrollEnabled
	scrollIndicatorInsets
	scrollsToTop
	showsHorizontalScrollIndicator
	showsVerticalScrollIndicator
	tracking
	zoomBouncing
	zooming

	Instance Methods
	flashScrollIndicators
	scrollRectToVisible:animated:
	setContentOffset:animated:
	touchesShouldBegin:withEvent:inContentView:
	touchesShouldCancelInContentView:

	Constants
	Scroll Indicator Style

	UISearchBar Class Reference
	Overview
	Tasks
	Setting Properties
	Setting Text Input Properties
	Configuring Buttons

	Properties
	autocapitalizationType
	autocorrectionType
	barStyle
	delegate
	keyboardType
	placeholder
	prompt
	showsBookmarkButton
	showsCancelButton
	text
	tintColor

	UISegmentedControl Class Reference
	Overview
	Tasks
	Initializing a Segmented Control
	Managing Segment Content
	Managing Segments
	Managing Segment Behavior and Appearance

	Properties
	momentary
	numberOfSegments
	segmentedControlStyle
	selectedSegmentIndex
	tintColor

	Instance Methods
	contentOffsetForSegmentAtIndex:
	imageForSegmentAtIndex:
	initWithItems:
	insertSegmentWithImage:atIndex:animated:
	insertSegmentWithTitle:atIndex:animated:
	isEnabledForSegmentAtIndex:
	removeAllSegments
	removeSegmentAtIndex:animated:
	setContentOffset:forSegmentAtIndex:
	setEnabled:forSegmentAtIndex:
	setImage:forSegmentAtIndex:
	setTitle:forSegmentAtIndex:
	setWidth:forSegmentAtIndex:
	titleForSegmentAtIndex:
	widthForSegmentAtIndex:

	Constants
	Segmented Control Style
	Segment Selection

	UISlider Class Reference
	Overview
	Customizing the Slider’s Appearance

	Tasks
	Accessing the Slider’s Value
	Accessing the Slider’s Value Limits
	Modifying the Slider’s Behavior
	Changing the Slider’s Appearance
	Overrides for Subclasses

	Properties
	continuous
	currentMaximumTrackImage
	currentMinimumTrackImage
	currentThumbImage
	maximumValue
	maximumValueImage
	minimumValue
	minimumValueImage
	value

	Instance Methods
	maximumTrackImageForState:
	maximumValueImageRectForBounds:
	minimumTrackImageForState:
	minimumValueImageRectForBounds:
	setMaximumTrackImage:forState:
	setMinimumTrackImage:forState:
	setThumbImage:forState:
	setValue:animated:
	thumbImageForState:
	thumbRectForBounds:trackRect:value:
	trackRectForBounds:

	UISwitch Class Reference
	Overview
	Tasks
	Initializing the Switch Object
	Setting the Off/On State

	Properties
	on

	Instance Methods
	initWithFrame:
	setOn:animated:

	UITabBar Class Reference
	Overview
	Tasks
	Getting and Setting Properties
	Configuring Items
	Customizing Tab Bars

	Properties
	delegate
	items
	selectedItem

	Instance Methods
	beginCustomizingItems:
	endCustomizingAnimated:
	isCustomizing
	setItems:animated:

	UITabBarController Class Reference
	Overview
	Tasks
	Getting and Setting Properties
	Configuring Items

	Properties
	customizableViewControllers
	delegate
	moreNavigationController
	selectedIndex
	selectedViewController
	viewControllers

	Instance Methods
	setViewControllers:animated:

	UITabBarItem Class Reference
	Overview
	Tasks
	Initializing a Item
	Getting and Setting Properties

	Properties
	badgeValue

	Instance Methods
	initWithTabBarSystemItem:tag:
	initWithTitle:image:tag:

	Constants
	UITabBarSystemItem

	UITableView Class Reference
	Overview
	Tasks
	Initializing a UITableView Object
	Configuring a Table View
	Accessing Cells and Sections
	Scrolling the Table View
	Managing Selections
	Inserting and Deleting Cells
	Managing the Editing of Table Cells
	Reloading the Table
	Accessing Drawing Areas of the Table View
	Managing the Delegate and the Data Source

	Properties
	allowsSelectionDuringEditing
	dataSource
	delegate
	editing
	rowHeight
	sectionFooterHeight
	sectionHeaderHeight
	sectionIndexMinimumDisplayRowCount
	separatorColor
	separatorStyle
	style
	tableFooterView
	tableHeaderView

	Instance Methods
	beginUpdates
	cellForRowAtIndexPath:
	deleteRowsAtIndexPaths:withRowAnimation:
	deleteSections:withRowAnimation:
	dequeueReusableCellWithIdentifier:
	deselectRowAtIndexPath:animated:
	endUpdates
	indexPathForCell:
	indexPathForRowAtPoint:
	indexPathForSelectedRow
	indexPathsForRowsInRect:
	indexPathsForVisibleRows
	initWithFrame:style:
	insertRowsAtIndexPaths:withRowAnimation:
	insertSections:withRowAnimation:
	numberOfRowsInSection:
	numberOfSections
	rectForFooterInSection:
	rectForHeaderInSection:
	rectForRowAtIndexPath:
	rectForSection:
	reloadData
	scrollToNearestSelectedRowAtScrollPosition:animated:
	scrollToRowAtIndexPath:atScrollPosition:animated:
	selectRowAtIndexPath:animated:scrollPosition:
	setEditing:animated:
	visibleCells

	Constants
	Table View Style
	Table View Scroll Position
	Table Cell Insertion and Deletion Animation

	Notifications
	UITableViewSelectionDidChangeNotification

	UITableViewCell Class Reference
	Overview
	Tasks
	Initializing a UITableViewCell Object
	Reusing Cells
	Managing Text as Cell Content
	Managing Images as Cell Content
	Accessing Views of the Cell Object
	Managing Cell Selection
	Managing Targets and Actions
	Editing the Cell
	Managing Accessory Views
	Managing Content Indentation

	Properties
	accessoryAction
	accessoryType
	accessoryView
	backgroundView
	contentView
	editAction
	editing
	editingStyle
	font
	hidesAccessoryWhenEditing
	image
	indentationLevel
	indentationWidth
	lineBreakMode
	reuseIdentifier
	selected
	selectedBackgroundView
	selectedImage
	selectedTextColor
	selectionStyle
	shouldIndentWhileEditing
	showingDeleteConfirmation
	showsReorderControl
	target
	text
	textAlignment
	textColor

	Instance Methods
	initWithFrame:reuseIdentifier:
	prepareForReuse
	setEditing:animated:
	setSelected:animated:

	Constants
	Cell Selection Style
	Cell Editing Style
	Cell Accessory Type
	Cell Separator Style

	UITableViewController Class Reference
	Overview
	Tasks
	Initializing the UITableViewController Object
	Getting the Table View

	Properties
	tableView

	Instance Methods
	initWithStyle:

	UITextField Class Reference
	Overview
	Managing the Keyboard
	Keyboard Notifications

	Tasks
	Accessing the Text Attributes
	Sizing the Text Field’s Text
	Managing the Editing Behavior
	Setting the View’s Background Appearance
	Managing Overlay Views
	Accessing the Delegate
	Drawing and Positioning Overrides

	Properties
	adjustsFontSizeToFitWidth
	background
	borderStyle
	clearButtonMode
	clearsOnBeginEditing
	delegate
	disabledBackground
	editing
	font
	leftView
	leftViewMode
	minimumFontSize
	placeholder
	rightView
	rightViewMode
	text
	textAlignment
	textColor

	Instance Methods
	borderRectForBounds:
	clearButtonRectForBounds:
	drawPlaceholderInRect:
	drawTextInRect:
	editingRectForBounds:
	leftViewRectForBounds:
	placeholderRectForBounds:
	rightViewRectForBounds:
	textRectForBounds:

	Constants
	UITextFieldBorderStyle
	UITextFieldViewMode

	Notifications
	UITextFieldTextDidBeginEditingNotification
	UITextFieldTextDidChangeNotification
	UITextFieldTextDidEndEditingNotification

	UITextView Class Reference
	Overview
	Managing the Keyboard
	Keyboard Notifications

	Tasks
	Configuring the Text Attributes
	Working with the Selection
	Accessing the Delegate

	Properties
	delegate
	editable
	font
	selectedRange
	text
	textAlignment
	textColor

	Instance Methods
	hasText
	scrollRangeToVisible:

	Notifications
	UITextViewTextDidBeginEditingNotification
	UITextViewTextDidChangeNotification
	UITextViewTextDidEndEditingNotification

	UIToolbar Class Reference
	Overview
	Tasks
	Getting and Setting Properties
	Configuring Items

	Properties
	barStyle
	items
	tintColor

	Instance Methods
	setItems:animated:

	UITouch Class Reference
	Overview
	Tasks
	Getting the Location of Touches
	Getting Touch Attributes

	Properties
	phase
	tapCount
	timestamp
	view
	window

	Instance Methods
	locationInView:
	previousLocationInView:

	Constants
	Touch Phase

	UIView Class Reference
	Overview
	Tasks
	Creating Instances
	Setting and Getting Attributes
	Modifying the Bounds and Frame Rectangles
	Converting Coordinates
	Resizing Subviews
	Managing the View Hierarchy
	Searching for Views
	Laying out Views
	Displaying
	Animating Views
	Handling Events
	Observing Changes

	Properties
	alpha
	autoresizesSubviews
	autoresizingMask
	backgroundColor
	bounds
	center
	clearsContextBeforeDrawing
	clipsToBounds
	contentMode
	exclusiveTouch
	frame
	hidden
	layer
	multipleTouchEnabled
	opaque
	subviews
	superview
	tag
	transform
	userInteractionEnabled
	window

	Class Methods
	areAnimationsEnabled
	beginAnimations:context:
	commitAnimations
	layerClass
	setAnimationBeginsFromCurrentState:
	setAnimationCurve:
	setAnimationDelay:
	setAnimationDelegate:
	setAnimationDidStopSelector:
	setAnimationDuration:
	setAnimationRepeatAutoreverses:
	setAnimationRepeatCount:
	setAnimationsEnabled:
	setAnimationStartDate:
	setAnimationTransition:forView:cache:
	setAnimationWillStartSelector:

	Instance Methods
	addSubview:
	bringSubviewToFront:
	convertPoint:fromView:
	convertPoint:toView:
	convertRect:fromView:
	convertRect:toView:
	didAddSubview:
	didMoveToSuperview
	didMoveToWindow
	drawRect:
	exchangeSubviewAtIndex:withSubviewAtIndex:
	hitTest:withEvent:
	initWithFrame:
	insertSubview:aboveSubview:
	insertSubview:atIndex:
	insertSubview:belowSubview:
	isDescendantOfView:
	layoutIfNeeded
	layoutSubviews
	pointInside:withEvent:
	removeFromSuperview
	sendSubviewToBack:
	setNeedsDisplay
	setNeedsDisplayInRect:
	setNeedsLayout
	sizeThatFits:
	sizeToFit
	viewWithTag:
	willMoveToSuperview:
	willMoveToWindow:
	willRemoveSubview:

	Constants
	UIViewAnimationCurve
	UIViewContentMode
	UIViewAutoresizing
	UIViewAnimationTransition

	UIViewController Class Reference
	Overview
	Tasks
	Creating a View Controller Using Nib Files
	Configuring Views
	Observing Views
	Handling Rotations
	Handling Memory Warnings
	Presenting Modal Views
	Configuring Navigation Items
	Configuring Tab Bar Items

	Properties
	editing
	hidesBottomBarWhenPushed
	interfaceOrientation
	modalViewController
	navigationController
	navigationItem
	nibBundle
	nibName
	parentViewController
	tabBarController
	tabBarItem
	title
	view

	Instance Methods
	didReceiveMemoryWarning
	didRotateFromInterfaceOrientation:
	dismissModalViewControllerAnimated:
	editButtonItem
	initWithNibName:bundle:
	loadView
	presentModalViewController:animated:
	rotatingFooterView
	rotatingHeaderView
	setEditing:animated:
	shouldAutorotateToInterfaceOrientation:
	viewDidAppear:
	viewDidDisappear:
	viewDidLoad
	viewWillAppear:
	viewWillDisappear:
	willAnimateFirstHalfOfRotationToInterfaceOrientation:duration:
	willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration:
	willRotateToInterfaceOrientation:duration:

	UIWebView Class Reference
	Overview
	Tasks
	Setting the Delegate
	Loading Content
	Moving Back and Forward
	Setting Web Content Properties
	Running JavaScript

	Properties
	canGoBack
	canGoForward
	delegate
	detectsPhoneNumbers
	loading
	request
	scalesPageToFit

	Instance Methods
	goBack
	goForward
	loadData:MIMEType:textEncodingName:baseURL:
	loadHTMLString:baseURL:
	loadRequest:
	reload
	stopLoading
	stringByEvaluatingJavaScriptFromString:

	Constants
	UIWebViewNavigationType

	UIWindow Class Reference
	Overview
	Tasks
	Configuring Windows
	Making Windows Key
	Converting Coordinates
	Sending Events

	Properties
	keyWindow
	windowLevel

	Instance Methods
	becomeKeyWindow
	convertPoint:fromWindow:
	convertPoint:toWindow:
	convertRect:fromWindow:
	convertRect:toWindow:
	makeKeyAndVisible
	makeKeyWindow
	resignKeyWindow
	sendEvent:

	Constants
	UIWindowLevel
	Keyboard Notification User Info Keys

	Notifications
	UIWindowDidBecomeVisibleNotification
	UIWindowDidBecomeHiddenNotification
	UIWindowDidBecomeKeyNotification
	UIWindowDidResignKeyNotification
	UIKeyboardWillShowNotification
	UIKeyboardDidShowNotification
	UIKeyboardWillHideNotification
	UIKeyboardDidHideNotification

	Part II: Protocols
	UIAccelerometerDelegate Protocol Reference
	Overview
	Tasks
	Responding to Acceleration Events

	Instance Methods
	accelerometer:didAccelerate:

	UIActionSheetDelegate Protocol Reference
	Overview
	Tasks
	Responding to Actions
	Customizing Behavior
	Canceling

	Instance Methods
	actionSheet:clickedButtonAtIndex:
	actionSheet:didDismissWithButtonIndex:
	actionSheet:willDismissWithButtonIndex:
	actionSheetCancel:
	didPresentActionSheet:
	willPresentActionSheet:

	UIAlertViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Actions
	Customizing Behavior
	Canceling

	Instance Methods
	alertView:clickedButtonAtIndex:
	alertView:didDismissWithButtonIndex:
	alertView:willDismissWithButtonIndex:
	alertViewCancel:
	didPresentAlertView:
	willPresentAlertView:

	UIApplicationDelegate Protocol Reference
	Overview
	Tasks
	Opening a URL Resource
	Managing Status Bar Orientation
	Responding to a Change in Active Status
	Controlling Application Appearance
	Controlling Application Behavior

	Instance Methods
	application:didChangeStatusBarFrame:
	application:didChangeStatusBarOrientation:
	application:handleOpenURL:
	application:willChangeStatusBarFrame:
	application:willChangeStatusBarOrientation:duration:
	applicationDidBecomeActive:
	applicationDidFinishLaunching:
	applicationDidReceiveMemoryWarning:
	applicationSignificantTimeChange:
	applicationWillResignActive:
	applicationWillTerminate:

	UIImagePickerControllerDelegate Protocol Reference
	Overview
	Tasks
	Closing the Picker

	Instance Methods
	imagePickerController:didFinishPickingImage:editingInfo:
	imagePickerControllerDidCancel:

	Constants
	Editing information keys

	UINavigationBarDelegate Protocol Reference
	Overview
	Tasks
	Pushing Items
	Popping Items

	Instance Methods
	navigationBar:didPopItem:
	navigationBar:didPushItem:
	navigationBar:shouldPopItem:
	navigationBar:shouldPushItem:

	UIPickerViewDataSource Protocol Reference
	Overview
	Tasks
	Providing Content for the Picker

	Instance Methods
	numberOfComponentsInPickerView:
	pickerView:numberOfRowsInComponent:

	UIPickerViewDelegate Protocol Reference
	Overview
	Tasks
	Setting the Dimensions of the Picker View
	Setting the Content of Component Rows
	Responding to Row Selection

	Instance Methods
	pickerView:didSelectRow:inComponent:
	pickerView:rowHeightForComponent:
	pickerView:titleForRow:forComponent:
	pickerView:viewForRow:forComponent:reusingView:
	pickerView:widthForComponent:

	UIScrollViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Scrolling and Dragging
	Managing Zooming
	Responding to Scrolling Animations

	Instance Methods
	scrollViewDidEndDecelerating:
	scrollViewDidEndDragging:willDecelerate:
	scrollViewDidEndScrollingAnimation:
	scrollViewDidEndZooming:withView:atScale:
	scrollViewDidScroll:
	scrollViewDidScrollToTop:
	scrollViewWillBeginDecelerating:
	scrollViewWillBeginDragging:
	scrollViewWillScrollToTop:
	viewForZoomingInScrollView:

	UISearchBarDelegate Protocol Reference
	Overview
	Tasks
	Editing Text
	Clicking Buttons

	Instance Methods
	searchBar:textDidChange:
	searchBarBookmarkButtonClicked:
	searchBarCancelButtonClicked:
	searchBarSearchButtonClicked:
	searchBarShouldBeginEditing:
	searchBarShouldEndEditing:
	searchBarTextDidBeginEditing:
	searchBarTextDidEndEditing:

	UITabBarControllerDelegate Protocol Reference
	Overview
	Tasks
	Customizing Tab Bars

	Instance Methods
	tabBarController:didEndCustomizingViewControllers:changed:
	tabBarController:didSelectViewController:

	UITableViewDataSource Protocol Reference
	Overview
	Tasks
	Configuring a Table View
	Inserting or Deleting Table Rows
	Reordering Table Rows

	Instance Methods
	numberOfSectionsInTableView:
	sectionIndexTitlesForTableView:
	tableView:canEditRowAtIndexPath:
	tableView:canMoveRowAtIndexPath:
	tableView:cellForRowAtIndexPath:
	tableView:commitEditingStyle:forRowAtIndexPath:
	tableView:moveRowAtIndexPath:toIndexPath:
	tableView:numberOfRowsInSection:
	tableView:sectionForSectionIndexTitle:atIndex:
	tableView:titleForFooterInSection:
	tableView:titleForHeaderInSection:

	UITableViewDelegate Protocol Reference
	Overview
	Tasks
	Providing Table Cells for the Table View
	Managing Accessory Views
	Managing Selections
	Modifying the Header and Footer of Sections
	Editing Table Rows
	Reordering Table Rows

	Instance Methods
	tableView:accessoryButtonTappedForRowWithIndexPath:
	tableView:accessoryTypeForRowWithIndexPath:
	tableView:didEndEditingRowAtIndexPath:
	tableView:didSelectRowAtIndexPath:
	tableView:editingStyleForRowAtIndexPath:
	tableView:heightForFooterInSection:
	tableView:heightForHeaderInSection:
	tableView:heightForRowAtIndexPath:
	tableView:indentationLevelForRowAtIndexPath:
	tableView:shouldIndentWhileEditingRowAtIndexPath:
	tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath:
	tableView:viewForFooterInSection:
	tableView:viewForHeaderInSection:
	tableView:willBeginEditingRowAtIndexPath:
	tableView:willDisplayCell:forRowAtIndexPath:
	tableView:willSelectRowAtIndexPath:

	UITextFieldDelegate Protocol Reference
	Overview
	Tasks
	Managing Editing
	Editing the Text Field’s Text

	Instance Methods
	textField:shouldChangeCharactersInRange:replacementString:
	textFieldDidBeginEditing:
	textFieldDidEndEditing:
	textFieldShouldBeginEditing:
	textFieldShouldClear:
	textFieldShouldEndEditing:
	textFieldShouldReturn:

	UITextInputTraits Protocol Reference
	Overview
	Tasks
	Managing the Keyboard Behavior

	Properties
	autocapitalizationType
	autocorrectionType
	enablesReturnKeyAutomatically
	keyboardAppearance
	keyboardType
	returnKeyType
	secureTextEntry

	Constants
	UITextAutocapitalizationType
	UITextAutocorrectionType
	UIKeyboardType
	UIKeyboardAppearance
	UIReturnKeyType

	UITextViewDelegate Protocol Reference
	Overview
	Tasks
	Responding to Editing Notifications
	Responding to Text Changes
	Responding to Selection Changes

	Instance Methods
	textView:shouldChangeTextInRange:replacementText:
	textViewDidBeginEditing:
	textViewDidChange:
	textViewDidChangeSelection:
	textViewDidEndEditing:
	textViewShouldBeginEditing:
	textViewShouldEndEditing:

	UIWebViewDelegate Protocol Reference
	Overview
	Tasks
	Loading Content

	Instance Methods
	webView:didFailLoadWithError:
	webView:shouldStartLoadWithRequest:navigationType:
	webViewDidFinishLoad:
	webViewDidStartLoad:

	Part III: Data Types
	UIKit Data Types Reference
	Overview
	Data Types
	UIEdgeInsets
	UIBarStyle

	Part IV: Constants
	UIKit Constants Reference
	Overview
	Constants
	UIEdgeInsetsZero

	Part V: Other References
	UIKit Function Reference
	Overview
	Functions by Task
	Application Launch
	Image Manipulation
	Graphics
	String Conversions
	Setting Edge Insets

	Functions
	CGAffineTransformFromString
	CGPointFromString
	CGRectFromString
	CGSizeFromString
	NSStringFromCGAffineTransform
	NSStringFromCGPoint
	NSStringFromCGRect
	NSStringFromCGSize
	NSStringFromUIEdgeInsets
	UIApplicationMain
	UIEdgeInsetsEqualToEdgeInsets
	UIEdgeInsetsFromString
	UIEdgeInsetsInsetRect
	UIEdgeInsetsMake
	UIGraphicsBeginImageContext
	UIGraphicsEndImageContext
	UIGraphicsGetCurrentContext
	UIGraphicsGetImageFromCurrentImageContext
	UIGraphicsPopContext
	UIGraphicsPushContext
	UIImageJPEGRepresentation
	UIImagePNGRepresentation
	UIImageWriteToSavedPhotosAlbum
	UIRectClip
	UIRectFill
	UIRectFillUsingBlendMode
	UIRectFrame
	UIRectFrameUsingBlendMode

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

