
	 Companion	eBook	 See	laSt	page	for	detailS	on	$10	eBook	verSion

US $39.99

Shelve in:
Mobile Computing/Mac Development

User level:
Intermediate–Advancedwww.apress.com

SOURCE CODE ONLINE

BookS for profeSSIonAlS By profeSSIonAlS®

this print for content only—size & color not accurate

 CyAn
 MAGenTA

 yelloW
 BlACk
 pAnTone 123 C

 SpoT MATTe

ISBN 978-1-4302-2505-8

9 781430 225058

53999

Interested in iphone development? Want to learn more? Whether you’re a
self taught iphone dev or have just made your way through the pages of

Beginning iPhone 3 Development, we’ve got a great new book for you.

More iPhone 3 Development: Tackling iPhone SDK 3 digs deep into Apple’s latest
SDk, with bestselling authors Dave Mark and Jeff laMarche explaining things
as only they can, covering topics like Core	data,	peer-to-peer	networking us-
ing gamekit and network streams, working with data from the web, mapkit,	
in-application	e-mail, and more. All the concepts and ApIs are clearly laid out
and come complete with code snippets you can customize for use in your
most ambitious apps.

More iPhone 3 Development continues right where Beginning iPhone 3 Develop-
ment left off, starting with a series of chapters devoted to Core Data, Apple’s
new standard for iphone	persistence. Jeff and Dave step you through the key
concepts of Core Data, including techniques and tips specifically for writing
large-Scale	applications. for writing professional iphone apps, you’ll want
to embrace Core Data,.

The depth and breadth of Core Data coverage alone is worth the price of ad-
mission, but there’s so much more. This book covers a variety of networking
mechanisms, from Gamekit’s relatively simple Bluetooth peer-to-peer model,
to the addition of Bonjour discovery and network streams, through the com-
plexity of acquiring information through Web	file	access. Dave and Jeff also
take you through advanced topics, such as Concurrent	 programming	 and
techniques for debugging.

your knowledge of iphone app creation can’t be considered complete until
you’ve mastered all the knowledge imparted and techniques revealed in More
iPhone 3 Development.

Dave Mark is a long-time Mac developer and author and has written a num-
ber of books on Macintosh development, including Learn C on the Macintosh,
The Macintosh Programming Primer series, and Ultimate Mac Programming. His
blog can be found at www.davemark.com.

Jeff LaMarche is	a	longtime	mac	developer,	and	apple	iphone	
developer.	With	over	20	years	of	programming	experience,	he’s	written	
on	Cocoa	and	objective-C	for	mactech	magazine,	as	well	as	articles	
for	apple’s	developer	technical	Services	website.	He	has	experience	
working	in	enterprise	software,	both	as	a	developer	for	peopleSoft	
starting	in	the	late	1990s,	and	then	later	as	an	independent	consultant.

Trim: 7.5 x 9.25 spine = 0.000" 000 page count

M
ark

M
ore iPhone 3 Developm

ent

Companion
eBook
Available

More Great iPhone API
Coverage, Depth, and Insight

More
iPhone 3 Development

Tackling iPhone SDK 3
Dave Mark  |  Jeff LaMarche

re
la

te
d

	t
it

le
S

By	the	best-selling	authors	of

	Beginning		

iphone	development

i

More iPhone 3
Development:
Tackling iPhone SDK 3

■ ■ ■

Dave Mark
Jeff LaMarche

ii

More iPhone 3 Development: Tackling iPhone SDK 3

Copyright © 2009 by Dave Mark and Jeff LaMarche

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2505-8

ISBN-13 (electronic): 978-1-4302-2743-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Clay Andres
Developmental Editor: Douglas Pundick
Technical Reviewer: Mark Dalrymple
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank Pohlmann,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz
Copy Editor: Marilyn Smith and Ralph Moore
Compositor: MacPS, LLC
Indexers: John Collin and Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

To Deneen, Daniel, Kelley, and Ryan, LFU4FRNMWWA. . .

—Dave

To the most important people in my life, my wife and kids.

—Jeff

iv

Contents at a Glance

■Contents at a Glance .. iv
■Contents .. v
■About the Authors ... xii
■About the Technical Reviewer ... xiii
■Acknowlegments ... xiv
■Preface.. xv
■Chapter 1: Here We Go Round Again ...1
Part I: Core Data...7
■Chapter 2: The Anatomy of Core Data ...9
■Chapter 3: A Super Start: Adding, Displaying, and Deleting Data...41
■Chapter 4: The Devil in the Detail View...83
■Chapter 5: Preparing for Change: Migrations and Versioning ..127
■Chapter 6: Custom Managed Objects..137
■Chapter 7: Relationships, Fetched Properties, and Expressions ..169
Part II: Further Explorations...223
■Chapter 8: Peer-to-Peer Over Bluetooth Using GameKit ...225
■Chapter 9: Online Play: Bonjour and Network Streams ..271
■Chapter 10: Working with Data from the Web ..329
■Chapter 11: MapKit ...359
■Chapter 12: Sending Mail..391
■Chapter 13: iPod Library Access...405
■Chapter 14: Keeping Your Interface Responsive...451
■Chapter 15: Debugging ...495
■Chapter 16: The Road Goes Ever On…..527
■Index ...531

v

Contents

■Contents at a Glance .. iv
■Contents .. v
■About the Authors ... xii
■About the Technical Reviewer ... xiii
■Acknowledgments ... xiv
■Preface.. xv

■Chapter 1: Here We Go Round Again ...1

What This Book Is .. 1
What You Need to Know .. 1
What You Need Before You Can Begin .. 2
What’s In this Book.. 4
Are You Ready? ... 6

Part I: Core Data...7
■Chapter 2: The Anatomy of Core Data ...9

A Brief History of Core Data... 10
Creating a Core Data Template Application... 10
Core Data Concepts and Terminology ... 12
The Data Model and Persistent Store .. 13

The Data Model Class: NSManagedObjectModel.. 14
The Persistent Store and the Persistent Store Coordinator .. 16
Reviewing the Data Model.. 18

Entities and the Data Model Editor .. 18
Entities.. 18
Properties ... 19

Managed Objects... 21
Key-Value Coding ... 21
Managed Object Context .. 22
Saves on Terminate.. 23

■ CONTENTS

vi

Loading Data from the Persistent Store .. 24
The Fetched Results Controller ... 26

Creating a Fetched Results Controller .. 26
The Fetched Results Controller Delegate Methods... 29
Retrieving a Managed Object from the Fetched Results Controller.. 36
Creating and Inserting a New Managed Object .. 36
Deleting Managed Objects.. 38

Putting Everything in Context .. 39

■Chapter 3: A Super Start: Adding, Displaying, and Deleting Data...41
Setting up the Xcode Project ... 42

Application Architecture ... 43
Modifying the Application Delegate Interface... 44
Adding to the Application Delegate Implementation .. 45

Creating the Table View Controller .. 46
Setting up MainWindow.xib... 47

Connecting the Outlets ... 50
Designing the Data Model ... 50

Adding an Entity ... 51
Editing the New Entity .. 52
Adding Attributes to the New Entity ... 54
Adding the Name Attribute ... 54
Editing the Attribute.. 55

Creating HeroListViewController.. 60
Declaring the Fetched Results Controller ... 60
Drag Two Icons to Your Project .. 63
Designing the HeroListViewController Interface... 64
Implementing the Hero View Controller.. 66

Let ‘Er Rip .. 79
Done, but Not Done ... 81

■Chapter 4: The Devil in the Detail View...83
Table-Based vs. Nib-Based Detail Views... 84
Detail Editing View Challenges .. 85
Controlling Table Structure with Arrays .. 87
Paired Arrays ... 87

Nested Arrays ... 88
Paired Nested Arrays.. 89
Representing Our Table Structure with Arrays... 89
Nested Arrays, Categorically Speaking .. 90
Updating the SuperDB Project .. 90

Formatting of Attributes .. 92
Creating the Detail View Controller ... 94

Declaring Instance Variables and Properties.. 96
Implementing the Viewing Functionality .. 97
Using the New Controller.. 103
Trying Out the View Functionality... 106

Adding Editing Subcontrollers ... 107
Creating the Superclass ... 108
Creating the String Attribute Editor .. 112
Creating the Date Attribute Editor... 115
Using the Attribute Editors.. 118

■ CONTENTS

vii

Implementing a Selection List ... 120
Creating the Generic Selection List Controller.. 120

Devil’s End... 125

■Chapter 5: Preparing for Change: Migrations and Versioning ..127
About Data Models .. 128

Data Models Are Compiled ... 128
Data Models Can Have Multiple Versions ... 129
Data Model Version Identifiers ... 131
Using the Versioned Data Model... 132

Migrations.. 133
Lightweight vs. Standard.. 134
Standard Migrations ... 134
Setting up Your App to Use Lightweight Migrations... 134

Time to Migrate On .. 136

■Chapter 6: Custom Managed Objects..137
Updating the Data Model ... 140

Adding the Age Attribute .. 141
Adding the Favorite Color Attribute .. 141
Adding a Minimum Length to the Name Attribute .. 142

Creating the Hero Class ... 143
Tweaking the Hero Header .. 145
Defaulting .. 146
Validation... 147

Single-Attribute Validations.. 148
Multiple-Attribute Validations... 150

Virtual Accessors... 151
Adding Validation Feedback .. 152

Updating the ManagedObjectAttributeEditor Header File... 152
Updating the ManagedObjectAttributeEditor Implementation File ... 153
Updating the Subclasses to Use Validation .. 154

Creating the Value Transformer... 155
Creating the Color Attribute Editor... 158
Displaying the New Attributes in Hero Edit Controller ... 161
The Display Problem.. 163
Adding View-Only Support to Hero Edit Controller .. 165

Hiding the Disclosure Indicator .. 165
Handling Taps on Read-Only Attributes.. 166

Color Us Gone .. 167

■Chapter 7: Relationships, Fetched Properties, and Expressions ..169
Expanding Our Application: Superpowers and Reports ... 170
Relationships ... 172

To-One Relationships ... 173
To-Many Relationships ... 174
Inverse Relationships ... 176
Delete Rules ... 177

Fetched Properties .. 178
Creating Relationships and Fetched Properties in the Data Model Editor ... 179

Adding the Power Entity ... 179
Creating the Powers Relationship .. 180

■ CONTENTS

viii

Creating the Inverse Relationship... 181
Creating the olderHeroes Fetched Property ... 181
Creating the youngerHeroes Fetched Property... 185
Creating the sameSexHeroes Fetched Property ... 186
Creating the oppositeSexHeroes Fetched Property .. 187

Adding Relationships and Fetched Properties to the Hero Class... 189
The Big Refactor .. 190

Renaming the Class.. 191
Refactoring the hero Instance Variable .. 193
Removing the Arrays .. 193
Supporting Save and Cancel Buttons ... 193
Adding Support for To-Many Relationships.. 197

Using the New Generic Controller.. 211
Adding Factory Methods for Hero and Power... 211
Deleting the Nib Instance ... 215
Updating HeroListController ... 215

Creating the Fetched Property Attribute Controller ... 216
Cleaning Up Deleted Objects ... 218
Wonderful to the Core.. 221

Part II: Further Explorations...223
■Chapter 8: Peer-to-Peer Over Bluetooth Using GameKit ...225

This Chapter’s Application... 226
Network Communication Models .. 229

Client-Server Model.. 229
Peer-to-Peer Model .. 230
Hybrid Client-Server/Peer-to-Peer ... 231

The GameKit Session... 232
Creating the Session .. 232
Finding and Connecting to Other Sessions... 233
Listening for Other Sessions... 234
Sending Data to a Peer... 234
Packaging Up Information to Send ... 235
Receiving Data from a Peer .. 236
Closing Connections ... 237

The Peer Picker ... 237
Creating the Peer Picker... 237
Handling a Peer Connection ... 238
Creating the Session .. 238

Creating the Project... 239
Turning Off the Idle Timer... 239
Importing the GameKit Framework .. 240
Designing the Interface .. 241

Trying It Out ... 268
Game On!... 269

■Chapter 9: Online Play: Bonjour and Network Streams ..271
This Chapter’s Application... 271
Overview of the Process.. 273
Setting Up a Listener ... 273

Callback Functions and Run Loop Integration .. 274

■ CONTENTS

ix

Configuring a Socket .. 275
Specifying a Port for Listening ... 277
Registering the Socket with the Run Loop ... 280
Implementing the Socket Callback Function .. 280
Stopping the Listener ... 281

Bonjour .. 281
Creating a Service for Publication .. 282
Searching for Published Bonjour Services ... 285
Browser Delegate Methods .. 286
Resolving a Discovered Service ... 287

Streams ... 288
Opening a Stream... 289
The Stream and Its Delegate .. 289
Receiving Data from a Stream.. 290
Sending Data Through the Stream ... 291

Putting It All Together.. 292
Updating Tic-Tac-Toe for Online Play.. 292

Adding the Packet Categories .. 293
Implementing the Online Session Object.. 295
Creating the Listener Object ... 306
Creating the Peer Browser ... 311
Updating TicTacToeViewController to Support Online Play .. 318

Time to Play... 328

■Chapter 10: Working with Data from the Web ..329
Setting Up the Application Skeleton .. 331

Declaring Actions and Outlets .. 331
Designing the Interface .. 333
Implementing the Stubs ... 335

Retrieving Data Using Foundation Objects .. 336
Retrieving Data Synchronously.. 339

The URL Request .. 339
Retrieving Data Asynchronously.. 344

NSURLConnection Delegate Methods... 345
Adding Asynchronous Retrieval to WebWorks.. 346

Request Types and Form Parameters ... 350
Specifying the HTTP Request Types ... 350
Form Parameters.. 351
Building the RequestTypes Application .. 353

404 Conclusion Not Found... 358

■Chapter 11: MapKit ...359
This Chapter’s Application... 360
Overview and Terminology .. 361
The Map View.. 362

Map Types .. 362
User Location.. 364
Coordinate Regions .. 364
Setting the Region to Display ... 367
The Map View Delegate.. 367

Annotations.. 369
The Annotation Object .. 370

■ CONTENTS

x

The Annotation View... 370
Adding and Removing Annotations... 371
Selecting Annotations... 372
Providing the Map View with Annotation Views ... 372

Reverse Geocoding.. 373
Building the MapMe Application.. 375

Declaring Outlets and Actions .. 375
Building the Interface ... 376
Writing the Annotation Object Class ... 378
Implementing MapMeViewController ... 381
Linking the Map Kit and Core Location Frameworks.. 389

Go East, Young Programmer.. 390

■Chapter 12: Sending Mail..391
This Chapter’s Application... 391
The MessageUI Framework... 394

Creating the Mail Compose View Controller ... 394
Prepopulating the Subject Line .. 394
Prepopulating Recipients.. 394
Setting the Message Body.. 395
Adding Attachments ... 395
Presenting the Mail Compose View.. 395
The Mail Compose View Controller Delegate Method... 395

Building the MailPic Application.. 396
Declaring Outlets and Actions .. 397
Building the User Interface ... 397
Implementing the View Controller .. 398
Linking the MessageUI Framework .. 403

Mailing It In….. 403

■Chapter 13: iPod Library Access...405
This Chapter’s Application... 405
Working with the iPod Library ... 407

Media Items.. 408
Media Item Collections ... 413
Media Queries and Media Property Predicates .. 414
The Media Picker Controller ... 417
The Music Player Controller.. 418

Building the Simple Player Application.. 424
Adding Media Item Collection Functionality ... 424
Declaring Outlets and Actions .. 428
Building the User Interface ... 430
Implementing the Simple Player View Controller ... 434
Taking Simple Player for a Spin ... 448

Avast! Rough Waters Ahead! ... 448

■Chapter 14: Keeping Your Interface Responsive...451
Exploring the Concurrency Problem .. 453
Creating the Stalled Application .. 454

Declaring Actions and Outlets .. 454
Designing the Interface .. 454
Implementing the Stalled View Controller .. 455

■ CONTENTS

xi

Timers.. 458
Creating a Timer ... 458
Stopping a Timer .. 459
Limitations of Timers.. 459

Fixing Stalled with a Timer.. 460
Creating the Batch Object... 460
Updating the Controller Header .. 462
Updating the Nib... 463
Updating the View Controller Implementation.. 463

Operation Queues & Concurrency.. 468
Threads... 469
Operations .. 475
Operation Queues ... 478

Fixing Stalled with an Operation Queue .. 479
Creating SquareRootApplication... 480
Changes to StalledViewController.h ... 485
Adjusting the User Interface ... 486

Updating StalledViewController.m... 487
Queue ’em Up .. 493

■Chapter 15: Debugging ...495
The Debugger .. 496

Breakpoints .. 497
The GDB Console .. 513

Static Analysis ... 516
Specific Bugs... 517

Overreleasing Memory ... 517
Infinite Recursion.. 523
Missed Outlet and Action Connections ... 525

GDB: Stopped at Concluding Paragraph .. 525

■Chapter 16: The Road Goes Ever On…..527
Getting Unstuck ... 527

Apple’s Documentation .. 528
Mailing Lists ... 528
Discussion Forums ... 528
Web Sites.. 529
Blogs... 529
And If All Else Fails…... 530

Farewell... 530

■Index ...531

xii

About the Authors

Dave Mark is a longtime Mac developer and author, who has written a number of books on
Mac development, including Beginning iPhone 3 Development (Apress, 2009), Learn C on the
Mac (Apress, 2008), The Macintosh Programming Primer series (Addison-Wesley, 1992), and
Ultimate Mac Programming (Wiley, 1995). Dave loves the water and spends as much time as
possible on it, in it, or near it. He lives with his wife and three children in Virginia.

Jeff LaMarche is a Mac and iPhone developer with more than 20 years of programming
experience. This is his second book on iPhone development. He has also written about Cocoa
and Objective-C for MacTech Magazine, as well as articles for Apple’s Developer Technical
Services web site. He has experience working in enterprise software as a developer for
PeopleSoft, starting in the late 1990s, and later as an independent consultant. He now focuses
exclusively on programming for the Mac and iPhone.

xiii

About the Technical Reviewer

Mark Dalrymple is a longtime Mac and Unix programmer, working on cross-platform toolkits,
Internet publishing tools, high-performance web servers, and end-user desktop applications.
He is also the principal author of Advanced Mac OS X Programming (Big Nerd Ranch, 2005) and
Learn Objective-C on the Mac (Apress, 2009). In his spare time, Mark plays trombone and
bassoon, and makes balloon animals.

xiv

Acknowledgments

This book could not have been written without our mighty, kind, and clever families, friends, and cohorts. First and
foremost, eternal thanks to Terry and Deneen for putting up with us, and for keeping the rest of the universe at bay
while we toiled away on this book. This project saw us tucked away in our writers’ cubby for many long hours, and
somehow, you didn’t complain once. We are lucky men.

This book could not have been written without the fine folks at Apress. Clay Andres brought us to Apress in the first
place and carried this book on his back. Dominic Shakeshaft was the gracious mastermind who dealt with all of our
complaints with a smile on his face, and somehow found solutions that made sense and made this book better.
Kelly Moritz, our wonderful and gracious coordinating editor, was the irresistible force to our slowly movable
object. Douglas Pundick, our developmental editor, helped us with some terrific feedback along the way. They kept
the book on the right track and always pointed in the right direction. Marilyn Smith and Ralph Moore, copy editors
extraordinaire, you were both such a pleasure to work with! Jeffrey Pepper, Frank McGuckin, Angie MacAllister,
and the Apress production team took all these pieces and somehow made them whole. Leo Cuellar and Jeff
Stonefield assembled the marketing message and got it out to the world. To all the folks at Apress, thank you, thank
you, thank you!

A very special shout out to our incredibly talented technical reviewer, Mark Dalrymple. In addition to
providing insightful feedback, Mark tested all the code in this book, and helped keep us on the straight and
narrow. Thanks, Mark!

Finally, thanks to our children for their patience while their dads were working so hard. This book is for you,
Maddie, Gwynnie, Ian, Kai, Daniel, Kelley, and Ryan.

xv

Preface

The preface to our previous book, Beginning iPhone 3 Development, started with the phrase, “What an amazing
journey!” Well, it’s true. We’re having a blast, making a lot of new friends and, above all, learning, learning,
learning. The iPhone SDK continues to evolve, and with each new release, it brings new concepts to explore and
new design patterns to master.

As its name implies, More iPhone 3 Development assumes you’ve read Beginning iPhone 3 Development or one of
the other terrific titles out there, or have tackled the iPhone dev learning curve on your own. If you are a beginner,
not to worry, our approach is the same. We talk you through the concepts, and then build a new project and walk
you through the source code, with a sprinkling of tips and cautions along the way.

The book starts off with a series of chapters that cover Core Data, Apple’s official iPhone persistence framework. If
the concept of persistence is new to you, don’t be intimidated by the name. When you want your data to stick
around from one run of your app to the next, that’s persistence. Beginning iPhone 3 Development touched on the
topic with a brief introduction to Core Data, but More iPhone 3 Development starts from scratch and gives you a
complete tour through Core Data, with a lot of reusable code. By the time you are finished with the Core Data
chapters, you should have everything you need to add Core Data to your own iPhone apps.

Next up, we offer a series of chapters on GameKit and networking. The GameKit framework makes it easy to add
Bluetooth connectivity to your apps. We bring GameKit to life by building a simple, two-person game. We then
follow that up by taking iPhone networking to the next level, showing you how to expand your networking skill set
to include game play over a local area network. Once you’ve mastered those techniques, it’s just a short step to
adding Internet play. Our final networking chapter explores techniques for pulling data from the Internet and
interacting with web servers.

Those chapters cover the most widely requested topics by our readers. We hope you’ll find them worth the price of
admission. But wait, there’s more! We also cover MapKit, in-application e-mail, and adding iPod functionality to
your applications via the MediaPlayer framework. Finally, we wrap up things with chapters on concurrency and
debugging techniques.

Before we leave you to your reading, we just want to say how much we appreciate your support. You’ve truly made
this a gratifying experience for us both. As always, be sure to check out http://iphonedevbook.com/forum, and drop
us a line to let us know about your amazing new apps. We look forward to seeing you on the forum. Happy coding!

Dave and Jeff

http://iphonedevbook.com/forum

xvi

1

1

 Chapter

Here We Go Round Again
So, you’re still creating iPhone applications, huh? Great! The iPhone and the App Store
have been a tremendous success, fundamentally changing the way mobile applications
are delivered and completely changing what people expect from their mobile phones.
Since the first release of the iPhone Software Development Kit (SDK) way back in March
2008, Apple has been busily adding new functionality and improving what was already
there. It’s no less exciting of a platform than it was back when it was first introduced. In
fact, in many ways, it’s more exciting, because Apple keeps expanding the amount of
functionality available to third-party developers like us.

What This Book Is
This book is a guide to help you continue down the path to creating better iPhone
applications. In Beginning iPhone 3 Development (Apress, 2009), our goal was to get
you past the initial learning curve, and to help you get your arms around the
fundamentals of building your first iPhone applications. In this book, we’re assuming you
already know the basics. So, in addition to showing you how to use several of the new
APIs introduced with iPhone SDK 3.0, we’re also going to weave in some more
advanced techniques that you’ll need as your iPhone development efforts grow in size
and complexity.

In Beginning iPhone 3 Development, every chapter was self-contained, each presenting
its own unique project or set of projects. We’ll be using a similar approach in the second
half of this book, but in Chapters 2 through 7, we’ll focus on a single, evolving Core Data
application. Each chapter will cover a specific area of Core Data functionality as we
expand the application. We’ll also be strongly emphasizing techniques that will keep
your application from becoming unwieldy and hard to manage as it gets larger.

What You Need to Know
This book assumes that you already have some programming knowledge and that you
have a basic understanding of the iPhone SDK, either because you’ve worked through
Beginning iPhone 3 Development or because you’ve gained a similar foundation from

1

CHAPTER 1: Here We Go Round Again 2

other sources. We assume that you’ve experimented a little with the SDK, perhaps
written a small program or two on your own, and have a general feel for how Xcode and
Interface Builder work.

COMPLETELY NEW TO THE IPHONE?

If you are completely new to iPhone development, there are other books you probably should read before
this one. If you don’t already understand the basics of programming and syntax of the C language, you
should check out Learn C on the Mac by Dave Mark (Apress, 2008), which is a comprehensive introduction
to the C language for Macintosh programmers:

http://www.apress.com/book/view/1430218096

If you already understand C, but don’t have any experience programming with objects, check out Learn
Objective-C on the Mac (Apress, 2009), an excellent and approachable introduction to Objective-C by Mac
programming experts Mark Dalrymple and Scott Knaster:

http://www.apress.com/book/view/1430218150

Next, navigate over to the Apple iPhone Development Center and download a copy of The Objective-C 2.0
Programming Language, a very detailed and extensive description of the language and a great reference
guide:

http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/
ObjectiveC/

Note that you’ll need to log in (we’ll get to registration in the next section) before you are taken to the start
of this document.

Once you have a firm handle on Objective-C, you need to master the fundamentals of the iPhone SDK. For
that, you should check out the prequel to this book, Beginning iPhone 3 Development (Apress 2008):

http://www.apress.com/book/view/1430216263

What You Need Before You Can Begin
Before you can write software for iPhone, you need a few things. For starters, you’ll
need an Intel-based Macintosh running Snow Leopard (Mac OS X 10.6.2 or later). Any
Macintosh computer—laptop or desktop—that has been released since 2006 should
work just fine, but make sure your machine is Intel-based and is capable of running
Snow Leopard.

NOTE: You actually can develop for the iPhone using Leopard (Mac OS X 10.5 or later), but there
are many great new features in Xcode that are available only on Snow Leopard. Therefore, we
highly recommend upgrading to Snow Leopard if you are using an earlier release.

This may seem obvious, but you’ll also need an iPhone or iPod touch. While much of
your code can be tested using the iPhone simulator, not all programs will run in the

http://www.apress.com/book/view/1430218096
http://www.apress.com/book/view/1430218150
http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual
http://www.apress.com/book/view/1430216263

CHAPTER 1: Here We Go Round Again 3

simulator. And you’ll want to thoroughly test any application you create on an actual
device before you ever consider releasing it to the public.

Finally, you’ll need to sign up to become a Registered iPhone Developer. Apple requires
this step before it will allow you to download the iPhone SDK. If you’re already a
Registered iPhone Developer, go ahead and download the latest and greatest iPhone
development tools, and skip ahead to the next section.

If you’re new to Apple’s Registered iPhone Developer programs, navigate to
http://developer.apple.com/iphone/, which will bring you to a page similar to that
shown in Figure 1-1. Just below the iPhone Dev Center banner, on the right side of the
page, you’ll find links labeled Log in and Register. Click the Register link. On the page
that appears, click the Continue button. Follow the sequence of instructions to use your
existing Apple ID or create a new one.

Figure 1-1. Apple’s iPhone Dev Center web site

At some point, as you register, you’ll be given a choice of several paths, all of which will
lead you to the SDK download page. The three choices are free, commercial, and
enterprise. All three options give you access to the iPhone SDK and Xcode, Apple’s
integrated development environment (IDE). Xcode includes tools for creating and

http://developer.apple.com/iphone

CHAPTER 1: Here We Go Round Again 4

debugging source code, compiling applications, and performance-tuning the
applications you’ve written.

The free option is, as its name implies, free. It lets you develop iPhone apps that run on
a software-only iPhone simulator, but does not allow you to download those apps to
your iPhone or iPod touch, nor sell your apps on Apple’s App Store. In addition, some
programs in this book will run only on your device, not in the simulator, which means
you will not be able to run them if you choose the free solution. That said, the free
solution is a fine place to start if you don’t mind learning without doing for those
programs that won’t run in the simulator.

The other two options are to sign up for an iPhone Developer Program: either the
Standard (commercial) Program or the Enterprise Program. The Standard Program costs
$99. It provides a host of development tools and resources, technical support,
distribution of your application via Apple’s App Store, and, most important, the ability to
test and debug your code on an iPhone rather than just in the simulator. The Enterprise
Program, which costs $299, is designed for companies developing proprietary, in-house
applications for the iPhone and iPod touch. For more details on these two programs,
check out http://developer.apple.com/iphone/program/.

NOTE: If you are going to sign up for the Standard or Enterprise Program, you should go do it
right now. It can take a while to get approved, and you’ll need that approval to be able to run
applications on your iPhone. Don’t worry, though—the projects in the early chapters of this book
will run just fine on the iPhone simulator.

Because iPhone is an always-connected mobile device that uses another company’s
wireless infrastructure, Apple has placed far more restrictions on iPhone developers than
it ever has on Macintosh developers, who are able to write and distribute programs with
absolutely no oversight or approval from Apple. Apple is not doing this to be mean, but
rather to minimize the chances of people distributing malicious or poorly written
programs that could degrade performance on the shared network. It may seem like a lot
of hoops to jump through, but Apple has gone through quite an effort to make the
process as painless as possible.

What’s In this Book
As we said earlier, Chapters 2 through 7 of this book focus on Core Data, Apple’s
primary persistence framework. The rest of the chapters cover specific areas of
functionality that are either new with iPhone SDK 3.0 or were simply too advanced to
include in Beginning iPhone 3 Development.

http://developer.apple.com/iphone/program

CHAPTER 1: Here We Go Round Again 5

Here is a very brief overview of the chapters that follow:

 Chapter 2, The Anatomy of Core Data: In this chapter, we’ll introduce
you to Core Data. You’ll learn why Core Data is a vital part of your
iPhone development arsenal. We’ll dissect a simple Core Data
application and show you how all the individual parts of a Core Data-
backed application fit together.

 Chapter 3, A Super Start: Adding, Displaying and Deleting Data: Once
you have a firm grasp on Core Data’s terminology and architecture,
you’ll learn how to do some basic tasks, including inserting, searching
for, and retrieving data.

 Chapter 4, The Devil in the Detail View: In this chapter, you’ll learn how
to let your users edit and change the data stored by Core Data. We’ll
explore techniques for building generic, reusable views so you can
leverage the same code to present different types of data.

 Chapter 5, Preparing for Change: Migrations and Versioning: Here,
we’ll look at Apple tools that you can use to change your application’s
data model, while still allowing your users to continue using their data
from previous versions of your application.

 Chapter 6, Custom Managed Objects: To really unlock the power of
Core Data, you can subclass the class used to represent specific
instances of data. In this chapter, we’ll show you how to use custom
managed objects, as well as demonstrate some of the benefits of
doing so.

 Chapter 7, Relationships, Fetched Properties, and Expressions: In this
final chapter on Core Data, we’ll cover some mechanisms that allow
you to expand your applications in powerful ways. We’ll also refactor
the application we’ve built in the previous chapters, so that we don’t
need to add new classes as we expand our data model.

 Chapter 8, Peer-to-Peer Over Bluetooth Using GameKit: One of the
coolest new features of SDK 3.0 is the GameKit framework. This
framework makes it easy to create programs that communicate over
Bluetooth, such as multiplayer games for the iPhone and iPod touch.
We’ll explore GameKit by building a simple two-player game.

 Chapter 9, Online Play: Bonjour and Network Streams: GameKit
doesn’t provide the ability to make multiplayer games that work over
Wi-Fi or the Internet. In this chapter, we’ll expand our simple two-
player game so it can also be played over non-Bluetooth networks.

 Chapter 10, Working with Data from the Web: The iPhone is an
always-connected device, so learning how to pull data from the Web
or other places on the Internet can be very valuable. In this chapter,
we’ll look at several different techniques for interacting with web
servers.

CHAPTER 1: Here We Go Round Again 6

 Chapter 11, MapKit: This chapter explores another great new piece of
functionality added to the iPhone SDK with the 3.0 release, MapKit.
This framework allows you to leverage Google Maps directly from your
application.

 Chapter 12, Sending Mail: In the original iPhone SDK, if your
application wanted to send e-mail, it needed to launch the Mail
application to do so. Now, thanks to the 3.0 version, we have the
ability to send e-mail directly from our applications. We’ll show you
how to implement that functionality in this chapter.

 Chapter 13, iPod Library Access: It’s now possible to programmatically
get access to your users’ complete library of audio tracks stored on
their iPhone or iPod touch. In this chapter, we’ll look at the various
techniques used to find, retrieve, and play music and other audio
tracks.

 Chapter 14, Keeping Your Interface Responsive: Long-running
programming tasks can easily bog down the iPhone’s user interface.
In this chapter, we’ll take a look at implementing different forms of
concurrency so that your application remains responsive.

 Chapter 15, Debugging: No program is ever perfect. Bugs and defects
are a natural part of the programming process. In this chapter, we’ll
cover various techniques for finding and fixing bugs in iPhone SDK
programs.

 Chapter 16, The Road Goes Ever On…: Sadly, every journey must
come to an end. We’ll wrap up this book with fond farewells and some
resources we hope you’ll find useful.

Are You Ready?
As we said in Beginning iPhone 3 Development, iPhone is an incredible computing
platform, an ever-expanding frontier for your development pleasure. In this book, we’re
going to take you further down the iPhone development road, digging deeper into the
SDK, touching on new and, in some cases, more advanced topics.

Read the book, and be sure to build the projects yourself—don’t just copy them from
the archive and run them once or twice. You’ll learn most by doing. Make sure you
understand what you did, and why, before moving on to the next project. Don’t be afraid
to make changes to the code. Experiment, tweak the code, observe the results. Rinse
and repeat.

Got your iPhone SDK installed? Turn the page, put on some tunes, and let’s go. Your
continuing journey awaits.

 Part

Core Data
Core Data is Apple’s framework for persisting data to the file system. Using Core Data,

you deal with your program’s data as objects, and let the framework deal with the gnarly

specifics of how to save, find, and retrieve those objects. Over the next several

chapters, you’ll see how to use Core Data so that you can develop your apps more

quickly and get better performance than with traditional persistence mechanisms.

I

8

9

9

 Chapter

The Anatomy of Core Data
Core Data is a framework and set of tools that allow you to persist your application’s

data to the iPhone’s file system automatically. Core Data is a form of something called

object-relational mapping, or ORM, which is just a fancy way of saying that Core Data

takes the data stored in your Objective-C objects and translates (or maps) that data

into another form so that it can be easily stored in a database, such as SQLite, or into a

flat file.

Core Data can seem like magic when you first start using it. Objects are simply dealt

with as objects, and they seem to know how to save themselves into the database or file

system. You won’t create SQL strings or make file management calls—ever. Core Data

insulates you from some complex and difficult programming tasks, which is great for

you. By using Core Data, you can develop applications with complex data models

much, much faster than you could using straight SQLite, object archiving, or flat files.

Technologies that hide complexity the way Core Data does can encourage “voodoo

programming”—that most dangerous of programming practices where you include code

in your application that you don’t necessarily understand. Sometimes, that mystery code

arrives in the form of a project template. Or, perhaps, you downloaded a utilities library

that did a task for you that you just don’t have the time or expertise to do for yourself.

That voodoo code does what you need it to do, and you don’t have the time or

inclination to step through it and figure it out, so it just sits there, working its magic …

until it breaks. Though this is not always the case, as a general rule, if you find yourself

with code in your own application that you don’t fully understand, it’s a sign you should

go do a little research, or at least find a more experienced peer to help you get a handle

on your mystery code.

The point is that Core Data is one of those complex technologies that can easily turn

into a source of mystery code that will make its way into many of your projects. Although

you don’t need to know exactly how Core Data accomplishes everything it does, you

should invest some time and effort into understanding the overall Core Data

architecture.

In this chapter, we’ll start with a brief history of Core Data, and then dive into the Core

Data template itself. By dissecting Xcode’s default Core Data template, you’ll find it

2

CHAPTER 2: The Anatomy of Core Data 10

much easier to understand the more complex Core Data projects we get into in the

following chapters.

A Brief History of Core Data
Core Data has been around for quite some time, but it just became available on the

iPhone with the release of iPhone SDK 3.0. Core Data was originally introduced with

Mac OS X 10.4 (Tiger), but some of the DNA in Core Data actually goes back about 15

years, to a NeXT framework called Enterprise Objects Framework (EOF), part of NeXT’s

WebObjects web development tool set.

EOF was designed to work with remote databases, and it was a pretty revolutionary tool

when it first came out. Although there are now many good ORM tools for almost every

language, when WebObjects was in its infancy, most web applications were written to

use handcrafted SQL or file system calls to persist their data. Back then, writing web

applications was incredibly time- and labor-intensive. WebObjects, in part because of

EOF, cut the development time needed to create complex web applications by an order

of magnitude.

In addition to being part of WebObjects, EOF was also used by NeXTSTEP, which was

the predecessor to Cocoa. When Apple bought NeXT, the Apple developers used many

of the concepts from EOF to develop a new persistence tool called Core Data. Core

Data does for desktop applications what EOF had previously done for web applications:

It dramatically increases developer productivity by removing the need to write file

system code or interact with an embedded database.

Let’s take a look at a Core Data Xcode template.

Creating a Core Data Template Application
Fire up Xcode and select New Project… from the File menu, or press N. When the

new project assistant comes up, select Application under the iPhone OS heading in the

left column, and then select Navigation-based Application from the upper-right pane. In

the lower-right pane, make sure the box labeled Use Core Data for storage is checked,

as in Figure 2–1. That check box is how we tell Xcode to give us all the code and extra

stuff we need to start using Core Data. Not all Xcode project templates have this option,

but it’s available for both the Navigation-based Application and Window-based

Application templates.

CHAPTER 2: The Anatomy of Core Data 11

Figure 2–1. Creating a project in Xcode that uses Core Data

Call your project CoreData. Now build and run the application. It will work fine in either

the simulator or on a physical device. It should look something like Figure 2–2.

Figure 2–2. The application created by compiling the Core Data Navigation-based Application project

CHAPTER 2: The Anatomy of Core Data 12

If you press the plus icon in the upper-right corner, it will insert a new row into the table

that shows the exact date and time the plus button was pressed. You can also use the

Edit button to delete rows. Exciting, huh?

CAUTION: Early versions of the Core Data Navigation-based Application template had a small
bug. If you deleted the last row, the application would crash. This was fixed in SDK 3.1.

Under the hood of this simple application, a lot is happening. Think about it—without

adding a single class, or any code to persist data to a file or interact with a database,

pressing the plus button created an object, populated it with data, and saved it to a

SQLite database created for us automatically. There’s plenty of free functionality here.

Now that you’ve seen an application in action, let’s take a look at what’s going on

behind the scenes.

Core Data Concepts and Terminology
Like most complex technologies, Core Data has its own terminology that can be a bit

intimidating to newcomers. Let’s break down the mystery and get our arms around Core

Data’s nomenclature.

Figure 2–3 shows a simplified, high-level diagram of the Core Data architecture. Don’t

expect it all to make sense now, but as we look at different pieces, you might want to

refer back to the diagram to cement your understanding of how they fit together.

Data Model

Persistent
Store

Persistent Store
Coordinator

Entity
Description

Managed
Objects

Managed Objects Context

Predicates

Fetch Request

based on retrieves

Figure 2–3. A high-level view of the Core Data architectures. We’ll be looking at each of these pieces in this
chapter.

There are five key concepts to focus on here. As you proceed through this chapter,

make sure you understand each of the following:

 Persistent store

 Data model

 Persistent store coordinator

 Managed object and managed object context

 Fetch request

CHAPTER 2: The Anatomy of Core Data 13

Once again, don’t let the names throw you. Follow along, and you’ll see how all these

pieces fit together.

The Data Model and Persistent Store
The persistent store, which is sometimes referred to as a backing store, is where Core

Data stores its data. By default on the iPhone, Core Data will use a SQLite database

contained in your application’s documents folder as its persistent store. But this can be

changed without impacting any of the other code you write by tweaking a single line of

code. We’ll show you the actual line of code to change in a few moments.

CAUTION: Do not change the type of persistent store once you have posted your application to
the App Store. If you must change it for any reason, you will need to write code to migrate data
from the old persistent store to the new one, or else your users will lose all of their data—
something that will likely make them quite unhappy.

Every persistent store is associated with a single data model, which defines the types of

data that the persistent store can store. If you expand the Resources folder in the

Groups & Files pane in Xcode, you’ll see a file called CoreData.xcdatamodel. That file is

the default data model for your project. The project template we chose gave us a single

persistent store and an associated data model. Single-click CoreData.xcdatamodel now

to bring up Xcode’s data model editor. Your editing pane in Xcode should now look like

Figure 2–4. As you design your own applications, this is where you’ll build your

application’s data model.

In this chapter, we’ll explore the data model that comes with the template. In Chapter 3,

we’ll actually use the editor to create a custom data model.

Take a look at the data model editor. Notice the single rounded rectangle in the middle

of the editing window. That rectangle is known as an entity. In effect, an entity is like a

class definition, wrapping your various data elements under a single umbrella. This

particular entity has the name Event, and it features sections for Attributes and

Relationships. There’s a single attribute, named timeStamp, and no relationships.

Click off the entity rectangle. The title bar should turn a light pink. Click back on the

entity, and it will turn blue, indicating the entity is selected.

The entity was created as part of this template. If you use this template to create your

own Core Data application, you get the Event entity for free. As you design your own

data models, you’ll most likely delete the Event entity and create your own entities from

scratch.

CHAPTER 2: The Anatomy of Core Data 14

Figure 2–4. The editing pane for a data model class allows you to design your data model visually.

A moment ago, you ran your Core Data sample application in the simulator. When you

pressed the plus icon, a new instance of an Event was created. Entities, which we’ll look

at more closely in a few pages, replace the Objective-C data model class you would

otherwise use to hold your data.

We’ll get back to the data model editor in just a minute to see how it works. For now,

just remember that the persistent store is where Core Data stores its data, and the data

model defines the form of that data. Also remember that every persistent store has one,

and only one, data model.

The Data Model Class: NSManagedObjectModel
Although you won’t typically access your application’s data model directly, you should

be aware of the fact that there is an Objective-C class that represents the data model in

memory. This class is called NSManagedObjectModel, and the template automatically

creates an instance of NSManagedObjectModel based on the data model file in your

project. Let’s take a look at the code that creates it now.

In your project window’s Groups & Files pane, open the Classes group and single-click

CoreDataAppDelegate.m. At the top of the editor pane, click the function menu to bring

CHAPTER 2: The Anatomy of Core Data 15

up a list of the methods in this class (see Figure 2–5). Select -managedObjectModel,
which will take you to the method that creates the object model based on the

CoreData.xcdatamodel file.

Figure 2–5. The editor pane’s pop-up menu

The method should look like this:

/**
 Returns the managed object model for the application.
 If the model doesn't already exist, it is created by merging all of the models
 found in the application bundle.
 */
- (NSManagedObjectModel *)managedObjectModel {
 if (managedObjectModel != nil) {
 return managedObjectModel;
 }
 managedObjectModel = [[NSManagedObjectModel mergedModelFromBundles:nil] retain];
 return managedObjectModel;
}

The first thing it does is check the instance variable managedObjectModel to see if it’s

nil. This accessor method uses a form of lazy loading. The underlying instance

variable doesn’t actually get instantiated until the first time the accessor method is

called. For this reason, you should never, ever access managedObjectModel directly

(except within the accessor method itself, of course). Always make sure to use the

accessor methods. Otherwise, you could end up trying to make calls on an object that

hasn’t been created yet.

CHAPTER 2: The Anatomy of Core Data 16

TIP: The data model class is called NSManagedObjectModel because, as you’ll see a little
later in the chapter, instances of data in Core Data are called managed objects.

If managedObjectModel is nil, we’ll go get our data models. Remember how we said that

a persistent store was associated with a single data model? Well, that’s true, but it

doesn’t tell the whole story. You can combine multiple .xcdatamodel files into a single

instance of NSManagedObjectModel, creating a single data model that combines all the

entities from multiple files. This line of code takes any .xcdatamodel files that might be in

your Xcode project and combines them together into a single instance of

NSManagedObjectModel:

managedObjectModel = [[NSManagedObjectModel mergedModelFromBundles:nil] retain];

So, for example, if you were to create a second data model file and add it to your

project, that new file would be combined with CoreData.xcdatamodel into a single

managed object model that contained the contents of both files. This allows you to split

up your application’s data model into multiple smaller and more manageable files.

The vast majority of iPhone applications that use Core Data have a single persistent

store and a single data model, so the default template code will work beautifully most of

the time, and will let you spread your data model out over multiple files. That said, Core

Data does support the use of multiple persistent stores. You could, for example, design

your application to store some of its data in a SQLite persistent store and some of it in a

binary flat file. If you find that you need to use multiple data models, remember to

change the template code here to load the managed object models individually, using

initWithContentsOfURL:.

The Persistent Store and the Persistent Store Coordinator
The persistent store isn’t actually represented by an Objective-C class. Instead, a class

called NSPersistentStoreCoordinator controls access to the persistent store. In

essence, it takes all the calls coming from different classes that trigger reads or writes to

the persistent store and serializes them so that multiple calls against the same file are

not being made at the same time, which could result in problems due to file or database

locking.

As is the case with the managed object model, the template provides us with a method

in the application delegate that creates and returns an instance of a persistent store

coordinator. Other than creating the store and associating it with a data model and a

location on disk (which is done for you in the template), you will rarely need to interact

with the persistent store coordinator directly. You’ll use high-level Core Data calls, and

Core Data will interact with the persistent store coordinator to retrieve or save the data.

Let’s take a look at the method that returns the persistent store coordinator. In

CoreDataAppDelegate.m, select -persistentStoreCoordinator from the function pop-up

menu. Here’s the method:

CHAPTER 2: The Anatomy of Core Data 17

/**
 Returns the persistent store coordinator for the application.
 If the coordinator doesn't already exist, it is created and the application's store
 added to it.
 */
- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 if (persistentStoreCoordinator != nil) {
 return persistentStoreCoordinator;
 }

 NSURL *storeUrl = [NSURL fileURLWithPath: [[self applicationDocumentsDirectory]
 stringByAppendingPathComponent: @"CoreData.sqlite"]];

 NSError *error;
 persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel: [self managedObjectModel]];
 if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil URL:storeUrl options:nil error:&error]) {
 // Handle error
 }

 return persistentStoreCoordinator;
}

As with the managed object model, this persistentStoreCoordinator accessor method

uses lazy loading and doesn’t instantiate the persistent store coordinator until the first

time it is accessed. Then it creates a path to a file called CoreData.sqlite in the

documents directory in your application’s sandbox. The template will always create a

filename based on your project’s name. If you want to use a different name, you can

change it here, though it generally doesn’t matter what you call the file, since the user

will never see it.

CAUTION: If you do decide to change the filename, make sure you don’t change it after you’ve
posted your application to the App Store, or else future updates will cause your users to lose all
of their data.

Take a look at this line of code:

if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil URL:storeUrl options:nil error:&error]) {

The first parameter to this method, NSSQLiteStoreType, determines the type of the

persistent store. NSSQLiteStoreType is a constant that tells Core Data to use a SQLite

database for its persistent store. If you want your application to use a single, binary flat

file instead of a SQLite database, you could specify the constant NSBinaryStoreType

instead of NSSQLiteStoreType. The vast majority of the time, the default setting is the

best choice, so unless you have a compelling reason to change it, leave it alone.

CHAPTER 2: The Anatomy of Core Data 18

NOTE: A third type of persistent store supported by Core Data on the iPhone is called
in-memory store. The primary use of this option is to create a caching mechanism, storing the
data in memory instead of in a database or binary file. To use an in-memory store, specify a
store type of NSInMemoryStoreType.

Reviewing the Data Model
Before we move on to other parts of Core Data, let’s quickly review how the pieces

we’ve looked at so far fit together. You might want to refer back to Figure 2–3.

The persistent store (or backing store) is a file on the iPhone’s file system that can be

either a SQLite database or a binary flat file. A data model file, contained in one or more

files with an extension of .xcdatamodel, describes the structure of your application’s

data. This file can be edited in Xcode. The data model tells the persistent store

coordinator the format of all data stored in that persistent store. The persistent store

coordinator is used by other Core Data classes that need to save, retrieve, or search for

data. Easy enough, right? Let’s move on.

Entities and the Data Model Editor
Let’s go back to the data model editor and take a closer look at the simple data model

that was provided as part of the template. Single-click CoreData.xcdatamodel again.

Your editor pane (the large pane at the bottom of the window) should look similar to the

one shown earlier in Figure 2–4.

Entities
As we said before, the rounded rectangle in the center is an entity. In effect, an entity is

like an Objective-C class declaration. Each data model class you would create if you

didn’t use Core Data translates to an entity when you do use Core Data.

Each entity has a name—in this case, Event—which must begin with a capital letter. In

the template application you ran earlier, each time you pressed the plus button, a new

instance of Event was created and stored in the application’s persistent store.

In the data model editor, you can tell if an entity is selected by its color. A selected entity

will have a blue title bar and be surrounded by eight resize handles. An unselected entity

will have a reddish-gray title bar, and it will not have any resize handles. Single-click the

Event entity title bar to select it.

As you select the Event entity, take a look at the top-left pane, known as the entity
pane. The entity pane is a list of all the entities that have been defined in this data

model. The template we used for this project creates a single entity, Event. Selecting

Event in the entity pane is the same as selecting the rounded rectangle in the bottom

CHAPTER 2: The Anatomy of Core Data 19

pane. Try it: Click outside the entity in the bottom pane to deselect it, and then click the

Event line in the entity pane. The entity in the bottom pane will also be selected. The

upper-left and bottom panes show two different views of the same entity list.

Properties
While the entity pane lists all the data model’s entities, the upper-middle pane, known as

the property pane, lists the properties that belong to the selected entity.

The entity itself has no mechanism for storing data. Instead, entities are made up of one

or more properties that define it. When you select an entity in the entity pane, its

properties are displayed in the property pane.

An entity can be made up of any number of properties. There are four different types of

properties: attributes, relationships, fetched properties, and fetch requests.

Attributes
The property that you’ll use the most when creating entities is the attribute, which serves

the same function in a Core Data entity as an instance variable does in an Objective-C

class—they both hold data. If you look at your data model editor (or at Figure 2–4), you’ll

see that the Event entity has one property: an attribute named timeStamp. The

timeStamp attribute holds the date and time when a given Event instance was created.

In our sample application, when you click the plus sign, a new row is added to the table

displaying a single Event’s timeStamp.

Just like an instance variable, each attribute has a type, which is set using a pop-up

menu in the third column of the attribute pane. Let’s take a look at that pop-up menu.

Make sure Event is selected in the entity pane, and then select timeStamp in the

attribute pane. Note the word Date in the third column of the timeStamp attribute. That’s

a pop-up menu (see Figure 2–6). Select it, but don’t change its value (leave it as Date).

You can see the range of options for attribute type. We’ll look at the different attribute

types in the next few chapters when we begin building our own data models.

A date attribute, such as timeStamp, corresponds to an instance of NSDate. If you want

to set a new value for a date attribute, you need to provide an instance of NSDate to do

so. A string attribute corresponds to an instance of NSString, and most of the numeric

types correspond to an instance of NSNumber.

TIP: Don’t worry too much about all the other buttons, text fields, and check boxes in the data
model editor. As you make your way through the next few chapters, you’ll get a sense of what
each does.

CHAPTER 2: The Anatomy of Core Data 20

Figure 2–6. The attribute type pop-up menu appears when you click an attribute in the Type or Destination
column.

Relationships
As the name implies, a relationship defines the associations between two different

entities. In the template application, no relationships are defined for the Event entity.

We’ll begin discussing relationships in Chapter 7, but here’s an example just to give you

a sense of how they work.

Suppose we created an Employee entity and wanted to reflect each Employee’s

employer in the data structure. We could just include an employer attribute, perhaps an

NSString, in the Employee entity, but that would be pretty limiting. A more flexible

approach would be to create an Employer entity, and then create a relationship between

the Employee and Employer entities.

Relationships can be to one or to many, and they are designed to link specific objects.

The relationship from Employee to Employer might be a to-one relationship, if we

assume that your Employees do not moonlight and have only a single job. On the other

hand, the relationship from Employer to Employee is to many, since an Employer might

employ many Employees.

To put this in Objective-C terms, a to-one relationship is like using an instance variable

to hold a pointer to an instance of another Objective-C class. A to-many relationship is

more like using a pointer to a collection class like NSMutableArray or NSSet, which can

contain multiple objects.

CHAPTER 2: The Anatomy of Core Data 21

Fetched Properties
A fetched property is like a query that originates with a single managed object. For

example, suppose we added a birthdate attribute to Employee. We might add a fetched

property, called sameBirthdate, to find all Employees with the same birthdate as the

current Employee.

Unlike relationships, fetched properties are not loaded along with the object. For

example, if Employee has a relationship to Employer, when an Employee instance is

loaded, the corresponding Employer instance will be loaded, too. But when an

Employee is loaded, sameBirthdate is not evaluated. This is a form of lazy loading. You’ll

learn more about fetched properties in Chapter 7.

Fetch Requests
While a fetched property is like a query that originates with a single managed object, a

fetch request is more like a class method that implements a canned query. For example,

we might build a fetch request named canChangeLightBulb that returns a list of

Employees who are taller than 80 inches (about 2 meters). We can run the fetch request

any time we need a light bulb changed. When we run it, Core Data searches the

persistent store to find the current list of potential light-bulb-changing Employees.

We will create many fetch requests programmatically in the next few chapters, and we’ll

be looking at a simple one a little later in this chapter, in the “Creating a Fetched Results

Controller” section.

Managed Objects
Entities define the structure of your data, but they do not actually hold any data

themselves. The instances of data are called managed objects. Every instance of an

entity that you work with in Core Data will be an instance of the class NSManagedObject

or a subclass of NSManagedObject.

Key-Value Coding
The NSDictionary class allows you to store objects in a data structure and retrieve an

object using a unique key. Like the NSDictionary class, NSManagedObject supports the

key-value methods valueForKey: and setValue:forKey: for setting and retrieving

attribute values. It also has additional methods for working with relationships. You can,

for example, retrieve an instance of NSMutableSet representing a specific relationship.

Adding managed objects to this mutable set, or removing them will add or remove

objects from the relationship it represents.

If the NSDictionary class is new to you, take a few minutes to fire up Xcode and read

about NSDictionary in the documentation viewer. The important concept to get your

head around is key-value coding, or KVC. Core Data uses KVC to store and retrieve

data from its managed objects.

CHAPTER 2: The Anatomy of Core Data 22

In our template application, consider an instance of NSManagedObject that represents a

single Event. We could retrieve the value stored in its timeStamp attribute by calling

valueForKey:, like so:

NSDate *timeStamp = [managedObject valueForKey:@"timeStamp"];

Since timeStamp is an attribute of type date, we know the object returned by

valueForKey: will be an instance of NSDate. Similarly, we could set the value using

setValue:ForKey:. The following code would set the timeStamp attribute of

managedObject to the current date and time:

[managedObject setValue:[NSDate date] forKey:@"timeStamp"];

KVC also includes the concept of a keypath. Keypaths allow you iterate through object

hierarchies using a single string. So, for example, if we had a relationship on our

Employee entity called whereIWork, which pointed to an entity named Employer, and the

Employer entity had an attribute called name, then we could get to the value stored in

name from an instance of Employee using a keypath like so:

NSString *employerName = [managedObject valueForKeyPath:@"whereIWork.name"];

Notice that we use valueForKeyPath: instead of valueForKey:, and we provide a dot-

separated value for the keypath. KVC parses that string using the dots, so in this case, it

would parse it into two separate values: whereIWork, and name. It uses the first one

(whereIWork) on itself, and retrieves the object that corresponds to that key. It then

takes the next value in the keypath (name) and retrieves the object stored under that key

from the object returned by the previous call. Since Employer is a to-one relationship,

the first part of the keypath would return a managed object instance that represented

the Employee’s employer. The second part of the keypath would then be used to

retrieve the name from the managed object that represents the Employer.

NOTE: If you’ve used bindings in Cocoa, you’re probably already familiar with KVC and keypaths.
If not, don’t worry—they will become second nature to you before long. Keypaths are really quite
intuitive.

Managed Object Context
Core Data maintains an object that acts as a gateway between your entities and the rest

of Core Data. That gateway is called a managed object context (often just referred to

as a context). The context maintains state for all the managed objects that you’ve

loaded or created. The context keeps track of changes that have been made since the

last time a managed object was saved or loaded. When you want to load or search for

objects, for example, you do it against a context. When you want to commit your

changes to the persistent store, you save the context. If you want to undo changes to a

managed object, you just ask the managed object context to undo. (Yes, it even handles

all the work needed to implement undo and redo for your data model.)

CHAPTER 2: The Anatomy of Core Data 23

When building iPhone applications, the vast majority of the time, you will have only

a single context. However, you can have more than one context. For example, if

your application supports threading or some other form of concurrency, such as

NSOperationQueue, you’ll need more than one context, since contexts are not

thread-safe and cannot be shared across threads. This means that the same

managed object can exist in two different places with different values if you’re

not careful.

Because every application needs at least one managed object context to function, the

template has very kindly provided us with one. Click CoreDataAppDelegate.m again,

and select -managedObjectContext from the function menu. You will see a method that

looks like this:

/**
 Returns the managed object context for the application.
 If the context doesn't already exist, it is created and bound to the persistent
 store coordinator for the application.
 */
- (NSManagedObjectContext *) managedObjectContext {

 if (managedObjectContext != nil) {
 return managedObjectContext;
 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];
 if (coordinator != nil) {
 managedObjectContext = [[NSManagedObjectContext alloc] init];
 [managedObjectContext setPersistentStoreCoordinator: coordinator];
 }
 return managedObjectContext;
}

This method is actually pretty straightforward. Using lazy loading, managedObjectContext

is checked for nil. If it is not nil, its value is returned. If managedObjectContext is nil,

we check to see if our NSPersistentStoreCoordinator exists. If so, we create a new

managedObjectContext, then use setPersistentStoreCoordinator: to tie the current

coordinator to our managedObjectContext. When we’re finished, we return

managedObjectContext.

Note that managed object contexts do not work directly against a persistent store; they

go through a persistent store coordinator. As a result, every managed object context

needs to be provided with a pointer to a persistent store coordinator in order to function.

Multiple managed object contexts can work against the same persistent store

coordinator, however.

Saves on Terminate
While we’re in the application delegate, let’s scroll up to another method called

applicationWillTerminate:, which saves changes to the context if any have been

made. The changes are saved to the persistent store. As its name implies, this method is

called just before the application exits.

CHAPTER 2: The Anatomy of Core Data 24

/**
 applicationWillTerminate: saves changes in the application's managed object context
before the application terminates.
 */
- (void)applicationWillTerminate:(UIApplication *)application {

 NSError *error;
 if (managedObjectContext != nil) {
 if ([managedObjectContext hasChanges] && ![managedObjectContext
 save:&error]) {
 // Handle error.
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 exit(-1); // Fail
 }
 }
}

This is a nice bit of functionality, but there may be times when you don’t want the data

to be saved. For example, what if the user quits after creating a new entity, but before

entering any data for that entity? In that case, do you really want to save that empty

managed object into the persistent store? Possibly not. We’ll look at dealing with

situations like that in the next few chapters.

Loading Data from the Persistent Store
Run the Core Data application we built earlier and press the plus button a few times (see

Figure 2–7). Quit the simulator, and then run the application again. Note that the

timestamps from our previous runs were saved into the persistent store and loaded

back in for this run.

Click RootViewController.m so you can see how this happens. As you can probably

guess from the filename, RootViewController is the view controller class that acts as our

application’s, well, root view controller. This is the view controller for the view you can

see in Figure 2–7 and which is, in fact, the only view in the template application.

Once you’ve clicked the filename, you can use the function menu to find the

viewDidLoad: method, although it will probably be on your screen already, since it’s the

first method in the class. The default implementation of the method looks like this:

- (void)viewDidLoad {
 [super viewDidLoad];

 // Set up the edit and add buttons.
 self.navigationItem.leftBarButtonItem = self.editButtonItem;

 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
 action:@selector(insertNewObject)];
 self.navigationItem.rightBarButtonItem = addButton;
 [addButton release];

 NSError *error = nil;
 if (![[self fetchedResultsController] performFetch:&error]) {
 // Update to handle the error appropriately.

CHAPTER 2: The Anatomy of Core Data 25

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 exit(-1); // Fail
 }
}

Figure 2–7. The template application saves your application data when you quit. When you launch it again, it
loads all the existing data from the persistent store.

The first thing the method does is call super. Next, it sets up the Edit and Add buttons.

Note that RootViewController inherits from UIViewController. UIViewController

provides a property named editButtonItem, which returns an Edit button. Using dot

notation, we retrieve editButtonItem and pass it to the mutator for leftBarButtonItem.

Now the Edit button is the left button in the navigation bar.

Let’s do the Add button. Since UIViewController does not provide an Add button, we’ll

use alloc to create one from scratch and add it as the right button in the navigation bar.

The next chunk of code may seem a bit strange:

NSError *error;
if (![[self fetchedResultsController] performFetch:&error]) {

This code calls performFetch: on an object returned by the method fetchedResultsController.
The method fetchedResultsController returns an instance of NSFetchedResultsController,
which is a new generic controller class added with version 3.0 of the SDK. Let’s take a

look at how the fetched results controller works.

CHAPTER 2: The Anatomy of Core Data 26

The Fetched Results Controller
Conceptually speaking, the fetched results controller isn’t quite like the other generic

controllers you’ve seen in the iPhone SDK. If you’ve used Cocoa bindings and the

generic controller classes available on the Mac, such as NSArrayController, then you’re

already familiar with the basic idea. If you’re not familiar with those generic controller

classes, a little explanation is probably in order.

Most of the generic controller classes in the iPhone SDK—such as UINavigationController,
UITableViewController, and UIViewController—are designed to act as the controller

for a specific type of view. View controllers, however, are not the only types of controller

classes that Cocoa Touch provides, although they are the most common.

NSFetchedResultsController is an example of a controller class that is not a view

controller.

NSFetchedResultsController is designed to handle one very specific job, which is to

manage the objects returned from a Core Data fetch request. NSFetchedResultsController
makes displaying data from Core Data easier than it would otherwise be, because it

handles a bunch of tasks for you. It will, for example, purge any unneeded objects from

memory when it receives a low-memory warning and reload them when it needs them

again. If you specify a delegate for the fetched results controller, your delegate will be

notified when certain changes are made to its underlying data.

Creating a Fetched Results Controller
You start by creating a fetch request, and then use that fetch request to create a fetched

results controller. In our template, this is done in RootViewController.m, in the

fetchedResultsController method. fetchedResultsController starts by creating a new

fetch request. A fetch request is basically a specification that lays out the details of the

data to be fetched. You’ll need to tell the fetch request which entity to fetch. In addition,

you’ll want to add a sort descriptor to the fetch request. The sort descriptor determines

the order in which the data is organized.

Once the fetch request is complete, the fetched results controller is created. The fetched

results controller is an instance of the class NSFetchedResultsController. Remember

that the fetched results controller’s job is to use the fetch request to keep its associated

data as fresh as possible.

Once the fetched results controller is created, you’ll do your initial fetch. We do this in

RootViewController.m at the end of ViewDidLoad, by sending our fetched results

controller the PerformFetch message.

Now that you have your data, you’re ready to be a data source and a delegate to your

table view. When your table view wants the number of sections for its table, it will call

numberOfSectionsInTableView:. In our version, we get the section information by

passing the appropriate message to fetchResultsController. Here’s the version from

RootViewController.m:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

CHAPTER 2: The Anatomy of Core Data 27

 return [[fetchedResultsController sections] count];
}

The same strategy applies in tableView:numberOfRowsInSection:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 id <NSFetchedResultsSectionInfo> sectionInfo =
 [[fetchedResultsController sections] objectAtIndex:section];
 return [sectionInfo numberOfObjects];
}

You get the idea. You used to need to do all this work yourself. Now you can ask your

fetched results controller to do all the data management for you. It’s an amazing time-

saver!

Let’s take a closer look at the creation of the fetched results controller. In

RootViewController.m, use the function menu to go to the method -
fetchedResultsController. It should look like this:

- (NSFetchedResultsController *)fetchedResultsController {
 if (fetchedResultsController != nil) {
 return fetchedResultsController;
 }

 /*
 Set up the fetched results controller.
 */
 // Create the fetch request for the entity.
 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 // Edit the entity name as appropriate.
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"
 inManagedObjectContext:managedObjectContext];
 [fetchRequest setEntity:entity];

 // Set the batch size to a suitable number.
 [fetchRequest setFetchBatchSize:20];

 // Edit the sort key as appropriate.
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@"timeStamp" ascending:NO];
 NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
 nil];

 [fetchRequest setSortDescriptors:sortDescriptors];

 // Edit the section name key path and cache name if appropriate.
 // nil for section name key path means "no sections".
 NSFetchedResultsController *aFetchedResultsController =
 [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest
 managedObjectContext:managedObjectContext sectionNameKeyPath:nil
 cacheName:@"Root"];
 aFetchedResultsController.delegate = self;
 self.fetchedResultsController = aFetchedResultsController;

CHAPTER 2: The Anatomy of Core Data 28

 [aFetchedResultsController release];
 [fetchRequest release];
 [sortDescriptor release];
 [sortDescriptors release];

 return fetchedResultsController;
}

This method uses lazy loading. The first thing it does is check

fetchedResultsController for nil. If fetchedResultsController already exists, it is

returned; otherwise, the process of creating a new fetchedResultsController is started.

As the first step, we’ll need to create an NSFetchRequest and NSEntityDescription, and

then attach the NSEntityDescription to the NSFetchRequest:

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 // Edit the entity name as appropriate.
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"
 inManagedObjectContext:managedObjectContext];
 [fetchRequest setEntity:entity];

Remember, we’re building a fetched results controller, and the fetch request is part of

that. Next, we set the batch size to 20. This tells Core Data that this fetch request should

retrieve its results 20 at a time. This is sort of like a file system’s block size.

 // Set the batch size to a suitable number.
 [fetchRequest setFetchBatchSize:20];

Next, we build an NSSortDescriptor and specify that it use timeStamp as a key, sorting

the timestamps in ascending order (earlier dates first).

 // Edit the sort key as appropriate.
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@"timeStamp" ascending:YES];

Now we create an array of sort descriptors. Since we’ll be using only one, we pass in

sortDescriptor and follow it with nil to let initWithObjects know we’ll just have a

single element in the array. (Note that the template could have used initWithObject

instead.)

 NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
 nil];

 [fetchRequest setSortDescriptors:sortDescriptors];

Try this experiment: Change ascending:YES to ascending:NO and run the application

again. What do you think will happen? Don’t forget to change it back when you are

finished.

TIP: If you need to restrict a fetch request to a subset of the managed objects stored in the
persistent store, you use a predicate. There’s an entire chapter dedicated to predicates in Learn
Objective-C on the Mac by Mark Dalrymple and Scott Knaster (Apress, 2009). The default
template does not use predicates, but we’ll be working with them in the next several chapters.

CHAPTER 2: The Anatomy of Core Data 29

Now we create an NSFetchedResultsController using our fetch request and context.

We’ll cover the third and fourth parameters, sectionNameKeyPath and cacheName, in

Chapter 3.

 // Edit the section name key path and cache name if appropriate.
 // nil for section name key path means "no sections".
 NSFetchedResultsController *aFetchedResultsController =
 [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest
 managedObjectContext:managedObjectContext sectionNameKeyPath:nil
 cacheName:@"Root"];

Next, we set self as the delegate, and set fetchedResultsController to the fetched

results controller we just created.

 aFetchedResultsController.delegate = self;
 self.fetchedResultsController = aFetchedResultsController;

Finally, we release our locals and return our newly created fetchedResultsController:

 [aFetchedResultsController release];
 [fetchRequest release];
 [sortDescriptor release];
 [sortDescriptors release];

 return fetchedResultsController;
}

Don’t worry too much about the details here. Try to get your head around the big

picture. As you make your way through the next few chapters, the details will come into

focus.

The Fetched Results Controller Delegate Methods
The fetched results controller must have a delegate, and that delegate must provide four

methods, which we will describe in the pages that follow. These four methods are

defined in the protocol NSFetchedResultsControllerDelegate. The fetched results

controller monitors its managed object context and calls its delegates as changes are

made to its context.

Will Change Content Delegate Method
When the fetched results controller observes a change that affects it—such as an object

it manages being deleted or changed, or when a new object is inserted that meets the

criteria of the fetched results controller’s fetch request—the fetched results controller

will notify its delegate before it makes any changes, using the method

controllerWillChangeContent:.

The vast majority of the time, a fetched results controller will be used along with a table

view, and all you need to do in that delegate method is to inform the table view that

updates about to be made might impact what it is displaying. Here is how you do that:

- (void)controllerWillChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView beginUpdates];
}

CHAPTER 2: The Anatomy of Core Data 30

As of this writing, the Xcode project templates do not handle most of the fetched results

controller delegate task for you, so you will usually need to add the methods in this

section to your controller classes. If there is an existing controllerWillChangeContent:

method, replace it with this one.

NOTE: The NSFetchedResultsController was a brand-new object with SDK 3.0. The Core
Data Navigation-based Application project template, which uses it, has changed several times
since the initial release. The earliest version did not implement any of the fetched results
controller delegate methods. Later versions implemented the
controllerWillChangeContent: delegate method, but just triggered a table reload. The
implementations we’re providing in this section are generic and robust. You should be able to
just copy them into your template and go.

Did Change Content Delegate Method
After the fetched results controller makes its changes, it will then notify its delegate

using the method controllerDidChangeContent:. At that time, if you’re using a table

view (and you almost certainly will be), you need to tell the table view that the updates

you told it were coming in controllerWillChangeContent: are now complete. You do

that like so:

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView endUpdates];
}

Did Change Object Delegate Method
When the fetched results controller notices a change to a specific object, it will notify its

delegate using the method controller:didChangeObject:forChangeType:newIndexPath:.

This method is where you need to handle updating, inserting, deleting, or moving rows

in your table view to reflect whatever change was made to the objects managed by the

fetched results controller. Here is a standard implementation of the delegate method

that will take care of updating the table view for you:

- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath {
 switch(type) {
 case NSFetchedResultsChangeInsert:
 [self.tableView insertRowsAtIndexPaths:[NSArray
 arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 case NSFetchedResultsChangeDelete:
 [self.tableView deleteRowsAtIndexPaths:[NSArray

CHAPTER 2: The Anatomy of Core Data 31

 arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 case NSFetchedResultsChangeUpdate: {
 NSString *sectionKeyPath = [controller sectionNameKeyPath];
 if (sectionKeyPath == nil)
 break;
 NSManagedObject *changedObject = [controller
 objectAtIndexPath:indexPath];
 NSArray *keyParts = [sectionKeyPath componentsSeparatedByString:@"."];
 id currentKeyValue = [changedObject valueForKeyPath:sectionKeyPath];
 for (int i = 0; i < [keyParts count] - 1; i++) {
 NSString *onePart = [keyParts objectAtIndex:i];
 changedObject = [changedObject valueForKey:onePart];
 }
 sectionKeyPath = [keyParts lastObject];
 NSDictionary *committedValues = [changedObject
 committedValuesForKeys:nil];

 if ([[committedValues valueForKeyPath:sectionKeyPath]
 isEqual:currentKeyValue])
 break;

 NSUInteger tableSectionCount = [self.tableView numberOfSections];
 NSUInteger frcSectionCount = [[controller sections] count];
 if (tableSectionCount != frcSectionCount) {
 // Need to insert a section
 NSArray *sections = controller.sections;
 NSInteger newSectionLocation = -1;
 for (id oneSection in sections) {
 NSString *sectionName = [oneSection name];
 if ([currentKeyValue isEqual:sectionName]) {
 newSectionLocation = [sections indexOfObject:oneSection];
 break;
 }
 }
 if (newSectionLocation == -1)
 return; // uh oh
 if (!((newSectionLocation == 0) && (tableSectionCount == 1)
 && ([self.tableView numberOfRowsInSection:0] == 0)))
 [self.tableView insertSections:[NSIndexSet
 indexSetWithIndex:newSectionLocation]
 withRowAnimation:UITableViewRowAnimationFade];
 NSUInteger indices[2] = {newSectionLocation, 0};
 newIndexPath = [[[NSIndexPath alloc] initWithIndexes:indices
 length:2] autorelease];
 }
 }
 case NSFetchedResultsChangeMove:
 if (newIndexPath != nil) {
 [self.tableView deleteRowsAtIndexPaths:[NSArray
 arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 [self.tableView insertRowsAtIndexPaths: [NSArray
 arrayWithObject:newIndexPath]
 withRowAnimation: UITableViewRowAnimationRight];
 }

CHAPTER 2: The Anatomy of Core Data 32

 else {
 [self.tableView reloadSections:[NSIndexSet
 indexSetWithIndex:[indexPath section]]
 withRowAnimation:UITableViewRowAnimationFade];
 }
 break;
 default:
 break;
 }
}

Most of this code is fairly straightforward. If a row has been inserted, we receive a type

of NSFetchedResultsChangeInsert, and we insert a new row into the table. If a row was

deleted, we receive a type of NSFetchedResultsChangeDelete, and we delete the

corresponding row in the table. If a type of NSFetchedResultsChangeMove was received,

we know that a row was moved, so we delete it from the old location and insert it at the

location specified by newIndexPath.

The one section that’s not so straightforward is NSFetchedResultsChangeUpdate, which is

received when one of the objects the fetched results controller manages changes. Most

of the time, you don’t need to do anything when that happens. That’s a lot of code for

doing nothing, isn’t it?

The problem is that an update might impact the table view. If you change the field that is

used to order the rows or to divide the rows into sections, then you need to take further

actions. As of this writing, for example, when changing an object causes it to move to a

new section, you are not notified of a move or a section insert—just of the change. The

gnarly code under NSFetchedResultsChangeUpdate handles this problem. Don’t worry if

you don’t fully understand that code. It has been written generically, so you should be

able to just use it as is. It is advanced code, and understanding it involves

understanding things that will be explained in the next chapters.

HANDLING FETCHED RESULTS CONTROLLER OBJECT UPDATES

You don’t need to understand how the logic to handle object updates works. This is advanced juju, and it’s
fine to just use this code without understanding it. But if you’re truly curious, we’ll step through the
process of handling object change scenarios in the delegate method. We do recommend working through
the rest of the chapters on Core Data before going through these details, though.

The first thing we do is retrieve the sectionKeyPath our fetched results controller is using. This is the
key value used to divide the table’s data into sections. If it’s nil, then we have nothing more to do, and
we break out of the switch statement. Otherwise, we also grab a reference to the object whose change
triggered this method call.

 case NSFetchedResultsChangeUpdate: {
 NSString *sectionKeyPath = [controller sectionNameKeyPath];
 if (sectionKeyPath == nil)
 break;
 NSManagedObject *changedObject = [controller
 objectAtIndexPath:indexPath];

CHAPTER 2: The Anatomy of Core Data 33

The next thing we do is split up the section name keypath into components. Although most of the time,
section name keypaths will just be single property name, like @"foo", they can contain multiple
components, each separated by a period, like @"foo.bar". We’ll talk more about why a keypath would
have multiple components in Chapter 7, when we talk about Core Data relationships.

 NSArray *keyParts = [sectionKeyPath
 componentsSeparatedByString:@"."];

We need to iterate through the keypath to find the object referred to by this keypath. Usually, it will be the
object that was changed, but if the keypath has multiple period-separated values, then we know it’s
actually another, nested object, and we must retrieve that object. We exclude the last string from the
keypath, because that part of a keypath refers to the actual property, not the object.

 id currentKeyValue = [changedObject valueForKeyPath:sectionKeyPath];
 for (int i = 0; i < [keyParts count] - 1; i++) {
 NSString *onePart = [keyParts objectAtIndex:i];
 changedObject = [changedObject valueForKey:onePart];
 }

At this point, changedObject now refers to the object where the section key resides, and we truncate the
keypath so that it includes only the last period-separated component. Now we know both the object and
the specific property that are being used to divide the rows into sections. Next, we need to determine the
prior value for that property and see if that value has changed. All we know now is that this object
changed. We don’t know if it changed in a way that would require moving the object to a new section. If
the value hasn’t changed, we break, which ends the method and bypasses the rest of the code in this
section.

 sectionKeyPath = [keyParts lastObject];
 NSDictionary *committedValues = [changedObject
 committedValuesForKeys:nil];

 if ([[committedValues valueForKeyPath:sectionKeyPath]
 isEqual:currentKeyValue])
 break;

If we didn’t break and we get to the code below, we know we’re dealing with a change to a value that
affects the way the objects are divided up into sections, so we need to compare the number of sections in
the fetched results controller with the table to see if they are different. Just because an object moved to a
new section doesn’t necessarily mean that a new section needs to be inserted. It could result in a move to
a section that already exists.

 NSUInteger tableSectionCount = [self.tableView numberOfSections];
 NSUInteger frcSectionCount = [[controller sections] count];
 if (tableSectionCount != frcSectionCount) {

If the fetched results controller and table don’t have the same number of sections, we need to loop through
the fetched results controller’s sections to figure out where the new section needs to get inserted. We loop
through and compare the section name with the section key value from the changed object. When we find
it, we set newSectionLocation to the index of the found section and break, which stops the loop.

 // Need to insert a section
 NSArray *sections = controller.sections;
 NSInteger newSectionLocation = -1;
 for (id oneSection in sections) {
 NSString *sectionName = [oneSection name];
 if ([currentKeyValue isEqual:sectionName]) {
 newSectionLocation = [sections
 indexOfObject:oneSection];

CHAPTER 2: The Anatomy of Core Data 34

 break;
 }
 }

Next, just to make sure, we check newSectionLocation to make sure it’s not -1. In theory, this
shouldn’t happen, but we don’t want to pass a -1 when we insert a new section, because that would
generate an exception at runtime.

 if (newSectionLocation == -1)
 return; // uh oh

Finally, we insert the new section if needed. Remember that table views must have at least one section. An
empty table already has one section, so we don’t insert a section if we’re inserting the first section into an
empty table. It would be rare to be inserting a first row when we get an object-changed notification, since
the object must have already existed; however, the object might not have previously matched the criteria
in the predicate used by the fetch request underlying the fetched results controller. The change might have
moved the object into our fetched results controller’s result set as the first object.

 if (!((newSectionLocation == 0) && (tableSectionCount == 1)
 && ([self.tableView numberOfRowsInSection:0] == 0)))
 [self.tableView insertSections:[NSIndexSet
 indexSetWithIndex:newSectionLocation]
 withRowAnimation:UITableViewRowAnimationFade];

We also create a new NSIndexPath instance and assign it to newIndexPath. The variable
newIndexPath points to the location in the table where a row should be moved when we are notified of
an object moving. For a change update, as we have here, this value will always be nil. We need to create
a new index path that points to the first row in the newly created section, since that’s where we want the
new row to go.

 NSUInteger indices[2] = {newSectionLocation, 0};
 newIndexPath = [[[NSIndexPath alloc] initWithIndexes:indices
 length:2] autorelease];
 }
 }

Notice that we don’t have a break statement before the next case statement. Everything is set up so we
fall through to the move logic and leverage that. The next case statement will delete the existing row and
insert a new row in the newly added section, and all will be right with the world.

 case NSFetchedResultsChangeMove:
...

Don’t worry if this all seemed a bit overwhelming. You’ll rarely be called upon to write code like this. As
we’ve said, you don’t need to understand how or why it works to be able to use a fetched results
controller.

CHAPTER 2: The Anatomy of Core Data 35

Did Change Section Delegate Method
Lastly, if a change to an object affects the number of sections in the table, the fetched

results controller will call the delegate method

controller:didChangeSection:atIndex:forChangeType:. If you specify a

sectionNameKeyPath when you create your fetched results controller, you need to

implement this delegate method to take care of adding and deleting sections from the

table as needed. If you don’t, you will get runtime errors when the number of sections in

the table doesn’t match the number of sections in the fetched results controller. Here is

a fairly standard implementation of that delegate method that should work for most

situations:

- (void)controller:(NSFetchedResultsController *)controller
 didChangeSection:(id <NSFetchedResultsSectionInfo>)sectionInfo
 atIndex:(NSUInteger)sectionIndex
 forChangeType:(NSFetchedResultsChangeType)type {

 switch(type) {
 case NSFetchedResultsChangeInsert:
 if (!((sectionIndex == 0) && ([self.tableView numberOfSections] == 1)
 && ([self.tableView numberOfRowsInSection:0] == 0)))
 [self.tableView insertSections:[NSIndexSet
 indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 case NSFetchedResultsChangeDelete:
 if (!((sectionIndex == 0) && ([self.tableView numberOfSections] == 1)
 && ([self.tableView numberOfRowsInSection:0] == 0)))
 [self.tableView deleteSections:[NSIndexSet
 indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 case NSFetchedResultsChangeMove:
 case NSFetchedResultsChangeUpdate:
 default:
 break;
 }
}

Once you’ve implemented these four delegate methods, if you add a new managed

object, the fetched results controller will detect that, and your table will be updated

automatically. If you delete or change an object, the controller will detect that, too. Any

change that affects the fetched results controller will automatically trigger an appropriate

update to the table view, including properly animating the process. This means that you

don’t need to litter your code with calls to reloadData every time you make a change

that might impact your dataset.

CHAPTER 2: The Anatomy of Core Data 36

Retrieving a Managed Object from the Fetched Results
Controller
Our table view delegate methods became much shorter and more straightforward, since

our fetched results controller does much of the work that we previously did in those

methods. For example, to retrieve the object that corresponds to a particular cell, which

we often need to do in tableView:cellForRowAtIndexPath: and

tableView:didSelectRowAtIndexPath:, we can just call objectAtIndexPath: on the

fetched results controller and pass in the indexPath parameter, and it will return the

correct object:

NSManagedObject *managedObject = [fetchedResultsController
 objectAtIndexPath:indexPath];

Creating and Inserting a New Managed Object
From the function menu in the editor pane, select insertNewObject, which is the method

that is called when the plus button is pressed in the sample application. It’s a nice,

simple example of how to create a new managed object, insert it into a managed object

context, and then save it to the persistent store.

- (void)insertNewObject {

 // Create a new instance of the entity managed by the fetched results
 // controller.
 NSManagedObjectContext *context =
 [fetchedResultsController managedObjectContext];
 NSEntityDescription *entity = [[fetchedResultsController fetchRequest] entity];
 NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name]
 inManagedObjectContext:context];

 // If appropriate, configure the new managed object.
 [newManagedObject setValue:[NSDate date] forKey:@"timeStamp"];

 // Save the context.
 NSError *error;
 if (![context save:&error]) {
 // Handle the error...
 }
}

Notice that the first thing the code does is to retrieve a managed object context from the

fetched results controller. In this simple example, where there’s only one context, we

could also have retrieved the same context from the application delegate. There are a

few reasons why the default code uses the context from the fetched results controller.

First of all, we already have an instance variable that points to the fetched results

controller, so we can get to the context in just one line of code:

NSManagedObjectContext *context =
 [fetchedResultsController managedObjectContext];

CHAPTER 2: The Anatomy of Core Data 37

More important, though, a fetched results controller always knows which context its

managed objects are contained by, so even if you decide to create an application with

multiple contexts, you’ll be sure that you’re using the correct context if you pull it from

the fetched results controller.

Just as we did when we created a fetch request, when inserting a new object, we need

to create an entity description to tell Core Data which kind of entity we want to create an

instance of. The fetched results controller also knows what entity the objects it manages

are, so we can just ask it for that information:

NSEntityDescription *entity = [[fetchedResultsController fetchRequest] entity];

Then it’s simply a matter of using a class method on NSEntityDescription to create the

new object and insert it into a context:

NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name]
 inManagedObjectContext:context];

It does seem a little odd that we use a class method on NSEntityDescription, rather

than an instance method on the context we want to insert the new object into, but that’s

the way it’s done.

Though this managed object has now been inserted into the context, it still exists in the

persistent store. In order to insert it from the persistent store, we must save the context,

which is what happens next in this method:

NSError *error;
if (![context save:&error]) {
 // Handle the error...
}

Notice that we don’t call reloadData on our table view. The fetched results controller will

realize that we’ve inserted a new object that meets its criteria and call the delegate

method, which will automatically reload the table.

INSERTING NEW ENTITIES USING NSMANAGEDOBJECTCONTEXT

If it really bothers you that you use a method on NSEntityDescription to insert a new object into an
NSManagedObjectContext, rather than an instance method on NSManagedObjectContext, you can
add an instance method to NSManagedObjectContext using a category. To do that, create two new text
files: one called NSManagedObject-Insert.h and one called NSManagedObject-Insert.m.

In NSManagedObject-Insert.h, place the following code:

#import <Cocoa/Cocoa.h>
@interface NSManagedObjectContext(insert)
-(NSManagedObject *) insertNewEntityWithName:(NSString *)name;
@end

In NSManagedObject-Insert.m, place this code:

#import "NSManagedObjectContext-insert.h"

CHAPTER 2: The Anatomy of Core Data 38

@implementation NSManagedObjectContext(insert)
-(NSManagedObject *) insertNewEntityWithName:(NSString *)name
{
 return [NSEntityDescription insertNewObjectForEntityForName:name
 inManagedObjectContext:self];
}
@end

Save both files.

You can add these two files to your Xcode project and import NSManagedObject-Insert.m anywhere you
wish to use this new method. Then replace the insert calls against NSEntityDescription, like this one:

NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name]
 inManagedObjectContext:context];

with the shorter and more intuitive one:

[context insertNewEntityWityName:[entity name]];

Ain’t categories grand?

Deleting Managed Objects
Deleting managed objects is pretty easy when using a fetched results controller. Use the

function menu to navigate to the method called

tableView:commitEditingStyle:forRowAtIndexPath:. That method should look like this:

// Override to support editing the table view.
- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {

 if (editingStyle == UITableViewCellEditingStyleDelete) {
 // Delete the managed object for the given index path
 NSManagedObjectContext *context =
 [fetchedResultsController managedObjectContext];
 [context deleteObject:[fetchedResultsController
 objectAtIndexPath:indexPath]];

 // Save the context.
 NSError *error;
 if (![context save:&error]) {
 // Update to handle the error appropriately.
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 exit(-1); // Fail
 }
 }
}

The method first makes sure that we’re in a delete transaction (remember that this same

method is used for deletes and inserts):

 if (editingStyle == UITableViewCellEditingStyleDelete) {

CHAPTER 2: The Anatomy of Core Data 39

Next, we retrieve the context:

 NSManagedObjectContext *context =
 [fetchedResultsController managedObjectContext];

Then the context is asked to delete that object:

 [context deleteObject:[fetchedResultsController
 objectAtIndexPath:indexPath]];

Next, the managed object context’s save: method is called to cause that change to be

committed to the persistent store:

 NSError *error;
 if (![context save:&error]) {
 // Update to handle the error appropriately.
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 exit(-1); // Fail
 }

And that's all there is to deleting managed objects.

Putting Everything in Context
At this point, you should have a pretty good handle on the basics of using Core Data.

You’ve learned about the architecture of a Core Data application and the process of

using entities and properties. You’ve seen how the persistent store, managed object

model, and managed object context are created by your application delegate. You

learned how to use the data model editor to build entities that can be used in your

program to create managed objects. You also learned how to retrieve, insert, and delete

data from the persistent store.

So, enough with the theory. Let’s move on and build us some Core Data applications,

shall we?

CHAPTER 2: The Anatomy of Core Data 40

41

41

 Chapter

A Super Start: Adding,
Displaying, and Deleting
Data
Well, if that last chapter didn’t scare you off, then you’re ready to dive in and move

beyond the basic template we explored in Chapter 2.

In this chapter, we’re going to create an application designed to track some superhero

data. Our application will be based on the Window-based Application template. We’ll

use the data model editor to design our superhero entity. And then we’ll create a new

controller class, derived from UIViewController, that will allow us to add, display, and

delete superheroes. In Chapter 4, we’ll extend our application further and add code to

allow the user to edit their superhero data.

Take a look at Figure 3-1 to get a sense of what our app will look like when it runs.

Looks a lot like the template app. The major differences lie in the entity at the heart of

the application and in the addition of a tab bar at the bottom of the screen. Let’s get

to work.

3

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 42

Figure 3-1. The SuperDB application as it will look once we’ve finished this chapter

Setting up the Xcode Project
Time to get our hands dirty. Launch Xcode if it’s not open, and type N to bring up

our old friend, the new project assistant (Figure 3-2).

Figure 3-2. Our dear old friend, Xcode’s new project assistant

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 43

In the last chapter, we started with the Navigation-based Application template. When

you create your own navigation applications, that’s a good template to use, as it gives

you a lot of the code you’re likely to need in your application. However, to make it easier

to explain where to add or modify code and also to reinforce your understanding of how

applications are constructed, we’re going to build the SuperDB application from scratch,

just as we did throughout most of Beginning iPhone 3 Development (Apress, 2009).

Select Window-based Application, and make sure that the Use Core Data for storage

check box is checked. When prompted for a project name, type in SuperDB.

When the project window appears, expand both the Classes and the Resources groups

to make it easier to get to the main files with which we’ll be working.

Application Architecture
As you can see from Figure 3-1, we’re going to create an application with both a tab bar

and a navigation controller. Before we start writing code, we need to put a little thought

into our application’s structure. We need to know, for example, whether our

application’s root view controller will be a navigation controller, tab bar controller, or

something else entirely.

There’s not a single right architecture for every application. One obvious approach

would be to make the application’s root view controller a UITabBarController, and then

add a separate navigation controller for each tab. In a situation where each tab

corresponds to a completely different view showing different types of data, that

approach would make perfect sense. In Beginning iPhone 3 Development, in Chapter 7,

we used that exact approach because every single tab corresponded to a different view

controller with different outlets and different actions.

In our case, however, we’re going to implement two tabs (with more to be added in later

chapters), but each tab will show exactly the same data, just ordered differently. When

one tab is selected, the table will be ordered by the superhero’s name. If the other tab is

selected, the same data will be shown, ordered by the superhero’s secret identity.

Regardless of which tab is selected, tapping a row on the table will do the same thing:

drill down to a new view where you can edit the information about the superhero you

selected (which we will add in the next chapter). Regardless of which tab is selected,

tapping the add button will add a new instance of the same entity. When you drill down

to another view to view or edit a hero, the tabs are no longer relevant.

For our application, the tab bar is just modifying the way the data in a single table is

presented. There’s no need for it to actually swap in and out other view controllers. Why

have multiple navigation controller instances all managing identical sets of data and

responding the same way to touches? Why not just use one table controller, and have it

change the way it presents the data based on which tab is selected? That’s the

approach we’re going to take in this application. As a result, we won’t be using

UITabBarController at all.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 44

Our root view controller will be a navigation controller, and we’ll use a tab bar purely to

receive input from the user. The end result that is shown to the user will be identical to

what they’d see if we created separate navigation controllers and table view controllers

for each tab, but behind the scenes, we’ll be using less memory and won’t have to worry

about keeping the different navigation controllers in sync with each other.

Our application’s root view controller will be an instance of UINavigationController.

We’ll create our own custom view controller class, HeroListViewController, to act as

the root view controller for this UINavigationController. HeroListViewController will

display the list of superheroes along with the tabs that control how the heroes are

displayed and ordered.

Here’s how the app will work. When the application starts, the UINavigationController

instance is created from the nib file and the navigation controller’s view is added as a

subview to the application’s window so it can be seen. The rest of the window will be

taken up by a content pane for its subcontroller views. Next, the instance of

HeroListViewController will be loaded from the nib, and the view from its associated

nib file will be added as a subview to the navigation controller’s content pane. This view

(the one associated with HeroListViewController) contains our tab bar and our

superhero table view.

In Chapter 4, we’ll add a table view controller into the mix that implements a detail

superhero view. When the user taps on a superhero in the superhero list, this detail

controller will be pushed onto the navigation stack and its view will temporarily replace

the HeroListViewController’s view in the UINavigationController’s content view. No

need to worry about the detail view now, we just wanted you to see what’s coming.

Modifying the Application Delegate Interface
Given our approach, we need to declare an outlet to our application’s root view

controller on our application delegate. Single-click on SuperDBAppDelegate.h and add

the code in bold:

@interface SuperDBAppDelegate : NSObject <UIApplicationDelegate> {
 NSManagedObjectModel *managedObjectModel;
 NSManagedObjectContext *managedObjectContext;
 NSPersistentStoreCoordinator *persistentStoreCoordinator;

 UIWindow *window;

 UINavigationController *navController;
}

@property (nonatomic, retain, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, retain, readonly) NSManagedObjectContext
 *managedObjectContext;
@property (nonatomic, retain, readonly) NSPersistentStoreCoordinator
 *persistentStoreCoordinator;

@property (nonatomic, retain) IBOutlet UIWindow *window;

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 45

@property (nonatomic, retain) IBOutlet UINavigationController *navController;

- (NSString *)applicationDocumentsDirectory;
@end

As you probably realized, the navController outlet will point to an instance of

UINavigationController that will act as our application’s root view controller. Other view

controllers will be pushed onto the navigation stack when they need to be displayed,

and will be popped off of the stack when they are done.

Adding to the Application Delegate Implementation
Before we head over to Interface Builder, let’s quickly finish up with our Application

delegate by adding the following code at the beginning of SuperDBAppDelegate.m:

#import "SuperDBAppDelegate.h"

@implementation SuperDBAppDelegate

@synthesize window;
@synthesize navController;

#pragma mark -
#pragma mark Application lifecycle

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch
 [window insertSubview:navController.view atIndex:0];
 [window makeKeyAndVisible];
}

…

There shouldn’t be too much there that’s unfamiliar to you. We synthesize our new

property, just as we always do. In our applicationDidFinishLaunching: method, we add

the view property from navController, our application’s root view controller, as a

subview of contentView so that it will be displayed to the user.

Now, scroll down to the bottom of SuperDBAppDelegate.m. We need to add a few lines

to the dealloc method to make sure we’re being good memory citizens. Make the

following additions at the bottom of the file:

…

- (void)dealloc {
 [managedObjectContext release];
 [managedObjectModel release];
 [persistentStoreCoordinator release];

 [window release];

 [navController release];

 [super dealloc];

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 46

}
@end

Make sure you save both SuperDBAppDelegate.h and SuperDBAppDelegate.m before

continuing.

Creating the Table View Controller
Our application’s root view controller is going to be a stock UINavigationController, so

we don’t need to define a class for the app’s root view controller, but we do need to

create a controller class to display the list of heroes and act as the root of the navigation

controllers’ stack. Even though we will be using a table to display the list of heroes,

we’re not going to subclass UITableViewController. Because we also need to add a tab

bar to our interface, we’re going to create a subclass of UIViewController and create

our interface in Interface Builder. The table that will display the list of heroes will be a

subview of our view controller’s content pane.

Single-click the Classes folder in the Groups & Files pane, then type N to bring up the

new file assistant or select New File… from the File menu.

When the new file assistant pops up (Figure 3-3), select Cocoa Touch Class from under

the iPhone OS heading in the upper-left pane, then select UIViewController subclass

from the upper-right pane. Now make sure the UITableViewController subclass check

box is not checked, but the check box labeled With XIB for user interface check box is

checked since, unlike with most table-based views, we will need a nib file. With that

done, click the Next button.

Figure 3-3. Selecting the Objective-C subclass template in the new file assistant

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 47

When prompted for a filename, type in HeroListViewController.m and make sure the

check box labeled Also create “HeroListViewController.h” is checked. Press return to

add the files to your project. After the files are created, click and drag

HeroListViewController.xib from the Classes folder, where Xcode created it, to the

Resources folder where it belongs.

For now, that’s all we need in this controller class. In order to create an instance of the

class in Interface Builder, we first needed the class definition to exist in Xcode.

Setting up MainWindow.xib
Interface Builder should now be open and should look something like Figure 3-4. You’re

probably well-acquainted with Interface Builder by now, but let’s just quickly review the

names of the various windows so that we’re all on the same page. The top-left window,

the one with MainWindow.xib in the title bar, is the nib file’s main window. Below that,

the window with the imaginative name of Window represents our application’s one and

only instance of UIWindow. Double-clicking the Window icon in the nib file’s main window

will reopen this if it gets closed.

The window with the small title bar to the right of the nib’s main window is the context-

sensitive Inspector where you can change the attributes of whatever item is currently

selected in the active window. And finally, the right-most window is the Library, which

contains pre-configured items that you can add to a nib.

Figure 3-4. MainWindow.xib in Interface Builder

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 48

In the library, select the Controllers folder in the top-most pane (inside Library, then

inside Cocoa Touch). With Controllers selected in the top pane, look in the middle pane

for the Navigation Controller icon (Figure 3-5). Drag one of these to your nib file’s main

window. Once you do that, your nib’s main window will gain an additional icon called

Navigation Controller (or Navigation Co… if you’re in icon view mode, which truncates

longer names), and a new window should have just popped up (Figure 3-6).

Figure 3-5. The Navigation Controller icon. Depending on the version of Interface Builder you are using, the
Library may default to displaying items in one of two ways. You might see just the icon (left), or the icon and a
short description (right). You can change how the library items are displayed by right-clicking on the middle pane.

Figure 3-6. Adding a Navigation Controller to your nib causes a new window to pop up

The new window has a grey rounded rectangle with a dashed outline labeled View and a

title of Root View Controller. This is Interface Builder’s way of reminding us that a

navigation controller needs at least one child view controller in order to function. We can

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 49

set the root view controller right here in Interface Builder. The easiest way to do this is to

put our nib’s main window in list mode by clicking the middle of the three View Mode

icons (Figure 3-7).

Figure 3-7. The nib’s main window in list view mode

With your nib in list view mode, you should notice that Navigation Controller has a

disclosure triangle next to it. That means it has sub-items of some form. Different items

can contain different types of sub-items. Instances of view classes, for example, can

contain subviews. View controller classes generally have either the views they control or

the subordinate view controllers they’re responsible for managing (or both). Expand

Navigation Controller by single-clicking its disclosure triangle. Underneath it, you’ll find a

navigation bar instance, and a view controller with the rather long and unwieldy name of

View Controller (Root View Controller). The view controller represents the navigation

controller’s root view controller. As we said earlier, HeroListViewController was

designed to act as the navigation controller’s root view controller. We need to change

the class of the root view controller to HeroListViewController.

Single-click View Controller (Root View Controller) and press 4 to bring up the

identity inspector (Figure 3-8). Change the underlying class in the identity inspector

from UIViewController to HeroListViewController. This will cause a single instance of

HeroListViewController to get created when our application launches.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 50

Figure 3-8. The identity inspector allows us to change the underlying class for the navigation controller’s root
view controller to our custom controller class.

Now we’ve got a navigation controller and an instance of our custom controller class in

our nib.

Connecting the Outlets
Earlier we created an outlet in our application delegate for the navigation controller.

We’ve added an instance of UINavigationController to our nib, so let’s connect the

outlet. Control-drag from SuperDB App Delegate in the nib’s main window to the

Navigation Controller also in the nib’s main window. When the black menu pops up,

select the outlet called navController to connect that outlet.

And with that, we have received final clearance to land our nib. Save and head on back

to Xcode to pick up your luggage.

Designing the Data Model
As we discussed in Chapter 2, Xcode’s data model editor is where you design your

application’s data model. In your project window’s Resources group, single-click on

SuperDB.xcdatamodel. This should bring up the data model editor (Figure 3-9).

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 51

Figure 3-9. The empty data model editor awaiting your application’s data model.

Unlike the template we used in Chapter 2, this template provides us with a completely

empty data model, so we can just dive right in and start building without deleting

anything. The first thing we need to add to our data model is an entity. Remember,

entities are like class definitions. Although they don’t store any data themselves, without

at least one entity in your data model, your application won’t be able to store any data.

Adding an Entity
Since the purpose of our application is to track information about superheroes, it seems

logical that we’re going to need an entity to represent a hero. We’re going to start off

simple in this chapter and track only a few pieces of data about each hero: their name,

secret identity, date of birth, and sex. We’ll add more data elements in future chapters,

but this will give us a basic foundation upon which to build.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 52

In the entity pane, which is the upper-left pane of the data model editor, you should

notice buttons with a plus and a minus icon in the lower-left corner (Figure 3-10). As you

might have guessed, the button with the plus icon adds a new entity to the data model,

and the button with the minus icon removes the currently selected one. Since there’s

no entity to delete, the minus button is disabled. Click the plus button now to add a

new entity.

Figure 3-10. The plus and minus buttons in the entity pane allow you to add and remove entities from the data
model

As soon as you click the plus button, a new entity, named Entity, should appear in the

entity pane. This entity should be selected for you automatically, which means that the

detail pane in the upper-right corner of the data model editor lists details about this new

entity and the entity will be selected in the editing pane at the bottom of the data model

editor (Figure 3-11).

Editing the New Entity
Now that you’ve now added an entity to your data model, you’ll need to change its

name. The easiest way to do that is to change it in the detail pane. Conveniently enough,

the Name text field in the detail pane is highlighted and has the focus, so you can just

start typing the new name to change the entity’s name. Type Hero.

Below the Name field in the detail pane is a text field called Class. Leave this at the

default value of NSManagedObject. In Chapter 6, you’ll see how to use this field to

create custom subclasses of NSManagedObject to add functionality.

Below that is a pop-up menu labeled Parent. Within a data model, you have the ability to

specify a parent entity, which is very similar to subclassing in Objective-C. When you

specify another entity as your parent, the new entity receives all the properties of Parent
along with any additional ones that you specify.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 53

Figure 3-11. After clicking the plus button in the entity pane, the entity pane gets a new selected row called
Entity, the diagram view shows the new entity as a rounded rectangle, and the detail pane shows information
about the selected entity

Below the Parent pop-up menu is a check box called Abstract. This check box allows

you to create an entity that cannot be used to create managed objects at runtime. The

reason you might create an abstract entity is if you have several properties that are

common to multiple entities. In that case, you might create an abstract entity to hold the

common fields and then make every entity that uses those common fields a child of that

abstract entity. Doing that would mean that if you needed to change those common

fields, you’d only need to do it in one place.

Leave the parenting pop-up set to No Parent Entity and leave the Abstract check box

unchecked.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 54

NOTE: You may be wondering about the button bar in the upper-left of the detail pane. These
buttons give you access to more advanced configuration parameters that are only rarely used.
We won’t be changing any of the configuration options except those visible when the General
button is selected (the default button, the one we’re on now).

If you’re interested in finding out more about these advanced options, you can read more about
them in the Core Data Programming Guide at http://developer.apple.com/
documentation/Cocoa/Conceptual/CoreData/ and the Core Data Model Versioning and
Data Migration Guide at http://devworld.apple.com/documentation/
Cocoa/Conceptual/CoreDataVersioning/index.html

Adding Attributes to the New Entity
Now that we have an entity, we have to give it attributes in order for managed objects

based on this entity to be able to store any data. For this chapter, we need four

attributes: name, secret identity, birth date, and sex.

In the data model editor, to the right of the entity pane is the property pane. This is

where you can add properties, including attributes, to the currently selected entity. In the

lower-left of the property pane, you should see buttons similar to the ones in the lower-

left of the entity pane. Because there is more than one type of property, the button with

the plus on it also has a little triangle on it as well. This indicates that when you click the

button, you will get a pop-up menu asking you to select exactly which type of property

you want to add. Let’s add our four attributes now.

Adding the Name Attribute
Single-click on the plus button in the property pane. Once you click on it, you will be

presented with a drop-down menu that looks like Figure 3-12. Since we want to add an

attribute, select Add Attribute from the menu.

Figure 3-12. Clicking the plus button in the property pane gives you a menu from which you can select the type
of property you wish to add

http://developer.apple.com
http://devworld.apple.com/documentation

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 55

Editing the Attribute
The Hero entity should now have an attribute called newAttribute. Just as when you

created a new entity, the newly added attribute has been automatically selected for you,

which also causes its information to be displayed in the detail pane. Also just like before,

the Name field should have focus, so you can just type the new name for the attribute.

Type name now so that your detail pane looks like Figure 3-13.

Figure 3-13. The detail pane after typing the new attribute’s name

TIP: It’s not an accident that we chose to start our entity Hero with a capital H, but our attribute
name with a lowercase n. This is the accepted naming convention for entities and properties.
Entities begin with a capital letter, properties begin with a lowercase letter. In both cases, if the
name of the entity or property consists of more than one word, the first letter of each new word
is capitalized.

Below the Name field are three check boxes: Optional, Transient, and Indexed. If

Optional is checked, then this entity can be saved even if this attribute has no value

assigned to it. If we uncheck it, then any attempt to save a managed object based on

this entity when the name attribute is nil will result in a validation error that will prevent

the save. In this particular case, name is the main attribute that we will use to identify a

given hero, so we probably want to require this attribute. Single-click the Optional check

box to uncheck it, making this field required.

The second check box, Transient, allows you to create attributes that are not saved in

the persistent store. They can also be used to create custom attributes that store non-

standard data. For now, don’t worry too much about Transient. Just leave it unchecked

and we’ll revisit this check box in Chapter 6.

The final check box, Indexed, tells the underlying data store to add an index on this

attribute. Not all persistent stores support indices, but the default store (SQLite) does.

The database uses an index to improve search speeds when searching or ordering

based on that field. We will be ordering our superheroes by name, so let s check the

Indexed check box to tell SQLite to create an index on the column that will be used to

store this attribute s data.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 56

CAUTION: Properly used, indices can greatly improve performance in a SQLite persistent store.
Adding indices where they are not needed, however, can actually degrade performance. If you
don’t have a reason for selecting Indexed, leave it unchecked.

Attribute Types
Every attribute has a type, which identifies the kind of data that the attribute is capable

of storing. If you single-click the Type drop-down (which should currently be set to

Undefined), you can see the various datatypes that Core Data supports out of the box

(Figure 3-14). These are all the types of data that you can store without having to

implement a custom attribute, like we’re going to do in Chapter 6. Each of the datatypes

correspond to an Objective-C class that is used to set or retrieve values and you must

make sure to use the correct object when setting values on managed objects.

Figure 3-14. The datatypes supported by Core Data

The Integer Datatypes
Integer 16, Integer 32, and Integer 64 all hold signed integers (whole numbers). The only

difference between these three number types is the minimum and maximum size of the

values they are capable of storing. In general, you should pick the smallest-size integer

that you are certain will work for your purposes. For example, if you know your attribute

will never hold a number larger than a thousand, make sure to select Integer 16 rather

than Integer 32 or Integer 64. The minimum and maximum values that these three

datatypes are capable of storing is as follows:

Datatype Minimum Maximum

Integer 16 32,768 32, 767

Integer 32 2,147,483,648 2,147,483,647

Integer 64 9,223,372,036,854,775,808 9,223,372,036,854,775,807

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 57

At runtime, you set integer attributes of a managed object using instances of NSNumber

created using a factory method such as numberWithInt:, or numberWithLong:.

The Decimal, Double, and Float Datatypes

The Decimal, Double, and Float datatypes all hold decimal numbers. Double and Float
hold floating-point representations of decimal numbers similar to the C datatypes of

double and float, respectively. Floating-point representations of decimal numbers are

always an approximation due to the fact that they use a fixed number of bytes to

represent data. The larger the number to the left of the decimal point, the less bytes

there are available to hold the fractional part of the number. The Double datatype uses

64 bits to store a single number while the Float datatype uses 32 bits of data to store a

single number. For many purposes, these two datatypes will work just fine. However,

when you have data, such as currency, where small rounding errors would be a

problem, Core Data provides the Decimal datatype, which is not subject to rounding

errors. The Decimal type can hold numbers with up to 38 significant digits stored

internally using fixed-point numbers so that the stored value is not subject to the

rounding errors that can happen with floating-point numbers.

At runtime, you set Double and Float attributes using instances of NSNumber created

using the NSNumber factory method numberWithFloat: or numberWithDouble:. Decimal

attributes, on the other hand, must be set using an instance of the class

NSDecimalNumber.

The String Datatype

The String datatype is one of the most common attribute types you will use. String

attributes are capable of holding text in nearly any language or script since they are

stored internally using Unicode. String attributes are set at runtime using instances of

NSString.

The Boolean Datatype

Boolean values (YES or NO) can be stored using the Boolean datatype. Boolean attributes

are set at runtime using instances of NSNumber created using numberWithBOOL:.

The Date Datatype

Dates and timestamps can be stored in Core Data using the Date datatype. At runtime,

Date attributes are set using instances of NSDate.

The Binary Datatype

The Binary datatype is used to store any kind of binary data. Binary attributes are set at

runtime using NSData instances. Anything that can be put into an NSData instance can be

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 58

stored in a Binary attribute. However, you generally can’t search or sort on binary

datatypes.

The Transformable Datatype

The Transformable datatype is a special datatype that works along with something

called a value transformer to let you create attributes based on any Objective-C class,

even those for which there is no corresponding Core Data datatype. You would use

Transformable datatypes to store a UIImage instance, for example, or to store a UIColor

instance. You’ll see how Transformable attributes work in Chapter 6.

Setting the Name Attributes’s Type
A name, obviously, is text, so the obvious type for this attribute is String. Select String

from the Type drop-down. After selecting it, a few new fields will appear in the detail

pane (Figure 3-15). Just like Interface Builder’s inspector, the detail pane in the data

model editor is context-sensitive. Some attribute types, such as the String type, have

additional configuration options.

Figure 3-15. The detail pane after selecting the String type

The Min Length: and Max Length: fields allow you to set a minimum and maximum

number of characters for this field. If you enter a number into either field, any attempt to

save a managed object that has less characters than the Min Length: or more characters

than Max Length: stored in this attribute will result in a validation error at save time.

Note that this enforcement happens in the data model, not in the user interface. Unless

you specifically enforce limitations through your user interface, these validations won’t

happen until you actually save the data model. In most instances, if you enforce a

minimum or maximum length, you should also take some steps to enforce that in your

user interface. Otherwise, the user won’t be informed of the error until they go to save,

which could be quite a while after they’ve entered data into this field. You’ll see an

example of enforcing this in Chapter 6.

The next field is labeled Reg. Ex.: and that stands for regular expression. This field

allows you to do further validation on the entered text using regular expressions, which

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 59

are special text strings that you can use to express patterns. You could, for example,

use an attribute to store an IP address in text and then ensure that only valid numerical

IP addresses are entered by entering the regular expression \b\d{1,3}\.\d{1,3}\.\d{1,3}\.
\d{1,3}\b. We’re not going to use regular expressions for this attribute, so leave the Reg.
Ex. field blank.

NOTE: Regular expressions are a very complex topic on which many full books have been
written. Teaching regular expressions is way beyond the scope of this book, but if you’re
interested in using regular expressions to do data model-level validation, a good starting point is
the Wikipedia page on regular expressions at http://en.wikipedia.org/wiki/
Regular_expression, which covers the basic syntax and contains links to many regular
expression-related resources.

Finally, you can use the field labeled Default Value: to, well, set a default value for this

property. If you type a value into this field, any managed object based on this entity will

automatically have its corresponding property set to whatever value you type in here.

So, in this case, if you were to type Untitled Hero into this field, any time you created a

new Hero managed object, the name property would automatically get set to Untitled
Hero. Heck, that sounds like a good idea, so type Untitled Hero into this field. Then, for

good measure, save.

Adding the Rest of the Attributes
Our Hero entity needs three more attributes, so let’s add them now. Click the plus

button in the properties pane again and select Add Attribute once more. Give this one a

name of secretIdentity and a type of String. Since, according to Mr. Incredible, every

superhero has a secret identity, we’d better uncheck the Optional check box. We will be

sorting and searching on secret identity, so check the Indexed box. For Default Value:,
type in Unknown. Because we’ve made the field mandatory by unchecking the Optional
check box, it’s a good idea to provide a default value. Leave the rest of the fields as is.

CAUTION: Be sure you enter default values for the name and secretIdentity attributes. If
you don’t, the program will behave badly. If your program crashes, check to make sure you’ve
saved your source code files and your nib files.

Click the plus button a third time to add yet another attribute, giving it a name of

birthdate and a type of Date. Leave the rest of the fields at their default values for this

attribute. We may not know the birthdate for all of our superheroes, so we want to leave

this attribute as optional. As far as we know now, we won’t be doing a lot of searching

or ordering on birthdate, so there’s no need to make this attribute indexed. We could do

some additional validation here by setting a minimum, maximum, or default date, but

there really isn’t much need. There’s no default value that would make sense, and

http://en.wikipedia.org/wiki

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 60

setting a minimum or maximum date would preclude the possibility of an immortal

superhero or a time-traveling one, which we certainly don’t want to do!

That leaves us with one more attribute for this first iteration of our application: sex. There

are a number of ways that we could choose to store this particular piece of information.

For simplicity’s sake (and because it will help us show you a few helpful techniques in

Chapter 6), we’re just going to store a character string of either Male or Female. Add

another attribute and select a Type of String. Let’s leave this as an optional setting—

there might just be an androgynous masked avenger or two out there. We could use the

regular expression field to limit inputs to either Male or Female but, instead, we’re going

to enforce that in the user interface by presenting a selection list rather than enforcing it

here in the data model.

Guess what? You’ve now completed the data model for the first iteration of the SuperDB

application. Save it and let’s go create our controller.

Creating HeroListViewController
If you look back at Figure 3-1, you can see that our application displays a list of heroes,

and it can sort that list by either name or secret identity. As we discussed earlier in the

chapter, we’re using a single controller to handle both of the sort options rather than

using separate controllers for each one. In order to retrieve the results from our

persistent store, we’re going to use a fetched results controller just as the template code

we looked at in the last chapter did. However, we are not using a table view controller,

so we have to design our user interface in our nib. Before we do that, though, we should

declare the outlets that we’re going to need.

Declaring the Fetched Results Controller
Single-click on HeroListViewController.h to bring up the header file for our class. We

need to declare our property and instance variable for the fetched results controller, so

make the following changes to your file:

#import <UIKit/UIKit.h>

#define kSelectedTabDefaultsKey @"Selected Tab"

enum {
 kByName,
 kBySecretIdentity,
};

@interface HeroListViewController : UIViewController
 <UITableViewDelegate, UITableViewDataSource, UITabBarDelegate,
 UIAlertViewDelegate, NSFetchedResultsControllerDelegate>
{
 UITableView *tableView;
 UITabBar *tabBar;

@private

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 61

 NSFetchedResultsController *_fetchedResultsController;
}

@property (nonatomic, retain) IBOutlet UITableView *tableView;
@property (nonatomic, retain) IBOutlet UITabBar *tabBar;
@property (nonatomic, readonly) NSFetchedResultsController
 *fetchedResultsController;

- (void)addHero;
- (IBAction)toggleEdit;

@end

This looks just a little different than what we’ve done before, so let’s discuss what’s

going on here. First, we define a constant that will be used as a key to store and retrieve

a preference value in the user defaults. When our program launches, we want to take the

user back to the same tab they were on when they last used the program. This constant

will be used to store that information in our application’s preferences.

After that, we define an enumeration that gives us constants for the individual tabs used

in the tab bar, just to make our code a bit more readable. The number 0 can mean lots

of different things in the context of our code, but the constant kByName makes it obvious

that this time, it’s referring to the tab called By Name.

Next, we conform our class to a whole bunch of protocols. Because we’re not

subclassing UITableViewController, we have to manually conform to

UITableViewDelegate and UITableViewDataSource. We also conform to

UITabBarDelegate because we’re also going to act as the tab bar delegate. Doing so will

cause us to be notified whenever the user selects a new tab without having to utilize

action methods.

If we encounter a fatal error, we’re going to show the user an alert before quitting, so we

have to become the alert’s delegate in order to be notified when the alert is dismissed.

That’s why we also need to conform to UIAlertViewDelegate. The template code just

logs errors to the console and quits, but we’re going to be a little more user-friendly than

that and let the user know when something has gone wrong.

Finally, we conform to NSFetchedResultsControllerDelegate because we’re going to be

using a fetched results controller and will need to be notified when its data changes.

After that, we create instance variables to serve as outlets for the tab bar and table view.

Then, we specify the @private keyword, which indicates that all instance variables that

follow have a private scope and cannot be accessed directly by other classes. We then

create a private instance variable in which to store our fetched results controller. Notice

that we’ve called the instance variable _fetchedResultsController, yet if you look down

a few lines later, the property is actually named fetchedResultsController, without the

underscore.

By default, properties expect their underlying instance variable to have the same name

as the property. However, that is just the default behavior and is not required. When you

synthesize your property in the implementation file using the @synthesize keyword, you

can specify the name of the underlying instance variable to be used to store the

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 62

property’s data. The specified name can be anything at all. It doesn’t need to be related

to or similar to the property name at all.

When we synthesize this property, we’ll use this line of code:

@synthesize fetchedResultsController=_fetchedResultsController;

The property name goes immediately after the @synthesize keyword, just as always, but

it is then followed by an equal sign and then the name of the instance variable to be

used. This particular convention of using the same name as the property but prefixed

with an underscore is one you see a lot, even in Apple’s sample code. Some

programmers use this naming convention for all of their properties. We tend to use it

only when there’s a specific reason to not want other objects mucking with an instance

variable.

This naming convention should prevent us from accidentally confusing the property and

instance variable in our code. By using different names for each, we are far less likely to

access the instance variable directly when we intend to use the property.

You might remember from the last chapter that our fetchedResultsController was lazily

loaded. As a result, it is critical that references to the fetchedResultsController be

done through the accessor, since the accessor will make sure that our

fetchedResultsController was properly loaded. We’re going to be doing the same thing

in this chapter. This naming convention and the use of the @private keyword will help

prevent unintentional direct access to the instance variable that could cause problems if

the fetched results controller hasn’t been loaded by an earlier use of the accessor.

NOTE: You may hear developers claim that using the underscore prefix is reserved by Apple and
that you shouldn’t use it. This is a misconception. Apple does, indeed, reserve the underscore
prefix for the names of methods. It does not make any similar reservation when it comes to the
names of instance variables. You can read Apple’s naming convention for instance variables,
which makes no restriction on the use of the underscore, here:
http://developer.apple.com/documentation/Cocoa/Conceptual/CodingGuidelin

es/Articles/NamingIvarsAndTypes.html

Notice that the fetchedResultsController property is declared with the readonly

keyword. We will be lazily loading the fetched results controller in the accessor method.

We do not want other classes to be able to set fetchedResultsController, so we

declare it readonly to prevent that from happening.

SYNTHESIZED INSTANCE VARIABLES

There’s a new feature of the Objective-C 2.0 runtime that hasn’t been talked about much and that we
haven’t had you use at all. It’s called synthesized instance variables. The Objective-C 2.0 runtime will
actually create instance variables for you if you declare a property and don’t give it an underlying instance
variable. So, for example, this is a perfectly valid class interface:

http://developer.apple.com/documentation/Cocoa/Conceptual/CodingGuidelin

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 63

#import <Cocoa/Cocoa.h>

@interface TestController : NSObject {
}
@property (retain) NSString *testString;
@end

Notice that there's no instance variable declaration for testString; it's not needed. Well, that is, it’s not
needed if you’re compiling 64-bit Cocoa applications or iPhone applications.

Unfortunately, though, the iPhone simulator is a 32-bit Mac application, and 32-bit Mac applications
cannot take advantage of instance variable synthesis. That means iPhone programs running in the
simulator cannot take advantage of this feature either. In other words, the following class is a perfectly
valid class when compiled for the device, but will fail with errors when compiled against the simulator:

#import <UIKit/UIKit.h>

@interface MyViewController : UITableViewController {
}
@property (nonatomic, retain) NSManagedObject *myObject;
@end

You could utilize this feature on the iPhone and still create programs that can compile on the simulator by
using platform macros, like this:

#import <UIKit/UIKit.h>

@interface MyViewController : UITableViewController {
#if TARGET_IPHONE_SIMULATOR
 NSManagedObject *myObject;
#endif
}
@property (nonatomic, retain) NSManagedObject *myObject;
@end

But, there's a catch. Synthesized instance variables cannot be accessed directly, even from within your
class. You have to use the accessor and mutator methods everywhere.

So, what's the advantage of not declaring the underlying instance variable? On the iPhone, it doesn't save
you any typing unless you never, ever run your program in the simulator. That means that for most iPhone
developers, there really is no advantage to using this feature right now. In the future, it is possible, and
maybe even likely, that there will be compiler optimizations behind the scenes that your program will take
advantage of if you've let the runtime create your instance variables for you. As of right now, however,
there’s no real advantage to using this feature unless you plan to always test on an iPhone, in which case,
it can save you a little typing.

Drag Two Icons to Your Project
Before writing our implementation of HeroListViewController, we need to head over to

Interface Builder to design the interface and connect our outlets. Before we do that,

however, you need to copy two image files into your Xcode project so that they’ll be

available to you in Interface Builder. If you look in the project archive that accompanies

this book, in the 03 - SuperDB folder, you’ll find files called name_icon.png and

secret_icon.png. These are the images that you will use on the two tabs. Add them both

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 64

to your project in the Resources group. Once you’ve done that, you can double-click

HeroListViewController.xib to open up Interface Builder.

Designing the HeroListViewController Interface
When the nib file opens, the View window should show up. If it doesn’t, double-click the

View icon in the nib’s main window to open it. We need to add a tab bar and a table

view to our nib, and then make the connections.

Let’s add the tab bar first. Look in the Library for a tab bar (Figure 3-16). Make sure you’re

grabbing a tab bar and not a tab bar controller. We only want the user interface item.

Figure 3-16. The tab bar in the Library

Drag a tab bar from the library to the window called View, and place it snugly in the

bottom of the window, as we’ve done in Figure 3-17.

Figure 3-17. The tab bar placed snugly against the bottom of the screen

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 65

The default tab bar has two tabs, which is exactly the number we want. Let’s change the

icon and label for each. With the tab bar still selected, click on the star above Favorites

and then press 1 to bring up the attribute inspector.

If you’ve correctly selected the tab bar item, the inspector window should have the title

Tab Bar Item Attributes and the Identifier pop-up should say Favorites. In the attribute

inspector, give this tab a Title of By Name, and an Image of name_icon.png (Figure 3-

18). Now click on the three dots above the word More on the tab bar to select the right

tab. Using the inspector, give this tab a Title of By Secret Identity and an Image of

secret_icon.png.

Figure 3-18. Setting the attributes of the left tab

Back in the library, look for a Table View (Figure 3-19). Again, make sure you’re getting

the user interface element, not a Table View Controller. Drag this to the space above the

tab bar. It should resize automatically to fit the space available. After you drop it, it

should look like Figure 3-20.

Figure 3-19. The Table View in the library

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 66

Figure 3-20. The HeroListViewController interface after dropping the table on it

With the table in place, the HeroListViewController interface is complete, we just need

to make the outlet, delegate, and datasource connections. Control-drag from File’s
Owner to the table view and select the tableView outlet, then control-drag again from

File’s Owner to the tab bar and select the tabBar outlet. That takes care of the outlet

connections. Let’s move on to the delegate and datasource connections.

Control-drag twice from the table view to File’s Owner, selecting the dataSource outlet

one time, and the delegate outlet the other. Then control-drag from the tab bar to File’s
Owner and select the delegate outlet. Now our controller’s outlets are connected, and

our controller is the delegate for both the tab bar and table view, and is the data source

for the table view as well. Our job here is done. Save the nib and go back to Xcode.

Implementing the Hero View Controller
The implementation of HeroListViewController is going to look a bit like

RootViewController from the previous chapter, even though they have different

superclasses. Replace the current contents of your HeroListViewController.m file with

the following code. Once you’ve done that, we’ll talk about the new stuff it contains.

#import "HeroListViewController.h"
#import "SuperDBAppDelegate.h"

@implementation HeroListViewController

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 67

#pragma mark Properties
@synthesize tableView;
@synthesize tabBar;
@synthesize fetchedResultsController = _fetchedResultsController;

#pragma mark -
- (void)addHero {
 NSManagedObjectContext *context =
 [self.fetchedResultsController managedObjectContext];
 NSEntityDescription *entity =
 [[self.fetchedResultsController fetchRequest] entity];
 NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name]
 inManagedObjectContext:context];

 NSError *error;
 if (![context save:&error])
 NSLog(@"Error saving entity: %@", [error localizedDescription]);

 // TODO: Instantiate detail editing controller and push onto stack
}

- (IBAction)toggleEdit {
 BOOL editing = !self.tableView.editing;
 self.navigationItem.rightBarButtonItem.enabled = !editing;
 self.navigationItem.leftBarButtonItem.title = (editing) ?
 NSLocalizedString(@"Done", @"Done") : NSLocalizedString(@"Edit", @"Edit");
 [self.tableView setEditing:editing animated:YES];
}

- (void)viewDidLoad {
 [super viewDidLoad];
 NSError *error = nil;
 if (![[self fetchedResultsController] performFetch:&error]) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Error loading data",
 @"Error loading data")
 message:[NSString stringWithFormat:NSLocalizedString(
 @"Error was: %@, quitting.", @"Error was: %@, quitting."),
 [error localizedDescription]]
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Aw, Nuts", @"Aw, Nuts")
 otherButtonTitles:nil];
 [alert show];

 }

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSInteger selectedTab = [defaults integerForKey:kSelectedTabDefaultsKey];
 UITabBarItem *item = [tabBar.items objectAtIndex:selectedTab];
 [tabBar setSelectedItem:item];
}

 - (void)viewDidAppear:(BOOL)animated {
 UIBarButtonItem *editButton = self.editButtonItem;
 [editButton setTarget:self];
 [editButton setAction:@selector(toggleEdit)];

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 68

 self.navigationItem.leftBarButtonItem = editButton;

 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self
 action:@selector(addHero)];
 self.navigationItem.rightBarButtonItem = addButton;
 [addButton release];
}

- (void)viewDidUnload {
 self.tableView = nil;
 self.tabBar = nil;
}

- (void)dealloc {
 [tableView release];
 [tabBar release];
 [_fetchedResultsController release];
 [super dealloc];
}

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)numberOfSectionsInTableView:(UITableView *)theTableView {
 NSUInteger count = [[self.fetchedResultsController sections] count];
 if (count == 0) {
 count = 1;
 }
 return count;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 NSArray *sections = [self.fetchedResultsController sections];
 NSUInteger count = 0;
 if ([sections count]) {
 id <NSFetchedResultsSectionInfo> sectionInfo =
 [sections objectAtIndex:section];
 count = [sectionInfo numberOfObjects];
 }
 return count;
}

- (UITableViewCell *)tableView:(UITableView *)theTableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *HeroTableViewCell = @"HeroTableViewCell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:HeroTableViewCell];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:HeroTableViewCell] autorelease];
 }
 NSManagedObject *oneHero = [self.fetchedResultsController
 objectAtIndexPath:indexPath];

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 69

 NSInteger tab = [tabBar.items indexOfObject:tabBar.selectedItem];
 switch (tab) {
 case kByName:
 cell.textLabel.text = [oneHero valueForKey:@"name"];
 cell.detailTextLabel.text = [oneHero valueForKey:@"secretIdentity"];
 break;
 case kBySecretIdentity:
 cell.detailTextLabel.text = [oneHero valueForKey:@"name"];
 cell.textLabel.text = [oneHero valueForKey:@"secretIdentity"];
 default:
 break;
 }
 return cell;
}

- (void)tableView:(UITableView *)theTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 // TODO: Instantiate detail editing view controller and push onto stack
}

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath {

 if (editingStyle == UITableViewCellEditingStyleDelete) {
 NSManagedObjectContext *context = [self.fetchedResultsController
 managedObjectContext];
 [context deleteObject:[self.fetchedResultsController
 objectAtIndexPath:indexPath]];

 NSError *error;
 if (![context save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Error saving after delete",
 @"Error saving after delete.")
 message:[NSString stringWithFormat:NSLocalizedString(
 @"Error was: %@, quitting.",@"Error was: %@, quitting."),
 [error localizedDescription]]
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Aw, Nuts", @"Aw, Nuts")
 otherButtonTitles:nil];
 [alert show];
 }
 }
}

#pragma mark -
#pragma mark Fetched results controller
- (NSFetchedResultsController *)fetchedResultsController {

 if (_fetchedResultsController != nil) {
 return _fetchedResultsController;
 }

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 70

 SuperDBAppDelegate *appDelegate = UIApplication
 sharedApplication] delegate];
 NSManagedObjectContext *managedObjectContext = appDelegate.managedObjectContext;

 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Hero"
 inManagedObjectContext:managedObjectContext];

 NSUInteger tab = [tabBar.items indexOfObject:tabBar.selectedItem];
 if (tab == NSNotFound) {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 tab = [defaults integerForKey:kSelectedTabDefaultsKey];
 }

 NSString *sectionKey = nil;
 switch (tab) {
 case kByName: {
 NSSortDescriptor *sortDescriptor1 = [[NSSortDescriptor alloc]
 initWithKey:@"name" ascending:YES];
 NSSortDescriptor *sortDescriptor2 = [[NSSortDescriptor alloc]
 initWithKey:@"secretIdentity" ascending:YES];
 NSArray *sortDescriptors = [[NSArray alloc]
 initWithObjects:sortDescriptor1, sortDescriptor2, nil];
 [fetchRequest setSortDescriptors:sortDescriptors];
 [sortDescriptor1 release];
 [sortDescriptor2 release];
 [sortDescriptors release];
 sectionKey = @"name";
 break;
 }
 case kBySecretIdentity:{
 NSSortDescriptor *sortDescriptor1 = [[NSSortDescriptor alloc]
 initWithKey:@"secretIdentity" ascending:YES];
 NSSortDescriptor *sortDescriptor2 = [[NSSortDescriptor alloc]
 initWithKey:@"name" ascending:YES];
 NSArray *sortDescriptors = [[NSArray alloc]
 initWithObjects:sortDescriptor1, sortDescriptor2, nil];
 [fetchRequest setSortDescriptors:sortDescriptors];
 [sortDescriptor1 release];
 [sortDescriptor2 release];
 [sortDescriptors release];
 sectionKey = @"secretIdentity";
 break;
 }
 default:
 break;

 }
 [fetchRequest setEntity:entity];
 [fetchRequest setFetchBatchSize:20];

 NSFetchedResultsController *frc = [[NSFetchedResultsController alloc]
 initWithFetchRequest:fetchRequest
 managedObjectContext:managedObjectContext
 sectionNameKeyPath:sectionKey
 cacheName:@"Hero"];
 frc.delegate = self;
 _fetchedResultsController = frc;

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 71

 [fetchRequest release];

 return _fetchedResultsController;
}

- (void)controllerWillChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView beginUpdates];
}

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller {
 [self.tableView endUpdates];
}

- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath {
 switch(type) {
 case NSFetchedResultsChangeInsert:
 [self.tableView insertRowsAtIndexPaths:[NSArray
 arrayWithObject:newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 case NSFetchedResultsChangeDelete:
 [self.tableView deleteRowsAtIndexPaths:[NSArray
 arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 case NSFetchedResultsChangeUpdate: {
 NSString *sectionKeyPath = [controller sectionNameKeyPath];
 if (sectionKeyPath == nil)
 break;
 NSManagedObject *changedObject = [controller
 objectAtIndexPath:indexPath];
 NSArray *keyParts = [sectionKeyPath componentsSeparatedByString:@"."];
 id currentKeyValue = [changedObject valueForKeyPath:sectionKeyPath];
 for (int i = 0; i < [keyParts count] - 1; i++) {
 NSString *onePart = [keyParts objectAtIndex:i];
 changedObject = [changedObject valueForKey:onePart];
 }
 sectionKeyPath = [keyParts lastObject];
 NSDictionary *committedValues = [changedObject
 committedValuesForKeys:nil];

 if ([[committedValues valueForKeyPath:sectionKeyPath]
 isEqual:currentKeyValue])
 break;

 NSUInteger tableSectionCount = [self.tableView numberOfSections];
 NSUInteger frcSectionCount = [[controller sections] count];
 if (tableSectionCount != frcSectionCount) {
 // Need to insert a section
 NSArray *sections = controller.sections;
 NSInteger newSectionLocation = -1;
 for (id oneSection in sections) {
 NSString *sectionName = [oneSection name];

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 72

 if ([currentKeyValue isEqual:sectionName]) {
 newSectionLocation = [sections indexOfObject:oneSection];
 break;
 }
 }
 if (newSectionLocation == -1)
 return; // uh oh

 if (!(newSectionLocation == 0 && tableSectionCount == 1) &&
 [self.tableView numberOfRowsInSection:0] == 0)
 [self.tableView insertSections:[NSIndexSet
 indexSetWithIndex:newSectionLocation]
 withRowAnimation:UITableViewRowAnimationFade];
 NSUInteger indices[2] = {newSectionLocation, 0};
 newIndexPath = [[[NSIndexPath alloc] initWithIndexes:indices
 length:2] autorelease];
 }
 }
 case NSFetchedResultsChangeMove:
 if (newIndexPath != nil) {
 [self.tableView deleteRowsAtIndexPaths:[NSArray
 arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 [self.tableView insertRowsAtIndexPaths: [NSArray
 arrayWithObject:newIndexPath]
 withRowAnimation: UITableViewRowAnimationRight];

 }
 else {
 [self.tableView reloadSections:[NSIndexSet
 indexSetWithIndex:[indexPath section]]
 withRowAnimation:UITableViewRowAnimationFade];
 }
 break;
 default:
 break;
 }
}

- (void)controller:(NSFetchedResultsController *)controller
 didChangeSection:(id <NSFetchedResultsSectionInfo>)sectionInfo
 atIndex:(NSUInteger)sectionIndex
 forChangeType:(NSFetchedResultsChangeType)type {
 switch(type) {
 case NSFetchedResultsChangeInsert:
 if (!(sectionIndex == 0 && [self.tableView numberOfSections] == 1) &&
 [self.tableView numberOfRowsInSection:0] == 0)
 [self.tableView insertSections:[NSIndexSet
 indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 case NSFetchedResultsChangeDelete:
 if (!(sectionIndex == 0 && [self.tableView numberOfSections] == 1) &&
 [self.tableView numberOfRowsInSection:0] == 0)
 [self.tableView deleteSections:[NSIndexSet
 indexSetWithIndex:sectionIndex]
 withRowAnimation:UITableViewRowAnimationFade];

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 73

 break;
 case NSFetchedResultsChangeMove:
 break;
 case NSFetchedResultsChangeUpdate:
 break;
 default:
 break;
 }
}

#pragma mark -
#pragma mark UIAlertView Delegate
- (void)alertView:(UIAlertView *)alertView
 didDismissWithButtonIndex:(NSInteger)buttonIndex {
 exit(-1);
}

#pragma mark -
#pragma mark Tab Bar Delegate
- (void)tabBar:(UITabBar *)theTabBar didSelectItem:(UITabBarItem *)item {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSUInteger tabIndex = [tabBar.items indexOfObject:item];
 [defaults setInteger:tabIndex forKey:kSelectedTabDefaultsKey];

 _fetchedResultsController.delegate = nil;
 [_fetchedResultsController release];
 _fetchedResultsController = nil;

 NSError *error;
 if (![self.fetchedResultsController performFetch:&error])
 NSLog(@"Error performing fetch: %@", [error localizedDescription]);
 [self.tableView reloadData];
}

@end

 Okay, that was a lot of code. As you were typing it, a lot of it probably looked familiar.

Let’s start at the top and work our way down until we’ve covered all the new stuff.

The first few lines are pretty straightforward. We import our header file, and also import

the header file from our application delegate because we’ll be using our application

delegate in a few methods.

#import "HeroListViewController.h"
#import "SuperDBAppDelegate.h"

@implementation HeroListViewController

Then we synthesize our properties, making sure to identify the instance variable that

backs the fetchedResultsController since its underlying instance variable has a

different name:

#pragma mark Properties
@synthesize tableView;
@synthesize tabBar;
@synthesize fetchedResultsController = _fetchedResultsController;

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 74

After that, we first have our method for adding new heroes. This method is nearly

identical to the insertNewObjects: method from last chapter. If save: encounters an

error, it will return NO and we’ll send an error to the console.

- (void)addHero {
 NSManagedObjectContext *context =
 [self.fetchedResultsController managedObjectContext];
 NSEntityDescription *entity =
 [[self.fetchedResultsController fetchRequest] entity];
 NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name]
 inManagedObjectContext:context];

 NSError *error;
 if (![context save:&error])
 NSLog(@"Error saving entity: %@", [error localizedDescription]);

 // TODO: Instantiate detail editing controller and push onto stack
}

NOTE: You will get a warning about the unused variable newManagedObject when you
compile this code. We actually need this line of code because it creates a new managed object
and inserts that object into the context. We don’t use the pointer returned by this call, and that’s
why we get the warning. Normally, we just wouldn’t save the returned value, but we will be
using this pointer in Chapter 4 when we expand our application. So live with the warning for now
and know that we will be making use of newManagedObject in the next chapter.

Notice that comment at the end of the method? Some comments that begin with certain

strings have special meaning in Xcode, and this is one of those strings. A comment that

begins with // TODO: will be included in the function pop-up menu (Figure 3-21). These

comments are designed to work as a reminder to ourselves to come back later and

finish this incomplete piece of functionality. In this case, it’s a reminder to instantiate the

detail editing pane that will allow the user to edit the newly added hero and push it onto

the navigation stack, which we’ll do in the next chapter.

TIP: There are other special comments that will show up in the function pop-up menu in
addition to // TODO:. If you want to indicate a problem that needs to be fixed, you can insert a
comment that begins with // FIXME:. Comments beginning with either // ???: or // !!!:
will also show up in the function pop-up, the former typically being used to indicate a question or
something puzzling in the code, and the latter typically being used to mark something urgent or
surprising in the code. You can also just put an entry in the function menu using comments that
begin with // MARK:, which will cause anything on the line after the colon to show up in the
function menu the way using #pragma mark does.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 75

Figure 3-21. Certain comments will show up in the function pop-up menu, such as this TODO comment we added
to our code

Next comes toggleEdit, our action method for turning on and off our table view’s edit

mode. In addition to simply toggling the table view’s edit mode, we also have a bit of

housekeeping to attend to, to make sure the user interface works as the user expects it

to. Because we’ve subclassed UIViewController instead of UITableViewController, we

have to maintain the Edit button’s label ourselves. We change the title of the edit button

to either Edit or Done based on whether the table is in editing mode or not. We also hide

the right nav bar button, which is used to add new rows, based on whether editing mode

is being turned on or off. We don’t want the user to be able to add new rows while we’re

in edit mode.

- (IBAction)toggleEdit {
 BOOL editing = !self.tableView.editing;
 self.navigationItem.rightBarButtonItem.enabled = !editing;
 self.navigationItem.leftBarButtonItem.title = (editing) ?
 NSLocalizedString(@"Done", @"Done") : NSLocalizedString(@"Edit", @"Edit");
 [self.tableView setEditing:editing animated:YES];
}

At first glance, viewDidLoad looks like the version from the template. We start by calling

the same method on super, and then we get the fetched results controller and call

performFetch:.

- (void)viewDidLoad {
 [super viewDidLoad];
 NSError *error = nil;
 if (![[self fetchedResultsController] performFetch:&error]) {

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 76

If an error is encountered, however, we no longer just log and quit. Instead, we show an

alert informing the user of the error. We still log more detailed information to the console,

and we still quit, but at least we tell the user that we’re quitting and why before we do it.

The actual command to quit is actually in the alert view delegate method

alertView:didDismissButtonWithIndex:, which will cause the program to quit after the

user dismisses the alert.

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Error loading data",
 @"Error loading data")
 message:[NSString stringWithFormat:@"Error was: %@, quitting.",
 [error localizedDescription]]
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Aw, Nuts", @"Aw, Nuts")
 otherButtonTitles:nil];
 [alert show];
 }
}

The viewDidAppear: method is nearly identical to the one from the previous chapter. It

makes sure that the edit and add buttons are in the navigation bar.

- (void)viewDidAppear:(BOOL)animated {
 self.navigationItem.leftBarButtonItem = self.editButtonItem;
 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self
 action:@selector(addHero)];
 self.navigationItem.rightBarButtonItem = addButton;
 [addButton release];
}

After that, we override setEditing:animated:, which is the method that gets called when

the edit button is tapped, or when the user swipes a row.

- (void)setEditing:(BOOL)editing animated:(BOOL)animated {
 self.navigationItem.rightBarButtonItem.enabled = !editing;
 self.navigationItem.leftBarButtonItem.title = (editing) ?
 NSLocalizedString(@"Done", @"Done") :
 NSLocalizedString(@"Edit", @"Edit");
 [self.tableView setEditing:editing animated:animated];
}

The table view delegate and datasource methods are pretty straightforward, so let’s skip

down to fetchedResultsController. Everything there starts out pretty much the same as

the version in the last chapter:

- (NSFetchedResultsController *)fetchedResultsController {
 if (_fetchedResultsController != nil) {
 return _fetchedResultsController;
 }

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

 SuperDBAppDelegate *appDelegate = (SuperDBAppDelegate *)[[UIApplication
 sharedApplication] delegate];
 NSManagedObjectContext *managedObjectContext = appDelegate.managedObjectContext;

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 77

 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Hero"
 inManagedObjectContext:managedObjectContext];

 Because our sort descriptors are going to depend on the currently selected tab, we

need to find out which tab is currently selected. If no tab is selected, as might be the

case if this method is called before the nib has loaded, we’ll grab the last used value

from preferences.

 NSUInteger tab = [tabBar.items indexOfObject:tabBar.selectedItem];
 if (tab == NSNotFound) {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 tab = [defaults integerForKey:kSelectedTabDefaultsKey];
 }

Next, we create sort descriptors and a fetch request much as the template did in the last

chapter, only we use different sort descriptors based on the currently selected tab.

We’re also going to use another feature of the fetched results controller that wasn’t used

in the template. If we specify a section name keypath when we create our fetched

results controller, our fetched results controller will automatically divide the result set

into sections. The most common scenario is to simply pass the same key used in the

first sort descriptor. So, if you’re sorting by name, and pass in @"name" as the section

name keypath and sections will automatically be created based on the first letter of the

hero’s name. We won’t be able to see this functionality in action until the next chapter

when we add the ability to edit heroes.

Here, we set the sort descriptor and section name keypath based on the currently

selected tab:

 NSString *sectionKey = nil;
 switch (tab) {
 case kByName: {
 NSSortDescriptor *sortDescriptor1 = [[NSSortDescriptor alloc]
 initWithKey:@"name" ascending:YES];
 NSSortDescriptor *sortDescriptor2 = [[NSSortDescriptor alloc]
 initWithKey:@"secretIdentity" ascending:YES];
 NSArray *sortDescriptors = [[NSArray alloc]
 initWithObjects:sortDescriptor1, sortDescriptor2, nil];
 [fetchRequest setSortDescriptors:sortDescriptors];
 [sortDescriptor1 release];
 [sortDescriptor2 release];
 [sortDescriptors release];
 sectionKey = @"name";
 break;
 }
 case kBySecretIdentity:{
 NSSortDescriptor *sortDescriptor1 = [[NSSortDescriptor alloc]
 initWithKey:@"secretIdentity" ascending:YES];
 NSSortDescriptor *sortDescriptor2 = [[NSSortDescriptor alloc]
 initWithKey:@"name" ascending:YES];
 NSArray *sortDescriptors = [[NSArray alloc]
 initWithObjects:sortDescriptor1, sortDescriptor2, nil];
 [fetchRequest setSortDescriptors:sortDescriptors];
 [sortDescriptor1 release];
 [sortDescriptor2 release];

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 78

 [sortDescriptors release];
 sectionKey = @"secretIdentity";
 break;
 }
 default:
 break;
 }
 fetchRequest setEntity:entity];
 [fetchRequest setFetchBatchSize:20];

 NSFetchedResultsController *frc = [[NSFetchedResultsController alloc]
 initWithFetchRequest:fetchRequest managedObjectContext:managedObjectContext
 sectionNameKeyPath:sectionKey
 cacheName:@"Hero"];

After that, we just make self the delegate of the fetched results controller so that we get

notified of changes, assign the new fetched results controller to our private instance

variable, and then return that instance variable. Notice that we don’t release frc. This is

intentional. Since we’re assigning the controller directly to the instance variable, it does

not get retained automatically. That means that _fetchedResultsController already has

a retain count of 1, which is what we want.

 frc.delegate = self;
 _fetchedResultsController = frc;

 return _fetchedResultsController;
}

Next are the four fetched results controller delegate methods. Our implementation here

is exactly the same as we discussed last chapter, so if you’re unclear as to what these

four methods are doing, go back to Chapter 2 and re-read the section called Working
With a Fetched Results Controller.

The alert view delegate method, which gets called when the user dismisses an alert

view, does nothing more than quit the application. In this controller, the only reason that

we’ve used alert view is to inform the user of a fatal error.

#pragma mark -
#pragma mark UIAlertView Delegate
- (void)alertView:(UIAlertView *)alertView
 didDismissWithButtonIndex:(NSInteger)buttonIndex {
 exit(-1);
}

Finally, we have the tab bar delegate method tabBar:didSelectItem:, which gets called

whenever the user changes the selected tab in our tab bar. In this method, we start by

storing the index of the tab the user selected into user defaults. Although tab bar

controllers use tab indices to identify which tab is selected, tab bars themselves don’t

use indices. Instead, we’re actually passed the tab bar item that was selected, and we

have to determine the index of the tab. It’s easy enough to do. UITabBar maintains an

array of its items called items. The index of the tab bar item in that array is the tab index,

so we can use NSArray’s indexOfObject: method to determine it:

#pragma mark -
#pragma mark Tab Bar Delegate

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 79

- (void)tabBar:(UITabBar *)theTabBar didSelectItem:(UITabBarItem *)item {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSUInteger tabIndex = [tabBar.items indexOfObject:item];
 [defaults setInteger:tabIndex forKey:kSelectedTabDefaultsKey];

The next thing we do is set the fetched results controller to nil. By doing this, the next

time the fetchedResultsController accessor method is called, it will reload the result

set from the persistent store using the criteria based on the new tab selection. Before

we set it to nil, however, we set its delegate property to nil. We were the fetched

results controller’s delegate, but once we set it to nil, we don’t want to be its delegate

any more.

NOTE: Setting the delegate property to nil when you’re done is good form, but if you fail to do
it, it usually won’t cause any major problems. Although there are a few exceptions in the system,
generally speaking, objects do not retain their delegates, so failing to set a delegate to nil won’t
prevent an object’s retain count from reaching zero when it is another object’s delegate.

 _fetchedResultsController.delegate = nil;
 [_fetchedResultsController release];
 _fetchedResultsController = nil;

After we set the fetched results controller to nil, we then call performFetch:, just like we

did in viewDidLoad so that the data gets reloaded immediately based on the new criteria.

This is the one situation when it’s important to call reloadData when using a fetched

results controller. Since we release the old fetched results controller and create a new

one, we can’t rely on the fetched results controller delegate methods to update the table

for us.

 NSError *error;
 if (![self.fetchedResultsController performFetch:&error])
 NSLog(@"Error performing fetch: %@", [error localizedDescription]);
 [self.tableView reloadData];
}

And that’s pretty much everything.

Let ‘Er Rip
Well, what are you waiting for? That was a lot of work; you deserve to try it out. Make

sure everything is saved, then select Build and Run from the Build menu in Xcode to try

things out.

If everything went okay, when the application first launches, you should be presented

with an empty table with a navigation bar at the top and a tab bar at the bottom (Figure

3-22). Pressing the right button in the navigation bar will add a new unnamed superhero

to the database. Pressing the Edit button will allow you to delete heroes.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 80

NOTE: If your app crashed when you ran it, there’s a couple of things to look for. First, make
sure you saved all your source code and nib files before you ran your project. Also, make sure
that you have defaults specified for your hero’s name and secretIdentity in your data model
editor. If you did that and your app still crashes, try resetting your simulator. Here’s how you do
that. Bring up the simulator. From the iPhone Simulator menu, select Reset Contents and
Settings…. That should do it. In Chapter 5, we’ll show you how to ensure that changes to your
data model don’t cause such problems.

Figure 3-22. The SuperDB application at launch time

Make sure you try out the two tabs and make sure that the display changes when you

select a new tab. When you select the By Name tab, it should look like Figure 3-1, but

when you select the By Secret Identity tab, it should look like Figure 3-23.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 81

Figure 3-23. Pressing the Secret Identity tab doesn’t change the order of the rows yet, but it does change which
value is displayed first

Done, but Not Done
In this chapter, you did a lot of work. You saw how to set up a navigation-based

application that uses a tab bar, and learned how to design a basic Core Data data model

by creating an entity and giving it several attributes.

This application isn’t done, but you’ve now laid a solid foundation on which to move

forward. When you’re ready, turn the page, and we’ll create a detail editing page to

allow the user to edit their superheroes.

CHAPTER 3: A Super Start: Adding, Displaying, and Deleting Data 82

83

83

 Chapter

The Devil in the Detail
View
In Chapter 3, we built our application’s main table view controller. We set it up to display

heroes ordered by their name or their secret identity, and we put in place the

infrastructure needed to save, delete, and add new heroes. What we didn’t do was give

the user a way to edit the information about a particular hero, which means we’re limited

to creating and deleting superheroes named Untitled Hero. I guess we can’t ship our

application yet, huh?

That’s okay. Application development is an iterative process, and the first several

iterations of any application likely won’t have enough functionality to stand on its own. In

this chapter, we’re going to create an editable detail view to let the user edit the data

for a specific superhero.

The controller we’re going to write will be a subclass of UITableViewController, and

we’re going to use an approach that is somewhat conceptually complex, but that will be

easy to maintain and expand. This is important, because we’re going to be adding new

attributes to the Hero managed object, as well as expanding it in other ways and we’ll

need to keep changing the user interface to accommodate those changes.

Instead of hard-coding the table’s structure in our code, we’re going to use NSArray

instances to represent the structure of our tables. By changing the contents of those

arrays, we will be able to change the number, order, and content of the sections and

rows in our table, meaning that the code we write in our table view data source and

delegate methods will not have to change when we make changes to our table’s

structure. This will make our application easier to expand in future chapters.

After we’ve written our detail view controller, we will then write additional controller

classes, each of which will be designed to let the user edit a single type of data. This will

give us the abilty to use the same class for multiple attributes, yet the flexibility to handle

special cases when the need arises.

4

CHAPTER 4: The Devil in the Detail View 84

Table-Based vs. Nib-Based Detail Views
In Chapters 3 and 4 of Beginning iPhone 3 Development (Apress, 2009), we showed

how to build a user interface using Interface Builder. Building your editable detail views

in Interface Builder is definitely one way to go. But another common approach is to

implement your detail view as a grouped table. Take a look at your iPhone’s Contacts

application or the Contacts tab of the Phone application (Figure 4–1). The detail editing

view in Apple’s navigation applications are often implemented using a grouped table

rather than using an interface designed in Interface Builder.

The Human Interface Guidelines do not give any real guidance as to when you should

use a table-based detail view as opposed to a detail view designed in Interface Builder,

so it comes down to a question of which feels right. Here’s our take: If you’re building a

navigation-based application, and the data can reasonably and efficiently be presented

in a grouped table, it probably should be. Since our superhero data is structured much

like the data displayed in the Contacts application, a table-based detail view seems the

obvious choice.

Figure 4–2 shows what this chapter’s detail view will look like by the end of this chapter.

Figure 4–1. The Contacts tab of the Phone application uses a table-based detail editing view

CHAPTER 4: The Devil in the Detail View 85

Figure 4–2. The detail editing view that we’ll be building in this application is modeled very closely on Apple’s
approach in the Phone application

The table view shown in Figure 4–2 displays data from a single hero, which means that

everything in that table comes from a single managed object. Each row corresponds to

a different attribute of the managed object. The first section’s only row displays the

hero’s name, for example. The disclosure indicator on that row tells the user that tapping

that row will take them to a new view where they can change this hero’s name.

The organization of the sections and the order in which attributes are displayed are not

determined by the managed object. Instead, they are the results of design decisions we,

as the developers, have to make by trying to anticipate what will make sense to our

users. We could, for example, put the attributes in alphabetical order, which would put

birthdate first. That wouldn’t have been very intuitive because birthdate is not the most

important or defining attribute of a hero. In our minds, the hero’s name and secret

identity are the most important attributes and are the first two elements presented in our

table view.

Detail Editing View Challenges
The table view architecture was designed to efficiently present data stored in

collections. For example, you might use a table view to display data in an NSAarray or in

a fetched results controller. When you’re creating a detail editing view, however, you’re

typically presenting data from a single object, in this case an instance of

NSManagedObject that represents a single superhero. A managed object uses key-value

v@v
Text Box
Download at WoweBook.com

CHAPTER 4: The Devil in the Detail View 86

coding but has no mechanism to present its attributes in a meaningful order. For

example, NSManagedObject has no idea that the name attribute is the most important one

or that it should be in its own section the way it is in Figure 4–2.

Coming up with a good, maintainable way to specify the sections and rows in a detail

editing view is a non-trivial task. The most obvious solution, and one you’ll frequently

see in online sample code, uses an enum to list the table sections, followed by additional

enums for each section, containing constants and a count of rows for each section, like

so:

enum HeroEditControllerSections {
 HeroEditControllerSectionName = 0,
 HeroEditControllerSectionGeneral,
 HeroEditControllerSectionCount
};

enum HeroEditControllerNameSection {
 HeroEditControllerNameRow = 0,
 HeroEditControllerNameSectionCount
};

enum HeroEditControllerGeneralSection {
 HeroEditControllerGeneralSectionSecretIdentityRow,
 HeroEditControllerGeneralSectionBirthdateRow,
 HeroEditControllerGeneralSectionSexRow,
 HeroEditControllerGeneralSectionCount
};

Then, in every method where you are provided with an index path, you can take the

appropriate action based on the row and section represented by the index path, using

switch statements, like this:

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger section = [indexPath section];
 NSUInteger row = [indexPath row];

 switch (section) {
 case HeroEditControllerSectionName:
 switch (row)
 {
 case HeroEditControllerNameRow :
 // Create a controller to edit name
 // and push it on the stack
 ...
 break;
 default:
 break;
 }
 break;
 case HeroEditControllerSectionGeneral:
 switch (row) {
 case HeroEditControllerGeneralSectionSecretIdentityRow:
 // Create a controller to edit secret identity
 // and push it on the stack
 ...

CHAPTER 4: The Devil in the Detail View 87

 break;
 case HeroEditControllerGeneralSectionBirthdateRow:
 // Create a controller to edit birthdate and
 // push it on the stack
 ...
 break;
 case HeroEditControllerGeneralSectionSexRow:
 // Create a controller to edit sex and push it
 // on the stack
 ...
 break;
 default:
 break;
 }
 break;
 default:
 break;
 }
}

The problem with this approach is that it doesn’t scale very well at all. A nested set of

switch statements like this will need to appear in almost every table view delegate or

datasource method that takes an index path, which means that adding or deleting rows

or sections involves updating your code in multiple places.

Additionally, the code under each of the case statements is going to be relatively similar.

In this particular case, we will have to create a new instance of a controller or use a

pointer to an existing controller, set some properties to indicate which values need to

get edited, then push the controller onto the navigation stack. If we discover a problem

in our logic anywhere in these switch statements, chances are we’re going to have to

change that logic in several places, possibly even dozens.

Controlling Table Structure with Arrays
As you can see here, the most obvious solution isn’t always the best one. We don’t want

to have very similar chunks of code scattered throughout our controller class, and we

don’t want to have to maintain multiple copies of a complex decision tree. There’s a

better way to do this.

We can use arrays to mirror the structure of our table. As the user descends into our

table, we can use the data stored in an array to construct the appropriate table. The key

to this approach is a combination of paired arrays and nested arrays.

Paired Arrays
As the name implies, paired arrays are a pair of arrays whose contents are kept in sync.

Paired arrays always have the same number of rows, and the object at a given index in

one of the arrays corresponds to the object at the same index in the other paired array.

Let’s look at a simple example. Figure 4–3 represents a list of peoples’ first and last

names using paired arrays.

CHAPTER 4: The Devil in the Detail View 88

Figure 4–3. A simple visualization of a paired array

If you look at Figure 4–3 and look at the first row (index zero), you’ll notice that the

firstNames array has a value of Tricia and the lastNames array has a value of Takanawa.

That means that index zero in this array pair represents Tricia Takanawa. Pretty easy,

right? It’s not a difficult concept, but it can be a powerful one, as you’ll see in a few

minutes.

Nested Arrays
Nested arrays are nearly as simple as paired arrays. A nested array is nothing more than

an array—in our case, it will be an instance of NSArray—that contains other arrays. A

nested array can be used to represent the sections and rows in a table view. You can

see a visual representation of this in Figure 4–4. The main array, or outer array, contains

a series of subarrays, each of which represents a section in our table. Each subarray is

another instance of NSArray and contains a series of NSString instances, each of which

represents a single row in its section.

CHAPTER 4: The Devil in the Detail View 89

Figure 4–4. A visual representation of a nested array

Paired Nested Arrays
We can take these two concepts and combine them. Paired nested arrays are simply

nested arrays with the same number of subarrays and where the same index in each

subarray corresponds to different information about the same item. Read on to see how

we do this.

Representing Our Table Structure with Arrays
Let’s use these concepts to represent the structure of our detail view table. The first

thing we need is a simple NSArray instance that defines the sections in our table. Each

object in this array, which we’ll call sectionNames, will be an instance of NSString that

represents the section’s name, which will be displayed above the section in the table.

For sections with no name, we’ll use an instance of the class NSNull instead of an

NSString to indicate that a section exists, but doesn’t have a title.

CHAPTER 4: The Devil in the Detail View 90

NOTE: Collection classes like NSArray and NSDictionary cannot contain nil values.
NSNull was created specifically as a placeholder for nil. It is an object that can go into
collections, but it doesn’t really do anything other than take up space. NSNull is implemented as
a singleton, which means that there’s ever only a single instance of NSNull, but it can be used
in as many places as you need.

Next, we need a nested array to hold the name of the attribute that will be displayed in a

particular row. We’ll call this array rowKeys. Now, we could derive the label to be

displayed on each row from the row key. So, for example, if the row key was name, we

could capitalize it to create a label of Name. We’re not going to do that, however. To

give ourselves more flexibility and the ability to localize our application into other

languages, we’ll create a second nested array called rowLabels that will hold the label to

be displayed on each row next to the attribute value (the words to the left of each field in

Figure 4–2).

Finally, we need one last nested array that will contain the name of the controller class

that will be used to edit this row’s attribute. We’ll use Objective-C’s dynamic nature to

let us create instances at runtime based on the name of a class.

That should be all the data structures we need to represent the table’s structure for now.

Fortunately, if we discover that we need additional information for each row, we can

always add an additional nested array later without impacting our existing design.

Nested Arrays, Categorically Speaking
In order to make our life easier when it comes time to retrieve data from our nested

arrays, let’s write a category on NSArray that will add two new methods specifically

designed for those situations. The first of these methods will take an NSIndexPath and

return the corresponding object from the nested subarray. This will allow us, in one line,

to retrieve the object we need from any nested array.

In the table view datasource method tableView:cellForRowAtIndexPath:, we’ll use this

method to turn an NSIndexPath into its corresponding row key and row label. We’ll also

write a method that returns the count of a specific subarray, which we will later use in

tableView:numberOfRowsInSection: to return the correct number of rows for a particular

section.

Updating the SuperDB Project
Find your SuperDB project folder from Chapter 3 and make a copy of it. That way, if

things go south when we add our new code for this chapter, you won’t have to start at

the very beginning. Open this new copy of your project in Xcode.

CHAPTER 4: The Devil in the Detail View 91

Single-click your project’s root node (the top row in the Groups & Files pane) and select

New Group from the Project menu. This will create a new folder in your Groups & Files

pane. Rename this new group Categories.

Single-click the new Categories folder and select New File… from the File menu. Select

Cocoa Touch Class from under the iPhone OS heading in the left pane, then select the

Objective-C Class icon from the upper-right and make sure that the Subclass of pop-up

menu reads NSObject. If you don’t see these options, look instead for an icon called

NSObject subclass. We’re not actually going to create a subclass of NSObject, we’re

going to create a category. Xcode currently has no template for creating a category. We

could choose to create two empty files, but since this template will give us both header

and implementation files that are already correctly named, we’ll choose it and then just

delete the code that the template gives us.

Name the new “class” NSArray-NestedArrays.m and make sure that Also create
“NSArray-NestedArrays.h” is checked.

Once the files are created, single-click NSArray-NestedArrays.h and replace any existing

content with the following category header:

#import <Foundation/Foundation.h>

@interface NSArray(NestedArrays)
/**
 This method will return an object contained with an array
 contained within this array. It is intended to allow
 single-step retrieval of objects in the nested array
 using an index path
 */
- (id)nestedObjectAtIndexPath:(NSIndexPath *)indexPath;

/**
 This method will return the count from a subarray.
 */
- (NSInteger)countOfNestedArray:(NSUInteger)section;
@end

TIP: Did you notice the format of the comments above each of the methods? This is called
javadoc notation. There are several tools you can use to automatically create API documentation
from your Objective-C code based on class structure and the comments you place in your code
using this format, or alternatively, a format called headerdoc notation. Apple maintains an open
source program called HeaderDoc that will create the documentation for you; there’s a third-
party tool called Doxygen that can also create API documentation for most popular programming
languages, including Objective-C.

Headerdoc can be found here: http://developer.apple.com/opensource/tools/
headerdoc.html
Doxygen is located here: http://www.doxygen.org/

http://developer.apple.com/opensource/tools
http://www.doxygen.org

CHAPTER 4: The Devil in the Detail View 92

Now, single-click on NSArray-NestedArrays.m and replace the contents with the

following code:

#import "NSArray-NestedArrays.h"

@implementation NSArray(NestedArrays)

- (id)nestedObjectAtIndexPath:(NSIndexPath *)indexPath {
 NSUInteger row = [indexPath row];
 NSUInteger section = [indexPath section];
 NSArray *subArray = [self objectAtIndex:section];

 if (![subArray isKindOfClass:[NSArray class]])
 return nil;

 if (row >= [subArray count])
 return nil;

 return [subArray objectAtIndex:row];
}

- (NSInteger)countOfNestedArray:(NSUInteger)section {
 NSArray *subArray = [self objectAtIndex:section];
 return [subArray count];
}

@end

Now, thanks to the chewy goodness of categories, NSArray now has two new methods,

nestedObjectAtIndexPath: and countOfNestedArray:.

Formatting of Attributes
One issue with our table-based approach is that we have attributes of different types to

display to the user. Although string attributes can just be displayed as is, most other

attributes will have to be converted to a string to be displayed in a table.

There are several approaches we can take to format our attributes. We could create a

subclass of NSFormatter for each attribute. NSFormatter is a class specifically designed

for converting data for display. However, NSFormatter is overkill for our situation. We can

find something simpler.

Another approach is to use the description method, which is declared in NSObject. This

is the method that gets sent to an object when you use a format string and the %@ token,

like this:

 NSLog(@"My object value: %@", theObject);

 In this line of code, which is likely similar to code you’ve written before, NSLog() sends

theObject a description message and replaces the %@ token in the string with the string

returned by description.

CHAPTER 4: The Devil in the Detail View 93

This method is a good starting point, and it would work for most attribute types.

NSNumber, for example, returns the number it represents as a string and NSString simply

returns itself. NSDate, however, returns the date it represents like this:

 2009-09-02 20:28:19 -0400

There are two problems with this display. First, it’s not all that user-friendly. Most people

aren’t used to seeing dates displayed like this. The second problem is that this format is

too long to fit in the space available using the default table view font.

Instead, we’re going to send the attribute objects a custom message called

heroValueDisplay. We’ll create categories on each of the classes that are used to

represent attributes and add a category method that, as needed, formats that attribute’s

data as a string, formatted exactly the way we want it to be.

Single-click the Categories folder in the Groups & Files pane and select New File… from

the File menu again.

Select Cocoa Touch Class from under the iPhone OS heading in the left pane, then

select the Objective-C Class icon from the upper-right and make sure that the Subclass
of pop-up menu reads NSObject. As with last time, if you don’t see these options, look

instead for an icon called NSObject subclass and select that. When prompted for a

name, type HeroValueDisplay.m and make sure that Also create “HeroValueDisplay.h” is

checked.

We’re going to put multiple categories into a single file. This is perfectly okay. Although

the majority of the time, each class and category is placed into its own header and

implementation file pair, there’s absolutely no reason why you can’t put multiple

categories or classes in the same file pair if it make sense and helps organize your

project. These categories are all very small and all serve the same purpose, so putting

them into a single file pair seems to make sense.

In that file, we’re also going to create a protocol that defines the heroValueDisplay

method. This will afford us some type safety later when we send the heroValueDisplay

message to objects retrieved using objectForKey:.

Single-click HeroValueDisplay.h and replace the contents of the file with the following:

#import <Foundation/Foundation.h>

@protocol HeroValueDisplay
- (NSString *)heroValueDisplay;
@end

@interface NSString (HeroValueDisplay) <HeroValueDisplay>
- (NSString *)heroValueDisplay;
@end

@interface NSDate (HeroValueDisplay) <HeroValueDisplay>
- (NSString *)heroValueDisplay;
@end

@interface NSNumber (HeroValueDisplay) <HeroValueDisplay>
- (NSString *)heroValueDisplay;

CHAPTER 4: The Devil in the Detail View 94

@end

@interface NSDecimalNumber (HeroValueDisplay) <HeroValueDisplay>
- (NSString *)heroValueDisplay;
@end

Notice that each of our categories conforms their class to the HeroValueDisplay

protocol. Our code that sends the heroValueDisplay message won’t know what type of

object it’s dealing with since the same exact code will handle every row, regardless of

the attribute’s type. By creating a protocol and conforming all of these objects to that

protocol, we’ll be able to send this message without getting compiler warnings, as you’ll

see a little later.

Single-click HeroValueDisplay.m and replace the contents with this code:

#import "HeroValueDisplay.h"

@implementation NSString (HeroValueDisplay)
- (NSString *)heroValueDisplay {
 return self;
}
@end

@implementation NSDate (HeroValueDisplay)

- (NSString *)heroValueDisplay {
 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterMediumStyle];
 NSString *ret = [formatter stringFromDate:self];
 [formatter release];
 return ret;
}
@end

@implementation NSNumber (HeroValueDisplay)
- (NSString *)heroValueDisplay {
 return [self descriptionWithLocale:[NSLocale currentLocale]];
}
@end

@implementation NSDecimalNumber (HeroValueDisplay)
- (NSString *)heroValueDisplay {
 return [self descriptionWithLocale:[NSLocale currentLocale]];
}
@end

With these categories defined, we can send any of our attributes the heroValueDisplay

message and show the returned string in the table.

Creating the Detail View Controller
The next file we need to create is the detail view controller itself. Remember that we’re

creating a table-based editing view, so we want to subclass UITableViewController.

CHAPTER 4: The Devil in the Detail View 95

Single-click the Classes folder in Xcode’s Groups & Files pane and type N to create a

new file, which should bring up the new file assistant (Figure 4–5).

Figure 4–5. Using the new file assistant to create a new table view controller subclass

CAUTION: The arrangement of the new file assistant has changed a little in each of the last
several releases of the iPhone SDK. As a result, the step-by-step instructions on this page may
not exactly match what you need to do if you are on an older release (pre 3.1). You need to
create a table view controller subclass. If you don’t see those options under UIViewController,
check under Objective-C class. If you are given the opportunity to create an XIB for user interface
as in the screenshot in Figure 4–5, do not select that option because table view controllers
generally don’t need a nib file.

Select Cocoa Touch Class from under the iPhone OS heading in the left pane, then

select the UIViewController subclass. Make sure the check box labeled

UITableViewController subclass is checked, but that the With XIB for user interface

checkbox is not. If you don’t see these options, check the previous tech block for more

information.

CHAPTER 4: The Devil in the Detail View 96

Figure 4–6. Entering the name for the detail editing view controller class

When prompted for a filename (Figure 4–6), type in HeroEditController.m and make sure

that Also create “HeroEditController.h” is checked. Once the two new files are created,

single-click on HeroEditController.h so you can add the necessary instance variables

and properties.

Declaring Instance Variables and Properties
Since this editing view will display and allow the editing of a single hero, it needs an

NSManagedObject instance variable to hold the hero to be displayed or edited. We also

need instance variables to hold the various paired arrays we discussed earlier that

define the layout of the table. Make the following changes to HeroEditController.h:

#import <UIKit/UIKit.h>

@interface HeroEditController : UITableViewController {
 NSManagedObject *hero;

@private
 NSArray *sectionNames;
 NSArray *rowLabels;
 NSArray *rowKeys;
 NSArray *rowControllers;
}

CHAPTER 4: The Devil in the Detail View 97

@property (nonatomic, retain) NSManagedObject *hero;
@end

Notice that we’ve created five instance variables but only one property. While properties

are useful for making memory management easier, they are not always appropriate. In

this case, we don’t want other objects to be able to change our table structure and

there’s no real reason why they would ever access these arrays. Therefore, we make

them @private and do not declare properties for them, which restricts their use to our

class.

You might be wondering why we didn’t choose to also make hero a private instance

variable. There’s nothing particularly sensitive or unusual about this particular instance

variable that makes it dangerous and there are valid reasons why a subclass might need

to access this directly. The default visibility for instance variables in Objective-C 2.0 is

@protected, not @public, so there’s really no danger in having hero above the @private.

@protected instance variables can be freely accessed by subclasses, but not by other

classes, which seems like appropriate behavior.

CAUTION: While the scope limiters @private and @protected are enforced on the iPhone,
they are not enforced in the iPhone Simulator. As of this writing, the iPhone Simulator is still a
32-bit Mac application that can’t take advantage of all the features of the Objective-C 2.0
runtime. On the simulator, accessing another class’s @private or @protected instance
variables will result in a compiler warning, but the code will work. On the device, it will not work,
and will generate a compiler error instead of a warning. This should serve as just another reason
to do something you were going to do anyway (right?), which is to make sure you test your
applications thoroughly on a physical device before shipping.

Implementing the Viewing Functionality
We’re going to approach the implementation of our controller in two stages. First, we’re

going to make sure the controller displays its information correctly, then we’re going to

implement editing.

Single-click on HeroEditController.m. The template we chose gave us a lot of stubs and

commented-out code. Rather than try to give you instructions on how to make changes

to the existing file, just delete the code that the template provided and replace it with

this:

#import "HeroEditController.h"
#import "NSArray-NestedArrays.h"
#import "HeroValueDisplay.h"

@implementation HeroEditController
@synthesize hero;

CHAPTER 4: The Devil in the Detail View 98

- (void)viewDidLoad {
 sectionNames = [[NSArray alloc] initWithObjects:
 [NSNull null],
 NSLocalizedString(@"General", @"General"),
 nil];
 rowLabels = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObjects:NSLocalizedString(@"Name", @"Name"), nil],

 // Section 2
 [NSArray arrayWithObjects:NSLocalizedString(@"Identity", @"Identity"),
 NSLocalizedString(@"Birthdate", @"Birthdate"),
 NSLocalizedString(@"Sex", @"Sex"),
 nil],

 // Sentinel
 nil];

 rowKeys = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObjects:@"name", nil],

 // Section 2
 [NSArray arrayWithObjects:@"secretIdentity", @"birthdate", @"sex", nil],

 // Sentinel
 nil];

 // TODO: Populate the rowControllers array

 [super viewDidLoad];
}

- (void)dealloc {
 [hero release];
 [sectionNames release];
 [rowLabels release];
 [rowKeys release];
 [rowControllers release];
 [super dealloc];
}

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)numberOfSectionsInTableView:(UITableView *)theTableView {
 return [sectionNames count];
}

- (NSString *)tableView:(UITableView *)theTableView
titleForHeaderInSection:(NSInteger)section {
 id theTitle = [sectionNames objectAtIndex:section];
 if ([theTitle isKindOfClass:[NSNull class]])
 return nil;

 return theTitle;

CHAPTER 4: The Devil in the Detail View 99

}

- (NSInteger)tableView:(UITableView *)theTableView
numberOfRowsInSection:(NSInteger)section {
 return [rowLabels countOfNestedArray:section];
}

- (UITableViewCell *)tableView:(UITableView *)theTableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Hero Edit Cell Identifier";

 UITableViewCell *cell = [theTableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue2
 reuseIdentifier:CellIdentifier] autorelease];
 }

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];

 id <HeroValueDisplay, NSObject> rowValue = [hero valueForKey:rowKey];

 cell.detailTextLabel.text = [rowValue heroValueDisplay];
 cell.textLabel.text = rowLabel;
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}

- (void)tableView:(UITableView *)theTableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 // TODO: Push editing controller onto the stack.
}

@end

Let’s take a look at the code we just wrote. Notice first that we import both of the

categories we created earlier. If we don’t import the category headers, the compiler

doesn’t know that those methods exist and will give us compile warnings. We also

synthesize our only property:

#import "HeroEditController.h"
#import "NSArray-NestedArrays.h"
#import "HeroValueDisplay.h"
@implementation HeroEditController
@synthesize hero;

Next comes viewDidLoad. In this method, we create and populate those various arrays

we discussed earlier that will define the structure of our tables. For now, we’re just going

to create the arrays here in code. If our table gets more complex, we might want to

consider putting the contents of the arrays into property lists or text files and creating

the arrays from those files rather than hardcoding them as we’ve done here. That would

reduce the size and complexity of our controller class. At this point, there doesn’t seem

to be much benefit to doing that. One of the nice things about this approach is that

since the arrays’ contents drive the table structure and the rest of the code in this

CHAPTER 4: The Devil in the Detail View 100

controller class is relatively generic, we can change how we create our arrays without

impacting the functionality of the rest of the code in this controller.

The first array we populate is the sectionNames array. Notice that because we are not

using a property, we don’t have an accessor. Since we’re not using an accessor that will

retain the instance for us, we don’t release it. After this line of code, sectionNames has a

retain count of 1, which is exactly what it would be if we assigned it to a property

specified with the retain keyword, and then released it after making the assignment.

- (void)viewDidLoad {
 sectionNames = [[NSArray alloc] initWithObjects:
 [NSNull null],
 NSLocalizedString(@"General", @"General"),
 nil];

TIP: Notice that we pass a nil as the last parameter to initWithObjects:. This is important.
initWithObjects: is a variadic method, which is just a fancy way of saying it takes a
variable number of arguments. We can pass in any number of objects to this method, and they
will all get added to this array. The terminating nil is how we tell the initWithObjects:
method that we’ve got not more objects for it. This terminating nil is called a sentinel. Starting
with Snow Leopard, Xcode will warn you if you forget the sentinel, but on Leopard, a missing
sentinel can be a very hard-to-debug problem.

After this line of code fires, sectionNames has two elements. The first one is that special

placeholder, NSNull, we talked about. If you look at Figure 4–2, you can see that the first

section has no header. This is how we’re going to indicate that there’s a section, but

that it doesn’t have a header. The second object in the array is a localized string that

contains the word “General.” By creating a localized string, we have the ability to

translate this header into whatever languages we wish. If you need a refresher on

localizing your apps, the topic is covered in Chapter 17 of Beginning iPhone 3
Development.

Next, we populate the rowLabels array. This is the array that defines the blue labels

displayed on each row that you can see in Figure 4–2. Notice again, that we’ve used

localized strings so that if we want to later translate our labels into other languages, we

have the ability to do so without having to change our code. Because we’ve got nested

object creation here, we’ve added comments so that when we revisit this somewhat

complex code, we’ll remember what each bit of code is used for.

 rowLabels = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObjects:NSLocalizedString(@"Name", @"Name"), nil],

 // Section 2
 [NSArray arrayWithObjects:NSLocalizedString(@"Identity", @"Identity"),
 NSLocalizedString(@"Birthdate", @"Birthdate"),
 NSLocalizedString(@"Sex", @"Sex"),
 nil],

CHAPTER 4: The Devil in the Detail View 101

 // Sentinel
 nil];

The code that populates the rowKeys array is very similar, except we don’t localize the

strings. These are key values that are used to indicate which attribute gets shown in

which row, and localizing them would break the functionality. The key is the same

regardless of the language our user understands.

 rowKeys = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObjects:@"name", nil],

 // Section 2
 [NSArray arrayWithObjects:@"secretIdentity",
 @"birthdate",
 @"sex",
 nil],

 // Sentinel
 nil];

We have one more array, but we’re not populating it yet. The last array defines which

controller classes are used to edit which rows. We haven’t written any such controller

classes yet, so we’ve got nothing to put in that array. We’re also not yet accessing this

array anywhere, so it’s okay to just put in a reminder to do it later. As you’ve already

seen, when developing more complex applications, you will often have to implement

some functionality in an incomplete manner and then come back later to finish it.

 // TODO: Populate the rowControllers array

 [super viewDidLoad];
}

The next method we implemented was dealloc, and there shouldn’t be anything too

surprising here. We release all of the objects that we’ve retained, both those that are

associated with properties, and those that aren’t. Remember, in viewDidLoad, we left our

various structure arrays at a retain count of 1, so we have to release them here to avoid

leaking memory.

- (void)dealloc {
 [hero release];
 [sectionNames release];
 [rowLabels release];
 [rowKeys release];
 [rowControllers release];
 [super dealloc];
}

Even though we haven’t yet created or populated rowControllers, it’s perfectly okay to

release it here. Sending a release message to nil is just fine and dandy in Objective-C.

Next up are the table view datasource methods. The first one we implement tells our

table view how many sections we have. We return the count from sectionNames here. By

doing that, if we change the number of objects in the sectionNames array, we

CHAPTER 4: The Devil in the Detail View 102

automatically change the number of sections in the table and don’t have to touch this

method.

#pragma mark -
#pragma mark Table View Methods

- (NSInteger)numberOfSectionsInTableView:(UITableView *)theTableView {
 return [sectionNames count];
}

Since sections have an optional header displayed, we also implement

tableView:titleForHeaderInSection:. For this, we just need to return the value from

sectionNames. If the value NSNull is stored as a section name, we need to convert it to

nil, since that’s what UITableView expects for a section with no header.

- (NSString *)tableView:(UITableView *)theTableView
titleForHeaderInSection:(NSInteger)section {
 id theTitle = [sectionNames objectAtIndex:section];
 if ([theTitle isKindOfClass:[NSNull class]])
 return nil;

 return theTitle;
}

In addition to telling our table view the number of sections, we need to tell it the number

of rows in each section. Thanks to that category on NSArray we wrote earlier, this can be

handled with one line of code. It doesn’t matter which of the paired arrays we use, since

they should all have the same number of rows in every subarray. We obviously can’t use

rowControllers, since we haven’t populated it yet. We chose rowLabels, but rowKeys

would have worked exactly the same.

- (NSInteger)tableView:(UITableView *)theTableView
numberOfRowsInSection:(NSInteger)section {
 return [rowLabels countOfNestedArray:section];
}

The tableView:cellForRowAtIndexPath: method is where we actually create the cell to

be displayed. We start out almost exactly in the same way as every other table view

controller, by looking for a dequeued cell and using it, or creating a new cell if there

aren’t any dequeued cells.

- (UITableViewCell *)tableView:(UITableView *)theTableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Hero Edit Cell Identifier";

 UITableViewCell *cell = [theTableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue2
 reuseIdentifier:CellIdentifier] autorelease];
 }

Next, we retrieve the attribute name and the label for this row, again using that category

method we added to NSArray to retrieve the correct object based on index path.

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];

CHAPTER 4: The Devil in the Detail View 103

 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];

Once we know the attribute name, we can retrieve the object that’s used to represent

this attribute using valueForKey:. Notice that we declare our rowValue object as id. We

do this because the returned object could be instances of any number of different

classes. We put HeroValueDisplay between angle brackets to indicate that we know the

returned object will be an object that conforms to that HeroValueDisplay protocol we

created earlier. This gives us the ability to call the heroValueDisplay method on

whatever was returned without having to figure out what type of object it was.

 id <HeroValueDisplay, NSObject> rowValue = [hero valueForKey:rowKey];

Finally, we assign the label and value to the cell’s labels, and then return the cell.

 cell.detailTextLabel.text = [rowValue heroValueDisplay];
 cell.textLabel.text = rowLabel;
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}

The final method in our controller class is just a stub with a reminder to add this

functionality later.

- (void)tableView:(UITableView *)theTableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 // TODO: Push editing controller onto the stack.
}

@end

Using the New Controller
Now that we have our new controller class, we have to create instances of it somewhere

and push those onto the stack. To do that, we have to revisit HeroListViewController.

We could create a new instance of HeroEditController every time a row is tapped. Only

one copy of HeroEditController will ever need to be on the navigation stack at a time.

As a result, we can reuse a single instance over and over. We can also save ourselves

several lines of code by adding an instance of HeroEditController to MainWindow.xib

and adding an outlet to that instance to HeroListViewController. Remember, when you

add an icon to a nib, an instance of that object gets created when the nib loads.

Declaring the Outlet
Single-click HeroListViewController.h, and add the following code to add an outlet for

the instance of HeroEditController we’re going to add to MainWindow.xib:

#import <UIKit/UIKit.h>

#define kSelectedTabDefaultsKey @"Selected Tab"
enum {
 kByName = 0,

CHAPTER 4: The Devil in the Detail View 104

 kBySecretIdentity,
};

@class HeroEditController;
@interface HeroListViewController : UIViewController <UITableViewDelegate,
UITableViewDataSource, UITabBarDelegate, UIAlertViewDelegate,
NSFetchedResultsControllerDelegate>{

 UITableView *tableView;
 UITabBar *tabBar;
 HeroEditController *detailController;

@private
 NSFetchedResultsController *_fetchedResultsController;
}

@property (nonatomic, retain) IBOutlet UITableView *tableView;
@property (nonatomic, retain) IBOutlet UITabBar *tabBar;
@property (nonatomic, retain) IBOutlet HeroEditController *detailController;
@property (nonatomic, readonly) NSFetchedResultsController
 *fetchedResultsController;
- (void)addHero;
- (IBAction)toggleEdit;

@end

Now that we’ve got it declared, save HeroListViewController.h, and we’ll go add the

instance to MainWindow.xib.

Adding the Instance to MainWindow.xib
Double-click on MainWindow.xib to open the nib file in Interface Builder. Look in the

library for a Table View Controller, and drag one of those over to the nib’s main window.

The newly added controller should be selected, so press 4 to bring up the identity

inspector and change the underlying class from UITableViewController to

HeroEditController.

Next, in the main nib window, click on the Hero Edit Controller disclosure triangle and

double-click on the Table View that appears. Alternatively, you can just click in the Hero

Edit Controller window so the Table View shown in that window is selected. Now, press

1 to bring up the attribute inspector. You’ll know you’ve got the right item selected

when the inspector window’s title changes from Hero Edit Controller Attributes to Table
View Attributes. Change the table’s Style from Plain to Grouped.

Back in the main nib window, open the disclosure triangle to the left of Navigation
Controller to reveal an item named Hero List View Controller (Root View Controller).
Control-drag from that item to the Hero Edit Controller icon and select the

detailController outlet.

CHAPTER 4: The Devil in the Detail View 105

NOTE: Note that your Hero List View Controller (Root View Controller) might instead have the
name Hero List View Controller (SuperDB). No worries, it should work just fine.

Save and close this nib and go back to Xcode.

Pushing the New Instance onto the Stack
Single-click HeroListViewController.m. There are two methods that we need to

implement. When a user taps a row, we want to use the detail controller to show them

information about the hero on which they tapped. When they add a new hero, we also

want to take them down to the newly added hero so they can edit it. We haven’t

implemented the editing functionality yet, but we can still configure and push

detailController onto the stack now, so let’s do that.

First, we need to import HeroEditController.h and synthesize the detailController

outlet:

#import "HeroListViewController.h"
#import "SuperDBAppDelegate.h"
#import "HeroEditController.h"

@implementation HeroListViewController
@synthesize tableView;
@synthesize tabBar;
@synthesize detailController;
@synthesize fetchedResultsController = _fetchedResultsController;
...

Now, find the addHero method, and add the following new code to it. You can also

delete the old TODO comment.

- (void)addHero {
 NSManagedObjectContext *context = [self.fetchedResultsController
 managedObjectContext];
 NSEntityDescription *entity = [[self.fetchedResultsController fetchRequest]
 entity];
 NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context];

 NSError *error;
 if (![context save:&error])
 NSLog(@"Error saving entity: %@", [error localizedDescription]);

 // TODO: Instantiate detail editing controller and push onto stack
 detailController.hero = newManagedObject;
 [self.navigationController pushViewController:detailController animated:YES];
}

CHAPTER 4: The Devil in the Detail View 106

We assign the new managed object to detailController’s hero property, which is how

we tell that controller that this is the hero to be viewed and/or edited. Then, we push it

onto the stack. Easy enough?

Now, find tableView:didSelectRowAtIndexPath:. It should just be a stub with a TODO

comment. Replace it with this new version:

- (void)tableView:(UITableView *)theTableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 detailController.hero = [self.fetchedResultsController
 objectAtIndexPath:indexPath];
 [self.navigationController pushViewController:detailController animated:YES];
 [theTableView deselectRowAtIndexPath:indexPath animated:YES];
}

That should look pretty familiar. We’re doing almost the same thing, except instead of

pushing a new managed object onto the stack, we’re retrieving the object that

corresponds to the row on which the user tapped.

Trying Out the View Functionality
Save HeroListViewController.m and then build and run your application. Try adding

new rows, or tapping on an existing row. You still don’t have the ability to edit them, but

when you add a new row, you should get a new screen of data that looks like

Figure 4–7.

Figure 4–7. Adding a new hero now takes you to the new controller class

CHAPTER 4: The Devil in the Detail View 107

All that’s missing is the ability to edit the individual fields, so let’s add that now.

Adding Editing Subcontrollers
Our next step is to create a series of new controllers, each of which can be used to edit

an individual value on a hero. For now, we need one that can edit string attributes

(Figure 4–8) and one that can edit date attributes (Figure 4–9). We’ll be adding other

controllers later. All of these controllers have common functionality. They’ll all take a

managed object and the name of the attribute on that managed object to be edited.

They’ll all need a Save button and a Cancel button.

Figure 4–8. The subcontroller that will allow the user to edit string attributes. Here, it’s being used to edit the
name attribute.

CHAPTER 4: The Devil in the Detail View 108

Figure 4–9. The subcontroller that allows editing date attributes. Here, it’s being used to edit the birthdate
attribute.

Creating the Superclass
Whenever you are about to implement multiple objects that have some common

functionality, you should put some thought into whether that common functionality can

be put into a single class that the other controllers can then subclass. In this case, there

is enough common functionality that a common superclass is appropriate. Let’s create

that common superclass now.

Single-click the Classes folder in the Groups & Files pane and select New File… from the File

menu. Create another UITableViewController subclass, as you did earlier when you created

the HeroEditController class. Call this new class ManagedObjectAttributeEditor and make

sure you create both the implementation and header file but do not create a nib file.

Single-click ManagedObjectAttributeEditor.h, and replace the contents with this code:

#import <UIKit/UIKit.h>
#define kNonEditableTextColor [UIColor colorWithRed:.318 green:0.4 blue:.569
alpha:1.0]

@interface ManagedObjectAttributeEditor : UITableViewController {
 NSManagedObject *managedObject;
 NSString *keypath;
 NSString *labelString;
}

CHAPTER 4: The Devil in the Detail View 109

@property (nonatomic, retain) NSManagedObject *managedObject;
@property (nonatomic, retain) NSString *keypath;
@property (nonatomic, retain) NSString *labelString;
-(IBAction)cancel;
-(IBAction)save;

@end

TIP: Wondering about that funky looking arrow () at the end of the #define in the previous
chunk of code? That’s a continuation character. Don’t type it! It just means that the current line
and the following line should be joined together as a single line.

The constant kNonEditableTextColor is defined to match the color used in the table

view cell style UITableViewCellStyleValue2. We can’t use the default cell styles and let

the user edit values using a text field, but we want to match the appearance as closely

as we can (Figure 4–8).

We could have called the managedObject attribute hero instead, but by using more

generic terms, it’ll be easier to reuse this code in future projects. Having a property

called hero wouldn’t make much sense if we were writing an application to keep track of

recipes, for example.

Instead of attribute name, we’ve defined a property called keypath. This will be the

attribute name, but by using keypath instead of key, we’ll have the ability to edit

attributes on other objects, not just on the one we’re editing. Don’t worry if that doesn’t

make much sense now; you’ll see why we chose keypath instead of attribute or key in

Chapter 7 when we start talking about relationships and fetched properties. We’ve also

provided a property for a label. Not all subclasses will need this, but many will, so we’ll

provide the instance variable and property definition here in our superclass.

We also define two methods, cancel and save, that will be called when the user presses

either of the buttons that will be presented. Switch over to ManagedObjectAttributeEditor.m

and replace the existing contents with the following code:

#import "ManagedObjectAttributeEditor.h"

@implementation ManagedObjectAttributeEditor
@synthesize managedObject;
@synthesize keypath;
@synthesize labelString;

- (void)viewWillAppear:(BOOL)animated {
 UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
 initWithTitle:NSLocalizedString(@"Cancel",
 @"Cancel - for button to cancel changes")
 style:UIBarButtonSystemItemCancel
 target:self
 action:@selector(cancel)];
 self.navigationItem.leftBarButtonItem = cancelButton;
 [cancelButton release];
 UIBarButtonItem *saveButton = [[UIBarButtonItem alloc]
 initWithTitle:NSLocalizedString(@"Save",

CHAPTER 4: The Devil in the Detail View 110

 @"Save - for button to save changes")
 style:UIBarButtonItemStyleDone
 target:self
 action:@selector(save)];
 self.navigationItem.rightBarButtonItem = saveButton;
 [saveButton release];
 [super viewWillAppear:animated];
}

-(IBAction)cancel {
 [self.navigationController popViewControllerAnimated:YES];
}

-(IBAction)save {
 // Objective-C has no support for abstract methods, so we're going
 // to take matters into our own hands.
 NSException *ex = [NSException exceptionWithName:
 @"Abstract Method Not Overridden"
 reason:NSLocalizedString(@"You MUST override the save method",
 @"You MUST override the save method")
 userInfo:nil];
 [ex raise];
}

-(void)dealloc {
 [managedObject release];
 [keypath release];
 [labelString release];
 [super dealloc];
}

@end

Much of this should make sense to you, but there are a few things that warrant

explanation. In the viewWillAppear: method, we are creating two bar button items to

go in the navigation bar. You can see these two buttons, labeled Cancel and Save, in

Figure 4–8.

Bar button items are similar to standard controls like UIButtons, but they are a special

case, designed to be used on navigation bars and toolbars only. One key difference

between a bar button item and a regular UIButton is that bar button items only have one

target and action. They don’t recognize the concept of control events. Bar button items

send their message on the equivalent of touch up inside only. Here’s where we create

the Cancel button. The code that creates the Save button is nearly identical:

 UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
 initWithTitle:NSLocalizedString(@"Cancel",
 @"Cancel - for button to cancel changes")
 style:UIBarButtonSystemItemCancel
 target:self
 action:@selector(cancel)];
 self.navigationItem.leftBarButtonItem = cancelButton;
 [cancelButton release];

When we create the button, notice that we’re once again using the NSLocalizedString

macro to make sure that any text to be displayed to the user can be translated. There

CHAPTER 4: The Devil in the Detail View 111

are several bar button styles, including one intended for Cancel buttons called

UIBarButtonSystemItemCancel, which we’ve used here.

We also have to provide a target and action for the bar button item. The target is self,

because we want it to call a method on the instance of this controller that is active. The

action is a selector to one of those action methods we declared in the header file.

Setting a target and action like this is exactly equivalent to control-dragging from a

button to a controller class and selecting an action method, we’re just doing it in code

this time because we don’t have a nib.

The cancel method does nothing more than pop the subcontroller off the navigation

stack, which returns the user to the previous screen. In this case, it will return them to

the detail view for the hero. Since we don’t take any steps to capture the input from the

user, the managed object stays the same as it was before.

NOTE: Strictly speaking, the save and cancel methods do not need to be declared with the
IBAction keyword, since we’re not triggering those methods from a nib. They are, however,
action methods, and it is conceivable that at some point in the future, we could convert this
controller to using a nib file, so we declare both of the action methods with the IBAction
keyword just to be safe and to advertise that these are, indeed, methods that will be triggered by
user interface controls.

The save method is a little unusual here. We will never actually create an instance of this

class. We’re creating this class only to contain common functionality that we expect to

exist among classes we’re going to write. In most languages, we would define this as an

abstract class. But Objective-C doesn’t have abstract classes, and it doesn’t have a

mechanism to force a subclass to implement a given method. Therefore, just to be safe,

we throw an exception in our save method. That way, if we ever forget to implement

save in a subclass we create, we’ll know about it instantly. Instead of unpredictable

behavior, we’ll get slammed with a runtime exception. While that may be a little

unpleasant when it happens, it will be very easy to debug because our exception will tell

us exactly what we did wrong.

 NSException *ex = [NSException exceptionWithName:
 @"Abstract Method Not Overridden"
 reason:NSLocalizedString(@"You MUST override the save method",
 @"You MUST override the save method")
 userInfo:nil];
 [ex raise];

CAUTION: Objective-C does have exceptions, as you can see here. Objective-C does not use
exceptions the way many other languages, such as Java and C++, do. In Objective-C, exceptions
are used only for truly exceptional situations and are usually an indication of a problem within
your code. They should never be used just to report a run-of-the-mill error condition. Exceptions
are used with much less frequency in Objective-C then they are in many other languages.

CHAPTER 4: The Devil in the Detail View 112

Creating the String Attribute Editor
Now it’s time to create a generic controller class to handle the editing of string

attributes. Single-click on Classes and create a new implementation and header file pair.

Just as you did before, create a subclass of UITableViewController and do not create a

nib file. Name the class ManagedObjectStringEditor. Single-click

ManagedObjectStringEditor.h, and replace the contents with the following code:

#import <UIKit/UIKit.h>
#import "ManagedObjectAttributeEditor.h"

#define kLabelTag 1
#define kTextFieldTag 2

@interface ManagedObjectStringEditor : ManagedObjectAttributeEditor {
}

@end

As you can see, we’re not adding any additional properties or instance variables. We do

change the subclass to ManagedObjectAttributeEditor so that we inherit the

functionality we implemented there, and we also define two constants that will be used

in a moment to let us retrieve subviews from the table view cell. The default table view

cell styles don’t allow in-place editing, so we have to customize the contents of our cell.

Since we don’t have a nib, we don’t have a way to connect outlets, so instead of using

outlets, we’ll assign tags to each of the subviews we add to the table view cell, and then

we’ll use that tag later to retrieve them.

Save ManagedObjectStringEditor.h and switch over to ManagedObjectStringEditor.m.

Replace the contents of that file with this code:

#import "ManagedObjectStringEditor.h"

@implementation ManagedObjectStringEditor

#pragma mark -
#pragma mark Table View methods
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return 1;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *ManagedObjectStringEditorCell =
 @"ManagedObjectStringEditorCell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 ManagedObjectStringEditorCell];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:ManagedObjectStringEditorCell] autorelease];

 UILabel *label = [[UILabel alloc] initWithFrame:CGRectMake(10, 10, 80, 25)];
 label.textAlignment = UITextAlignmentRight;

CHAPTER 4: The Devil in the Detail View 113

 label.tag = kLabelTag;
 UIFont *font = [UIFont boldSystemFontOfSize:14.0];
 label.textColor = kNonEditableTextColor;
 label.font = font;
 [cell.contentView addSubview:label];
 [label release];

 UITextField *theTextField = [[UITextField alloc]
 initWithFrame:CGRectMake(100, 10, 190, 25)];

 [cell.contentView addSubview:theTextField];
 theTextField.tag = kTextFieldTag;
 [theTextField release];
 }
 UILabel *label = (UILabel *)[cell.contentView viewWithTag:kLabelTag];

 label.text = labelString;
 UITextField *textField = (UITextField *)[cell.contentView
 viewWithTag:kTextFieldTag];
 NSString *currentValue = [self.managedObject valueForKeyPath:self.keypath];

 NSEntityDescription *ed = [self.managedObject entity];
 NSDictionary *properties = [ed propertiesByName];
 NSAttributeDescription *ad = [properties objectForKey:self.keypath];
 NSString *defaultValue = nil;
 if (ad != nil)
 defaultValue = [ad defaultValue];
 if (![currentValue isEqualToString:defaultValue])
 textField.text = currentValue;

 [textField becomeFirstResponder];
 return cell;
}

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
 (NSIndexPath *)indexPath {
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

-(IBAction)save {
 NSUInteger onlyRow[] = {0, 0};
 NSIndexPath *onlyRowPath = [NSIndexPath indexPathWithIndexes:onlyRow length:2];
 UITableViewCell *cell = [self.tableView cellForRowAtIndexPath:onlyRowPath];
 UITextField *textField = (UITextField *)[cell.contentView
 viewWithTag:kTextFieldTag];
 [self.managedObject setValue:textField.text forKey:self.keypath];

 NSError *error;
 if (![managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);

 [self.navigationController popViewControllerAnimated:YES];
}

@end

CHAPTER 4: The Devil in the Detail View 114

 Almost everything we do in this class is covered in Chapters 8 and 9 of Beginning
iPhone 3 Development, but there’s some code in tableView:cellForRowAtIndexPath:

that is worth taking a look at. We’ve set default values for two of our attributes because

they were required fields. When the user taps one of those rows, they aren’t going to

want to have to delete the default value before typing in the new value. So, we’ve added

some code to check to see if the current value is the same as the default value and, if it

is, we tell the text field to clear on editing.

Here’s the code from tableView:cellForRowAtIndexPath: that does that. First, we grab

the current value held by the attribute.

 NSString *currentValue = [self.managedObject valueForKeyPath:self.keypath];

Next, we grab the managed object’s entity. Information about an entity is returned in an

NSEntityDescription instance:

 NSEntityDescription *ed = [self.managedObject entity];

We can retrieve a dictionary with the properties, which includes attributes, by calling

propertiesByName on the entity description.

 NSDictionary *properties = [ed propertiesByName];

We can retrieve the NSAttributeDescription that stores information about the attribute

we’re editing from that dictionary using key-value coding:

 NSAttributeDescription *ad = [properties objectForKey:self.keypath];

One piece of information that the attribute description holds is its default value, if any, so

we retrieve the default value.

 NSString *defaultValue = nil;
 if (ad != nil)
 defaultValue = [ad defaultValue];

Once we have the default value, we compare it to the current value. If they’re not the

same, then we set the text field’s value. If they are the same, then we won’t bother

populating the text field with the current value because we know they’re going to

change it.

 if (![currentValue isEqualToString:defaultValue])
 textField.text = currentValue;

NOTE: Little details like not making your users spend time deleting default values can make the
difference between a good application and a great one. Don’t expect to anticipate every possible
detail in advance, however. These are the kind of things that often don’t become obvious until
you start testing and actually using the application, but when they become apparent, make sure
you deal with them. Annoying customers is not a good strategy.

You should also notice that we implement the save method, overriding the one in our

superclass, which throws an exception. Looking at that save method, you might also be

CHAPTER 4: The Devil in the Detail View 115

wondering if we made a mistake in this controller. In Beginning iPhone 3 Development,
we warned against relying on controls on table view cells to maintain state for you, since

cells can get dequeued and reused to represent a different row. Yet we are doing just

that here. We are relying on a text field on a table view cell to keep track of the changes

the user has made to the attribute until they tap Save, at which point, we copy the value

from the text field back into the attribute. In this particular case, we know that there will

always be exactly one row in this table. Since a table view is always capable of

displaying one row, this cell can never get dequeued. That makes this scenario an

exception to the general rule that you shouldn’t rely on table view cells to maintain state

for you.

Creating the Date Attribute Editor
Create yet another table view subclass, this time calling the class

ManagedObjectDateEditor. Once you’ve created the file, single-click on

ManagedObjectDateEditor.h and replace the contents with the following code:

#import <Foundation/Foundation.h>
#import "ManagedObjectAttributeEditor.h"

@interface ManagedObjectDateEditor : ManagedObjectAttributeEditor {
 UIDatePicker *datePicker;
 UITableView *dateTableView;
}

@property (nonatomic, retain) UIDatePicker *datePicker;
@property (nonatomic, retain) UITableView *dateTableView;

- (IBAction)dateChanged;

@end

The controller for editing dates is slightly more complex than the one for editing a string.

If you look at Figure 4–9, you’ll see that there is a text field that displays the current

value, and there is also a date picker that can be used to change the date.

Save ManagedObjectDateEditor.h then single-click ManagedObjectDateEditor.m and

replace its contents with the following code:

#import "ManagedObjectDateEditor.h"

@implementation ManagedObjectDateEditor
@synthesize datePicker;
@synthesize dateTableView;

- (IBAction)dateChanged {
 [self.dateTableView reloadData];
}

#pragma mark -
#pragma mark Superclass Overrides
-(IBAction)save {
 [self.managedObject setValue:self.datePicker.date forKey:self.keypath];

CHAPTER 4: The Devil in the Detail View 116

 NSError *error;
 if (![managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);

 [self.navigationController popViewControllerAnimated:YES];
}

- (void)loadView {
 [super loadView];

 UIView *theView = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.view = theView;
 [theView release];

 UITableView *theTableView = [[UITableView alloc] initWithFrame:
 CGRectMake(0.0, 67.0, 320.0, 480.0) style:UITableViewStyleGrouped];
 theTableView.delegate = self;
 theTableView.dataSource = self;
 [self.view addSubview:theTableView];
 self.dateTableView = theTableView;
 [theTableView release];

 UIDatePicker *theDatePicker = [[UIDatePicker alloc]
 initWithFrame:CGRectMake(0.0, 200.0, 320.0, 216.0)];
 theDatePicker.datePickerMode = UIDatePickerModeDate;
 self.datePicker = theDatePicker;
 [theDatePicker release];
 [datePicker addTarget:self action:@selector(dateChanged)
 forControlEvents:UIControlEventValueChanged];
 [self.view addSubview:datePicker];
 self.view.backgroundColor = [UIColor groupTableViewBackgroundColor];
}

- (void)viewWillAppear:(BOOL)animated {
 if ([managedObject valueForKeyPath:self.keypath] != nil)
 [self.datePicker setDate:[managedObject
 valueForKeyPath:keypath] animated:YES];
 else
 [self.datePicker setDate:[NSDate date] animated:YES];
 [self.tableView reloadData];

 [super viewWillAppear:animated];
}

-(void)dealloc {
 [datePicker release];
 [dateTableView release];
 [super dealloc];
}

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return 1;
}

CHAPTER 4: The Devil in the Detail View 117

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *GenericManagedObjectDateEditorCell =
 @"GenericManagedObjectDateEditorCell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:
 GenericManagedObjectDateEditorCell];
 if (cell == nil)
 {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:GenericManagedObjectDateEditorCell] autorelease];
 cell.textLabel.font = [UIFont systemFontOfSize:17.0];
 cell.textLabel.textColor = [UIColor colorWithRed:0.243 green:0.306
 blue:0.435 alpha:1.0];
 }
 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterMediumStyle];
 cell.textLabel.text = [formatter stringFromDate:[self.datePicker date]];
 [formatter release];

 return cell;
}
@end

Most of what’s going on in this class should be familiar to you. The one thing that’s

somewhat strange with this is how we’ve implemented the date picker view. If we had

just created a UIDatePicker and added it as a subview of our table view, then the picker

would have scrolled with the table and been unusable. Instead, we use loadView, which

is used to create a user interface programmatically, and we create both a UIDatePicker

and a second UITableView. We make both of these new objects subviews of our view

property. This controller is actually modeled after the way that Apple’s Contacts

application accepts date inputs (Figure 4–10).

CHAPTER 4: The Devil in the Detail View 118

Figure 4–10. When you add a date field to a person’s record in the Contacts application, this is the screen. Our
date editing view controller recreates, pixel-for-pixel, this view.

Using the Attribute Editors
There’s just one last task that we need to handle before we can try out our new iteration

of the SuperDB application. We have to add code to use these new attribute editors.

Single-click HeroEditController.m. First, add the following declaration to the top of the

file:

#import "ManagedObjectAttributeEditor.h"

Next, in the viewDidLoad method, get rid of the TODO comment, and replace it with the

code that follows. This will define which controller class gets used for each row in each

section.

 rowControllers = [[NSArray alloc] initWithObjects:
 // Section 1
 [NSArray arrayWithObject:@"ManagedObjectStringEditor"],

 // Section 2
 [NSArray arrayWithObjects:@"ManagedObjectStringEditor",
 @"ManagedObjectDateEditor",
 @"ManagedObjectStringEditor", nil],

 // Sentinel
 nil];

CHAPTER 4: The Devil in the Detail View 119

Now, replace the tableView:didSelectRowAtIndexPath: method with the following:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSString *controllerClassName = [rowControllers
 nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];
 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 Class controllerClass = NSClassFromString(controllerClassName);
 ManagedObjectAttributeEditor *controller =
 [controllerClass alloc];
 controller = [controller initWithStyle:UITableViewStyleGrouped];
 controller.keypath = rowKey;
 controller.managedObject = hero;
 controller.labelString = rowLabel;
 controller.title = rowLabel;
 [self.navigationController pushViewController:controller animated:YES];
 [controller release];
}

This may be new to you, so let’s review it. The first thing we do is retrieve the name of

the controller class that should be used to edit this particular row.

 NSString *controllerClassName = [rowControllers
 nestedObjectAtIndexPath:indexPath];

We also retrieve the attribute name and label for the selected row.

 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];
 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];

Next, we use a special function called NSClassFromString() that creates an instance of a

class based on its name stored in an NSString instance.

 Class controllerClass = NSClassFromString(controllerClassName);

After this line of code, controllerClass will be the class object for the class whose name

we put in the rowController array. You can use a Class object just like you can the

name of the class when you alloc a new object. So, if controllerClassName was Foo,

then doing

 id theObject = [controllerClass alloc];

would be exactly the same as calling

 id theObject = [foo alloc];

So, in the next line of code, we do this:

 ManagedObjectAttributeEditor *controller =
 [controllerClass alloc];

Here, we’re actually creating an instance of the class that will be used to edit this

particular attribute. That’s probably a little confusing and, if so, don’t worry too much. It

can take some time to get used to Objective-C’s dynamic nature. We’ve already

CHAPTER 4: The Devil in the Detail View 120

allocated the controller. Now, we just need to initialize it, set its properties, then push it

onto the navigation stack, like so:

 controller = [controller initWithStyle:UITableViewStyleGrouped];
 controller.keypath = rowKey;
 controller.managedObject = hero;
 controller.labelString = rowLabel;
 controller.title = rowLabel;
 [self.navigationController pushViewController:controller animated:YES];
 [controller release];

Save HeroEditController.m and build and run your application. You should be able to

edit all the attributes by tapping a row.

Implementing a Selection List
There’s one last loose end to take care of. This version of our application uses the string

attribute editor to solicit the sex (sorry, we couldn’t resist!) of the superhero. This means

that there is no validation on the input other than that it’s a valid string. A user could

type M, Male, MALE, or Yes, Please, and they would all be happily accepted by the

string attribute editor. That means, later on, if we want to let the user sort or search their

heroes by gender, we could have problems, because the data won’t be structured in a

consistent manner.

As you saw earlier, we could have enforced a specific sex spelling by using a regular

expression, putting up an alert if the user typed something besides Male or Female. This

would have prevented values other than the ones we want from getting entered, but this

approach is not all that user friendly. We don’t want to annoy our user. Why make them

type anything at all? There are only two possible choices here. Why not present a

selection list and let the user just tap the one they want? Hey, that sounds like a great

idea! We’re glad you thought of it. Let’s implement it now, shall we?

We could, of course, write a special controller to present a two-item list, but that

wouldn’t be the best use of our time. Such a controller would only be useful when we

were soliciting sex (gee, did we do that again?). Wouldn’t it be more useful to create a

controller that can be used for any selection list? Of course it would, so let’s do that.

Creating the Generic Selection List Controller
Create a new table view controller as you did previously, calling this class

ManagedObjectSingleSelectionListEditor. After you create the files, single-click on

ManagedObjectSingleSelectionListEditor.h and replace its contents with the following

code:

#import <UIKit/UIKit.h>
#import "ManagedObjectAttributeEditor.h"

@interface ManagedObjectSingleSelectionListEditor :
 ManagedObjectAttributeEditor {
 NSArray *list;

CHAPTER 4: The Devil in the Detail View 121

@private
 NSIndexPath *lastIndexPath;
}
@property (nonatomic, retain) NSArray *list;
@end

The structure here might seem somewhat familiar. It’s almost identical to one of the

controllers from the Nav application in Chapter 9 of Beginning iPhone 3 Development.
The list property will contain the array of values from which the user can select, and

lastIndexPath will be used to keep track of the selection.

Save ManagedObjectSingleSelectionListEditor.h and single-click on

ManagedObjectSingleSelectionListEditor.m. Replace the contents of that file with the

following code:

#import "ManagedObjectSingleSelectionListEditor.h"

@implementation ManagedObjectSingleSelectionListEditor
@synthesize list;
-(IBAction)save {
 UITableViewCell *selectedCell = [self.tableView
 cellForRowAtIndexPath:lastIndexPath];
 NSString *newValue = selectedCell.textLabel.text;
 [self.managedObject setValue:newValue forKey:self.keypath];
 NSError *error;
 if (![self.managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);

 [self.navigationController popViewControllerAnimated:YES];
}

- (void)viewWillAppear:(BOOL)animated
{
 NSString *currentValue = [self.managedObject valueForKey:self.keypath];
 for (NSString *oneItem in list) {
 if ([oneItem isEqualToString:currentValue]) {
 NSUInteger newIndex[] = {0, [list indexOfObject:oneItem]};
 NSIndexPath *newPath = [[NSIndexPath alloc] initWithIndexes:
 newIndex length:2];
 [lastIndexPath release];
 lastIndexPath = newPath;
 break;
 }
 }
 [super viewWillAppear:animated];
}

- (void)dealloc {
 [list release];
 [lastIndexPath release];
 [super dealloc];
}

#pragma mark -
#pragma mark Table View Methods

CHAPTER 4: The Devil in the Detail View 122

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [list count];
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 int newRow = [indexPath row];
 int oldRow = [lastIndexPath row];

 if (newRow != oldRow || newRow == 0) {
 UITableViewCell *newCell = [tableView cellForRowAtIndexPath:indexPath];
 newCell.accessoryType = UITableViewCellAccessoryCheckmark;

 UITableViewCell *oldCell = [tableView cellForRowAtIndexPath:lastIndexPath];
 oldCell.accessoryType = UITableViewCellAccessoryNone;

 [lastIndexPath release];
 lastIndexPath = indexPath;
 }
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *GenericManagedObjectListSelectorCell =
 @"GenericManagedObjectListSelectorCell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:GenericManagedObjectListSelectorCell];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:GenericManagedObjectListSelectorCell] autorelease];
 }
 NSUInteger row = [indexPath row];
 NSUInteger oldRow = [lastIndexPath row];
 cell.textLabel.text = [list objectAtIndex:row];
 cell.accessoryType = (row == oldRow && lastIndexPath != nil) ?
 UITableViewCellAccessoryCheckmark : UITableViewCellAccessoryNone;
 return cell;
}

@end

There’s really nothing new here. The logic we’re using is exactly the same that we used

in the Nav application. If you aren’t sure what’s going on here, go back and take a look

through Chapter 9 of Beginning iPhone 3 Development. The only difference here is that

we’re using the keypath and managedObject to determine the initial selection and then

pushing the final selection back into managedObject when the user presses the Save

button.

Now, the question is, how do we provide the values (Male and Female) to this

subcontroller? Remember: we want to avoid creating special cases. We want to keep

our code as generic as possible. We don’t want to, for example, hard code a check for

this new controller’s class, and then set the list property. That would work, but we want

to find a solution that’s flexible, reusable, and easy to maintain as our application grows.

CHAPTER 4: The Devil in the Detail View 123

What we’re going to do is create another paired nested array to hold additional

arguments to be passed on to the subordinate controller. Anything we put into this

dictionary for a given row will be passed along to the subordinate controller using key-

value coding. This gives us the flexibility to pass on any information to any controller we

create.

The first step toward implementing this is to add an instance variable for the new nested

array. Single-click HeroEditController.h and add the following line of code:

#import <UIKit/UIKit.h>

@interface HeroEditController : UITableViewController {
 NSManagedObject *hero;

@private
 NSArray *sectionNames;
 NSArray *rowLabels;
 NSArray *rowKeys;
 NSArray *rowControllers;
 NSArray *rowArguments;
}

@property (nonatomic, retain) NSManagedObject *hero;

@end

Save HeroEditController.h and flip over to HeroEditController.m. We need to make two

changes here. First, we need to create and populate the new rowArguments array. And

second, we need to write code to pass the key/value pairs from that array on to the

subordinate controller.

First, look for the viewDidLoad method. Find where we create and populate

rowControllers, and replace that code with the following version, which changes the

controller used for the row that represents the hero’s sex.

 rowControllers = [[NSArray alloc] initWithObjects:
 // Section 1
 [NSArray arrayWithObject:@"ManagedObjectStringEditor"],

 // Section 2
 [NSArray arrayWithObjects:@"ManagedObjectStringEditor",
 @"ManagedObjectDateEditor",
 @"ManagedObjectSingleSelectionListEditor", nil],

 // Sentinel
 nil];

 rowArguments = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObject:[NSNull null]],

 // Section 2,
 [NSArray arrayWithObjects:[NSNull null],

CHAPTER 4: The Devil in the Detail View 124

 [NSNull null],
 [NSDictionary dictionaryWithObject:[NSArray
 arrayWithObjects:@"Male", @"Female", nil]
 forKey:@"list"],
 nil],

 // Sentinel
 nil];

Pretty straightforward, right? Most of the rows don’t need any arguments, so we use our

friend NSNull again as placeholders for those rows in the rowArguments array. We could

have also created empty instances of NSArray to represent rows that need no arguments

passed on, but it seemed silly to create new instances when we have a singleton object

instance already around and ready made just for this kind of work.

Now, find tableView:didSelectRowAtIndexPath: and insert the following code, which

retrieves the arguments for this row and, if the object retrieved is a dictionary, it loops

through the keys contained in that dictionary and passes the key and value on to the

controller.

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSString *controllerClassName = [rowControllers
 nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];
 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 Class controllerClass = NSClassFromString(controllerClassName);
 AbstractManagedObjectAttributeEditor *controller =
 [controllerClass alloc];
 controller = [controller initWithStyle:UITableViewStyleGrouped];
 controller.keypath = rowKey;
 controller.managedObject = hero;
 controller.labelString = rowLabel;
 controller.title = rowLabel;

 NSDictionary *args = [rowArguments nestedObjectAtIndexPath:indexPath];
 if ([args isKindOfClass:[NSDictionary class]]) {
 if (args != nil) {
 for (NSString *oneKey in args) {
 id oneArg = [args objectForKey:oneKey];
 [controller setValue:oneArg forKey:oneKey];
 }
 }
 }

 [self.navigationController pushViewController:controller animated:YES];
 [controller release];
}

CHAPTER 4: The Devil in the Detail View 125

TIP: The isKindOfClass: method that we used in this new chunk of code is a method that
will return YES when called on an instance of a specific class or an instance of any class that
descends from that class. In this case, since we pass the NSArray class object in as an
argument, the method will return YES if args was an instance of NSDictionary or if it was an
instance of NSMutableDictionary, but would return NO if args is the singleton NSNull.

Save HeroEditController.m and build and run the application. This time, when you tap on

the row labeled Sex, you should get a nice, user-friendly list like in Figure 4–11.

Figure 4–11. The selection list controller being used to present two options for the sex attribute

Devil’s End
Well, we’re at the end of a long and conceptually difficult chapter. You should

congratulate yourself on making it all the way through with us. Table-based detail editing

view controllers are some of the hardest controller classes to write well, but now you

have a handful of tools in your toolbox to help you create them. You’ve seen how to use

nested and paired arrays to define your table view’s structure, you’ve seen how to

create generic classes that can be used to edit multiple types of data, and you’ve also

seen how to use Objective-C’s dynamic nature to create instances of classes based on

the name of the class stored in an NSString instance.

Ready to move on? Turn the page. Let’s get going!

CHAPTER 4: The Devil in the Detail View 126

127

127

 Chapter

Preparing for Change:
Migrations and Versioning
By the time you reached the end of Chapter 4, you mastered a great deal of the Core

Data architecture and functionality. Together, we built a fully functioning, albeit

somewhat simple, Core Data application. You’ve now got enough Core Data chops to

build a solid app, send it to your testers, and then on to the App Store.

But what happens if you change your data model and send a new version of your

application out to testers who already have the previous version? Consider our SuperDB

app. Let’s say we decide to add a new attribute to the Hero entity, make one of the

existing, currently optional attributes required, and then add a new entity. Can we just

send the program out to our users, or is this going to cause problems with their data?

As things stand right now, if you make changes to your data model, the existing data

sitting in the user’s persistent store on their iPhone will be unusable in the new version

of your application. Your application will crash on launch. If you launch the new version

from Xcode, you will see a big, scary error message like the following:

2009-09-08 14:37:26.392 SuperDB[4138:207] Unresolved error Error
Domain=NSCocoaErrorDomain Code=134100 UserInfo=0x14049d0 "Operation could not be
completed. (Cocoa error 134100.)", {
 metadata = {
 NSPersistenceFrameworkVersion = 241;
 NSStoreModelVersionHashes = {
 Hero = <209a8e07 84180c10 08c4a2fe a68af2a1 e0d620b1 f592e6b0 66ea6663
ef6bc252>;
 };
 NSStoreModelVersionHashesVersion = 3;
 NSStoreModelVersionIdentifiers = (
);
 NSStoreType = SQLite;
 NSStoreUUID = "663F93E0-BD32-4F80-87F2-D72011101610";
 };
 reason = "The model used to open the store is incompatible with the one used to
create the store";
}

5

CHAPTER 5: Preparing for Change: Migrations and Versioning 128

If this happens in development, it’s not usually a big deal. If nobody else has a copy of

your app and you don’t have any irreplaceable data stored in it, you can just select Reset
Content and Settings… from the iPhone Simulator menu in the simulator or uninstall the

application from your iPhone using Xcode’s Organizer window, and Core Data will

create a new persistent store based on the revised data model next time you install and

run your application.

If, however, you have given the application to others, they will be stuck with an unusable

application on their iPhone unless they uninstall and re-install the application, thereby

losing all of their existing data.

As you probably imagine, this is not something that makes for particularly happy

customers. In this chapter, we’re going to show you how to version your data model,

then we’ll talk a little bit about Apple’s mechanism for converting data between different

data model versions, which are called migrations. We’ll talk a little about the difference

between the two types of migrations: lightweight migrations and standard
migrations. Then we will set up our SuperDB Xcode project to use lightweight

migrations so that the changes we make in the next few chapters won’t cause problems

for our (admittedly non-existent) users.

At the end of this chapter, our SuperDB application will be all set up and ready for new

development, including changes to our data model, without having to worry about our

users losing their data when we ship our new verion.

About Data Models
When you create a new Xcode project using a template that supports Core Data, you

are provided with a single data model in the form of an .xcdatamodel file in your

project’s Resources folder. In Chapter 2, we saw how this file was loaded into an

instance of NSManagedObjectModel at runtime in the application delegate’s

managedObjectModel method. In order to understand versioning and migrations, it’s

important to look a little deeper under the hood to see what’s going on.

Data Models Are Compiled
The .xcdatamodel class in your project does not get copied into your application’s

bundle the way other resources do. The data model file contains a lot of information that

your application doesn’t need. For example, it contains information about the layout of

the objects in Xcode’s data model editor’s diagram view (Figure 5–1) that is only there to

make your life easier. Your application doesn’t care about how those rounded

rectangles are laid out, so there’s no reason to include that information inside your

application bundle.

Instead, your .xcdatamodel files get compiled into a new type of file with an extension of

.mom, which stands for managed object model (sorry, Mom). This is a much more

compact binary file that contains just the information that your application needs. This

.mom file is what is actually loaded to create instances of NSManagedObjectModel.

CHAPTER 5: Preparing for Change: Migrations and Versioning 129

Figure 5–1. The fact that the rounded rectangle representing our Hero entity is in the upper-left corner and the
disclosure triangle next to Attributes and Relationships are expanded is stored in the .xcdatamodel file but not in
the .mom file

Data Models Can Have Multiple Versions
You most likely understand what versioning means, in a general sense. When a

company releases a new version of a piece of software with new features, it typically has

a new number or designation. For example, you are working on a specific version of

Xcode (for us, it’s 3.2.1), and a specific version of Mac OS X (for us it’s 10.6.2, also

known as Snow Leopard).

These are what are called marketing version identifiers or numbers, as they are

primarily intended to let customers tell the difference between different released

versions of the software. Marketing versions are incremented when a new version of the

program is released to customers.

There are other, finer-grained forms of versioning used by developers, however. If

you’ve ever used a concurrent versioning system such as cvs, svn, or git, you’re

probably aware of how this all works. Versioning software keeps track of the changes

over time to all of the individual source code and resource files that make up your

project (among other things).

CHAPTER 5: Preparing for Change: Migrations and Versioning 130

NOTE: We’re not going to be discussing regular version control, but it’s a good thing to know
about if you’re a developer. Fortunately, there are a lot of resources on the Web for learning to
use and install different version-control software packages. A good place to start is the Wikipedia
page on version control at: http://en.wikipedia.org/wiki/Revision_control.

Xcode integrates with several version-control software packages, but it also has some

built-in version-control mechanisms, including one that’s intended for use with Core

Data data models. Creating new versions of your data models is the key to keeping your

users happy. Every time you release a version of your application to the public, you

should create a new version of your data model. This will create a new copy so that the

old version can be kept around to help the system figure out how to update the data

from a persistent store made with one version to a newer version.

Creating a New Data Model Version
Single-click SuperDB.xcdatamodel in Xcode. Now click the Design menu, select the Data
Model sub-menu and, finally, select Add Model Version. You just added a new version of

your data model. Once you select that, the SuperDB.xcdatamodel file will disappear

from your Resources group and be replaced by a new resource with the extension

.xcdatamodeld with a disclosure triangle next to it. This is your indication that you have a

versioned data model (Figure 5–2).

Figure 5–2. The .xcdatamodeld extension indicates a versioned data model

If you expand the disclosure triangle next to SuperDB.xcdatamodeld, you can see all the

different versions of your data model. The icon for one of the versions will have a green

checkmark on it (Figure 5–3). This indicates the current version, which is the one that

your application will use. By default, when you create a new version, the current version

continues to be the one with the original name, and the copy is created with the same

name but an incrementally larger number affixed to the end. In our case, the one we just

created, SuperDB 2.xcdatamodel, is the original data model that represents what our

data model looked like at the time we created the new version. It should be left

untouched.

The fact that the higher number is the older file might seem a little weird but, as more

versions accumulate, the numbering will make more sense. The next time we create a

http://en.wikipedia.org/wiki/Revision_control

CHAPTER 5: Preparing for Change: Migrations and Versioning 131

new version, the old version will be named SuperDB 3.xcdatamodel, and so on. The

numbering makes sense for all the non-current versions, since each version will have a

number one higher than the previous one. By keeping the name of the current model the

same, it’s easy to tell which one you should be making changes to.

Figure 5–3. A versioned data model contains the current version, marked with a green checkmark on its icon,
along with every previous version

The Current Data Model Version
In Figure 5–3, SuperDB.xcdatamodel is the current version of the data model, and

SuperDB 2.xcdatamodel is the previous version. You can now safely make changes to

the current version, knowing that a copy of the previous version exists, frozen in time,

which will give us the ability to migrate our users’ data from the old version to the next

version when we release it.

You can change which version is the current version. To do this, select the data model

you want to make current, then select Set Current Version from the Design menu, Data Model
submenu. You won’t do this often, but you might do it if you needed to revert to an older

version of the application for some reason. You can use migrations to go back to an

older version as well as move to a new version.

Data Model Version Identifiers
Although you can assign version identifiers like 1.1 or Version A to data models by

selecting the data model in the Groups & Files pane and pressing I to bring up the

Info window (Figure 5–4), this identifier is purely for your own use and is completely

ignored by Core Data.

Instead, Core Data performs a mathematical calculation called a hash on each entity in

your data model file. The hash values are stored in your persistent store. When Core

Data opens your persistent store, Core Data uses these hash values to ensure that the

version of your data stored in the store are compatible with the current data model.

Since Core Data does its version validation using the stored hash values, you don’t need

to worry about incrementing version numbers for versioning to work. Core Data will just

know which version a persistent store was created for by looking at the stored hash

value and comparing it to the hash calculated on the current version of the data model.

CHAPTER 5: Preparing for Change: Migrations and Versioning 132

Figure 5–4. The Info window for a data model will allow you to set a version identifier.

Using the Versioned Data Model
Back in Chapter 2, when we walked through the Core Data template, we looked at this

accessor method:

- (NSManagedObjectModel *)managedObjectModel {

 if (managedObjectModel != nil) {
 return managedObjectModel;
 }
 managedObjectModel = [[NSManagedObjectModel mergedModelFromBundles:nil] retain];
 return managedObjectModel;
}

During our discussion, we said that mergedModelFromBundles: iterated through all the

resources in your application’s bundle and loaded any data models it found. Well, that’s

perfectly true, but this can cause a problem when you’re using versioned data models.

When versioned data models are compiled, they get compiled to a .momd, which is a

versioned managed object model containing the current data model and all previous

versions of it. Before we versioned our data model, it was getting compiled to a .mom

file. The NSManagedObjectModel class is capable of working with either a .mom or a

CHAPTER 5: Preparing for Change: Migrations and Versioning 133

.momd file, but just to be safe, we’re going to point it to the .momd file now that we’ve

versioned our data model to make sure it’s loading the correct one.

Strictly speaking, this isn’t necessary; however, unless you do a clean build after

versioning your data model, the existing .mom file will still be part of your application.

When mergedModelFromBundles: is used in this scenario, it attempts to load both the

versioned and non-versioned data model into a single instance of

NSManagedObjectModel. Since a managed object model can only have one copy of any

entity and these two data models will contain at least some of the same entities, this call

will fail.

If you experience this problem, selecting Clean… from the Build menu will delete the old

data model file, fixing the problem. We like to take the uncertainty out of the situation by

tweaking the way our NSManagedObjectModel instance is created so that it always loads

the correct file no matter what our application bundle contains. This is an optional step;

however, it will avoid some potentially hard-to-debug scenarios.

In Xcode, single-click on the SuperDBAppDelegate.m file and scroll down to the method

called managedObjectModel. Replace the existing version with this new version:

- (NSManagedObjectModel *)managedObjectModel {
 if (managedObjectModel != nil) {
 return managedObjectModel;
 }

 NSString *path = [[NSBundle mainBundle] pathForResource:@"SuperDB"
 ofType:@"momd"];
 NSURL *momURL = [NSURL fileURLWithPath:path];
 managedObjectModel = [[NSManagedObjectModel alloc]
 initWithContentsOfURL:momURL];

 return managedObjectModel;
}

This is pretty straightforward. Instead of using the factory method

mergedModelFromBundles:, we’re allocating an instance of NSManagedObjectModel from a

single managed object model, but notice the type of the resource we’re requesting.

We’re not specifying a regular managed object model (.mom), we’re specifying the

versioned object model (.momd). By specifying the .momd file, we’re telling Core Data to

only use the versioned data model. Core Data is savvy enough to only load the current

version, and will use the other ones only if a migration is necessary.

Which is a nice segue into…

Migrations
As you saw at the beginning of the chapter, when Core Data detects that the persistent

store in use is incompatible with the current data model, it throws an exception. The

solution is to provide a migration to tell Core Data how to move data from the old

persistent store to a new one that matches the current data model.

CHAPTER 5: Preparing for Change: Migrations and Versioning 134

Lightweight vs. Standard
There are two different types of migrations supported by Core Data. The first, called a

lightweight migration, is only available in the case of relatively straightforward

modifications to your data model. If you add or remove an attribute from an entity or add

or delete an entity from the data model, for example, Core Data is perfectly capable of

figuring out how to migrate the existing data into the new model. In the case of a new

attribute, it simply creates storage for that attribute, but doesn’t populate it with data for

the existing managed objects. In a lightweight migration, Core Data actually analyzes the

two data models and creates the migration for you.

If you make a change that’s not straightforward and thus can’t be resolved by the

lightweight migration mechanism, then you have to use a standard migration. A

standard migration involves creating a mapping model and possibly writing some code

to tell Core Data how to move the data from the old persistent store to the new one.

Standard Migrations
The changes we will be making to the SuperDB application in this book are all pretty

straightforward, and an in-depth discussion of standard migrations is beyond the scope

of this book. Apple has documented the process fairly thoroughly in the developer

documentation, though, so you can read more about standard migrations at
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CoreDataV
ersioning/index.html.

Setting up Your App to Use Lightweight Migrations
On the other hand, we will be using lightweight migrations a lot through the rest of the

book. In every remaining Core Data chapter, we will create a new version of our data

model and let lightweight migrations handle moving the data. However, lightweight

migrations are not turned on by default, so we need to make some more changes to our

application delegate to enable them.

Back in Xcode, SuperDBAppDelegate.m should still be showing in the editing pane. If

it’s not, single-click SuperDBAppDelegate.m. Use the function pop-up menu to navigate

to the existing persistentStoreCoordinator method. It should look basically like this:

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 if (persistentStoreCoordinator != nil) {
 return persistentStoreCoordinator;
 }

 NSURL *storeUrl = [NSURL fileURLWithPath: [[self applicationDocumentsDirectory]
 stringByAppendingPathComponent: @"SuperDB.sqlite"]];

 NSError *error = nil;
 persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CoreDataV

CHAPTER 5: Preparing for Change: Migrations and Versioning 135

 initWithManagedObjectModel:[self managedObjectModel]];
 if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil URL:storeUrl options:nil error:&error]) {

 // error handling code goes here
 }
 return persistentStoreCoordinator;
}

The way that we turn on lightweight migrations is to pass a dictionary in to the options

argument when we call the

addPersistentStoreWithType:configuration:URL:options:error: method to add our

newly created persistent store to the persistent store coordinator. In that dictionary, we

use two system-defined constants, NSMigratePersistentStoresAutomaticallyOption

and NSInferMappingModelAutomaticallyOption, as keys in the dictionary, and store an

NSNumber under both of those keys that holds an Objective-C YES value. By passing a

dictionary with these two values in when we add the persistent store to the persistent

store coordinator, we indicate to Core Data that we want it to attempt to automatically

create migrations if it detects a change in the data model version, and if it’s able to

create the migrations, to automatically use those migrations to migrate the data to a new

persistent store based on the current data model.

Replace the existing version with this new one.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 if (persistentStoreCoordinator != nil) {
 return persistentStoreCoordinator;
 }

 NSURL *storeUrl = [NSURL fileURLWithPath: [[self applicationDocumentsDirectory]
 stringByAppendingPathComponent: @"SuperDB.sqlite"]];

 NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,
 [NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];

 NSError *error = nil;
 persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:[self managedObjectModel]];
 if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil URL:storeUrl options:options error:&error]) {

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return persistentStoreCoordinator;
}

And that’s it. With these changes made to our project, we are ready to start making

changes to our data model without fear. Well, maybe not completely without fear. By

using lightweight migrations, we limit the complexity of the changes we’re able to make.

For example, we won’t be able to split an entity up into two different entities or move

attributes from one entity to another, but the majority of changes you’ll need to make

CHAPTER 5: Preparing for Change: Migrations and Versioning 136

outside of major refactoring can be handled by lightweight migrations, and once you set

your project up the way we’ve done in this chapter, that functionality is basically free.

Time to Migrate On
After a couple of long, conceptually difficult chapters, taking a break to set up our

project to use migrations gave us a nice breather, but don’t underestimate the

importance of migrations. The people who use your applications are trusting you to take

a certain amount of care with their data. Putting some effort into making sure that your

changes don’t cause major problems for your users is important.

Any time you put out a new release of your application with a new data model version,

make sure you test the migration thoroughly. This is true regardless of whether you’re

using the lightweight migrations we set up in this chapter or the heavier-duty standard

migrations.

Migrations, especially lightweight migrations, are relatively easy to use, but they hold the

potential for causing your users significant inconvenience, so don’t get lulled into a false

sense of security by how easy they are to use. Test every migration thoroughly with as

much realistic data as you can.

And with that warning out of the way, let’s continue adding functionality to our SuperDB

application. Up next? Custom managed objects for fun and profit.

v@v
Text Box
Download at WoweBook.com

137

137

 Chapter

Custom Managed Objects
At the moment, our Hero entity is represented by instances of the class

NSManagedObject. Thanks to key value coding, we have the ability to create entire data

models without ever having to create a class specifically designed just to hold our

application’s data.

There are some drawbacks to this approach, however. For one thing, when using key

value coding with managed objects, we use NSString constants to represent our

attributes in code, but these constants are not checked in any way by the compiler. If we

mistype the name of an attribute, the compiler won’t catch it. It can also be a little

tedious, having to use valueForKey: and setValue:forKey: all over the place instead of

just using properties and dot notation.

Although you can set default values for some types of data model attributes, you can’t,

for example, set conditional defaults such as defaulting a date attribute to today’s date.

For some types of attributes, there’s no way at all to set a default in the data model.

Validation is similarly limited. Although you can control certain elements of some

attributes, like the length of a string, or max value of a number, there’s no way to do

complex or conditional validation, or to do validation that depends on the values in

multiple attributes.

Fortunately, NSManagedObject can be subclassed, just like other Objective-C classes,

and that’s the key to doing more advanced defaulting and validation. It also opens the

door to adding additional functionality to your entity by adding methods. You can, for

example, create a method to return a value calculated from one or more of the entity’s

attributes.

In this chapter, we’re going to create a custom subclass of NSManagedObject for our

Hero entity, then we’re going to use that subclass to add some additional functionality.

We’re also going to add two new attributes to Hero. One is the hero’s age. Instead of

storing the age, we’re going to calculate it based on their birthdate. As a result, we won’t

need Core Data to create space in the persistent store for the hero’s age, so we’re going

to use the Transient attribute type and then write an accessor method to calculate and

return the hero’s age. The Transient attribute type tells Core Data not to create storage

for that attribute. In our case, we’ll calculate the hero’s age as needed at run time.

6

CHAPTER 6: Custom Managed Objects 138

The second attribute we’re going to add is the hero’s favorite color. Now, there is no

attribute type for colors, so we’re going to implement something called a transformable
attribute. Transformable attributes use a special object called a value transformer to

convert custom objects to instances of NSData so they can be stored in the persistent

store. We’ll write a value transformer that will let us save UIColor instances this way. In

Figure 6–1, you can see what the detail editing view will look like at the end of the

chapter with the two new attributes in place. Notice that the row for Age doesn’t have a

disclosure indicator next to it. That’s our users’ clue that it’s not an editable field.

Figure 6–1. The hero detail editing view as it will look at the end of the chapter

Of course, we don’t have an attribute editor for colors, so we’ll have to write one of

those to let the user select the hero’s favorite color. We’re just going to create a simple,

slider-based color chooser (Figure 6–2).

Because there’s no way to set a default color in the data model, we’re going to write

code to default the favorite color attribute to white. If we don’t do that, then the color will

be nil when the user goes to edit it the first time, which will cause problems.

Finally, we’ll add validation to the date field to prevent the user from selecting a

birthdate that occurs in the future and we’re also going to tweak our attribute editors so

that they notifiy the user when an entered attribute has failed validation. We’ll give the

user the option to go back and fix the attribute, or to just cancel the changes they made

(Figure 6–3).

CHAPTER 6: Custom Managed Objects 139

Figure 6–2. The color attribute editor that we will be building in this chapter

Figure 6–3. When attempting to save an attribute that fails validation, the user will have the option of fixing the
problem, or cancelling their changes

CHAPTER 6: Custom Managed Objects 140

Although we’re only going to be adding validation to the Birthdate field, the reporting

mechanism we’re going to write will be generic and reusable if you add validation to

another field. You can see an example of our generic error alert in Figure 6–4.

Figure 6–4. Since our goal is generally to write reusable code, our validation mechanism will also enforce
validations done on the data model, such as minimum length.

There’s a fair amount of work to do, so let’s get started. We’re going to continue

working with the same SuperDB application from last chapter. Make sure that you

created a new version of your data model and that you turned on lightweight migrations

as shown in the last chapter.

Updating the Data Model
The first order of business is to add our two new attributes to the data model. Make sure

that the disclosure triangle next to SuperDB.xcdatamodeld in the Resources folder is

expanded, and single-click on the current version of the data model, the one with the

green check mark icon on it.

Once the data model editor comes up, select the Hero entity by clicking either on the

rounded rectangle in the diagram view or on the row labeled Hero in the entity pane

(Figure 6–5).

CHAPTER 6: Custom Managed Objects 141

Figure 6–5. Selecting the Hero entity so that we can add new attributes to it

Adding the Age Attribute
Click the plus icon in the lower left of the property pane and select Add Attribute to add a

new attribute. Change the new attribute’s name to age, then check the Transient check

box. That will tell Core Data that we don’t need to store a value for this attribute. In our

case, since we’re using SQLite for our persistent store, this will tell Core Data not to add

a column for age to the database table used to store hero data. Change the type to

Integer 16; we’re going to calculate age as a whole number. That’s all we have to do for

now for the age attribute. Of course, as things stand, we can’t do anything meaningful

with this particular attribute, because it can’t store anything, and we don’t yet have any

way to tell it how to calculate the age. That will change in a few minutes, when we create

a custom subclass of NSManagedObject.

Adding the Favorite Color Attribute
Click the plus icon in the property pane again and select Add Attribute one more time. This

time, call the new attribute favoriteColor and set the Type to Transformable. Once you’ve

changed the Type pop-up to Transformable, you should notice a new field called Value
Transformer Name: (Figure 6–6).

CHAPTER 6: Custom Managed Objects 142

Figure 6–6. Making the favoriteColor attribute a transformable attribute

The Value Transformer Name: field is the key to using transformable attributes. We’ll

discuss value transformers in more depth in just a few minutes, but we’ll populate this

field now to save ourselves a trip back to the data model editor later. This field is where

we need to put the name of the value transformer class that will be used to convert

whatever object represents this attribute into an NSData instance for saving in the

persistent store, and vice versa. The default value, NSKeyedUnarchiveFromData, will

work with a great many objects by using NSKeyedArchiver and NSKeyedUnarchiver to

convert any object that conforms to the NSCoding protocol into an instance of NSData.

For most types of objects, this default transformer will work just fine, and our work

would be basically done. Unfortunately, UIColor does not conform to NSCoding, which

means that this value won’t work for our situation. Instead, we need to write a custom

value transformer class and provide its name here.

Because we have a crystal ball (well, OK, because we wrote the code), we know that

we’re going to call our value transformer UIColorRGBValueTransformer, so type that into

the Value Transformer Name: field now.

CAUTION: The data model editor does not validate the Value Transformer Name: field to make
sure it is a valid class. We’re utilizing that fact right now to let us put in the name of a non-
existent class that we’ll write later. It’s a double-edged sword, however, since mistyping the
name of the value transformer won’t show up as a problem until runtime and can be hard to
debug, so make sure you are very careful about typing the correct name in this field.

Adding a Minimum Length to the Name Attribute
Next, let’s add some validation to ensure that our name attribute is at least one

character long. Single-click the name attribute to select it. In the Min. Length field, enter

1 to specify that the value entered into this field has to be at least one character long.

This may seem like a redundant validation, since we already unchecked Optional in a

previous chapter for this attribute, but the two do not do exactly the same thing.

Because the Optional check box is unchecked, the user will be prevented from saving if

name is nil. However, our application takes pains to ensure that name is never nil. For

CHAPTER 6: Custom Managed Objects 143

example, we give name a default value. If the user deletes that value, the text field will

still return an empty string instead of nil. Therefore, to ensure that an actual name is

entered, we’re going to add this validation.

Save the data model.

Creating the Hero Class
It’s now time to create our custom subclass of NSManagedObject. This will give us the

flexibility to add custom validation and defaulting as well as the ability to use properties

instead of key value coding, which will make our code easier to read and give us

additional checks at compile time.

Single-click the Classes folder in the Groups & Files pane of Xcode. The data model

editor should still be showing in the editing pane. If it’s not, single-click the current

version of the data model again, and then select the Classes folder. Now, single-click

anywhere in the diagram pane. As you’ll see in a moment, in order for our next step to

work, the data model editor must be in the editing pane and the editing pane must be

the active pane.

Now, select New File… from the File menu or press N. When the new file assistant pops up,

select Cocoa Touch Class from under the iPhone OS heading in the left pane, then look for

an icon in the upper-right pane that you’ve probably never seen before: Managed Object
Class. This template is only available when the editing pane is currently showing a Core Data

data model and is the active pane. Select it, and click the Next button.

Figure 6–7. Selecting the Managed Object Class template

CHAPTER 6: Custom Managed Objects 144

Instead of prompting you for a file name, it’s going to present you with a slightly different

dialog than the one you usually see (Figure 6–8). This new dialog asks you only where it

should put the generated file or files, but not what they should be called. It will name the

subclasses automatically based on their entity name. Click the Next button again.

Figure 6–8. With the Managed Object Class template, you are not prompted for a name

After clicking Next, you’ll get a new dialog that lists all the entities in the active data

model. In our case, we only have a single entity, so it’s a pretty short list (Figure 6–9).

Make sure that the Hero entity is checked and that both Generate accessors and

Generate Obj-C 2.0 Properties are checked. That will cause Xcode to create properties

in the new class automatically for all the attributes. Leave the Generate validation
methods check box unchecked. That option will generate method stubs for validating

our attributes. Since we’re going to write code to validate only one attribute, we’ll write

the methods by hand. If we were to select this, it would give us method stubs for

validating every property in our entity. Once your screen looks like Figure 6–9, click the

Finish button.

CHAPTER 6: Custom Managed Objects 145

Figure 6–9. Selecting the entities for which to create custom classes

Tweaking the Hero Header
You should now have a pair of files called Hero.h and Hero.m in your Classes folder.

Xcode also tweaked your data model so that the Hero entity uses this class rather than

NSManagedObject at runtime. Single-click on the new Hero.h file now. It should look

something look like this, though the exact order of your property declarations may not

be exactly the same as ours:

#import <CoreData/CoreData.h>

@interface Hero : NSManagedObject
{
}

@property (nonatomic, retain) NSNumber * age;
@property (nonatomic, retain) NSString * secretIdentity;
@property (nonatomic, retain) NSString * sex;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSDate * birthdate;
@property (nonatomic, retain) id favoriteColor;

@end

CHAPTER 6: Custom Managed Objects 146

CAUTION: If your Hero.h file does not include declarations of age and favoriteColor,
chances are you did not save properly somewhere along the way. If so, select Hero.h and Hero.m
in your project file and press Delete, being sure the files are moved to the trash. Then go back,
make sure your attributes were properly created in your data model, make sure the data model
was saved, then recreate Hero.h and Hero.m.

We need to make two quick changes here. First, we want to make age read-only. We’re

not going to allow people to set a hero’s age, we’re just going to calculate it based on

the birthdate. We also want to change favoriteColor from the generic id to UIColor to

indicate that our favoriteColor attribute is, in fact, an instance of UIColor. This will give

us some additional type safety by letting the compiler know what type of object

represents the favoriteColor attribute. We also need to add a couple of constants that

will be used in our validation methods. Make the following changes to Hero.h:

#import <CoreData/CoreData.h>

#define kHeroValidationDomain @"com.Apress.SuperDB.HeroValidationDomain"
#define kHeroValidationBirthdateCode 1000

@interface Hero : NSManagedObject
{
}

@property (nonatomic, retain) id favoriteColor;
@property (nonatomic, retain) UIColor * favoriteColor;
@property (nonatomic, retain) NSNumber * age;
@property (nonatomic, readonly) NSNumber * age;
@property (nonatomic, retain) NSString * secretIdentity;
@property (nonatomic, retain) NSString * sex;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSDate * birthdate;

@end

Don’t worry too much about the two constants. We’ll explain error domains and error

codes in a few moments. Switch over to Hero.m. We’ve got a bit more work to do in the

implementation file. Before we do that, let’s talk about what we’re going to do.

Defaulting
One of the most common Core Data tasks that requires you to subclass

NSManagedObject is setting conditional default values for attributes, or setting the default

value for attribute types that can’t be set in the data model, such as default values for

transformable attributes.

NSManagedObject has a method called awakeFromInsert that is specifically designed to

be overridden by subclasses for the purpose of setting default values. It gets called

CHAPTER 6: Custom Managed Objects 147

immediately after a new instance of an object is inserted into a managed object context

and before any code has a chance to make changes to or use the object.

In our case, we have a transformable attribute called favoriteColor that we want to

default to white. To accomplish that, add the following method before the @end

declaration in Hero.m:

- (void) awakeFromInsert {
 self.favoriteColor = [UIColor colorWithRed:1.0 green:1.0 blue:1.0 alpha:1.0];
 [super awakeFromInsert];
}

Notice the use of the @dynamic keyword in Hero.m. This tells the compiler not to

generate accessors and mutators for the property that follows. The idea here is that the

accessors and mutators will be provided by the superclass at runtime. Don’t worry too

much about the specifics here, just know that this bit of complexity is required in order

for Core Data to work properly.

TIP: Notice that we didn’t use [UIColor whiteColor] for the default. The reason we used
the colorWithRed:green:blue:alpha: factory method is because it always creates an
RGBA color. UIColor supports several different color models. Later, we’re going to be breaking
the UIColor down into its separate components (one each for red, green, blue, and alpha) in
order to save it in the persistent store. We’re also going to be letting the user select a new color
by manipulating sliders for each of these components. The whiteColor method, however,
doesn’t create a color using the RGBA color space. Instead, it creates a color using the grayscale
color model, which represents colors with only two components, gray and alpha.

Simple enough. We just create a new instance of UIColor and assign it to

favoriteColor. Another common usage of awakeFromInsert is for defaulting date

attributes to the current date. We could, for example, default the birthdate attribute to

the current date by adding the following line of code to awakeFromInsert:

 self.birthdate = [NSDate date];

Validation
Core Data offers two mechanisms for doing attribute validation in code, one that’s

intended to be used for single-attribute validations, and one that’s intended to be used

when a validation depends on the value of more than one attribute. Single attribute

validations are relatively straightforward. You might want to make sure that a date is

valid, a field is not nil, or that a number attribute is not negative. Multi-field validations

are a little more complex. Let’s say that you had a Person entity, and it had a string

attribute called legalGuardian where you keep track of the person who is legally

responsible and able to make decisions for a person if they are a minor. You might want

to make sure this attribute is populated, but you’d only want to do that for minors, not

CHAPTER 6: Custom Managed Objects 148

for adults. Multi-attribute validation would let you make the attribute required, if the

person’s age attribute is less than 18, but not otherwise.

Single-Attribute Validations
NSManagedObject provides a method for validating single attributes, called

validateValue:forKey:error:. This method takes a value, key, and an NSError handle.

You could override this method and perform validation by returning YES or NO, based on

whether the value is valid. If it doesn’t pass, you would also be able to create an NSError

instance to hold specific information about what is not valid and why.

You could do that. But don’t. You never actually need to override this method because

the default implementation uses a very cool mechanism to dynamically dispatch error

handling to special validation methods that aren’t defined in the class.

For example, let’s say you have a field called, oh, say, birthdate. NSManagedObject will,

during validation, automatically look for a method on our subclass called

validateBirthdate:error:. It will do this for every attribute, so if you want to validate a

single attribute, all you have to do is declare a method that follows the naming

convention validateXxx:error: (where xxx is the name of the attribute to be validated),

returning a BOOL that indicates whether the new value passed validation.

Let’s use this mechanism to prevent the user from entering birthdates that occur in the

future. Above the @end declaration in Hero.m, add the following method:

-(BOOL)validateBirthdate:(id *)ioValue error:(NSError **)outError{
 NSDate *date = *ioValue;
 if ([date compare:[NSDate date]] == NSOrderedDescending) {
 if (outError != NULL) {
 NSString *errorStr = NSLocalizedString(
 @"Birthdate cannot be in the future",
 @"Birthdate cannot be in the future");
 NSDictionary *userInfoDict = [NSDictionary dictionaryWithObject:errorStr
 forKey:NSLocalizedDescriptionKey];
 NSError *error = [[[NSError alloc] initWithDomain:kHeroValidationDomain
 code:kHeroValidationBirthdateCode
 userInfo:userInfoDict] autorelease];
 *outError = error;
 }
 return NO;
 }
 return YES;
}

CHAPTER 6: Custom Managed Objects 149

TIP: Are you wondering why we’re passed a pointer to a pointer to an NSError rather than just
a pointer? Pointers to pointers allow a pointer to be passed by reference. In Objective-C methods,
arguments, including object pointers, are passed by value, which means that the called method
gets its own copy of the pointer that was passed in. So if the called method wants to change the
pointer, as opposed to the data the pointer points to, we need another level of indirection. Thus,
the pointer to the pointer.

As you can see from the preceding method, we return NO if the date is in the future, and

YES if the date is in the past. If we return NO, we also take some additional steps. We

create a dictionary, and store an error string under the key NSLocalizedDescriptionKey,

which is a system constant that exists for this purpose. We then create a new instance

of NSError and pass that newly created dictionary as the NSError’s userInfo dictionary.

This is the standard way to pass back information in validation methods and pretty

much every other method that takes a handle to an NSError as an argument.

Notice that when we create the NSError instance, we use the two constants we defined

earlier, kHeroValidationDomain and kHeroValidationBirthdateCode:

 NSError *error = [[[NSError alloc] initWithDomain:kHeroValidationDomain
 code:kHeroValidationBirthdateCode
 userInfo:userInfoDict] autorelease];

TIP Notice that we don’t call super in the single-attribute validation methods. It’s not that these
methods are defined as abstract, it’s that they simply don’t exist. These methods are created
dynamically at runtime, so not only is there no point in calling super, there’s actually no method
on super to call.

Every NSError requires an error domain and an error code. Error codes are integers that

uniquely identify a specific type of error. An error domain defines the application or

framework that generated the error. For example, there’s an error domain called

NSCocoaErrorDomain that identifies errors created by code in Apple’s Cocoa frameworks.

We defined our own error domain for our application using a reverse DNS-style string

and assigned that to the constant kHeroValidationDomain. We’ll use that domain for any

error created as a result of validating the Hero object. We could also have chosen to

create a single domain for the entire SuperDB application, but by being more specific,

our application will be easier to debug.

By creating our own error domains, we can be as specific as we want to be. We also

avoid the problem of searching through long lists of system-defined constants, looking

for just the right code that covers a specific error. kHeroValidationBirthdateCode is the

first code we’ve created in our domain, and we just picked the value 1000 for it

arbitrarily. It would have been perfectly valid to choose 0, 1, 10000, or 34848 for this

error code. It’s our domain, we can do what we want.

CHAPTER 6: Custom Managed Objects 150

NIL VS. NULL

In our validation methods, you may have noticed that we’re comparing outError to NULL to see if we’ve
been provided a valid pointer, rather than comparing to nil as we typically do. Both nil and NULL serve
the same purpose (to represent empty pointers) and, in fact, they are defined to the same thing: the
number zero. In terms of your code functioning, nil and NULL are 100% interchangeable.

That being said, you should endeavor to use the right one at the right time. Which one you use will be a
clue to your future self, as well as any other developers who work with your code, as to what you are
doing.

When you are checking an Objective-C object pointer, compare to nil. With any other C pointers, use
NULL. In this case, we’re dealing with a pointer to a pointer, so we use NULL. If a pointer doesn’t directly
reference an Objective-C object, NULL is the appropriate comparison value, even if the pointer it
references points to an object.

Multiple-Attribute Validations
When you need to validate a managed object based on the values of multiple fields, the

approach is a little different. After all the single-field validation methods have fired,

another method will be called to let you do more complex validations. There are actually

two such methods, one that is called when an object is first inserted into the context,

and another when you save changes to an existing managed object.

When inserting a new managed object into a context, the multiple-attribute method you

use is called validateForInsert:. When updating an existing object, the validation

method you implement is called validateForUpdate:. In both cases, you return YES if the

object passes validation, and NO if there’s a problem. As with single-field validation, if

you return NO, you should also create an NSError instance that identifies the specifics of

the problem encountered.

In many instances, the validation you want to do at insert and at update are identical. In

those cases, do not copy the code from one and paste it into the other. Instead, create a

new validation method and have both validateForInsert: and validateForUpdate: call

that new validation method.

In our application, we don’t yet really have a need for any multiple-attribute validations,

but let’s say, hypothetically, that instead of making both name and secretIdentity

required, we only wanted to require one of the two. We could accomplish that by

making both name and secretIdentity optional in the data model, then using the

multiple-attribute validation methods to enforce it. To do that, we would add the

following three methods to our Hero class:

- (BOOL)validateNameOrSecretIdentity:(NSError **)outError {
 if ([self.name length] == 0) &&
 ([self.secretIdentity length] == 0)) {
 if (outError != NULL) {
 NSString *errorStr = NSLocalizedString(
 @"Must provide name or secret identity.",
 @"Must provide name or secret identity.");

CHAPTER 6: Custom Managed Objects 151

 NSDictionary *userInfoDict = [NSDictionary dictionaryWithObject:errorStr
 forKey:NSLocalizedDescriptionKey];
 NSError *error = [[[NSError alloc] initWithDomain:kHeroValidationDomain
 code:kHeroValidationNameOrSecretIdentityCode
 userInfo:userInfoDict] autorelease];
 *outError = error;
 }
 }
 return YES;
}

- (BOOL)validateForInsert:(NSError **)outError {
 return [self validateNameOrSecretIdentity:outError];
}

- (BOOL)validateForUpdate:(NSError **)outError {
 return [self validateNameOrSecretIdentity:outError];
}

Virtual Accessors
At the beginning of the chapter, we added a new attribute, called age, to our data model.

We don’t need to store the hero’s age, however, because we can calculate it based on

the hero’s birthdate. Calculated attributes like this are often referred to as virtual
accessors. They look like accessors, and as far as other objects are concerned, they

can be treated just like the other attributes. The fact that we’re calculating the value at

runtime rather than retrieving it from the persistent store is simply an implementation

detail.

As our Hero object stands right now, the age accessor will always return nil because

we’ve told our data model not to create storage space for it in the persistent store and

have made it read only. In order to make it behave correctly, we have to implement the

logic to calculate age in a method that looks like an accessor (hence, the name “virtual

accessor”). To do that, add the following method to Hero.m, just before @end:

- (NSNumber *)age {
 NSCalendar *gregorian = [[NSCalendar alloc]
 initWithCalendarIdentifier:NSGregorianCalendar];

 NSDateComponents *components = [gregorian
 components:NSYearCalendarUnit
 fromDate:self.birthdate
 toDate:[NSDate date]
 options:0];
 NSInteger years = [components year];

 [gregorian release];

 return [NSNumber numberWithInteger:years];
}

Now, any code that uses the age property accessor will be returned an NSNumber

instance with the calculated age of the superhero.

CHAPTER 6: Custom Managed Objects 152

Adding Validation Feedback
In Chapter 4, we created an abstract class named ManagedObjectAttributeEditor that

encapsulates the common functionality shared by the various attribute editors. The

ManagedObjectAttributeEditor class does not include code designed to save its

managed object. We push that job to the subclasses, because we know that the actual

mechanism for retrieving values from the user interface and putting them into an

attribute is going to vary from subclass to subclass. But now, we want to add validation

feedback when the edited attribute fails validation, and we don’t want to duplicate the

same functionality in each subclass’s save method.

If you look at the subclasses of ManagedObjectAttributeEditor, you’ll notice that they all

share a bit of logic at the end of their save methods:

 NSError *error;
 if (![managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);

 [self.navigationController popViewControllerAnimated:YES];

Every attribute editor has to save the managed object after updating it with the newly

edited value. At this point in the save method, we’ll find out about any validation error,

so this is where we need to add the code to notify the user of those errors. Let’s refactor

this shared functionality into ManagedObjectAttributeEditor.

Now, we could put this code in the save method of ManagedObjectAttributeEditor and

have each of the subclasses call super after copying the data from their user interface to

the managed object. However, it’s still important to make sure that subclasses do

actually implement save. If we have the subclasses call super, then we’ve got no place

to place an exception. Instead, we’ll leave the exception in

ManagedObjectAttributeEditor’s save method. If a subclass does not implement save,

ManagedObjectAttributeEditor’s save will be called and this exception will be thrown.

To complement this strategy, we’ll create a new method on

ManagedObjectAttributeEditor called validateAndPop that will attempt to save the

managed object. If the object passes validation, it will pop the controller off the

navigation stack, returning the user to the previous level in the nagivation hierarchy. If

validation fails, however, we will present an alert telling the user what went wrong. We’ll

present them with the option of fixing it, or canceling their changes and reverting to the

previous value.

Updating the ManagedObjectAttributeEditor Header File
Single-click on ManagedObjectAttributeEditor.h. We need to make two changes to this

file. First, we need to conform the class to UIAlertViewDelegate. We’re going to be

using an alert view to notify the user if validation failed, and we need to conform to this

protocol to find out whether the user chose to fix the problem or to cancel the change.

We also need to add a declaration for the new validateAndPop: method. Here are the

necessary changes:

CHAPTER 6: Custom Managed Objects 153

#import <UIKit/UIKit.h>
#define kNonEditableTextColor [UIColor colorWithRed:.318 green:0.4 blue:.569
alpha:1.0]

@interface ManagedObjectAttributeEditor : UITableViewController
 <UIAlertViewDelegate> {
 NSManagedObject *managedObject;
 NSString *keypath;
 NSString *labelString;

}

@property (nonatomic, retain) NSManagedObject *managedObject;
@property (nonatomic, retain) NSString *keypath;
@property (nonatomic, retain) NSString *labelString;

-(IBAction)cancel;
-(IBAction)save;
-(IBAction)validateAndPop;

@end

Save ManagedObjectAttributeEditor.h and switch to ManagedObjectAttributeEditor.m.

Updating the ManagedObjectAttributeEditor
Implementation File
Add the following method to the ManagedObjectAttributeEditor implementation,

somewhere between the @implementation and @end tags. We put it right after the save

method, but feel free to put it anywhere that makes sense to you as long as it’s within

the class implementation. It’s your code, after all, and you’re the one who may need to

find this method again.

-(IBAction)validateAndPop {
 NSError *error;
 if (![managedObject.managedObjectContext save:&error]) {

 NSString *message = nil;
 if ([[error domain] isEqualToString:@"NSCocoaErrorDomain"]) {
 NSDictionary *userInfo = [error userInfo];
 message = [NSString stringWithFormat:NSLocalizedString(
 @"Validation error on %@\rFailed condition: %@",
 @"Validation error on %@, (failed condition: %@)"),
 [userInfo valueForKey:@"NSValidationErrorKey"],
 [userInfo valueForKey:@"NSValidationErrorPredicate"]];
 }
 else
 message = [error localizedDescription];

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Validation Error", @"Validation Error")
 message:message
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Cancel", @"Cancel")

CHAPTER 6: Custom Managed Objects 154

 otherButtonTitles:NSLocalizedString(@"Fix", @"Fix"), nil];
 [alert show];
 [alert release];
 }
 else
 [self.navigationController popViewControllerAnimated:YES];
}

There’s nothing really new here. We attempt to save and, if the attempt fails, we pull the

information out of the returned NSError object. The only unusual thing here is that we

retrieve the information a little bit differently if the error came from our application than if

was the result of a validation error generated by the data model. Either way, we present

an alert with two buttons, one to cancel the changes, and the other to stay in the editor

and make changes to fix the problem.

Next, we need to add our alert view delegate method, which will get called when the

user presses one of the two buttons on the alert view. Add the following code to your

class implementation also. We like to put the delegate methods at the end of the file,

right before the @end statement.

#pragma mark -
#pragma mark Alert View Delegate
- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:(NSInteger)buttonIndex {
 if (buttonIndex == [alertView cancelButtonIndex]) {
 [self.managedObject.managedObjectContext rollback];
 [self.navigationController popViewControllerAnimated:YES];
 }
}

If the user pressed the Cancel button, we roll back the managed object context, which

returns the context back to the state it was in when it was last saved. If we didn’t do

this, then the change the user made would still be in memory, it just wouldn’t have been

saved to the persistent store, and that would cause problems with any future saves. It

would also simply be wrong, because the user would see the unsaved, changed value in

the user interface, even though they just did a cancel.

After restoring the hero in memory to its last saved state, our controller then pops itself

off the stack, which returns the user to the previous view. In our case, the previous view

is the hero editing view.

Updating the Subclasses to Use Validation
We currently have three subclasses of ManagedObjectAttributeEditor, and all three of

them currently handle saving and popping themselves off the stack themselves. We

need to modify the save method of all three classes to use the new functionality in their

superclass instead.

Updating ManagedObjectStringEditor
Single-click ManagedObjectStringEditor.m and look for the save method. Remove the

existing code to save and pop the controller off the navigation stack and replace it with

CHAPTER 6: Custom Managed Objects 155

a call to the superclass’s validateAndPop method. When you’re done, the save method

should look like this:

-(IBAction)save {
 NSUInteger onlyRow[] = {0, 0};
 NSIndexPath *onlyRowPath = [NSIndexPath indexPathWithIndexes:onlyRow length:2];
 UITableViewCell *cell = [self.tableView cellForRowAtIndexPath:onlyRowPath];
 UITextField *textField = (UITextField *)[cell.contentView
 viewWithTag:kTextFieldTag];
 [self.managedObject setValue:textField.text forKey:self.keypath];

 [self validateAndPop];
}

Save ManagedObjectStringEditor.m.

Updating ManagedObjectDateEditor
Next, single-click ManagedObjectDateEditor.m and do the same thing. When you’re

done, it should look like this:

-(IBAction)save {
 [self.managedObject setValue:self.datePicker.date forKey:self.keypath];
 [self validateAndPop];
}

Save ManagedObjectDateEditor.m.

Updating ManagedObjectSingleSelectionListEditor
Finally, single-click ManagedObjectSingleSelectionListEditor.m and repeat the process

one more time. When you’re done, the save method should look like this:

-(IBAction)save {
 UITableViewCell *selectedCell = [self.tableView
 cellForRowAtIndexPath:lastIndexPath];
 NSString *newValue = selectedCell.textLabel.text;
 [self.managedObject setValue:newValue forKey:self.keypath];
 [self validateAndPop];
}

Save ManagedObjectSingleSelectionListEditor.m.

Creating the Value Transformer
Earlier in the chapter, we added an attribute called favoriteColor, and set its type to

Transformable. As we stated then, often you’ll be able to leave the transformable

attribute’s transformer class at NSKeyedUnarchiveFromData and be completely done

with the process, since that provided class will use an NSKeyedArchiver to convert an

object instance into an NSData object that can be stored in the persistent store, and an

NSKeyedUnarchiver to take the NSData object from the persistent store and reconstitute it

back into an object instance.

CHAPTER 6: Custom Managed Objects 156

In the case of UIColor, we can’t do that, because UIColor doesn’t conform to NSCoding

and can’t be archived using an NSKeyedArchiver. As a result, we have to manually write

a value transformer to handle the transformation.

Writing a value transformer is actually quite easy. We start by subclassing the

NSValueTransformer class. We then override transformedValueClass, which is a method

that returns the class of objects that this transformer can convert. Our value transformer

will return an instance of the class UIColor because that’s the type of attribute we want

to store. Transformable Core Data attributes have to be able to both convert from an

instance of UIColor to an instance of NSData and back from an instance of NSData to an

instance of UIColor. Otherwise, we wouldn’t be able to both save and retrieve values

from the persistent store. As a result, we also need to override a method called

allowsReverseTransformation, returning YES to indicate that our converter supports two-

way conversions.

After that, we override two methods. One, transformedValue:, takes an instance of the

class we want to convert and returns the converted object. For transformable Core Data

attributes, this method will take an instance of the attribute’s underlying class and will

return an instance of NSData. The other method we have to implement,

reverseTransformedValue:, takes a converted object instance and reconstitutes the

original object. For a Core Data transformable attribute, that means taking an instance of

NSData and returning an object that represents this attribute. Let’s do it.

Single-click the Classes folder in the Groups & Files pane and create a new file. Xcode

doesn’t provide a file template for value transformers, so select the Objective-C class

template and create a subclass of NSObject and name it

UIColorRGBValueTransformer.m.

TIP Some of the class names we’re creating may seem unnecessarily long, but it’s important
that class names be descriptive. UIColor supports many color models but, for our needs, we
only need to convert RGBA colors, because we’re only going to allow the user to create RGBA
colors. It’s important to indicate this limitation in the class name because at some point in the
future we may need a UIColor value transformer that supports all color models. When we
revisit this code in the future, we’ll have a built-in reminder that this class only handles one of
the possible color models that UIColor supports.

Single-click UIColorRGBValueTransformer.h and change the superclass from NSObject

to NSValueTransformer.

In addition, since UIColor is part of UIKit, not Foundation, change the line that currently

reads:

#import <Foundation/Foundation.h>

to read:

#import <UIKit/UIKit.h>

CHAPTER 6: Custom Managed Objects 157

 Once you’ve made those two changes, save the file and switch over to

UIColorRGBValueTransformer.m.

Now, we have to implement the four methods that will allow our value transformer class

to convert instances of UIColor to NSData and vice versa. Add the following four

methods to your class:

#import "UIColorRGBValueTransformer.h"

@implementation UIColorRGBValueTransformer
+ (Class)transformedValueClass {
 return [NSData class];
}

+ (BOOL)allowsReverseTransformation {
 return YES;
}

// Takes a UIColor, returns an NSData
- (id)transformedValue:(id)value {
 UIColor *color = value;
 const CGFloat *components = CGColorGetComponents(color.CGColor);
 NSString *colorAsString = [NSString stringWithFormat:@"%f,%f,%f,%f",
 components[0], components[1], components[2], components[3]];
 return [colorAsString dataUsingEncoding:NSUTF8StringEncoding];
}

// Takes an NSData, returns a UIColor
- (id)reverseTransformedValue:(id)value {
 NSString *colorAsString = [[[NSString alloc] initWithData:value
 encoding:NSUTF8StringEncoding] autorelease];
 NSArray *components = [colorAsString componentsSeparatedByString:@","];
 CGFloat r = [[components objectAtIndex:0] floatValue];
 CGFloat g = [[components objectAtIndex:1] floatValue];
 CGFloat b = [[components objectAtIndex:2] floatValue];
 CGFloat a = [[components objectAtIndex:3] floatValue];
 return [UIColor colorWithRed:r green:g blue:b alpha:a];
}

@end

There are many approaches we could have used to convert a UIColor instance into an

NSData instance. We opted for a relatively simple one here. We store the color’s four

component values in a string with commas between the values. Since we’re only dealing

with RGBA colors, we know we will always and only have four components, so we’re

able to simplify the transformation greatly. Now we have a way to store colors in Core

Data, so let’s create a way for the user to enter a color.

CHAPTER 6: Custom Managed Objects 158

Creating the Color Attribute Editor
Single-click the Classes folder in Xcode’s Groups & Files pane and select New File… from

the File menu. When prompted, select Objective-C Class from the Cocoa Touch Class

category and make sure the Subclass of pop-up is set to NSObject. When prompted for

a name, type ManagedObjectColorEditor.m and make sure that Also create
“ManagedObjectColorEditor.h” is checked. Once the files are created, single-click

ManagedObjectColorEditor.h and replace the existing contents with the following:

#import <UIKit/UIKit.h>
#import "ManagedObjectAttributeEditor.h"

#define kNumberOfSections 2
#define kNumberOfRowsInSection0 1
#define kSliderTag 5000
#define kColorViewTag 5001

enum colorSliders {
 kRedRow = 0,
 kGreenRow,
 kBlueRow,
 kAlphaRow,
 kNumberOfColorRows
};

@interface ManagedObjectColorEditor : ManagedObjectAttributeEditor {
 UIColor *color;
}

@property (nonatomic, retain) UIColor *color;
- (IBAction)sliderChanged;
@end

If you look back at Figure 6–2, you can see that our color editor is going to consist of a

table with two sections. The first section will have a single row that will display the

currently selected color. The second section will have four rows with sliders, one for

each of the four components of an RGBA color. The first two constants and the enum will

be used to make our code more legible when referring to section and rows. kSliderTag

and kColorViewTag will be used as tags on the slider and color views to make them

easier to retrieve from the cell they’re on, just as we did in Chapter 8 of Beginning
iPhone 3 Development (Apress, 2009).

We’ve subclassed ManagedObjectAttributeEditor once again, so we inherit the keypath,

labelString, and managedObject properties, but we do need to add a property to hold

the color as it’s being edited. We also create an action method that the four sliders can

call when they’ve changed so that we can update the interface and show the new colors

indicated by the sliders. Save ManagedObjectColorEditor.h and switch over to the

implementation file. Replace the existing contents of that file with the following code to

implement the color attribute editor:

#import "ManagedObjectColorEditor.h"

@implementation ManagedObjectColorEditor

CHAPTER 6: Custom Managed Objects 159

@synthesize color;
- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 self.color = [self.managedObject valueForKey:self.keypath];
}

- (IBAction)sliderChanged {

 CGFloat components[4];
 for (int i = 0; i < kNumberOfColorRows; i++) {
 NSUInteger indices[] = {1, i};
 NSIndexPath *indexPath = [NSIndexPath indexPathWithIndexes:indices
 length:2];
 UITableViewCell *cell = [self.tableView cellForRowAtIndexPath:indexPath];
 UISlider *slider = (UISlider *)[cell viewWithTag:kSliderTag];
 components[i] = slider.value;
 }
 self.color = [UIColor colorWithRed:components[0] green:components[1]
 blue:components[2] alpha:components[3]];

 NSUInteger indices[] = {0,0};
 NSIndexPath *indexPath = [NSIndexPath indexPathWithIndexes:indices length:2];
 UITableViewCell *colorCell = [self.tableView cellForRowAtIndexPath:indexPath];
 UIView *colorView = [colorCell viewWithTag:kColorViewTag];
 colorView.backgroundColor = self.color;
}

-(IBAction)save {
 [self.managedObject setValue:self.color forKey:self.keypath];
 [self validateAndPop];
}

- (void)dealloc {
 [color release];
 [super dealloc];
}

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return kNumberOfSections;
}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 if (section == 0)
 return kNumberOfRowsInSection0;
 else
 return kNumberOfColorRows;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *GenericManagedObjectColorEditorColorCell =
 @"GenericManagedObjectColorEditorColorCell";
 static NSString *GenericManagedObjectColorEditorSliderCell =

CHAPTER 6: Custom Managed Objects 160

 @"GenericManagedObjectColorEditorSliderCell";

 NSString *cellIdentifier = nil;

 NSUInteger row = [indexPath row];
 NSUInteger section = [indexPath section];
 if (section == 0)
 cellIdentifier = GenericManagedObjectColorEditorColorCell;
 else
 cellIdentifier = GenericManagedObjectColorEditorSliderCell;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:cellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:cellIdentifier] autorelease];

 UIView *contentView = cell.contentView;

 if (section == 0){
 UIView *colorView = [[UIView alloc] initWithFrame:
 CGRectMake(5.0, 5.0, 290.0, 33.0)];
 colorView.backgroundColor = self.color;
 colorView.tag = kColorViewTag;
 [contentView addSubview:colorView];
 }
 else {

 if (color == nil)
 self.color = [UIColor colorWithRed:1.0 green:1.0 blue:1.0
 alpha:1.0];

 components = CGColorGetComponents(color.CGColor);

 UISlider * slider = [[UISlider alloc] initWithFrame:
 CGRectMake(70.0, 10.0, 210.0, 20.0)];
 slider.tag = kSliderTag;
 slider.maximumValue = 1.0;
 slider.minimumValue = 0.0;
 slider.value = components[row];
 [slider addTarget:self action:@selector(sliderChanged)
 forControlEvents:UIControlEventValueChanged];
 UILabel *label = [[UILabel alloc] initWithFrame:
 CGRectMake(20.0, 10.0, 50.0, 20.0)];
 switch (row) {
 case kRedRow:
 label.text = NSLocalizedString(@"R",
 @"R (short for red)");
 label.textColor = [UIColor redColor];
 break;
 case kGreenRow:
 label.text = NSLocalizedString(@"G",
 @"G (short for green)");
 label.textColor = [UIColor greenColor];
 break;

CHAPTER 6: Custom Managed Objects 161

 case kBlueRow:
 label.text = NSLocalizedString(@"B",
 @"B (short for blue)");
 label.textColor = [UIColor blueColor];
 break;
 case kAlphaRow:
 label.text = NSLocalizedString(@"A",
 @"A (short for alpha)");
 label.textColor = [UIColor colorWithRed:0.0
 green:0.0 blue:0.0 alpha:0.5];
 break;
 default:
 break;
 }
 [contentView addSubview:slider];
 [contentView addSubview:label];

 [slider release];
 [label release];
 }

 }
 return cell;
}

- (NSIndexPath *)tableView:(UITableView *)tableView
willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 return nil;
}

@end

There’s nothing really new there. Look over the code and make sure you know what it’s

doing, but there’s nothing there that should really need explanation.

Displaying the New Attributes in Hero Edit Controller
We’ve added two new attributes to our data model, but we haven’t added them to our

user interface yet. Remember from Chapter 4 that the attributes displayed by

HeroEditController are controlled by those paired, nested arrays we create in

viewDidLoad. Until we add rows to those arrays to represent the new attributes, they

won’t show up or be editable. Single-click HeroEditController.m and replace

viewDidLoad: with this new version that adds rows to each of the paired, nested arrays

for the calculated attribute age and the transformable attribute favoriteColor.

- (void)viewDidLoad {
 sectionNames = [[NSArray alloc] initWithObjects:
 [NSNull null],
 NSLocalizedString(@"General", @"General"),
 nil];

 rowLabels = [[NSArray alloc] initWithObjects:

 // Section 1

CHAPTER 6: Custom Managed Objects 162

 [NSArray arrayWithObject:NSLocalizedString(@"Name", @"Name")],

 // Section 2
 [NSArray arrayWithObjects:
 NSLocalizedString(@"Identity", @"Identity"),
 NSLocalizedString(@"Birthdate", @"Birthdate"),
 NSLocalizedString(@"Age", @"Age"),
 NSLocalizedString(@"Sex", @"Sex"),
 NSLocalizedString(@"Fav. Color", @"Favorite Color"),
 nil],

 // Sentinel
 nil];

 rowKeys = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObjects:@"name", nil],

 // Section 2
 [NSArray arrayWithObjects:@"secretIdentity", @"birthdate",
 @"age", @"sex", @"favoriteColor", nil],

 // Sentinel
 nil];

 rowControllers = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObject:@"ManagedObjectStringEditor"],

 // Section 2
 [NSArray arrayWithObjects:@"ManagedObjectStringEditor",
 @"ManagedObjectDateEditor",
 [NSNull null],
 @"ManagedObjectSingleSelectionListEditor",
 @"ManagedObjectColorEditor",
 nil],

 // Sentinel
 nil];

 rowArguments = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObject:[NSNull null]],

 // Section 2,
 [NSArray arrayWithObjects:[NSNull null],
 [NSNull null],
 [NSNull null],
 [NSDictionary dictionaryWithObject:[NSArray
 arrayWithObjects:@"Male", @"Female", nil]
 forKey:@"list"],
 [NSNull null],
 [NSNull null],
 nil],

CHAPTER 6: Custom Managed Objects 163

 // Sentinel
 nil];

 [super viewDidLoad];
}

Notice that in rowControllers, for the age row, we’ve used our good old friend NSNull.

We’re using that to indicate that there is no controller class for that row. The user can’t

drill down to edit this value. In other words, it’s read only.

The Display Problem
If you build and run your application, you’ll run into a subtle problem. Here’s a hint. It

has something to do with the display of UIColor. Can you guess what it is?

The problem is that UIColor doesn’t respond to the heroValueDisplay method. We

could create a category to add that method to UIColor, but the real problem is this: how

do we meaningfully represent a color using an instance of NSString, the type returned

by heroValueDisplay? We could create a string that displays the four components of the

color, but to most end users, those numbers are meaningless. Our users are going to

expect to see the actual color when they’re viewing the hero, and we don’t have any

mechanism right now for showing colors on a row.

The question at this point is, do we go back and re-architect our application so that it

can support the display of a UIColor on a table view row? We could resolve this issue,

for example, by changing the heroValueDisplay protocol and methods that currently

return an NSString instance and have them return a UIView instance, where the UIView

contains everything that we want to display in a particular row. That’s a good idea, but it

will require some relatively extensive changes in many different places in our

application’s code.

Bottom line, we need to figure out if it makes sense to do major renovations to our code

to accommodate this need. Is this a one time thing, or do we need do some fairly

intrusive refactoring to create a more general solution? We don’t want to over-engineer.

We don’t want to have to do complex changes to multiple classes to support

functionality that we’ll never need outside of this single instance.

There isn’t really One Right Answer™ here. For the sake of argument, we’re going to say

that we don’t foresee needing the ability to display a color anywhere else in our

application. Then the question becomes whether there is a less intrusive way of handling

this that’s not going to make our code significantly harder to maintain. In this situation,

there is, and we’re going to use it. We can implement the functionality we need by

conforming UIColor to the HeroValueDisplay protocol and then adding just two lines of

code to HeroEditController.

Single-click HeroValueDisplay.h (it’s in the Categories group) and add the following

category declaration at the bottom of the file:

@interface UIColor (HeroValueDisplay) <HeroValueDisplay>
- (NSString *)heroValueDisplay;

CHAPTER 6: Custom Managed Objects 164

@end

Save HeroValueDisplay.h and switch over to HeroValueDisplay.m to write the

implementation of the heroValueDisplay method for UIColor. Add the following at the

end of the file:

@implementation UIColor (HeroValueDisplay)
- (NSString *)heroValueDisplay {
 return [NSString stringWithFormat:@"%C%C%C%C%C%C%C%C%C%C",0x2588, 0x2588,
 0x2588, 0x2588, 0x2588, 0x2588, 0x2588, 0x2588, 0x2588, 0x2588];
}
@end

This is probably non-obvious, so we’ll explain. What we’re doing here is creating an

NSString instance that contains a sequence of Unicode characters. The 0x2588

character is the Unicode full block character, which is a solid rectangle that takes up the

full space of the glyph. If you place several full blocks together in a string, they appear

as a rectangle like the one you see in the bottom row of Figure 6–1. Now, we just need

to make that rectangle display in color.

Single-click HeroEditController.m and add the following two lines of code to

tableView:cellForRowAtIndexPath:.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Hero Edit Cell Identifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue2
 reuseIdentifier:CellIdentifier] autorelease];
 }

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];

 id <HeroValueDisplay, NSObject> rowValue = [hero valueForKey:rowKey];

 cell.detailTextLabel.text = [rowValue heroValueDisplay];
 cell.textLabel.text = rowLabel;
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

 if ([rowValue isKindOfClass:[UIColor class]])
 cell.detailTextLabel.textColor = (UIColor *)rowValue;

 return cell;
}

The two lines of code we just added look at the underlying class of the attribute we’re

displaying, and if it’s UIColor, or a subclass of UIColor, then we set the text label’s

textColor property to the value stored in the hero’s favoriteColor attribute. This will

cause that string of Unicode full blocks to be drawn in that color. Compile and run the

application, and the two new attributes should be there (Figure 6–10).

CHAPTER 6: Custom Managed Objects 165

Figure 6–10. Almost there. The new values are being displayed and the favorite color attribute can be edited.

This is almost done. There’s just one little detail we need to take care of. Look at the

Age row. Something’s not right there. Age is calculated and can’t be edited by the user.

Yet there’s a disclosure indicator on the row, which tells us as a user that we can tap it

to edit it. Go ahead and tap it if you want. We’ll wait. After it crashes, come on back and

we can chat about how to fix it.

Adding View-Only Support to Hero Edit Controller
We need to do two things here. First, we need to get rid of the disclosure indicator so

the user doesn’t think they can drill down into that attribute to edit it. Then, we need to

change the code so that even if a user does tap that row, nothing bad happens. You

know, this is actually a pretty good task for you to try on your own if you want. Give it a

try. We’ll wait right here.

Hiding the Disclosure Indicator
In HeroEditController.m, find the method tableView:cellForRowAtIndexPath: and

replace this line of code:

 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

with these lines of code:

 id rowController = [rowControllers

CHAPTER 6: Custom Managed Objects 166

 nestedObjectAtIndexPath:indexPath];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 cell.accessoryType = (rowController == [NSNull null]) ?
 UITableViewCellAccessoryNone :
 UITableViewCellAccessoryDisclosureIndicator;
 if ([rowValue isKindOfClass:[UIColor class]])
 cell.detailTextLabel.textColor = (UIColor *)rowValue;

Previously, we were just setting every row to use the disclosure indicator. Now, instead,

we retrieve that singleton instance of NSNull and the name of the class that is

responsible for editing this type of attribute. If that controller class is NSNull, it means

there is no controller class to drill down into. If there’s no controller class, then we set

the accessory type to UITableViewCellAccessoryNone, which means there will be

nothing in the accessory view of this row. If there is a controller class to drill down into,

we set the accessory view to show the disclosure indicator, just like we were previously

doing. Simple enough, right? Let’s take care of the other half of the equation.

Handling Taps on Read-Only Attributes
As you may remember from Beginning iPhone 3 Development, table view delegates

have a way of disallowing a tap on a specific row. If we implement the method

tableView:willSelectRowAtIndexPath: and return nil, the row won’t get selected. Add

the following method to HeroEditController.m, down in the table view portion of the

code:

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 id controllerClassName = [rowControllers nestedObjectAtIndexPath:indexPath];
 return (controllerClassName == (id)[NSNull null]) ? nil : indexPath;
}

In this method, we retrieve the controller class for the tapped row. If we get an instance

of NSNull back, we return nil to indicate that the user cannot select this row. If we

retrieve any other value, we return indexPath, which allows the selection to continue.

By disallowing the selection when the row has no controller, the code in

tableView:didSelectRowAtIndexPath: will never get called when a read-only row is

tapped. As a result, we don’t have to make any changes to that method, so we’re ready

to go. Build and run your project and play around with SuperDB some more. The editing

view should now look like Figure 6–1. If you tap the Fav. Color row, it should drill down

to something that looks like Figure 6–2. If you tap on the Age row, it should do nothing.

If you try to enter an invalid value into any attribute, you should get an alert and be given

the opportunity to fix or cancel the changes you made. And all is right with the world.

Well, at least with our app. For now.

CHAPTER 6: Custom Managed Objects 167

Color Us Gone
By now, you should have a good grasp on just how much power you gain from

subclassing NSManagedObject. You’ve seen how to use it to do conditional defaulting and

both single-field and multi-field validation. You also saw how to use custom managed

objects to create virtual accessors.

You saw how to politely inform your user when they’ve entered an invalid attribute that

causes a managed object to fail validation, and you saw how to use transformable

attributes and value transformers to store custom objects in Core Data.

This was a dense chapter, but you should really be starting to get a feel for just how

flexible and powerful Core Data can be. We’ve got one more chapter on Core Data

before we move on to other parts of the iPhone 3 SDK. When you’re ready, turn the

page to learn about relationships and fetched properties.

CHAPTER 6: Custom Managed Objects 168

169

169

 Chapter

Relationships, Fetched
Properties, and
Expressions
Welcome to the final chapter on Core Data. So far, our application includes only a single

entity: Hero. In this chapter, we’re going to show you how managed objects can

incorporate and reference other managed objects through the use of relationships and

fetched properties. This will give you the ability to make applications of much greater

complexity than our current SuperDB application. That’s not the only thing we’re going

to do in this chapter, however.

Throughout the book, we’ve endeavored to write our code in a generic fashion. We

created our HeroEditController, for example, so that the structure and content were

completely controlled by a handful of arrays, and we implemented error validation in our

managed object attribute editors by adding generic code to their common superclass. In

this chapter, we’re going to reap the benefits of writing our code that way. We’ll

introduce a new entity, yet we won’t need to write a new controller class to display that

entity and let the user edit it. Our code is generic enough that we’re simply going to

refactor our existing HeroEditController into a generic class that can display and edit

any managed object just by changing the data stored in those paired, nested arrays.

This will greatly reduce the number of controller classes we need in our application as

the complexity of the data model increases. Instead of having dozens of individual

controller classes for each entity that needs to be edited by or displayed to the user,

we’ll have a single, generic controller class capable of displaying and editing the

contents of any managed object.

We have a lot to do in this chapter, so no dallying. Let’s get started.

7

CHAPTER 7: Relationships, Fetched Properties, and Expressions 170

Expanding Our Application: Superpowers and
Reports
Before we talk about the nitty-gritty, let’s quickly look at the changes we’re going to

make to the SuperDB application in this chapter. On the surface, the changes look

relatively simple. We’ll add the ability to specify any number of superpowers for each

hero, and also add a number of reports that show other superheroes that meet certain

criteria, including heroes who are either younger or older than this hero, or who are the

same sex or the opposite sex (Figure 7–1).

Figure 7–1. At the end of our chapter, we’ll have added the ability to specify any number of superpowers for each
hero, as well as provided a number of reports that let us find other heroes based on how they relate to this hero.

Heroes’ powers will be represented by a new entity that we’ll create and imaginatively

call Power. When users add or edit a power, they will be presented with a new view

(Figure 7–2), but in reality, under the hood, it will be a new instance of the same object

used to edit and display heroes.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 171

Figure 7–2. The new view for editing powers is actually an instance of the same object used to edit heroes.

When users drill down into one of the reports, they will get a list of the other heroes that

meet the selected criteria (Figure 7–3).

Figure 7–3. The Reports section on our hero will let us find other heroes who meet certain criteria in relation to
the hero we’re currently editing. Here, for example, we’re seeing all the heroes who were born after Ultra Guy.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 172

Tapping any of the rows will take you to another view where you can edit that hero,

using another instance of the same generic controller class. Our users will be able to drill

down an infinite number of times (limited only by memory), all courtesy of a single class.

Before we start implementing these changes, we need to talk about a few concepts, and

then make some changes to our data model.

Relationships
We introduced the concept of Core Data relationships back in Chapter 2. Now we will

go into more detail, and see how these can be used in applications. The relationship is

one of the most important concepts in Core Data. Without relationships, entities would

be isolated. There would be no way to have one entity contain another entity or

reference another entity. Let’s look at a hypothetical header file for a simple example of

an old-fashioned data model class to give us a familiar point of reference:

#import <UIKit/UIKit.>

@class Address;

@interface Person : NSObject {

 NSString *firstName;
 NSString *lastName;
 NSDate *birthdate;
 UIImage *image;

 Address *address;

 Person *mother;
 Person *father;

 NSMutableArray *children;
}

@property (nonatomic, retain) NSString *firstName;
@property (nonatomic, retain) NSString *lastName;
@property (nonatomic, retain) NSDate *birthdate;
@property (nonatomic, retain) UIImage *image;
@property (nonatomic, retain) Address *address;
@property (nonatomic, retain) Person *mother;
@property (nonatomic, retain) Person *father;
@property (nonatomic, retain) NSMutableArray *children;

@end

Here, we have a class that represents a single person. We have instance variables to

store a variety of information about that person and properties to expose that

information to other objects. There’s nothing earth-shattering here. Now, let’s think

about how we could re-create this object in Core Data.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 173

The first four instance variables—firstName, lastName, birthDate, and image—can all be

handled by built-in Core Data attribute types, so we could use attributes to store that

information on the entity. The two NSString instances would become String attributes,

the NSDate instance would become a Date attribute, and the UIImage instance would

become a Transformable attribute, handled in the same way as UIColor in the previous

chapter.

After that, we have an instance of an Address object. This object probably stores

information like street address, city, state or province, and postal code. That’s followed

by two Person instance variables and a mutable array designed to hold pointers to this

person’s children. Most likely, these arrays are intended to hold pointers to more Person

objects.

In object-oriented programming, including a pointer to another object as an instance

variable is called composition. Composition is an incredibly handy device, because it

lets us create much smaller classes and reuse objects, rather then have data duplicated.

In Core Data, we don’t have composition per se, but we do have relationships, which

essentially serve the same purpose. Relationships allow managed objects to include

references to other managed objects of a specific entity, known as destination entities,

or sometimes just destinations. Relationships are Core Data properties, just as

attributes are. As such, they have an assigned name, which serves as the key value

used to set and retrieve the object or objects represented by the relationship.

Relationships are added to entities in Xcode’s data model editor in the same way

attributes are added. You’ll see how to do that in a few minutes. There are two basic

types of relationships: to-one relationships and to-many relationships.

To-One Relationships
When you create a to-one relationship, you are saying that one object can contain a

pointer to a single managed object of a specific entity. In our example, the Person entity

has a single to-one relationship to the Address entity.

Once you’ve added a to-one relationship to an object, you can assign a managed object

to the relationship using key-value coding (KVC). For example, you might set the

Address entity of a Person managed object like so:

 NSManagedObject *address = [NSEntityDescription insertNewObjectForEntityForName:
 @"Address" inManagedObjectContext:thePerson.managedObjectContext];
 [thePerson setValue:address forKey:@"address"];

Retrieving the object can also be accomplished using KVC, just with attributes:

 NSManagedObject *address = [thePerson valueForKey:@"address"];

When you create a custom subclass of NSManagedObject, as we did in the previous

chapter, you can use Objective-C properties and dot notation to get and set those

properties. The property that represents a to-one relationship is an instance of

NSManagedObject or a subclass of NSManagedObject, so setting the address looks just like

setting attributes:

CHAPTER 7: Relationships, Fetched Properties, and Expressions 174

 NSManagedObject *address = [NSEntityDescription insertNewObjectForEntityForName:
 @"Address" inManagedObjectContext:thePerson.managedObjectContext];
 thePerson.address = address;

And retrieving a to-one relationship becomes as follows:

 NSManagedObject *address = thePerson.address;

In almost every respect, the way you deal with a to-one relationship in code is identical

to the way we’ve been dealing with Core Data attributes. We use KVC to get and set the

values using Objective-C objects. Instead of using Foundation classes that correspond

to different attribute types, we use NSManagedObject or a subclass of NSManagedObject

that represents the entity.

To-Many Relationships
To-many relationships allow you to use a relationship to associate multiple managed

objects to a particular managed object. This is equivalent to using composition with a

collection class such as NSMutableArray or NSMutableSet in Objective-C, as with the

children instance variable in the Person class we looked at earlier. In that example, we

used an NSMutableArray, which is an editable, ordered collection of objects. That array

allows us to add and remove objects at will. If we want to indicate that the person

represented by an instance of Person has children, we just add the instance of Person

that represents that person’s children to the children array.

In Core Data, it works a little differently. To-many relationships are unordered. They are

represented by instances of NSSet, which is an unordered, immutable collection that you

can’t change, or by NSMutableSet, an unordered collection that you can change. Here’s

how getting a to-many relationship and iterating over its contents might look with an

NSSet:

 NSSet *children = [person valueForKey:@"children"];
 for (NSManagedObject *oneChild in children) {
 // do something
 }

NOTE: Do you spot a potential problem from the fact that to-many relationships are returned as
an unordered NSSet? When displaying them in a table view, it’s important that the objects in the
relationship are ordered consistently. If the collection is unordered, you have no guarantee that
the row you tap will bring up the object you expect. You’ll see how to deal with that a little later
in the chapter.

On the other hand, if you wish to add or remove managed objects from a to-many

relationship, you must ask Core Data to give you an instance of NSMutableSet, by calling

mutableSetValueForKey: instead of valueForKey:, like so:

 NSManagedObject *child = [NSEntityDescription insertNewObjectForEntityForName:
 @"Person" inManagedObjectContext:thePerson.managedObjectContext];
 NSMutableSet *children = [person mutableSetValueForKey:@"children"];

CHAPTER 7: Relationships, Fetched Properties, and Expressions 175

 [children addObject:child];
 [children removeObject:childToBeRemoved];

If you don’t need to change which objects a particular relationship contains, use

valueForKey:, just as with to-one arrays. Don’t call mutableSetValueForKey: if you don’t

need to change which objects make up the relationship, as it incurs slightly more

overhead than just calling valueForKey:.

In addition to using valueForKey: and mutableSetValueForKey:, Core Data also provides

special methods, created dynamically at runtime, that let you add and delete managed

objects from a to-many relationship. There are four of these methods per relationship.

Each method name incorporates the name of the relationship. The first allows you to

add a single object to a relationship:

- (void)addXxxObject:(NSManagedObject *)value;

where Xxx is the capitalized name of the relationship, and value is either an

NSManagedObject or a specific subclass of NSManagedObject. In the Person example

we’ve been working with, the method to add a child to the children relationship looks

like this:

- (void)addChildrenObject:(Person *)value;

The method for deleting a single object follows a similar form:

- (void)removeXxxObject:(NSManagedObject *)value;

The dynamically generated method for adding multiple objects to a relationship takes

the following form:

- (void)addXxx:(NSSet *)values;

The method takes an instance of NSSet containing the managed objects to be added.

So, the dynamically created method for adding multiple children to our Person managed

object is as follows:

- (void)addChildren:(NSSet *)values;

Finally, here’s the method used to remove multiple managed objects from a relationship:

- (void)removeXxx:(NSSet *)values;

Remember that these methods are generated for you when you declare a custom

NSManagedObject subclass. When Xcode encounters your NSManagedObject subclass

declaration, it creates a category on the subclass that declares the four dynamic

methods using the relationship name to construct the method names. Since the

methods are generated at runtime, you won’t find any source code in your project that

implements the methods. If you never call the methods, you’ll never see the methods.

As long as you’ve already created the to-many relationship in your data model editor,

you don’t need to do anything extra to access these methods. They are created for you

and ready to be called.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 176

NOTE: There’s one tricky point associated with the methods generated for to-many
relationships. Xcode declares the four dynamic methods when you first generate the
NSManagedObject subclass files from the template. If you have an existing data model with a
to-many relationship and a subclass of NSManagedObject, what happens if you decide to add a
new to-many relationship to that data model? If you add the to-many relationship to an existing
NSManagedObject subclass, you’ll need to add the category containing the dynamic methods
yourself, which is what we'll do a little later in the chapter.

There is absolutely no difference between using these four methods and using

mutableSetValueForKey:. The dynamic methods are just a little more convenient and

make your code easier to read.

Inverse Relationships
In Core Data, every relationship can have an inverse relationship. A relationship and its

inverse are two sides of the same coin. In our Person object example, the inverse

relationship for the children relationship might be a relationship called parent. A

relationship does not need to be the same kind as its inverse. A to-one relationship, for

example, can have an inverse relationship that is to-many. In fact, this is pretty common.

If you think about it in real-world terms, a person can have many children. The inverse is

that a child can have only one biological mother and one biological father, but the child

can have multiple parents and guardians. So, depending on your needs and the way you

modeled the relationship, you might choose to use either a to-one or a to-many

relationship for the inverse.

If you add an object to a relationship, Core Data will automatically take care of adding

the correct object to the inverse relationship. So, if you had a Person named steve and

added a child to steve, Core Data would automatically make the child’s parent steve.

Although relationships are not required to have an inverse, Apple generally recommends

that you always create and specify the inverse, even if you won’t need to use the inverse

relationship in your application. In fact, the compiler will actually warn you if you fail to

provide an inverse. There are some exceptions to this general rule, specifically when the

inverse relationship will contain an extremely large number of objects, since removing

the object from a relationship triggers its removal from the inverse relationship.

Removing the inverse will require iterating over the set that represents the inverse, and if

that’s a very large set, there could be performance implications. But unless you have a

specific reason not to do so, you should model the inverse, as it helps Core Data ensure

data integrity. If you have performance issues as a result, it’s relatively easy to remove

the inverse relationship later.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 177

NOTE: You can read more about how the absence of inverse relationships can cause integrity
problems here:
http://developer.apple.com/mac/library/documentation/Cocoa/Concept

ual/CoreData/Articles/cdRelationships.html#//apple_ref/doc/uid/TP4

0001857–SW6

Delete Rules
Every relationship, regardless of its type, has something called a delete rule, which

specifies what happens when one object in the relationship is deleted. There are four

possible delete rules:

 Nullify: This is the default delete rule. With this delete rule, when one

object is deleted, the inverse relationship is just updated so that it

doesn’t point to anything. If the inverse relationship is a to-one

relationship, it is set to nil. If the inverse relationship is a to-many

relationship, the deleted object will be removed from the inverse

relationship. This option ensures that there are no references to the

object being deleted, but does nothing more.

 No Action: If you specify a delete rule of No Action, when you delete

one object from a relationship, nothing happens to the other object.

Instances where you would use this particular rule are extremely rare,

and are generally limited to one-way relationships with no inverse. This

action is rarely used because the other object’s inverse relationship

would end up pointing to an object that no longer exists.

 Cascade: If you set the delete rule to Cascade, when you delete a

managed object, all the objects in the relationship are also removed.

This is a more dangerous option than Nullify, in that deleting one

object can result in the deletion of other objects. You would typically

want to choose Cascade when a relationship’s inverse relationship is

to-one and the related object is not used in any other relationships. If

the object or objects in the relationship are used only for this

relationship and not for any other reason, then you probably do want a

cascade rule, so that you don’t leave orphaned objects sitting in the

persistent store taking up space.

 Deny: This delete rule option will actually prevent an object from being

deleted if there are any objects in this association, making it the safest

option in terms of data integrity. The Deny option is not used

frequently, but if you have situations where an object shouldn’t be

deleted as long as it has any objects in a specific relationship, this is

the one you would choose.

http://developer.apple.com/mac/library/documentation/Cocoa/Concept

CHAPTER 7: Relationships, Fetched Properties, and Expressions 178

Fetched Properties
Relationships allow you to associate managed objects with specific other managed

objects. In a way, relationships are sort of like iTunes playlists, where you can put

specific songs into a list and then play them later. If you’re an iTunes user, you know

that there are things called Smart Playlists, which allow you to create playlists based on

criteria rather than a list of specific songs. You can create a Smart Playlist, for example,

that includes all the songs by a specific artist. Later on, when you buy new songs from

that artist, they are added to that Smart Playlist automatically, because the playlist is

based on criteria and the new songs meet those criteria.

Core Data has something similar. There’s another type of attribute you can add to an

entity that will associate a managed object with other managed objects based on

criteria, rather than associating specific objects. Instead of adding and removing

objects, fetched properties work by creating a predicate that defines which objects

should be returned. Predicates, as you may recall, are objects that represent selection

criteria. They are primarily used to sort collections and fetch results.

TIP: If you’re rusty on predicates, Learn Objective-C on the Mac by Scott Knaster and Mark
Dalrymple (Apress, 2009) devotes an entire chapter to the little beasties.

Fetched properties are always immutable. You can’t change their contents at runtime.

The criteria are usually specified in the data model (a process that we’ll look at shortly),

and then you access the objects that meet that criteria using properties or KVC.

Unlike to-many relationships, fetched properties are ordered collections and can have a

specified sort order. Oddly enough, the data model editor doesn’t allow you to specify

how fetched properties are sorted. If you care about the order of the objects in a fetched

property, you must actually write code to do that, which we’ll look at later in this

chapter.

Once you’ve created a fetched property, working with it is pretty straightforward. You

just use valueForKey: to retrieve the objects that meet the fetched property’s criteria in

an instance of NSArray:

 NSArray *olderPeople = [person valueForKey:@"olderPeople"];

If you use a custom NSManagedObject subclass and define a property for the fetched

property, you can also use dot notation to retrieve objects that meet the fetched

property’s criteria in an NSArray instance, like so:

 NSArray *olderPeople = person.olderPeople;

CHAPTER 7: Relationships, Fetched Properties, and Expressions 179

Creating Relationships and Fetched Properties in the
Data Model Editor
The first step in using relationships or fetched properties is to add them to your data

model. Let’s add the relationship and fetched properties we’ll need in our SuperDB

application now. If you look back at Figure 7–1, you can probably guess that we’re going

to need a new entity to represent the heroes’ powers, as well as a relationship from our

existing Hero entity to the new Power entity we’re going to create. We’ll also need four

fetched properties to represent the four different reports.

Before we start making changes, create a new version of your data model by single-

clicking the current version in the Groups & Files pane (the one with the green check

mark), and then selecting Add Model Version from the Data Model submenu of the Design

menu. This ensures that the data we collected using the previous data models migrate

properly to the new version we’ll be creating in this chapter.

Adding the Power Entity
Click the current data model to bring up the data model editor. Using the plus icon in the

lower-left corner of the data model editor’s entity pane, add a new entity and call it

Power. You can leave all the other fields at their default values (Figure 7–4).

Figure 7–4. Rename the new entity Power and leave the other fields at their default values.

If you look back at Figure 7–2, you can see that our Power object has two fields: one for

the name of the power and another that identifies the source of this particular power. In

the interest of keeping things simple, the two attributes will just hold string values.

With Power still selected in the property pane, add two attributes using the property

pane. Call one of them name, uncheck the Optional check box, set its Type to String,

and give it a Default value of New Power. Give the second one a name of source, and

set its Type to String as well. Leave Optional checked. There is no need for a default

value. Once you’re finished, you should have two rounded rectangles in the data model

editor’s diagram view (Figure 7–5).

CHAPTER 7: Relationships, Fetched Properties, and Expressions 180

Figure 7–5. We now have two entities, but they are not related in any way.

Creating the Powers Relationship
Right now, the Power entity is selected. Single-click the rounded rectangle that

represents the Hero entity, or select Hero in the entity pane to select it. Now, in the

properties pane, click the plus button and select Add Relationship. In the data model

editor’s detail pane, change the name of the new relationship to powers and the

Destination to Power. The Destination field specifies which entity’s managed objects can

be added to this relationship, so by selecting Power, we are indicating that this

relationship stores powers.

We can’t specify the inverse relationship yet, but we do want to check the To-Many
Relationship box to indicate that each hero can have more than one power. Also,

change the Delete Rule to Cascade. In our application, every hero will have his or her

own set of powers—we won’t be sharing powers between heroes. When a hero is

deleted, we want to make sure that hero’s powers are deleted as well, so we don’t leave

orphaned data in the persistent store. Once you’re finished, the detail pane should look

like Figure 7–6, and the diagram view should have a line drawn between the Hero and

Power entities to represent the new relationship (Figure 7–7).

Figure 7–6. The detail pane view of the powers relationship

CHAPTER 7: Relationships, Fetched Properties, and Expressions 181

Figure 7–7. Relationships are represented in the diagram view by lines drawn between rounded rectangles. A
single arrowhead represents a to-one relationship, and a double arrowhead (as shown here) represents a to-many
relationship.

Creating the Inverse Relationship
We won’t actually need the inverse relationship in our application, but we’re going to

follow Apple’s recommendation and specify one. Since the inverse relationship will be

to-one, it doesn’t present any performance implications. Select the Power entity again,

and add a relationship to it using the property pane. Name this new relationship hero,

and select a Destination entity of Hero. If you look at your diagram view now, you should

see two lines representing the two different relationships we’ve created.

Next, click the Inverse pop-up menu and select powers. This indicates that the

relationship is the inverse of the one we created earlier. Once you’ve selected it, the two

relationship lines in the diagram view will merge together into a single line with

arrowheads on both sides (Figure 7–8).

Figure 7–8. Inverse relationships are represented as a single line with arrowheads on both sides, rather than two
separate lines.

Creating the olderHeroes Fetched Property
Select the Hero entity again so that you can add some fetched properties to it. In the

property pane, select the plus button and choose Add Fetched Property. Call the new

CHAPTER 7: Relationships, Fetched Properties, and Expressions 182

fetched property olderHeroes, and select a Destination of Hero. Notice that there is only

one other field that can be set on the detail pane: a big white box called Predicate

(Figure 7–9).

TIP: Both relationships and fetched properties can use their own entity as the Destination.

Figure 7–9. The detail pane showing a fetched property

Although the Predicate field is a text field, it’s not directly editable. Once you’ve created

a predicate, it will show a string representation of that predicate, but you can’t actually

type into the field. Instead, to set the predicate for this fetched property, you click the

Edit Predicate button to enter Xcode’s predicate builder. Let’s do that now. Go ahead.

It’s perfectly safe. No, seriously—click the darn button already.

The predicate builder is a visual tool for building criteria (Figure 7–10), and it can be used

to specify some relatively sophisticated logic. We’re going to start with a fairly simple

predicate, and then we’ll build a little more complex one later.

When the predicate builder opens, it contains a single row that represents the first

criterion. Without at least one criterion, a predicate serves no purpose, so Xcode gives

you the first one automatically. The pop-up menu on the left side allows you to select

among the properties on the destination entity, as well as some other options that we’ll

look at later. The predicate we’re building now needs to be based on birthdate, so

single-click the pop-up menu and select birthdate, and then change the second pop-up

menu (the one currently set to =) to <. For another hero to be older than this hero, that

hero’s birth date must be earlier.

When you change the leftmost pop-up menu to birthdate, the text field on the row

changes into a date-picker control. If we wanted the comparison to be against a date

constant, we would enter that date value there. That’s not what we want, however. The

way to change this is not obvious. Control-click in the space between the date field and

the minus button. That brings up a contextual menu, and one of the things you can do

with this contextual menu is change the operator type.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 183

Figure 7–10. The predicate builder when first opened

Figure 7–11. The super-secret predicate trick: right-clicking in the white space to the left of the minus button lets
you change the type of operand.

Three types of operands are available in the predicate builder, and both the left and right

operand can be changed to any of these three types:

 Constant: A constant is a specified value you enter into a field.

Constants never change value.

 Key: A key is a value on the object to be retrieved that is specified

using KVC. The left operand always defaults to a key, so when we

selected birthdate a moment ago, we were setting a key operand.

 Variable: A variable is a special value that is entered into a text field

and evaluated at runtime. The primary usage of variable operands is to

allow you to compare attributes on the entities being evaluated with

the attributes on the source object where the fetched property is being

called.

Your first instinct might be to specify Key for the right operand, since we want to

compare to the birthdate attribute on this object. However, it doesn’t work that way. Key

CHAPTER 7: Relationships, Fetched Properties, and Expressions 184

operators always and only refer to keys on the managed objects being retrieved—no

matter on which side of the equation they appear. So, if we were to select Key here, we

would be comparing each hero’s birth date to his or her own birth date. Instead, we

want to choose Variable. Do that now, and the date field should turn back into a text

field, where you can type.

The Variable option allows you to use special predicate builder variables that are

evaluated at runtime. These variables also can be combined with keypaths to get to

specific attributes of that object. The variable that’s used to refer to the object where the

fetched property is being executed is called $FETCH_SOURCE. To specify the birth

date value on the source object, type FETCH_SOURCE.birthdate in the text field

(without the dollar sign), which tells Core Data that we want to compare to the birthdate

value on the object where the fetched property is being executed.

CAUTION: The dollar sign is, in fact, part of the variable name. However, the predicate builder
automatically prefixes whatever you type in the variable field with a dollar sign, so it’s important
that you don’t type it in, as that would result in two dollar signs being used.

Now click the OK button, because this predicate is done. The detail pane for your new

fetched property should look like Figure 7–12.

NOTE: The variable text field is not big enough to show the entire value you just typed. Just type
carefully, and everything will be okay.

Figure 7–12. The finished fetched property. Notice that the predicate in the box includes a dollar sign before
FETCH_SOURCE, even though you didn’t type one.

Here are a few points of caution:

 When you add or change a predicate, always take a look at the result

before you run the application.

 Make sure variables start with a dollar sign and are not surrounded by

quotes.

 Make sure you did not choose Constant instead of Variable (a common

mistake).

CHAPTER 7: Relationships, Fetched Properties, and Expressions 185

If you’ve checked these things and still run into problems, try doing a clean build.

Sometimes that helps.

NOTE: In addition to $FETCH_SOURCE, Core Data also offers the variable $FETCHED_PROPERTY,
which points to the description of a fetched property. You might use this is you want to compare
an object attribute with the name of the fetched property being run. We won’t use
$FETCHED_PROPERTY in this book, but you can find out more about it by reading the Core Data
Programming Guide:

http://developer.apple.com/mac/library/documentation/Cocoa/Concept

ual/CoreData/Articles/cdRelationships.html

Creating the youngerHeroes Fetched Property
Add another fetched property named youngerHeroes. The Destination will be Hero

again, and the predicate should be the same as the previous one, except the operator

will be > instead of <. However, we’re not going to build this one in quite the same way

we did the previous one. Instead, we’re going to show you another way of entering

criteria in the predicate builder.

In addition to specifying criteria using the pop-up menus as we just did, Xcode’s

predicate builder also allows us to use something called an expression. In the context

of a predicate, an expression is just a string that represents one or more criteria. (For

those who have worked with SQL, a predicate’s expression is similar to a SQL

statement’s WHERE clause, although the syntax is different.)

Click the Edit Predicate button again to open the predicate builder for this new fetched

property. From the pop-up menu on the left, instead of selecting birthdate, select

Expression, which should be the topmost item in the menu. A large text field appears to

the right of the pop-up button. In that text field, type the following expression string:

 birthdate > $FETCH_SOURCE.birthdate

Once you’re finished typing this expression, your predicate builder sheet should look like

Figure 7–13.

NOTE: The syntax for expressions is documented in the Predicates Programming Guide:

http://developer.apple.com/mac/library/DOCUMENTATION/Cocoa/Concept

ual/Predicates/predicates.html

http://developer.apple.com/mac/library/documentation/Cocoa/Concept
http://developer.apple.com/mac/library/DOCUMENTATION/Cocoa/Concept

CHAPTER 7: Relationships, Fetched Properties, and Expressions 186

Figure 7–13. You can also enter criteria as expressions.

Hit the OK button, and this predicate is done.

One thing to be aware of is that a fetched property retrieves all matching objects,

potentially including the object on which the fetch is being performed. This means it is

possible to create a result set that, when executed on Ultra Guy, returns Ultra Guy.

Both the youngerHeroes and olderHeroes fetched properties automatically exclude the

hero being evaluated. Heroes cannot be older or younger than themselves; their birth

date will always exactly equal their own birth date, and so no hero will ever meet the two

criteria we just created.

Let’s now add a fetched property that has slightly more complex criteria.

Creating the sameSexHeroes Fetched Property
The next fetched property we’re going to create is called sameSexHeroes, and it returns

all heroes who are the same sex as this hero. We can’t just specify to return all heroes of

the same sex, however, because we don’t want this hero to be included in the fetched

property. Ultra Guy is the same sex as Ultra Guy, but users will not expect to see Ultra

Guy when they look at a list of the heroes who are the same sex as Ultra Guy.

Create another fetched property, naming it sameSexHeroes. Assign the new fetched

property a Destination of Hero, and then open the predicate builder. In the pop-up menu

on the left, select sex. Right-click in the blank area to the left of the plus and minus

buttons, change the right operand to Variable, and type in FETCH_SOURCE.sex. The

operator should have defaulted to =, but if not, change it to =. Now our predicate

specifies all heroes who are the same sex as this hero, but we need another criterion to

exclude the hero for whom this fetched property is being executed.

Right-click in the space to the left of the plus and minus buttons again. Notice that there

are some other options below the operand types. Select Add AND to add another

CHAPTER 7: Relationships, Fetched Properties, and Expressions 187

criterion to this predicate. You could also have accomplished this by clicking the +

button, but we wanted you to see this other way. After you add the second criteria, your

predicate should look like Figure 7–14.

Figure 7–14. The predicate builder allows you to build complex criteria using Boolean logic. Here, we have two
criteria being joined by an AND operator.

Because we selected AND, this fetched property will return only heroes that meet both

criteria. So, what should the second criterion be?

We could just compare names and exclude heroes with the same name as ours. That

might work, except for the fact that two heroes might have the same name. Maybe using

name isn’t the best idea. But what value is there that uniquely identifies a single hero?

There isn’t one, really.

Fortunately, predicate builder expressions recognize a special value called SELF, which

returns the object being compared. The $FETCH_SOURCE variable represent the object

where the fetch request is happening. Therefore, to exclude the object where the fetch

request is firing, we just need to require it to return only objects where SELF !=
$FETCH_SOURCE. To prevent this predicate from including the object where the

selection is happening, click the left pop-up menu on the second row and select

Expression. In the text field that appears, type the following:

 SELF != $FETCH_SOURCE

Creating the oppositeSexHeroes Fetched Property
Create a new fetched property called oppositeSexHeroes and give it a Destination of

Hero. Use the predicate editor to retrieve all heroes of the opposite sex. We’re not going

to give you the exact steps for this one, but your completed fetched property should

look like Figure 7–15. Make sure you save your data model before continuing.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 188

Figure 7–15. This is how the final fetched property should look when you’re finished.

EXPRESSIONS AND AGGREGATES

Another use of expressions is to aggregate attributes without loading them all into memory. If you wanted
to get the average, median, minimum, or maximum for a specific attribute, such as the average age of our
heroes or count of female heroes, you can do that (and more) with an expression. In fact, that’s how you
should do it. To understand why, you need to know a little about the way Core Data works under the hood.

The fetched results controller we’re using in HeroListController contains objects for all of the heroes
in our database, but it doesn’t have all of them fully loaded into memory as managed objects. Core Data
has a concept of a fault. A fault is sort of like a stand-in for a managed object. A fault object knows a bit
about the managed object it’s standing in for, such as its unique ID and perhaps the value of one attribute
being displayed, but it’s not a full managed object.

A fault turns into a full-fledged managed object when something triggers the fault. Triggering a fault
usually happens when you access an attribute or key that the fault doesn’t know about. Core Data is smart
enough to turn a fault into a managed object when necessary, so your code usually doesn’t need to worry
about whether it’s dealing with a fault or a managed object. However, it’s important to know about this
behavior, so you don’t unintentionally cause performance problems by triggering faults unnecessarily.

Most likely, the faults in our fetched results controller don’t know anything about the sex attribute of
Hero. So, if we were to loop through the heroes in our fetched results controller to get a count of the
female heroes, we would be triggering every fault to become a managed object. That’s inefficient, because
it uses a lot more memory and processing power than necessary. Instead, we can use expressions to
retrieve aggregate values from Core Data without triggering faults.

Here’s an example of how we would use an expression to retrieve the average birth date calculated for all
female heroes in our application (we can’t use age in a fetch request because it’s a transient attribute that
isn’t stored).

 NSExpression *ex = [NSExpression expressionForFunction:@"average:"
 arguments:[NSArray arrayWithObject:[NSExpression
 expressionForKeyPath:@"birthdate"]]];
 NSPredicate *pred = [NSPredicate predicateWithFormat:@"sex == 'Female'"];

 NSExpressionDescription *ed = [[NSExpressionDescription alloc] init];
 [ed setName:@"averageBirthdate"];
 [ed setExpression:ex];
 [ed setExpressionResultType:NSDateAttributeType];

CHAPTER 7: Relationships, Fetched Properties, and Expressions 189

 NSArray *properties = [NSArray arrayWithObject:ed];

 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 [request setPredicate:pred];
 [request setPropertiesToFetch:properties];
 [request setResultType:NSDictionaryResultType];

 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Hero"
 inManagedObjectContext:context];
 [request setEntity:entity];

 NSArray *results = [context executeFetchRequest:request error:nil];
 NSDate *date = [results objectAtIndex:0];
 NSLog(@"Average birthdate for female heroes: %@", date);

Aggregate expressions are relatively new to Core Data. As of this writing, the process of using expressions
to obtain aggregates is not thoroughly documented, but the preceding code sample, along with the API
documentation for NSExpression and NSExpressionDescription, should get you pointed in the right
direction for working with aggregates.

Adding Relationships and Fetched Properties to the
Hero Class
Since we created a custom subclass of NSManagedObject, we need to update that class

to include the new relationship and fetched properties. If we had not made any changes

to the Hero class, we could just regenerate the class definition from our data model, and

the newly generated version would include properties and methods for the relationships

and fetched properties we just added to our data model. Since we have added

validation code, we’ll need to update it manually. Single-click Hero.h and add the

following code:

#import <CoreData/CoreData.h>

#define kHeroValidationDomain @"com.Apress.SuperDB.HeroValidationDomain"
#define kHeroValidationBirthdateCode 1000
#define kHeroValidationNameOrSecretIdentityCode 1001

@class Power;

@interface Hero : NSManagedObject
{
}

@property (nonatomic, readonly) NSNumber * age;
@property (nonatomic, retain) NSString * secretIdentity;
@property (nonatomic, retain) NSString * sex;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSDate * birthdate;
@property (nonatomic, retain) UIColor * favoriteColor;

@property (nonatomic, retain) NSSet* powers;

CHAPTER 7: Relationships, Fetched Properties, and Expressions 190

@property (nonatomic, readonly) NSArray *olderHeroes;
@property (nonatomic, readonly) NSArray *youngerHeroes;
@property (nonatomic, readonly) NSArray *sameSexHeroes;
@property (nonatomic, readonly) NSArray *oppositeSexHeroes;
@end

@interface Hero (PowerAccessors)
- (void)addPowersObject:(Power *)value;
- (void)removePowersObject:(Power *)value;
- (void)addPowers:(NSSet *)value;
- (void)removePowers:(NSSet *)value;
@end

Save the file.

Switch over to Hero.m, and make the following changes:

#import "Hero.h"

@implementation Hero

@dynamic age;
@dynamic secretIdentity;
@dynamic sex;
@dynamic name;
@dynamic birthdate;
@dynamic favoriteColor;
@dynamic powers;
@dynamic olderHeroes, youngerHeroes, sameSexHeroes, oppositeSexHeroes;

- (void) awakeFromInsert
{
...

The Big Refactor
Our data model is now complete. Next, we need to make changes to our user interface

to let the user see the fetched properties and to view and edit powers. In order to let our

users view the fetched properties, we’ll create a new generic attribute controller, such as

the one found in ManagedObjectStringEditor.m, that will be used to display all four

fetched properties. We’ll also be able to use this controller in the future to display any

other fetched properties we add. How should we implement a controller for editing

powers?

Throughout the book, we’ve been harping on writing code generically. We’ve talked

about and demonstrated some of the benefits of doing that. We’re now able to add and

remove attributes from our user interface without needing to write any substantive code.

This means it will be easy to extend and maintain HeroEditController as our application

grows. There’s also another benefit.

Powers and heroes are both represented by managed objects. Since we’ve written

HeroEditController so generically, we could just copy the contents of

CHAPTER 7: Relationships, Fetched Properties, and Expressions 191

HeroEditController into a new controller class called PowerEditController. Then all we

would need to do is change the array that is created in viewDidLoad:, and everything

should pretty much work, right?

Yes, but …

Any time you find yourself copying and pasting large amounts of code, you need to take

a step back and ask yourself if there isn’t some way to avoid duplicating logic. What

happens if you discover a bug in the controller logic? If you copy that logic over to a

new controller class, you’ll need to fix it in two places. In this case, we want to look for a

way to leverage the same code to display both the Hero and Power managed object, and

also to handle any additional entities that we might create in the future.

By writing our code generically, we have done almost all the work needed to display and

edit any Core Data managed object. We have a class, HeroEditController, that with a

little restructuring can be used to display any managed object. Having a generic

managed object editor will make our life much easier as we expand our application in

the future, so let’s refactor now.

We’re going to start by renaming HeroEditController to ManagedObjectEditor. We’ll

remove all of the hero-specific code from that the renamed class and move it to a

category on ManagedObjectEditor that will contain all of our project-specific code. This

will allow us to reuse the class in other projects, without needing to copy code that’s

specific to another project. After that, we’ll make a handful of changes so that the class

is more generic and to handle the display of relationships.

Renaming the Class
The name HeroEditController was very descriptive up to now, because that was

exactly the job this controller was performing. By the end of this chapter, however, it will

be used to display and edit two completely different entities, and will be capable of

displaying others. Therefore, a new name seems to be in order.

HeroAndPowerAndOtherManagedObjectsEditController is one candidate, but that’s a little

long, even in the iPhone development world. Let’s go with ManagedObjectEditor.

In the Groups & Files pane, single-click HeroEditController.h. Find the following line:

@interface HeroEditController : UITableViewController {

In this line, double-click the word HeroEditController to select it. Now, from the Edit
menu, select Refactor…, or press J, to bring up the refactor window (Figure 7–16).

This window will allow you to change the name of a class or an instance variable. It will

go through your project and change any references to the old name to the new name. In

the text field, type ManagedObjectEditor, and then click the Preview button.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 192

Figure 7–16. The refactor window allows you to rename classes and instance variables.

The preview will show you all the changes that Xcode will make for you if you decide to

apply the change. If you select any of the listed filenames, it will show you all the

changes that will be made to that file. The existing file will be displayed on the left, and

the refactored view will appear on the right (Figure 7–17).

Figure 7–17. Xcode’s refactoring allows you to preview the changes that will be made.

Click the Apply button to commit the changes, and then press S to save all the

affected files.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 193

Refactoring the hero Instance Variable
In our ManagedObjectEditor class, we have an instance variable called hero. That

variable name is no longer representative of what that variable holds, so let’s refactor

that as well. Single-click ManagedObjectEditor.h, and then double-click the hero

instance variable to select it. Press J to bring up the refactor window again, and

change its name to managedObject. Don’t forget to save all the affected files after you

apply the changes.

Removing the Arrays
Currently, our one instance of ManagedObjectEditor (formerly HeroEditController) is

contained in MainWindow.xib, and the arrays that define the table structure are created

in viewDidLoad:. Since viewDidLoad: will be called no matter which entity is being

displayed, we need to move the arrays somewhere else. For now, this object-specific

code doesn’t belong in a generic class, so we’ll delete it. We’ll re-create the code a little

later in a new location outside the main class definition.

Single-click ManagedObjectEditor.m and delete all of the code from the viewDidLoad:

method except the call to super. Here’s the new version of viewDidLoad::

- (void)viewDidLoad {
 [super viewDidLoad];
}

Don’t worry—we’ll write code elsewhere to populate the arrays. Before we do that,

though, we have a few other changes to make.

Supporting Save and Cancel Buttons
One difference between HeroEditController and ManagedObjectEditor is that

HeroEditController always existed at the same spot in the navigation hierarchy. You

could drill down to it from one, and only one, place: the navigation controller’s root view

controller. When we use the class to let users edit and display powers, however, we’re

giving them the ability to add a new object by tapping a row on another object. As was

the case with our generic attribute editors, our users are going to expect to be able to

save or cancel when they are in the process of adding a new power. In addition, since

this same code will be used to display a selected hero, we need to handle the case

where save and cancel are not needed. Our new generic controller handles both cases.

Single-click ManagedObjectEditor.h and make the following changes:

#import <UIKit/UIKit.h>

#define kToManyRelationship @"ManagedObjectToManyRelationship"
#define kSelectorKey @"selector"

@interface ManagedObjectEditor : UITableViewController {
 NSManagedObject *managedObject;
 BOOL showSaveCancelButtons;

CHAPTER 7: Relationships, Fetched Properties, and Expressions 194

@private
 NSArray *sectionNames;
 NSArray *rowLabels;
 NSArray *rowKeys;
 NSArray *rowControllers;
 NSArray *rowArguments;

}
@property (nonatomic, retain) NSManagedObject *managedObject;
@property BOOL showSaveCancelButtons;
- (IBAction)save;
- (IBAction)cancel;

@end

We first define a couple of constants that we’ll need later. Don’t worry about them for

now. We’ll explain what they’re used for later when we use them in code. Next, we need

an instance variable to keep track of whether we should show the Save and Cancel
buttons, so we declare showSaveCancelButtons. We also declare a corresponding

property of the same name to expose this variable to other objects. We then add two

action methods to handle the result of pressing either of the two buttons. Don’t forget to

save this file.

Flip over to ManagedObjectEditor.m. Synthesize the showSaveCancelButtons property

and add the implementation of the save and cancel methods, as follows:

#import "ManagedObjectEditor.h"
#import "NSArray-NestedArrays.h"
#import "HeroValueDisplay.h"
#import "ManagedObjectAttributeEditor.h"
@implementation ManagedObjectEditor
@synthesize managedObject;
@synthesize showSaveCancelButtons;

- (IBAction)save {
 NSError *error;
 if (![self.managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);

 [self.navigationController popViewControllerAnimated:YES];
}

- (IBAction)cancel {
 if ([self.managedObject isNew])
 [self.managedObject.managedObjectContext deleteObject:self.managedObject];
 [self.navigationController popViewControllerAnimated:YES];
}

- (void)viewWillAppear:(BOOL)animated {
...

Notice that we’re only logging errors in save, and not reporting them to the user. This is

because we validate and save every time an individual attribute is edited. Doing it here

would be redundant; we just log the error to help us with debugging. In theory, once our

CHAPTER 7: Relationships, Fetched Properties, and Expressions 195

application has been tested, the code here should never actually encounter an error in

the wild.

The cancel method might look a little odd. Remember that this same class is used to

create and edit powers. If it’s a new object, then Cancel means the new object that was

created needs to be deleted before we go back to the previous level in the navigation

hierarchy. If we’re just editing an existing object, we don’t want to delete it—we just

move back up to the previous view in the hierarchy.

Adding the isNew Method to NSManagedObject
In the cancel method, we used a method on NSManagedObject called isNew that returns

YES if this object has not been saved to the database. This is a handy method.

Unfortunately, it doesn’t exist on NSManagedObject, so we need to add it using a

category. Single-click the Categories folder in the Groups & Files pane, and then select

New File… from the File menu and select Objective-C class from under the Cocoa Touch
Class heading. Make the file a subclass of NSObject. Name the new file

NSManagedObject-IsNew.m, and make sure you check the box to have it create the

header file.

Single-click NSManagedObject-IsNew.h and replace its contents with the following:

#import <Foundation/Foundation.h>

@interface NSManagedObject(IsNew)
/**
 Returns YES if this managed object is new and has not yet been saved in the
persistent store.
*/
-(BOOL)isNew;
@end

Switch over to NSManagedObject-IsNew.m and replace its contents with this:

#import "NSManagedObject-IsNew.h"

@implementation NSManagedObject(IsNew)
-(BOOL)isNew
{
 NSDictionary *vals = [self committedValuesForKeys:nil];
 return [vals count] == 0;
}
@end

This method relies on the fact that managed objects maintain a dictionary of committed
values, which are the values of attributes that have already been saved in the persistent

store. This is the way it tells if values have been changed since the last save. If there

aren’t any attributes in the dictionary returned by committedValuesForKeys:, then the

object must be new, because that indicates that there are no values saved in the

persistent store.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 196

Make sure both of these files are saved. Then go back to ManagedObjectEditor.m and

add this import statement to the top to prevent compiler warnings about the isNew

method not existing:

#import "ManagedObjectEditor.h"
#import "NSArray-NestedArrays.h"
#import "HeroValueDisplay.h"
#import "ManagedObjectAttributeEditor.h"
#import "NSManagedObject-IsNew.h"

@implementation ManagedObjectEditor
@synthesize managedObject;
@synthesize showSaveCancelButtons;

- (IBAction)save {
...

Adding the Save and Cancel Buttons
The property showSaveCancelButtons tracks whether we should show the Save and

Cancel buttons. Now we need to add code to viewWillAppear: to actually add those

buttons to the navigation bar. Since it’s possible that an instance of

ManagedObjectEditor will be reused for different managed objects, we also need to

make sure that we’re not showing buttons from a previous use when

showSaveCancelButtons is NO. Still in ManagedObjectEditor.m, add the following code to

viewWillAppear:.

- (void)viewWillAppear:(BOOL)animated {
 [self.tableView reloadData];
 if (showSaveCancelButtons) {
 UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
 initWithTitle:NSLocalizedString(@"Cancel",
 @"Cancel - for button to cancel changes")
 style:UIBarButtonSystemItemCancel
 target:self
 action:@selector(cancel)];
 self.navigationItem.leftBarButtonItem = cancelButton;
 [cancelButton release];
 UIBarButtonItem *saveButton = [[UIBarButtonItem alloc]
 initWithTitle:NSLocalizedString(@"Save",
 @"Save - for button to save changes")
 style:UIBarButtonItemStyleDone
 target:self
 action:@selector(save)];
 self.navigationItem.rightBarButtonItem = saveButton;
 [saveButton release];
 }
 else {
 self.navigationItem.leftBarButtonItem = nil;
 self.navigationItem.rightBarButtonItem = nil;
 }
 [super viewWillAppear:animated];
}

CHAPTER 7: Relationships, Fetched Properties, and Expressions 197

Adding Support for To-Many Relationships
If you look back at Figure 7–1, you’ll see that we display a row for every power in the powers

relationship and also use our table view’s editing mode buttons to let the user delete powers

or insert powers. We’re going to use functionality built into UITableView to handle the deletes

and inserts for to-many relationships. This is the presentation that the users will expect

based on their experiences with built-in iPhone applications like Contacts and Calendar. It

also allows us to leverage built-in code, rather than writing our own.

Turning on Edit Mode
In order to leverage the table’s built-in editing functionality, we need to turn on edit

mode for our table view. Unlike in previous examples, we’re going to leave edit mode on

all the time. This is a controller intended specifically for editing, so we’re not going to

make the users take an extra step to turn on edit mode before they’re allowed to add or

delete objects from a relationship. Let’s turn on edit mode in viewDidLoad: by adding

the following two lines of code:

- (void)viewDidLoad {
 self.tableView.editing = YES;
 self.tableView.allowsSelectionDuringEditing = YES;

 [super viewDidLoad];
}

The first line of code turns on the table view’s edit mode. The second line allows rows to

be selected when edit mode is on. Ordinarily, there would be no need to select a row

while in edit mode, because you would be in edit mode only for the time it takes to

delete or move a row, and being able to accidentally select a row could get in the way of

that functionality. As a result, by default, you can’t select a row when edit mode is

turned off. We need it turned back on so that the user can interact with our rows and

drill down to edit attributes.

Setting Row Indentation
By default, any row that can be edited gets indented so that there’s room for the delete

or insert button to the left of the cell. In our design, rows in sections that represent to-

many relationships will always be indented. All the rows in the Powers section will be

indented to make room for the delete or insert button. Note that all to-many sections will

always have at least one row labeled Add New…, and that section will always feature an

insert button, as shown in Figure 7–1.

Our goal here is to build a generic managed object editor that we can use for the Powers

section, as well as for any other to-many sections we might add to our application in the

future.

We use the rowControllers subarray to represent a table section. We’ll embed the

constant kToManyRelationship we defined earlier inside any subarray pointed to by

rowControllers when that subarray represents a to-many section.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 198

Let’s add a method to ManagedObjectEditor now that takes a section index and returns

a BOOL that identifies whether the section is a regular section or a to-many relationship

section. Later in the chapter, we’ll add the code that embeds the kToManyRelationship

constant in the section array if the section does represent a to-many relationship.

Insert the code shown in bold into ManagedObjectEditor.m:

#import "ManagedObjectEditor.h"
#import "NSArray-NestedArrays.h"
#import "HeroValueDisplay.h"
#import "ManagedObjectAttributeEditor.h"
#import "NSArray-Set.h"
#import "NSManagedObject-IsNew.h"

@interface ManagedObjectEditor()
- (BOOL)isToManyRelationshipSection:(NSInteger)section;
@end

@implementation ManagedObjectEditor
@synthesize managedObject
@synthesize showSaveCancelButtons;

- (BOOL)isToManyRelationshipSection:(NSInteger)section
{
 NSArray *controllersForSection = [rowControllers objectAtIndex:section];

 if ([controllersForSection count] == 0)
 return NO;

 NSString *controllerForRow0 = [controllersForSection objectAtIndex:0];
 NSArray *sectionKeys = [rowKeys objectAtIndex:section];

 return [sectionKeys count] == 1 && [controllerForRow0
 isEqualToString:kToManyRelationship];
}

- (IBAction)save {
...

Since this method is not one that would ever be used outside our class, we’re not going

to declare it in our header. If we declared it there, we would advertise it to other classes.

Instead, we’ll use an Objective-C extension to declare it. Doing this lets the compiler

know about the existence of our method without advertising it outside our class.

NOTE: Extensions are new to Objective-C 2.0. They exist specifically to let you declare a method
without exposing it in your header file.

The isToManyRelationshipSection: method grabs the controller for the specified

section. Unlike other sections, to-many sections will have only a single value in the

rowControllers subarray. If the specified section array does not contain a row (is

empty), then we know it’s not a to-many section, and we return NO because there’s no

point in doing any further work. Otherwise, we look at the controller class, and if there’s

CHAPTER 7: Relationships, Fetched Properties, and Expressions 199

only one row and that row contains the constant kToManyRelationship, then we return

YES. For any other values, we return NO.

Now that we have the ability to determine if a section is a to-many section, we can

implement the delegate method that identifies which rows should be indented. Add the

following method just about the @end declaration in ManagedObjectEditor.m:

- (BOOL)tableView:(UITableView *)tableView
 shouldIndentWhileEditingRowAtIndexPath:(NSIndexPath *)indexPath {
 return [self isToManyRelationshipSection:[indexPath section]];
}

Now, any row that represents a to-many section will get indented and leave room for the

insert or delete button. Any other row will appear unindented, as in the previous

iterations of the application.

Setting the Correct Number of Rows for To-Many Sections
That’s not all there is to supporting to-many relationships. We also need to change the

tableView:numberOfRowsInSection: method so that it returns a value based on the

number of objects in a to-many relationship when a section is a to-many section.

Replace the existing method in ManagedObjectEditor.m with this new version:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 if ([self isToManyRelationshipSection:section]) {
 NSArray *sectionKeys = [rowKeys objectAtIndex:section];
 NSString *row0Key = [sectionKeys objectAtIndex:0];
 return [[managedObject valueForKey:row0Key] count] + 1;
 }
 return [rowLabels countOfNestedArray:section];
}

Notice that we actually return a number that is one higher than the number of objects in

the to-many relationship. If you look at Figure 7–1, you’ll see that we need an additional

row to allow the user to insert a new power. You cannot have an insert and a delete

button on the same row, so we need an additional row to let the user insert new values.

NOTE: Yes, the Contacts application on the iPhone has both a plus button and a minus button on
some rows. That ability has not been exposed through public APIs, however, so we can’t easily
provide that same functionality without violating the iPhone SDK agreement that prohibits the use
of private APIs.

The Set Problem
We mentioned earlier that to-many relationships are represented as an unordered

collection using NSSet. What’s critical is that the list of to-many objects be consistently

represented in the same order.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 200

Before we modify our delegate and data source methods to handle to-many

relationships, let’s create a category on NSArray that will allow us to create an array from

a set by specifying a key that should be used for ordering the objects. If we pass an

NSSet into this method, it will always spit out an array with the same objects that are in

the NSSet, only in a specific order.

In your Groups & Files pane, select the Categories folder. Then select N from the File

menu and choose Objective-C class, with a subclass of NSObject. Call the file NSArray-
Set.m, and make sure to have it create the header file as well.

Single-click NSArray-Set.h and replace the contents with the following:

#import <Foundation/Foundation.h>

@interface NSArray(Set)
+ (id)arrayByOrderingSet:(NSSet *)set byKey:(NSString *)key ascending:(BOOL)ascending;

@end

Save your changes.

Now switch over to NSArray-Set.m and replace its contents with the following:

#import "NSArray-Set.h"

@implementation NSArray(Set)
+ (id)arrayByOrderingSet:(NSSet *)set byKey:(NSString *)key ascending:(BOOL)ascending {
 NSMutableArray *ret = [NSMutableArray arrayWithCapacity:[set count]];
 for (id oneObject in set)
 [ret addObject:oneObject];

 NSSortDescriptor *descriptor = [[NSSortDescriptor alloc] initWithKey:key
 ascending:ascending];
 [ret sortUsingDescriptors:[NSArray arrayWithObject:descriptor]];
 [descriptor release];
 return ret;
}
@end

Now, we have the ability to quickly and easily create ordered arrays from unordered

sets. We can create order from chaos. We are now truly masters of the universe.

Okay, that might be overstating the case just a touch, but it’s still pretty cool. Since

we’re going to be using this category in several methods in the ManagedObjectEditor

class, insert the following import statement near the top of ManagedObjectEditor.m:

#import "ManagedObjectEditor.h"
#import "NSArray-NestedArrays.h"
#import "HeroValueDisplay.h"
#import "ManagedObjectAttributeEditor.h"
#import "NSManagedObject-IsNew.h"
#import "NSArray-Set.h"

@interface ManagedObjectEditor()
...

CHAPTER 7: Relationships, Fetched Properties, and Expressions 201

Specifying the Editing Style for the Rows
The default editing style for all rows in a table is the delete style. Since our table view will

always be in edit mode, if we stay with the delete style, a delete button will always

appear next to each of our table rows. That’s not what we want. Instead, we want insert

and delete buttons only in to-many sections. To do that, add the following method just

above the @end declaration in ManagedObjectEditor.m:

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {

 if ([self isToManyRelationshipSection:[indexPath section]]) {
 NSUInteger newPath[] = {[indexPath section], 0};
 NSIndexPath *row0IndexPath = [NSIndexPath indexPathWithIndexes:
 newPath length:2];

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:row0IndexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:row0IndexPath];
 NSMutableSet *rowSet = [managedObject mutableSetValueForKey:rowKey];
 NSArray *rowArray = [NSArray arrayByOrderingSet:rowSet byKey:rowLabel
 ascending:YES];

 if ([indexPath row] >= [rowArray count])
 return UITableViewCellEditingStyleInsert;

 return UITableViewCellEditingStyleDelete;
 }
 return UITableViewCellEditingStyleNone;
}

For sections that hold to-many relationships, we return

UITableViewCellEditingStyleDelete, which shows the delete button, unless it’s that

last additional row in the section—the one that allows the user to Add New…. In that

case, we return UITableViewCellEditingStyleInsert, which shows an insert button. For

all other rows, we return UITableViewCellEditingStyleNone, which tells the table view to

show neither button.

Displaying To-Many Sections
We need to update tableView:cellForRowAtIndexPath: so that it knows about to-many

sections. This requires some substantial changes, because we must add a new cell

identifier with a different cell style for the to-many sections. For the existing rows, we’ll

continue to use UITableViewCellStyleValue2, which has two fields: a blue text label and

a larger black text label. We don’t want to use that style for to-many sections. We want

to use the default style with just a single black text label.

Because the changes to this method are so extensive, we’ll just replace the existing

tableView:cellForRowAtIndexPath: in ManagedObjectEditor.m with the following new

version:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *defaultIdentifier = @"Managed Object Cell Identifier";

CHAPTER 7: Relationships, Fetched Properties, and Expressions 202

 static NSString *relationshipIdentifier =
 @"Managed Object Relationship Cell Identifier";

 id rowController = [rowControllers nestedObjectAtIndexPath:indexPath];
 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];

 if (rowController == nil) {
 NSUInteger newPath[] = {[indexPath section], 0};
 NSIndexPath *row0IndexPath = [NSIndexPath indexPathWithIndexes:newPath
 length:2];
 rowController = [rowControllers nestedObjectAtIndexPath:row0IndexPath];
 rowKey = [rowKeys nestedObjectAtIndexPath:row0IndexPath];
 rowLabel = [rowLabels nestedObjectAtIndexPath:row0IndexPath];
 }

 NSString *cellIdentifier = nil;
 UITableViewCellStyle cellStyle;
 if ([rowController isEqual:kToManyRelationship]) {
 cellIdentifier = relationshipIdentifier;
 cellStyle = UITableViewCellStyleDefault;
 }
 else {
 cellIdentifier = defaultIdentifier;
 cellStyle = UITableViewCellStyleValue2;
 }

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:cellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:cellStyle
 reuseIdentifier:cellIdentifier] autorelease];
 }

 if ([rowController isEqual:kToManyRelationship]) {
 NSSet *rowSet = [managedObject valueForKey:rowKey];
 if ([rowSet count] == 0 || [indexPath row] >= [rowSet count]) {
 cell.textLabel.text = NSLocalizedString(@"Add New…", @"Add New…");
 cell.editingAccessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 else {
 NSArray *rowArray = [NSArray arrayByOrderingSet:rowSet byKey:rowLabel
 ascending:YES];
 NSUInteger row = [indexPath row];
 NSManagedObject *relatedObject = [rowArray objectAtIndex:row];
 NSString *rowValue = [[relatedObject valueForKey:rowLabel]
 heroValueDisplay];
 cell.textLabel.text = rowValue;
 cell.editingAccessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 } else if ([rowController isEqual:@"ManagedObjectFetchedPropertyDisplayer"]) {
 cell.detailTextLabel.text = rowLabel;
 cell.editingAccessoryType = UITableViewCellAccessoryDisclosureIndicator;
 cell.textLabel.text = @"";
 } else {
 id <HeroValueDisplay, NSObject> rowValue = [managedObject
 valueForKey:rowKey];

CHAPTER 7: Relationships, Fetched Properties, and Expressions 203

 cell.detailTextLabel.text = [rowValue heroValueDisplay];
 cell.textLabel.text = rowLabel;
 cell.editingAccessoryType = (rowController == [NSNull null]) ?
 UITableViewCellAccessoryNone :
 UITableViewCellAccessoryDisclosureIndicator;

 if ([rowValue isKindOfClass:[UIColor class]])
 cell.detailTextLabel.textColor = (UIColor *)rowValue;
 else
 cell.detailTextLabel.textColor = [UIColor blackColor];
 }
 return cell;
}

This is a little more complex than the old version, so let’s step through what we’re doing.

First, we define two cell identifiers, one for each of the types of cells that we want to use

in our table:

 static NSString *defaultIdentifier = @"Managed Object Cell Identifier";
 static NSString *relationshipIdentifier =
 @"Managed Object Relationship Cell Identifier";

Basically, a managed object relationship cell is a row in our table that appears in a to-

many section. All other rows are managed object cells.

Next, we retrieve the controller, key, and label from our nested arrays using indexPath,

which identifies the current section and row, just as we did previously.

 id rowController = [rowControllers nestedObjectAtIndexPath:indexPath];
 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];

Next, we check to see if rowController is nil. This will happen only if the current

section is a to-many section and we are in the second row or greater. Why? Because in

managed object sections (which are not to-many sections), every row will have an

associated row controller. In addition, in a to-many section, the first item will have a

value in the row controller field of kToManyRelationship. So if rowController is nil, we

know we’re in row 2+ of a to-many section, and we go back and get the values from the

first row in the section, which we do by creating a new index path:

 if (rowController == nil) {
 NSUInteger newPath[] = {[indexPath section], 0};
 NSIndexPath *row0IndexPath = [NSIndexPath indexPathWithIndexes:newPath
 length:2];
 rowController = [rowControllers nestedObjectAtIndexPath:row0IndexPath];
 rowKey = [rowKeys nestedObjectAtIndexPath:row0IndexPath];
 rowLabel = [rowLabels nestedObjectAtIndexPath:row0IndexPath];
 }

After that, we declare local variables to represent the cell identifier and style, and then

set them based on whether indexPath points to a row in a to-many section or a regular

section:

 NSString *cellIdentifier = nil;
 UITableViewCellStyle cellStyle;
 if ([rowController isEqual:kToManyRelationship]) {

CHAPTER 7: Relationships, Fetched Properties, and Expressions 204

 cellIdentifier = relationshipIdentifier;
 cellStyle = UITableViewCellStyleDefault;
 }
 else {
 cellIdentifier = defaultIdentifier;
 cellStyle = UITableViewCellStyleValue2;
 }

Once we have the style and identifier, we dequeue or create a new cell as normal:

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:cellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:cellStyle
 reuseIdentifier:cellIdentifier] autorelease];
 }

Now things get a little hairy. We check to see if we have a to-many relationship:

 if ([rowController isEqual:kToManyRelationship]) {

Then we grab the set that represents the to-many relationship and check to see if the

row that this cell represents is greater than or equal to the number of objects in the

relationship. If it is, then this row is that special insert row that doesn’t actually represent

any object in the relationship, so we set the cell label to the string constant @"Add
New...":

 NSSet *rowSet = [managedObject valueForKey:rowKey];
 if ([rowSet count] == 0 || [indexPath row] >= [rowSet count]) {
 cell.textLabel.text = NSLocalizedString(@"Add New…", @"Add New…");
 cell.editingAccessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

If it’s not the last row, we need to order the set into an array. Since we don’t need to

display a label on each row for to-many arrays, we’re repurposing that subarray for to-

many sections to hold a key value that identifies which value on the other managed

object should be displayed in the text label for the row. That key value will also be used

to order the rows in the relationship, so they are always in the same order. Later, when

we re-create the table structure arrays, we’ll specify @"name" in that subarray for the

powers to-many section to indicate that it should order the powers by the name attribute

and display the name attribute in the table view cell.

NOTE: Yes, this is a little confusing. Bear with us. It probably would have been clearer to declare
another array to hold the key value for to-many sections. However, since we already have a
nested array that isn’t needed by to-many sections, and we would need another nested array
that is used only for to-many sections, we’re trading off a little complexity for improved
efficiency. We’ll just need to make sure we document the fact that the rowLabels subarrays
serve a slightly different purpose for to-many sections.

 else {
 NSArray *rowArray = [NSArray arrayByOrderingSet:rowSet byKey:rowLabel
 ascending:YES];

CHAPTER 7: Relationships, Fetched Properties, and Expressions 205

 NSUInteger row = [indexPath row];
 NSManagedObject *relatedObject = [rowArray objectAtIndex:row];
 NSString *rowValue = [[relatedObject valueForKey:rowLabel]
 heroValueDisplay];
 cell.textLabel.text = rowValue;
 cell.editingAccessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

A little later in the chapter, we’re going to write a controller class to display fetched

properties. You can see what the end result of that controller class will look like in Figure

7–3. To avoid going back and forth later on, we’re going to write the code for those rows

now, since they require slightly different logic than other attributes. If you look at Figure

7–1, you’ll see that we use only one of the two labels for the fetched properties, so the

next chunk of code handles the display of fetched properties by setting the unused text

label to display an empty string:

 } else if ([rowController isEqual:@"ManagedObjectFetchedPropertyDisplayer"]) {
 cell.detailTextLabel.text = rowLabel;
 cell.editingAccessoryType = UITableViewCellAccessoryDisclosureIndicator;
 cell.textLabel.text = @"";
 }

Otherwise, we have the same basic logic we used before:

 else {
 id <HeroValueDisplay, NSObject> rowValue = [managedObject
 valueForKey:rowKey];
 cell.detailTextLabel.text = [rowValue heroValueDisplay];
 cell.textLabel.text = rowLabel;
 cell.editingAccessoryType = (rowController == [NSNull null]) ?
 UITableViewCellAccessoryNone :
 UITableViewCellAccessoryDisclosureIndicator;

 if ([rowValue isKindOfClass:[UIColor class]])
 cell.detailTextLabel.textColor = (UIColor *)rowValue;
 else
 cell.detailTextLabel.textColor = [UIColor blackColor];
 }

Of course, once we’re finished, we return the cell:

 return cell;
}

Updating Row Selection for To-Many Relationships
Just as we did in the previous section, what we do when a user taps on a row depends

on whether it’s a row in a to-many section or just a regular section. Replace your

existing tableView:didSelectRowAtIndexPath: method with this new version:

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 if ([self isToManyRelationshipSection:[indexPath section]]) {

 NSUInteger newPath[] = {[indexPath section], 0};

CHAPTER 7: Relationships, Fetched Properties, and Expressions 206

 NSIndexPath *row0IndexPath = [NSIndexPath indexPathWithIndexes:newPath
 length:2];

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:row0IndexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:row0IndexPath];
 NSSet *rowSet = [managedObject valueForKey:rowKey];
 NSDictionary *args = [rowArguments nestedObjectAtIndexPath:row0IndexPath];
 NSString *selectorString = [args objectForKey:kSelectorKey];

 NSEntityDescription *ed = [managedObject entity];
 NSRelationshipDescription *rd = [[ed relationshipsByName]
 valueForKey:rowKey];
 NSEntityDescription *dest = [rd destinationEntity];
 NSString *entityName = [dest name];

 ManagedObjectEditor *controller = [ManagedObjectEditor
 performSelector:NSSelectorFromString(selectorString)];

 NSMutableSet *relationshipSet = [self.managedObject
 mutableSetValueForKey:rowKey];
 if ([rowSet count] == 0 || [indexPath row] >= [rowSet count]) {
 NSManagedObject *object = [NSEntityDescription
 insertNewObjectForEntityForName:entityName
 inManagedObjectContext:[self.managedObject managedObjectContext]];
 controller.managedObject = object;
 [relationshipSet addObject:object];
 controller.title = [NSString stringWithFormat:@"New %@", entityName];
 }
 else {
 NSArray *relationshipArray = [NSArray arrayByOrderingSet:relationshipSet
 byKey:rowLabel ascending:YES];
 NSManagedObject *selectedObject = [relationshipArray
 objectAtIndex:[indexPath row]];
 controller.managedObject = selectedObject;
 controller.title = entityName;
 }
 controller.showSaveCancelButtons = YES;
 [self.navigationController pushViewController:controller animated:YES];
 }
 else {
 NSString *controllerClassName = [rowControllers
 nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];
 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 Class controllerClass = NSClassFromString(controllerClassName);
 ManagedObjectAttributeEditor *controller =
 [controllerClass alloc];
 controller = [controller initWithStyle:UITableViewStyleGrouped];
 controller.keypath = rowKey;
 controller.managedObject = managedObject;
 controller.labelString = rowLabel;
 controller.title = rowLabel;

 NSDictionary *args = [rowArguments nestedObjectAtIndexPath:indexPath];
 if ([args isKindOfClass:[NSDictionary class]]) {
 if (args != nil) {
 for (NSString *oneKey in args) {

CHAPTER 7: Relationships, Fetched Properties, and Expressions 207

 id oneArg = [args objectForKey:oneKey];
 [controller setValue:oneArg forKey:oneKey];
 }
 }
 }
 [self.navigationController pushViewController:controller animated:YES];
 [controller release];
 }
}

This code may look a little scary, but it’s not really that bad. Let’s break it down.

First, we check to see if we’re dealing with a to-many relationship:

 if ([self isToManyRelationshipSection:[indexPath section]]) {

If we are, then we create an NSIndexPath instance that points to the first row in the

nested arrays, because that’s where the information for a to-many relationship is stored:

 NSUInteger newPath[] = {[indexPath section], 0};
 NSIndexPath *row0IndexPath = [NSIndexPath indexPathWithIndexes:newPath
 length:2];

Then we use that index path to get the various values we need from our nested arrays:

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:row0IndexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:row0IndexPath];
 NSSet *rowSet = [managedObject valueForKey:rowKey];
 NSDictionary *args = [rowArguments nestedObjectAtIndexPath:row0IndexPath];

Earlier in the chapter, we defined the two constants kToManyRelationship and

kSelectorKey. We used one of them to identify when a section was a to-many section.

Now, we’re going to use the other one, which will be used as a key in the rowArguments

dictionary. Later, when we re-create our table structure arrays, we’ll store the name of

an Objective-C method, under the kSelectorKey key, into the rowArguments subarray for

the heroes section. That method name will be a class method that can be called on

ManagedObjectEditor. That class method will return an instance of ManagedObjectEditor

with the nested arrays all populated for the display of the Power entity. Later, we’ll use

categories to add factory methods to ManagedObjectEditor for each entity that we let

the user edit. Here, we retrieve the value stored under that key:

 NSString *selectorString = [args objectForKey:kSelectorKey];

We also need to know the name of the destination entity used in this relationship. We

can get that information from the data model, although it takes a couple of calls to get to

the information we need:

 NSEntityDescription *ed = [managedObject entity];
 NSRelationshipDescription *rd = [[ed relationshipsByName]
 valueForKey:rowKey];
 NSEntityDescription *dest = [rd destinationEntity];
 NSString *entityName = [dest name];

Next, we create a new instance of ManagedObjectEditor that will be used to display and

edit the object on which the user tapped. So, if the user tapped on a power in Figure 7–

1, here, we would be creating a new instance of ManagedObjectEditor configured to

allow editing of Power managed objects.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 208

This code takes advantage of Objective-C’s dynamic nature. We take the name of the

factory method that we just retrieved from the rowArguments nested array and use

NSSelectorFromString() to turn it into a selector. We then perform that selector on

ManagedObjectEditor, which is how you call class methods dynamically:

 ManagedObjectEditor *controller = [ManagedObjectEditor
 performSelector:NSSelectorFromString(selectorString)];

If the user tapped on the last row in the section, we need to create a new object, since

this is the Add New… row. The next chunk of code checks if the user tapped the last

row, and then it creates a new entity if necessary:

 NSMutableSet *relationshipSet = [self.managedObject
 mutableSetValueForKey:rowKey];
 if ([rowSet count] == 0 || [indexPath row] >= [rowSet count]) {

 NSManagedObject *object = [NSEntityDescription
 insertNewObjectForEntityForName:entityName
 inManagedObjectContext:[self.managedObject managedObjectContext]];
 controller.managedObject = object;
 [relationshipSet addObject:object];
 controller.title = [NSString stringWithFormat:@"New %@", entityName];
 }

If the user tapped on any other row besides the last one in the section, then we retrieve

the object that corresponds to the row tapped. We need to create an ordered array from

the set so we know which object was tapped:

 else {
 NSArray *relationshipArray = [NSArray arrayByOrderingSet:relationshipSet
 byKey:rowLabel ascending:YES];
 NSManagedObject *selectedObject = [relationshipArray
 objectAtIndex:[indexPath row]];
 controller.managedObject = selectedObject;
 controller.title = entityName;
 }

Once we have the controller, and have either retrieved the object to be edited or created

a new object, we set showSaveCancelButtons to tell the new instance of

ManagedObjectEditor to show the Save and Cancel buttons, and then we push it onto

the navigation stack so the user sees it:

 controller.showSaveCancelButtons = YES;
 [self.navigationController pushViewController:controller animated:YES];
 }

If the row isn’t a to-many section, then we use the previous logic that grabs the

information from the nested arrays and pushes the appropriate attribute editor onto the

stack for the attribute that corresponds to the row that was tapped:

 else {
 NSString *controllerClassName = [rowControllers
 nestedObjectAtIndexPath:indexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:indexPath];
 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath];
 Class controllerClass = NSClassFromString(controllerClassName);
 ManagedObjectAttributeEditor *controller =

CHAPTER 7: Relationships, Fetched Properties, and Expressions 209

 [controllerClass alloc];
 controller = [controller initWithStyle:UITableViewStyleGrouped];
 controller.keypath = rowKey;
 controller.managedObject = managedObject;
 controller.labelString = rowLabel;
 controller.title = rowLabel;

 NSDictionary *args = [rowArguments nestedObjectAtIndexPath:indexPath];
 if ([args isKindOfClass:[NSDictionary class]]) {
 if (args != nil) {
 for (NSString *oneKey in args) {
 id oneArg = [args objectForKey:oneKey];
 [controller setValue:oneArg forKey:oneKey];
 }
 }
 }
 [self.navigationController pushViewController:controller animated:YES];
 [controller release];
 }
}

Handling To-Many Inserts and Deletes
When the user taps on a delete or insert icon, our delegate method

tableView:commitEditingStyle:forRowAtIndexPath: is called. In that method, if the

delete button was tapped, we need to handle deleting the selected object and removing

it from the relationship. If the insert button was tapped, we need to handle that as well.

Add the following method to ManagedObjectEditor.m, just before the @end declaration:

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 if (editingStyle == UITableViewCellEditingStyleInsert) {
 [self tableView:tableView didSelectRowAtIndexPath:indexPath];
 }

 else if (editingStyle == UITableViewCellEditingStyleDelete) {
 NSUInteger newPath[] = {[indexPath section], 0};
 NSIndexPath *row0IndexPath = [NSIndexPath indexPathWithIndexes:newPath
 length:2];

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:row0IndexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:row0IndexPath];

 NSMutableSet *rowSet = [self.managedObject mutableSetValueForKey:rowKey];

 NSArray *rowArray = [NSArray arrayByOrderingSet:rowSet byKey:rowLabel
 ascending:YES];
 NSManagedObject *objectToRemove = [rowArray objectAtIndex:[indexPath row]];
 [rowSet removeObject:objectToRemove];
 [self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 [[objectToRemove managedObjectContext] deleteObject:objectToRemove];
 NSError *error;
 if (![self.managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);

CHAPTER 7: Relationships, Fetched Properties, and Expressions 210

 }
}

This method is considerably shorter and less complex than the last few, but it’s still

important to understand.

The first thing we do here is check the editing style, which will tell us which button was

tapped. In the case of an insert, we call the tableView:cellForRowAtIndexPath: method.

If you recall, we already wrote functionality in that method so that a tap on the last row in

a to-many section will add a new managed object. There’s no point in doing it again, so

we just call that method:

 if (editingStyle == UITableViewCellEditingStyleInsert) {
 [self tableView:tableView didSelectRowAtIndexPath:indexPath];
 }

Otherwise, we’re dealing with a delete. We use an else if just to be safe. Although

currently this method will be called only with either UITableViewCellEditingStyleDelete

or UITableViewCellEditingStyleInsert, we want to code defensively so our application

doesn’t break if Apple someday adds another editing style into the mix.

 else if (editingStyle == UITableViewCellEditingStyleDelete) {

If it’s a delete, we know that we’re dealing with a to-many relationship, so we create an

index path pointing to the first object in the nested subarrays, and use it to retrieve the

row key and label:

 NSUInteger newPath[] = {[indexPath section], 0};
 NSIndexPath *row0IndexPath = [NSIndexPath indexPathWithIndexes:newPath
 length:2];

 NSString *rowKey = [rowKeys nestedObjectAtIndexPath:row0IndexPath];
 NSString *rowLabel = [rowLabels nestedObjectAtIndexPath:row0IndexPath];

Next, we get the set that represents the relationship. We use mutableSetValueForKey:

instead of valueForKey:, so that we can remove objects from the relationship:

 NSMutableSet *rowSet = [self.managedObject mutableSetValueForKey:rowKey];

 We need to order the set into an array so we know which object the user tapped:

 NSArray *rowArray = [NSArray arrayByOrderingSet:rowSet byKey:rowLabel
 ascending:YES];

Then we can get the actual object that needs to be deleted and removed from the

relationship. Once we have it, we remove it from the mutable set, which removes it from

the relationship. We then delete the row from the table, delete the object from the

persistent store, and save.

 NSManagedObject *objectToRemove = [rowArray objectAtIndex:[indexPath row]];
 [rowSet removeObject:objectToRemove];
 [self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 [[objectToRemove managedObject] deleteObject:objectToRemove];
 NSError *error;
 if (![self.managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);
 }

CHAPTER 7: Relationships, Fetched Properties, and Expressions 211

CAUTION: In our application, each hero has his or her own powers. Powers are not shared, so
we just delete them with impunity. Not all relationships in all applications you write will be this
way. Often, the inverse relationship will be to-many also, and objects will be shared. In those
instances, you will need to be sure to delete the object only if there are no other objects in the
inverse relationship. If other objects exist, you shouldn’t delete the selected object, but just
remove it from the relationship.

Well, congratulations. You now have a generic controller class for editing data stored in

Core Data. But before you get too excited, we still have work to do. For one thing, we

completely broke our application when we took the code to create the nested arrays out

of viewDidLoad: earlier. If you run the application now, it will not work. Let’s fix things.

Using the New Generic Controller
Refactoring can be hard, confusing work. The payoff is going to be substantial and have

lasting effects, so stick with us. The next thing we need to do is fix the application so

that it uses this new class to edit heroes and their powers. To accomplish that, we need

to add factory methods to ManagedObjectEditor to return a fully initialized controller for

each entity we want to use.

Adding Factory Methods for Hero and Power
Because we have created a generic controller, we don’t want it to have code that ties it

to our specific data model. So, we’ll create a project-specific category on

ManagedObjectEditor that will contain the code to create the arrays. This will maximize

reusability of our code, because what’s contained in ManagedObjectEditor.m will be

completely generic and can be copied to other projects.

In the Groups & Files pane in Xcode, select the Categories folder and select N from the

File menu to create a new file. Select the Objective-C Class template, subclass of

NSObject, and name the file ManagedObjectEditor-SuperDB.m. Make sure you also

have it create the corresponding header file. Once the file has been created, single-click

ManagedObjectEditor-SuperDB.h and replace the contents with the following:

#import "ManagedObjectEditor.h"

@interface ManagedObjectEditor(HeroEditor)
+ (id)controllerForHero;
- (id)initHeroEditor;
@end

@interface ManagedObjectEditor(PowerEditor)
+ (id)controllerForPower;
- (id)initPowerEditor;
@end

CHAPTER 7: Relationships, Fetched Properties, and Expressions 212

Save the file.

We’re actually creating two categories in this one file pair. We could have just as easily

added these four methods in a single category, but to make things more organized,

we’re separating the methods by the entity that they are used to edit.

Switch over to ManagedObjectEditor-SuperDB.m and replace its contents with the

following:

#import "ManagedObjectEditor-SuperDB.h"

@implementation ManagedObjectEditor (HeroEditor)

+ (id)controllerForHero {
 id ret = [[[self class] alloc] initHeroEditor];
 return [ret autorelease];
}

- (id)initHeroEditor {
 if (self = [super initWithStyle:UITableViewStyleGrouped])
 {
 sectionNames = [[NSArray alloc] initWithObjects:
 [NSNull null],
 NSLocalizedString(@"General", @"General"),
 NSLocalizedString(@"Powers", @"Powers"),
 NSLocalizedString(@"Reports", @"Reports"),
 nil];

 rowLabels = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObjects:NSLocalizedString(@"Name", @"Name"), nil],

 // Section 2
 [NSArray arrayWithObjects:NSLocalizedString(@"Identity", @"Identity"),
 NSLocalizedString(@"Birthdate", @"Birthdate"),
 NSLocalizedString(@"Age", @"Age"),
 NSLocalizedString(@"Sex", @"Sex"),
 NSLocalizedString(@"Fav. Color", @"Favorite Color"),
 nil],

 // Section 3
 [NSArray arrayWithObject:@"name"], // label here is the key on the
 // other object to use as the label

 // Section 4
 [NSArray arrayWithObjects:
 NSLocalizedString(@"All Older Heroes", @"All Older Heroes"]),
 NSLocalizedString(@"All Younger Heroes", @"All Younger Heroes"),
 NSLocalizedString(@"Same Sex Heroes", @"Same Sex Heroes"),
 NSLocalizedString(@"Opposite Sex Heroes", @" Opposite Sex Heroes"),
 nil],

 // Sentinel
 nil];

 rowKeys = [[NSArray alloc] initWithObjects:

CHAPTER 7: Relationships, Fetched Properties, and Expressions 213

 // Section 1
 [NSArray arrayWithObjects:@"name", nil],

 // Section 2
 [NSArray arrayWithObjects:@"secretIdentity", @"birthdate", @"age",
 @"sex", @"favoriteColor", nil],

 // Section 3
 [NSArray arrayWithObject:@"powers"],

 // Section 4
 [NSArray arrayWithObjects:@"olderHeroes", @"youngerHeroes",
 @"sameSexHeroes", @"oppositeSexHeroes", nil],

 // Sentinel
 nil];

 rowControllers = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObject:@"ManagedObjectStringEditor"],

 // Section 2
 [NSArray arrayWithObjects:@"ManagedObjectStringEditor",
 @"ManagedObjectDateEditor",
 [NSNull null],
 @"ManagedObjectSingleSelectionListEditor",
 @"ManagedObjectColorEditor",
 nil],

 // Section 3
 [NSArray arrayWithObject:kToManyRelationship],

 // Section 4
 [NSArray arrayWithObjects:
 @"ManagedObjectFetchedPropertyDisplayer",
 @"ManagedObjectFetchedPropertyDisplayer",
 @"ManagedObjectFetchedPropertyDisplayer",
 @"ManagedObjectFetchedPropertyDisplayer",
 nil],

 // Sentinel
 nil];
 rowArguments = [[NSArray alloc] initWithObjects:

 // Section 1
 [NSArray arrayWithObject:[NSNull null]],

 // Section 2
 [NSArray arrayWithObjects:[NSNull null],
 [NSNull null],
 [NSNull null],
 [NSDictionary dictionaryWithObject:
 [NSArray arrayWithObjects:@"Male", @"Female", nil]
 forKey:@"list"],
 [NSNull null],

CHAPTER 7: Relationships, Fetched Properties, and Expressions 214

 [NSNull null],
 nil],

 // Section 3
 [NSArray arrayWithObject:[NSDictionary dictionaryWithObjectsAndKeys:
 @"controllerForPower", kSelectorKey, nil]],

 //Section 4
 [NSArray arrayWithObjects:
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"name", @"displayKey", @"controllerForHero",
 @"controllerFactoryMethod", nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"name", @"displayKey", @"controllerForHero",
 @"controllerFactoryMethod", nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"name", @"displayKey", @"controllerForHero",
 @"controllerFactoryMethod", nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"name", @"displayKey", @"controllerForHero",
 @"controllerFactoryMethod", nil],
 nil],

 // Sentinel
 nil];
 }
 return self;
}
@end

@implementation ManagedObjectEditor (PowerEditor)

+ (id)controllerForPower {
 id ret = [[[self class] alloc] initPowerEditor];
 return [ret autorelease];
}

- (id)initPowerEditor {
 if (self = [[[self class] alloc] initWithStyle:UITableViewStyleGrouped]) {
 sectionNames = [[NSArray alloc] initWithObjects:[NSNull null],
 [NSNull null], nil];
 rowLabels = [[NSArray alloc] initWithObjects:
 [NSArray arrayWithObject:NSLocalizedString(@"Name", @"Name")],
 [NSArray arrayWithObject:NSLocalizedString(@"Source", @"Source")],
 nil];

 rowKeys = [[NSArray alloc] initWithObjects:
 [NSArray arrayWithObject:@"name"],
 [NSArray arrayWithObject:@"source"],
 nil];

 rowControllers = [[NSArray alloc] initWithObjects:
 [NSArray arrayWithObject:@"ManagedObjectStringEditor"],
 [NSArray arrayWithObject:@"ManagedObjectStringEditor"],
 nil];

 rowArguments = [[NSArray alloc] initWithObjects:

CHAPTER 7: Relationships, Fetched Properties, and Expressions 215

 [NSArray arrayWithObject:[NSNull null]],
 [NSArray arrayWithObject:[NSNull null]],
 nil];
 }
 return self;
}

@end

The two init methods should look familiar to you. They set up the structure arrays, just

as in viewDidLoad. The contents of the Hero arrays have gotten a little more complex,

since we’ve added a to-many relationship and four fetched properties, but the basic

concept is unchanged from before.

You should look these over to make sure you understand what they’re doing. We’ve

been working with the nested arrays long enough now that we’re not going to step

through them line by line.

Deleting the Nib Instance
We need to delete the instance of ManagedObjectEditor in MainWindow.xib. If you

remember from the earlier chapters, there is an instance of HeroEditController in the

nib, and that instance is used to edit all heroes. When we refactored

HeroEditController, the instance of the nib became an instance of

ManagedObjectEditor.

We can no longer instantiate our controller class from the nib file because the nested

arrays won’t be set up properly if we leave it like this. We used to create the arrays in

viewDidLoad, but that is no longer the case, so we need to create the controller instance

in code to make sure that those arrays are created.

Double-click MainWindow.xib in the Groups & Files pane to open Interface Builder. Look

in the nib’s main window for an icon labeled Managed Object Editor. Single-click it to

select it, and then press the Delete key on your keyboard to delete it. Note that if you are

in list mode, Managed Object Editor will also have a child Table View. No worries—that

child view will disappear when you delete the parent. Save the nib and go back to

Xcode.

Updating HeroListController
Now that we’re not creating an instance of ManagedObjectEditor in MainWindow.xib, we

need to take care of that task in code. We will do this in HeroListViewController, which

is the navigation controller’s root view controller. Single-click HeroListViewController.m

and add the following import statements at the top of the file:

#import "HeroListViewController.h"
#import "SuperDBAppDelegate.h"
#import "ManagedObjectEditor.h"
#import "Hero.h"
#import "ManagedObjectEditor-SuperDB.h"

CHAPTER 7: Relationships, Fetched Properties, and Expressions 216

@implementation HeroListViewController
...

Next, we need to create the controller class in viewDidLoad. Insert the following line of

code into viewDidLoad to accomplish that:

- (void)viewDidLoad {
 [super viewDidLoad];
 self.detailController = [ManagedObjectEditor controllerForHero];
 NSError *error = nil;
 ...

Because we’re using the factory method controllerForHero, the controller class that is

created will have all the arrays populated so that it works correctly and allows the user

to edit the Hero entity.

Creating the Fetched Property Attribute Controller
At this point, the application should run and work mostly okay, with the exception of the

fetched properties. We haven’t written the controller to display them yet. Let’s do that

now. You’ve written enough of these attribute editing classes, so we won’t walk through

this one step by step.

Create a new file by single-clicking the Classes folder and selecting N from the File

menu. Use the Objective-C class template, subclass NSObject, and name the new file

ManagedObjectFetchedPropertyDisplayer.m, making sure to create the header file as

well. Once the file is created, single-click ManagedObjectFetchedPropertyDisplayer.h

and replace the contents with the following:

#import <Foundation/Foundation.h>
#import "ManagedObjectAttributeEditor.h"

@interface ManagedObjectFetchedPropertyDisplayer : ManagedObjectAttributeEditor {
 NSString *displayKey;
 NSString *controllerFactoryMethod;
}
@property (nonatomic, retain) NSString *displayKey;
@end

Save the file.

Switch over to ManagedObjectFetchedPropertyDisplayer.m and replace its contents

with the following:

#import "ManagedObjectFetchedPropertyDisplayer.h"
#import "NSArray-Set.h"
#import "ManagedObjectEditor.h"

@implementation ManagedObjectFetchedPropertyDisplayer

@synthesize displayKey;

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];

v@v
Text Box
Download at WoweBook.com

CHAPTER 7: Relationships, Fetched Properties, and Expressions 217

 self.navigationItem.leftBarButtonItem = nil;
 self.navigationItem.rightBarButtonItem = nil;
}

- (void)dealloc {
 [displayKey release];
 [super dealloc];
}

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)tableView:(UITableView *)theTableView
numberOfRowsInSection:(NSInteger)section {
 NSArray *array = [self.managedObject valueForKey:keypath];
 return [array count];
}

- (UITableViewCell *)tableView:(UITableView *)theTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Fetched Property Display Cell";

 UITableViewCell *cell = [theTableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 NSArray *array = [self.managedObject valueForKey:keypath];

 NSManagedObject *oneObject = [array objectAtIndex:[indexPath row]];
 cell.textLabel.text = [oneObject valueForKey:displayKey];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSArray *array = [self.managedObject valueForKey:keypath];
 NSManagedObject *oneObject = [array objectAtIndex:[indexPath row]];
 SEL factorySelector = NSSelectorFromString(controllerFactoryMethod);
 ManagedObjectEditor *controller = [ManagedObjectEditor
 performSelector:factorySelector];
 controller.managedObject = oneObject;
 [self.navigationController pushViewController:controller animated:YES];
}

@end

This attribute editor uses Objective-C’s dynamic dispatching to let the calling object

specify a factory method that can be used to edit any of the objects in the fetched

relationship. Selecting a hero in one of the lists drills down and lets you edit that hero in

a new instance of ManagedObjectEditor. In fact, you can drill down endlessly, even in

our simple application—at least until you run out of memory.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 218

Build and run the application, and then test it. Try out the four fetched properties, and

make sure you see the heroes you expect to see in each one. Try drilling down to edit

the heroes from the fetched property.

It’s pretty good, and you can extend this application quite a bit without writing any code

except new factory methods to populate those arrays.

Cleaning Up Deleted Objects
There is still one minor problem to address. Select a hero or create a new one, and then

hit the plus button to add a new power to the hero. Once the new view comes up,

immediately hit the Cancel button. When you get back to the original hero, you’ll see two

insert rows, as shown in Figure 7–18.

Figure 7–18. Oops! That’s not good.

Here’s what’s happening. When we added the new power, the power instance was

added to the managed object context in memory. When we pressed the Cancel button,

we deleted the object from the context. But instead, the delete rule should have come

into play, and the object should have been deleted from the data structure that Core

Data uses to represent the relationship in memory. This is a bug—at least as of this

writing. We could have ignored this, hoping that the bug was fixed before the book was

released, but we didn’t want to leave you hanging. There are a number of ways that we

could handle this.

CHAPTER 7: Relationships, Fetched Properties, and Expressions 219

We could, for example, give the ManagedObjectEditor class a property that points to its

parent controller—the one that created it and pushed it onto the navigation stack. With

that information, we could then remove the offending object from the relationship when

we delete it. That creates a dependency, however. It operates under the assumption that

the parent view controller is the same class, and we know that that’s not always true,

because HeroListController is the parent view controller for one instance of this class.

How can we fix the problem, then?

What we can do is loop through the properties of the managed object looking for

instances of NSSet, which we know will represent to-many relationships. When we find

one, we can loop through the objects in the relationship, and if we find a deleted one,

we can remove it.

In order to get access to information about an object’s properties, we need to use the

Objective-C runtime, which is a library of C functions that are responsible for Objective-

C’s dynamic nature.

Single-click ManagedObjectEditor.m. In order to call any of the Objective-C runtime’s

functions, we need to import two header files. Insert the following two lines of code near

the top of the file:

#import "ManagedObjectEditor.h"
#import "NSArray-NestedArrays.h"
#import "HeroValueDisplay.h"
#import "ManagedObjectAttributeEditor.h"
#import "NSManagedObject-IsNew.h"
#import "NSArray-Set.h"

#import <objc/runtime.h>
#import <objc/message.h>
...

Now, look for the viewWillAppear: method. At the very beginning of that method, insert

the following code:

- (void)viewWillAppear:(BOOL)animated {

 unsigned int outCount;
 objc_property_t *propList =
 class_copyPropertyList([self.managedObject class], &outCount);

 for (int i = 0; i < outCount; i++) {
 objc_property_t oneProp = propList[i];
 NSString *propName = [NSString
 stringWithUTF8String:property_getName(oneProp)];
 NSString *attrs = [NSString stringWithUTF8String:
 property_getAttributes(oneProp)];

 if ([attrs rangeOfString:@"NSSet"].location != NSNotFound) {

 NSMutableSet *objects = [self.managedObject

CHAPTER 7: Relationships, Fetched Properties, and Expressions 220

 valueForKey:propName];
 NSMutableArray *toDelete = [NSMutableArray array];
 for (NSManagedObject *oneObject in objects) {
 if ([oneObject isDeleted])
 [toDelete addObject:oneObject];
 }
 for (NSManagedObject *oneObject in toDelete) {
 [objects removeObject:oneObject];
 NSError *error;
 if (![self.managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);
 }
 }
 }
 free(propList);

 [self.tableView reloadData];
...

NOTE: The Objective-C runtime is fairly advanced juju, so if you don’t 100% understand this
right now, don’t worry about it. You can read up on the Objective-C runtime in Apple’s
documentation:

http://developer.apple.com/mac/library/documentation/Cocoa/Referen

ce/ObjCRuntimeRef/Reference/reference.html

This is the first time we’ve worked with the Objective-C runtime directly. Although for

most programming jobs there’s no need to dive down into the runtime, having access to

the same functions that are used to implement Objective-C gives us an incredible

amount of power. Let’s quickly run through what we’re doing here, but don’t feel like

you have to grok this one the first time through.

First, we declare an int, which will hold the number of properties that managedObject

has. Then we declare a pointer to an objc_property_t, which is a datatype that

represents Objective-C 2.0 properties, and use a runtime function called

class_copyPropertyList() to retrieve the list of pointers to the managedObject

properties. This function also populates outCount with the number of properties.

 unsigned int outCount;
 objc_property_t *propList =
 class_copyPropertyList([self.managedObject class], &outCount);

Next, we use a for loop to iterate over the properties:

 for (int i=0; i < outCount; i++) {

We grab a reference to the structure that points to one property in the list, and then get

the property’s name as an NSString instance. We also get the property’s attributes,

which are contained in a string. The format for the attribute string is documented in

http://developer.apple.com/mac/library/documentation/Cocoa/Referen

CHAPTER 7: Relationships, Fetched Properties, and Expressions 221

Apple’s Objective-C runtime documentation, but for our purposes, all we need to know

is that it contains (among other things) the class of the property.

 objc_property_t oneProp = propList[i];
 NSString *propName = [NSString
 stringWithUTF8String:property_getName(oneProp)];
 NSString *attrs = [NSString stringWithUTF8String:
 property_getAttributes(oneProp)];

We check to see if the attribute string contains @"NSSet":

 if ([attrs rangeOfString:@"NSSet"].location != NSNotFound) {

If it does, we then retrieve the set and create an instance of NSMutableArray to keep

track of the objects that need to be deleted. It is not safe to delete objects from a

collection while we are iterating over it, so we’ll stick them in an array. Then, when we’re

finished iterating, we’ll iterate through the array of objects that need to be deleted and

remove them.

 NSMutableSet *objects = [self.managedObject
 valueForKey:propName];
 NSMutableArray *toDelete = [NSMutableArray array];
 for (NSManagedObject *oneObject in objects) {
 if ([oneObject isDeleted])
 [toDelete addObject:oneObject];
 }
 for (NSManagedObject *oneObject in toDelete) {
 [objects removeObject:oneObject];
 NSError *error;
 if (![self.managedObject.managedObjectContext save:&error])
 NSLog(@"Error saving: %@", [error localizedDescription]);
 }
 }
 }

And, believe it or not, the application is done. Build and run it, and try it out. See how

many times you can drill down. Try creating new powers, deleting existing powers, and

canceling when editing both new and existing powers.

Now, if you really want to challenge yourself, try adding more entities and relationships

and using ManagedObjectEditor instances and its nested arrays to allow editing of those

new entities. In short, play. Get used to this application. Expand it. Change it. Break it.

And then fix it. That’s the best way to cement your understanding of everything we did in

this chapter.

Wonderful to the Core
This chapter and the previous chapters have given you a solid foundation in the use of

Core Data. Along the way, we’ve also tried to give you some information about how to

design complex iPhone applications so that they can be maintained and expanded

without writing unnecessary code or repeating the same logic in multiple places. We’ve

demonstrated just how much benefit you can get from taking the time to write code

generically. We’ve showed you how to look for opportunities to refactor your code to

CHAPTER 7: Relationships, Fetched Properties, and Expressions 222

make it smaller, more efficient, easier to maintain, and just generally more pleasant to be

around.

We could go on for several more chapters about Core Data and not exhaust the topic.

But Core Data is not the only new framework introduced in iPhone SDK 3. At this point,

you should have a solid enough understanding of Core Data to be able to, armed with

Apple’s documentation, take your explorations even further.

Now it’s time to leave our friend Core Data behind and explore some of the other

aspects of iPhone SDK 3.

223

 Part

Further Explorations
We’ve devoted six chapters to the biggest of the new APIs, but Core Data is not all that

iPhone SDK 3 brings to the table for iPhone developers. A whole slew of new

functionality has been made available, including peer-to-peer connectivity, mapping,

push services, in-application e-mail, copy and paste, and undo—to name just a few. In

the next chapters, we’re going to show you how to use several of these exciting new

APIs in your own applications, as well as dive into a few more advanced topics such as

networking and concurrency.

II

224

225

225

 Chapter

Peer-to-Peer Over
Bluetooth Using GameKit
One of the coolest new frameworks added to the iPhone 3 SDK is called GameKit.

GameKit makes it easy to wirelessly connect multiple iPhones or iPod touches using

Bluetooth. Bluetooth is a wireless networking option built into all but the first-generation

iPhone and iPod touch. GameKit allows any supported devices to communicate with

any other supported devices that are within roughly 30 feet (about 10 meters) of each

other. Though the name implies differently, GameKit is useful for nongaming apps, too.

For example, you might build a social networking app that allows people to easily

transfer contact information over Bluetooth.

CAUTION: The code in this chapter will not run in the simulator because the simulator does not
support Bluetooth. The only way to build and debug apps on a device attached to your machine is
by joining the paid iPhone Developer Program. So you’ll need to do that if you want to fully
experience this chapter’s chewy goodness.

In addition, the game we’re building in this chapter requires the use of two second-generation
devices (iPhone 3G or 3Gs, or second-generation iPod touch) to run and test. As of this writing,
you cannot play GameKit games between a device and the simulator. If you have only one
device, you will not be able to try out the game in this chapter. We will be adding online play in
the next chapter, so you might want to follow along, even if you can’t test your application yet.

As of this writing, GameKit has three basic components:

 The session allows iPhone OS devices running the same application

to easily send information back and forth over Bluetooth without

writing any networking code.

 The peer picker provides an easy way to find other devices without

writing any networking or discovery (Bonjour) code.

8

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 226

 The in-game voice functionality allows users to send voice

communications using GameKit sessions or over the Internet.

NOTE: We won’t use in-game voice in this chapter’s example, but it’s actually pretty
straightforward. If you want to learn more about it, here’s a link to the official Apple doc:

http://developer.apple.com/iPhone/library/documentation/Networking

Internet/Conceptual/GameKit_Guide/InGameVoice/InGameVoice.html

Under the hood, GameKit sessions leverage Bonjour, Apple’s technology for zero-

configuration network device discovery. As a result, devices using GameKit are capable

of finding each other on the network without the user needing to enter an IP address or

domain name.

This Chapter’s Application
In this chapter, we’re going to explore GameKit by writing a simple networked game.

We’ll write a two-player version of tic-tac-toe (Figure 8–1) that will use GameKit to let

people on two different iPhones or iPod touches play against each other over Bluetooth.

We won’t be implementing online play over the Internet or local area network in this

chapter. However, we will discuss online communications in the next chapter.

Figure 8–1. We’ll use a simple game of tic-tac-toe to show you the basics of GameKit.

http://developer.apple.com/iPhone/library/documentation/Networking

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 227

When users launch our application, they will be presented with an empty tic-tac-toe

board and a single button labeled New Game. (For the sake of simplicity, we’re not

going to implement a single-device mode to let two players play on the same device.)

When the user presses the New Game button, the application will start looking for

Bluetooth peers using the peer picker (Figure 8–2).

Figure 8–2. When the user presses the New Game button, it will launch the peer picker to look for other devices
running the tic-tac-toe game.

If another device within range runs the TicTacToe application, and the user also presses

the New Game button, then the two devices will find each other, and the peer picker

will present a dialog to the users, letting them choose among the available peers (Figure

8–3).

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 228

Figure 8–3. When another device within range starts a game, the two devices will show up in each other’s peer
picker dialog.

After one player selects a peer, the other person will be asked to accept or refuse the

connection. If the connection is accepted, the two applications will negotiate to see who

goes first. Each side will randomly select a number, the numbers will be compared, and

the highest number will go first. Once that decision is made, play will commence (Figure

8–4) until someone wins (Figure 8–5).

Figure 8–4. The user whose turn it is can tap any available space. That space will get an X or an O on both users’
devices.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 229

Figure 8–5. Play continues until one player wins or there is a tie.

Network Communication Models
Before we look at how GameKit and the peer picker work, let’s talk generally about

communication models used in networked programs, so that we’re all on the same page

in terms of terminology.

Client-Server Model
You’re probably familiar with the client-server model, as it is the model used by the

World Wide Web. Machines called servers listen for connections from other machines,

referred to as clients. The server then takes actions based on the requests received

from the clients. In the context of the Web, the client is usually a web browser, and there

can be any number of clients attaching to a single server. The clients never

communicate with each other directly, but direct all communications through the server.

Most massively multiplayer online role-playing games (MMORPGs) like World of

Warcraft also use this model. Figure 8–6 represents a client-server scenario.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 230

Figure 8–6. The client-server model features one machine acting as a server with all communications—even
communications between clients—going through the server.

In the context of an iPhone application, a client-server setup is where one phone acts as

a server and listens for other iPhones running the same program. The other phones can

then connect to that server. If you’ve ever played a game where one machine “hosts” a

game and others then join the game, that game is almost certainly using a client-server

model.

A drawback with the client-server model is that everything depends on the server, which

means that the game cannot continue if anything happens to the server. If the user

whose phone is acting as the server quits, crashes, or moves out of range, the entire

game is ended. Since all the other machines communicate through the central server,

they lose the ability to communicate if the server is unavailable. This is generally not an

issue with client-server games where the client is a hefty server farm connected to the

Internet by redundant high-speed lines, but it certainly can be an issue with mobile

games.

Peer-to-Peer Model
In the peer-to-peer model, all the individual devices (called peers) can communicate

with each other directly. A central server may be used to initiate the connection or to

facilitate certain operations, but the main distinguishing feature of the peer-to-peer

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 231

model is that peers can talk to each other directly, and can continue to do so even in the

absence of a server (Figure 8–7).

The peer-to-peer model was popularized by file-sharing services like BitTorrent. A

centralized sever is used to find other peers that have the file you are looking for, but

once the connection is made to those other peers, they can continue, even if the server

goes offline.

Figure 8–7. In the peer-to-peer model, peers can talk to each other directly, and can continue to do so even in
the absence of a server.

The simplest and probably the most common implementation of the peer-to-peer model

on the iPhone is when you have two devices connected to each other. This is the model

you use in head-to-head games, for example. GameKit makes this kind of peer-to-peer

network exceedingly simple to set up and configure, as you’ll see in this chapter.

Hybrid Client-Server/Peer-to-Peer
The client-server and peer-to-peer models of network communication are not mutually

exclusive, and it is possible to create programs that utilize a hybrid of both. For example,

a client-server game might allow certain communications to go directly from client to

client, without going through the server. In a game that had a chat window, it might

allow messages intended for only one recipient to go directly from the machine of the

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 232

sender to the machine of the intended recipient, while any other kind of chat would go to

the server to be distributed to all clients.

You should keep these different networking models in mind as we discuss the

mechanics of making connections and transferring data between application nodes.

Node is a generic term that refers to any computer connected to an application’s

network. A client, server, or peer is a node. The game we will be writing in this chapter

will use a simple, two-machine, peer-to-peer model.

The GameKit Session
The key to GameKit is the session, represented by the class GKSession. The session

represents our end of a network connection with one or more other iPhones. Regardless

of whether you are acting as a client, a server, or a peer, an instance of GKSession will

represent the connections you have with other phones. You will use GKSession whether

you employ the peer picker or write your own code to find machines to connect to and

let the user select from them.

NOTE: As you make your way through the next few pages, don’t worry too much about where
each of these elements is implemented. This will all come together in the project you create in
this chapter.

You will also use GKSession to send data to connected peers. You will implement

session delegate methods to get notified of changes to the session, such as when

another node connects or disconnects, as well as to receive data sent by other nodes.

Creating the Session
To use a session, you must first create allocate and initialize a GKSession object, like so:

 GKSession *theSession = [[GKSession alloc] initWithSessionID:@"com.apress.Foo"
 displayName:nil sessionMode:GKSessionModePeer];

There are three arguments you pass in when initializing a session:

 The first argument is a session identifier, which is a string that is

unique to your application. This is used to prevent your application’s

sessions from accidentally connecting to sessions from another

program. Since the session identifier is a string, it can be anything,

though the convention is to use a reverse DNS-style name, such as

com.apress.Foo. By assigning session identifiers in this manner, rather

than by just randomly picking a word or phrase, you are less likely to

accidentally choose a session identifier that is used by another

application on the App Store.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 233

 The second argument is the display name. This is a name that will be

provided to the other nodes to uniquely identify your phone. If you

pass in nil, the display name will default to the device’s name as set

in iTunes. If multiple devices are connected, this will allow the other

users to see which devices are available and connect to the correct

one. In Figure 8–3, you can see an example of where the unique

identifier is used. In that example, one other device is advertising itself

with the same session identifier as us, using a display name of iPhone.

 The last argument is the session mode. Session modes determine

how the session will behave once it’s all set up and ready to make

connections. There are three options:

 If you specify GKSessionModeServer, your session will advertise

itself on the network so that other devices can see it and connect

to it, but it won’t look for other sessions being advertised.

 If you specify GKSessionModeClient, the session will not advertise

itself on the network, but will look for other sessions that are

advertising themselves.

 If you specify GKSessionModePeer, your session will both

advertise its availability on the network and also look for other

sessions.

NOTE: Although you will generally use GKSessionModePeer when establishing a peer-to-peer
network, and GKSessionModeServer and GKSessionModeClient when setting up a client-
server network, these constants dictate only whether an individual session will advertise its
availability on the network using Bonjour, or look for other available nodes. They are not
necessarily indicative of which of the network models is being used by the application.

Regardless of the type of session you create, it won’t actually start advertising its

availability or looking for other available nodes until you tell it to do so. You do that by

setting the session property available to YES. Alternatively, you can have the node stop

advertising its availability and/or stop looking for other available nodes by setting

available to NO.

Finding and Connecting to Other Sessions
When a session that was created using GKSessionModeClient or GKSessionModePeer

finds another node advertising its availability, it will call the method

session:peer:didChangeState: and pass in a state of GKPeerStateAvailable. This same

method will be called every time a peer becomes available or unavailable, as well as

when a peer connects or disconnects. The second argument will tell you which peer’s

state changed, and the last argument will tell you its new state.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 234

If you find one or more other sessions that are available, you can choose to connect the

session to one of the available sessions by calling connectToPeer:withTimeout:. Here’s

an example of session:peer:didChangeState: that connects to the first available peer it

finds:

- (void)session:(GKSession *)session peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)inState {
 if (inState == GKPeerStateAvailable) {
 [session connectToPeer:peerID withTimeout:60];
 session.available = NO;
 }
}

This isn’t a very realistic example, as you would normally allow the user to choose the

node to which they connect. It’s a good example though, because it shows both of the

basic functions of a client node. In this example, we’ve set available to NO after we

connect. This will cause our session to stop looking for additional sessions. Since a

session can connect to multiple peers, you won’t always want to do this. If your

application supports multiple connections, then you will want to leave it at YES.

Listening for Other Sessions
When a session is specified with a session mode of GKSessionModeServer or

GKSessionModePeer, it will be notified when another node attempts to connect. When this

happens, the session will call the method

session:didReceiveConnectionRequestFromPeer:. You can choose to accept the

connection by calling acceptConnectionFromPeer:error:, or you can reject it by calling

denyConnectionFromPeer:. The following is an example that assumes the presence of a

Boolean instance variable called amAcceptingConnections. If it’s set to YES, it accepts the

connection, and if it’s set to NO, it rejects the connection.

- (void)session:(GKSession *)session
didReceiveConnectionRequestFromPeer:(NSString *)peerID {
 if (amAcceptingConnections) {
 NSError *error;
 if (![session acceptConnectionFromPeer:peerID error:&error])
 // Handle error
 } else {
 [session denyConnectionFromPeer:peerID];
 }
}

Sending Data to a Peer
Once you have a session that is connected to another node, it’s very easy to send data

to that node. All you need to do is call one of two methods. Which method you call

depends on whether you want to send the information to all connected sessions or to

just specific ones. To send data to just specified peers, you use the method

sendData:toPeers:withDataMode:error:, and to send data to every connected peer, you

use the method sendDataToAllPeers:withDataMode:error:.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 235

In both cases, you need to specify a data mode for the connection. The data mode tells

the session how it should try to send the data. There are two options:

 GKSendDataReliable: This option ensures that the information will

arrive at the other session. It will send the data in chunks if it’s over a

certain size, and wait for an acknowledgment from the other peer for

every chunk.

 GKSendDataUnreliable: This mode sends the data immediately and

does not wait for acknowledgment. It’s much faster than

GKSendDataReliable, but there is a small chance of the complete

message not arriving at the other node.

Usually, the GKSendDataReliable data mode is the one you’ll want to use, though if you

have a program where speed of transmission matters more than accuracy, then you’ll

want to consider GKSendDataUnreliable.

Here is what it looks like when you send data to a single peer:

 NSError *error = nil;
 If (![session sendData:theData toPeers:[NSArray arrayWithObject:thePeerID]
 withDataMode:GKSendDataReliable error:&error]) {
 // Do error handling
 }

And here’s what it looks like to send data to all connected peers:

 NSError *error = nil;
 if (![session sendDataToAllPeers:data withDataMode:GKSendDataReliable
 error:&error]) {
 // Do error handling
 }

Packaging Up Information to Send
Any information that you can get into an instance of NSData can be sent to other peers.

There are two basic approaches to doing this for use in GameKit. The first is to use

archiving and unarchiving, just as we did in the archiving section of Chapter 11 of

Beginning iPhone 3 Development (Apress, 2009).

With the archiving/unarchiving method, you define a class to hold a single packet of

data to be sent. That class will contain instance variables to hold whatever types of data

you might need to send. When it’s time to send a packet, you create and initialize an

instance of the packet object, and then you use NSKeyedArchiver to archive the instance

of that object into an instance of NSData, which can be passed to

sendData:toPeers:withDataMode:error: or to

sendDataToAllPeers:withDataMode:error:. We’ll use this approach in this chapter’s

example. However, this approach incurs a small amount of overhead, since it requires

the creation of objects to be passed, along with archiving and unarchiving those objects.

Although archiving objects is the best approach in many cases, because it is easy to

implement and it fits well with the design of Cocoa Touch, there may be some cases

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 236

where applications need to constantly send a lot of data to their peers, and this

overhead might be unacceptable. In those situations, a faster option is to just use a

static array (a regular old C array, not an NSArray) as a local variable in the method that

sends the data.

You can copy any data you need to send to the peer into this static array, and then

create an NSData instance from that static array. There’s still some object creation

involved in creating the NSData instance, but it’s one object instead of two, and you

don’t have the overhead of archiving. Here’s a simple example of sending data using

this faster technique:

 NSUInteger packetData[2];
 packet[0] = foo;
 packet[1] = bar;
 NSData *packet = [NSData dataWithBytes:packetData
 length:2 * sizeof(packetData)];
 NSError *error = nil;
 if (![session sendDataToAllPeers:packet withDataMode:GKSendDataReliable
 error:&error]) {
 // Handle error
 }

Receiving Data from a Peer
When a session receives data from a peer, the session passes the data to a method on

an object known as a data receive handler. The method is

receiveData:fromPeer:inSession:context:. By default, the data receive handler is the

session’s delegate, but it doesn’t have to be. You can specify another object to handle

the task by calling setDataReceiveHandler:withContext: on the session and passing in

the object you want to receive data from the session.

Whichever object is specified as the data receive handler must implement

receiveData:fromPeer:inSession:context:, and that method will be called any time

new data comes in from a peer. There’s no need to acknowledge receipt of the data or

worry about waiting for the entire packet. You can just use the provided data as is

appropriate for your program. All the gnarly aspects of network data transmission are

handled for you. Every call to sendDataToAllPeers:withDataMode:error: made by other

peers, and every call to sendData:toPeers:withDataMode:error: made by other peers

who specify your peer identifier, will result in one call of the data receive handler.

Here’s an example of a data receive handler method that would be the counterpart to

our earlier send example:

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer
inSession: (GKSession *)theSession context:(void *)context {
 NSUInteger *packet = [data bytes];
 NSUInteger foo = packet[0];
 NSUInteger bar = packet[0];
 // Do something with foo and bar
}

We’ll look at receiving archived objects when we build this chapter’s example.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 237

Closing Connections
When you’re finished with a session, before you release the session object, it’s

important to do a little cleanup. Before releasing the session object, you must make the

session unavailable, disconnect it from all of its peers, set the data receive handler to

nil, and set the session delegate to nil. Here’s what the code in your dealloc method

(or any other time your need to close the connections) might look like:

 session.available = NO;
 [session disconnectFromAllPeers];

 [session setDataReceiveHandler: nil withContext: nil];
 session.delegate = nil;
 [session release];

If, instead, you just want to disconnect from one specific peer, you can call

disconnectPeerFromAllPeers:, which will disconnect the remote peer from all the peers

to which it was connected. Use this method with caution, as it will cause the peer on

which it was called to disconnect from all remote peers, not just your application. Here’s

what using it might look like:

 [session disconnectPeerFromAllPeers:thePeer];

The Peer Picker
Although GameKit does not need to be used only for games, network games are clearly

the primary motivator behind the technology—at least if the name Apple chose is any

clue. The most common type of network model for mobile games is the head-to-head or

simple peer-to-peer model, where one player plays a game against one other player.

Because this scenario is so common, Apple has provided a mechanism called the peer
picker for easily setting up this simple type of peer-to-peer network.

Creating the Peer Picker
The peer picker was designed specifically to connect one device to a single other device

using Bluetooth. Though limited in this way, the peer picker is incredibly simple to use,

and a great choice if it meets your needs. To create and show the peer picker, you just

create an instance of GKPeerPickerController, set its delegate, and then call its show

method, like so:

 GKPeerPickerController *picker;
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 [picker show];

One important thing to note here is that it looks like we’re leaking the picker here (we’ve

used alloc with no corresponding release), but that’s not the case. This is one of those

unusual exceptions to the general rule. The reason it’s okay to leak the memory is that

the delegate (which is the object where the preceding code appears, since it’s set to

self) will be called again when the user is finished interacting with the peer picker. The

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 238

delegate method will be passed back a reference to the same peer picker controller

instance that was leaked here. At that point, the delegate can release the peer picker,

and no memory will have been leaked during the filming of this application.

Handling a Peer Connection
When the user has selected a peer and the sessions have been connected to each

other, the delegate method peerPickerController:didConnectToPeer:toSession: will be

called. In your implementation of that method, you need to do a few things. First, you

might want to store the peer identifier, which is a string that identifies the device to

which you’re connected. The peer identifier defaults to the iPhone’s device name,

though you can specify other values. You also need to save a reference to the session

so you can use it to send data and to disconnect the session later. Additionally, it’s

important to dismiss the peer picker and make sure that its memory is not leaked.

Remember that you didn’t retain it when you created it, so you are responsible for

releasing it here.

We use autorelease, instead of release, to give the calling object (which is, in fact,

picker) the ability to finish the method that’s currently executing—the one that called

this delegate method. If we were to use release, the object could (and probably would)

be released immediately, which would mean the calling method would never finish, and

the connection might not finish being established. By putting picker into the autorelease

pool, we ensure that it won’t be deallocated until the end of the current run loop, so it

will have the opportunity to finish any work it’s in the process of doing, yet we’ll still

avoid leaking memory. It is still true that you should avoid unnecessary use of the

autorelease pool, but here it isn’t unnecessary.

- (void)peerPickerController:(GKPeerPickerController *)picker
didConnectPeer:(NSString *)thePeerID
toSession:(GKSession *)theSession {
 self.peerID = thePeerID;

 self.session = theSession;
 self.session.delegate = self;
 [self.session setDataReceiveHandler:self withContext:NULL];

 [picker dismiss];
 picker.delegate = nil;
 [picker autorelease];
}

Creating the Session
There’s one last delegate task that you must handle when using the peer picker, which

is to create the session when the picker asks for a session. You don’t need to worry

about most of the other tasks related to finding and connecting to other peers when

using the peer picker, but you are responsible for creating the session for the picker to

use. Here’s what that method typically looks like:

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 239

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
sessionForConnectionType:(GKPeerPickerConnectionType)type{
 GKSession *theSession = [[GKSession alloc] initWithSessionID:@"a session id"
 displayName:nil sessionMode:GKSessionModePeer];
 return [theSession autorelease];
}

We’ve already talked about the session, so there shouldn’t be anything in this method

that’s confusing.

NOTE: There’s actually another peer picker delegate method that you need to implement if you
want to support online play over the Internet with the peer picker:
peerPickerController:didSelectConnectionType:. We’ll look at that method in the
next chapter.

Well, that’s enough discussion. Let’s start building our application.

Creating the Project
Okay, you know the drill. Fire up Xcode if it’s not already open and create a new project.

Use the View-based Application template and call the project TicTacToe. Once the

project is open, look in the project archives that accompany this book, in the folder 08 –
TicTacToe. Find the image files called wood_button.png, board.png, O.png, and X.png,

and copy them into the Resources folder of your project. There’s also an icon file called

icon.png, which you can copy into your project if you want to use it.

Turning Off the Idle Timer
The first thing we want to do is to turn off the idle timer. The idle timer is what tells your

iPhone to go to sleep if the user has not interacted with it in a while. Because the user

won’t be tapping the screen during the opponent’s turn, we need to turn this off to

prevent the phone from going to sleep if the other user takes a while to make a move.

Generally speaking, you don’t want networked applications to go to sleep, because

sleeping breaks the network connection. Most of the time, with networked iPhone

games, disabling the idle timer is the best approach.

Expand the Classes folder in the Groups & Files pane in Xcode and single-click

TicTacToeAppDelegate.m. Add the following line of code to

applicationDidFinishLaunching: to disable the idle timer.

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 // Override point for customization after app launch
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];

 [[UIApplication sharedApplication] setIdleTimerDisabled:YES];
}

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 240

NOTE: There may be rare times when you want to leave the idle timer functioning and just close
your sessions when the app goes to sleep, but closing sessions on sleep is not quite as
straightforward as it would seem. The application delegate method
applicationWillResignActive: is called before the phone goes to sleep, but unfortunately,
it’s also called at other times. In fact, it’s called any time that your application loses the ability to
respond to touch events. That makes it close to impossible to differentiate between when the
user has been presented a system alert, such as from a push notification or a low-battery
warning (which won’t result in broken connections), and when the phone is actually going to
sleep. So, until Apple provides a way to differentiate between these scenarios, your best bet is to
simply disallow sleep while a networked program is running.

Importing the GameKit Framework
GameKit is not one of the frameworks that is automatically linked by the Xcode project

template, so we need to manually link it ourselves in order to access the session and

peer picker methods. Select the Frameworks folder in the Groups & Files pane. Now,

right-click the Frameworks folder and select Add from the context menu, and then

choose Existing Frameworks….

If you’re using Xcode 3.2 or higher (which requires Snow Leopard), you’ll notice that

there’s a new, easier way to select frameworks (Figure 8–8). You can just select

GameKit.framework from a provided list of frameworks and then hit the Add button. If

you’re still running Leopard or an earlier version of Xcode, you’ll need to link the old-

fashioned way: by navigating through the file system to the Frameworks folder for the

version of the iPhone SDK that you’re using, and then selecting GameKit.framework. The

Frameworks folder is at the following location:

/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOSx.y.z.sdk/System/Library/F
rameworks

In this path, x, y, and z denote the release number. For iPhone SDK 3.1.2, for example

(the current version as of this writing), x is 3, y is 1, and z is 2. In that case, you would

need to navigate to this location:

/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS3.1.2.sdk/System/Library/F
rameworks

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 241

Figure 8–8. The new Snow Leopardy way of linking frameworks.

Designing the Interface
Now, we’re going to design our game’s user interface. Since tic-tac-toe is a relatively

simple game, we’ll design our user interface in Interface Builder, rather than by using

OpenGL ES.

Each of the spaces on the board will be a button. When the user taps a button that

hasn’t already been selected (which we’ll determine by seeing if the button has an image

assigned), we’ll set the image to either X.png or O.png (which you added to your project

a few minutes ago). We’ll then send that information to the other device. We’re also

going to use the button’s tag value to differentiate the buttons and make it easier to

determine when someone has won. We’ll assign each of the buttons that represents a

space on the board with a sequential tag, starting in the upper-left corner. You can see

which space will have which tag value by looking at Figure 8–9.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 242

Figure 8–9. We will assign each of the game space buttons a tag value. This way, we can identify which button
was pressed without needing to have separate action methods for each button.

Setting Up the View Controller Header
Before we head over to Interface Builder to actually create our user interface, we want to

declare the actions and outlets that we’ll need to connect once we get there. While

we’re in the header file, we’ll also declare the rest of the methods we’ll be using, as well

as some constants and enumerations to make our code easier to read.

Single-click TicTacToeViewController.h and make the following changes:

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

#define kTicTacToeSessionID @"com.apress.TicTacToe.session"
#define kTicTacToeArchiveKey @"com.apress.TicTacToe"

typedef enum GameStates {

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 243

 kGameStateBeginning,
 kGameStateRollingDice,
 kGameStateMyTurn,
 kGameStateOpponentTurn,
 kGameStateInterrupted,
 kGameStateDone
} GameState;

typedef enum BoardSpaces {
 kUpperLeft = 1000, kUpperMiddle, kUpperRight,
 kMiddleLeft, kMiddleMiddle, kMiddleRight,
 kLowerLeft, kLowerMiddle, kLowerRight
} BoardSpace;

typedef enum PlayerPieces {
 kPlayerPieceUndecided,
 kPlayerPieceO,
 kPlayerPieceX
} PlayerPiece;

@class TicTacToePacket;
@interface TicTacToeViewController : UIViewController
@interface TicTacToeViewController : UIViewController <GKPeerPickerControllerDelegate,
GKSessionDelegate, UIAlertViewDelegate> {
 UIButton *newGameButton;
 UILabel *feedbackLabel;

 GKSession *session;
 NSString *peerID;

 GameState state;

 NSInteger myDieRoll;
 NSInteger opponentDieRoll;

 PlayerPiece piece;
 UIImage *xPieceImage;
 UIImage *oPieceImage;

 BOOL dieRollReceived;
 BOOL dieRollAcknowledged;

}
@property(nonatomic, retain) IBOutlet UIButton *newGameButton;
@property(nonatomic, retain) IBOutlet UILabel *feedbackLabel;

@property(nonatomic, retain) GKSession *session;
@property(nonatomic, copy) NSString *peerID;

@property(nonatomic, retain) UIImage *xPieceImage;
@property(nonatomic, retain) UIImage *oPieceImage;

- (IBAction)newGameButtonPressed;
- (IBAction)gameSpacePressed:(id)sender;

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 244

- (void)resetBoard;
- (void)startNewGame;
- (void)resetDieState;
- (void)sendPacket:(TicTacToePacket *)packet;
- (void)sendDieRoll;
- (void)checkForGameEnd;
@end

The first thing we need to do is import the GameKit headers so that the compiler knows

about the objects and methods from GameKit:

#import <GameKit/GameKit.h>

Next, we define two constants. One will be our session identifier, which GameKit will use

to make sure we connect only to devices running the same program. The other is an

archiving key that we will use when packaging data to send to the other node.

#define kTicTacToeSessionID @"com.apress.TicTacToe.session"
#define kTicTacToeArchiveKey @"com.apress.TicTacToe"

Adding networking to even a simple application creates a fair bit of complexity, because

network communications are asynchronous. You can’t make any assumptions about the

order that data will be received. To help us keep track of where we are, we define an

enum with a bunch of different game states that identify what’s going on right now in our

game:

typedef enum GameStates {
 kGameStateBeginning,
 kGameStateRollingDice,
 kGameStateMyTurn,
 kGameStateOpponentTurn,
 kGameStateInterrupted,
 kGameStateDone
} GameState;

When a game has not yet begun, the state will be kGameStateBeginning. After the

devices connect, or when a new game is started, the two nodes will negotiate who goes

first by each generating a random number, which is equivalent to flipping a coin or

rolling a die in real life. When who goes first is being negotiated, the state is

kGameStateRollingDice. When it’s our turn to make a move, the state will be

kGameStateMyTurn, and when it’s the opponent’s turn, the state will be

kGameStateOpponentTurn. If the connection is interrupted for any reason, we’ll set the

state to kGameStateInterrupted. Finally, if there are no more possible moves or a player

gets three in a row, the state will move to kGameStateDone.

Next, we define another enumeration to refer to each of the spaces on the board by their

tag:

typedef enum BoardSpaces {
 kUpperLeft = 1000, kUpperMiddle, kUpperRight,
 kMiddleLeft, kMiddleMiddle, kMiddleRight,
 kLowerLeft, kLowerMiddle, kLowerRight
} BoardSpace;

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 245

In tic-tac-toe, the player who goes first is O, and the other player is X. To identify who is

X and who is O, we have one more enumeration:

typedef enum PlayerPieces {
 kPlayerPieceUndecided,
 kPlayerPieceO,
 kPlayerPieceX
} PlayerPiece;

After that, we tell the compiler that there is a class called TicTacToePacket. This class

doesn’t exist yet, but we’ll write it shortly. A @class declaration doesn’t cause the

compiler to look for the class’ header file—it’s just a promise that a class really exists, so

it’s okay to declare it this way before actually creating or writing the class.

@class TicTacToePacket;

Our controller class needs to conform to a few protocols. Our controller will be the

delegate of the peer picker, the session. We’ll also be using alert views to inform the

user when there’s a problem, so we conform our class to the three protocols used to

define the delegate methods for each of these jobs.

@interface TicTacToeViewController : UIViewController <GKPeerPickerControllerDelegate,
GKSessionDelegate, UIAlertViewDelegate> {

If you look at the interface in Figures 8–1 and 8–4, you can see that there’s a button for

starting a game, as well as a label that’s used to tell users if it’s their turn, or if they’ve

won or lost. We need instance variables for outlets to both of those:

 UIButton *newGameButton;
 UILabel *feedbackLabel;

We also need instance variables for the GameKit session and to hold the peer identifier

of the one connected node.

 GKSession *session;
 NSString *peerID;

A moment ago, we defined an enumeration with the various game states, but we need

an instance variable to keep track of the current state:

 GameState state;

Because we don’t know whether we will roll the die or receive our opponent’s die roll

first, we need variables to hold them both. Once we have both, we can compare them

and start the game:

 NSInteger myDieRoll;
 NSInteger opponentDieRoll;

Once we know who goes first, we can store whether we’re O or X in this instance

variable:

 PlayerPiece piece;

We’ll also load both of the images representing the two game pieces when our view is

loaded, and keep a reference to them in these pointers:

 UIImage *xPieceImage;

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 246

 UIImage *oPieceImage;

Finally, we have two more Booleans to keep track of whether we’ve received the

opponent’s die roll and whether our opponent has acknowledged receipt of ours. We

don’t want to begin the game until we have both die rolls and we know our opponent

has both as well. When both of these are YES, we’ll know it’s time to start the actual

game play:

 BOOL dieRollReceived;
 BOOL dieRollAcknowledged;
}

Next, we define properties for our outlets, as well as some of our instance variables:

@property(nonatomic, retain) IBOutlet UIButton *newGameButton;
@property(nonatomic, retain) IBOutlet UILabel *feedbackLabel;

@property(nonatomic, retain) GKSession *session;
@property(nonatomic, copy) NSString *peerID;

@property(nonatomic, retain) UIImage *xPieceImage;
@property(nonatomic, retain) UIImage *oPieceImage;

And, finally, we declare our action methods and a bunch of other methods that we’ll

need in our game. We’ll discuss the specific methods in more detail when we implement

our controller later, after we design our user interface.

- (IBAction)newGameButtonPressed;
- (IBAction)gameSpacePressed:(id)sender;
- (void)resetBoard;
- (void)startNewGame;
- (void)resetDieState;
- (void)sendPacket:(TicTacToePacket *)packet;
- (void)sendDieRoll;
- (void)checkForGameEnd;
@end

Save this file.

Now, expand the Resources folder in the Groups & Files pane, if it’s not already

expanded, and double-click TicTacToeViewController.xib to open Interface Builder.

Designing the Game Board
Once Interface Builder is open, look in the library for an Image View and drag that to the

window labeled View. Because it’s the first object you’re adding to the view, it should

resize to take up the full view. Place it so that it fills the entire view, and then press 1 to

bring up the attribute inspector. At the top of the attribute inspector, set the Image field

to board.png, which is one of the images you added to your project earlier.

Next, drag a Round Rect Button from the library over to the top of the view. The exact

placement doesn’t matter yet. After it’s placed, use the attribute inspector to change the

button type from Rounded Rect to Custom. In the Image field of the attribute inspector,

select wood_button.png, and then press = to change the button’s size to match the

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 247

image we assigned to it. Now use the blue guidelines to center the button in the view

and place it against the top blue margin so it looks like Figure 8–10.

Figure 8–10. Your interface after sizing and placing the button

Control-drag from File’s Owner to the button and select the newGameButton outlet.

Then Control-drag from the button back to File’s Owner, and select the

newGameButtonPressed action.

Look again in the library for a Label, and drag it to the view. Place the label in the top of

the view so it runs from the left blue margin to the right blue margin horizontally, and

from the top blue margin down to just above the tic-tac-toe board. It will overlap the

button we just added, and that’s okay, because the label will display text only when the

button isn’t visible. Use the attribute inspector to center the text, and the font palette

(T) to increase the size of the font to 60 points. Feel free to also set the text to a nice

bright color if you want. Once you have the label the way you want it, double-click it to

edit the starting text, and press the Delete key to delete it, so that it doesn’t display

anything at application start.

Control-drag from File’s Owner to the new label and select the feedbackLabel outlet.

Now, we need to add a button for each of the nine game spaces and assign them each

a tag value so that our code will have a way to identify which space on the board each

button represents. Drag nine Round Rect Buttons to the view, and use the attribute

inspector to change their type to Custom. Use the size inspector to place them in the

locations specified in Table 8–1, and use the attribute inspector to assign them the listed

tag value. Here’s one shortcut to consider: Create one, set its size and attributes, and

then start making copies.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 248

Table 8-1. Game Space Locations, Sizes, and Tags

Game Space X Y Width Height Tag

Upper Left 24 122 86 98 1000

Upper Middle 120 122 86 98 1001

Upper Right 217 122 86 98 1002

Middle Left 24 230 86 98 1003

Middle 120 230 86 98 1004

Middle Right 217 230 86 98 1005

Lower Left 24 336 86 98 1006

Lower Middle 120 336 86 98 1007

Lower Right 217 336 86 98 1008

Once you have the buttons in place, Control-drag from each of the nine buttons to File’s
Owner and select the gameSpacePressed: action.

Finally, save the nib, and then quit Interface Builder.

Creating the TicTacToePacket Object
Once you’re back in Xcode, single-click the Classes folder in the Groups & Files pane,

and select New File… from the File menu. Select the Objective-C class template, with

NSObject selected for the Subclass of pop-up menu. We’re going to create the class

that will be used to send information back and forth between the two nodes, so name

this file TicTacToePacket.m and make sure the Also create “TicTacToePacket.h” check

box is checked.

Once the files are created, single-click TicTacToePacket.h and replace its contents with

the following:

#import <Foundation/Foundation.h>
#import "TicTacToeViewController.h"

#define dieRoll() (arc4random() % 1000000)
#define kDiceNotRolled INT_MAX

typedef enum PacketTypes {
 kPacketTypeDieRoll, // used to determine who goes first
 kPacketTypeAck, // used to acknowledge die roll packet receipt
 kPacketTypeMove, // used to send information about a player's move
 kPacketTypeReset, // used to inform the peer that we're starting over
} PacketType;

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 249

@interface TicTacToePacket : NSObject <NSCoding> {
 PacketType type;
 NSUInteger dieRoll;
 BoardSpace space;
}
@property PacketType type;
@property NSUInteger dieRoll;
@property BoardSpace space;
- (id)initWithType:(PacketType)inType
 dieRoll:(NSUInteger)inDieRoll
 space:(BoardSpace)inSpace;
- (id)initDieRollPacket;
- (id)initDieRollPacketWithRoll:(NSUInteger)inDieRoll;
- (id)initMovePacketWithSpace:(BoardSpace)inSpace;
- (id)initAckPacketWithDieRoll:(NSUInteger)inDieRoll;
- (id)initResetPacket;
@end

Much of this code should be fairly intuitive. We define a macro for generating a random

number to resolve who goes first. It generates a number between 0 and 999,999. We’re

using a large number here so that the chance of both devices rolling the same value

(which would require a reroll) will be extremely low. We also define a constant that will

identify when the die has not yet been rolled. Remember that we’re storing both our die

roll and our opponent’s die roll in NSInteger instance variables. On the iPhone,

NSInteger is the same as an int. We use the value INT_MAX to identify when those values

have not yet been determined. INT_MAX is the largest value that an int can hold on the

platform. Since the largest number our dieRoll() macro will generate is 999,999, we

can safely use INT_MAX to identify when a die hasn’t been rolled, because INT_MAX equals

2,147,483,647 on current iPhones. If INT_MAX ever changes, it will likely get bigger, not

smaller.

#define dieRoll() (arc4random() % 1000000)
#define kDiceNotRolled INT_MAX

We define an enum with each of the different types of packets we’ll need to send to the

other node:

typedef enum PacketTypes {
 kPacketTypeDieRoll, // used to determine who goes first
 kPacketTypeAck, // used to acknowledge die roll packet receipt
 kPacketTypeMove, // used to send information about a player's move
 kPacketTypeReset, // used to inform the peer that we're starting over
} PacketType;

In our class definition, we have only three instance variables: one to identify the type of

packet and two others to hold information that might need to be sent as part of that

packet. The only other pieces of information we ever need to send are the results of a

die roll and which space on the game board a player placed an X or O. We also conform

our class to the NSCoding protocol so that we can archive it into an NSData instance to

send through the GameKit session:

@interface TicTacToePacket : NSObject <NSCoding> {
 PacketType type;
 NSUInteger dieRoll;

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 250

 BoardSpace space;
}

We expose all three instance variables using properties:

@property PacketType type;
@property NSUInteger dieRoll;
@property BoardSpace space;

And we declare a handful of init methods for creating the different types of packets we

will send:

- (id)initWithType:(PacketType)inType
 dieRoll:(NSUInteger)inDieRoll
 space:(BoardSpace)inSpace;
- (id)initDieRollPacket;
- (id)initDieRollPacketWithRoll:(NSUInteger)inDieRoll;
- (id)initMovePacketWithSpace:(BoardSpace)inSpace;
- (id)initAckPacketWithDieRoll:(NSUInteger)inDieRoll;
- (id)initResetPacket;
@end

Save TicTacToePacket.h.

Next, switch over to TicTacToePacket.m and replace the contents of the file with this

new version:

#import "TicTacToePacket.h"

@implementation TicTacToePacket
@synthesize type;
@synthesize dieRoll;
@synthesize space;

#pragma mark -
- (id)initWithType:(PacketType)inType dieRoll:(NSUInteger)inDieRoll
space:(BoardSpace)inSpace {
 if (self = [super init]) {
 type = inType;
 dieRoll = inDieRoll;
 space = inSpace;
 }
 return self;
}

- (id)initDieRollPacket {
 int roll = dieRoll();
 return [self initWithType:kPacketTypeDieRoll dieRoll:roll space:0];
}

- (id)initDieRollPacketWithRoll:(NSUInteger)inDieRoll {
 return [self initWithType:kPacketTypeDieRoll dieRoll:inDieRoll space:0];
}

- (id)initMovePacketWithSpace:(BoardSpace)inSpace{
 return [self initWithType:kPacketTypeMove dieRoll:0 space:inSpace];
}

- (id)initAckPacketWithDieRoll:(NSUInteger)inDieRoll {

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 251

 return [self initWithType:kPacketTypeAck dieRoll:inDieRoll space:0];
}

- (id)initResetPacket {
 return [self initWithType:kPacketTypeReset dieRoll:0 space:0];
}

#pragma mark -
- (NSString *)description {
 NSString *typeString = nil;
 switch (type) {
 case kPacketTypeDieRoll:
 typeString = @"Die Roll";
 break;
 case kPacketTypeMove:
 typeString = @"Move";
 break;
 case kPacketTypeAck:
 typeString = @"Ack";
 break;
 case kPacketTypeReset:
 typeString = @"Reset";
 default:
 break;
 }
 return [NSString stringWithFormat:@"%@ (dieRoll: %d / space: %d)", typeString,
 dieRoll, space];
}

#pragma mark -
#pragma mark NSCoder (Archiving)
- (void)encodeWithCoder:(NSCoder *)coder {
 [coder encodeInt:[self type] forKey:@"type"];
 [coder encodeInteger:[self dieRoll] forKey:@"dieRoll"];
 [coder encodeInt:[self space] forKey:@"space"];
}

- (id)initWithCoder:(NSCoder *)coder {
 if (self = [super init]) {
 [self setType:[coder decodeIntForKey:@"type"]];
 [self setDieRoll:[coder decodeIntegerForKey:@"dieRoll"]];
 [self setSpace:[coder decodeIntForKey:@"space"]];
 }
 return self;
}

@end

TicTacToePacket is a fairly straightforward class. There shouldn’t be anything in its

implementation that you haven’t seen before. Save TicTacToePacket.m. Next, we’ll write

our view controller and finish up our application.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 252

Implementing the Tic-Tac-Toe View Controller
Single-click TicTacToeViewController.m. There’s a lot of code to write in this controller

class, so let’s just replace this file with the following version:

#import "TicTacToeViewController.h"
#import "TicTacToePacket.h"

@implementation TicTacToeViewController

#pragma mark -
#pragma mark Synthesized Properties
@synthesize newGameButton;
@synthesize feedbackLabel;
@synthesize session;
@synthesize peerID;
@synthesize xPieceImage;
@synthesize oPieceImage;
#pragma mark -
#pragma mark Game-Specific Methods

- (IBAction)newGameButtonPressed {
 dieRollReceived = NO;
 dieRollAcknowledged = NO;

 newGameButton.hidden = YES;
 GKPeerPickerController *picker = [[GKPeerPickerController alloc] init];

 picker.delegate = self;

 [picker show];
}

- (IBAction)gameSpacePressed:(id)sender {
 UIButton *buttonPressed = (UIButton *)sender;
 if (state == kGameStateMyTurn &&
 [buttonPressed imageForState:UIControlStateNormal] == nil) {
 [buttonPressed setImage:(piece == kPlayerPieceO) ? oPieceImage : xPieceImage
 forState:UIControlStateNormal];
 feedbackLabel.text = NSLocalizedString(@"Opponent's Turn",
 @"Opponent's Turn");
 state = kGameStateOpponentTurn;

 TicTacToePacket *packet = [[TicTacToePacket alloc]
 initMovePacketWithSpace:buttonPressed.tag];
 [self sendPacket:packet];
 [packet release];

 [self checkForGameEnd];
 }
}

- (void)startNewGame {
 [self resetBoard];
 [self sendDieRoll];
}

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 253

- (void)resetBoard {
 for (int i = kUpperLeft; i <= kLowerRight; i++) {
 UIButton *oneButton = (UIButton *)[self.view viewWithTag:i];
 [oneButton setImage:nil forState:UIControlStateNormal];
 }

 feedbackLabel.text = @"";

 TicTacToePacket *resetPacket = [[TicTacToePacket alloc] initResetPacket];
 [self sendPacket:resetPacket];
 [resetPacket release];

 piece = kPlayerPieceUndecided;
}

- (void)resetDieState {
 dieRollReceived = NO;
 dieRollAcknowledged = NO;
 myDieRoll = kDiceNotRolled;
 opponentDieRoll = kDiceNotRolled;
}

- (void)startGame {
 if (myDieRoll == opponentDieRoll) {
 myDieRoll = kDiceNotRolled;
 opponentDieRoll = kDiceNotRolled;
 [self sendDieRoll];
 piece = kPlayerPieceUndecided;
 }
 else if (myDieRoll < opponentDieRoll) {
 state = kGameStateOpponentTurn;
 piece = kPlayerPieceX;
 feedbackLabel.text = NSLocalizedString(@"Opponent's Turn",
 @"Opponent's Turn");

 }
 else {
 state = kGameStateMyTurn;
 piece = kPlayerPieceO;
 feedbackLabel.text = NSLocalizedString(@"Your Turn", @"Your Turn");
 }
 [self resetDieState];
}

- (void)checkForGameEnd {
 NSInteger moves = 0;

 UIImage *currentButtonImages[9];
 UIImage *winningImage = nil;

 for (int i = kUpperLeft; i <= kLowerRight; i++) {
 UIButton *oneButton = (UIButton *)[self.view viewWithTag:i];
 if ([oneButton imageForState:UIControlStateNormal])
 moves++;
 currentButtonImages[i - kUpperLeft] = [oneButton
 imageForState:UIControlStateNormal];

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 254

 }

 // Top Row
 if (currentButtonImages[0] == currentButtonImages[1] &&
 currentButtonImages[0] == currentButtonImages[2] &&
 currentButtonImages[0] != nil)
 winningImage = currentButtonImages[0];

 // Middle Row
 else if (currentButtonImages[3] == currentButtonImages[4] &&
 currentButtonImages[3] == currentButtonImages[5] &&
 currentButtonImages[3] != nil)
 winningImage = currentButtonImages[3];

 // Bottom Row
 else if (currentButtonImages[6] == currentButtonImages[7] &&
 currentButtonImages[6] == currentButtonImages[8] &&
 currentButtonImages[6] != nil)
 winningImage = currentButtonImages[6];

 // Left Column
 else if (currentButtonImages[0] == currentButtonImages[3] &&
 currentButtonImages[0] == currentButtonImages[6] &&
 currentButtonImages[0] != nil)
 winningImage = currentButtonImages[0];

 // Middle Column
 else if (currentButtonImages[1] == currentButtonImages[4] &&
 currentButtonImages[1] == currentButtonImages[7] &&
 currentButtonImages[1] != nil)
 winningImage = currentButtonImages[1];

 // Right Column
 else if (currentButtonImages[2] == currentButtonImages[5] &&
 currentButtonImages[2] == currentButtonImages[8] &&
 currentButtonImages[2] != nil)
 winningImage = currentButtonImages[2];
 // Diagonal starting top left
 else if (currentButtonImages[0] == currentButtonImages[4] &&
 currentButtonImages[0] == currentButtonImages[8] &&
 currentButtonImages[0] != nil)
 winningImage = currentButtonImages[0];

 // Diagonal starting top right
 else if (currentButtonImages[2] == currentButtonImages[4] &&
 currentButtonImages[2] == currentButtonImages[6] &&
 currentButtonImages[2] != nil)
 winningImage = currentButtonImages[2];

 if (winningImage == xPieceImage) {
 if (piece == kPlayerPieceX) {
 feedbackLabel.text = NSLocalizedString(@"You Won!", @"You Won!");
 state = kGameStateDone;
 }
 else {
 feedbackLabel.text = NSLocalizedString(@"Opponent Won!",

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 255

 @"Opponent Won!");
 state = kGameStateDone;
 }
 }
 else if (winningImage == oPieceImage) {
 if (piece == kPlayerPieceO){
 feedbackLabel.text = NSLocalizedString(@"You Won!", @"You Won!");
 state = kGameStateDone;
 }
 else {
 feedbackLabel.text = NSLocalizedString(@"Opponent Won!",
 @"Opponent Won!");
 state = kGameStateDone;
 }

 }
 else {
 if (moves >= 9) {
 feedbackLabel.text = NSLocalizedString(@"Cat Wins!", @"Cat Wins!");
 state = kGameStateDone;
 }
 }

 if (state == kGameStateDone)
 [self performSelector:@selector(startNewGame) withObject:nil
 afterDelay:3.0];
}

#pragma mark -
#pragma mark Superclass Overrides
- (void)viewDidLoad {
 [super viewDidLoad];
 myDieRoll = kDiceNotRolled;
 self.oPieceImage = [UIImage imageNamed:@"O.png"];
 self.xPieceImage = [UIImage imageNamed:@"X.png"];
}

- (void)viewDidUnload {
 [super viewDidUnload];
 self.newGameButton = nil;
 self.xPieceImage = nil;
 self.oPieceImage = nil;
}

- (void)dealloc {
 [newGameButton release];
 [feedbackLabel release];
 [xPieceImage release];
 [oPieceImage release];

 session.available = NO;
 [session disconnectFromAllPeers];
 [session setDataReceiveHandler: nil withContext: nil];
 session.delegate = nil;
 [session release];
 [peerID release];
 [super dealloc];

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 256

}

#pragma mark -
#pragma mark GameKit Peer Picker Delegate Methods
- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
sessionForConnectionType:(GKPeerPickerConnectionType)type{
 GKSession *theSession = [[GKSession alloc]
 initWithSessionID:kTicTacToeSessionID displayName:nil
 sessionMode:GKSessionModePeer];
 return [theSession autorelease];
}

- (void)peerPickerController:(GKPeerPickerController *)picker
didConnectPeer:(NSString *)thePeerID toSession:(GKSession *)theSession {
 self.peerID = thePeerID;

 self.session = theSession;
 self.session.delegate = self;
 [self.session setDataReceiveHandler:self withContext:NULL];

 [picker dismiss];
 picker.delegate = nil;
 [picker release];

 [self startNewGame];
}

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)picker {
 newGameButton.hidden = NO;
}

#pragma mark -
#pragma mark GameKit Session Delegate Methods
- (void)session:(GKSession *)theSession didFailWithError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Error Connecting!", @"Error Connecting!")
 message:NSLocalizedString(@"Unable to establish the connection.",
 @"Unable to establish the connection.")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 theSession.available = NO;
 [theSession disconnectFromAllPeers];
 theSession.delegate = nil;
 [theSession setDataReceiveHandler:nil withContext:nil];
 self.session = nil;
}

- (void)session:(GKSession *)theSession peer:(NSString *)peerID
didChangeState:(GKPeerConnectionState)inState {
 if (inState == GKPeerStateDisconnected) {
 state = kGameStateInterrupted;
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Peer Disconnected!", @"Peer Disconnected!")
 message:NSLocalizedString(@"Your opponent has disconnected, or

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 257

 the connection has been lost",
 @"Your opponent has disconnected, or the connection has been lost")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 theSession.available = NO;
 [theSession disconnectFromAllPeers];
 theSession.delegate = nil;
 [theSession setDataReceiveHandler:nil withContext:nil];
 self.session = nil;
 }
}

#pragma mark -
#pragma mark GameKit Send & Receive Methods
- (void)sendDieRoll {
 state = kGameStateRollingDice;
 TicTacToePacket *rollPacket;
 if (myDieRoll == kDiceNotRolled) {
 rollPacket = [[TicTacToePacket alloc] initDieRollPacket];
 myDieRoll = rollPacket.dieRoll;
 }
 else
 rollPacket = [[TicTacToePacket alloc] initDieRollPacketWithRoll:myDieRoll];
 [self sendPacket:rollPacket];
 [rollPacket release];

}

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer
inSession:(GKSession *)theSession context:(void *)context
{
 NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:data];
 TicTacToePacket *packet = [unarchiver decodeObjectForKey:kTicTacToeArchiveKey];

 switch (packet.type) {
 case kPacketTypeDieRoll:
 opponentDieRoll = packet.dieRoll;
 TicTacToePacket *ack = [[TicTacToePacket alloc]
 initAckPacketWithDieRoll:opponentDieRoll];
 [self sendPacket:ack];
 [ack release];
 dieRollReceived = YES;
 break;
 case kPacketTypeAck:
 if (packet.dieRoll != myDieRoll) {
 NSLog(@"Ack packet doesn't match opponentDieRoll (mine: %d,
send: %d", packet.dieRoll, myDieRoll);
 }
 dieRollAcknowledged = YES;
 break;
 case kPacketTypeMove:{
 UIButton *theButton = (UIButton *)[self.view viewWithTag:packet.space];
 [theButton setImage:(piece == kPlayerPieceO) ? xPieceImage : oPieceImage

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 258

 forState:UIControlStateNormal];
 state = kGameStateMyTurn;
 feedbackLabel.text = NSLocalizedString(@"Your Turn", @"Your Turn");
 [self checkForGameEnd];
 }
 break;
 case kPacketTypeReset:
 if (state == kGameStateDone)
 [self resetDieState];
 break;
 default:
 break;
 }

 if (dieRollReceived == YES && dieRollAcknowledged == YES)
 [self startGame];

 [unarchiver release];
}

- (void) sendPacket:(TicTacToePacket *)packet {
 NSMutableData *data = [[NSMutableData alloc] init];
 NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:data];
 [archiver encodeObject:packet forKey:kTicTacToeArchiveKey];
 [archiver finishEncoding];

 NSError *error = nil;

 if (![session sendDataToAllPeers:data withDataMode:GKSendDataReliable
 error:&error]) {
 // You will do real error handling
 NSLog(@"Error sending data: %@", [error localizedDescription]);
 }
 [archiver release];
 [data release];
}

#pragma mark -
#pragma mark Alert View Delegate Methods
- (void)alertView:(UIAlertView *)alertView
willDismissWithButtonIndex:(NSInteger)buttonIndex {
 [self resetBoard];
 newGameButton.hidden = NO;
}

@end

Whoa. Deep breath now. That was a lot of code, huh? Let’s break it down.

The first method we wrote is the action method that is called when the New Game

button is pressed. When that happens, we set dieRollReceived and

dieRollAcknowledged to NO, because we know neither of these things has happened yet

for the new game.

- (IBAction)newGameButtonPressed {
 dieRollReceived = NO;

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 259

 dieRollAcknowledged = NO;

Next, we hide the button, because we don’t want our player to request a new game

while we’re looking for peers or playing the game. Then we create an instance of

GKPeerPickerController, set self as the delegate, and show the peer picker controller.

 newGameButton.hidden = YES;
 GKPeerPickerController *picker = [[GKPeerPickerController alloc] init];

 picker.delegate = self;

 [picker show];
}

That’s all we need to do to kick off the process of letting the user select another device

to play against. The peer picker will handle everything, and then call delegate methods

when we need to take some action.

We also wrote an action method that is called when the user taps one of the nine game

spaces. The first thing we do is cast sender to a UIButton. We know sender will always

be an instance of UIButton, and doing this will prevent us from needing to cast sender

every time we use it.

- (IBAction)gameSpacePressed:(id)sender {
 UIButton *buttonPressed = (UIButton *)sender;

Next, we check the game state. We don’t want to let the user select a space if it’s not

that player’s turn. We also check to make sure that the button pressed has no image

already assigned. If it has an image assigned to it, then there’s already either an X or an

O in the space this button represents, and the user is not allowed to select it.

 if (state == kGameStateMyTurn &&
 [buttonPressed imageForState:UIControlStateNormal] == nil) {

If the space has no image assigned and it is our turn, we set the image to whichever

image is appropriate for our player, based on whether we went first or second. The

piece variable will get set later when we compare die rolls. We also set the feedback

label to inform the users that it’s no longer their turn, and change the state to reflect that

as well.

 [buttonPressed setImage:(piece == kPlayerPieceO) ? oPieceImage : xPieceImage
 forState:UIControlStateNormal];
 feedbackLabel.text = NSLocalizedString(@"Opponent's Turn",
 @"Opponent's Turn");
 state = kGameStateOpponentTurn;

We must inform the other device that we’ve made our move, so we create an instance of

TicTacToePacket, passing the tag value from the button that was pressed to identify

which space our player selected. We use a method called sendPacket:, which we’ll look

at in a moment, to send the instance of TicTacToePacket to the other node, and then we

release packet:

 TicTacToePacket *packet = [[TicTacToePacket alloc]
 initMovePacketWithSpace:buttonPressed.tag];
 [self sendPacket:packet];
 [packet release];

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 260

Finally, we check to see if the game is over. The method checkForGameEnd determines if

either player won or if there are no spaces on the board, which would mean it’s a tie.

 [self checkForGameEnd];
 }
}

The method startNewGame is very simple. It just calls a method to reset the board, and

then calls another method to roll the die and send the result to the other node. Both of

these actions can happen at times other than game start. For example, we reset the

board if the connection is lost, and we send the die roll if both nodes roll the same

number.

- (void)startNewGame {
 [self resetBoard];
 [self sendDieRoll];
}

Resetting the board involves removing the images from all of the buttons that represent

spaces on the game board. Rather than declare nine outlets—one to point at each

button—we just loop through the nine tag values and retrieve the buttons from our

content view using viewWithTag:.

- (void)resetBoard {
 for (int i = kUpperLeft; i <= kLowerRight; i++) {
 UIButton *oneButton = (UIButton *)[self.view viewWithTag:i];
 [oneButton setImage:nil forState:UIControlStateNormal];
 }

We also blank out the feedback label.

 feedbackLabel.text = @"";

And we send a packet to the other node telling it that we’re resetting. This is done just to

make sure that if we follow up with another die roll, the other machine knows not to

overwrite it. The fact that network communication happens asynchronously means we

can’t rely on things always happening in a specific order, as we can with a program

running on only one device. It’s possible that we’ll send the die roll before the other

device has finished determining who won. By sending a reset packet, we tell the other

node that there may be another die roll coming for a new game, so make sure it’s in the

right state to accept that new roll. If we didn’t do something like this, it might store our

die roll, and then overwrite the rolled value when it resets its own board, which would

cause a hang because the other device would then be waiting for a die roll that would

never arrive.

 TicTacToePacket *resetPacket = [[TicTacToePacket alloc] initResetPacket];
 [self sendPacket:resetPacket];
 [resetPacket release];

We also need to reset the player’s game piece. Because the game is over, we don’t

know if the player will be X or O for the next game.

 piece = kPlayerPieceUndecided;
}

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 261

Resetting the die state is nothing more than setting dieRollReceived and

dieRollAcknowledged to NO, and setting both our die roll and the opponent’s die roll to

kDiceNotRolled:

- (void)resetDieState {
 dieRollReceived = NO;
 dieRollAcknowledged = NO;
 myDieRoll = kDiceNotRolled;
 opponentDieRoll = kDiceNotRolled;
}

The next method is called once we have received our opponent’s die roll and have also

gotten an acknowledgment that it has received ours. First, we make sure that we don’t

have a tie. If we do have a tie, we kick off the die-rolling process again.

- (void)startGame {
 if (myDieRoll == opponentDieRoll) {
 myDieRoll = kDiceNotRolled;
 opponentDieRoll = kDiceNotRolled;
 [self sendDieRoll];
 piece = kPlayerPieceUndecided;
 }

Otherwise, we set state, piece, and the feedbackLabel’s text based on whether it’s our

turn or the opponent’s turn to go first.

 else if (myDieRoll < opponentDieRoll) {
 state = kGameStateOpponentTurn;
 piece = kPlayerPieceX;
 feedbackLabel.text = NSLocalizedString(@"Opponent's Turn",
 @"Opponent's Turn");
 }
 else {
 state = kGameStateMyTurn;
 piece = kPlayerPieceO;
 feedbackLabel.text = NSLocalizedString(@"Your Turn", @"Your Turn");
 }

Then we reset the die state. It may seem odd to do it here, but at this point, we’re

finished with the die rolling for this game, and because we may receive our opponent’s

die roll before our code has realized the game is over, we reset now to ensure that the

die rolls are not accidentally reused in the next game.

 [self resetDieState];
}

The checkForGameEnd method just checks all nine spaces to see whether they have X or

O in them, and then looks for three in a row. It does this by first declaring a variable

called moves to keep track of how many moves have happened. This is how it will tell if

there’s a tie. If there have been nine moves, and no one has won, then there are no

available spaces left on the board, so it’s a tie.

- (void)checkForGameEnd {
 NSInteger moves = 0;

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 262

Next, we declare an array of nine UIImage pointers. We’re going to pull the images out of

the nine buttons representing spaces on the board and put them in this array to make it

easier to check if a player won.

 UIImage *currentButtonImages[9];

If we find three in a row, we’ll store one of the three images in this variable so we know

which player won the game.

 UIImage *winningImage = nil;

Next, we loop through the buttons by tag, as we did in the resetBoard method earlier,

storing the images from the buttons in the array we declared earlier.

 for (int i = kUpperLeft; i <= kLowerRight; i++) {
 UIButton *oneButton = (UIButton *)[self.view viewWithTag:i];
 if ([oneButton imageForState:UIControlStateNormal])
 moves++;
 currentButtonImages[i - kUpperLeft] = [oneButton
 imageForState:UIControlStateNormal];
 }

The next big chunk of code just checks to see if there are three of the same images in a

row anywhere. If it finds three in a row, it stores one of the three images in winningImage.

When it completes the check, it will know which player, if any, has won.

 // Top Row
 if (currentButtonImages[0] == currentButtonImages[1] &&
 currentButtonImages[0] == currentButtonImages[2] &&
 currentButtonImages[0] != nil)
 winningImage = currentButtonImages[0];

 // Middle Row
 else if (currentButtonImages[3] == currentButtonImages[4] &&
 currentButtonImages[3] == currentButtonImages[5] &&
 currentButtonImages[3] != nil)
 winningImage = currentButtonImages[3];

 // Bottom Row
 else if (currentButtonImages[6] == currentButtonImages[7] &&
 currentButtonImages[6] == currentButtonImages[8] &&
 currentButtonImages[6] != nil)
 winningImage = currentButtonImages[6];

 // Left Column
 else if (currentButtonImages[0] == currentButtonImages[3] &&
 currentButtonImages[0] == currentButtonImages[6] &&
 currentButtonImages[0] != nil)
 winningImage = currentButtonImages[0];

 // Middle Column
 else if (currentButtonImages[1] == currentButtonImages[4] &&
 currentButtonImages[1] == currentButtonImages[7] &&
 currentButtonImages[1] != nil)
 winningImage = currentButtonImages[1];

 // Right Column
 else if (currentButtonImages[2] == currentButtonImages[5] &&

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 263

 currentButtonImages[2] == currentButtonImages[8] &&
 currentButtonImages[2] != nil)
 winningImage = currentButtonImages[2];
 // Diagonal starting top left
 else if (currentButtonImages[0] == currentButtonImages[4] &&
 currentButtonImages[0] == currentButtonImages[8] &&
 currentButtonImages[0] != nil)
 winningImage = currentButtonImages[0];

 // Diagonal starting top right
 else if (currentButtonImages[2] == currentButtonImages[4] &&
 currentButtonImages[2] == currentButtonImages[6] &&
 currentButtonImages[2] != nil)
 winningImage = currentButtonImages[2];

Finally, we check to see if there was a winner, and whether it was our opponent or our

player. If there is a winner, we set the feedback label and state as appropriate.

 if (winningImage == xPieceImage) {
 if (piece == kPlayerPieceX) {
 feedbackLabel.text = NSLocalizedString(@"You Won!", @"You Won!");
 state = kGameStateDone;
 }
 else {
 feedbackLabel.text = NSLocalizedString(@"Opponent Won!",
 @"Opponent Won!");
 state = kGameStateDone;
 }
 }
 else if (winningImage == oPieceImage) {
 if (piece == kPlayerPieceO){
 feedbackLabel.text = NSLocalizedString(@"You Won!", @"You Won!");
 state = kGameStateDone;
 }
 else {
 feedbackLabel.text = NSLocalizedString(@"Opponent Won!",
 @"Opponent Won!");
 state = kGameStateDone;
 }
 }

If there wasn’t a winner, then we check to see if any spaces are left on the board by

looking at moves. If no spaces remain, then we know the game is over, and the cat won.

 else {
 if (moves >= 9) {
 feedbackLabel.text = NSLocalizedString(@"Cat Wins!", @"Cat Wins!");
 state = kGameStateDone;
 }
 }

NOTE: In tic-tac-toe, a tie is also called a “cat’s game.” The expression “the cat won” refers to a tie.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 264

If any of the preceding code set the state to kGameStateDone, then we use

performSelector:withObject:afterDelay: to start a new game after the user has had

time to read who won.

 if (state == kGameStateDone)
 [self performSelector:@selector(startNewGame) withObject:nil
 afterDelay:3.0];
}

In viewDidLoad, we first set myDieRoll to show that we have not yet rolled the die to

choose who goes first. Then we load the two images used for the playing pieces and

store them in the two properties designed to hold them.

- (void)viewDidLoad {
 [super viewDidLoad];
 myDieRoll = kDiceNotRolled;
 self.oPieceImage = [UIImage imageNamed:@"O.png"];
 self.xPieceImage = [UIImage imageNamed:@"X.png"];
}

The viewDidUnload method is pretty typical, so it doesn’t warrant any discussion.

- (void)viewDidUnload {
 [super viewDidUnload];
 self.newGameButton = nil;
 self.xPieceImage = nil;
 self.oPieceImage = nil;
}

Most of the dealloc method is pretty standard, too. Just notice that before we release

session, we take care of disconnecting from our peers and setting both the delegate

and data receive handler to nil, as we discussed earlier in the chapter.

- (void)dealloc {
 [newGameButton release];

 [xPieceImage release];
 [oPieceImage release];

 session.available = NO;
 [session disconnectFromAllPeers];
 [session setDataReceiveHandler: nil withContext: nil];
 session.delegate = nil;
 [session release];

 [super dealloc];
}

Now, we get into the peer picker delegate methods. This first one is where the picker

asks us to provide a session. Because we want all devices to both advertise and look for

other devices on the network, we specify GKSessionModePeer for the session mode.

Notice that we also use our constant kTicTacToeSessionID, which we defined in the

header file to make sure that we connect only to other instances of TicTacToe.

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
sessionForConnectionType:(GKPeerPickerConnectionType)type{
 GKSession *theSession = [[GKSession alloc]

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 265

 initWithSessionID:kTicTacToeSessionID displayName:nil
 sessionMode:GKSessionModePeer];
 return [theSession autorelease];
}

Because the peer picker is only for simple peer-to-peer games, once we’re notified of a

connection, we store the session and the peer identifier, and then dismiss the picker.

After we’ve dismissed it, we call startNewGame to get things going.

- (void)peerPickerController:(GKPeerPickerController *)picker
didConnectPeer:(NSString *)thePeerID toSession:(GKSession *)theSession {
 self.peerID = thePeerID;

 self.session = theSession;
 self.session.delegate = self;
 [self.session setDataReceiveHandler:self withContext:NULL];

 [picker dismiss];
 picker.delegate = nil;
 [picker release];

 [self startNewGame];
}

This method is called if the users select Cancel from either the Bluetooth enable or peer

picker dialog. It simply makes sure that our New Game button is visible if they cancel, so

they can still start a new game.

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)picker {
 newGameButton.hidden = NO;
}

The next few methods are the session delegate methods. The first one we implement is

called if a connection attempt fails. All we do is put up an alert view informing the user

that it failed, and then clean up the session. In the alert view delegate method, we reset

the board so the users can try again or select a new opponent if they want.

- (void)session:(GKSession *)theSession didFailWithError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Error Connecting!", @"Error Connecting!")
 message:NSLocalizedString(@"Unable to establish the connection.",
 @"Unable to establish the connection.")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 theSession.available = NO;
 [theSession disconnectFromAllPeers];
 theSession.delegate = nil;
 [theSession setDataReceiveHandler:nil withContext:nil];
 self.session = nil;
}

Because we’re using the peer picker, we don’t need to handle choosing another node or

connecting to it. But we must make sure that if the opponent disconnects, we don’t

keep trying to play that game. The following method is called any time a peer’s state

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 266

changes. If we’re notified that another node has disconnected, we again inform the

users through an alert view, and when they dismiss it, our alert view delegate method

will reset the board.

- (void)session:(GKSession *)theSession peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)inState {
 if (inState == GKPeerStateDisconnected) {
 state = kGameStateInterrupted;
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Peer Disconnected!", @"Peer Disconnected!")
 message:NSLocalizedString(@"Your opponent has disconnected, or
the connection has been lost",
 @"Your opponent has disconnected, or the connection has been lost")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 theSession.available = NO;
 [theSession disconnectFromAllPeers];
 theSession.delegate = nil;
 [theSession setDataReceiveHandler:nil withContext:nil];
 self.session = nil;
 }
}

This method sends a die roll packet to the other node. The initDieRollPacket method

automatically generates a packet with a random number.

- (void)sendDieRoll {
 state = kGameStateRollingDice;
 TicTacToePacket *rollPacket;
 if (myDieRoll == kDiceNotRolled) {
 rollPacket = [[TicTacToePacket alloc] initDieRollPacket];
 myDieRoll = rollPacket.dieRoll;
 }
 else
 rollPacket = [[TicTacToePacket alloc] initDieRollPacketWithRoll:myDieRoll];
 [self sendPacket:rollPacket];
 [rollPacket release];
}

The following is our data receive handler. This method is called whenever we receive a

packet from the other node. The first thing we do is unarchive the data into a copy of the

original TicTacToePacket instance that was sent.

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer
 inSession:(GKSession *)theSession context:(void *)context {
 NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:data];
 TicTacToePacket *packet = [unarchiver decodeObjectForKey:kTicTacToeArchiveKey];

Then we use a switch statement to take different actions based on the type of packet

we received.

 switch (packet.type) {

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 267

If it’s a die roll, we store our opponent’s value, send back an acknowledgment of the

value, and set dieRollReceived to YES.

 case kPacketTypeDieRoll:
 opponentDieRoll = packet.dieRoll;
 TicTacToePacket *ack = [[TicTacToePacket alloc]
 initAckPacketWithDieRoll:opponentDieRoll];
 [self sendPacket:ack];
 [ack release];
 dieRollReceived = YES;
 break;

If we’ve received an acknowledgment, we make sure the number returned is the same

as the one we sent. This is just a consistency check. It shouldn’t ever happen that the

number is not the same. If it did, it might be an indication of a problem with our code, or

it could mean that someone is cheating. Although we doubt that anyone would bother

cheating at tic-tac-toe, people have been know to cheat in some networked games, so

you might want to consider validating any information exchanged with peers. Here,

we’re just logging the inconsistency and moving on. In your real-world applications, you

might want to take more serious action if you detect a data inconsistency of this nature.

 case kPacketTypeAck:
 if (packet.dieRoll != myDieRoll) {
 NSLog(@"Ack packet doesn't match opponentDieRoll (mine: %d,
send: %d", packet.dieRoll, myDieRoll);
 }
 dieRollAcknowledged = YES;
 break;

If the packet is a move packet, which denotes that the other player chose a space, we

update the appropriate space with an X or O image, and change the state and label to

reflect the fact that it’s now our player’s turn. We also check to see if the other player’s

move resulted in the game being over.

 case kPacketTypeMove:{
 UIButton *theButton = (UIButton *)[self.view viewWithTag:packet.space];
 [theButton setImage:(piece == kPlayerPieceO) ? xPieceImage : oPieceImage
 forState:UIControlStateNormal];
 state = kGameStateMyTurn;
 feedbackLabel.text = NSLocalizedString(@"Your Turn", @"Your Turn");
 [self checkForGameEnd];
 }
 break;

When we receive a reset packet, all we do is change the game state to kGameStateDone,

so that if a die roll comes in before we’ve realized the game is over, we don’t discard it.

 case kPacketTypeReset:
 if (state == kGameStateDone)
 [self resetDieState];
 default:
 break;
 }

If we received a packet, and both dieRollReceived and dieRollAcknowledged are now

YES, we know it’s time to start the game.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 268

 if (dieRollReceived == YES && dieRollAcknowledged == YES)
 [self startGame];

Of course, before our method is complete, we need to release the unarchiver, since we

used alloc to create it.

 [unarchiver release];
}

The next method sends a packet to the other device. It takes an instance of

TicTacToePacket and archives it into an instance of NSData. It then uses the session’s

sendDataToAllPeers:withDataMode:error: method to send it across the wire—well,

across the wireless, in this case.

- (void) sendPacket:(TicTacToePacket *)packet {
 NSMutableData *data = [[NSMutableData alloc] init];
 NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:data];
 [archiver encodeObject:packet forKey:kTicTacToeArchiveKey];
 [archiver finishEncoding];

 NSError *error = nil;

 if (![session sendDataToAllPeers:data withDataMode:GKSendDataReliable
 error:&error]) {
 // You will do real error handling
 NSLog(@"Error sending data: %@", [error localizedDescription]);
 }
 [archiver release];
 [data release];
}

The last method in our controller class is the alert view delegate. This is called any time

we show an alert view. The only reason we ever show an alert view in this application is

to inform the user that something bad happened. Therefore, if we get here, we know we

must reset the board and show the New Game button.

- (void)alertView:(UIAlertView *)alertView
willDismissWithButtonIndex:(NSInteger)buttonIndex {
 [self resetBoard];
 newGameButton.hidden = NO;
}
@end

Trying It Out
Unlike most of the applications we’ve written together, our tic-tac-toe game can’t be

used in the simulator. It will run there, but the simulator does not support Bluetooth

connections. Our app currently relies on Bluetooth connections to work, since we’re

using GameKit and the peer picker. As a result, you’ll need to have two physical

devices, and neither of them can be a first-generation device, because the original

iPhone and the first-generation iPod touch do not work with GameKit’s peer picker.

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 269

It also means that you need to have two devices provisioned for development, but note

that you do not want to connect both devices to your computer at the same time. This

can cause some problems, since there’s no way to specify which one to use for

debugging. Therefore, you need to build and run on one device, quit, unplug that device,

and then plug in the other device and do the same thing. Once you’ve done that, you will

have the application on both devices. You can run it on both devices, or you can launch

it from Xcode on one device, so you can debug and read the console feedback.

NOTE: Detailed instructions for installing applications on a device are available at
http://developer.apple.com/iphone in the developer portal, which is available only
to paid iPhone SDK members.

You should be aware that debugging—or even running from Xcode without debugging—

will slow down the program running on the connected iPhone, and this can have an

affect on network communications. Underneath the hood, all of the data transmissions

back and forth between the two devices check for acknowledgments and have a

timeout period. If they don’t receive a response in a certain amount of time, they will

disconnect. So, if you set a breakpoint, chances are that you will break the connection

between the two devices when it reaches the breakpoint. This can make figuring out

problems in your GameKit application tedious. You often will need to use alternatives to

breakpoints, like NSLog() or breakpoint actions, so you don’t break the network

connection between the devices. We’ll talk more about debugging in Chapter 15.

Game On!
Another long chapter under your belt, and you should now have a pretty firm

understanding of GameKit networking. You’ve seen how to use the peer picker to let

your user select another iPhone or iPod touch to which to connect. You’ve seen how to

send data by archiving objects, and you’ve gotten a little taste of the complexity that is

introduced to your application when you start adding in network multiuser functionality.

In the next chapter, we’re going to expand the TicTacToe application to support online

play over Wi-Fi using Bonjour. So when you’ve recovered, skip on over to the next page,

and we’ll get started.

http://developer.apple.com/iphone

CHAPTER 8: Peer-to-Peer Over Bluetooth Using GameKit 270

271

271

 Chapter

Online Play: Bonjour and
Network Streams
In the previous chapter, you saw how easy it is to create a networked application using

GameKit. GameKit is cool, but currently it only supports online play using Bluetooth. If

you want your networked programs to play on first-generation iPhones and iPod

touches, or if you want to let people play over their local Wi-Fi connection or the

Internet, you need to go beyond GameKit. In this chapter, we’re going to do just that.

We’ll take our TicTacToe project from Chapter 8 and add online play to it. We’ll use

Bonjour to let you find other players on your local network, and then create objects

using CFNetwork, Apple’s low-level networking framework, and the Berkeley sockets
API to listen on the network for other devices attempting to connect. We’ll then use

network streams to communicate back and forth with the remote device. By combining

these, we can provide the same functionality over the network that GameKit currently

provides over Bluetooth.

This Chapter’s Application
We’re going to continue working with our project from the previous chapter, adding

functionality to the existing tic-tac-toe game. At the end of this chapter, when users

press the New Game button, instead of being presented immediately with a list of peers,

they will be presented with the option to select either Online or Nearby play (Figure 9–1).

9

CHAPTER 9: Online Play: Bonjour and Network Streams 272

Figure 9–1. When the New Game button is pressed, the users will now have the option to select between two different
modes of play. Online will allow them to play over their Wi-Fi connection with other phones that are also on the Wi-Fi
connection. Nearby will allow them to play over Bluetooth, as in the original version of the application.

If users select Nearby, they will move to the peer picker and continue just as they did in the

original version of the game. If they select Online, they will get an application-generated list

of devices on the local network that are available to play the game (Figure 9–2).

Figure 9–2. Our application’s equivalent of the GameKit’s peer picker

CHAPTER 9: Online Play: Bonjour and Network Streams 273

If either player selects a peer, the game will commence exactly as it did in the previous

chapter, but the packets will be sent over the network, rather than over the Bluetooth

connection.

Before we start updating our application, we need to look at a few frameworks and

objects that we haven’t used before, which are required to implement online play. Let’s

take a few minutes to talk about Bonjour, network streams, and how to listen for

connections using CFNetwork, which is the low-level networking API used by all of the

Cocoa classes that read from or write to the network.

Overview of the Process
Before we get down into the specific objects and method calls that we need to use to

implement online network play, let’s look at the process from a very high level.

When the user selects online play, the first thing we’re going to do is set up a listener. A

listener is code that monitors a specific network port for connections. Then we’re going

to publish a service using Bonjour that says, in effect, “Hey world, I’m listening on this

port for tic-tac-toe game connections.” At the same time, we’ll look for other Bonjour

services that are also advertising in the same way, and will present a list of any tic-tac-

toe games we find to the user.

If the user taps a row, we will stop advertising and listening, and connect to the

advertised service on the other machine. Once we have a connection established, either

because our user tapped a service name or because our listener detected a connection

from another machine, we will use that network connection to transfer data back and

forth with our opponent, just as we did over Bluetooth.

Setting Up a Listener
For most of the tasks that we need to do to implement online play, we’ll be able to

leverage Foundation (Objective-C) objects. There are, for example, high-level objects for

publishing and discovering Bonjour services, and for sending and receiving data over a

network connection. The way we work with these will be very familiar to you, because

they are all Objective-C classes that use delegates to notify your controller class when

something relevant has occurred.

NOTE: Remember that Foundation is the name of the framework containing the general-purpose
Objective-C classes that are shared between the iPhone and Mac, and includes such classes as
NSString and NSArray. Core Foundation is the name given to the collection of C APIs upon
which most Foundation objects are built. When you see the prefix CF, it is an indication that you
are working with a procedural C framework, rather than one written in Objective-C.

Our first step is to set up a listener to detect connection requests from remote

machines. This is one task for which we must dive down into CFNetwork, which is the

CHAPTER 9: Online Play: Bonjour and Network Streams 274

networking library from Apple’s Core Foundation, and also a bit into the Berkeley

sockets API, which is an even lower-level network programming library atop which

CFNetwork sits.

Here, we’ll review some basic CFNetwork and socket programming concepts to help

you understand what we’re doing in this chapter.

NOTE: For the most part, you won’t need to do socket programming when working with
Objective-C. The vast majority of the networking functionality your applications will need can be
handled by higher-level objects like NSURLRequest, as well as the numerous init methods that
take NSURL parameters, such as NSString’s stringWithContentsOfURL:encoding:
error:. Listening for network connections is one of the rare situations in Cocoa Touch where
you need to interact with the low-level socket API. If you are really interested in learning more
about socket programming, we recommend a good and fairly comprehensive guide to low-level
socket programming, Beej’s Guide to Network Programming, which is available on the Web at
http://beej.us/guide/bgnet/.

Callback Functions and Run Loop Integration
Because CFNetwork is a procedural C library, it has no concept of selectors, methods,

self, or any of the other dynamic runtime goodies that make Objective-C so much fun.

As a result, CFNetwork calls do not use delegates to notify you when something has

happened and cannot call methods. CFNetwork doesn’t know about objects, so it can’t

use an objet as a delegate.

CFNetwork integrates with your application’s run loop. We haven’t worked with it

directly, but every iPhone program has a main loop that’s managed by UIApplication.

The main loop keeps running until it receives some kind of input that tells it to quit. In

that loop, the application looks for inputs, such as fingers touching the screen or the

phone being rotated, and dispatches events through the responder chain based on

those inputs. During the run loop, the application also makes any other calls that are

necessary, such as calling application delegate methods at the appropriate times.

The application allows you to register certain objects with the run loop. Each time

through the run loop, those objects will have a chance to perform tasks and call out to

delegates, in the case of Objective-C, or to callback functions, in the case of Core

Foundation libraries like CFNetwork. We’re not going to delve into the actual process of

creating objects that can be registered in the run loop, but it’s important to know that

CFNetwork and many of the higher-level objective-C networking classes register with

the run loop to do their work. This allows them to listen for network connection

attempts, for example, or to check if data has been received without needing to create

threads or fork child processes.

Because CFNetwork is a procedural library, when you register any CFNetwork

functionality with the run loop, it uses good old-fashioned C callbacks when it needs to

http://beej.us/guide/bgnet

CHAPTER 9: Online Play: Bonjour and Network Streams 275

notify you that something has happened. This means that each of our socket callbacks

must take the form of a C function that won’t know anything about our application’s

classes—it’s just a chunk of code. We’ll look at how to deal with that in a moment.

Configuring a Socket
In order to listen for connections, we need to create a socket. A socket represents one

end of a network connection, and we can leverage CFNetwork to create it. To do that,

first we declare a CFSocketContext, which is a data structure specifically created for

configuring a socket.

Declaring a Socket Context
When creating a socket, the CFSocketContext you define to configure it will typically look

something like this:

CFSocketContext socketCtxt = {0, self, NULL, NULL, NULL};

The first value in the struct is a version number that always needs to be set to 0.

Presumably, this could change at some point in the future, but at present, you need to

set the version to 0, and never any other value.

The second item in the struct is a pointer that will be passed to any callback functions

called by the socket we create. This pointer is provided specifically for application use. It

allows us to pass any data we might need to the callback functions. We set this pointer

to self. Why? Remember that we must implement those callback functions that don’t

know anything about objects, self, or which object triggered the callback. We include a

pointer to self to give the callback function context for which object triggered the

callback. If we didn’t include a reference to the object that created the socket, our

callback function probably wouldn’t know what to do, since the rest of our program is

implemented as objects, and the function wouldn’t have a pointer to any objects.

NOTE: Because Core Foundation can be used outside Objective-C, the callbacks don’t take
Objective-C objects as arguments, and none of the Core Foundation code uses Objective-C
objects. But in your implementation of a Core Foundation callback function, it is perfectly
acceptable to use Objective-C objects, as long as your function is contained in a .m file rather
than a .c file. Objective-C is a superset of C, and it’s always okay to have any C functionality in
your implementation files. Since Objective-C objects are actually just pointers, it’s also okay to do
what we’ve done here and pass a pointer to an Objective-C object in any field or argument that is
documented as being for application use. C doesn’t know about objects, but it does know about
pointers and will happily pass the object pointer along to the callback function.

The other three items in this struct are function pointers for optional callback functions

supported by CFSocket. The first two are for memory management: one that can be used

to retain any objects that need to be retained, and a second that can be used to release

v@v
Text Box
Download at WoweBook.com

CHAPTER 9: Online Play: Bonjour and Network Streams 276

objects that were retained in the previous callback. This is important when using

CFNetwork from C, because the memory needs to be retained and released, just as with

Objective-C objects. We’re not going to use these because we do all our memory

management in the context of our objects, so we pass NULL for both.

The last function pointer is a callback that can be used to provide a string description of

the second element (the one where we specified self). In a complex application, you

might use this last element to differentiate the different values that were passed to the

callback. We pass NULL for this one also; since we only use the pointer to self, there’s

no need to differentiate anything.

Creating a Socket
Once we have our CFSocketContext, we call the function CFSocketCreate() to actually

create the socket.

 CFSocketRef socket = CFSocketCreate(kCFAllocatorDefault, PF_INET, SOCK_STREAM,
 IPPROTO_TCP, kCFSocketAcceptCallBack,
 (CFSocketCallBack)&listenerAcceptCallback, &socketCtxt);

The first argument is a constant that tells CFNetwork that we don’t have any special

memory allocation that needs to happen, so it can just use the default memory allocator

to create the socket. CFAllocators are special objects used in Core Foundation to

handle allocating memory. Because Core Foundation is C-based and not Objective-C–

based, it can’t do retain counting in quite the same way as in Objective-C, so memory

management is handled through a fairly complex set of callbacks that allow you to

allocate and release memory.

The second argument, PF_INET, identifies the protocol family to be used. This is a

constant defined in the socket libraries that refers to the Internet Protocol (IP). The

instances where you would use any other value when specifying a protocol family in a

CFNetwork or socket API call are very few and far between, as the world has pretty

much standardized on PF_INET at this point.

The third argument, SOCK_STREAM, is another constant from the socket library. There are

two primary types of sockets commonly used in network programming: stream sockets

and datagram sockets. Stream sockets are typically used with the Transmission Control

Protocol (TCP), the most common transmission protocol used with IP. It’s so commonly

used that the two are often referred to together as TCP/IP. With TCP, a connection is

opened, and then data can continuously be sent (or “streamed”) to the remote machine

(or received from the remote machine) until the connection is closed. Datagram sockets

are typically used with an alternative, lesser-used protocol called User Datagram

Protocol (UDP). With datagram sockets, the connection is not kept open, and each

transmission of data is a separate event. UDP is a lightweight protocol that is less

reliable than TCP but faster. It is sometimes used in certain online games where

transmission speed is more important than maintaining absolute data integrity. We won’t

be implementing UDP-based services in this book.

CHAPTER 9: Online Play: Bonjour and Network Streams 277

The fourth argument identifies the transmission protocol we want our socket to use.

Since we specified SOCK_STREAM for our socket type, we want to specify TCP as our

transmission protocol, which is what the constant IPPROTO_TCP does.

For the fifth argument, we pass a CFNetwork constant that tells the socket when to call

its callback function. There are a number of different ways you can configure CFSockets.

We pass kCFSocketAcceptCallBack to tell it to automatically accept new connections,

and then call our callback function only when that happens. In our callback method, we

will grab references to the input and output streams that represent that connection, and

then we won’t need any more callbacks from the socket. We’ll talk more about streams

a little later in the chapter.

The sixth argument is a pointer to the function we want called when the socket accepts

a connection. This is a pointer to a C function that we need to implement. This function

must follow a certain format, which can be found in the CFNetwork documentation.

NOTE: Not to worry—we’ll show you how to implement these callbacks once we get to our
sample code in a bit. In the meantime, you might want to bookmark Apple’s CFNetwork
documentation, which can be found here:

http://developer.apple.com/mac/library/documentation/Networking/Co

nceptual/CFNetwork/Introduction/Introduction.html

The last argument is a pointer to the CFSocketContext struct we created. It contains the

pointer to self that will be passed to the callback functions.

Once we’ve created the socket, we need to check socket to make sure it’s not NULL. If it

is NULL, then the socket couldn’t be created. Here’s what checking the socket for NULL

might look like:

 if (socket == NULL) {
 if (error) *error = [[NSError alloc]
 initWithDomain:kMyApplicationErrorDomain
 code:kNoSocketsAvailableError
 userInfo:nil];
 return NO;
 }

Specifying a Port for Listening
Our next task is to specify a port for our socket to listen on. A port is a virtual, numbered

data connection. Port numbers run from 0 to 65535, with port 0 reserved for system use.

Since we’ll be advertising our service with Bonjour, we don’t want to hard-code a port

number and risk a conflict with another running program. Instead, we’ll specify port 0,

which tells the socket to pick an available port and use it.

http://developer.apple.com/mac/library/documentation/Networking/Co

CHAPTER 9: Online Play: Bonjour and Network Streams 278

MANUALLY ASSIGNING PORTS

If you do decide to listen on a specific, hard-coded port, you should be aware that certain port numbers
should not be used.

Ports 0 through 1023 are the well-known ports. These are assigned to common protocols such as FTP,
HTTP, and SMTP. Generally, you shouldn’t use these for your application. In fact, on the iPhone, your
application doesn’t have permission to do so, so any attempt to listen on a well-known port will fail.

Ports 1024 through 49151 are called registered ports. They are used by publicly available online services.
There is a registry of these ports maintained by an organization called the Internet Assigned Numbers
Authority (IANA). If you plan to use one, you should register the port number you wish to use with the IANA
to make sure you don’t conflict with an existing service.

Port numbers higher than 49151 are available for application use without any restrictions. So, if you feel
you must specify a port for your application to listen on, specify one in the range 49152 to 65535

In the following example, we set the listen port to any available port, and then determine

which port was used. First, we need to declare a struct of the type sockaddr_in, which

is a data structure from the socket API used for configuring a socket. The socket APIs

are very old and are from a time when the names of data structures were kept

intentionally terse, so forgive the cryptic nature of this code.

 struct sockaddr_in addr4;
 memset(&addr4, 0, sizeof(addr4));
 addr4.sin_len = sizeof(addr4);
 addr4.sin_family = AF_INET;
 addr4.sin_port = 0;
 addr4.sin_addr.s_addr = htonl(INADDR_ANY);

NOTE: If you’re wondering why the variable ends in 4, it’s a clue that we’re using IP version 4
(IPv4), currently the most widely used version of the protocol. Because of the widespread
popularity of the Internet, at some point in the not-too-distant future, IPv4 will run out of
addresses. IP version 6 (IPv6) uses a different addressing scheme with more available addresses.
As a result, IPv6 sockets must be created using a different data structure, called
sockaddr_storage instead of sockaddr. Although there’s a clear need for additional
addresses on the Internet, there’s no need to use IPv6 when working on a local area network.

In order to pass this struct into a CFNetwork call, we need to turn it into an instance of

NSData:

 NSData *address4 = [NSData dataWithBytes:&addr4 length:sizeof(addr4)];

We can then use the Core Foundation function CFSocketSetAddress to tell the socket on

which port it should listen. If CFSocketSetAddress fails, it will return a value other than

kCFSocketSuccess, and we do appropriate error handling:

if (kCFSocketSuccess != CFSocketSetAddress(socket, (CFDataRef)address4)) {
 if (error) *error = [[NSError alloc]
 initWithDomain:kMyApplicationErrorDomain

CHAPTER 9: Online Play: Bonjour and Network Streams 279

 code:kUnableToSetListenAddressErrorCode
 userInfo:nil];
 if (socket) CFRelease(socket);
 socket = NULL;
 return NO;
}

You might have noticed that we actually cast our NSData instance to CFDataRef.

Foundation and Core Foundation have a very special relationship. Many of the

Objective-C objects that we use from Foundation have counterparts in Core Foundation.

Through a special process called toll-free bridging, many of those items can be used

interchangeably, either as an Objective-C object or as a Core Foundation object. In the

preceding code example, we’re creating an instance of NSData and passing it into a

CFNetwork function called CFSocketSetAddress(), which expects a pointer to a CFData

object. When you see a Core Foundation datatype that ends in ref, that means it’s a

pointer to something. In this case, CFDataRef is a pointer to a CFData. Because CFData

and NSData are toll-free bridged, it’s okay to simply cast our NSData instance as a

CFDataRef.

NOTE: The API documentation for Foundation objects identifies whether an object is toll-free
bridged with a Core Foundation counterpart.

Finally, we need to copy the information back from the socket, because the socket will

have updated the fields with the correct port and address that were actually used. We

need to copy that data back into addr4 so we can determine which port number was

used.

 NSData *addr = [(NSData *)CFSocketCopyAddress(socket) autorelease];
 memcpy(&addr4, [addr bytes], [addr length]);
 uint16_t port = ntohs(addr4.sin_port);

BYTE ORDERING

The functions htonl() and ntohs() are part of a family of functions that convert byte order from your
local machine to the network byte order, as follows:

 htonl(), which stands for “host to network long,” converts a long from
the machine’s byte ordering to the network’s byte-order.

 ntohs(), which stands for “network to host short,” converts a short from
the network’s byte order to the machine’s.

Different machines represent multibyte values differently. For example, the older PowerPC Macs used a
byte-ordering called big-endian, and current Intel-based Macs use a byte-ordering called little-endian.
This means that the same int is represented differently in memory on the two machines.

Protocols specify the ordering that they use, and these functions are defined on all platforms to handle any
conversion necessary to allow different machines to exchange data over the network, without needing to
worry about the byte ordering.

CHAPTER 9: Online Play: Bonjour and Network Streams 280

CFNetwork and higher-level networking classes deal with byte ordering for you. However, when working
with the socket APIs directly, you need to use these conversion functions any time you specify or pass in a
value other than 0 (which is the same regardless of byte ordering) or a defined socket API constant.

You can find out more about byte-ordering at http://en.wikipedia.org/wiki/Endianness.

Registering the Socket with the Run Loop
The last thing we need to do is to register our socket with our run loop. This will allow

the socket to poll the specified port for connection attempts, and then call our callback

function when a connection is received. Here is how we do that:

CFRunLoopRef cfrl = CFRunLoopGetCurrent();
CFRunLoopSourceRef source4 = CFSocketCreateRunLoopSource(kCFAllocatorDefault,
 socket, 0);
CFRunLoopAddSource(cfrl, source4, kCFRunLoopCommonModes);
CFRelease(source4);

Implementing the Socket Callback Function
Once our socket is registered with the run loop, any time that we receive a connection

from a remote machine, the function we specified when we created the socket will be

called. In that function, we need to create a pair of stream objects that represent the

connection to the other machine. One of those stream objects will be used to receive

data from the other machine, and the other one will be used to send data to the other

machine.

Here’s how you create the stream pair that represents the connection to the other

machine:

static void listenerAcceptCallback (CFSocketRef theSocket, CFSocketCallBackType
theType, CFDataRef theAddress, const void *data, void *info) {

 if (theType == kCFSocketAcceptCallBack) {
 CFSocketNativeHandle socketHandle = *(CFSocketNativeHandle *)data;
 uint8_t name[SOCK_MAXADDRLEN];
 socklen_t namelen = sizeof(name);
 NSData *peer = nil;
 if (getpeername(socketHandle, (struct sockaddr *)name, &namelen) == 0) {
 peer = [NSData dataWithBytes:name length:namelen];
 }
 CFReadStreamRef readStream = NULL;
 CFWriteStreamRef writeStream = NULL;
 CFStreamCreatePairWithSocket(kCFAllocatorDefault, socketHandle,
 &readStream, &writeStream);
 if (readStream && writeStream) {
 CFReadStreamSetProperty(readStream,
 kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);
 CFWriteStreamSetProperty(writeStream,
 kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);

 self.inStream = readStream;

http://en.wikipedia.org/wiki/Endianness

CHAPTER 9: Online Play: Bonjour and Network Streams 281

 self.outStream = writeStream;
 } else {
 close(socketHandle);
 }
 if (readStream) CFRelease(readStream);
 if (writeStream) CFRelease(writeStream);
 }
}

In this particular example, we’re just storing a reference to the stream pair. We’ll talk

about how to use them a little later in the chapter.

Stopping the Listener
To stop listening for new connections, we must invalidate and release the socket. We

don’t need to remove it from the run loop, because invalidating the socket takes care of

that for us. Here’s all we need to do when we’re finished with our CFSocket:

if (socket) {
 CFSocketInvalidate(socket);
 CFRelease(socket);
 socket = NULL;
}

Bonjour
In the previous chapter, when we were using GameKit’s peer picker, each phone was

able to find the other phone without the user typing in an IP address or DNS name. That

was accomplished using Bonjour (also known as Zeroconf). Bonjour is a protocol

specifically designed to let devices find each other on a network. If you buy a new

printer and plug it into your AirPort base station, and then tell a Mac on the same

network to add a new printer, the new printer will appear automatically. The printer’s

type will be discovered without the need to type in an IP address or manually search the

network. That’s Bonjour in action. When you’re in the Finder and other Macs on your

network show up automatically under the SHARED heading (Figure 9–3), that’s also

Bonjour doing its thing.

If you’re young enough not to remember life before Bonjour, consider yourself lucky.

Bonjour makes life much easier for computer users. In the “old days” (yes, we walked to

school 10 miles through the snow uphill both ways), you needed to know a service or

device’s IP address to find it on your network. It was often a tedious, frustrating

experience. We want life to be easy for our users, don’t we? Well, of course we do. So,

how do we use Bonjour?

CHAPTER 9: Online Play: Bonjour and Network Streams 282

Figure 9–3. The SHARED heading in the Finder’s sidebar lists all other Macs on your network that have shared
folders. This is just one of the many examples of where Bonjour is used in Mac OS X.

Creating a Service for Publication
When you advertise a service on the network using Bonjour, it’s called publishing the

service. Published services will be available for other computers to discover and

connect to. The process of discovering another published service on the network is

called searching for services. When you find a service and wish to connect to it, you

need to resolve the service to get information about the address and port on which the

service is running or, alternatively, you can ask the resolved service for a connection in

the form of streams.

To advertise an available service, you need to create an instance of a class called

NSNetService. To do that, you provide four pieces of information:

 Domain: The first piece of information is the domain, which is referring

to a DNS domain name like www.apple.com. You pretty much always

want to specify an empty string for the domain. Although the

documentation for NSNetService says to pass @"local." instead of the

empty string if you want to support only local connections, Technote
QA1331 (http://developer.apple.com/mac/library/qa/qa2001/

qa1331.html) clarifies this point and says that passing @"local." may

make your application incompatible with future versions of Mac OS X.

It says to always pass an empty string, and NSNetService will “do the

right thing.”

http://www.apple.com
http://developer.apple.com/mac/library/qa/qa2001/qa1331.html
http://developer.apple.com/mac/library/qa/qa2001/qa1331.html

CHAPTER 9: Online Play: Bonjour and Network Streams 283

 Service type: The second piece of information that needs to be passed

in is your service type. This is a string that uniquely identifies the

protocol or application being run, along with the transmission protocol

it uses. This is used to prevent services of different types from trying to

connect to each other, much like the session identifier we used in

Chapter 8. Unlike GameKit session identifiers, Bonjour identifiers must

follow a very specific formula; you can’t use just any string. A valid

Bonjour type begins with an underscore, followed by a string that

identifies the service or protocol being advertised, followed by another

period, another underscore, the transmission protocol, and then a

terminating period. For Cocoa applications, your transmission type will

almost always be TCP, so your Bonjour type will pretty much always

end in ._tcp..

 Name: The third piece of information you provide is a name that

uniquely identifies this particular device on the network. This is the

value that is displayed in the list in Figure 9–2. If you pass the empty

string, Bonjour will automatically select the device name as set in

iTunes, which is usually the owner’s first name followed by the type of

device (e.g., Dave’s iPhone or Jeff’s iPod touch). In most instances,

the empty string is the best option for name, although you could solicit

a desired name from your users if you wanted to let them specify a

different name under which they would appear.

 Port number: Finally, you need to specify the port number that your

application is listening on. Each port can be used by only a single

application at a time, so it’s important that you don’t select one that’s

already in use. In the previous section, we showed how to set up a

listener and specify the port, or how to let it pick a port and then find

out which one it picked. The number we retrieved from the listener is

the number that should be passed here. When you create an instance

of NSNetService, you are telling the world (or at least your local

network) that there is a specific device or service listening on a

specific port of this machine. You shouldn’t advertise one unless you

are actually listening.

Here’s what allocating a new net service might look like:

NSNetService *svc = [[NSNetService alloc] initWithDomain:@""
 type:@"_myprogram._tcp."
 name:@""
 port:15000];

Publishing a Bonjour Service
Once you’ve created an instance of NSNetService, you need to take a few steps before

NSNetService will start actually advertising your service:

CHAPTER 9: Online Play: Bonjour and Network Streams 284

 First, you need to schedule the service in your application’s run loop.

We introduced run loop integration when we talked about creating a

listener earlier in the chapter. Because we’re using Foundation rather

than Core Foundation, we schedule the service in the run loop using

method calls instead of C function calls, but the process is

comparable.

 After we schedule the service in the run loop, we need to set a

delegate so that the service can notify us when certain things happen,

such as when NSNetService is finished publishing or if an error was

encountered.

 Finally, we need to actually publish the service, which causes it to start

letting other devices on the network know about its existence.

These steps would typically look something like this:

 [svc scheduleInRunLoop:[NSRunLoop currentRunLoop] forMode:NSRunLoopCommonModes];
 [svc setDelegate:self];
 [svc publish];

Stopping a Bonjour Service
When you stop listening on a port, or simply don’t want any new connections, you need

to tell the net service to stop advertising using Bonjour, like so:

 [svc stop];

All this does is tell the service not to advertise its existence. You can always start it back

up again, by republishing it:

 [svc publish];

Delegate Methods for Publication
Once you’ve scheduled your service in your application’s run loop and have published

the service, it will call methods on its delegate when certain things happen. The class

that acts as the service’s delegate should conform to the NSNetServiceDelegate

protocol and should implement any of the methods that correspond to activities it needs

to be notified about.

Several of the delegate methods are called during the publication process. For example,

when the service has been configured successfully, and just before it begins advertising

its existence, it will call the following method on its delegate:

-(void)netServiceWillPublish:(NSNetService *)netService;

This is a good place to do setup work or configuration that, for some reason, you don’t

want to occur if the publication isn’t going to work. If you’re providing feedback to the

user about the status of the connection, you can also use this method to let the user

know that the server is ready to accept connections.

CHAPTER 9: Online Play: Bonjour and Network Streams 285

Similarly, if the service fails to publish for some reason, it will notify its delegate of that

as well, using the method netService:didNotPublish:. In that method, you should stop

the service. Here is an example implementation of netService:didNotPublish::

- (void)netService:(NSNetService *)theNetService
 didNotPublish:(NSDictionary *)errorDict {
 NSNumber *errorDomain = [errorDict valueForKey:NSNetServicesErrorDomain];
 NSNumber *errorCode = [errorDict valueForKey:NSNetServicesErrorCode];
 NSLog(@"Unable to publish Bonjour service (Domain: %@, Error Code: %@)",
 errorDomain, errorCode);
 [theNetService stop];
}

The second argument to this delegate method is a dictionary that contains information

about the error, including an error domain stored under the key NSNetServicesErrorDomain
and an error code stored under the key NSNetServicesErrorCode. These two items will tell

you more about why it failed.

NOTE: You can find a list of the error domains and error codes that Bonjour services can
generate in the API documentation for NSNetService.

When the service stops, the delegate method netServiceDidStop: will be called, which

will give you the opportunity to update the status or to reattempt publication if desired.

Often, once a service stops, you are finished with the net service and just want to

release the instance of NSNetService that stopped. Here’s what the delegate method in

that situation might look like:

- (void)netServiceDidStop:(NSNetService *)netService {
 netService.delegate = nil;
 self.netService = nil;
}

Searching for Published Bonjour Services
The process to discover published services on your local network is fairly similar to that

of publishing a service. You first create an instance of NSNetServiceBrowser and set its

delegate:

 NSNetServiceBrowser *theBrowser = [[NSNetServiceBrowser alloc] init];
 theBrowser.delegate = self;

Then you call searchForServicesOfType:inDomain: to kick off the search. Unlike with

NSNetService, you don’t need to register a service browser with the run loop, though

you do still need to specify a delegate; otherwise, you wouldn’t ever find out about the

other services. For the first argument, you pass the same Bonjour identifier that we

discussed when we talked about publishing the domain. In the second argument, we

follow Apple’s recommendation and pass the empty string.

 [theBrowser searchForServicesOfType:@"_myprogram._tcp" inDomain:@""];

CHAPTER 9: Online Play: Bonjour and Network Streams 286

Browser Delegate Methods
When the browser completes its configuration and is ready to start looking for services,

it will call the following method on its delegate:

- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)browser

You do not need to implement this method, as there are no actions you must take at this

point for the browser to find other services. It’s just notifying you in case you want to

update the status or take some action before it starts looking.

If the browser was unable to start a search for some reason, it will call the delegate

method netServiceBrowser:didNotSearch: on its delegate. When this happens, you

should stop the browser and do whatever error reporting is appropriate for your

application. Here is a simple example:

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorDict {
 NSLog(@"Error browsing for service: %@", [errorDict
 objectForKey:NSNetServicesErrorCode]);
 [self.netServiceBrowser stop];
}

You should not release the browser at this point, even if you’re finished with it. After you

call the stop method here, or at any other time, it will trigger another delegate method

call, which is where you should release the browser, like so:

- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser {
 browser.delegate = nil;
 self.netServiceBrowser = nil;
}

When the browser finds a new service, it will call the delegate method

netServiceBrowser:didFindService:moreComing:. The second argument the browser

will pass to this method is an instance of NSNetService that can be resolved into an

address or port, or turned into a stream pair, which you’ll see how to do in a minute.

Typically, when notified about a new service, you add it to an array or other collection,

so that you can let your user select from the available services. If the browser knows

that there are more services coming, it will indicate this by passing YES for the last

argument, which allows you to skip updating the user interface unnecessarily. The

following is an example of what an implementation of this method might look like in a

table view controller. Notice that we sort the data and reload the table only if there are

no more services coming.

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {
 if (![[self.publishedService name] isEqualToString:[aNetService name]])
 [discoveredServices addObject:aNetService];

 if (!moreComing) {
 [self.tableView reloadData];
 NSSortDescriptor *sd = [[NSSortDescriptor alloc] initWithKey:@"name"
 ascending:YES];

CHAPTER 9: Online Play: Bonjour and Network Streams 287

 [discoveredServices sortUsingDescriptors:[NSArray arrayWithObject:sd]];
 [sd release];
 }
}

Another thing to notice here is that we’re comparing browser’s name to the name of

another published service. This step is unnecessary if you haven’t published a Bonjour

service in your app. However, if you’re both publishing and browsing, as we’re going to

do in our application, you typically don’t want to display your own service to your users.

If you’ve published one, it will be discovered by your browser, so you must manually

exclude it from the list you show to the users.

Finally, if a service becomes unavailable, the browser will call another delegate method,

which looks very similar to the last one, to let you know that one of the previously

available services can no longer be found. Here’s what that method might look like in a

table view controller class:

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {
 [discoveredServices removeObject:aNetService];

 if(!moreComing)
 [self.tableView reloadData];
}

Resolving a Discovered Service
If you want to connect to any of the discovered services, you do it by resolving the

instance of NSNetService that was returned by the browser in the

netServiceBrowser:didFindService:moreComing: method. To resolve it, all you need to

do is call the method resolveWithTimeout:, specifying how long it should attempt to

connect, or 0.0 to specify no timeout. If you were storing the discovered services in an

array called discoveredServices, here is how you would resolve one of the services in

that array:

 NSNetService *selectedService = [discoveredServices objectAtIndex:selectedIndex];
 selectedService.delegate = self;
 [selectedService resolveWithTimeout:0.0];

Discovered services do not need to be registered with the run loop the way published

ones do. Once you call resolveWithTimeout:, the service will then call delegate methods

to tell you that the service was resolved, or to tell you that it couldn’t be resolved.

If the service could not be resolved, for whatever reason, it will call the delegate method

netService:didNotResolve:. At a minimum, you should stop the net service here. You

should also do whatever error checking is appropriate to your application. Here’s a

simple implementation of this delegate method:

- (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict {
 [sender stop];
 NSNumber *errorDomain = [errorDict valueForKey:NSNetServicesErrorDomain];
 NSNumber *errorCode = [errorDict valueForKey:NSNetServicesErrorCode];

CHAPTER 9: Online Play: Bonjour and Network Streams 288

 NSLog(@"Unable to resolve Bonjour service (Domain: %@, Error Code: %@)",
 errorDomain, errorCode);
}

If the discovered service resolved successfully, then the delegate method

netServiceDidResolveAddress: will be called. You can call the methods hostName and

port on the service to find out its location and connect to it manually. An easier option is

to ask the net service for a pair of streams already configured to connect to the remote

service. Here’s an example implementation of that delegate method. Note, however, that

we don’t do anything with the streams yet.

- (void)netServiceDidResolveAddress:(NSNetService *)service {

 NSInputStream *tempIn = nil;
 NSOutputStream *tempOut = nil;
 if (![service getInputStream:&tempIn outputStream:&tempOut]){
 NSLog(@"Could not start game with remote device",
 @"Could not start game with remote device")];
 return;
 }
 // Open and use the streams
}

Why didn’t we do anything with the streams? Because streams are complex enough to

deserve their very own section, so we will now, very smoothly, segue into…

Streams
In the previous sections, we demonstrated how to obtain a pair of streams, which

represent a connection to another device. In the section on setting up a listener, we

showed you how to get a pair of CFStream pointers when another computer is

connected. When we looked at resolving services with Bonjour, we demonstrated how

to get a pair of NSStreams (actually an NSInputStream and an NSOutputStream, but both

are subclasses of NSStream) to represent the connection to the published services. So,

now it’s time to talk about how to use streams.

Before we go too far, we should remind you that CFStream and NSStream are toll-free

bridged, so we’re not really talking about different objects here. They’re all stream

objects. If they represent a connection designed to let you send data to another

machine, they’re an NSOutputStream instance; if they’re designed to let you read the data

sent by another machine, they are instances of NSInputStream.

NOTE: In this chapter, we use streams to pass data between different instances of our
application over a network. However, streams are also useful in situations that don’t involve
network connections. For example, streams can be used to read and write files. Any type of data
source or destination that sequential bits of data can be sent to or received from can be
represented as a stream.

CHAPTER 9: Online Play: Bonjour and Network Streams 289

Opening a Stream
The first thing you need to do with any stream object is to open it. You can’t use a

stream that hasn’t been opened.

Opening a stream tells it that you’re ready to use it. Until it’s open, a stream object really

represents a potential rather than an actual stream. After you open a stream, you need

to register it with your run loop, so that it can send and receive data without disrupting

the flow of your application. And, as you’ve probably guessed, you need to set a

delegate, so that the streams can notify you when things happen.

Here’s what opening a pair of streams generally looks like:

 [inStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [outStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];

 inStream.delegate = self;
 outStream.delegate = self;

 if ([inStream streamStatus] == NSStreamStatusNotOpen)
 [inStream open];

 if ([outStream streamStatus] == NSStreamStatusNotOpen)
 [outStream open];

Just to be safe, we actually check the status of the stream and make sure it wasn’t

already opened elsewhere. With the streams retrieved from Bonjour or from a network

listener, the streams won’t be open, but we code defensively so we don’t get burnt.

The Stream and Its Delegate
Streams have one delegate method—that’s it, just one. But they call that one method

whenever anything of interest happens on the streams. The delegate method is

stream:handleEvent:, and it includes an event code that tells you what’s going on with

the stream. Let’s look at the relevant event codes:

 NSStreamEventOpenCompleted: When the stream has finished opening

and is ready to allow data to be transferred, it will call

stream:handleEvent: with the event code

NSStreamEventOpenCompleted. Put another way, once the stream has

finished opening, its delegate will receive the

NSStreamEventOpenCompleted event. Until this event has been received,

a stream should not be used. You won’t receive any data from an

input stream before this event happens, and any attempts to send

data to an output stream before its receipt will fail.

CHAPTER 9: Online Play: Bonjour and Network Streams 290

 NSStreamEventErrorOccurred: If an error occurs at any time with the

stream, it will send its delegate the NSStreamEventErrorOccurred event.

When this happens, you can retrieve an instance of NSError with the

details of the error by calling streamError on the stream, like so:

NSError *theError = [stream streamError];

NOTE: An error does not necessarily indicate that the stream can no longer be used. If the
stream can no longer be used, you will also receive a separate event informing you of that.

 NSStreamEventEndEncountered: If you encounter a fatal error, or the

device at the other end of the stream disconnects, the stream’s

delegate will receive the NSStreamEventEndEncountered event. When

this happens, you should dispose of the streams, because they no

longer connect you to anything.

 NSStreamEventHasBytesAvailable: When the device you are connected

to sends you data, you will receive one or more

NSStreamEventHasBytesAvailable events. One of the tricky things

about streams is that you may not receive the data all at once. The

data will come across in the same order it was sent, but it’s not the

case that every discrete send results in one and only one

NSStreamEventHasBytesAvailable event. The data from one send

could be split into multiple events, or the data from multiple sends

could get combined into one event. This can make reading data

somewhat complex. We’ll look at how to handle that complexity a little

later, when we implement online play in our tic-tac-toe game.

 NSStreamEventHasSpaceAvailable: Streams, especially network

streams, have a limit to how much data they can accept at a time.

When space becomes available on the stream, it will notify its delegate

by sending the NSStreamEventHasSpaceAvailable event. At this time, if

there is any queued, unsent data, it is safe to send at least some of

that data through the stream.

Receiving Data from a Stream
When notified, by receipt of an NSStreamEventHasBytesAvailable event, that there is

data available on the stream, you can read the available data, or a portion of it, by calling

read:maxLength: on the stream.

The first argument you need to pass is a buffer, or chunk of memory, into which the

stream will copy the received data. The second parameter is the maximum number of

bytes that your buffer can handle. This method will return the number of bytes actually

read, or -1 if there was an error.

CHAPTER 9: Online Play: Bonjour and Network Streams 291

Here’s an example of reading up to a kibibyte of data (yes, Virginia, there is such a thing

as a kibibyte; check out this link to learn more:

http://en.wikipedia.org/wiki/Kibibyte) from the stream:

uint8_t buffer[1024];
NSInteger bytesRead = [inStream read:buffer maxLength:1024];
if (bytesRead == -1) {
 NSError *error = [inStream streamError];
 NSLog(@"Error reading data: %@", [error localizedDescription]);
}

NOTE: You’ll notice that when we deal with data to be sent over a network connection, we often
choose datatypes like uint8_t or int16_t, rather than more common datatypes like char and
int. These are datatypes that are specified by their byte size, which is important when sending
data over a network connection. Conversely, the int datatype is based on the register size of the
hardware for which it’s being compiled. An int compiled for one piece of hardware might not be
the same size as an int compiled for another piece of hardware.

In this case, we want to be able to specify a buffer in bytes, so we use a datatype that’s always
going to be 8 bits (1 byte) long on all hardware and every platform. The actual datatype of the
buffer doesn’t matter—what matters is the size of that datatype, because that will affect the size
of the buffer we allocate. We know uint8_t will always be 1 byte long on all platforms and all
hardware, and that fact will be obvious to any programmer looking at our code, since the byte
size is part of the datatype name.

Sending Data Through the Stream
To send data to the connected device through the output stream, you call

write:maxLength:, passing in a pointer to the data to send and the length of that data.

Here’s how you might send the contents of an NSData instance called dataToSend:

NSUInteger sendLength = [dataToSend length];
NSUInteger written = [outStream write:[dataToSend bytes] maxLength:sendLength];
if (written == -1) {
 NSError *error = [outStream streamError];
 NSLog(@"Error writing data: %@", [error localizedDescription]);
}

It’s important at this point that you check written to make sure it matches sendLength. If

it doesn’t, that means only part of your data went through, and you need to resend the

rest when you get another NSStreamEventHasBytesAvailable event from the stream.

http://en.wikipedia.org/wiki/Kibibyte

CHAPTER 9: Online Play: Bonjour and Network Streams 292

Putting It All Together
As you can see, adding online play to a program can be complex. If we’re not careful,

we could end up with messy globs of networking code littered throughout our

application, making it hard to maintain and debug. We’re still trying to write our code

generically, so our goal is to create objects that can be reused, preferably unmodified, in

other applications and that encapsulate the new functionality we need.

In this case, fortunately, we already have something we can model our classes on:

GameKit. As discussed in the previous chapter, communication in GameKit happens

through an object called a GKSession. That object manages both sending data to the

remote device and receiving data from it. We call a method and pass in an NSData

instance to send data to the other device, and we implement a delegate method to

receive data from it. We’re going to follow this model to create a similar session object

for online play. We’ll create two new generic classes, along with a couple of categories

to help us convert an array of objects to a stream of bytes and back again. We’re also

going to need a new view controller.

The category will contain functionality that will assist us in reassembling data sent over a

stream. One of the new objects will be called OnlineSession, and it will function similarly

to GKSession. Once a stream pair is received from either the listener or from resolving

the net service, that stream pair can be used to create a new OnlineSession.

We’re also going to create a class called OnlineListener, which will encapsulate all the

functionality needed to listen for new connections. Our new view controller class will

present a list of available peers, similar to the peer picker in GameKit.

Before we get started writing these new classes, let’s consider how we’re going to

ensure that the NSData objects we send can be reassembled by the other device.

Remember that we don’t have any control over how many bytes are sent at a time. We

might, for example, send a single NSData instance, and the other machine may get that

NSData spread over 20 NSStreamEventHasBytesAvailable events. Or we might send a

few instances at different times that could be received all together in one

NSStreamEventHasBytesAvailable event. To make sure that we can reassemble the

stream of bytes into an object, we’ll first send the length of the object followed by its

bytes. That way, no matter how the stream is divided up, it can always be reassembled.

If the other device is told to expect 128 bytes, it knows to keep waiting for data until it

gets all 128 bytes before it should reassemble it. The device will also know that if it gets

more than 128 bytes, then there’s another object.

Let’s take all this information and get it into code before our heads explode, shall we?

Updating Tic-Tac-Toe for Online Play
We’re going to continue working with the TicTacToe application from the previous

chapter. If you don’t already have it open, consider making a backup copy before

continuing. Because the fundamental game isn’t changing, we don’t need to touch the

CHAPTER 9: Online Play: Bonjour and Network Streams 293

existing nibs. Although we will need to make changes to TicTacToeViewController, we

won’t change any of the game logic.

Adding the Packet Categories
We need the ability to convert multiple NSData instances into a single stream of bytes

containing the length of the data and then the actual bytes. We also need a way to take

a stream of bytes and reassemble those back into NSData instances. We’re going to use

categories to add this functionality to existing classes.

Because the stream won’t necessarily be able to handle all the data we have to send,

we’re going to maintain a queue of all the data waiting to be sent in an NSArray. One of

our categories will be on NSArray and will return a single NSData instance that holds a

buffer of bytes representing everything in the array. We’re also going to write a category

on NSData to take a stream of bytes held in an instance of NSData and parse it back into

the original objects. These categories will contain a single method each. Since they

represent two sides of the same operation, we’re going to place both categories in a

single pair of files, just to minimize project clutter.

With your TicTacToe project open, single-click the Classes folder in the Groups & Files

pane and press N or select New File… from the File menu. Under the Cocoa Touch
Class category, select Objective-C Class and select NSObject from the Subclass of pop-

up menu. When prompted for a name, type PacketCategories.m, and make sure the

check box labeled Also create “PacketCategories.h” is selected.

Once the files have been created, single-click PacketCategories.h and replace the

existing contents with the following:

#import <Foundation/Foundation.h>
#define kInvalidObjectException @"Invalid Object Exception"

@interface NSArray(PacketSend)
-(NSData *)contentsForTransfer;
@end

@interface NSData(PacketSplit)
- (NSArray *)splitTransferredPackets:(NSData **)leftover;
@end

The one constant, kInvalidObjectException, will be used to throw an exception if our

NSArray method is called on an array that contains objects other than instances of

NSData. If we wanted to make this more robust, we might archive other objects into

instances of NSData, throwing an exception only if the array contains an object that

doesn’t conform to NSCoding. For simplicity’s sake and to be consistent with the

approach used by GKSession, we’re going to support just NSData instances in our

application.

After that, we declare a category on NSArray that adds a single method called

contentsForTransfer, which returns the entire contents of the array, ready to be sent

through a stream to the other machine. The second category is on NSData. This method

will reassemble all of the objects contained in a chunk of received data. In addition to

CHAPTER 9: Online Play: Bonjour and Network Streams 294

returning an array with those objects, it also takes one argument called leftover. This

pointer to a pointer will be used to return any incomplete objects. If an object is

incomplete, the caller will need to wait for more bytes, append them to leftover, and

then call this method again.

Switch over to PacketCategories.m and replace the existing contents with this:

#import "PacketCategories.h"

@implementation NSArray(PacketSend)
-(NSData *)contentsForTransfer {
 NSMutableData *ret = [NSMutableData data];
 for (NSData *oneData in self) {
 if (![oneData isKindOfClass:[NSData class]])
 [NSException raise:kInvalidObjectException format:
 @"arrayContentsForTransfer only supports instances of NSData"];

 uint64_t dataSize[1];
 dataSize[0] = [oneData length];
 [ret appendBytes:dataSize length:sizeof(uint64_t)];
 [ret appendBytes:[oneData bytes] length:[oneData length]];
 }
 return ret;
}
@end

@implementation NSData(PacketSplit)
- (NSArray *)splitTransferredPackets:(NSData **)leftover {

 NSMutableArray *ret = [NSMutableArray array];
 const unsigned char *beginning = [self bytes];
 const unsigned char *offset = [self bytes];
 NSInteger bytesEnd = (NSInteger)offset + [self length];

 while ((NSInteger)offset < bytesEnd) {
 uint64_t dataSize[1];
 NSInteger dataSizeStart = offset - beginning;
 NSInteger dataStart = dataSizeStart + sizeof(uint64_t);

 NSRange headerRange = NSMakeRange(dataSizeStart, sizeof(uint64_t));
 [self getBytes:dataSize range:headerRange];

 if ((dataStart + dataSize[0] + (NSInteger)offset) > bytesEnd) {
 NSInteger lengthOfRemainingData = [self length] - dataSizeStart;
 NSRange dataRange = NSMakeRange(dataSizeStart, lengthOfRemainingData);
 *leftover = [self subdataWithRange:dataRange];

 return ret;
 }

 NSRange dataRange = NSMakeRange(dataStart, dataSize[0]);
 NSData *parsedData = [self subdataWithRange:dataRange];

 [ret addObject:parsedData];
 offset = offset + dataSize[0] + sizeof(uint64_t);

CHAPTER 9: Online Play: Bonjour and Network Streams 295

 }
 return ret;
}
@end

These two categories might appear a little intimidating because they’re dealing with

bytes, but they’re really quite straightforward. The first just creates an instance of

NSMutableData to hold the stream of bytes, and then iterates over the array. For each

object, it first adds the length of the object as a 64-byte integer, and then appends the

actual data bytes from the object. When it’s finished iterating, it returns the mutable data

that contains the formatted stream of bytes.

The second method might be a little more intimidating looking, but all it’s doing is

looping through the bytes of self, which will be an instance of NSData that holds data

formatted by the previous method. It first reads a uint64_t, a 64-byte integer that

should hold the length of the object that follows, and then reads that number of bytes

into a new instance of NSData, which it adds to a mutable array that will be returned. It

continues to do this until it reaches the end of the data. If it gets to the end of the data

and has an incomplete object, it sends that object’s data back to the calling method

using that pointer to a pointer argument, leftover.

Implementing the Online Session Object
Now that we have a way to split up and recombine objects from the stream, let’s write

our OnlineSession object. Create a new file by selecting the Classes folder and pressing

N. You can use the same file template you used for creating the category, but call the

new class OnlineSession.m and make sure it creates OnlineSession.h for you.

Single-click OnlineSession.h and replace the current contents with this new version:

#import <Foundation/Foundation.h>
#define kOnlineSessionErrorDomain @"Online Session Domain"
#define kFailedToSendDataErrorCode 1000
#define kDataReadErrorCode 1001

#define kBufferSize 512

@class OnlineSession;
@protocol OnlineSessionDelegate
- (void)onlineSessionReadyForUse:(OnlineSession *)session;
@optional
- (void)onlineSession:(OnlineSession *)session
 receivedData:(NSData *)data;
- (void)onlineSession:(OnlineSession *)session
 encounteredReadError:(NSError *)error;
- (void)onlineSession:(OnlineSession *)session
encounteredWriteError:(NSError *)error;
- (void)onlineSessionDisconnected:(OnlineSession *)session;
@end

@interface OnlineSession : NSObject {
 id delegate;

CHAPTER 9: Online Play: Bonjour and Network Streams 296

 NSInputStream *inStream;
 NSOutputStream *outStream;

 BOOL writeReady;
 BOOL readReady;

 NSMutableArray *packetQueue;
 NSData *readLeftover;
 NSData *writeLeftover;
}
@property (nonatomic, assign) id<OnlineSessionDelegate> delegate;

- (id)initWithInputStream:(NSInputStream *)theInStream
 outputStream:(NSOutputStream *)theOutStream;
- (BOOL)sendData:(NSData *)data error:(NSError **)error;
- (BOOL)isReadyForUse;
@end

Let’s take a look at what we’re doing here. First, we define a few constants for an error

domain for our session object, as well as some error codes to represent errors we might

encounter:

#define kOnlineSessionErrorDomain @"Online Session Domain"
#define kFailedToSendDataErrorCode 1000
#define kDataReadErrorCode 1001

After that, we define another constant that will set the size of our read buffer. Remember

that when we read data from a stream, we need to create a buffer of a specific size, and

then inform the stream of the maximum number of bytes we can accept in a single read

operation. This constant will be used to allocate the memory and also will be passed in

to the stream’s read method as the maxLength parameter. Depending on the size of the

data you need to transfer, you might want to tweak this value, but it’s generally a good

idea to read from the stream in small chunks. Apple typically recommends either 512 or

1024 per read. Since the data we send in our application is relatively small, we went with

the smaller suggested value of 512.

#define kBufferSize 512

Our session will have a delegate, and we will inform the delegate when certain things

happen. We create a protocol to define the methods that our delegate can and must

implement. Because we haven’t yet declared our OnlineSession class (which will

happen below the protocol), we use the @class keyword to tell the compiler that the

class actually exists, even though the compiler hasn’t seen it yet. The only required

method is the one used to receive data from peers; however, we provide methods to

inform the delegate of pretty much any stream event that the application might need to

know about.

@class OnlineSession;
@protocol OnlineSessionDelegate
- (void)onlineSessionReadyForUse:(OnlineSession *)session;
@optional
- (void)onlineSession:(OnlineSession *)session
 receivedData:(NSData *)data;
- (void)onlineSession:(OnlineSession *)session
 encounteredReadError:(NSError *)error;

CHAPTER 9: Online Play: Bonjour and Network Streams 297

- (void)onlineSession:(OnlineSession *)session
encounteredWriteError:(NSError *)error;
- (void)onlineSessionDisconnected:(OnlineSession *)session;
@end

Next, we define the OnlineSession class and declare its instance variables:

@interface OnlineSession : NSObject {
 id delegate;

 NSInputStream *inStream;
 NSOutputStream *outStream;

 BOOL writeReady;
 BOOL readReady;

 NSMutableArray *packetQueue;
 NSData *readLeftover;
 NSData *writeLeftover;

}

We have a delegate, a stream pair, a pair of BOOLs that will be used to keep track of

whether the streams are ready to use, and then a mutable array to keep a queue of

unsent data. When our write method is called, if the streams aren’t ready or if there is no

space available on the output stream, we’ll queue up the data by adding it to the

packetQueue array, and then send the queued data when we get a space available event

from outStream. The last two instance variables are used to keep track of partial

packets. Remember that we won’t always be able to send an entire object, nor will we

always receive objects in a single chunk, so we need a way to keep track of the leftover

data.

The only one of our instance variables that ever needs to be changed by another class is

delegate, so we declare a property for delegate. Unlike the underlying instance variable,

we declare the property as id<OnlineSessionDelegate>, which means that we accept

any object, but require it to conform to the OnlineSessionDelegate protocol that we

defined earlier. If another object tries to assign a delegate that doesn’t conform to that

protocol, it will generate a compile-time warning, because we’ve declared the property

this way.

@property (nonatomic, assign) id<OnlineSessionDelegate> delegate;

One really important thing to note here is that we use assign rather than retain for our

delegate. This is a standard convention in Cocoa and Cocoa Touch. Generally speaking,

objects should not retain their delegate unless there’s a compelling reason to do so. As

a result, your delegate properties should always be declared with the assign keyword.

Finally, we declare a whopping three instance methods in our header: an init method, a

method to send data, and a method to determine if the session is ready for use.

- (id)initWithInputStream:(NSInputStream *)theInStream
 outputStream:(NSOutputStream *)theOutStream;
- (BOOL)sendData:(NSData *)data error:(NSError **)error;
- (BOOL)isReadyForUse;

CHAPTER 9: Online Play: Bonjour and Network Streams 298

Save your file.

Now, switch over to OnlineSession.m and replace the contents with the following:

#import "OnlineSession.h"
#import "PacketCategories.h"

@interface OnlineSession()
- (void)sendQueuedData;
@end

#pragma mark -
@implementation OnlineSession
@synthesize delegate;

#pragma mark -
- (id)initWithInputStream:(NSInputStream *)theInStream
 outputStream:(NSOutputStream *)theOutStream {
 if (self = [super init]) {

 inStream = [theInStream retain];
 outStream = [theOutStream retain];

 [inStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [outStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];

 inStream.delegate = self;
 outStream.delegate = self;

 if ([inStream streamStatus] == NSStreamStatusNotOpen)
 [inStream open];

 if ([outStream streamStatus] == NSStreamStatusNotOpen)
 [outStream open];

 packetQueue = [[NSMutableArray alloc] init];
 }
 return self;
}

- (BOOL)sendData:(NSData *)data error:(NSError **)error {

 if (data == nil || [data length] == 0)
 return NO;

 [packetQueue addObject:data];

 if ([outStream hasSpaceAvailable])
 [self sendQueuedData];

 return YES;
}

- (BOOL)isReadyForUse {
 return readReady && writeReady;
}

CHAPTER 9: Online Play: Bonjour and Network Streams 299

- (void)dealloc {
 [inStream close];
 [inStream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 inStream.delegate = nil;
 [inStream release];

 [outStream close];
 [outStream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 outStream.delegate = nil;
 [outStream release];

 [packetqueue release];
 [writeLeftover release];
 [readLeftover release];

 [super dealloc];
}

- (void) stream:(NSStream *)stream
 handleEvent:(NSStreamEvent)eventCode {
 switch(eventCode) {
 case NSStreamEventOpenCompleted:
 if (stream == inStream)
 readReady = YES;
 else
 writeReady = YES;
 if ([self isReadyForUse] &&
 [delegate respondsToSelector:@selector(onlineSessionReadyForUse:)])
 [delegate onlineSessionReadyForUse:self];
 break;
 case NSStreamEventHasBytesAvailable:
 if (stream == inStream) {

 if ([inStream hasBytesAvailable]) {

 NSMutableData *data = [NSMutableData data];

 if (readLeftover != nil) {
 [data appendData:readLeftover];
 [readLeftover release];
 readLeftover = nil;
 }

 NSInteger bytesRead;
 static uint8_t buffer[kBufferSize];

 bytesRead = [inStream read:buffer maxLength:kBufferSize];
 if (bytesRead == -1 && [delegate respondsToSelector:
 @selector(onlineSession:encounteredReadError:)]) {
 NSError *error = [[NSError alloc]
 initWithDomain:kOnlineSessionErrorDomain
 code:kDataReadErrorCode userInfo:nil];
 [delegate onlineSession:self encounteredReadError:error];
 [error release];

CHAPTER 9: Online Play: Bonjour and Network Streams 300

 return;
 }
 else if (bytesRead > 0) {
 [data appendBytes:buffer length:bytesRead];

 NSArray *dataPackets = [data splitTransferredPackets:
 &readLeftover];

 if (readLeftover)
 [readLeftover retain];

 for (NSData *onePacketData in dataPackets)
 [delegate onlineSession:self
 receivedData:onePacketData];
 }
 }
 }
 break;
 case NSStreamEventErrorOccurred: {
 NSError *theError = [stream streamError];
 if (stream == inStream)
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSession:encounteredReadError:)])
 [delegate onlineSession:self encounteredReadError:theError];
 else{
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSession:encounteredWriteError:)])
 [delegate onlineSession:self
 encounteredWriteError:theError];
 }

 break;
 }
 case NSStreamEventHasSpaceAvailable:
 if (stream == outStream) {
 [self sendQueuedData];
 }
 break;
 case NSStreamEventEndEncountered:
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSessionDisconnected:)])
 [delegate onlineSessionDisconnected:self];
 readReady = NO;
 writeReady = NO;
 break;
 default:
 break;
 }
}

- (void)sendQueuedData {

 if (writeLeftover == nil && [packetQueue count] == 0)
 return; // Nothing to send!

 NSMutableData *dataToSend = [NSMutableData data];

CHAPTER 9: Online Play: Bonjour and Network Streams 301

 if (writeLeftover != nil) {
 [dataToSend appendData:writeLeftover];
 [writeLeftover release];
 writeLeftover = nil;
 }

 [dataToSend appendData:[packetQueue contentsForTransfer]];
 [packetQueue removeAllObjects];

 NSUInteger sendLength = [dataToSend length];
 NSUInteger written = [outStream write:[dataToSend bytes] maxLength:sendLength];

 if (written == -1) {
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSession:encounteredWriteError:)])
 [delegate onlineSession:self encounteredWriteError:
 [outStream streamError]];
 }
 if (written != sendLength) {
 NSRange leftoverRange = NSMakeRange(written, [dataToSend length] - written);
 writeLeftover = [[dataToSend subdataWithRange:leftoverRange] retain];
 }
}

@end

This is a little gnarly looking, but we’ve already covered pretty much everything we do in

this class. In the initWithInputStream:outputStream: method, we retain and keep a

reference to the two streams, schedule them both with the run loop, and then open the

streams if they aren’t already open. We also create our mutable array to serve as our

packet queue.

- (id)initWithInputStream:(NSInputStream *)theInStream
 outputStream:(NSOutputStream *)theOutStream {
 if (self = [super init]) {
 [theInStream retain];
 inStream = theInStream;

 [theOutStream retain];
 outStream = theOutStream;

 [inStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [outStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];

 inStream.delegate = self;
 outStream.delegate = self;

 if ([inStream streamStatus] == NSStreamStatusNotOpen)
 [inStream open];

 if ([outStream streamStatus] == NSStreamStatusNotOpen)
 [outStream open];

 packetQueue = [[NSMutableArray alloc] init];
 }

CHAPTER 9: Online Play: Bonjour and Network Streams 302

 return self;
}

In our sendData: method, we add the new object to the queue and, if there’s space

available, we call the method sendQueuedData, which will attempt to send as much of the

queued data as the stream will take. If there is no space available on the stream, we

don’t do anything other than add the data to the queue. It will be sent when we are

notified that there is space available on the stream.

- (BOOL)sendData:(NSData *)data error:(NSError **)error {

 if (data == nil || [data length] == 0)
 return NO;

 [packetQueue addObject:data];

 if ([outStream hasSpaceAvailable])
 [self sendQueuedData];

 return YES;
}

The isReadyForUse method just does a logical AND operation on the two BOOL instance

variables that are used to track whether the two streams are available for use. It returns

YES if both streams are ready; otherwise, it returns NO. You’ll see where we set these

values a little later in the chapter.

- (BOOL)isReadyForUse {
 return readReady && writeReady;
}

Our dealloc method is pretty standard. The only differences from the regular dealloc

methods we’re used to writing is that we need to close the streams, remove them from

the run loop, and set their delegate to nil.

- (void)dealloc {
 [inStream close];
 [inStream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 inStream.delegate = nil;
 [inStream release];

 [outStream close];
 [outStream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 outStream.delegate = nil;
 [outStream release];

 [super dealloc];
}

The next method is a bit of a doozy. It’s that stream delegate method we discussed

earlier—the one that is called with different event codes. This is where most of the work

happens in our OnlineSession class. Let’s look at each of the event codes separately.

CHAPTER 9: Online Play: Bonjour and Network Streams 303

If we are notified that a stream has finished opening, we check which stream sent us the

event and set the appropriate value to YES. After we do that, we check to see if both are

YES and, if they are, we inform our delegate that the session is ready to use if the

delegate has implemented that method.

 case NSStreamEventOpenCompleted:
 if (stream == inStream)
 readReady = YES;
 else
 writeReady = YES;
 if ([self isReadyForUse] &&
 [delegate respondsToSelector:@selector(onlineSessionReadyForUse:)])
 [delegate onlineSessionReadyForUse:self];
 break;

If we are notified that there are bytes available on a stream, we first make sure we’re

getting this event from the input stream. In theory, we should never get this event from

an output stream, but we code defensively just in case. We also create an instance of

NSMutableData to hold the received data. If there is any leftover data, we combine the

new data with the leftover data, which we will be stored in readLeftover, before

processing it. This way, every time new data comes in, we have all the unprocessed

data in one place.

 case NSStreamEventHasBytesAvailable:
 if (stream == inStream) {

 if ([inStream hasBytesAvailable]) {

 NSMutableData *data = [NSMutableData data];

 if (readLeftover != nil) {
 [data appendData:readLeftover];
 [readLeftover release];
 readLeftover = nil;
 }

Now we read the data into a buffer. We check to make sure we didn’t encounter an error

and, if we did, we notify our delegate about the error.

 NSInteger bytesRead;
 static uint8_t buffer[kBufferSize];

 bytesRead = [inStream read:buffer maxLength:kBufferSize];
 if (bytesRead == -1 && [delegate respondsToSelector:
 @selector(onlineSession:encounteredReadError:)]) {
 NSError *error = [[NSError alloc]
 initWithDomain:kOnlineSessionErrorDomain
 code:kDataReadErrorCode userInfo:nil];
 [delegate onlineSession:self encounteredReadError:error];
 [error release];
 return;
 }

CHAPTER 9: Online Play: Bonjour and Network Streams 304

If there wasn’t an error, we use the category method we created earlier to decode

objects from the data we’ve received. If any objects were decoded, we inform our

delegate. If there is any leftover data, we retain it so that it will be here the next time this

event is called.

 else if (bytesRead > 0) {
 [data appendBytes:buffer length:bytesRead];

 NSArray *dataPackets = [data splitTransferredPackets:
 &readLeftover];

 if (readLeftover)
 [readLeftover retain];

 for (NSData *onePacketData in dataPackets)
 [delegate onlineSession:self
 receivedData:onePacketData];
 }
 }
 }
 break;

If we get an error event, all we do is pass it on to our delegate method.

 case NSStreamEventErrorOccurred: {
 NSError *theError = [stream streamError];
 if (stream == inStream)
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSession:encounteredReadError:)])
 [delegate onlineSession:self encounteredReadError:theError];
 else {
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSession:encounteredWriteError:)])
 [delegate onlineSession:self
 encounteredWriteError:theError];
 }
 break;
 }

When the output stream tells us that there’s space available, we call sendQueuedData to

send any unsent data.

 case NSStreamEventHasSpaceAvailable:
 if (stream == outStream) {
 [self sendQueuedData];
 }
 break;

Finally, if we are notified that the stream has been closed for any reason, we inform our

delegate of the fact, and mark both streams as no longer ready for use. Because the

streams act as a pair, we don’t bother to check which one informed us—we just assume

that if one is closed, both are closed.

 case NSStreamEventEndEncountered:
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSessionDisconnected:)])
 [delegate onlineSessionDisconnected:self];

CHAPTER 9: Online Play: Bonjour and Network Streams 305

 readReady = NO;
 writeReady = NO;
 break;

We’re almost finished with OnlineSession. We just need to look at the sendQueuedData

method. First, if there’s no leftover data and nothing queued, we return, because there’s

no reason to do anything else.

- (void)sendQueuedData {
 if (writeLeftover == nil && [packetQueue count] == 0)
 return; // Nothing to send!

We next create an instance of NSMutableData. We use that instance to combine the

queued data with the leftover data into a single chunk, and then clear the queue.

 NSMutableData *dataToSend = [NSMutableData data];

 if (writeLeftover!= nil) {
 [dataToSend appendData: writeLeftover];
 [writeLeftover release];
 writeLeftover = nil;
 }

 [dataToSend appendData:[packetQueue contentsForTransfer]];
 [packetQueue removeAllObjects];

Now that we have all the data that needs to be sent in a single instance of

NSMutableData, we try to send it.

 NSUInteger sendLength = [dataToSend length];
 NSUInteger written = [outStream write:[dataToSend bytes] maxLength:sendLength];

If we encountered a write error, we notify our delegate.

 if (written == -1) {
 if (delegate && [delegate respondsToSelector:
 @selector(onlineSession:encounteredWriteError:)])
 [delegate onlineSession:self encounteredWriteError:
 [outStream streamError]];
 }

Then, if the amount sent is not equal to the length of the data we needed to send, we

extract the part that didn’t get sent and store it in writeLeftover, so we’ll have it the

next time we try to send queued data.

 if (written != sendLength) {
 NSRange leftoverRange = NSMakeRange(written, [dataToSend length] - written);
 writeLeftover = [[dataToSend subdataWithRange:leftoverRange] retain];

 }
}

We’re finished with OnlineSession.m. Make sure you save it.

CHAPTER 9: Online Play: Bonjour and Network Streams 306

Creating the Listener Object
As we discussed earlier in the chapter, we need to listen for network connections if

we’re going to advertise a service using Bonjour. Now, let’s create a class to

encapsulate listening for a network connection.

Create a new file using the same Objective-C class template we’ve used twice already in

this chapter. Name the new file OnlineListener.m, and have it create OnlineListener.h for

you as well.

Once the files are created, single-click OnlineListener.h and replace the current contents

with the following:

#import <Foundation/Foundation.h>
#define kOnlineListenerErrorDomain @"Online Session Listener Session Domain"
#define kOnlineListenerErrorNoSocketsAvailable 1000
#define kOnlineListenerErrorCouldntBindToAddress 1001
#define kOnlineListenerErrorStreamError 1002

@class OnlineListener;
@protocol OnlineListenerDelegate
- (void) acceptedConnectionForListener:(OnlineListener *)theListener
 inputStream:(NSInputStream *)theInputStream
 outputStream:(NSOutputStream *)theOutputStream;
@optional
- (void) onlineListener:(OnlineListener *)theListener
 encounteredError:(NSError *)error;
@end

@interface OnlineListener : NSObject {
 id delegate;
 uint16_t port;
 CFSocketRef socket;
}
@property (nonatomic, assign) id<OnlineListenerDelegate> delegate;
@property uint16_t port;

- (BOOL)startListening:(NSError **)error;
- (void)stopListening;

@end

Once again, we have constants for an error domain, a few error codes that we’ll need, a

formal protocol to define one method that this class’s delegate must implement, and a

second method that it can define if necessary. The required method will be called when

a connection attempt is detected, and it will pass to the delegate the stream pair that

was created. The optional method is called when a connection was attempted but failed.

We have three instance variables this time: a delegate, a port number, and a

CFSocketRef, which is that CFNetwork socket object we discussed earlier in the chapter.

We expose only the delegate and the port number as properties, because there’s really

no reason why external objects would need direct access to the socket. We’re not using

a specific port number, which means the object that creates the listener will need to

retrieve the port number so it can pass it to Bonjour.

CHAPTER 9: Online Play: Bonjour and Network Streams 307

The class itself has only two methods: one to tell it to start listening and one to tell it to

stop listening. Nice and simple.

Make sure you save OnlineListener.h before continuing.

Single-click OnlineListener.m and replace its contents with the following:

#import "OnlineListener.h"
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
#include <CFNetwork/CFSocketStream.h>

#pragma mark CFNetwork C Callbacks
static void onlineListenerAcceptCallback (CFSocketRef theSocket, CFSocketCallBackType
theType, CFDataRef theAddress, const void *data, void *info) {
 OnlineListener *listener = (OnlineListener *)info;
 id listenerDelegate = listener.delegate;
 if (theType == kCFSocketAcceptCallBack) {
 CFSocketNativeHandle nativeSocket = *(CFSocketNativeHandle *)data;
 uint8_t name[SOCK_MAXADDRLEN];
 socklen_t namelen = sizeof(name);
 NSData *peer = nil;
 if (getpeername(nativeSocket, (struct sockaddr *)name, &namelen) == 0) {
 peer = [NSData dataWithBytes:name length:namelen];
 }
 CFReadStreamRef readStream = NULL;
 CFWriteStreamRef writeStream = NULL;
 CFStreamCreatePairWithSocket(kCFAllocatorDefault, nativeSocket, &readStream,
 &writeStream);
 if (readStream && writeStream) {
 CFReadStreamSetProperty(readStream,
 kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);
 CFWriteStreamSetProperty(writeStream,
 kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);
 if (listenerDelegate && [listenerDelegate respondsToSelector:
 @selector(acceptedConnectionForListener:inputStream:outputStream:)]){
 [listenerDelegate acceptedConnectionForListener:listener
 inputStream:(NSInputStream *)readStream
 outputStream:(NSOutputStream *)writeStream];
 }
 } else {
 close(nativeSocket);
 if ([listenerDelegate
 respondsToSelector:@selector(onlineListener:encounteredError:)]) {
 NSError *error = [[NSError alloc]
 initWithDomain:kOnlineListenerErrorDomain
 code:kOnlineListenerErrorStreamError userInfo:nil];
 [listenerDelegate onlineListener:listener encounteredError:error];
 [error release];
 }
 }
 if (readStream) CFRelease(readStream);
 if (writeStream) CFRelease(writeStream);
 }
}

#pragma mark -

CHAPTER 9: Online Play: Bonjour and Network Streams 308

@implementation OnlineListener
@synthesize delegate;
@synthesize port;
#pragma mark -
#pragma mark Listener Methods
- (BOOL)startListening:(NSError **)error {
 CFSocketContext socketCtxt = {0, self, NULL, NULL, NULL};
 socket = CFSocketCreate(kCFAllocatorDefault, PF_INET, SOCK_STREAM, IPPROTO_TCP,
kCFSocketAcceptCallBack, (CFSocketCallBack)&onlineListenerAcceptCallback, &socketCtxt);

 if (socket == NULL) {
 if (error) *error = [[NSError alloc]
 initWithDomain:kOnlineListenerErrorDomain
 code:kOnlineListenerErrorNoSocketsAvailable
 userInfo:nil];
 return NO;
 }

 int ret = 1;
 setsockopt(CFSocketGetNative(socket), SOL_SOCKET, SO_REUSEADDR, (void *)&ret,
 sizeof(ret));

 struct sockaddr_in addr4;
 memset(&addr4, 0, sizeof(addr4));
 addr4.sin_len = sizeof(addr4);
 addr4.sin_family = AF_INET;
 addr4.sin_port = 0;
 addr4.sin_addr.s_addr = htonl(INADDR_ANY);
 NSData *address4 = [NSData dataWithBytes:&addr4 length:sizeof(addr4)];

 if (kCFSocketSuccess != CFSocketSetAddress(socket, (CFDataRef)address4)) {
 if (error) *error = [[NSError alloc]
 initWithDomain:kOnlineListenerErrorDomain
 code:kOnlineListenerErrorCouldntBindToAddress
 userInfo:nil];
 if (socket)
 CFRelease(socket);
 socket = NULL;
 return NO;
 }

 NSData *addr = [(NSData *)CFSocketCopyAddress(socket) autorelease];
 memcpy(&addr4, [addr bytes], [addr length]);
 self.port = ntohs(addr4.sin_port);

 CFRunLoopRef cfrl = CFRunLoopGetCurrent();
 CFRunLoopSourceRef source4 = CFSocketCreateRunLoopSource(kCFAllocatorDefault,
 socket, 0);
 CFRunLoopAddSource(cfrl, source4, kCFRunLoopCommonModes);
 CFRelease(source4);

 return ret;
}

- (void)stopListening {
 if (socket) {
 CFSocketInvalidate(socket);

CHAPTER 9: Online Play: Bonjour and Network Streams 309

 CFRelease(socket);
 socket = NULL;
 }
}

- (void)dealloc {
 [self stopListening];
 [super dealloc];
}

@end

We begin by importing some header files you may not have seen before. The first three

are part of the old-school socket API. We need to include these because we use some

of the constants and functions they contain when we set up our listener. We also import

a CFNetwork header file used to retrieve streams from a CFSocket.

#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
#include <CFNetwork/CFSocketStream.h>

Next, before our class implementation, we have a C function. This is our socket callback

function that will be called whenever a connection attempt is detected.

static void onlineListenerAcceptCallback (CFSocketRef theSocket,
 CFSocketCallBackType theType, CFDataRef theAddress,
const void *data, void *info) {

Since this is a C function, it does not have access to Objective-C constructs such as

self. So how do we access our delegate from within this function? When we created the

socket, we created a socket context struct, and embedded a pointer to self in that

struct. That embedded pointer is passed to this function as its last parameter, info.

We’ll cast that pointer to an instance of OnlineListener, which will give us access to the

listener’s delegate.

 OnlineListener *listener = (OnlineListener *)info;
 id listenerDelegate = listener.delegate;

Next, we make sure that we got the right type of callback. Although we registered to

receive only one type of callback, we still want to code defensively. Remember that

CFWriteStreamRef is toll-free bridged to NSOutputStream, and CFReadStreamRef is toll-free

bridged to NSInputStream, so once we’ve created the stream pair, we pass them to the

listener’s delegate.

 if (theType == kCFSocketAcceptCallBack) {

Then we retrieve a stream pair that represents the connection that was made:

 CFSocketNativeHandle nativeSocket = *(CFSocketNativeHandle *)data;
 uint8_t name[SOCK_MAXADDRLEN];
 socklen_t namelen = sizeof(name);
 NSData *peer = nil;
 if (getpeername(nativeSocket, (struct sockaddr *)name, &namelen) == 0) {
 peer = [NSData dataWithBytes:name length:namelen];
 }
 CFReadStreamRef readStream = NULL;

CHAPTER 9: Online Play: Bonjour and Network Streams 310

 CFWriteStreamRef writeStream = NULL;
 CFStreamCreatePairWithSocket(kCFAllocatorDefault, nativeSocket, &readStream,
 &writeStream);
 if (readStream && writeStream) {
 CFReadStreamSetProperty(readStream,
 kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);
 CFWriteStreamSetProperty(writeStream,
 kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);
 if (listenerDelegate && [listenerDelegate respondsToSelector:
 @selector(acceptedConnectionForListener:inputStream:outputStream:)]){
 [listenerDelegate acceptedConnectionForListener:self
 inputStream:inStream outputStream:outStream];
 } else {

If there was a problem, we close the socket and notify our delegate, assuming it has

implemented the onlineListener:encounteredError: method.

 close(nativeSocket);
 if ([listenerDelegate
 respondsToSelector:@selector(onlineListener:encounteredError:)]) {
 NSError *error = [[NSError alloc]
 initWithDomain:kOnlineListenerErrorDomain
 code:kOnlineListenerErrorStreamError userInfo:nil];
 [listenerDelegate onlineListener:listener encounteredError:error];
 [error release];
 }
 }

When we’re finished, we release both of the streams. CFRelease acts like release in

Objective-C. It doesn’t deallocate the object, but just decrements the object’s retain

count. It will be the delegate’s responsibility to retain the streams if it’s going to continue

using them.

 if (readStream) CFRelease(readStream);
 if (writeStream) CFRelease(writeStream);
 }
}

The startListening: method goes through the process we described earlier to create

and configure a socket, and register it with the run loop. If there’s anything here that

you’re not comfortable with, go back and review the “Setting Up a Listener” section

earlier in this chapter.

The next method is stopListening. All it needs to do is invalidate and release the

socket.

- (void)stopListening {
 if (socket) {
 CFSocketInvalidate(socket);
 CFRelease(socket);
 socket = NULL;
 }
}

CHAPTER 9: Online Play: Bonjour and Network Streams 311

Creating the Peer Browser
Since we’re not using GameKit when the user selects online play, we must implement

our own controller class to display the available peers and to let the user select one of

them. Our current controller class, TicTacToeViewController, will present this new view

controller’s view modally, which will add just a touch of complexity to our application.

The new view controller class will create and be the delegate for an instance of

NSNetServiceBrowser, but when the user selects a peer, it’s actually

TicTacToeViewController that will need to be the delegate for the resolved service,

because the resolution will happen after the modal view has been dismissed.

Creating the Peer Browser Files
Create another new class, and just to shake things up, let’s choose a different file

template this time. Select UIViewController subclass, and make sure the

UITableViewController subclass check box is not selected, but that the With XIB for user
interface box is checked (Figure 9–4). Call this new file OnlinePeerBrowser.m, and have

it create OnlinePeerBrowser.h also.

Figure 9–4. When choosing the file template for creating the peer browser, you should select UIViewController
subclass and also check the box labeled With XIB for user interface.

After it creates the file, you should drag OnlinePeerBrowser.xib to the Resources folder

in the Groups & Files pane where it belongs.

CHAPTER 9: Online Play: Bonjour and Network Streams 312

Writing the Peer Browser Header
Single-click OnlinePeerBrowser.h and replace the contents with the following:

#import <UIKit/UIKit.h>

@interface OnlinePeerBrowser : UIViewController
 <UITableViewDelegate, UITableViewDataSource> {

 UITableView *tableView;
 NSNetServiceBrowser *netServiceBrowser;

 NSMutableArray *discoveredServices;
}
@property (nonatomic, retain) IBOutlet UITableView *tableView;
@property (nonatomic, retain) NSNetServiceBrowser *netServiceBrowser;
@property (nonatomic, retain) NSMutableArray *discoveredServices;
- (IBAction)cancel;
@end

Everything here should be understandable. Because we need a toolbar with a Cancel
button on it, we’re not subclassing UITableViewController, but we will be using a table

view, so we conform our class to both UITableViewDelegate and

UITableViewDataSource. We have an outlet that will point to the table view, and an action

method for the Cancel button on the toolbar to call. We also declare an instance of

NSNetServiceBrowser, which will be used to search for peers, and a mutable array,

called discoveredServices, which will be used to keep track of the found services.

Building the Peer Browser Interface
Double-click OnlinePeerBrowser.xib to open Interface Builder. Once it opens, drag a

Toolbar from the library to the window labeled View, and place it snugly against the

bottom of the window. Double-click the toolbar’s one button to edit the button’s title,

and change it to say Cancel. Press return to commit the title change.

The toolbar button should still be selected. Control-drag from the button to File’s Owner,
and select the cancel action to connect the button to that action method.

Next, drag a Table View from the library over to the window. As you move it over the

View window, it should automatically resize itself to the space available above the

toolbar. Drop the table onto the view so it takes up the remainder of the space. Press

1 to bring up the attribute inspector and change the table’s Style to Grouped. Then

control-drag twice from the table view to File’s Owner, selecting the delegate outlet the

first time and the dataSource outlet the second time. Now control-drag back from File’s
Owner to the table view and select the tableView outlet.

Save the nib and quit Interface Builder.

CHAPTER 9: Online Play: Bonjour and Network Streams 313

Implementing the Peer Browser View Controller
Single-click OnlinePeerBrowser.m. Replace the current contents of that file with the

following:

CAUTION: Do not try to build the project yet. The following code relies on some changes to
TicTacToeViewController that we haven’t made yet.

#import "OnlinePeerBrowser.h"
#import "TicTacToeViewController.h"

@implementation OnlinePeerBrowser
@synthesize tableView;
@synthesize netServiceBrowser;
@synthesize discoveredServices;

#pragma mark -
#pragma mark Action Methods
- (IBAction)cancel {
 [self.netServiceBrowser stop];
 self.netServiceBrowser.delegate = nil;
 self.netServiceBrowser = nil;

 [(TicTacToeViewController *)self.parentViewController browserCancelled];
}

#pragma mark -
#pragma mark Superclass Overrides
- (void)viewDidLoad {
 NSNetServiceBrowser *theBrowser = [[NSNetServiceBrowser alloc] init];
 theBrowser.delegate = self;

 [theBrowser searchForServicesOfType:kBonjourType inDomain:@""];
 self.netServiceBrowser = theBrowser;
 [theBrowser release];

 self.discoveredServices = [NSMutableArray array];

}

- (void)viewDidUnload {
 self.tableView = nil;
}

- (void)dealloc {
 [tableView release];
 if (netServiceBrowser != nil) {
 [self.netServiceBrowser stop];
 self.netServiceBrowser.delegate = nil;
 }
 [netServiceBrowser release];
 [discoveredServices release];
 [super dealloc];
}

CHAPTER 9: Online Play: Bonjour and Network Streams 314

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)tableView:(UITableView *)theTableView
numberOfRowsInSection:(NSInteger)section {
 return [discoveredServices count];
}

- (NSString *)tableView:(UITableView *)theTableView
titleForHeaderInSection:(NSInteger)section {
 return NSLocalizedString(@"Available Peers", @"Available Peers");
}

- (UITableViewCell *)tableView:(UITableView *)theTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *identifier = @"Browser Cell Identifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:identifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:identifier] autorelease];
 }
 NSUInteger row = [indexPath row];
 cell.textLabel.text = [[discoveredServices objectAtIndex:row] name];
 return cell;
}

- (void)tableView:(UITableView *)theTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSNetService *selectedService = [discoveredServices
 objectAtIndex:[indexPath row]];
 selectedService.delegate = self.parentViewController;
 [selectedService resolveWithTimeout:0.0];

 TicTacToeViewController *parent =
 (TicTacToeViewController *)self.parentViewController;
 parent.netService = selectedService;

 [self.netServiceBrowser stop];

 [self.parentViewController dismissModalViewControllerAnimated:YES];
}

#pragma mark -
#pragma mark Net Service Browser Delegate Methods
- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser {
 self.netServiceBrowser.delegate = nil;
 self.netServiceBrowser = nil;
}

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorDict {
 NSLog(@"Error browsing for service: %@", [errorDict
 objectForKey:NSNetServicesErrorCode]);
 [self.netServiceBrowser stop];
}

CHAPTER 9: Online Play: Bonjour and Network Streams 315

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {
 TicTacToeViewController *parent =
 (TicTacToeViewController *)self.parentViewController;
 if (![[parent.netService name] isEqualToString:[aNetService name]]){
 [discoveredServices addObject:aNetService];
 NSSortDescriptor *sd = [[NSSortDescriptor alloc]
 initWithKey:@"name" ascending:YES];
 [discoveredServices sortUsingDescriptors:[NSArray arrayWithObject:sd]];
 [sd release];
 }

 if(!moreComing)
 [self.tableView reloadData];
}

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {
 [discoveredServices removeObject:aNetService];

 if(!moreComing)
 [self.tableView reloadData];
}

@end

Most of this is stuff we’ve talked about before, but it’s worth stepping through so you

understand how we implemented this controller. The action method, cancel, stops the

service browser from looking for Bonjour services, and then calls a method that we will

write shortly on the parent view controller, which will be an instance of

TicTacToeViewController. This method will dismiss the modal view controller and will

reset the user interface so that the New Game button is available. Since no opponent

was selected, the user should have the option to begin a new game.

- (IBAction)cancel {
 [self.netServiceBrowser stop];
 self.netServiceBrowser.delegate = nil;
 self.netServiceBrowser = nil;

 [(TicTacToeViewController *)self.parentViewController browserCancelled];
}

In viewDidLoad, we create an instance of NSNetServiceBrowser and tell it to start

searching for services. We specify a constant called kBonjourType, which will contain the

Bonjour type identifier for our tic-tac-toe game. We also create the mutable array

instance that we’ll use to keep track of discovered services and that will drive the table.

- (void)viewDidLoad {
 NSNetServiceBrowser *theBrowser = [[NSNetServiceBrowser alloc] init];
 theBrowser.delegate = self;

 [theBrowser searchForServicesOfType:kBonjourType inDomain:@""];
 self.netServiceBrowser = theBrowser;

CHAPTER 9: Online Play: Bonjour and Network Streams 316

 [theBrowser release];

 self.discoveredServices = [NSMutableArray array];
}

The viewDidUnload and dealloc methods are standard and shouldn’t require any

additional explanation. The first three table view methods are all standard as well. We

have a table with a single section, and the row count for that section is dictated by the

number of items in the discoveredServices array.

- (NSInteger)tableView:(UITableView *)theTableView
numberOfRowsInSection:(NSInteger)section {
 return [discoveredServices count];
}

We also return a header for the one section to inform the user what they’re viewing.

- (NSString *)tableView:(UITableView *)theTableView
titleForHeaderInSection:(NSInteger)section {
 return NSLocalizedString(@"Available Peers", @"Available Peers");
}

The tableView:cellForRowAtIndexPath: method is also pretty much the same as many

we’ve written in the past. It just displays the name of one of the discovered services in a

cell using the default cell style.

- (UITableViewCell *)tableView:(UITableView *)theTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *identifier = @"Browser Cell Identifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:identifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:identifier] autorelease];
 }
 NSUInteger row = [indexPath row];
 cell.textLabel.text = [[discoveredServices objectAtIndex:row] name];
 return cell;
}

When the user taps a row, tableView:didSelectRowAtIndexPath: is called, and we need

to resolve the selected service. When we do that, we don’t specify self as the delegate

of the net service that was selected. Instead, we specify our parent view controller,

which is the view controller that presented our view modally. In our application, that will

be TicTacToeViewController, so when the net service resolves,

TicTacToeViewController will be notified. This is a good thing, because after that, we

stop the browser (we support only one peer in this game) and dismiss the modally

presented view controller, meaning this instance won’t be around to be notified when

the service is resolved.

- (void)tableView:(UITableView *)theTableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 NSNetService *selectedService = [discoveredServices
 objectAtIndex:[indexPath row]];

CHAPTER 9: Online Play: Bonjour and Network Streams 317

 selectedService.delegate = self.parentViewController;
 [selectedService resolveWithTimeout:0.0];

 TicTacToeViewController *parent =
 (TicTacToeViewController *)self.parentViewController;
 parent.netService = selectedService;

 [self.netServiceBrowser stop];

 [self.parentViewController dismissModalViewControllerAnimated:YES];
}

Next up are the NSNetServiceBrowser delegate methods. When we’re notified that a

search stopped, we set the browser’s delegate to nil and release it by assigning nil to

the netServiceBrowser property.

- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser {
 self.netServiceBrowser.delegate = nil;
 self.netServiceBrowser = nil;
}

If we are notified that the browser wasn’t able to search, we log the error and stop the

search. In a shipping application, you would probably also want to notify the user of the

error. In the interest of not making this chapter any longer than it already is, we opted to

just log it here, because this shouldn’t be a very common occurrence; if it does happen,

the user just won’t see any peers, which is hardly catastrophic.

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorDict {
 NSLog(@"Error browsing for service: %@", [errorDict
 objectForKey:NSNetServicesErrorCode]);
 [self.netServiceBrowser stop];
}

When the browser finds a service, it will call the next method. When that happens, we

first check to make sure the service that was found wasn’t the one that our parent view

controller published. If it wasn’t, then we add it to the array. If there are no more services

coming, we reload the table so the user will see the new services in the view.

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {
 TicTacToeViewController *parent =
 (TicTacToeViewController *)self.parentViewController;
 if (![[parent.netService name] isEqualToString:[aNetService name]]){
 [discoveredServices addObject:aNetService];
 NSSortDescriptor *sd = [[NSSortDescriptor alloc]
 initWithKey:@"name" ascending:YES];
 [discoveredServices sortUsingDescriptors:[NSArray arrayWithObject:sd]];
 [sd release];
 }

 if(!moreComing)
 [self.tableView reloadData];
}

CHAPTER 9: Online Play: Bonjour and Network Streams 318

When we are notified that a service has become unavailable, we remove it from the

array. Again, if there are no more services coming, we reload the table so the user sees

the change.

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing {
 [discoveredServices removeObject:aNetService];

 if(!moreComing)
 [self.tableView reloadData];
}

@end

Okay, save OnlinePeerBrowser.m.

We have just one last step to get online play working in our game, but it’s a somewhat

complicated step. We need to update TicTacToeViewController to use these new

objects we’ve created when the user chooses online play.

Updating TicTacToeViewController to Support Online Play
Single-click TicTacToeViewController.h so we can make the changes necessary to

support online play. Add the bold code shown here to your existing file.

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>
#import "OnlineSession.h"
#import "OnlineListener.h"

#define kTicTacToeSessionID @"com.apress.TicTacToe.session"
#define kTicTacToeArchiveKey @"com.apress.TicTacToe"
#define kBonjourType @"_tictactoe._tcp."

typedef enum GameStates {
 kGameStateBeginning,
 kGameStateRollingDice,
 kGameStateMyTurn,
 kGameStateOpponentTurn,
 kGameStateInterrupted,
 kGameStateDone
} GameState;

typedef enum BoardSpaces {
 kUpperLeft = 1000, kUpperMiddle, kUpperRight,
 kMiddleLeft, kMiddleMiddle, kMiddleRight,
 kLowerLeft, kLowerMiddle, kLowerRight
} BoardSpace;

typedef enum PlayerPieces {
 kPlayerPieceUndecided,
 kPlayerPieceO,
 kPlayerPieceX
} PlayerPiece;

CHAPTER 9: Online Play: Bonjour and Network Streams 319

@class TicTacToePacket;

@interface TicTacToeViewController : UIViewController
 <GKPeerPickerControllerDelegate, GKSessionDelegate, UIAlertViewDelegate
 , OnlineSessionDelegate, OnlineListenerDelegate>
 {
 UIButton *newGameButton;
 UILabel *feedbackLabel;

 GKSession *session;
 NSString *peerID;

 GameState state;

 NSInteger myDieRoll;
 NSInteger opponentDieRoll;

 PlayerPiece piece;
 UIImage *xPieceImage;
 UIImage *oPieceImage;

 BOOL dieRollReceived;
 BOOL dieRollAcknowledged;

 // Online Play
 NSNetService *netService;
 OnlineSession *onlineSession;
 OnlineListener *onlineSessionListener;

}
@property(nonatomic, retain) IBOutlet UIButton *newGameButton;
@property(nonatomic, retain) IBOutlet UILabel *feedbackLabel;

@property(nonatomic, retain) GKSession *session;
@property(nonatomic, copy) NSString *peerID;

@property GameState state;

@property(nonatomic, retain) UIImage *xPieceImage;
@property(nonatomic, retain) UIImage *oPieceImage;

@property (nonatomic, retain) NSNetService *netService;
@property (nonatomic, retain) OnlineSession *onlineSession;
@property (nonatomic, retain) OnlineListener *onlineSessionListener;

- (IBAction)newGameButtonPressed;
- (IBAction)gameSpacePressed:(id)sender;
- (void)resetBoard;
- (void)startNewGame;
- (void)resetDieState;
- (void)sendPacket:(TicTacToePacket *)packet;
- (void)sendDieRoll;
- (void)checkForGameEnd;
- (void)handleReceivedData:(NSData *)data;
- (void)browserCancelled;

@end

CHAPTER 9: Online Play: Bonjour and Network Streams 320

Most of the new code is self-explanatory. We declared a constant that is a valid Bonjour

type identifier for our game. That identifier is used both when we publish our service and

when we search for other services. We also conform our class to the two protocols used

by OnlineSession and OnlineListener for their delegates, and we add instance variables

to hold an instance of those two classes. The former will be used to communicate with

the other peer if we’re in online play; the other will be used to listen for connections

when we want to start a new game.

We also added two new methods. One is used by the OnlinePeerBrowser class and is

called when the user presses the Cancel button. The other requires a little bit of

explanation. In our original version of the app, we had a switch statement right in the

data receive handler used by GameKit to inform us that there was received data. In

order to avoid duplicating the logic that handles those received packets now that we

have two potential sources of data, we’re going to move the logic to its own method,

which will then be called both from GameKit’s data receive handler, as well as from the

data receive handler for our online session object.

Save TicTacToeViewController.h.

Now, switch over to TicTacToeViewController.m. At the top of the file, add the bold code

shown here.

#import "TicTacToeViewController.h"
#import "TicTacToePacket.h"
#import "OnlinePeerBrowser.h"

@interface TicTacToeViewController()
- (void)showErrorAlertWithTitle:(NSString *)title message:(NSString *)message;
@end

@implementation TicTacToeViewController
#pragma mark -
#pragma mark Synthesized Properties
@synthesize newGameButton;
@synthesize feedbackLabel;
@synthesize session;
@synthesize peerID;
@synthesize state;
@synthesize xPieceImage;
@synthesize oPieceImage;

@synthesize netService;
@synthesize onlineSession;
@synthesize onlineSessionListener;

#pragma mark -
#pragma mark Private Methods
- (void)showErrorAlertWithTitle:(NSString *)alertTitle message:(NSString *)message {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:alertTitle
 message:message delegate:self
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];

CHAPTER 9: Online Play: Bonjour and Network Streams 321

 [alert release];
}

#pragma mark -
#pragma mark Game-Specific Methods
- (IBAction)newGameButtonPressed {
...

Because we’re going to be creating instances of OnlinePeerBrowser, we need to import

its header. We also use an Objective-C extension to declare a new private method for

showing error alerts. In the previous version of our app, we showed alerts in only a

handful of places. We’ll add another handful to support errors encountered during online

play, and that means we are now going to have that same task, which requires multiple

lines of code, in many different places. By creating a method that displays an alert, we

can replace several lines of code in multiple places in our class with a one-line call to

this method.

Next, look for the existing method called newGameButtonPressed. We’re still going to use

the peer picker, but we need to tell it that we’re also supporting online play. Add the

following code to the newGameButtonPressed method to do that:

- (IBAction)newGameButtonPressed {

 dieRollReceived = NO;
 dieRollAcknowledged = NO;

 newGameButton.hidden = YES;
 GKPeerPickerController* picker;

 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;

 picker.connectionTypesMask = GKPeerPickerConnectionTypeOnline |
 GKPeerPickerConnectionTypeNearby;
 [picker show];
}

CAUTION: Currently, GameKit can be used only if you are offering Nearby play. Offering Online
play is optional with the peer picker, but offering Nearby is not optional. If you attempt to set the
picker’s connectionTypesMask without including GKPeerPickerConnectionTypeNearby,
you will get an error at runtime.

Scroll down now to just after the checkForGameEnd method but before the viewDidLoad

method. We need to add those two new methods we declared in our header, and this is

a good place to do it. Add the two new methods in bold after the existing

checkForGameEnd method, like so:

 if (state == kGameStateDone)
 [self performSelector:@selector(startNewGame) withObject:nil
 afterDelay:3.0];
}

CHAPTER 9: Online Play: Bonjour and Network Streams 322

- (void)handleReceivedData:(NSData *)data {

 NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:data];
 TicTacToePacket *packet = [unarchiver decodeObjectForKey:kTicTacToeArchiveKey];

 switch (packet.type) {
 case kPacketTypeDieRoll:
 opponentDieRoll = packet.dieRoll;
 TicTacToePacket *ack = [[TicTacToePacket alloc]
 initAckPacketWithDieRoll:opponentDieRoll];
 [self sendPacket:ack];
 [ack release];
 dieRollReceived = YES;
 break;
 case kPacketTypeAck:
 if (packet.dieRoll != myDieRoll) {
 NSLog(@"Ack packet doesn't match opponentDieRoll (mine: %d,
send: %d", packet.dieRoll, myDieRoll);
 }
 dieRollAcknowledged = YES;
 break;
 case kPacketTypeMove:{
 UIButton *theButton = (UIButton *)[self.view viewWithTag:packet.space];
 [theButton setImage:(piece == kPlayerPieceO) ? xPieceImage : oPieceImage
 forState:UIControlStateNormal];
 state = kGameStateMyTurn;
 feedbackLabel.text = NSLocalizedString(@"Your Turn", @"Your Turn");
 [self checkForGameEnd];
 }
 break;
 case kPacketTypeReset:
 if (state == kGameStateDone)
 [self resetDieState];
 default:
 break;
 }

 if (dieRollReceived == YES && dieRollAcknowledged == YES)
 [self startGame];
}

- (void)browserCancelled {
 [self dismissModalViewControllerAnimated:YES];
 newGameButton.hidden = NO;
 feedbackLabel.text = @"";
}
#pragma mark -
#pragma mark Superclass Overrides

- (void)viewDidLoad {
...

CHAPTER 9: Online Play: Bonjour and Network Streams 323

Now look for the existing method called sendPacket: and delete it. We’re going to

replace it with a new version that can send over either a GKSession instance or an

OnlineSession instance. Because the new sendPacket: is no longer a GameKit-specific

method, we should put this version above viewDidLoad. Insert this new version of

sendPacket: above viewDidLoad, directly below the two methods you just added.

CAUTION: It’s very important that you delete the old version of the sendPacket: method. You
cannot have two copies of the same method in a class. If you fail to delete the old one, you will
get a compile error.

- (void) sendPacket:(TicTacToePacket *)packet {

 NSMutableData *data = [[NSMutableData alloc] init];
 NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:data];
 [archiver encodeObject:packet forKey:kTicTacToeArchiveKey];
 [archiver finishEncoding];

 NSError *error = nil;

 if (session) {
 if (![session sendDataToAllPeers:data withDataMode:GKSendDataReliable
 error:&error]) {
 // You will do real error handling
 NSLog(@"Error sending data: %@", [error localizedDescription]);
 }
 }else {
 if (![onlineSession sendData:data error:&error]) {
 // Ditto
 NSLog(@"Error sending data: %@", [error localizedDescription]);
 }
 }
 [archiver release];
 [data release];
}

The only real difference here is that we check to see if session, which is the GameKit

session, is nil. If it’s not nil, then we send data using it. If it is nil, we know we’re in

online play, and we must use onlineSession.

Scroll down some more. If you typed your code exactly the way it appeared in the

previous chapter, you should have a #pragma line that identifies when the peer picker

delegate methods start. It should look something like this:

#pragma mark -
#pragma mark GameKit Peer Picker Delegate Methods

Right after that, we need to add another method. If you don’t have that #pragma line,

then just search for the first method that takes an instance of GKPeerPickercontroller *
as an argument, and add the new method before that method.

The peer picker has a delegate method called peerPickerController:didSelect
ConnectionType:. We didn’t need to implement this method in the previous chapter

CHAPTER 9: Online Play: Bonjour and Network Streams 324

because we supported only one connection type. If, as we’ve now done, we tell the peer

picker to offer online play, when users make their choice, it will call this delegate method

to inform us about which option was selected. If Online was selected, we need to

dismiss the peer picker and take over manually. If Nearby was selected, we don’t need

to do anything. Add the following new method to handle online play:

- (void)peerPickerController:(GKPeerPickerController *)picker
 didSelectConnectionType:(GKPeerPickerConnectionType)type {
 if (type == GKPeerPickerConnectionTypeOnline) {
 picker.delegate = nil;
 [picker dismiss];
 [picker autorelease];

 OnlineListener *theListener = [[OnlineListener alloc] init];
 self.onlineSessionListener = theListener;
 theListener.delegate = self;
 [theListener release];

 NSError *error;
 if (![onlineSessionListener startListening:&error]) {
 [self showErrorAlertWithTitle:NSLocalizedString(
 @"Error starting listener", @"Error starting listener")
 message:NSLocalizedString(
 @"Unable to start online play", @"Unable to start")];
 }

 NSNetService *theService = [[NSNetService alloc] initWithDomain:@""
 type:kBonjourType name:@"" port:onlineSessionListener.port];
 self.netService = theService;
 [theService release];

 [self.netService scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSRunLoopCommonModes];
 [self.netService setDelegate:self];
 [self.netService publish];

 OnlinePeerBrowser *controller = [[OnlinePeerBrowser alloc]
 initWithNibName:@"OnlinePeerBrowser" bundle:nil];
 [self presentModalViewController:controller animated:YES];
 [controller release];
 }
}

After we dismiss the peer picker, we create and start an instance of OnlineListener, which

will start listening for connections. We then start advertising our listener using Bonjour. After

we do that, we create an instance of OnlinePeerBrowser and present it modally so the user

can choose who to play against online, if more than one peer is available.

Down a little further in the file, there should be a method called

session:didFailWithError:. We can shorten that method by a few lines, courtesy of our

snazzy new error alert method, like so:

- (void)session:(GKSession *)theSession didFailWithError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Error Connecting!", @"Error Connecting!")

CHAPTER 9: Online Play: Bonjour and Network Streams 325

 message:NSLocalizedString(@"Unable to establish the connection.",
 @"Unable to establish the connection.")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [self showErrorAlertWithTitle:NSLocalizedString(@"Peer Disconnected!",
 @"Peer Disconnected!") message:NSLocalizedString(
 @"Your opponent has disconnected, or the connection has been lost",
 @"Your opponent has disconnected, or the connection has been lost")];
 theSession.available = NO;
 [theSession disconnectFromAllPeers];
 theSession.delegate = nil;
 [theSession setDataReceiveHandler:nil withContext:nil];
 self.session = nil;
}

There are several other places in the existing code where you can make the same

change. We’re not going to show you every one, and it won’t hurt anything to leave them

as they are. But if you want to shorten your code, you can replace any of the existing

code that shows an alert with a call to our new alert method.

Next, look for a method called receiveData:fromPeer:inSession:context:. It should be

in with your other GameKit methods (you can just use the function pop-up to navigate to

it). This method currently contains the logic to handle a packet received from the peer.

Since we’ve moved this logic into handleReceivedData:, we can trim out the logic and

replace it with a single call:

- (void)receiveData:(NSData *)data fromPeer:(NSString *)peer
 inSession: (GKSession *)theSession context:(void *)context {
 [self handleReceivedData:data];
}

Now, scroll down to the bottom of the file. We need to add a few delegate methods for

NSNetService to handle resolving discovered services. We also need to add the delegate

methods for OnlineSession and OnlineListener. We have a bunch of new methods to

add. We’re going to add a few methods at a time and then explain them, but all of the

code from here until the end of the chapter should go at the end of the file, directly

above the @end declaration.

First up are the delegate methods that are called when a net service failed to publish or

when it is stopped. If the service couldn’t publish, we throw up an error alert. When the

service stops, we set its delegate to nil and release it.

#pragma mark -
#pragma mark Net Service Delegate Methods (Publishing)
- (void)netService:(NSNetService *)theNetService
 didNotPublish:(NSDictionary *)errorDict {
 NSNumber *errorDomain = [errorDict valueForKey:NSNetServicesErrorDomain];
 NSNumber *errorCode = [errorDict valueForKey:NSNetServicesErrorCode];
 [self showErrorAlertWithTitle:NSLocalizedString(@"Unable to connect",
 @"Unable to connect") message:[NSString
 stringWithFormat:NSLocalizedString(
 @"Unable to publish Bonjour service(%@/%@)",

CHAPTER 9: Online Play: Bonjour and Network Streams 326

 @"Unable to publish Bonjour service(%@/%@)"), errorDomain, errorCode]];

 [theNetService stop];
}

- (void)netServiceDidStop:(NSNetService *)netService {
 self.netService.delegate = nil;
 self.netService = nil;
}

Next up is an NSNetService delegate that is called whenever an error is encountered.

This is called if an error is encountered either with publishing a service or resolving one.

All we do is show an alert.

#pragma mark -
#pragma mark Net Service Delegate Methods (General)
- (void)handleError:(NSNumber *)error withService:(NSNetService *)service {
 [self showErrorAlertWithTitle:NSLocalizedString(@"A network error occurred.",
 @"A network error occurred.") message:[NSString stringWithFormat:
 NSLocalizedString(
 @"An error occurred with service %@.%@.%@, error code = %@",
 @"An error occurred with service %@.%@.%@, error code = %@"),
 [service name], [service type], [service domain], error]];
}

There are two delegate methods related to resolving discovered services: one is called if

the service could not be resolved, and one is called if it resolves successfully. If it fails to

resolve, we just show an alert and stop trying to resolve the service.

#pragma mark -
#pragma mark Net Service Delegate Methods (Resolving)
- (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict {

 NSNumber *errorDomain = [errorDict valueForKey:NSNetServicesErrorDomain];
 NSNumber *errorCode = [errorDict valueForKey:NSNetServicesErrorCode];
 [self showErrorAlertWithTitle:NSLocalizedString(@"Unable to connect",
 @"Unable to connect") message:[NSString stringWithFormat:
 NSLocalizedString(@"Could not start game with remote device (%@/%@)",
 @"Could not start game with remote device (%@/%@)"), errorDomain,
 errorCode]];
 [sender stop];
}

If it resolved successfully, then we stop listening for new connections and get the stream

pair for the connection. If we’re not able to get the stream pair, we show an error alert;

otherwise, we create an OnlineSession object with the stream pair.

- (void)netServiceDidResolveAddress:(NSNetService *)service {

 [self.onlineSessionListener stopListening];
 self.onlineSessionListener = nil;

 NSInputStream *tempIn = nil;
 NSOutputStream *tempOut = nil;
 if (![service getInputStream:&tempIn outputStream:&tempOut]){
 [self showErrorAlertWithTitle:NSLocalizedString(@"Unable to connect",
 @"Unable to connect") message:NSLocalizedString(
 @"Could not start game with remote device",

CHAPTER 9: Online Play: Bonjour and Network Streams 327

 @"Could not start game with remote device")];
 return;
 }

 OnlineSession *theSession = [[OnlineSession alloc]
 initWithInputStream:tempIn outputStream:tempOut];
 theSession.delegate = self;
 self.onlineSession = theSession;
 [theSession release];
}

When an OnlineListener detects a connection, it notifies its delegate. In that case, we

also create an OnlineSession object with the stream pair we got from the listener.

#pragma mark -
#pragma mark Online Session Listener Delegate Methods
- (void) acceptedConnectionForListener:(OnlineListener *)theListener
 inputStream:(NSInputStream *)theInputStream
 outputStream:(NSOutputStream *)theOutputStream {
 OnlineSession *theSession = [[OnlineSession alloc]
 initWithInputStream:theInputStream outputStream:theOutputStream];
 theSession.delegate = self;
 self.onlineSession = theSession;

 [theSession release];
}

Our OnlineSession object, regardless of whether it was created by resolving a service or

by accepting a connection from another machine, will call onlineSessionReadyForUse:

when both streams are open. In this method, we check to see if we’re still presenting a

modal view controller, which would be the case if we received a connection from

another machine; if so, we dismiss it. Then we start a new game.

#pragma mark -
#pragma mark Online Session Delegate Methods
- (void)onlineSessionReadyForUse:(OnlineSession *)session {
 if (self.modalViewController)
 [self dismissModalViewControllerAnimated:YES];

 [self startNewGame];
}

When we receive data from the OnlineSession, all we need to do is pass that on to the

handleReceivedData: method.

- (void)onlineSession:(OnlineSession *)session receivedData:(NSData *)data {
 [self handleReceivedData:data];
}

If any of the three OnlineSessionDelegate error methods are called, we throw up an

error alert and kill the session.

- (void)onlineSession:(OnlineSession *)session
 encounteredReadError:(NSError *)error {
 [self showErrorAlertWithTitle:NSLocalizedString(@"Error reading",
 @"Error Reading") message:NSLocalizedString(@"Could not read sent packet",
 @"Could not read sent packet")];
 self.onlineSession = nil;

CHAPTER 9: Online Play: Bonjour and Network Streams 328

}
- (void)onlineSession:(OnlineSession *)session
 encounteredWriteError:(NSError *)error {
 [self showErrorAlertWithTitle:NSLocalizedString(@"Error Writing",
 @"Error Writing") message:NSLocalizedString(@"Could not send packet",
 @"Could not send packet")];
 self.onlineSession = nil;
}
- (void)onlineSessionDisconnected:(OnlineSession *)session {
 [self showErrorAlertWithTitle:NSLocalizedString(@"Peer Disconnected",
 @"Peer Disconnected") message:NSLocalizedString(
 @"Your opponent disconnected or otherwise could not be reached.",
 @"Your opponent disconnected or otherwise could not be reached")];
 self.onlineSession = nil;
}
@end

WHAT ABOUT INTERNET PLAY?

If you want to offer play over the Internet, the process is almost exactly the same. You still need to listen on a
port, and you still use streams to exchange data with the remote machine. Generally speaking, you do not use
Bonjour to advertise services over the Internet, though. Typically, a dedicated server will be used to find
opponents or, more rarely, users will be asked to type in the address and port to which they want to connect.

To find out more about getting a stream connection to a remote machine based on DNS name or IP
address and port, you should read Tech Note QA1652, which is available at
http://developer.apple.com/iphone/library/qa/qa2009/qa1652.html.

Time to Play
And with that marathon of changes, we have now implemented online play in our

TicTacToe application. You can select Build and Run from the Build menu to try it out.

About time, huh?

Online play is significantly more complex to implement than GameKit over Bluetooth,

but there’s good news. The OnlineSession and OnlineListener objects we just wrote

are completely generic. Copy them to a new project, and you can use them unchanged.

That means your next application that needs to support network play will be almost as

easy to write as it would be to use GameKit.

Before we leave the topic of networking completely, we have one more chapter of

network goodness for you. We’re going to show you a variety of ways to retrieve

information from web servers and RESTful web services.

http://developer.apple.com/iphone/library/qa/qa2009/qa1652.html
v@v
Text Box
Download at WoweBook.com

329

329

 Chapter

Working with Data from
the Web
As you saw in the last chapter, writing code to communicate over a network can be

complex and, at times, difficult. Fortunately, for many common network-related tasks,

Apple has provided higher-level methods and objects that will make your life

considerably easier. One fairly common task when you’re writing software for a device

that’s pretty much always connected to the Internet is to retrieve data from web servers.

There is a large amount of data available for applications to use on the World Wide Web,

and there are countless reasons why an iPhone application might want to pull data from

the Web.

NOTE: The applications we’re writing in this chapter will work just fine on the simulator. But, as
you might expect, since those applications will be retrieving data from the Web, they’ll only work
if the computer on which the simulator is running has an active connection to the Internet.

There are a number of techniques you can use to grab data from web servers. In this

chapter, we’re going to show you three of them. We’ll first show you how to leverage

special methods that exist in several Foundation classes that allow you to retrieve data

based on a URL in just a line or two of code. We’ll expand on that and show you how to

take more control over the process so that you can detect when errors occur. Next, we’ll

show you how to pull data asynchronously, so your application can do other things

while data is being retrieved in the background. And finally, we’ll learn how to make

different types of HTTP requests and pass form parameters so you can retrieve data

from web applications and web services as well as static files.

Since each of these topics stands alone, we’ll build our chapter application-iteratively.

We’ll discuss one type of retrieval, then add it to the application.

We’ll start by setting up an application skeleton. Next, we’ll add URL-based methods to

retrieve both an image and text from the Web. Then we’ll talk about doing a more robust

form of data retrieval, and then add code to our application to retrieve the same image

10

CHAPTER 10: Working with Data from the Web 330

and text file using that approach. After that, we’ll talk about asynchronous data retrieval

and then add code to our application to retrieve the text and image in the background.

You can look at Figure 10–1 to see what our application will look like when done.

Figure 10–1. One of the two applications we’ll build in this chapter The top row of buttons will retrieve an image
file from a web server in one of three different ways. The bottom row of buttons will retrieve a text document in
one of three different ways.

Once we’re done with those different ways of retrieving static data, we’ll move on to

forms and various HTTP request types. Then we will build another small application that

uses both kinds of form parameters and two different request types (Figure 10–2).

CHAPTER 10: Working with Data from the Web 331

Figure 10–2. The second application we’re going to build in this chapter shows how to change the request type
and how to pass form parameters

Setting Up the Application Skeleton
We’re going to start by creating an application skeleton with stub methods for each of

the tasks that we’re going to implement in the first application. A stub method

(sometimes referred to as just a stub) is typically an empty method, or one with only one

or two lines of code designed to act as a placeholder for a method that you plan to

add later. This allows you to set up your user interface before you’re ready to write the

code behind it. As we discuss the different ways to retrieve data, we will add code to

these stubs.

In Xcode, create a new project, select the View-based Application template, and call the

new project WebWork. Once the project is open, find the project archives that

accompany this book and look in the 10 – WebWork folder for the images called

blue_get.png, green_get.png, lavender_get.png, text.png, and image.png and add them

all to your project. These are the images you’ll need for the buttons as well as the text

and image icons that appear to the left of the buttons in Figure 10–1.

Declaring Actions and Outlets
Single-click on WebWorkViewController.h so we can add our outlet and action

declarations. Replace the existing contents with the following code:

CHAPTER 10: Working with Data from the Web 332

#import <UIKit/UIKit.h>

#define kImageURL @"http://iphonedevbook.com/more/10/cover.png"
#define kTextURL @"http://iphonedevbook.com/more/10/text.txt"

typedef enum RequestTypes {
 kRequestTypeImage,
 kRequestTypeText,
} RequestType;

@interface WebWorkViewController : UIViewController {
 UIActivityIndicatorView *spinner;
 UIImageView *imageView;
 UITextView *textView;

 NSMutableData *receivedData;
 RequestType requestType;
}

@property (nonatomic, retain) IBOutlet UIActivityIndicatorView *spinner;
@property (nonatomic, retain) IBOutlet UIImageView *imageView;
@property (nonatomic, retain) IBOutlet UITextView *textView;
@property (nonatomic, retain) NSMutableData *receivedData;

- (void)clear;

- (IBAction)getImageUsingNSData;
- (IBAction)getImageSynchronously;
- (IBAction)getImageAsynchronously;

- (IBAction)getTextUsingNSString;
- (IBAction)getTextSynchronously;
- (IBAction)getTextAsynchronously;
@end

We start off by defining two constants that point to an image file and a text file that

we’ve hosted on the Internet for your use. This is the data that we’ll be pulling into our

application. Feel free to use different URLs if you prefer.

#define kImageURL @"http://iphonedevbook.com/more/10/cover.png"
#define kTextURL @"http://iphonedevbook.com/more/10/text.txt"

Next, we define a new type along with an enum. In some parts of our code, we will be

using delegate methods (surprise!), and we will need a way to know in one of those

delegate methods whether the data being we’re retrieving holds an image or text. While

there are ways to determine that from the web server’s response (which we’ll see later in

the chapter), just keeping track of which we’ve requested is a lot easier and more

efficient.

typedef enum RequestTypes {
 kRequestTypeImage,
 kRequestTypeText,
} RequestType;

We have three views that we’ll need outlets to so that we can show the returned data.

The UIImageView will be used to show the retrieved image, the UITextView will be used

http://iphonedevbook.com/more/10/cover.png
http://iphonedevbook.com/more/10/text.txt
http://iphonedevbook.com/more/10/cover.png
http://iphonedevbook.com/more/10/text.txt

CHAPTER 10: Working with Data from the Web 333

to display the retrieved text, and the UIActivityIndicatorView is that white spinning

doohickey that tells the user that some action is in progress (you’ll know it when you see

it). When we retrieve the data asynchronously, we’ll show the activity indicator so that

the user knows we’re in the process of retrieving the data they requested. Once we have

the data, we’ll hide the activity indicator and show the image or text that was requested.

@interface WebWorkViewController : UIViewController {
 UIActivityIndicatorView *spinner;
 UIImageView *imageView;
 UITextView *textView;

We also declare an instance of NSMutableData that will be used to store the data when

fetching asynchronously. When we do that, a delegate method that we will implement

will be called repeatedly and provided with small chunks of the requested data. We will

accumulate those chunks in this instance so that when the process is complete, we’ll

have the whole image or text file.

 NSMutableData *receivedData;

And, here’s where we’ll keep track of whether an image or text was last requested.

 RequestType requestType;

We also declare properties for our instance variables, using the IBOutlet keyword for

those that will need to be connected to objects in Interface Builder.

@property (nonatomic, retain) IBOutlet UIActivityIndicatorView *spinner;
@property (nonatomic, retain) IBOutlet UIImageView *imageView;
@property (nonatomic, retain) IBOutlet UITextView *textView;
@property (nonatomic, retain) NSMutableData *receivedData;

And then we have our methods. The first one is just used to clear the requested data so

that the application can be used again without restarting.

- (void)clear;

And we have six action methods, one for each of the buttons you can see in Figure 10–

1. Since each button represents a different way to retrieve one kind of data, it makes

sense to give each of the buttons its own action method.

- (IBAction)getImageUsingNSData;
- (IBAction)getImageSynchronously;
- (IBAction)getImageAsynchronously;

- (IBAction)getTextUsingNSString;
- (IBAction)getTextSynchronously;
- (IBAction)getTextAsynchronously;

Designing the Interface
Now that we have our actions and outlets in place, make sure you save first, then

double-click WebWorkViewController.xib to open up the file in Interface Builder.

Let’s start off by dragging an Image View from the library over to the window labeled

View. Interface Builder will resize the image view to take up the whole window, which

CHAPTER 10: Working with Data from the Web 334

isn’t what we want this time, so press 3 to bring up the size inspector, change the X

and Y value each to 20, set W to 280, and set H to 255.

Then, control-drag from File’s Owner to the image view and select the imageView outlet.

Press 1 and use the attribute inspector to change the Mode from Center to Aspect Fit
so that the image will be resized to fit.

Now, drag a Text View from the library to the View window. Place it in exactly the same

location as the image view and make it exactly the same size. Once it’s placed, control-

drag from File’s Owner to the text view and select the textView outlet. Double-click the

text view so that the text it contains is editable, make sure all the text is selected, and hit

the delete button. In the attribute inspector, uncheck the box that says Editable so that

our user can’t change the downloaded text.

In the library, look for an Activity Indicator View and drag one to the View window. Use

the blue guidelines to line it up with the horizontal and vertical centers of the text and

image views you already added. Then, control-drag from File’s Owner to the activity

indicator and select the spinner outlet. Press 1 to bring up the attribute inspector

and check Hide When Stopped so that when the indicator is not spinning, it won’t be

visible.

Now, drag another Image View to the view. Place it somewhere in the bottom half of the

screen; the exact placement doesn’t matter for now. Press 1and use the attribute

inspector to select the text.png for the Image field. Press = to resize the image view to

match the image, then place the resized image view in the lower-left of the window,

using the blue guidelines to place it against the bottom and left margins.

Bring over another Image View and select image.png for its image. Use = to resize the

image view and then place it above the image view you placed a moment ago, using

Figure 10–1 as a guide.

Next, bring over a Round Rect Button from the library, and use the size inspector (3)

to change both the height and width of the button to 57 pixels. Place the button to the

right of the image.png image view. Now, use the attributes inspector to change the

button’s type from Rounded Rect to Custom and select blue_get.png from the Image

pop-up. Option-drag the button to the right to create a second one, then repeat to

create a third button. Change the image of the second button to green_get.png and

change the image of the third button to lavender_get.png. Finally, select all three buttons

and option-drag them to create three new buttons below the first set of buttons. Use

Figure 10–1 as a guide to help you place everything just so.

Now, bring over a Label over from the library, and place it above the left-most button,

the blue one. Change the font size to 14 points (you can change the font size using the

fonts palette T) and change the text to Object. Now option-drag the label to create a

second and third copy, placing one above the second and third column of buttons.

Change the second label to read Sync, and the third label to read Async. Again, use

Figure 10–1 as a guide.

Now, control-drag from all six of the buttons to File’s Owner and select the action

methods that match the button’s position. For the top-left button, for example, you

CHAPTER 10: Working with Data from the Web 335

should select getImageUsingNSData, and for the bottom-left button you should select

getTextUsingNSString. Once you have connected all six buttons to the appropriate

action method, save the nib and head back to Xcode.

Implementing the Stubs
Now we’re going to write our implementation file, but aren’t going to write any of the

actual code to retrieve the data yet. We’re just putting in placeholders so we have a

place to add the code later in the chapter. Single-click WebWorkViewController.m and

replace the current contents with the following:

#import "WebWorkViewController.h"

@implementation WebWorkViewController
@synthesize spinner;
@synthesize imageView;
@synthesize textView;
@synthesize receivedData;

- (void)clear {
 imageView.hidden = YES;
 textView.hidden = YES;
}

- (IBAction)getImageUsingNSData {
 NSLog(@"Entering %s", __FUNCTION__);
}

- (IBAction)getImageSynchronously {
 NSLog(@"Entering %s", __FUNCTION__);
}

- (IBAction)getImageAsynchronously {
 NSLog(@"Entering %s", __FUNCTION__);
}

- (IBAction)getTextUsingNSString {
 NSLog(@"Entering %s", __FUNCTION__);
}

- (IBAction)getTextSynchronously {
 NSLog(@"Entering %s", __FUNCTION__);
}

- (IBAction)getTextAsynchronously {
 NSLog(@"Entering %s", __FUNCTION__);
}

- (void)viewDidUnload {
 self.spinner = nil;
 self.imageView = nil;
 self.textView = nil;
}

- (void)dealloc {

CHAPTER 10: Working with Data from the Web 336

 [spinner release];
 [imageView release];
 [textView release];
 [receivedData release];
 [super dealloc];
}

@end

The only thing in this file right now that might be new to you are the lines that look like

this:

 NSLog(@"Entering %s", __FUNCTION__);

All this line does is print to the console the name of the method that’s being called.

__FUNCTION__ is a special macro that compiles into a C-string that holds the name of the

function or method currently being executed.

NOTE: It may not be obvious from looking at it on the printed page, but __FUNCTION__ has two
underscores at the beginning and another two underscores at the end for a total of four
underscore characters.

By doing this, we can quickly check our stubs to make sure they get called when they’re

supposed to be. Save and then select Build and Run from the Build menu. You should be

able to click all six of the buttons and have the appropriate method for each button print

in the console. This is a good way, when building your own applications, to make sure

that your nib is set up correctly. A missed nib connection can be surprisingly difficult to

debug, so making sure all your connections are made and are made to the correct

actions before you start writing application code can be a very good idea (Figure 10–3).

Figure 10–3. With these stubs in place, you can quickly check out your Interface Builder action connections to
make sure every button triggers the right method.

Retrieving Data Using Foundation Objects
By far, the easiest way to retrieve data from a web server is to use a class that has an

init method or factory method whose name contains withContentsOfURL:. These are

CHAPTER 10: Working with Data from the Web 337

special methods that take care of all aspects of retrieving a particular kind of data from

the Internet. All you have to do is provide these methods with an instance of NSURL, a

class that holds a single URL, and it will initialize and return an object containing the

data pointed to by the URL.

NOTE: These URL-based methods can also be used to create objects based on data located in a
local file or using other Internet protocols like FTP. Basically, any data that can be retrieved using
a URL can be used to instantiate these objects.

To initialize an NSData instance from a file on the Web, for example, you could do this:

 NSString *theUrlString = @"http://domainname.com/filename";
 NSURL *url = [NSURL urlWithString:theUrlString];
 NSData *imageData = [NSData dataWithContentsOfURL:url];

To initialize an NSString instance from a file on the Web, it looks like this:

 NSString *theUrlString = @"http://domainname.com/filename";
 NSURL *url = [NSURL urlWithString:theUrlString];
 NSString *string = [NSString stringWithContentsOfURL:url
 encoding:NSUTF8StringEncoding error:nil];

These aren’t the only two classes that have URL-based init or factory methods, but they

are the two that you will most commonly use. Most of the other methods only work if the

provided URL points to data of a specific type or that’s in a specific format. For

NSDictionary and NSArray, for example, the URL has to lead to a property list in the

format that those classes need. For AVAudioPlayer, the URL must point to a valid audio

file in a format that the iPhone supports natively. How you use all of these objects is

identical to the two examples shown in this section, however.

There’s no doubt that these methods are convenient. If you compare the three-line

process in these examples with the process we went through in the previous chapter to

receive data from another device, these methods must seem laughably easy. But they

do have some drawbacks. In fact, there are two major drawbacks to this approach that

prevent them from being used in a lot of places. First, if anything goes wrong, the only

indication you get is that they return nil. You aren’t told if the file doesn’t exist, or if the

network connection is down. You just get a nil, and you should be happy about it. Why,

when we were kids, we’d walk 20 miles, barefoot, in a blizzard just for a chance to see a

nil. And we liked it!

Okay, a few of these methods will return an NSError object using a pointer to a pointer,

as you can see in the last line of the NSString example, so in some instances, you have

a little bit more information than just a nil, but with these techniques, you do not get

detailed information about how the server responded.

The other drawback is that the process is synchronous, which means that when you call

the method, no other code can run (at least on the main thread that controls the user

interface) until it has finished downloading the data. If you’re pulling down a small text

file, that might not be a big deal, but if you’re pulling down a high-res image or a video

http://domainname.com/filename
http://domainname.com/filename

CHAPTER 10: Working with Data from the Web 338

file, it’s a very big deal. Your user interface will become unresponsive and your

application will be unable to do anything else until the data has all been retrieved.

As a result, you should limit your use of these methods for retrieving data from the

network to very small pieces of data, and even then, use them with caution. Users do

not appreciate apps that become unresponsive for no apparent reason, and this as a

reason will definitely not be apparent to most end users. They also don’t like when

things don’t work and they don’t know why. If they are expecting an image, and you give

them nothing and no explanation about why they’re getting nothing, they’re bound to be

unhappy about it.

Let’s implement the two left-most buttons in our application so you can see this process

in action.

Single-click WebWorkViewController.m and replace the existing stub implementation of

getImageUsingNSData with this new version that retrieves a picture from the Web using

NSData:

- (IBAction)getImageUsingNSData {
 textView.hidden = YES;
 imageView.hidden = NO;

 NSURL *url = [NSURL URLWithString:kImageURL];
 NSData *imageData = [NSData dataWithContentsOfURL:url];
 imageView.image = [UIImage imageWithData:imageData];
 [self performSelector:@selector(clear) withObject:nil afterDelay:5.0];
}

Also replace the existing stub implementation of getTextUsingNSString with this new

version:

- (IBAction)getTextUsingNSString {
 textView.hidden = NO;
 imageView.hidden = YES;
 NSURL *url = [NSURL URLWithString:kTextURL];
 textView.text = [NSString stringWithContentsOfURL:url
 encoding:NSUTF8StringEncoding error:nil];
 [self performSelector:@selector(clear) withObject:nil afterDelay:5.0];
}

In each of these methods, we make sure the appropriate view for the type of data we’re

using is visible, then create an NSURL instance based on one of the two string constants

we declared earlier. Then we retrieve the data from the Web using those special

methods and stick the data into the appropriate view. Once we’re all done with that, we

use performSelector:withObject:afterDelay: to clear the text or image after five

seconds so the user can try another button without having to quit.

Now try it out. When you use the top-left button, you should end up with a picture of the

cover of this book, like the one shown in Figure 10–1. If you tap the lower-left button,

you’ll get the first page of the Iliad by Homer (Figure 10–4). Since the image and text

being retrieved here are relatively small, you probably won’t notice more than a minor

hiccup in your application’s reponsiveness after you tap the button. If you’re on a fast

enough connection, you may not even notice that. But, trust us when we say that if you

were to do this to retrieve a large data file, the delay would definitely be noticeable.

CHAPTER 10: Working with Data from the Web 339

Figure 10–4. The bottom row of buttons will retrieve the first page of the Iliad from a web server

Retrieving Data Synchronously
The code we just added was short and sweet, and it did the job. Mostly. But what if

there was a problem? What if the file wasn’t found, or the server wasn’t responding?

What if the user’s Internet connection was down for some reason? The URL init or

factory methods would return nil, and all we’d know for sure was that something

prevented the object from being created. In most cases, we’re going to want more

information than that. We’re going to want to know why our call failed so we can give

our users a satisfying answer about what went wrong.

The URL Request
To do that, we have to take a little more control over the situation. Instead of using an

init or factory method that takes an NSURL, we have to create an object called an

NSURLRequest (or just a “request”), which is used to request data from a remote server

using a URL. Here’s how we create such a request:

 NSURLRequest *req = [[NSURLRequest alloc] initWithURL:url];

Not too difficult, huh? Okay, so once you have your request, how do you use it to get

data? In addition to the request, we also need a connection, which is represented by the

class NSURLConnection. To request data synchronously, however, we don’t actually

CHAPTER 10: Working with Data from the Web 340

have to create a connection, we can just use a class method on NSURLConnection to

send our request and retrieve the data, like so:

 NSHTTPURLResponse* response = nil;
 NSError* error nil;
 NSData *responseData = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];

As Newton said, every request has an equal and opposite response. Okay, we didn’t

really pay much attention in Physics class, so that’s probably not quite what he said, but

it’s true in the context of the Web. For every request you send, you get back a response.

The NSHTTPURLResponse object holds the response from the server if it was able to reach

the server, or nil if the server could not be reached. On return, the response object will

contain all the information provided by the server in response to that request except for

the actual data from the requested file which, in the this example, is held in

responseData.

That response object gives us much more information than our previous examples

because it tells us exactly what happened. It will contain a response code, which tells

us if the server was able to fulfill the request, and how. It also contains a content-type

which tells us what kind of data is contained in responseData. We can retrieve the

content type and response code like this:

 NSInteger statusCode = [response statusCode];
 NSString *contentType = [[response allHeaderFields]
 objectForKey:@"Content-Type"];

TIP You can find a list of the HTTP response codes and response header fields in the HTTP
protocol specification at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec6.html. The IANA (the same organization that keeps the port number registery we talked
about in the last chapter) also keep a registry of content-types, which you can find at
http://www.iana.org/assignments/media-types/.

As we said before, if the server couldn’t be reached at all, then response will be nil. If

the server responded, but something went wrong, the response code will give us more

information about the problem. If reponseData is nil, we might find out that the data

wasn’t found (response code 404) or that it moved to a new location (301) or that we

don’t have privileges to download it (401). Armed with the list of response codes, we can

give our users a much better answer about why we weren’t able to get the file for them.

We can also ensure that the data we’re receiving is the same type that we were

expecting. Web servers will often forward requests, so responseData might contain, for

example, the HTML for a 404 page, or a page full of ads rather than the file we were

trying to retrieve.

Let’s use this technique to implement the middle two buttons of our application. Single-

click WebWorkViewController.m if it’s not already selected and replace the existing stub

implementation of getImageSynchronously with the following version:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.iana.org/assignments/media-types

CHAPTER 10: Working with Data from the Web 341

- (IBAction)getImageSynchronously {
 textView.hidden = YES;
 imageView.hidden = NO;
 NSURL *url = [[NSURL alloc] initWithString:kImageURL];
 NSURLRequest *req = [[NSURLRequest alloc] initWithURL:url];

 NSHTTPURLResponse* response = nil;
 NSError* error = nil;
 NSData *responseData = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];
 if (response == nil) {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error!"
 message:@"Unable to contact server."
 delegate:nil
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

 NSInteger statusCode = [response statusCode];
 NSString *contentType = [[response allHeaderFields]
 objectForKey:@"Content-Type"];

 if (statusCode >= 200 && statusCode < 300 && [contentType hasPrefix:@"image"]) {
 imageView.image = [UIImage imageWithData:responseData];
 }
 else {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error!"
 message:[NSString stringWithFormat:
 @"Encountered %d error while loading", statusCode]
 delegate:nil
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

 [url release];
 [req release];
 [self performSelector:@selector(clear) withObject:nil afterDelay:5.0];
}

Now, find the getTextSynchronously stub and replace it with this version:

- (IBAction)getTextSynchronously {
 textView.hidden = NO;
 imageView.hidden = YES;
 NSURL *url = [[NSURL alloc] initWithString:kTextURL];
 NSURLRequest *req = [[NSURLRequest alloc] initWithURL:url];

 NSHTTPURLResponse* response = nil;
 NSError* error = nil;
 NSData *responseData = [NSURLConnection sendSynchronousRequest:req
 returningResponse:&response
 error:&error];
 if (response == nil) {

CHAPTER 10: Working with Data from the Web 342

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error!"
 message:@"Unable to contact server."
 delegate:nil
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 return;
 }

 NSInteger statusCode = [response statusCode];
 NSString *contentType = [[response allHeaderFields]
 objectForKey:@"Content-Type"];

 if (statusCode >= 200 && statusCode < 300 && [contentType hasPrefix:@"text"]) {
 NSString *payloadAsString = [[NSString alloc] initWithData:responseData
 encoding:NSUTF8StringEncoding];
 textView.text = payloadAsString;
 [payloadAsString release];
 }
 else {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error!"
 message:[NSString stringWithFormat:
 @"Encountered %d error while loading", statusCode]
 delegate:nil
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 return;
 }

 [url release];
 [req release];
 [self performSelector:@selector(clear) withObject:nil afterDelay:5.0];
}

In both cases, we create an NSURL and an NSURLRequest, then use NSURLConnection to

send the request to the server. If the response is nil, we put up an alert telling our user

that the server could not be reached.

If response was not nil, then we check the response code and content type. Generally

speaking, the 200 series of response codes (200 through 299) are used to indicate that

the server was able to fulfill our request, so if we got a response code in that range, and

the content-type matches the type of data we’re expecting, we add the text or image it

contains to the appropriate view. Otherwise, we show an alert letting the user know that

there was a problem. After we’re done, we release url and req so that we don’t leak

memory, and then use performSelector:withObject:afterDelay: to reset the user

interface after five seconds.

Try out the new version. If all is right with the world, you should notice no difference

between what the middle buttons do and the left buttons do. But, if something does go

wrong, we’re much better equipped to inform the user. In our simple example here, the

user will know if there’s something wrong with their Internet connection (Figure 10–5) or

if the URL we used was wrong (Figure 10–6). You can test this out if you’re using the

CHAPTER 10: Working with Data from the Web 343

simulator by turning Airport off or unplugging your Ethernet cable so that the remote

server can’t be reached. Another way you can test is to change the URL to point to an

object that doesn’t exist on the server, like so:

#define kImageURL @"http://iphonedevbook.com/more/10/foo.png"
#define kTextURL @"http://iphonedevbook.com/more/10/foo.txt"

Figure 10–5. If the network connecton isn’t working, or the remote server can’t be reached, we’re able to tell the
user that

That is much better, but we still have that little hiccup when the user presses the button.

With synchronous requests, the entire user interface freezes for the length of time it

takes to retrieve the data. Not a huge deal here where we’re only pulling a few kilobytes

of data, but potentially a very big deal in many situations. Let’s look at how to fix that by

requesting the data asynchronously.

http://iphonedevbook.com/more/10/foo.png
http://iphonedevbook.com/more/10/foo.txt

CHAPTER 10: Working with Data from the Web 344

Figure 10–6. If we are able to reach the server, but the URL doesn’t point to what we think it does, we’re also
able to report that back to our user or take action based on the error code that was received

Retrieving Data Asynchronously
In the last chapter, we discussed CFNetwork’s interaction with an application’s run loop

and the notifications your application will receive when a variety of events occur, such

as receiving data. Well, the URL loading system that we just used to load data

synchronously can also leverage the run loop in a similar fashion. This will allow us to

request the data pointed to by a URL, and then go about our merry way while the

request chugs away in the background. Once the data has been received, we can then

take appropriate action, and our user interface will never become unresponsive.

As you’ve already seen in previous chapters, asynchronous network communication can

be hard. It can be. But it doesn’t have to be. Apple’s URL loading system actually makes

it pretty easy to retrieve data asynchronously. We start off in a manner pretty similar to

the synchronous request. This time, we will create an instance of NSURL and

NSURLRequest, just like before, but we’ll also create an instance of NSURLConnection. Last

time, we just used a class method on that object to retrieve the data, but this time we’re

actually going to create an instance. Just by instantiating NSURLConnection, we actually

kick off the asynchronous fetch. That’s all we have to do. We do have to specify a

delegate when we create the connection so NSURLConnection knows what object to

notify when something happens. You will usually specify self to make your controller

class (or whatever class this code is part of) the delegate. Here’s an example that

creates a connection object:

CHAPTER 10: Working with Data from the Web 345

 NSURLRequest *req = [[NSURLRequest alloc] initWithURL:[NSURL
 URLWithString:kTextURL]];
 NSURLConnection *con =[[NSURLConnection alloc] initWithRequest:req
 delegate:self];

If we were able to create a connection, then we need to make sure we’ve got a place to

store the data as it comes in. The easiest way to do that is to use an instance of

NSMutableData, like the one we declared in our header file earlier.

 if (con) {
 NSMutableData *data = [[NSMutableData alloc] init];
 self.receivedData = data;
 [data release];
 }

After that, we’re done until the delegate calls one of our methods. The only thing we

need to do is release the request, because we allocated it:

 [req release];

Notice that we do not release the connection, however. If we released the connection, it

would be deallocated because it’s not currently retained by anything else. Don’t worry,

though, we won’t leak the memory. When the connection is all finished, it will call one of

our delegate methods, and we will have the chance to free up its memory at that time.

Let’s look at the delegate methods now.

NSURLConnection Delegate Methods
When the connection is established and a response has been received by the

NSURLConnection object, the NSURLConnection will call the method

connection:didReceiveResponse: on its delegate. At this point, we can check the

response code to make sure we’ve received a valid code, but that’s not always

necessary. Here’s why.

With asynchronous handling, you will be notified multiple times if a request gets

forwarded, which isn’t an uncommon occurrence when requesting data from web

servers. A redirect typically results in a 300 series response code, which is then followed

by another response a few moments later with a new code. This often happens, for

example, if a resource moves to a new location on the server.

If the connection fails to retrieve the requested data, the connection will call another

delegate method to inform you of that, so very often you don’t even need to check the

response code in this method unless you specifically need to know about things like

redirects.

As we stated, if a connection is forwarded, this delegate method may be called multiple

times for a single request. One thing you need to do here, as a result, is to reset the

mutable data instance’s length to 0, which removes any data that it’s currently holding.

You do not want to include the data from any of the earlier redirect responses in the

object. Here’s an example implementation of this delegate method:

- (void)connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *)response {

CHAPTER 10: Working with Data from the Web 346

 // check response code here if necessary
 [receivedData setLength:0];
}

After a response is received, if there is data, it will be sent to the delegate using the

method connection:didReceiveData:. This method typically gets called multiple times,

and you must capture all the data sent in the order in which it was sent, to ensure that

you have received the complete object. Fortunately, all that usually entails is appending

the received data onto the instance of NSMutableData being used to accumulate the

data, like so:

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data {
 [receivedData appendData:data];
}

If an error is encountered while trying to retrieve the requested object, the delegate

method connection:didFailWithError: gets called. Here’s a simple implementation of

that method that simply logs the error:

- (void)connection:(NSURLConnection *)connection
didFailWithError:(NSError *)error {
 [connection release];
 self.receivedData = nil;
 NSLog(@"Error retrieving data for url %@, error was: %@",
 [error localizedDescription], [[error userInfo]
 objectForKey:NSErrorFailingURLStringKey]);
}

In real-world applications, you’ll typically want to take more significant action when a

connection fails, at the very least informing the user of the failure.

When all of the data that makes up the requested object has been retrieved, the

connection will call the delegate method connectionDidFinishLoading:. When this

method is called, the instance of NSMutableData in which we’ve been collecting the

received data should have the complete object, and you can do whatever is appropriate

with it. You also need to release the connection here so that you don’t leak the memory.

It’s also usually appropriate to release the mutable data instance that was used to

accumulate the data, once you’ve used the data, though that may not always be the

case. Here’s a simple example that creates an instance of UIImage based on the

received data and puts it into a UIImageView.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 imageView.image = [UIImage imageWithData:receivedData];
 [connection release];
 self.receivedData = nil;
}

Adding Asynchronous Retrieval to WebWorks
Here we come, rounding third based on our WebWorks application. We’re almost done.

Find the stub implementation of getImageAsynchronously and replace it with this version:

- (IBAction)getImageAsynchronously {

CHAPTER 10: Working with Data from the Web 347

 [spinner startAnimating];

 NSURLRequest *req = [[NSURLRequest alloc] initWithURL:
 [NSURL URLWithString:kImageURL]];
 NSURLConnection *con = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (con) {
 NSMutableData *data = [[NSMutableData alloc] init];
 self.receivedData = data;
 [data release];
 requestType = kRequestTypeImage;
 }
 else {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error"
 message:@"Error connecting to remote server"
 delegate:self
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
 [req release];
}

Now find the stub implementation of getTextAsynchronously and replace it with this

version:

- (IBAction)getTextAsynchronously {
 [spinner startAnimating];

 NSURLRequest *req = [[NSURLRequest alloc] initWithURL:
 [NSURL URLWithString:kTextURL]];
 NSURLConnection *con = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (con) {
 NSMutableData *data = [[NSMutableData alloc] init];
 self.receivedData = data;
 [data release];
 requestType = kRequestTypeText;
 }
 else {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error"
 message:@"Error connecting to remote server"
 delegate:self
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
 [req release];
}

In both methods, we follow the same basic logic. First, we create the URL and request,

then use those to create an instance of NSURLConnection, specifying self as the

delegate. We check to make sure the connection object is not nil, which would indicate

CHAPTER 10: Working with Data from the Web 348

that the server could not be reached, and if we have a valid connection, we allocate our

NSMutableData instance to hold the data we’re about to start receiving.

So now, the right-hand buttons kick off an asynchronous request and shows the activity

indicator. Since the retrieval will happen in the background, there shouldn’t be a hiccup

or any noticeable unresponsiveness in the app. Of course, it also won’t ever show the

image or text because we haven’t implemented our connection delegate methods. Let’s

do that now. At the end of the file, just above the @end declaration, add the following

methods:

#pragma mark -
#pragma mark NSURLConnection Callbacks
- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 [receivedData setLength:0];
}

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data {
 [receivedData appendData:data];
}

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error {
 [connection release];
 self.receivedData = nil;

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
 message:[NSString stringWithFormat:
 @"Connection failed! Error - %@ (URL: %@)",
 [error localizedDescription],[[error userInfo]
 objectForKey:NSErrorFailingURLStringKey]]
 delegate:self
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [spinner stopAnimating];
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 if (requestType == kRequestTypeImage) {
 imageView.hidden = NO;
 textView.hidden = YES;
 imageView.image = [UIImage imageWithData:receivedData];
 }
 else {
 imageView.hidden = YES;
 textView.hidden = NO;
 NSString *payloadAsString = [[NSString alloc] initWithData:receivedData
 encoding:NSUTF8StringEncoding];
 textView.text = payloadAsString;
 [payloadAsString release];
 }

 [connection release];
 self.receivedData = nil;

CHAPTER 10: Working with Data from the Web 349

 [spinner stopAnimating];
 [self performSelector:@selector(clear) withObject:nil afterDelay:5.0];
}

Let’s look at what we did. The first connection delegate method we implement gets

called whenever the connection gets a response from the server. Remember, we might

get more than one response if the server forwards our request, so we reset our mutable

data every time this gets called:

- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 [receivedData setLength:0];
}

Every time the connection has a chunk of data for us, it will call the next method we

wrote, so we take the data and append it to our mutable data instance.

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data {
 [receivedData appendData:data];
}

In the event of an error, the connection will call our delegate method

connection:didFailWithError:. All we do is report the error to the user using an alert,

and release the connection so that we’re not leaking memory. We also stop the activity

indicator so that the user doesn’t think we’re still trying to retrieve the data.

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error {
 [connection release];
 self.receivedData = nil;

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
 message:[NSString stringWithFormat:
 @"Connection failed! Error - %@ (URL: %@)",
 [error localizedDescription],[[error userInfo]
 objectForKey:NSErrorFailingURLStringKey]]
 delegate:self
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [spinner stopAnimating];
}

Finally, when all the data has been retrieved, our delegate method

connectionDidFinishLoading: gets called. We check the request type that we set

earlier, and use the received data to populate either the text view or the image view. We

also stop the activity indiator, and release the connection so that we don’t leak memory.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 if (requestType == kRequestTypeImage) {
 imageView.hidden = NO;
 textView.hidden = YES;
 imageView.image = [UIImage imageWithData:receivedData];
 }
 else {

CHAPTER 10: Working with Data from the Web 350

 imageView.hidden = YES;
 textView.hidden = NO;
 NSString *payloadAsString = [[NSString alloc] initWithData:receivedData
 encoding:NSUTF8StringEncoding];
 textView.text = payloadAsString;
 [payloadAsString release];
 }

 [connection release];
 self.receivedData = nil;
 [spinner stopAnimating];
 [self performSelector:@selector(clear) withObject:nil afterDelay:5.0];
}

Well, that’s better. Take it out for a spin. Try changing the two URLs to point to bigger

files if you want to really see the difference that asynchronous retrieval can make in your

application.

At this point, you should have a pretty good handle on retrieving static data. But there’s

more to the Web than getting files from static URLs so, before we leave the chapter,

let’s take a quick look at how to change the request type and pass form parameters so

that you can also retrieve information from web applications and web services.

Request Types and Form Parameters
The Web is so much more than a network of static files now. The Internet is chock full of

various forms of web applications. If you need to pull data from a web service or other

form of web application, then a standard GET request like the ones we’ve been creating

aren’t going to cut it for you. Fortunately, the iPhone’s URL handling system is capable

of creating any type of HTTP request that you might need.

Specifying the HTTP Request Types
The HTTP protocol actually defines multipe types of requests. In addition to the

standard GET request that we’ve been using, there’s also something called a POST

request, which is used by most web forms. There’s also the lesser-used PUT, which is

used to add or replace an existing resource with a new one, and DELETE which is used

to remove a resource or make it unavailable.

In the early days of the Web, GET was used to retrieve static files and POST was used

for pretty much any kind of interactivity. As a result, there are a lot of web applications

and services that still use only GET and POST. With the rising popularity of RESTful web

services, many newer web applications do require requests to use the proper request

type depending on the task they are seeking to perform. We’re not going to try and

teach you the nuances of when to use each of the different HTTP request types. Our

goal is to show you how to specify the type of your request and pass the necessary

parameters so that you can retrieve data from web applications regardless of which

request type you need to use.

CHAPTER 10: Working with Data from the Web 351

NOTE: If you’re interested in finding out more about what the different request types are used
for, a good place to start would be the HTTP 1.1 specification available at
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

The NSURLRequest class that we used in the WebWorks application earlier in the chapter

is incapable of doing any other type of request besides a GET request. Sorry, nothing

we can do about that. Hope you never need to do anything other than a GET.

CAUTION: We’d like to apologize for the attempt at subtle humor you just experienced. Dave
and Jeff have been chastised by their editors and promise not to attempt such humor again. It
slows down the book and annoys the patrons. Sincerely yours, the management.

Okay, there actually is a way to create other types of requests. There is a mutable

subclass of NSURLRequest called NSMutableURLRequest, and it allows you to specify,

among other things, the request type. Here’s how you would create one and set the

request type to POST:

 NSMutableURLRequest *req = [[NSMutableURLRequest alloc]
 initWithURL:url];
 [req setHTTPMethod:@"POST"];

If you substitute @"PUT" for @"POST", you’ll create a PUT request, and if you substitute

@"DELETE" instead, you’ll create a DELETE request. What could be easier?

MUTABLE URL REQUESTS

Once you create a mutable URL request, you get a lot more control over the request. In addition to
specifying the request type, you can also set any HTTP headers. The HTTP header contains the specifics of
the request you are making to the server, and includes several pieces of information, including the user-
agent, which identifies the browser you’re using, and the referrer, which identifies the page that sent you
here if you’re following a link from another page. So, for example, you could make it look like you were
coming to a request from a link on another page by doing this:

[req setValue:@"http://domainname.com" forHTTPHeaderField:@"Referer"];

Yes, you really do have to spell referrer wrong when you do this. You can use the same method call to set
or change the value of any of the HTTP header fields. You can find a list of the HTTP request header fields
at http://en.wikipedia.org/wiki/List_of_HTTP_headers.

Form Parameters
You can pass parameters to a web server when you make a request. Web applications

can read the parameters you pass in and use them to figure out what they should return.

If, instead of retrieving a static image, we were retrieving an image from a web

application that returns an image of a specific person, we might pass in the person’s

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://domainname.com
http://en.wikipedia.org/wiki/List_of_HTTP_headers

CHAPTER 10: Working with Data from the Web 352

name or some other kind of identifying value in the parameters so the web application

would know what person’s image to send back to us.

Parameters come in two flavors, which are named after the two most commonly used

request types: GET and POST. As you might have guessed, GET requests usually use

GET parameters, and POST requests usually use POST parameters.

GET Parameters
Get parameters are passed in as part of the URL. At the end of the URL, if you add a

question mark (?), you are telling the server that everything else after that question mark

in the URL is part of the parameters. The parameters are specified as key/value pairs,

with each pair separated by an equal sign. If there is more than one pair, the pairs are

each separated by ampersand characters (&). A URL that includes get parameters might

look like this:

 http://www.foobar.org/picture?id=1001&size=200x200

This particular URL has two parameters, one called id which is being set to 1001, and

another called size, which is being set to 200x200.

When using the URL loading system, the way that you set GET parameters is by

appending them to the end of the URL string before creating your instance of NSURL.

Nothing fancy, you just do something like this:

 NSString *url = [NSString stringWithFormat:@"http://www.foo.bar/action?%@=%@",
 paramName, paramValue];

POST Parameters
It’s not always desirable to have the parameters being passed in as part of the URL. For

one thing, the user can see those values in the URL bar of their browser. When

submitting web forms, a different kind of parameter, called POST, is used. POST

parameters work in pretty much the same way as GET parameters. They are key value

pairs with an equal sign between the key and value and with each pair being separated

by an ampersand. The difference is that this parameter string isn’t passed as part of the

URL, it goes as part of the request body, which typically isn’t seen by the user and

doesn’t show up in the URL.

To set the POST parameters for a request, you have to be using an

NSMutableURLRequest. Then you just create a string that contains all the parameters you

want to pass, convert that string into an instance of NSData, and then set that instance to

be the request’s body, like so:

 NSString *paramDataString = [NSString stringWithFormat:@"%@=%@", paramName,
 paramValue];
 NSData *paramData = [paramDataString dataUsingEncoding:NSUTF8StringEncoding];
 [req setHTTPBody: paramData];

http://www.foobar.org/picture?id=1001&size=200x200
http://www.foo.bar/action?%@=%@

CHAPTER 10: Working with Data from the Web 353

Building the RequestTypes Application
In Xcode, create a new project with the View-based Application template again, this time

calling the project RequestTypes. Once the project is open, single-click on

RequestTypesViewController.h and replace the contents with this version:

#import <UIKit/UIKit.h>
#define kFormURL @"http://iphonedevbook.com/more/10/echo.php"

@interface RequestTypesViewController : UIViewController {
 UIWebView *webView;
 UITextField *paramName;
 UITextField *paramValue;

 NSMutableData *receivedData;
}

@property (nonatomic, retain) IBOutlet UIWebView *webView;
@property (nonatomic, retain) IBOutlet UITextField *paramName;
@property (nonatomic, retain) IBOutlet UITextField *paramValue;

@property (nonatomic, retain) NSMutableData *receivedData;

- (IBAction)doGetRequest;
- (IBAction)doPostRequest;
@end

The constant defines a string that holds a URL to a very simple web service that we’ve

set up for you to use. It will echo back to you with the request type used and both the

GET and POST parameters you passed in. We’re keeping things relatively simple in this

application. We have two text fields, one you can use to enter a parameter name, and

another you can use to enter a value for that parameter. We also have a web view that

we’ll use to display the response from the web application. The UIWebView is capable of

displaying URLs, or HTML that is contained in a string. We’ll be using it for the latter, just

so we don’t have to do any processing or formatting of the data returned by the web

service.

Our class defines two action methods, one to post a GET request using GET

parameters, and another button for sending a POST request with POST parameters.

Save RequestTypesViewController.h and double-click RequestTypesViewController.xib

to open Interface Builder.

Using Figure 10–7 as a guide, add two Labels, two Text Fields, two Round Rect Buttons,

and a Web View to the window labeled View. Control-drag from File’s Owner to the two

text fields. For the one on the left, select the paramName outlet. For the one on the right,

select the paramValue outlet. Then control-drag again to the web view and select the

webView outlet. Next, control drag from the left button to File’s Owner and select the

action named doGetRequest. Repeat with the button on the right and connect to the

doPostRequest action. Save the nib and go back to Xcode.

http://iphonedevbook.com/more/10/echo.php

CHAPTER 10: Working with Data from the Web 354

Figure 10–7. Use this as a guide when building the RequestTypes application interface. The exact placement isn’t
important.

Single-click RequestTypesViewController.m and replace the contents with this version:

#import "RequestTypesViewController.h"

@implementation RequestTypesViewController
@synthesize webView;
@synthesize paramName;
@synthesize paramValue;
@synthesize receivedData;

- (IBAction)doGetRequest {

 NSMutableString *urlWithParameters = [NSMutableString
 stringWithString:kFormURL];

 [urlWithParameters appendFormat:@"?%@=%@", paramName.text, paramValue.text];

 NSURLRequest *req = [[NSURLRequest alloc] initWithURL:[NSURL
 URLWithString:urlWithParameters]];

 NSURLConnection *theConnection=[[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (theConnection) {
 NSMutableData *data = [[NSMutableData alloc] init];
 self.receivedData = data;

CHAPTER 10: Working with Data from the Web 355

 [data release];
 }
 else {
 [webView loadHTMLString:@"Unable to make connection!"
 baseURL:[NSURL URLWithString:kFormURL]] ;
 }
 [paramName resignFirstResponder];
 [paramValue resignFirstResponder];
 [req release];
}

- (IBAction)doPostRequest {
 NSURL *url = [[NSURL alloc] initWithString:kFormURL];
 NSMutableURLRequest *req = [[NSMutableURLRequest alloc]
 initWithURL:url];
 [req setHTTPMethod:@"POST"];

 NSString *paramDataString = [NSString stringWithFormat:@"%@=%@", paramName.text,
 paramValue.text];

 NSData *paramData = [paramDataString dataUsingEncoding:NSUTF8StringEncoding];
 [req setHTTPBody: paramData];

 NSURLConnection *theConnection = [[NSURLConnection alloc]
 initWithRequest:req
 delegate:self];
 if (theConnection) {
 NSMutableData *data = [[NSMutableData alloc] init];
 self.receivedData = data;
 [data release];
 }
 else {
 [webView loadHTMLString:@"Unable to make connection!" baseURL:[NSURL
 URLWithString:kFormURL]] ;
 }

 [url release];
 [req release];
 [paramName resignFirstResponder];
 [paramValue resignFirstResponder];
}

- (void)viewDidUnload {
 self.webView = nil;
 self.paramName = nil;
 self.paramValue = nil;
}

- (void)dealloc {
 [webView release];
 [paramName release];
 [paramValue release];
 [receivedData release];
 [super dealloc];
}

CHAPTER 10: Working with Data from the Web 356

#pragma mark -
#pragma mark NSURLConnection Callbacks
- (void)connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *)response {
 [receivedData setLength:0];
}

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data {
 [receivedData appendData:data];
}

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error {
 [connection release];
 self.receivedData = nil;

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
 message:[NSString stringWithFormat:
 @"Connection failed! Error - %@ (URL: %@)",
 [error localizedDescription], [[error userInfo]
 objectForKey:NSErrorFailingURLStringKey]]
 delegate:self
 cancelButtonTitle:@"Bummer"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {

 webView.hidden = NO;
 NSString *payloadAsString = [[NSString alloc] initWithData:receivedData
 encoding:NSUTF8StringEncoding];
 [webView loadHTMLString:payloadAsString baseURL:[NSURL URLWithString:kFormURL]];
 [payloadAsString release];

 [connection release];
 self.receivedData = nil;
}

@end

Much of this controller class is identical to our earlier asynchronous example. There are

a few things you should take notice of. In doGetRequest, we use a mutable string to

append parameters onto the URL.

 NSMutableString *urlWithParameters = [NSMutableString
 stringWithString:kFormURL];

 [urlWithParameters appendFormat:@"?%@=%@", paramName.text, paramValue.text];

From that point on, everything is the same as our previous examples. Because we’re

creating a GET request, we don’t need a mutable request.

In doPostRequest, things have changed a little more. We start off by allocating a URL

and a mutable request and setting the request’s type to POST:

- (IBAction)doPostRequest {

CHAPTER 10: Working with Data from the Web 357

 NSURL *url = [[NSURL alloc] initWithString:kFormURL];
 NSMutableURLRequest *req = [[NSMutableURLRequest alloc]
 initWithURL:url];
 [req setHTTPMethod:@"POST"];

We then create a string that holds the parameters entered by our user in the two text

fields.

 NSString *paramDataString = [NSString stringWithFormat:@"%@=%@", paramName.text,
 paramValue.text];

 We convert that string into an instance of NSData using UTF-8 encoding, which is the

default encoding type used by NSMutableURLRequest. Then we set that as the body of

the request.

 NSData *paramData = [paramDataString dataUsingEncoding:NSUTF8StringEncoding];
 [req setHTTPBody: paramData];

From that point on, everything else is the same. We create the connection just as we did

in the asynchronous example and if our connection isn’t nil, we allocate an instance of

NSMutableData to hold the returned value.

And there you have it. If you type values into the two text fields and hit either button,

you’ll send different types of requests with different types of parameters. From these

two examples, you should be able to craft pretty much any kind of request you need.

As an example, if you press the Get button with foo in the Parameter field and bar in the

Value field, it’s as if you sent out this URL:

http://iphonedevbook.com/more/10/echo.php?foo=bar

If you press the Post button, it’s as if you had submitted an HTML form with an action of

http://iphonedevbook.com/more/10/echo.php that contained a text field (or other

control) named foo and the user entered a value of bar into that field before hitting the

Submit button. These parameters don't actually go in as part of the URL. Instead, they

are passed in the body of the request, which typically isn't seen when you’re using a

browser.

WHAT ABOUT PUT AND DELETE?

The code that you would write for PUT and DELETE requests, which you often have to use to interact with
RESTful web services, are almost exactly like GET and POST. In general, PUT requests use POST
parameters and DELETE, if it requires any parameters, usually passes them as GET parameters, though
you should check with the documentation for the web service you are accessing to find out for sure.
There’s no reason why a PUT request can’t use GET parameters, or a DELETE can’t use POST parameters.

There is one small gotcha with PUT requests, which is that you have to manually set the content type of
your NSMutableURLRequest instance. For some reason, when you set the request type to POST, it does
this automatically, but when you set it to PUT, it does not. Unless you add this line of code, POST
parameters will not pass correctly when making a PUT request:

[req setValue:@"application/x-www-form-urlencoded"
 forHTTPHeaderField:@"Content-Type"];

http://iphonedevbook.com/more/10/echo.php?foo=bar
http://iphonedevbook.com/more/10/echo.php

CHAPTER 10: Working with Data from the Web 358

In every other respect (except the request type, of course), the code for PUT and POST requests is exactly
the same. The code for DELETE requests will usually look like our GET example in this application, only
with a mutable request whose type has been set to @"DELETE".

404 Conclusion Not Found
So, now, we must bid adieu to our friend the network. We’ve spent three chapters

exploring ways to exchange information with other machines over network connections.

In this chapter, you saw how to perform synchronous and asynchronous requests to

web servers, saw how to change the request’s type, and also saw how to send both

kinds of form parameters.

In the next chapter, we’re going to look at using MapKit, Apple’s framework for

displaying locations and directions on a map right in your own application.

359

359

 Chapter

MapKit
iPhones have always had a way to determine where in the world they are. Even though

the original iPhone didn’t have GPS, it did have a Maps application and was able to

represent its approximate location on the map using cell phone triangulation or by

looking up its WiFi IP address in a database of known locations. Prior to SDK 3, there

was no way to leverage this functionality within your own applications. It was possible to

launch the Maps application to show a specific location or route, but it wasn’t possible,

using only Apple-provided APIs, to show map data without leaving your application.

That changed with the release of the MapKit framework in the 3.0 release of the iPhone

SDK. Applications now have the ability to show maps, including the user’s current

location, and even drop pins and show annotations on those maps. MapKit’s

functionality isn’t limited to just showing maps, either. It includes functionality called

reverse geocoding, which allows you to take a set of specific coordinates and turn them

into a physical address. Your application can use those coordinates to find out not just

where the person is located but, frequently, the actual address associated with that

location. You can’t always get down to the street address, but you can almost always

get the city and state or province no matter where in the world your user is. In this

chapter, we’re going to look at the basics of adding MapKit functionality to any

application.

NOTE: The application we build in this chapter will run just fine in the iPhone Simulator;
however, the Simulator won’t report your actual location. Instead, it always returns the address
of Apple’s corporate headquarters at 1 Infinite Loop in Cupertino, California.

11

CHAPTER 11: MapKit 360

TERMS

The MapKit framework uses Google services to provide map data. As a result, if you choose to use MapKit
in an application, it binds you to the Google Maps/Google Earth API terms of service. You can find these
terms of service at http://code.google.com/apis/maps/iphone/terms.html.

Make sure you’ve read the terms and are willing to abide by them if you’re planning to use MapKit in your
applications.

This Chapter’s Application
Our chapter’s application will start by showing a map of the entire world (Figure 11–1).

Other than the map, our interface will be empty except for a single button with the

imaginative title of Go. When the button is pressed, the application will determine our

current location, zoom the map to show that location, and drop a pin to mark the

location (Figure 11–2).

Figure 11–1. Our MapMe application will start out showing a map of the entire world

http://code.google.com/apis/maps/iphone/terms.html

CHAPTER 11: MapKit 361

Figure 11–2. After determining the current location, the map will zoom in to give a better view of that location,
and then drop a pin to mark the location. We’ll then use the reverse geocoder to determine the address that
corresponds to the phone’s current location and add an annotation view to the map displaying the address.

We will then use MapKit’s reverse geocoder to determine the address of our current

location and we’ll add an annotation to the map to display the specifics of that location.

Despite its simplicity, this application leverages most of the basic MapKit functionality.

Before we start building our project, let’s explore MapKit, see what makes it tick.

Overview and Terminology
Although MapKit is not particularly complex, it can be a bit confusing. Let’s start with a

high-level view and nail down the terminology, then we’ll dig down into the individual

components.

To display map-related data, you add a map view to one of your application’s views.

Map views can have a delegate, and that delegate is usually the controller class

responsible for the view in which the map view resides. That’s the approach we’ll use for

this chapter’s application. Our application will have a single view and a single view

controller. That single view will contain a map view, along with a few other items, and

our single view controller will be the map view’s delegate.

Map views keep track of locations of interest using a collection of annotations. Any time

you see an icon on a map, whether it’s a pin, a dot, or anything else, it’s an annotation.

When an annotation is in the part of the map that’s being shown, the map view asks its

CHAPTER 11: MapKit 362

delegate to provide a view for that annotation (called an annotation view) that the map

view will draw at the specific location on the map.

Annotations are selectable, and a selected annotation will display a callout, which is a

small view that floats above the map like the You are Here! view shown in Figure 11–2. If

the user taps an annotation view and that annotation view is selectable, the map view

will display the callout associated with that view.

The Map View
The core element of the MapKit framework is the map view, represented by the class

MKMapView. The map view takes care of drawing the maps and responding to user input.

Users can use all the gestures they’re accustomed to, including a pinch in or out to do a

controlled zoom, a double-tap to zoom in, or a two-finger double tap to zoom out. You

can add a map view to your interface and configure it using Interface Builder. Like many

iPhone controls, much of the work of managing the map view is done by the map view’s

delegate.

Map Types
Map views are capable of displaying maps in several different ways. They can display

the map as a series of lines and symbols that represent the roadways and other

landmarks in the area being shown. This is the default display, and it’s known as the

standard map type. You can also display the map using satellite images by specifying

the satellite map type, or you can use what’s called the hybrid map type, where the

lines representing roadways and landmarks from the standard type are superimposed

on top of the satellite imagery of the satellite type. You can see an example of the

default map type in Figure 11–2. Figure 11–3 shows the satellite map type and Figure

11–4 shows the hybrid map type.

CHAPTER 11: MapKit 363

Figure 11–3. The satellite map type shows satellite imagery instead of lines and symbols

Figure 11–4. The hybrid type overlays the lines and symbols of the default type on top of the imagery from the
satellite type

CHAPTER 11: MapKit 364

You can set the map type in Interface Builder or by setting the map view’s mapType

property to one of the following:

 mapView.mapType = MKMapTypeStandard;
 mapView.mapType = MKMapTypeSatellite;
 mapView.mapType = MKMapTypeHybrid;

User Location
Map views will, if configured to do so, use Core Location to keep track of the user’s

location and display it on the map using a blue dot, much like the way the Maps

application does. We won’t be using that functionality in this chapter’s application, but

you can turn it on by setting the map view’s showsUserLocation property to YES, like so:

 mapView.showsUserLocation = YES;

If the map is tracking the user’s location, you can determine if their present location is

visible in the map view by using the read-only property userLocationVisible. If the

user’s current location is being displayed in the map view, userLocationVisible will

return YES.

You can get the specific coordinates of the user’s present location from the map view by

first setting showsUserLocation to YES, and then accessing the userLocation property.

This property returns an instance of MKUserLocation. MKUserLocation is an object and

has a property called location which itself is a CLLocation object. A CLLocation

contains a property called coordinate that points to a set of coordinates. All this means

you can get the actual coordinates from the MKUserLocation object, like so:

 CLLocationCoordinate2D coords = mapView.userLocation.location.coordinate;

Coordinate Regions
A map view wouldn’t be much good if you couldn’t tell it what to display or find out what

part of the world it’s currently showing. With map views, the key to being able to do

those tasks is the MKCoordinateRegion, a struct that contains two pieces of data that

together define the portion of the map to be shown in a map view.

The first member of MKCoordinateRegion is called center. This is another struct of type

CLLocationCoordinate2D, which you may remember from the chapter on Core Location

in Beginning iPhone 3 Development (Apress, 2009). A CLLocationCoordinate2D contains

two floating point values, a latitude and longitude, and is used to represent a single

spot on the globe. In the context of a coordinate region, that spot on the globe is the

spot that represents the center of the map view.

The second member of MKCoordinateRegion is called span, and it’s a struct of type

MKCoordinateSpan. The MKCoordinateSpan struct has two members called

latitudeDelta and longitudeDelta. These two numbers are used to set the zoom level

of the map by identifying how much of the area around center should be displayed.

These values represent that distance in degrees latitude and longitude. If latitudeDelta

CHAPTER 11: MapKit 365

and longitudeDelta are small numbers, the map will be zoomed in very close; if they are

large, the map will be zoomed out and show a much larger area.

Figure 11–5 shows the makeup of the MKCoordinateRegion struct.

MKCoordinateRegion

CLLocationCoordinate2D

center latitude
longitude

MKCoordinateSpan

span latitudeDelta
longitudeDelta

Figure 11–5. The MKCoordinateRegion represented graphically. It contains two members, both of which are, in
turn, structs that own two members.

If you look back at Figure 11–2, the point of the pin you can see is at the coordinates

that were passed in MKCoordinateRegion.center. The distance from the top of the map

to the bottom of the map was passed in, represented as degrees latitude, using the

MKCoordinateRegion.span.latitudeDelta. Similarly, the distance from the left side of the

map to the right side of the map was passed in, represented as degrees longitude, as

the MKCoordinateRegion.span.longitudeDelta.

TIP: If you have trouble remembering which lines are latitude and which are longitude, here’s a
tip from our third grade geography teacher, Mrs. Krabappel (pronounced, kruh-bopple). Latitude
sounds like altitude, so latitude tells you how high on the globe you are. The equator is a line of
latitude. And the Prime Meridian is a line of longitude. Thanks, Mrs. Krabappel!

There are two challenges that this approach presents to the programmer. First, who

thinks in degrees latitude or longitude? Although degrees latitude represent roughly the

same distance everywhere in the world, degrees longitude vary greatly in the amount of

distance they represent as you move from the pole to the equator, so calculating the

degrees longitude isn’t as straightforward.

The second challenge is that a map view has a specific width-to-height ratio (called an

aspect ratio), and the latitudeDelta and longitudeDelta you specify have to represent

an area with that same aspect ratio. Fortunately, Apple provides tools for dealing with

both of these issues.

CHAPTER 11: MapKit 366

Converting Degrees to Distance
Each degree of latitude represents approximately 69 miles, or about 111 kilometers, no

matter where you are. This makes determining the number to pass in as the

latitudeDelta of an MKCoordinateSpan fairly easy to calculate. You can just divide the

lateral distance you want to display by 69 if you’re using miles, or 111 if you’re using

kilometers.

NOTE: Since the earth isn’t a perfect sphere (technically speaking, it’s close to being an oblate
spheroid), there actually is some variation between the amount of distance that one degree
latitude represents, but it’s not enough variation to bother factoring into our calculation, since it’s
only about a one degree variation from pole to equator. At the equator, one degree of latitude
equals 69.046767 miles or 111.12 kilometers and the number gets a little smaller as you move
toward the poles. We chose 69 and 111 because they’re nice round numbers that are within 1%
of the actual distance pretty much everywhere.

The distance represented by one degree longitude, however, is not quite so easy to

calculate. To do the same calculation for longitude, you have to take the latitude into

account, because the distance represented by one degree longitude depends on where

you are in relation to the equator. To calculate the distance represented by degrees

longitude, you have to perform some gnarly math. Fortunately, Apple has done the

gnarly math for you and provides a method called

MKCoordinateRegionMakeWithDistance() that you can use to create a region. You

provide coordinates to act as the center, along with the distance in meters for the

latitudinal and longitudinal span. The function will look at the latitude in the coordinates

provided and calculate both delta values for you in degrees. Here is how you might

create a region to show one kilometer on each side of a specific location represented by

a CLLocationCoordinate2D called center:

MKCoordinateRegion viewRegion = MKCoordinateRegionMakeWithDistance(center,
 2000, 2000);

To show a kilometer on each side of center, we have to specify 2000 meters total for

each span: 1000 to the left, 1000 to the right, 1000 to the top, and 1000 to the bottom.

After this call, viewRegion will contain a properly formatted MKCoordinateRegion that’s

almost ready for use. All that’s left is taking care of the aspect ratio problem.

THE GNARLY MATH

The math to calculate the distance of one degree longitude really isn’t that gnarly, so we thought we’d
show those of you who are interested what the man behind the curtain is doing. To calculate the distance
for one degree longitude at a given latitude, the calculation is:

CHAPTER 11: MapKit 367

If Apple didn’t provide a function for us, we could create a couple of macros that would accomplish the
same thing just by following this formula. The radius of the earth is roughly 3963.1676 miles, or 6378.1
kilometers. So, to calculate the distance for one degree of longitude at a specific latitude contained in the
variable lat, you would do this:

double longitudeMiles = ((M_PI/180.0) × 3963.1676 × cos(latitude));

You can do the same calculation to determine the distance of one degree longitude in kilometers, like so:

double longitudeKilometers = ((M_PI/180.0) × 6378.1 × cos(latitude));

If you’re interested, you can find macros in the provided 11 – MapMe project in the project archive that
accompanies this book. Look in the file called MapMeViewController.h for macros that implement these
calculations. In this chapter, we’ll use the function provided by Apple to calculate the span, but we’ve
provided these macros for the curious, or for those who prefer to work in miles or kilometers rather than
meters.

Accommodating Aspect Ratio
In the previous section, we showed how to create a span that showed one kilometer on

each side of a given location. However, unless the map view is perfectly square, there’s

no way that the view can show exactly one kilometer on each of the four sides of center.

If the map view is wider than it is tall, the longitudeDelta will need to be larger than the

latitudeDelta. If the map view is taller than it is wide, the opposite is true.

The MKMapView class has an instance method that will adjust a coordinate region to

match the map view’s aspect ratio. That method is called regionThatFits:. To use it,

you just pass in the coordinate region you created, and it will return a new coordinate

region that is adjusted to the map view’s aspect ratio. Here’s how you would use it:

MKCoordinateRegion adjustedRegion = [mapView regionThatFits:viewRegion];

Setting the Region to Display
Once you’ve created a coordinate region, you can tell a map view to display that region

by calling the method setRegion:animated:. If you pass YES for the second parameter,

the map view will zoom, shift, or otherwise animate the view from its current location to

its new location. Here is an example that creates a coordinate region, adjusts it to the

map views’s aspect ratio, and then tells the map view to display that region:

 MKCoordinateRegion viewRegion =
 MKCoordinateRegionMakeWithDistance(center, 2000, 2000);
 MKCoordinateRegion adjustedRegion = [mapView regionThatFits:viewRegion];
 [mapView setRegion:adjustedRegion animated:YES];

The Map View Delegate
As we mentioned earlier, map views can have delegates. Map views, unlike table views

and pickers, can function without a delegate. On a map view delegate, there are a

number of methods you can implement if you need to be notified about certain map-

CHAPTER 11: MapKit 368

related tasks. They allow you, for example, to get notified when the user changes the

part of the map they’re looking at, either by dragging to reveal a new section of the map,

or by zooming to reveal a smaller or larger area. You can also get notified when the map

view loads new map data from the server, or when the map view fails to do so. The map

view delegate methods are contained in the MKMapViewDelegate protocol, and any class

that is used as a map view delegate should conform to that protocol.

Map Loading Delegate Methods
The MapKit framework uses Google Maps to do its job. It doesn’t store any map data

locally except for temporary caches. Whenever the map view needs to go to Google’s

servers to retrieve new map data, it will call the delegate method

mapViewWillStartLoadingMap:, and when it has successfully retrieved the map data it

needs, it will call the delegate method mapViewDidFinishLoadingMap:. If you have any

application-specific processing that needs to happen at either time, you can implement

the appropriate method on the map view’s delegate.

If MapKit encounters an error loading map data from the server, it will call the method

mapViewDidFailLoadingMap:withError: on its delegate. At very least, you should

implement this delegate method and inform your user of the problem so they aren’t

sitting there waiting for an update that will never come. Here’s a very simple

implementation of that method that just shows an alert and lets the user know that

something went wrong:

- (void)mapViewDidFailLoadingMap:(MKMapView *)mapView
 withError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Error loading map",
 @"Error loading map")
 message:[error localizedDescription]
 delegate:nil
 cancelButtonTitle:NSLocalizedString(@"Okay", @"Okay")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

Region Change Delegate Methods
If your map view is enabled, the user will be able to interact with it using the standard

iPhone gestures, like drag, pinch in, pinch out, and double-tap. Doing so will change the

region being displayed in the view. There are two delegate methods that will get called

whenever this happens, if the map view’s delegate implements those methods. As the

gesture starts, the delegate method mapView:regionWillChangeAnimated: gets called.

When the gesture stops, the method mapView:regionDidChangeAnimated: gets called.

You would implement these if you had functionality that needed to happen while the

view region was changing, or after it had finished changing.

CHAPTER 11: MapKit 369

DETERMINING IF COORDINATES ARE VISIBLE

One task that you may need to do quite often in the region change delegate methods is to determine if a
particular set of coordinates are currently visible on screen. For annotations, and for the user’s current
location (if it is being tracked), the map view will take care of figuring that out for you. There will still be
times, however, when you need to know if a particular set of coordinates is currently within the map view’s
displayed region.

Here’s how you can determine that:

CLLocationDegrees leftDegrees = mapView.region.center.longitude –
 (mapView.region.span.longitudeDelta / 2.0);
CLLocationDegrees rightDegrees = mapView.region.center.longitude +
 (mapView.region.span.longitudeDelta / 2.0);
CLLocationDegrees bottomDegrees = mapView.region.center.latitude –
 (mapView.region.span.latitudeDelta / 2.0);
CLLocationDegrees topDegrees = self.region.center.latitude +
 (mapView.region.span.latitudeDelta / 2.0);

if (leftDegrees > rightDegrees) { // Int'l Date Line in View
 leftDegrees = -180.0 - leftDegrees;
 if (coords.longitude > 0) // coords to West of Date Line
 coords.longitude = -180.0 - coords.longitude;
}

If (leftDegrees <= coords.longitude && coords.longitude <= rightDegrees &&
 bottomDegrees <= coords.latitude && coords.latitude <= topDegrees) {
 // Coordinates are being displayed
}

In the 11 - MapMe project in the book’s project archive, you can find a category on MKMapView that
incorporates this logic. The files that implement that category are MKMapView-CoordsDispay.h and
MKMapView-CoordsDisplay.m.

Before we move on to the rest of the map view delegate methods, we need to first

discuss the topic of annotations.

Annotations
Map views offer the ability to tag a specific location with a set of supplementary

information. That information, along with its graphic representation on the map, is called

an annotation. The pin we drop in the application we’re going to write (see Figure 11–2)

is a form of annotation. The annotation is composed of two components, the

annotation object, and an annotation view. The map view will keep track of its

annotations and will call out to its delegate when it needs to display any of its

annotations.

CHAPTER 11: MapKit 370

The Annotation Object
Every annotation must have an annotation object, which is almost always going to be a

custom class that you write and that conforms to the protocol MKAnnotation. An

annotation object is typically a fairly standard data model object whose job it is to hold

whatever data is relevant to the annotation in question. The annotation object has to

respond to two methods and implement a single property. The two methods that an

annotation object must implement are called title and subtitle, and they are the

information that will be displayed in the annotation’s callout, the little floating view that

pops up when the annotation is selected. Back in Figure 11–4, you can see the title and

subtitle displayed in the callout. In that instance, the annotation object returned a title of

You are Here!, and a subtitle of Infinite Loop • Cupertino, CA.

An annotation object must also have a property called coordinate that returns a

CLLocationCoordinate2D specifying where in the world (geographically speaking) the

annotation should be placed. The map view will use that location to determine where to

draw the annotation.

The Annotation View
As we said before, when a map view needs to display any of its annotations, it will call

out to its delegate to retrieve an annotation view for that annotation. It does this using

the method mapView:viewForAnnotation:, which needs to return an MKAnnotationView or

a subclass of MKAnnotationView. The annotation view is the object that gets displayed

on the map, not the floating window that gets displayed when the annotation is selected.

In Figure 11–4, the annotation view is the pin in the center of the window. It’s a pin

because we’re using a provided subclass of MKAnnotationView called

MKPinAnnotationView, which is designed to draw a red, green, or purple pushpin. It also

adds some additional functionality that MKAnnotationView doesn’t have, such as the pin

drop animation.

You can subclass MKAnnotationView and implement your own drawRect: method if you

have advanced drawing needs for your annotation view. Subclassing MKAnnotationView

is often unnecessary, however, because you can create an instance of

MKAnnotationView and set its image property to whatever image you want. This opens

up a whole world of possibilities without having to ever subclass or add subviews to

MKAnnotationView (see Figure 11–6).

CHAPTER 11: MapKit 371

Figure 11–6. By setting the image property of an MKAnnotationView, you can display just about anything on the
map. In this example, we’ve replaced the pin with a blood orange, because that’s the way we roll.

Adding and Removing Annotations
The map view keeps track of all of its annotations, so adding an annotation to the map is

simply a matter of calling the map view’s addAnnotation: method and providing an

object that conforms to the MKAnnotation protocol:

[mapView addAnnotation:annotation];

You can also add multiple annotations by providing an array of annotations, using the

method addAnnotations:.

[mapView addAnnotations:[NSArray arrayWithObjects:annotation1, annotation2, nil]];

You can remove annotations by using either the removeAnnotation: method, and

passing in a single annotation to be removed, or by calling removeAnnotations: and

passing in an array containing multiple annotations to be removed. All the map view’s

annotations are accessible using a property called annotations, so if you wanted to

remove all annotations from the view, you could to this:

[mapView removeAnnotations:mapView.annotations];

CHAPTER 11: MapKit 372

Selecting Annotations
At any given time, one and only one annotation can be selected. The selected

annotation will usually display a callout, which is that floating bubble or other view that

gives more detailed information about the annotation. The default callout shows the title

and subtitle from the annotation. However, you can actually customize the callout, which

is just an instance of UIView. We won’t be providing custom callout views in this

chapter’s application, but the process is very similar to customizing table view cells the

way we did in Chapter 8 of Beginning iPhone 3 Development. For more information on

customizing a callout, check the documentation for MKAnnotationView.

NOTE: Although only a single annotation can currently be selected, MKMapView actually uses an
instance of NSMutableArray to keep track of the selected annotations. This may be an
indication that at some point in the future, map views will support selecting multiple annotations
at once. Currently, if you provide a selectedAnnotations array with more than one
annotation, only the first object in that array will be selected.

If the user taps an annotation’s image (the push pin in Figure 11–4, or the blood orange

in Figure 11–6), it selects that annotation. You can also select an annotation

programmatically using the method selectAnnotation:animated: and can deselect an

annotation programmatically using deselectAnnotation:animated:, passing in the

annotation you want to select or deselect. If you pass YES to the second parameter, it

will animate the appearance or disappearance of the callout.

Providing the Map View with Annotation Views
Map views ask their delegate for the annotation view that corresponds to a particular

annotation using a delegate method called mapView:viewForAnnotation:. This method is

called anytime an annotation moves into the map view’s displayed region.

Very much like the way table view cells work, annotation views are dequeued, but not

deallocated when they scroll off of the screen. Implementations of

mapView:viewForAnnotation: should ask the map view if there are any dequeued

annotation views before allocating a new one. That means that

mapView:viewForAnnotation: is going to look a fair amount like the many

tableView:cellForRowAtIndexPath: methods we’ve written. Here’s an example that

creates an annotation view, sets its image property to display a custom image, and

returns it:

- (MKAnnotationView *) mapView:(MKMapView *)theMapView
 viewForAnnotation:(id <MKAnnotation>) annotation {
 static NSString *placemarkIdentifier = @"my annotation identifier";
 if ([annotation isKindOfClass:[MyAnnotation class]]) {
 MKAnnotationView *annotationView = [theMapView
 dequeueReusableAnnotationViewWithIdentifier:placemarkIdentifier];
 if (annotationView == nil) {
 annotationView = [[MKAnnotationView alloc] initWithAnnotation:annotation

CHAPTER 11: MapKit 373

 reuseIdentifier:placemarkIdentifier];
 annotationView.image = [UIImage imageNamed:@"blood_orange.png"];
 }
 else
 annotationView.annotation = annotation;
 return annotationView;
 }
 return nil;
}

A few things to notice, here. First, notice that we check the annotation class to make

sure it’s an annotation we know about. The map view’s delegate doesn’t only get

notified of our custom annotations. Remember, earlier, we talked about the

MKUserLocation object that encapsulated the user’s location. Well, that’s an annotation

also, and when you turn on user tracking for a map, your delegate method gets called

whenever the user location needs to be displayed. You could provide your own

annotation view for that, but if you return nil, the map view will use the default

annotation view for it. Generally speaking, for any annotation you don’t recognize, your

method should return nil and the map view will probably handle it correctly.

Notice we also have an identifier value called placemarkIdentifier. This allows us to

make sure we’re dequeing the right kind of annotation view. We’re not limited to using

only one type of annotation view for all of our map’s annotations, and the identifier is the

way we tell which ones are used for what.

If we did dequeue an annotation view, it’s important that we set its annotation property

to the annotation that was passed in (annotation in the preceding example). The

dequeued annotation view is almost certainly linked to some annotation, and not

necessarily the one it should be linked to.

Reverse Geocoding
The map view may be the core of MapKit’s functionality, but there’s more to explore.

Another big feature of MapKit is the ability to do reverse geocoding, which turns a set of

coordinates into an address. Reverse geocoding works by comparing a set of

coordinates with values stored in a large database (in the case of MapKit, it’s Google’s

database) and returning data about that location. In almost all locations, reverse

geocoding will be able to tell you the country and state or province that you’re in. The

more densely populated the area, the more information you’re likely to get. If you’re

downtown in a large city, you might very well retrieve the street address of the building

in which you are located. In most cities and towns, reverse geocoding will, at the very

least, get you the name of the street you are on. The tricky thing is, you never know for

sure what level of detail you’re going to get back.

Reverse geocoding is handled by the MKReverseGeocoder class. It works asynchronously

in the background, in much the same way as the networking classes we used in the last

three chapters.

CHAPTER 11: MapKit 374

To perform reverse geocoding, you start by creating an instance of MKReverseGeocoder

and initializing it with the coordinates you want to reverse geocode. Then you tell it to

start.

 MKReverseGeocoder *geocoder = [[MKReverseGeocoder alloc]
 initWithCoordinate:coordinates];
 geocoder.delegate = self;
 [geocoder start];

If the instance of MKReverseGeocoder is unable to resolve the coordinates, it will call the

method reverseGeocoder:didFailWithError: on its delegate. Here’s a simple

implementation of that method that just logs the error. In your real-world applications,

you’ll probably want to take other actions, such as to inform the user of the problem.

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFailWithError:(NSError *)error {
 NSLog(@"Error resolving coordinates: %@", [error localizedDescription]);
 geocoder.delegate = nil;
 [geocoder autorelease];
}

Assuming the reverse geocoder doesn’t hit an error, it will call the method

reverseGeocoder:didFindPlacemark: to provide its delegate with all the information

about the coordinates that it was able to discern. A placemark, represented by the class

MKPlacemark, contains information about a specific location. It’s designed to hold an

address for any location in the world. As a result, it doesn’t use, perhaps, the

terminology you might expect it to use. You won’t see street address, city, state, or ZIP.

Instead, you’ll see properties like thoroughfare, subthoroughfare, locality, and

administrativeArea.

Here is a handy table to help map MKPlacemark’s terminology to the terms with which

you might be more familiar:

MKPlacemark Property Meaning

thoroughfare Street address. First line if multiple lines.

subthoroughfare Street address, second line (e.g.,

apartment or unit number, box number)

locality City

sublocality This might contain a neighborhood or

landmark name, though it’s often nil

administrativeArea State, province, territory, or other similar

unit

subAdministrativeArea County

postalCode ZIP code

country Country

countryCode Two-digit ISO country code (see:
http://en.wikipedia.org/wiki/ISO_3166-
1_alpha-2)

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

CHAPTER 11: MapKit 375

Here’s an example that pulls information from a placemark in the

reverseGeocoder:didFindPlacemark: method:

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFindPlacemark:(MKPlacemark *)placemark {
 NSString *streetAddress = placemark.thoroughfare;
 NSString *city = placemark.locality;
 NSString *state = placemark.administrativeArea;
 NSString *zip = placemark.postalCode;

 // Do something with information

 geocoder.delegate = nil;
 [geocoder autorelease];
}

Notice that in both of the reverse geocoder delegate methods, when we’re all done, we

set the geocoder’s delegate to nil and release it. Once a geocoder has either found a

placemark or failed to do so, there’s not much purpose it can serve, so it makes sense

to clean it up forthwith.

You know what? That’s enough talking about MapKit. Let’s start actually using it.

Building the MapMe Application
Let’s build an application that shows some of the basic features of the MapKit. Start by

creating a new project in Xcode using the View-based Application template. Call the new

project MapMe.

Declaring Outlets and Actions
Before we head over to Interface Builder to design our application’s interface, let’s

declare the outlets and actions we need. We’ve only got one button, so we only need

one action method. We also need an outlet to that button, so we can hide it when it’s

not available, as well as an outlet to a progress indicator, an outlet to a label, and, of

course, an outlet to a map view.

Single-click MapMeViewController.h, and replace the contents with the following:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>
#import <CoreLocation/CoreLocation.h>

@interface MapMeViewController : UIViewController
 <CLLocationManagerDelegate, MKReverseGeocoderDelegate, MKMapViewDelegate,
 UIAlertViewDelegate> {
 MKMapView *mapView;
 UIProgressView *progressBar;
 UILabel *progressLabel;
 UIButton *button;
}

@property (nonatomic, retain) IBOutlet MKMapView *mapView;

CHAPTER 11: MapKit 376

@property (nonatomic, retain) IBOutlet UIProgressView *progressBar;
@property (nonatomic, retain) IBOutlet UILabel *progressLabel;
@property (nonatomic, retain) IBOutlet UIButton *button;

- (IBAction)findMe;

@end

NOTE: Although map views are capable of tracking the user’s current location, we’re going to
track the user’s location manually using Core Location in this application. By doing it manually,
we can show you more MapKit features. If you need to track the user’s location in your own
applications, just let the map view do it for you.

For starters, we import both the MapKit and CoreLocation header files, because we’re

going to use both Core Location and Map Kit in this application. Then we conform our

class to a whole bunch of delegate protocols. We conform to

CLLocationManagerDelegate so we can get notified by Core Location of the user’s

current location, MKReverseGeocoderDelegate because we’re going to use MapKit’s

reverse geocoder, MKMapKitDelegate because we’re going to be our map view’s

delegate and, finally, we conform to the UIAlertViewDelegate so we can get notified

when the user has dismissed the alert views that we’ll use to inform the user if

something went wrong.

After that, we have four instance variables for each of the user interface items we’re

going to add in Interface Builder, and four properties, one for each instance variable, all

specified with the IBOutlet keyword. We only have one action method, called findMe,

which will be called when our application’s lone button is pressed.

Save MapMeViewController.h and double-click MapMeViewController.xib to launch

Interface Builder.

Building the Interface
Once Interface Builder opens, look in the library for a Map View (Figure 11–7). Drag the

map view over to the window titled View. Interface Builder will resize the view to fit the

entire window since it’s the first object we’re adding. Drop it on the view so it takes up

the entire area, then click and drag up on the bottom-middle resize handle to shorten

the view and leave some room at the bottom for the other controls like in Figure 11–8.

We made the map view 400 pixels tall, though you don’t have to match that exactly.

Note that you also accomplish this by typing 3 and entering 400 in the Map View’s

height field.

Figure 11–7. The Map View as it appears in Interface Builder’s library

CHAPTER 11: MapKit 377

Figure 11–8. Shortening the map view to leave room for the other controls

Control-drag from the map view to the File’s Owner icon in the nib’s main window and

select delegate to make MapMeViewController the map view’s delegate. Next, control-

drag back from File’s Owner to the map view and select the mapView outlet.

Next, drag a Round Rect Button from the library over to the window, and place it in the

space below the map view, against the right margin. Double-click the newly placed

button to edit its title, and type Go. Control-drag from the button you just placed to

File’s Owner and select the findMe action so that the new button triggers our

application’s one action method. Then, control-drag back from File’s Owner to the

button and select the button outlet.

Drag a Progress View from the library, and place it to the left of the button, with the top

of the progress view and the top of the button aligned. Resize using the blue guidelines

so it extends horizontally from the left margin to the right margin. It will overlap the

button, and that’s okay. Control-drag from File’s Owner to the progress view and select

the progressBar outlet. Press 1 to bring up the attribute inspector. Click in the check

box that’s labeled Hidden so that the progress bar will not be visible until we want to

report progress to the user.

Finally, drag a Label from the library over to the view and place it below the progress

bar. Resize it horizontally so that it takes up the entire width from the left margin

guides to the right margin guides. Control-drag from File’s Owner to the label and

select the progressLabel outlet. Now, use the attribute inspector to center the label’s

text then press T to bring up the text palette and change the font size to 13 so that

CHAPTER 11: MapKit 378

the text will fit better. Double-click the label and press the delete button to delete the

word Label.

Save the nib and go back to Xcode.

Writing the Annotation Object Class
We need to create a class to hold our annotation object. We’re going to build a simple

one that stores some address information, which we’ll pull from the reverse geocoder.

Single-click the Classes folder in the Groups & Files pane and then press N to create a

new file. Select the Objective-C class template and make sure the Subclass of pop-up

menu is set to NSObject. Name the new file MapLocation.m and have Xcode create

MapLocation.h for you as well.

Once the new files have been created, single-click MapLocation.h. Replace the existing

file with the following class header:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface MapLocation : NSObject <MKAnnotation, NSCoding> {
 NSString *streetAddress;
 NSString *city;
 NSString *state;
 NSString *zip;

 CLLocationCoordinate2D coordinate;
}

@property (nonatomic, copy) NSString *streetAddress;
@property (nonatomic, copy) NSString *city;
@property (nonatomic, copy) NSString *state;
@property (nonatomic, copy) NSString *zip;
@property (nonatomic, readwrite) CLLocationCoordinate2D coordinate;

@end

We did say that annotations were pretty standard data model classes, didn’t we? We

conformed this to MKAnnotation, and also to NSCoding. We’re not actually going to use

the archiving functionality, but it’s just good habit to conform data model classes to

NSCoding. We have four NSString instance variables and corresponding properties that

we’ll use to store address data, along with a CLLocationCoordinate2D, which will be

used to track this annotation’s location on the map.

Notice that we’ve specifically declared the coordinate property to be readwrite. The

MKAnnotation protocol declares this property as readonly. We could have declared it

that way as well, and then just set the coordinate property by using the underlying

instance variable, but we wanted to use the property to let other classes set our

annotation’s coordinates. It’s okay to redefine properties to be more permissive than the

same property as declared in a protocol to which you’ve conformed, or as declared in

your superclass. You can always redefine a readonly or writeonly property to be

CHAPTER 11: MapKit 379

readwrite, but you have to explicitly use the readwrite keyword. Most of the time, that

keyword isn’t used because it’s the default value and unnecessary.

Save MapLocation.h and switch over to the implementation file, MapLocation.m.

Replace it with the following code:

NOTE: You can type the • character by pressing 8. Or you can just choose a different
character to separate the address lines, if you prefer. Don’t put a newline in the string, however,
because it will be stripped out when displayed in the annotation’s callout view. The default
callout gives one line and one line only to the subtitle.

#import "MapLocation.h"
#import <MapKit/MapKit.h>

@implementation MapLocation
@synthesize streetAddress;
@synthesize city;
@synthesize state;
@synthesize zip;
@synthesize coordinate;

#pragma mark -
- (NSString *)title {
 return NSLocalizedString(@"You are Here!", @"You are Here!");
}

- (NSString *)subtitle {
 NSMutableString *ret = [NSMutableString string];
 if (streetAddress)
 [ret appendString:streetAddress];
 if (streetAddress && (city || state || zip))
 [ret appendString:@" • "];
 if (city)
 [ret appendString:city];
 if (city && state)
 [ret appendString:@", "];
 if (state)
 [ret appendString:state];
 if (zip)
 [ret appendFormat:@", %@", zip];

 return ret;
}

#pragma mark -
- (void)dealloc {
 [streetAddress release];
 [city release];
 [state release];
 [zip release];
 [super dealloc];
}

#pragma mark -

CHAPTER 11: MapKit 380

#pragma mark NSCoding Methods
- (void)encodeWithCoder: (NSCoder *)encoder {
 [encoder encodeObject: [self streetAddress] forKey: @"streetAddress"];
 [encoder encodeObject: [self city] forKey:@"city"];
 [encoder encodeObject: [self state] forKey: @"state"];
 [encoder encodeObject: [self zip] forKey: @"zip"];
}

- (id) initWithCoder: (NSCoder *)decoder {
 if (self = [super init]) {
 [self setStreetAddress: [decoder decodeObjectForKey: @"streetAddress"]];
 [self setCity: [decoder decodeObjectForKey: @"city"]];
 [self setState: [decoder decodeObjectForKey: @"state"]];
 [self setZip: [decoder decodeObjectForKey: @"zip"]];
 }
 return self;
}

@end

There really shouldn’t be anything there that throws you for a loop. For the MKAnnotation

protocol method, title, we just return You are Here!:

- (NSString *)title {
 return NSLocalizedString(@"You are Here!", @"You are Here!");
}

The subtitle method, however, is a little more complex. Because we don’t know which

data elements the reverse geocoder will give us, we have to build the subtitle string

based on what we have. We do that by declaring a mutable string, and then appending

the values from our non-nil, non-empty properties.

- (NSString *)subtitle {
 NSMutableString *ret = [NSMutableString string];
 if (streetAddress)
 [ret appendString:streetAddress];
 if (streetAddress && (city || state || zip))
 [ret appendString:@" • "];
 if (city)
 [ret appendString:city];
 if (city && state)
 [ret appendString:@", "];
 if (state)
 [ret appendString:state];
 if (zip)
 [ret appendFormat:@", %@", zip];

 return ret;
}

Everything else here is standard stuff you’ve seen dozens of times, so let’s move on to

implementing the MapMeViewController class. Save MapLocation.m before proceeding.

CHAPTER 11: MapKit 381

Implementing MapMeViewController
Single-click MapMeViewController.m. Replace the existing template code with the

following:

#import "MapMeViewController.h"
#import "MapLocation.h"

@implementation MapMeViewController
@synthesize mapView;
@synthesize progressBar;
@synthesize progressLabel;
@synthesize button;
#pragma mark –

- (IBAction)findMe {
 CLLocationManager *lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 [lm startUpdatingLocation];

 progressBar.hidden = NO;
 progressBar.progress = 0.0;
 progressLabel.text = NSLocalizedString(@"Determining Current Location",
 @"Determining Current Location");

 button.hidden = YES;
}

- (void)openCallout:(id<MKAnnotation>)annotation {
 progressBar.progress = 1.0;
 progressLabel.text = NSLocalizedString(@"Showing Annotation",
 @"Showing Annotation");
 [mapView selectAnnotation:annotation animated:YES];
}

#pragma mark -
- (void)viewDidLoad {
 // uncomment different rows to change type
 mapView.mapType = MKMapTypeStandard;
 //mapView.mapType = MKMapTypeSatellite;
 //mapView.mapType = MKMapTypeHybrid;
}

- (void)viewDidUnload {
 self.mapView = nil;
 self.progressBar = nil;
 self.progressLabel = nil;
 self.button = nil;
}

- (void)dealloc {
 [mapView release];
 [progressBar release];
 [progressLabel release];
 [button release];
 [super dealloc];

CHAPTER 11: MapKit 382

}

#pragma mark -
#pragma mark CLLocationManagerDelegate Methods
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 if ([newLocation.timestamp timeIntervalSince1970] <
 [NSDate timeIntervalSinceReferenceDate] - 60)
 return;

 MKCoordinateRegion viewRegion =
 MKCoordinateRegionMakeWithDistance(newLocation.coordinate, 2000, 2000);
 MKCoordinateRegion adjustedRegion = [mapView regionThatFits:viewRegion];
 [mapView setRegion:adjustedRegion animated:YES];

 manager.delegate = nil;
 [manager stopUpdatingLocation];
 [manager autorelease];

 progressBar.progress = .25;
 progressLabel.text = NSLocalizedString(@"Reverse Geocoding Location",
 @"Reverse Geocoding Location");

 MKReverseGeocoder *geocoder = [[MKReverseGeocoder alloc]
 initWithCoordinate:newLocation.coordinate];
 geocoder.delegate = self;
 [geocoder start];
}

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {

 NSString *errorType = (error.code == kCLErrorDenied) ?
 NSLocalizedString(@"Access Denied", @"Access Denied") :
 NSLocalizedString(@"Unknown Error", @"Unknown Error");

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Error getting Location",
 @"Error getting Location")
 message:errorType
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Okay", @"Okay")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [manager release];
}

#pragma mark -
#pragma mark Alert View Delegate Methods
- (void)alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex {
 progressBar.hidden = YES;
 progressLabel.text = @"";
}

CHAPTER 11: MapKit 383

#pragma mark -
#pragma mark Reverse Geocoder Delegate Methods
- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFailWithError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(
 @"Error translating coordinates into location",
 @"Error translating coordinates into location")
 message:NSLocalizedString(
 @"Geocoder did not recognize coordinates",
 @"Geocoder did not recognize coordinates")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Okay", @"Okay")
 otherButtonTitles:nil];
 [alert show];
 [alert release];

 geocoder.delegate = nil;
 [geocoder autorelease];
}

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFindPlacemark:(MKPlacemark *)placemark {
 progressBar.progress = 0.5;
 progressLabel.text = NSLocalizedString(@"Location Determined",
 @"Location Determined");

 MapLocation *annotation = [[MapLocation alloc] init];
 annotation.streetAddress = placemark.thoroughfare;
 annotation.city = placemark.locality;
 annotation.state = placemark.administrativeArea;
 annotation.zip = placemark.postalCode;
 annotation.coordinate = geocoder.coordinate;

 [mapView addAnnotation:annotation];

 [annotation release];

 geocoder.delegate = nil;
 [geocoder autorelease];
}

#pragma mark -
#pragma mark Map View Delegate Methods
- (MKAnnotationView *)mapView:(MKMapView *)theMapView
 viewForAnnotation:(id <MKAnnotation>)annotation {
 static NSString *placemarkIdentifier = @"Map Location Identifier";
 if ([annotation isKindOfClass:[MapLocation class]]) {
 MKPinAnnotationView *annotationView = (MKPinAnnotationView *)[theMapView
 dequeueReusableAnnotationViewWithIdentifier:placemarkIdentifier];
 if (annotationView == nil) {
 annotationView = [[MKPinAnnotationView alloc]
 initWithAnnotation:annotation reuseIdentifier:placemarkIdentifier];
 }
 else
 annotationView.annotation = annotation;

CHAPTER 11: MapKit 384

 annotationView.enabled = YES;
 annotationView.animatesDrop = YES;
 annotationView.pinColor = MKPinAnnotationColorPurple;
 annotationView.canShowCallout = YES;
 [self performSelector:@selector(openCallout:) withObject:annotation
 afterDelay:0.5];

 progressBar.progress = 0.75;
 progressLabel.text = NSLocalizedString(@"Creating Annotation",
 @"Creating Annotation");

 return annotationView;
 }
 return nil;
}

- (void)mapViewDidFailLoadingMap:(MKMapView *)theMapView
 withError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Error loading map",
 @"Error loading map")
 message:[error localizedDescription]
 delegate:nil
 cancelButtonTitle:NSLocalizedString(@"Okay", @"Okay")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

@end

Let’s take it from the top, shall we? The first method in our class is the action method

that gets called when the user presses a button. This is the logical starting point for our

application’s logic, so let’s look at it first.

As we’ve discussed before, we could have used the map view’s ability to track the

user’s location, but we wanted to handle things manually to show more functionality.

Therefore, we allocate and initialize an instance of CLLocationManager so we can

determine the user’s location. We set self as the delegate, and tell the Location

Manager we want the best accuracy available, before telling it to start updating the

location.

- (IBAction)findMe {
 CLLocationManager *lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 [lm startUpdatingLocation];

Then, we unhide the progress bar and set the progress label to tell the user that we are

trying to determine the current location.

 progressBar.hidden = NO;
 progressBar.progress = 0.0;
 progressLabel.text = NSLocalizedString(@"Determining Current Location",
 @"Determining Current Location");

 Lastly, we hide the button so the user can’t press it again.

CHAPTER 11: MapKit 385

 button.hidden = YES;
}

Next, we have a private method called openCallout: that we’ll use a little later to select

our annotation. We can’t select the annotation when we add it to the map view. We have

to wait until it’s been added before we can select it. This method will allow us to select

an annotation, which will open the annotation’s callout, by using

performSelector:withObject:afterDelay:. All we do in this method is update the

progress bar and progress label to show that we’re at the last step, and then use the

MKMapView’s selectAnnotation:animated: method to select the annotation, which will

cause its callout view to be shown.

NOTE: We didn’t declare this method in our header file, nor did we declare it in a category or
extension. Yet the compiler is happy. That’s because this method is located earlier in the file than
the code that calls it, so the compiler knows about. If we were to move the openCallout:
method to the end of the file, then we would get a compile time warning, and would have to
declare the method in an extension or in our class’s header file.

- (void)openCallout:(id<MKAnnotation>)annotation {
 progressBar.progress = 1.0;
 progressLabel.text = NSLocalizedString(@"Showing Annotation",
 @"Showing Annotation");
 [mapView selectAnnotation:annotation animated:YES];
}

In the viewDidLoad method, we gave you code to try out all three map types, with two of

them commented out. This is just to make it easier for you to change the one you’re

using and experiment a little.

- (void)viewDidLoad {
 // uncomment different rows to change type
 mapView.mapType = MKMapTypeStandard;
 //mapView.mapType = MKMapTypeSatellite;
 //mapView.mapType = MKMapTypeHybrid;
}

Both viewDidUnload and dealloc are standard, so we won’t talk about them. After those,

we get to our various delegate methods. First up is the location manager delegate

method where we’re notified of the user’s location. We did something here that we

didn’t do in Beginning iPhone 3 Development, which is to check the timestamp of

newLocation and make sure it’s not more than a minute old.

In the application we built in the first book, we wanted to keep getting updates while the

application was running. In this application, we only want to know the current location

once, but we don’t want a cached location. Location Manager caches locations so that

it has quick access to the last known location. Since we’re only going to use one

update, we want to discard any stale location data that was pulled from the location

manager’s cache.

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation

CHAPTER 11: MapKit 386

 fromLocation:(CLLocation *)oldLocation {
 if ([newLocation.timestamp timeIntervalSince1970] <
 [NSDate timeIntervalSinceReferenceDate] - 60)
 return;

Once we’ve made sure we have a fresh location, taken within the last minute, we then

use the MKCoordinateRegionMakeWithDistance() function to create a region that shows

one kilometer on each side of the user’s current location.

 MKCoordinateRegion viewRegion =
 MKCoordinateRegionMakeWithDistance(newLocation.coordinate, 2000, 2000);

We then adjust that region to the aspect ratio of our map view and then tell the map

view to show that new adjusted region.

 MKCoordinateRegion adjustedRegion = [mapView regionThatFits:viewRegion];
 [mapView setRegion:adjustedRegion animated:YES];

Now that we’ve gotten a non-cache location, we’re going to stop having the location

manager give us updates. Location updates are a drain on the battery, so when you

don’t want any more updates, you’ll want to shut location manager down, like so:

 manager.delegate = nil;
 [manager stopUpdatingLocation];
 [manager autorelease];

Then we update the progress bar and label to let them know where we are in the whole

process. This is the first of four steps after the Go button is pressed, so we set progress

to .25, which will show a bar that is one-quarter blue.

 progressBar.progress = .25;
 progressLabel.text = NSLocalizedString(@"Reverse Geocoding Location",
 @"Reverse Geocoding Location");

Next, we allocate an instance of MKReverseGeocoder using the current location pulled

from newLocation. We set self as the delegate and kick it off.

 MKReverseGeocoder *geocoder = [[MKReverseGeocoder alloc]
 initWithCoordinate:newLocation.coordinate];
 geocoder.delegate = self;
 [geocoder start];
}

NOTE: We didn’t release geocoder here, nor did we release the location manager in the findMe
method. In both cases, we autorelease the objects in the last delegate method we use.

If the location manager encounters an error, we just show an alert. Not the most robust

error handling, but it’ll do for this.

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {

 NSString *errorType = (error.code == kCLErrorDenied) ?
 NSLocalizedString(@"Access Denied", @"Access Denied") :
 NSLocalizedString(@"Unknown Error", @"Unknown Error");

CHAPTER 11: MapKit 387

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Error getting Location",
 @"Error getting Location")
 message:errorType
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Okay", @"Okay")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [manager release];
}

Our alert view delegate method just hides the progress bar and sets the progress label

to an empty string. For simplicity’s sake, we’re just dead-ending the application if a

problem occurs. In your apps, you’ll probably want to do something a little more user-

friendly.

- (void)alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex {
 progressBar.hidden = YES;
 progressLabel.text = @"";
}

If the reverse geocoding fails, we do basically the same thing we’d do if the location

manager failed: put up an alert and dead-end the process.

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFailWithError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(
 @"Error translating coordinates into location",
 @"Error translating coordinates into location")
 message:NSLocalizedString(
 @"Geocoder did not recognize coordinates",
 @"Geocoder did not recognize coordinates")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Okay", @"Okay")
 otherButtonTitles:nil];
 [alert show];
 [alert release];

 geocoder.delegate = nil;
 [geocoder autorelease];
}

If the reverse geocoder succeeded, however, we update the progress bar and progress

label to inform the user that we’re one step further along in the process.

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFindPlacemark:(MKPlacemark *)placemark {
 progressBar.progress = 0.5;
 progressLabel.text = NSLocalizedString(@"Location Determined",
 @"Location Determined");

CHAPTER 11: MapKit 388

Then, we allocate and initialize an instance of MapLocation to act as the annotation that

represents the user’s current location. We assign its properties from the returned

placemark.

 MapLocation *annotation = [[MapLocation alloc] init];
 annotation.streetAddress = placemark.thoroughfare;
 annotation.city = placemark.locality;
 annotation.state = placemark.administrativeArea;
 annotation.zip = placemark.postalCode;
 annotation.coordinate = geocoder.coordinate;

Once we have our annotation, we add it to the map view and release it.

 [mapView addAnnotation:annotation];

 [annotation release];

And, then, to be good memory citizens, we set the geocoder’s delegate to nil and

autorelease it.

 geocoder.delegate = nil;
 [geocoder autorelease];
}

When the map view for which we are the delegate needs an annotation view, it will call

this next method. The first thing we do is declare an identifier so we can dequeue the

right kind of annotation view, then we make sure the map view is asking us about a type

of annotation that we know about.

- (MKAnnotationView *) mapView:(MKMapView *)theMapView
 viewForAnnotation:(id <MKAnnotation>) annotation {
 static NSString *placemarkIdentifier = @"Map Location Identifier";
 if ([annotation isKindOfClass:[MapLocation class]]) {

If it is, we dequeue an instance of MKPinAnnotationView with our identifier. If there are no

dequeued views, we create one. We could also have used MKAnnotationView here

instead of MKPinAnnotationView. In fact, there’s an alternate version of this project in the

project archive that shows how to use MKAnnotationView to display a custom annotation

view instead of a pin.

 MKPinAnnotationView *annotationView = (MKPinAnnotationView *)[theMapView
 dequeueReusableAnnotationViewWithIdentifier:placemarkIdentifier];
 if (annotationView == nil) {
 annotationView = [[MKPinAnnotationView alloc]
 initWithAnnotation:annotation reuseIdentifier:placemarkIdentifier];
 }

If we didn’t create a new view, it means we got a dequeued one from the map view. In

that case, we have to make sure the dequeued view is linked to the right annotation.

 else
 annotationView.annotation = annotation;

Then we do some configuration. We make sure the annotation view is enabled so it can

be selected, we set animatesDrop to YES because this is a pin view, and we want it to

drop onto the map the way pins are wont to do. We set the pin color to purple, and

make sure that it can show a callout.

CHAPTER 11: MapKit 389

 annotationView.enabled = YES;
 annotationView.animatesDrop = YES;
 annotationView.pinColor = MKPinAnnotationColorPurple;
 annotationView.canShowCallout = YES;

After that, we use performSelector:withObject:afterDelay: to call that private method

we created earlier. We can’t select an annotation until its view is actually being displayed

on the map, so we wait half a second to make sure that’s happened before selecting.

This will also make sure that the pin has finished dropping before the callout is

displayed.

 [self performSelector:@selector(openCallout:) withObject:annotation
 afterDelay:0.5];

 We need to update the progress bar and text label to let the user know that we’re

almost done.

 progressBar.progress = 0.75;
 progressLabel.text = NSLocalizedString(@"Creating Annotation",
 @"Creating Annotation");

 Then we return the annotation view.

 return annotationView;
 }

If the annotation wasn’t one we recognize, we return nil and our map view will use the

default annotation view for that kind of annotation.

 return nil;
}

And, lastly, we implement mapViewDidFailLoadingMap:withError: and inform the user if

there was a problem loading the map. Again, our error checking in this application is

very rudimentary; we just inform the user and stop everything.

- (void)mapViewDidFailLoadingMap:(MKMapView *)theMapView
 withError:(NSError *)error {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Error loading map",
 @"Error loading map")
 message:[error localizedDescription]
 delegate:nil
 cancelButtonTitle:NSLocalizedString(@"Okay", @"Okay")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

Linking the Map Kit and Core Location Frameworks
Before you can build and run your app, you need to right-click on the Frameworks folder

in the Groups & Files pane and select Existing Frameworks… from the Add submenu. Select

CoreLocation.framework and MapKit.framework and click the Add… button.

CHAPTER 11: MapKit 390

You should now be able to build and run your application, so do that, and try it out. Try

experimenting with the code. Change the map type, add more annotations, or try

experimenting with custom annotation views.

Go East, Young Programmer
That brings us to the end of our discussion of MapKit. You’ve seen the basics of how to

use MapKit, annotations, and the reverse geocoder. You’ve seen how to create

coordinate regions and coordinate spans to specify what area the map view should

show to the user, and you’ve learned how to use MapKit’s reverse geocoder to turn a

set of coordinates into a physical address.

Now, armed with your iPhone, MapKit, and sheer determination, navigate your way one

page to the East, err… right, so that we can talk about in-application e-mail.

391

391

 Chapter

Sending Mail
Ever since the first public release of the iPhone SDK, applications have always had the

ability to send e-mail. Unfortunately, prior to iPhone SDK 3.0, doing so meant crafting a

special URL and then launching the iPhone’s Mail application, which has the side effect

of quitting your own application. This is obviously less than ideal, forcing a user to

choose between sending an e-mail and continuing to use your application. Fortunately,

the new MessageUI framework allows your user access to e-mail without leaving your

application. Let’s take a look at how this works.

This Chapter’s Application
In this chapter, we’re going to build an application that lets the user take a picture using

their iPhone’s camera or, if they don’t have a camera because they’re using an iPod

touch or the Simulator, then we’ll allow them to select an image from their photo library.

We’ll then take the resulting image and use the MessageUI framework to let our user e-

mail the picture to a friend without leaving our application.

Our application’s interface will be quite simple (Figure 12–1). It will feature a single

button to start the whole thing going, and a label to give feedback to the user, once the

e-mail attempt is made. Tapping the button will bring up the camera picker controller, in

a manner similar to the sample program in Chapter 16 of Beginning iPhone 3
Development (Apress, 2009). Once our user has taken or selected an image, they’ll be

able to crop and/or scale the image (Figure 12–2). Assuming they don’t cancel, the

image picker will return an image, and we’ll display the mail compose view (Figure 12–

3), which allows the user to compose their e-mail message. We’ll pre-populate that view

with text and the selected image. Our user will be able to select recipients and change

the subject or message body before sending the message. When they’re all done, we’ll

use the label in our interface to give feedback about whether the e-mail was sent.

12

CHAPTER 12: Sending Mail 392

Figure 12–1. Our chapter’s application has a very simple user interface consisting of a button and a single label
(not shown here)

Figure 12–2. The user can take a picture with the camera or select an image from their photo library, and then
crop and scale the image

CHAPTER 12: Sending Mail 393

Figure 12–3. After selecting and editing the image, we present the mail compose view modally and let our user
send the e-mail

CAUTION: The application in this chapter will run in the simulator, but instead of using the
camera, it will allow you to select an image from your Simulator’s photo library. If you’ve ever
used the Reset Contents and Settings menu item in the simulator, then you have probably lost
the photo album’s default contents and will have no images available. You can rectify this by
launching Mobile Safari in the simulator and navigating to an image on the Web. Make sure the
image you are looking at is not a link, but a static image. This technique will not work with a
linked image. Click and hold the mouse button with your cursor over an image, and an action
sheet will pop up. One of the options will be Save Image. This will add the selected image to your
iPhone’s photo library.

In addition, note that you will not be able to send e-mail from within the simulator. You’ll be able
to create the e-mail, and the simulator will say it sent it, but it’s all lies. The e-mail just ends up
in the circular file.

CHAPTER 12: Sending Mail 394

The MessageUI Framework
In-application e-mail services are provided by the MessageUI Framework, which is one

of the smallest frameworks in the iPhone SDK. It’s composed of exactly one class, a

view controller that lets the user send e-mail, and a protocol that defines the delegate

methods for that view controller.

Creating the Mail Compose View Controller
The view controller class is called MFMailComposeViewController, and it’s used similarly

to the way the camera picker is used. You create an instance of it, set its delegate, set

any properties that you wish to pre-populate, and then you present it modally. When the

user is done with their e-mail and taps either the Send or Cancel button, the mail

compose view controller notifies its delegate, which is responsible for dismissing the

modal view. Here’s how you create a mail compose view controller and set its delegate:

 MFMailComposeViewController *mc = [[MFMailComposeViewController alloc] init];
 mc.mailComposeDelegate = self;

Prepopulating the Subject Line
Before you present the mail compose view, you can pre-configure the various fields of

the mail compose view controller, such as the subject and recipients (to:, cc:, and bcc:),

as well as the body. You can prepopulate the subject by calling the method setSubject:

on the instance of MFMailComposeViewController, like this:

 [mc setSubject:@"Hello, World!"];

Prepopulating Recipients
E-mails can go to three types of recipients. The main recipients of the e-mail are called

the to: recipients and go on the line labeled to:. Recipients who are being cc:ed on the

e-mail go on the cc: line. If you want to include somebody on the e-mail, but not let the

other recipients know that person is also receiving the e-mail, you can use the bcc: line,

which stands for “blind carbon copy.” You can prepopulate all three of these fields when

using MFMailComposeViewController.

To set the main recipients, use the method setToRecipients: and pass in an NSArray

instance containing the e-mail addresses of all the recipients. Here’s an example:

 [mc setToRecipients:[NSArray arrayWithObjects:@"jeff@iphonedevbook.com",
 "@dave@iphonedevbook.com", nil];

Set the other two types of recipients in the same manner, though you’ll use the methods

setCcRecipients: for cc: recipients and setBccRecipients: for bcc: recipients.

 [mc setCcRecipients:[NSArray arrayWithObject:@"dave@iphonedevbook.com"]];
 [mc setBccRecipients:[NSArray arrayWithObject:@"secret@iphonedevbook.com"]];

mailto:jeff@iphonedevbook.com
mailto:"@dave@iphonedevbook.com
mailto:dave@iphonedevbook.com
mailto:secret@iphonedevbook.com

CHAPTER 12: Sending Mail 395

Setting the Message Body
You can also prepopulate the message body with any text you’d like. You can either use

a regular string to create a plain text e-mail, or you can use HTML to create a formatted

e-mail. To supply the mail compose view controller with a message body, use the

method setMessageBody:isHTML:. If the string you pass in is plain text, you should pass

NO as the second parameter, but if you’re providing HTML markup in the first argument

rather than a plain string, then you should pass YES in the second argument so your

markup will be parsed before it is shown to the user.

 [mc setMessageBody:@"Watson!!!\n\nCome here, I need you!" isHTML:NO];
 [mc setMessageBody:@"<HTML>Hello, Joe!
What do you know?</HTML>"
 isHTML:YES];

Adding Attachments
You can also add attachments to outgoing e-mails. In order to do that, you have to

provide an instance of NSData containing the data to be attached, along with the mime
type of the attachment and the file name to be used for the attachment. Mime types,

which we discussed briefly back in Chapter 10 when we talked about interacting with

web servers, are strings that define the type of data being transferred over the Internet.

They’re used when retrieving or sending files to a web server, and they’re also used

when sending e-mail attachments. To add an attachment to an outgoing e-mail, use the

method addAttachmentData:mimeType:fileName:. Here’s an example of adding an image

stored in your application’s bundle as an attachment:

 NSString *path = [[NSBundle mainBundle] pathForResource:@"blood_orange"
 ofType:@"png"];
 NSData *data = [NSData dataWithContentsOfFile:path];
 [mc addAttachmentData:data mimeType:@"image/png" fileName:@"blood_orange"];

Presenting the Mail Compose View
Once you’ve configured the controller with all the data you want prepopulated, you’ll

present the controller’s view modally, as we’ve done before:

 [self presentModalViewController:mc animated:YES];
 [mc release];

It’s common to release the controller once it’s presented, as there’s no further need to

keep it around, and your delegate method will be passed a reference to the controller

later, so you can dismiss it.

The Mail Compose View Controller Delegate Method
The mail compose view controller delegate’s method is contained in the formal protocol

MFMailComposeViewControllerDelegate. Regardless of whether the user sends or

cancels, and regardless of whether the system was able to send the message or not, the

method mailComposeController:didFinishWithResult:error: gets called. As with most

CHAPTER 12: Sending Mail 396

delegate methods, the first parameter is a pointer to the object that called the delegate

method. The second parameter is a result code that tells us the fate of the outgoing e-

mail, and the third is an NSError instance that will give us more detailed information if a

problem was encountered. Regardless of what result code you received, it is your

responsibility in this method to dismiss the mail compose view controller by calling

dismissModalViewControllerAnimated:.

If the user tapped the Cancel button, your delegate will be sent the result code

MFMailComposeResultCancelled. In that situation, the user changed their mind and

decided not to send the e-mail. If the user tapped the Send button, the result code is

going to depend on whether the MessageUI framework was able to successfully send

the e-mail. If it was able to send the message, the result code will be

MFMailComposeResultSent. If it tried, and failed, the result code will be

MFMailComposeResultFailed, in which case, you probably want to check the provided

NSError instance to see what went wrong. If the message couldn’t be sent because

there’s currently no Internet connection, but the message was saved into the outbox to

be sent later, you will get a result code of MFMailComposeResultSaved.

Here is a very simple implementation of the delegate method that just logs what

happened:

- (void)mailComposeController:(MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError*)error {
 switch (result)
 {
 case MFMailComposeResultCancelled:
 NSLog(@"Mail send canceled...");
 break;
 case MFMailComposeResultSaved:
 NSLog(@"Mail saved...");
 break;
 case MFMailComposeResultSent:
 NSLog(@"Mail sent...");
 break;
 case MFMailComposeResultFailed:
 NSLog(@"Mail send errored: %@...", [error localizedDescription]);
 break;
 default:
 break;
 }
 [self dismissModalViewControllerAnimated:YES];
}

Building the MailPic Application
Now that we have a handle on the details, the next step is to put that knowledge to work

building a mail-sending application of our own. Create a new project in Xcode using the

View-based Application template. Call the project MailPic.

CHAPTER 12: Sending Mail 397

Declaring Outlets and Actions
Once the project opens up, expand the Classes folder and single-click

MailPicViewController.h. Before we design our interface, we need to declare our outlets

and actions. Replace the contents of MailPicViewController.h with this version:

#import <UIKit/UIKit.h>
#import <MessageUI/MessageUI.h>

@interface MailPicViewController : UIViewController
 <MFMailComposeViewControllerDelegate, UIImagePickerControllerDelegate,
 UINavigationControllerDelegate> {
 UILabel *message;
}

@property (nonatomic, retain) IBOutlet UILabel *message;
- (IBAction)selectAndMailPic;
- (void)mailImage:(UIImage *)image;

@end

This is pretty straightforward. We import the header <MessageUI/MessageUI.h> so the

compiler has access to the class and protocol definitions that we need to use the

Message UI framework. Then we conform our class to three protocols. We conform to

MFMailComposeViewControllerDelegate because this class will be acting as the mail

compose view controller’s delegate. We also conform to the

UIImagePickerControllerDelegate because we’re going to use the image picker

controller to get an image, and need to be the picker’s delegate to do that. We conform

to UINavigationControllerDelegate because UIImagePickerController is a subclass of

UINavigationController, and we need to conform to this protocol to avoid compiler

warnings, even though we won’t actually implement any of that protocol’s methods.

We have a single instance variable and property for the label that we’ll use to provide

feedback to the user, as well as two methods. The first method is an action method that

will get triggered when the user taps the button on our interface. The second method will

be used to actually present the mail compose view controller so the user can send the

e-mail. We need a method separate from the image picker delegate methods to do that

because we can’t present a new modal view until the previous one has been dismissed.

We dismiss the image picker in the image picker delegate methods, and will use

performSelector:withObject:afterDelay: to call the mailImage: method after the

camera picker view has been fully dismissed.

Building the User Interface
Save MailPicViewController.h and then expand the Resources folder in the Groups &
Files pane. Double-click MailPicViewController.xib to launch Interface Builder.

From the library, drag over a Round Rect Button and place it anywhere on the window

titled View. Double-click the button and give it a title of Go. Control-drag from the button

to File’s Owner and select the selectAndMailPic action.

CHAPTER 12: Sending Mail 398

Next, grab a Label from the library and drag it to the View window as well. Place the

label above the button and resize it so it stretches from the left margin to the right

margin. After you place the label, control-drag from File’s Owner to the new label and

select the message outlet. Double-click the new label and press delete to erase the word

Label.

Save the nib file, close Interface Builder, and go back to Xcode.

Implementing the View Controller
Single-click on MailPicViewController.m. Replace the existing contents with this new

version. We’ll step through it when you’re done:

#import "MailPicViewController.h"

@implementation MailPicViewController
@synthesize message;

- (IBAction)selectAndMailPic {
 UIImagePickerControllerSourceType sourceType =
 UIImagePickerControllerSourceTypeCamera;
 if (![UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]) {
 sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 }

 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];
 picker.delegate = self;
 picker.allowsEditing = YES;
 picker.sourceType = sourceType;
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

- (void)mailImage:(UIImage *)image {
 if ([MFMailComposeViewController canSendMail]) {
 MFMailComposeViewController *mailComposer =
 [[MFMailComposeViewController alloc] init];
 mailComposer.mailComposeDelegate = self;
 [mailComposer setSubject:NSLocalizedString(@"Here's a picture...",
 @"Here's a picture...")];
 [mailComposer addAttachmentData:UIImagePNGRepresentation(image)
 mimeType:@"image/png" fileName:@"image"];
 [mailComposer setMessageBody:NSLocalizedString(
 @"Here's a picture that I took with my iPhone.",
 @"Here's a picture that I took with my iPhone.") isHTML:NO];
 [self presentModalViewController:mailComposer animated:YES];
 [mailComposer release];
 }
 else
 message.text = NSLocalizedString(@"Can't send e-mail...",
 @"Can't send e-mail...");
}

CHAPTER 12: Sending Mail 399

- (void)viewDidUnload {
 self.message = nil;
}

- (void)dealloc {
 [message release];
 [super dealloc];
}

#pragma mark -
#pragma mark Camera Picker Delegate Methods
- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 [picker dismissModalViewControllerAnimated:YES];
 UIImage *image = [info objectForKey:
 UIImagePickerControllerEditedImage];
 [self performSelector:@selector(mailImage:)
 withObject:image
 afterDelay:0.5];
 message.text = @"";
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 [picker dismissModalViewControllerAnimated:YES];
 message.text = NSLocalizedString(@"Cancelled...", @"Cancelled...");
}

#pragma mark -
#pragma mark Mail Compose Delegate Methods
- (void)mailComposeController:(MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError*)error {
 switch (result)
 {
 case MFMailComposeResultCancelled:
 message.text = NSLocalizedString(@"Canceled...", @"Canceled...");
 break;
 case MFMailComposeResultSaved:
 message.text = NSLocalizedString(@"Saved to send later...",
 @"Saved to send later...");
 break;
 case MFMailComposeResultSent:
 message.text = NSLocalizedString(@"Mail sent...", @"Mail sent...");
 break;
 case MFMailComposeResultFailed: {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Error sending mail...",
 @"Error sending mail...")
 message:[error localizedDescription]
 delegate:nil
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 message.text = NSLocalizedString(@"Send failed...", @"Send failed...");
 break;
 }

CHAPTER 12: Sending Mail 400

 default:
 break;
 }
 [self dismissModalViewControllerAnimated:YES];
}

@end

The first method in our implementation file is the action method that’s triggered when

the user taps the Go button. We first need to determine which image picker source type

to use (camera or photo library) by finding out if the device we’re running on has a

camera. If it does, we set sourceType to UIImagePickerControllerSourceTypeCamera.

Otherwise, we use UIImagePickerControllerSourceTypePhotoLibrary, which will let the

user pick an existing photo from their photo library.

- (IBAction)selectAndMailPic {
 UIImagePickerControllerSourceType sourceType =
 UIImagePickerControllerSourceTypeCamera;
 if (![UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]) {
 sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 }

Then we create the image picker, configure it, and present it to the user.

 UIImagePickerController *picker =
 [[UIImagePickerController alloc] init];
 picker.delegate = self;
 picker.allowsEditing = YES;
 picker.sourceType = sourceType;
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

The next method gets called after the user has selected an image and the image picker

view has been dismissed. In it, we first check to make sure that the device we’re on can

actually send mail. Currently, all iPhone OS devices are capable of sending mail, but that

may not always be the case, so we make sure this device supports e-mail before

launching the mail compose view.

- (void)mailImage:(UIImage *)image {
 if ([MFMailComposeViewController canSendMail]) {

Then we create an instance of MFMailComposeViewController and set its delegate to

self.

 MFMailComposeViewController *mailComposer =
 [[MFMailComposeViewController alloc] init];
 mailComposer.mailComposeDelegate = self;

We prepopulate the subject field with Here’s a picture. Our user will be able to change

this value, but they won’t have to.

 [mailComposer setSubject:NSLocalizedString(@"Here's a picture...",
 @"Here's a picture...")];

CHAPTER 12: Sending Mail 401

Next, we use a function called UIImagePNGRepresentation() that returns an NSData with

a PNG representation of a UIImage instance and pass in the image that the user took or

selected. We also set the mime type to the appropriate type for a PNG image, and give

the image file a generic name of image, since we don’t have access to the name the

camera assigned.

 [mailComposer addAttachmentData:UIImagePNGRepresentation(image)
 mimeType:@"image/png" fileName:@"image"];

We also set the body of the mail to a short message.

 [mailComposer setMessageBody:NSLocalizedString(
 @"Here's a picture that I took with my iPhone.",
 @"Here's a picture that I took with my iPhone.") isHTML:NO];

And finally, we present the mail compose view modally and clean up our memory.

 [self presentModalViewController:mailComposer animated:YES];
 [mailComposer release];
}

If the device we’re running on can’t send e-mail, we just notify the user by setting the

text field’s label.

 else
 message.text = NSLocalizedString(@"Can't send e-mail...",
 @"Can't send e-mail...");
}

There’s no point in discussing viewDidUnload or dealloc, as they are both standard

implementations, so the next method to look at is the camera picker delegate methods.

The next method gets called when the user selects a picture. In it, we dismiss the image

picker, grab the selected image out of the info dictionary, retaining it so it won’t get

autoreleased before we’re done with it. Then we use

performSelector:withObject:afterDelay: to call the mailImage: method half-a-second

in the future, which will cause it to run right after the image picker is finished dismissing.

Why the delay? We cannot put up a modal view until after our previous modal view has

finished being dismissed. Because the first modal view animates out, we tell the run loop

to wait half-a-second (that’s the default animation timing) to make sure our second view

doesn’t step on the first.

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 [picker dismissModalViewControllerAnimated:YES];
 UIImage *image = [info objectForKey:
 UIImagePickerControllerEditedImage];
 [self performSelector:@selector(mailImage:)
 withObject:image
 afterDelay:0.5];
 message.text = @"";
}

CHAPTER 12: Sending Mail 402

NOTE: In Beginning iPhone 3 Development, we implemented a different delegate method called
imagePickerController:didFinishPickingImage:editingInfo:. That method has
been deprecated in favor of the newer method imagePickerController:didFinish
PickingMediaWithInfo: that we’ve used here. They both serve the same exact function, but
the newer method is capable of returning video in addition to still images, at least on phones that
support video. For the foreseeable future, imagePickerController:didFinish
PickingImage:editingInfo: will continue to work, but you should use imagePicker
Controller:didFinishPickingMediaWithInfo: for all new development.

If the user chose not to take a picture or select an image, we just dismiss the image

picker view and set the label to identify the fact that they cancelled.

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 [picker dismissModalViewControllerAnimated:YES];
 message.text = NSLocalizedString(@"Cancelled...", @"Cancelled...");
}

Finally, the pièce de résistance, the mail compose view controller delegate method. In it,

we check the result code and update the label to inform the user whether their mail was

sent or saved or if the user cancelled. If an error was encountered, we show an alert

view with the description of the error that was encountered.

- (void)mailComposeController:(MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError*)error {
 switch (result)
 {
 case MFMailComposeResultCancelled:
 message.text = NSLocalizedString(@"Canceled...",@"Canceled...");
 break;
 case MFMailComposeResultSaved:
 message.text = NSLocalizedString(@"Saved to send later...",
 @"Saved to send later...");
 break;
 case MFMailComposeResultSent:
 message.text = NSLocalizedString(@"Mail sent...", @"Mail sent...");
 break;
 case MFMailComposeResultFailed: {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:
 NSLocalizedString(@"Error sending mail...",@"Error sending mail...")
 message:[error localizedDescription]
 delegate:nil
 cancelButtonTitle:NSLocalizedString(@"Bummer", @"Bummer")
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 message.text = NSLocalizedString(@"Send failed...", @"Send failed...");
 break;
 }
 default:
 break;
 }

CHAPTER 12: Sending Mail 403

 [self dismissModalViewControllerAnimated:YES];
}
@end

And that’s all there is to that. There’s just one more step before we can build and run it.

Linking the MessageUI Framework
Right-click the Frameworks folder in the Groups & Files pane and select Existing
Frameworks… from the Add submenu. When the frameworks sheet drops down, select the

MessageUI.framework and click the Add button. Now you are ready to build and run the

application.

THE OLD FASHIONED WAY

You may, at times, have a reason to need the old way of sending e-mail, perhaps because you need to
support older versions of the iPhone OS that don’t have the MessageUI framework available. Here is how
you would craft a mailto: URL to launch Mail.app with a new e-mail message, with the fields pre-
populated:

 NSString *to = @"mailto:jeff@iphonedevbook.com";
 NSString *cc = @"?cc=dave@iphonedevbook.com,secret@iphonedevbook.com";
 NSString *subject = @"&subject=Hello World!";
 NSString *body = @"&body=Wow, does this really work?";
 NSString *email = [NSString stringWithFormat:@"%@%@%@%@", to, cc, subject,
 body];
 email = [email stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:email]];

One way to check if your device has the MessageUI framework installed is to try to load the
MFMailComposeViewController class into memory:

 Class mailClass = (NSClassFromString(@"MFMailComposeViewController"));
 if (mailClass != nil) {
 // Use new way
 }
 else {
 // Use the old-fashioned way
 }

If you are able to load the class, you’re good to go with the technique shown in this chapter. If the class
object returns nil, then you need to use the old-fashioned method shown in this sidebar.

Mailing It In…
In the course of this chapter, you’ve seen how to use the MessageUI framework’s in-

application e-mail services. You’ve seen how to prepopulate the message compose

view with recipients, a subject, a body, and even attachments. You should now be

equipped to add e-mail to any of your applications. When you’re ready to move on, turn

the page and we’ll learn the art of iPod Fu.

mailto:jeff@iphonedevbook.com
mailto:dave@iphonedevbook.com
mailto:secret@iphonedevbook.com

CHAPTER 12: Sending Mail 404

405

405

 Chapter

iPod Library Access
The iPhone, in addition to being a phone, is a first-class music player as well. Out of the

box, people can (and do) use it to listen to music, podcasts, and audio books. Of

course, it goes without saying that the iPod touch is also a music player.

iPhone SDK programs have always been able to play sounds and music, but with the

3.0 SDK, we now have access to our user’s entire audio library. This means, for

example, that games can provide a soundtrack or allow users to create one from their

own music library. In this chapter, we’re going to explore the various aspects of finding

and playing the user’s own music.

This Chapter’s Application
In this chapter, we’re going to build an application that lets users create a queue of

songs from the music stored on their iPod touch or iPhone.

NOTE: We’ll use the term queue to describe our application’s list of songs, rather than the term
playlist. When working with the iPod library, the term playlist refers to actual playlists
synchronized from iTunes. Those playlists can be read, but they can’t be created using the SDK.
To avoid confusion, we’ll stick with the term queue.

We’ll allow users to select songs in two ways:

 Enter a search term for titles they want to add to their queue (Figure

13-1).

 Choose specific songs using the iPod’s media picker, which is

essentially the iPod application presented modally from within our

application (Figure 13-2). Using the media picker, our user can select

audio tracks by album, song, or playlist, or using any other approach

that the iPod application supports (with the exception of Cover Flow).

13

v@v
Text Box
Download at WoweBook.com

CHAPTER 13: iPod Library Access 406

Figure 13-1. Our application’s main page. The user can add songs to the list of songs to be played by entering a
partial title into the Title Search text field and pressing the Append Matching Songs button.

Figure 13-2. Users can also use the iPod media picker to select songs to add to our application’s queue.

CHAPTER 13: iPod Library Access 407

When our application launches, it will check to see if music is currently playing. If so, it

will allow that music to keep playing and will append any requested music to the end of

the list of songs to be played.

TIP: If your application needs to play a certain sound or music, you may feel that it’s appropriate
to turn off the user’s currently playing music, but you should do that with caution. If you’re just
providing a soundtrack, you really should consider letting the music that’s playing continue
playing, or at least giving the users the choice about whether to turn off their chosen music in
favor of your application’s music. It is, of course, your call, but tread lightly when it comes to
stomping on your user’s music.

As you can see in Figure 13-1, the currently selected song will have a small icon to the

left of it in the table: either a small play triangle, if it’s actually being played, or a small

pause symbol, if it’s paused. The user can play and pause, skip to the next or previous

track, seek forward and backward within the current songs, and delete items from the

queue.

The application we’ll build isn’t very practical, because everything we’re offering to our

users (and more) is already available in the iPod application on the iPhone or the Music

application on the iPod touch. But writing it will allow us to explore almost all of the

tasks your own application might ever need to perform with regard to the iPod library.

CAUTION: This chapter’s application must be run on an actual iPhone or iPod touch. The iPhone
simulator does not have access to the iPod library on your computer, and any of the calls related
to the iPod library access APIs will result in an error on the simulator.

Working with the iPod Library
The methods and objects used to access the iPod library are part of the MediaPlayer
framework, which allows applications to play both audio and video. Currently, only

audio tracks from our user’s media library can be accessed using the MediaPlayer

framework, but the framework also provides tools for playing back video files pulled

from the Web or from an application’s bundle.

The collection of audio files on your user’s device is referred to as the iPod library. This

is a generic term that applies to all the audio tracks on either an iPod touch or an

iPhone. You will interact with several classes when using the iPod library. The entire

iPod library itself is represented by the class MPMediaLibrary. You won’t use this object

very often, however. It’s primarily used only when you need to be notified of changes

made to the library while your application is running. It’s pretty rare for changes to be

made to the library while your application is running, since such changes will usually

happen as the result of synchronizing your device with your computer.

CHAPTER 13: iPod Library Access 408

A specific audio item from your iPod library is called a media item, which is represented

by the class MPMediaItem. If you wish to play songs from one of your user’s playlists,

you will use the class MPMediaPlaylist, which represents the playlists that were created

in iTunes and synchronized to your user’s device. To search for either media items or

playlists in the iPod library, you use a media query, which is represented by the class

MPMediaQuery. Media queries will return all media items or playlists that match whatever

criteria you specify. To specify criteria for a media query, you use a special media-

centric form of predicate called a media property predicate, represented by the class

MPMediaPropertyPredicate.

Another way to let your user select media items is to use the media picker controller,
which is an instance of MPMediaPickerController. The media picker controller allows

your users to use the same basic interface they are accustomed to using from the iPod

or Music application.

You can play media items using a music player controller, which is done by creating

an instance of MPMusicPlayerController. Music player controllers are not view

controllers. They are responsible for playing audio and managing a list of media items to

be played. Generally speaking, you are expected to provide any necessary user

interface elements, such as buttons to play or pause, or to skip forward or backward.

NOTE: Don’t confuse MPMusicPlayerController with MPMoviePlayerController.
Unlike MPMoviePlayerController, MPMusicPlayerController is not a view controller. A
movie player controller is a view controller that takes over the screen completely. A music player
controller, on the other hand, just controls the music, doing things like managing the queue,
stopping, starting, and skipping forward through songs. Since it is not a view controller, it has no
direct impact on your application’s user interface or visual appearance. It is responsible only for
playing and manipulating the playback of audio.

If you want to specify a list of media items to be played by a music player controller, you

use a media item collection, represented by instances of the class

MPMediaItemCollection. Media item collections are immutable collections of media

items. A media item may appear in more than one spot in the collection, meaning you

could conceivably create a collection that played “Happy Birthday to You” a thousand

times, followed by a single playing of “Rock the Casbah.” You could do that … if you

really wanted to.

Media Items
The class that represents media items, MPMediaItem, works a little differently than most

Objective-C classes. You would probably expect MPMediaItem to include properties for

things like title, artist, album name, and the like. But that’s not the case. Other than

those inherited from NSObject and the two NSCoding methods used to allow archiving,

MPMediaItem includes only a single instance method, called valueForProperty:.

CHAPTER 13: iPod Library Access 409

valueForProperty: works much like an instance of NSDictionary, only with a limited set

of defined keys. So, for example, if you wanted to retrieve a media item’s title, you

would call valueForProperty: and specify the key MPMediaItemPropertyTitle, and the

method would return an NSString instance with the audio track’s title. Media items are

immutable on the iPhone, so all MPMediaItem properties are read-only.

Some media item properties are said to be filterable. Filterable media item properties

are those that can be searched on, a process we’ll look at a little later in the chapter.

Media Item Persistent ID
Every media item has a persistent identifier (or persistent ID), which is a number

associated with the item that won’t ever change. If you need to store a reference to a

particular media item, you should store the persistent ID, because it is generated by

iTunes, and you can count on it staying the same over time.

You can retrieve the persistent ID of a media track using the property key

MPMediaItemPropertyPersistentID, like so:

 NSNumber *persistentId = [mediaItem
 valueForProperty:MPMediaItemPropertyPersistentID];

Persistent ID is a filterable property, which means that you can use a media query to find

an item based on its persistent ID. Storing the media item’s persistent ID is the surest

way to guarantee you’ll get the same object each time you search. We’ll talk about

media queries a bit later in the chapter.

Media Type
All media items have a type associated with them. Currently, media items are classified

using three categories: music, podcast, and audio book. You can determine a particular

media item’s type by asking for the MPMediaItemPropertyMediaType property, like so:

 NSNumber *type = [mediaItem valueForProperty:MPMediaItemPropertyMediaType];

Media items may consist of more than a single type. A podcast, for example, could be a

reading of an audio book. As a result, media type is implemented as a bit field

(sometimes called bit flags).

NOTE: Bit fields are commonly used in C, and Apple employs them in many places throughout
its frameworks. If you’re not completely sure how bit fields are used, you can check out Chapter
11 of Learn C on the Mac by Dave Mark (Apress, 2008). You can find a good summary of the
concept on Wikipedia as well: http://en.wikipedia.org/wiki/Bitwise_
operation.

With bit fields, a single integer datatype is used to represent multiple, nonexclusive

Boolean values, rather than a single number. To convert type (an object) into an

http://en.wikipedia.org/wiki/Bitwise_

CHAPTER 13: iPod Library Access 410

NSInteger, which is the documented integer type used to hold media types, use the

integerValue method, like so:

 NSInteger mediaType = [type integerValue];

At this point, each bit of mediaType represents a single type. To determine if a media

item is a particular type, you need to use the bitwise AND operator (&) to compare

mediaType with system-defined constants that represent the available media types. Here

is a list of the current constants:

 MPMediaTypeMusic: Used to check if the media is music.

 MPMediaTypePodcast: Used to check if the media is a podcast.

 MPMediaTypeAudioBook: Used to check if the media is an audio book.

To check if a given item contains music, for example, you would take the mediaType you

retrieved and do this:

 if (mediaType & MPMediaTypeMusic) {
 // It is music…
 }

MPMediaTypeMusic’s bits are all set to 0, except for the one bit that’s used to represent

that a track contains music, which is set to 1. When you do a bitwise AND (&) between

that constant and the retrieved mediaType value, the resulting value will have 0 in all bits

except the one that’s being checked. That bit will have a 1 if mediaType has the music bit

set, or 0 if it doesn’t. In Objective-C, an if statement that evaluates a bitwise AND or OR

operation will fire on any nonzero result; the code that follows will run if mediaType’s

music bit is set; otherwise, it will be skipped.

Media type is a filterable property, so you can specify in your media queries (which we’ll

talk about shortly) that they should return media of only specific types.

BITWISE MACROS

Not every programmer is comfortable reading code with bitwise operators. If that describes you, don’t
despair. It’s easy to create macros to turn these bitwise checks into C function macros, like so:

#define isMusic(x) (x & MPMediaTypeMusic)
#define isPodcast(x) (x & MPMediaTypePodcast)
#define isAudioBook(x) (x & MPMediaTypeAudioBook)

Once these are defined, you can check the returned type using more accessible code, like this:

if (isMusic([type integerValue])) {
 // Do something
}

CHAPTER 13: iPod Library Access 411

NOTE: additional constants are defined for media types: MPMediaTypeAnyAudio and
MPMediaTypeAny. These could theoretically be used to check the returned type; however,
there’s currently little reason to use these constants in that way. Because the only media types
currently supported are all audio, every valid media item will always check positive when
compared to either of these constants.

Filterable String Properties
There are several string properties that you might want to retrieve from a media item,

including the track’s title, its genre, the artist, and the album name. Here are the

filterable string property constants you can use:

 MPMediaItemPropertyTitle: Returns the track’s title, which usually

means the name of the song or podcast episode.

 MPMediaItemPropertyAlbumTitle: Returns the name of the track’s

album.

 MPMediaItemPropertyArtist: Returns the name of the artist who

recorded the track.

 MPMediaItemPropertyAlbumArtist: Returns the name of the principal

artist behind the track’s album.

 MPMediaItemPropertyGenre: Returns the track’s genre (e.g., Classical,

Rock, or Alternative).

 MPMediaItemPropertyComposer: Returns the name of the track’s

composer.

 MPMediaItemPropertyPodcastTitle: If the track is a podcast, returns

the podcast’s name.

Although the title and artist will almost always be known, none of these properties are

guaranteed to return a value, so it’s important to code defensively any time your

program logic includes one of these values. Although unlikely, a media track can exist

without a specified name or artist.

Here’s an example that retrieves a string property from a media item:

 NSString *title = [mediaItem valueForProperty:MPMediaItemPropertyTitle];

Nonfilterable Numeric Attributes
Nearly anything that you can determine about a song or other audio track in iTunes can

be retrieved from a media item. The numeric values in the following list are not

filterable—in other words, you can’t use them in your media property predicates. You

CHAPTER 13: iPod Library Access 412

can’t, for example, retrieve all the tracks that are longer than four minutes in length. But

once you have a media item, there’s a wealth of information available about that item.

 MPMediaItemPropertyPlaybackDuration: Returns the length of the track

in seconds.

 MPMediaItemPropertyAlbumTrackNumber: Returns the number of this

track on its album.

 MPMediaItemPropertyAlbumTrackCount: Returns the number of tracks

on this track’s album.

 MPMediaItemPropertyDiscNumber: If the track is from a multiple-album

collection, returns the track’s disc number.

 MPMediaItemPropertyDiscCount: If the track is from a multiple-album

collection, returns the total number of discs in that collection.

 MPMediaItemPropertyPlayCount: Returns the total number of times that

this track has been played.

 MPMediaItemPropertySkipCount: Returns the total number of times this

track has been skipped.

 MPMediaItemPropertyRating: Returns the track’s rating, or 0 if the track

has not been rated.

Numeric attributes are always returned as instances of NSNumber. The track duration is

an NSTimeInterval, which can be retrieved from NSNumber by using the doubleValue

method. The rest are unsigned integers that can be retrieved using the

unsignedIntegerValue method.

Here are a few examples of retrieving numeric properties from a media item:

 NSNumber *durationNum = [mediaItem valueForProperty:
 MPMediaItemPropertyPlaybackDuration];
 NSTimeInterval duration = [durationNum doubleValue];

 NSNumber *trackNum = [mediaItem valueForProperty:
 MPMediaItemPropertyAlbumTrackNumber];
 NSUInteger trackNumber = [trackNum unsignedIntegerValue];

Retrieving Lyrics
If a media track has lyrics associated with it, you can retrieve those using the property

key MPMediaItemPropertyLyrics. The lyrics will be returned in an instance of NSString,

like so:

 NSString *lyrics = [mediaItem valueForProperty:MPMediaItemPropertyLyrics];

CHAPTER 13: iPod Library Access 413

Retrieving Album Artwork
Some media tracks have a piece of artwork associated with them. In most instances,

this will be the track’s album’s cover picture, though it could be something else. You

retrieve the album artwork using the property key MPMediaItemPropertyArtwork, which

returns an instance of the class MPMediaItemArtwork. The MPMediaItemArtwork class has

a method that returns an instance of UIImage to match a specified size. Here’s some

code to get the album artwork for a media item that would fit into a 100-by-100 pixel

view:

 MPMediaItemArtwork *art = [mediaItem
 valueForProperty:MPMediaItemPropertyArtwork];
 CGSize imageSize = {100.0, 100.0};
 UIImage *image = [art imageWithSize:imageSize];

Retrieving the Date Last Played
One last piece of data that you can retrieve from a media item is the date and time when

it was last played. You can retrieve that in the form of an NSDate instance by using the

property key MPMediaItemPropertyLastPlayedDate, like so:

 NSDate *lastPlayed = [mediaItem
 valueForProperty:MPMediaItemPropertyLastPlayedDate];

Media Item Collections
Media items can be grouped into collections, creatively called media item collections. In

fact, this is how you specify a list of media items to be played by the music player

controller. Media item collections, which are represented by the class

MPMediaItemCollection, are immutable collections of media items. You can create new

media item collections, but you can’t change the contents of the collection once it has

been created.

Creating a New Collection
The easiest way to create a media item collection is to put all the media items you want

to be in the collection into an instance of NSArray, in the order you want them. You can

then pass the instance of NSArray to the factory method collectionWithItems:, like so:

 NSArray *items = [NSArray arrayWithObjects:mediaItem1, mediaItem2, nil];
 MPMediaItemCollection *collection = [MPMediaItemCollection
 collectionWithItems:items];

Retrieving Media Items
To retrieve a specific media item from a media item collection, you use the instance

method items, which returns an NSArray instance containing all of the media items in the

CHAPTER 13: iPod Library Access 414

order they exist in the collection. If you want to retrieve the specific media item at a

particular index, for example, you would do this:

 MPMediaItem *item = [[mediaCollection items] objectAtIndex:5];

Creating Derived Collections
Because media item collections are immutable, you can’t add items to a collection, nor

can you append the contents of another media item collection onto another one. Since

you can get to an array of media items contained in a collection using the instance

method items, however, you can make a mutable copy of the items array, manipulate

the mutable array’s contents, and then create a new collection based on the modified

array.

Here’s some code that appends a single media item onto the end of an existing

collection:

 NSMutableArray *items = [[originalCollection items] mutableCopy];
 [items addObject:mediaItem];
 MPMediaItemCollection *newCollection = [MPMediaItemCollection
 collectionWithItems:items];
 [items release];

Similarly, to combine two different collections, you would combine their items and

create a new collection from the combined array:

 NSMutableArray *items = [[firstCollection items] mutableCopy];
 [items addObjectsFromArray:[secondCollection items]];
 MPMediaItemCollection *newCollection = [MPMediaItemCollection
 collectionWithItems:items];
 [items release];

To delete an item or items from an existing collection, you can use the same basic

technique. You can retrieve a mutable copy of the items contained in the collection,

delete the ones you want to remove, then create a new collection based on the modified

copy of the items, like so:

 NSMutableArray *items = [[originalCollection items] mutableCopy];
 [items removeObject:mediaItemToDelete];
 MPMediaItemCollection *newCollection = [MPMediaItemCollection
 collectionWithItems:items];
 [items release];

Media Queries and Media Property Predicates
To search for media items in the iPod library, you use media queries, which are

instances of the class MPMediaQuery. A number of factory methods can be used to

retrieve media items from the library sorted by a particular property. For example, if you

wanted a list of all media items sorted by artist, you would use the artistsQuery class

method to create an instance of MPMediaQuery configured, like this:

 MPMediaQuery *artistsQuery = [MPMediaQuery artistsQuery];

CHAPTER 13: iPod Library Access 415

Table 13-1 lists the factory methods on MPMediaQuery.

Table 13-1. MPMediaQuery Factory Methods

Factory Method Included Media Types Grouped/Sorted By

albumsQuery Music Album

artistsQuery Music Artist

audiobooksQuery Audio Books Title

compilationsQuery Any Album*

composersQuery Any Composer

genresQuery Any Genre

playlistsQuery Any Playlist

podcastsQuery Podcasts Podcast Title

songsQuery Music Title

*Includes only albums with MPMediaItemPropertyIsCompilation set to YES.

These factory methods are useful for displaying the entire contents of the user’s library

that meet preset conditions. That said, you will often want to restrict the query to an

even smaller subset of items. You can do that using a media property predicate. Media

property predicates can be created on any of the filterable properties of a media item,

including the persistent ID, media type, or any of the string properties (like title, artist, or

genre).

To create a media property predicate on a filterable property, use the class

MPMediaPropertyPredicate. Create new instances using the factory method

predicateWithValue:forProperty:comparisonType:. Here, for example, is how you

would create a media property predicate that searched for all songs with the title

“Happy Birthday”:

 MPMediaPropertyPredicate *titlePredicate =
 [MPMediaPropertyPredicate predicateWithValue:@"Happy Birthday"
 forProperty:MPMediaItemPropertyTitle
 comparisonType:MPMediaPredicateComparisonContains];

The first value you pass—in this case, @"Happy Birthday"—is the comparison value. The

second value is the filterable property you want that comparison value compared to. By

specifying MPMediaItemPropertyTitle, we’re saying we want the song titles compared to

the string "Happy Birthday". The last item specifies the type of comparison to do. You

can pass MPMediaPredicateComparisonEqualTo to look for an exact match to the

specified string, or MPMediaPredicateComparisonContains to look for any item that

contains the passed value as a substring.

CHAPTER 13: iPod Library Access 416

NOTE: Media queries are always case-insensitive, regardless of the comparison type used.
Therefore, the preceding example would also return songs called “HAPPY BIRTHDAY” and
“Happy BirthDAY.”

Because we’ve passed MPMediaPredicateComparisonContains, this predicate would

match “Happy Birthday, the Opera” and “Slash Sings Happy Birthday,” in addition to

plain old “Happy Birthday.” Had we passed MPMediaPredicateComparisonEqualTo, then

only the last one—the exact match—would be found.

You can create and pass multiple media property predicates to a single query. If you do,

the query will use the AND logical operator and return only the media items that meet all

of your predicates.

To create a media query based on media property predicates, you use the init method

initWithFilterPredicates:, and pass in an instance of NSSet containing all the

predicates you want it to use, like so:

 MPMediaQuery *query = [[MPMediaQuery alloc] initWithFilterPredicates:[NSSet
 setWithObject:titlePredicate]];

Once you have a query—whether it was created manually or retrieved using one of the

factory methods—there are two ways you can execute the query and retrieve the items

to be displayed:

 You can use the items property of the query, which returns an

instance of NSArray containing all the media items that meet the

criteria specified in your media property predicates, like so:

 NSArray *items = query.items;

 You can use the property collections to retrieve the objects grouped

by one of the filterable properties. You can tell the query which

property to group the items by setting the groupingType property to

the property key for the filterable attribute you want it grouped by. If

you don’t set groupingType, it will default to grouping by title.

When you access the collections property, the query will instead return an array of

MPMediaItemCollections, with one collection for each distinct value in your grouping

type. So, if you specified a groupingType of MPMediaGroupingArtist, for example, the

query would return an array with one MPMediaItemCollection for each artist who has at

least one song that matches your criteria. Each collection would contain all the songs by

that artist that meet the specified criteria. Here’s what that might look like in code:

 query.groupingType = MPMediaGroupingArtist;
 NSArray *collections = query.collections;
 for (MPMediaItemCollection *oneCollection in collections) {
 // oneCollection has all songs by one artist that meet criteria
 }

CHAPTER 13: iPod Library Access 417

You need to be very careful with media queries. They are synchronous and, if performed

in an action or delegate method, will block the main thread while the search is

performed, so if you specify a query that returns 100,000 media items, your user

interface is going to hiccup while those items are found, retrieved, and stored in

collections or an array. If you are using a media query that might return more than a

dozen or so media items, you might want to consider moving that action off the main

thread. We’ll look at how to move operations off of the main thread in Chapter 14.

The Media Picker Controller
If you want to let your users select specific media items from their library, you’ll want to

use the media picker controller. The media picker controller lets your users choose

songs from their iPod library using an interface that’s nearly identical to the one in the

iPod or Music application they’re already used to using. Your users will not be able to

use Cover Flow, but they will be able to select from lists sorted by song title, artist,

playlist, album, and genre, just as they can when selecting music in the iPod or Music

application (Figure 13-2).

The media picker controller is extremely easy to use. It works just like many of the other

provided controller classes that we’ve covered in the previous chapters, such as the

image picker controller and the mail compose view controller that we used in Chapter

12. Create an instance of MPMediaPickerController, assign it a delegate, and then

present it modally, like so:

 MPMediaPickerController *picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeMusic];
 picker.delegate = self;
 [picker setAllowsPickingMultipleItems:YES];
 picker.prompt = NSLocalizedString(@"Select items to play",
 @"Select items to play");
 [self presentModalViewController:picker animated:YES];
 [picker release];

When you create the media picker controller instance, you need to specify a media type.

This can be one of the three values we talked about earlier—MPMediaTypeMusic,

MPMediaTypePodcast, or MPMediaTypeAudioBook—or you can use MPMediaTypeAny to let

your users select any media item in their library. You can also pass

MPMediaTypeAnyAudio, which will currently return any media item, but if future versions of

the SDK expand the media types that can be accessed using a media query, then the

query will exclude those other types that might be added, such as video.

You can also use the bitwise OR (|) operator to let your user select any combination of

media types. For example, if you wanted to let your user select from podcasts and audio

books, but not music, you would create your picker like this:

 MPMediaPickerController *picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypePodcast | MPMediaTypeAudioBook];

By using the bitwise OR operator with these constants, you end up passing an integer

that has the bits representing both of these media types set to 1 and all the other bits

set to 0.

CHAPTER 13: iPod Library Access 418

Also notice that we need to tell the media picker controller to allow the user to select

multiple items. The default behavior of the media picker is to let the user choose one,

and only one, item. If that’s the behavior you want, then you don’t need to do anything,

but if you want to let the user select multiple items, you must explicitly tell it so.

The media picker also has a property called prompt, which is a string that will be

displayed above the navigation bar in the picker (see the top of Figure 13-2). This is

optional, but generally a good idea.

The media picker controller’s delegate needs to conform to the protocol

MPMediaPickerControllerDelegate. This defines two methods: one that is called if the

user taps the Cancel button and another that is called if the user chooses one or more

songs.

Handling Media Picker Cancels
If, after you present the media picker controller, the user hits the Cancel button, the

delegate method mediaPickerDidCancel: will be called. You must implement this

method on the media picker controller’s delegate, even if you don’t have any processing

that needs to be done when the user cancels, since you must dismiss the modal view

controller. Here is a minimal, but fairly standard, implementation of that method:

- (void) mediaPickerDidCancel: (MPMediaPickerController *) mediaPicker {
 [self dismissModalViewControllerAnimated: YES];
}

Handling Media Picker Selections
If the user selected one or more media items using the media picker controller, then the

delegate method mediaPicker:didPickMediaItems: will be called. This method must be

implemented, not only because it’s the delegate’s responsibility to dismiss the media

picker controller, but also because this method is the only way to know which tracks

your user selected. The selected items are grouped in a media item collection.

Here’s a very simple example implementation of mediaPicker:didPickMediaItems: that

assigns the returned collection to one of the delegate’s properties:

- (void)mediaPicker: (MPMediaPickerController *) mediaPicker
 didPickMediaItems: (MPMediaItemCollection *) theCollection {
 [self dismissModalViewControllerAnimated: YES];
 self.collection = theCollection;
}

The Music Player Controller
The last component used to access the iPod library is the music player controller, which

allows you to play a queue of media items by specifying either a media item collection or

a media query. As we stated earlier, the music player controller has no visual elements.

It’s an object that plays the audio. It allows you to manipulate the playback of that audio

CHAPTER 13: iPod Library Access 419

by skipping forward or backward, telling it which specific media item to play, adjusting

the volume, or skipping to a specific playback time in the current item.

The iPod library offers two completely different kinds of music player controllers: the

iPod music player and the application music player. The way you use them is identical,

but there’s a key difference in how they work. The iPod music player is the one that’s

used by the iPod and Music apps. As is the case with those apps, when you quit your

app while music is playing, the music continues playing. In addition, when the user is

listening to music and starts up an app that uses the iPod music player, the iPod music

player will keep playing that music. In contrast, the application music player will kill the

music when your app terminates.

There’s a bit of a gotcha here in that both the iPod and the application music player

controllers can be used at the same time. If you use the application music player

controller to play audio, and the user is currently listening to music, both will play

simultaneously. This may or may not be what you want to happen, so you will usually

want to check the iPod music player to see if there is music currently playing, even if you

actually plan to use the application music player controller for playback.

Creating the Music Player Controller
To get either of the music player controllers, use one of the factory methods on

MPMusicPlayerController. To retrieve the iPod music player, use the method

iPodMusicPlayer, like so:

MPMusicPlayerController *thePlayer = [MPMusicPlayerController iPodMusicPlayer];

Retrieving the application music player controller is done similarly, using the

applicationMusicPlayer method instead, like this:

MPMusicPlayerController *thePlayer = [MPMusicPlayerController
 applicationMusicPlayer];

Determining If the Music Player Controller Is Playing
Once you create an application music player, you’ll need to give it something to play.

But if you grab the iPod music player controller, it could very well already be playing

something. You can determine if it is by looking at the playbackState property of the

player. If it’s currently playing, it will be set to MPMusicPlaybackStatePlaying.

 if (player.playbackState == MPMusicPlaybackStatePlaying) {
 // playing
 }

Specifying the Music Player Controller’s Queue
There are two ways to specify the music player controller’s queue of audio tracks:

provide a media query or provide a media item collection. If you provide a media query,

the music player controller’s queue will be set to the media items returned by the items

property. If you provide a media item collection, it will use the collection you pass as its

CHAPTER 13: iPod Library Access 420

queue. In either case, you will replace the existing queue with the items in the query or

collection you pass in. Setting the queue will also reset the current track to the first item

in the queue.

To set the music player’s queue using a query, use the method setQueueWithQuery:. For

example, here’s how you would set the queue to all songs, sorted by artist:

 MPMusicPlayerController *player = [MPMusicPlayerController iPodMusicPlayer];
 MPMediaQuery *artistsQuery = [MPMediaQuery artistsQuery];
 [player setQueueWithQuery:artistsQuery];

Setting the queue with a media item collection is accomplished with the method

setQueueWithItemCollection:, like so:

 MPMusicPlayerController *player = [MPMusicPlayerController iPodMusicPlayer];
 NSArray *items = [NSArray arrayWithObjects:mediaItem1, mediaItem2, nil];
 MPMediaItemCollection *collection = [MPMediaItemCollection
 collectionWithItems:items];
 [items setQueueWithItemCollection:collection];

Unfortunately, there’s currently no way to retrieve the music player controller’s queue

using public APIs. That means you will generally need to keep track of the queue

independently of the music player controller if you want to be able to manipulate the

queue.

Getting or Setting the Currently Playing Media Item
You can get or set the current song using the nowPlayingItem property. This lets you

determine which track is already playing if you’re using the iPod music player controller,

and lets you specify a new song to play. Note that the media item you specify must

already be in the music player controller’s queue. Here’s how you retrieve the currently

playing item:

 MPMediaItem *currentTrack = player.nowPlayingItem;

To switch to a different track, do this:

 player.nowPlayingItem = newTrackToPlay; // must be in queue already

Skipping Tracks
The music player controller allows you to skip forward one song using the method

skipToNextItem, or to skip back to the previous song using skipToPreviousItem. If there

is no next or previous song to skip to, the music player controller stops playing. The

music player controller also allows you to move back to the beginning of the current

song using skipToBeginning.

Here is an example of all three methods:

 [player skipToNextItem];
 [player skipToPreviousItem];
 [player skipToBeginning];

CHAPTER 13: iPod Library Access 421

Seeking
When you’re using your iPhone, iPod touch, or iTunes to listen to music, if you press

and hold the forward or back button, the music will start seeking forward or backward,

playing the music at an ever-accelerating pace. This lets you, for example, stay in the

same track, but skip over a part you don’t want to listen to, or skip back to something

you missed. This same functionality is available through the music player controller

using the methods beginSeekingForward and beginSeekingBackward. With both

methods, you stop the process with a call to endSeeking.

Here is a set of calls that demonstrate seeking forward and stopping, and then seeking

backwards and stopping:

 [player beginSeekingForward];
 [player endSeeking];

 [player beginSeekingBackward];
 [player endSeeking];

Playback Time
Not to be confused with payback time (something we’ve dreamt of for years, ever since

they replaced the excellent Dick York with the far blander Dick Sargent), playback time

specifies how far into the current song we currently are. For example, if the current song

has been playing for five seconds, then the playback time will be 5.0.

You can retrieve and set the current playback time using the property

currentPlaybackTime. You might use this, for example, when using an application music

player controller, to resume a song at exactly the point where it was stopped when the

application was last quit. Here’s an example of using this property to skip forward ten

seconds in the current song:

 NSTimeInterval currentTime = player.currentPlaybackTime;
 MPMediaItem *currentSong = player.nowPlayingItem;
 NSNumber *duration = [currentSong valueForProperty:
 MPMediaItemPropertyPlaybackDuration];
 currentTime += 10.0;
 if (currentTime > [duration doubleValue])
 currentTime = [duration doubleValue];
 player.currentPlaybackTime = currentTime;

Notice that we check the duration of the currently playing song to make sure we don’t

pass in an invalid playback time.

Repeat and Shuffle Modes
Music player controllers have ordered queues of songs and, most of the time, they play

those songs in the order they exist in the queue, playing from the beginning of the queue

to the end and then stopping. Your user can change this behavior by setting the repeat

and shuffle properties in the iPod or Music application. You can also change the

CHAPTER 13: iPod Library Access 422

behavior by setting the music player controller’s repeat and shuffle modes, represented

by the properties repeatMode and shuffleMode. There are four repeat modes:

 MPMusicRepeatModeDefault: Uses the repeat mode last used in the

iPod or Music application.

 MPMusicRepeatModeNone: Don’t repeat at all. When the queue is done,

stop playing.

 MPMusicRepeatModeOne: Keep repeating the currently playing track until

your user goes insane. Ideal for playing “It’s a Small World.”

 MPMusicRepeatModeAll: When the queue is done, start over with the

first track.

There are also four shuffle modes:

 MPMusicShuffleModeDefault: Use the shuffle mode last used in the

iPod or Music application.

 MPMusicShuffleModeOff: Don’t shuffle at all—just play the songs in the

queue order.

 MPMusicShuffleModeSongs: Play all the songs in the queue in random

order.

 MPMusicShuffleModeAlbums: Play all the songs from the currently

playing song’s album in random order.

Here is an example of turning off both repeat and shuffle:

 player.repeatMode = MPMusicRepeatNone;
 player.shuffleMode = MPMusicShuffleModeOff;

Adjusting the Music Player Controller’s Volume
The music player controller lets you manipulate the volume at which it plays the items in

its queue. The volume can be adjusted using the property volume, which is a clamped

floating-point value. Clamped values store numbers between 0.0 and 1.0. In the case of

volume, setting the property to 1.0 means play the tracks at the maximum volume, and a

value of 0.0 means turn off the volume. Any value between those two extremes

represents a different percentage of the maximum volume, so setting volume to 0.5 is

like turning a volume knob halfway up.

CAUTION: Setting volume to 1.1 will not make the volume any louder than setting it to 1.0.
Despite what Nigel might have told you, you can’t set the volume to 11.

Here’s how you would set a player to maximum volume:

 player.volume = 1.0;

And here’s how you would set the volume to its midpoint:

CHAPTER 13: iPod Library Access 423

 player.volume = 0.5;

Music Player Controller Notifications
Music player controllers are capable of sending out notifications when any of three

things happen:

 When the playback state (playing, stopped, paused, seeking, etc.)

changes, the music player controller can send out the
MPMusicPlayerControllerPlaybackStateDidChangeNotification

notification.

 When the volume changes, it can send out the

MPMusicPlayerControllerVolumeDidChangeNotification notification.

 When a new track starts playing, it can send out the
MPMusicPlayerControllerNowPlayingItemDidChangeNotification

notification.

Note that music player controllers don’t send any notifications by default. You must tell

an instance of MPMusicPlayerController to start generating notifications by calling the

method beginGeneratingPlaybackNotifications. To have the controller stop generating

notifications, call the method endGeneratingPlaybackNotifications.

If you need to receive any of these notifications, you first implement a handler method

that takes one argument, an NSNotification *, and then register with the notification

center for the notification of interest. For example, if we wanted a method to fire

whenever the currently playing item changed, we might implement a method called

nowPlayingItemChanged:, like so:

 - (void)nowPlayingItemChanged:(NSNotification *)notification {
 NSLog(@"A new track started");
 }

To start listening for those notifications, we would register with the notification for the

type of notification we’re interested in, and then have that music player controller start

generating the notifications:

 NSNotificationCenter *notificationCenter = [NSNotificationCenter defaultCenter];
 [notificationCenter addObserver:self
 selector:@selector(nowPlayingItemChanged:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:player];
 [player beginGeneratingPlaybackNotifications];

Once we do this, any time the track changes, our nowPlayingItemChanged: method will

be called by the notification center.

When we’re finished and no longer need the notifications, we unregister and tell the

music player controller to stop generating notifications:

 NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
 [center removeObserver:self
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification

CHAPTER 13: iPod Library Access 424

 object:player];
 [player endGeneratingPlaybackNotifications];

Now that we have all that theory out of the way, let’s build something!

Building the Simple Player Application
Now, we’ll create an application that leverages most of the iPod library functionality that

was added with iPhone SDK 3.0. Our application will retrieve the iPod music player

controller, and allow our users to add songs to the playlist by specifying partial song

titles to search for or by using the media picker. We’ll provide rudimentary playback

controls that will let users pause and play music, as well as skip forward and backward.

By tapping and holding the forward or backward button, they will be able to seek

forward and backward in the currently playing song. We’ll also provide a table that

shows the current queue of songs to be played and allows users to remove songs from

the queue.

NOTE: As a reminder, the simulator does not yet support the iPod library functionality. To get the
most out of the Simple Player application, you’ll want to run it on your iPhone or iPod touch,
which means signing up for one of Apple’s paid iPhone Developer Programs. If you have not
already done that, you might want to take a short break and head over to
http://developer.apple.com/iphone/program/ and check it out.

In Xcode, press N to create a new project. Select the View-based Application

project template and name the new project Simple Player. Look in the project archives

that came with the book, in the folder 13 – Simple Player, and find the image files called

empty.png, nexttrack.png, pause_small.png, pause.png, play_small.png, play.png,

prevtrack.png, and remove.png. Drag these to the Resources folder in the Groups &
Files pane to add them to your project.

Expand the Classes and Resources folder, and then single-click the Classes folder to

select it.

Adding Media Item Collection Functionality
MPMediaItemCollections are immutable, but we need the ability to manipulate

collections in our application. So, we’ll add a category on MPMediaItemCollection that

will make it easier to create new collections based on existing collections. Press N to

bring up the new file assistant, select Objective-C class under the Cocoa Touch Class

heading, and make sure the Subclass of pop-up menu is set to NSObject. Name this

new file MPMediaItemCollection-Utils.m, and make sure you also have it create

MPMediaItemCollection-Utils.h.

Once the new files have been created, single-click MPMediaItemCollection-Utils.h in the

Groups & Files pane and replace the current file with the following:

http://developer.apple.com/iphone/program

CHAPTER 13: iPod Library Access 425

#import <Foundation/Foundation.h>
#import <MediaPlayer/MediaPlayer.h>

@interface MPMediaItemCollection(Utils)
/** Returns the first media item in the collection.
 */
- (MPMediaItem *)firstMediaItem;

/** Returns the last media item in the collection.
 */
- (MPMediaItem *)lastMediaItem;

/** This method will return the item in this media collection at a specific index.
 */
- (MPMediaItem *)mediaItemAtIndex:(NSUInteger)index;

/** Given a particular media item, this method will return the next media item in
 the collection. If there are multiple copies of the same media item in the list,
 it will return the one after the first occurrence.
 */
- (MPMediaItem *)mediaItemAfterItem:(MPMediaItem *)compare;

/** Returns the title of the media item at a given index.
 */
- (NSString *)titleForMediaItemAtIndex:(NSUInteger)index;

/** Returns YES if the given media item occurs at least once in this collection.
 */
- (BOOL)containsItem:(MPMediaItem *)compare;

/** Creates a new collection by appending otherCollection to the end of this
 collection.
 */
- (MPMediaItemCollection *)collectionByAppendingCollection:
 (MPMediaItemCollection *)otherCollection;

/** Creates a new collection by appending an array of media items to the end of this
 collection.
 */
- (MPMediaItemCollection *)collectionByAppendingMediaItems:(NSArray *)items;

/** Creates a new collection by appending a single media item to the end of this
collection.
 */
- (MPMediaItemCollection *)collectionByAppendingMediaItem:(MPMediaItem *)item;

/** Creates a new collection based on this collection, but excluding the specified
items.
 */
- (MPMediaItemCollection *)collectionByDeletingMediaItems:(NSArray *)itemsToRemove;

/** Creates a new collection based on this collection, but which doesn't include the
specified media item.
 */
- (MPMediaItemCollection *)collectionByDeletingMediaItem:
 (MPMediaItem *)itemToRemove;

CHAPTER 13: iPod Library Access 426

/** Creates a new collection based on this collection, but excluding the media item
 at the specified index.
 */
- (MPMediaItemCollection *)collectionByDeletingMediaItemAtIndex:(NSUInteger)index;

/** Creates a new collection based on this collection, but excluding the media
 items starting with the objects at index from and ending with
 to.
 */
- (MPMediaItemCollection *)collectionByDeletingMediaItemsFromIndex:(NSUInteger)from
 toIndex:(NSUInteger)to;
@end

NOTE: You don’t need to type in the JavaDoc-style comments. We often include them with
categories and other reusable code, but if you want to save yourself some typing time, we won’t
be offended if you choose to leave them out.

The method names in this header file are fairly self-explanatory. The first four items are

shortcut methods to allow easier access to specific media items in the collection. The

fifth method, titleForMediaItemAtIndex:, give us a one-line way to retrieve the title of a

track, which we’ll use later to display the titles from the queue in our table view. The rest

of the methods create new collections in various ways. They will allow us to create new

collections by combining collections or by adding or deleting items from an existing

collection. Make sure you save MPMediaItemCollection-Utils.h.

Now, switch over to MPMediaItemCollection-Utils.m and replace its contents with the

following code:

#import "MPMediaItemCollection-Utils.h"

@implementation MPMediaItemCollection(Utils)
- (MPMediaItem *)firstMediaItem {
 return [[self items] objectAtIndex:0];
}

- (MPMediaItem *)lastMediaItem {
 return [[self items] lastObject];
}

- (MPMediaItem *)mediaItemAtIndex:(NSUInteger)index {
 return [[self items] objectAtIndex:index];
}

- (MPMediaItem *)mediaItemAfterItem:(MPMediaItem *)compare {
 NSArray *items = [self items];

 for (MPMediaItem *oneItem in items) {
 if ([oneItem isEqual:compare]) {
 // If last item, there is no index + 1
 if (![[items lastObject] isEqual: oneItem])
 return [items objectAtIndex:[items indexOfObject:oneItem] + 1];
 }
 }

CHAPTER 13: iPod Library Access 427

 return nil;
}

- (NSString *)titleForMediaItemAtIndex:(NSUInteger)index {
 MPMediaItem *item = [[self items] objectAtIndex:index];
 return [item valueForProperty:MPMediaItemPropertyTitle];
}

- (BOOL)containsItem:(MPMediaItem *)compare {
 NSArray *items = [self items];

 for (MPMediaItem *oneItem in items) {
 if ([oneItem isEqual:compare])
 return YES;
 }
 return NO;
}

- (MPMediaItemCollection *)collectionByAppendingCollection:
 (MPMediaItemCollection *)otherCollection {
 return [self collectionByAppendingMediaItems:[otherCollection items]];
}

- (MPMediaItemCollection *)collectionByAppendingMediaItems:(NSArray *)items {
 if ([items count] == 0)
 return self;
 NSMutableArray *appendCollection = [[[self items] mutableCopy] autorelease];
 [appendCollection addObjectsFromArray:items];
 return [MPMediaItemCollection collectionWithItems:appendCollection];
}

- (MPMediaItemCollection *)collectionByAppendingMediaItem:(MPMediaItem *)item {
 if (item == nil)
 return nil;

 return [self collectionByAppendingMediaItems:[NSArray arrayWithObject:item]];
}

- (MPMediaItemCollection *)collectionByDeletingMediaItems:(NSArray *)itemsToRemove {
 if (itemsToRemove == nil || [itemsToRemove count] == 0)
 return [[self copy] autorelease];
 NSMutableArray *items = [[[self items] mutableCopy] autorelease];
 [items removeObjectsInArray:itemsToRemove];
 return [MPMediaItemCollection collectionWithItems:items];
}

- (MPMediaItemCollection *)collectionByDeletingMediaItem:
 (MPMediaItem *)itemToRemove {
 if (itemToRemove == nil)
 return [[self copy] autorelease];

 NSMutableArray *items = [[[self items] mutableCopy] autorelease];
 [items removeObject:itemToRemove];
 return [MPMediaItemCollection collectionWithItems:items];
}

- (MPMediaItemCollection *)collectionByDeletingMediaItemAtIndex:(NSUInteger)index {

CHAPTER 13: iPod Library Access 428

 NSMutableArray *items = [[[self items] mutableCopy] autorelease];
 [items removeObjectAtIndex:index];
 return [items count] > 0 ? [MPMediaItemCollection collectionWithItems:items] :
 nil;
}

- (MPMediaItemCollection *)collectionByDeletingMediaItemsFromIndex:(NSUInteger)from
 toIndex:(NSUInteger)to {
 // Ensure from is before to
 if (to < from) {
 NSUInteger temp = from;
 to = from;
 from = temp;
 }

 NSMutableArray *items = [[[self items] mutableCopy] autorelease];
 [items removeObjectsInRange:NSMakeRange(from, to - from)];
 return [MPMediaItemCollection collectionWithItems:items];
}

@end

There’s nothing here we haven’t talked about before, but you should browse through the

methods and make sure you understand what they’re doing. They all use the same basic

approach, accessing or copying the items property of self to retrieve a specific item or

to create a new collection.

Save MPMediaItemCollection-Utils.m before continuing.

Declaring Outlets and Actions
Single-click Simple_PlayerViewController.h and replace its contents with the following

code:

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

@interface Simple_PlayerViewController : UIViewController
 <MPMediaPickerControllerDelegate, UITableViewDelegate, UITableViewDataSource> {
 UITextField *titleSearch;
 UIButton *playPauseButton;
 UITableView *tableView;

 MPMusicPlayerController *player;
 MPMediaItemCollection *collection;
 MPMediaItem *nowPlaying;
 BOOL collectionModified;
 NSTimeInterval pressStarted;
}

@property (nonatomic, retain) IBOutlet UITextField *titleSearch;
@property (nonatomic, retain) IBOutlet UIButton *playPauseButton;
@property (nonatomic, retain) IBOutlet UITableView *tableView;

@property (nonatomic, retain) MPMusicPlayerController *player;
@property (nonatomic, retain) MPMediaItemCollection *collection;

CHAPTER 13: iPod Library Access 429

@property (nonatomic, retain) MPMediaItem *nowPlaying;

- (IBAction)doTitleSearch;
- (IBAction)showMediaPicker;
- (IBAction)backgroundClick;

- (IBAction)seekBackward;
- (IBAction)previousTrack;
- (IBAction)seekForward;
- (IBAction)nextTrack;
- (IBAction)playOrPause;
- (IBAction)removeTrack:(id)sender;

- (void)nowPlayingItemChanged:(NSNotification *)notification;

@end

We start by conforming our class to three protocols: MPMediaPickerControllerDelegate,

because we’re going to be using MPMediaPickerController to let our user picks songs,

and UITableViewDelegate and UITableViewDataSource, because our controller will be

acting as the delegate and datasource for the table that shows the current queue of

songs.

Following that, we have three instance variables that will be used as outlets to user

interface items. One outlet will point to the text field where the user can enter title search

values. We’ll need a reference to that field so we can retrieve the typed value, and so

that we can have it resign first responder status when we want the keyboard to retract.

We also need a reference to the play/pause button so we can change the image it

shows, toggling between a play icon and a pause icon. When a song is playing, we want

to show the pause icon, and when it’s stopped or paused, we want to show a play icon.

The last outlet will be to the table view, which we’ll need whenever our song queue

changes so we can tell it to reload its data to let our users see the changes.

Next up is an instance of MPMusicPlayerController. This will be a pointer to the iPod

music player controller, which we’ll retrieve in viewDidLoad:.

The next three items work together. The first, collection, contains the current queue of

songs. The second item, nowPlaying, is a reference to the song that’s currently playing.

collection will usually be player’s queue. There’s an exception to that, however. When

music is playing, the only way to add items to or remove items from the music player

controller’s queue is to create a new collection containing both the existing queue of

songs and the new ones to be added or deleted, and then setting that collection as the

player’s queue, replacing the existing queue. Doing that while a song is playing will

cause a small skip in playback, even if you save the currently playing item and the

current playback time, and restore them after installing the new queue. As a result, we’re

going to wait until the song changes to update the player’s queue. That’s where the third

instance variable, collectionModified, comes in. We’ll set that to YES anytime a change

is made to our collection. That way, when the currently playing song changes, we can

install the new collection during the pause between songs, which won’t be noticeable to

the user.

CHAPTER 13: iPod Library Access 430

The final instance variable, pressStarted, is used by the forward or back button

methods. When the user taps and holds, we want to seek forward or back; if the user

just single-taps, we want to skip. Each of those buttons will call two different methods:

one when the user touches the screen, and another when the user lifts a finger off the

screen after the touch. When the user taps down, we’ll store the current time, and when

the user lifts up their finger, we’ll use the amount of time elapsed to determine whether

we should skip to the next track.

After that, we define properties for our outlets, as well as for player, collection, and

nowPlaying, and then declare our class’s methods. The first two methods are triggered

by two buttons on our application’s user interface. doTitleSearch will be called when

the Append Matching Songs button is pressed, and showMediaPicker will be called when

the Use Media Picker button is pressed.

The method backgroundClick should look familiar. This is a technique we used in

Chapter 4 of Beginning iPhone 3 Development (Apress, 2009) to allow our user to put

away the keyboard by tapping outside the text area.

The next four methods are used by the forward and backward buttons. When they are

tapped, either seekBackward or seekForward will be called. When the tap ends,

previousTrack or nextTrack will be called. In those methods, we’ll include the logic to

determine if we should skip or just seek. The playOrPause method will be triggered by

the button that’s used for playing or pausing music.

The last method, removeTrack:, will be used by buttons on cells in our table view. This

button will allow the user to delete a track from the queue. We’ll use sender in this

method so that we can identify which row triggered the delete, and remove the

appropriate item from the playlist.

Make sure you save Simple_PlayerViewController.h.

Building the User Interface
Double-click Simple_PlayerViewController.xib to launch Interface Builder. The first order

of business is to close the window labeled View. We’re going to change the view’s class,

and we’ll open the window again in a bit.

Once the View window is closed, click the icon labeled View in the nib’s main window.

Then press 4 to open the identity inspector. Change the underlying class of the main

view from UIView to UIControl. This will allow the view to trigger actions.

The icon labeled View should have just been renamed to Control. Now double-click the

Control icon in the main window to open that Control window. Don’t worry—even

though the window is labeled Control, it’s still a subclass of UIView and will still act as

our application’s main view.

The next step is to connect the content area of the view that is not covered by other

active controls to the backgroundClick method. Select the Control icon, and press 2

to open the connections inspector. Click in the circle next to Touch Down, drag over to

File’s Owner, and then select backgroundClick. Once we implement that method,

CHAPTER 13: iPod Library Access 431

clicking anywhere in our view that doesn’t contain an active control will cause the

keyboard to retract if it’s showing.

Select a Label from the library, and drag it over to the window that’s now labeled

Control. Use the blue guidelines to place it in the upper-left side of the window, against

the margins. Double-click it, and change its text to Title Search.

Now, grab a text field from the library, and add it to the Control window. Use the blue

guidelines to place it below the label you just added, and then use the resize handles to

make it stretch from the left margin to the right margin. Control-drag from File’s Owner
to this text field, and then select the titleSearch outlet.

Drag a Round Rect Button from the library and place it below the text field. Use the blue

guidelines to place it against the right margin and the appropriate distance below the

text field. Double-click the button, and change its title to read Append Matching Songs.

You may need to adjust the button’s position after changing the title so it’s once again

against the right margin. Control-drag from this button to File’s Owner, and select the

doTitleSearch action method.

Drag another Round Rect Button from the library; alternatively, you can option-drag the

existing button to create a copy of it. Double-click the button, and change its label to

Use Media Picker. Then place the button against the lower-right margins using the blue

guidelines. Control-drag from this button to File’s Owner, and select the

showMediaPicker action.

From the library, grab one more Round Rect Button, or option-drag one of the existing

buttons to make another copy. Then use the blue guidelines to place the new button

above the Use Media Picker button, centered horizontally in the window. Press 1 to

bring up the attribute inspector, and change the button’s Type from Rounded Rect to

Custom. We’re not going to assign an image to this button here. This will be the

play/pause button, and the image it shows will depend on whether music is playing, so

we need to set the image in code. Next, scroll down to the bottom of the attribute

inspector to the View heading, and change the Mode to Center, which tells the button to

center, but not resize, any image we assign to it.

You might want to select Show Bounds Rectangles from the Layout menu so that you can

see where this button is. That option will draw a thin line around all interface elements,

even empty custom buttons (Figure 13-3).

CHAPTER 13: iPod Library Access 432

Figure 13-3. The Show Bounds Rectangles option in the Layout menu will draw a thin line around all of the
interface elements, including those that are empty or blank.

With the custom button still selected, switch to the size inspector by pressing 3. Set w

to 30, h to 27, x to 145, and y to 368.

Next, we’ll make two copies of this custom button: one on either side of our play/pause

button. The left button will hold the previous track image, and the right button will hold

the next track image. Hold down the option key and drag the custom button to the left,

using the blue guidelines to place the new button.

With this new button selected, press 1 to bring up the attribute inspector. Look for the

Background combo box, and type in prevtrack.png. Now, press = to adjust this

button’s size to match the image.

Repeat this process to create the next track button. Single-click the empty button in the

middle, and option-drag to the right this time to create another button. For this one,

assign a Background of nexttrack.png. Then press = to adjust the button’s size. You

now have the three buttons used to control playback.

Select the next track button, and press 2 to bring up the connections inspector. From

the circle to the right of Touch Down, drag to File’s Owner and select the seekForward

action. Drag from the circle to the right of Touch Up Inside, and drag again to File’s
Owner. This time, select the action method nextTrack. Repeat this process one more

time with Touch Up Outside, and connect it to the nextTrack method. Regardless of

whether the user’s finger was still inside the button, we need to stop seeking, so we

CHAPTER 13: iPod Library Access 433

connect both Touch Up events to the same method. We will have logic in that method to

determine if we should actually skip to the next track.

At this point, the connections inspector should look like Figure 13-4. If you find anything

out of place, you can always delete connections and redo them.

Figure 13-4. All the connections needed to let the next track button handle both seeking and skipping

Now, single-click the blank middle button. In the inspector, drag from the circle to the

right of Touch Up Inside to File’s Owner, and select the playOrPause action. Then

control-drag from File’s Owner to the button, and select the playPauseButton outlet.

Next, click the left-hand button. In the inspector, look for the Touch Down circle, and

drag to File’s Owner, selecting the seekBackward action. Drag again from the circle next

to Touch Up Inside to File’s Owner, and select the previousTrack action. Drag one last

time from the circle next to Touch Up Outside, and again select the previousTrack action

method.

From the library, grab a Table View and place it just below the Append Matching Songs

button. Drag on the table view’s lower-right corner to resize it to the right margin and

just above the three buttons you just added. Control-drag from the new table view to

File’s Owner twice, connecting to the delegate outlet the first time, and the dataSource

outlet the second time. Then control-drag back from File’s Owner to the table view, and

select the tableView outlet.

Save your nib, quit Interface Builder, and go back to Xcode so we can finish up.

CHAPTER 13: iPod Library Access 434

Implementing the Simple Player View Controller
Back in Xcode, single-click Simple_PlayerViewController.m. Replace the existing

contents with the following code:

#import "Simple_PlayerViewController.h"
#import "MPMediaItemCollection-Utils.h"

#define kTableRowHeight 34

@implementation Simple_PlayerViewController
@synthesize titleSearch;
@synthesize playPauseButton;
@synthesize tableView;
@synthesize player;
@synthesize collection;
@synthesize nowPlaying;

#pragma mark -
- (IBAction)doTitleSearch {
 if ([titleSearch.text length] == 0)
 return;
 MPMediaPropertyPredicate *titlePredicate =
 [MPMediaPropertyPredicate predicateWithValue:titleSearch.text
 forProperty:MPMediaItemPropertyTitle
 comparisonType:MPMediaPredicateComparisonContains];
 MPMediaQuery *query = [[MPMediaQuery alloc] initWithFilterPredicates:
 [NSSet setWithObject:titlePredicate]];

 if ([[query items] count] > 0) {
 if (collection)
 self.collection = [collection collectionByAppendingMediaItems:
 [query items]];
 else {
 self.collection = [MPMediaItemCollection collectionWithItems:
 [query items]];
 [player setQueueWithItemCollection:self.collection];
 [player play];
 }

 collectionModified = YES;
 [self.tableView reloadData];
 }
 [query release];
 titleSearch.text = @"";
 [titleSearch resignFirstResponder];
}

- (IBAction)showMediaPicker {
 MPMediaPickerController *picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeMusic];
 picker.delegate = self;
 [picker setAllowsPickingMultipleItems:YES];
 picker.prompt = NSLocalizedString(@"Select items to play...",
 @"Select items to play...");
 [self presentModalViewController:picker animated:YES];
 [picker release];

CHAPTER 13: iPod Library Access 435

}

- (IBAction)backgroundClick {
 [titleSearch resignFirstResponder];
}

- (IBAction)seekBackward {
 [player beginSeekingBackward];
 pressStarted = [NSDate timeIntervalSinceReferenceDate];
}

- (IBAction)previousTrack {
 [player endSeeking];

 if (pressStarted >= [NSDate timeIntervalSinceReferenceDate] - 0.1)
 [player skipToPreviousItem];
}

- (IBAction)seekForward {
 [player beginSeekingForward];
 pressStarted = [NSDate timeIntervalSinceReferenceDate];
}

- (IBAction)nextTrack {
 [player endSeeking];
 if (pressStarted >= [NSDate timeIntervalSinceReferenceDate] - 0.1)
 [player skipToNextItem];
}

- (IBAction)playOrPause {
 if (player.playbackState == MPMusicPlaybackStatePlaying) {
 [player pause];
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"play.png"]
 forState:UIControlStateNormal];
 }
 else {
 [player play];
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 }
 [self.tableView reloadData];
}

- (IBAction)removeTrack:(id)sender {
 NSUInteger index = [sender tag];
 MPMediaItem *itemToDelete = [collection mediaItemAtIndex:index];
 if ([itemToDelete isEqual:nowPlaying]) {
 if (!collectionModified) {
 [player skipToNextItem];
 }
 else {
 [player setQueueWithItemCollection:collection];
 player.nowPlayingItem = [collection mediaItemAfterItem:nowPlaying];
 }

 }
 MPMediaItemCollection *newCollection = [collection

CHAPTER 13: iPod Library Access 436

 collectionByDeletingMediaItemAtIndex:index];
 self.collection = newCollection;

 collectionModified = YES;

 NSUInteger indices[] = {0, index};
 NSIndexPath *deletePath = [NSIndexPath indexPathWithIndexes:indices length:2];
 [self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:deletePath]
 withRowAnimation:UITableViewRowAnimationFade];

 if (newCollection == nil &&
 player.playbackState == MPMusicPlaybackStatePlaying) {
 MPMediaItem *next = player.nowPlayingItem;
 self.collection = [MPMediaItemCollection collectionWithItems:
 [NSArray arrayWithObject:next]];
 [tableView reloadData];
 }
}

#pragma mark -
- (void)viewDidLoad {
 MPMusicPlayerController *thePlayer = [MPMusicPlayerController iPodMusicPlayer];
 self.player = thePlayer;
 [thePlayer release];

 if (player.playbackState == MPMusicPlaybackStatePlaying) {
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 MPMediaItemCollection *newCollection = [MPMediaItemCollection
 collectionWithItems:[NSArray arrayWithObject:[player nowPlayingItem]]];
 self.collection = newCollection;
 self.nowPlaying = [player nowPlayingItem];
 }
 else {
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"play.png"]
 forState:UIControlStateNormal];
 }

 NSNotificationCenter *notificationCenter = [NSNotificationCenter defaultCenter];
 [notificationCenter addObserver:self
 selector:@selector (nowPlayingItemChanged:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object: player];

 [player beginGeneratingPlaybackNotifications];
}

- (void)viewDidUnload {
 self.titleSearch = nil;
 self.playPauseButton = nil;
 self.tableView = nil;
 [super viewDidUnload];
}

- (void)dealloc {
 NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
 [center removeObserver:self

CHAPTER 13: iPod Library Access 437

 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:player];
 [player endGeneratingPlaybackNotifications];

 [titleSearch release];
 [playPauseButton release];
 [tableView release];
 [player release];
 [collection release];
 [super dealloc];
}

#pragma mark -
#pragma mark Media Picker Delegate Methods
- (void)mediaPicker: (MPMediaPickerController *) mediaPicker
 didPickMediaItems: (MPMediaItemCollection *) theCollection {
 [self dismissModalViewControllerAnimated: YES];

 if (collection == nil){
 self.collection = theCollection;
 [player setQueueWithItemCollection:collection];
 [player setNowPlayingItem:[collection firstMediaItem]];
 self.nowPlaying = [collection firstMediaItem];
 [player play];
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 }
 else {
 self.collection = [collection
 collectionByAppendingCollection:theCollection];
 }

 collectionModified = YES;
 [self.tableView reloadData];
}

- (void) mediaPickerDidCancel: (MPMediaPickerController *) mediaPicker {
 [self dismissModalViewControllerAnimated: YES];
}

#pragma mark -
#pragma mark Player Notification Methods
- (void)nowPlayingItemChanged:(NSNotification *)notification {
 if (collection == nil) {
 MPMediaItem *nowPlayingItem = [player nowPlayingItem];
 self.collection = [collection
 collectionByAppendingMediaItem:nowPlayingItem];
 }
 else {

 if (collectionModified) {
 [player setQueueWithItemCollection:collection];
 [player setNowPlayingItem:[collection mediaItemAfterItem:nowPlaying]];
 [player play];
 }

 if (![collection containsItem:player.nowPlayingItem] &&

CHAPTER 13: iPod Library Access 438

 player.nowPlayingItem != nil) {
 self.collection = [collection
 collectionByAppendingMediaItem:player.nowPlayingItem];
 }
 }

 [tableView reloadData];
 self.nowPlaying = [player nowPlayingItem];

 if (nowPlaying == nil)
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"play.png"]
 forState:UIControlStateNormal];
 else
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];

 collectionModified = NO;
}

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)tableView:(UITableView *)theTableView
numberOfRowsInSection:(NSInteger)section {
 return [collection count];
}

- (UITableViewCell *)tableView:(UITableView *)theTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *identifier = @"Music Queue Cell";
 UITableViewCell *cell = [theTableView
 dequeueReusableCellWithIdentifier:identifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:identifier] autorelease];

 UIButton *removeButton = [UIButton buttonWithType:UIButtonTypeCustom];
 UIImage *removeImage = [UIImage imageNamed:@"remove.png"];
 [removeButton setBackgroundImage:removeImage forState:UIControlStateNormal];
 [removeButton setFrame:CGRectMake(0.0, 0.0, removeImage.size.width,
 removeImage.size.height)];
 [removeButton addTarget:self action:@selector(removeTrack:)
 forControlEvents:UIControlEventTouchUpInside];
 cell.accessoryView = removeButton;
 }
 cell.textLabel.text = [collection titleForMediaItemAtIndex:[indexPath row]];
 if ([nowPlaying isEqual:[collection mediaItemAtIndex:[indexPath row]]]) {
 cell.textLabel.font = [UIFont boldSystemFontOfSize:21.0];
 if (player.playbackState == MPMusicPlaybackStatePlaying)
 cell.imageView.image = [UIImage imageNamed:@"play_small.png"];
 else
 cell.imageView.image = [UIImage imageNamed:@"pause_small.png"];

 }
 else {
 cell.textLabel.font = [UIFont systemFontOfSize:21.0];
 cell.imageView.image = [UIImage imageNamed:@"empty.png"];
 }

CHAPTER 13: iPod Library Access 439

 cell.accessoryView.tag = [indexPath row];

 return cell;
}

- (void)tableView:(UITableView *)theTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 MPMediaItem *selected = [collection mediaItemAtIndex:[indexPath row]];

 if (collectionModified) {
 [player setQueueWithItemCollection:collection];
 collectionModified = NO;
 }

 [player setNowPlayingItem:selected];
 [player play];

 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 [self.tableView reloadData];
}

- (CGFloat)tableView:(UITableView *)theTableView heightForRowAtIndexPath:(NSIndexPath
*)indexPath {
 return kTableRowHeight;
}

@end

Okay, flex your fingers a bit to rest them from all that typing, go get a beverage and tasty

snack, and we’ll take a look through the code to see what’s what. Although the file is

long, and a lot of subtle stuff is going on, we’ve already covered most of what we do in

this controller class.

Our first method is the one that is called when the Append Matching Songs button is

pressed. If the user hasn’t typed a search term, we’re just going to return without doing

anything. In a real application, you might want to handle this situation differently,

perhaps giving some feedback about why nothing happened when the button was

pressed. The reason we ignore the press here is because a media query with an empty

comparison value will return every media item in the person’s library. On a 32-gigabyte

iPhone—or, worse, a 64-gigabyte iPod touch—that could potentially be an awful lot of

music. Since this method is firing on the main thread, that means the user interface will

likely freeze while we retrieve every single item in their library, and we don’t want that to

happen.

- (IBAction)doTitleSearch {
 if ([titleSearch.text length] == 0)
 return;

Next, we build a media property predicate using the search term typed into the text field,

and then create a media query using that predicate.

 MPMediaPropertyPredicate *titlePredicate =
 [MPMediaPropertyPredicate predicateWithValue: titleSearch.text
 forProperty: MPMediaItemPropertyTitle

CHAPTER 13: iPod Library Access 440

 comparisonType:MPMediaPredicateComparisonContains];
 MPMediaQuery *query = [[MPMediaQuery alloc] initWithFilterPredicates:
 [NSSet setWithObject:titlePredicate]];

If the query actually returns items, then we either append the returned items to

collection or, if collection is nil, we create a new media item collection based on the

results of the query and assign it to collection. We also set collectionModified to YES

so that when the currently playing song ends or a new song is played, it will update the

music player with the modified queue.

 if ([[query items] count] > 0) {
 if (collection)
 self.collection = [collection collectionByAppendingMediaItems:
 [query items]];
 else {
 self.collection = [MPMediaItemCollection collectionWithItems:
 [query items]];
 [player setQueueWithItemCollection:self.collection];
 [player play];
 }

 collectionModified = YES;
 [self.tableView reloadData];
 }

After that, we just release our query, reset the text field, and retract the keyboard.

 [query release];
 titleSearch.text = @"";
 [titleSearch resignFirstResponder];
}

If the user presses the Use Media Picker button, then this method is called. We start by

creating an instance of MPMediaPickerController, assign self as the delegate, and

specify that the user can select multiple items. We assign a string to display at the top of

the media picker, and then present the picker modally.

- (IBAction)showMediaPicker {
 MPMediaPickerController *picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeMusic];
 picker.delegate = self;
 [picker setAllowsPickingMultipleItems:YES];
 picker.prompt = NSLocalizedString(@"Select items to play...",
 @"Select items to play...");
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

If the user clicks anywhere in the view that doesn’t contain an active control, we’ll tell

the text field to resign first responder status. If the text field is not the first responder,

then nothing happens. But if it is, it will resign that status, and the keyboard will retract.

- (IBAction)backgroundClick {
 [titleSearch resignFirstResponder];
}

CHAPTER 13: iPod Library Access 441

When the user first taps the left-arrow button, we begin seeking backward in the song,

and make note of the time that this occurred.

TIP: Generally speaking, an NSTimeInterval, which is just a typedef’d double, is much
faster than using NSDate for tracking specific moments in time, such as we do here.

- (IBAction)seekBackward {
 [player beginSeekingBackward];
 pressStarted = [NSDate timeIntervalSinceReferenceDate];
}

When the user’s finger lets up after tapping the left arrow, we stop seeking. If the total

length of time that the user’s finger was on the button was less than a tenth of a second,

we skip back to the previous track. This approximates the behavior of the buttons in the

iPod or Music application. In the case of a normal tap, the seeking happens for such a

short period of time before the new track starts that the user isn’t likely to notice it. To

exactly replicate the logic of the iPod application would be considerably more complex,

but this is close enough for our purposes.

- (IBAction)previousTrack {
 [player endSeeking];

 if (pressStarted >= [NSDate timeIntervalSinceReferenceDate] - 0.1)
 [player skipToPreviousItem];
}

In the two methods used by the right-arrow buttons, we have basically the same logic,

but seek forward and skip to the next song, rather than to the previous one.

- (IBAction)seekForward {
 [player beginSeekingForward];
 pressStarted = [NSDate timeIntervalSinceReferenceDate];
}

- (IBAction)nextTrack {
 [player endSeeking];
 if (pressStarted >= [NSDate timeIntervalSinceReferenceDate] - 0.1)
 [player skipToNextItem];
}

In the method called by the play/pause button, we check to see if the music player is

playing. If it is playing, then we pause it; if it’s not playing, then we start it. In both cases,

we update the middle button’s image so it’s showing the appropriate icon. When we’re

finished, we reload the table, because the currently playing item in the table has a play

or pause icon next to it, and we want to make sure that this icon is updated accordingly.

- (IBAction)playOrPause {
 if (player.playbackState == MPMusicPlaybackStatePlaying) {
 [player pause];
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"play.png"]
 forState:UIControlStateNormal];
 }
 else {
 [player play];

CHAPTER 13: iPod Library Access 442

 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 }
 [self.tableView reloadData];
}

Our final action method is called when the user taps the red button in the accessory

pane of a table row, which indicates that the user wants to remove a given track from

the queue. Each button’s tag will be set to the current row number its cell currently

represents. We retrieve the tag from sender, and then use that index to delete the

appropriate item. If the item being deleted is the currently playing track, we skip to the

next item.

- (IBAction)removeTrack:(id)sender {
 NSUInteger index = [sender tag];
 MPMediaItem *itemToDelete = [collection mediaItemAtIndex:index];
 if ([itemToDelete isEqual:nowPlaying]) {
 if (!collectionModified) {
 [player skipToNextItem];
 }
 else {
 [player setQueueWithItemCollection:collection];
 player.nowPlayingItem = [collection mediaItemAfterItem:nowPlaying];
 }

 }
 MPMediaItemCollection *newCollection = [collection
 collectionByDeletingMediaItemAtIndex:index];
 self.collection = newCollection;

As always, we don’t actually update the music player controller’s queue now, because

we don’t want a skip in the music. If the song that was deleted was the currently playing

one, calling skipToNextItem will result in our notification method getting called, so we

don’t need to install the queue here. Instead, we just set collectionModified to YES so

that the notification method knows to install the modified queue.

 collectionModified = YES;

Of course, we want the deleted row to animate out, rather than just disappear, so we

create an NSIndexPath that points to the row that was deleted and tell the table view to

delete that row.

 NSUInteger indices[] = {0, index};
 NSIndexPath *deletePath = [NSIndexPath indexPathWithIndexes:indices length:2];
 [self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:deletePath]
 withRowAnimation:UITableViewRowAnimationFade];

This last bit of code in the method may seem a little strange. If the row that was deleted

was the last row in the table, we need to check to see if there’s any music playing.

Generally, there won’t be, but if the music that’s playing was already playing when our

application started, there’s a queue already in place that we can’t access. Remember

that we do not have access to a music player controller’s queue. Suppose the row that

was deleted represented a track that was playing, and it was also the last track in the

queue. When we skipped forward, we may have caused the iPod music player to pull

CHAPTER 13: iPod Library Access 443

another song from that queue that we can’t access. In that situation, we find out the new

song that’s playing and append it to the end of our queue, so the user can see it.

 if (newCollection == nil &&
 player.playbackState == MPMusicPlaybackStatePlaying) {
 MPMediaItem *next = player.nowPlayingItem;
 self.collection = [MPMediaItemCollection collectionWithItems:
 [NSArray arrayWithObject:next]];
 [tableView reloadData];
 }
}

NOTE: The fact that we can’t get to the iPod music player controller’s queue isn’t ideal in terms
of trying to write a music player. However, we’re writing a music player only to demonstrate how
to access music in the iPod Library. The iPhone already comes with a very good music player
that has access to things that we don’t, including its own queues. Think of our example as purely
a teaching exercise, and not the start of your next big App Store megahit.

In viewDidLoad, we get a reference to the iPod music player controller and assign it to

player. We also check the state of that player to see if it’s already playing music. We set

the play/pause button’s icon based on whether it’s playing something, and we also grab

the track that’s being played and add it to our queue so our user can see the track’s

title.

- (void)viewDidLoad {
 MPMusicPlayerController *thePlayer = [MPMusicPlayerController iPodMusicPlayer];
 self.player = thePlayer;
 [thePlayer release];

 if (player.playbackState == MPMusicPlaybackStatePlaying) {
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 MPMediaItemCollection *newCollection = [MPMediaItemCollection
 collectionWithItems:[NSArray arrayWithObject:[player nowPlayingItem]]];
 self.collection = newCollection;
 self.nowPlaying = [player nowPlayingItem];
 }
 else {
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"play.png"]
 forState:UIControlStateNormal];
 }

Next, we register with the notification center to receive notifications when the media

item being played by player changes. We register the method nowPlayingItemChanged:

with the notification center. In that method, we’ll handle installing modified queues into

player. We also need to tell player to begin generating those notifications, or our

method will never get called.

 NSNotificationCenter *notificationCenter = [NSNotificationCenter defaultCenter];
 [notificationCenter addObserver:self
 selector:@selector (nowPlayingItemChanged:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification

CHAPTER 13: iPod Library Access 444

 object: player];

 [player beginGeneratingPlaybackNotifications];
}

The viewDidUnload method is standard and doesn’t warrant discussing, but the dealloc

method has a few things we don’t normally see. In addition to releasing all of our

objects, we also unregister from the notification center and have player stop generating

notifications. This is good form. In our particular case, it probably wouldn’t matter if we

didn’t do this, since notificationCenter will be deallocated when our application exits.

That said, you really should unregister any object that has been registered with the

notification center when the object that’s registered is deallocated. The notification

center does not retain the objects it notifies, so it will continue to send notifications to an

object after that object has been released if you don’t do this.

 NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
 [center removeObserver:self
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:player];
 [player endGeneratingPlaybackNotifications];

The rest of the dealloc method is pretty much what you’re used to seeing. After

dealloc, we begin the various delegate and notification methods. First up is the method

that’s called when our user selects one or more items using the media picker. This

method begins by dismissing the media picker controller.

- (void) mediaPicker: (MPMediaPickerController *) mediaPicker
 didPickMediaItems: (MPMediaItemCollection *) theCollection {
 [self dismissModalViewControllerAnimated: YES];

Next, we check to see if we already have a collection. If we don’t, then all we need to do

is pass theCollection on to player and tell it to start playing. We also set the

play/pause button to show the pause icon.

 if (collection == nil){
 self.collection = theCollection;
 [player setQueueWithItemCollection:collection];
 [player setNowPlayingItem:[collection firstMediaItem]];
 self.nowPlaying = [collection firstMediaItem];
 [player play];
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 }

If we already have a collection, we use one of those category methods we created

earlier to append theCollection to the end of the existing collection.

 else {
 self.collection = [collection
 collectionByAppendingCollection:theCollection];
 }

Next, we set collectionModified to YES so that the updated collection is installed next

time there’s a break between songs, and we reload the table so the user can see the

change.

CHAPTER 13: iPod Library Access 445

 collectionModified = YES;
 [self.tableView reloadData];
}

If the user canceled the media picker, the only thing we need to do is dismiss it.

- (void) mediaPickerDidCancel: (MPMediaPickerController *) mediaPicker {
 [self dismissModalViewControllerAnimated: YES];
}

When a new track starts playing—whether it’s because we told the player to start

playing, because we told it to skip to the next or previous song, or simply because it

reached the end of the current song—the item-changed notification well be sent out,

which will cause this next method to fire.

The logic here may not be obvious, because we have several possible scenarios to take

into account. First, we check to see if collection is nil. If it is, then most likely,

something outside our application started the music playing or triggered the change.

Perhaps the user squeezed the button on the iPhone’s headphones to restart a

previously playing song. In that case, we create a new media item collection containing

just the playing song.

 - (void)nowPlayingItemChanged:(NSNotification *)notification {
 if (collection == nil) {
 MPMediaItem *nowPlayingItem = [player nowPlayingItem];
 self.collection = [collection
 collectionByAppendingMediaItem:nowPlayingItem];
 }

Otherwise, we need to check to see if collection has been modified. If it has, then the

music player controller’s queue and our queue are different, and we use this opportunity

to install our collection as the music player’s queue.

 else {
 if (collectionModified) {
 [player setQueueWithItemCollection:collection];
 [player setNowPlayingItem:[collection mediaItemAfterItem:nowPlaying]];
 [player play];
 }

Regardless of whether the collection was modified, we must see if the item that is being

played is in our collection. If it’s not, that means it pulled another item from a queue that

we didn’t create and can’t access. If that’s the case, we just grab the item that’s playing

now and append it to our collection. We may not be able to show the users the

preexisting queue, but we can show them each new song that’s played from it.

 if (![collection containsItem:player.nowPlayingItem] &&
 player.nowPlayingItem != nil) {
 self.collection = [collection
 collectionByAppendingMediaItem:player.nowPlayingItem];
 }
 }

No matter what we did above, we reload the table to make sure that any changes

become visible to our user, and we store the currently playing item into an instance

variable so we have ready access to it.

CHAPTER 13: iPod Library Access 446

 [tableView reloadData];
 self.nowPlaying = [player nowPlayingItem];

We also need to make sure that the play or pause button shows the correct image. This

method is called after the last track in the queue is played, so it’s possible that we’ve

gone from no music playing to music playing or vice versa. As a result, we need to

update this button to show the play icon or the pause icon, as appropriate.

 if (nowPlaying == nil)
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"play.png"]
 forState:UIControlStateNormal];
 else
 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];

Of course, once we’re finished here, we need to reset collectionModified back to NO so

that we can tell if the collection is changed again.

 collectionModified = NO;
}

Our last group of methods contains our table view datasource and delegate methods.

The first one we implement is tableView:numberOfRowInSection:. In that method, we

just return the number of media items in collection.

- (NSInteger)tableView:(UITableView *)theTableView
numberOfRowsInSection:(NSInteger)section {
 return [collection count];
}

In tableView:cellForRowAtIndexPath:, we dequeue or create a cell, pretty much as

always.

- (UITableViewCell *)tableView:(UITableView *)theTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *identifier = @"Music Queue Cell";
 UITableViewCell *cell = [theTableView
 dequeueReusableCellWithIdentifier:identifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:identifier] autorelease];

When we add a new cell, we need to create a button and assign it to the accessory

view. The button’s target is set to the removeTrack: method, which means that any tap

on any row’s button will trigger that method.

 UIButton *removeButton = [UIButton buttonWithType:UIButtonTypeCustom];
 UIImage *removeImage = [UIImage imageNamed:@"remove.png"];
 [removeButton setBackgroundImage:removeImage forState:UIControlStateNormal];
 [removeButton setFrame:CGRectMake(0.0, 0.0, removeImage.size.width,
 removeImage.size.height)];
 [removeButton addTarget:self action:@selector(removeTrack:)
 forControlEvents:UIControlEventTouchUpInside];
 cell.accessoryView = removeButton;
 }

We assign the cell’s text based on the title of the media item the row represents:

CHAPTER 13: iPod Library Access 447

 cell.textLabel.text = [collection titleForMediaItemAtIndex:[indexPath row]];

Then we check to see if this row is the current one that’s playing. If it is, we set the cell’s

image to a small play or pause icon, and make the row’s text bold. Otherwise, we set

the row’s image to an empty image the same size as the play and pause icon, and set

the text so it’s not bold. The empty image is just to keep the rows’ text nicely aligned.

 if ([nowPlaying isEqual:[collection mediaItemAtIndex:[indexPath row]]]) {
 cell.textLabel.font = [UIFont boldSystemFontOfSize:21.0];
 if (player.playbackState == MPMusicPlaybackStatePlaying)
 cell.imageView.image = [UIImage imageNamed:@"play_small.png"];
 else
 cell.imageView.image = [UIImage imageNamed:@"pause_small.png"];

 }
 else {
 cell.textLabel.font = [UIFont systemFontOfSize:21.0];
 cell.imageView.image = [UIImage imageNamed:@"empty.png"];
 }

NOTE: Our application currently does not keep track of the index of the currently playing item.
We could implement that for queues we create, but not for ones that are already playing. As a
result, if you have multiple copies of the same item in the queue, when that song plays, every
row that contains that same item will be bold and have a play or pause icon. Since we don’t have
access to queues created outside our application, there’s no good solution to this problem here,
and since it’s not a real-world application, we can live with it.

We make sure to set the cell’s delete button’s tag to the row number this cell will be

used to represent. That way, our removeTrack: method will know which track to delete.

After that, we’re ready to return cell.

 cell.accessoryView.tag = [indexPath row];

 return cell;
}

If the user selected a row, we want to play the song that was tapped. The only gotcha

here is that we must make sure that the updated queue is installed in the player before

we start the new song playing. If we didn’t do this, we might end up telling the player to

play a song it didn’t know about, because it was added to the queue since the last track

change.

- (void)tableView:(UITableView *)theTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 MPMediaItem *selected = [collection mediaItemAtIndex:[indexPath row]];

 if (collectionModified) {
 [player setQueueWithItemCollection:collection];
 collectionModified = NO;
 }

 [player setNowPlayingItem:selected];

CHAPTER 13: iPod Library Access 448

 [player play];

 [playPauseButton setBackgroundImage:[UIImage imageNamed:@"pause.png"]
 forState:UIControlStateNormal];
 [self.tableView reloadData];
}

Last, but certainly not… well, actually, this might be least. We’re using a slightly smaller

font size and cell height than the default values, and here’s where we specify the row

height to use. kTableRowHeight was defined at the beginning of the file as 34 pixels. By

placing it at the top of the file, it’s easier to find should we want to change it.

- (CGFloat)tableView:(UITableView *)theTableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return kTableRowHeight;
}

@end

Taking Simple Player for a Spin
Well, wow! That was a lot of functionality used in such a small application. Let’s try it

out. But, before you can do that, you need to link to the MediaPlayer framework. At this

point, you should know how to do that, but in case your brain is fried, we’ll remind you.

Right-click the Frameworks folder in the Groups & Files pane. From the menu that pops

up, select the Add submenu, then select Existing Frameworks…. Check the box next to

MediaPlayer.framework and click the Add button.

Go ahead and take the app for a spin. Remember that although Simple Player may

launch in the simulator, the simulator does not currently support a media library, so

you’ll want to run Simple Player on your device. As usual, we won’t get into the details

here. Apple has excellent documentation on their portal site, which you’ll have access to

once you join one of the paid iPhone Developer Programs.

After your app is running on your device, play with all the different options. Make sure

you try adding songs both by typing in a title search term and by using the media picker.

Also try deleting songs from the queue, including the currently playing song.

If this were a shipping app, we would have done a number of things differently. For

example, we would move the title search field to its own separate view with its own table

view so you could see the results of your search as you typed. We would tweak the seek

threshold until we got it just right. We would also use Core Data to add persistence to

keep our queue around from one run of the app to the next. There are other elements we

might change, but we wanted to keep the code as small as possible to focus on the

iPod library.

Avast! Rough Waters Ahead!
In this chapter, we took a long but pleasant walk through the hills and valleys of using

the iPod music library. You saw how to find media items using media queries, and how

CHAPTER 13: iPod Library Access 449

to let your users select songs using the media picker controller. We demonstrated how

to use and manipulate collections of media items. We showed you how to use music

player controllers to play media items, and to manipulate the currently playing item by

seeking or skipping. You also learned how to find out about the currently playing track,

regardless of whether it’s one your code played or one that the user chose using the

iPod or Music application.

But now, shore leave is over, matey. It’s time to leave the sheltered cove and venture

out into the open water of concurrency (writing code that executes simultaneously) and

debugging. Both of these topics are challenging but supremely important. So, all hands

on deck! Man the braces and prepare to make sail.

CHAPTER 13: iPod Library Access 450

451

451

 Chapter

Keeping Your Interface
Responsive
As we’ve mentioned a few times in this book, if you try to do too much at one time in an

action or delegate method, or in a method called from one of those methods, your

application’s interface can skip or even freeze while the long-running method does its

job. As a general rule, you do not want your application’s user interface to ever become

unresponsive. Your user will expect to be able to interact with your application at all

times, or at the very least will expect to be kept updated by your user interface when

they aren’t allowed to interact with it.

In computer programming, the ability to have multiple sets of operations happening at

the same time is referred to, generally, as concurrency. You’ve already seen one form

of concurrency in the networking chapters when we retrieved data from the Internet

asynchronously and also when we listened for incoming connections on a specific

network port. That particular form of concurrency is called run loop scheduling, and it’s

relatively easy to implement because most of the work to make those actions run

concurrently has already been done for you.

In this chapter, we’re going to look at some more general-purpose solutions for adding

concurrency to your application. These will allow your user interface to stay responsive

even when your application is performing long-running tasks. Although there are many

ways to add concurrency to an application, we’re going to look at just two, but these

two, combined with what you already know about run loop scheduling for networking,

should allow you to accommodate just about any long-running task.

The first mechanism we’re going to look at is the timer. Timers are objects that can be

scheduled with the run loop, much like the networking classes we’ve worked with.

Timers can call methods on specific objects at set intervals. You can set a timer to call a

method on one of your controller classes, for example, ten times per second. Once you

kick it off, approximately every tenth of a second, your method will fire until you tell the

timer to stop.

14

CHAPTER 14: Keeping Your Interface Responsive 452

Neither run loop scheduling nor timers are what some people would consider “true”

forms of concurrency. In both cases, the application’s main run loop will check for

certain conditions, and if those conditions are met, it will call out to a specific method on

a specific object. If the method that gets called runs for too long, however, your

interface will still becomes unresponsive. But, working with run loops and timers is

considerably less complex than implementing what we might call “true” concurrency,

which is to have multiple tasks (and multiple run loops) functioning at the same time.

The other mechanism we’re going to look at is relatively new in the Objective-C world.

It’s called an operation queue, and it works together with special objects you create

called operations. The operation queue can manage multiple operations at the same

time, and it makes sure that those operations get processing time based on some

simple rules that you set down. Each operation has a specific set of commands that

take the form of a method you write, and the operation queue will make sure that each

operation’s method gets run in such a ways as to make good use of the available

system resources.

Operation queues are really nice because they are a high-level abstraction and hide the

nitty-gritty implementation details involved with implementing true concurrency. On the

iPhone, queues leverage an operating system feature called threads to give processing

time to the various operations they manage. Apple is currently recommending the use of

operation queues rather than threads, not only because operation queues are easier to

use, but also because they give your application other advantages.

NOTE: Even though it’s not available when using the iPhone SDK, another form of concurrency
is multiprocessing, using the Unix system calls fork() and exec() or Cocoa’s NSTask class. Using
multiple processes is more heavy-weight than using threads.

If you’re at all familiar with Mac OS X Snow Leopard, you’ve probably heard of Grand
Central Dispatch (GCD), which is a technology that allows applications to take greater

advantage of the fact that modern computers have multiple processing cores and

sometimes multiple processors. If you used an operation queue in a Mac program back

before GCD was released, when you re-compiled your application for Snow Leopard,

your code automatically received the benefit of GCD for free. If you had used another

form of concurrency, such as threads, instead of operation queues, your application

would not have automatically benefitted from GCD.

We don’t know what the future holds for the iPhone SDK, but we are likely to continue to

see faster processors and possibly even multiple core processors. Who knows?

Perhaps at some point in the not-too-distant future, we’ll even see an iPhone or iPod

touch with multiple processors. By using operation queues for your concurrency needs,

you will essentially future-proof your applications. If Grand Central Dispatch comes to

the iPhone in a future release of the iPhone SDK, for example, you will be able to

leverage that functionality with little or no work. If Apple creates some other nifty new

technology specifically for handling concurrency in a mobile application, your application

will be able to take advantage of that.

CHAPTER 14: Keeping Your Interface Responsive 453

You can probably see why we’re limiting our discussion of “true” concurrency to

operation queues. They are clearly the way of the future for both Cocoa and Cocoa

Touch. They make our lives as programmers considerably easier and they help us take

advantage of technologies that haven’t even been written yet. What could be better?

Let’s start with a little detour to look at the problem that concurrency solves.

Exploring the Concurrency Problem
Before we explore ways of solving the concurrency problem, let’s make sure we all

understand exactly what that problem is. We’re going to build a small application that

will demonstrate the problem that arises when you try to do too much at one time on the

application’s main thread. Every application has at least one thread of operation, and

that’s the one where the application’s main run loop is running. All action methods fire

on the main thread and all event processing and user interface updating is also done

from the main thread. If any method that fires on the main thread takes too long to finish,

the user interface will freeze up and become unresponsive.

Our small application is going to calculate square roots. Lots and lots of square roots.

The user will be able to enter a number, and we’ll calculate the square root for every

number from 1 up to the number they specify (Figure 14–1). Our only goal in this

exercise is to burn processor cycles.

Figure 14–1. The Stalled application will demonstrate the problem of trying to do too much work on the
application’s main thread

CHAPTER 14: Keeping Your Interface Responsive 454

With a sufficiently large number entered, when the Go button is tapped, the user

interface will become completely unresponsive for several seconds or even longer. The

progress bar and progress label, whose properties will be set each time through the

loop, won’t actually show any changes to the user until all the values in the loop have

been calculated. Only the last calculation will be reflected in the user interface.

Creating the Stalled Application
In Xcode, create a new project using the View-based Application template and call this

project Stalled. Once the new project is open, expand the Classes and Resources

folders in the Groups & Files pane. We’ll start by declaring our outlets and actions and

then go to Interface Builder and design our interface, then we’ll come back to write the

implementation of our controller and try it out.

Declaring Actions and Outlets
Single-click StalledViewController.h and replace the existing contents with the following:

#import <UIKit/UIKit.h>

@interface StalledViewController : UIViewController {
 UITextField *numOperationsInput;
 UIProgressView *progressBar;
 UILabel *progressLabel;
}

@property (nonatomic, retain) IBOutlet UITextField *numOperationsInput;
@property (nonatomic, retain) IBOutlet UIProgressView *progressBar;
@property (nonatomic, retain) IBOutlet UILabel *progressLabel;

- (IBAction)go;
@end

We haven’t seen a controller class header this simple in quite a while, have we? Nothing

here should be unfamiliar to you. We have three outlets that are used to refer to the

three user interface elements whose values we need to update or retrieve, and we have

a single action method that gets fired by the one button on our interface. Make sure you

save StalledViewController.h.

Designing the Interface
Double-click StalledViewController.xib to launch Interface Builder. Drag a Round Rect
Button from the library to the window titled View, placing the button against the upper-

right margins using the blue guidelines. Double-click the button and change its title to

Go. Control-click from the new button to File’s Owner and select the go action.

Now drag a Text Field from the library and place it to the left of the button. Use the blue

guides to line up the text field and place it the correct distance from the button. Resize

the text field to about two-third of its original size, or use the size inspector and change

CHAPTER 14: Keeping Your Interface Responsive 455

its width to 70 pixels. Double-click the text field and set its default value to 10000. Press

1 to bring up the attribute inspector, and change the Keyboard to Number Pad to

restrict entry to only numbers. Control-drag from File’s Owner to the text field and select

the numOperationsInput outlet.

Drag a Label from the library and place it to the left of the text field. Double-click it to

change its text to read # of Operations and then adjust its size and placement to fit in

the available space. You can use Figure 14–1 as a guide.

From the library, bring over a Progress View and place it below the three items already

on the interface. We placed it a little more than the minimum distance below them as

indicated by the blue guides, but exact placement really doesn’t matter much with this

application. Once you place the progress bar, use the resize handles to change its width

so it takes up all the space from the left margin to the right margin. Next, use the

attributes inspector to change the Progress field to 0.0. Finally, control-drag from File’s
Owner to the progress view and select the progressBar outlet.

Drag one more Label from the library and place it below the progress view. Resize the

label so it is stretches from the left to the right margins. Control-drag from File’s Owner
to the new label and select the progressLabel outlet. Then, double-click the label and

press the delete key to delete the existing label text.

Save your nib, close Interface Builder, and head back to Xcode.

Implementing the Stalled View Controller
Select StalledViewController.m and replace the existing contents with the following

code:

#import "StalledViewController.h"

@implementation StalledViewController
@synthesize numOperationsInput;
@synthesize progressBar;
@synthesize progressLabel;

- (IBAction)go {
 NSInteger opCount = [numOperationsInput.text intValue];
 for (NSInteger i = 1; i <= opCount; i++) {
 NSLog(@"Calculating square root of %d", i);
 double squareRootOfI = sqrt((double)i);
 progressBar.progress = ((float)i / (float)opCount);
 progressLabel.text = [NSString stringWithFormat:
 @"Square Root of %d is %.3f", i, squareRootOfI];
 }
}

- (void)viewDidUnload {
 [super viewDidUnload];
 self.numOperationsInput = nil;
 self.progressBar = nil;
 self.progressLabel = nil;
}

CHAPTER 14: Keeping Your Interface Responsive 456

- (void)dealloc {
 [numOperationsInput release];
 [progressBar release];
 [progressLabel release];
 [super dealloc];
}

@end

Let’s focus on the go method, because that’s where the problem is. Everything else is

stuff you’ve seen before. The method starts by retrieving the number from the text field.

 NSInteger opCount = [numOperationsInput.text intValue];

Then, we go into a loop so we can calculate all of the square roots.

 for (NSInteger i = 1; i <= opCount; i++) {

We log which calculation we’re working on. In shipping applications, you generally

wouldn’t log like this, but logging serves two purposes in this chapter. First, it lets us

see, using Xcode’s debugger console, that the application is working even when our

application’s user interface isn’t responding. Second, logging takes a non-trivial amount

of time. In real-world applications, that would generally be bad, but since our goal is just

to do processing to show how concurrency works, this slow-down actually works to our

advantage. If you choose to remove the NSLog() statements, you will need to increase

the number of calculations by an order of magnitude because the iPhone is actually

capable of doing tens of thousands of square root operations per second and it will

hardly break a sweat doing ten thousand without the NSLog() statement in the loop to

throttle the speed.

CAUTION: Logging using NSLog() takes considerably longer when running on the device
launched from Xcode because the results of every NSLog() statement have to be transferred
through the USB connection to Xcode. Although this chapter’s applications will work just fine on
the device, you may wish to consider restricting yourself to the Simulator for testing and
debugging in this chapter, or else commenting out the NSLog() statements when running on the
device.

 NSLog(@"Calculating square root of %d", i);

Then we calculate the square root of i.

 double squareRootOfI = sqrt((double)i);

And update the progress bar and label to reflect the last calculation made, and that’s the

end of our loop.

 progressBar.progress = ((float)i / (float)opCount);
 progressLabel.text = [NSString stringWithFormat:
 @"Square Root of %d is %.3f", i, squareRootOfI];
 }

CHAPTER 14: Keeping Your Interface Responsive 457

The problem with this method isn’t so much what we’re doing as where we’re doing it.

As we stated earlier, action methods fire on the main thread, which is also where user

interface updates happen, and where system events, such as those that are generated

by taps and touches, are processed. If any method firing on the main thread takes too

much time, it will affect your application’s user experience. In less severe cases, your

application will seem to hiccup or stall at times. In severe cases, like here, your

application’s entire user interface will freeze up.

Save StalledViewController.m and build and run the application. Press the Go button

and watch what happens. Not much, huh? If you keep an eye on the debug console in

Xcode, you’ll see that it is working away on those calculations (Figure 14–2) thanks to

the NSLog() statement in our code, but the user interface doesn’t update until all of the

calculations are done, does it?

Note that if you do click in the text field, the numeric keypad will not disappear when you

tap the Go button. Since there’s nothing being hidden by the keypad, this isn’t a

problem. In the final version of the application, we’ll add a table that will be hidden by

the keypad. We’ll add some code to deal with that situation as needed.

Figure 14–2. The debug console in Xcode shows that the application is working, but the user interface is locked up

If we have code that takes a long time to run, we’ve basically got two choices if we want

to keep our interface responsive: We can break our code into smaller chunks that can

be processed in pieces, or we can move the code to a separate thread of execution,

which will allow our application’s run loop to return to updating the user interface and

responding to taps and other system events. We’ll look at both options in this chapter.

First, we’ll fix the application by using a timer to perform the requested calculations in

batches, making sure not to take more than a fraction of a second each time so that the

main thread can continue to process events and update the interface. After that, we’ll

look at using an operation queue to move the calculations off of the application’s main

thread, leaving the main thread free to process events.

CHAPTER 14: Keeping Your Interface Responsive 458

Timers
In the Foundation framework shared by Cocoa and Cocoa Touch, there’s a class called

NSTimer that you can use to call methods on a specific object at periodic intervals.

Timers are created, and then scheduled with a run loop, much like some of the

networking classes we’ve worked with. Once a timer is scheduled, it will fire after a

specified interval. If the timer is set to repeat, it will continue to call its target method

repeatedly each time the specified interval elapses.

NOTE: Non-repeating timers are no longer very commonly used because you can achieve
exactly the same affect much more easily by calling the method
performSelector:withObject:afterDelay: as we’ve done a few times in this book.

Timers are not guaranteed to fire exactly at the specified interval. Because of the way

the run loop functions, there’s no way to guarantee the exact moment when a timer will

fire. The timer will fire on the first pass through the run loop that happens after the

specified amount of time has elapsed. That means a timer will never fire before the

specified interval, but it may fire after. Usually, the actual interval is only milliseconds

longer than the one specified, but you can’t rely on that being the case. If a long-running

method runs on the main loop, like the one in Stalled, then the run loop won’t get to fire

the scheduled timers until that long-running method has finished, potentially a long time

after the requested interval.

Timers fire on the thread whose run loop they are scheduled into. In most situations,

unless you specifically intend to do otherwise, your timers will get created on the main

thread and the methods that they fire will also execute on the main thread. This means

that you have to follow the same rules as with action methods. If you try to do too much

in a method that is called by a timer, you will stall your user interface.

As a result, if you want to use timers as a mechanism for keeping your user interface

responsive, you need to break your work down into smaller chunks, only doing a small

amount of work each time it fires. We’ll show you a technique for doing that in a minute.

Creating a Timer
Creating an instance of NSTimer is quite straightforward. If you want to create it, but not

schedule it with the run loop right away, use the factory method

timerWithTimeInterval:target:selector:userInfo:repeats:, like so:

 NSTimer *timer = [NSTimer timerWithTimeInterval:1.0/10.0
 target:self
 selector:@selector(myTimerMethod:)
 userInfo:nil
 repeats:YES]

The first argument to this method specifies how frequently you would like the timer to

fire and call its method. In this example, we’re passing in a tenth of a second, so this

CHAPTER 14: Keeping Your Interface Responsive 459

timer will fire approximately ten times a second. The next two arguments work exactly

like the target and action properties of a control. The second argument, target, is the

object on which the timer should call a method, and selector points to the actual

method the timer should call when it fires. The method specified by the selector must

take a single argument, which will be the instance of NSTimer that called the method.

The fourth argument, userInfo, is designed for application use. If you pass in an object

here, that object will go along with the timer and be available in the method the timer

calls when it fires. The last argument specifies whether the timer repeats or fires just

once.

Once you’ve got a timer and are ready for it to start firing, you get a reference to the run

loop you want to schedule it into, and then add the timer. Here’s an example of

scheduling the timer into the main run loop:

 NSRunLoop *loop = [NSRunLoop mainRunLoop];
 [loop addTimer:timer forMode:NSDefaultRunLoopMode];

When you schedule the timer, the run loop retains the timer. You can keep a pointer to

the timer if you need to, but you don’t need to retain the timer to keep it from getting

deallocated. The run loop will retain the timer until you stop the timer.

If you want to create a timer that’s already scheduled with the run loop, letting you skip

the previous two lines of code, you can use the factory method

scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:, which takes

exactly the same arguments as

timerWithTimeInterval:target:selector:userInfo:repeats:.

 NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:1.0/10.0
 target:self
 selector:@selector(myTimerMethod:)
 userInfo:nil
 repeats:YES]

Stopping a Timer
When you no longer need a timer, you can unschedule it from the run loop by calling the

invalidate method on the instance. Invalidating a timer will stop it from firing any further

and remove it from the run loop, which will release the timer and cause it to be

deallocated unless it’s been retained elsewhere. Here’s how you invalidate a timer:

 [timer invalidate];

Limitations of Timers
Timers are very handy for any number of purposes. As a tool for keeping your interface

responsive, they do have some limitations, however. The first and foremost of these

limitations is that you have to make some assumptions about how much time is

available for the process that you’re implementing. If you have more than a couple of

timers running, things can easily get complex and the logic to make sure that each

CHAPTER 14: Keeping Your Interface Responsive 460

timer’s method gets an appropriate share of the available time without taking too much

time away from the main thread can get very complex and abstruse.

Timers are great for when you have one, or at most, a small number, of long-running

tasks that can be easily broken down into discrete chunks for processing. When you

have more than that, or when the processes don’t lend themselves to being performed

in chunks, timers become far too much trouble and just aren’t the right tool for the job.

Let’s use a timer to get the Stalled application working the way our users will expect it to

work, then we’ll move on and look at how we handle scenarios where we have more

than a couple of processes.

Fixing Stalled with a Timer
We’re going to keep working with the Stalled application, but before we proceed, make

a copy of the Stalled project folder. We’re going to fix the project using two different

techniques, so you will need two copies of the project in order to play along at home. If

you run into problems, you can always copy the 14 – Stalled project in the project

archive that accompanies this book as your starting point for both this exercise and the

next one.

Creating the Batch Object
Before we start modifying our controller class, let’s create a class to represent our batch

of calculations. This object will keep track of how many calculations need to be

performed as well as how many already have. We’ll also move the actual calculations

into the batch object as well. Having this object will make it much easier to do

processing in chunks, since the batch will be self-contained in a single object.

Single-click the Classes folder in the Groups & Files pane, then type N to create a new

file. Select Objective-C class from the Cocoa Touch Class heading, and make sure the

Subclass of pop-up menu reads NSObject. Name this new file SquareRootBatch.m and

make sure to have it create SquareRootBatch.h for you as well. After the file is created,

single-click SquareRootBatch.h and replace its contents with the following:

#import <Foundation/Foundation.h>

#define kExceededMaxException @"Exceeded Max"

@interface SquareRootBatch : NSObject {
 NSInteger max;
 NSInteger current;
}

@property NSInteger max;
@property NSInteger current;

- (id)initWithMaxNumber:(NSInteger)inMax;
- (BOOL)hasNext;
- (double)next;

CHAPTER 14: Keeping Your Interface Responsive 461

- (float)percentCompleted;
- (NSString *)percentCompletedText;
@end

We start off by defining a string that will be used for throwing an exception. If we exceed

the number of calculations we’ve specified, we will throw an exception with this name.

#define kExceededMaxException @"Exceeded Max"

Then we define two instance variables and corresponding properties for the maximum

number whose square root will be calculated and the current number whose square root

is being calculated. This will allow us to keep track of where we are between timer

method calls.

@interface SquareRootBatch : NSObject {
 NSInteger max;
 NSInteger current;
}
@property NSInteger max;
@property NSInteger current;

Next, we declare a standard init method that takes one argument, the maximum number

for which we are to calculate the square root.

- (id)initWithMaxNumber:(NSInteger)inMax;

The next two methods will enable our batch to work similarly to an enumerator. We can

find out if we still have numbers to calculate by calling hasNext, and actually perform the

next calculation by calling next, which returns the calculated value.

- (BOOL)hasNext;
- (double)next;

After that, we have two more methods used to retrieve values for updating the progress

bar and progress label:

- (float)percentCompleted;
- (NSString *)percentCompletedText;

And that’s all she wrote for this header file. Save SquareRootBatch.h and then flip over

to SquareRootBatch.m. Replace the contents with this new version:

#import "SquareRootBatch.h"

@implementation SquareRootBatch
@synthesize max;
@synthesize current;

- (id)initWithMaxNumber:(NSInteger)inMax {
 if (self = [super init]) {
 current = 0;
 max = inMax;
 }
 return self;
}

- (BOOL)hasNext {
 return current <= max;

v@v
Text Box
Download at WoweBook.com

CHAPTER 14: Keeping Your Interface Responsive 462

}

- (double)next {
 if (current > max)
 [NSException raise:kExceededMaxException format:
 @"Requested a calculation from completed batch."];

 return sqrt((double)++current);
}

- (float)percentCompleted {
 return (float)current / (float)max;
}

- (NSString *)percentCompletedText {
 return [NSString stringWithFormat:@"Square Root of %d is %.3f", current,
 sqrt((double)current)];
}

@end

Basically, we’ve taken the logic from our go method and distributed it throughout this

little class. By doing that, we make the batch completely self-contained, which will allow

us to pass the batch along to the method fired by the timer by making use of the

userInfo argument.

NOTE: In this implementation, you might notice that we’re actually calculating the square root
twice, once in next, and again in percentCompletedText. For our purposes, this is actually
good because it burns more processor cycles. In a real application, you would probably want to
store off the result of the calculation in an instance variable so that you have access to the last
calculation performed without having to perform the calculation again.

Updating the Controller Header
Let’s rewrite our controller class to use this new timer. Since our user interface will be

useable while the batch is running, we want to make the Go button become a Stop

button while the batch is running. It’s generally a good idea to give users a way to stop

long-running processes if feasible.

Single-click StalledViewController.h and insert the following bold lines of code:

#import <UIKit/UIKit.h>

#define kTimerInterval (1.0/60.0)
#define kBatchSize 10

@interface StalledViewController : UIViewController {
 UITextField *numOperationsInput;
 UIProgressView *progressBar;
 UILabel *progressLabel;
 UIButton *goStopButton;

CHAPTER 14: Keeping Your Interface Responsive 463

 BOOL processRunning;
}

@property (nonatomic, retain) IBOutlet UITextField *numOperationsInput;
@property (nonatomic, retain) IBOutlet UIProgressView *progressBar;
@property (nonatomic, retain) IBOutlet UILabel *progressLabel;
@property (nonatomic, retain) IBOutlet UIButton *goStopButton;

- (IBAction)go;
- (void)processChunk:(NSTimer *)timer;

@end

The first constant we defined—kTimerInterval—will be used to determine how often the

timer fires. We’re going to start by firing approximately 60 times a second. If we need to

tweak the value to keep our user interface responsive, we can do that as we test. The

second constant, kBatchSize, will be used in the method that the timer calls. In the

method, we’re going to check how much time has elapsed as we do calculations

because we don’t want to spend more than one timer interval in that method. In fact, we

need to spend a little less than the timer interval because we need to make resources

available for the run loop to do other things. However, it would be wasteful to check the

elapsed time after every calculation, so we’ll do a certain number of calculations before

checking the elapsed time, and that’s what kBatchSize is for. We can tweak the batch

size for better performance as well.

We’re also adding an instance variable and property to act as an outlet for the Go

button. That will enable us to change the button’s title to Stop when a batch is

processing. We also have a Boolean that indicates whether a batch is currently running.

We’ll use this to determine what to do when the button is tapped and will also use it to

tell the batch to stop processing when the user taps the Stop button. We also added

one method, processChunk:, which is the method that our timer will call and that will

process a subset of the batch.

Save StalledViewController.h and double-click StalledViewController.xib.

Updating the Nib
Once Interface Builder opens up, control-drag from File’s Owner to the Go button.

Select the goStopButton action. That’s the only change we need, so save the nib and

close Interface Builder.

Updating the View Controller Implementation
Back in Xcode, single-click on StalledViewController.m. At the top of the file, add the

following bold lines of code. The first will import the header from the batch object we

created, and the second synthesizes the new outlet property we added for the button.

CHAPTER 14: Keeping Your Interface Responsive 464

#import "StalledViewController.h"
#import "SquareRootBatch.h"

@implementation StalledViewController
@synthesize numOperationsInput;
@synthesize progressBar;
@synthesize progressLabel;
@synthesize goStopButton;
...

Next, replace the existing go method with this new version:

- (IBAction)go {
 if (!processRunning) {
 NSInteger opCount = [numOperationsInput.text intValue];
 SquareRootBatch *batch = [[SquareRootBatch alloc]
 initWithMaxNumber:opCount];

 [NSTimer scheduledTimerWithTimeInterval:kTimerInterval
 target:self
 selector:@selector(processChunk:)
 userInfo:batch
 repeats:YES];
 [batch release];
 [goStopButton setTitle:@"Stop" forState:UIControlStateNormal];
 processRunning = YES;
 } else {
 processRunning = NO;
 [goStopButton setTitle:@"Go" forState:UIControlStateNormal];
 }
}

We start the method out by checking to see if a batch is already running. If it isn’t, then

we grab the number from the text field, just as the old version did:

 if (!processRunning) {
 NSInteger opCount = [numOperationsInput.text intValue];

Then, we create a new SquareRootBatch instance, initialized with the number pulled from

the text field:

 SquareRootBatch *batch = [[SquareRootBatch alloc]
 initWithMaxNumber:opCount];

After creating the batch object, we create a scheduled timer, telling it to call our

processChunk: method every sixtieth of a second. We pass the batch object in the

userInfo argument so it will be available to the timer method. Because the run loop

retains the timer, we don’t even declare a pointer to the timer we create.

Next, we set the button’s title to Stop and set processRunning to reflect that the process

has started.

 [goStopButton setTitle:@"Stop" forState:UIControlStateNormal];
 processRunning = YES;

If the batch had already been started, then we just change the button’s title back to Go

and set processRunning to NO, which will tell the processChunk: method to stop

processing.

CHAPTER 14: Keeping Your Interface Responsive 465

 } else {
 processRunning = NO;
 [goStopButton setTitle:@"Go" forState:UIControlStateNormal];
 }

Now that we’ve updated our go method, add the following new method (place it right

below go) that will process a chunk of the overall batch:

- (void)processChunk:(NSTimer *)timer {
 if (!processRunning) { // Cancelled
 [timer invalidate];
 progressLabel.text = @"Calculations Cancelled";
 return;
 }

 SquareRootBatch *batch = (SquareRootBatch *)[timer userInfo];
 NSTimeInterval endTime = [NSDate timeIntervalSinceReferenceDate] +
 (kTimerInterval / 2.0);

 BOOL isDone = NO;
 while (([NSDate timeIntervalSinceReferenceDate] < endTime) && (!isDone)) {
 for (int i = 0; i < kBatchSize; i++) {
 if (![batch hasNext]) {
 isDone = YES;
 i = kBatchSize;
 }
 else {
 NSInteger current = batch.current;
 double nextSquareRoot = [batch next];
 NSLog(@"Calculated square root of %d as %0.3f", current,
 nextSquareRoot);
 }
 }
 }
 progressLabel.text = [batch percentCompletedText];
 progressBar.progress = [batch percentCompleted];

 if (isDone) {
 [timer invalidate];
 processRunning = NO;
 progressLabel.text = @"Calculations Finished";
 [goStopButton setTitle:@"Go" forState:UIControlStateNormal];
 }
}

The first thing this method does is see if the user has tapped the Stop button since the

last time the method was called. If it was, we invalidate the timer, which will prevent this

method from being called any more by this timer, ending the processing of this batch.

We also update the progress label to tell the user that we canceled.

 if (!processRunning) { // Cancelled
 [timer invalidate];
 progressLabel.text = @"Calculations Cancelled";
 return;
 }

CHAPTER 14: Keeping Your Interface Responsive 466

Next, we retrieve the batch from the timer.

 SquareRootBatch *batch = (SquareRootBatch *)[timer userInfo];

After that, we calculate when to stop processing this batch. For starters, we’re going to

spend half of the time available to us working on the batch. That should leave plenty of

time for the run loop to receive system events and update the UI, but we can always

tweak the value if we need to.

 NSTimeInterval endTime = [NSDate timeIntervalSinceReferenceDate] +
 (kTimerInterval / 2.0);

We set a Boolean that we’ll use to identify if we have reached the end of the batch. We’ll

set this to YES if hasNext returns NO.

 BOOL isDone = NO;

Then, we go into a loop until we either reach the end time we calculated earlier, or

there’s no calculations left to do.

 while (([NSDate timeIntervalSinceReferenceDate] < endTime) && (!isDone)) {

We’re going to calculate the square root for several numbers at a time rather than

checking the date after every one, so we go into another loop based on the batch size

we defined earlier.

 for (int i = 0; i < kBatchSize; i++) {

In that loop, we make sure there’s more work to be done. If there isn’t, we set isDone to

YES and set i to the batch size to end this loop.

 if (![batch hasNext]) {
 isDone = YES;
 i = kBatchSize;
 }

If there is another number to calculate, we grab the current value and its square root and

log the fact to the debug console.

 else {
 NSInteger current = batch.current;
 double nextSquareRoot = [batch next];
 NSLog(@"Calculated square root of %d as %0.3f", current,
 nextSquareRoot);
 }
 }
 }

After we’re done with processing a chunk, we update the progress bar and label.

 progressLabel.text = [batch percentCompletedText];
 progressBar.progress = [batch percentCompleted];

And, if we’re all out of rows to process, we invalidate the timer and update the progress

label and button.

 if (isDone) {
 [timer invalidate];
 processRunning = NO;

CHAPTER 14: Keeping Your Interface Responsive 467

 progressLabel.text = @"Calculations Finished";
 [goStopButton setTitle:@"Go" forState:UIControlStateNormal];
 }

All that’s left to do now is to take care of our new outlet in the viewDidUnload and

dealloc methods, so add the lines in bold to your existing code:

- (void)viewDidUnload {
 self.numOperationsInput = nil;
 self.progressBar = nil;
 self.progressLabel = nil;
 self.goStopButton = nil;
}

- (void)dealloc {
 [numOperationsInput release];
 [progressBar release];
 [progressLabel release];
 [goStopButton release];
 [super dealloc];
}

Go ahead and take this new version for a spin. Build and run your project and try

entering different numbers. As the calculations happen, your user interface should get

updated (Figure 14–3) and the progress bar should make its way across the screen.

While a batch is processing, you should be able to tap the Stop button to cancel the

processing.

Figure 14–3. Now that we’re using a timer, the application is no longer stalled

CHAPTER 14: Keeping Your Interface Responsive 468

That’s great, and our users are now able to start and stop the process and can continue

to use the application while the calculations are being performed. But, if we had more

tasks going on in the background, this option wouldn’t be ideal. Trying to calculate how

much time to let each batch use would be non-trivial. Fortunately, Apple has given us

the operation queue and has put all sorts of non-trivial logic in it so that we don’t have to

reinvent the wheel. Let’s take a look at operation queues now.

Operation Queues & Concurrency
There are times when your application will need to run more than just a few concurrent

tasks. When you get to more than a handful of tasks, the amount of complexity quickly

escalates, making it very difficult to try and use any form of run loop scheduling to share

time amongst all the tasks. When your application needs to manage many independent

sets of instructions, you have to look at other mechanisms besides run loop scheduling

to add concurrency.

As we’ve mentioned before, one of the traditional tools for adding concurrency at the

application level is called threads. Threads are a mechanism provided by the operating

system that allows multiple sets of instructions to operate at the same time within a

single application. In the case of both the iPhone and the Mac, the threading

functionality is provided by the POSIX Threads API (often referred to as pthreads),

which is part of the OS X operating system. You should rarely, if ever, need to actually

use that API in Cocoa Touch applications, however.

The Foundation framework has, for many years, contained a class called NSThread,

which is far easier to work with than pthreads, which are implemented as a procedural C

API. NSThread was the recommended way, until fairly recently, to add and manage

threads in a Cocoa application.

With Mac OS X 10.5 (Leopard), Apple introduced some new classes for implementing

concurrency and is strongly recommending the use of these new classes instead of

using NSThread directly. NSOperationQueue is a class that manages a queue of instances

of a subclass of NSOperation. Each NSOperation (or subclass) contains a set of

instructions to perform a specific task. The operation queue will spawn and manage

threads as needed to run the queued operations.

The use of operation queues makes implementing concurrency quite a bit easier than

the traditional NSThread-based approach, and worlds easier than using pthreads directly.

The benefits of using operation queues are so clear and compelling that we’re not even

going to show you how to use the lower-level mechanisms directly. We are going to

discuss threads a bit, but only enough to inform your use of NSOperationQueue. Although

NSOperationQueue does make many aspects of concurrency easier, there are still a few

gotchas associated with concurrency and threads that you need to be aware of when

using operation queues.

CHAPTER 14: Keeping Your Interface Responsive 469

Threads
As we’ve mentioned before, every application has at least one thread, which is a

sequence of instructions. The thread that begins executing when the program is

launched is called the main thread. In the case of a Cocoa Touch application, the main

thread contains the application’s main run loop, which is responsible for handling inputs

and updating the user interface. Although there are some instances where Cocoa Touch

uses additional threads implicitly, pretty much all application code that you will write will

fire on the main thread unless you specifically spawn a thread or use an operation in an

operation queue.

To implement concurrency, additional threads are spawned, each tasked to perform a

specific set of instructions. Each thread has equal access to all of your application’s

memory. This means that any object except local variables, can potentially be modified,

used, and changed in any thread. Generally speaking, there’s no way to predict how

long a thread will run, and if there are multiple threads, there’s no way to predict, with

any certainty, which thread will finish first.

These two thread traits—the fact that they all share access to the same memory, and

that there’s no way to predict what share of the processing time each will get—are the

root cause of a number of problems that come along for the ride when doing concurrent

programming. Operation queues provide some relief from the timing problem, since you

can set priorities and dependencies, which we’ll look at a little later, but the memory

sharing issue is still very much a concern.

Race Conditions
The fact that every thread can access the same memory can cause any number of

problems if you’re not conscious of that fact while programming. When a program

doesn’t give the expected result because shared data is accessed concurrently by

multiple threads, a race condition is said to exist. Race conditions can happen when

any thread operates on the assumption that it is the sole user of a resource that is

actually shared with other threads.

Take a look at the following code:

 static int i;
 for (i = 0; i < 25; i++) {
 NSLog(@"i = %d", i);
 }

There’s not really any reason why somebody would declare i to be static in this

example, but it illustrates one classic form of race condition. When you declare a

variable static, it becomes a single shared variable used whenever this method fires on

any object. If this code runs in a program with only a single thread, it will work

completely fine. The fact that there is only one variable i shared by multiple objects

simply isn’t a problem because as long as we’re in the loop, no other code can fire and

change the value of i.

CHAPTER 14: Keeping Your Interface Responsive 470

The second we add concurrency into the mix, that’s no longer true. If, for example, we

had this code running in multiple threads, they would all be sharing the same copy of i.

When one thread increments i, it increments it for all the other threads as well. Instead

of each thread looping 25 times, which is likely the intent, all the threads combined

would loop a total of 25 times. The output in such a case might look like this:

Thread 1: Thread 2: Thread 3:

i = 0 i = 2 i = 5
i = 1 i = 3 i = 10
i = 4 i = 6 i = 13
i = 7 i = 8 i = 18
i = 9 i = 11 i = 19
i = 12 i = 14 i = 24
i = 15 i = 17
i = 16 i = 21
i = 20 i = 22
i = 23

This behavior is almost certainly not what was intended. In this case, the solution is

simple: remove the static operator from i. It won’t always be quite as obvious as this,

but you should understand the potential for problems now with shared memory.

Another example of a race condition can happen with accessors and mutators. Let’s

say, for example, that we have an object that represents a person with two instance

variables, one to hold their first name and another to hold their last name:

@implementation Person : NSObject {
 NSString *firstName;
 NSString *lastName;
}

@property (nonatomic, retain) NSString *firstName;
@property (nonatomic, retain) NSString *lastName;

@end

If an instance of Person is being accessed from multiple threads, we could have

problems. Let’s say, for example, that the instance is being updated in one thread, and

read in another thread. Now, let’s say that the first thread, the one that is updating the

object, is changing both firstName and lastName. For the sake of argument, let’s say

that we have an instance of Person called person, and it starts out with a firstName

value of George and a lastName value of Washington. The code executing in the first

thread is changing both firstName and lastName to new values, like so:

 person.firstName = @"Samantha";
 person.lastName = @"Stephens";

Now, concurrently with that, another thread is reading the values from person:

 NSLog(@"Now processing %@ %@.", person.firstName, person.lastName);

If the NSLog() statement from the second thread fires between the two assignments we

showed from the first thread, the result would be this:

Now processing Samantha Washington.

CHAPTER 14: Keeping Your Interface Responsive 471

There is no such person as Samatha Washington. There’s George Washington and

there’s Samantha Stephens. But, as far as that second thread’s NSLog() statement is

concerned, person represented Samantha Washingon.

Operation queues do not eliminate the problem of race conditions, so it’s important to

be aware of them. Sometimes, you can give each thread its own copy of a shared

resource, perhaps an object or block of data, instead of accessing that shared resource

from multiple threads. This will ensure that one thread doesn’t change the resource out

from under a competing thread. That said, there’s some overhead with making multiple

copies of data. Often, duplicating resources is just not a viable option, however,

because you need to know the current value, not the value as it was when your thread

started. In those cases, you need to take additional steps to ensure data integrity and

avoid race conditions. The main tool we use to avoid race conditions is the mutex lock.

Mutex Locks and @synchronized
A mutex lock is a mechanism used to ensure that while a piece of code is firing, other

threads can’t fire that same piece of code or related code. The term “mutex” is a

portmanteau of the words “mutal” and “exclusion” and, as you might suspect based on

that, locks are essentially a way to specify that only one thread can execute particular

sections of code at a given time.

Originally, locks were always implemented using the class NSLock. Although NSLock is

still available, there’s now a language-level feature for locking down segments of code:

@synchronized blocks.

If you wrap a section of code in a @synchronized block, that code can only fire on one

thread at a time. Here’s an example of a @synchronized block:

@synchronized(self) {
 person.firstName = @"Samantha";
 person.lastName = @"Stephens";
}

Notice that after the @synchronize keyword, there’s a value in parentheses: self. This

argument is called a mutual exclusion semaphore or a mutex. To understand

semaphores in the context of concurrency, the best real-world metaphor is the

bathroom key you might find in some small gas stations. There’s a single key to the

bathroom, usually attached to a large keychain. Only the person who has the key can

use the bathroom. If there’s only one key, it’s a mutual exclusion semaphore or mutex,

because only one person can use the bathroom at a time.

@synchronize works pretty much the same way. When a thread gets to a synchronized

block of code, it will check to see if anyone else is using the mutex, which is to say, if

any other synchronized chunks of code that take the same semaphore are currently

executing. If they are, then the thread will block until no other code is using that

semaphore. A thread that is blocked is not executing any code. When the mutex

becomes available, the thread will unblock and execute the synchronized code.

CHAPTER 14: Keeping Your Interface Responsive 472

This is the main mechanism we’ll use in Cocoa Touch to avoid race conditions and to

make our objects thread safe.

Atomicity and Thread Safety
Throughout Beginning iPhone 3 Development (Apress, 2009), and up until now in this

book, we’ve always had you use the nonatomic keyword when declaring properties.

We’ve never fully explained what nonatomic does, we just said that atomic properties

added overhead that we didn’t need. A good chunk of the overhead we were referring to

is mutex locking. When you don’t specify nonatomic, the accessors and mutators get

created as if the @synchronized keyword was used with self as the mutex. Now, the

exact form of the mutator and accessor methods varies depending on the other

keywords and the property’s datatype, but here’s a simple example of what a nonatomic

accessor might look like:

- (NSMutableString *)foo {
 return foo;
}

As a contrast, here’s what the atomic version might look like:

- (NSMutableString *)foo {
 NSString *ret;
 @synchronized(self) {
 ret = [[self retain] autorelease];
 }
 return ret;
}

The atomic version does two things that the nonatomic doesn’t do. First, it uses self as

a mutex around all the code except the return statement and variable declaration. This

means that no other code that uses self as a mutex can run while the next line of code

is executing. All atomic accessors and mutators block when any other atomic accessor

or mutator on the same object is executing on another thread. This helps to ensure data

integrity.

The second thing that this version does is put the object to be returned into the

autorelease pool. The reason it does that is probably non-obvious. Suppose,

immediately after foo was returned, a new value was assigned to foo. In that case, the

old foo that was returned by the earlier call would still be a valid object because it’s in

the autorelease pool. If it wasn’t in the pool, then between the time that the new foo was

assigned and the time that the calling method attempted to use the old foo, the old foo

was probably deallocated. Not a very likely scenario in an application using only one

thread, but a very possible one in an application using concurrency.

When we declare a property to be nonatomic, we’re removing these protections

because, for some reason, we don’t think we need them. So far, this has always been

fine, because we’ve only been accessing and setting object properties from the main

thread. For outlets, it’s still the case that you can pretty much always declare them

nonatomic, because you shouldn’t use outlets on threads other than the main thread.

CHAPTER 14: Keeping Your Interface Responsive 473

Most of the UIKit is not thread-safe, which means it’s generally not safe to set or retrieve

values from threads other than the main thread.

But, if you’re creating objects that are used in threads or in operation queues, then you

almost certainly want to leave off the nonatomic keyword, because the protection from

atomic properties is valuable enough to offset the small amount of overhead.

It’s important to note, however, that there’s a difference between the concepts of

atomicity and thread safety, and the fact that you’ve used atomic properties does not

make your class thread-safe. In some simple cases, having atomic properties may be all

that an object needs to be thread-safe, but thread-safety is an object-level trait. In our

earlier example with the Person object, removing the nonatomic keyword from the two

properties would not make the object thread-safe because the problem we illustrated

earlier could still happen. You could still have one thread reading the object after

firstName had been changed, but before lastName had been changed. To make the

object truly “thread-safe,” you’d need to not just synchronize the individual accessors

and mutators, but also any transaction involving dependent data. In this case, you would

need to synchronize code that sets the first and last name so that other code accessing

either firstName or lastName would block until the transaction was finished.

The example that demonstrated @synchronized a few pages back shows an excellent

way to ensure that the transaction is atomic. You need to lock down the transaction to

make sure that no other code can read either value until both have been changed. In the

Person class, you might consider adding a method called something like

setFirstName:lastName: to synchronize the entire transaction, like this:

- (void)setFirstName:(NSString *)inFirst lastName:(NSString *)inLast {
 @synchronized (self) {
 self.firstName = inFirst;
 self.lastName = inLast;
 }
}

Notice that we’ve used mutator methods to set first and last name, even though those

mutators are atomic, which means the code in that mutator will also by synchronized.

This is okay, because @synchronized is what’s called a recursive mutex, which means

that a synchronized block can call another synchronized block safely as long as the two

blocks share the same mutex.

However, you never want to call a synchronized block from within another synchronized

block if they don’t use the same mutex. Doing so puts you at risk of a situation known

as a deadlock.

TIP: Apple’s API documentation will tell you if a class is thread-safe. If the API documentation
doesn’t say anything on the topic, then you should assume that the class is not thread-safe.

CHAPTER 14: Keeping Your Interface Responsive 474

Deadlocks
Sometimes solutions have their own problems, and mutex locks, which are the primary

solution to race conditions in concurrency, indeed have a very big problem of their own,

which is known as a deadlock. A deadlock occurs when a thread blocks and then waits

for a condition that can never be met. This can happen, for example, if two threads each

have synchronized code that calls synchronized code on the other thread. If both

threads are using one mutex and waiting for the one the other thread has, neither thread

will ever be able to continue. They will block forever.

There’s no simple solution to deadlock scenarios, but one really good rule of thumb that

will help you avoid deadlocks is: Never have a synchronized block of code call another

synchronized block of code that uses a different mutex.

If you find yourself needing to call a method or function with synchronized code in it, you

may need to actually replicate the code from that method inside the synchronized block

instead of calling the other method. This seems to violate the idea we’ve been pounding

throughout this book that code shouldn’t be unnecessarily duplicated. However, if you

don’t duplicate the code when necessary and attempt to call synchronized code from

synchronized code, you could end up deadlocked.

Sleepy Time
If too many threads are executing, the system can get bogged down. This is especially

true on the iPhone which, as of this writing, has only a single CPU with a single core.

Even if you’re using threads, your user interface can start to skip or respond slowly if

you’re trying to do too much in too many threads. One solution to this, of course, is to

spawn fewer threads. This is something that NSOperationQueue can actually handle for

you, as we’ll see in a few moments.

There’s another thing that threads (and by extension operations) can do to help keep

your application responsive, which is to sleep. A thread can choose to sleep either for a

set interval, or until a set point in time. If a thread sleeps, it blocks until it’s done

sleeping, which yields processor cycles to the other threads. Putting sleep calls in a

thread or operation essentially throttles it, slowing it down to make sure that there’s

plenty of processor time available for the main thread.

To cause the thread where your code is executing to sleep, you can use one of two

class methods on the class NSThread. To sleep for a specified number of seconds, you

would use the method sleepForTimeInterval:. So, for example, to sleep for two and a

half seconds you would do this:

 [NSThread sleepForTimeInterval:2.5];

To sleep until a specific date and time represented by an instance of NSDate, you could

alternatively use sleepUntilDate:. As a result, the previous example could be rewritten

like this:

 [NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceNow:2.5]];

CHAPTER 14: Keeping Your Interface Responsive 475

Note that you should never, ever, and we really mean never, use either of these sleep

methods (or their pthreads API counterparts) on the main thread. Why? The main thread

is the only thread that handles events and can update the user interface. If you put the

main thread to sleep, your interface will just plain stop.

Operations
We’re going to look at operation queues in a moment, but before we do that, we need to

talk about operations, which are the objects that contain the sets of instructions that the

operation queue manages. Operations usually take the form of custom subclasses of

NSOperation. You write the subclass and, in it, you put the code that needs to be run

concurrently.

NOTE: There’s a provided subclass of NSOperation called NSInvocationOperation that
will allow you to run code concurrently without creating your own subclasses of NSOperation.
NSInvocationOperation allows you to specify an object and selector to use as the basis for
the operation. In all but the simplest cases, however, you will want to subclass NSOperation
because doing so gives you a lot more control over the process.

When implementing an operation for use in an operation queue, there are a few steps

you need to take. First, you create a subclass of NSOperation and define any properties

that you’ll need as inputs or outputs from the operation. In our square root example, we

will create a subclass of NSOperation and define properties for current and max on it.

The only other thing you have to do is to override the method called main, which is

where you put the code that makes up the operation. There are a couple of things you

need to do in your main method. The first thing you need to do is wrap all of your logic in

a @try block so you can catch any exceptions. It’s very important that an operation’s

main method not throw any exceptions. They must be caught and handled without

being re-thrown. An uncaught exception in an operation will result in a fatal application

crash.

The second thing you have to do in main is to create a new autorelease pool. Different

threads cannot share the same autorelease pool. The operation will be running in a

separate thread, so it can’t use the main thread’s autorelease pool, so it’s important to

allocate a new one.

Here’s what a skeleton main method for an NSOperation subclass looks like:

- (void)main {
 @try {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // Do work here…

 [pool drain];
 }
 @catch (NSException * e) {

CHAPTER 14: Keeping Your Interface Responsive 476

 // Important that we don't re-throw exception here
 NSLog(@"Exception: %@", e);
 }
}

Operation Dependencies
Any operation can optionally have one or more dependencies. A dependency is another

instance of NSOperation that has to complete before this operation can be executed. An

operation queue will know not to run an operation that has dependencies that have not

yet finished. You can add dependencies to an operation using the addDependency:

method, like so:

 MyOperation *firstOperation = [[MyOperation alloc] init];
 MyOperation *secondOperation = [[MyOperation alloc] init];
 [secondOperation addDependency:firstOperation];
 ...

In this example, if both firstOperation and secondOperation are added to a queue at

the same time, they will not be run concurrently even if the queue has free threads

available for both operations. Because firstOperation is a dependency of

secondOperation, secondOperation will not start executing until firstOperation has

finished.

You can get an array of an operation’s dependencies by using the dependencies

method:

 NSArray *dependencies = [secondOperation dependencies];

You can remove dependencies using the removeDependency: method. To remove the

firstOperation as a dependency from secondOperation, you would do this:

 [secondOperation removeDependency:firstOperation];

Operation Priority
Every operation has a priority that the queue uses to decide which operation gets run

when and that dictates how much of the available processing this operation will get to

use. You can set a queue’s priority using the setQueuePriority: method, passing in one

of the following values:

 NSOperationQueuePriorityVeryLow

 NSOperationQueuePriorityLow

 NSOperationQueuePriorityNormal

 NSOperationQueuePriorityHigh

 NSOperationQueuePriorityVeryHigh

Instances of NSOperation default to NSOperationQueuePriorityNormal. Here’s how you

would change it to a higher priority:

CHAPTER 14: Keeping Your Interface Responsive 477

 [firstOperation setQueuePriority:NSOperationQueuePriorityVeryHigh];

Although higher priority operations will execute before lower priority ones, no operation

executes if it’s not ready. So, for example, an operation with a very high priority that has

unmet dependencies will not be run, so a lower priority operation could go in front of it.

But, among operations that are ready to execute (which can be determined using the

isReady property), the operation with the highest priority will be selected.

You can determine the current priority of an operation by calling the queuePriority

method on it:

 NSOperationQueuePriority *priority = [firstOperation queuePriority];

Other Operation State
By subclassing NSOperation, your class will inherit several properties that can be used to

determine aspects of its current state. To determine if an operation has been cancelled,

you can check the isCancelled property. The code in an operation’s main method

should periodically check the isCancelled property to see if the operation has been

cancelled. If it has been cancelled, your main method should immediately stop

processing and return, which will end the operation.

If an operation’s main method is currently being executed, the isExecuting property will

return YES. If it returns NO, then it means that the operation hasn’t been kicked off yet for

some reason. This could be because the operation was just created, because it has a

dependency that hasn’t finished running yet, or because the queue’s maximum number

of threads have already been created and none are available yet for this operation to

use.

When an operation’s main method returns, that will trigger the method’s isFinished

property to be set to YES, which will cause it to be removed from its queue.

NOTE: NSOperation has another property called isConcurrent, and it’s a little
counterintuitive. If you’re going to use an operation concurrently in a queue, you want to return
NO for isConcurrent (which is actually the default value). If you return YES, then the operation
queue will not create a thread for your operation. It will expect the operation to create its own
thread. So, if you return YES for isConcurrent, and don’t write code to spawn a thread by
overriding the start method, then your operation will execute on the main thread and be
decidedly non-concurrent. This property tells not whether an operation can be run concurrently,
but rather whether the operation itself creates a new thread. We’re not creating these types of
operations in this chapter, but you can read more about them in Apple’s Concurrency
Programming Guide at http://developer.apple.com/mac/library/
documentation/General/Conceptual/ConcurrencyProgrammingGuide

http://developer.apple.com/mac/library

CHAPTER 14: Keeping Your Interface Responsive 478

Cancelling an Operation
You can cancel operations by calling the cancel method, like so:

 [firstOperation cancel];

This will cause the operation’s isCancelled property to be set to YES. It is, however, the

operation’s responsibility to check for this in its main method. Calling cancel will not

cause the operation to be force cancelled. It just sets the property and it’s the main

method’s responsibility to finish processing and return when it detects that the operation

has been cancelled.

The fact that cancellations are tracked at the operation level and not by the operation

queue does cause some behavior that may seem wrong at first. If an operation in a

queue that is not yet executing gets cancelled, the operation will stay in the queue.

Calling cancel on a pending operation doesn’t remove the operation from the queue,

and the operation queue doesn’t provide a mechanism for removing operations.

Cancelled operations don’t get removed until they are done executing. The operation

will have to wait until it starts executing to realize it’s been cancelled and return,

triggering its removal from the queue.

Operation Queues
Now you know how to create operations, so let’s look at the object that manages

operations, NSOperationQueue. Operation queues are created like any other object. You

allocate and initialize the queue, like so:

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

Adding Operations to the Queue
At this point, the queue is ready to use. You can start adding operations to it

immediately without doing anything else. Adding operations is accomplished by using

the addOperation: method, like so:

 [queue addOperation:newOp];

Once the operation is added to the queue, it will execute as soon as there is a thread

available for it and it is ready to execute. It can even start executing operations while

you’re still adding other operations. Operation queues, by default, set the number of

threads based on the hardware available. A queue running on a multi-processor or multi-

core device will tend to create more threads than one running on a single-processor,

single-core device.

Setting the Maximum Concurrent Operation Count
It is generally advisable to let the operation queue decide the number of threads to use.

This will, in most cases, ensure that your application makes the best use of available

resources now and in the future. However, there may be situations where you want to

CHAPTER 14: Keeping Your Interface Responsive 479

take control over the number of threads. For example, if you have operations that yield a

lot of time by blocking for some reason, you might want to have more threads running

than the operation queue thinks it should have. You can do that using the method

setMaxConcurrentOperationCount:. To create a serial queue, which is one that only has

a single thread, you would to this:

 [queue setMaxConcurrentOperationCount:1];

To tell the queue to reset the maximum number of operations based on the hardware

available, you can use the constant

NSOperationQueueDefaultMaxConcurrentOperationCount, like so:

 [queue setMaxConcurrentOperationCount:
 NSOperationQueueDefaultMaxConcurrentOperationCount];

Suspending the Queue
An operation queue can be paused (or suspended). This causes it to stop executing

new operations. Operations that have already started executing will continue, unless

cancelled, but new ones will not be started as long as the queue is suspended.

Suspending the queue is accomplished using the method setSuspended:, passing YES to

pause the queue, and NO to resume the queue.

Fixing Stalled with an Operation Queue
Now that we’ve all got a good grasp on operation queues and concurrency, let’s use

that knowledge to fix the Stalled application one last time. Open up that copy of the

Stalled application we had you make earlier. If you didn’t do that, you can just copy the

14 – Stalled application from the project archives and use that as your starting point for

this section.

This time, we’re going to fix the Stalled application by using an operation queue.

Tapping the Go button will add another process to the queue, and we’ll add a table that

shows the number of operations in the queue along with some information about their

status. As you can see from Figure 14–4, the individual rows have a red button. In the

last chapter, we used the red button to remove songs from the music player’s queue. In

this chapter, we’re using it to cancel operations in the operation queue. To create that

button, you’ll need to grab the image remove.png from the project archive or grab it

from the Simple Player application and add it to the Resources folder of this project. Do

that now before proceeding.

CHAPTER 14: Keeping Your Interface Responsive 480

Figure 14–4. Our final version of the Stalled application will use an operation queue to manage a variable number
of square root operations

Creating SquareRootApplication
We’re going to start by creating our NSOperation subclass. Single-click the Classes

folder and press N to create a new file. Select the Objective-C class template from the

Cocoa Touch Class heading and choose NSObject from the Subclass of pop-up menu.

Name this new file SquareRootOperation.m. Make sure you have Xcode create

SquareRootOperation.h for you as well.

Single-click SquareRootOperation.h and replace its contents with the following:

#import <Foundation/Foundation.h>

#define kBatchSize 100
#define kUIUpdateFrequency 0.5

@class SquareRootOperation;
@protocol SquareRootOperationDelegate
- (void)operationProgressChanged:(SquareRootOperation *)op;
@end

@interface SquareRootOperation : NSOperation {
 NSInteger max;
 NSInteger current;
 id delegate;
}

CHAPTER 14: Keeping Your Interface Responsive 481

@property NSInteger max;
@property NSInteger current;
@property (assign) id<SquareRootOperationDelegate> delegate;

- (id)initWithMax:(NSInteger)inMax
 delegate:(id<SquareRootOperationDelegate>)inDelegate;
- (float)percentComplete;
- (NSString *)progressString;

@end

We start off by defining two constants. The first, kBatchSize, will be used to set how

many calculations we perform before checking to see if our operation has been

cancelled. The second, kUIUpdateFrequency, specifies how often, in seconds, we update

the user interface. We are going to be doing, literally, thousands of calculations a

second. If we update the interface from every thread every time we do an update, that’s

an awful lot of updates. Remember, updates to the user interface have to be done on

the main thread. We’ll show how to safely do that from an operation in a moment, but

doing it incurs overhead. Different threads can’t talk to each other directly.

You don’t need to understand the process that threads use to communicate, but you do

need to understand that there is overhead associated with sending messages between

threads. Fortunately, as you’ll see in a moment, the complexity of inter-thread

communication is hidden from us. But there’s still a cost involved with that

communication that will slow things down if we do it too frequently. By reducing the

updates to every half a second, we eliminate a lot of unnecessary inter-thread

communications. As you test your application, you might want to tweak this value. You

might find that more or less frequent updates give a better user experience, but these

settings seem to be a good starting point and give decent results both on the device

and on the simulator.

#define kBatchSize 100
#define kUIUpdateFrequency 0.5

After that, we create a protocol for our thread’s delegate. Our operation’s delegate will

be the controller class for our application’s main view: StalledViewController. We’ll call

this protocol’s only method to tell that controller that changes have been made that

need to be reflected in the row that represents our operation in the table view.

@class SquareRootOperation;
@protocol SquareRootOperationDelegate
- (void)operationProgressChanged:(SquareRootOperation *)op;
@end

After that, things are pretty similar to our SquareRootBatch class from the timer example,

except instead of subclassing NSObject, we subclass NSOperation. In addition to the

instance variables and properties for current and max calculation, we also have an

instance variable and property for our delegate:

@interface SquareRootOperation : NSOperation {
 NSInteger max;
 NSInteger current;
 id delegate;
}

CHAPTER 14: Keeping Your Interface Responsive 482

@property NSInteger max;
@property NSInteger current;
@property (assign) id<SquareRootOperationDelegate> delegate;

We have an init method that takes the max number of calculations and a delegate:

- (id)initWithMax:(NSInteger)inMax
 delegate:(id<SquareRootOperationDelegate>)inDelegate;

And we have two methods that can be called by our delegate to get the current values

for the progress bar and label:

- (float)percentComplete;
- (NSString *)progressString;
@end

Make sure you save SquareRootOperation.h and then switch over to

SquareRootOperation.m. Replace the current contents with the following:

#import "SquareRootOperation.h"

@implementation SquareRootOperation
@synthesize max;
@synthesize current;
@synthesize delegate;

- (id)initWithMax:(NSInteger)inMax
 delegate:(id<SquareRootOperationDelegate>)inDelegate {
 if (self = [super init]) {
 max = inMax;
 current = 0;
 delegate = inDelegate;
 }
 return self;
}

- (float)percentComplete {
 return (float)current / (float)max;
}

- (NSString *)progressString {
 if ([self isCancelled])
 return @"Cancelled...";
 if (![self isExecuting])
 return @"Waiting...";
 return [NSString stringWithFormat:@"Completed %d of %d", self.current,
 self.max];
}

- (void)main {
 @try {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSTimeInterval lastUIUpdate = [NSDate timeIntervalSinceReferenceDate];
 while (current < max) {
 if (self.isCancelled)
 self.current = max + 1;
 else {

CHAPTER 14: Keeping Your Interface Responsive 483

 self.current++;
 double squareRoot = sqrt((double)current);
 NSLog(@"Operation %@ reports the square root of %d is %f",self,
 current, squareRoot);
 if (self.current % kBatchSize == 0) {
 if ([NSDate timeIntervalSinceReferenceDate] > lastUIUpdate +
 kUIUpdateFrequency) {
 if (self.delegate && [delegate respondsToSelector:
 @selector(operationProgressChanged:)])
 [(NSObject *)self.delegate performSelectorOnMainThread:
 @selector(operationProgressChanged:) withObject:self
 waitUntilDone:NO];
 [NSThread sleepForTimeInterval:0.05];
 lastUIUpdate = [NSDate timeIntervalSinceReferenceDate];
 }
 }
 }
 }
 [pool drain];
 }
 @catch (NSException * e) {
 // Important that we don't re-throw exception, so we just log
 NSLog(@"Exception: %@", e);
 }
}

@end

The init method is pretty standard, and the percentComplete method is just like the one

we had earlier in the chapter for the timer-based version of the application. The first

code we need to look at is progressString. All this does is return a string that represents

the current amount of progress in the operation and will be used in the cell that

represents this row (see Figure 14–4). The one extra step we take here to set the label to

Cancelled… if the operation has been cancelled. Remember, earlier, we said that

cancelled operations that haven’t started executing sit in the queue with their

isCancelled property set to YES until they get kicked off, at which point they don’t do

any processing and fall out of the queue. Since we don’t have any way to remove these

operations from the queue, we do the next best thing and update the label that is

displayed in the table to show that the user requested that this operation be cancelled.

Otherwise, we return Waiting… if the operation hasn’t started yet, or a string identifying

how many square roots we’ve calculated so far if we are executing.

- (NSString *)progressString {
 if ([self isCancelled])
 return @"Cancelled...";
 if (![self isExecuting])
 return @"Waiting...";
 return [NSString stringWithFormat:@"Completed %d of %d", self.current,
 self.max];
}

The next method is the soul of our operation, and it warrants some special attention. The

main method is the one that gets called when this operation gets kicked off by the

CHAPTER 14: Keeping Your Interface Responsive 484

queue. Our operation is going to be running in a thread, so we start of by wrapping

everything in a @try block and allocating an autorelease pool.

- (void)main {
 @try {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

Then we declare and initialize a variable that will be used to keep track of how much

time has elapsed since the last time we updated the user interface.

 NSTimeInterval lastUIUpdate = [NSDate timeIntervalSinceReferenceDate];

Next, we start our loop until current is equal to max.

 while (current < max) {

Every time through the loop, we check to see if our operation has been cancelled. If it

has, then we set current to one more than max, which will cause our loop to end, and

will end our method.

 if (self.isCancelled)
 self.current = max+1;

If our operation hasn’t been cancelled, then we increment current, calculate its square

root, and log the result.

 else {
 self.current++;
 double squareRoot = sqrt((double)current);
 NSLog(@"Operation %@ reports the square root of %d is %f",self,
 current, squareRoot);

We then use modulus math to determine if we should check the time. Remember, we

specified a batch size constant that tells how often we should check if it’s time to do a

user interface update, so every time current modulo kBatchSize equals zero, then we’ve

reached a multiple of kBatchSize and should check to see if it’s time to update the user

interface.

 if (self.current % kBatchSize == 0) {

If we’ve processed an entire batch, we check the current time and compare it to the

time of the last update added to the update frequency. If the current time is greater than

those values added together, it’s time to push another update out to our controller so it

can get reflected in the user interface.

 if ([NSDate timeIntervalSinceReferenceDate] > lastUIUpdate +
 kUIUpdateFrequency) {

We make sure we have a delegate and that it responds to the correct selector before

using performSelector:onMainThread:withObject:waitUntilDone: to let the controller

know that the row that represents this operation should be updated. This is a great

method that allows us to communicate back to the main thread without having to deal

with the nitty-gritty aspects of inter-thread communications. It’s an absolutely lovely

method, just ask anybody who’s had to do it the old-fashioned way using Mach ports.

 if (self.delegate && [delegate respondsToSelector:
 @selector(operationProgressChanged:)])

CHAPTER 14: Keeping Your Interface Responsive 485

 [(NSObject *)self.delegate performSelectorOnMainThread:
 @selector(operationProgressChanged:) withObject:self
 waitUntilDone:NO];

After we update the interface, we’re going to sleep for a fraction of a second. This is

optional, and the exact value to use here would probably get adjusted as we tested our

application, but it’s often a good idea to block periodically to yield some time. As of the

time this book was written, iPhones and iPod touches come with a single processor with

a single core, so yielding some time to the main thread is going to keep our app a little

more responsive than it might otherwise be.

 [NSThread sleepForTimeInterval:0.05];

Finally, we update lastUIUpdate with the current time so the next time through the loop,

we know how long has passed since we updated the user interface.

 lastUIUpdate = [NSDate timeIntervalSinceReferenceDate];
 }
 }
 }
 }

Once we’re done, we have to drain the autorelease pool, otherwise we’ll end up leaking

everything that’s in the pool.

 [pool drain];
 }

Finally, we catch any exceptions. In this application, we just log them. If you need to do

something else here, like show an alert, make sure that you call methods on the main

thread to do it. Do not do any UI work directly in an operation because UIKit is not

thread safe. Yes, we did say that already, but it’s important.

Oh, and by the way? UIKit is not thread safe.

Also, whatever you do, do not throw an exception here. Because this operation is

executing on a non-main thread, there is no higher-level exception hander available to

catch that exception. This means that any exceptions thrown here will be uncaught

exceptions, which is a fatal condition at runtime (aka, a fatal crash).

 @catch (NSException * e) {
 // Important that we don't re-throw exception, so we just log
 NSLog(@"Exception: %@", e);
 }
}

Make sure you save SquareRootOperation.m.

Changes to StalledViewController.h
We no longer need our progress view and progress label on our user interface, but we

do need a table to show the operation queue’s operations. Before we go to Interface

Builder to make the interface changes, we need to make some changes to

StalledViewController.h:

CHAPTER 14: Keeping Your Interface Responsive 486

#import <UIKit/UIKit.h>
#import "SquareRootOperation.h"

@interface StalledViewController : UIViewController
<SquareRootOperationDelegate, UITableViewDelegate, UITableViewDataSource>
{
 UITextField *numOperationsInput;
 UIProgressView *progressBar;
 UILabel *progressLabel;
 UITableView *tableView;
 NSOperationQueue *queue;
}
@property (nonatomic, retain) IBOutlet UITextField *numOperationsInput;
@property (nonatomic, retain) IBOutlet UIProgressView *progressBar;
@property (nonatomic, retain) IBOutlet UILabel *progressLabel;
@property (nonatomic, retain) IBOutlet UITableView *tableView;
@property (nonatomic, retain) NSOperationQueue *queue;

- (IBAction)go;
- (IBAction)cancelOperation:(id)sender;
- (IBAction)backgroundClick;

@end

We imported SquareRootOperation.h, which is the header for the operation class we just

created, and then conformed our class to the SquareRootOperationDelegate protocol in

addition to the two table view delegates it was already conformed to. We also added an

instance variable and property to serve as an outlet to a table view and another instance

variable and property for our operation queue.

We added two methods, one that will be used to cancel operations and that will be

called when the user taps the accessory pane of a row in the table. The backgroundClick

method shouldn’t need any explanation at this point. Because our table will be partially

obscured by the keyboard, we need to provide a way to make the keyboard go away,

which this method will do.

Save StalledViewController.h and double-click StalledViewController.xib to launch

Interface Builder.

Adjusting the User Interface
Once Interface Builder opens up, if the window labeled View is open, close it. Now, click

on the View icon in the main window, press 4 to bring up the identity inspector, and

change the underlying class from UIView to UIControl. This will allow background clicks

to trigger action methods. Press 2 to bring up the connections inspector, then look for

the circle to the right of Touch Down, and drag from that circle to File’s Owner and

select the backgroundClick action.

Now double-click the Control icon, which used to be the View icon, to open our

application’s user interface back up. Single-click the progress view and hit the delete

CHAPTER 14: Keeping Your Interface Responsive 487

key. Then single-click the progress label (the empty label below the progress bar) and

press delete again.

Look in the library for a table view and drag it over to the Control window. Place it in the

window, then use the resize handles so that it takes up all of the window from the left

side to the right (not the margins, the full window), and from the very bottom of the

window until just below the existing text field, button, and label, using the blue

guidelines for proper distance.

Control-drag from File’s Owner to the table view and select the tableView outlet. Then,

control-drag back from the table view to File’s Owner twice. The first time, select the

delegate outlet, the second time select the dataSource outlet.

Once you’ve done that, save the nib, quit Interface Builder, and go back to Xcode.

Updating StalledViewController.m
Single-click StalledViewController.m so we can make our final changes. At the top of the

file, there are a few additions and a few deletions that need to be made:

#import "StalledViewController.h"

#define kTableRowHeight 40.0
#define kProgressBarLeftMargin 20.0
#define kProgressBarTopMargin 5.0
#define kProgressBarWidth 253.0
#define kProgressBarHeight 9.0
#define kProgressLabelLeftMargin 20.0
#define kProgressLabelTopMargin 19.0
#define kProgressViewTag 1011
#define kProgressLabelTag 1012

@implementation StalledViewController
@synthesize numOperationsInput;
@synthesize progressBar;
@synthesize progressLabel;
@synthesize tableView;
@synthesize queue;
...

The constants are going to be used to construct our table view cells. We’re going to

programmatically create a progress bar and a label and add them to our cells. These

values define the location and size of these views, except the last two, which are values

that we’ll assign to the progress view’s and label’s tag property and that we’ll use to

retrieve the two views from dequeued cells.

We then get rid of the @synthesize statements for the two delete outlets, then add

@synthesize statements for the new table view outlet and for the operation queue.

Next, look for the method called go and replace the current implementation with this new

one:

- (IBAction)go {

CHAPTER 14: Keeping Your Interface Responsive 488

 NSInteger opCount = [numOperationsInput.text intValue];
 SquareRootOperation *newOp = [[SquareRootOperation alloc] initWithMax:opCount
 delegate:self];
 [queue addOperation:newOp];
 [newOp release];
}

First, we retrieve the number of operations, just as we did in the last two versions. Next,

we create an instance of SquareRootOperation with that number, passing self as the

delegate so that we get notified of changes that impact the user interface. Finally, we

add the operation to the queue and release it.

After the go method, insert the following two methods:

- (IBAction)cancelOperation:(id)sender {
 NSInteger index = [sender tag];
 NSOperation *op = [[queue operations] objectAtIndex:index];

 [op cancel];
 if (![op isExecuting])
 [self.tableView reloadData];
}

- (IBAction)backgroundClick {
 [numOperationsInput resignFirstResponder];
}

The first method you just added gets called when the user taps on one of the red

buttons in the table view. We’re using the same technique we used in the Simple Player
application from the last chapter. The accessory button on each row has its row index

assigned as its tag, so we retrieve the tag, and then use that index to retrieve the

operation from the queue that corresponds to that index.

Once we have the operation, we cancel it. We check to see if the operation was

executing, and if it wasn’t, we trigger a reload of the table data so that the row’s text

gets changes from Waiting… to Cancelled….

The other method you just added just tells the text field to resign the first responder so

that the keyboard will retract and we can see the whole table.

Look for the existing viewDidUnload and dealloc methods, and make the following

changes to accommodate the changes we made in the header:

- (void)viewDidUnload {
 self.numOperationsInput = nil;
 self.progressLabel = nil;
 self.progressBar = nil;
 self.tableView = nil;
}

- (void)dealloc {
 [numOperationsInput release];
 [progressLabel release];
 [progressBar release]
 [tableView release];
 [queue release];

CHAPTER 14: Keeping Your Interface Responsive 489

 [super dealloc];
}

After the dealloc method, add the following new method, which is an implementation of

viewDidLoad, which gets called when our view loads for the first time.

- (void)viewDidLoad {
 NSOperationQueue *newQueue = [[NSOperationQueue alloc] init];
 self.queue = newQueue;
 [newQueue release];
 [queue addObserver:self
 forKeyPath:@"operations"
 options:0
 context:NULL];
}

The first thing we do in viewDidLoad is create a new instance of NSOperationQueue and

assign it to queue. Then we do something kind of neat. We use something called KVO.

That’s not a typo. We’re not talking about KVC, but it’s a related concept. KVO stands

for Key-Value Observation, and it’s a mechanism that lets you get notified when a

particular property on another object gets changed. We’re registering self as an

observer of queue for the keypath called operations. That key path is the name of the

property that returns an array with all of the operations in the queue. Whenever an

operation is added or gets removed from the queue, our controller class will get notified

of that fact thanks to KVO. The options parameter allows us to request additional

information about the change, such as the previous value of the changed property. We

don’t need anything over and above what basic KVO provides, so we pass 0. We also

pass NULL into the final argument because we don’t have any objects that we want to

get passed along to the notification method.

Now that we’ve registered for the KVO notification, we have to implement a method

called observeValueForKeyPath:ofObject:change:context:. Let’s add that method to

our class and then talk about what it’s doing. Insert the following new method after

viewDidLoad.

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 NSIndexSet *indices = [change objectForKey:NSKeyValueChangeIndexesKey];
 if (indices == nil)
 return; // Nothing to do

 // Build index paths from index sets
 NSUInteger indexCount = [indices count];
 NSUInteger buffer[indexCount];
 [indices getIndexes:buffer maxCount:indexCount inIndexRange:nil];

 NSMutableArray *indexPathArray = [NSMutableArray array];
 for (int i = 0; i < indexCount; i++) {
 NSUInteger indexPathIndices[2];
 indexPathIndices[0] = 0;
 indexPathIndices[1] = buffer[i];
 NSIndexPath *newPath = [NSIndexPath indexPathWithIndexes:indexPathIndices
 length:2];

CHAPTER 14: Keeping Your Interface Responsive 490

 [indexPathArray addObject:newPath];
 }

 NSNumber *kind = [change objectForKey:NSKeyValueChangeKindKey];
 if ([kind integerValue] == NSKeyValueChangeInsertion) // Operations were added
 [self.tableView insertRowsAtIndexPaths:indexPathArray
 withRowAnimation:UITableViewRowAnimationFade];
 else if ([kind integerValue] == NSKeyValueChangeRemoval) // Operations removed
 [self.tableView deleteRowsAtIndexPaths:indexPathArray
 withRowAnimation:UITableViewRowAnimationFade];
}

Any change to properties you observe using KVO will trigger a call to this method. The

first argument to the method is the keypath that you’re watching, and the second is the

object that you are observing. In our case, since we’re only watching one keypath on

one object, we don’t need to do anything with these values. If we were observing

multiple values, we would probably need to check these arguments to know what to do.

The third argument, change, is a dictionary that contains a whole bunch of information

about the change that happened. We didn’t pass in a value for context earlier when we

observed queue, so we won’t receive anything in context when this method gets called.

NOTE: KVO is a neat feature of Cocoa Touch, but one that we’re not covering in-depth. If you’re
interested in leveraging KVO in your own applications, a great place to start is Apple’s Key Value
Observing Programming Guide available at http://developer.apple.com/mac/
library/documentation/cocoa/Conceptual/KeyValueObserving/KeyValueObservi

ng.html

The first thing we do in this method is retrieve the value stored under

NSKeyValueChangeIndexesKey. When the property you’re getting notified about is a

mutable array, which is the case here, any insertions or deletions will be accompanied

by a set of indices that tell where the insertions or deletions happen. We’re going to

need those values to update our table view.

NOTE: Even though operations is declared as an NSArray, the operation queue actually uses
an instance of NSMutableArray to keep track of the operations in the queue. Since
NSMutableArray is a subclass of NSArray, this is perfectly appropriate. The fact that
operations is an NSArray is a hint to other objects not to change its contents, but it’s
perfectly fine to observe changes made by the operation queue.

 NSIndexSet *indices = [change objectForKey:NSKeyValueChangeIndexesKey];

If this returned value is nil, we’ve got nothing to do, so we return.

 if (indices == nil)
 return; // Nothing to do

If it’s not nil, then we need to take the indices, which come in the form of an NSIndexSet

object, which is an object designed to keep a collection of indices, and convert them

http://developer.apple.com/mac

CHAPTER 14: Keeping Your Interface Responsive 491

into an array of NSIndexPath objects, which hold an index path that points to the section

and row of our table. Since our table has only one section, we know that all rows are in

section 0 and we can use that knowledge to craft index paths pointing to our rows:

 NSUInteger indexCount = [indices count];
 NSUInteger buffer[indexCount];
 [indices getIndexes:buffer maxCount:indexCount inIndexRange:nil];

 NSMutableArray *indexPathArray = [NSMutableArray array];
 for (int i = 0; i < indexCount; i++) {
 NSUInteger indexPathIndices[2];
 indexPathIndices[0] = 0;
 indexPathIndices[1] = buffer[i];
 NSIndexPath *newPath = [NSIndexPath indexPathWithIndexes:indexPathIndices
 length:2];
 [indexPathArray addObject:newPath];
 }

Once we get here, we have an array of NSIndexPath objects, each of which represents

one row that was just either deleted or inserted into the queue’s operations array. We

can find out whether it was an insertion or deletion by grabbing another piece of

information out of the change dictionary using the key NSKeyValueChangeKindKey. That

will return an NSNumber that, when converted to an integer, will tell us what kind of

change happened. If it was an insertion, then the integer representation of the returned

value will equal the constant NSKeyValueChangeInsertion. If it was a deletion, it will equal

NSKeyValueChangeRemoval. So, we use that information to tell the table to insert new

rows, or to delete existing rows, as appropriate:

 NSNumber *kind = [change objectForKey:NSKeyValueChangeKindKey];
 if ([kind integerValue] == NSKeyValueChangeInsertion) // Operations were added
 [self.tableView insertRowsAtIndexPaths:indexPathArray
 withRowAnimation:UITableViewRowAnimationFade];
 else if ([kind integerValue] == NSKeyValueChangeRemoval) // Operations removed
 [self.tableView deleteRowsAtIndexPaths:indexPathArray
 withRowAnimation:UITableViewRowAnimationFade];

Almost there, friends. Almost there. At the bottom of the class we have a few more

methods to add. First, we need to add our SquareRootOperationDelegate method,

where we update the user interface. Insert the following method just above the @end

declaration:

- (void)operationProgressChanged:(SquareRootOperation *)op {
 NSUInteger opIndex = [[queue operations] indexOfObject:op];
 NSUInteger reloadIndices[] = {0, opIndex};
 NSIndexPath *reloadIndexPath = [NSIndexPath indexPathWithIndexes:reloadIndices
 length:2];
 UITableViewCell *cell = [tableView cellForRowAtIndexPath:reloadIndexPath];
 if (cell) {
 UIProgressView *progressView = (UIProgressView *)[cell.contentView
 viewWithTag:kProgressViewTag];
 progressView.progress = [op percentComplete];
 UILabel *progressLabel = (UILabel *)[cell.contentView
 viewWithTag:kProgressLabelTag];
 progressLabel.text = [op progressString];

CHAPTER 14: Keeping Your Interface Responsive 492

 [self.tableView reloadRowsAtIndexPaths:[NSArray
 arrayWithObject:reloadIndexPath]
 withRowAnimation:UITableViewRowAnimationNone];
 }
}

We take the SquareRootOperation instance that called the method and find its index in

the operations array. We use that information to build an index path that points to the

row that corresponds to the operation that triggered the method call. We use that index

path to get a reference to the cell that displays the updated operation. If there is no

corresponding cell, then the row isn’t currently visible and we don’t need to do anything.

If the row is visible, we grab the percentComplete and progressString values from the

operation and use them to set the label and progress view for the operation’s cell.

All that’s left are the table view methods, and you all are old hands at these by now, so

just insert the following methods above the @end declaration:

#pragma mark -
#pragma mark Table View Methods
- (NSInteger)tableView:(UITableView *)theTableView
 numberOfRowsInSection:(NSInteger)section {
 return [[queue operations] count];
}

- (UITableViewCell *)tableView:(UITableView *)theTableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *identifier = @"Operation Queue Cell";
 UITableViewCell *cell = [theTableView
 dequeueReusableCellWithIdentifier:identifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:identifier] autorelease];

 UIProgressView *progressView = [[UIProgressView alloc] initWithFrame:
 CGRectMake(kProgressBarLeftMargin, kProgressBarTopMargin,
 kProgressBarWidth, kProgressBarHeight)];
 progressView.tag = kProgressViewTag;
 [cell.contentView addSubview:progressView];
 [progressView release];

 UILabel *progressLabel = [[UILabel alloc] initWithFrame:
 CGRectMake(kProgressLabelLeftMargin, kProgressLabelTopMargin,
 kProgressBarWidth, 15.0)];
 progressLabel.adjustsFontSizeToFitWidth = YES;
 progressLabel.tag = kProgressLabelTag;
 progressLabel.textAlignment = UITextAlignmentCenter;
 progressLabel.font = [UIFont systemFontOfSize:12.0];
 [cell.contentView addSubview:progressLabel];
 [progressLabel release];

 UIButton *removeButton = [UIButton buttonWithType:UIButtonTypeCustom];
 UIImage *removeImage = [UIImage imageNamed:@"remove.png"];
 [removeButton setBackgroundImage:removeImage forState:UIControlStateNormal];
 [removeButton setFrame:CGRectMake(0.0, 0.0, removeImage.size.width,
 removeImage.size.height)];

CHAPTER 14: Keeping Your Interface Responsive 493

 [removeButton addTarget:self action:@selector(cancelOperation:)
 forControlEvents:UIControlEventTouchUpInside];
 cell.accessoryView = removeButton;
 }
 SquareRootOperation *rowOp = (SquareRootOperation *)[[queue operations]
 objectAtIndex:[indexPath row]];
 UIProgressView *progressView = (UIProgressView *)[cell.contentView
 viewWithTag:kProgressViewTag];
 progressView.progress = [rowOp percentComplete];

 UILabel *progressLabel = (UILabel *)[cell.contentView
 viewWithTag:kProgressLabelTag];
 progressLabel.text = [rowOp progressString];

 cell.accessoryView.tag = [indexPath row];

 return cell;
}

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 return nil;
}

- (CGFloat)tableView:(UITableView *)theTableView
heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 return kTableRowHeight;
}

Nothing in these table view methods should need much explanation. If you’re unclear

about the way we built the custom cell in tableView:cellForRowAtIndexPath: by adding

subviews to the cell’s content view, you might want to revisit Chapter 8 of Beginning
iPhone 3 Development.

Queue ’em Up
Build and run the application and take it for a spin. You probably want to run this one in

the simulator. Try spawning a whole bunch of operations and then watch them run,

keeping an eye both on Xcode’s debugger console and the application itself. Try

deleting both executing and pending operations to see how they behave. If you want to

run the application on your phone, you might want to consider commenting out the

NSLog() statement in the main method of SquareRootOperation.m, but if you do, make

sure you add a few zeros on to the number of calculations to perform or else increase

the amount of time that each operation sleeps, otherwise the operations will finish so

fast you won’t even see the table update.

Make note of how many running operations there are when you run it on the device

versus the simulator. We found that the queue defaulted to one concurrent thread on

iPhones and iPod touches, but every Mac we tried it on had at least two threads. That

makes sense, since every Mac right now ships with at least two processor cores, but

every iPhone and iPod touch currently ship with only one. Try experimenting by setting

CHAPTER 14: Keeping Your Interface Responsive 494

the maximum number of concurrent operations in the queue and see how performance

is impacted.

This chapter was just an introduction to concurrency, but you should have enough of a

grip on both operation queues and timers to be able to effectively use both techniques

in your iPhone applications. Once you’ve digested it all, turn the page and we’ll get into

the final frontier: debugging.

495

495

 Chapter

Debugging
One of the fundamental truths of computer programming (and life) is that not everything

works perfectly. No matter how much you plan, and no matter how long you’ve been

programming, it’s rare for an application you write to work perfectly the first time and

forever under all circumstances and possible uses. Knowing how to properly architect

your application and write well-formed code is important. Knowing how to find out why

things aren’t working the way they’re supposed to, and fixing them, is equally important.

This last part of the coding cycle, as you’re probably well aware, is a process called

debugging.

When it comes to mastering the process of debugging, experience is far and away the

best teacher. Each time you fix a specific problem with your code, you’re just a little less

likely to make that same mistake in the future. In addition, with experience, the next time

you encounter that mistake, you’re probably going to find and fix the problem a little bit

faster than you did the last time you encountered it. Obviously, we can’t give you

experience, but we can take you through the basic tools used to debug iPhone

applications and show you a few of the most common types of bugs you will encounter.

In this chapter, we’re not going to build and debug a complex application. Instead, we’re

going to create a project from a template, then show you different debugging

techniques, one at a time, by adding code to demonstrate specific problems.

We’re going to start by taking a brief tour covering the general process of debugging,

then take a quick look at breakpoints, which allow you to pause the execution of a

running program at a pre-specified point. We’ll see how to look at the value of variables

in a currently running program, and how to step through the program line by line using

the debugger.

Next, we’ll talk about static analysis, a new feature of Xcode available only in Snow

Leopard, which analyzes your code for common problems and mistakes. Finally, we’ll

spend some time looking at several of the most common types of bugs you will

encounter and talk about techniques for finding and fixing them.

Before we get started, let’s create an Xcode project that we’ll use to demonstrate

debugging techniques. Use the Navigation-based Application project template and

select the check box called Use Core Data for storage. Name the project DebugMe.

15

CHAPTER 15: Debugging 496

Once the project is opened up, expand the Classes and Resources folders in the Groups
& Files pane.

The Debugger
As you probably have noticed, when you create a project in Xcode, the project defaults

into what’s called the debug configuration. If you’ve ever compiled an application for

the App Store or for ad hoc distribution, then you’re aware of the fact that applications

usually start with two configurations, one called debug and another called release. If you

look in the upper-left corner of your project window, you should see a pop-up menu that

says something like Device – 3.1.2 | Debug (Figure 15–1). This tells us that our project is

set to run on the device in debug mode.

So, how is the debug configuration different than the release or distribution

configuration? There are actually a number of differences between them. The release

configuration, for example, is set up so that the generated application will be optimized

to be as small and fast as possible. But the key difference between them is that the

Debug configuration builds debug symbols into your application. These debug symbols

are like little bookmarks in your compiled application that make it possible to match up

any command that fires in your application with a specific piece of source code in your

project. Xcode includes a piece of software known as a debugger, which uses the

debug symbols to go from bytes of machine code to the specific functions and methods

in source code that generated that machine code.

CAUTION: If you try to use the debugger with the release or distribution configuration, you will
get very odd results since those configurations don’t include debug symbols. The debugger will
try its best, but ultimately will become morose and limp quietly away.

Like the compiler that Xcode uses (GCC), the debugger used in iPhone development is

actually a separate piece of software called GDB, which is a quasi-acronym that stands

for Gnu debugger. Xcode launches GDB for you when it’s needed. You don’t have to

ever interact with GDB directly if you don’t want to, though there are some neat things

you can do with it that can’t be done otherwise, as you’ll see a little later. Whenever you

launch an application using Build and Debug from the Build menu or Debug from the Run

menu, either in the simulator or on the device, you are both building debug symbols into

your application and launching GDB along with your application. When you launch your

application in this way, GDB is said to be attached to your application. Being attached

to your project is what allows it do the cool things it does.

Xcode features a window called the debugger console (Figure 15–1), which you can

bring forward by pressing R. The debugger console is more than just a static log

that shows the results of your application’s NSLog() statements and runtime errors

(though that’s certainly one important role that it serves). It’s also an interface to GDB’s

command-line functionality. You can do pretty much any of the debugging tasks that

you can do through Xcode by typing commands into this console. Usually we’ll use

CHAPTER 15: Debugging 497

Xcode rather than typing GDB commands directly, but for a few of the more important

tasks, we’ll show you how to do them using the debugger console as well.

Figure 15–1. The debugger window is actually an interface to the command-line program GDB, which is the
debugger used by Xcode

Breakpoints
Probably the most important debugging tool in your arsenal is the breakpoint. A

breakpoint is an instruction to the debugger to pause execution of your application at a

specific place in your code and wait for you. By pausing, but not stopping, the execution

of your program, you can do things like look at the value of variables and step through

lines of code one at a time. A breakpoint can also be set up so that instead of pausing

the program’s execution, a command or script gets executed and then the program

resumes execution. We’ll look at both types of breakpoints in this chapter, but you’ll

probably use the former a lot more than the latter.

The most common breakpoint type that you’ll set in Xcode is the line number
breakpoint. This type of breakpoint allows you to specify that the debugger should stop

at a specific line of code in a specific file. To set a line number breakpoint in Xcode, you

just click in the space to the left of the source code file in the editing pane. Let’s do that

now so you can see how it works.

Single-click RootViewController.m. Look for the method called viewDidLoad. It should be

one of the first, if not the first method in the file. On the left side of the editing pane, you

should see a column with numbers, as in Figure 15–2. This is called the gutter, and it’s

one way to set line number breakpoints.

CHAPTER 15: Debugging 498

Figure 15–2. To the left of the editing pane is a column that usually shows line numbers. This is where you set
breakpoints

TIP: If you don’t see line numbers or the gutter, open Xcode’s preferences and go to the Text
Editing section. The first two check boxes in that section are Show gutter and Show line
numbers. It’s much easier to set breakpoints if you can see the gutter and the line numbers.
Regardless of whether you have Show Gutter checked, the gutter will appear while debugging.

Look for the first line of code in viewDidLoad, which should be a call to super. In Figure

15–2, this line of code is at line 22, though it may be a different line number for you.

Single-click in the gutter to the left of that line, and a little arrow should appear in the

gutter pointing at the line of code (Figure 15–3). You now have a breakpoint set in the

RootViewController.m file, at a specific line number.

CHAPTER 15: Debugging 499

Figure 15–3. When a line number breakpoint is set, it will appear in the gutter next to the line of code where it
will pause the program’s execution

You can also remove breakpoints by dragging them off of the gutter, and move them by

dragging them to a new location on the gutter. You can temporarily disable existing

breakpoints by single-clicking them, which will cause them to change from a darker

color to a lighter color. To re-enable a disabled breakpoint, you just click it again to

change it back to the darker color.

Before we talk about all the things you can do with breakpoints, let’s try out the basic

functionality. Select Build and Debug – Breakpoints On from the Build menu or press Y to

build and run the application with GDB attached. The program will start to launch

normally, then before the view gets fully shown, you’re going to be brought back to

Xcode, and the project window will come forward, showing the line of code about to be

executed and its associated breakpoint.

NOTE: In the toolbar at the top of the debug and project windows is an icon labeled Breakpoints.
As its name implies, clicking that icon toggles between breakpoints on or breakpoints off. This
allows you to enable or disable all your breakpoints without losing them. Note that Build and
Debug – Breakpoints On forces this setting to on and then launches the debugger. The Build
and Debug menu item launches the debugger with or without breakpoints, depending on this
setting.

CHAPTER 15: Debugging 500

Let’s bring the debugger into the mix. Select Debugger from the Run menu, or type

Y to bring up the debugger window (Figure 15–4).

At the bottom of the debugger and most other Xcode windows, you’ll see a message

along the lines of:

GDB: Stopped at breakpoint 1 (hit count : 1)- '-viewDidLoad - Line 22'

That’s Xcode passing along a message from the debugger, telling us that execution has

paused at line 22 of RootViewController.m. That bottom portion of the window (you’ll

find it in the project and console windows as well) is called the c, and it’s a good idea to

keep an eye on it while debugging, as it will tell you the last status message from the

debugger.

Figure 15–4. Xcode’s debugger window comes forward when the application stops at a breakpoint

The Debugger Editing Pane
The bottom pane of the debugger window is an editing pane, just like the one in your

project. You can edit your project’s source code here. But notice that there’s also a red

arrow and a highlighted line in the source. That’s our visual indication that we are

currently stopped and using the debugger. The program is still running, but it’s paused

so we can see what’s going on. This red arrow and highlighted line will start at a

breakpoint, but as you’ll see in a few minutes, you can continue the execution of the

program one command at a time.

CHAPTER 15: Debugging 501

The Stack Trace
The upper-left pane of the debugger window is called the stack trace, and it shows the

method and function calls that got us here. The call immediately previous to the call to

viewDidLoad was a call to the view accessor method on an instance of

UIViewController. You might be confused to see an instance of UIViewController in the

stack trace. Don’t be. Since we didn’t override view, the UIViewController version of

view was called and, therefore, that version of view was placed in the stack trace. When

a class doesn’t override a method implemented by its superclass, the superclass’s

version of the method shows up in the stack trace. In this case, that call to view was

actually made on RootViewController, even though the stack trace is reporting it’s being

called on UIViewController. That’s because the stack trace is showing you not what the

object instance is, but where the code that was called exists, and the accessor method

view exists on UIViewController.

The method before that was the method contentScrollView, also on an instance of

UIViewController. The methods before that in the stack trace all have underlines at the

beginning of their names, which tells us that those are Apple’s super-secret internal

methods that we don’t have access to and should never, ever call.

Methods in the stack trace that are listed in black are ones for which we have access to

the source code. Generally, these will be methods we’ve written, or at least that are

contained in our project. Methods in the stack trace that are in gray are ones that are

contained in frameworks or libraries that we’ve linked against and for which we don’t

have access to the source code. At our current breakpoint, only the method we’re in is

our own, the rest are gray, meaning we didn’t write those methods.

If you click on a black row in the stack trace, the editing pane will show you the source

code for that method. If you click on a gray row, then it will just show you the

disassembly (the assembly language representation of machine code) for the listed

method. You can step through disassembly, but unless you understand assembly

language for the processor being used, it probably won’t make much sense.

NOTE: The disassembly you see will look very different when running on the device and when
running in the simulator. In the simulator, you’re looking at Intel X86 assembly, but when
working on a device, you’re looking at ARM assembly. A discussion of assembly language is way
beyond the scope of this chapter, but you can find out more about ARM assembly by reading
http://www.arm.com/miscPDFs/9658.pdf and you can learn more about Intel assembly by
going to http://www.intel.com/products/processor/manuals/index.htm.

Although simpler bugs are often self-contained with a single-method, more complex

bugs rarely are, and being able to track the flow of method and function calls that led up

to a problem can be incredibly useful.

http://www.arm.com/miscPDFs/9658.pdf
http://www.intel.com/products/processor/manuals/index.htm

CHAPTER 15: Debugging 502

The Variable List
The upper-right pane of the debugger window is the variable list, and it displays all of the

variables that are currently in scope. A variable is in scope if it is an argument or local

variable from the current method, or is an instance variable from the object that contains the

method. In fact, if you look at the variable list, you’ll see that they’re divided by type.

NOTE: The variable list will also let you change a variable's value. If you double-click any value,
it will become editable, and when you press return to commit your change, the underlying
variable will also change in the application.

Global variables are also in scope for any function or method, but they are treated a little

differently. By default, no global variables are included in the variable list. The reason for this

is that there are potentially an awful lot of global variables spread throughout the various

frameworks that you might link into your program. Even if your program doesn’t explicitly

declare any global variables, there could still be dozens, maybe even hundreds, of global

variables, most of which you’ll never care about. As a result, global variables are opt-in. You

have to specifically tell Xcode you want to see a specific global variable in the list. If you click

the disclosure triangle next to the Globals row in the variable list, instead of revealing a list of

variables, it will pop up a new window (Figure 15–5).

Figure 15–5. Globals are opt-in. You select them from this window, either by browsing a specific framework or
library, or by using the search field.

This window is showing you a list of all the frameworks and libraries that are available to

your application. If a framework hasn’t been loaded or doesn’t contain any global

variables, that framework will have an empty list of global variables. Among the list of

CHAPTER 15: Debugging 503

libraries and frameworks is one with the same name as our application. In our case, that

would be a listing for a framework called DebugMe. That is where you would find any

global variables declared in our application. When a global variable exists, it will be listed

and will contain a checkbox to the left of it. If you check the box, the selected global

variable will become visible in the variable list.

After the global variables are a number of other sections for processor registers.

Registers are small amounts of storage on the processor that you can access very

quickly. Unless you’re hand-coding assembly, you won’t generally be using registers

directly. If you understand the architecture of the processors on your devices, these can

yield some useful information, but generally you won’t need these until you get to the

point where you’re doing some pretty advanced work, far beyond the scope of this

chapter.

The Debugging Controls
In the toolbar of the debugger window, you’ll see several buttons that you can use to

control the execution of your program when stopped at a breakpoint (Figure 15–5).

Figure 15–6. The debugging controls give you control over the execution of the program

The leftmost button, when pressed, will restart your program. This is functionally

equivalent to quitting your program and then re-launching using the debugger. This

button doesn’t cause your application to be rebuilt, so changes you’ve made to your

code since the last time you built won’t be included.

The Continue button resumes execution of your program. It will pick up right where it left

off and continue executing as normal unless another breakpoint or an error condition is

encountered.

The Step Over and Step Into buttons will allow you to execute a single line of code at a

time. The difference between the two is that Step Over will fire any method or function

call as a single line of code, skipping to the next line of code in the current method or

function, while Step Into will go to the first line of code in the method or function that’s

called and stop there. When you use Step Into, the method you were in gets pushed

down one in the stack trace, and the called method becomes the top method in the

stack trace. When your program is stopped at a line of code that isn’t a function or

method call, these two buttons function identically.

The Step Out button finishes execution of the current method and returns to the method

that called it. This effectively pops the current method off the stack trace’s stack (you

didn’t think that name was accidental did you?) and the method that called this method

becomes the top of the stack trace.

That might be a little clearer if we try it out. Stop your program. Note that even though

your program might be paused at a breakpoint, it is still executing. To stop it, click on

CHAPTER 15: Debugging 504

the stop sign in the toolbar at the top of the debugger window or select Stop from the

Run menu. We’re going to add some code that might make the use of Step Over, Step
Into, and Step Out a little clearer.

NESTED CALLS

Nested method calls like this combine two commands in the same line of code:

 [[NSArray alloc] initWithObject:@"Hello"];

If you nest several methods together, you will skip over several actual commands with a single click of the
Step Over button, making it impossible to set a breakpoint between the different nested statements. This
is the primary reason that we avoid excessive nesting of message calls. Other than the standard nesting of
alloc and init methods, we generally prefer not to nest messages.

Dot notation has changed that somewhat. Remember, dot notation is just shorthand for calling a method,
so this line of code is also two commands:

 [self.tableView reloadData];

Before the call to reloadData, there is a call to the accessor method tableView. If it makes sense to
use an accessor, we will often use dot notation right in the message call rather than using two separate
lines of code, but be careful. It’s easy to forget that dot notation results in a method call, so you can
inadvertently create code that is hard to debug by nesting several method calls on one line of code.

Trying Out the Debug Controls
In Xcode, the file RootViewController.m should still be showing in the editor pane. Note

that you can go back to the project window to edit your source code, but you can also

do that in the debugger window. Makes no never mind to us.

If you don’t see RootViewController.m, go back to the project window and single-click

on RootViewController.m in the Groups & Files pane. Now, add the following two

methods immediately before viewDidLoad.

- (float)processBar:(float)inBar {
 float newBar = inBar * 2.0;
 return newBar;
}

- (NSInteger)processFoo:(NSInteger)inFoo {
 NSInteger newFoo = inFoo * 2;
 return newFoo;
}

And insert the following lines of code into the existing viewDidLoad method:

- (void)viewDidLoad {
 [super viewDidLoad];

 NSInteger foo = 25;
 float bar = 374.3494;
 NSLog(@"foo: %d, bar: %f", foo, bar);

CHAPTER 15: Debugging 505

 foo = [self processFoo:foo];
 bar = [self processBar:bar];

 NSLog(@"foo: %d, bar: %f", foo, bar);

 // Set up the edit and add buttons.
 self.navigationItem.leftBarButtonItem = self.editButtonItem;
 ...

Your breakpoint should still be set at the first line of the method. Xcode does a pretty

good job of moving breakpoints around when you insert or delete text from above or

below it. Even though we just added two methods above our breakpoint and the method

now starts at a new line number, the breakpoint is still set to the correct line of code,

which is nice. If the breakpoint somehow got moved, no worries; we’re going to move it

anyway.

Click and drag the breakpoint down until it’s lined up with the line of code that reads:

 NSInteger foo = 25;

Now, choose Build and Debug from the Build menu to compile the changes and launch the

program again. If the debugger window is not showing, bring it to the front. You should

see the breakpoint at the first new line of code we added to viewDidLoad.

The first two lines of code are just declaring variables and assigning values to them.

These lines don’t call any methods or functions, so the Step Over and Step Into buttons

will function identically here. To test that out, click the Step Over button to cause the

next line of code to execute, then click Step Into to cause the second new line of code

to execute.

Before using any more of the debugger controls, check out the variable list (Figure 15–

7). The two variables we just declared are in the variable list under the Local heading

with their current values. Also, notice that the value for bar is red. That means it was just

assigned or changed by the last command that executed.

NOTE: As you are probably aware, numbers are represented in memory as sums of powers of 2
or powers of ½ for fractional parts. This means that some numbers will end up stored in memory
with values slightly different than the value specified in the source code. Though we set bar to a
value 374.3494, the closest representation was 374.349396. Close enough, right?

CHAPTER 15: Debugging 506

Figure 15–7. When a variable was changed by the last command that fired, it will turn red in the variable list

There’s another way you can see the value of a variable. If you move your cursor so it’s

above the word foo anywhere it exists in the editor pane, a little box will pop up similar

to a tooltip that will tell you the variable’s current value and type (Figure 15–8).

Figure 15–8. Hovering your mouse over a variable in the editing pane will tell you both the variable’s datatype
and its current value

The next line of code is just a log statement, so click the Step Over button again to let it

fire.

The next two lines of code each call a method. We’re going to step into one and step

over the other. Click the Step Into button now.

The red arrow and highlighted line of code should just have moved to the first line of the

processFoo method. If you look at the stack trace now, you’ll see that viewDidLoad is no

longer the first row in the stack. It has been superseded by processFoo. Instead of one

black row in the stack trace, there are now two, because we wrote both processFoo and

viewDidLoad. You can step through the lines of this method if you like. When you’re

ready to move back to viewDidLoad, click the Step Out button. That will return you to

viewDidLoad. processFoo will get popped off of the stack trace’s stack, and the red

indicator and highlight will be at the line of code after the call to processFoo.

CHAPTER 15: Debugging 507

Next, for processBar, we’re going to use Step Over. We’ll never see processBar on the

stack trace when we do that. The debugger is going to run the entire method and then

stop execution after it returns. The red arrow and highlight will move forward one line

(excluding empty lines and comments). We’ll be able to see the results of processBar by

looking at the value of bar, which should now be double what it was, but the method

itself happened as if it was just a single line of code.

DEBUG HERE, DEBUG THERE, DEBUG ANYWHERE

The debugger window is not actually the only place where you can step through code using the debugger.
If, while debugging, you go to the editing pane in your project’s window, you’ll see the same red arrow and
highlighted line of code that you saw in the editing pane of the debugger window, and at the top of the
editing pane, there will be a small set of icons that match the toolbar icons.

You can use these small icons exactly the same way you use the debugging controls in the toolbar of the
debugger window, and can step through the code here if you prefer working in the project window.

But wait! There’s more. Act now, and you we’ll throw in a free mini debugger. If you select Mini Debugger
from the Run menu, a small floating window will appear.

CHAPTER 15: Debugging 508

This window also shows the debugger controls and the source code with the red arrow and highlighted
line of code. The difference with this window is that it stays on top of all other windows, even when Xcode
is in the background, so you can step through code while the simulator is the frontmost application, which
can be really handy. There’s no One Right Way™ to step through your code. Use whichever option works
best for you.

The Breakpoint Window and Symbolic Breakpoints
You’ve now seen the basics of working with breakpoints, but there’s far more to

breakpoints. Select Breakpoints from the Run menu’s Show submenu, or type B to

bring up the breakpoint window (Figure 15–9). This window shows you all the

breakpoints that are currently set in your project. You can delete breakpoints here by

selecting them and pressing the delete key. You can also add another kind of breakpoint

here, which is called a symbolic breakpoint. Instead of breaking on a specific line in a

specific source code file, we can tell GDB to break whenever it reaches a certain one of

those debug symbols built into the application when using the debug configuration. As a

reminder, debug symbols are human-readable names derived from method and function

names.

Figure 15–9. The breakpoint window allows you to see all the breakpoints in your project, and also lets you
create symbolic breakpoints

Single-click the existing breakpoint (select the first line in the right-hand pane) and press

the delete key on your keyboard to delete it. Now, double-click the row that says

Double-Click for Symbol. Type viewDidLoad and then press return. We’re telling GDB

that we want to break on the symbol called viewDidLoad, which equates to stopping at

the method viewDidLoad.

CHAPTER 15: Debugging 509

When you press return, a sheet will drop down (Figure 15–10). This happens because

there’s more than one symbol with that name. Symbols do not have to be unique. The

same method name, for example, can be used in multiple classes. In a large project, you

might have dozens of viewDidLoad symbols compiled into your application.

Figure 15–10. When the same symbol exists multiple times, you will be asked to clarify which of those symbols
you want to stop on.

In this application, we have two versions of viewDidLoad. We have the version that we

wrote, and the one from our superclass that we overrode. When we use debug

configuration, not only do we compile debug symbols into our application, but we also

link against frameworks that have the debug symbols compiled in as well, so we could

even create breakpoints in code that’s not ours.

In this case, let’s just select the viewDidLoad in RootViewController by checking its

check box, then click the Done button. If the application is still running, stop it by

clicking the stop sign icon on the toolbar, and then select Build and Debug – Breakpoints On
to re-launch it. This time, your application should stop again, at the first line of code in

viewDidLoad.

Conditional Breakpoints
Both the symbolic and line number breakpoints we’ve set so far have been

unconditional breakpoints, which means they always stop when the debugger gets to

them. If the program reaches the breakpoint, it stops. But you can also create

conditional breakpoints, which are breakpoints that pause execution only in certain

situations.

If your program is still running, stop it, and in the breakpoint window, delete the

symbolic breakpoint we just created. In RootViewController.m, add the following code,

right after the call to super:

CHAPTER 15: Debugging 510

 for (int i=0; i < 25; i++) {
 NSLog(@"i = %d", i);
 }

Save the file. Now, set a line number breakpoint by clicking to the left of the line that

reads:

 NSLog(@"i = %d", i);

Go to the breakpoint window and look for a column called Condition. For the breakpoint

that you just created, double-click that column and type in i > 15. This will tell GDB only

to break at this breakpoint if the value of i is greater than 15. You might get a warning

from GDB that it wasn’t able to evaluate the condition. If you do, that’s okay, because i

is a local variable, so GDB won’t know about it until it gets there. The variable i doesn’t

exist outside of the method and we’re not in that method right now.

Build and debug your application again, and this time it should stop at the breakpoint

just like it has done in the past, but look in your debugger console, and you should see

this:

2009-11-25 11:25:00.772 DebugMe[46520:207] i = 0
2009-11-25 11:25:00.774 DebugMe[46520:207] i = 1
2009-11-25 11:25:00.776 DebugMe[46520:207] i = 2
2009-11-25 11:25:00.779 DebugMe[46520:207] i = 3
2009-11-25 11:25:00.780 DebugMe[46520:207] i = 4
2009-11-25 11:25:00.782 DebugMe[46520:207] i = 5
2009-11-25 11:25:00.783 DebugMe[46520:207] i = 6
2009-11-25 11:25:00.784 DebugMe[46520:207] i = 7
2009-11-25 11:25:00.785 DebugMe[46520:207] i = 8
2009-11-25 11:25:00.786 DebugMe[46520:207] i = 9
2009-11-25 11:25:00.787 DebugMe[46520:207] i = 10
2009-11-25 11:25:00.788 DebugMe[46520:207] i = 11
2009-11-25 11:25:00.789 DebugMe[46520:207] i = 12
2009-11-25 11:25:00.790 DebugMe[46520:207] i = 13
2009-11-25 11:25:00.791 DebugMe[46520:207] i = 14
2009-11-25 11:25:00.792 DebugMe[46520:207] i = 15

If you hover your cursor over i in the editing pane, it should show a value of 16. So, the

first 16 times through the loop, it didn’t pause execution, it just kept going, because the

condition we set wasn’t met.

This can be an incredibly useful tool when you’ve got an error that occurs in a very long

loop. Without conditional breakpoints, you’d be stuck stepping through the loop until the

error happened, which is tedious. It’s also useful in methods that are called a lot, but are

only exhibiting problems in certain situations. By setting a condition, you can tell the

debugger to ignore situations that you know work properly.

TIP: The Ignore column, just to the right of the Condition column, is pretty cool too—it’s a value
decremented every time the breakpoint is hit. So you might place the value 16 into the column
to have your code stop on the 16th time through the breakpoint. You can even combine these
approaches, using Ignore with a condition. Cool beans, eh?

CHAPTER 15: Debugging 511

Breakpoint Actions
If you look in the debugger window again, you’ll see a column at the far right that

doesn’t have a name, just a symbol, a vertical line with a sideways triangle. You’ve seen

that symbol before; it’s the symbol used on the Continue button in the debugger

controls. If you check the box in that column for a breakpoint, program execution won’t

pause when it reaches that breakpoint, it will just keep going.

What good is a breakpoint that doesn’t cause a break? It’s not much good by itself, but

combined with breakpoint actions, it can very useful.

Stop your application.

Delete the condition we just added to this breakpoint. To do that, double-click on the

condition, then hit delete followed by return. Next, check the continue box for the row so

that the breakpoint doesn’t cause the program’s execution to stop.

Now we’ll add the breakpoint action. At the very left of the row that represents our

breakpoint, you’ll see a disclosure triangle. Expand it now to reveal the breakpoint

actions interface (Figure 15–11).

NOTE: Don’t let that objc_exception_throw reference in Figure 15–11 confuse you. That’s a
special global breakpoint that we’ll discuss later in the chapter.

Figure 15–11. Clicking the disclosure triangle next to a breakpoint reveals the breakpoint actions interface

Any breakpoint can have one or more actions associated with it. Click the plus button at

the right side of the blue rounded rectangle to add an action to this breakpoint. Once

you do that, you’ll get a new breakpoint action. There are a number of different options

to choose from (Figure 15–12). You can run a GDB command or add a statement to the

console log. You can also play a sound, or fire off a shell script or AppleScript. As you

can see, there’s a lot you can do while debugging your application without having to

litter up your code with debug-specific functionality.

Figure 15–12. Breakpoint actions allow you to fire debugger commands, add statements to the log, play a sound,
or fire a shell script or AppleScript

CHAPTER 15: Debugging 512

From the Debugger Command pop-up menu, select Log, which will allow us to add

information to the debugger console without writing another NSLog() statement. When

we compile this application for distribution, this breakpoint won’t exist, so there’s no

chance of accidentally shipping this log command in our application. In the white text

area below the pop-up menu, add the following log command:

Reached %B again. Hit this breakpoint %H times. Current value of i is @(int)i@

The %B is a special substitution variable that will be replaced at runtime with the name of

the breakpoint. The %H is a substitution variable that will be replaced with the number of

times this breakpoint has been reached. The text between the two @ characters is a GDB

expression that tells it to print the value of i, which is an integer.

TIP You can read more about the various debug actions and the correct syntax to use for each one in
the Xcode Debugging Guide available at http://developer.apple.com/mac/library/
documentation/DeveloperTools/Conceptual/XcodeDebugging.

Build and debug your application again. This time, you should see additional information

printed in the debug console log, between the values printed by our NSLog() statement

(Figure 15–13). While statements logged using NSLog() are printed in bold, those done

by breakpoint actions are printed in non-bold characters.

Figure 15–13. Breakpoint log actions get printed to the debugger console but, unlike the results of NSLog()
commands, are not printed in bold

That’s not all there is to breakpoints, but it’s the fundamentals, and should give you a

good foundation for finding and fixing problems in your applications.

http://developer.apple.com/mac/library

CHAPTER 15: Debugging 513

The GDB Console
There’s a huge amount of debugging functionality available through Xcode’s user

interface, and for many people, that functionality will suffice. However, GDB is an

extremely robust piece of software capable of doing even more than what can be done

using Xcode’s debugger and breakpoint windows. We’ll look at just a few GDB

commands that you can use in the debugger console window, which lets you interact

directly with GDB. Note that the debugger console only lets you interact with GDB while

you are actively debugging a program and are stopped at a breakpoint.

Before you try any of the commands that follow, make sure that the debugger is running

and that it is paused, either by selecting Pause from the Run menu or by stopping at a

breakpoint. If you are using breakpoints, be sure you’ve got at least one without the

continue through breakpoint check box checked.

The Info Command
GDB’s info command gives you information about the currently running program. To

use the info command, you have to specify what you want information about. You can

get a list of the available info commands by just typing info, followed by a return, into

the GDB console while debugging a program.

For example, if you type the following into the GDB console:

info breakpoints

GDB will list all of the breakpoints in your application. If you type:

info stack

GDB will give you the stack trace. Both of these commands just give you the same

information that’s already available in Xcode through the breakpoint and debugger

window, though it can be useful to be able to get to that information without leaving the

console window. Many of the other info commands will tell you things you can’t get from

elsewhere in Xcode. For example, if you type in:

info function

GDB will list all of the functions currently available to be called, including Objective-C

methods and C++ member functions. It doesn’t just include functions and methods from

your application, either. This will list every function available, including those from linked

frameworks, and even those that are private.

Working with Breakpoints
You can also work with breakpoints directly from the GDB console. You can do

everything that the breakpoint window allows you to do, and more.

CHAPTER 15: Debugging 514

Creating Breakpoints

To create a new breakpoint, use the command break or b (they are the same, b is just a

shorthand for break). Without any parameters, b will set a breakpoint where execution is

currently stopped. If you want to set a breakpoint at a specific line number in the current

file, append the line number, like so:

b 22

That would set a breakpoint in line 22 of the current file. To set a breakpoint in a specific

file at a certain line number, you type the filename, then a colon, then the line number,

like so:

b RootViewController.m:22

That would set a breakpoint at line 22 of the file RootViewController.m.You can also set

a symbolic breakpoint using the b command by passing the name of the symbol as an

argument:

b viewDidLoad

If there is more than one symbol with that name, you will be prompted to specify which

one by selecting it from a list, not all that different from the way Xcode handles that

situation. If you want to set a breakpoint for a symbol that hasn’t been loaded yet, you

can use the fb command, which stands for future break. Here’s an example of setting a

future break on a function in the Objective-C runtime.

fb objc_exception_throw

NOTE: If you use the fb command and the symbol has already been loaded, then it will function
exactly like the b command, so you don’t have to worry about whether the symbol is loaded or
not when you use fb.

Removing Breakpoints

If you are currently stopped at a breakpoint, typing

clear

will remove the current breakpoint. If you want to clear a specific breakpoint at a certain

line number in the current file, you would append the line number to the command, like

this:

clear 22

And if you want to remove a breakpoint at a specific symbol, you can append the

symbol name to the clear command, like so:

clear viewDidLoad

If you want to delete all breakpoints, use the del command with no arguments:

del

CHAPTER 15: Debugging 515

Printing Data and Object Values
While in the debugger, you can print the values of any object or variable that’s in scope.

To print the value of a native datatype, you use the (surprise!) print command. To print

the value of an Objective-C object, you use the po command, which stands for print

object.

To print the value of the local variable foo, which is an int, for example, you would type

this:

print (int)foo

TIP: You can print in hex with print/x and in binary with print/t.

When you use the po command, GDB actually sends the object a description message

and returns the result. Here’s how you would print the description of an object bar to

the console:

po bar

Calling Functions and Methods
You can do more than that, though. When you use the po command, you can actually

send messages to objects in the debugger and have the po command called on the

returned object. If we wanted to know the class of bar, we could type this:

po [bar class]

This would cause the debugger to send bar the class message and then print the

results of sending description to the returned value. You can do the same thing with C

functions using GDB’s call command with a symbol.

call myFunctionThatTakesAnInt(5)

For Objective-C methods that don’t return an object because they return void, or a

native datatype like float or int, you can also use the call command, but you have to

specifically cast the return value so GDB knows how to format it, like this:

call (float) [self methodThatReturnsAFloat]

or

call (void) [self methodThatReturnsNothing]

If you use call on an Objective-C method that returns an object, the call will work but

the memory address of the returned object will be printed and not its description.

CAUTION: GDB commands are not terminated with a semicolon, so don’t add one after the po
or call commands. Doing so will result in an error.

v@v
Text Box
Download at WoweBook.com

CHAPTER 15: Debugging 516

There’s much, much more you can do with the command-line GDB console. We’ve

barely scratched the surface of GDB’s functionality in this section. If you’re interested in

becoming an advanced debugger, check out the GDB user manual at

http://sourceware.org/gdb/current/onlinedocs/gdb/. For a quick reference to GDB’s

commands, you can open up a terminal session and type in man gdb. That will bring up

the man page for GDB, which lists the available commands and gives a brief summary

of what each does.

GDB INIT

If you create a text file in your home directory called .gdbinit, any GDB commands you place in this file will
be automatically executed when GDB is launched and attached.

Static Analysis
Starting with Xcode 3.2 on Snow Leopard, Apple added a menu item to the Build menu

called Build and Analyze. This option compiles your code and runs a static analysis on

your code that is capable of detecting any number of common problems. Normally,

when you build a project, you will see yellow icons in the build results window that

represent build warnings and red icons that represent build errors. When you build and

analyze, you may also see rows with blue icons that represent potential problems found

by the static analyzer. Although static analysis is imperfect and can sometimes identify

problems that aren’t actually problems (referred to as false positives), it’s very good at

finding certain types of bugs, most notably code that leaks memory. Let’s introduce a

leak into our code and then analyze it.

If your application is running, stop it.

In RootViewController.m, in the viewDidLoad method, add the following code just after

the call to super:

 NSArray *myArray = [[NSArray alloc] initWithObjects:@"Hello", @"Goodbye",
 "So Long", nil];

Before you analyze, it’s a good idea to select Clean from the Build menu. Only files that

get compiled will be analyzed. Code that hasn’t been changed since the last time it was

compiled won’t get compiled again, and won’t get analyzed. In this case, that wouldn’t

be an issue, since we just changed the file where we introduced the bug, but it’s good

practice to analyze your entire project. Once the project is done cleaning, select Build and
Analyze from the Build menu.

You’ll now get a warning about an unused variable, which is true. We declared and

initialized myArray, but never used it. You’ll also get two rows in the build results from

the static analyzer, one that tells you that myArray is never read after initialization. This is

essentially telling us the same thing as the unused variable warning from the compiler.

The next one, however, is one the compiler doesn’t catch. It says: Potential leak of an
object allocated at line 30 stored into 'myArray'. The line number might be a little

http://sourceware.org/gdb/current/onlinedocs/gdb

CHAPTER 15: Debugging 517

different on your system, but you should still see this row in your build results. That’s the

static analyzer telling you that you might have leaked memory, and telling you the line of

code where the object you might have leaked was allocated. To find out more about the

potential leak, click the disclosure triangle to the left of the Potential leak message.

Pretty informative, eh?

Before you begin testing any application, you should run Build and Analyze and look at

every item it points out. It can save you a lot of aggravation and trouble.

Specific Bugs
You now know the basic tools of debugging. We haven’t discussed all the features of

either Xcode or GDB, but we’ve covered the essentials. It would take far more than a

single chapter to cover this topic exhaustively, but you’ve now seen the tools that you’ll

use in 95% or more of your debugging efforts. Unfortunately, the best way to get better

at debugging is to do a lot of it, and that can be frustrating early on. The first time you

see a particular type of problem, you often aren’t sure how to tackle it. So, to give you a

bit of a kick-start, we’re going to show you a couple of the most common problems that

occur in Cocoa Touch programs and show you how to find and fix those problems when

they happen to you.

Overreleasing Memory
Almost certainly the most frustrating and difficult type of bug in the Cocoa Touch world

is the dreaded EXC_BAD_ACCESS exception, which happens when you try to use an object

that has been deallocated. This usually occurs because you released an object that

wasn’t retrieved from alloc, new, or copy, and wasn’t specifically retained. It can also

happen if you don’t specify retain in your property declaration, since using the mutator

method for a property that’s not specifically declared with the retain keyword won’t

retain the object for you.

Before we demonstrate this problem, delete the leaky declaration of myArray we just had

you add to viewDidLoad.

Save, then switch over to RootViewController.h and add the following lines of code:

@interface RootViewController : UITableViewController
 <NSFetchedResultsControllerDelegate> {
 NSFetchedResultsController *fetchedResultsController;
 NSManagedObjectContext *managedObjectContext;

 NSArray *stuff;
}

@property (nonatomic, retain) NSFetchedResultsController *fetchedResultsController;
@property (nonatomic, retain) NSManagedObjectContext *managedObjectContext;
@property (nonatomic, retain) NSArray *stuff;
- (void)doSomethingWithStuffArray;
@end

CHAPTER 15: Debugging 518

We’re declaring the stuff array so we can overrelease it in a bit. We also declare a new

method called doSomethingWithStuffArray which is where we’ll try to access the array

after it’s been overreleased.

Switch over to RootViewController.m. First, synthesize the new array property we just

created, right after the existing @synthesize declaration:

@synthesize stuff;

Then, add this new method right above the existing viewDidLoad method:

- (void)doSomethingWithStuffArray {
 NSString *oneString = [stuff objectAtIndex:0];
 NSLog(@"%@", oneString);
}

No magic there, we’re just retrieving a string from the array and logging its contents.

Now, in the viewDidLoad method, right after the call to super, add the following code:

 NSArray *array = [NSArray arrayWithObjects:@"Hello", @"Goodbye", @"So Long",
 nil];
 self.stuff = array;
 [array release];
 [self performSelector:@selector(doSomethingWithStuffArray) withObject:nil
 afterDelay:5.0];

At first glance this code might look okay, but we created array using a convenience

factory method, which means it’s not ours to release. Yet, after assigning it to the stuff

property, we release it. Any object returned from a factory method is in the autorelease

pool, so when we release it, it doesn’t get deallocated immediately. That’s what can

make this problem so hard to track down. The actual problem won’t occur until later, not

at the time that we made the mistake.

Open the breakpoint window and look in the left pane. There you’ll see listings for

project and global breakpoints. Global breakpoints exist in every Xcode project, not just

the one in which you created it. This fact can be very handy. We’re now going to give

you a global symbolic breakpoint that you should set and never, ever delete. As you’ll

see, this breakpoint can be extraordinarily helpful to have around. Let’s set it now.

In the left pane of the breakpoints window, single-click Global Breakpoints. Next,

double-click the single row that reads Double-Click for Symbol, type in

objc_exception_throw, then hit return. This symbol points to the function that throws

exceptions. If you’re debugging an application and get an uncaught exception (which is

about to happen), this breakpoint will pause the execution of the program when the

exception is thrown, before the program terminates from the uncaught exception. This

will give you a chance to look at the stack trace and examine variable values, to get a

sense of what the heck happened.

CHAPTER 15: Debugging 519

OTHER GREAT SYMBOLIC BREAKPOINTS

The handy objc_exception_throw symbol is not the only symbol you might want to put into your global
breakpoints. Here is a short list of other symbolic breakpoints that will pause execution before your
application terminates in common error situations:

 CGPostError Pauses execution when a Core Graphic error occurs

 malloc_error_break Pauses execution when an overrelease error occurs when
 using malloc or calloc instead of Objective-C objects

 _NSAutoreleaseNoPool Pauses execution when there’s no autorelease pool in
 place. Typically happens when you forget to declare a pool
 in a thread or operation

 _objc_error Pauses execution when Objective-C’s default error handler
 is called

 opengl_error_break Pauses execution when an OpenGL ES error occurs

Build and debug your application. Feel free to delete any breakpoints from earlier in the

chapter, though you’ll want to keep the objc_exception_throw breakpoint around

forever. After the program has been running for about five seconds, you will kick into the

debugger. If we hadn’t set that breakpoint, your program would instead have terminated

and given you a very ambiguous error message:

Program received signal: "EXC_BAD_ACCESS".

Since we did set that breakpoint, that same information is available in the status bar at

the bottom of the debugger, which should read:

GDB: Program received signal: "EXC_BAD_ACCESS".

This signal means you tried to access a piece of memory you don’t have the right to

access. In iPhone SDK programs, it’s almost always the result of trying to use an

overreleased object, though that’s not the only way it can happen. If you were to call

free() twice on the same chunk of memory, for example, or if a pointer got overwritten

with an invalid value, you might get the same error.

Obviously, we know exactly where the problem is in this situation, but how would we go

about finding it in a real application if we had no idea where it was coming from? Well,

that breakpoint you just set is a great starting point. Look in the stack trace in the

debugger window. It should look like Figure 15–14. If yours does not look like that, no

worries, read the tech block that follows.

CHAPTER 15: Debugging 520

Figure 5-14. The debugger is stopped at obj_msgSend, which is part of the Objective-C runtime

NOTE: If your stack trace doesn’t look like 5-14, and doesn’t include the call to
doSomethingWithStuffArray, and instead you see a gray item at the same spot with three
question marks instead of a proper name, it probably means you’re running on the simulator. For
some reason on the simulator, after receiving the EXC_BAD_ACCESS, sometimes the debugger is
unable to match up code with the debug symbols and this is the result. Hopefully this will be
fixed in a future release of the iPhone SDK, but we didn’t want you to think you were doing
something wrong. If you encounter this with your own applications, debugging on the device
instead of the simulator should still work okay.

Trace the call stack back to the first method that’s listed in black and click on it. It

should be the second row (index 1) that represents the doSomethingWithStuffArray

method, just like in Figure 5-14. When you click on it, lo and behold, the editing pane

shows you exact line of code that triggered the error. Once you know that, you know the

problem is with the stuff array, and you can go look at where you created it to make

sure you’re not overreleasing it (which, of course, we are in this case). If you aren’t, you

can then go check the property declaration, and make sure it’s specified with the retain

keyword.

Breaking on the exception won’t always tell you where the problem is, though. Even

worse, sometimes instead of getting an EXC_BAD_ACCESS immediately, your code seems

to work for a while, and then suddenly crashes. Sometimes you get completely

CHAPTER 15: Debugging 521

unexpected behavior. Instead of receiving an EXC_BAD_ACCESS, you get an error telling

you that the object doesn’t respond to the selector objectAtIndex:.

This can mean that the memory that was previously used for stuff might might have

been reused for another object for our application. In that case, accessing that memory

is perfectly fine, it’s just that the object that’s there isn’t the one we’re expecting to be

there because it now represents a different object altogether. In these cases, the answer

is to call in the zombies. What? Zombies? Yes, zombies.

NOTE: The kind of unpredictable errors that you get when memory is reused for different type of
object is commonly referred to as a heisenbug, which is a play on the term Heisenberg
Uncertainty Principle. They can be some of the most difficult bugs to track down.

NSZombie
At this point, you’re probably expecting us to explain the really lame joke about zombies

at the end of the last paragraph. Only, it’s not a joke. We really are going to call out the

zombies. We’re going to set an environment variable that will change the way object

deallocation works in Cocoa. Instead of freeing up a deallocated object’s memory so it

can be reused, the system will start turning deallocated objects into zombies, which are

valid objects. Because they’re valid objects, their memory can’t get re-used by another

object. But, they don’t respond to messages the way regular objects do; instead, they

eat their brains.

Okay, that last bit actually was a lame zombie joke, sorry. That’s not really what zombies

do. What they actually do is report the fact that you’ve sent a message to them.

Remember, without zombies enabled, sending a message to a deallocated object would

have resulted in a crash or some other heisenbug. With the zombie still around, we

won’t crash and we know exactly what object was inappropriately sent the message, so

we know where to look to fix it.

Zombies are awesome. Let’s enable zombies and re-run our application so you can see

how this works.

If your application is running, stop it. In the Groups & Files pane, look for Executables.

Click the disclosure triangle next to it to reveal a single item called DebugMe. Double-

click that item to open up a new window, then click the Arguments tab (Figure 15–15).

CHAPTER 15: Debugging 522

Figure 15–15. The executable window allows you to specify, among other things, environment variables and
arguments to be passed to the executable

This window allows you to set certain parameters about the way your application is

launched, but only when it’s launched from within Xcode. These values don’t affect the

program when it’s compiled and run elsewhere, either from the app store or using ad

hoc distribution. On this tab, you can specify parameters that get passed to your

application (Figure 15–15, top pane) and also can set environment variables for the

application’s run (Figure 15–15, bottom pane).

The bottom pane is the one we want. We need to set an environment variable, so click

the plus button in the very lower-left of the window. This will add a row to the bottom

table. Double-click the row on the Name column and change the variable’s name to

NSZombieEnabled. Then, double-click on the same row in the Value column and set the

value to YES. Now you can close the window.

Build and debug your application again. This time, it won’t crash. But if you look in the

debugger console, you’ll see a message like this:

*** -[CFArray objectAtIndex:]: message sent to deallocated instance 0x3a2d110

CHAPTER 15: Debugging 523

This message offers up some excellent clues to help us figure out which object was

overreleased. We know it’s an array, because CFArray is the core foundation counterpart

to NSArray. We also know the message that was sent, which is objectAtIndex:, so we

can search in our project for occurrences of objectAtIndex: or we could set a symbolic

breakpoint for objectAtIndex: and see which ones fire before the invalid object is set.

Infinite Recursion
Another hard-to-debug problem is when you have a method or set of methods that

infinitely recurse. A method that calls itself, or two methods that call each other, will

keep running until the system runs out of space on the call stack for any more method

calls. As you saw earlier with the stack trace, method and function calls in a program are

kept track of in a stack. If that stack runs out of room, no more calls can be made and

your application quits.

The reason these are hard to debug is that they generally don’t give very much in the

way of feedback. They keep running until the app runs out of room on the call stack, and

then the application crashes. Typically, you don’t get any indication in the debugger

console at all about why it crashed.

In iPhone development, this problem frequently occurs when people forget that dot

notation is just a shorthand for a method call. For example, you might create an

accessor method like this:

- (NSString *)foo {
 return self.foo;
}

If you’re thinking of dot notation the way it’s used in Java or C++, this method looks

okay. You’re just returning the instance variable, foo, right? Alas, no. Calling self.foo is

exactly the same thing as calling [self foo], which means that this method is calling

itself. And it will keep doing so forever, until the program dies.

When this happens, you’ll get a sheet in the debugger window that tells you that Xcode

is loading stack frames (Figure 15–16). There are going to be a lot of stack frames when

this happens. A stack frame represents an individual row of the stack trace pane.

Sometimes Xcode gets overwhelmed by the size of the stack trace and just crashes…

just disappears without a trace.

CHAPTER 15: Debugging 524

Figure 15–16. The main indication that you’ve got infinite recursion going on

But, if Xcode manages to hang on, the stack trace will make it pretty obvious what’s

going on (Figure 15–17). If you see the same method or set of methods repeated over

and over in the stack trace after it finishes loading the stack frames, that’s your clue that

you’ve got a method or methods infinitely recursing.

Figure 15–17. A stack trace with the same methods repeated over and over is a tip off that you’ve got infinite
recursion going on

CHAPTER 15: Debugging 525

Missed Outlet and Action Connections
Sometimes, no matter how hard you look, no matter how many instructions you step

through in the debugger, the results seem to be wrong. A method that should be getting

called isn’t getting called, or the wrong action is firing. If you encounter this sort of

mystery, don’t forget that not all bugs are contained in code. You can also make

mistakes creating your nibs. You can forget to connect an outlet or action, or

accidentally delete a connection after it has been made. You can connect the wrong

control event, or unintentionally connect a control to multiple targets.

Failing to make an outlet connection in Interface Builder can often be a difficult problem

to track down because messages in Objective-C can be sent to nil objects, and

messages to nil objects do no harm. That means a nil connection is generally not

fatal. It doesn’t do what you want, but it doesn’t trigger an error, either. Unfortunately,

there’s not really a good tool for determining if there’s a problem with your nib, so you

need to learn to recognize behavior that can result from missing or incorrectly

connected actions and outlets.

If you set breakpoints in action methods, and they either don’t fire at all, or don’t fire

when you think they should, you probably want to check your nib file and make sure that

the connections are all what they should be. Make sure that all outlets are connected

and that the controls that trigger actions are triggering the correct actions on the correct

event.

If you control-drag from a control, the default action that you’re connecting to with most

controls is the Value Changed event. Interface Builder knows enough to use Touch Up
Inside if you control-drag from a button, but with most controls, control-dragging

connects you to the Value Changed event, which may very well not be what you want.

As a result, you should get in the habit of making your connections to action methods

using the connections inspector, and leave the control-dragging for connecting outlets.

GDB: Stopped at Concluding Paragraph
Debugging can be one of the most difficult and frustrating tasks on this green earth. It’s

also extremely important, and tracking down a problem that’s been plaguing your code

can be extremely gratifying. The reason the debugging process is so hard is that modern

applications are complex, the libraries we use to build them are complex, and modern

operating systems themselves are very complex. At any given time, there’s an awful lot

of code loaded in, running, and interacting.

It would be impossible to predict every bug that you might encounter, and any attempt

to write an exhaustive chapter on the subject would be futile. But, we’ve packed your

backpack with a few of the most useful debugging tools and some information on some

of the most difficult and problematic bugs, which should give you a good starting point

for your future application development treks.

As we stated at the beginning of the chapter, there’s no teacher like experience when it

comes to debugging, so you just need to get out there and start making your own

CHAPTER 15: Debugging 526

mistakes and then fixing them. Don’t hesitate to use search engines or to ask more

experienced developers for help if you truly do get stuck, but don’t let those resources

become a crutch, either. Put in an effort to find and fix each bug you encounter before

you start looking for help. Yes, it will be frustrating at times, but it’s good for you. It

builds character.

And with that, we’re close to the end of our journey together. We do have one more

chapter, though, a farewell bit of guidance as you move forward in your iPhone

development travels. So, when you’re ready for it, turn the page.

527

527

 Chapter

The Road Goes Ever On…
You’ve survived another journey with us, huh? Great! At this point, you know a lot more

than you knew when you first opened this book. We would love to tell you that you now

know it all, but when it comes to technology, you never know it all. This is particularly

true of iPhone development technologies. The programming language and frameworks

we’ve been working with in this book are the end result of well over 20 years of

evolution. And Apple engineers are always feverishly working on that Next Cool New

Thing™. Despite being much more mature than it was just a year ago, the iPhone

platform has still just begun to blossom. There is so much more to come.

By making it through another book, you’ve built yourself an even sturdier foundation.

You’ve acquired a solid knowledge of Objective-C, Cocoa Touch, and the tools that

bring these technologies together to create incredible new iPhone applications. You

understand the iPhone software architecture and the design patterns that make Cocoa

Touch sing. In short, you are even more ready to chart your own course.

Getting Unstuck
At its core, programming is about problem solving—figuring things out. It’s fun and

rewarding. But there will be times when you run up against a puzzle that seems

insurmountable, a problem that does not appear to have a solution.

Sometimes, the answer just appears—a result of a bit of time away from the problem. A

good night’s sleep or a few hours of doing something different can often be all that you

need to get through it. Believe us, sometimes you can stare at the same problem for

hours, overanalyzing and getting yourself so worked up that you miss an obvious

solution.

And then there are times when even a change of scenery doesn’t help. In those

situations, it’s good to have friends in high places. Here are some resources you can

turn to when you’re in a bind.

16

CHAPTER 16: The Road Goes Ever On… 528

Apple’s Documentation
Become one with Xcode’s documentation browser. The documentation browser is a

front end to a wealth of incredibly valuable sample source code, concept guides, API

references, video tutorials, and a whole lot more.

There are few areas of the iPhone that you won’t be able to learn more about by making

your way through Apple’s documentation. And the more comfortable you get with

Apple’s documentation, the easier it will be for you to make your way through uncharted

territories and new technologies as Apple rolls them out.

Mailing Lists
The following are some useful mailing lists that are maintained by Apple:

 http://lists.apple.com/mailman/listinfo/cocoa-dev: A

moderately high-volume list, primarily focused on Cocoa for Mac OS

X. Because of the common heritage shared by Cocoa and Cocoa

Touch, many of the people on this list may be able to help you. Make

sure to search the list archives before asking your question, though.

 http://lists.apple.com/mailman/listinfo/xcode-users: A

mailing list specific to questions and problems related to Xcode.

 http://lists.apple.com/mailman/listinfo/quartz-dev: A

mailing list for discussion of Quartz 2D and Core Graphics

technologies.

Discussion Forums
These are some discussion forums you may like to join:

 http://iphonedevbook.com/forum: Forums that we set up and host

for iPhone development-related questions. We also make sure that the

most current version of the project archives that accompany this book

are here, updated with all errata and running on the most current

release of the iPhone SDK.

 http://devforums.apple.com/: Apple’s new developer community

forums for Mac and iPhone software developers. These require

logging in, but that means you can discuss new functionality that’s still

under NDA. Apple’s engineers are known to check in periodically and

answer questions.

 http://www.iphonedevsdk.com/: A web forum where iPhone

programmers, both new and experienced, help each other out with

problems and advice.

http://lists.apple.com/mailman/listinfo/cocoa-dev:
http://lists.apple.com/mailman/listinfo/xcode-users:
http://lists.apple.com/mailman/listinfo/quartz-dev:
http://iphonedevbook.com/forum:
http://devforums.apple.com/:
http://www.iphonedevsdk.com/:

CHAPTER 16: The Road Goes Ever On… 529

 http://forums.macrumors.com/forumdisplay.php?f=135: A forum

for iPhone programmers hosted by the nice folks at MacRumors.

Web Sites
Here are some web sites that you may want to visit:

 http://www.cocoadevcentral.com/: A portal that contains links to a

great many Cocoa-related web sites and tutorials.

 http://cocoaheads.org/: The CocoaHeads site. CocoaHeads is a

group dedicated to peer support and promotion of Cocoa. It focuses

on local groups with regular meetings, where Cocoa developers can

get together, and even socialize a bit. There’s nothing better than

knowing a real person who can help you out, so if there’s a

CocoaHeads group in your area, check it out. If there’s not, why not

start one up?

 http://nscodernight.com/: The NSCoder Night site. NSCoder

Nights are weekly organized meetings where Cocoa programmers get

together to code and socialize. Like CocoaHeads, NSCoder Nights are

independently organized local events.

 http://cocoablogs.com/: A portal that contains links to a great many

blogs related to Cocoa programming.

 http://www.iphonedevcentral.org/: A web site devoted to iPhone

programming tutorials.

 http://stackoverflow.com/: Although not specifically oriented

toward the iPhone or Objective-C, a great source for finding answers

to questions. Many experienced and knowledgeable iPhone

programmers, including some who work at Apple, contribute to this

site by answering questions and posting sample code.

Blogs
Check out these blogs:

 http://iphonedevelopment.blogspot.com/: Jeff’s iPhone

development blog. Jeff posts sample code, tutorials, and other

information of interest to iPhone developers.

 http://davemark.com/: Dave’s little spot in the sun. Not at all

technical, just full of whimsical ephemera that catches Dave’s interest

and he hopes you’ll enjoy, too.

 http://theocacao.com/: A blog maintained by Scott Stevenson, an

experienced Cocoa programmer.

http://forums.macrumors.com/forumdisplay.php?f=135:
http://www.cocoadevcentral.com/:
http://cocoaheads.org/:
http://nscodernight.com/:
http://cocoablogs.com/:
http://www.iphonedevcentral.org/:
http://stackoverflow.com/:
http://iphonedevelopment.blogspot.com/:
http://davemark.com/:
http://theocacao.com/:

CHAPTER 16: The Road Goes Ever On… 530

 http://www.wilshipley.com/blog/: Wil Shipley’s blog. Wil is one of

the most experienced Objective-C programmers on the planet. His

“Pimp My Code” series of blog postings should be required reading

for any Objective-C programmer.

 http://rentzsch.tumblr.com/: Wolf Rentzsch’s blog. Wolf is an

experienced independent Cocoa programmer and the founder of the

C4 Independent Developers conference.

 http://chanson.livejournal.com/: Chris Hanson’s blog. Chris

works at Apple on the Xcode team, and his blog is filled with great

insight and information about Xcode and related topics.

 http://www.cimgf.com/: The Cocoa Is My Girlfriend site, which

covers software development on both the Mac and iPhone using

Objective-C.

 http://cocoawithlove.com/: A technical blog for Cocoa and Cocoa

Touch developers, run by Matt Gallagher. It has many tutorials.

 http://mattgemmell.com/: Matt Legend Gemmell’s blog. Matt is an

experienced Cocoa developer. He is the author of several open source

Cocoa frameworks, including the MGTwitterEngine framework, which

makes Twitter integration with your iPhone apps a snap.

And If All Else Fails…
Drop Dave and Jeff an e-mail:

daveandjeff@iphonedevbook.com

Farewell
We sure are glad you came along on this journey with us. We wish you the best of luck,

and hope that you enjoy programming the iPhone as much as we do.

http://www.wilshipley.com/blog/:
http://rentzsch.tumblr.com/:
http://chanson.livejournal.com/:
http://www.cimgf.com/:
http://cocoawithlove.com/:
http://mattgemmell.com/:
mailto:daveandjeff@iphonedevbook.com

 531

Index

■ A
abstract entities, 53
accessors, 147

virtual accessors, 151
action declaration

MailPic application, 397
MapMe application, 375
missed connections, debugging, 525
music playing application, 428–430
setting up application skeleton, 331–

333
StalledViewController, 454

action methods
action declarations, application

skeleton, 333
MapMeViewController, 384
RequestTypes application, 353

Activity Indicator View, 334
addAnnotation method, 371
addAnnotations method, 371
addAttachmentData method, 395
addDependency method, 476
addOperation method, 478
aggregates, 188–189
album artwork, retrieving

media items, iPod library, 413
alert views, 152, 245, 265, 266, 268
alertView:clickedButtonAtIndex method,

154
alertView:didDismissButtonWithIndex

method, 76, 78
amAcceptingConnections variable, 234
AND operator see bitwise AND (&)

operator
annotation object, MapKit, 370

writing MapMe class, 378–380

annotation view, MapKit, 362, 370
MapMeViewController, 388, 389
providing map view with, 372

annotations, MapKit, 361, 369–373
adding and removing, 371
annotation object, 370
annotation view, 370
MapMeViewController, 388
providing map view with annotation

views, 372
selecting annotations, 372

API documentation, 91
Apple documentation, 528
Apple mailing lists, 528
application architecture, 43
application delegate

adding to, 45–46
modifying interface, 44–45

application music player controller, 419
application skeleton, setting up, 331–

336
action and outlet declarations, 331–

333
designing interface, 333–335
implementing stubs, 335

applicationMusicPlayer method
MPMusicPlayerController, 419

applications, localizing, 100
applicationWillResignActive method,

240
applicationWillTerminate, 23–24
archiving objects, 235–236
ARM assembly, 501
arrays

contentsForTransfer method, 293

Index 532

controlling table structure with, 87–
90

creating, 99–100
creating from set, 199–200
nested, 88, 89, 90
ordered, 199–200
outer, 88
paired, 87–88
paired nested, 89
populating, 99–101
removing, 193
subarrays, 88

artwork, retrieving
media items, iPod library, 413

aspect ratio
accommodating, 367
coordinate regions, map view, 365

assembly language, 501
assign keyword, 297
asynchronous data retrieval, 344–350

adding to WebWorks, 346–350
NSURLConnection delegate

methods, 345–346
atomicity and thread safety, 472–473
attachments, adding to e-mail, 395
attribute controllers

fetched property, 216–218
attribute editors, 152

color, 158–161
date, 115–117
string, 112–115
using, 118–120

attribute types
Transient, 137

attributes, 19–20
adding to data model, 140–143
adding to entities, 54, 59–60
adding validation to, 142–143
calculated, 151
default values, 137, 146–147
displaying new, 161–163
editing, 55
formatting, 92–94
name, 54
read-only, 146, 166
setting type, 58–59

transformable, 138, 142, 146, 147,
155, 156, 161, 167

types, 56–59
view-only, 165–166

audio
see also music playing application
MPMediaTypeAnyAudio, 411
MPMediaTypeAudioBook, 410
tracks, specifying queue of, 419

autorelease pools, 472, 475, 485
creating SquareRootOperation, 484

AVAudioPlayer
retrieving data using Foundation

objects, 337
awakeFromInsert method, 146–147

■ B
b (break) command

creating breakpoints, GDB console,
514

backgroundClick action
building music playing application,

430, 435, 440
updating StalledViewController, 488

backing store see persistent store
bar button items, 110–111
batch object

fixing Stalled application with timer,
460–462

beginGeneratingPlaybackNotifications
method, 423

Beginning iPhone 3 Development
(Apress), 2

beginSeekingBackward method, 421
beginSeekingForward method, 421
Berkeley sockets API

online network play, 271
big-endian byte ordering, 279
Binary datatype, 57–58
bit fields (bit flags), 409
bitwise AND (&) operator

comparing mediaType, 410
returning media items meeting

predicates, 416
bitwise macros, 410

Index 533

bitwise OR (|) operator
selecting media types, 417

blogs for further information, 529
Bluetooth, 225
Bonjour, 226, 281–288

browser delegate methods, 286–287
creating service for publication, 282–

285
delegate methods for publication,

284–285
error codes/domains, 285
publishing service, 283
resolving discovered service, 287–

288
searching for published services,

285
stopping service, 284
valid types, 283

Boolean datatype, 57
breakpoint actions, debugging, 511–

512
breakpoint window, debugging, 508–

509
Condition column, 510
Ignore column, 510
overreleasing memory, 518

breakpoints, 269, 497–512
breakpoint actions, 511–512
breakpoint window, 508–509
CGPostError, 519
conditional breakpoints, 509–510
Debugger Editing Pane, 500
debugging controls, 503–507
GDB console, 513–514

creating breakpoints, 514
removing breakpoints, 514

line number breakpoints, 497
malloc_error_break, 519
NSAutoreleaseNoPool, 519
objc_error, 519
objc_exception_throw, 511, 519
opengl_error_break, 519
stack trace, 501
symbolic breakpoints, 508
unconditional breakpoints, 509
variable list, 502–503

Xcode moving breakpoints around,
505

browser delegate methods, 286–287
browsers

creating peer browser for online
network play, 311–318

bugs as examples for debugging, 517–
525

heisenbug, 521
infinite recursion, 523–524
missed outlet and action

connections, 525
overreleasing memory, 517–521
zombies, 521–523

byte ordering, 279
big-endian, 279
CFNetwork, 280
little-endian, 279

■ C
C language, resources for, 2
call command, GDB console, 515
callback functions

declaring socket context, 275
implementing socket callback

function, 280, 281
setting up listener, 274

callout, annotations
MapKit framework, 362

selecting annotations, 372
Cancel button, 193–196, 208
cancel method, 111, 195

operations, 478
cancelOperation action

updating StalledViewController, 488
Cascade rule, 177
categories, importing, 99
cellForRowAtIndexPath method, 90,

102, 114, 201–205, 210, 316
building music playing application,

446
updating StalledViewController, 493

CF prefix, 273
CFAllocators, creating sockets, 276
CFNetwork

Index 534

byte ordering, 280
callback functions, 274
configuring sockets, 275–277
creating sockets, 276
delegates, 274
header file, 309
online network play, 271, 273
run loop integration, 274
setting up listener, 273–279
socket object, 306
specifying port for listening, 278

CFReadStreamRef, 309
CFRelease, 310
CFSocket, 275, 309
CFSocketContext, 275–276, 277
CFSocketCreate function, 276–277
CFSocketRef, 306
CFSocketSetAddress function, 278, 279
CFStream pointers, 288
CFWriteStreamRef, 309
CGPostError breakpoint, 519
checkForGameEnd method, 260–261,

321
Class category, Cocoa Touch, 293
class declaration, 245, 296
class methods, 208
class names, 156
class_copyPropertyList function, 220
classes

adding fetched properties to, 189–
190

adding relationships to, 189–190
renaming, 191–192

Classes folder, TicTacToe
adding packet categories, 293
implementing OnlineSession object,

295
clear command

removing breakpoints, GDB console,
514

clickedButtonAtIndex method, 154
client-server model, 229–230, 231–232
clients, 229
CLLocation, 364
CLLocationManager, 384
CLLocationManagerDelegate, 376

Cocoa
operation queues, 453
related blogs, 529, 530
related web sites, 529
transmission type, 283

Cocoa Touch
Class category, 293
KVO (Key-Value Observation), 490
listening for network connections,

274
operation queues, 453
related blogs, 530
threads, 469
using assign not retain for delegates,

297
collectionByAppendingXyz methods

building music playing application,
425, 427

collectionByDeletingXyz methods
building music playing application,

425, 427
collectionModified instance variable

building music playing application,
429, 440, 442, 444, 446

collections
media item collections, 413–414
MPMediaItemCollections, 416

collections property, MPMediaQuery,
416

collectionWithItems method, 413
color attribute editor, 138, 139, 158–161
color models, 147, 156
colors

default, 138
displaying, 163–165
editing, 138

comments
beginning with //TODO, 74, 75
javadoc notation, 91
special, 74, 75

commitEditingStyle method, 38–39, 209
committed values, 195
committedValuesForKeys method, 195
communication models, network, 229–

232
composition, 173

Index 535

concurrency, 451, 453–454
adding to application, 451
creating Stalled application, 453–457
multiprocessing, 452
operation queues, 452, 478–479
operations, 452, 475–478
run loop scheduling, 451
threads, 468, 469–475
timers, 451, 458–460

Condition column, breakpoint window,
510

conditional breakpoints, 509–510
connection:didFailWithError method,

346, 349
connection:didReceiveData method,

346
connection:didReceiveResponse

method, 345
connectionDidFinishLoading method,

346, 349
connectToPeer method, 234
constant operands, 183
constants see k prefixed constants
containsItem method

building music playing application,
425, 427

contentsForTransfer method, 293
context, 22–23

updating StalledViewController, 490
Continue button, debugging window,

503
breakpoint actions, 511

controller classes, generic, 169–172,
190–216

controller:didChangeObjectColforChan
geType method, 30–34

controller:didChangeSection method,
35

controllerDidChangeContent method,
30

controllerWillChangeContent method,
29–30

coordinate property, CLLocation
annotation object, MapKit, 370
user location, map view, 364

coordinate regions, map view, MapKit,
364–367

accommodating aspect ratio, 367
converting degrees to distance, 366
setting region to display, 367

coordinates
determining visibility of, 369

Core Data
architectures, 12
concepts and terminology, 12–13
custom managed objects, 137–167
data model, 13–16, 18
data model editor, 13–14, 18–21
expressions, 185, 188–189
fetched properties, 178–188, 189–

191
fetched results controller, 25–39
history of, 10
managed objects, 21–24
migrations, 133–136
overview, 9–10
persistent store, 13–14, 16–18, 24–

25
persistent store coordinator, 16–18
relationships, 172–177, 179–185
template application, creating, 10–12
validation, 147
versioning, 127–133
Xcode template, 10–12

Core Foundation, 273, 275
CFAllocators, 276
implementing callback functions,

275
Objective-C objects, 275
toll-free bridging, 279

CoreData.sqlite, 17
CoreData.xcdatamodel, 13
CoreLocation framework

building MapMe application, 376
linking MapKit framework, 389

Cover Flow
selecting audio tracks, 405, 417

currentPlaybackTime property, music
player, 421

custom subclasses, creating, 143–144

Index 536

■ D
data

packaging for sending, 235–236
receiving from peers, 236
retrieving asynchronously, 344–350
retrieving synchronously, 339–344
saves on terminate, 23–24
sending to peer, 234–235

data model
designing, 50–60
multiple, 16
NSManagedObjectModel, 14–16
persistent store and, 13–14
reviewing, 18

data model editor, 13–14, 18–21
adding entities, 179
creating fetched properties in, 179–

188
creating relationships in, 179–185
entity pane, 18–19
property pane, 19–20

data models
about, 128–133
adding attributes, 140–143
changes to, 127–128
compilation, 128
migrations, 133–136
updating, 140–143
version identifiers, 131–132
versions, 129–133

data modes, 235
data receive handler, 236
datagram sockets, creating, 276
datasource methods, 101–102
dataSource outlet

building music playing application,
433

datatypes
attribute, 56–59
Binary, 57–58
Boolean, 57
Date, 57
Decimal, 57
Double, 57
Float, 57
integer, 56–58

receiving data from streams, 291
String, 57
Transformable, 58

dataWithContentsOfURL method, 337
date attribute editor, 115–117
date attributes, 19
Date datatype, 57
date last played, retrieving

media items, iPod library, 413
date picker view, 117
deadlocks, threads, 474
dealloc method, 101, 237, 264

fixing Stalled application with timer,
467

MapMeViewController, 385
music playing application, 436, 444
OnlineSession object, TicTacToe,

302
peer browser view controller, 316
StalledViewController, 456, 488

deallocated objects
EXC_BAD_ACCESS exception, 517,

519, 520
zombies, 521–523

debug actions, 512
debug configuration, Xcode projects,

496
debug symbols, 496
debugger console, Xcode see debugger

window
Debugger Editing Pane, 500
debugger window, 496

breakpoint actions, 511–512
breakpoint window, 508–509
breakpoints, 497–512
bringing up debugger window, 500
conditional breakpoints, 509–510
debugging controls, 503–507
interface to GDB, 496
stack trace, 501
StalledViewController, 456, 457
status bar, 500
symbolic breakpoint, 508
variable list, 502–503

debugger, Xcode, 496
debugging, 269, 495

Index 537

breakpoints, 497–512
bugs as examples for, 517–525

infinite recursion, 523–524
missed outlet and action

connections, 525
overreleasing memory, 517–521

creating Xcode project to
demonstrate, 495

editing pane, 507
EXC_BAD_ACCESS exception, 517,

519, 520
GDB (Gnu debugger) console, 513–

516
gdbinit file, 516
Mini Debugger, 507
release or distribution configuration,

496
static analysis, 495, 516
zombies, 521–523

debugging controls, 503–507
debugging window buttons, 503
Decimal datatype, 57
decimal numbers, 57
default values, 114

for attributes, 137, 146–147
degrees

calculating distance of one degree
longitude, 366

del command
removing breakpoints, GDB console,

514
delegate methods

alert view, 78
browser delegate methods, 286–287
delegate methods for publication,

284–285
fetched results controller, 29–35
mailComposeController, 395
map loading delegate methods, 368
mediaPickerDidCancel, 418
MFMailComposeViewControllerDele

gate, 395
NSNetService, 326
NSNetServiceBrowser, 317
NSURLConnection, 345–346
OnlineListener, 325

OnlineSession, 325
peer picker, 323
region change delegate methods,

368
resolving discovered services, 287,

326
setting up application skeleton, 332,

333
streams, 289
tab bar, 78

delegate outlet
building music playing application,

433
delegate property, setting to nil, 79
delegates

building MapMe application, 376
CFNetwork, 274
creating OnlineListener object, 309
map view delegate, 367–369
publishing Bonjour service, 284
using assign not retain for, 297

delete button, 209–211
DELETE request, HTTP, 350, 351, 357
delete rules, 177, 218
deleted objects, cleaning up, 218–221
deletes, 209–211
Deny rule, 177
dependencies, operation, 476
dependencies method, operations, 476
description method, 92–93
deselectAnnotation method, 372
destination entities, 173
detail view

as grouped table, 84
controlling table structure with

arrays, 87–90
declaring instance variables and

properties, 96–97
editable, 83
editing challenges, 85–87
editing subcontrollers, adding, 107
formatting attributes, 92–94
functionality, 106
specifying sections and rows, 86
tabled-based vs. nib-based, 84–85

detail view controller

Index 538

creating, 94–96
implementation, 97–103
using, 103–106

detailController
adding to MainWindow.xib, 104–105
declaring, 103–104
pushing onto stack, 105–106

device name
advertising services, 283

didChangeObjectColforChangeType
method, 30–34

didChangeSection:atIndex method, 35
didChangeState method, 233
didConnectToPeer method, 238
didDismissButtonWithIndex method,

76, 78
didFailWithError method, 324, 346, 349,

374
didFindPlacemark method, 374, 375
didFindService method, 286, 287
didFinish method, 402
didNotPublish method, 285
didNotResolve method, 287
didNotSearch method, 286
didPickMediaItems method, 418
didReceiveConnectionRequestFromPee

r method, 234
didReceiveData method, 346
didReceiveResponse method, 345
didSelect method, 323
didSelectItem method, 78
didSelectRowAtIndexPath method, 316
disclosure indicator, 165–166
disconnectPeerFromAllPeers method,

237
discovered services, 282

browser delegate methods, 287
resolving, 287–288

delegate methods, 326
searching for published Bonjour

services, 285
discoveredServices array, 287, 312, 316
discussion forums, 528
display name, 233
DNS domain name, 282
documentation browser, Xcode, 528

doGetRequest action
RequestTypes application, 353, 356

dollar sign, 184
domains

advertising services, 282
error domains, 149
NSNetService, 285

doPostRequest action
RequestTypes application, 353, 356

doTitleSearch action
music playing application, 430, 431,

434, 439
Double datatype, 57
Doxygen, 91
drawRect method, 370
dynamic keyword, 147

■ E
edit mode, 197
editButtonItem, 25
editing pane, debugging in, 507
e-mail application, 391

adding attachments, 395
mail compose view, 391
MailPic application, 396–403
MessageUI framework, 394–396
MFMailComposeViewControllerDele

gate, 395
prepopulating message body, 395
prepopulating recipients, 394
prepopulating subject line, 394
presenting mail compose view, 395
sending e-mail to old way, 403

encounteredError method, 310
endGeneratingPlaybackNotifications

method, 423
endianness see byte ordering
Enterprise Objects Framework (EOF), 10
Enterprise Program, 4
entities, 13–14, 18–19

abstract, 53
adding, 51–52, 179
adding attributes to, 54, 59–60
adding fetched properties to, 181–

187

Index 539

destination, 173
editing, 52–54
inserting new, 37
naming conventions, 55
properties of, 19–21
relationships between, 20, 172–177,

180–181
entity pane, 18–19
error codes, 149

NSNetService, 285
error domains, 149
errors

didFailWithError method, 349
event codes

NSStreamEventEndEncountered,
290

NSStreamEventErrorOccurred, 290
NSStreamEventHasBytesAvailable,

290
NSStreamEventHasSpaceAvailable,

290
NSStreamEventOpenCompleted,

289
Event entity, 13, 19
events

handleEvent method, 289
exceptions, 111

creating SquareRootOperation, 485
EXC_BAD_ACCESS, 517, 519, 520
main method, operations, 475

expressions, 185, 188–189
extensions, 198

■ F
factory methods, adding, 211–215
false positives, static analysis, 516
faults, 188
fb (future break) command, 514
fetch requests, 21

creating, 26
FETCH_SOURCE variable, 184, 185,

187
fetched properties, 21, 169

about, 178
adding to classes, 189–190

creating, 179–188
displaying, 190–191, 205, 216–218

fetched property attribute controller,
216–218

fetched results controller
creating, 26–29
declaring, 49–55
delegate methods, 29–35

controller:didChangeObjectColfor
ChangeType, 30–34

controller:didChangeSection, 35
controllerDidChangeContent, 30
controllerWillChangeContent, 29–

30
managed objects

creating and inserting, 36–37
deleting, 38–39
retrieving, 36

object updates, 32–34
overview, 26
references to, 62
section name keypaths, 77

FETCHED_PROPERTY variable, 185
fetchedResultsController, 25–39, 76–79
filterable properties

media items, iPod library, 409, 411
media types, iPod library, 410

findMe action, MapMe, 376, 377
first-generation iPhones

online network play, 271
firstMediaItem method

music playing application, 425, 426
Float datatype, 57
form parameters, 351–352
forums, discussion, 528
Foundation objects, 273, 279

retrieving data using, 336–339
FUNCTION macro

implementing stubs, application
skeleton, 336

further information
Apple documentation, 528
blogs, 529
discussion forums, 528
mailing lists, 528
web sites, 529

Index 540

Xcode documentation, 528

■ G
GameKit, 225

components, 225
header files, 242–246
importing, 240
in-game voice functionality, 226
Nearby play, 321
packaging data for sending, 235–

236
peer picker, 225, 227, 237–239, 264
project creation, 239

interface design, 241–269
view controller header, 242–246

receiving data from peers, 236
sending data to peers, 234–235
sessions, 225, 232–234

closing connections, 237
creating, 232–233, 238–239
finding and connecting to other,

233–234
TicTacToe (sample application),

226–229
game board design, 246–250
interface design, 241–269
playing, 268–269
TicTacToe view controller, 252–

268
TicTacToePacket, 248–251
view controller header, 242–246

GCD (Grand Central Dispatch), 452
GDB (Gnu debugger), 496
GDB (Gnu debugger) console, 513–516

calling functions and methods, 515
command termination, 515
debugger console as interface to,

496
info command, 513
printing data and object values, 515
working with breakpoints, 513–514

creating breakpoints, 514
removing breakpoints, 514

gdbinit file, debugging, 516
generic code, 169, 190

generic controller class, 169–172, 190
creating, 190–211
using, 211–216

GET parameters, 352
GET request, HTTP, 350

RequestTypes application, 353, 356
getImageAsynchronously action,

WebWorks, 346
getImageSynchronously action, 340
getImageUsingNSData action

Foundation objects, 338
getTextAsynchronously action,

WebWorks, 347
getTextUsingNSString action

Foundation objects, 338
GKPeerPickerController, 237–238, 259
GKSendDataReliable method, 235
GKSendDataUnreliable method, 235
GKSession, 232–234
GKSessionModeClient, 233
GKSessionModePeer, 233, 234, 264
GKSessionModeServer, 233, 234
global variables, breakpoints, 502
go method

fixing Stalled application with timer,
464

StalledViewController, 455, 456, 487
Google

MapKit framework, 360
goStopButton action

updating nib, Stalled application,
463

Grand Central Dispatch (GCD), 452
grouped tables for detail views, 84
groupingType property,

MPMediaQuery, 416
gutter, line number breakpoints, 497,

498, 499

■ H
handleEvent method, 289
handleReceivedData method, 325, 327
hash, 131
header files, 145–146

OnlineListener, TicTacToe, 309

Index 541

response header fields, 340
setting up, 242–246
updating, 152–153
writing peer browser header, 312

headerdoc notation, 91
heisenbug, 521
HeroEditController

adding view-only support, 165–166
creating, 94–96
declaring instance variables and

properties, 96–97
displaying new attributes in, 161–

163
implementation, 97–103
refactoring, 190–193
renaming, 191–192
using, 103–106

HeroListViewController, 44, 49
creating, 60–64
implementation, 66–79
interface design, 64–66
updating, 215–216

heroValueDisplay method, 93–94, 103,
163

htonl function, byte ordering, 279
HTTP

form parameters, 351–352
response codes, 340
specifying request types, 350–351

HTTP headers, mutable URL requests,
351

hybrid map type, map view, MapKit,
362, 363

■ I
IBAction keyword, 333
IBOutlet keyword, 333, 376
idle timer, turning off, 239
Ignore column, breakpoint window, 510
imagePickerController:didFinish

method, 402
images, sending see MailPic application
imageView outlet, 334
index path, 86
indexOfObject method, 78

indexPath, 203
indices, 55–56
infinite recursion, debugging, 523–524
info command, GDB, 513
in-game voice functionality, GameKit,

226
initDieRollPacket method, 266
initWithFilterPredicates method, 416
initWithInputStream method, 301
initWithObjects method, 100
in-memory store, 18
insert button, 209–211
inserts, 209–211
instance variables, 61–62, 173

declaring, 96–97
naming conventions, 62
refactoring, 193
synthesized, 62–63

INT_MAX, 249
Integer 16/Integer 32, 56
Integer 64, 56–58
integer datatypes, 56–58
integerValue method, 410
Intel assembly, 501
Interface Builder, 47–49, 84

building MapMe interface, 376
building user interface, music player,

430–433
designing interface, application

skeleton, 333
designing StalledViewController

interface, 454–455
fixing Stalled with operation queues,

486
updating nib, Stalled application,

463
interface, user see UI (user interface)
Internet play, 328
Internet, retrieving data from

building RequestTypes application,
353–357

form parameters, 351–352
HTTP request types, 350–351
retrieving data asynchronously, 344–

350

Index 542

retrieving data synchronously, 339–
344

setting up application skeleton, 331–
336

using Foundation objects, 336–339
invalidate method, 459
inverse relationships, 176–177, 181
iPhone

creating queue of songs, 405
iPhone Dev Center, 3–4
iPhone Developer Program, 4
iPhone development

blogs, 529
discussion forums, 528
prerequisistes, 2–3
web sites, 529

iPhone simulator, 4
iPod library, 407–424

see also music playing application
media item collections, 408, 413–

414
media items, 408–414
media picker controller, 408, 417–

418
media property predicates, 408, 415
media queries, 408, 414
music player controller, 408, 418–

424
different kinds of controller, 419

iPod music player controller, 419
iPod touch

see also music playing application
media picker, 405, 406
online network play, 271

iPodMusicPlayer method, 419
IPPROTO_TCP argument

creating sockets, 277
IPv4/IPv6, 278
isCancelled property, operations, 477,

478, 483
isConcurrent property, operations, 477
isExecuting property, operations, 477
isFinished property, operations, 477
isKindOfClass method, 125
isNew method, 195–196
isReady property, operations, 477

isReadyForUse method, 302
isToManyRelationshipSection method,

198–199
items property, MPMediaQuery, 416

specifying queue of audio tracks,
419

IUDatePicker, 117

■ J
javadoc notation, 91

■ K
k prefixed constants

kBatchSize, 463, 481, 484
kCFSocketAcceptCallBack, 277
kGameStateDone, 267
kSelectorKey, 207
kTableRowHeight, 448
kTimerInterval, 463
kToManyRelationship, 207
kUIUpdateFrequency, 481
updating StalledViewController, 487

key operands, 183
keypath property, 109
keypaths, 22
KVC (key-value coding), 21–22, 137,

173, 174
KVO (Key-Value Observation), 489, 490

■ L
lastMediaItem method

music playing application, 425, 426
latitudeDelta

coordinate regions, map view, 364,
365, 367

lazy loading, 15, 17, 28, 62
Learn C on the Mac (Mark), 2
Learn Objective-C on the Mac (Apress),

2
lightweight migrations, 128, 134, 136
line number breakpoints, debugging,

497
gutter, 497, 498, 499

Index 543

listeners
OnlineListener, 292, 306–310
overview of online network play, 273
setting up, 273–281

callback functions, 274
configuring sockets, 275–277
implementing socket callback

function, 280–281
registering socket with run loop,

280
run loop integration, 274
specifying port for listening, 277–

279
specifying port for listening, 277–279
stopping, 281

little-endian byte ordering, 279
localized strings, 100, 110–111
location

building MapMe application, 376
setting region to display, 367
tagging specific locations, 369
user location, map view, MapKit, 364

location manager
MapMeViewController, 385, 386

locks
deadlocks, 474
mutex locks, 471

logging
StalledViewController, 456

longitude
calculating distance of one degree

longitude, 366
longitudeDelta

coordinate regions, map view, 364,
365, 367

loops
run loop integration, 274

lyrics
see also music playing application
MPMediaItemPropertyLyrics, 412
retrieving, media items, iPod library,

412

■ M
Mac OS X Snow Leopard

Grand Central Dispatch (GCD), 452
mail compose view

e-mail application, 391, 395
MFMailComposeViewController, 394
MFMailComposeViewControllerDele

gate, 395
mailComposeController delegate

method, 395
mailing lists, Apple, 528
MailPic application, 396–403

building user interface, 397
declaring outlets and actions, 397
implementing view controller, 398–

403
linking MessageUI framework, 403

MailPicViewController
building MailPic user interface, 397
implementing view controller, 398–

403
main method, operations, 475, 483
MainWindow.xib

adding instances to, 104–105
setting up, 47–50

malloc_error_break breakpoint, 519
managed object cells, 203
Managed Object Class template, 143–

144
managed object models, 128
managed object relationship cells, 203
managed objects, 16

committed values, 195
context, 22–23
creating and inserting, 36–37
custom, 137–167
defined, 21
deleting, 38–39
key-value coding, 21–22, 85–86
retrieving from fetched results

controller, 36
saves on terminate, 23–24

ManagedObjectAttributeEditor
adding validation feedback using,

152–154
header file, updating, 152–153
implementation file, updating, 153–

154

Index 544

subclasses, updating, 154
ManagedObjectColorEditor, 158–161
managedObjectContext, 23
ManagedObjectDateEditor, 115–117

updating, 155
ManagedObjectEditor, 191

creating, 190–211
using, 211–215

managedObjectModel, 15, 16
ManagedObjectSingleSelectionListEdito

r, 120–125
updating, 155

ManagedObjectStringEditor, 112–115
updating, 154–155

map loading delegate methods, 368
map types, map view, MapKit, 362–364
map view delegate, 367–369
map view, MapKit, 361, 362–369

building MapMe interface, 376
coordinate regions, 364–367
hybrid map type, 362, 363
map loading delegate methods, 368
map types, 362–364
map view delegate, 367–369
mapType property, 364
providing with annotation views, 372
region change delegate methods,

368
satellite map type, 362, 363
standard map type, 362
user location, 364

MapKit framework, 360
annotation view, 362
annotations, 361, 369–373
building MapMe application, 375–

390
callout, annotations, 362

selecting annotations, 372
linking CoreLocation framework, 389
map view, 361, 362–369
release 3.0, iPhone SDK, 359
reverse geocoding, 359, 373–375

MapLocation
MapMe annotation object, 378, 379
MapMeViewController, 388

MapMe application

building, 375–390
building interface, 376–378
declaring outlets and actions, 375–

376
linking MapKit and CoreLocation

frameworks, 389
MapMeViewController, 381–389
opening screen, 360
reverse geocoding, 361
writing annotation object, 378–380

MapMeViewController
declaring outlets and actions, 375
implementing, 381–389
MapMe application, 376
MapMe interface, 377

mapping models, 134
mapType property

map view, MapKit, 364
mapViewDidFailLoadingMap method,

368, 389
mapViewDidFinishLoadingMap method,

368
mapViewWillStartLoadingMap method,

368
marketing version identifiers, 129
media item collections, iPod library,

408, 413–414
building music playing application,

424–428
creating derived collections, 414
creating new collection, 413
MPMediaItemCollection, 408, 413
retrieving media items, 413
setQueueWithItemCollection

method, 420
media items, iPod library, 408–414

filterable properties, 409, 411
getting/setting currently playing

media item, 420
MPMediaItem, 408
nonfilterable numeric attributes, 411
persistent ID, 409
playing queue of, 418
property predicates, 415
queries, 414
retrieving, 414, 416

Index 545

retrieving album artwork, 413
retrieving date last played, 413
retrieving lyrics, 412
searching for, 414
selecting specific media items, 417
type, 409

media picker controller, iPod library,
408, 417–418

media picker, iPod touch, 405, 406
media property predicates, iPod library,

408, 415
MPMediaPropertyPredicate, 408,

415
nonfilterable numeric attributes, 411

media queries, iPod library, 408, 414
synchronization, 417

media types, iPod library
filterable properties, 410

mediaItemAfterItem method, 425, 426
mediaItemAtIndex method, 425, 426
mediaPicker:didPickMediaItems

method, 418
mediaPickerDidCancel method, 418,

437
MediaPlayer framework

working with iPod library, 407
memory, overreleasing, 517–521

zombies, 521–523
mergedModelFromBundles method,

132, 133
message body, e-mail application

prepopulating, 395
MessageUI framework, 394–396

adding attachments, 395
linking, MailPic application, 403
MFMailComposeViewController, 394
MFMailComposeViewControllerDele

gate, 395
prepopulating message body, 395
prepopulating recipients, 394
prepopulating subject line, 394
presenting mail compose view, 395
sending e-mail to old way, 403

methods
see also delegate methods
nested method calls, 504

MFMailComposeViewController
addAttachmentData method, 395
creating, 394
implementing MailPicViewController,

400
setBccRecipients method, 394
setCcRecipients method, 394
setMessageBody method, 395
setSubject method, 394
setToRecipients method, 394

MFMailComposeViewControllerDelegat
e, 395

building MailPic application, 397
migrations, 133–136

lightweight, 128, 134, 136
standard, 128, 134

mime types, 395
Mini Debugger, 507
MKAnnotation protocol, 370, 378, 380
MKAnnotationView, 370, 388
MKCoordinateRegion, 364, 365
MKCoordinateRegionMakeWithDistanc

e method, 366, 386
MKCoordinateSpan, 364, 366
MKMapView, 367
MKMapViewDelegate protocol, 368
MKPinAnnotationView, 370, 388
MKPlacemark terminology, 374
MKReverseGeocoder, 373, 386
MKReverseGeocoderDelegate, 376
MKUserLocation, 364
mom files, 128, 129, 132, 133
momd files, 132, 133
movie player controller, iPod library,

408
MPMediaItem, 408
MPMediaItemArtwork, 413
MPMediaItemCollection, 408, 413

music playing application, 424–428
MPMediaItemCollections, 416
MPMediaItemPropertyAlbumArtist, 411
MPMediaItemPropertyAlbumTitle, 411
MPMediaItemPropertyAlbumTrackCoun

t, 412
MPMediaItemPropertyAlbumTrackNum

ber, 412

Index 546

MPMediaItemPropertyArtist, 411
MPMediaItemPropertyArtwork, 413
MPMediaItemPropertyComposer, 411
MPMediaItemPropertyDiscCount, 412
MPMediaItemPropertyDiscNumber, 412
MPMediaItemPropertyGenre, 411
MPMediaItemPropertyLastPlayedDate,

413
MPMediaItemPropertyLyrics, 412
MPMediaItemPropertyMediaType, 409
MPMediaItemPropertyPersistentID, 409
MPMediaItemPropertyPlaybackDuration

, 412
MPMediaItemPropertyPlayCount, 412
MPMediaItemPropertyPodcastTitle, 411
MPMediaItemPropertyRating, 412
MPMediaItemPropertySkipCount, 412
MPMediaItemPropertyTitle, 409, 411,

415
MPMediaPickerController, 408, 417

music playing application, 429, 440
MPMediaPickerControllerDelegate, 418,

429
MPMediaPlaylist, 408
MPMediaPredicateComparisonContains

, 415, 416
MPMediaPredicateComparisonEqualTo,

415, 416
MPMediaPropertyPredicate, 408, 415
MPMediaQuery, 408, 414, 416
MPMediaTypeAny, 411, 417
MPMediaTypeAnyAudio, 411, 417
MPMediaTypeAudioBook, 410, 417
MPMediaTypeMusic, 410, 417
MPMediaTypePodcast, 410, 417
MPMoviePlayerController, 408
MPMusicPlaybackStatePlaying, 419
MPMusicPlayerController, 408, 419,

429
notifications, 423

MPMusicRepeatModeXyz modes, 422
MPMusicShuffleModeXyz modes, 422
multi-field validations, 147–148
multiple-attribute validations, 150
multiprocessing, 452
music

MPMediaItem type, 410
music player controller, 408, 418–424

adjusting volume, 422
application music player controller,

419
beginGeneratingPlaybackNotificatio

ns method, 423
beginSeekingBackward method, 421
beginSeekingForward method, 421
creating, 419
currentPlaybackTime property, 421
determining if playing, 419
endGeneratingPlaybackNotifications

method, 423
getting/setting currently playing

media item, 420
iPod music player controller, 419
MPMusicPlayerController, 408, 419
MPMusicRepeatModeXyz modes,

422
MPMusicShuffleModeXyz modes,

422
notifications, 423
nowPlayingItem property, 420
nowPlayingItemChanged method,

423
playback time, 421
playbackState property, 419
repeat and shuffle modes, 421
repeatMode property, 422
seeking, 421
setQueueWithItemCollection

method, 420
setQueueWithQuery method, 420
shuffleMode property, 422
skipping tracks, 420
skipToBeginning method, 420
skipToNextItem method, 420
skipToPreviousItem method, 420
specifying queue, 419
volume property, 422

music playing application, 405
see also iPod library
caution turning off user’s music, 407
iPod’s media picker, 405, 406
main page, 406

Index 547

use of terms ‘queue’ and ‘playlist’,
405

using simulator, 407
working with iPod library, 407–424

music playing application, building,
424–448

adding media item collection
functionality, 424–428

building user interface, 430–433
declaring outlets and actions, 428–

430
implementing view controller, 434–

448
trying it out, 448

mutable URL requests, 351
mutableSetValueForKey method, 175,

176, 210
mutators, 147
mutex locks

deadlocks, 474
threads, 471, 472
using self as mutex, 472

■ N
name attribute, 54, 58–59
name_icon.png, 63–64
naming conventions

instance variables, 62
properties, 55, 62

navigation controllers, 44, 48–50
Navigation-based Application template,

43
Nearby play

GameKit, 321
online network play, 271, 272
peer picker, 321, 324

nested arrays, 88, 89, 90
nested method calls, 504
netService:didNotPublish method, 285
netService:didNotResolve method, 287
netServiceBrowser:didFindService

method, 286, 287
netServiceBrowser:didNotSearch

method, 286

netServiceDidResolveAddress method,
288

netServiceDidStop delegate method,
285

network communication models
client-server model, 229–230
hybrid models, 231–232
peer-to-peer model, 230–231

network play see online network play
network streams

online network play, 271
networked games

cheating in, 267
interface design, 241–269
TicTacToe (sample application),

226–229, 241–269
networking

Bonjour, 281–288
creating service for publication, 282–

285
newGameButtonPressed method, 321
NeXTSTEP, 10
nextTrack action

music playing application, 430, 435,
441

nib
deleting instance from, 215
updating, Stalled application, 463

nib-based detail view, 84–85
nil values, 90, 150
No Action rule, 177
nodes, 232
nonatomic keyword, properties

thread safety, 472, 473
nonfilterable numeric attributes

media items, iPod library, 411
notifications

building music playing application,
444

music player controller, iPod library,
423

updating StalledViewController, 489
nowPlayingItem property, music player,

420, 429, 430
nowPlayingItemChanged method, 423,

437, 443, 445

Index 548

NSArray, 83, 90, 293
NSAttributeDescription, 114
NSAutoreleaseNoPool breakpoint, 519
NSBinaryStoreType, 17
NSClassFromString function, 119
NSCoder Night web site, 529
NSCoding protocol, 249, 378
NSData, 57–58, 236

adding packet categories,
TicTacToe, 293, 295

retrieving data using Foundation
objects, 337

NSDate, 19, 93
NSDictionary, 21, 90
NSEntityDescription, 114
NSError, 148, 149, 337
NSFetchedResultsChangeUpdate, 32–

34
NSFetchedResultsController, 25, 39
NSFormatter, 92
NSHTTPURLResponse object, 340
NSIndexPath, 207, 491
NSIndexSet, 490
NSInvocationOperation, 475
NSKeyedArchiver, 142, 155, 235
NSKeyedUnarchiver, 142, 155
NSKeyValueChangeIndexesKey, 490
NSKeyValueChangeInsertion, 491
NSKeyValueChangeKindKey, 491
NSKeyValueChangeRemoval, 491
NSLocalizedDescriptionKey, 149
NSLocalizedString, 110–111
NSLog function, 269

debugger window, 496
implementing StalledViewController,

456
race conditions, threads, 470

NSManagedObject, 21, 85–86
custom subclasses, 137–167
instance variable, 96
isNew method, 195–196
subclasses, 175

NSManagedObjectContext, 37
NSManagedObjectModel, 14–16, 132,

133
NSMutableArray, 174

selecting annotations, 372
updating StalledViewController, 490

NSMutableData
adding asynchronous retrieval to

WebWorks, 348
adding packet categories, 295
building RequestTypes application,

357
implementing OnlineSession object,

303, 305
retrieving data asynchronously, 345,

346
setting up application skeleton, 333

NSMUtableSet, 174
NSMutableURLRequest

building RequestTypes application,
357

HTTP request types, 351
POST parameters, 352

NSNetService
advertising services, 282
delegate methods, 326
device name, 283
didNotPublish method, 285
didNotResolve method, 287
DNS domain name, 282
error codes/domains, 285
port numbers, 283
publishing Bonjour service, 283
resolving discovered service, 287
service type, 283
updating TicTacToeViewController

for online play, 325
NSNetServiceBrowser

creating peer browser for online
play, 311

delegate methods, 317
didFindService method, 286, 287
didNotSearch method, 286
implementing peer browser view

controller, 315
searching for published Bonjour

services, 285
NSNetServiceDelegate, 284
NSNull, 89, 100, 163, 166
NSNumber, 19, 57

Index 549

NSOperation, 468, 475, 476
NSOperationQueue, 23, 468

sleeping threads, 474
updating StalledViewController, 489

NSOperationQueuePriorityXyz values,
476

NSOutputStream, 309
NSPersistentStoreCoordinator, 16–18
NSSelectorFromString method, 208
NSSet, 174, 199–200, 219
NSSQLiteStoreType, 17
NSStream, 288
NSStreamEventEndEncountered, 290
NSStreamEventErrorOccurred, 290
NSStreamEventHasBytesAvailable, 290,

292
NSStreamEventHasSpaceAvailable, 290
NSStreamEventOpenCompleted, 289
NSString, 19, 337

constants, 137
NSThread, 468
NSTimer, 458

see also timers
invalidate method, 459
scheduledTimerWithTimeInterval

method, 459
timerWithTimeInterval method, 458

NSURL
retrieving data asynchronously, 344
retrieving data synchronously, 342

NSURLConnection
adding asynchronous retrieval to

WebWorks, 347
delegate methods, 345–346
retrieving data asynchronously, 344
retrieving data synchronously, 339,

342
NSURLRequest

HTTP request types, 351
retrieving data asynchronously, 344
retrieving data synchronously, 339,

342
NSValueTransformer, 156
NSZombie, 521–523
ntohs function, byte ordering, 279
NULL, 150

Nullify rule, 177
numberOfRowInSection method, 199,

446
numbers

decimal, 57
integers, 56, 58

numeric attributes, 19
numeric attributes, nonfilterable

media items, iPod library, 411
numOperationsInput outlet

StalledViewController interface, 455

■ O
objc_error breakpoint, 519
objc_exception_throw breakpoint, 511,

519
object updates, 32–34
Objective-C

blogs, 530
exceptions, 111
extensions, 198
resources for, 2
runtime, 220

Objective-C 2.0 Programming
Language, 2

object-relational mapping (ORM), 9
objects

archiving and unarchiving, 235–236
managed see managed objects
retrieving, from nested arrays, 90

observeValueForKeyPath method
updating StalledViewController, 489

online network play
adding, 271
Bonjour, 281–288

creating service for publication,
282–285

publishing service, 283
stopping service, 284

finding players on local network, 271
Internet play, 328
Nearby play, 271, 272
Online play, 271, 272
overview of process, 273
peer picker, 321, 324

Index 550

reassembling objects, 292
setting up listener, 273–281

callback functions, 274
CFNetwork, 273–279
configuring sockets, 275–277
implementing socket callback

function, 280–281
registering socket with run loop,

280
run loop integration, 274
specifying port for listening, 277–

279
stopping listener, 281
streams, 288–291
updating TicTacToe for, 292–327

adding packet categories, 293–
295

creating OnlineListener object,
306–310

creating peer browser, 311–318
implementing OnlineSession

object, 295–305
updating TicTacToeViewController,

318–327
OnlineListener, 292

delegate methods, 325
generic nature of, 328
updating TicTacToe for online play,

306–310
updating TicTacToeViewController

for online play, 320, 324, 327
onlineListener:encounteredError

method, 310
OnlinePeerBrowser, TicTacToe

building peer browser interface, 312
updating view controller for online

play, 320, 321, 324
writing peer browser header, 312

OnlineSession, TicTacToe, 292
delegate methods, 325
generic nature of, 328
updating for online play, 295–305

view controller, 320, 323, 326,
327

OnlineSessionDelegate, TicTacToe
error methods, 327

implementing OnlineSession object,
297

onlineSessionReadyForUse method,
327

onMainThread method, 484
openCallout method, 385
opengl_error_break breakpoint, 519
operation queues, 452, 478–479

adding operations to, 478
fixing Stalled application with, 479–

487
NSOperationQueue, 468
setMaxConcurrentOperationCount

method, 479
setQueuePriority method, 476
suspending, 479
threads and, 452, 478

operationProgressChanged method
StalledViewController, 481

operations
adding to queue, 478
autorelease pools, 472, 475
cancelling, 478
concurrency, 452, 475–478
dependencies, 476
exceptions, 475
main method, 475
NSInvocationOperation, 475
NSOperation, 468, 475
priority for queues, 476
state, 477
try block, 475

operations array, queue, 491, 492
OR operator see bitwise OR (|) operator
ordered arrays, 199–200
ORM (object-relational mapping), 9
outer arrays, 88
outlet declaration, 103–105

MailPic application, 397
MapMe application, 375
missed connections, debugging, 525
music playing application, 428–430
setting up application skeleton, 331–

333
StalledViewController, 454

overreleasing memory, 517–521

Index 551

EXC_BAD_ACCESS exception, 517,
519, 520

zombies, 521–523

■ P
packet categories, adding

updating TicTacToe for online play,
293–295

packetQueue array
implementing OnlineSession object,

297
packets

packaging for sending, 235–236
paired arrays, 87–88
paired nested arrays, 89
parameters, form, 351–352
peer browser

building interface, 312
creating for online play, 311–318
creating files, 311
implementing view controller, 313–

318
writing header, 312

peer identifiers, 238
peer picker

delegate methods, 323
GameKit, 225, 227, 237, 238, 239,

264
Nearby play, 321, 324
online network play, 272

creating peer browser for, 311–
318

Online play, 321, 324
online view controller class, 292

peerPickerController:didConnectToPeer
method, 238

peerPickerController:didSelect method,
323

peers, 230–231
disconnecting from, 237
handling connections with, 238
receiving data from, 236
sending data to, 234–235

peer-to-peer model, 230, 231, 232
percentComplete method, 483

percentCompletedText method, 462
performFetch method, 26, 79
performSelector method, 338, 342, 385,

389, 397, 401, 458, 484
persistent ID, media items, 409
persistent store

access to, 16
data model and, 13–14
loading data from, 24–25
multiple, 16

persistent store coordinator, 16–18
persistentStoreCoordinator accessor,

17
PF_INET argument

creating sockets, 276
piece variable, 259
placemarkIdentifier, map view, 373
playback state

music player notifications, 423
playback time, music player, 421
playbackState property, music player,

419
player see music player controller
PlayerViewController see music playing

application, building
playlist

use of term ‘queue’ compared, 405
playlists, iPod library, 408
playOrPause action, music player, 430,

435, 441
playPauseButton outlet, music player,

433
po (print object) command, GDB, 515
podcasts

MPMediaItem, 409
MPMediaTypePodcast, 410

pointers, 149
port numbers, 277

advertising services, 283
ports

application ports, 278
manually assigning, 278
registered, 278
specifying for listening, 277–279
toll-free bridging, 279
well-known ports, 278

Index 552

POSIX Threads API (pthreads), 468
POST parameters, 352
POST request, HTTP, 350

RequestTypes application, 353
pragma line, 323
predicate builder, 182–184, 185, 187
predicates, 28, 178, 182–184
predicateWithValue method, 415
presentModalViewController, 395
pressStarted instance variable, 430
previousTrack action, music player,

430, 433, 435, 441
print command, GDB console, 515
priority, operations, 476
private keyword, 61, 62, 97
processChunk method

fixing Stalled application with timer,
463, 464

Progress View
MapMe interface, 377

progressBar outlet
designing StalledViewController

interface, 455
MapMe interface, 377
MapMeViewController, 384, 386,

389
progressLabel outlet

building MapMe interface, 377
designing StalledViewController

interface, 455
progressString method, 483
prompt property, media picker, 418
properties, 19–21

see also fetched properties
attributes, 19–20
declaring, 96–97
fetch requests, 21
fetched, 21
instance variables, 61–62
naming conventions, 55, 62
relationships, 20

property pane, 19–21, 54
protected keyword, 97
protocol family

creating sockets, 276
protocols

service type identifying, 283
pthreads (POSIX Threads API), 468
publishing services

creating service for publication, 282–
285

delegate methods for publication,
284–285

overview of online network play, 273
publishing Bonjour service, 283
resolving discovered service, 287–

288
searching for published Bonjour

services, 285
stopping Bonjour service, 284

PUT request, HTTP, 357
HTTP request types, 350, 351

■ Q
queries

media queries, iPod library, 414
queuePriority method, 477
queues

music player controller, 419, 420
operation queues, 452, 478–479
use of term ‘playlist’ compared, 405

■ R
race conditions, threads, 469–471
read-only attributes, 166
readonly keyword, 62
receiveData method, 236
recipients, e-mail application

prepopulating, 394
recursion, infinite, 523–524
refactor window, 192
refactoring, 190–193
region change delegate methods, 368,

369
regionDidChangeAnimated method, 368
regions

coordinate regions, 364–367
setting region to display, 367

regionThatFits method
accommodating aspect ratio, 367

Index 553

regionWillChangeAnimated method,
368

Registered iPhone Developer, 2–4
registered ports, 278
regular expressions, 58–59
relationships, 20, 169

about, 172
adding to classes, 189–190
creating, 179–185
delete rules, 177
inverse, 176–177, 181
to-many, 174–176, 181, 197–211
to-one, 173–174, 181

removeAnnotation method, 371
removeAnnotations method, 371
removeDependency method, 476
removeTrack action, music player, 430,

435, 442, 446, 447
repeatMode property, music player, 422
request object

retrieving data synchronously, 339
request types

building RequestTypes application,
353–357

mutable URL requests, 351
specifying HTTP request types, 350–

351
URL request, 339–344

RequestTypesViewController, 353, 354
Reset Contents and Settings, Simulator,

393
resolveWithTimeout method, 287
resources

see also further information
C language, 2
Objective-C, 2

response codes
200 series of, 342
300 series of, 345
retrieving data synchronously, 340

response header fields, 340
response object, 340
responsive interface see concurrency
Restart button, debugging window, 503
RESTful web services

specifying HTTP request types, 350,
357

result code, mailComposeController,
396

result sets, 186
retain keyword, deallocated objects,

517
reverse geocoding

MapKit, 359, 373–375
MapMe annotation object, 378, 380
MapMe application, 361, 376
MapMeViewController, 387
MKPlacemark terminology, 374
MKReverseGeocoder, 373

RGBA colors, 147, 156
root view controllers, 44

setting, 48–49
RootViewController, 24
rowKeys array, 101
rowLabels array, 100
rows

editing style for, 201
selecting, 166
selection updating, 205–208
setting indentation, 197–199
setting number of, 199

run loop
integration, setting up listener, 274
registering socket with, 280
scheduling, concurrency, 451
stopping listener, 281
timers, 451

■ S
satellite map type, map view, 362, 363
Save button, 193–196, 208
save method, 111, 114–115, 152, 154,

194–195
scheduledTimerWithTimeInterval

method, 459
scope, variable list, debugging, 502
secret_icon.png, 63–64
section name keypaths, 77
sectionNameKeyPath, 35
sectionNames array, 101–102

Index 554

seeking, music player, 421
seekBackward action, 430, 435, 441
seekForward action, 430, 435, 441

selectAnnotation method, 372
MapMeViewController, 385

selectedAnnotations array, 372
selection list controller, 120–125
selection lists, implementing, 116–125
self, 187

declaring socket context, 275
StalledViewController, 488, 489
using as mutex, 472

sendData method, 234, 268, 302
sender variable, 259
sendPacket method, 323
sendQueuedData method, 302, 304,

305
sentinels, 100
servers, 229
service type

advertising services, 283
services

see also publishing services
advertising services, 282
domain, 282
resolving services, 282
searching for services, 282

session classes
OnlineSession, 292

session identifiers, 232
session mode, 233
session:didFailWithError method, 324
session:didReceiveConnectionRequest

FromPeer method, 234
session:peer:didChangeState method,

233
sessions (GameKit), 225, 232

closing connections, 237
creating, 232, 233, 238–239
delegate methods, 265
finding and connecting to other,

233–234
listening for, 234
modes, 233

setBccRecipients method, 394
setCcRecipients method, 394

setEditing method, 76
setMaxConcurrentOperationCount

method, 479
setMessageBody method, 395
setQueuePriority method, 476
setQueueWithItemCollection method,

420
setQueueWithQuery method, 420
setRegion method, 367
setSubject method, 394
setSuspended method, 479
setToRecipients method, 394
setValue:forKey, 21
SHARED heading, Mac, 281
Show Bounds Rectangles option, music

player, 431, 432
showMediaPicker action, music player,

430, 431, 434, 440
showSaveCancelButtons property, 194,

196
showsUserLocation property, mapView,

364
shuffleMode property, music player,

422
Simple_PlayerViewController see music

playing application, building
simulator

music playing application, 407
Reset Contents and Settings menu,

393
single-attribute validations, 147, 148–

149
skipToXyz methods, music player, 420
sleep, threads, 474
Snow Leopard, 2
SOCK_STREAM argument

creating sockets, 276
sockaddr_storage, IPv6

specifying port for listening, 278
socket programming

setting up listener
sockets

creating, 276–277
datagram sockets, 276
declaring context, 275–276

Index 555

implementing callback function,
280–281

registering with run loop, 280
setting up listener, 274, 275–277
stream sockets, 276

songs
see also music playing application
choosing from iPod library, 417

sort descriptors, 26, 28, 77
sounds see music playing application
spinner outlet

designing interface, application
skeleton, 334

SquareRootBatch
fixing Stalled application with timer,

460–462, 464
SquareRootOperation

creating, 480–485
StalledViewController, 488, 492

SquareRootOperationDelegate, 486,
491

stack trace, breakpoints, 501
Stalled application

creating to illustrate concurrency,
453–457

fixing with operation queues, 479–
487

fixing with timer, 460–468
creating batch object, 460–462
updating controller header, 462–

463
updating nib, 463
updating StalledViewController,

463–468
when timer firing occurs, 458

StalledViewController
application illustrating concurrency,

454
creating SquareRootOperation, 481
designing interface, 454
fixing Stalled with operation queues,

485
fixing Stalled with timer, 462–468
implementing, 455–457
updating, 487–493

standard map type, map view, 362

standard migrations, 128, 134
Standard Program, 4
startListening method, 310
startNewGame method, 260, 265
state, operations, 477
static analysis, 495, 516
status bar, debugger window, 500
Step Into button, debugging, 503, 505,

506
Step Out button, debugging, 503, 506
Step Over button, debugging, 503, 505,

506, 507
nested method calls, 504

stopListening method, 310
stream sockets, 276
streams, 288–291

CFStream pointers, 288
delegate methods, 289
implementing socket callback

function, 280
NSStream, 288
NSStreamEventXyz event codes,

289, 290
opening streams, 289
receiving data from streams, 290
sending data through streams, 291

stream:handleEvent method, 289
string attribute editor, 112–115, 120
string attributes, 19
String datatype, 57
string properties, filterable

media items, iPod library, 411
strings, localized, 100
stringWithContentsOfURL method, 337
stub methods

setting up application skeleton, 331–
336

action and outlet declarations,
331–333

designing interface, 333–335
implementing stubs, 335

subarrays, 88
subcontrollers, 107
subject line, e-mail application

prepopulating, 394
subviews, 49

Index 556

superclass, creating, 108–111
SuperDB application, 42

application architecture, 43
application delegate, 44, 45, 46
connecting outlets, 50
data model design, 50–60
detail view, 83, 125
display problem, 163–165
HeroListViewController

creating, 60–64
implementation, 66–79
interface design, 64–66

launching, 79–80
MainWindow.xib, 47–50
project setup, 42–43
table view controller, 46–47
updating, 90–92

switch statements, 86–87, 266
symbolic breakpoints, debugging, 508
synchronization

media queries, 417
retrieving data asynchronously, 344–

350
adding asynchronous retrieval to

WebWorks, 346–350
NSURLConnection delegate

methods, 345–346
retrieving data synchronously, 339–

344
URL request, 339–344

retrieving data using Foundation
objects, 337

synchronized block, threads, 471, 472,
473

synthesize statements, 61, 62
overreleasing memory, 518
updating StalledViewController, 487

synthesized instanced variables, 62–63

■ T
tab bar delegate method, 78
tabBar:didSelectItem method, 78
table structure

controlling with arrays, 87–90
table view

architecture, 85–86
delegate methods, 29–35
edit mode, 197
row editing style, 201
specifying sections and rows, 86
updating, 30–34

table view controller
creating, 46–47
subclasses, creating, 94–96

table-based detail view, 84–85
controlling structure, with arrays, 87–

90
declaring instance variables and

properties, 96–97
detail view controller, creating, 94–

96
editing challenges, 85–87
editing subcontrollers, adding, 107
formatting attributes, 92–94
functionality, 106

tables
structure, 83

tableView:cellForRowAtIndexPath
method, 90, 102, 114, 201–205,
210, 316, 446, 493

tableView:commitEditingStyle method,
38–39, 209

tableView:didSelectRowAtIndexPath
method, 316

tableView:numberOfRowInSection
method, 199, 446

tableView:titleForHeaderInSection
method, 102

TCP (Transmission Control Protocol)
creating sockets, 276

textView outlet
designing interface, application

skeleton, 334
thread safety

atomicity, 472–473
UIKit, 485

threads, 468, 469–475
atomicity and thread safety, 472–473
autorelease pools, 472, 475
Cocoa Touch, 469
communication between, 481

Index 557

concurrency, 453
creating SquareRootOperation, 481
deadlocks, 474
media queries, 417
mutex locks, 471
NSOperation, 468
NSOperationQueue, 468
NSThread, 468
operation queues, 452, 478
POSIX Threads API (pthreads), 468
race conditions, 469–471
sleep, 474
synchronized block, 471
timers, 458

TicTacToe (sample application), 226–
229

adding online network play, 271
game board design, 246–250
interface design, 241–269
playing, 268–269
TicTacToe view controller, 252–268
TicTacToePacket, 248–251, 259
view controller header, 242–246
updating for online play, 292–327

OnlineListener object, 306–310
OnlineSession object, 295–305
packet categories, 293–295
peer browser, 311–318
TicTacToeViewController, 318–

327
TicTacToeViewController, 311, 313,

315, 316
updating for online play, 318–327

timers, 451, 458–460
see also NSTimer
creating, 458
fixing Stalled application with, 460–

468
creating batch object, 460–462
updating controller header, 462–

463
updating nib, 463
updating StalledViewController,

463–468
limitations of, 459
non-repeating timers, 458

run loop, 451
stopping, 459
threads, 458
when firing occurs, 458

timerWithTimeInterval method, 458
titleForHeaderInSection method, 102
titleForMediaItemAtIndex method, 425,

426, 427
titleSearch outlet, music player, 431
toggleEdit method, 75
toll-free bridging, 279

streams, 288
to-many relationships, 20, 174, 176,

181, 197–211
displaying sections, 201–205
inserts and deletes, 209–211
set problem, 199–200
setting number of rows, 199
setting row indentation, 197–199
updating row selection for, 205–208

to-one relationships, 20, 173, 174, 181
Touch Down events, music player, 432
Touch Up events, music player, 433
tracks, music player, 420, 423
transformable attributes, 138, 142, 147,

155–157
Transformable datatype, 58
Transient attribute type, 137
transmission type, Cocoa, 283
triggers, 188
try block, operations, 475

creating SquareRootOperation, 484
type

attribute, 19
media items, iPod library, 409

■ U
UDP (User Datagram Protocol)

creating sockets, 276
UI (user interface)

building music playing application,
430–433

fixing Stalled with operation queues,
486

keeping interface responsive, 451

Index 558

UIActivityIndicatorView, 333
UIAlertViewDelegate, 61, 376
UIApplication

run loop integration, 274
UIButtons, 110
UIColor, 58

display of, 163–165
value transformer for, 156–160

UIImage, 58
pointers, 262

UIImagePickerControllerDelegate, 397
UIImagePNGRepresentation method,

401
UIImageView, 332
UIKit, thread safety, 485
UINavigationController, 44
UINavigationControllerDelegate, 397
UITableViewController

subclasses, 94–96
UITableViewDataSource, 429
UITableViewDelegate, 429
UITextView, 332
UIViewController, 25

creating peer browser files, 311
subclass creation, 46–47

UIWebView, 353
unarchiving objects, 235–236
unconditional breakpoints, 509
underscore prefix, 62
unresponsive interface see concurrency
URL requests

mutable URL requests, 351
retrieving data synchronously, 339–

344
URLs

dataWithContentsOfURL method,
337

form parameters, 351–352
GET parameters, 352
stringWithContentsOfURL method,

337
withContentsOfURL methods, 336

user interface see UI (user interface)
user location, map view, 364
userLocationVisible property, mapView,

364

■ V
validateForInsert method, 150
validateForUpdate method, 150
validateValue method, 148
validation

adding to attributes, 142–143
errors, 152
feedback, 152–154
multi-field, 147–148
multiple-attribute, 150
single-attribute, 147, 148–149
updating subclasses to use, 154

validation, 137, 138, 140, 147
value transformers, 58, 138, 142

creating, 155–157
valueForKey method, 21, 175–178
valueForProperty method, 408
variable list, breakpoints, 502–503
variable operands, 183
variadic methods, 100
version identifiers, 131–132
versioning, 127–133
view controllers, 26

custom, 44
fixing Stalled application with timer,

463–468
MailPicViewController, 398–403
movie player controller, 408
music playing application, 434–448
peer browser view controller, 313–

318
root, 24, 44, 48–49
setting up header, 242–246
subviews, 49
table, 46–47
TicTacToe, 252–268

View-based Application template
MailPic application, 396
MapMe application, 375
music playing application, 424
RequestTypes application, 353
setting up application skeleton, 331

viewDidAppear method, 76
viewDidLoad method, 24, 75, 99–100,

123, 161, 193, 216, 264
MapMeViewController, 385

Index 559

music playing application, 429, 436,
443

peer browser view controller, 315
StalledViewController, 489
TicTacToeViewController, 321, 323

viewDidUnload method, 264
fixing Stalled application with timer,

467
MapMeViewController, 385
music playing application, 436, 444
peer browser view controller, 316
StalledViewController, 455, 488

viewForAnnotation method, 370, 372
view-only attributes, 165–166
viewWillAppear method, 110, 196, 219
viewWithTag method, 260
virtual accessors, 151
volume, music player notifications, 423
volume property, music player, 422
voodoo programming, 9

■ W
Web see Internet, retrieving data from
web sites for further information, 529
WebObjects, 10
WebWork project

setting up application skeleton, 331
WebWorks application

adding asynchronous retrieval, 346–
350

WebWorkViewController
action and outlet declarations, 331
designing interface, application

skeleton, 333
implementing stubs, application

skeleton, 335

retrieving data synchronously, 340
retrieving data using Foundation

objects, 338
well-known ports, 278
whiteColor method, 147
withContentsOfURL methods, 336

■ X
xcdatamodel class, 128
xcdatamodel files, combining multiple,

16
Xcode, 3–4

blogs, 530
creating project to demonstrate

debugging, 495
debug configuration, projects, 496
debug symbols, 496
debugger, 496
documentation browser, 528
project setup, 42–43
static analysis, 495, 516
version-control mechanisms, 130

Xcode debugger see debugger window
Xcode template

Core Data, 10–12

■ Z
Zeroconf see Bonjour
zero-configuration network device

discovery, 226
zombies, 521–523

Index

560

	Home
	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgements
	Preface
	Here We Go Round Again
	What This Book Is
	What You Need to Know
	What You Need Before You Can Begin
	What’s In this Book
	Are You Ready?

	Part 1: Core Data
	The Anatomy of Core Data
	A Brief History of Core Data
	Creating a Core Data Template Application
	Core Data Concepts and Terminology
	The Data Model and Persistent Store
	Entities and the Data Model Editor
	Attributes
	Relationships
	Fetched Properties
	Fetch Requests

	Managed Objects
	Loading Data from the Persistent Store
	The Fetched Results Controller
	Will Change Content Delegate Method
	Did Change Content Delegate Method
	Did Change Object Delegate Method
	Did Change Section Delegate Method

	Putting Everything in Context

	A Super Start: Adding, Displaying, and Deleting Data
	Setting up the Xcode Project
	Creating the Table View Controller
	Setting up MainWindow.xib
	Designing the Data Model
	Attribute Types
	The Integer Datatypes
	Setting the Name Attributes’s Type
	Adding the Rest of the Attributes

	Creating HeroListViewController
	Let ‘Er Rip
	Done, but Not Done

	The Devil in the Detail View
	Table-Based vs. Nib-Based Detail Views
	Detail Editing View Challenges
	Controlling Table Structure with Arrays
	Paired Arrays
	Representing

	Formatting of Attributes
	Creating the Detail View Controller
	Declaring the Outlet
	Adding the Instance to MainWindow.xib
	Pushing the New Instance onto the Stack

	Adding Editing Subcontrollers
	Implementing a Selection List
	Devil’s End

	Preparing for Change: Migrations and Versioning
	About Data Models
	Creating a New Data Model Version
	The Current Data Model Version

	Migrations
	Time to Migrate On

	Custom Managed Objects
	Updating the Data Model
	Creating the Hero Class
	Tweaking the Hero Header
	Defaulting
	Validation
	Virtual Accessors
	Adding Validation Feedback
	Updating ManagedObjectStringEditor
	Updating ManagedObjectDateEditor
	Updating ManagedObjectSingleSelectionListEditor

	Creating the Value Transformer
	Creating the Color Attribute Editor
	Displaying the New Attributes in Hero Edit Controller
	The Display Problem
	Adding View-Only Support to Hero Edit Controller
	Color Us Gone

	Relationships, Fetched Properties, and Expressions
	Expanding Our Application: Superpowers and Reports
	Relationships
	Fetched Properties
	Creating Relationships and Fetched Properties in the Data Model Editor
	Adding Relationships and Fetched Properties to the Hero Class
	The Big Refactor
	Adding the isNew Method to NSManagedObject
	Adding the Save and Cancel Buttons
	Turning on Edit Mode
	Setting Row Indentation
	Setting the Correct Number of Rows for To-Many Sections
	The Set Problem
	Specifying the Editing Style for the Rows
	Displaying To-Many Sections
	Updating Row Selection for To-Many Relationships
	Handling To-Many Inserts and Deletes

	Using the New Generic Controller
	Creating the Fetched Property Attribute Controller
	Cleaning Up Deleted Objects
	Wonderful to the Core

	Part 2: Further Explorations
	Peer-to-Peer Over Bluetooth Using GameKit
	This Chapter’s Application
	Network Communication Models
	The GameKit Session
	The Peer Picker
	Creating the Project
	Setting Up the View Controller Header
	Designing the Game Board
	Creating the TicTacToePacket Object
	Implementing the Tic-Tac-Toe View Controller

	Trying It Out
	Game On!

	Online Play: Bonjour and Network Streams
	This Chapter’s Application
	Overview of the Process
	Setting Up a Listener
	Declaring a Socket Context
	Creating a Socket

	Bonjour
	Publishing a Bonjour Service
	Stopping a Bonjour Service
	Delegate Methods for Publication

	Streams
	Putting It All Together
	Updating Tic-Tac-Toe for Online Play
	Creating the Peer Browser Files
	Writing the Peer Browser Header
	Building the Peer Browser Interface
	Implementing the Peer Browser View Controller

	Time to Play

	Working with Data from the Web
	Setting Up the Application Skeleton
	Retrieving Data Using Foundation Objects
	Retrieving Data Synchronously
	Retrieving Data Asynchronously
	Request Types and Form Parameters
	GET Parameters
	POST Parameters

	404 Conclusion Not Found

	MapKit
	This Chapter’s Application
	Overview and Terminology
	The Map View
	Converting Degrees to Distance
	Accommodating Aspect Ratio
	Map Loading Delegate Methods
	Region Change Delegate Methods

	Annotations
	Reverse Geocoding
	Building the MapMe Application
	Go East, Young Programmer

	Sending Mail
	This Chapter’s Application
	The MessageUI Framework
	Building the MailPic Application
	Mailing It In…

	iPod Library Access
	This Chapter’s Application
	Working with the iPod Library
	Media Item Persistent ID
	Media Type
	Filterable String Properties
	Nonfilterable Numeric Attributes
	Retrieving Lyrics
	Retrieving Album Artwork
	Retrieving the Date Last Played
	Creating a New Collection
	Retrieving Media Items
	Creating Derived Collections
	Handling Media Picker Cancels
	Handling Media Picker Selections
	Creating the Music Player Controller
	Determining If the Music Player Controller Is Playing
	Specifying the Music Player Controller’s Queue
	Getting or Setting the Currently Playing Media Item
	Skipping Tracks
	Seeking
	Playback Time
	Repeat and Shuffle Modes
	Adjusting the Music Player Controller’s Volume
	Music Player Controller Notifications

	Building the Simple Player Application
	Avast! Rough Waters Ahead!

	Keeping Your Interface Responsive
	Exploring the Concurrency Problem
	Creating the Stalled Application
	Timers
	Fixing Stalled with a Timer
	Operation Queues & Concurrency
	Race Conditions
	Mutex Locks and @synchronized
	Atomicity and Thread Safety
	Deadlocks
	Sleepy Time
	Operation Dependencies
	Operation Priority
	Other Operation State
	Cancelling an Operation
	Adding Operations to the Queue
	Setting the Maximum Concurrent Operation Count
	Suspending the Queue

	Fixing Stalled with an Operation Queue
	Updating StalledViewController.m
	Queue ’em Up

	Debugging
	The Debugger
	The Debugger Editing Pane
	The Stack Trace
	The Variable List
	The Debugging Controls
	Trying Out the Debug Controls
	The Breakpoint Window and Symbolic Breakpoints
	Conditional Breakpoints
	Breakpoint Actions
	The Info Command
	Working with Breakpoints
	Printing Data and Object Values
	Calling Functions and Methods

	Static Analysis
	Specific Bugs
	NSZombie

	GDB: Stopped at Concluding Paragraph

	The Road Goes Ever On…
	Getting Unstuck
	Farewell

	Index
	¦ A
	¦ B
	¦ C
	¦ D
	¦ E
	¦ F
	¦G
	¦ H
	¦ I
	¦ J
	¦ K
	L
	¦
	¦ M
	¦N
	¦ O
	¦ P
	¦ Q
	¦ R
	¦ S
	T
	¦
	¦ U
	¦ V
	¦ X
	¦ W
	¦ Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

