
www.dbebooks.com - Free Books & magazines

Mobile 3D Graphics
with OpenGL ES and M3G

This page intentionally left blank

Mobile 3D Graphics
with OpenGL ES and M3G

Kari Pulli

Tomi Aarnio

Ville Miettinen

Kimmo Roimela

Jani Vaarala

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquisitions Editor Tiffany Gasbarrini

Publishing Services Manager George Morrison

Senior Production Editor Paul Gottehrer

Cover Design Eric DeCicco

Composition diacriTech

Interior printer Maple-Vail Book Manufacturing Group

Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

c© 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may
also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support
& Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN: 978-0-12-373727-4

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
07 08 09 10 11 5 4 3 2 1

Contents

Preface xiii

About the Authors xv

CHAPTER 1. INTRODUCTION 1
1.1 About this Book 2

1.1.1 Typographic Conventions 3

1.2 Graphics on Handheld Devices 3
1.2.1 Device Categories 4
1.2.2 Display Technology 5
1.2.3 Processing Power 6
1.2.4 Graphics Hardware 8
1.2.5 Execution Environments 9

1.3 Mobile Graphics Standards 12
1.3.1 Fighting the Fragmentation 12
1.3.2 Design Principles 14
1.3.3 OpenGL ES 18
1.3.4 M3G 19
1.3.5 Related Standards 21

PART I ANATOMY OF A GRAPHICS ENGINE

CHAPTER 2. LINEAR ALGEBRA FOR 3D GRAPHICS 27
2.1 Coordinate Systems 27

2.1.1 Vectors and Points 29
2.1.2 Vector Products 29
2.1.3 Homogeneous Coordinates 31

2.2 Matrices 31
2.2.1 Matrix Products 32
2.2.2 Identity and Inverse 33
2.2.3 Compound Transformations 33
2.2.4 Transforming Normal Vectors 34

v

vi C O N T E N T S

2.3 Affine Transformations 35
2.3.1 Types of Affine Transformations 35
2.3.2 Transformation Around a Pivot 39
2.3.3 Example: Hierarchical Modeling 39

2.4 Eye Coordinate System 42

2.5 Projections 44
2.5.1 Near and Far Planes and the Depth Buffer 45
2.5.2 A General View Frustum 47
2.5.3 Parallel Projection 50

2.6 Viewport and 2D Coordinate Systems 51

CHAPTER 3. LOW-LEVEL RENDERING 55
3.1 Rendering Primitives 57

3.1.1 Geometric Primitives 57
3.1.2 Raster Primitives 60

3.2 Lighting 61
3.2.1 Color 61
3.2.2 Normal Vectors 63
3.2.3 Reflection Models and Materials 64
3.2.4 Lights 68
3.2.5 Full Lighting Equation 70

3.3 Culling and Clipping 70
3.3.1 Back-Face Culling 71
3.3.2 Clipping and View-Frustum Culling 71

3.4 Rasterization 73
3.4.1 Texture Mapping 74
3.4.2 Interpolating Gradients 82
3.4.3 Texture-Based Lighting 83
3.4.4 Fog 88
3.4.5 Antialiasing 90

3.5 Per-Fragment Operations 92
3.5.1 Fragment Tests 92
3.5.2 Blending 95
3.5.3 Dithering, Logical Operations, and Masking 99

3.6 Life Cycle of a Frame 100
3.6.1 Single versus Double Buffering 101
3.6.2 Complete Graphics System 101
3.6.3 Synchronization Points 102

CHAPTER 4. ANIMATION 105
4.1 Keyframe Animation 105

4.1.1 Interpolation 106
4.1.2 Quaternions 111

C O N T E N T S vii

4.2 Deforming Meshes 113
4.2.1 Morphing 113
4.2.2 Skinning 114
4.2.3 Other Dynamic Deformations 116

CHAPTER 5. SCENE MANAGEMENT 117
5.1 Triangle Meshes 118

5.2 Scene Graphs 120
5.2.1 Application Area 120
5.2.2 Spatial Data Structure 121
5.2.3 Content Creation 123
5.2.4 Extensibility 125
5.2.5 Class Hierarchy 125

5.3 Retained Mode Rendering 128
5.3.1 Setting Up the Camera and Lights 129
5.3.2 Resolving Rendering State 130
5.3.3 Finding Potentially Visible Objects 130
5.3.4 Sorting and Rendering 132

CHAPTER 6. PERFORMANCE AND SCALABILITY 133
6.1 Scalability 134

6.1.1 Special Effects 135
6.1.2 Tuning Down the Details 136

6.2 Performance Optimization 136
6.2.1 Pixel Pipeline 137
6.2.2 Vertex Pipeline 139
6.2.3 Application Code 140
6.2.4 Profiling OpenGL ES Based Applications 141
6.2.5 Checklists 142

6.3 Changing and Querying the State 145
6.3.1 Optimizing State Changes 146

6.4 Model Data 146
6.4.1 Vertex Data 147
6.4.2 Triangle Data 148

6.5 Transformation Pipeline 148
6.5.1 Object Hierarchies 148
6.5.2 Rendering Order 149
6.5.3 Culling 150

6.6 Lighting 151
6.6.1 Precomputed Illumination 151

viii C O N T E N T S

6.7 Textures 152
6.7.1 Texture Storage 152

PART II OPENGL ES AND EGL

CHAPTER 7. INTRODUCING OPENGL ES 157
7.1 Khronos Group and OpenGL ES 157

7.2 Design Principles 158

7.3 Resources 159
7.3.1 Documentation 160
7.3.2 Technical Support 160
7.3.3 Implementations 160

7.4 API Overview 161
7.4.1 Profiles and Versions 161
7.4.2 OpenGL ES 1.0 in a Nutshell 161
7.4.3 New Features in OpenGL ES 1.1 164
7.4.4 Extension Mechanism 165
7.4.5 OpenGL ES Extension Pack 166
7.4.6 Utility APIs 166
7.4.7 Conventions 167

7.5 Hello, OpenGL ES! 170

CHAPTER 8. OPENGL ES TRANSFORMATION AND
LIGHTING 173

8.1 Drawing Primitives 173
8.1.1 Primitive Types 174
8.1.2 Specifying Vertex Data 177
8.1.3 Drawing the Primitives 179
8.1.4 Vertex Buffer Objects 180

8.2 Vertex Transformation Pipeline 183
8.2.1 Matrices 183
8.2.2 Transforming Normals 185
8.2.3 Texture Coordinate Transformation 186
8.2.4 Matrix Stacks 188
8.2.5 Viewport Transformation 188
8.2.6 User Clip Planes 189

8.3 Colors and Lighting 189
8.3.1 Specifying Colors and Materials 189
8.3.2 Lights 190
8.3.3 Two-Sided Lighting 192
8.3.4 Shading 193
8.3.5 Lighting Example 193

C O N T E N T S ix

CHAPTER 9. OPENGL ES RASTERIZATION AND
FRAGMENT PROCESSING 195

9.1 Back-Face Culling 195

9.2 Texture Mapping 196
9.2.1 Texture Objects 196
9.2.2 Specifying Texture Data 197
9.2.3 Texture Filtering 202
9.2.4 Texture Wrap Modes 205
9.2.5 Basic Texture Functions 205
9.2.6 Multi-Texturing 206
9.2.7 Texture Combiners 207
9.2.8 Point Sprite Texturing 209
9.2.9 Implementation Differences 209

9.3 Fog 210

9.4 Antialiasing 211
9.4.1 Edge Antialiasing 211
9.4.2 Multisampling 212
9.4.3 Other Antialiasing Approaches 213

9.5 Pixel Tests 214
9.5.1 Scissoring 214
9.5.2 Alpha Test 214
9.5.3 Stencil Test 215
9.5.4 Depth Testing 218

9.6 Applying Fragments to the Color Buffer 218
9.6.1 Blending 219
9.6.2 Dithering 220
9.6.3 Logic Ops 220
9.6.4 Masking Frame Buffer Channels 220

CHAPTER 10. MISCELLANEOUS OPENGL ES FEATURES 223
10.1 Frame Buffer Operations 223

10.1.1 Clearing the Buffers 223
10.1.2 Reading Back the Color Buffer 224
10.1.3 Flushing the Command Stream 225

10.2 State Queries 225
10.2.1 Static State 226
10.2.2 Dynamic State Queries 227

10.3 Hints 233

10.4 Extensions 234
10.4.1 Querying Extensions 234
10.4.2 Query Matrix 234
10.4.3 Matrix Palette 235
10.4.4 Draw Texture 238
10.4.5 Using Extensions 238

x C O N T E N T S

CHAPTER 11. EGL 241
11.1 API Overview 242

11.2 Configuration 244

11.3 Surfaces 248

11.4 Contexts 252

11.5 Extensions 253

11.6 Rendering into Textures 254

11.7 Writing High-Performance EGL Code 255

11.8 Mixing OpenGL ES and 2D Rendering 257
11.8.1 Method 1: Window Surface is in Control 257
11.8.2 Method 2: Pbuffer Surfaces and Bitmaps 258
11.8.3 Method 3: Pixmap Surfaces 258

11.9 Optimizing Power Usage 259
11.9.1 Power Management Implementations 259
11.9.2 Optimizing the Active Mode 261
11.9.3 Optimizing the Idle Mode 262
11.9.4 Measuring Power Usage 262

11.10 Example on EGL Configuration Selection 264

PART III M3G

CHAPTER 12. INTRODUCING M3G 269
12.1 Overview 270

12.1.1 Mobile Java 270
12.1.2 Features and Structure 272
12.1.3 Hello, World 276

12.2 Design Principles and Conventions 277
12.2.1 High Abstraction Level 278
12.2.2 No Events or Callbacks 279
12.2.3 Robust Arithmetic 280
12.2.4 Consistent Methods 281
12.2.5 Parameter Passing 282
12.2.6 Numeric Values 283
12.2.7 Enumerations 284
12.2.8 Error Handling 284

12.3 M3G 1.1 285
12.3.1 Pure 3D Rendering 285
12.3.2 Rotation Interpolation 285
12.3.3 PNG and JPEG Loading 286
12.3.4 New Getters 287
12.3.5 Other Changes 288

C O N T E N T S xi

CHAPTER 13. BASIC M3G CONCEPTS 289
13.1 Graphics3D 290

13.1.1 Render Targets 290
13.1.2 Viewport 293
13.1.3 Rendering 294
13.1.4 Static Properties 296

13.2 Image2D 297

13.3 Matrices and Transformations 300
13.3.1 Transform 300
13.3.2 Transformable 303

13.4 Object3D 306
13.4.1 Animating 306
13.4.2 Iterating and Cloning 306
13.4.3 Tags and Annotations 308

13.5 Importing Content 311
13.5.1 Loader 311
13.5.2 The File Format 313

CHAPTER 14. LOW-LEVEL MODELING IN M3G 319
14.1 Building meshes 319

14.1.1 VertexArray 319
14.1.2 VertexBuffer 320
14.1.3 IndexBuffer and Rendering Primitives 323
14.1.4 Example 325

14.2 Adding Color and Light: Appearance 326
14.2.1 PolygonMode 327
14.2.2 Material 328
14.2.3 Texture2D 329
14.2.4 Fog 332
14.2.5 CompositingMode 333

14.3 Lights and Camera 337
14.3.1 Camera 337
14.3.2 Light 339

14.4 2D Primitives 343
14.4.1 Background 343
14.4.2 Sprite3D 346

CHAPTER 15. THE M3G SCENE GRAPH 349
15.1 Scene Graph Basics: Node, Group, and World 349

15.2 Mesh Objects 351

15.3 Transforming Objects 354
15.3.1 Camera, Light, and Viewing Transformations 355
15.3.2 Node Alignment 356

xii C O N T E N T S

15.4 Layering and Multi-Pass Effects 360

15.5 Picking 362

15.6 Optimizing Performance 364
15.6.1 Visibility Optimization 365
15.6.2 Scope Masks 365

CHAPTER 16. ANIMATION IN M3G 367
16.1 Keyframe Animation: KeyframeSequence 367

16.2 Animation Targets: AnimationTrack 372

16.3 Timing and Speed: AnimationController 374

16.4 Animation Execution 377

16.5 Advanced Animation 378
16.5.1 Deformable Meshes 378
16.5.2 Animation Blending 385
16.5.3 Creating Discontinuities 387
16.5.4 Dynamic Animation 388

PART IV APPENDIX

A FIXED-POINT MATHEMATICS 393
A.1 Fixed-Point Methods in C 395

A.1.1 Basic Operations 395
A.1.2 Shared Exponents 397
A.1.3 Trigonometric Operations 399

A.2 Fixed-Point Methods in Assembly Language 400

A.3 Fixed-Point Methods in Java 405

B JAVA PERFORMANCE TUNING 407
B.1 Virtual Machines 408

B.2 Bytecode Optimization 409

B.3 Garbage Collection 410

B.4 Memory Accesses 411

B.5 Method Calls 413

C GLOSSARY 415
Bibliography 419

Index 425

Preface

The mobile phone is by far the most widely available device with rendering capabilities
in the world, and it is very likely that this will continue to be the case. However, this
ubiquitous tool may not continue to be centered around its phone function for much
longer, as it evolves more and more into a multifaceted device, which you might want to
call a mobile Gizmo (see Bruce Sterling’s keynote at SIGGRAPH 2004). Inevitably, graphics
is becoming a core part of such a Gizmo.

The pivotal role of graphics in the future of the Gizmo, and the fact that these devices are
spread out (quite evenly, compared to other rendering platforms) over the entire globe,
makes the mobile phone an incredibly exciting platform on which to develop graphics.
Over the past few years, I have done quite a lot of research on mobile graphics and energy-
efficient graphics hardware targeting these platforms. I believe that the authors of this
book and I share the vision of omnipresent three-dimensional graphics on all mobile
devices.

Compared to the contributions made through my research, the authors provide within
these pages more than a small stepping stone. In my opinion, this book is an escalator,
which takes the field to new levels. This is especially true because their text ensures that the
topic is easily accessible to everyone with some background in computer science. Further,
this book is unique in that it provides a single resource covering both OpenGL ES and
M3G. These open APIs have been specifically developed for mobile devices, and many in
the community, including myself, expect that these will be the most widely utilized APIs
for the foreseeable future.

The foundations of this book are clear, and the authors are extremely knowledgeable
about the subject, partly due to the enormous amounts of time and effort they have
invested in standardization organizations, such as the Khronos Group and Java commu-
nity, which are committed to making both the OpenGL ES and M3G standards faster,
more robust, and easier to use. Undoubtedly, the authors of this book will continue
to help develop even better versions of these APIs as the field progresses. I am certain
that the future of mobile graphics will be more than bright, and with this book in your
hand, you, the reader, will be able to create vibrant applications with three-dimensional

xiii

xiv P R E F A C E

graphics on mobile devices. Hopefully, your mobile graphics applications will be like
nothing the world has ever seen before.

Please, do surprise me.
Tomas Akenine-Möller

Lund University
Sweden

About the Authors

Kari Pulli contributed to both OpenGL ES and M3G from the very beginning, and
was among the most active technical contributors to each API. Kari, originally Principal
Scientist and later Research Fellow, headed Nokia’s graphics research, standardization,
and technology strategy and implementation, and was Nokia’s contact person for both
standards.

Tomi Aarnio, Senior Research Engineer, mostly concentrated on the M3G standard. He
was the specification editor of all versions of M3G, and headed the implementation
project of both its Reference Implementation and the engine that is shipping on Nokia
phones.

Ville Miettinen was active and influential on the definition of the first versions of both of
these graphics standards. At the time he acted as the CTO of Hybrid Graphics, and later
as a specialist of next-generation mobile graphics platforms at NVIDIA. Nowadays, he is
a private consultant.

Kimmo Roimela, Senior Research Engineer at Nokia, also concentrated on the M3G stan-
dardization and implementation. He was the main architect of the M3G’s animation
model and an associate editor of the M3G specification. He was also the lead programmer
of the Nokia M3G implementation.

Jani Vaarala, Graphics Architect at Nokia, was very active in the definition of OpenGL ES
standard. He also headed the team that implemented and integrated Nokia’s first OpenGL
ES and EGL solution.

xv

Acknowledgments

The creation and adoption of OpenGL ES and M3G was possible because of the hard
work of many people and companies. When we use the term “we” in this book, we mean
not just the authors but everybody who participated in the OpenGL ES working group
or M3G expert group, and in some cases in both of them. Below we mention some of the
most active contributors, the full list can be found from the API specifications.

Neil Trevett initiated the creation of OpenGL ES and chaired the OpenGL ES working
group from the beginning until OpenGL ES 2.0. Tom Olson was an active contributor
from the beginning and became the next chair of the OpenGL ES working group. David
Blythe was the original specification editor for OpenGL ES. He also adapted the OpenGL
sample implementation for OpenGL ES. Aaftab (Affie) Munshi became the editor after
David left the Khronos Group to become the head architect of Direct 3D at Microsoft. Jon
Leech, the OpenGL ARB secretary and EGL specification editor contributed a lot to all
aspects of OpenGL ES. He is also the editor of the OpenGL ES 1.1 normative specification.
Tom McReynolds, Robert Simpson, Petri Kero, Gary King, Graham Connor, and Remi
Arnaud were important contributors for OpenGL ES, and Claude Knaus created the first
OpenGL ES conformance tests.

Jyri Huopaniemi chaired the first M3G (JSR 184) expert group. Sean Ellis was one of the
most active contributors to the M3G specification, and an associate specification editor,
authoring the M3G file format. Mark Patel, Mark Tarlton, Doug Twilleager, Paul Beardow,
Michael Steliaros, and Chris Grimm were among the most active members of the M3G
expert group.

Mark Callow, Jacob Ström, and Ed Plowman have been very active contributors to both
OpenGL ES and M3G APIs.

We would like to thank the following people who read at least parts of the book and
provided many comments, making the book better than it would have otherwise been:
Timo Aila, Tomas Akenine-Möller, Oliver Bimber, Suresh Chitturi, Sean Ellis, Michael
Frydrych, Jiang Gao, Radek Grzeszczuk, Timo Haanpää, Kari Kangas, Laszlo Kishonti,
Chris Knox, Sami Kyöstilä, Jon Leech, Mika Pesonen, Vidya Setlur, Robert Simpson,
Dominic Symes, Yaki Tebeka, Juha Uola, Gareth Vaughan, and Yingen Xiong.

xvi

1

C
H

A
P

T
E

R

INTRODUCTION

Mobile phones are the new vehicle for bringing interactive graphics technologies to
consumers. Graphics that in the 1980s was only seen in industrial flight simulators and
at the turn of the millennium in desktop PCs and game consoles is now in the hands
of billions of people. This book is about the technology underpinnings of mobile three-
dimensional graphics, the newest and most rapidly advancing area of computer graphics.

Computer graphics has been around since the 1960s. Its application areas range from user
interfaces to video gaming, scientific visualization, special effects in movies, and even
full-length animated films. In the field of computer graphics, it is the subset of three-
dimensional (3D) graphics that produces the most life-like visuals, the “wow” effects,
and the eye-candy. Since the late 1990s, almost all computer games, and more recently
even operating systems such as OS X and Windows Vista, have come to rely heavily on
real-time 3D graphics. This has created an enormous drive for graphics hardware devel-
opment. Dedicated graphics hardware is ubiquitous on desktop and laptop computers,
and is rapidly becoming common on high-end mobile phones. Low-cost software-based
implementations bring 3D graphics to mass-market consumer phones as well. Computer
graphics is nowadays an integral part of the phone user experience: graphics is the face of
the device.

Mobile phones, also known as cellular or cell phones, have recently become universal
communication and computation devices. In countries such as the UK there are more
mobile phone subscriptions than there are people. At the same time, the capabilities of
the devices are improving. According to Moore’s law [Moo65], the transistor density on

1

2 INTRODUCTION C H A P T E R 1

integrated circuits roughly doubles every one or two years; today’s high-end mobile phone
has more computational power than a late 1990s home PC. The display resolutions of
mobiles will soon reach and surpass that of conventional broadcast television, with much
better color fidelity. Together, these advances have resulted in a truly mobile computer.
As a side effect, real-time, interactive 3D graphics has become feasible and increasingly
desirable for the masses.

1.1 ABOUT THIS BOOK

This book is about writing real-time 3D graphics applications for mobile devices. We
assume the reader has some background in mathematics, programming, and computer
graphics, but not necessarily in mobile devices.

The 3D graphics capabilities of mobile devices are exposed through two standardized
application programming interfaces (APIs): OpenGL ES, typically accessed through C or
C++, and M3G, for mobile Java. We introduce the latter standard in terms of the former.
As OpenGL ES is utilized as the fundamental building block in many real-world M3G
implementations, expressing this relationship explicitly is highly useful for describing the
inner workings of M3G.

The two APIs are equally suited to programming embedded devices other than mobile
phones, from car navigation systems to display screens of microwave ovens. However,
most of such platforms are closed—parties other than the device manufacturer cannot
develop and install new applications on them. By contrast, most mobile phones are open:
third parties such as professional software developers, students, and individual enthusi-
asts can program, install, and distribute their own applications. Having a programmable
mobile phone at hand to try out the techniques described in this book is actually a great
idea. However, the details of mobile application development vary considerably across
platforms, so we defer those details to each platform’s developer documentation.

This book consists of three parts and several appendices. Part I gives an introduction to the
3D graphics concepts that are needed to understand OpenGL ES and M3G, which are then
covered in Parts II and III, respectively. The use of each API is demonstrated with hands-on
code examples. The appendices provide additional information and optimization tips for
both C/C++ and Java developers as well as a glossary of acronyms and terms used in this
book. There is also a companion web site, www.graphicsformasses.com, hosting
code examples, errata, and links to other online resources.

A more comprehensive treatment of 3D graphics, such as Real-Time Rendering by Tomas
Akenine-Möller and Eric Haines [AMH02], is recommended for readers new to computer
graphics. The “OpenGL Red Book” [SWN05] is a traditional OpenGL beginner’s guide,
while a book by McReynolds and Blythe [MB05] collects more advanced OpenGL tips in
one place. Those unfamiliar with programming in mobile Java may find Beginning J2ME:
From Novice to Professional by Sing Li and Jonathan Knudsen [LK05] useful.

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 3

1.1.1 TYPOGRAPHIC CONVENTIONS

Alongside the basic text, there are specific tips for achieving good performance and
avoiding common pitfalls. These hints are called performance tips and pitfalls, respectively.
An example of each follows:

Performance tip: Enabling the optimization flag in the compiler makes your appli-
cation run faster.

Pitfall: Premature optimization is the root of all evil.

Code snippets and class, token, and function names are shown in typewriter typeface
like this:

glPointSize(32);
glEnable(GL_POINT_SPRITE_OES);
glTexEnvi(GL_POINT_SPRITE_OES, GL_COORD_REPLACE_OES, GL_TRUE);
glDrawArrays(GL_POINTS, 0, 1);

When API functions are introduced, they are marked like this:

void function(int parameter).

Any later references to the function or parameter in the text are also similarly
emphasized.

1.2 GRAPHICS ON HANDHELD DEVICES

The very first mobile phones were heavy bricks with separate handsets; a few examples
can be seen in Figure 1.1. They were designed to be lugged around rather than carried in

F igure 1.1: The evolution of mobile phones from the early car phones on the left to the multimedia computer on the right
spans roughly two decades. From the left: Mobira Talkman, Nokia R72, Mobira Cityman, Nokia 3410 (the first GSM phone
with a 3D graphics engine), Nokia 6630 (the first phone to support both OpenGL ES and M3G), and Nokia N93 (the first phone
with hardware acceleration for both APIs). Images Copyright c© 2007 Nokia Corporation.

4 INTRODUCTION C H A P T E R 1

a pocket, and they operated using analog radio networks. Toward the late 1980s and early
1990s, mobile phones started to become truly portable rather than just movable. By then
the phones were pocket-sized, but still only used for talking.

Eventually, features such as address books, alarm clocks, and text messaging started to
appear. The early alphanumeric displays evolved into dot matrices, and simple games,
such as the Snake available in many Nokia phones, arrived. Calendars and e-mail applica-
tions quickly followed. Since the late 1990s, the mobile phone feature palette has exploded
with FM radios, color displays, cameras, music players, web browsers, and GPS receivers.
The displays continue to improve with more colors and higher resolutions, memory is
installed by the gigabyte for storing increasing amounts of data, and ever more process-
ing power is available to run a plethora of applications.

1.2.1 DEVICE CATEGORIES

Mobile phones today can be grouped roughly into three categories (see Figure 1.2): basic
phones, the more advanced feature phones, and the high-end smart phones. There is sig-
nificant variance within each category, but the classification helps imagine what kind of
graphics applications can be expected in each. The evolution of mobile phones is rapid—
today’s smart phones are tomorrow’s feature phones. Features we now expect only in the
most expensive high-end devices will be found in the mass market in just a few years’
time.

The basic phone category is currently not very interesting from the point of view of graph-
ics programming: basic phones have closed environments, usually with proprietary oper-
ating systems, and new applications can be developed only in close association with the
maker of the device. Basic phones are very limited in terms of their processing power and
both the physical screen size and the display resolution. This class of phones does not
have graphics hardware, and while software-based 3D solutions can be implemented, the
limited CPU performance allows only the simplest of 3D applications.

Smart
phones

Feature
phones

Basic phones

F igure 1.2: Three phone categories. Smart phones are more powerful than feature phones or basic
phones, but there are more basic phones than either feature phones or smart phones.

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 5

The second category, on the other hand, is very interesting for graphics applications.
Feature phones represent the bulk of the market in developed countries, and most of them
incorporate mobile Java. Hundreds of different Java-enabled phone models are manufac-
tured, and every year hundreds of millions of handsets are sold. Mobile Java makes it
possible to develop applications for that entire volume of devices through a fairly uni-
form programming platform. It offers sufficient programming interfaces for most multi-
media needs, 3D graphics included; the Mobile 3D Graphics API for Java ME (M3G) is
one of the main topics in this book. The Java phones also span the largest range in terms
of performance and feature differences—while the theory is “write once, run anywhere,”
in practice a lot of time is spent managing tens or even hundreds of different application
configurations for different devices, prompting some to re-express the theory as “write
once, debug everywhere.”

The Qualcomm BREW platform1 can be seen as a subset of mid-range devices that
allow installation of native applications, written in C or C++. The security concerns
of native applications are addressed through mandatory certification of developers and
applications. BREW provides 3D graphics through OpenGL ES. Many BREW devices also
support Java and M3G.

The top category in our classification is the high-end smart phone. The logical conclu-
sion to the current smart phone evolution seems to be that these devices evolve into true
mobile computers. Already today, the key features of the category include large, sharp, and
vivid color displays, powerful processors, plenty of memory, and full-blown multimedia
capabilities, not to mention the inherent network connectivity. Some of the latest devices
also incorporate dedicated 3D graphics hardware. The operating systems (OSes), such
as Symbian, Linux, and Windows Mobile, support the installation of third-party native
applications. Java is also featured on practically all smart phones, and both OpenGL ES
and M3G are typically available for 3D content.

1.2.2 DISPLAY TECHNOLOGY

The evolution of mobile phones coincides with the evolution of digital photography. Digi-
tal cameras started the demand for small, cost-efficient, low-power, high-quality displays.
Mobile phones were able to leverage that demand, and soon small-display technology was
being driven by mobile phones—and, eventually, by mobile phones incorporating digi-
tal cameras. Suddenly the world’s largest mobile phone manufacturer is also the world’s
largest camera manufacturer.

Apart from the extreme low end, all mobile phones today have color displays. In the
mid-range, resolutions are around one or two hundred pixels per side, with 16 or 18
bits of color depth, yielding 65K or 262K unique colors. High-end devices pack screens
from QVGA (320 × 240 pixels) upward with good contrast, rapid refresh rates, and

1 brew.qualcomm.com/brew/en/

6 INTRODUCTION C H A P T E R 1

24 bits becoming the norm in color depth. Although there is room for improvement in
brightness, color gamut, and field of view, among other things, it is safe to assume that
display quality will not be the main obstacle for interactive 3D graphics on any recent
feature phone or smart phone.

The main limitation of mobile displays is clearly their small physical size. A 50mm screen
will never provide a truly immersive experience, even though the short viewing distance
compensates for the size to some extent. For high-end console type of gaming, the most
promising new development is perhaps the TV-out interface, already included in some
high-end devices. A phone connected to a high-definition display has the potential to
deliver the same entertainment experience as a dedicated games console. Near-eye dis-
plays, also known as data goggles, may one day allow as wide a viewing angle as the human
eye can handle, while embedded video projectors and foldable displays may become viable
alternatives to TV-out. Finally, autostereoscopic displays that provide different images to
both eyes may yield a more immersive 3D experience than is possible using only a single
image.

As with most aspects of mobile phones, there is a lot of variation in display proper-
ties. Application developers will have to live with a variety of display technologies, sizes,
orientations, and resolutions—much more so than in the desktop environment.

1.2.3 PROCESSING POWER

Mobile phones run on battery power. While the processing power of integrated circuits
may continue to increase in line with Moore’s law [Moo65], roughly 40–60% per year,
this is certainly not true of battery capacity. Battery technology progresses at a much more
modest rate, with the energy capacity of batteries increasing perhaps 10% per year at best.
In ten years’ time, processing power may well increase twenty times more than battery
capacity.

Needless to say, mobile devices need to conserve battery power as much as possible in
order to provide sufficient operating times. Another reason to keep the power consump-
tion low is heat dissipation: mobile devices are small, so there is very little surface area
available for transferring the heat generated in the circuits out of the device, and very few
users appreciate their devices heating noticeably. There is a potential ray of hope, though,
in the form of Gene’s law. It states that the power usage, and therefore heat dissipation, of
integrated circuits drops in half every 18 months. This effect has made it possible to build
ever smaller and faster circuits.

As shown in Figure 1.3, mobile phones typically have one or two processors. Each pro-
cessor incorporates an embedded CPU, a digital signal processor (DSP), and perhaps
some dedicated hardware for audio, imaging, graphics, and other tasks. The baseband
processor takes care of the fundamental real-time operations of the device, such as pro-
cessing the speech and radio signals. In basic phones and feature phones, the baseband

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 7

Baseband
Processor

CPU DSP

Application
Processor

CPU DSP

GPU

Memory

IVA

Baseband
Processor

CPU DSP

Memory

IVA

F igure 1.3: System architecture of a typical high-end smart phone (left) and a feature phone (right)
in late 2007. Note that feature phones often include an Imaging and Video Accelerator (IVA), whereas
a Graphics Processing Unit (GPU) is still relatively uncommon even in the smart phone segment.

processor also runs the operating system, applications, and the user interface—but of
course at a lower priority. Smart phones usually have a separate application processor for
these secondary purposes. To anyone coming from outside the mobile phone industry it
may seem odd to call all this complex functionality “secondary.” Indeed, the way forward
is to make the application processor the core of the system with the modem becoming
a peripheral.

The presence or absence of an application processor does not make much difference
to the developer, though: exactly one CPU is available for programming in either case,
and dedicated hardware accelerators may be present whether or not there is a separate
application processor. The phone vendors also tend to be secretive about their hardware
designs, so merely finding out what hardware is included in a particular device may be
next to impossible. As a rule, the presence or absence of any hardware beyond the CPU
that is running the application code can only be inferred through variation in perfor-
mance. For example, a dual-chip device is likely to perform better for web browsing,
multiplayer gaming, and other tasks that involve network access and heavy processing
at the same time. In the rest of this book, we will not differentiate between baseband and
application processors, but will simply refer to them collectively as “the processor” or
“the CPU.”

A mainstream mobile phone can be expected to have a 32-bit reduced instruction set
(RISC) CPU, such as an ARM9. Some very high-end devices may also have a hardware
floating-point unit (FPU). Clock speeds are reaching into half a gigahertz in the high end,
whereas mid-range devices may still be clocked at barely 100MHz. There are also large
variations in memory bus bandwidths, cache memories, and the presence or absence of
hardware accelerators, creating a wide array of different performance profiles.

8 INTRODUCTION C H A P T E R 1

1.2.4 GRAPHICS HARDWARE

At the time of writing, the first generation of mobile phones with 3D graphics accelerators
(GPUs) is available on the market. Currently, most of the devices incorporating graphics
processors are high-end smart phones, but some feature phones with graphics hardware
have also been released. It is reasonable to expect that graphics acceleration will become
more common in that segment as well. One reason for this is that using a dedicated graph-
ics processor is more power-efficient than doing the same effects on a general-purpose
CPU: the CPU may require a clock speed up to 20 times higher than a dedicated chip
to achieve the same rendering performance. For example, a typical hardware-accelerated
mobile graphics unit can rasterize one or two bilinear texture fetches in one cycle, whereas
a software implementation takes easily more than 20 cycles.

Figure 1.4 shows some of the first-generation mobile graphics hardware in its develop-
ment stage. When designing mobile graphics hardware, the power consumption or power
efficiency is the main driving factor. A well-designed chip does not use a lot of power inter-
nally, but power is also consumed when accessing external memory—such as the frame
buffer—outside of the graphics core. For this reason, chip designs that cache graphics
resources on the GPU, or store the frame buffer on the same chip and thus minimize traf-
fic to and from external memory, are more interesting for mobile devices than for desktop
graphics cards.

F igure 1.4: Early mobile graphics hardware prototype. Image copyright c© Texas Instruments.

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 9

The graphics processor is only a small part of a multi-purpose consumer device which is
sold as a complete package. Not all consumers take full advantage of the features made
possible by the graphics hardware (e.g., high-end gaming, 3D navigation or fancy user
interfaces), so they are not willing to pay a premium for it. In order to keep the cost of the
device appealing to a variety of customers, the graphics core must be cheap to manufac-
ture, i.e., it must have a small silicon area.

Graphics hardware for mobile devices cannot take the same approach as their desktop
counterparts, sacrificing silicon area and power consumption for high performance. The
design constraints are much tighter: the clock speeds and memory bandwidths are lower,
and different levels of acceleration are required by different types of devices. For instance,
many mobile GPUs only implement the rasterization stage of the rendering pipeline in
hardware, leaving the transformation and lighting operations to be executed in software.

Rather than looking at raw performance, a much better metric is performance per
milliwatt. High-end mobile GPUs in phones currently available in the market consume
some hundreds of milliwatts of power at full speed, and can reach triangle throughputs
of several million triangles per second, and pixel fill rates of hundreds of megapixels per
second. Next-generation mobile GPUs are expected to have relative performance an order
of magnitude higher.

1.2.5 EXECUTION ENVIRONMENTS

In the desktop arena, there are only three major families of operating systems: Windows,
Linux, and Mac OS. Even though they have various differences in their design, and can
seem very different from each other on the surface, the basic low-level idioms for writing
programs are relatively similar. In the mobile space, there are dozens of different operating
systems, and they each have their own quirks. As an example, some OSes do not support
writable static data, i.e., static variables inside functions, global variables, or nonconstant
global arrays. Other operating systems may lack a traditional file system. This means that
things often taken for granted cannot be used in a portable fashion.

Open development environments

Traditionally all the embedded operating systems were closed, meaning that only the plat-
form providers could write and install applications on them. The basic phones are appli-
ances dedicated to a single purpose: making phone calls.

There are several reasons to keep platforms closed. If you allow third parties to install
applications on your device after the purchase, the requirements for system stability are
much higher. There are also significant costs related to software development, e.g., docu-
mentation, supporting libraries, and developer relations. Additionally, you have less free-
dom to change your implementations once other parties rely on your legacy features.
Security is also a critical aspect. If applications cannot be installed, neither can malware,

10 INTRODUCTION C H A P T E R 1

e.g., viruses that could erase or forward your private information such as the address book
and calendar entries, or call on your behalf to a $9.95-per-minute phone number.

However, modern smart phones are not any longer dedicated appliances, they are true
multimedia computers. Providing all applications is a big and expensive engineering
task for a single manufacturer. When a platform is opened, a much larger number of
engineers, both professionals and hobbyists, can develop key applications that can both
create additional revenue and make the device on the whole a more attractive offer-
ing. Opening up the platform also opens possibilities for innovating completely new
types of applications. On the other hand, there may be financial reasons for the exact
opposite behavior: if one party can control which applications and functionalities are
available, and is able to charge for these, it may be tempted to keep an otherwise open
platform closed.

Nevertheless, the majority of mobile phones sold today have an open development envi-
ronment. In this book, we employ the term open platform rather loosely to cover all devices
where it is possible to program and install your own applications. Our definition also
includes devices that require additional certifications from the phone manufacturer or
the operator. Examples of open platforms include Java, BREW/WIPI, Linux, Palm OS,
Symbian OS, and Windows Mobile.

A native application is one that has been compiled into the machine code of the target
processor. We use the designation open native platform for devices that allow installing
and executing native applications. For example, S60 devices are considered native whereas
Java-only phones are not. Some 10–15% of all phones sold worldwide in 2006 fall into this
category, roughly half of them being S60 and the other half BREW/WIPI phones.

Native applications

In basic phones and feature phones, the only way to integrate native binary applications
is to place them into the firmware when the phone is manufactured. Smart phones, by
contrast, allow installing and executing native binary applications. A key advantage for
such applications is that there are few or no layers of abstraction between the running code
and the hardware. They also can have access to all device capabilities and the functionality
provided by system libraries. Therefore these applications can get all the performance out
of the hardware.

This comes at the cost of portability. Each platform has its own quirks that the program-
mers have to become familiar with. There are several initiatives underway that aim to
standardize a common native programming environment across the various operating
systems, e.g., the OpenKODE standard2 from the Khronos Group.

With regards to the 3D graphics capability, most mobile operating system vendors have
selected OpenGL ES as their native 3D programming API. There still exist a few

2 www.khronos.org/openkode

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 11

proprietary solutions, such as Direct3D Mobile on Windows Mobile, and the Mascot
Capsule API in the Japanese market. Regardless, it seems highly unlikely that any new
native 3D rendering APIs would emerge in the future—the graphics API wars waged in the
desktop arena in the mid-1990s are not to be re-fought in the embedded world. This fur-
thers the portability of the core graphics part of an application. Even if OpenGL ES is not
integrated with the operating system out of the box, software-based OpenGL ES imple-
mentations are available which can be either directly linked to applications or installed
afterward as a system-level library.

Mobile Java

Nearly all mobile phones sold in developed countries today are equipped with Java Micro
Edition,3 making it by far the most widely deployed application platform in the world.
Java ME has earned its position because of its intrinsic security, fairly open and vendor-
neutral status, and its familiarity to millions of developers. It also provides better produc-
tivity for programmers compared to C/C++, especially considering the many different
flavors of C/C++ that are used on mobile devices. Finally, the fact that Java can abstract
over substantially different hardware and software configurations is crucial in the mobile
device market where no single vendor or operating system has a dominating position.
Most manufacturers are hedging their bets between their proprietary software platforms
and a number of commercial and open-source options, but Java developers can be bliss-
fully unaware of which operating system each particular device is using. Practically all
mobile Java platforms provide the same 3D graphics solution: the M3G API, described in
this book.

The Java platform is a perfect match for an otherwise closed system. It gives security,
stability, and portability almost for free, thanks to its virtual machine design, while doc-
umentation and support costs are effectively spread among all companies that are partic-
ipating in Java standardization, i.e., the Java Community Process, or JCP, and shipping
Java-enabled products.

Even for a platform that does allow native applications, it makes a lot of sense to make
Java available as a complementary option. Java gives access to a vast pool of applications,
developers, tools, and code that would otherwise not be available for that platform. Also,
developers can then choose between the ease of development afforded by Java, and the
more powerful native platform features available through C/C++.

Of course, the secure and robust virtual machine architecture of Java has its price: reduced
application performance and limited access to platform capabilities. Isolating applications
from the underlying software and hardware blocks access to native system libraries and
rules out any low-level optimizations. It is not just a myth that Java code is slower than
C/C++, particularly not on mobile devices. The Java performance issues are covered more
thoroughly in Appendix B.

3 java.sun.com/javame

12 INTRODUCTION C H A P T E R 1

1.3 MOBILE GRAPHICS STANDARDS

The mobile graphics revolution started small. The first phones with an embedded 3D
engine were shipped by J-Phone, a Japanese carrier, in 2001. The graphics engine was an
early version of the Mascot Capsule engine from HI Corporation. Its main purpose at
the time was to display simple animated characters. Therefore many common 3D graph-
ics features such as perspective projection, smooth shading, and blending were omitted
altogether.

The first mobile phone to support 3D graphics outside of Japan was the Nokia 3410,
first shipped in Europe in 2002 (see Figure 1.1). Unlike the Japanese phones, it still had a
monochrome screen—with a mere 96 by 65 pixels of resolution—but it did incorporate
all the essential 3D rendering features; internally, the graphics engine in the 3410 was
very close to OpenGL ES 1.0, despite preceding it by a few years. A lightweight animation
engine was also built on top of it, with an authoring tool chain for Autodesk 3ds Max.
The phone shipped with animated 3D text strings, downloadable screensaver animations,
and a built-in Java game that used simple 3D graphics. The application that allowed the
users to input a text string, such as their own name or their sweetheart’s name, and select
one of the predefined animations to spin the 3D extruded letters around proved quite
popular. On the other hand, downloading of artist-created screensaver animations was
less popular.

Other early 3D graphics engines included Swerve from Superscape, ExEn (Execution
Engine) from InFusio, X-Forge from Fathammer, and mophun from Synergenix. Their
common denominator was that they were not merely hardware abstraction layers.
Instead, they were middleware and game engine solutions incorporating high-level
features such as animation and binary file formats, and in many cases also input
handling and sound. All the solutions were based on software rendering, so there was
no need to standardize hardware functionality, and features outside of the traditional
OpenGL rendering model could easily be incorporated. However, in the absence of a
unified platform, gaining enough market share to sustain a business proved difficult for
most contenders.

1.3.1 FIGHTING THE FRAGMENTATION

A multitude of different approaches to the same technical problem slows down the devel-
opment of a software application market. For example, a large variety of proprietary con-
tent formats and tools increases the cost of content creation and distribution. To make
creating interesting content sensible for content developers, the market needs to be suffi-
ciently robust and large. This is not so much an issue with pre-installed content, such as
built-in games on handsets, but it is crucial for third-party developers.

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 13

There are strong market forces that encourage fragmentation. For example, the mobile
phone manufacturers want their phones to differentiate from their competition.
Operators want to distinguish themselves from one another by offering differing ser-
vices. And the dozens of companies that create the components that form a mobile phone,
i.e., the hardware and software vendors, all want to compete by providing distinct
features. In other words, there is a constant drive for new features. When you want the
engineering problems related to a new feature solved, you will not normally wait for a
standard to develop. As a result, any new functionality will usually be introduced as a
number of proprietary solutions: similar, but developed from different angles, and more
or less incompatible with each other.

After the first wave, a natural next step in evolution is a de facto standard—the fittest
solution will rise above the others and begin to dominate the marketplace. Alterna-
tively, lacking a single leader, the industry players may choose to unite and develop a
joint standard. The required committee work may take a while longer, but, with sufficient
support from the major players, has the potential to become a win-win scenario for every-
one involved.

For the third-party application developer, the size—or market potential—of a platform is
important, but equally important is the ease of developing for the platform. Portability of
code is a major part of that. It can be achieved at the binary level, with the same application
executable running on all devices; or at the source code level, where the same code can
be compiled, perhaps with small changes, to all devices. Standard APIs also bring other
benefits, such as better documentation and easier transfer of programming skills. Finally,
they act as a concrete target for hardware manufacturers as to which features should be
supported in their hardware.

In 2002, the Khronos Group, a standardization consortium for specifying and pro-
moting mobile multimedia APIs, created a steering committee for defining a subset of
OpenGL suitable for embedded devices. The following companies were represented in
the first meeting: 3d4W, 3Dlabs, ARM, ATI, Imagination Technologies, Motorola, Nokia,
Seaweed, SGI, and Texas Instruments. Concurrently with this, a Nokia-led effort to stan-
dardize a high-level 3D graphics API for Java ME was launched under the auspices of the
Java Community Process (JCP). It was assigned the Java Specification Request number
184 (hence the moniker “JSR 184”) but the standard has become better known as M3G.
The Expert Group of JSR 184 was a mixture of key mobile industry players including
Nokia, Motorola, Vodafone, and ARM, as well as smaller companies specializing in 3D
graphics and games such as Hybrid Graphics, HI Corporation, Superscape, and Sumea.
The two standards progressed side-by-side, influencing each other as there were several
people actively contributing to both. In the fall of 2003 they were both ratified within a
few months of each other, and OpenGL ES 1.0 and M3G 1.0 were born. The first imple-
mentations in real handheld devices began shipping about a year later.

14 INTRODUCTION C H A P T E R 1

F igure 1.5: Uses of OpenGL ES in the Nokia N95 multimedia computer. On the left the multimedia menu and the mapping
application of Nokia N95; on the right, a mobile game. Images Copyright c© 2007 Nokia Corporation. (See the color plate.)

Today, you can get an overview about the market status by looking at the result databases
of the different mobile graphics benchmarks: JBenchmark4 (Figure 1.12), GLBenchmark5

(Figure 1.6), and the various Futuremark benchmarks6 (Figure 1.9). Devices support-
ing M3G are available from all major handset vendors, and OpenGL ES 1.1 hardware is
being supplied to them by several companies, e.g., AMD, ARM, NVIDIA, and Imagina-
tion Technologies (PowerVR). Practical implementations vary from software renderers
on ARM7 processors to high-end GPUs. The initial focus of mobile 3D graphics has also
broadened from games and screen savers; it is now finding its way to user interfaces (see
Figures 1.5, 1.7, and 1.8), and is available for the visualization needs of all applications.

The emergence of open standards shows that healthy competition should occur over
implementation—quality, performance, cost, and power consumption—but not func-
tionality that causes fragmentation.

1.3.2 DESIGN PRINCIPLES

The planning for the mobile 3D graphics standards was based on the background outlined
earlier in this chapter: the capabilities of mobile devices, the available software platforms,
and the need to create an interesting, unified market for both content developers and
hardware vendors. It was clear from the start that a unified solution that caters for both
Java and native applications was needed. A number of design principles, outlined in the
following, were needed to guide the work. For a more in-depth exposition, see the article
by Pulli et al. [PARV05].

4 www.jbenchmark.com

5 www.glbenchmark.com

6 www.futuremark.com

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 15

Performance is crucial on devices with limited computation resources. To allow all of
the processing power to be extracted, the APIs were designed with performance in
mind. In practice, this means minimizing the overhead that an application would have
to pay for using a standard API instead of a proprietary solution.

F igure 1.6: Screen shot from the GLBenchmark benchmarking suite for OpenGL ES. Image copyright c© Kishonti Infor-
matics LP. (See the color plate.)

F igure 1.7: More 3D user interface examples. Images copyright c© Acrodea. (See the color plate.)

16 INTRODUCTION C H A P T E R 1

F igure 1.8: 3D user interface examples. Images copyright c© TAT. (See the color plate.)

F igure 1.9: A VGA resolution screen shot from 3DMark Mobile 06, an OpenGL ES benchmark program. Image copyright
c© Futuremark. (See the color plate.)

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 17

Low complexity as a requirement stems from the stringent silicon area and ROM
footprint budgets of mobile phones. To satisfy this goal, the engines underlying the
OpenGL ES and M3G APIs were required to be implementable, in software, in under
50kB and 150kB, respectively. The key tools for reaching these targets were removal of
redundant and seldom-used features.

A rich feature set should not be compromised even when aiming for compact APIs. As
a guideline, features that would be very difficult to replicate in application code—the
latter parts of the graphics pipeline, such as blending and texture mapping, fall into
this category—should be adopted as fully as feasible, whereas front-end features such
as spline evaluation or texture coordinate generation can be left for the applications to
implement.

Small applications are much more important on mobile devices than on the desktop.
Applications are often delivered over relatively slow over-the-air connections, with the
users paying by the kilobyte, and stored in small on-device memories. This means that
the 3D content has to be delivered efficiently, preferably in a compressed binary format.
Support of compact geometry formats (such as using bytes or shorts for coordinates,
instead of floats) helps in reducing the RAM consumption. Finally, it makes sense for
the API to incorporate functionality that is common to many applications, thus saving
the code space that would otherwise be required to duplicate those features in each
application.

Hardware-friendly features and a clear path for hardware evolution were among the
most important design goals. Adopting the familiar OpenGL rendering model as the
base technology enabled the design of dedicated mobile graphics hardware for mass
markets.

Productivity is especially important for mobile developers, as the development times
of mobile games are typically short compared to desktop. M3G is designed especially
to have a good match to existing content creation tools and to support concurrent
development of application code and art assets.

Orthogonal feature set means that individual rendering features are not tied to each
other. Feature orthogonality makes the behavior of the graphics engine easier to pre-
dict, as complex interdependencies and side-effects are minimized. This was already
one of the key design criteria for desktop OpenGL.

Extensibility is important for any API that is to be around for several years. The mobile
graphics industry is proceeding rapidly, and there has to be a clearly defined path for
evolution as new features need to be incorporated.

Minimal fragmentation lets content developers work on familiar ground. Therefore,
both OpenGL ES and M3G attempt to strictly mandate features, keeping the number
of optional features as small as possible.

18 INTRODUCTION C H A P T E R 1

F igure 1.10: Demonstrating some of the advanced shading capabilities made possible by OpenGL
ES 2.0. Images copyright c© AMD. (See the color plate.)

1.3.3 OPENGL ES

OpenGL ES is a compact version of the well-known OpenGL graphics standard. It is a
low-level rendering API adapted for embedded systems. The first version, OpenGL ES 1.0,
aimed to provide an extremely compact API without sacrificing features: it had to be
implementable fully in software in under 50kB of code while being well-suited for hard-
ware acceleration. The graphics effects familiar from desktop had to be available on
mobile devices as well.

Later, OpenGL ES 1.1 included more features amenable to hardware acceleration, in
line with the feature set of first-generation mobile 3D graphics chipsets. The latest ver-
sion, OpenGL ES 2.0, provides a completely revamped API, and support for a high-level
shading language (GLSL ES): it replaces several stages of the traditional fixed-function
graphics pipeline with programmable vertex and fragment shaders, and is therefore not
backward-compatible with the 1.x series. The 1.x and 2.x generations of OpenGL ES con-
tinue to coexist, together providing 3D graphics capabilities to the entire range of embed-
ded devices from wristwatches to smart phones, modern games consoles, and beyond. All
OpenGL ES 2.x devices are expected to ship with ES 1.1 drivers. Details of the 2.x stan-
dard are beyond the scope of this book. GLSL ES is closely related to the OpenGL Shading
Language, well described by Rost [Ros04].

A companion API called EGL, described in Chapter 11, handles the integration of
OpenGL ES into the native windowing system of the operating system, as well as man-
aging rendering targets and contexts. Finally, there is a separately specified safety-critical
profile called OpenGL SC, but its markets are mostly outside of consumer devices—for
example, in avionics instrumentation. OpenGL ES bindings are also available for other
languages, such as Java and Python.

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 19

F igure 1.11: Java games using M3G. Images copyright c© Digital Chocolate. (See the color plate.)

1.3.4 M3G

As the first Java-enabled phones hit the market in 2000 or so, it became evident that the
performance and memory overhead of Java was prohibitive for real-time 3D. Software
rasterizers written in pure Java would run orders of magnitude slower compared to those
implemented in native code, while the power of any graphics hardware would be wasted
on not being able to feed it with triangles fast enough.

Since the overhead of mobile Java was not going to magically vanish, there was a need
for a new standard API that would shift as much processing as possible into native code.
Since the data used by the native code cannot reside in the Java heap, a retained mode API
was deemed more suitable than a direct mapping of OpenGL ES to mobile Java.

M3G is a completely new high-level API that borrows ideas from previous APIs such as
Java 3D and OpenInventor. It consists of nodes that encapsulate 3D graphics elements.
The nodes can be connected to form a scene graph representing the graphics objects and
their relationships. M3G is designed so that it can be efficiently implemented on top of
an OpenGL ES renderer.

Standardized high-level APIs have never been as popular on desktop as low-level ones.
The main reason is that a high-level API is always a compromise. The threshold of writ-
ing a dedicated engine, such as a game engine, on top of a hardware-accelerated low-level
API has been relatively low. However, if developers want to create such an engine using
mobile Java, it has to be implemented completely in Java, incurring a significant perfor-
mance penalty compared to native applications. A standardized high-level API, on the

20 INTRODUCTION C H A P T E R 1

F igure 1.12: Screen shot from the JBenchmark performance benchmarking suite for M3G. Image
copyright c© Kishonti Informatics LP. (See the color plate.)

other hand, can be provided by the device manufacturers, and it can be implemented and
optimized in C/C++ or even assembly language. The native core then only has a thin Java
layer to make the functionality available to Java applications.

Additional features of M3G include extensive support for animation and binary content
files. Any property of any object can be keyframe-animated, and there are special types
of meshes that support skinning (e.g., for character animation), and morphing (e.g., for
facial animation). There is also an associated standardized binary file format that has one-
to-one mapping with the API. This greatly facilitates separation of artistic content from
programmable application logic.

Version 1.1 of M3G was released in mid-2005, with the aim of tightening up the specifi-
cation for better interoperability. As M3G 1.1 does not add any substantial functionality
over the original version, device vendors have been able to upgrade to it pretty quickly.
M3G 1.1 is in fact required by the Mobile Service Architecture standard (JSR 248).

As of this writing, M3G 2.0 is being developed under JSR 297. The new version will make
programmable shaders available on high-end devices, while also expanding the feature set

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 21

and improving performance on the mass-market devices that do not have programmable
graphics hardware, or any graphics hardware at all.

1.3.5 RELATED STANDARDS

There are several mobile graphics and multimedia standards closely related to OpenGL ES
and M3G. This book concentrates only on graphics APIs, but for sound and multimedia
in general, you can refer to standards such as JSR 135 for Java applications, or the native
standards OpenSL ES, OpenMAX, and OpenKODE from the Khronos Group.

OpenGL ES for Java (JSR 239)

JSR 2397 is a Java Specification Request that aims to expose OpenGL ES and EGL to mobile
Java as directly as possible. Its promise is to provide the full OpenGL ES functionality for
maximum flexibility and performance. The different OpenGL ES versions are presented
as a hierarchy of Java interfaces. The base GL interface is extended with new functions
and tokens in GL10 and GL11, for OpenGL ES versions 1.0 and 1.1, respectively. Several
OpenGL ES extensions are also exposed in the API, so features beyond the core function-
ality can be accessed.

Being a Java API, JSR 239 extends the error handling from native OpenGL ES with addi-
tional exceptions to catch out-of-bounds array accesses and other potential risks to system
security and stability. For example, each draw call is required to check for indices referring
outside the currently enabled vertex arrays.

There are no devices available as of this writing that would include JSR 239. Sony Ericsson
have announced support for it in their latest Java Platform release (JP-8), and the first
conforming phone, the Z750i, is likely to be shipping by the time this book goes to press.
There is also a reference implementation available in the Java Wireless Toolkit from Sun
Microsystems. Finally, in Japan, the DoCoMo Java (DoJa) platform version 5.0 includes
proprietary OpenGL ES bindings.

2D vector graphics

The variety of screen resolutions on mobile devices creates a problem for 2D content.
If graphics are rendered and distributed as bitmaps, chances are that the resolution of
the content is different from the screen resolution of the output device. Resampling the
images to different resolutions often degrades the quality—text especially becomes blurry
and difficult to read. Bitmap graphics also requires significant amounts of memory to
store and a high bandwidth to transmit over a network, and this problem only gets worse
as the display resolutions increase. Scalable 2D vector graphics can address both of these

7 www.jcp.org/en/jsr/detail?id=239

22 INTRODUCTION C H A P T E R 1

problems. If the content is represented as shapes such as curves and polygons instead of
pixels, it can often be encoded more compactly. This way content can also be rendered
to different display resolutions without any loss of quality, and can be displayed as the
content author originally intended.

2D vector graphics has somewhat different requirements from 3D graphics. It is used
for high-quality presentation graphics, and features such as smooth curves, precise rules
for line caps, line joins, and line dashes are much more important than they are for
3D content. Indeed, these features are often only defined in 2D, and they may not have
any meaning in 3D. It is also much easier to implement high-quality anti-aliasing for
2D shapes.

Scalable Vector Graphics (SVG) is a standard defined by the World Wide Web Consor-
tium (W3C).8 It is an XML-based format for describing 2D vector graphics content. SVG
also includes a declarative animation model that can be used, for example, for cartoons
and transition effects. In addition, the content can be represented as a Document Object
Model (DOM), which facilitates dynamic manipulation of the content through native
application code or scripting languages such as JavaScript. The DOM API also allows
applications to register a set of event handlers such as mouseover and click that can
be assigned to any SVG graphical object. As a result, SVG can be used to build dynamic
web sites that behave somewhat like desktop applications.

W3C has also defined mobile subsets of the standard, SVG Tiny and SVG Basic.9 The latter
is targeted for Personal Digital Assistants (PDAs), while the smaller SVG Tiny is aimed
for mobile phones. However, it seems that SVG Basic has not been widely adopted by the
industry, while SVG Tiny is becoming commonplace and is being further developed.

The Khronos Group has defined the OpenVG API for efficient rendering of 2D vector
graphics. OpenVG has similar low-level structure as OpenGL ES, and its main use cases
include 2D user interfaces and implementations of 2D vector graphics engines such as
SVG Tiny and Adobe’s Flash. Whereas most 2D vector graphics engines traditionally exe-
cute on the CPU, OpenVG has been designed for off-loading the rasterization to dedicated
graphics hardware (see Figure 1.13). This was necessary in the mobile space because most
devices have limited CPU resources. The OpenVG rendering primitives were chosen so
that all rendering features of SVG Tiny can be easily implemented using the API. The
basic drawing primitive is a path which can contain both straight line segments as well as
smoothly curving Bézier line segments. The paths can describe arbitrary polygons, which
can be filled with solid colors, color gradients, bitmap images, or even patterns made
of other 2D objects. Recent versions of EGL allow rendering with both OpenGL ES and
OpenVG to the same image, and even allow sharing data such as texture maps across the
different Khronos APIs.

8 www.w3.org/Graphics/SVG/

9 www.w3.org/TR/SVGMobile/

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 23

Oklahoma

F igure 1.13: The use of vector graphics makes it possible to create scalable, antialiased user interfaces. Hardware-
accelerated OpenVG demonstrations. Images copyright c© AMD.

Various 2D graphics interfaces exist for Java ME. Mobile Information Device Profile
(MIDP), the most common Java profile on mobile phones, offers basic 2D graphics func-
tionality with primitives such as lines, circles, and polygons, as well as bitmap graphics. It
is quite well suited for the needs of simple 2D games and applications.

JSR 226, the scalable 2D vector graphics API for Java,10 was created for more challeng-
ing 2D vector graphics applications. It is compatible with SVG Tiny 1.1, and can render
individual images and graphics elements under the control of a Java application, or sim-
ply used as an “SVG Tiny player.” It also supports the XML/SVG Micro DOM (μDOM)
for manipulating properties of the SVG content via accessor methods and event handlers.
JSR 226 was completed in 2005, and can be found in several phone models from manu-
facturers such as Nokia and Sony Ericsson.

JSR 28711 is a backward-compatible successor to JSR 226. The enhancements of this API
include the new graphics and multimedia features from SVG Tiny 1.2, e.g., opacity, gra-
dients, text wrapping, audio, and video. The new version also allows creating animations
on the fly. The Micro DOM support is extended from the previous version. The API also
includes the necessary framework for processing streamed SVG scenes, and there is an
immediate-mode rendering API that is compatible with OpenVG and designed for high
performance. The standard is expected to be completed by the end of 2007. Based on
historical evidence, the first devices can then be expected in late 2008.

10 www.jcp.org/en/jsr/detail?id=226

11 www.jcp.org/en/jsr/detail?id=287

24 INTRODUCTION C H A P T E R 1

COLLADA

COLLADA, short for COLLAborative Design Activity,12 started as an open-source project
led by Sony, but is nowadays being developed and promoted by the Khronos Group.
COLLADA is an interchange format for 3D content; it is the glue which binds together
digital content creation (DCC) tools and various intermediate processing tools to form
a production pipeline. In other words, COLLADA is a tool for content development, not
for content delivery—the final applications are better served with more compact formats
designed for their particular tasks.

COLLADA can represent pretty much everything in a 3D scene that the content authoring
tools can, including geometry, material and shading properties, physics, and animation,
just to name a few. It also has a mobile profile that corresponds to OpenGL ES 1.x and
M3G 1.x, enabling an easy mapping to the M3G binary file format. One of the latest addi-
tions is COLLADA FX, which allows interchange of complex, multi-pass shader effects.
COLLADA FX allows encapsulation of multiple descriptions of an effect, such as different
levels of detail, or different shading for daytime and nighttime versions.

Exporters for COLLADA are currently available for all major 3D content creation tools,
such as Lightwave, Blender, Maya, Softimage, and 3ds Max. A stand-alone viewer is also
available from Feeling Software. Adobe uses COLLADA as an import format for editing
3D textures, and it has been adopted as a data format for Google Earth and Unreal Engine.
For an in-depth coverage of COLLADA, see the book by Arnaud and Barnes [AB06].

12 www.khronos.org/collada

PART I
ANATOMY OF A GRAPHICS

ENGINE

This page intentionally left blank

2

C
H

A
P

T
E

R

LINEAR ALGEBRA FOR 3D
GRAPHICS

This chapter is about the coordinate systems and transformations that 3D objects undergo
during their travel through the graphics pipeline, as illustrated in Figure 2.1. Understand-
ing this subset of linear algebra is crucial for figuring out what goes on inside a 3D graphics
engine, as well as for making effective use of such an engine. If you want to rush ahead into
the graphics primitives instead, study Figure 2.1, skip to Chapter 3, and return here later.

2.1 COORDINATE SYSTEMS

To be able to define shapes and locations, we need to have a frame of reference: a coordinate
system, also known as a space. A coordinate system has an origin and a set of axes. The
origin is a point (or equivalently, a location), while the axes are directions.

As a mathematical construct, a coordinate system may have an arbitrary set of axes with
arbitrary directions, but here we are only concerned about coordinate systems that are
three-dimensional, orthonormal, and right-handed. Such coordinate systems have three
axes, usually called x, y, and z. Each axis is normalized (unit length) and orthogonal
(perpendicular) to the other two. Now, if we first place the x and y axes so that they meet
at the origin at right angles (90◦), we have two possibilities to orient the z axis so that it
is perpendicular to both x and y. These choices make the coordinate system either right-
handed or left-handed; Figure 2.2 shows two formulations of the right-handed choice.

27

28 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

Object
coordinates

eye
coordinates

clip
coordinates

projection
matrix

w

w

2w
2wnear

far

model-
view

matrix

viewport
and

depth range

window
coordinates

21

21

1

1

normalized
device

coordinates

height height

width

0
0

0

0 1

F igure 2.1: Summary of the coordinate system transformations from vertex definition all the way to the frame buffer.

X

Y

ZX

Y
Z

F igure 2.2: Two different ways to visualize a right-handed, orthogonal 3D coordinate system. Left: the thumb, index finger,
and middle finger of the right hand are assigned the axes x, y, and z, in that order. The positive direction of each axis is pointed
to by the corresponding finger. Right: we grab the z axis with the right hand so that the thumb extends toward the positive
direction; the other fingers then indicate the direction of positive rotation angles on the xy-plane.

S E C T I O N 2 . 1 COORDINATE SYSTEMS 29

A coordinate system is always defined with respect to some other coordinate system,
except for the global world coordinate system. For example, the coordinate system of a
room might have its origin at the southwest corner, with the x axis pointing east, y point-
ing north, and z upward. A chair in the room might have its own coordinate system, its
origin at its center of mass, and its axes aligned with the chair’s axes of symmetry. When
the chair is moved in the room, its coordinate system moves and may reorient with respect
to the parent coordinate system (that of the room).

2.1.1 VECTORS AND POINTS

A 3D point is a location in space, in a 3D coordinate system. We can find a point p with
coordinates

[
px py pz

]
by starting from the origin (at [0 0 0]) and moving the dis-

tance px along the x axis, from there the distance py along y, and finally the distance
pz along z.

Two points define a line segment between them, three points define a triangle with corners
at those points, and several interconnected triangles can be used to define the surface
of an object. By placing many such objects into a world coordinate system, we define a
virtual world. Then we only need to position and orient an imaginary camera to define a
viewpoint into the world, and finally let the graphics engine create an image. If we wish
to animate the world, we have to move either the camera or some of the points, or both,
before rendering the next frame.

When we use points to define geometric entities such as triangles, we often call those
points vertices. We may also expand the definition of a vertex to include any other data
that are associated with that surface point, such as a color.

Besides points, we also need vectors to represent surface normals, viewing directions, light
directions, and so on. A vector v is a displacement, a difference of two points; it has no
position, but does have a direction and a length. Similar to points, vectors can be repre-
sented by three coordinates. The vector vab, which is a displacement from point a to point
b, has coordinates

[
bx − ax by − ay bz − az

]
. It is also possible to treat a point as if it

were a vector from the origin to the point itself.

The sum of two vectors is another vector: a+b =
[

ax + bx ay + by az + bz
]
. If you add

a vector to a point, the result is a new point that has been displaced by the vector. Vectors
can also be multiplied by a scalar: sa =

[
sax say saz

]
. Subtraction is simply an addition

where one of the vectors has been multiplied by −1.

2.1.2 VECTOR PRODUCTS

There are two ways to multiply two 3D vectors. The dot product or scalar product of vectors
a and b can be defined in two different but equivalent ways:

a · b = axbx + ayby + azbz (2.1)

a · b = cos(θ)||a|| ||b|| (2.2)

30 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

The first definition is algebraic, using the vector coordinates. The latter definition is
geometric, and is based on the lengths of the two vectors (||a|| and ||b||), and the small-
est angle between them (θ). An important property related to the angle is that when the
vectors are orthogonal, the cosine term and therefore the whole expression goes to zero.
This is illustrated in Figure 2.3.

The dot product allows us to compute the length, or norm, of a vector. We first com-
pute the dot product of the vector with itself using the algebraic formula: a · a. We then
note that θ = 0 and therefore cos(θ) = 1. Now, taking the square root of Equation (2.2)
yields the norm:

||a|| = √
a · a. (2.3)

We can then normalize the vector so that it becomes unit length:

â = a/||a||. (2.4)

The other way to multiply two vectors in 3D is called the cross product. While the dot
product can be done in any coordinate system, the cross product only exists in 3D. The
cross product creates a new vector,

a × b =
[

aybz − azby azbx − axbz axby − aybx
]
, (2.5)

which is perpendicular to both a and b; see Figure 2.3. The new vector is also right-handed
with respect to a and b in the same way as shown in Figure 2.2. The length of the new
vector is sin(θ)||a|| ||b||. If a and b are parallel (θ = 0◦ or θ = 180◦), the result is zero.
Finally, reversing the order of multiplication flips the sign of the result:

a × b = −b × a. (2.6)

a . b . 0 a . b 5 0 a . b , 0

a

b

a 3 b

a
b

a

b

a

b

F igure 2.3: The dot product produces a positive number when the vectors form an acute angle (less
than 90◦), zero when they are perpendicular (exactly 90◦), and negative when the angle is obtuse
(greater than 90◦). The cross product defines a third vector that is in a right-hand orientation and
perpendicular to both vectors.

S E C T I O N 2 . 2 MATRICES 31

2.1.3 HOMOGENEOUS COORDINATES

Representing both points and direction vectors with three coordinates can be confusing.
Homogeneous coordinates are a useful tool to make the distinction explicit. We simply add
a fourth coordinate (w): if w = 0, we have a direction, otherwise a location.

If we have a homogeneous point [hx hy hz hw], we get the corresponding 3D point by
dividing the components by hw. If hw = 0 we would get a point infinitely far away, which
we interpret as a direction toward the point

[
hx hy hz

]
. Conversely, we can homogenize

the point
[

px py pz
]

by adding a fourth component:
[

px py pz 1
]
. In fact, we can

use any non-zero w, and all such
[

wpx wpy wpz w
]

correspond to the same 3D point.

We can also see that with normalized homogeneous coordinates—for which w is either
1 or 0—taking a difference of two points creates a direction vector (w becomes 1−1 = 0),
and adding a direction vector to a point displaces the point by the vector and yields a new
point (w becomes 1 + 0 = 1).

There is another, even more important, reason for adopting homogeneous 4D coordi-
nates instead of the more familiar 3D coordinates. They allow us to express all linear 3D
transformations using a 4 × 4 matrix that operates on 4 × 1 homogeneous vectors. This
representation is powerful enough to express translations, rotations, scalings, shearings,
and even perspective and parallel projections.

2.2 MATRICES

A 4 × 4 matrix M has components mij where i stands for the row and j stands for the
column:

M =

⎡
⎢⎢⎢⎣

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

⎤
⎥⎥⎥⎦ , (2.7)

while a column vector v has components vi:

v =

⎡
⎢⎢⎢⎣

v0

v1

v2

v3

⎤
⎥⎥⎥⎦ = [v0 v1 v2 v3]T . (2.8)

The transpose operation above converts a row vector to column vector, and vice versa. We
will generally use column vectors in the rest of this book, but will write them in transposed
form: v = [v0 v1 v2 v3]T. On a matrix M = [mij], transposition produces a matrix

32 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

that is mirrored with respect to the diagonal: MT = [mji], that is, columns are switched
with rows.

2.2.1 MATRIX PRODUCTS

A matrix times a vector produces a new vector. Directions and positions are both trans-
formed by multiplying the corresponding homogeneous vector v with a transformation
matrix M as v′ = Mv. Each component of this column vector v′ is obtained by taking a
dot product of a row of M with v; the first row (M0•) producing the first component, the
second row (M1•) producing the second component, and so on:

v′ = Mv =

⎡
⎢⎢⎢⎣

[m00 m01 m02 m03] · v

[m10 m11 m12 m13] · v

[m20 m21 m22 m23] · v

[m30 m31 m32 m33] · v

⎤
⎥⎥⎥⎦ . (2.9)

Note that for this to work, M needs to have as many columns as v has rows.

An alternative, and often more useful way when trying to understand the geometric mean-
ing of the matrix product, is to think of M being composed of four column vectors
M•0, . . . , M•3, each being multiplied by the corresponding component of v, and finally
being added up:

v′ = Mv = v0

⎡
⎢⎢⎢⎣

m00

m10

m20

m30

⎤
⎥⎥⎥⎦ + v1

⎡
⎢⎢⎢⎣

m01

m11

m21

m31

⎤
⎥⎥⎥⎦ + v2

⎡
⎢⎢⎢⎣

m02

m12

m22

m32

⎤
⎥⎥⎥⎦ + v3

⎡
⎢⎢⎢⎣

m03

m13

m23

m33

⎤
⎥⎥⎥⎦ . (2.10)

The product of two matrices, on the other hand, produces another matrix, which can be
obtained from several products of a matrix and a vector. Simply break the columns of the
rightmost matrix apart into several column vectors, multiply each of them by the matrix
on the left, and join the results into columns of the resulting matrix:

AB =
[

A(B•0) A(B•1) A(B•2) A(B•3)
]

. (2.11)

Note that in general matrix multiplication does not commute, that is, the order of
multiplication is important (AB �= BA). The transpose of a product is the product of
transposes, but in the reverse order:

(AB)T = BTAT. (2.12)

S E C T I O N 2 . 2 MATRICES 33

Now we are ready to express the dot product as a matrix multiplication:

a · b = aTb =
[

a0 a1 a2

]⎡⎢⎣b0

b1

b2

⎤
⎥⎦, (2.13)

that is, transpose a into a row vector and multiply it with a column vector b.

2.2.2 IDENTITY AND INVERSE

The number one is special in the sense that when any number is multiplied with it, that
number remains unchanged (1 · a = a), and for any number other than zero there is an
inverse that produces one (a 1

a = aa−1 = 1). For matrices, we have an identity matrix:

I =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (2.14)

A matrix multiplied by the identity matrix remains unchanged (M = IM = MI). If a
matrix M has an inverse we denote it by M−1, and the matrix multiplied with its inverse
yields identity: MM−1 = M−1M = I. Only square matrices, for which the number of
rows equals the number of columns, can have an inverse, and only the matrices where all
columns are linearly independent have inverses.

The inverse of a product of matrices is the product of inverses, in reverse order:

(AB)−1 = B−1A−1. (2.15)

Let us check: AB(AB)−1 =ABB−1A−1 =AIA−1 =AA−1 = I. We will give the inverses of
most transformations that we introduce, but in a general case you may need to use a
numerical method such as Gauss-Jordan elimination to calculate the inverse [Str03].

As discussed earlier, we can use 4 × 4 matrices to represent various transformations. In
particular, you can interpret every matrix as transforming a vertex to a new coordinate
system. If Mow transforms a vertex from its local coordinate system, the object coordinates,
to world coordinates (v′ = Mowv), its inverse performs the transformation from world
coordinates to object coordinates (v = M−1

ow v′ = Mwov′), that is, M−1
ow = Mwo.

2.2.3 COMPOUND TRANSFORMATIONS

Transformation matrices can be compounded. If Mow transforms a vertex from object
coordinates to world coordinates, and Mwe transforms from world coordinates to eye

34 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

coordinates (see Section 2.4), MweMow takes a vertex from object coordinates to eye
coordinates. Notice the order of application: v′ = Mowv is applied first, followed by
v′′ = Mwev′ = MweMowv.

A compound transformation can in principle be evaluated in two orders. You can do it
from right to left (Mwe(Mowv)), that is, transform the vertex through each of the coordi-
nate systems one at a time, or from left to right ((MweMow)v), that is, collapse the trans-
formations into one before applying them to the vertex. Let us now analyze which order
is more efficient.

If you take the first approach, repeatedly transforming each vertex, you will need 16mn
multiplications, where m is the number of transformations and n the number of ver-
tices. If you take the second approach, you need 64(m− 1) multiplications to collapse the
matrices, and 16n multiplications to apply the transformation to each vertex. Therefore,
if 64(m − 1) + 16n < 16mn, it makes sense to compound the matrices before applying
the result to the vertices. For example, if you have 20 points and 3 transformations, the
approach of transforming each point 3 times would require 16 · 3 · 20 = 960 multipli-
cations, while first combining the transformations and then applying them would only
require 64 · (3 − 1) + 16 · 20 = 448 multiplications. You can see that it almost always
makes more sense to collapse the transformations before applying them to the vertices.

Repeating this analysis for the number of additions rather than multiplications only
changes the constant factors in the above inequality (from 64 to 48, and from 16 to 12),
thus not changing the outcome in a significant way.

2.2.4 TRANSFORMING NORMAL VECTORS

Even though vectors in general are transformed the same way as points, normal vectors
must be transformed differently. Normal vectors are not just any direction vectors, they
are defined by the surface so that a normal vector is perpendicular to the surface. If M is
used to transform the surface, then normals must be transformed by the transpose of the
inverse of M, that is, (M−1)T, or M−T for short.

Figure 2.4 illustrates why simply using M does not work: on the left, we have a line and
a vector that is perpendicular to it. On the right, both the line and the vector have been
scaled by two in y. Obviously the vector is not perpendicular to the line any longer. The
correctly transformed vector, shown by the dotted line, remains normal to the surface.

The key observation is that normal vectors are not really independent directions; instead,
they are defined to be perpendicular to the underlying surface. That is, assume v1 and v2

are points on a surface and that they are close enough that t = v1 − v2 is a tangent vector
on the surface, while n is the normal vector. The normal is perpendicular to the tangent,
so the dot product nTt must remain zero.

Now, if we transform the surface points v1 and v2 by M, the tangent vector becomes
Mt, and the dot product nT(Mt) is not necessarily zero any longer. Then how should

S E C T I O N 2 . 3 AFFINE TRANSFORMATIONS 35

F igure 2.4: On the left we have a line and a normal vector that is perpendicular to it. On the right
both have been scaled by 2 in y, and the normal is obviously not perpendicular to the line any more.
The correctly transformed normal is shown dashed.

we transform the normal to keep it perpendicular to the tangent? All we need to do is to
eliminate M from the equation by inserting M−1:

nTM−1Mt = nTt. (2.16)

Recalling from Equation (2.12) that (AB)T =BTAT, we can rewrite (nTM−1)T as (M−1)T

n, and see that the normals need to be transformed by the inverse transpose of M.

There is a very common special case where Mn is parallel to M−Tn, namely when M
consists only of rotations, translations, and uniform scalings (these transformations are
introduced in Section 2.3.1). In such a case transforming the normals does not require
inverting and transposing M. However, if nonuniform scaling or shearing is involved,
the transposed inverse formula must be used. In this case, the normal vectors will gen-
erally not be unit length after the transformation, and will have to be renormalized;
see Equation (2.4).

2.3 AFFINE TRANSFORMATIONS

Affine transformations are the most widely used modeling operations, and they are sim-
pler than the full 4 × 4 matrices that also encode projections: their bottom row is always
[0 0 0 1]. This section covers the different types of affine transformations: transla-
tion, rotation, scaling, and shearing. We also give examples how to use transformations
for hierarchical modeling.

2.3.1 TYPES OF AFFINE TRANSFORMATIONS

There are four basic component transformations that are affine, and all their combina-
tions are affine as well. They are translation, rotation, scaling, and shearing, and are illus-
trated in Figure 2.5. They are commonly used to position and orient objects in a scene,
or change their size or shape.

36 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

Translation Rotation Scaling Shearing

F igure 2.5: The four types of affine transformations: translation, rotation, scaling, shearing. The
black shape is the original, the gray after it has been transformed. Note that all transformations take
place with respect to the origin.

Translation by a constant offset
[

tx ty tz
]T

moves a vertex a to
[

ax + tx ay + ty az + tz
]T

,
and is expressed by the matrix

T(tx, ty, tz) =

⎡
⎢⎢⎢⎣

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

⎤
⎥⎥⎥⎦ . (2.17)

As seen in Figure 2.5 the shape is not changed, it is simply relocated. A translation does
not affect a direction vector: directions have w = 0 and the only components that differ
from the identity matrix are in the last column which corresponds to the w. The inverse
of translation is simply another translation to the opposite direction:

T−1(tx, ty, tz) = T(−tx, − ty, − tz). (2.18)

A rotation matrix rotates a point around an axis that passes through the origin. Here is
the rotation matrix around the x axis by angle θ:

Rx(θ) =

⎡
⎢⎢⎢⎣

1 0 0 0

0 cos(θ) − sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (2.19)

Similar matrices can be created for rotations around the y and z axes. The rotation axis
always goes through the origin, and the positive direction of rotation is chosen using the
right-hand rule, as shown in Figure 2.2. Thus, if you look along the axis toward the origin,
positive rotation of the other axes is counterclockwise.

Rotations around the main axes are easiest to write down. By combining three main axis
rotations, an arbitrary rotation around an arbitrary axis can be created. This technique is
called the Euler angles after Leonhard Euler who developed the method in the eighteenth

S E C T I O N 2 . 3 AFFINE TRANSFORMATIONS 37

century. People have used several axis orders, for example by first rotating around x axis,
followed by z axis, then again x axis. Euler rotations can get stuck in a singularity known
as gimbal lock, where the value of the third rotation becomes irrelevant.

An alternative to Euler angles is to use quaternions [Sho85] that can be obtained from an
arbitrary rotation axis and rotation angle. Quaternions do not suffer from gimbal lock,
and since quaternions are generally quicker to calculate and simpler to interpolate, they
are usually preferred over Euler angles for rotations in computer graphics.

A quaternion is a 4D imaginary number with three imaginary components and one real
component

q = xi + yj + zk + w, (2.20)

but we usually represent a quaternion as a four-vector
[

x y z w
]
. Every 3D rotation

can be expressed by a unit rotation axis â and a rotation angle θ, and using them we can
construct a matching unit quaternion as

q̂(â, θ) =
[

sin(θ/2)ax sin(θ/2)ay sin(θ/2)az cos(θ/2)
]

. (2.21)

From the normalized unit quaternion q̂ we obtain the following rotation matrix:

R(q̂) =

⎡
⎢⎢⎢⎣

w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy 0

2xy + 2wz w2 − x2 + y2 − z2 2yz − 2wx 0

2xz − 2wy 2yz + 2wx w2 − x2 − y2 + z2 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (2.22)

Note, however, that quaternions do not have a one-to-one mapping to 3D rotations: both
q̂ and −q̂ (all components are negated) represent the same rotation. You can check this
from the Equation (2.22): all the entries consist of a quadratic combination of quaternion
components, so negating them all at the same time yields the same rotation matrix. How-
ever, when we later interpolate quaternions in Section 4.1.2 it is very important not to flip
the quaternion signs, since the interpolation path from a rotation p̂ to q̂ is different than
the path from p̂ to −q̂.

Rotations are a member of a special class of matrices, orthogonal matrices: all the columns
are unit vectors, and they are perpendicular to each other (this also holds for the rows).
Let us see what happens when we multiply RTR. The first row of RT is the same as the first
column of R, and since it is a unit vector, dotted with itself it produces 1. Further, since
it is perpendicular to the rest of the columns, the first row of RTR yields [1 0 0 0].
Similarly, the other rows consist of a 1 at the diagonal and 0 elsewhere. From this we see
that the inverse of a rotation equals its transpose, that is,

R−1 = RT. (2.23)

38 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

Whereas translation and rotation are so-called rigid transformations, that is, they do not
change the shape or size of objects, scaling does change the size and potentially also shape.
The scaling matrix is

S(sx, sy, sz) =

⎡
⎢⎢⎢⎣

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

⎤
⎥⎥⎥⎦ , (2.24)

which scales the x component of a vector by sx, the y component by sy, and the z compo-
nent by sz. If sx = sy = sz, S is a uniform scaling which changes the size but not the shape,
as in Figure 2.5. If the factors are not the same, then the shape is also changed. The inverse
of scaling is equivalent to scaling down by the same factor:

S−1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz). (2.25)

Shearing is the last type of affine transformations, and also the least frequently used in
computer graphics. A shearing matrix is obtained by changing one of the zeros in the
upper-left 3 × 3 corner of the identity matrix to a non-zero value. An example is the
matrix

H01(h) =

⎡
⎢⎢⎢⎣

1 h 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ , (2.26)

where the term in the first row and second column is set to h = 1 to create the shear in the
last image of Figure 2.5. In this case, the greater the y component of the input, the more
the x component is sheared to the right. Shearing always distorts the shape. The inverse
of shearing is obtained by negating the same shear:

H−1
ab (h) = Hab(−h). (2.27)

One of the most common compound modeling transformations is rigid motion, which
changes the location and orientation of an object, but retains its shape and size. Rigid
motion consists of an arbitrary sequence of rotations and translations, and has the form

M =

[
R t

0 1

]
, (2.28)

where R is a 3 × 3 matrix, t is a 3 × 1 column vector, and 0 = [0 0 0]. M is equivalent
to a rotation by R followed by a translation t. It has a simple inverse, obtained from the
inverse of compound transformations (see Equation (2.15)) and the inverses of rotation
and translation: start with a translation by−t followed by a rotation by R−1 = RT, yielding[

R t

0 1

]−1

=

[
RT −RTt

0 1

]
. (2.29)

S E C T I O N 2 . 3 AFFINE TRANSFORMATIONS 39

2.3.2 TRANSFORMATION AROUND A PIVOT

As shown in Figure 2.5, all these operations are done using the origin as the pivot, the
center of rotation. In the second image the triangle rotates around the origin, so it is
both re-oriented and moved to a different location. In the third image the triangle grows
and every point moves away from the origin. In the last image the vertical position is
unchanged, but each point is sheared along the x axis and moved away toward the positive
direction of the x axis. Of course, if the scaling would shrink the shape it would move
toward the origin, or if the sign of the shearing was flipped the movement would be to
the opposite direction.

However, often a transformation should be applied with respect to a pivot point, such as
the center or one of the corners of the shape. By default, the origin is the only point that
does not move in rotation, scaling, or shearing. The trick is to move the pivot first to the
origin, apply the transformation, and move the pivot back to where it was. For rotation,
for example, the sequence would be T(p) R T(−p), where p is the pivot. A more com-
plicated example would scale the shape not only around a pivot, but also along a coor-
dinate system that has been rotated by 30◦ about the z axis. Here the correct sequence
would be T(p) Rz(30◦) S Rz(−30◦) T(−p). Reading from right to left, it first moves the
pivot to the origin, then applies an inverse rotation to align the desired direction of
the scaling with the coordinate axes, performs the scaling, then rotates back and moves
the pivot back.

2.3.3 EXAMPLE: HIERARCHICAL MODELING

The basic transformations can be nested to model objects in a hierarchical fashion.
Figure 2.6 gives a simple example, a crane, which has been constructed from three boxes
and two disks that hide the cracks that the boxes would make at the joints.

The following pseudocode shows how an immediate mode API such as OpenGL would
call the modeling operations to draw the crane of Figure 2.6. For simplicity we stay in 2D.
The methods translate, rotate, and scale modify the current transformation
matrix M by multiplying it from the right by a new matrix T, R, or S, respectively for each
method. For example, the new matrix after rotate is obtained by M′ = MR.

We have two functions available,draw_box() anddraw_unit_disk(), which draw
a box and a disk, respectively, extending from −1 to 1 in both x and y. Note that the sides
of the box and the diameter of the disk have length 2, not 1.

Here we also introduce the concept of a matrix stack. push_matrix() stores the cur-
rent transformation matrix into a stack, from which it can be recovered by a matching
pop_matrix(). At first we save the current transformation. We are going to modify
the current coordinate system, so we want to be able to restore the original for drawing
the rest of the scene:

push_matrix() # save the current matrix

40 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

8

5

(0, 0)

1.5

1

14

6

2

458

708

(4, 5)

F igure 2.6: A simple crane made of three boxes and two disks (to hide the seams at the joints).
The origins of the coordinate systems of the base, upper arm, and the lower arm are indicated with
the bold arrows that make a right angle.

We start with a translation that places the crane:

translate(x, y) # move the whole crane

Next we draw the base:

push_matrix()
scale(4, 5/2) # scale the box to be 8 x 5
translate(0, 1) # move the box up so its bottom is at origin
draw_box() # draw a box from —1 to 1 in x and y

pop_matrix() # restore the matrix at the time of last push

The call todraw_box() is the last one before restoring the current transformation using
pop_matrix(). Reading backward, we draw a box that would extend from −1 to 1 in
x and −1 to 1 in y. However, before that we call translate which moves the box up
by one so it extends from 0 to 2 in y. In other words, it now sits on top of the origin.
This origin is now a good pivot for scaling the box to extend it from −4 to 4 in x and
from 0 to 5 in y. Note that if we did not have the matrix stack available, we should man-
ually undo the modeling transformations by issuing translate(0, —1) and

S E C T I O N 2 . 3 AFFINE TRANSFORMATIONS 41

scale(1/4, 2/5) at the end. Also note that even though we write in the code first
scale, then translate, and finally draw, the primitives that are drawn are translated first,
and scaled second, that is, the order of writing and evaluating is reversed.

Now we translate the coordinate system to the upper right corner of the base so we can
place the first disk there:

translate(4, 5) # move the origin to the upper right corner
first disk

push_matrix()
scale(3/2) # scale the disk to have radius 3/2==1.5
draw_unit_disk() # draw a disk with radius 1

pop_matrix()

Next we use the current origin as the rotation pivot for the upper arm. We rotate the upper
arm by angle_1 degrees, which in this example is +45 degrees:

rotate(angle_1) # rotate upper arm (45 degrees)

The upper arm is then modified so that its origin is at the left end of a 6 by 2 box, and the
box is drawn:

push_matrix()
scale(3, 1) # scale the box to be 6 x 2
translate(1, 0) # move left center of the box to the origin
draw_box() # draw a box from —1 to 1 in x and y

pop_matrix()

Next we translate to the end of the upper arm. It is important to notice that we are cur-
rently in the coordinate system of the upper arm, so we simply move the origin 6 units to
the right along the x axis:

translate(6, 0) # move the origin to the end of upper arm

There we draw the second disk that is already just the right size:

draw_unit_disk() # draw a disk with radius 1

Finally, we rotate the coordinate system for the lower arm, draw the lower arm, clean up
the transformations, and exit:

rotate(angle_2) # rotate lower arm (—70 degrees)

push_matrix()
scale(2, 1/2) # scale the box to be 4 x 1
translate(1, 0) # move left center of the box to the origin
draw_box() # draw a box from —1 to 1 in x and y

pop_matrix()

pop_matrix() # final pop to restore coordinate axes as they
were

42 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

By calling this routine with different values of (x,y), angle_1 and angle_2 it is
possible to move and animate the crane.(x,y)moves everything,angle_1 rotates both
the upper arm and the lower arm attached to it, whileangle_2only rotates the lower arm.

2.4 EYE COORDINATE SYSTEM

Objects in world coordinates or object coordinates must be transformed into the eye
coordinate system, also known as camera coordinates, for rendering. By definition, the cam-
era in OpenGL ES and M3G lies at the origin of the eye coordinate system, views down
along the negative z axis, with the positive x axis pointing to the right and the positive y
pointing up.

Rather than modeling directly in the eye coordinates, it is easier to model objects in
world coordinates, and start with a world-to-eye coordinate transformation. To calcu-
late this transformation, we first study the structure of affine transformations and how
they transform homogeneous points v. We exploit that structure to directly write down
the eye-to-world transformation Mew, which we finally invert to obtain the world-to-eye
transformation Mwe.

We begin by asserting that Mew is an affine transformation and therefore has the last row
[0 0 0 1]:

Mew =

⎡
⎢⎢⎢⎣

a b c d

e f g h

i j k l

0 0 0 1

⎤
⎥⎥⎥⎦ . (2.30)

The first three columns of Mew are direction vectors, since their w components are zero,
while the last column is a point as its w = 1. Looking at Figure 2.7 (and ignoring t and
u for now), we want to choose values for Mew so that it transforms any point in the eye
coordinate system xyz to the world coordinate system XYZ. Let us start from the origin
o; its coordinates in xyz are [0 0 0 1]T by definition. This extracts the last column of

Mew: Mew [0 0 0 1]T =
[

d h l 1
]T

=
[

ox oy oz 1
]T

. Hence the last column of
Mew is the location of o expressed in XYZ coordinates.

Similarly, the first column is the directional vector x, again in XYZ coordinates:

Mew [1 0 0 0]T = [a e i 0]T =
[

xx xy xz 0
]T

, and the second and third
columns are y and z, respectively, expressed in XYZ coordinates.

Now we can take an arbitrary point v =
[

vx vy vz 1
]T

in eye coordinates xyz, and Mew

produces the world coordinates XYZ for the same point. Let us see how this works. The
last component w = 1 takes us to the origin o. From the origin, we move a distance vx to
the direction of x, from there vy times y, and finally vz times z. To summarize, with the
matrix from Equation (2.30) we get the 3D point o + vxx + vyy + vzz.

S E C T I O N 2 . 4 EYE COORDINATE SYSTEM 43

z
y x

u

o
t

Y

X

Z

F igure 2.7: Defining an eye coordinate system (lowercase xyz) using the camera origin o, target t,
and view-up vector u, all defined in the world coordinate system (uppercase XYZ).

We can now write down the whole eye-to-world transformation as

Mew =

⎡
⎢⎢⎢⎣

xx yx zx ox

xy yy zy oy

xz yz zz oz

0 0 0 1

⎤
⎥⎥⎥⎦ (2.31)

from which we obtain the world-to-eye matrix using the inversion formula of
Equation (2.29):

Mwe =

⎡
⎢⎢⎢⎣

xx xy xz −xTo

yx yy yz −yTo

zx zy zz −zTo

0 0 0 1

⎤
⎥⎥⎥⎦ . (2.32)

You can place this in the beginning of the rendering loop, and model the rest of the scene
in world coordinates. The compound transformation moves the objects into the eye coor-
dinates, ready for projection into the frame buffer.

What remains is to calculate the coordinate axes xyz in the world coordinate system. In
Figure 2.7 the camera is located at o, is looking toward the target point t, and is oriented
so that the view-up vector u is aligned with the up direction on the image plane. Note that
the view-up vector must point at some other direction than the viewing direction t−o for
the following to work.

Since the camera is viewing along the negative z axis, z must be the direction vector that
extends from t to o, and we assign z = o−t

||o−t|| . We know that y must be on the same plane

as z and the view-up vector u, while x must be perpendicular to that plane. We also know

44 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

that x, y, z must form a right-handed coordinate system. Therefore, we can obtain x from
u × z, also normalized as z was. Finally, we get y = z × x. In this case we know that z and
x are already perpendicular unit vectors, so y will also be a unit vector, and there is no
need to normalize it (except to perhaps make sure no numerical error has crept in). Note
the order of the cross products: they must follow a circular order so that x × y produces
z, y × z produces x, and z × x produces y.

2.5 PROJECTIONS

After the scene has been transformed to the eye coordinates, we need to project the scene to
the image plane of our camera. Figure 2.8 shows the principle of perspective projection. We
have placed the eye at the origin so that it looks along the negative z axis, with the image
plane at z = −1. A point (Y, Z) is projected along the projector, a line connecting the point
to the center of projection (the origin), intersecting the image plane at (Y ′, −1). From
similar triangles we see that Y ′ = −Y/Z. We can also see that this model incorporates
the familiar perspective foreshortening effect: an object with the same height but being
located further away appears smaller (as illustrated by the second, narrower projector).
The projection matrix

P =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1 0

⎤
⎥⎥⎥⎦ (2.33)

performs this projection. Let us check: with x = [X Y Z 1]T, Px = [X Y Z −Z]T,
which, after the homogeneous division by the last component, becomes (−X/Z,
−Y/Z, −1). This is the projected point on the plane z = −1.

y (Y, Z)

(Y 9, 21)

2zz

F igure 2.8: Perspective camera projection. Objects that are farther away appear smaller.

S E C T I O N 2 . 5 PROJECTIONS 45

2.5.1 NEAR AND FAR PLANES AND THE DEPTH BUFFER

Equation (2.33) loses information, namely the depth, as all objects are projected to the
same z = −1 plane. We could try to retain the depth order by sorting objects based on their
depths, and drawing them in a back-to-front order (this is called the Painter’s Algorithm).
However, it may not be possible to sort the objects, especially if there is a cyclic overlap
so that A hides B which hides C which hides A, or some objects intersect each other. One
possibility is to leave the z component unmodified and use it directly to sort each pixel
using a depth buffer, also known as the z-buffer [Cat974].

A depth buffer must be of finite size, and therefore cannot store all depths between zero
and infinity. Instead, we define two planes, the near and far camera planes, and quantize
the depths between the planes. Any objects between these two planes are rendered, and
any others ignored. The depths of these objects are stored and compared on a per-pixel
basis, leaving only the topmost object visible at each pixel.

Similarly, we cannot display the infinite image plane, but only a finite window of it. If we
define that window on the near plane, we end up with a view frustum, displayed on the
left side of Figure 2.9. The word “frustum” means a truncated pyramid, and that pyramid
is formed from the view cone starting from the origin and passing through the window
in the near plane, and cut off by the near and far planes. Only objects or parts of objects
that lie within the view frustum will be displayed.

We now modify our projection matrix so that objects at z = −n project to −1 and at
z = −f project to 1:

P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 − f + n

f − n
− 2fn

f − n

0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎦ . (2.34)

z

y

n

f

z

y

1 2

2w

2w w

w

F igure 2.9: The viewing frustum of the eye coordinate system is transformed to the clip coordi-
nates, yielding a cube from −w to w in x, y, and z. Observe how objects closer to the camera become
larger.

46 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

Let us check: a point
[

x y −n 1
]T

on the near plane moves to

⎡
⎢⎢⎢⎣

x

y

(fn + nn − 2fn)/(f − n)

n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x

y

−n

n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x/n

y/n

−1

1

⎤
⎥⎥⎥⎦ .

Similarly, a point
[

x y −f 1
]T

on the far plane moves to
[

x y f f
]T

=
[

x/f y/f 1 1
]T

.

Multiplying a point in eye coordinates with P takes it to the clip coordinates. The viewing
frustum is transformed into a box where the x, y, and z components are between −w
and w. Clipping, described in Section 3.3, takes place in this coordinate system. Briefly,
clipping is the process of removing any parts of a geometric primitive, such as a triangle,
that extend outside the view frustum.

After clipping, the points are transformed into normalized device coordinates (NDC) by
dividing the clip coordinates by w. As a result, all remaining points have x, y, and z coor-
dinates that are between −1 and 1. This is illustrated on the right side of Figure 2.9. Notice
how the near end of the box is much bigger than the far end, as each side of the cube is
transformed to the size that it is going to appear in the final image.

The homogeneous division by w causes a nonlinearity in how the z or depth values are
transformed, as illustrated in Figure 2.10.

21 22 23 2524 26 27 28 21029

21

1

0

F igure 2.10: Nonlinear transformation of z with near = 1 and far = 10. With camera at z = 0 and
looking down to negative z, values in [−1, −10] (horizontal axis) map to [−1, 1] (vertical axis).

S E C T I O N 2 . 5 PROJECTIONS 47

Pitfall: Whereas it would be easy for the programmer to set n to a very small and f to
large number (to see everything that is in front of the camera), that is not a good strategy.
Depth buffers have only a finite accuracy (sometimes as low as 16 bits). As Figure 2.10
shows, the first 10% of the range between the near and far planes consumes over half of
the transformed z accuracy. You should always try to get the near and far planes as close
to the objects in the scene as feasible. Of these two it is more important to get the near
plane away from the camera, getting tight bounds on the far plane is less crucial.

If we do not have enough useful resolution in the depth buffer, different depths may get
mapped to the same value, and the graphics engine cannot reliably separate which sur-
face should be behind and which in front, leading to visual artifacts called z-fighting, as
illustrated in Figure 2.11.

The likelihood of z-fighting grows with the far/near ratio, with coarser display and depth
buffer resolution, with increasing field of view and distance from the camera, and with
increasing distance from the z axis (that is, screen corners do worse than the center)
[AS06]. Some tricks that relate to depth buffer resolution are described in Section 2.6.

2.5.2 A GENERAL VIEW FRUSTUM

The previous section defined a canonical frustum, with an opening angle of 90◦ both
vertically and horizontally, and with the window centered on the z axis. More precisely, it
contains points with −n > z > −f, |z| > |x|, and |z| > |y|.

F igure 2.11: Z-fighting caused by two nearly coplanar surfaces. In this case, two instances of the
same cube are rendered with slightly different transformations.

48 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

However, we often want a window that is not square, and sometimes not even centered
with respect to the viewing direction. It is possible to define the projection matrix P
directly from the near distance n, far distance f, and the extent of the window on the
near plane with left and right edges at l and r and bottom and top edges at b and t, as
shown in Figure 2.12.

The trick is to transform the irregular viewing cone to the canonical one and then use
Equation (2.34). First, we shear the asymmetric frustum as a function of the z coordinate
so the frustum becomes symmetric around the z axis. The window center has coordinates
((r + l)/2, (t + b)/2, −n), and we want to map that to (0, 0, −n). This is illustrated as
the first transition at the bottom row of Figure 2.12, and contained in the third matrix in
Equation (2.35). Next, the window is scaled so it becomes square and opens with a 90◦

angle both horizontally and vertically. That is, we need to map both the width r − l and the
height t − b to 2n. We achieve this with the second matrix in Equation (2.35), illustrated
by the second transition at the bottom row of Figure 2.12. What remains to be done is to
use Equation (2.34) to map the view frustum to a unit box for depth comparisons and
eventual image display.

y

x

shear scale

near far

right

bottom

left

top

2z

F igure 2.12: A general view frustum is defined by the near and far distances, and a window on the
near plane defined by the window top, bottom, left, and right edges. The bottom row illustrates the
operations needed to transform a general view frustum to the canonical one.

S E C T I O N 2 . 5 PROJECTIONS 49

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 − f + n

f − n
− 2fn

f − n

0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

2n

r − l
0 0 0

0
2n

t − b
0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0
r + l

2n
0

0 1
t + b

2n
0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.35)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2n

r − l
0

r + l

r − l
0

0
2n

t − b

t + b

t − b
0

0 0 − f + n

f − n
− 2fn

f − n

0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.36)

Its inverse is

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r − l

2n
0 0

r + l

2n

0
t − b

2n
0

t + b

2n
0 0 0 −1

0 0 − f − n

2fn

f + n

2fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.37)

However, in most cases you do not need to use this generic version. It is often easier
to define a straight projection (one that is aligned with z) with a given aspect ratio a
(a = w/h, where w and h are window width and height, respectively), and a vertical open-
ing angle θ. Now the projection simplifies to

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a tan(θ/2)

0 0 0

0
1

tan(θ/2)
0 0

0 0 − f + n

f − n
− 2fn

f − n

0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.38)

Now we can fully appreciate the usefulness of homogeneous coordinates. Earlier we saw
that they unify directions and locations into a single, unambiguous representation. They
also allow representing all affine transformations using 4 × 4 matrices. Using only three-
vectors, rotations would require a matrix multiplication, while translations would require
vector addition. Finally, perspective projection requires a division by z, which is not a lin-
ear operation and cannot therefore be expressed with matrices. However, the conversion

50 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

of homogeneous coordinates to 3D by dividing by the w component allows us to express
the division, which is a nonlinear operation in 3D, as a linear operation in 4D homoge-
neous coordinates.

2.5.3 PARALLEL PROJECTION

An advantage of the perspective projection is the foreshortening: objects that are far away
seem smaller. However, making accurate measurements from such images becomes dif-
ficult. This is illustrated in Figure 2.13, where the top row shows a cube drawn using
perspective projection. The diagram on the right shows the projector from each cube
corner connecting to the center of projection. The image of the front face is larger than
that of the rear face, even though the faces in reality are equally large. Parallel projec-
tion is useful when you want to place an object onto the display in 2D image coordinates
rather than 3D world coordinates, or when you want to see axis-aligned projections as
in engineering drawings or CAD programs. This is illustrated on the bottom row of
Figure 2.13. Now the projectors are parallel, and the images of the front and rear face are
of equal size.

We only cover the simplest parallel projection, the orthographic projection, where the pro-
jectors are perpendicular to the image plane. Directions parallel to the image plane retain

F igure 2.13: Perspective and parallel projection views of a cube.

S E C T I O N 2 . 6 VIEWPORT AND 2D COORDINATE SYSTEMS 51

their size, and it is easy to make measurements along those directions. The direction along
the projection vanishes, however. As no perspective division is required, we simply need
to define a box in camera coordinates that is first centered around the origin and then
scaled so all sides extend from −1 to 1. Therefore, if we define the viewing volume with
l, r, t, b, n, f as before, the projection matrix becomes

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
r − l

0 0 − r + l

r − l

0
2

t − b
0 − t + b

t − b

0 0
−2

f − n
− f + n

f − n

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.39)

Its inverse is

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r − l

2
0 0

r + l

2

0
t − b

2
0

t + b

2

0 0
f − n

−2
f + n

2
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.40)

Parallel projections require fewer computations than perspective projections because

when you transform a regular 3D point
[

x y z 1
]T

, the w component of the result
remains 1, and the homogeneous division is not needed.

2.6 VIEWPORT AND 2D COORDINATE SYSTEMS

In the normalized device coordinate system (NDC), each coordinate of the vertex
[

x y z
]

can only have values between −1 and 1, assuming that the vertex lies within the view frus-
tum. The x and y coordinates are mapped into a viewport that starts at pixel (vx, vy), is w
pixels wide and h pixels high, and is centered at (cx, cy) = (vx + w/2, vy + h/2).

The z coordinate is mapped to the range [0, 1] by default, but it is possible to restrict it
between a smaller depth range interval [dn, df]. The “width” of the depth range is then
d = df − dn, and its “center” is cz = (dn + df)/2. Now the viewport transformation from
NDC (xd, yd, zd) to window coordinates (xw, yw, zw) is⎡

⎢⎣xw

yw

zw

⎤
⎥⎦ =

⎡
⎢⎣(w/2)xd + cx

(h/2)yd + cy

(d/2)zd + cz

⎤
⎥⎦ . (2.41)

52 LINEAR ALGEBRA FOR 3D GRAPHICS C H A P T E R 2

0

1

2

3

(1, 1)
(2.5, 1.3)

(7.5, 2.5)

0 1 2 3 4 5 6 7 8

F igure 2.14: The pixel coordinate system of OpenGL. Integer values fall between pixels; pixels are
the squares of the integer grid.

The 2D coordinate system used in OpenGL (ES) has its origin at the lower left corner such
that x grows to the right and y upward, as illustrated in Figure 2.14. In many windowing
systems, as well as in M3G, the y axis is flipped: the origin is at the upper left corner and
y grows down.

Regardless of the orientation of y, integer values fall between the pixels. Looking at the
pixel at the bottom left in OpenGL, its lower left corner has coordinates (0, 0), the center
of that pixel is at (0.5, 0.5), and its top right corner is at (1, 1). For the top right corner
pixel the corresponding coordinates would be (w−1, h−1), (w−0.5, h−0.5), and (w, h).

If you want to place vertices accurately to the center of a pixel, and use integer coordinates
for the pixels, you can define a parallel projection with (l, r, b, t) = (−0.5, w − 0.5, −0.5,
h − 0.5), and use identity for the camera transformation. Now (0, 0) lands at the center
of the lower left corner pixel, and (w− 1, h− 1) at the center of the top right corner pixel.

The possibility to set the depth range seems a bit curious at first glance, as the use cases
are not very obvious; here we mention two. Many applications render a background
image or “sky box” behind the rest of the scene, so as to give a sense of depth without
actually drawing any distant objects. For best performance, the background should only
be drawn where it will not be covered by foreground objects. An easy way to accomplish
that is to render the background last, after all opaque objects, and set its depth range
to [1.0, 1.0]. This ensures that the background always lies at the maximum depth.

Another use case relates to the nonlinear distribution of the resolution of the depth buffer,
where most of the accuracy is spent on the near field by default. If you have some objects
very close to the camera (such as the controls in a cockpit of an airplane), and other
objects faraway, e.g., other planes, or buildings on the ground, the nonlinearity of the
depth buffer means that there is hardly any depth resolution left for the faraway objects.
Now, if you give the range [0.0, 0.1] for the nearby objects, render them with the far view
frustum plane pulled just beyond them, and then render the other objects with depth
range [0.1, 1.0] such that the near plane is pushed relatively far from the camera, you have

S E C T I O N 2 . 6 VIEWPORT AND 2D COORDINATE SYSTEMS 53

a much better chance of having sufficient depth buffer resolution so the distant objects
render correctly without z-fighting. The generalization of the above technique is to divide
the scene into n slices, and render each of them with the near and far planes matching
the start and end of the slice. This distributes the depth buffer resolution more evenly to
all depths.

This page intentionally left blank

3

C
H

A
P

T
E

R

LOW-LEVEL RENDERING

This chapter describes the traditional low-level 3D pipeline as it has been defined in
OpenGL. A diagram of the OpenGL ES pipeline in Figure 3.1 shows how various pipeline
components relate to each other, and how the data flows from an application to the
frame buffer. Figure 3.2 visualizes some of the processing in these various pipeline stages.
Note that the diagram, and the whole pipeline specification, is only conceptual; imple-
mentations may vary the processing order, but they must produce the same result as
the conceptual specification.

We start by describing the primitives that define the shapes and patterns that are displayed,
including both the 3D geometric primitives such as points, lines, and triangles, as well as
the 2D image primitives. The geometric primitives can have materials that interact with
light, and they can be affected by fog. The primitives are projected into a coordinate
system that allows simple determination of what is visible: a primitive is visible if it
is not occluded by other primitives, and it lies in the viewing frustum of the camera.
Continuous 3D shapes are then rasterized into discrete fragments, and the fragment
colors can be modulated by one or more texture maps. The fragments can still be rejected
by various tests, and their colors can be blended with the pixels that already exist in the
frame buffer.

55

56 LOW-LEVEL RENDERING C H A P T E R 3

Vertex buffer Vertex array Matrix control

M PT0 Tn21...

M2T

Current
texcoord n21

Current
texcoord 0

Current
vertex

Current
normal

Current
color

Material
control

Lighting

User clip
plane

User clip

Primitive assembly

Eye coordinates

Clip coordinates

Normalized device coordinates

Window coordinates

Frustum clip

Perspective divide

Viewport transform

Backface cull

Texture 0
application

Texture n21
application

Texel n21
fetch

Texel 0
fetch

Rasterization & interpolation

Texture
memory

Alpha test
Multi-

sample
Scissor

test
Coverage
generation

Fog
Depth
offset

Stencil
test

Depth test Blending Dithering Logic Op Masking

Read
pixels

Frame Buffer (Color, Depth, Stencil)

F
R
A
G
M
E
N
T
S

P
R
I

M
I
T
I
V
E
S

V
E
R
T
I
C
E
S

C
op

y
pi

xe
ls

F igure 3.1: A simplified view of the OpenGL ES 1.1 pipeline. Shapes with dashed outlines indicate
features that are new or significantly expanded in version 1.1. Dark gray and light gray shapes indi-
cate features that are not included in M3G, or are included in simplified form, respectively. M is the
modelview matrix, the Ti are texture matrices, and P is the projection matrix.

S E C T I O N 3 . 1 RENDERING PRIMITIVES 57

F igure 3.2: Illustrating the various stages of shading discussed in Chapters 3 and 8–10. Top row, left to right: wire frame
model; filled model; diffuse lighting; diffuse and Phong specular lighting. Bottom row: texturing added; texturing with a sep-
arate specular pass; bump mapping added; and rendered with an intersecting translucent object to demonstrate Z-buffering
and alpha blending. (See the color plate.)

3.1 RENDERING PRIMITIVES

In this section we describe the rendering primitives of a 3D engine. We begin with the
geometric primitives such as points, lines, and triangles, and then continue to raster prim-
itives using texture map data.

3.1.1 GEOMETRIC PRIMITIVES

The basic geometric primitives defined in OpenGL are points, lines, triangles, quads, and
polygons. However, in many hardware-accelerated 3D engines triangles are the only truly
native rendering primitive. They are in a sense the easiest and best-behaved of the prim-
itives. Three points always lie on a common plane, and if they are not collinear, they
uniquely define that plane. The projection of a triangle into the image plane is well defined
and changes continuously as we zoom in or zoom out.

Points and lines are mathematically even simpler than triangles. The problem is that a
mathematical point does not have any extent, nor does a line have any width. Instead
of turning a point into a sphere and a line into a cylinder—which would still be real 3D
entities—OpenGL defines points and lines as mixed 2D/3D entities, where the location of
a point or line end points are true 3D entities, but after they are projected into the image
plane they have a point size or line width defined in pixels, making them partially 2D enti-
ties. When you zoom into them, the distance between the points or line end points grows,
but the point size or line width remains constant. However, it is possible to attenuate the

58 LOW-LEVEL RENDERING C H A P T E R 3

size of a point based on its distance from the camera, so as to approximate the effect of
true perspective.

Quads or quadrilaterals, i.e., polygons with four corners, and other polygons are prob-
lematic, because unlike triangles, they are not guaranteed to be planar. If the vertices of a
polygon do not lie on the same plane, the edges between the vertices are still well defined,
but the surface between them is not. In the worst case, when viewed from the side, the
viewer would see both the front and back side at the same time. An obvious solution,
which most OpenGL drivers perform internally, is to split the polygon into triangles. The
OpenGL ES standardization group decided to sidestep the whole issue and only support
triangles.

Figure 3.3 shows the primitives supported by OpenGL ES. All of them can be expressed as
an array of vertices with implicit connectivity. In the upper row we have four vertices, and
depending on the primitive type, the four vertices are interpreted either as four points,
two disjoint line segments, a strip of three lines, or a loop of four lines. Similarly, in the
bottom row six vertices define either two disjoint triangles, a four-triangle strip where
the first three vertices define the first triangle and then every new vertex is connected
with the two previous vertices, or a four-triangle fan where the first vertex is the center of
the fan, and all the other vertices connect to it. The use of the basic primitives to define a
more complex object is illustrated in the first image in Figure 3.2.

Figure 3.4 shows a small segment of a regular triangle mesh. You can see that all the
internal vertices are adjacent to six triangles, that is, every vertex is responsible for two
triangles (see the grayed out triangles on the right upper corner), giving 0.5 vertices per
triangle. This, however, works only in the limit with a large enough closed mesh. For
smaller and irregular meshes, possibly with boundaries, there are usually 0.5–1.0 vertices

0

1
2

3

GL_POINTS GL_LINES

0

1
2

3

GL_LINE_STRIP

0

1
2

3

GL_LINE_LOOP

0

1
2

3

GL_TRIANGLES

0

1

2

3

4

5

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

0

1
2

3
4

5

0

1

2

3

4

5

F igure 3.3: The geometric primitives in OpenGL ES include points, three ways of defining line
segments, and three ways of defining triangles.

S E C T I O N 3 . 1 RENDERING PRIMITIVES 59

F igure 3.4: A piece of a regular triangle mesh. In this case every nonboundary vertex is shared by
six triangles. In other words, most vertices define two new triangles.

per triangle. The ratios become important as we study how much data must be passed
from the program to the graphics hardware, and possibly replicated.

The most straightforward way uses implicit indexing, and simply lists the triangles of
a mesh, three vertices of a triangle at a time. This is clearly wasteful, as each vertex is
expressed and transformed six times, on the average. Triangle strips and fans are much
more efficient, as after the first triangle every new vertex produces a new triangle. But as
you can see in Figure 3.4, if you make each row of triangles a strip, the vertices in the inter-
nal rows have to be processed twice, once when they are the “lower” vertices of a strip, and
the second time as the “upper” vertices of the next strip.

If you want to do better, you have to use explicit indexing. That is, instead of giving
the vertices in a particular order from which the primitive connectivity is deduced, you
first just give the vertices in an array, and then have another array which indexes into the
first array and gives the triangle connectivity using the same methods as with the implicit
ordering, e.g., triangles, triangle strips, and so on. A key advantage is that now it is possi-
ble to avoid transforming vertices more than once. Many engines use a vertex cache, which
buffers transformed vertices on the GPU. If the same vertex is indexed again, the system
may avoid retransforming the same vertex. A naive implementation would require a large
vertex cache, but a careful ordering of the triangles so that the vertices are accessed again
soon after the first use, instead of much later, can provide almost the same savings using
only a small vertex cache [Hop99].

Similar primitives should be batched as much as possible, i.e., they should be put into the
same array. It is much faster to draw one array of a hundred triangles than fifty arrays
of two triangles each. This becomes even more important if parts of the scene use differ-
ent materials and textures—combining primitives that share the same state, e.g., texture
maps, can produce considerable savings as the state changes are often quite costly. See
Section 6.4 for more information.

Most modeling programs support higher-order smooth surfaces and curves such as sub-
division surfaces [ZSD+00], Bézier patches [Boo01], or nonuniform rational b-splines

60 LOW-LEVEL RENDERING C H A P T E R 3

(NURBS) [PT96]. Smooth primitives encode smooth surfaces much more compactly
than a dense triangle mesh can. Additionally, when you zoom close enough, the triangle
mesh becomes visibly polygonal, while a smooth surface remains smooth no matter how
closely inspected. This makes smooth surfaces good candidates for a storage format. How-
ever, smooth surfaces are much more complicated to rasterize into pixels than triangles
are. Furthermore, there are many choices for the representation of smooth surfaces, and
there is no general consensus of a type that would be optimal for all uses. Therefore
modern 3D engines do not usually provide direct support for smooth surfaces, but
require the application to tessellate them into a set of triangles, which may be cached for
repeated rendering.

3.1.2 RASTER PRIMITIVES

Raster primitives consist of image data, blocks of pixels, and do not scale as naturally
as geometric primitives. If you scale a raster image down, several input pixels map to
each output pixel, and they need to be first low-pass filtered, averaged, so that the right
amount of blurring in the output takes place. This can be done, and it only requires some
additional computation. However, when scaling a raster image up, no new information
is introduced. Instead, the pixels grow to become large visible squares, and the image
quality suffers.

An advantage of raster images over geometric primitives is that arbitrarily complicated
imagery can be rendered very quickly. In its simplest form, a raster image is just copied
into the frame buffer without any scaling or blending operations. Another advantage is
that obtaining raster images can be easy. One can draw the images with an image-editing
program, or one can take photos with a digital camera. Applications of raster images
include using them to draw a background, e.g., the faraway landscape and sky in a rally
game, or the foreground, e.g., the dashboard of the rally car, while the moving objects such
as the road, other cars, and trees that are close enough are drawn using geometric primi-
tives. 2D games are often designed and implemented using sprites, small raster images that
are directly placed on the 2D window. In 3D, sprites are often called impostors, especially
if they are used in place of an object with complicated geometry, such as a tree or a bush.

Unless the sprite or impostor is a rectangular block, some of the pixels need to be marked
as transparent, while the rest are fully or partially opaque. The opacity information is
stored in an additional alpha channel value associated with each pixel. With bitmaps one
can take this approach to the extreme, storing only a single bit per pixel for opacity. Such
bitmaps can be used for drawing non-antialiased text, for example.

The concept of texture mapping complements geometric primitives with raster images. In
texture mapping one “pastes” a raster image on the geometric primitives such as triangles,
before drawing the scene from the vantage point of the camera. We will cover texture
mapping in more detail later. Whereas OpenGL supports direct drawing of both raster
images and bitmaps, OpenGL ES simplifies the API by supporting only texture mapping,

S E C T I O N 3 . 2 LIGHTING 61

with the idea that the omitted functionality can be simply emulated by drawing a rectangle
formed of two texture-mapped triangles. While M3G supports background images and
sprites, those are often implemented using textured triangles.

3.2 LIGHTING

The earlier sections have covered the 3D primitives and transformations needed to model
objects, place a camera, and project a scene to the camera’s frame buffer. That is suffi-
cient for line drawings, or silhouettes of shapes in uniform colors. However, that is not
enough to get an impression of the 3D shape of an object. For this we need to estimate how
light sources illuminate the surfaces of the objects. As Figure 3.1 shows, the user may spec-
ify vertex colors that are used either as is, or as surface material properties used in the
lighting equation.

Properly determining the correct color of a surface illuminated by various light sources is
a difficult problem, and a series of simplifications is required to come up with a compu-
tationally reasonable approximation of the true interaction of light, matter, participating
media (such as the air with fog and airborne dust), and finally the eye observing the scene.
A light source, such as the sun or an electric bulb, emits countless photons to every direc-
tion; These photons then travel, usually along a straight path, and can be absorbed or
filtered by the medium through which they travel. When a photon hits a surface it can be
reflected to various directions; it can be refracted and transmitted through a transparent
or translucent material, it can be scattered inside the material and exit in a different loca-
tion from where it entered, it can be absorbed by the matter, and the absorbed energy may
be later released as fluorescence or phosphorescence. Raytracing algorithms mimic this
complicated behavior of rays, but traditional real-time graphics architectures use local,
simpler approximations.

In this section we first describe the color representation. Then we explain normal vectors
and what they are used for. We continue with the OpenGL reflectance model consisting of
ambient, diffuse, specular, and emissive components of material properties, cover the sup-
ported light sources, and finish with the complete lighting equation. The second through
fourth images in Figure 3.2 illustrate the effects of ambient, diffuse, and specular shading,
respectively.

3.2.1 COLOR

Light is electromagnetic radiation of any wavelength, but the visible range of a typical
human eye is between 400 and 700 nm. Color, on the other hand, is more of a perception
in people’s minds than a part of objective reality. The eye contains three types of sensors
called cones. Each type is sensitive to different wavelengths. There is also a fourth sensor
type, rod, but its signals are only perceived when it is dark. From this fact two interesting
observations follow. First, even though all the colors of a rainbow correspond to a single

62 LOW-LEVEL RENDERING C H A P T E R 3

wavelength, many colors that people can see, e.g., pink, brown, purple, or white, can only
be created by a combination of at least two or even three different wavelengths. Second,
one can use three “primary” colors (in computer graphics Red, Green, and Blue), the
combinations of which create most colors that people are capable of seeing. The absence
of R, G, and B is black, adding red and green together produces yellow, green and blue
produce cyan, and red and blue produce magenta. Adding equal amounts of R, G, and B
produces a shade of gray ranging from black to white.

In OpenGL light is represented as a triplet of arbitrary numbers denoting the amount of
red, green, and blue light, each of which is clamped to the range [0, 1] before being stored
into the frame buffer. 1.0 means the maximum amount of light that can be displayed on a
traditional display, and the RGB triplet (1.0, 1.0, 1.0) indicates white light, (1.0, 0.0, 0.0)
provides bright red, and (0.0, 0.0, 0.3) corresponds to dark blue. Larger values are simply
clamped to 1.0, so (11.0, 22.0, 0.5) will become (1.0, 1.0, 0.5) at the time of display. If 8-bit
integers are used to encode the color components, 0 maps to 0.0 and 255 maps to 1.0.

The stored light values do not really correspond to the amount of light energy. The human
eye responds to the amount of light very nonlinearly, and the number rather encodes a
roughly linear color perception. For example, (0.5, 0.5, 0.5) produces a gray color, roughly
halfway between black and white. This is useful as it makes it easy to assign colors, but
it does not correspond to true light intensities. A more physically correct representation
would store floating-point numbers that correspond to the amount of light energy at
each channel of a pixel, and finally map the result into color values between 0.0 and 1.0
by taking into account the eye’s nonlinear response to light. Such high dynamic range
(HDR) light and color representations are possible on desktop hardware with the sup-
port of floating-point frame buffers and textures, and there are even HDR displays that
can emit brighter lights than traditional displays. The mobile APIs only support the tra-
ditional low-dynamic range representation of 4–8 bits per color channel.

In addition to the color channels, OpenGL defines an additional alpha channel. The alpha
channel does not have any inherent meaning or interpretation, but is usually used to
encode the level of transparency of a material or surface. Alpha is crucial for compositing,
such as merging of nonrectangular images so that the boundaries blend in smoothly with
the background. Many systems save in storage by omitting the destination alpha, that is,
the frame buffer only stores the RGB value, and the stored alpha is implicitly 1.0. How-
ever, it is always possible to define an arbitrary (between 0.0 and 1.0) value as the source
alpha, for example, in the definition of a surface material.

The amount of storage used in the frame buffer can be denoted by the names of the
channels and the number of bits in each channel. Some first-generation mobile graph-
ics engines use 16-bit frame buffers. For example, an RGB565 frame buffer has a total of
16 bits for the red, green, and blue channels, and does not store any alpha. Here the red
and blue channels have only 5 bits each (31 maps to 1.0) while the green channel has 6 bits
(63 maps to 1.0). RGBA4444 and RGBA5551 also use 16 bits per pixel, the former allocates
four and the latter one bit for alpha. Desktop engines have for long used frame buffers

S E C T I O N 3 . 2 LIGHTING 63

with 8 bits per channel, i.e., RGB888 and RGBA8888, and those are becoming increasingly
common also on handhelds. The desktop and console world is already moving to 16-bit
floating-point frame buffers (a total of 64 bits for RGBA), but those are not yet available
for mobile devices.

3.2.2 NORMAL VECTORS

The intensity of the light reflected back from a surface element to the camera depends
strongly on the orientation of the element. An orientation can be represented with a unit
normal vector, i.e., a vector that is perpendicular to the surface and has a length of one.
As three vertices a, b, c define a triangle uniquely, we can calculate the orientation by

n =
(

b − c
) × (a − c) , (3.1)

and then normalizing n using Equation (2.4). A triangle is planar, therefore the whole
triangle has the same orientation and reflects a constant amount of light (assuming a
small triangle, of the same material at every vertex, far away from the light source).
When a smooth surface is approximated by a triangle mesh, the polygonal nature
of the approximation is readily observed as the human eye is very good at seeing
color discontinuities.

The color discontinuity corresponds to normal vector discontinuity, as each vertex has
several normals, as many as there are adjoining triangles. A better solution is to define a
unique normal vector at each vertex, and then let either the normal vector or the shad-
ing vary smoothly between the vertices. These two cases are illustrated in Figure 3.5. As
the shading is then continuously interpolated both within and across triangles, the illu-
sion of a smooth surface is retained much better, at least inside the silhouette boundaries
(a coarsely triangulated mesh still betrays its polygonal nature at the piecewise straight
silhouette). For this reason OpenGL requires each vertex to be associated with its own
normal vector.

F igure 3.5: Left: the vertices of a polygonal mesh are replicated so that each polygon has its own
copy of the shared vertex, and the vertices are assigned the surface normals of the polygons. This
yields shading discontinuity at vertices. Right: each shared vertex exists only once, with a normal that
is the average of the normals of the neighboring faces, resulting in smooth shading.

64 LOW-LEVEL RENDERING C H A P T E R 3

You can approximate a smooth unique vertex normal by averaging the normals of the
adjacent triangles, possibly weighted by the triangle areas:

n =
∑

i

aini, (3.2)

where ai is the area of the triangle associated with ni, and n again needs to be normal-
ized. This gives a smooth look to the surface. A more involved approach would be to fit
a smooth surface to the neighborhood of a vertex and to evaluate the surface normal at
the vertex.

A unique normal vector for each mesh vertex is useful for smooth objects, but fails if we
actually want to represent a sharp crease. The solution is to define the vertex as many
times as there are different orientations around it. Similarly vertices need to be replicated
if other properties, such as material attributes, should change abruptly between triangles.

The simplest approach for determining the color of a primitive is to choose the coloring at
one vertex and use it for the whole triangle; this is called flat shading. More pleasing results
can be obtained by interpolation, however. There are two key approaches for such inter-
polation: one could either first interpolate the normal vectors and then separately shade
each pixel within a triangle (Phong shading [Pho75]), or alternatively calculate the shad-
ing at the vertices and interpolate colors across the triangle (Gouraud shading [Gou71]).
Phong shading produces visually better results than Gouraud shading. However, Gouraud
shading is much cheaper to calculate, for two reasons. First, linear interpolation of colors
is less expensive than interpolation of orientations. Second, assuming triangles typically
cover several pixels, the lighting equations have to be evaluated less often: only at the ver-
tices. For this reason OpenGL only supports Gouraud shading, and all lighting happens
at vertices. However, we will see in Section 3.4.1 that one can modulate both the colors
and the apparent orientations within the triangles using texture and bump mapping.

If the surface is transformed by matrix M, each vector that is normal to the original surface
must be transformed by M−T, the inverse transpose of M, so that it remains perpendicular
to the transformed surface (see Section 2.2.4 for proof). If M only consists of rotations
and translations, the length of the normal vectors does not change. By default OpenGL
does not rescale the normals after the transformation; therefore, if more complex trans-
formations are used, the user needs to ask the system to renormalize the normals. Too
long normals will make the surface appear too bright, and too short normals make it
too dark.

3.2.3 REFLECTION MODELS AND MATERIALS

Lighting and reflection models can be classified into global and local ones. A global light-
ing model accounts for shadows caused by other objects or self-shadowing due to other
parts of the same object, as well as light reflected from other surfaces, requiring com-
plicated analysis of spatial relationships and perhaps access to all of the scene descrip-
tion. Real-time graphics engines such as OpenGL have traditionally used much simpler

S E C T I O N 3 . 2 LIGHTING 65

local lighting models. Local models ignore the effects of other surfaces of the scene, and
only require that you know the position and normal vector at a single surface point,
various local material properties, and the light sources that potentially illuminate the
surface point.

However, even a local lighting model can have a complicated reflection model to deter-
mine how much and what kind of light is reflected toward the camera. Some materials,
such as hair, silk, velvet, or brushed metal, reflect different amounts and colors of light
to different directions, defying simple analytic reflection models and requiring sampling
and tabulating the reflectance function into a bidirectional reflectance distribution function
(BRDF). For some other materials it is possible to define a function that approximates the
actual reflectance behavior quite closely.

OpenGL uses a combination of several simple reflectance models that for the most part
are not very accurate models of true materials, but are a reasonable approximation for
some materials such as plastics or paper. Off-line photorealistic rendering systems used
for special effects, advertisements, and even feature-length movies use much more realis-
tic, but computationally more involved lighting and reflectance models. The main com-
ponents of the OpenGL lighting model, ambient, diffuse, and specular reflectance models
are illustrated in Figure 3.6 and described in the following text. We also discuss materials
that emit light, e.g., neon signs.

Ambient reflectance

Ambient reflectance is the simplest reflectance model. The idea is that the ambient light
has been reflected and scattered around the scene so many times that it permeates the
whole scene without any directional preference. Assuming we have ambient light Ia with
red, green, blue, and alpha components, and a surface material ka with the same compo-
nents, the light projecting to the camera is simply I = kaIa, where the matching compo-
nents are multiplied (red of I is the red of ka times red of Ia, and so forth).

This simple equation uses very little information, just the color of the ambient light and
the ambient material reflectance coefficient. In particular it does not use any information

F igure 3.6: A densely triangulated sphere with ambient, diffuse, and diffuse + specular shading.

66 LOW-LEVEL RENDERING C H A P T E R 3

that relates to the direction of the light, the surface normal vector, or the viewing direction.
Therefore it does not encode any information about surface shape, and the image of a
sphere on the left in Figure 3.6 appears as a flat disk. Since ambient lighting loses all shape
information, it should be used as little as possible. However, the other reflectance models
typically do not illuminate the side of the object opposing the light, and using ambient
lighting allows at least the object outlines to be drawn in their own colors, instead of being
just black.

Diffuse reflectance

Diffuse reflectance takes into account the direction of the incoming light with respect to
the surface normal to calculate the amount of light reflected toward the camera. Since it
assumes that the material reflects all the incoming light uniformly into every direction
away from the surface, we do not need the direction to the camera. With this assumption,
the diffuse reflectance rule follows from geometry. In Figure 3.7 we have two bundles of
rays coming to the surface, one bundle perpendicular to the surface (dark) and one in an
angle θ (gray). Denoting a unit area by the width of the ray bundle in the image, the dark
bundle illuminates the unit area, reflecting then all the light out to every direction that
can actually see the surface point (the dark arc). However, the gray bundle comes in at

an angle, and thus illuminates a larger surface area (larger by factor
1

cos θ
), and therefore

reflects out only a factor cos θ of the incoming light per unit area (the gray arc). Therefore,
for diffuse reflectance we get I = kdId cos θ. By denoting the surface unit normal by n and
the unit direction vector to the light source by l, we see that cos θ = n · l. Finally, only

F igure 3.7: Geometry of diffuse reflectance. Rays coming perpendicular (dark) to the surface illu-
minate the surface more and also reflect more light away (dark arc). Rays coming in an angle θ (gray)

illuminate an area larger by factor
1

cosθ
, thus a unit area reflects only cosθ times less light (gray arc).

S E C T I O N 3 . 2 LIGHTING 67

light directions that can see the surface point are considered, so the negative values are
clamped to zero, which we denote by parentheses with a plus sign as a subscript (·)+,
yielding I = kdId

(
n · l

)
+.

No real surface material is completely diffuse, but many materials such as dust, chalk, or
rough paper can be approximated fairly well with the diffuse reflectance model. Even then
the approximation breaks down at grazing angles, i.e., when θ is small. You can test this
by taking a piece of paper and looking at a bright light source almost along the surface of
the paper; the paper reflects the light like a very dull mirror.

Specular reflectance

The specular reflection accounts for the highlights that you see on shiny objects, like
the rightmost sphere in Figure 3.6. Whereas in ambient or diffuse reflectance the direc-
tion to the viewer does not matter, that direction is important in specular reflectance. In
Figure 3.8, most of the light coming from l is reflected to the mirror reflection direction
r, that is, to the direction of the light source reflected about the normal vector n. The
larger the angle θ between the viewer direction v and r, the less light is reflected toward
the viewer.

One way to approximate this drop-off is using cos θ. The half-vector h (half way between l
and v) is slightly less expensive to calculate than the reflection vector r, and since h makes
the angle θ/2 with the normal n, OpenGL uses h · n to calculate the specular drop-off
term. Notice that as opposed to the diffuse reflectance, the cosine term has no physical or

l

h
n

v

r

/2

F igure 3.8: Geometry of specular reflectance. Light coming from a light source l hits a surface with
normal vector n, and most of the light is reflected to the direction r. The larger the angle θ between
the viewer direction v and the mirror reflection direction r, the less light is reflected toward the viewer.
Note that the angle between the half-vector h (splits evenly l and v) and the normal n is θ/2.

68 LOW-LEVEL RENDERING C H A P T E R 3

geometrical significance; it is simply a heuristic model to reduce reflectance to directions
other than r. Since lighting is done in camera coordinates, and the camera looks toward
the negative z axis, the viewing direction v can be approximated by (0, 0, 1). Finally,
the cosine term is raised to a shininess power nspec. A large nspec, e.g., 128, attenuates the
reflectance very quickly, and produces a small and sharp highlight, while a small nspec, e.g.,
2, produces a fairly wide highlight. Putting it all together, we get the specular component
from I = ksIs

(
n · h

)nspec

+ .

Emission

The simplest material property is the emissive coefficient. Emission simply adds light to
the material without requiring any external light sources. An emissive material does not
illuminate any other surfaces. You could use this to model the surface of a light source
such as a light bulb or a television screen, or to model fluorescent and phosphorescent
materials.

3.2.4 LIGHTS

OpenGL defines several simple light sources: the global ambient light, point lights, direc-
tional lights, and spot lights. These lights work for sources that are very far away or have a
small surface area. Accurate modeling of area light sources is much more expensive, but
is sometimes done by discretizing the area source into a set of point light sources.

Lights have RGBA colors where the channels can have “overbright” values exceeding 1.0.
The global ambient light only has the ambient color component, but the other lights have
a separate color for each of ambient, diffuse, and specular components. In this section we
cover those light types, as well as the light attenuation function.

Global ambient light

The simplest of the lights is the global ambient light. There can only be one of those
and it is simply defined by an RGBA value, it is not associated with a position, and it
affects all surfaces.

Point lights

Even a large area light source can be accurately modeled as a point light if the objects
illuminated by the source are sufficiently far away from the source. A point light is located
at a given (x, y, z, 1) position, and emits light to every direction, as shown on the left in
Figure 3.9. Like the rest of the light types, it contains a separate color for each of the
ambient, diffuse, and specular components. If a light attenuation function is defined, it
affects the intensity of the light reaching the surface. The light direction is calculated as
the vector difference from the light position to the vertex being illuminated.

S E C T I O N 3 . 2 LIGHTING 69

u

u

2u

F igure 3.9: Various light sources: point light, directional light, spot light, and directional attenuation of spot lights.

Directional lights

A directional light can be thought of as a point light infinitely far away. For most practical
purposes sunlight on earth can be modeled as a directional light. To define the direction,
place the light source into direction (x, y, z, 0). The light will then shine toward the oppo-
site direction, (−x, −y, −z, 0). Directional light is cheaper to evaluate than point light as
the light direction is constant for all the vertices (see the second image in Figure 3.9), and
the intensity of the light is never attenuated.

Spot lights

A spot light is a mixture between a point light and a directional light, and aims to model
the behavior of a typical desk lamp. Like the point light, a spot light has a position, and
its intensity can be attenuated as a function of distance. However, it also has a preferred
direction toward which it shines brightest. No light escapes to directions farther than the
cut-off angle θ from the preferred direction (third image in Figure 3.9), and the light that
is not cut off is attenuated for directions other than the spot light direction using a similar
exponentiated cosine function as already familiar from specular reflectance. That is, if l
is the direction from the light to the surface, s is the spot light direction, and nspot is the
spot direction fall-off exponent, the directional fall-off becomes spot = (l · s)nspot , unless
the angle between l and s is greater than the cut-off angle, in which case spot = 0. The last
image in Figure 3.9 illustrates the directional attenuation function, which cuts to zero for
angles larger than θ, and gets more concentrated toward the spot light direction s as the
exponent nspot grows.

Light attenuation

A faraway light source casts fewer photons of light to a given surface area than if the same
light source were nearby. OpenGL models attenuation of light due to distance with att =
1/(kc + kld + kqd2), where kc stands for the constant coefficient, and kl and kq are the linear
and quadratic coefficients, while d is the distance from the light source to the surface.

70 LOW-LEVEL RENDERING C H A P T E R 3

Real point light source energy is attenuated by the square of the distance from the light
source. However, OpenGL does not typically represent the true light energy, but a com-
pressed representation of light, and quadratic attenuation typically produces too harsh
changes in illumination. Also, most indoor lights are area lights, not point lights, and
have a more complicated and softer attenuation behavior that can be better matched by
adding the linear and constant terms into the equation. The main outdoor light source,
the sun, is so far away that all the visible points in practice get the same amount of light
and therefore the relative light attenuation can be ignored. Purely quadratic attenuation
may make sense in a situation where the only light source really is a relatively weak point
light source, such as a single candle, and a very dramatic attenuation is desired.

3.2.5 FULL LIGHTING EQUATION

Combining Sections 3.2.1–3.2.4, the full OpenGL lighting equation can be formulated
as Equation (3.3). The resulting light intensity (I) consists of the emissive term of the
material (ke), ambient term of the material (ka) illuminated by the global ambient light
(Ia), and then the contributions due to each active light source are summed up. For each
light i, the ambient term (kaIai) is added, and the distance attenuation atti and spot light
fall-off (spoti) are combined with the diffuse (kdIdi(n · li)+) and specular (ksIsifi(n ·h)

nspec

+)
components. For a directional light atti = 1, and for directional and point lights spoti = 1.
Finally, fi = 0 turns off the calculation of the specular term if the direction to the light is
perpendicular to the surface normal (n · li = 0), otherwise fi = 1.

I = ke + kaIa +
∑

i

[
kaIai + atti spoti

(
kdIdi(n · li)+ + ksIsifi(n · h)

nspec

+

)]
(3.3)

It is also possible to compute double-sided lighting, in which case the lighting equations
are evaluated both for the outside normal n and the inside normal −n. This can be useful
if you want to draw a thin object, such as a sheet of paper, without having to separately
model both the front and the back side. On desktop OpenGL one can even give different
materials to the different sides, but mobile APIs simplify this and use the same material
on both sides.

3.3 CULLING AND CLIPPING

Not all primitives end up being visible. For example, almost half of the triangles of typical
scenes face away from the camera and may thus be discarded in the rendering pipeline.
Others fall outside of the view frustum, or overlap it only partially. In this section we cover
back-face culling and clipping of primitives.

S E C T I O N 3 . 3 CULLING AND CLIPPING 71

3.3.1 BACK-FACE CULLING

With real solid objects it is impossible to directly see the back side of an object: by
definition it faces away from the observer, and it is always occluded by another part of
the same object. Since rendering back-facing triangles would not contribute to the final
image, it makes sense to save time by not rendering them. On average half of the trian-
gles are back-facing, and the time savings due to skipping them can be substantial. With
back-face culling, the system may be able to avoid the cost of lighting the vertices, and in
any case it avoids rasterizing the triangle.

There are several ways to cull back-facing triangles. One possibility is to calculate the true
normal vector to the triangle, and compare that to the direction to the camera. Another
approach, often faster and more stable, is to project the vertices to the image plane, cal-
culate the signed area of the projected triangle, and cull the triangle if the area turns out
to be negative. One can even try back-projecting the camera into object space and doing
the check there.

In order to determine which is the front and which the back side of a triangle, a winding
convention has to be used. By default, triangles are defined so that when viewed from
outside, the vertices are given in a counterclockwise order. Similarly, by default, it is the
back faces that are culled. However, the user may override both of these conventions, that
is, explicitly set the front face to have clockwise or counterclockwise vertex ordering, or
specify that the front face should be culled instead of the back face. One reason to do so is
if the user first models one-half of a symmetrical object, and then obtains the other half
by mirroring the first half. In such a case the user should toggle the winding direction for
the second half to ensure correct culling and shading of the triangles on the mirrored half.

Back-facing triangles are not culled by default in OpenGL, so the culling has to be explic-
itly enabled. A reason for not using back-face culling would be if one would like to model
thin objects with double-sided triangles.

3.3.2 CLIPPING AND VIEW-FRUSTUM CULLING

The camera sees only a finite region of space—the view frustum. The sides of the viewing
cone are defined by the extent of the window in the image plane through which the camera
views the scene, and the cone is capped at the near and far distances, making it a trun-
cated pyramid, a frustum. Primitives that fully fall outside of the frustum will not affect
the scene and can therefore be ignored. Determining that complete objects lie outside of
the viewing frustum and skipping them completely may be done sometimes with an easy
check within the application. Some engines may also perform an automatic conservative
viewport culling by calculating a bounding box of a vertex array and testing for an inter-
section with the view frustum, and rejecting the whole array if the bounding box is fully
outside the frustum. For example, most M3G implementations include this optimization
(see Section 5.3).

72 LOW-LEVEL RENDERING C H A P T E R 3

Clipping to the view frustum

If a primitive intersects the view frustum it may need to be clipped. Here we describe
clipping as specified in OpenGL. There are always six clipping planes, corresponding to
the left, right, top, and bottom of the viewport, and the near (front) and far (back) clipping
planes. As described before, in clip coordinates (after the multiplication by the projection
matrix but before homogeneous division by w) the clipping planes correspond to one of
the x, y, or z coordinates being either −w or w.

When a triangle is clipped by a plane, there are several possible outcomes. If the triangle
does not intersect the plane, the triangle is either completely accepted or completely
rejected, depending on which side of the plane it is. If it does intersect the plane, the
clipping may shave off two vertices and an edge, resulting in a smaller triangle, or shave
off just one vertex and yield a smaller quadrangle. Thus each clip may grow the number
of vertices by one, and clipping a triangle against six planes may lead up to a nine-vertex
polygon (see Figure 3.10). Some systems may be able to just evaluate the parts of the
primitives within the viewport without doing real clipping. Clipping lines and points is
simpler. Clipping a line may shorten the line but the result is still a line. Clipping a point
either erases or keeps the point, and the clipping is done based on the point center, even
for wide points.

Artifacts caused by clipping

Real clipping may cause some artifacts. Ideally, if you render an image in four pieces,
one quarter at a time, into smaller images, not forgetting to set up the projection matrix
appropriately, you should get the same pixels as when you render the whole image in one
go. However, if clipping the primitives introduces new vertices at image boundaries, and
unless the colors and possibly other properties are interpolated using exactly the same
algorithm as used in rasterization, some pixels at the screen boundaries will appear dif-
ferent in the smaller images.

The middle image in Figure 3.10 illustrates some problems when clipping wide lines and
points. Clipping a wide line may omit a part of the line; in this case the areas that are gray

Viewport

Guard Band

F igure 3.10: Left: Each clip plane may grow the number of vertices by one. Middle: For wide points and lines clipping may
produce artifacts. Right: Guard band clipping combines clipping and scissoring.

S E C T I O N 3 . 4 RASTERIZATION 73

but inside the viewport. Since points are clipped based on their center, an animated wide
point approaching the viewport boundary may suddenly vanish once the center exits the
viewport, instead of gracefully sliding off the screen.

Guard band clipping

Some implementations may avoid some of these problems by implementing clipping
implicitly as part of the rasterization, for example by using guard bands [BSD+89], or
by evaluating only those pixels of the primitives that fall on the screen using 2D homo-
geneous coordinates [OG97]. The rightmost image in Figure 3.10 illustrates guard band
clipping, which can both avoid some clipping artifacts and accelerate clipping. There the
medium gray triangles can be trivially rejected as they are completely outside of the view-
port. The light triangles are completely within the guard band, and they are simply ras-
terized and the pixels outside of the viewport are ignored. Only the dark triangle which
enters the viewport and exits the guard band needs to be clipped.

Clipping to an arbitrary plane

Finally, the user can define arbitrary clip planes (supported in OpenGL ES 1.1). Each plane
is defined by the coefficients [a b c d]T of the equation ax + by + cz + d = 0, defined
in object coordinates. If you have a plane with a normal vector [Nx Ny Nz]T toward the
half-space you want to keep, going through the point [px py pz]T, the coefficients become

⎡
⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Nx

Ny

Nz

−(Nxpx + Nypy + Nzpz)

⎤
⎥⎥⎥⎦ . (3.4)

Since the user clip plane is defined in object coordinates, the system transforms the coef-

ficients into eye coordinates by M−T
[

a b c d
]T

, as also shown in Figure 3.1.

User clip planes have been used for a variety of visual effects, such as reflections from
water—here the algorithm is to mirror the world geometry to be below the water, and use
the clip plane to only render the parts that are below the waterline.

3.4 RASTERIZATION

Before rasterization, vertices are collected into primitives in a stage called primitive assem-
bly. Rasterization then decides which pixels of the frame buffer the primitives cover, and
which colors and depth values those pixels are assigned. This is done by interpolating var-
ious values associated with the vertices, such as the colors due to illumination, the depth
values, and the texture coordinates.

74 LOW-LEVEL RENDERING C H A P T E R 3

For each pixel within the primitive, one or more fragments, or samples of the geometry
within the pixel, are generated. The fragment contains the interpolated values, which are
used to texture map the fragment, to blend it with previous values in the frame buffer, and
to subject it to various tests, such as the depth test to determine visibility. If the fragment
passes the tests, it is finally stored into the frame buffer.

Determining which pixels a primitive should cover is not trivial. For example, when ras-
terizing the area covered by two adjacent triangles, each pixel needs to be rasterized exactly
once, that is, no gaps may appear, nor may the neighboring triangles draw twice any of
the edge pixels.

After the rasterization has been prepared, traditional 3D pipelines that do not support
floating-point values in the frame buffer may perform all the remaining steps of raster-
ization and pixel processing using fixed-point, i.e., integer arithmetic. Color values, for
example, can be expressed in a few bits, for example 8 bits per channel. How many bits
are needed to express and interpolate screen coordinates depends on the size of the dis-
play. For example, if the width and height of the display are at most 512 pixels, 9 bits
are enough to store the x and y pixel coordinates. Some additional decimal bits are needed
to maintain sub-pixel accuracy, as otherwise slowly moving objects would produce jerky
motion.

Being able to convert floating-point values to fixed point means that software rasterization
on devices without floating-point hardware remains feasible, and even if the rasterization
uses specialized hardware, that hardware is simpler, using less silicon and also less power.

Below we will first describe texture mapping; then we study the ways to interpolate the
vertex values across the primitive, we deal with fog, and finally take a look at antialiasing.
The images on the bottom row of Figure 3.2 illustrate basic texture mapping on a sphere,
and multitexturing using a bump map as the second texture map.

3.4.1 TEXTURE MAPPING

Coarse models where geometry and colors change only at vertices are fast to model and
draw, but do not appear realistic. For example, one could model a brick wall simply with
two orange triangles. An alternative is to have a very detailed model of the wall, insert-
ing vertices anywhere the geometry or colors change. The results can be highly realistic,
but modeling becomes difficult and rendering terribly slow. Texture mapping combines
the best aspects of these two approaches. The base geometric model can be coarse, but
a detailed image is mapped over that geometry, producing more detailed and realistic
apparent geometry and detailed varying colors. The texture map can be created, for exam-
ple, by taking digital photographs of real objects.

The typical case is a 2D texture map, where the texture is a single image. A 1D texture
map is a special case of a 2D texture that has only one row of texture pixels, or texels
for short. A 3D texture consists of a stack of 2D images; one can think of them filling

S E C T I O N 3 . 4 RASTERIZATION 75

F igure 3.11: Texture mapping. Portions of a bitmap image on the left are mapped on two triangles
on the right. If the triangles do not have the same shape as their preimages in the texture map, the
image appears somewhat distorted.

a volume. However, 3D texture data requires a lot of memory at runtime, more than
is usually available on mobile devices, and thus the mobile 3D APIs only support 2D
texture maps.

Images are often stored in compressed formats such as JPEG or PNG. Usually the devel-
oper first has to read the file into memory as an uncompressed array, and then pass
the texture image data to the 3D API. Some implementations may also support hard-
ware texture compression [BAC96, Fen03, SAM05], but those compression formats are
proprietary and are not guaranteed to be supported by different phones.

Texture coordinates

The way texture data is mapped to the geometry is determined using texture coordinates.
For a textured surface every vertex needs to have an associated texture coordinate. The
texture coordinates are also 4D homogeneous coordinates, similar as covered before for
geometry, but they are called (s, t, r, q). If only some of them are given, say s and t, r is set to
0 and q to 1. The texture coordinates can be transformed using a 4×4 texture matrix, and
for 2D texture mapping s and t of the result are divided by q, while the output r is ignored.
The transformed texture coordinates map to the texture map image so that the lower left
image corner has coordinates (0.0, 0.0) and the top right image corner has coordinates
(1.0, 1.0).

During rasterization, the texture coordinates are interpolated. If the values of q are dif-
ferent on different vertices, we are doing projective texture mapping. In that case also the

76 LOW-LEVEL RENDERING C H A P T E R 3

q component needs to be interpolated, and the division of r and s by q should happen at
each fragment, not only at the vertices. For each fragment the interpolated coordinates
are used to fetch the actual texture data, and the texture data is used to adjust or replace
the fragment color. If multiple texture maps are assigned for a surface, there needs to be a
separate set of texture coordinates for each map, and the textures are applied in succession.

It is much easier to build hardware to access texture data if the texture image sizes are pow-
ers of two, that is, 1, 2, 4, . . . , 64, 128, and so on. Therefore the texture image dimensions
are by default restricted to be powers of two, though the width can differ from height, e.g.,
32× 64 is a valid texture size, while 24× 24 is not. As shown in Figure 3.12(a), the origin
(s, t) = (0, 0) of the texture coordinates is in the lower left corner of the texture data, and
for all texture sizes, even if the width differs from the height, the right end is at s = 1, the
top at t = 1, and the top right corner at (s, t) = (1, 1). Some implementations provide an
extension that lifts the requirement that the texture sizes must be powers of two.

Texture coordinates that have a value less than zero or greater than one have to be wrapped
so that they access valid texture data. The two basic wrapping modes are clamp-to-edge,
that is, projecting the texture coordinate to the closest texel on the edge of the texture map,
and repeat, which repeats the image by ignoring the integer part of the texture coordinate
and only using the fractional part. These are illustrated in Figure 3.12(b) and (c) respec-
tively. Note that it is possible to use a different wrapping mode for the s (horizontal) and
t (vertical) directions.

Texture fetch and filtering

For each fragment, the rasterizer interpolates a texture coordinate, with which we then
need to sample the texture image. The simplest approach is to use point sampling: con-
vert the texture coordinate to the address of the texel that matches the coordinate, and
fetch that value. Although returning just one of the values stored in the texture map is
sometimes just what is needed, for better quality more processing is required. On the left
side of Figure 3.13 the diagram shows the area of the texture map that corresponds to

(0, 0) (1, 0)

(1, 1)(0, 1)

(a) (b) (c)

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0) (1, 0)

(1, 1)(0, 1)

F igure 3.12: (a) The (s, t) coordinate system of a texture image of 4× 2 texels. (b) Wrapping with clamp to edge.
(c) Wrapping with repeat.

S E C T I O N 3 . 4 RASTERIZATION 77

Level i 1 1

F igure 3.13: Texture filtering. If a screen pixel corresponds to an area in the texture map smaller than a texel, the texture
map needs to be magnified, otherwise it needs to be minified for the pixel. In bilinear interpolation texel colors are first
interpolated based on the s-coordinate value, then on the t-coordinate. Trilinear interpolation additionally interpolates across
mipmap levels. A mipmap image sequence consists of smaller filtered versions of the detailed base level texture map.

a particular image pixel. In one case a smaller area than one texel is magnified to fill the
pixel; in the other the area of almost eight texels needs to be minified into a single pixel.

In magnification, if the texel area matching the pixel comes fully from a single texel, point
sampling would give a correct solution. However, in Figure 3.13 at the center of the top
row, the pixel happens to project roughly to the corner of four texels. A smoother filtered
result is obtained by bilinear interpolation as illustrated at top middle. In the illustration,
the pixel projects to the gray point in the middle of the small square among the four texels.
The values of the two top row texels are interpolated based on the s-coordinate, and the
same is done on the lower row. Then these interpolated values are interpolated again using
the t-coordinate value. The closer the gray point is to the black centers of texels, the closer
the interpolated value is to that of the texel.

Minification is more demanding than magnification, as more texels influence the out-
come. Minification can be made faster by prefiltering, usually done by mipmapping
[Wil83]. The term mip comes from the Latin phrase multum in parvo, “much in little,”
summarizing or compressing much into little space. A mipmap is a sequence of prefiltered
images. The most detailed image is at the zeroth level; at the first level the image is only
a quarter of the size of the original, and its pixels are often obtained by averaging four
pixels from the finer level. That map is then filtered in turn, until we end up with a 1 × 1
texture map which is the average of the whole image. The complete mipmap pyramid

78 LOW-LEVEL RENDERING C H A P T E R 3

takes only
1
3

more space than the original texture map. Now if roughly seven texels would

be needed to cover the pixel in Figure 3.13, we can perform a bilinear interpolation at
the levels 1 (1 texel covers 4 original texels) and 2 (1 texel covers 16 original texels), and
linearly interpolate between those bilinearly filtered levels, producing trilinear filtering.

Mipmapping improves performance for two reasons. First, the number of texels required
is bound, even if the whole object is so far away that it projects to a single pixel. Second,
even if we did only point sampling for minification, neighboring image pixels would need
to fetch texels that are widely scattered across the texture map. At a suitable mipmap level
the texels needed for neighboring image pixels are also adjacent to each other, and it is
often cheaper to fetch adjacent items from memory than scattered items. Nevertheless,
trilinear filtering requires accessing and blending eight texels, which is quite a lot for soft-
ware engines without dedicated texture units, so the mobile 3D APIs allow approximating
full trilinear filtering with a bilinear filtering at the closest mipmap level.

In general, point sampling is faster than bilinear filtering, whereas bilinear filtering gives
higher-quality results. However, if you want to map texels directly to pixels so they have
the same size (so that neither minification nor magnification is used) and the s-direction
aligns with screen x and t with y, point sampling yields both faster and better results.

Bilinear filtering can also be leveraged for post-processing effects. Figure 3.14 demon-
strates a light bloom effect, where the highlights of a scene are rendered into a separate
image. This image is then repeatedly downsampled by using bilinear filtering, averaging
four pixels into one in each pass. Finally, a weighted blend of the downsampled versions is
composited on top of the normal image, achieving the appearance of bright light outside
of the window.

In desktop OpenGL there are some additional filtering features that are not available in
the current versions of the mobile APIs. They include level of detail (LOD) parameters
for better control of the use and memory allocation of mipmap levels, and anisotropic
filtering for surfaces that are slanted with respect to the camera viewing direction.

Texture borders and linear interpolation

The original OpenGL clamps texture coordinates to [0, 1], which gives problems for tex-
ture filtering. Let us see what happens at (s, t) = (0, 0). It lies at the lower left corner of
the lower leftmost texel, and bilinear interpolation should return the average of that texel
and its west, south, and southwest neighbors. The problem is that those neighbors do
not exist.

To overcome this problem, one could add a one-texel-wide boundary or border around
the texture map image to provide the required neighbors for correct filtering. However,
the introduction of the clamp-to-edge mode mostly removes the need of such neighbors.
This mode clamps the texture coordinates to [min, max] where min = 1/(2N) and max =
1 − min, and N is either the width or height of the texture map. As a result, borders were
dropped from OpenGL ES.

S E C T I O N 3 . 4 RASTERIZATION 79

10% 15% 34% 60%

128 3 128 64 3 64 32 3 32 16 3 16

1

F igure 3.14: Rendering a light bloom effect by blurring the highlights and compositing on top of the
normal scene. Images copyright AMD. (See the color plate.)

There is one case where the border would be useful, however: if a larger texture map
should be created from several smaller ones, and filtering across them should work cor-
rectly. The triangle corners would have texture coordinate values of 0 or 1, and the borders
would be copied from the neighboring texture maps. However, you can emulate that even
without borders. First, create texture maps so that they overlap by one texel. Then set the
texture coordinates of the neighboring triangles to 1/N or 1 − 1/N instead of 0 or 1. Now
the texture maps filter correctly and blend to each other seamlessly.

Note that borders are never needed with the repeat mode, since if a neighboring texel that
would be outside of the texture image is needed, it is fetched from the other side of the
same image. If you do not intend to repeat your textures, enabling the repeat mode may
create artifacts on the boundary pixels as the colors may bleed from the other side of the
texture at the boundaries. Therefore you should not use the repeat mode if clamp-to-edge
is sufficient.

Texture formats and functions

Depending on the texture pixel format and blending function, the fragment’s base color,
that is interpolated from the vertices, is replaced with, modulated by, or otherwise com-
bined with the filtered texel.

80 LOW-LEVEL RENDERING C H A P T E R 3

The most versatile of the texture formats is RGBA, a four-channel texture image. The RGB
format stores only the color but no alpha value. If all the color channels have the same
value, we can save space and use only a single luminance channel L. Finally, we can have
one-channel alpha A, or combine luminance and alpha into LA.

Now as we describe the texture functions, also known as texture blending functions or
modes, we define the interpolated fragment color and alpha as Cf and Af, the texture
source color and alpha as Cs and As, and the user-given constant color as Cc and Ac. See
Figure 3.15 for an example of using each mode. The texture function and the constant
color together comprise the texture environment. Note that these attributes are set sepa-
rately for each texture unit.

With the REPLACE function, the texture source data replaces the fragment color and/or
alpha. RGBA and LA formats produce (Cs, As), L and RGB formats give (Cs, Af), and A
format yields (Cf, As).

With the MODULATE function, the source data modulates the fragment data through
multiplication. RGBA and LA formats produce (CfCs, Af As), L and RGB formats give
(Cf Cs, Af), and A format yields (Cf, Af As).

The DECAL function can be only used with RGB and RGBA formats. The color of the
underlying surface is changed, but its transparency (alpha) is not affected. With RGB the
color is simply replaced (Cs, Af), but RGBA blends the fragment and texture colors using
the texture alpha as the blending factor (Cf (1 − As) + CsAs, Af).

The BLEND function modulates alpha through multiplication, and uses the texture color
to blend between the fragment color and user-given constant color. RGBA and LA formats
produce (Cf (1 − Cs) + CcCs, Af As), L and RGB formats give (Cf (1 − Cs) + CcCs, Af),
and A format yields (Cf, Af As).

Finally, the ADD function modulates alpha and adds together the fragment and texture
source colors. RGBA and LA formats produce (Cf + Cs, Af As), L and RGB formats give
(Cf + Cs, Af), and A format yields (Cf, Af As).

Multitexturing

A 3D engine may have several texturing units, each with its own texture data format,
function, matrix, and so on. By default, the input fragment color is successively combined
with each texture according to the state of the corresponding unit, and the resulting color
is passed as input to the next unit, until the final output goes to the next stage of 3D
pipeline, i.e., tests and blending.

On OpenGL ES 1.1, it is possible to use more powerful texture combiner functions.
A separate function can be defined for the RGB and alpha components. The inputs to
the function can come either from the texture map of the current unit, from the original
fragment color, from the output of the previous unit, or it can be the constant user-
defined color (Cc, Ac). The functions allow you to add, subtract, multiply, or interpolate

S E C T I O N 3 . 4 RASTERIZATION 81

F igure 3.15: The effect of different texture functions. At the top, incoming fragment colors (left) and texture (right); trans-
parency is indicated with the checkerboard pattern behind the image. Bottom: resulting textures after each texture operation;
left to right: REPLACE, MODULATE, DECAL, BLEND, ADD. For the BLEND mode, the user-defined blending color is pure yellow.
(See the color plate.)

the inputs, and even take a texel-wise dot product, which can be used for per-pixel
lighting effects.

With multiple texture units it is useful to separate which part of the texture mapping
state belongs to each texturing unit, and which part belongs to each texture object. A
texture object contains the texture image data, the format that the data is in, and the fil-
tering parameter (such as clamp-to-edge or repeat). Each texturing unit, on the other

82 LOW-LEVEL RENDERING C H A P T E R 3

hand, includes a currently bound texture object, a texture blending function, a user-given
constant color (Cc, Ac), a texture matrix that is applied to texture coordinates, and a
pointer to texture coordinates of the unit.

3.4.2 INTERPOLATING GRADIENTS

The simplest way to spread the values at vertices across triangles is to choose the values
at one of the vertices and assign the same value to every fragment within the triangle. In
OpenGL this is called flat shading, since the triangle will then have a constant color, the
color calculated when shading the first vertex of the triangle. Although fast to compute,
this results in a faceted look. Much better results can be obtained when the vertex values
are interpolated.

Screen linear interpolation

Screen linear interpolation projects the vertices to the frame buffer, finds the target pixels,
and linearly interpolates the associated values such as colors and texture coordinates to the
pixels between the vertices. We can express this using so-called barycentric coordinates. If
we take any a, b, and c such that they sum up to one, the point p = apa + bpb + cpc will lie
on the plane defined by the three points pa, pb, and pc, and if none of a, b, c are negative,
then p lies within the triangle formed by the three points. We can use the same weights to
blend the values at triangle corners to get a linearly interpolated value for any pixel within
the triangle:

f = afa + bfb + cfc (3.5)

where fa, fb, and fc are the values at triangle corners, and f is the interpolated value.

Many graphics systems interpolate vertex colors this way as it produces smoothly varying
shading where the triangulated nature of the underlying surface is far less obvious than
with flat shading. However, linear interpolation on the screen space ignores perspective
effects such as foreshortening. While vertices are projected correctly, the values on the
pixels between them are not. Figure 3.16 shows two squares (pairs of triangles) that

F igure 3.16: A square made of two triangles, with a grid pattern, seen in perspective. For the first
square the grid pattern is interpolated in screen space. The center vertical bar on the upper triangle
goes from the center of the upper edge to the center of the diagonal, and continues to the center of
the lower edge of the lower triangle. For the second square the interpolation is perspective-correct,
and the center vertical bar remains straight.

S E C T I O N 3 . 4 RASTERIZATION 83

are tilted with respect to the camera, and the errors caused by screen linear interpolation.
The grid pattern on the squares makes the effect obvious. The vertical lines, which appear
straight on the right image, are broken in the left one. The center of the square interpolates
to the middle of the diagonal, and when that is connected to the middle of the top edge
and of the bottom edge, the bar does not make a straight line.

Perspective-correct interpolation

The fragments on the square on the right have been interpolated in a perspective-correct
manner. The key to do this is to delay the perspective division of homogeneous coordi-
nates until after the interpolation. That is, linearly interpolate both f/w and 1/w, where
f is the value and w is the last component of the homogeneous coordinate, then recover
the perspective-correct value by dividing the interpolated f/w by the interpolated 1/w,
yielding

f =
afa/wa + bfb/wb + cfc/wc

a/wa + b/wb + c/wc
. (3.6)

If we add another projection to the system—that is, projective texture mapping—we also
need to bring q into the equation:

f =
afa/wa + bfb/wb + cfc/wc

aqa/wa + bqb/wb + cqc/wc
. (3.7)

Perspective-correct interpolation is clearly quite expensive: it implies more interpolation
(also the 1/w term), but even worse, it implies a division at each fragment. These opera-
tions require either extra processing cycles or more silicon.

Because of its impact to performance, some software-based engines only do perspective-
correct interpolation for texture coordinates; other values are interpolated linearly in
screen space. Another approach is based on the fact that if the triangles are very small—
only a few pixels in image space—the error due to screen linear interpolation becomes
negligible. Reasonably good results can be achieved by doing the perspective-correct inter-
polation only every few screen pixels, and by linearly interpolating between those samples.
Many software implementations achieve this by recursively subdividing triangles. If done
at the application level, this is likely to be slow, but can be made reasonably fast if imple-
mented inside the graphics engine.

3.4.3 TEXTURE-BASED LIGHTING

There are several ways to do high-quality lighting effects using texture maps. The basic
OpenGL lighting is performed only at vertices, and using a relatively simple lighting
model. Using texture mapping it is possible to get per-pixel illumination using arbitrary
lighting models.

The simplest situation is if the lighting of the environment is static and view-independent,
that is, if the lighting is fixed and we only have diffuse lighting. Then one can bake

84 LOW-LEVEL RENDERING C H A P T E R 3

in the illumination either to vertex colors or to texture maps. This is done so that the
environment and the light sources are modeled, and then rendered using a high-quality
but perhaps non–real-time method such as raytracing or radiosity calculations. One could
even take photographs of real environments or model environments with real lighting and
use those as texture maps. The illuminated surfaces are then copied to the texture maps
which are used in the real-time application.

Below we describe various approaches of using texture maps to provide advanced lighting
effects. Figure 3.17 illustrates several of them. From top left, the first image shows dot3
bump mapping that gives an illusion of higher geometric detail on the barrel and walls
that are affected by the main light source. The next image shows a projective spot light,

F igure 3.17: Several passes of a scene: bump mapping, projective lighting (using the circular light map on left middle),
adding environment map reflection to the barrel (the cube map at left bottom), adding shadows, final image. Image copyright
AMD. (See the color plate.)

S E C T I O N 3 . 4 RASTERIZATION 85

using the light map on the left middle. Top right adds an environment map that reflects
the light from the lamp from the surface of the barrel; the environment map is shown at
bottom left. The bottom middle image adds shadows, and the last image shows the final
image with all lighting effects combined.

Light mapping

Often you might want to reuse the same texture maps, e.g., a generic floor, a wall panel, or
ceiling, for different parts of your scene, but those different areas have different lighting.
Then you can use light maps that can usually be in a much lower resolution than the
texture map. The light maps are used to attenuate the texture maps (for white light) or
modulate them (for colored light) using multitexturing. The advantage over baking in is
the potential savings in storage space, and the possibility of having more dynamic lighting
effects. However, you need to have at least two texturing units, or you have to render the
object in two passes and suffer a significant speed penalty.

For moving lights, the light maps have to be generated on the fly. For simple scenes you
may be able to just project the polygons into the same space as the light, and calculate the
lighting equation directly into a corresponding texture map.

Projective lighting

It is possible to use projective texture mapping to project a light pattern such as using a
slide projector [SKv+92]. The texture map is usually an intensity map that looks like a
cross section of a spot light’s beam, often a bright circle that falls off to the boundaries.
Since projecting light out is the inverse of a camera projection where light projects into
the camera from the scene, it should be no surprise that the mathematics are quite simi-
lar. Whereas with a camera you project the scene vertices into the frame buffer, you now
project them into a texture map so you find which part of the texture projects to which
vertex. This is done by first copying the object-space vertex locations into texture coordi-
nates, and then accumulating a transformation into the texture matrix, as follows.

First, the texture coordinates need to be transformed from object space into the world
coordinate system. Then you need to use a similar transformation as with the camera
to transform the vertices into the “eye coordinates” of the spot light. This is followed by
an application of a similar perspective projection matrix as with the camera. The last
step is to apply a bias matrix that maps the (s, t) coordinates from the [−1, 1] range
to [0, 1], which covers the spot light texture. These transformations happen at vertices,
and the final division by q is done, as discussed before, during the rasterization for
each fragment.

Let us check how the bias step works. Assume that after projection, we have an input texture

coordinate
[−q q 0 q

]T
. Without applying the bias, this would yield [−1 1 0 1]T,

86 LOW-LEVEL RENDERING C H A P T E R 3

that is, s = −1 and t = 1. To turn that into s = 0 and t = 1, we need to scale and translate
the coordinates by 1

2 :

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2

0 0
1
2

0
1
2

0
1
2

0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
−q

q

0

q

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

q

0

q

⎤
⎥⎥⎥⎦ . (3.8)

This matrix ensures that (s, t) will always span the range [0, 1] after the homogeneous
division. The third row can be zero as the third texture coordinate is ignored. To summa-
rize, the complete texture matrix T is as follows:

T = B P Mwe Mow, (3.9)

where Mow is the transformation from object coordinates to world coordinates, Mwe
is the transformation from world space to the eye space of the spot light, P is the spot
light projection matrix, and B is the the bias matrix with a scale and offset shown in
Equation (3.8).

Ambient occlusion

Another technique that improves the quality of shading is ambient occlusion [Lan02],
derived from accessibility shading [Mil94]. Uniform ambient lighting, as discussed pre-
viously, is not very useful as it strips away all the shape hints. However, a very useful hint
of the local shape and shadowing can be obtained by estimating the fraction of the light
each surface point is likely to receive. One way to estimate that is to place a relatively large
sphere around a point, render the scene from the surface point, and store the fraction of
the surrounding sphere that is not occluded by other objects. These results are then stored
into an ambient occlusion map which, at rendering time, is used to modulate the amount
of light arriving to the surface. Figure 3.18 shows an ambient occlusion map on a polygon
mesh. The effect is that locations under other objects get darker, as do indentations in the
surface. Note that the creation of this map is typically done off-line and is likely to take
too long to be used interactively for animated objects.

Environment mapping

Environment mapping is a technique that produces reflections of the scene on very shiny
objects. The basic idea involves creating an image of the scene from the point of view of the
reflecting object. For spherical environment mapping one image is sufficient; for parabolic
mapping two images are needed; and for cube maps six images need to be created. Then,
for each point, the direction to the camera is reflected about the local normal vector, and
the reflected ray is used to map the texture to the surface.

S E C T I O N 3 . 4 RASTERIZATION 87

F igure 3.18: A mesh rendered using just an ambient occlusion map without any other shading. The
areas that are generally less exposed to light from the environment are darker. Image courtesy of
Janne Kontkanen.

Spherical environment maps are view-dependent and have to be re-created for each new
eye position. Dual paraboloid mapping [HS98] is view-independent but requires two tex-
turing units or two passes. Cube mapping (Figure 3.19) is the easiest to use, and the easiest
to generate the texture maps for: just render six images from the center of the object (up,
down, and to the four sides). However, cube mapping is not included in the first genera-
tion of mobile 3D APIs.

Besides reflections, you can also do diffuse lighting via environment mapping [BN76].
If you filter your environment map with a hemispherical filter kernel, you can use the
surface normal directly to index into the environment map and get cheap per-pixel diffuse
lighting. This saves you from having to compute the reflection vector—you just need to
transform the surface normals into world space, which is easily achieved with the texture
matrix.

Texture lighting does not end with environment mapping. Using multiple textures as
lookup tables, it is possible to approximate many kinds of complex reflectance func-
tions at interactive rates [HS99]. The details are beyond the scope of this book, but these

88 LOW-LEVEL RENDERING C H A P T E R 3

F igure 3.19: An environment cube map (right) and refraction map (center) used to render a well. (Image copyright c©
AMD.) (See the color plate.)

techniques achieve much more realistic shading than is possible using the built-in lighting
model.

3.4.4 FOG

In the real world, the air filters the colors of a scene. Faraway mountains tend to seem
bluish or grayish, and if there is fog or haze, objects get mixed with gray before disappear-
ing completely. OpenGL has support for a simple atmospheric effect called fog. Given
a fog color, objects close to the camera have their own color, a bit farther away they get
mixed with the fog color, and yet farther away they are fully covered by the fog.

There are three functions for determining the intensity of the fog: linear, exponential, and
square exponential. Linear fog is easy to use: you just give a starting distance before which
there is no fog, and an ending distance after which all objects are covered by fog. The
fraction of the fragment color that is blended with the fog color is

f =
end − z

end − start
; (3.10)

where z is the distance to the fragment along the z axis in eye coordinates, start is the
fog start distance, and end is the fog end distance. The result is clamped to [0, 1]. Linear

S E C T I O N 3 . 4 RASTERIZATION 89

fog is often used for simple distance cueing, but it does not correspond to real-life fog
attenuation. A real homogeneous fog absorbs, say, 10% of the light for every 10 meters.
This continuous fractional attenuation corresponds to the exponential function, which
OpenGL supports in the form of

f = e−dz, (3.11)

where d is a user-given density, a nonnegative number. Real fog is not truly homogeneous
but its density varies, so even the exponential function is an approximation. OpenGL also
supports a squared exponential version of fog:

f = e−(dz)2
. (3.12)

This function has no physical meaning; it simply has an attenuation curve with a different
shape that can be used for artistic effect. In particular, it does not correspond to double
attenuation due to light traversing first to a reflective surface and then reflecting back to
the observer, as some sources suggest. With large values of d both the exponential (EXP)
and the squared exponential (EXP2) fog behave fairly similarly; both functions approach
zero quite rapidly. However, at near distances, or with small density values, as shown in
Figure 3.20, the functions have different shapes. Whereas EXP begins to attenuate much
more sharply, EXP2 first attenuates more gradually, followed by a sharper fall-off before
flattening out, and often produces a better-looking blend of the fog color.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

LINEAR

EXP2

EXP

F igure 3.20: Fog functions. In this example, LINEAR fog starts from 20 and ends at 70, EXP and
EXP2 fogs both have d = 1/50. LINEAR is the easiest to control, but produces sharp transitions. EXP
corresponds to the attenuation by a uniformly distributed absorbing material, such as real fog, but
gives less control as the attenuation in the beginning is always so severe. EXP2 can sometimes give
the esthetically most pleasing results.

90 LOW-LEVEL RENDERING C H A P T E R 3

Performance tip: A common use of fog is really a speed trick to avoid having to draw
too many objects in a scene. If you use fog that obscures the faraway objects, you can
skip drawing them entirely, which brings frame rates up. The distance to the complete
fog and to the far viewing plane should be aligned: if you use linear fog, place the far
viewing plane slightly beyond the fog end distance, or with exponentials to a distance
where the fog contributes over 99% or so.

Pitfall: Implementations are allowed to perform the fog calculations at the vertices, even
though fog really should be calculated at every pixel. This may yield artifacts with large
triangles. For example, even if you select a nonlinear (exponential or double exponen-
tial) fog mode, it may be interpolated linearly across the triangle. Additionally, if the
triangle extends beyond the far plane and is clipped, the vertex introduced by clipping
may have a completely incorrect fog intensity.

3.4.5 ANTIALIASING

The frame buffer consists of pixels that are often thought of as small squares.1 When
a polygon edge is rasterized in any angle other than horizontal or vertical, the pixels can
only approximate the smooth edge by a staircase of pixels. In fact, there is a range of slopes
that all produce, or alias to, the same staircase pattern. To make the jagged pixel pattern
less obvious, and to disambiguate those different slopes, one can blend the foreground
and background colors of the pixels that are only partially covered by the polygon. This
is called antialiasing, and is illustrated in Figure 3.21.

Since optimal antialiasing needs to take into account human visual perception, charac-
teristics of the monitor on which the final image is displayed, as well as the illumination
surrounding the monitor, most 3D graphics APIs do not precisely define an antialiasing
algorithm. In our graphics pipeline diagram (Figure 3.1), antialiasing relates to the “cov-
erage generation” and “multisampling” boxes.

F igure 3.21: A square grid cannot accurately represent slanted edges; they can only be approxi-
mated with a staircase pattern. However, blending the foreground and the background at the partially
covered pixels makes the staircase pattern far less obvious.

1 Although there are good arguments why that is not the right view [Smi95].

S E C T I O N 3 . 4 RASTERIZATION 91

Edge antialiasing

When rasterizing straight edges, it is fairly trivial to calculate the coverage of the polygon
over a pixel. One could then store the coverage value [0, 1] to the alpha component of the
fragment, and use a later blending stage to mix the polygon color with the background
color. This edge antialiasing approach can do an acceptable job when rendering line draw-
ings, but it has several drawbacks. Think about the case where two adjacent polygons
jointly fully cover a pixel such that each individually covers only half of it. As the first
polygon is drawn, the pixel gets 50% of the polygon color, and 50% of the background
color. Then the second polygon is drawn, obtaining 75% of the polygon’s color, but still
25% background at the seam. There are tricks that mark the outer edges of a contin-
uous surface so this particular problem can be avoided, but this is not always possible.
For example, if a polygon penetrates through another, the penetration boundary is inside
the two polygons, not at their edges, edge antialiasing does not work, and the jaggies are
fully visible.

Full-scene antialiasing

Edge antialiasing only works at the edges of primitives, but jaggies can happen also at
intersections of polygons. The depth buffer is resolved at a pixel level, and if a blue triangle
pokes through a white one, the jagged intersection boundary is clearly visible. Full-scene
antialiasing (FSAA) can correctly handle object silhouettes, adjacent polygons, and even
intersecting polygons. Whereas edge antialiasing can be turned on or off per primitive,
FSAA information is accumulated for the duration of the whole frame, and the samples
are filtered in the end.

There are two main approaches for FSAA, supersampling and multisampling. The basic
idea of supersampling is simply to first rasterize the scene at higher resolution using point
sampling, that is, each primitive affects the pixel if one point such as the center of a pixel is
covered by the object. Once the frame is complete, the higher resolution image is filtered
down, perhaps using a box filter (simple averaging) or Gaussian or sinc filters that tend to
give better results but require more samples and work [GW02]. This is a very brute force
approach, and the processing and memory requirements increase linearly by the number
of samples per pixel.

Multisampling approximates supersampling with a more judicious use of resources. At
each pixel, the objects are sampled several times, and various information such as color
and depth may be stored at each sample. The samples coming from the same primitive
often sample the textured color only once, and store the same value at each sample. The
depth values of the samples, on the other hand, are typically computed and stored sepa-
rately. The OpenGL specification leaves lots of room to different antialiasing approaches;
some implementations may even share samples with their neighboring pixels, sometimes
gaining better filtering at the cost of image sharpness.

92 LOW-LEVEL RENDERING C H A P T E R 3

Other types of aliasing

There are other sources of aliasing in 3D graphics beyond polygon rasterization. They can
also usually be remedied by denser sampling followed by filtering, as is done with pixels in
FSAA. Examples of other aliasing artifacts include approximating area light sources with
point lights, where using only a few may create artifacts.

Sampling a moving object at discrete times may produce temporal aliasing—the familiar
effect where the spokes of a wheel appear to rotate backward. The eye would integrate
such motion into a blur; this can be simulated by rendering the animation at a higher
frame rate and averaging the results into motion blur.

3.5 PER-FRAGMENT OPERATIONS

Each pixel, from the point of view of memory and graphics hardware, is a collection of bits.
If the corresponding bits are viewed as a collection over the frame buffer, they are called
bitplanes, and some of those bitplanes are in turn combined into logical buffers such as the
back color buffer (usually RGB with or without alpha), depth buffer, and stencil buffer.

After the fragments have been generated by the rasterization stage, there are still several
operations that can be applied to them. First, there is a sequence of tests that a fragment
is subjected to, using either the fragment location, values generated during rasterization,
or a value stored in one of the logical buffers.

A blending stage then takes the incoming color and blends it with the color that already
exists at the corresponding pixel. Dithering may change the color values to give an illusion
of a greater color depth than what the frame buffer really has. Finally, a logical operation
may be applied between the incoming fragment’s color and the existing color in the frame
buffer.

3.5.1 FRAGMENT TESTS

There are four different tests that a fragment can be subjected to before blending and
storing into frame buffer. One of them (scissor) is based on the location of the fragment,
while the rest (alpha, stencil, depth) compare two values using a comparison function
such as LESS (<), LEQUAL (≤), EQUAL (=), GEQUAL (≥), GREATER (>), NOTEQUAL
(�=), or accept (ALWAYS) or reject (NEVER) the fragment regardless of the outcome of
the comparison.

Scissor test

The scissor test simply determines whether the fragment lies within a rectangular scissor
rectangle, and discards fragments outside that rectangle. With scissoring you can draw
the screen in several stages, using different projection matrices. For example, you could

S E C T I O N 3 . 5 PER-FRAGMENT OPERATIONS 93

first draw a three-dimensional view of your world using a perspective projection matrix,
and then render a map of the world on the side or corner of the screen, controlling the
drawing area with a scissor rectangle.

Alpha test

The alpha test compares the alpha component of the incoming fragment with a user-
given reference or threshold value, and based on the outcome and the selected comparison
function either passes or rejects the fragment. For example, with LESS the fragment is
accepted if the fragment’s alpha is less than the reference value.

One use case for alpha test is rendering transparent objects. In the first pass you can draw
the fully opaque objects by setting the test to EQUAL 1 and rendering the whole scene,
and then in the second pass draw the scene again with blending enabled and setting the
test to NOTEQUAL 1.

Another use is to make real holes to textured objects. If you use a texture map that modifies
the fragment alpha and sets it to zero, the pixel may be transparent, but the depth value
is still written to the frame buffer. With alpha test LESS 0.1 fragments with alpha smaller
than 0.1 will be completely skipped, creating a hole.

Stencil test

The stencil test can only be performed if there is a stencil buffer, and since every additional
buffer uses a lot of memory, not all systems provide one. The stencil test conditionally
discards a fragment based on the outcome of a comparison between the pixel’s stencil
buffer value and a reference value. At its simplest, one can initialize the stencil buffer with
zeros, paint an arbitrary pattern with ones, and then with NOTEQUAL 0 draw only within
the stencil pattern. However, if the stencil pattern is a simple rectangle, you should use
scissor test instead and disable stencil test since scissoring is much faster to execute.

Before using the stencil test some values must be drawn into the stencil buffer. The buffer
can be initialized to a given value (between zero and 2s − 1 for an s bit stencil buffer), and
one can draw into the stencil buffer using a stencil operator. One can either KEEP the
current value, set it to ZERO, REPLACE it with the reference value, increment (INCR) or
decrement (DECR) with saturation or without saturation (INCR_WRAP, DECR_WRAP),
or bitwise INVERT the current stencil buffer value. The drawing to the stencil buffer can
be triggered by a failed stencil test, a failed depth test, or a passed depth test.

Some more advanced uses of stencil test include guaranteeing that each pixel is drawn
only once. If you are drawing a partially transparent object with overlapping parts, the
overlapping sections will appear different from areas with no overlap. This can be fixed
by clearing the stencil buffer to zeros, drawing only to pixels where the stencil is zero, and
replacing the value to one when you draw (KEEP operation for stencil fail, REPLACE for

94 LOW-LEVEL RENDERING C H A P T E R 3

both depth fail and pass). A very advanced use case for stenciling is volumetric shadow
casting [Hei91].

Depth test

Depth testing is used for hidden surface removal: the depth value of the incoming frag-
ment is compared against the one already stored at the pixel, and if the comparison
fails, the fragment is discarded. If the comparison function is LESS only fragments with
smaller depth value than already in the depth buffer pass; other fragments are discarded.
This can be seen in Figure 3.2, where the translucent object is clipped to the depth values
written by the opaque object. The passed fragments continue along the pipeline and are
eventually committed to the frame buffer.

There are other ways of determining the visibility. Conceptually the simplest approach is
the painter’s algorithm, which sorts the objects into a back-to-front order from the camera,
and renders them so that a closer object always draws over the previous, farther objects.
There are several drawbacks to this. The sorting may require significant extra time and
space, particularly if there are a lot of objects in the scene. Moreover, sorting the prim-
itives simply does not work when the primitives interpenetrate, that is, a triangle pokes
through another. If you instead sort on a per-pixel basis using the depth buffer, visibility
is always resolved correctly, the storage requirements are fixed, and the running time is
proportional to the screen resolution rather than the number of objects.

With depth buffering it may make sense to have at least a partial front-to-back rendering
order, the opposite that is needed without a depth buffer. This way most fragments that
are behind other objects will be discarded by the depth test, avoiding a lot of useless frame
buffer updates. At least blending and writing to the frame buffer can be avoided, but
some engines even perform texture mapping and fogging only after they detect that the
fragment survives the depth test.

Depth offset

As already discussed in Section 2.5.1, the depth buffer has only a finite resolution. Deter-
mining the correct depth ordering for objects that are close to each other but not close to
the near frustum plane may not always be easy, and may result in z-fighting, as shown in
Figure 2.11. Let us examine why this happens.

Figure 3.22 shows a situation where two surfaces are close to each other, and how the
distance between them along the viewing direction increases with the slope or slant of the
surfaces. Let us interpret the small squares as pixel extents (in the horizontal direction as
one unit of screen x, in the vertical direction as one unit of depth buffer z), and study the
image more carefully. On the left, no matter where on the pixel we sample the surfaces, the
lower surface always has a higher depth value, but at this z-resolution and at this particular
depth, both will have the same quantized depth value. In the middle image, if the lower
surface is sampled at the left end of the pixel and the higher surface at the right end, they

S E C T I O N 3 . 5 PER-FRAGMENT OPERATIONS 95

z

x

z

x

z

x

F igure 3.22: The slope needs to be taken into account with polygon offset. The two lines are two
surfaces close to each other, the arrow shows the viewing direction, and the coordinate axes illustrate
x and z axis orientations. On the left, the slope of the surfaces with respect to the viewing direction
is zero. The slope grows to 1 in the middle, and to about 5 on the right. The distance between the
surfaces along the viewing direction also grows as the slope increases.

will have the same depth. On the rightmost image, the depth order might be inverted
depending on where the surfaces are evaluated. In general, due to limited precisions in the
depth buffer and transformation arithmetic, if two surfaces are near each other, but have
different vertex values and different transformations, it is almost random which surface
appears in the front at any given pixel.

The situation in Figure 2.11 is contrived, but z-fighting can easily occur in real applica-
tions, too. For example, in a shooter game, after you spray a wall with bullets, you may
want to paint bullet marks on top of the wall. You would try to align the patches with the
wall, but want to guarantee that the bullet marks will resolve to be on top. By adding a
polygon offset, also known as depth offset, to the bullet marks, you can help the rendering
engine to determine the correct order. The depth offset is computed as

d = m · factor + units, (3.13)

where m is the maximum depth slope of the polygon, computed by the rendering engine
for each polygon, while factor and units are user-given constants.

3.5.2 BLENDING

Blending takes the incoming fragment color (the source color) and the current value in
the color buffer (the destination color) and mixes them. Typically the value in the alpha
channel determines how the blending is done.

Some systems do not reserve storage for alpha in the color buffer, and do not therefore
support a destination alpha. In such a case, all computations assume the destination alpha
to be 1, allowing all operations to produce meaningful results. If destination alpha is sup-
ported, many advanced compositing effects become possible [PD84].

96 LOW-LEVEL RENDERING C H A P T E R 3

Two interpretations of alpha

The transparency, or really opacity (alpha = 1 typically means opaque, alpha = 0, transpar-
ent) described by alpha has two different interpretations, as illustrated in Figure 3.23. One
interpretation is that the pixel is partially covered by the fragment, and the alpha denotes
that coverage value. Both in the leftmost image and in the middle image two triangles
each cover about one-half of the pixel. On the left the triangle orientations are indepen-
dent from each other, and we get the expected coverage value of 0.5 + 0.5 · 0.5 = 0.75,
as the first fragment covers one-half, and the second is expected to cover also one-half of
what was left uncovered. However, if the triangles are correlated, the total coverage can
be anything between 0.5 (the two polygons overlap each other) and 1.0 (the two triangles
abut, as in the middle image).

The other interpretation of alpha is that a pixel is fully covered by a transparent film that
adds a factor of alpha of its own color and lets the rest (one minus alpha) of the existing
color to show through, as illustrated on the right of Figure 3.23. In this case, the total
opacity is also 1 − 0.5 · 0.5 = 0.75.

These two interpretations can also be combined. For example, when drawing transparent,
edge-antialiased lines, the alpha is less than one due to transparency, and may be further
reduced by partial coverage of a pixel.

Blend equations and factors

The basic blend equation adds the source and destination colors using blending factors,
producing C = CsS + CdD. The basic blending uses factors (S, D) =(SRC_ALPHA,
ONE_MINUS_SRC_ALPHA). That is, the alpha component of the incoming fragment
determines how much of the new surface color is used, e.g., 0.25, and the remaining

F igure 3.23: Left: Two opaque polygons each cover half of a pixel, and if their orientations are
random, the chances are that 0.75 of the pixel will be covered. Center: If it is the same polygon
drawn twice, only half of the pixel should be covered, whereas if the polygons abut as in the image,
the whole pixel should be covered. Right: Two polygons with 50% opacity fully cover the pixel, creating
a compound film with 75% opacity.

S E C T I O N 3 . 5 PER-FRAGMENT OPERATIONS 97

portion comes from the destination color already in the color buffer, e.g., 1.0 − 0.25 =
0.75. This kind of blending is used in the last image in Figure 3.2.

There are several additional blending factors that may be used. The simplest ones are
ZERO and ONE where all the color components are multiplied with 0 or 1, that is,
either ignored or taken as is. One can use either the destination or source alpha, or
one minus alpha as the blending factor (SRC_ALPHA, ONE_MINUS_SRC_ALPHA,
DST_ALPHA, ONE_MINUS_DST_ALPHA). Using the ONE_MINUS version flips the
meaning of opacity to transparency and vice versa.

With all the factors described so far, the factors for each of the R, G, B, and A channels
are the same, and they can be applied to both source or destination colors. However, it is
also possible to use the complete 4-component color as the blending factor, so that each
channel gets a unique factor. For example, using SRC_COLOR as the blending factor for
destination color produces (RsRd, GsGd, BsBd, AsAd). In OpenGL ES, SRC_COLOR and
ONE_MINUS_SRC_COLOR are legal blending factors only for destination color, while
DST_COLOR and ONE_MINUS_DST_COLOR can only be used with the source color.
Finally, SRC_ALPHA_SATURATE can be used with the source color, producing a blend-
ing factor (f, f, f, 1) where f = min(As, 1 − Ad).

Here are some examples of using the blending factors. The default rendering that does not
use blending is equivalent to using (ONE, ZERO) as the (src, dst) blending factors. To add
a layer with 75% transparency, use 0.25 as the source alpha and select the (SRC_ALPHA,
ONE_MINUS_SRC_ALPHA) blending factors. To equally mix n layers, set the factors to
(SRC_ALPHA, ONE) and render each layer with alpha = 1/n. To draw a colored filter on
top of the frame, use (ZERO, SRC_COLOR).

A later addition to OpenGL, which is also available in some OpenGL ES implementa-
tions through an extension,2 allows you to subtract CsS from CdD and vice versa. Another
extension3 allows you to define separate blending factors for the color (RGB) and alpha
components.

Rendering transparent objects

OpenGL renders primitives in the same order as they are sent to the engine. With depth
buffering, one can use an arbitrary rendering order, as the closest surface will always
remain visible. However, for correct results in the presence of transparent surfaces in
the scene, the objects should be rendered in a back-to-front order. On the other hand,
this is usually the slowest approach, since pixels that will be hidden by opaque objects
are unnecessarily rendered. The best results, in terms of both performance and quality,
are obtained if you sort the objects, render the opaque objects front-to-back with depth

2 OES_blend_subtract

3 OES_blend_func_separate

98 LOW-LEVEL RENDERING C H A P T E R 3

testing and depth writing turned on, then turn depth write off and enable blending, and
finally draw the transparent objects in a back-to-front order.

To see why transparent surfaces need to be sorted, think of a white object behind blue
glass, both of which are behind red glass, both glass layers being 50% transparent. If you
draw the blue glass first (as you should) and then the red glass, you end up with more red
than blue: (0.75, 0.25, 0.5), whereas if you draw the layers in opposite order you get more
blue: (0.5, 0.25, 0.75).

As described earlier, if it is not feasible to separate transparent objects from opaque objects
otherwise, you can use the alpha test to render them in two passes.

Multi-pass rendering

The uses of blending are not limited to rendering translucent objects and compositing
images on top of the background. Multi-pass rendering refers to techniques where objects
and materials are synthesized by combining multiple rendering passes, typically of the
same geometry, to achieve the final appearance. Blending is a fundamental requirement
for all hardware-accelerated multi-pass rendering approaches, though in some cases the
blending machinery of texture mapping units can be used instead of the later blending
stage.

An historical example of multi-pass rendering is light mapping, discussed in Section 3.4.3:
back in the days of old, when graphics hardware only used to have a single texture unit,
light mapping could be implemented by rendering the color texture and light map tex-
ture as separate passes with (DST_COLOR, ZERO) or (ZERO, SRC_COLOR) blend-
ing in between. However, this is the exact same operation as combining the two using
a MODULATE texture function, so you will normally just use that if you have multi-
texturing capability.

While multi-texturing and multi-pass rendering can substitute for each other in simple
cases, they are more powerful combined. Light mapping involves the single operation AB,
which is equally doable with either multi-texturing or multi-pass rendering. Basically, any
series of operations that can be evaluated in a straightforward left-to-right order, such
as AB + C, can be decomposed into either texturing stages or rendering passes. More
complex operations, requiring one or more intermediate results, can be decomposed into
a combination of multi-texturing and multi-pass rendering: AB + CD can be satisfied
with two multi-textured rendering passes, AB additively blended with CD.

While you can render an arbitrary number of passes, the number of texture units quickly
becomes the limiting factor when proceeding toward more complex shading equations.
This can be solved by storing intermediate results in textures, either by copying the frame
buffer contents after rendering an intermediate result or by using direct render-to-texture
capability.

Multi-pass rendering, at least in theory, makes it possible to construct arbitrarily complex
rendering equations from the set of basic blending and texturing operations. This has

S E C T I O N 3 . 5 PER-FRAGMENT OPERATIONS 99

been demonstrated by systems that translate a high-level shading language into OpenGL
rendering passes [POAU00, PMTH01]. In practice, the computation is limited by the
numeric accuracy of the individual operations and the intermediate results: with 8 bits
per channel in the frame buffer, rounding errors accumulate fast enough that great care
is needed to maximize the number of useful bits in the result.

3.5.3 DITHERING, LOGICAL OPERATIONS, AND MASKING

Before the calculated color at a pixel is committed to the frame buffer, there are two more
processing steps that can be taken: dithering and logical operations. Finally, writing to
each of the different buffers can also be masked, that is, disabled.

Dithering

The human eye can accommodate to great changes in illumination: the ratio of the light
on a bright day to the light on a moonless overcast night can be a billion to one. With a
fixed lighting situation, the eye can distinguish a much smaller range of contrast, perhaps
10000 : 1. However, in scenes that do not have very bright lights, 8 bits, or 256 levels, are
sufficient to produce color transitions that appear continuous and seamless. Since 8 bits
also matches pretty well the limits of current displays, and is a convenient unit of storage
and computation on binary computers, using 8 bits per color channel on a display is a
typical choice on a desktop.

Some displays cannot even display all those 256 levels of intensity, and some frame buffers
save in memory costs by storing fewer than 8 bits per channel. Having too few bits avail-
able can lead to banding. Let us say you calculate a color channel at 8 bits where values
range from 0 to 255, but can only store 4 bits with a range from 0 to 15. Now all values
between 64 and 80 (0100000 and 0101000 in binary) map to either 4 or 5 (0100 or 0101).
If you simply quantize the values in an image where the colors vary smoothly, so that
values from 56 to 71 map to 4 and from 72 to 87 map to 5, the flat areas and the sudden
jumps between them become obvious to the viewer. However, if you mix pixels of values
4 and 5 at roughly equal amounts where the original image values are around 71 or 72,
the eye fuses them together and interprets them as a color between 4 and 5. This is called
dithering, and is illustrated in Figure 3.24.

F igure 3.24: A smooth ramp (left) is quantized (middle) causing banding. Dithering (right) produces
smoother transitions even though individual pixels are quantized.

100 LOW-LEVEL RENDERING C H A P T E R 3

OpenGL allows turning dithering on and off per drawing command. This way, internal
computations can be calculated at a higher precision, but color ramps are dithered just
after blending and before committing to the frame buffer.

Another approach to dithering is to have the internal frame buffer at a higher resolution
than the display color depth. In this case, dithering takes place only when the frame is
complete and is sent to the display. This allows allows reasonable results even on displays
that only have a single bit per pixel, such as the monochrome displays of some low-end
mobile devices, or newspapers printed with only black ink. In such situations, dithering
is absolutely required so that any impression of continuous intensity variations can be
conveyed.

Logical operations

Logical operations, or logic ops for short, are the last processing stage of the OpenGL
graphics pipeline. They are mutually exclusive with blending. With logic ops, the source
and destination pixel data are considered bit patterns, rather than color values, and a logi-
cal operation such asAND,OR,XOR, etc., is applied between the source and the destination
before the values are stored in the color buffer.

In the past, logical operations were used, for example, to draw a cursor without having
to store the background behind the cursor. If one draws the cursor shape with XOR, then
another XOR will erase it, reinstating the original background. OpenGL ES 1.0 and 1.1
support logical operations as they are fast to implement in software renderers and allow
some special effects, but both M3G and OpenGL ES 2.0 omit this functionality.

Masking

Before the fragment values are actually stored in the frame buffer, the different data fields
can be masked. Writing into the color buffer can be turned off for each of red, green, blue,
or alpha channels. The same can be done for the depth channel. For the stencil buffer, even
individual bits may be masked before writing to the buffer.

3.6 LIFE CYCLE OF A FRAME

Now that we have covered the whole low-level 3D graphics pipeline, let us take a look at
the full life cycle of an application and a frame.

In the beginning of an application, resources have to be obtained. The most important
resource is the frame buffer. This includes the color buffer, how many bits there are for
each color channel, existence and bit depth of the alpha channel, depth buffer, stencil
buffer, and multisample buffers. The geometry data and texture maps also require mem-
ory, but those resources can be allocated later.

S E C T I O N 3 . 6 LIFE CYCLE OF A FRAME 101

The viewport transformation and projection matrices describe the type of camera that is
being used, and are usually set up only once for the whole application. The modelview
matrix, however, changes whenever something moves, whether they are objects in the
scene or the camera viewing the scene.

After the resources have been obtained and the fixed parameters set up, new frames are
rendered one after another. In the beginning of a new frame, the color, depth, and other
buffers are usually cleared. We then render the objects one by one. Before rendering each
object, we set up its rendering state, including the lights, texture maps, blending modes,
and so on. Once the frame is complete, the system is told to display the image. If the
rendering was quick, it may make sense to wait for a while before starting the next frame,
instead of rendering as many frames as possible and using too much power. This cycle
is repeated until the application is finished. It is also possible to read the contents of the
frame buffer into user memory, for example to grab screen shots.

3.6.1 SINGLE VERSUS DOUBLE BUFFERING

In a simple graphics system there may be only a single color buffer, into which new
graphics is drawn at the same time as the display is refreshed from it. This single buffer-
ing has the benefits of simplicity and lesser use of graphics memory. However, even if the
graphics drawing happens very fast, the rendering and the display refresh are usually not
synchronized with each other, which leads to annoying tearing and flickering.

Double buffering avoids tearing by rendering into a back buffer and notifying the sys-
tem when the frame is completed. The system can then synchronize the copying of the
rendered image to the display with the display refresh cycle. Double buffering is the
recommended way of rendering to the screen, but single-buffering is still useful for off-
screen surfaces.

3.6.2 COMPLETE GRAPHICS SYSTEM

Figure 3.25 presents a conceptual high-level model of a graphics system. Applications
run on a CPU, which is connected to a GPU with a first-in-first-out (FIFO) buffer. The
GPU feeds pixels into various frame buffers of different APIs, from which the display
subsystem composites the final displayed image, or which can be fed back to graphics
processing through the texture-mapping unit. The Graphics Device Interface (GDI) block
implements functionality that is typically present in 2D graphics APIs of the operating
systems. The Compositor block handles the mixing of different types of content surfaces
in the system, such as 3D rendering surfaces and native OS graphics.

Inside the GPU a command processor processes the commands coming from the CPU
to the 2D or 3D graphics subsystems, which may again be buffered. A typical 3D subsys-
tem consists of two executing units: a vertex unit for transformations and lighting, and
a fragment unit for the rear end of the 3D pipeline. Real systems may omit some of the
components; for example, the CPU may do more (even all) of the graphics processing,

102 LOW-LEVEL RENDERING C H A P T E R 3

CPU FIFO

FIFO

FIFO FIFO

FIFO

GPU
OpenVG

Composition

Display

Command
processor

Vertex
Unit

Fragment
Unit

Texture
Memory

Graphics Device Interface (GDI)

BUFFER

BUFFER

BUFFER

F igure 3.25: A conceptual model of a graphics system.

some of the FIFO buffers may be direct unbuffered bus connections, or the compositor
is not needed if the 3D subsystem executes in a full-screen mode. Nevertheless, look-
ing at the 3D pipeline, we can separate roughly four main execution stages: the CPU,
the vertex unit that handles transformations and lighting (also known as the geometry
unit), the rasterization and fragment-processing unit (pixel pipeline), and the display
composition unit.

Figure 3.26 shows an ideal case when all four units can work in parallel. While the CPU
is processing a new frame, the vertex unit performs geometry processing for the previ-
ous frame, the rasterization unit works on the frame before that, and the display subunit
displays a frame that was begun three frames earlier. If the system is completely balanced,
and the FIFOs are large enough to mask temporary imbalances, this pipelined system
can produce images four times faster than a fully sequential system such as the one in
Figure 3.27. Here, one opportunity for parallelism vanishes from the lack of double buffer-
ing, and all the stages in general wait until the others have completed their frame before
proceeding with the next frame.

3.6.3 SYNCHRONIZATION POINTS

We call the situation where one unit of the graphics system has to wait for the input of a
previous unit to complete, or even the whole pipeline to flush, a synchronization point.

Even if the graphics system has been designed to be able to execute fully in parallel, use of
certain API features may create a synchronization point. For example, if the application
asks to read back the current frame buffer contents, the CPU has to stall and wait until
all the previous commands have fully executed and have been committed into the frame
buffer. Only then can the contents be delivered to the application.

Another synchronization point is caused by binding the rendering output to a texture
map. Also, creating a new texture map and using it for the first time may create a bottle-
neck for transferring the data from the CPU to the GPU and organizing it into a format

S E C T I O N 3 . 6 LIFE CYCLE OF A FRAME 103

CPU

T&L

Rasterizer

Flip

N

N

N

N

N 2 1

N 1 1 N 1 2 N 1 3

N 1 1 N 1 2 N 1 3

N 1 1 N 1 2

N 1 2 N 1 2 N 1 3

N 1 3N 2 2

N 2 3 N 2 2

N 2 1

N 2 1

F igure 3.26: Parallelism of asynchronous multibuffered rendering.

CPU

T&L

Rasterizer N

N N 1 1

N N 1 1

N 1 1

F igure 3.27: Nonparallel nature of single-buffered or synchronized rendering.

that is native to the texturing unit. A similar synchronization point can result from the
modification of an existing texture map.

In general, the best performance is obtained if each hardware unit in the system executes
in parallel. The first rule of thumb is to keep most of the traffic flowing in the same direc-
tion, and to query as little data as possible back from the graphics subsystem. If you must
read the results back, e.g., if you render into a texture map, delaying the use of that data
until a few frames later may help the system avoid stalling. You should also use server-
side objects wherever possible, as they allow the data to be cached on the GPU. For best
performance, such cached data should not be changed after it has been loaded. Finally,
you can try to increase parallelism, for example, by executing application-dependent CPU
processing immediately after GPU-intensive calls such as clearing the buffers, drawing a
large textured mesh, or swapping buffers. Another way to improve parallelism is to move
non-graphics–related processing into another thread altogether.

This page intentionally left blank

4

C
H

A
P

T
E

R

ANIMATION

Animation is what ultimately breathes life into 3D graphics. While still images can be
nice as such, most applications involve objects moving and interacting with each other
and the user, or scenes in some other way changing over time. This chapter introduces
basic, commonly used animation concepts that we will encounter when we discuss the
M3G animation functionality later in the book.

4.1 KEYFRAME ANIMATION

Keyframe animation is perhaps the most common way of describing predefined motions
in computer graphics. The term originates from cartoons, where the senior animator
would first draw the most important “key” frames describing the main poses within
an animation sequence. The in-between frames or “tweens” could then be filled in to
complete the animation, based on those defining features. This allowed the valuable time
of the senior animator to be focused on the important parts, whereas the work of drawing
the intermediate frames could be divided among the junior colleagues.

In computer animation today, a human animator still defines the keyframes, but the
data in between is interpolated by the computer. An example of keyframe interpolation
is shown in Figure 4.1. The keyframes are values that the animated property has at
specific points in time, and the computer applies an interpolation function to these
data points to produce the intermediate values. The data itself can be anything from

105

106 ANIMATION C H A P T E R 4

va
lu

e

time

F igure 4.1: Keyframe values (points) and interpolated data (curve).

positions and orientations to color and lighting parameters, as long as it can be
represented numerically to the computer.

Expressing this mathematically, we have the set of N keyframes K = (k0, k1, . . . , kN−1)
and an interpolation function f. The value of the animated property can then be evalu-
ated at any time t by evaluating f (K, t); we can also say that we sample the animated value
at different times t. Using different functions f, we can vary the characteristics of the
interpolated data, as well as the computational complexity of evaluating the function.

The main benefit of keyframe animation today is perhaps not the time saved in producing
the animation, but the memory saved by the keyframe representation. Data need only be
stored at the keyframe locations, and since much of the animation data required can be
produced from fairly sparse keyframes, keyframe animation is much more space-efficient
than storing the data for each frame. A related benefit is that the keyframe rate need not
be tied to the display rate; once you have your keyframe sequence, you can play it back at
any rate, speeding up or slowing down as necessary.

4.1.1 INTERPOLATION

In practice, interpolation is usually implemented in a piecewise manner: each interpolated
segment, separated by two adjacent keyframes, is computed on its own, and the slope
or curvature of the adjacent segments has no effect on the result. In some schemes, the
interpolation parameters depend on the keyframes of the adjacent segments as well, but
once those parameters are known, each segment is still interpolated as a separate entity.

Interpolating an entire keyframe sequence amounts to identifying the segment we are
interested in, by finding the keyframes surrounding our sampling time t, and computing
the interpolated value for that segment only. Let us call the values of our chosen keyframes
simply a and b. Those will be the desired values at the beginning and end of the segment,

S E C T I O N 4 . 1 KEYFRAME ANIMATION 107

respectively. Let us also define a new interpolation parameter s, derived from time t, to
give our position within the segment: the value of s shall be 0 at keyframe a and increase
linearly to 1 at keyframe b. Armed with this information, we can begin looking for differ-
ent ways to move from a to b.

The simplest way to interpolate keyframes is the step function, which does not interpolate
at all:

fstep(s) = a. (4.1)

Instead, as shown in Figure 4.2, the interpolated value always remains at that of the
previous keyframe. This is very easy from a computational perspective, but as seen in
the figure, it produces a discontinuous result that is ill-suited to animating most aspects
of a visual scene—for example, a character jumping from one place to another is not what
we typically expect of animation. The step function can still have its uses: switching light
sources on and off at preprogrammed times is one intuitive application.

Going toward smoother motion, we need to take into account more than one keyframe.
Using both keyframes, we can linearly interpolate, or lerp, between them:

flerp(s) = (1 − s)a + sb (4.2)

= a + s(b − a). (4.3)

va
lu

e

time

F igure 4.2: Step interpolation.

108 ANIMATION C H A P T E R 4

va
lu

e

time

F igure 4.3: Linear interpolation, or lerp.

As we can see in Figure 4.3, lerp actually connects the keyframes without sudden jumps.
However, it is immediately obvious that the result is not smooth: the direction of our inter-
polated line changes abruptly at each keyframe, and the visual effect is very similar. This,
again, defies any expectations of physically based motion, where some manner of inertia
is to be expected. Lerping is still computationally very cheap, which makes it well suited
to ramping things such as light levels up and down at various speeds, and it can be used to
approximate nonlinear motion by adding more keyframes. Of course, any purely linear
motion at constant speed is a natural application, but such motions are quite uncommon
in practice—consider, for example, city traffic during rush hour, or the individual limbs
and joints of a walking human.

For more life-like animation, we need a function that can provide some degree of ease-in
and ease-out: instead of jumping into and out of motion, short periods of acceleration
and deceleration make the animation appear much more natural. Also, since much of
the animation in computer graphics is not linear, being able to represent curved motion
is another feature in the wish list. It would seem that changing the linear segments of
Figure 4.3 into curved ones would solve both problems, and indeed it does—in a number
of different flavors. There are many different formulations for producing curves, each
with its individual characteristics that make it better suited for some particular tasks and
less well for others. In the following, we will only cover what is relevant to using and
understanding M3G in the later chapters of this book.

S E C T I O N 4 . 1 KEYFRAME ANIMATION 109

The curves commonly used in computer graphics are parametric cubic curves, which offer
a good balance between the amount of control, computational efficiency, and ease of use
[FvFH90]. Each interpolated curve segment is a separate polynomial function of s that
connects the two keyframes a and b. Depending on the type of curve, the actual polyno-
mial coefficients are usually defined through more intuitive parameters, such as additional
control points or explicit tangent vectors. In this discussion, we will use a Hermite curve
[FvFH90, AMH02] to construct a Catmull-Rom spline [CR74] that smoothly interpolates
our keyframe sequence similarly to Figure 4.4.

As illustrated in Figure 4.5, each Hermite curve segment is controlled by tangent vectors
at both ends in addition to the actual keyframes. If you think of interpolating the position
of an object using a Hermite curve, the tangent vectors are essentially the velocity—speed
and direction—of the object at the endpoints of the curve.

When discussing lerp, we mentioned that natural objects do not jump from one position
to another, and neither do they change velocity abruptly. For natural-looking motion,
we therefore want not only the position, but also the velocity to be continuous. There-
fore, when interpolating across multiple segments, we want to align the tangent vec-
tors between neighboring segments such that the velocity remains constant. Since our
keyframes are not necessarily spaced uniformly in time, we cannot trivially use the
same tangent vector for both segments connected to a keyframe; instead, the tangents

va
lu

e

time

F igure 4.4: Curve interpolation.

110 ANIMATION C H A P T E R 4

x

y

c

a91

b92

b91

c92

b

a

F igure 4.5: Two Hermite curve segments and their tangent vectors; the end tangent of each seg-
ment is reversed for clarity. In order to illustrate the tangent vectors, the coordinate system is different
from Figures 4.2 to 4.4, and time is not plotted at all. Note that the relative magnitude of tangents
b− and b+ depends on keyframe timing and need not be the same; see text.

may have to be scaled to different magnitudes in order to maintain smooth velocity
[KB84, AMH02].

In order to compute the tangent vectors b′− and b′+ using the three-keyframe sequence
(a, b, c) in Figure 4.5 so that they maintain smooth motion over keyframe b, we need
to take into account the durations of the adjacent interpolation segments. Let us denote
the time differences between b and its adjacent keyframes by Δtab and Δtbc. Our tangent
values will then be [KB84, AMH02]

b′− =
Δtab

Δtab + Δtbc
b′ (4.4)

and

b′+ =
Δtbc

Δtab + Δtbc
b′, (4.5)

where b′ is a finite central difference over keyframe b:

b′ =
c − a

2
. (4.6)

The tangents for keyframes a and c are computed in a similar manner from their adjacent
keyframes.

S E C T I O N 4 . 1 KEYFRAME ANIMATION 111

Based on the equations for Hermite curve interpolation [AMH02, FvFH90, WW92]
and the tangent vectors we defined above, we can, again, express the segment between
keyframes a and b as a function of our interpolation parameter s:

fspline(s) = [a b a′+ b′−] MT [s3 s2 s 1]T, (4.7)

where M is a basis matrix of coefficients specific to a Hermite curve:

M =

⎡
⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎦ . (4.8)

As we have mentioned, there are numerous other classes of curves and splines used in
computer graphics. One type of spline commonly used in animation and modeling tools
is an extension of Catmull-Rom splines called Kochanek-Bartels splines [KB84]. They
are also known as TCB splines after the tension, continuity, and bias parameters they add
to control the shape of the curve at each keyframe. However, for the purposes of this
book, it is sufficient to know that it is possible to approximate the shape of any other
curve using Catmull-Rom curves, to an arbitrary degree, by adding more keyframes. For
further reading on other kinds of curves, again, refer to more comprehensive computer
graphics textbooks [FvFH90, AMH02, WW92].

4.1.2 QUATERNIONS

Interpolating positions and most other parameters is easy to understand: you can plot
the keyframe values on paper, draw a line or curve in between, and pick any point on
the line for an intuitive interpolated position. You can interpolate each of the x, y, and z
coordinates independently and get the correct result. Interpolating orientations, however,
is not quite as intuitive.

Most computer animation today, M3G included, uses unit quaternions to represent ori-
entation, as described in Section 2.3.1. As a quick recap, a unit quaternion is a four-vector
[x y z w] of length one where the first three imaginary components relate to an axis
of rotation and the last, real, component relates to a rotation angle.

Each and every quaternion that we are interested in will always rest on a four-dimensional
sphere that has a radius of one. Imagine that the unit sphere of quaternions has a North
pole (at [0 0 0 1]) and a South pole (at [0 0 0 −1]). The quaternion on the
North pole stands for the initial position of your object, before any rotation has been
applied to it. Each quaternion elsewhere on the surface of the sphere represents a rotation
away from the initial position. The farther you go from the North pole, the more you
rotate. Walking along the shortest path possible along the surface will rotate along the

112 ANIMATION C H A P T E R 4

shortest path (and about a single axis) between two orientations. However, moving by
any number of degrees on the 4D sphere will rotate twice that number in 3D space—refer
to Equation 2.21 for the proof. Therefore, if you reach the South pole, your 3D object will
have rotated a full 360 degrees, back to where it started from; but it is important to realize
that in quaternion space, we could not be farther away from the initial position!

To interpolate along the surface of the 4D sphere, spherical linear interpolation or slerp
can be used. Assuming two unit quaternion keyframes â and b̂, with the interpolation arc
angle θ defined such that cos θ = â · b̂, slerp is defined as:

fslerp(s) = slerp(s : â, b̂) =
â sin((1 − s)θ) + b̂ sin(sθ)

sin(θ)
. (4.9)

Each quaternion q̂ has a counterpart −q̂, on exactly the opposite side of the unit sphere,
which results in exactly the same orientation. As long as you are dealing with rotations
of 180 degrees or less, you can optimize your slerp routine a bit by explicitly flipping
the signs on one of the quaternions so that they land on the same hemisphere of the 4D
unit sphere. This is what many code examples on quaternion interpolation do, and it will
work as long as all you want is to interpolate along the shortest path between two 3D
orientations. However, sometimes you may want to interpolate along the longer path, in
the opposite direction, or blend between more than two orientations, and in such a case
using the whole 4D unit sphere is required.

Also, using the proper slerp without any sign mangling, you can actually rotate by
up to 360 degrees between two keyframes, so there is more power available to you
that way. In any case, be warned that unless you know very well what you are doing,
you will be better off using the full-blown slerp for interpolation. On the other hand,
you will also need to take greater care when exporting the animations from your tools;
some of these only return the orientation keyframes as matrices, requiring a conversion
back to quaternions, and you will need to decide between the quaternions q̂ and −q̂
for each matrix. However, this small headache will enable the rest of the animation
pipeline to work correctly also when more advanced features than simple two-keyframe
interpolation are introduced.

Slerp for quaternions has the same problem as lerp for positions: you get instant changes
in angular velocity at keyframes. The solution is also similar: use curved interpolation.
The equivalent of splines for quaternions is often dubbed squad. We omit the associated
hairy math here, but for more details, refer to the paper by Shoemake [Sho87] or a graph-
ics book that treats the subject [WW92, AMH02]. Suffice it to say that squad will inter-
polate rotations like spline interpolates positions, albeit with increased computational
intensity. In practice, slerp or even lerp followed by renormalization (Equation (2.4)) is
often sufficient for purposes such as character animation, and regular spline interpola-
tion can be leveraged for most use cases. Squad can still be useful for achieving perfectly
smooth camera interpolation, for example.

S E C T I O N 4 . 2 DEFORMING MESHES 113

4.2 DEFORMING MESHES

Keyframe animation is good for controlling animated objects, for example moving the
limbs of an articulated character. If we are modeling robots, rigid-body animation suffices,
and we can just render the pieces individually. To affect the motion on a more soft-bodied
character, however, we want the mesh to deform without seams or cracks. This calls for
some form of per-vertex deformation.

4.2.1 MORPHING

A straightforward way to animate a mesh is to do as the cartoonists do: define keyframes
that comprise the essential poses of an animation, then interpolate or morph between
those. A simple example is shown in Figure 4.6. The way we can do this is to define a set
of alternative vertex array definitions M0, M1, M2, . . . , MN−1 so that each Mi represents
the vertex coordinates (and other related data, such as normals and texture coordinates)
for one keyframe. The mesh topology or list of primitives is only specified once.

To interpolate between the mesh keyframes, we can just lerp between any two of them if
the keyframes represent poses on a timeline. Better yet, we can think of our keyframes as
alternative shapes, or morph targets, that we can arbitrarily blend between:

M =
∑

wiMi, (4.10)

where the wi are weights we can freely assign to each of the morph targets. Note that using
weights outside of the [0, 1] range, it is also possible to extrapolate the predefined shapes.
An alternative formulation is to add the weighted morph targets to a base shape:

M = B +
∑

wiMi (4.11)

This emphasizes the role of some base shape that is being modified through morphing,
but mathematically, both formulations express the same thing.

F igure 4.6: Morphing some of the vertex positions between the two base shapes on the left and the right. Note that the
number of vertices remains the same.

114 ANIMATION C H A P T E R 4

Morphing is a good technique for producing complex deformations, such as facial
expressions, that are not easily reproduced by simple transformations. The downside
of morphing is that it takes a lot of memory per keyframe, so the number of base
shapes should be kept relatively small for complex meshes. Alternatively, morphing
can be used to define lots of keyframes for very simple meshes to get fairly complex
animation that is still computationally cheap to render in real time.

4.2.2 SKINNING

For complex characters with lots of vertices and more or less arbitrary numbers of possible
poses, morphing quickly becomes inefficient. Another way to deform meshes is to assign
vertices to the joints of an articulated skeleton, animate them, and connect the vertices
with a skin of polygons [Cat72]. However, that still leads to sharp changes at joints. During
the 1990s the gaming and 3D modeling industry generalized this approach and started
calling it skinning [Lan98]. The idea is that each vertex can be associated with several
joints or bones, weighted by linear weights. This technique is sometimes referred to as
subspace surface deformation, or linear blend skinning; we simply call it skinning. It is so
commonly used today that we can call it the de facto standard of character animation.

The general idea behind skinning is that instead of transforming the whole mesh with
a single transformation matrix, each vertex is individually transformed by a weighted
blend of several matrices as shown in Figure 4.7. By assigning different weights to different
vertices, we can simulate articulated characters with soft flesh around rigid bones.

The skeleton used in skinning stands for a hierarchy of transformations. An example
hierarchy can be seen in Figure 4.7. The pelvis is the root node, and the rest of the body
parts are connected to each other so that the limbs extend deeper into the hierarchy.
Each bone has a transformation relative to the parent node—usually at least translation
and rotation, but scaling can be used, for example, for cartoon-like animation. The hier-
archy also has a rest pose (also known as bind pose) in which the bone transformations
are such that the skeleton is aligned with the untransformed mesh.

Having the skeleton hierarchy, we can compute transformations from the bones to the
common root node. This gives us a transformation matrix Ti for each bone i. The matrices
for the rest pose are important, and we denote those Bi.

The relative transformation that takes a rest pose B to a target pose T is TB−1. From
this, and allowing a vertex v to have weighted influence wi from several bones, we get the
skinning equation for a transformed vertex

v ′ =
∑

wiTiB
−1
i v. (4.12)

Note that we can either transform the vertex with each matrix, then compute a blend of
the transformed vertices, or compute a blend of the matrices and transform the vertex just
once using the blended matrix. The latter can in some cases be more efficient if the inverse

S E C T I O N 4 . 2 DEFORMING MESHES 115

F igure 4.7: Left: A skeletally animated, or skinned, character. Each arrow ends in a joint, and each
joint has a bone transformation, usually involving at least translation and rotation. Right: A close-up
of one animated joint, demonstrating vertex blending. The vertices around the joint are conceptually
transformed with both bone transformations, resulting in the positions denoted by the thin lines and
black dots. The transformed results are then interpolated (dotted line, white dots) to obtain the final
skins (thick lines).

transpose matrix is needed for transforming vertex normals. Also, the modelview matrix
can be premultiplied into each matrix Ti to avoid doing the camera transformation as a
separate step after the vertex blending.

With hardware-accelerated skinning, using either vertex shaders or the OpenGL matrix
palette extension (Section 10.4.3), the vertices will be transformed each time the mesh is
rendered. With multi-pass rendering in particular, the mesh will therefore be transformed
multiple times. A software implementation can easily perform the calculations only when
necessary and cache the results, but this will still place a considerable burden on the CPU.
As an animated mesh typically changes for each frame, there is usually no gain from using
software skinning if hardware acceleration is available, but it is worth keeping the option
in mind for special cases.

The animation for skinning can come from a number of sources. It is possible to use
keyframe animation to animate the bones of the skeleton, with the keyframes modeled by
hand or extracted from motion capture data. Another possibility is to use physics-based
animation. Rigid body dynamics [Len04] are often used to produce “ragdoll” effects, for
example when a foe is gunned down and does a spectacular fall from height in a shooter
game. Inverse kinematics (IK) [FvFH90, WW92] can also be used to make hands touch
scene objects, align feet with the ground, and so forth. Often a combination of these tech-
niques is used with keyframe animation driving the normal motion, rigid body dynamics

116 ANIMATION C H A P T E R 4

stepping in for falling and other special effects, and IK making small corrections to avoid
penetrating scene geometry.

4.2.3 OTHER DYNAMIC DEFORMATIONS

Naturally, dynamic deformation of meshes need not be limited to morphing and skinning.
As we can apply arbitrary processing to the vertices, either in the application code or, more
commonly, in graphics hardware, almost unlimited effects are possible.

One common example of per-vertex animation is water simulation. By applying displace-
ments to each vertex based on a fluid simulation model, a convincing effect can be created.
Different kinds of physics-based deformation effects include soft body modeling, whereby
the mesh deforms upon contact based on, for example, a mass-and-spring simulation. A
variation of this is cloth modeling, where air density plays a more important role. The
details of creating these and other effects are beyond the scope of this book. For further
information, refer to the bibliography ([WW92, EMP+02]).

Once the vertex data is dynamically modified by the application, it needs to be fed to the
rendering stage. Most graphics engines prefer static vertex data, which allows for opti-
mizations such as precomputing bounding volumes or optimizing the storage format and
location of the data. Vertex data that is dynamically uploaded from the application pro-
hibits most such optimizations, and it also requires additional memory bandwidth to
transfer the data between application and graphics memory. Therefore, there is almost
always some performance reduction associated with dynamically modifying vertices. The
magnitude of this performance hit can vary greatly by system and application—for exam-
ple, vertex shaders in modern GPUs can perform vertex computations more efficiently
than application code because there is no need to move the data around in memory, and
it has an instruction set optimized for that particular task. This is also the reason that
modern rendering APIs, including both OpenGL ES and M3G, have built-in support for
the basic vertex deformation cases—to enable the most efficient implementation for the
underlying hardware.

5

C
H

A
P

T
E

R

SCENE MANAGEMENT

By dealing with individual triangles, matrices, and disparate pieces of rendering state, you
are in full control of the rendering engine and will get exactly what you ask for. However,
creating and managing 3D content at that level of detail quickly becomes a burden; this
typically happens when cubes and spheres no longer cut it, and graphic artists need to
get involved. Getting their animated object hierarchies and fancy materials out of 3ds
Max or Maya and into your real-time application can be a big challenge. The task is
not made any easier if your runtime API cannot handle complete objects, materials,
characters, and scenes, together with their associated animations. The artists and their
tools deal with higher-level concepts than triangle strips and blending functions, and
your runtime engine should accommodate to that.

Raising the abstraction level of the runtime API closer to that of the modeling tools
facilitates a content-driven approach to development, where designers can work inde-
pendently of programmers, but it has other benefits as well. It flattens the learning
curve, reduces the amount of boilerplate code, eliminates many common sources of
error, and in general increases the productivity of both novice and expert programmers.
A high-level API can also result in better performance, particularly if you are not already
a 3D guru with in-depth knowledge of all the software and hardware configurations
that your application is supposed to be running on.

In this chapter, we take a look at how 3D objects are composed, how the objects can
be organized into a scene graph, and how the scene graph can be efficiently rendered
and updated. Our focus is on how these concepts are expressed in M3G, so we do not

117

118 SCENE MANAGEMENT C H A P T E R 5

cover the whole spectrum of data structures that have been used in other systems or
that you could use in your own game engine. For the most part, we will use terminology
from M3G.

5.1 TRIANGLE MESHES

A 3D object combines geometric primitives and rendering state into a self-contained visual
entity that is easier to animate and interact with than the low-level bits and pieces are. 3D
objects can be defined in many ways, e.g., with polygons, lines, points, Bézier patches,
NURBS, subdivision surfaces, implicit surfaces, or voxels, but in this chapter we concen-
trate on simple triangle meshes, as they are the only type of geometric primitive supported
by M3G.

A triangle mesh consists of vertices in 3D space, connected into triangles to define a
surface, plus associated rendering state to specify how the surface is to be shaded. The
structure of a triangle mesh in M3G is as shown in Figure 5.1: vertex coordinates, other
per-vertex attributes, and triangle indices are stored in their respective buffers, while
rendering state is aggregated into what we call the appearance of the mesh. Although
this exact organization is specific to M3G, other scene graphs are usually similar. We
will explain the function of each of the mesh components below.

VertexBuffers are used to store per-vertex attributes, which, in the case of M3G,
include vertex coordinates (x, y, z), texture coordinates (s, t, r, q), normal vectors
(nx, ny, nz), and colors (R, G, B, A). Note that the two first texture coordinates (s, t) are

Mesh VertexBuffer

Texture
Coordinates

Coordinates

Normals

Colors

Texture
Coordinates

VertexArray

VertexArray

VertexArray

VertexArray

VertexArray

Appearance

Appearance

Appearance

IndexBuffer

IndexBuffer

IndexBuffer

... ...

F igure 5.1: The components of a triangle mesh in M3G.

S E C T I O N 5 . 1 TRIANGLE MESHES 119

enough for typical use cases, but three or four can be used for projective texture mapping
and other tricks.

The coordinates and normals of a triangle mesh are given in its local coordinate system—
object coordinates—and are transformed into eye coordinates by the modelview matrix.
The mesh can be animated and instantiated by changing the modelview matrix between
frames (for animation) or between draw calls (for instantiation). Texture coordinates are
also subject to a 4 × 4 projective transformation. This allows you to scroll or otherwise
animate the texture, or to project it onto the mesh; see Section 3.4.1 for details.

IndexBuffers define the surface of the mesh by connecting vertices into triangles, as
shown in Figure 5.2. OpenGL ES defines three ways to form triangles from consecutive
indices—triangle strips, lists, and fans—but M3G only supports triangle strips. There
may be multiple index buffers per mesh; each buffer then defines a submesh, which is the
basic unit of rendering in M3G. Splitting a mesh into submeshes is necessary if different
parts of the mesh have different rendering state; for example, if one part is translucent
while others are opaque, or if the parts have different texture maps.

The Appearance defines how a mesh or submesh is to be shaded, textured, blended,
and so on. The appearance is typically divided into components that encapsulate coher-
ent subsets of the low-level rendering state: Figure 5.3 shows how this was done for M3G.
The appearance components have fairly self-explanatory names: the Texture2D object,
for instance, contains the texture blending, filtering, and wrapping modes, as well as the
4 × 4 texture coordinate transformation matrix. The texture image is included by refer-
ence, and stored in an Image2D object. Appearances and their component objects can

vertices

coordinates

triangles

texcoords

indices

colors

normals

1 2 3 4
x x x xy y y yz z z z

r r r rg g g gb b b b

s s s st t t t

1 2 3 42 4 4 53 3 7 6

nx nx nx nxny ny ny nynz nz nz nz

...

...

...

...

...

T1 T2 T3 T4

2

1

T1
3

T2

T3 4

F igure 5.2: Triangle meshes are formed by indexing a set of vertex arrays. Here the triangles are organized into a triangle
list, i.e., every three indices define a new triangle. For example, triangle T2 is formed by the vertices 2, 4, and 3.

120 SCENE MANAGEMENT C H A P T E R 5

Appearance Material

Fog

Compositing
Mode

Polygon
Mode

Image2D

Image2D

Texture2D

Texture2D

F igure 5.3: The appearance components in M3G. Implementations may support an arbitrary number
of texturing units, but the most common choice (two units) is shown in this diagram.

be shared between an arbitrary number of meshes and submeshes in the scene graph. The
appearance components of M3G are discussed in detail in Chapter 14.

5.2 SCENE GRAPHS

Rendering a single 3D object may be useful in a demo or a tutorial, but to create something
more exciting you will need a number of 3D objects in a particular spatial and logical
arrangement—a 3D scene.

3D scenes can be organized into many different data structures that are collectively
referred to as scene graphs. The term is decidedly vague, covering everything from simple
lists of objects up to very sophisticated spatial databases. In this section we aim to char-
acterize the design space of scene graphs, progressively narrowing down our scope to the
small subset of that space that is relevant for M3G.

5.2.1 APPLICATION AREA

When setting out to design a scene graph system, the first thing to decide is what it is for.
Is it for graphics, physics, artificial intelligence, spatial audio, or a combination of these?
Is it designed for real-time or offline use, or both? Is it for a specific game genre, such
as first-person shooters or flight simulators, or maybe just one title? A unified scene rep-
resentation serving all conceivable applications would certainly be ideal, but in practice
we have to specialize to avoid creating a huge monolithic system that runs slowly and is
difficult to use.

S E C T I O N 5 . 2 SCENE GRAPHS 121

Typical scene graphs strike a balance by specializing in real-time animation and rendering,
but not in any particular application or game genre. This is also the case with M3G.
Physics, artificial intelligence, audio, user interaction, and everything else is left for the
user, although facilitated to some extent by the ability to store metadata and invisi-
ble objects into the main scene graph. Adjunct features such as collision detection are
included in some systems to serve as building blocks for physics simulation, path find-
ing, and so on. M3G does not support collision detection, but it does provide for simple
picking—that is, shooting a ray into the scene to see which object and triangle it first inter-
sects. This can be used as a replacement to proper collision detection in some cases.

5.2.2 SPATIAL DATA STRUCTURE

Having decided to go for a rendering-oriented scene graph, the next step is to pick the
right spatial data structure for our system. The application areas or game genres that we
have in mind play a big role in that decision, because there is no single data structure that
would be a perfect fit for all types of 3D scenes.

The main purpose of a spatial data structure in this context is visibility processing, that
is, quickly determining which parts of the scene will not contribute to the final rendered
image. Objects may be too far away from the viewer, occluded by a wall, or outside the
field of view, and can thus be eliminated from further processing. This is called visibility
culling. In large scenes that do not fit into memory at once, visibility processing includes
paging, i.e., figuring out when to load each part of the scene from the mass storage device,
and which parts to remove to make room for the new things.

Depending on the type of scene, the data structure of choice may be a hierarchical space
partitioning scheme such as a quadtree, octree, BSP tree, or kd-tree. Quadtrees, for exam-
ple, are a good match with terrain rendering. Some scenes might be best handled with
portals or precomputed potentially visible sets (PVS). Specialized data structures are
available for massive terrain scenes, such as those in Google Earth. See Chapter 9 of
Real-Time Rendering [AMH02] for an overview of these and other visibility processing
techniques.

Even though this is only scratching the surface, it becomes clear that having built-in
support for all potentially useful data structures in the runtime engine is impossible.
Their sheer number is overwhelming, not to mention the complexity of implementing
them. Besides, researchers around the world are constantly coming up with new and
improved data structures.

The easy way out, taken by M3G and most other scene graphs, is to not incorporate any
spatial data structures beyond a transformation hierarchy, in which scene graph nodes
are positioned, oriented, and otherwise transformed with respect to their scene graph
parents. This is a convenient way to organize a 3D scene, as it mirrors the way that things
are often laid out in the real world—and more important, in 3D modeling tools.

122 SCENE MANAGEMENT C H A P T E R 5

The solar system is a classic example of hierarchical transformations: the moons orbit
the planets, the planets orbit the sun, and everything revolves around its own axis. The
solar system is almost trivial to set up and animate with hierarchical transformations, but
extremely difficult without them. The human skeleton is another typical example.

Visibility processing in M3G is limited to view frustum culling that is based on a bounding
volume hierarchy; see Figure 5.4. While the standard does not actually say anything about
bounding volumes or visibility processing, it appears that all widely deployed implemen-
tations have independently adopted similar means of hierarchical view frustum culling.
We will discuss this in more detail in Section 5.3.

Implementing more specialized or more advanced visibility processing is left for the user.
Luckily, this does not mean that you would have to ditch the whole scene graph and start
from scratch if you wanted to use a quadtree, for instance. You can leverage the built-in
scene tree as a basis for any of the tree structures mentioned above. Also, the same triangle
meshes and materials can often be used regardless of the higher-level data structure.

The fact that typical scene graphs are geared toward hierarchical view frustum culling and
transformations is also their weakness. There is an underlying assumption that the scene
graph structure is a close match to the spatial layout of the scene. To put it another way,
nodes are assumed to lie close to their siblings, parents, and descendants in world space.
Violating this assumption may degrade performance. If this were not the case, you might
want to arrange your scene such that all nonplayer characters are in the same branch of
the graph, for instance.

The implicit assumption of physical proximity may also cause you trouble when nodes
need to be moved with respect to each other. For instance, characters in a game world

A
A B

B C

C

D

D

F igure 5.4: A bounding volume hierarchy (BVH) consisting of axis-aligned bounding boxes, illustrated in two dimensions
for clarity. The bounding volume of node A encloses the bounding volumes of its children.

S E C T I O N 5 . 2 SCENE GRAPHS 123

may be wandering freely from one area to another. The seemingly obvious solution is
to relocate the moving objects to the branches that most closely match their physical
locations. However, sometimes it may be difficult to determine where each object should
go. Structural changes to the scene graph may not come for free, either.

5.2.3 CONTENT CREATION

Creating any nontrivial scene by manually typing in vertices, indices and rendering state
bits is doomed to failure. Ideally, objects and entire scenes would be authored in commer-
cial or proprietary tools, and exported into a format that can be imported by the runtime
engine. M3G defines its own file format to bridge the gap between the runtime engine
and DCC tools such as 3ds Max, Maya, or Softimage; see Figure 5.5. The file format is a
precise match with the capabilities of the runtime API, and supports a reasonable subset
of popular modeling tool features.

From the runtime engine’s point of view, the main problem with DCC tools is that they
are so flexible. The scene graph designer is faced with an abundance of animation and
rendering techniques that the graphics artists would love to use, but only a fraction of
which can be realistically supported in the runtime engine. See Figure 5.6 to get an idea
of the variety of features that are available in a modern authoring tool.

DCC tool

Exporter

Intermediate
Format

(e.g., COLLADA)

Optimizer &
Converter

Delivery
Format
(M3G)

M3G Loader

Runtime Scene Graph

F igure 5.5: A typical M3G content production pipeline. None of the publicly available exporters that we are aware of actually
use COLLADA as their intermediate format, but we expect that to change in the future.

124 SCENE MANAGEMENT C H A P T E R 5

F igure 5.6: Some of the features that are available in 3ds Max for meshes (left), materials (middle), and animations (right).
Only a fraction of these can be supported in real-time systems, particularly on mobile devices that have no programmable
graphics hardware. (Images copyright c© Autodesk.)

Many exciting authoring tool features are ruled out by technical limitations alone,
especially when targeting mobile devices. For example, it is hardly feasible to animate
a subdivision-surface model by free-form deformations and render it with refractions,
displacement mapping, and soft shadows. Technical constraints notwithstanding, the
mere effort to define and implement such a huge array of techniques is formidable. The
definition effort becomes even more difficult if the features need to be standardized
so that independent implementations will work the same way. Finally, including every-
thing that is “nice to have” will lead to a bloated system with lots of little-used
functionality that mostly just obscures the essential parts.

The M3G standardization group settled for relatively few built-in animation and rendering
techniques. Beyond what is directly provided by OpenGL ES 1.0, the key features
are hierarchical transformations, layered (multipass) rendering, two mesh modifiers
(vertex morphing and skinning), and keyframe animation. These allow surprisingly
complex animated scenes to be exported from authoring tools, and reproduced at
runtime with very little application code. Many sophisticated mesh deformations, for
example, can be exported as suitably keyframed morph targets. Of course, almost

S E C T I O N 5 . 2 SCENE GRAPHS 125

any technique can be written in Java, using M3G only for rasterization, but then
performance might become an issue.

5.2.4 EXTENSIBILITY

Now that we have a fairly generic, rendering-oriented scene graph design, we need to
decide whether to make it extensible, that is, to open up the rendering traversal and expose
the underlying rendering engine so that the user can plug in completely new types of
objects, write rendering methods for them, and have them blend in seamlessly and behave
just like built-in objects. The M3G scene graph was not made extensible, for the reasons
outlined below.

A key issue affecting the extensibility of a scene graph is whether the underlying rendering
engine can be dictated at the time of design, or whether the implementations need to
be able to use different low-level APIs. M3G is based on the latter approach. Although
conceptually based on OpenGL ES 1.0, it does not expose the low-level rendering context
that it uses internally. This design allows practical implementations to use later versions
of OpenGL ES, proprietary extensions, customized software rasterizers, or perhaps even
Direct3D Mobile. Similarly, emulators and development tools on the PC may well be
based on desktop OpenGL.

For a scene graph to be considered extensible, it would also have to support user-defined
callbacks. However, if user-defined callbacks are allowed to modify the scene graph right
in the middle of the rendering traversal, it becomes an implementation nightmare to
maintain the security and stability of the system. What happens if one of the callbacks
removes a scene graph branch that the engine was just processing, for example? On the
other hand, if the callbacks are not given write access to the scene graph, they become
much less useful.

Even providing read-only access to the scene graph during callbacks may be problematic.
For example, a callback should ideally have access to global data about light sources,
bounding boxes, modelview matrices, nearby objects, and so on, but to arrange the
internal operations and data structures of the engine so that this information is readily
available may not be easy or cheap.

For M3G, the final straw that settled the extensibility issue was the environment that the
engine is running on. Interrupting a relatively tight piece of code, such as the rendering
traversal, is inefficient even in pure native code, let alone if it involves transitioning from
native code to Java and vice versa. As a result, M3G was made a “black box” that never
interrupts the execution of any API methods by calling back to user code.

5.2.5 CLASS HIERARCHY

Having nailed down the key features of our scene graph, the final step is to come up with
an object-oriented class hierarchy to support those features in a logical and efficient way.

126 SCENE MANAGEMENT C H A P T E R 5

We need to decide what kind of nodes are available, what components and properties do
they have, which of those may be shared or inherited, and so on.

M3G has a very simple hierarchy of nodes: as shown in Figure 5.7, it only has eight
concrete node types and an abstract base class. Although the node hierarchy in M3G is
small, it is representative of scene graphs in general. In the following, we go through
the M3G node hierarchy from top to bottom, discussing alternative designs along
the way.

All nodes in a typical object-oriented scene graph are derived from an abstract base class,
which in M3G is called Node. Attributes that are deemed applicable to just any type of
node are defined in the base class, along with corresponding functions that operate on
those attributes. There are no hard-and-fast rules on what the attributes should be, but
anything that needs to be inherited or accumulated in the scene graph is a good candidate.
In M3G, the most important thing that is present in every node is the node transformation.
The node transformation specifies the position, orientation, and scale of a node relative
to its parent, with an optional 3×4 matrix to cover the whole spectrum of affine transfor-
mations (see Section 2.3). Other properties of M3G nodes include various on/off toggles
and masks.

Some scene graph systems also allow low-level rendering state, such as blending modes,
to be inherited from parent nodes to their children. This capability is more trouble
than it is worth, though, and so was left out of M3G. Resolving the complete rendering
state for an object is slow and error-prone if each individual state bit is a function
of arbitrarily many nodes encountered along the way from the root to the leaf. Also,
it makes little sense for rendering attributes to be inheritable in a system that is

Node Group

Mesh

Sprite3D

Camera

Light

World

SkinnedMesh

MorphingMesh

F igure 5.7: The class hierarchy of scene graph nodes in M3G. The arrows denote inheritance:
World is derived from Group, SkinnedMesh and MorphingMesh are derived from Mesh, and every-
thing is ultimately derived from Node.

S E C T I O N 5 . 2 SCENE GRAPHS 127

optimized for spatial organization: objects should be grouped according to their physical
proximity, not because of their texture map or shininess.

Group nodes are the basic building blocks of a scene graph, and they come in many fla-
vors; some examples are shown in Figure 5.8. The basic Group node in M3G stores an
unordered and unlimited set of child nodes. The only other type of group in M3G is the
designated root node, World. Other scene graph designs may support groups that store
an ordered set of nodes, groups that select only one of their children for rendering, groups
that store a transformation, and so on.

The structure of the basic rigid-body Mesh of M3G was already described in Section 5.1;
see Figure 5.1 for a quick recap. The MorphingMesh is otherwise the same, but includes
multiple VertexBuffers—the morph targets—and a weighting factor for each. The
SkinnedMesh is a hierarchical construct that forms an entire branch in the main scene
graph; it is essentially a very specialized kind of group node. See Figure 12.5 for how a
SkinnedMesh is structured. Note that regardless of the type of mesh, the vertex buffers
and other mesh components in M3G can be shared between multiple meshes. This allows,
for example, a variety of car objects to share a single base mesh while only the texture maps
are different.

Sprite3D is a screen-aligned quadrilateral having a position and optionally a size in 3D
space. It can be used for billboards, text labels, UI widgets, and others. Sprite3D also

Switch

Node A Node B Node C

selected

Group

Node A Node B Node C

OrderedGroup

Node A Node B Node C

3rd2nd1st

LOD

Node C

D < 10? D > 100?

Node A Node B

F igure 5.8: Different kinds of group nodes that have been used in earlier scene graphs. M3G only supports the basic,
unordered groups, but has other means to implement the OrderedGroup and Switch behaviors. There is no direct substi-
tute for the level-of-detail node LOD; to get the same effect, you will need to manually enable and disable nodes based on
their distance (D) from the camera.

128 SCENE MANAGEMENT C H A P T E R 5

illustrates the notion of having different kinds of renderable objects in a scene graph, not
only triangle meshes. Some scene graphs support a wide variety of renderables that are
not ordinary triangle meshes, at least not from the user’s point of view. Such renderables
include spheres, cylinders, terrains, particles, impostors, skyboxes, and so on.

The Camera node defines from where and how the scene is viewed. The camera node
has a position and orientation in the scene, together constituting the transformation from
world coordinates to eye coordinates. The camera also defines a projective transformation
that maps the eye coordinates into clip coordinates. The projective transformation may
be given explicitly in the form of a 4 × 4 matrix, or implicitly by defining the extents
of the view frustum. There are often several camera nodes in the scene to facilitate easy
switching from one viewpoint to another. For example, a racing game might feature the
driver’s view, rear view, and a view from behind.

Finally, the Light node defines a light source. The types of lights supported by M3G
include ambient, directional, point, and spot lights. They are modeled after the OpenGL
lighting equation.

5.3 RETAINED MODE RENDERING

Retained mode refers to a programming paradigm for 3D graphics where a persistent
representation of graphical content is stored in memory and managed by a library layer.
The persistent representation is often called a scene graph. Compared to immediate
mode, where fine-grained rendering commands are submitted to the graphics API and
immediately executed, the retained-mode programmer performs less low-level work in
loading, managing, culling, and rendering the scene. Also, giving more control over
the content to the graphics library gives the library an opportunity to optimize the
data for the underlying hardware.

Early scene graphs, such as Performer by SGI [RH94], were designed to work around
the performance problems of the original OpenGL, which had a very immediate-mode
API indeed: several function calls had to be made to draw each triangle, yielding a lot
of overhead. Also, vertices, indices, textures, and all other graphics resources were held
in application memory and controlled by the application. This made it difficult for
OpenGL to internally cache or optimize any of the source data. The only retained-mode
concept available were display lists, i.e., compiled sequences of OpenGL function calls,
but they turned out to be inflexible from the application point of view, and difficult
to optimize from the OpenGL driver point of view.1

Later versions of OpenGL, and OpenGL ES even more so, have departed from their
pure immediate-mode roots. Vertex arrays and texture objects were introduced first,

1 As a result, display lists were not included in OpenGL ES.

S E C T I O N 5 . 3 RETAINED MODE RENDERING 129

followed by Vertex Buffer Objects (VBOs), and most recently Frame Buffer Objects
(FBOs). This trend of moving more and more data into graphics memory—the “server
side” in OpenGL parlance—is still ongoing with, e.g., Direct3D 10 adding State Objects
[Bly06].

M3G was designed to be a retained-mode system from the ground up. Although it does
have a concept of immediate mode, all data are still held in Java objects that are fully
managed by M3G. The difference is the “full” retained mode is just that: those objects are
rendered individually, as opposed to collecting them into a complete scene graph.

Retained-mode rendering in a typical M3G implementation is, at least on a conceptual
level, done as shown in Figure 5.9. Note that this is all happening in native code, with-
out having to fetch any data from the Java side. We will now describe each step in more
detail.

5.3.1 SETTING UP THE CAMERA AND LIGHTS

The first step is to set up global parameters, such as the camera and lights. Finding the
active camera is easy, as there is a direct link to it from theWorld. To find the light sources,
we have to scan through the entire scene graph, but in practice this only needs to be done
once. The set of lights in a scene is unlikely to change on a regular basis, so we can easily
cache direct pointers to them for later use.

Once we have the lights collected into a list, we transform them into eye coordinates
by multiplying the position and/or direction of each light by its modelview matrix. To
compute the modelview matrices, we trace the scene graph path from each light node
to the camera node, concatenating the node transformations along the way into a 3 × 4
matrix. Note that many of these paths will typically overlap, particularly the closer we get
to the camera node, so it makes a lot of sense to cache the transformations in some form.
A simple but effective scheme is to cache the world-to-camera transformation; this will be

Set up camera
and lights

Update
bounding
volumes

Collect
potentially

visible objects

Resolve
rendering

state

SortRender
Next frame

F igure 5.9: Scene graph rendering in a typical M3G implementation. No Java code is involved in
this process, as the scene graph is retained in native data structures.

130 SCENE MANAGEMENT C H A P T E R 5

needed a lot as we go forward. Caching the local-to-world transformation for each node
may be a good idea, as well.

5.3.2 RESOLVING RENDERING STATE

After setting up global state, we move on to individual objects. Traversing the scene graph,
we first eliminate any nodes and their descendants that have the rendering enable flag
turned off. For each mesh that remains, we check whether its scope mask (see
Section 15.6.2) matches with that of the camera, culling the mesh if not. As the final quick
check, we drop any submeshes that have no associated Appearance.

We then resolve the rendering state for each remaining object. The state includes
numerous transformations, appearance components, vertex and index buffers, and so
on. At this stage we also quickly validate each object, checking that its vertex coordinates
are present, that triangle indices do not point beyond vertex array boundaries, that a
SkinnedMesh has all the necessary bones in place, and so on.

To compute the modelview matrix for a mesh, we again trace the path from the
mesh node upward in the scene graph until we hit the root node, compounding any
node transformations along the way into one matrix. This matrix is then concatenated
with the world-to-camera transformation, which we cached earlier, to obtain the final
modelview matrix.

Compared to ordinary meshes, skinned meshes (see Section 4.2.2) need some special
treatment. For each bone in the skeleton, we need to compute a compound transforma-
tion to the coordinate system where the actual skinning is to be done. This may be the
eye space, the world space, or the coordinate system of the SkinnedMesh node itself.
In principle, the choice of coordinate system makes no difference to the end result, but in
practice, the impact of low-precision arithmetic gets more severe the more transforma-
tions we compound into the bone matrices. Thus, using the SkinnedMesh coordinate
system may be a good idea on an integer-only CPU.

Once we are done with the transformations, we associate each mesh with the lights that
potentially affect it; this is again determined using the scope masks. If there are more lights
associated with an object than the underlying rendering engine can handle, we simply
select the N most relevant lights and ignore the rest.

5.3.3 FINDING POTENTIALLY VISIBLE OBJECTS

The next stage in retained-mode rendering is to determine which objects are inside or
intersecting the view frustum, and are therefore potentially visible. Note that any number
of the potentially visible objects may be entirely occluded by other objects, but in the
absence of occlusion culling, we need to render all of them anyway.

Before the actual view frustum culling, we need to update the bounding volumes that are
stored in each node. In a bounding volume hierarchy (BVH), such as the one shown in

S E C T I O N 5 . 3 RETAINED MODE RENDERING 131

Figure 5.4, the bounding volume of a group node encloses the bounding volumes of its
children. We start updating the volumes from the meshes at the leaf nodes, proceeding
upward in the tree until we reach the root node. Dirty flags, propagated upward in the
hierarchy, may be used to speed up the traversal: only those branches need to be pro-
cessed where some node transformations or vertex coordinates have changed since the
last frame.

The bounding volume of a node may be a sphere, an axis-aligned bounding box (AABB),
an oriented bounding box (OBB), or any arbitrary shape as long as it encloses all ver-
tices contained in that node and its descendants. The most common types of bounding
volumes are shown in Figure 5.10. Practical M3G implementations are likely to be using
AABBs and bounding spheres only. The more complex volumes are too slow to gener-
ate automatically, and there is no way in the M3G API for the developer to provide the
bounding volumes. Bounding spheres and AABBs are also the fastest to check against the
view frustum for intersections.

Ideally, different kinds of bounding volumes would be used on different types of objects
and scenes. For example, bounding spheres are not a good fit with architectural models,
but may be the best choice for skinned meshes. Bounding spheres are the fastest type of
bounding volume to update, which is an important property for deformable meshes, and
they also provide a fairly tight fit to human-like characters (recall the famous “Vitruvian
Man” by Leonardo da Vinci).

With the bounding volume hierarchy updated and the rendering state resolved, we tra-
verse the scene graph one final time; this time to cull the objects that are outside the view
frustum. Starting from theWorld, we check whether the bounding volume of the current
node is inside, outside, or intersecting the view frustum. If it is inside, the objects in that
branch are potentially visible, and are inserted to the list of objects that will ultimately
be sent to the rendering engine. If the bounding volume is outside the view frustum, the
branch is not visible and gets culled. If the bounding volume and view frustum intersect,
we recurse into the children of that node, and repeat from the beginning.

F igure 5.10: Different kinds of bounding volumes, illustrated in two dimensions for clarity. From the left: axis-aligned
bounding box (AABB), oriented bounding box (OBB), bounding sphere, and convex polytope. The convex polytope in this
example is constructed from an AABB, shown in dashed line, by beveling its horizontal and vertical edges at 45◦ angles.

132 SCENE MANAGEMENT C H A P T E R 5

5.3.4 SORTING AND RENDERING

As the final step before rendering, we sort the list of potentially visible objects by two or
more criteria. The primary criterion is the rendering layer, which is a user-specified global
ordering of submeshes; see Section 15.4. The secondary sorting key is transparency—
opaque objects must be rendered first so that translucent objects can be properly blended
with them. Ideally, the transparent objects would be further sorted into a back-to-front
order (see Section 3.5.2), but this is not required by M3G due to the potential impact to
performance.

Any further sorting keys exist merely to optimize the rendering order for the underlying
rendering engine, and are thus specific to each implementation and device. A good rule
of thumb is to sort into buckets by rendering state, then front-to-back within each bucket
to minimize overdraw. See Chapter 6 for more information on rendering optimizations.

State sorting is made easier and faster by the fact that rendering state is grouped into
appearance components to begin with. There are usually just a few different instances of
each type of component in a scene, so they are easily enumerated or hashed into a fixed
number of bits, and used as part of the sorting key. The sorting key can therefore be made
very compact, for instance a 32-bit or 64-bit integer.

Finally, we iterate through the sorted queue of objects and dispatch them to the low-level
rendering engine. To start off, we set the low-level rendering state to that of the first object
in the queue. We render that object and any subsequent objects having the same state, and
repeat from the start when we hit the first object with differing state.

When all objects have been sent to the renderer, we return control back to the application,
letting it draw some more graphics or just flush the frame buffer to the screen. The appli-
cation is then expected to animate and otherwise update the scene graph in preparation
for the next frame.

6

C
H

A
P

T
E

R

PERFORMANCE AND
SCALABILITY

The fundamental challenge anyone programming for mobile phones faces is that to be
successful in the marketplace, an application needs to be deployed on dozens of different
phone models. Although the existence of programming standards such as OpenGL ES
and M3G has reduced the fragmentation in the market, one still has to deal with a broad
and diverse range of devices.

The performance characteristics, available memory, potential display configurations,
programming tool chains, Java stack implementations, control devices, available libraries,
operating systems, and underlying CPU architectures vary from one phone model to
another. The problem of writing applications that port and scale to all these devices is such
a hard and complex one that several industry-wide standardization efforts have emerged
to tackle it, e.g., OpenKODE from the Khronos Group, and the Java platform and related
JSR libraries defined by the Java Community Process.

For the purposes of this discussion, we will ignore most of the portability and scala-
bility issues and concentrate on those that are related to 3D graphics. Even so, dealing
with the variety in the devices out there is a formidable challenge. The performance
difference in raw rendering power between a software and a hardware-based renderer
can be hundredfold—whether this can be utilized and measured in real-life scenarios
is an entirely different matter. The lowest-end devices with a 3D engine use 96 × 65
monochrome displays, and have a 20MHz ARM7 processor. The high end at the time

133

134 PERFORMANCE AND SCALABILITY C H A P T E R 6

of writing boasts VGA true color displays, powered by dedicated GPUs and 600MHz
multicore ARM11 processors with vector floating-point units. Currently only the expen-
sive smart phones have dedicated graphics processors, but the situation is changing
rapidly with ever-cheaper GPU designs entering the feature phone market.

Programming standards such as OpenGL ES attempt to unify the variety of devices
by providing a common interface for accessing the underlying graphics architecture:
they act as hardware abstraction layers. This is important, as now the set of available
graphics features is reasonably constant from the programmer’s point of view. Apart
from the API and feature set these standards unify a third important factor: the under-
lying rendering model. Both OpenGL ES and M3G build on the shoulders of desktop
OpenGL by adopting its rendering paradigms as well as its well-specified and documented
pipeline. So, even though a programmer can assume to have more or less the same fea-
ture set on a low-end and a high-end device, use the same APIs to program both, and
have some expectations about the rendering quality, one thing cannot be guaranteed:
performance.

6.1 SCALABILITY

When building a scalable 3D application two major factors need to be taken into account.
First of all, the application should have maximum graphics performance; no major bottle-
necks or loss of performance should exist. This is extremely important as the lowest-end
mobile phones being targeted have very limited capabilities. The second thing to con-
sider is identifying all aspects of the rendering process that can be scaled. Scaling in this
context means that once an application runs adequately on the lowest-end device being
targeted, the application can be made more interesting on devices that have better render-
ing performance by adding geometric detail, using higher-quality textures, more complex
special effects, better screen resolution, more accurate physics, more complex game logic,
and so forth. In other words, you should always scale applications upward by adding eye
candy, because the opposite—that is downscaling a complex application—is much more
difficult to accomplish.

3D content is reasonably easy to scale using either automated or manually controlled
offline tools. For example, most modeling packages support automatic generation of
low-polygon-count models. This allows exporting the same scene using different triangle
budgets. Methods such as texture-based illumination, detail textures, and bump mapping
make it possible to use fewer triangles to express complex shapes; these were covered
earlier in Section 3.4.3. Texture maps are highly scalable, and creating smaller textures
is a trivial operation supported by all image-editing programs. The use of compressed
texture formats [BAC96, Fen03, SAM05] reduces the memory requirements even further.
Figure 6.1 illustrates how few triangles are needed for creating a compelling 3D game.

S E C T I O N 6 . 1 SCALABILITY 135

F igure 6.1: Low-polygon models from a golf game by Digital Chocolate.

6.1.1 SPECIAL EFFECTS

Most game applications contain highly scalable visual elements that do not have any
impact on the game play. For example, bullet holes on walls, skid marks left by a race
car, and drifting clouds in the sky are typical examples of eye candy that could be reduced
or dropped altogether without altering the fundamentals of the game. Whether a special
effect is a game play element depends on the context. As an example, fog is often used to
mask the popping rendering artifacts caused by geometric level-of-detail optimizations
and culling of distant objects. It is also a visual effect that makes scenes moodier and more
atmospheric. On the other hand, fog may make enemies more difficult to spot in a shooter
game—removing the fog would clearly affect the game play. Ensuring that the game play
is not disturbed is especially important in multiplayer games as players should not need
to suffer from unfair disadvantages due to scaling of special effects.

If you want to expose performance controls to the user, special effects are one of the prime
candidates for this. Most users can understand the difference between rendering bullet
holes and not rendering them, whereas having to make a choice between bilinear and
trilinear filtering is not for the uninitiated.

One family of effects that can be made fully scalable are particle systems such as explosions,
water effects, flying leaves, or fire, as shown in Figure 6.2. The number of particles, the
complexity of the particle simulation, and the associated visuals can all be scaled based
on the graphics capabilities of the device. Furthermore, one can allocate a shared budget
for all particle systems: this ensures that the load on the graphics system is controlled
dynamically, and that the maximum load can be bounded. A similar approach is often
used for sounds, e.g., during an intense firefight the more subtle sound effects are skipped,
as they would get drowned by the gunshots anyway.

136 PERFORMANCE AND SCALABILITY C H A P T E R 6

F igure 6.2: Particle effects can be used to simulate natural phenomena, such as fire, that are not
easily represented as polygonal surfaces. (Image copyright c© AMD.)

6.1.2 TUNING DOWN THE DETAILS

Other scalable elements include noncritical detail objects and background elements.
In many 3D environments the most distant elements are rendered using 2D back-
drops instead of true 3D objects. In this technique faraway objects are collapsed into
a single panoramic sky cube at the expense of losing parallax effects between and
within those objects. Similarly, multi-pass detail textures can be omitted on low-end
devices.

The method selected for rendering shadows is another aspect that can be scaled. On a
high-performance device it may be visually pleasing to use stencil shadows [Cro77, EK02]
for some or all of the game objects. This is a costly approach, and less photorealistic meth-
ods, such as rendering shaded blobs under the main characters, should be utilized on less
capable systems. Again, one should be careful to make sure that shadows are truly just a
visual detail as in some games they can affect the game play.

6.2 PERFORMANCE OPTIMIZATION

The most important thing to do when attempting to optimize the performance of an
application is profiling. Modern graphics processors are complex devices, and the inter-
action between them and other hardware and software components of the system is not
trivial. This makes predicting the impact of program optimizations difficult. The only
effective way for finding out how changes in the program code affect application perfor-
mance is measuring it.

S E C T I O N 6 . 2 PERFORMANCE OPTIMIZATION 137

The tips and tricks provided in this chapter are good rules of thumb but by no means
gospel. Following these rules is likely to increase overall rendering performance on most
devices, but the task of identifying device-specific bottlenecks is always left to the applica-
tion programmer. Problems in performance particular to a phone model often arise from
system integration issues rather than deficiencies in the rendering hardware. This means
that the profiling code must be run on the actual target device; it is not sufficient just
to obtain similar hardware. Publicly available benchmark programs such as those from
FutureMark1 or JBenchmark2 are useful for assessing approximate graphics processing
performance of a device. However, they may not pinpoint individual bottlenecks that
may ruin the performance of a particular application.

Performance problems of a 3D graphics application can be classified into three groups:
pixel pipeline, vertex pipeline, and application bottlenecks. These groups can be then fur-
ther partitioned into different pipeline stages. The overall pipeline runs only as fast as
its slowest stage, which forms a bottleneck. However, regardless of the source of the bot-
tleneck, the strategy for dealing with one is straightforward (see Figure 6.3). First, you
should locate the bottleneck. Then, you should try to eliminate it and move to the next
one. Locating bottlenecks for a single rendering task is simple. You should go through
each pipeline stage and reduce its workload. If the performance changes significantly, you
have found the bottleneck. Otherwise, you should move to the next pipeline stage. How-
ever, it is good to understand that the bottleneck often changes within a single frame that
contains multiple different primitives. For example, if the application first renders a group
of lines and afterward a group of lit and shaded triangles, we can expect the bottleneck to
change. In the following we study the main pipeline groups in more detail.

6.2.1 PIXEL PIPELINE

Whether an application’s performance is bound by the pixel pipeline can be found out by
changing the rendering resolution—this is easiest done by scaling the viewport. If the per-
formance scales directly with the screen resolution, the bottleneck is in the pixel pipeline.
After this, further testing is needed for identifying the exact pipeline stage (Figure 6.4).
To determine if memory bandwidth is the limiting factor, you should try using smaller
pixel formats for the different buffers and textures, or disable texturing altogether. If a
performance difference is observed, you are likely to be bandwidth-bound. Other factors
contributing to the memory bandwidth include blending operations and depth buffer-
ing. Try disabling these features to see if there is a difference. Another culprit for slow
fragment processing may be the texture filtering used. Test the application with
nonfiltered textures to find out if the performance increases.

1 www.futuremark.com

2 www.jbenchmark.com

138 PERFORMANCE AND SCALABILITY C H A P T E R 6

Eliminate all draw calls

Limited by graphics

Limited by rendering

Limited by pixel
processing

Limited by geometry
processing

Limited by buffer swap

Limited by application processing

Faster

Faster

Faster

No effect

No effect

No effect

Only clear, draw one small triangle, and swap

Set viewport to 8 3 8 pixels Reduce resolution
or frame rate

F igure 6.3: Determining whether the bottleneck is in application processing, buffer swapping, geometry processing, or
fragment processing.

Limited by pixel processing

Disable texturing
Faster

Limited by frame buffer access

Disable blending, fragment tests

Limited by frame
buffer ops

Limited by color
buffer bandwidth

Use fewer ops, render
in front-to-back order

User smaller resolution,
color depth, or viewport

Faster No effect

Limited by texturing

Reduce textures to 1 � 1 pixel

Use smaller textures,
compressed textures,

nearest filtering, mipmaps

Replace textures with
baked-in vertex colors,

use nearest filtering

Limited by texture
memory bandwidth

Limited by texture
mapping logic

Faster No effect

No effect

F igure 6.4: Finding the performance bottleneck in fill rate limited rendering.

S E C T I O N 6 . 2 PERFORMANCE OPTIMIZATION 139

To summarize: in order to speed up an application where the pixel pipeline is the
bottleneck, you have to either use a smaller screen resolution, render fewer objects, use
simpler data formats, utilize smaller texture maps, or perform less complex fragment and
texture processing. Many of these optimizations are covered in more detail later in this
chapter.

6.2.2 VERTEX PIPELINE

Bottlenecks in the vertex pipeline can be found by making two tests (Figure 6.5). First,
you should try rendering only every other triangle but keeping the vertex arrays used
intact. Second, you should try to reduce the complexity of the transformation and lighting
pipeline. If both of these changes show performance improvements, the application is
bound by vertex processing. If only the reduced triangle count shows a difference, we
have a submission bottleneck, i.e., we are bound by how fast the vertex and primitive data
can be transferred from the application.

When analyzing the vertex pipeline, you should always scale the viewport to make the
rendering resolution small in order to keep the cost of pixel processing to a minimum.
A good size for the current mobile phone display resolutions would be 8 × 8 pixels or

Limited by geometry processing

Limited by T&L

Limited by the
lighting pipeline

Limited by the
vertex pipeline

Limited by triangle setup

Reduce the number of triangles

Use fewer triangles

Use fewer and
simpler lights

Use fewer triangles,
8/16-bit vertices

Disable lighting

Faster

Faster

No effect

No effect

F igure 6.5: Finding the performance bottleneck in geometry-limited rendering.

140 PERFORMANCE AND SCALABILITY C H A P T E R 6

so. A resolution smaller than this might cause too many triangles to become subpixel-
sized; optimized drivers would cull them and skip their vertex processing, complicating
the analysis.

Submission bottlenecks can be addressed by using smaller data formats, by organizing
the vertices and primitives in a more cache-friendly manner, by storing the data on the
server rather than in the client, and of course by using simplified meshes that have fewer
triangles. On the other hand, if vertex processing is the cause for the slowdown, the
remedy is to reduce complexity in the transformation and lighting pipeline. This is best
done by using fewer and simpler light sources, or avoiding dynamic lighting altogether.
Also, disabling fog, providing prenormalized vertex normals, and avoiding the use of
texture matrices and floating-point vertex data formats are likely to reduce the geometry
workload.

6.2.3 APPLICATION CODE

Finally, it may be that the bottleneck is not in the rendering part at all. Instead, the
application code itself may be slow. To determine if this is the case, you should turn off
all application logic, i.e., just execute the code that performs the per-frame rendering. If
significant performance differences can be observed, you have an application bottleneck.
Alternatively, you could just comment out all rendering calls, e.g., glDrawElements
in OpenGL ES. If the frame rate does not change much, the application is not
rendering-bound.

A more fine-grained analysis is needed for pinpointing the slow parts in an application.
The best tool for this analysis is a profiler that shows how much time is spent in each func-
tion or line of code. Unfortunately hardware profilers for real mobile phones are both very
expensive and difficult to obtain. This means that applications need to be either executed
on other similar hardware, e.g., Lauterbach boards3 are commonly used, or they may be
compiled and executed on a desktop computer where software-based profilers are readily
available. When profiling an application on anything except the real target device, the data
you get is only indicative. However, it may give you valuable insights into where time is
potentially spent in the application, the complexities of the algorithms used, and it may
even reveal some otherwise hard-to-find bugs.

As floating-point code tends to be emulated on many embedded devices, slowdowns
are often caused by innocent-looking routines that perform math processing for physics
simulation or game logic. Re-writing these sections using integer arithmetic may yield sig-
nificant gains in performance. Appendix A provides an introduction to fixed-point pro-
gramming. Java programs have their own performance-related pitfalls. These are covered
in more detail in Appendix B.

3 www.lauterbach.com

S E C T I O N 6 . 2 PERFORMANCE OPTIMIZATION 141

6.2.4 PROFILING OPENGL ES APPLICATIONS

Before optimizing your code you should always clean it up. This means that you should
first fix all graphics-related errors, i.e., make sure no OpenGL ES errors are raised. Then
you should take a look at the OpenGL ES call logs generated by your application. You
will need a separate tool for this: we will introduce one below. From the logs you will
get the list of OpenGL ES API calls made by your application. You should verify that
they are what you expect, and remove any redundant ones. At this stage you should trap
typical programming mistakes such as clearing the buffers multiple times, or enabling
unnecessary rendering states.

One potentially useful commercial tool for profiling your application is gDEBugger ES
from Graphic Remedy. 4 It is an OpenGL ES debugger and profiler that traces application
activity on top of the OpenGL ES APIs to provide the application behavior information
you need to find bugs and to optimize application performance (see Figure 6.6). gDEBug-
ger ES essentially transforms the debugging task of graphics applications from a “black
box” into a “white box” model; it lets you peer inside the OpenGL ES usage to see how
individual commands affect the graphic pipeline implementation. The profiler enables
viewing context state variables (Figure 6.7), texture data and properties, performance
counters, and OpenGL ES function call history. It allows adding breakpoints on OpenGL
ES commands, forcing the application’s raster mode and render target, and breaking on
OpenGL ES errors.

Another useful tool for profiling the application code is Carbide IDE From Nokia for S60
and UIQ Symbian devices. With commercial versions of Carbide you can do on-target
debugging, performance profiling, and power consumption analysis. See Figure 6.8 for
an example view of the performance investigator.

F igure 6.6: gDEBugger ES is a tool for debugging and profiling the OpenGL ES graphics driver.

4 www.gremedy.com

142 PERFORMANCE AND SCALABILITY C H A P T E R 6

F igure 6.7: gDEBugger ES showing the state variables of the OpenGL ES context.

6.2.5 CHECKLISTS

This section provides checklists for reviewing a graphics application for high perfor-
mance, quality, portability, and lower power usage. Tables 6.1–6.4 contain questions that
should be asked in a review, and the “correct” answers to those questions. The appli-
cability of each issue is characterized as ALL, MOST, or SOME to indicate whether the
question applies to practically all implementations and platforms, or just some of them.
For example, on some platforms enabling perspective, correction does not reduce perfor-
mance while on others you will have to pay a performance penalty. Note that even though
we are using OpenGL ES and EGL terminology and function names in the tables, most
of the issues also apply to M3G.

S E C T I O N 6 . 2 PERFORMANCE OPTIMIZATION 143

F igure 6.8: Carbide showing one of the performance analysis views. (Image copyright c© Nokia.)

Table 6.1 contains a list of basic questions to go through for a quick performance analysis.
The list is by no means exhaustive, but it contains the most common pitfalls that cause
performance issues.

A checklist of features affecting rendering quality can be found in Table 6.2. Questions
in the table highlight quality settings that improve quality but do not have any nega-
tive performance impact on typical graphics hardware. However, the impact on software
implementations may be severe.

In a similar fashion, Table 6.3 provides checks for efficient power usage, and finally,
Table 6.4 covers programming practices and features that may cause portability problems.

144 PERFORMANCE AND SCALABILITY C H A P T E R 6

Tab le 6.1: Performance checklist.

Check item OK Answer Applicability

Do you use full-screen window surfaces? Yes ALL

Do you use glReadPixels? No ALL

Do you use eglCopyBuffers? No MOST

Do you use glCopyTex(Sub)Image2D? No MOST

Do you change texture data of existing texture? No ALL

Do you load textures during the rendering pass? No MOST

Do you use render-to-texture results during the same frame? No SOME

Do you clear the whole depth buffer at the start of a frame? Yes SOME

Do you use mipmapping? Yes ALL

Do you use vertex buffer objects? Yes ALL

Do you use texture compression? Yes SOME

Is any unnecessary state enabled? No ALL

Do you use auto mipmap generation or change filter modes? No SOME

Do you use perspective correction? No SOME (SW)

Do you use bilinear or trilinear filtering? No SOME (SW)

Do you use floating-point vertex data? No SOME

Tab le 6.2: Quality checklist.

Check item OK Answer Applicability

Do you use multisampling? Yes MOST (HW)

Do you use LINEAR MIPMAP NEAREST? Yes MOST (HW)

Do you have enough depth buffer bits? Yes ALL

Do you have enough color buffer bits? Yes ALL

Have you enabled perspective correction? Yes ALL

Tab le 6.3: Power usage checklist.

Check item OK Answer Applicability

Do you terminate EGL when application is idling? Yes MOST (HW)

Do you track the focus and halt rendering if focus is lost? Yes ALL

Do you limit your frame rate? Yes ALL

S E C T I O N 6 . 3 CHANGING AND QUERYING THE STATE 145

Tab le 6.4: Portability checklist.

Check item OK Answer Applicability

Do you use writable static data? No SOME (OS)

Do you handle display layout changes? Yes SOME (OS)

Do you depend on pixmap surface support? No SOME

Do you use EGL from another thread than main? No SOME

Do you specify surface type when asking for a config? Yes MOST

Do you require exact number of samples for multi-sampling? No SOME

6.3 CHANGING AND QUERYING THE STATE

Modern rendering pipelines are one-way streets: data keeps flowing in, it gets buffered,
number-crunching occurs, and eventually some pixels come out. State changes and
dynamic state queries are operations that disturb this flow. In the worst case a client-server
roundtrip is required. For example, if the application wants to read back the contents of
the color buffer, the application (the “client”) has to stall until the graphics hardware
(the “server”) has processed all of the buffered primitives—and the buffers in modern
hardware, especially tile-based devices, can be very long. An example of an extreme state
change is modifying the contents of a texture map mid-frame as this may lead to internal
duplication of the image data by the underlying driver.

While having some state changes is unavoidable in any realistic applications, you should
steer clear of dynamic state queries, if possible. Applications should shadow the relevant
state in their own code rather than query it from the graphics driver, e.g., the applica-
tion should know whether a particular light source is enabled or not. Dynamic queries
should only be utilized when keeping an up-to-date copy of the graphics driver’s state
is cumbersome, for example when combining application code with third-party middle-
ware libraries that communicate directly with the underlying OpenGL ES or M3G layers.
If for some reason dynamic state queries are absolutely needed, they should all be executed
together once per frame, so that only a single pipeline stall is generated.

Smaller state changes, such as operations that alter the transformation and lighting
pipeline or the fragment processing, affect the performance in various ways. Changing
state that is typically set only during initialization, such as the size of the viewport or
scissor rectangle, may cause a pipeline flush and may therefore be costly. State changes
and under-the-hood synchronization may also happen when an application uses different
APIs to access the same graphics resources. For example, you may be tempted to mix 2D
and 3D functionality provided by different APIs. This is more than likely to be extremely
slow, as the entire 3D pipeline may have to be completely flushed before the 2D operations

146 PERFORMANCE AND SCALABILITY C H A P T E R 6

can take place and vice versa. The implementations of the graphics libraries may well come
from different vendors, and their interaction can therefore be nonoptimal. This is a sig-
nificant problem in the Java world, as the whole philosophy of Java programming is to be
able to mix and match different libraries.

6.3.1 OPTIMIZING STATE CHANGES

The rule of thumb for all state changes is to minimize the number of stalls created by
them. This means that changes should be grouped and executed together. An easy way
to do this is to group related state changes into “shaders” (we use the term here to indi-
cate a collection of distinct pieces of the rendering state, corresponding roughly with the
Appearance class of M3G), and to organize the rendering so that all objects sharing
a shader are rendered together. It is a good idea to expose this shader-based approach in
the artists’ modeling tools as well. If one lets the artists tweak attributes that can create
state changes, the end result is likely to be a scene where each object has slightly different
materials and fragment pipelines, and the application needs to do a large number of stage
changes to render the objects. It is therefore better to just let the artist pick shaders from
a predefined list.

Also, it is important to be aware that the more complex a shader is, the slower it is likely
to be. Even though graphics hardware may perform some operations “for free” due to its
highly parallel nature, in a software implementation everything has an associated cost:
enabling texture mapping is going to take dozens of CPU cycles for every pixel rendered,
bilinear filtering of textures is considerably more expensive than point sampling, and
using blending or fog will definitely slow down a software renderer. For this reason, it
is crucial that the application disables all operations that are not going to have an impact
on the final rendered image. As an example, it is typical that applications draw over-
lay images after the 3D scene has been rendered. People often forget to disable the fog
operation when drawing the overlays as the fog usually does not affect objects placed at
the near clipping plane. However, the underlying rendering engine does not know this,
and has to perform the expensive fog computations for every pixel rendered. Disabling
the fog for the overlays in this case may have a significant performance impact.

In general, simplifying shaders is more important for software implementations of the
rendering pipeline, whereas keeping the number of state changes low is more important
for GPUs.

6.4 MODEL DATA

The way the vertex and triangle data of the 3D models is organized has a significant
impact on the rendering performance. Although the internal caching rules vary from
one rendering pipeline implementation to another, straightforward rules of thumb for
presentation of data exist: keep vertex and triangle data short and simple, and make as
few rendering calls as possible.

S E C T I O N 6 . 4 MODEL DATA 147

In addition to the layout and format of the vertex and triangle data used, where the data
is stored plays an important role. If it is stored in the client’s memory, the application has
more flexibility to modify the data dynamically. However, since the data is now transferred
from the client to the server during every render call, the server loses its opportunity
for optimizing and analyzing the data. On the other hand, when the mesh data is stored
by the server, it is possible to perform even expensive analysis of the data, as the cost
is amortized over multiple rendering operations. In general, one should always use such
server-stored buffer objects whenever provided by the rendering API. OpenGL ES supports
buffer objects from version 1.1 onward, and M3G implementations may support them in
a completely transparent fashion.

6.4.1 VERTEX DATA

Optimization of model data is an offline process that is best performed in the export-
ing pipeline of a modeling tool. The most important optimization that should be done is
vertex welding, that is, finding shared vertices and removing all but one of them. In a finely
tessellated grid each vertex is shared by six triangles. This means an effective vertices-
per-triangle ratio of 0.5. For many real-life meshes, ratios between 0.6 and 1.0 are obtained.
This is a major improvement over the naive approach of using three individual vertices
for each triangle, i.e., a ratio of 3.0. The fastest and easiest way for implementing welding
is to utilize a hash table where vertices are hashed based on their attributes, i.e., position,
normal, texture coordinates, and color.

Any reasonably complex 3D scene will use large amounts of memory for storing its vertex
data. To reduce the consumption, one should always try to use the smallest data formats
possible, i.e., bytes and shorts instead of integers. Because quantization of floating-point
vertex coordinates into a smaller fixed-point representation may introduce artifacts and
gaps between objects, controlling the quantization should be made explicit in the modeling
and exporting pipeline. All interconnecting “scene” geometry could be represented with
a higher accuracy (16-bit coordinates), and all smaller and moving objects could be
expressed with lower accuracy (8-bit coordinates). For vertex positions this quantization
is typically done by scanning the axis-aligned bounding box of an object, re-scaling the
bounding [min,max] range for each axis into [−1, +1], and converting the resulting
values into signed fixed-point values. Vertex normals usually survive quantization into
8 bits per component rather well, whereas texture coordinates often require 16 bits
per component.

In general, one should always prefer integer formats over floating-point ones, as they are
likely to be processed faster by the transformation and lighting pipeline. Favoring small
formats has another advantage: when vertex data needs to be copied over to the render-
ing hardware, less memory bandwidth is needed to transfer smaller data elements. This
improves the performance of applications running on top of both hardware and software
renderers. Also, in order to increase cache-coherency, one should interleave vertex data if

148 PERFORMANCE AND SCALABILITY C H A P T E R 6

possible. This means that all data of a single vertex is stored together in memory, followed
by all of the data of the next vertex, and so forth.

6.4.2 TRIANGLE DATA

An important offline optimization is ordering the triangle data in a coherent way so that
subsequent triangles share as many vertices as possible. Since we cannot know the exact
rules of the vertex caching algorithm used by the graphics driver, we need to come up with
a generally good ordering. This can be achieved by sorting the triangles so that they refer
to vertices that have been encountered recently. Once the triangles have been sorted in a
coherent fashion, the vertex indices are remapped and the vertex arrays are re-indexed to
match the order of referral. In other words, the first triangle should have the indices 0, 1,
and 2. Assuming the second triangle shares an edge with the first one, it will introduce
one new vertex, which in this scheme gets the index 3. The subsequent triangles then refer
to these vertices and introduce new vertices 4, 5, 6, and so forth.

The triangle index array can be expressed in several different formats: triangle lists, strips,
and fans. Strips and fans have the advantage that they use fewer indices per triangle than
triangle lists. However, you need to watch out that you do not create too many rendering
calls. You can “stitch” two disjoint strips together by replicating the last vertex of the first
strip and the first vertex of the second strip, which creates two degenerate triangles in
the middle. In general, using indexed rendering allows you to take full advantage of ver-
tex caching, and you should sort the triangles as described above. Whether triangle lists
or strips perform better depends on the implementation, and you should measure your
platform to find out the winner.

6.5 TRANSFORMATION PIPELINE

Because many embedded devices lack floating-point units, the transformation pipeline
can easily become the bottleneck as matrix manipulation operations need to be performed
using emulated floating-point operations. For this reason it is important to minimize the
number of times the matrix stack is modified. Also, expressing all object vertex data in
fixed point rather than floating point can produce savings, as a much simpler transfor-
mation pipeline can then be utilized.

6.5.1 OBJECT HIERARCHIES

When an artist models a 3D scene she typically expresses the world as a complex hierarchy
of nodes. Objects are not just collections of triangles. Instead, they have internal struc-
ture, and often consist of multiple subobjects, each with its own materials, transformation
matrices and other attributes. This flexible approach makes a lot of sense when modeling
a world, but it is not an optimal presentation for the rendering pipeline, as unnecessary
matrix processing is likely to happen.

S E C T I O N 6 . 5 TRANSFORMATION PIPELINE 149

A better approach is to create a small piece of code that is executed when the data is
exported from the modeling tool. This code should find objects in the same hierarchy
sharing the same transformation matrices and shaders, and combine them together. The
code should also “flatten” static transformation hierarchies, i.e., premultiply hierarchical
transformations together. Also, if the scene contains a large number of replicated static
objects such as low-polygon count trees forming a forest or the kinds of props shown in
Figure 6.9, it makes sense to combine the objects into a single larger one by transforming
all of the objects into the same coordinate space.

6.5.2 RENDERING ORDER

The rendering order of objects has implications to the rendering performance. In gen-
eral, objects should be rendered in an approximate front-to-back order. The reason for
this is that the z-buffering algorithm used for hidden surface removal can quickly dis-
card covered fragments. If the occluding objects are rasterized first, many of the hidden
fragments require less processing. Modern GPUs often perform the depth buffering in
a hierarchical fashion, discarding hidden blocks of 4 × 4 or 8 × 8 pixels at a time. The
best practical way to exploit this early culling is to sort the objects of a scene in a coarse
fashion. Tile-based rendering architectures such as MBX of Imagination Technologies
and Mali of ARM buffer the scene geometry before the rasterization stage and are thus
able to perform the hidden surface removal efficiently regardless of the object order-
ing. However, other GPU architectures can benefit greatly if the objects are in a rough
front-to-back order.

Depth ordering is not the only important sorting criterion—the state changes should be
kept to a minimum as well. This suggests that one should first group objects based on
their materials and shaders, then render the groups in depth order.

F igure 6.9: Low-polygon in-game objects. (Images copyright c© Digital Chocolate.)

150 PERFORMANCE AND SCALABILITY C H A P T E R 6

F igure 6.10: Occlusion culling applied to a complex urban environment consisting of thousands of buildings. Left: view
frustum intersecting a city as seen from a third person view. Right: wireframe images of the camera’s view without (top)
and with (bottom) occlusion culling. Here culling reduces the number of objects rendered by a factor of one hundred. (Image
copyright c© NVidia.)

6.5.3 CULLING

Conservative culling strategies are ones that reduce the number of rendered objects with-
out introducing any artifacts. Frustum culling is used to remove objects falling outside
the view frustum, and occlusion culling to discard objects hidden completely by others.
Frustum culling is best performed using conservatively computed bounding volumes for
objects. This can be further optimized by organizing the scene graph into a bounding
volume hierarchy and performing the culling using the hierarchy. Frustum culling is a
trivial optimization to implement, and should be used by any rendering application—
practically all scene graph engines support this, including all real-world M3G implemen-
tations. Occlusion culling algorithms, on the other hand, are complex, and often difficult
to implement (see Figure 6.10). Of the various different algorithms, two are particularly
suited for handheld 3D applications: pre-computed: Potentially Visible Sets (PVSs) and
portal rendering. Both have modest run-time CPU requirements [Air90, LG95].

When an application just has too much geometry to render, aggressive culling strate-
gies need to be employed. There are several different options for choosing which objects
are not rendered. Commonly used methods include distance-based culling where faraway
objects are discarded, and detail culling, where objects having small screen footprints after
projection are removed. Distance-based culling creates annoying popping artifacts which
are often reduced either by bringing the far clipping plane closer, by using fog effects to

S E C T I O N 6 . 6 LIGHTING 151

mask the transition, or by using distance-based alpha blending to fade faraway objects
into full transparency. The popping can also be reduced by level-of-detail rendering, i.e.,
by switching to simplified versions of an object as its screen area shrinks.

6.6 LIGHTING

The fixed-functionality lighting pipeline of OpenGL ES and M3G is fairly limited in its
capabilities and it inherits the basic problems inherent in the original OpenGL lighting
model. The fundamental problem is that it is vertex-based, and thus fine tessellation of
meshes is required for reducing the artifacts due to sparse lighting sampling. Also, the
lighting model used in the mobile APIs is somewhat simplified; some important aspects
such as properly modeled specular illumination have been omitted.

Driver implementations of the lighting pipeline are notoriously poor, and often very
slow except for a few hand-optimized fast paths. In practice a good bet is that a single
directional light will be properly accelerated, and more complex illumination has a good
chance of utilizing slower code paths. In any case the cost will increase at least linearly
with the number of lights, and the more complex lighting features you use, the slower
your application runs.

When the vertex lighting pipeline is utilized, you should always attempt to simplify its
workload. For example, prenormalizing vertex normals is likely to speed up the lighting
computations. In a similar fashion, you should avoid using truly homogeneous vertex
positions, i.e., those that have w components other than zero or one, as these require
a more complex lighting pipeline. Specular illumination computations of any kind are
rather expensive, so disabling them may increase the performance. The same advice
applies to distance attenuation: disabling it is likely to result in performance gains. How-
ever, if attenuating light sources are used, a potential optimization is completely disabling
faraway lights that contribute little or nothing to the illumination of an object. This can be
done using trivial bounding sphere overlap tests between the objects and the light sources.

6.6.1 PRECOMPUTED ILLUMINATION

The quality problems of the limited OpenGL lighting model will disappear once pro-
grammable shaders are supported, though even then you will pay the execution time
penalty of complex lighting models and of multiple light sources. However, with fixed-
functionality pipelines of OpenGL ES 1.x and M3G 1.x one should primarily utilize
texture-based and precomputed illumination, and try to minimize the application’s
reliance on the vertex-based lighting pipeline.

For static lighting, precomputed vertex-based illumination is a cheap and good option.
The lighting is computed only once as a part of the modeling phase, and the vertex illumi-
nation is exported along with the mesh. This may also reduce the memory consumption of

152 PERFORMANCE AND SCALABILITY C H A P T E R 6

the meshes, as vertex normals do not need to be exported if dynamic lighting is omitted.
OpenGL ES supports a concept called color material tracking which allows changing a
material’s diffuse or ambient component separately for each vertex of a mesh. This allows
combining precomputed illumination with dynamic vertex-based lighting.

6.7 TEXTURES

Texturing plays an especially important role in mobile graphics, as it makes it possible to
push lighting computations from the vertex pipeline to the fragment pipeline. This reduces
the pressure to tessellate geometry. Also, it is more likely that the fragment pipeline is
accelerated; several commonly deployed hardware accelerators such as MBX Lite perform
the entire transformation and lighting pipeline on the CPU but have fast pixel-processing
hardware.

Software and hardware implementations of texture mapping have rather different per-
formance characteristics. A software implementation will take a serious performance hit
whenever linear blending between mipmap levels or texels is used. Also, disabling perspec-
tive correct texture interpolation may result in considerable speed-ups when a software
rasterizer is used. Mipmapping, on the other hand, is almost always a good idea, as it
makes texture caching more efficient for both software and hardware implementations.

It should be kept in mind that modifying texture data has almost always a significant
negative performance impact. Because rendering pipelines are generally deeply buffered,
there are two things that a driver may do when a texture is modified by the application.
Either the entire pipeline is flushed—this means that the client and the server cannot
execute in parallel, or the texture image and associated mipmap levels need to be duplicated.
In either case, the performance is degraded. The latter case also temporarily increases the
driver’s memory usage.

Multi-texturing should be always preferred over multi-pass rendering. There are several
good reasons for this. Z-fighting artifacts can be avoided this way, as the textures are
combined before the color buffer write is performed. Also, the number of render state
changes is reduced, and an expensive alpha blending pass is avoided altogether. Finally,
the number of draw calls is reduced by half.

6.7.1 TEXTURE STORAGE

Both OpenGL ES and M3G abstract out completely how the driver caches textures inter-
nally. However, the application has still some control over the data layout, and this may
have a huge impact on performance. Deciding the correct sizes for texture maps, and
combining smaller maps used together into a single larger texture can be significant opti-
mizations. The “correct size” is the one where the texture map looks good under typical
viewing conditions—in other words, one where the ratio between the texture’s texels

S E C T I O N 6 . 7 TEXTURES 153

and the screen’s pixels approaches 1.0. Using a larger texture map is a waste of memory.
A smaller one just deteriorates the quality.

The idea of combining multiple textures into a single texture map is an important one,
and is often used when rendering fonts, animations, or light maps. Such texture atlases
are also commonly used for storing the different texture maps used by a complex object
(see Figure 6.11). This technique allows switching between texture maps without actually
performing a state change—only the texture coordinates of the object need to vary. Long
strings of text or complex objects using multiple textures can thus be rendered using a
single rendering call.

Texture image data is probably the most significant consumer of memory in a graphics-
intensive application. As the memory capacity of a mobile device is still often rather limited,
it is important to pay attention to the texture formats and layouts used. Both OpenGL ES
and M3G provide support for compressed texture formats—although only via palettes
and vendor-specific extensions.

Nevertheless, compressed formats should be utilized whenever possible. Only in cases
where artifacts generated by the compression are visually disturbing, or when the texture
is often modified manually, should noncompressed formats be used. Even then, 16-bit
texture formats should be favored over 32-bit ones. Also, one should take advantage of
the intensity-only and alpha-only formats in cases where the texture data is monochrome.
In addition to saving valuable RAM, the use of compressed textures reduces the internal
memory bandwidth, which in turn is likely to improve the rendering performance.

F igure 6.11: An example of automatically packing textures into a texture atlas (refer to Section 6.7.1).
Image courtesy of Bruno Levy. (See the color plate.)

154 PERFORMANCE AND SCALABILITY C H A P T E R 6

Transferring a mobile application and associated data over the network is often both slow
and expensive, and in many cases the network operators pose strict limits for the sizes of
the applications. For these reasons it is important to ensure that the graphics assets do not
consume any more space than necessary. Texture maps usually consume a lion’s share of all
the graphics data, so special attention should be paid to them. In general, textures should
either be procedurally generated, or an efficient lossy compression scheme such as DCT
or wavelet compression (as utilized by the JPEG and JPEG 2000 formats, respectively)
should be applied to them.

PART II
OPENGL ES AND EGL

This page intentionally left blank

7

C
H

A
P

T
E

R

INTRODUCING OPENGL ES

This chapter covers the fundamentals of the OpenGL ES 1.x standard. First we take a brief
look at its history and design principles, followed by an introduction to the resources
available online. Then we examine the different profiles and versions of the API, give an
overview of the different versions, and take a look at the main OpenGL ES conventions.

7.1 KHRONOS GROUP AND OPENGL ES

The Khronos Group was formed in 2000 to create the specification of OpenML, an open
standard media authoring API. The consortium later expanded to include new work-
ing groups for several mobile media standards. The OpenGL ES working group was the
first such group. Over time it has created several versions of a compact 3D graphics API
(OpenGL ES stands for OpenGL for Embedded Systems). Nowadays, working groups
exist for defining interfaces for 2D vector graphics (OpenVG), sound processing (OpenSL
ES), video playback (OpenMAX), and application portability (OpenKODE). 3D content
file formats are covered by the COLLADA working group, and other new groups are
formed on a regular basis to meet the demands of the industry. OpenGL ARB (Archi-
tecture Review Board) joined Khronos in September 2006. This makes it easier for both
the desktop and embedded versions of OpenGL to develop in aligned directions. The goal
of Khronos is the timely creation of royalty-free open multimedia standards. The first ver-
sions of the APIs were created at quite a brisk pace; now the updates will be created when
there is a real market need for them.

157

158 INTRODUCING OPENGL ES C H A P T E R 7

Khronos is a consortium of more than 120 member companies, including, e.g., graphics
technology providers, phone manufacturers, operating system vendors, content creators,
and operators. There are two levels of membership. The Promoter-level members, some
15 companies, act as the board of directors and decide which standards are created, and
ratify the results of the different working groups. Contributor companies participate in
the working groups to define the standards. Additionally, adopters may create implemen-
tations of the APIs.

The OpenGL ES working group was formed in May 2002 to create an API for rendering
3D graphics on embedded devices. The desktop OpenGL standard was chosen as a start-
ing point since it is widely available, well known, and has extremely well-specified, solid
architecture. However, the desktop version has been evolving since the early 1990s, and
has bloated over the years with redundant and legacy features. Removing old features is
not a problem for applications that are written once, such as most games, whereas the
development life cycle of large CAD systems and other professional applications may be
decades, and removing old features would greatly increase maintenance costs.

The goal of the OpenGL ES working group was to create a cleaned-up and trimmed-
down version of OpenGL. Innovation in the marketplace would still be enabled through
an extension mechanism, and new versions of the specification would be rolled out as
the market evolves. The first version, OpenGL ES 1.0, was introduced at the SIGGRAPH
conference in July 2003. Version 1.1 followed at SIGGRAPH 2004. A draft version 2.0 and
the ES 1.x Extension Pack came out a year later. The final 2.0 specification was completed
in late 2006.

The OpenGL ES working group consists of some 20 to 30 individuals representing differ-
ent member companies. The group has weekly teleconferences, an active mailing list, and
a few multi-day face-to-face meetings each year. In addition to the specification itself, the
group also produces manual pages and the official conformance tests. These tests are used
to raise the quality of OpenGL ES implementations in the market, as any implementation
wanting to use the OpenGL ES trademark needs to pass them. Also, before the Promoters
ratify any specification, at least one, and preferably two, working implementations have
to be created. This ensures that the specifications also work in practice.

After its first introduction, OpenGL ES has been widely adopted by the mobile industry.
It is an integral part of a number of operating systems, and implementations have been
shipped on tens of millions of devices. For example, all new Symbian and BREW devices
support OpenGL ES, and outside the mobile phone world Sony is using it as the graphics
API of PlayStation 3.

7.2 DESIGN PRINCIPLES

When the OpenGL ES working group began its work of designing the API, several prin-
ciples were laid out. One of the goals was to keep the API as compact as possible. This

S E C T I O N 7 . 3 RESOURCES 159

would allow software implementations of OpenGL ES to fit into a very small amount of
code. Indeed, there exist implementations of OpenGL ES 1.0 with footprints of less than
50kB of binary code.

The working group chose OpenGL 1.3 as the starting point and engaged in the long pro-
cess of removing redundant functionality. In the world of graphics technology, OpenGL
is a well-established standard, created in 1992 and originally based on SGI’s IrisGL. Due
to the policy of maintaining backward-compatibility between versions, OpenGL has col-
lected a lot of excess baggage over the years. Newer and better techniques have replaced
older approaches and new hardware designs have made old ones obsolete. As a result,
multiple different ways exist to accomplish the same goal. For example, there are half
a dozen distinct ways for rendering a set of triangles! When creating the OpenGL ES
specification, the goal was to identify only the most current and relevant variants and
expose them.

Apart from removing unnecessary functionality, there are other ways to make OpenGL
slimmer. Almost all OpenGL API calls accept parameters in a variety of data formats.
The working group decided to trim the number down considerably. In most cases, only
a single integer format and a single floating-point variant is supported. Rarely used
and outdated operations, such as support for indexed colors, or selection and feedback
modes, were removed. Several features whose implementation burden was found to be
excessive (for example, display lists) were dropped. The rule-of-thumb was that features
hard to emulate in the application code were mostly retained, whereas convenience func-
tions were considerably trimmed. Therefore high-level operations such as evaluators were
dropped, but the fragment processing pipeline was kept almost in its entirety.

Some features were also added to the API to support lower-end devices. All double-
precision floating-point data types were replaced by single-precision, and a variant accept-
ing fixed-point integer input was provided for all functions taking in floats.

There is one fundamental difference between the OpenGL ES and its desktop variant. To
prevent OpenGL ES from becoming bloated, the working group decided that backward-
compatibility between versions is retained only between minor versions of the API. In
other words, OpenGL ES 1.1 is backward-compatible with OpenGL ES 1.0, while 2.0 is
not compatible with any of the 1.x versions (though OpenGL ES 2.0 is still similar enough
that 1.x drivers should be implementable for 2.0 hardware). Although this creates several
“families” of OpenGL ES, it allows new major versions to start from a clean slate, and to
come up with more elegant designs.

7.3 RESOURCES

Several free resources are available for those interested in using OpenGL ES. Additional
resources are available for Khronos members. We list some of them below.

160 INTRODUCING OPENGL ES C H A P T E R 7

7.3.1 DOCUMENTATION

All of the official OpenGL ES documentation is hosted at Khronos Group’s web site.1 You
will find there the most up-to-date versions of OpenGL ES and EGL specifications, refer-
ence manuals, and official header files. The original OpenGL ES specification described
the differences with respect to the desktop OpenGL (1.0 was based on desktop 1.3; 1.1
was based on desktop 1.5), but in 2007 a complete stand-alone specification was created.
Another good source of general OpenGL material is at www.opengl.org.

The www.khronos.org site offers a number of additional resources, such as presenta-
tions from conferences and trade shows about OpenGL ES programming and optimiza-
tion. The site also contains tutorials and example source code for sample OpenGL ES
programs.

If you are planning to implement OpenGL ES yourself, you should become a Khronos
member. The members gain access to the OpenGL ES Conformance Test source code.
This is needed in order to claim official conformance to the specification. Members also
get the source code of the OpenGL ES 1.0 sample implementation, and get to parti-
cipate on the internal technical mailing list dedicated for members.

7.3.2 TECHNICAL SUPPORT

If the various specifications, reference manuals, and tutorials cannot answer all of your
questions, do not despair: the Internet is full of people willing to help you. There are sev-
eral web forums where OpenGL ES experts can answer your trickiest questions. The offi-
cial one is hosted by Khronos.2 Also, different handset vendors and chip manufacturers
have their own forums; we list them in this book’s companion web site.

7.3.3 IMPLEMENTATIONS

There are several free implementations of OpenGL ES available; links to them can be
found from the book’s companion web site. Vincent is an open source implementation
of OpenGL ES 1.1, and it runs on several handheld operating systems. Hybrid’s Rasteroid
package contains free implementations of both OpenGL ES 1.1 and OpenVG 1.0, and
runs on desktop Windows and many Windows Mobile and S60 devices.

Other implementations include an OpenGL ES 1.0 Linux sample reference implemen-
tation that runs on top of desktop OpenGL 1.3, and PowerVR’s implementation. Several
handset vendors also provide SDKs that include OpenGL ES: Nokia’s S60, SonyEricsson’s
Symbian UIQ 3 SDK, and Qualcomm’s BREW.

1 www.khronos.org/opengles/

2 www.khronos.org/message_boards/

S E C T I O N 7 . 4 API OVERVIEW 161

Additionally, OpenGL ES libraries come pre-installed on many newer PDAs and
smartphones. The high-end ones, such as Nokia’s N93 and N95, have even full hardware
acceleration. All devices that are based on S60 2nd edition FP2, or later, have at least a
software-based OpenGL ES implementation.

7.4 API OVERVIEW

OpenGL ES comes in several flavors. Various profiles have been defined to cater to the
needs of different market segments. Later versions introduce additional features, and
different vendors provide various extensions.

7.4.1 PROFILES AND VERSIONS

Two important concepts to understand about OpenGL ES are profiles and versions. Pro-
files are used to create different subsets to target very distinct use cases. Currently there
are three major profiles of OpenGL ES: the Common profile (also known as CM), the
Common Lite (CL) profile, and the Safety-Critical (SC) profile. The first two are similar;
the main difference is the omission of all floating-point entry points from the Common
Lite profile.

The Safety-Critical profile differs significantly from the other two profiles and is targeted
primarily for the aviation market. It uses OpenGL 1.3 as its starting point and removes
functionality not needed in cockpit displays while retaining functionality needed by
legacy applications in this specialized market, e.g., display lists. We will not cover the
Safety-Critical profile in this book, instead we focus on the Common and Common
Lite profiles.

Each profile has versions indicated by two numbers, the major and minor version num-
bers. For example, in OpenGL ES 1.0 the major version number is 1 and the minor one 0.
The specifications sharing the same major number are backward-compatible. This means
that an application written with the OpenGL ES 1.0 specification will compile, link, and
run unmodified using an OpenGL ES 1.1 implementation. However, the same application
will not run on an OpenGL ES 2.0 implementation.

7.4.2 OPENGL ES 1.0 IN A NUTSHELL

The most compact way to cover OpenGL ES is to examine where it differs from its desk-
top cousin, although this approach assumes familiarity with the desktop version. While
OpenGL ES misses a number of function entry points and even major parts of the desktop
OpenGL functionality, the underlying rendering model, terminology, and key concepts
are the same.

162 INTRODUCING OPENGL ES C H A P T E R 7

Floating-point and fixed-point values

OpenGL is at its core a floating-point API. However, most mobile devices do not support
a hardware floating-point unit. Two changes were made to keep the API simple and
efficient.

First, the double data type (a 64-bit high-precision floating-point number) is not
supported. Many functions that take doubles as arguments already had a variant accept-
ing floats, and for the rest (e.g., glFrustum) a new variant accepting float arguments
(e.g., glFrustumf) was created.

Second, a new fixed-point data type was created: type GLfixed, with a correspoding
enum GL_FIXED. GLfixed is a number stored in a 32-bit integer, but interpreted so
that the first 16 bits describe a signed two’s complement integer value, and the last 16 bits
describe the fractional component. In other words, you can convert between GLfixed
and GLfloat by multiplying a GLfloat by 216 or by dividing a GLfixed by 216.
Finally, for each function that takes in floats, a variant was created that takes in fixed-
point arguments (e.g., glFrustumx). For details on fixed-point programming, refer to
Appendix A.

As in OpenGL, the GLfloat type for passing arguments to the engine is an IEEE float,
but inside the engine the representation can be different and only needs to keep the accu-
racy of 1 part in 105. The positional and normal coordinates must store magnitudes up to
232, while the colors and texture coordinates must only store magnitudes up to 210. Note
that these requirements also apply when using the fixed-point functions.

In practice, in a well-implemented software engine the performance savings of using the
fixed-point versions of the functions are not significant. The major exception is with ver-
tex data, which should never be given in floating point, unless you know that both your
CPU and GPU have hardware support for floating-point data.

Vertex data

Originally, the rendering primitives in OpenGL were described by issuing a begin com-
mand for a set of primitives, and then updating the current vertex positions, normal vec-
tors, colors, or texture coordinates in an arbitrary order, and finally ending the primitive.
This creates a very complicated state machine that does not run at an optimal speed. In
current OpenGL versions, the vertex data is provided through vertex arrays and is ren-
dered using calls to glDrawElements or glDrawArrays. OpenGL ES adopted only
these simpler and more efficient approaches.

Vertex data can be specified using byte, short, float, or fixed, whereas int and
double are not supported. Note that unlike on desktop OpenGL, the vertices can also
be specified in bytes. Fog coordinates and secondary colors have been dropped from the
specification.

S E C T I O N 7 . 4 API OVERVIEW 163

Primitives

Triangles, lines, and points are supported as lists, strips, or fans. Quads and polygons are
not supported, as they are too trivial to implement inside an application, and their spec-
ification is ambiguous if the vertices are not all on the same plane. glPolygonMode,
which allows the same geometry to be drawn either as triangles, lines, or points, is not sup-
ported; hence the concept of edge flags, denoting which edges to draw in the line drawing
mode, does not exist either. Also, 2D primitives such as rectangles are not provided as they
can be emulated with a pair of triangles. Line and polygon stippling are not supported; if
needed, they can be emulated using texture mapping.

Transformation and lighting

The most significant changes to the matrix stacks of desktop OpenGL are dropping of
the color matrix stack and reducing the minimum depth of the modelview stack from
32 to 16. OpenGL ES does not support transposed matrices. Texture coordinate gener-
ation has been omitted as it can be emulated in the applications. Only RGBA colors (or
their subsets) are provided; there is no support for indexed colors.

The lighting pipeline has been left largely intact with a few exceptions. There is no sup-
port for secondary colors, local viewer lighting model, or color material tracking except
for GL_AMBIENT_AND_DIFFUSE. Two-sided lighting has been retained, but separate
front and back materials cannot be specified.

Texturing

OpenGL ES supports only 2D texture mapping since 1D maps are trivial to emulate using
2D maps, and 3D maps are too resource intensive to include at this stage. The imple-
mentation burden of cube mapping was deemed too high both for software and hard-
ware implementations. Texture borders, proxies, priorities, and LOD clamping are not
included. Texture formats must match internal formats, and only the five most important
formats are supported. Texture addressing modes are limited to GL_CLAMP_TO_EDGE
and GL_REPEAT.

OpenGL ES adds support for paletted textures, an efficient way of compressing texture
data. This extension introduces a number of new internal texture formats.

Reading back texture data, i.e., support for glGetTexImage, is not allowed. Multi-
texturing is supported, but an implementation does not have to provide more than one
texturing unit. OpenGL ES 1.1 raises this to a minimum of two units.

Fragment pipeline

OpenGL ES does not make major changes to the fragment pipeline. Both stencil and
depth buffering are supported, although stencil buffering is left optional, and not many

164 INTRODUCING OPENGL ES C H A P T E R 7

implementations currently support it. The stencil operations GL_INCR_WRAP and
GL_DECR_WRAP have been omitted.

OpenGL ES blending functionality conforms to OpenGL 1.1, rather than version 1.3
like the rest of the API. This eliminates functions such as glBlendFuncSeparate,
glBlendEquation, and glBlendColor that were introduced in OpenGL 1.2.

Frame buffer operations

The most significant changes relate to the frame buffer operations. There is only a sin-
gle drawing buffer, and accumulation buffering is not supported. The entire imaging
subset has been removed. 2D rendering through glDrawPixels or glBitmap is not
supported, as it can be emulated with a texture-mapped pair of triangles. The depth
and stencil buffers cannot be read back, as glReadBuffer and glCopyPixels have
been omitted. glReadPixels is supported, although with a very limited number of
pixel formats.

Miscellaneous

Evaluators, feedback, selection, and display lists have been omitted since they have a high
implementation burden and can be reasonably easily emulated in the application. With
the exception of display lists these features are not widely used even in desktop OpenGL.

OpenGL ES 1.0 supports only queries for static state whose values are defined when an
OpenGL context is created, and will not change during execution. This means that an
application must track its own state as it cannot be queried back from GL. An optional
extensionglQueryMatrixxOESwas created to enable reading back the current matrix
values. The convenience routines for saving and restoring the state via the attribute stacks
are not supported.

7.4.3 NEW FEATURES IN OPENGL ES 1.1

OpenGL ES 1.1 was first introduced at SIGGRAPH 2004. This version is clearly more
hardware-oriented than its predecessor, with features targeted at gaming applications and
for higher-level APIs such as M3G. Nevertheless, software implementations of OpenGL ES
1.1 remain feasible.

Vertex buffer objects

Vertex buffer objects that allow encapsulating and storing vertex data on the server side
are supported. However, to simplify efficient implementations, reading back the buffered
vertex and index data is not allowed.

S E C T I O N 7 . 4 API OVERVIEW 165

Point sprites

OpenGL ES 1.1 introduces point sprites for 2D billboards and particle effects. A point
size array allows specifying an array of point sizes for efficient rendering of point sprites
with differing sizes. The point sizes can also be attenuated as a function of distance from
the camera.

User clip planes and matrix palette

User clip planes are supported, although the implementation is required to support
only one.

OpenGL ES 1.1 provides also an optional matrix palette extension for accelerating char-
acter animation and vertex skinning.

Texturing enhancements

While the first version only requires one texturing unit, OpenGL ES 1.1 requires at least
two texturing units. Automatic mipmap generation is supported. Also texture combiners are
introduced (including bump mapping), only the crossbar functionality of combiners is
not included.

Draw texture

An optional extensionglDrawTex{sifx}[v]OESwas created to support fast 2D ren-
dering. The image data is given in a texture object, so that the data can be cached on the
server. The glDrawPixels of OpenGL does not allow such caching.

Dynamic state queries

OpenGL ES 1.1 introduced dynamic state queries. The ability to query back the GL state
makes the use of middleware libraries easier, as state does not have to be tracked externally.

7.4.4 EXTENSION MECHANISM

The extensibility of OpenGL has always been one of its key strengths. It enables individual
hardware vendors to add new features reflecting advances in hardware design. If these
features prove successful in the marketplace, they are introduced as core features in future
versions of the GL specification. OpenGL ES continues this tradition and the extension
mechanism is an integral part of its design.

There are several different kinds of extensions. The core extensions are mandatory com-
ponents of the OpenGL ES specification that are not part of the desktop GL. The optional

166 INTRODUCING OPENGL ES C H A P T E R 7

extensions are not strictly required. They are often the features that the working group
expects to become a part of the core specification in the future, but does not yet feel
comfortable mandating. Both the core and the optional extensions have the suffix OES
added to their function names.

The Vendor-specific extensions are introduced by individual hardware vendors to provide
access to their hardware-specific features. These functions get their postfixes from the
names of the companies providing them. Multi-vendor extensions (with postfix EXT) are
used when multiple companies want to expose the same feature.

Extensions often provide a faster and more efficient way of accomplishing a given task.
Since the optional or the vendor-specific extensions are not particularly portable, we
recommend that you first write a portable version of an algorithm using the core func-
tionality, and then switch to using an extension if it is available on a given platform.

7.4.5 OPENGL ES EXTENSION PACK

The OpenGL ES extension pack was introduced in August 2005. It is a collection of exten-
sions found in some existing and upcoming devices. Features introduced in the extension
pack include several improvements to the texturing system, e.g., texture crossbar, cube
mapping, and the mirrored repeat mode. New blending modes as well as stencil buffering
modes are introduced. The minimum requirements for the size of the matrix palettes are
made more rigorous. Finally, the concept of frame buffer objects (FBOs) is introduced
into OpenGL ES.

7.4.6 UTILITY APIS

OpenGL ES does not contain any APIs for creating the windows and surfaces used as
render targets. The portable way of doing this is using EGL, a companion API that acts
as a glue between OpenGL ES and the operating system. EGL is similar to the WGL
on Windows and GLX on X Windows, but designed to be portable across a number of
embedded platforms. EGL is covered in more depth in Chapter 11.

GLU and GLUT are other utility libraries used on the desktop. Khronos has not speci-
fied embedded variants for these. Instead, the libraries have been ported directly as an
open source effort.3 The GLU library sits on top of OpenGL ES and contains function-
ality for creating various meshes, computing mipmaps, defining NURBS objects, and
various helper functions for manipulating matrices. GLUT, on the other hand, is a cross-
platform library for handling system-level input and output. This includes mouse event

3 glutes.sourceforge.net/

S E C T I O N 7 . 4 API OVERVIEW 167

handling, keyboard input, timer events, and support for more exotic devices. The library
also provides some UI components such as pop-up menus.

7.4.7 CONVENTIONS

OpenGL ES follows a number of conventions established by OpenGL. Some of the most
important ones are briefly reviewed here.

Prefixes and suffixes

All GL functions are prefixed with the symbol gl (glViewport). Data types use the GL
prefix (GLbyte) whereas macros and enumerants use the prefix GL_ (GL_LIGHT0).
Functions specific to OpenGL ES use the suffix OES.

Function names contain suffixes for indicating the types of their arguments. For example,
glClearDepthf and glClearDepthx are two variants of the same function where
the first takes its input parameters as floating-point and the latter as fixed-point numbers.
The following data types are supported by OpenGL ES:

b 8-bit integer GLbyte

s 16-bit integer GLshort

i 32-bit integer GLint, GLsizei, GLintptr, GLsizeiptr

x 32-bit fixed point GLfixed, GLclampx

f 32-bit floating point GLfloat, GLclampf

ub 8-bit unsigned integer GLubyte, GLboolean

us 16-bit unsigned integer GLushort

ui 32-bit unsigned integer GLuint, GLenum, GLbitfield

In the following text, if several argument types are possible, the type is denoted by T. For
example,

void glColor4{fx ub}(T red, T green, T blue, T alpha)

is a shorthand for three function definitions

void glColor4f(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
void glColor4x(GLfixed red, GLfixed green, GLfixed blue, GLfixed alpha)
void glColor4ub(GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha).

A suffix v is added to variants that take in a pointer to a parameter array as an argument,
for example

void glLight{fx}v(GLenum light, GLenum pname, const T * params)

168 INTRODUCING OPENGL ES C H A P T E R 7

passes parameters in params while

void glGetPointerv(GLenum pname, void ** params)

returns parameters in params.

State machine model

OpenGL ES operates as a state machine. The state consists of various features being either
turned on or off, and most capabilities are turned off by default. On the server, or the
graphics engine side, the following calls are used to set the state:

void glEnable(GLenum cap)
void glDisable(GLenum cap)

For example, to turn lighting on, one needs to enable both lighting itself and at least one
light:

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

Starting from OpenGL ES 1.1, the function glIsEnabled can be used for querying
whether a given server-side capability is enabled.

The client-side, i.e., application or CPU-side, functions to enable and disable the use of
various vertex arrays are:

void glEnableClientState(GLenum array)
void glDisableClientState(GLenum array)

Error handling

Instead of individual functions providing error codes as their return values, OpenGL ES
uses a global error flag that is set whenever an error occurs in any of the API functions.
Most GL functions validate their input parameters before modifying the internal GL state.
If an invalid parameter is encountered, the global error flag is set, and the function returns
without modifying the state.

GLenum glGetError(void)

returns the current error code and resets it to GL_NO_ERROR. The error codes are listed
in Table 7.1. OpenGL allows distributed implementations to have a separate error flag for
each replicated graphics unit, and in such a case you should call glGetError repeatedly
until it returns GL_NO_ERROR. However, OpenGL ES implementations typically have
only one graphics unit.

It is a good programming practice, at least in debug builds, to call glGetError every
now and then to check that no GL errors have occurred. Some debugging libraries even

S E C T I O N 7 . 4 API OVERVIEW 169

Tab le 7.1: GL error codes.

Error Meaning Command ignored?

GL_NO_ERROR No errors No

GL_INVALID_ENUM Enum argument is out of range Yes

GL_INVALID_VALUE Numeric value is out of range Yes

GL_INVALID_OPERATION Operation illegal in current state Yes

GL_STACK_OVERFLOW Command would cause a stack overflow Yes

GL_STACK_UNDERFLOW Command would cause a stack underflow Yes

GL_OUT_OF_MEMORY Not enough memory to execute command Unknown

wrap every GL call with a glGetError and then raise an assertion immediately when
an error occurs.

Packaging

The main header file is called GLES/gl.h, and it always has to be included. Additionally,
most applications need to include EGL/egl.h. The gl.h header also includes follow-
ing version definitions:

#define GL_VERSION_ES_CL_1_x 1

or

#define GL_VERSION_ES_CM_1_x 1

depending on which profile is supported. x denotes the supported minor API version
number.

Pitfall: Even though the official OpenGL ES 1.0 specification states exactly how the
version number definitions should be presented in the header file, many current GL
header files define instead erroneously GL_OES_VERSION_1_x. For maximal porta-
bility one should use a construct such as this in the source code:

#if (defined(GL_OES_VERSION_1_0) || defined(GL_VERSION_ES_CM_1_0)

When OpenGL ES and EGL were originally specified it was recommended that both APIs
should be exposed from the same DLL. As new companion APIs that can be used with EGL
emerged, such as OpenVG and OpenGL ES 2.0, this arrangement became burdensome as
using EGL with OpenVG would require linking also to the OpenGL ES library which
might not even be present on the device.

For this reason a new linkage was specified where the EGL API is exposed from a separate
link library and the client APIs from their separate libraries. Note that the actual linkage
may vary as it is actually controlled typically by the operating system vendor or the device

170 INTRODUCING OPENGL ES C H A P T E R 7

Tab le 7.2: Library naming scheme.

Library content Name of the link library

OpenGL ES 1.x with EGL (Common Profile) libGLES_CM.{lib,dll,a,so}
OpenGL ES 1.x with EGL (Lite Profile) libGLES_CL.{lib,dll,a,so}
OpenGL ES 1.x without EGL (Common Profile) libGLESv1_CM.{lib,dll,a,so}
OpenGL ES 1.x without EGL (Lite Profile) libGLESv1_CL.{lib,dll,a,so}
EGL libEGL.{lib,dll,a,so}

vendor. For documentation on how the linkage is done for your particular device, see the
SDK documentation for the platform.

A recommended library naming scheme is presented in Table 7.2.

7.5 HELLO, OPENGL ES!

Here is a simple OpenGL ES example that renders one smoothly shaded triangle on the
display. Before any OpenGL ES calls can be executed, some resources need to be created
with the EGL API. See Chapter 11 for more information on EGL.

First we include some necessary headers, and define the vertex data:

#include <GLES/gl.h>

/* vertex data (3 vertices for single triangle) */
static const GLbyte vertices[3 * 3] =
{

—1, 1, 0,
1, —1, 0,
1, 1, 0

};

static const GLubyte colors[3 * 4] =
{
255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255

};

Let us set the basic state. Here we assume a clean OpenGL ES context with the default state
settings. If the initial state were totally unknown, much more initialization code would be
required.

glDisable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);
glClearColor(0.f, 0.f, 0.1f, 1.f);

S E C T I O N 7 . 5 HELLO, OPENGL ES! 171

Next, we set the array pointers for vertex and color arrays, and enable the corresponding
arrays:

glVertexPointer(3, GL_BYTE, 0, vertices);
glColorPointer(4, GL_UNSIGNED_BYTE, 0, colors);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

Then we set the view parameters:

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glFrustumf(—1.f, 1.f, —1.f, 1.f, 3.f, 1000.f);
glMatrixMode(GL_MODELVIEW);

Next we have the main function that gets called in each render cycle. Here the code typi-
cally clears the buffers and renders the frame.

At first, we clear the color buffer, then set the camera, and finally draw the triangle.

void render_frame(void)
{
glClear(GL_COLOR_BUFFER_BIT);
glLoadIdentity();
glTranslatef(0, 0, —5.f);
glDrawArrays(GL_TRIANGLES, 0, 3);

}

A buffer swap is required at the end of the frame. How to do that will be introduced later
in Chapter 11.

This page intentionally left blank

8

C
H

A
P

T
E

R

OPENGL ES TRANSFORMATION
AND LIGHTING

This chapter covers the geometry pipeline of OpenGL ES. This includes primitive
and vertex specification, matrix processing, and the interaction between light sources and
materials.

8.1 DRAWING PRIMITIVES

In this section we describe the geometric primitives supported by OpenGL ES. While
there is also some support for raster primitives, we defer that discussion until we have
introduced texture mapping.

The geometric primitives are made of vertices, and each vertex can have properties
such as position, color, surface normal, texture coordinate, and point size. We briefly
describe the original OpenGL model for specifying vertex data, and then the newer way
of specifying vertex arrays, which was adopted by OpenGL ES. We continue by explaining
how the primitives are actually drawn using the vertex data. Finally we describe an
alternative to vertex arrays that was introduced in OpenGL ES 1.1: vertex buffer objects
(see Section 8.1.4).

173

174 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

8.1.1 PRIMITIVE TYPES

OpenGL ES 1.0 supports the geometric primitives shown in Figure 3.3: points, lines, and
triangles. OpenGL ES 1.1 amends this list with point sprites.

Points

The point is the simplest OpenGL primitive, and it requires only one vertex. Its primary
property is its size, which is set by the function

void glPointSize{fx}(type size).

The point size corresponds to its diameter (the total width), defined in pixels, and it
defaults to 1. Points can be drawn either with or without antialiasing (enabled and dis-
abled with GL_POINT_SMOOTH). With antialiasing off, the points are drawn as squares
and the point size is rounded to the closest integer. With antialiasing enabled, the points
are drawn as circles, and the alpha values of the pixels on the boundary are affected by
how much the point covers those pixels.

Even though points can be drawn quite efficiently, in practice many graphics engines
are optimized for rendering of triangles. This may mean that non-antialiased points are
drawn as two triangles, and the maximum point size for smooth points may be just one
pixel. Similar optimizations may be used for line drawing.

Point sprites and size attenuation

OpenGL ES 1.1 provides features for points that are especially useful for particle effects:
point sprites, point size arrays, and point size attenuation. Many natural phenomena such
as rain, smoke, or fire, can be modeled by replicating several small pictures representing
raindrops, puffs of smoke, or individual flames. The idea is that a set of points describes
the positions of point sprites, and their appearance comes from the current texture map.
Section 9.2.8 describes how to apply a texture to points.

When points are defined by an array, in OpenGL ES 1.0 they all have the same size, defined
by glPointSize{fx}. In OpenGL ES 1.1 it is possible to give each point its own size
(see Section 8.1.2), and the point sizes may be attenuated by the distance between each
point and the camera. The derived point size comes from the formula:

derived size = impl clamp

(
user clamp

(
size ∗

√
1

a + bd + cd2

))
(8.1)

where d is the eye-coordinate distance from the camera, the attenuated point size is affec-
ted by the distance attenuation coefficients a, b, c, it is clamped by user-specified min-max

S E C T I O N 8 . 1 DRAWING PRIMITIVES 175

range of GL_POINT_SIZE_MIN and GL_POINT_SIZE_MAX, and finally clamped to
implementation-dependent point size range. If multisampling is disabled, this is the size
used for rasterizing the point. With multisampling, the point size is clamped to have a
minimum threshold, and the alpha value of the point is modulated by

alpha fade =

(
derived size

threshold

)2

. (8.2)

The point attenuation components are set using

void glPointParameter{fx}(GLenum pname, T param)

void glPointParameter{fx}v(GLenum pname, T * params)

where pname GL_POINT_SIZE_MIN and GL_POINT_SIZE_MAX are used to
change the clamping values for the point size calculation. GL_POINT_DISTANCE_
ATTENUATION is used to pass in params an array containing the distance attenuation
coefficients a, b, and c, in that order. GL_POINT_FADE_THRESHOLD_SIZE specifies
the point alpha fade threshold.

Keeping the attenuation components in their default values (1, 0, 0) in practice disables
point size attenuation.

Point sprites are enabled by calling glEnable with the token GL_POINT_SPRITE_
OES. When the global point sprite mode is enabled and the texture environment for the
given texture unit is set to GL_COORD_REPLACE_OES (see Section 9.2.8), all points
submitted for drawing are handled as point sprites. A point sprite can be thought of as
a textured quad whose center lies at the transformed screen-space position of the vertex
representing the point and whose screen dimensions are equivalent to the derived size of
the point.

Here is a simple code that draws a 32 × 32 point sprite. We use a single point size, but we
could have varied it using glPointSizePointerOES.

glPointSize(32);
glEnable(GL_POINT_SPRITE_OES);
glTexEnvi(GL_POINT_SPRITE_OES, GL_COORD_REPLACE_OES, GL_TRUE);
glDrawArrays(GL_POINTS, 0, 1);

The entry point definition for glTexEnv is

void glTexEnv{ifx}(GLenum target, GLenum pname,T param),

and its other uses for specifying how texture mapping is done are described in
Section 9.2.5 and Section 9.2.7.

Pitfall: Point clipping in OpenGL ES works so that if the transformed vertex of the point
is outside the view frustum, the whole primitive is considered to be outside the frustum

176 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

and is thus discarded. This way a very simple clipping formula can be applied already
at the geometry stage to cull away the point geometry. As a side effect, points or point
sprites wider than one pixel vanish before all of the pixels of the primitive move outside
of the view frustum. If this is a problem the application can set the viewport to be larger
than the display and set the scissor to match the size of the display.

Although this should work as specified in the API, in practice most implementations
of OpenGL ES in the market have some issues with either the point clipping when the
viewport has been extended, or with point sprites in general.

Lines

There are three ways for defining a set of lines in OpenGL ES. The first is a collection of
separate lines, with a line segment connecting the first and the second vertices, then the
third and the fourth, and so on. The second type is a line strip, which simply connects
each vertex in a list to the next one with a line segment. The third type is the line loop,
which closes a line strip by adding a segment between the last and first vertex.

The line width, in pixels, can be set with

void glLineWidth{fx}(GLfloat width),

and the lines can be drawn either with or without antialiasing (enabled and disabled with
GL_LINE_SMOOTH).

The desktop OpenGL also supports stippling, that is, dotting and dashing the lines.
Since this can be emulated by texture mapping the lines, stippling is not supported in
OpenGL ES.

Polygons

The only Polygon type supported by OpenGL ES is a triangle. Desktop OpenGL also sup-
ports quadrilaterals, n-sided polygons, and screen-aligned rectangles, but these were left
out of OpenGL ES for the reasons described in Section 3.1.1.

There are three methods for defining triangles in OpenGL ES. The first way is as a
collection of separate triangles, where the first three vertices of a vertex array form the
first triangle, the next three form the second triangle, and so forth. The second way is
a triangle strip. There the first three vertices create a triangle, and after that, every new
vertex creates a new triangle by connecting to the two previous vertices. The third way is
a triangle fan. Again, the first triangle is made of the first three vertices. After that, every
new vertex creates a new triangle using the new vertex, the previous vertex, and the first
vertex. Thus the triangles create a fan around the first vertex.

S E C T I O N 8 . 1 DRAWING PRIMITIVES 177

8.1.2 SPECIFYING VERTEX DATA

The original model for specifying vertex data in OpenGL used the glBegin - glEnd
model. For example, a triangle strip of two triangles, with two red and two green vertices,
could be specified by

/* glBegin - glEnd NOT SUPPORTED BY OpenGL ES!! */
glBegin (GL_TRIANGLE_STRIP);
glColor4f (1.0f, 0.0f, 0.0f, 1.0f);
glVertex3f(0.0f, 1.0f, 0.0f);
glVertex3f(0.0f, 0.0f, 0.0f);
glColor4f (0.0f, 1.0f, 0.0f, 1.0f);
glVertex3f(1.0f, 1.0f, 0.0f);
glVertex3f(1.0f, 0.0f, 0.0f);
glEnd();

The function glBegin indicates the primitive type. The current values of vertex proper-
ties such as color, the normal vector, and texture coordinates are specified in an arbitrary
order. A call to glVertex specifies the vertex location and completes the vertex defi-
nition using the current property values. This approach creates a very complicated state
machine, and requires a large number of function calls to render the geometry, slowing
graphics hardware down. Display lists are a way to deal with this issue by collecting all the
GL calls and their arguments into a list which can be cached by the graphics engine, and
later drawn using a single function call.

Desktop OpenGL 1.1 introduced vertex arrays, which greatly simplified specification of
the vertex data, and made both the glBegin - glEndmodel and the display lists largely
redundant. In this approach, the vertex properties are placed in arrays, which are then
passed to OpenGL using the following calls:

void glColorPointer(GLint size, GLenum type, GLsizei stride, GLvoid * pointer)

void glTexCoordPointer(GLint size, GLenum type, GLsizei stride, GLvoid * pointer)

void glVertexPointer(GLint size, GLenum type, GLsizei stride, GLvoid * pointer)

void glNormalPointer(GLenum type, GLsizei stride, GLvoid * pointer)

void glPointSizePointerOES(GLenum type, GLsizei stride, GLvoid * pointer)

All of the functions above have similar syntax. The parameter size describes the dimen-
sionality of the data, e.g., size = 2 for glVertexPointer indicates that the x and y
coordinates are specified, while z is left to the default value of 0. Note that for
glNormalPointer and glPointSizePointerOES the size parameter is omitted,
as normals always have three components and points only one. The type parameter is used
to denote the basic type for storing the array data. See Table 8.1 for the allowed combi-
nations of size and type for each array. Also note that glPointSizePointerOES is
only supported in OpenGL ES 1.1.

The stride parameter gives the distance in bytes between consecutive array elements.
Finally, the pointer parameter points to the actual vertex attribute data.

178 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

Tab le 8.1: Vertex array sizes (values per vertex) and data types.

Command Sizes Types

glVertexPointer 2,3,4 GL_BYTE, GL_SHORT, GL_FIXED, GL_FLOAT

glNormalPointer 3 GL_BYTE, GL_SHORT, GL_FIXED, GL_FLOAT

glColorPointer 4 GL_UNSIGNED_BYTE, GL_FIXED, GL_FLOAT

glPointSizePointerOES 1 GL_FIXED, GL_FLOAT

glTexCoordPointer 2,3,4 GL_BYTE, GL_SHORT, GL_FIXED, GL_FLOAT

Length � 8 bytes

Offset:
0 2 4 6 7 8

X coordinate
short (16-bit)

Y coordinate
short (16-bit)

Z coordinate
short (16-bit)

s texture
coordinate
char (8-bit)

t texture
coordinate
char (8-bit)

F igure 8.1: Example of packed vertex array data.

The stride can be used to skip data if the vertex array is in an interleaved format.
Figure 8.1 shows an example of packed vertex data that stores vertex coordinates and
texture coordinates in an interleaved format. The vertex pointer in this case would point
to the beginning of the array and have a stride value of 8 (equaling the size of the packed
vertex). The texture coordinate pointer in this case would point to the beginning of the
array plus 6 bytes, and the stride value would be 8 bytes.

Specifying a stride of zero always matches the stride that would be used for tightly packed
vertex data. For example, if the vertex array has three GL_SHORT coordinates and a stride
of zero, the implementation interprets the actual stride as being 6 bytes.

Performance tip: Depending on the implementation, the vertex data format may have
a great impact on performance. For example, the amount of bandwidth required for
transmitting the geometry data over the system buses depends directly on the type used
to specify the vertex data. Also, especially for pure software-based implementations of
OpenGL ES on mobile devices that often lack floating-point units, using floating-point
vertex data may force the implementation to fall into a much slower version of the trans-
formation and lighting pipeline. Even with the integer data types, using the more com-
pact data types gives the implementation more freedom to optimize performance. Often
GL_SHORT is enough for almost any kind of vertex data in 3D.

S E C T I O N 8 . 1 DRAWING PRIMITIVES 179

The arrays have to be explicitly enabled (or disabled) using

void glEnableClientState(GLenum cap)

void glDisableClientState(GLenum cap)

where the cap parameter is one of

GL_COLOR_ARRAY,

GL_NORMAL_ARRAY,

GL_TEXTURE_COORD_ARRAY,

GL_VERTEX_ARRAY, or

GL_POINT_SIZE_ARRAY_OES.

OpenGL ES 1.0 supports the multitexturing API but is not required to provide more than
one texturing unit, while OpenGL ES 1.1 guarantees the availability of at least two textur-
ing units.

void glClientActiveTexture(GLenum texture)

is used to select which of texture units is affected byglTexCoordPointer,glEnable
ClientState (GL_TEXTURE_COORD_ARRAY), and glDisableClientState
(GL_TEXTURE_COORD_ARRAY) calls. The parameter texture defines the new active
texture unit (GL_TEXTURE0, GL_TEXTURE1, etc.).

Default values

OpenGL ES allows a default value to be set for normals, colors, and texture coordinates,
and then the corresponding vertex array does not need to be specified. If one of the
arrays has not been enabled with glEnableClientState, these default values are
used instead. The following calls are used to define the default values:

void glNormal3{fx}(T nx, T ny, T nz)
void glColor4{fx ub}(T red, T green, T blue, T alpha)
void glMultiTexCoord4{fx}(GLenum target, T s, T t, T r, T q).

The target is GL_TEXTUREi, where 0 ≤ i < the value of GL_MAX_TEXTURE_UNITS
which is an implementation-dependent value.

8.1.3 DRAWING THE PRIMITIVES

Once the vertex data has been specified, there are two functions that can be used to draw
the resulting shapes. The function

void glDrawArrays(GLenum mode, GLint first, GLsizei count)

180 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

is used to draw consecutive primitives starting from the first index in the vertex array. The
parameter mode defines the type of the primitives to be drawn:GL_POINTS,GL_LINES,
GL_LINE_LOOP, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP, or
GL_TRIANGLE_FAN. The count determines how many vertices are submitted for
rendering.

glDrawArrays is typically used in cases where triangles are represented with strips
that are organized directly in the correct order. The second drawing function uses a list of
indices to the vertex array to define the primitives:

void glDrawElements(GLenum mode, GLsize count,
GLenum type, const GLvoid * indices)

The parameter mode is the same as in glDrawArrays. type defines the type of
the data that is stored in the array indices and can be either GL_UNSIGNED_BYTE
or GL_UNSIGNED_SHORT. count determines the number of indices to process. See
Section 6.4 for further discussion about the benefits of indexed rendering, such as
better use of vertex caches.

The following example code renders red triangles using both of these methods.

static const GLbyte vertices1[8*2] = { 0,0, 0,0, —20,20, 20,20,
—20,40, 20,40, —20,60,
20,60 };

static const GLbyte vertices2[7*2] = { 0,100, 100,0, 0,—100,
—100,0, 0,50, 45,20,
—45,20 };

static const GLushort indices[9] = { 0,3,1, 1,3,2, 4,6,5 };
glEnableClientState(GL_VERTEX_ARRAY);
glColor4ub(255, 0, 0, 255);
glVertexPointer(2, GL_BYTE, 0, vertices1);
/* skip vertex 0, draw five triangles */
glDrawArrays(GL_TRIANGLE_STRIP, 1, 7);
glVertexPointer(2, GL_BYTE, 0, vertices2);
/* draw three triangles, using the first seven vertices */
glDrawElements(GL_TRIANGLES, 9, GL_UNSIGNED_SHORT, indices);

8.1.4 VERTEX BUFFER OBJECTS

Since the vertex arrays are stored in user-controlled memory, and the user can change
their content between draw calls without the graphics engine being aware of the change,
the GL driver cannot cache them. This results in costly data transfers between the system
memory and the graphics engine whenever draw calls are issued. Vertex buffer objects,
introduced in OpenGL ES 1.1, provide a mechanism for storing the vertex arrays into
memory controlled by the graphics server and allow buffer data updates only via explicit
function calls. A driver may then optimize the vertex buffer usage by storing that data in
an optimized memory layout, or by converting the values into a type that executes faster
on the hardware.

S E C T I O N 8 . 1 DRAWING PRIMITIVES 181

A buffer object is created with a call to

void glBindBuffer(GLenum target, GLuint buffer)

where target is GL_ARRAY_BUFFER and buffer is a handle to the buffer. If buffer is an
unused handle and greater than 0, a new zero-sized memory buffer is created. Otherwise
the existing buffer object becomes bound. If 0 is given for buffer, the graphics engine will
behave as if there were no currently bound vertex buffer object.

A list of existing buffer objects and their resources are deleted with

void glDeleteBuffers(GLsizei n, const GLuint * buffers).

If any of the buffer objects being deleted are bound as active vertex attribute pointers, the
bindings are released when the function call returns.

Handles to the buffers can be created by calling

void glGenBuffers(GLsizei n, GLuint * buffers)

which stores n buffer object handles to an array specified by buffers and marks them as
being used. The actual buffers still need to be created with glBindBuffer. A side effect
of glDeleteBuffers is to make the deleted handles available again.

The actual data are stored into the currently bound vertex buffer object by calling

void glBufferData(GLenum target, GLsizeiptr size, const GLvoid * data,
GLenum usage).

If the buffer object already contains data, the old data is freed and replaced by the new
data. For the vertex data the parameter target is set to GL_ARRAY_BUFFER, size gives
the size of the data to be copied in bytes, data is a pointer to the source data, and usage
gives a hint about the intended usage for this vertex buffer object. GL_STATIC_DRAW
advises the driver to optimize for data staying constant across GL draw calls, while
GL_DYNAMIC_DRAW indicates that the data for this buffer object are changed dynami-
cally between subsequent frames or even between draw calls.

void glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, const
GLvoid * data)

is used to replace some of the data in the server-side store for the currently bound ver-
tex buffer object. target is again GL_ARRAY_BUFFER, and offset gives an offset in bytes
to the location from which the data is to be replaced in the server-side store. size gives
the length of data to be replaced, and data gives the actual data to be copied to the
server-side store. Note that this function cannot be used to extend the size of the server
side store. If offset+size extends beyond the data buffer stored originally with a call to
glBufferData, a GL error is generated and the data will not be copied.

Performance tip: At first sight, GL_DYNAMIC_DRAW does not seem to improve
on the standard vertex arrays, as the driver is assuming that the data is modi-
fied often. However, if the data behind the vertex buffer object is shared even for

182 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

two draw calls, GL_DYNAMIC_DRAW allows the driver to keep the data in the
server-side storage across those invocations, whereas a standard vertex array would have
to be sent every time. GL_DYNAMIC_DRAW hints to the implementation that it should
not perform particularly costly optimizations for the data representation as it will get
replaced many times.

After a vertex buffer object is set up, it can be bound to any vertex attribute array by calling
the relevant function such as glColorPointer. The pointer argument now does not
contain the vertex data, but an offset to the currently bound vertex buffer object. Multiple
vertex array pointers can be set up from the same vertex buffer object, e.g., packed vertex
data representations can be used the same way as with standard vertex array calls. The
vertex buffer objects are disabled with glBindBuffer(GL_ARRAY_BUFFER, 0),
after which the vertex pointer calls work as described in Section 8.1.2.

Array indices in buffer objects

It is also possible to store indices that are used with glDrawElements into buffer
objects by setting the target argument of calls glBindBuffer, glBufferData,
and glBufferSubData to GL_ELEMENT_ARRAY_BUFFER. If the currently bound
buffer object is aGL_ELEMENT_ARRAY_BUFFER,glDrawElements takes the index
data from the buffer, and interprets the indices parameter as an offset to the buffer object
data.

Example

The following example code renders some colored triangles using vertex buffer objects:

static const GLushort indices[9] = { 0,3,1, 1,3,2, 4,6,5 };
static const GLbyte vertices[7*2] = { 0,100, 100,0, 0,-100,
-100,0, 0,50, 45,20, -45,20 };

static const GLubyte colors[7*4] = { 0,0,255,255, 0,255,0,255,
255,0,0,255, 255,255,255,255, 255,0,255,255, 255,255,0,255,
0,255,255,255 };

/* create handles */
GLuint handle[3];
glGenBuffers(3, &handle[0]);
/* load the vertex data into the first VBO */
glBindBuffer(GL_ARRAY_BUFFER, handle[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices),

&vertices[0], GL_STATIC_DRAW);
/* load the index data into the second VBO */
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, handle[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices),

&indices[0], GL_STATIC_DRAW);
/* load the color data into the third VBO */
glBindBuffer(GL_ARRAY_BUFFER, handle[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(colors),

&colors[0], GL_STATIC_DRAW);

S E C T I O N 8 . 2 VERTEX TRANSFORMATION PIPELINE 183

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, handle[0]);
glVertexPointer(2, GL_BYTE, 0, NULL);
glBindBuffer(GL_ARRAY_BUFFER, handle[2]);
glColorPointer(4, GL_UNSIGNED_BYTE, 0, NULL);
/* skip vertex 0, draw five triangles */
glDrawArrays(GL_TRIANGLE_STRIP, 1, 6);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, handle[1]);
/* draw three triangles, using the first seven vertices */
glDrawElements(GL_TRIANGLES, 9, GL_UNSIGNED_SHORT, NULL);
/* Unbind all VBOs */
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

8.2 VERTEX TRANSFORMATION PIPELINE

This section covers the vertex transformation pipeline, shown in Figure 8.2. First, the
vertex coordinates and the vertex normals are transformed from model coordinates to
eye coordinates using the modelview matrix. Lighting and user clipping are done in the
eye coordinate space. Next the projection matrix transforms the lit vertices into the clip
space, where the primitives formed from the vertices are clipped against the viewing frus-
tum. After clipping, the vertices are transformed into normalized device coordinates by
a perspective division, and the primitives are rasterized, i.e., converted into pixels. The
texture matrix is also applied to texture coordinates during the rasterization to correctly
sample the texture maps. Finally the viewport transformation determines where and with
which depth values the rasterized fragments are stored into the frame buffer. The math-
ematics behind the transformation pipeline are described in Chapter 2.

8.2.1 MATRICES

The matrix functions operate on the current matrix. The active matrix type is selected using

void glMatrixMode(GLenum mode).

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transformation

Object
Coordinates

Clip
Coordinates

Normalized Device
Coordinates

Window
Coordinates

Eye
Coordinates

F igure 8.2: The vertex transformation pipeline is parametrized by user-given modelview and projection matrices, and view-
port transformation parameters. 4D homogeneous coordinates are mapped from clip coordinates to normalized device coor-
dinates by a division by the fourth, w, component.

184 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

The mode must be one of GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE.
In this section we concentrate on the modelview and projection matrices; texture trans-
formations are discussed in Section 8.2.3. From OpenGL ES 1.1 onward GL_MATRIX_
PALETTE_OES is also optionally available (see Section 10.4.3). The color matrix that
exists in OpenGL is not supported.

All matrices are 4 × 4 matrices, and are stored in column-first order. The current matrix
can be replaced by calling

void glLoadMatrix{fx}(const T * m)

where m is an array of 16 floating-point or fixed-point numbers, ordered as follows:

⎡
⎢⎢⎢⎣

m[0] m[4] m[8] m[12]

m[1] m[5] m[9] m[13]

m[2] m[6] m[10] m[14]

m[3] m[7] m[11] m[15]

⎤
⎥⎥⎥⎦ . (8.3)

It is possible to multiply a new matrix with the current matrix using

void glMultMatrix{fx}(const T * m).

If C is the current matrix, calling glMultMatrix with M computes C := C M, that is,
the multiplication is from the right side.

As described in Chapter 2, it is often useful to separately transform the vertices from the
object coordinates to the world coordinates, and then transform the vertices from the
world coordinates to the eye coordinates. The matrices can then be used as follows:

GLfloat world_to_eye_matrix[16], object_to_world_matrix[16];
/* calculate matrices */
...
/* set up modelview matrix and draw */
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(world_to_eye_matrix);
glMultMatrixf(object_to_world_matrix);
glDrawArrays(GL_TRIANGLES, 0, n);

The convenience function

void glLoadIdentity(void)

replaces the current matrix with the identity matrix (see Equation (2.14)), while the fol-
lowing functions

void glTranslate{fx}(T x, T y, T z)
void glRotate{fx}(T angle, T x, T y, T z)
void glScale{fx}(T x, T y, T z)

S E C T I O N 8 . 2 VERTEX TRANSFORMATION PIPELINE 185

multiply the current matrix with one of Equations (2.17), (2.22), and (2.24). The functions

void glFrustum{fx}(T left, T right, T bottom, T top, T near, T far)
void glOrtho{fx}(T left, T right, T bottom, T top, T near, T far)

are used to set up the perspective projection matrix of Equation (2.35) or orthographic
projection matrix of Equation (2.39), respectively. The last two arguments set the distance
to the near and far frustum clipping planes, while the first four arguments describe where
the viewing frustum intersects the near plane. The following example code sets up the
projection matrix for a camera with near at 10, far at 60, with a WINDOW_WIDTH ×
WINDOW_HEIGHT window, and a 60◦ horizontal frustum opening angle:

GLfloat half_w, half_h, aspect;
/* window size from app or OS */
aspect = GLfloat(WINDOW_WIDTH) / GLfloat(WINDOW_HEIGHT);
/* near * sin(angle / 2) = 10 * sin(30) = 5 */
half_w = 5.0f;
half_h = half_w / aspect;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-half_w, half_w, -half_h, half_h, 10, 60);
/* good practice to leave in modelview mode, used more often */
glMatrixMode(GL_MODELVIEW);

8.2.2 TRANSFORMING NORMALS

As described in Section 2.2.4, normal vectors are not transformed using the same trans-
formation as the vertices. OpenGL calculates the inverse transpose for the 3×3 upper left
corner of the modelview matrix and applies the result to the normal vector.

The length of the normals may change during this process. However, if the modelview
transformation is a rigid transformation, that is, it only consists of a rotation and a trans-
lation, and no scale or shear, it does not affect the length of the normal vector. By default
OpenGL assumes this and does not normalize the vertex normals before applying the
lighting equations.

However, if the modelview matrix includes a scaling component, the lengths do change.
For example, if the model is scaled up the normals will shrink as the normals are trans-
formed using the transposed inverse of the modelview matrix. The effect is that the objects
appear surprisingly dark. If there is only uniform scaling, i.e., no nonuniform scales or
shears, it is possible to calculate a correct rescaling factor from the modelview matrix, and
apply that to all normals after the transformation. This is enabled by

glEnable(GL_RESCALE_NORMAL);

However, in general, if nonuniform scaling or shearing is included, or if the normals were
not of unit length to start with, the normal vectors have to be normalized individually,

186 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

by calculating their lengths and dividing the normal by the length. This is by far the most
expensive option, and the geometry pipeline can be instructed to do it by

glEnable(GL_NORMALIZE);

8.2.3 TEXTURE COORDINATE TRANSFORMATION

The texture matrix mode is turned on with glMatrixMode(GL_TEXTURE), but
as every texture unit has its own matrix, the active unit must first be specified with

void glActiveTexture(GLenum texture)

with texture being GL_TEXTUREi, where 0 ≤ i < the value of GL_MAX_TEXTURE_
UNITS (see the example in Section 9.2.6).

After the texture matrix transformation, the s and t components of a texture coordinate
are divided by the q component. The OpenGL ES specification does not require an imple-
mentation to do this division on a per-pixel basis—the implementation is allowed to do
the division just once per vertex. Taking this shortcut may cause visible differences and
artifacts between implementations. The transformed r coordinate is discarded, as three-
dimensional textures are not supported in OpenGL ES.

While desktop OpenGL supports creation of texture coordinates, for example so that they
come from the vertex locations in eye coordinates, or that they are set up for reflections,
OpenGL ES does not have this mechanism. Instead, the application must set the appro-
priate texture coordinates itself. Some of the effects of the texture coordinate generation
can be emulated by copying the vertex locations into texture coordinates, and then setting
up the texture matrix appropriately.

Below is an example code that draws a simple fake glass object on the screen (see Figure 8.3
for a screenshot). The texture that is used for rendering the glass object is drawn as the
background first:

static const GLbyte back_coords[] =
{
1,1,
1,0,
0,1,
0,0

};

static const GLfixed object_coords[] =
{
... normalized X,Y,Z coordinates ...

};

void render(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

S E C T I O N 8 . 2 VERTEX TRANSFORMATION PIPELINE 187

F igure 8.3: Screen shot of the texture matrix manipulation example code. (Also in the color plate.)

/* draw background with two textured triangles */
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(2.f, —2.f, 0.f);
glTranslatef(—0.5f, —0.5f, 0.f);
glVertexPointer(2, GL_BYTE, 0, back_coords);
glTexCoordPointer(2, GL_BYTE, 0, back_coords);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Now the object in front is rendered. First the projection matrix is restored and modelview
matrix is set so that the object rotates as time passes:

/* draw the object in front */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustumf(—1.f, 1.f, —1.f, 1.f, 3.f, 1000.f);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0, 0, —5.f) ;
glRotatef(time*25, 1.f, 1.f, 0.f);
glRotatef(time*15, 1.f, 0.f, 1.f);

188 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

The same normalized coordinate set is used as vertex coordinates and texture coordinates.
The goal is to rotate the texture coordinates to the same orientation as the vertex coor-
dinates and then use the resulting x and y components as the texture coordinates. This
is accomplished by using the same rotation calls as for the modelview matrix and then
scaling and translating the coordinates from [−1,1] range to [0,1] range:

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glTranslatef(0.5f, 0.5f, 0.f); /* [—0.5,0.5] -> [0,1] */
glScalef(0.5f, —0.5f, 0.f); /* [—1,1] -> [—0.5,0.5] */
glRotatef(time*25, 1.f, 1.f, 0.f); /* same rotate calls */
glRotatef(time*15, 1.f, 0.f, 1.f);
glVertexPointer(3, GL_FIXED, 0, object_coords);
glTexCoordPointer(3, GL_FIXED, 0, object_coords);
glDrawArrays(GL_TRIANGLES, 0, 16*3);

8.2.4 MATRIX STACKS

Section 2.3.3 introduced the concept of a matrix stack. For every type of matrix there is a
corresponding matrix stack, into which a duplicate of the current matrix can be pushed
and saved, and from which it can be restored by popping the stack. This is done using the
following calls:

void glPushMatrix(void)
void glPopMatrix(void)

A common pattern is to useglPushMatrix to duplicate the top of the stack, then apply
one of the matrix manipulation functions, perform rendering, and finally restore the stack
to its original state by calling glPopMatrix. If the matrix stack becomes full, or you try
to pop an empty stack, an error is raised. The modelview stack is guaranteed to be at least
16 elements deep, while the other stacks are guaranteed to be at least 2 elements deep.

8.2.5 VIEWPORT TRANSFORMATION

Two functions control how projected vertex coordinates are mapped into the window
coordinates.

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height)

controls the mapping on the x and y axes and determines the position and the size of the
viewport rectangle. The window is initially set to match the size of the render surface. The
function

void glDepthRange{fx}(T near, T far)

determines how the depth coordinates are mapped from the normalized device coordi-
nate range of [−1, +1] into the depth buffer values between 0 and 1. Initially the depth
range is set to near = 0, far = 1, thus covering the range of the entire depth buffer.

S E C T I O N 8 . 3 COLORS AND LIGHTING 189

Changing these values allows selecting only a subset of the depth buffer range. Here is an
example showing how these functions are usually called:

glViewport(0, 0, width, height);
glDepthRangef(0.f, 1.f);

Section 2.6 gives several examples of clever use of glDepthRange.

8.2.6 USER CLIP PLANES

The standard transformation pipeline performs clipping of primitives into the canonical
view frustum formed by the near, far, left, right, top, and bottom clipping planes. From
OpenGL ES 1.1 onward, additional, user-defined clipping planes of arbitrary orientation
are also supported. The minimum number of planes an implementation has to support
is one, and not many implementations support more than this. The function

void glClipPlane{fx}(GLenum plane, const T * equation)

is used to define the four-component clipping plane equation. This equation, given in
object coordinates, is immediately transformed to the eye coordinate space by multiplying
it by the inverse transpose of the current modelview matrix (see Section 3.3.2). The plane
must be GL_CLIP_PLANEi where 0 ≤ i < GL_MAX_CLIP_PLANES are accepted.
The clip plane needs to be enabled by glEnable(GL_CLIP_PLANE0).

8.3 COLORS AND LIGHTING

In this section, we describe the OpenGL ES calls that are required to enable correct light-
ing. The principles of color and lighting are described in Section 3.2.

8.3.1 SPECIFYING COLORS AND MATERIALS

We have already described the way colors are specified in OpenGL in Section 8.1.2: either
all vertices get the same default color set by

void glColor4{fx ub}(T red, T green, T blue, T alpha)

or each vertex gets an individual color using

void glColorPointer(GLint size, GLenum type, GLsizei stride, GLvoid * pointer).

If lighting has not been turned on by calling glEnable(GL_LIGHTING), the
vertices retain the literal colors they are assigned. However, if lighting is enabled, the sur-
faces need material properties. Section 3.2.3 describes the various material components:
ambient, diffuse, specular, and emissive. They can be defined by calling

void glMaterial{fx}v(GL_FRONT_AND_BACK , GLenum pname, const T * params)

190 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

where params must be a pointer to an array with at least four elements, interpreted as red,
green, blue, and alpha values, and pname must be one of the following values (the value
in parentheses is the corresponding default color):

GL_AMBIENT (0.2, 0.2, 0.2, 1.0)
GL_DIFFUSE (0.8, 0.8, 0.8, 1.0)
GL_SPECULAR (0.0, 0.0, 0.0, 1.0)
GL_EMISSIVE (0.0, 0.0, 0.0, 1.0)

It is also possible to use GL_AMBIENT_AND_DIFFUSE to set both the ambient and the
diffuse component at once to the same value. Note that the material values do not have
to lie within [0, 1]. However, the final colors at each vertex, after lighting but prior to
rasterization, are clamped to [0, 1]. Whereas in desktop OpenGL one may assign dif-
ferent materials to the front and the back sides of a surface, OpenGL ES only allows
the same material on both sides. Therefore, the first argument must always be set to
GL_FRONT_AND_BACK.

The shininess of the specular reflectance can be set by calling

void glMaterial{fx}(GL_FRONT_AND_BACK, GL_SHININESS, T param)

where param must be in the range [0, 128] and defaults to 0.

It is also possible for individual vertices to have different materials. If you call glEnable
(GL_COLOR_MATERIAL) the vertex color array values (set by glColorPointer)
are copied into the ambient and the diffuse material components. The specular and the
emissive components are not affected by color material.

The handling of colors and materials in OpenGL ES is simplified from that of desktop
OpenGL. The second color model, indexed colors, was considered to be a relic not very
compatible with modern 3D graphics, and was left out. The desktop version also allows
other components than the ambient and the diffuse to be copied from vertex colors, and
provides specular shading using a secondary color applied after texture mapping. Such
advanced lighting effects are better done using multitexturing effects in OpenGL ES.

8.3.2 LIGHTS

OpenGL ES supports at least eight light sources. The exact number that is supported can
be queried by getting the value of GL_MAX_LIGHTS. Each light is disabled by default,
and to use a light it must be first enabled by calling, e.g., glEnable(GL_LIGHT0).
Additionally, lighting must be enabled by a call to glEnable(GL_LIGHTING).

Lights have various properties described in Section 3.2.4. They have ambient, diffuse,
and specular light colors, which have four (red, green, blue, alpha) components. They
have a four-component position where the positional and directional lights are defined
by the last component (zero for directional, non-zero for positional). A spot light may
have a three-component direction as well as single-component exponents for intensity

S E C T I O N 8 . 3 COLORS AND LIGHTING 191

distribution control and for the setting the directional cutoff. Finally, the three attenuation
coefficients can be defined.

The single-valued light components (such as GL_LIGHT0) are set by calling

void glLight{fx}(GLenum light, GLenum pname, T param)

where the pnames and their default values are

GL_SPOT_EXPONENT 0
GL_SPOT_CUTOFF 180
GL_CONSTANT_ATTENUATION 1
GL_LINEAR_ATTENUATION 0
GL_QUADRATIC_ATTENUATION 0

and multiple components are set by calling

void glLight{fx}v(GLenum light, GLenum pname, const T * params)

where the pnames and their default values are

GL_AMBIENT (0, 0, 0, 1)
GL_DIFFUSE (1, 1, 1, 1) for GL_LIGHT0, (0,0,0,0) for others
GL_SPECULAR (1, 1, 1, 1) for GL_LIGHT0, (0,0,0,0) for others
GL_POSITION (0, 0, 1, 0)
GL_SPOT_DIRECTION (0, 0, –1)

The ambient, diffuse, and specular colors are quite straightforward to use. They can
have arbitrary values, and after Equation (3.3) has been applied, the result for each color
channel is clamped to [0, 1] range.

Keeping the attenuation components in their default values (1, 0, 0) in practice disables
light attenuation. For more discussion about light attenuation see Section 3.2.4.

The light position is by default at (0, 0, 1, 0), i.e., infinitely far in the positive z-direction,
making it a directional light source shining toward the negative z-direction. The position,
when set, is transformed using the current modelview matrix and stored in eye coordi-
nates. If the modelview matrix is identity when the position is set, it means that the light
shines from behind the camera, to the viewing direction of the camera. To place the light
at the camera, for example, place the light to (0, 0, 0, 1) in the eye coordinates.

Here is a simple example where one light is in the world coordinate system and one is
attached to the camera coordinate system:

{
GLfloat lightpos_0[4] = { 0.5f, 0.5f, 0.0f, 1.f };
GLfloat lightpos_1[4] = { 0.f, 0.f, 0.f, 1.f };

/* light 1 is fixed to camera (modelview is identity == camera) */
glLoadIdentity();
glLightfv(GL_LIGHT1, GL_POSITION, lightpos_1);
/* light 0 is in world coordinate system */
glRotatef(10, 1.f, 0.f, 0.f); /* view rotate */

192 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

glTranslatef(0, —1.3f, —5.f); /* view translate */
glLightfv(GL_LIGHT0, GL_POSITION, lightpos_0);
glTranslatef(—1.f, 0.f, 0.f); /* model translate */
glScalef(0.5f, 0.5f, 0.5f); /* model scale */
glDrawArrays(GL_TRIANGLES, 0, 512*3);

}

If the spot cutoff angle is 180◦, it means there is no cutoff, and the light is a point light
shining to every direction, unless it is a directional light infinitely far away shining only
to the opposite direction. Otherwise, only values within [0, 90] degrees are allowed. This
is the angle around the spot direction where the light is shining. The value 5 would mean
that only directions that differ from the spot direction by no more than 5◦ will receive the
light, the total cone opening angle being twice that, i.e., 10◦. The spot light exponent is
explained in Section 3.2.4. The value 0 means that there is no directional attenuation to
the light intensity. The default spot direction of (0, 0, −1), in eye coordinates, means that
the light points in the direction in which the camera is looking.

Even though every light may have its own ambient component, there is an implicitly
defined global ambient light source. By default its color is (0.2, 0.2, 0.2, 1), and its value
can be changed by calling

void glLightModel{fx}v(GL_LIGHT_MODEL_AMBIENT, const T * param),

where param points to an RGBA color.

8.3.3 TWO-SIDED LIGHTING

By default only the front side of a surface is illuminated by lights. However, it is possible
to toggle between two-sided and single-sided lighting by calling

void glLightModel{fx}(GL_LIGHT_MODEL_TWO_SIDE, T param).

With a non-zero value in param (typicallyGL_TRUE) you get two-sided lighting, with the
value of a zero (or GL_FALSE) you get single-sided lighting. With two-sided lighting, the
normals n on the back side are replaced by −n.

The vertex ordering determines which side is considered to be the front and which side
is the back. By default, counterclockwise order defines the front side of a triangle. That
is, if an ant walks around a triangle so that its left side is toward the triangle, and it visits
the vertices in order, the ant is on the front side of the triangle. The definition of the front
side can be changed by calling

void glFrontFace(GLenum mode)

with mode either GL_CW or GL_CCW to indicate clockwise and counterclockwise
respectively.

S E C T I O N 8 . 3 COLORS AND LIGHTING 193

8.3.4 SHADING

OpenGL ES supports two shading models: flat and smooth (Gouraud) shading. Flat
shading uses a single constant color, whereas smooth shading interpolates the vertex color
values (either from the direct color, or the result of illuminating the surface material)
within the triangle. The shading model can be changed by calling

void glShadeModel(GLenum mode)

with mode set to GL_SMOOTH (default) or GL_FLAT.

When flat shading is used, it is the last vertex of the primitive that defines the color of the
whole primitive. Obviously, for point primitives both shading types produce the same
result.

The flat shading model is somewhat awkward to use, and does not usually give the result
one might expect as the lighting is calculated using only a single vertex and a single nor-
mal per triangle. Even if the faceted look of a polygonal object is desired, you might well
use smooth shading and represent the model so that individual triangles have their own
vertices and normals. In a typical triangle mesh there are about twice as many vertices
than faces, so in order to give each face a unique normal some of the vertices need to be
replicated in any case.

8.3.5 LIGHTING EXAMPLE

Here is an extended example on how to set up lighting and materials.

static const GLfloat dark_red[4] = { 0.2f, 0.0f, 0.0f, 1.f };
static const GLfloat dark_gray[4] = { 0.1f, 0.1f, 0.1f, 1.f };
static const GLfloat white[4] = { 1.f, 1.f, 1.f, 1.f };
static const GLfloat red_transp[4] = { 1.f, 0.f, 0.f, 0.f };
static const GLfloat blueish[4] = { 0.1f, 0.4f, 1.f, 1.f };
static const GLfloat black[4] = { 0.f, 0.f, 0.f, 1.f };

/* Position at z = +inf creates a directional light toward neg z */
static const GLfloat dir_light[4] = { 0.f, 0.f, 1.0f, 0.f };
/* Place a spot light close to camera (up and right) */
static const GLfloat spot_light[4] = { 5.f, 5.f, 0.f, 1.f };
/* Direct the spot diagonally down to front of camera */
static const GLfloat spot_dir[3] = { —1.f, —1.f, —1.f };

/* First disable all lights */
for(i = 0; i < 8; i++) glDisable(GL_LIGHT0 + i);

/* Set up the lights in camera coordinates */
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

194 OPENGL ES TRANSFORMATION AND LIGHTING C H A P T E R 8

/* Scene ambient light and single-sided lighting */
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, dark_red);
glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);

/* Set up the directional light */
glLightfv(GL_LIGHT0, GL_POSITION, dir_light);
glLightfv(GL_LIGHT0, GL_AMBIENT, dark_gray);
glLightfv(GL_LIGHT0, GL_DIFFUSE, white);
glLightfv(GL_LIGHT0, GL_SPECULAR, red_transp)
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 1.f);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.f);
glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.f);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 180.f);

/* Set up the spot light */
glLightfv(GL_LIGHT1, GL_POSITION, spot_light);
glLightfv(GL_LIGHT1, GL_AMBIENT, white);
glLightfv(GL_LIGHT1, GL_DIFFUSE, white);
glLightfv(GL_LIGHT1, GL_SPECULAR, white)
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 0.f);
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 1.f);
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.f);
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 40.f);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 10.f);
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_dir);

/* Set up materials */
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, blueish);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, blueish);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, red_transp);
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, black);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 15.f);

/* Don’t forget to normalize normals! Faster if already normalized. */
glDisable(GL_NORMALIZE);

glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
glEnable(GL_LIGHTING);

/* We use normalized coordinates -> can be used also as normals */
glVertexPointer(3, GL_FIXED, 0, vertices);
glNormalPointer(GL_FIXED, 0, vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);

glDrawArrays(GL_TRIANGLES, 0, 512*3);

9

C
H

A
P

T
E

R

OPENGL ES RASTERIZATION
AND FRAGMENT PROCESSING

This chapter covers everything that happens after the transformation and lighting
pipeline. First the primitives are clipped and culled, and the surviving ones are raster-
ized into fragments. Clipping has already been described in Section 3.3 and will not be
repeated here. Texture-mapping, if enabled, is applied to each fragment, and the rest of the
fragment pipeline is executed: fog and antialiasing, followed by the alpha, depth, and sten-
cil tests. Finally, the various buffers (color, depth, stencil) are updated. The color buffer
updates may use blending or logical operations.

9.1 BACK-FACE CULLING

Back-face culling is used to discard triangles that are facing away from the viewer. This
is a useful optimization as roughly half of the triangles of an opaque closed mesh are
hidden by the front-facing ones. Culling these early in the pipeline increases the render-
ing performance. Culling is controlled globally by glEnable and glDisable using
GL_CULL_FACE as the argument. Culling affects only triangles; points and lines are
never back-face culled.

The user may select which face should be culled by calling

void glCullFace(GLenum mode)

195

196 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

with either GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK as the argument. The
last token culls all triangles. Which side of a triangle is considered to be the front is defined
using glFrontFace, described in Section 8.3.3.

Culling is conceptually performed during the triangle setup, just prior to rasterization.
However, implementations may choose to do this already earlier in the pipeline, and
potentially be able to skip, e.g., lighting calculations, for the culled triangles.

By default culling is disabled. The following example enables culling for the clockwise-
oriented faces:

glFrontFace(GL_CCW);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);

9.2 TEXTURE MAPPING

Texture mapping plays a fundamental part in the OpenGL ES rendering pipeline.
Although the texturing model is slightly simplified from the desktop, it is still a very
powerful mechanism that allows many interesting effects. Texturing is conceptually per-
formed during rasterization and prior to the rest of the fragment pipeline. However,
some implementations may internally postpone it until after the depth and stencil tests
to avoid texturing fragments that would be discarded by these tests. Texturing for the
currently active texture unit is enabled or disabled with the GL_TEXTURE_2D flag.

9.2.1 TEXTURE OBJECTS

Texture maps are stored in texture objects. The idea is that you first create a texture object,
and then set up the various values that relate to the texture, e.g., the bitmap image to
use, or the filtering and blending modes. Finally, just before drawing the primitives, you
activate the relevant texture object.

Each texture object is referred by a texture name which acts as a handle for texture data
and state. The name can be any positive integer (zero is reserved and refers to the default
texture). You can ask the driver to provide you a list of unused names with

void glGenTextures(GLsizei n, GLuint * textures)

which returns n new names, stored in the array textures. To create a new texture object,
or to reactivate a previously created one, call

void glBindTexture(GL_TEXTURE_2D, GLuint texture)

where texture is the name of the texture object. In desktop OpenGL other targets, such as
1D and 3D textures are possible, but OpenGL ES only supports two-dimensional textures.

S E C T I O N 9 . 2 TEXTURE MAPPING 197

When a texture map is no longer needed, the resources consumed by it should be freed.
This is done by a call to

void glDeleteTextures(GLsizei n, const GLuint * textures)

which deletes the n textures in the array textures. If any of these textures is currently bound
to one of the texturing units, that unit will have the default texture object (texture 0)
assigned to it. Note that in a multi-context environment where different GL contexts
share textures, the resources are freed only when a texture is not actively used in any of
the contexts.

As a summary, the following code shows a typical pattern of how texture objects are used:

GLuint tex_handle[2];
glGenTextures(2, &tex_handle[0]);
/* set up the textures */
glBindTexture(GL_TEXTURE_2D, tex_handle[0]);
/* specify texture data, filtering, etc. */
glTexImage2D(...);
...
glBindTexture(GL_TEXTURE_2D, tex_handle[1]);
glTexImage2D(...);
...
/* now ready to draw, reactivate one of the objects */
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, tex_handle[1]);
glDrawArrays(...);
glDisable(GL_TEXTURE_2D);
...
/* release the resources when not needed any longer */
glDeleteTextures(2, &tex_handle[0]);

9.2.2 SPECIFYING TEXTURE DATA

In OpenGL ES the texture image data is managed by the server, which means that the data
needs to be copied to it from the client. At this time the image data is usually converted into
the internal format best suited for texture mapping. Since both the copy and conversion
operations take time, a texture should be created once and used multiple times before
being deleted.

void glTexImage2D(GL_TEXTURE_2D, GLint level, GLenum internalformat,

GLsizei width, GLsizei height, GLint border, GLenum format,

GLenum type, const GLvoid * pixels)

copies texture image data from client-side memory to the server-side texture object. If
mipmapping is not used, or this image is the base mipmap level, level should be zero
(see Section 9.2.3 for mipmapping and levels). Since OpenGL ES does not support texture
borders, the value of border must be 0. The dimensions of the texture, in pixels, are given
by width and height, and they have to be powers of two (1, 2, 4, . . . , 512, 1024, . . .) but

198 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

they do not have to be the same (for example 32 × 64 is a valid size). The two format
parameters, internalformat and format, must be the same, and they must be one of the
formats in the table below. The table also lists the data types that can be matched with the
formats. The numbers that are part of a token tell how many bits are allocated to each
of the R, G, B, and A channels. pixels contains a pointer to the data, the first data row
corresponds to the bottom texel row.

Only byte-based data types work the same way on all platforms, as short-based data types
are interpreted according to the native platform endianess. Short-based texture data is
accessed by the GL implementation as if it were accessed through a native short integer
pointer. If the texture data comes from a data file that was stored using the other endi-
aness, texture data must be byte-swapped before any texture upload functions are used.
See Table 9.2.

If pixels is NULL, the server will reserve memory to hold the image data but no image data
is copied. The data can be subsequently loaded by using

void glTexSubImage2D(GL_TEXTURE_2D, GLint level, GLint xoffset, GLint yoffset,

GLsizei width, GLsizei height, GLenum format, GLenum type,

const GLvoid * pixels)

which updates a subimage within a previously defined texture image. Parameters level,
format, type, and pixels are the same as for glTexImage2D, and the format needs to

Tab le 9.1: Texture formats and types.

Texture Format Data type

GL_LUMINANCE GL_UNSIGNED_BYTE

GL_ALPHA GL_UNSIGNED_BYTE

GL_LUMINANCE_ALPHA GL_UNSIGNED_BYTE

GL_RGB GL_UNSIGNED_BYTE

GL_UNSIGNED_SHORT_5_6_5

GL_RGBA GL_UNSIGNED_BYTE

GL_UNSIGNED_SHORT_4_4_4_4

GL_UNSIGNED_SHORT_5_5_5_1

Tab le 9.2: Endianess in a data file.

Byte Offset 0 1

Texel 0 0

Big Endian HI: R4R3R2R1R0G5G4G3 LO: G2G1G0B4B3B2B1B0

Little Endian LO: G2G1G0B4B3B2B1B0 HI: R4R3R2R1R0G5G4G3

S E C T I O N 9 . 2 TEXTURE MAPPING 199

match the original format of the texture map. The lower left corner is at (xoffset, yoffset)
for the width × height subimage.

The pixel data is copied from the memory block pointed by pixels. By default each row of
pixels must be aligned to a word boundary, i.e., the alignment must be to an even 4 bytes.
The alignment can be changed by

void glPixelStorei(GL_UNPACK_ALIGNMENT, GLint param)

where the allowed values for param are 1 (byte-alignment), 2 (rows aligned to even-
numbered bytes), 4 (word alignment), and 8 (rows start on double-word boundaries).
If your pixel data is continuous, setting the alignment to 1 will always work, but may be
slower for unaligned image data.

As OpenGL ES only supports power-of-two texture maps and there is no support for
GL_PACK_ROW_LENGTH and GL_PACK_SKIP_PIXELS for glPixelStorei,
there is no way to copy a general image that does not have power-of-two dimensions
into a texture directly. There are two ways around this problem. The first one is to allo-
cate a memory buffer and to copy power-of-two subpieces of image data into it, then call
glTexSubImage2D to construct the texture from these pieces. Another way is to allo-
cate the next larger power-of-two buffer and to copy the original image into a subregion
of this buffer, then load the texture data using a single call to glTexImage2D. Which
one is faster depends on the texture upload performance and size of the texture, e.g., if
the source image size is 260 × 260, the next power of two size is 512 × 512 which would
almost quadruple the amount of data to be transferred.

Copying from the frame buffer

If you first render an image that you would like to use as a texture map, you can copy it
directly from the frame buffer. Since both the texture maps and the frame buffer reside
on the server, i.e., the graphics subsystem, doing the whole operation on the server can be
much more efficient than reading the color buffer to the client and then copying the data
back to the server using glTexImage2D.

void glCopyTexImage2D(GL_TEXTURE_2D, GLint level, GLenum internalformat, GLint x,

GLint y, GLsizei width, GLsizei height, GLint border)

copies a width × height block of pixels with a lower left corner at (x, y) in the color buffer
into the currently bound texture. The level, internalformat, and border arguments are iden-
tical to those of glTexImage. The parameter internalformat must be compatible with
the color buffer format according to Table 9.3.

Note, however, that glCopyTexImage2D has to flush the graphics pipeline and com-
plete all previous graphics calls, so calling it in the middle of a rendering pass may have a
negative performance impact.

200 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

Tab le 9.3: Texture formats compatible with the color buffer formats.

Color Texture Format
Buffer GL_ALPHA GL_LUMINANCE GL_LUMINANCE_ALPHA GL_RGB GL_RGBA

A
√

— — — —

L —
√

— — —

LA
√ √ √

— —

RGB —
√

—
√

—

RGBA
√ √ √ √ √

void glCopyTexSubImage2D(GL_TEXTURE_2D, GLint level, GLint xoffset, GLint
yoffset, GLint x, GLint y, GLsizei width,
GLsizei height)

is a variant that takes a screen-aligned width×height pixel rectangle with lower left corner
at (x, y), and replaces a block of the same size in the texture map, with lower left corner at
(xoffset, yoffset).

Compressed texture formats

In order to save texture memory, OpenGL ES supports the concept of compressed tex-
ture formats. Currently the only supported format uses paletted textures, which contain a
palette of colors in the header, followed by a sequence of indices into the palette, one index
for each texel. The indices can either use 4-bit indexing for 16 colors, or 8-bit indexing
for 256 colors. The palette entries can be either RGB colors stored in 888 or 565 formats,
or RGBA colors stored using 8888, 4444, or 5551 formats.

void glCompressedTexImage2D(GL_TEXTURE_2D, GLint level, GLenum internalformat,

GLsizei width, GLsizei height, GLint border,

GLsizei imageSize, const GLvoid * data)

is similar to glTexImage2D except that imageSize gives the length of data, the com-
pressed client-side image data. internalformat indicates the format of the compressed data
and has to be one of

GL_PALETTE4_RGB8_OES, GL_PALETTE8_RGB8_OES,
GL_PALETTE4_R5_G6_B5_OES, GL_PALETTE8_R5_G6_B5_OES,
GL_PALETTE4_RGBA8_OES, GL_PALETTE8_RGBA8_OES,
GL_PALETTE4_RGBA4_OES, GL_PALETTE8_RGBA4_OES,
GL_PALETTE4_RGB5_A1_OES, GL_PALETTE8_RGB5_A1_OES.

The level may be zero if the texture contains only the base level. A negative number indi-
cates the number of mipmap levels in the texture (see the next section about texture
filtering).

S E C T I O N 9 . 2 TEXTURE MAPPING 201

F igure 9.1: Level 0 of the texture in a grid.

An implementation may support other, proprietary compressed texture formats as exten-
sions. Those formats may compress better and provide more colors than paletted textures,
but they are less portable as they are not universally supported.

The specification defines an entry point for

void glCompressedTexSubImage2D(GL_TEXTURE_2D, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLsizei imageSize, const
GLvoid * pixels),

but currently there are no Khronos-specified formats that support this. The reason is that
most implementations expand the paletted texture immediately (and possibly recompress
using a proprietary internal format), and being able to update subimages would require
also storing the palette and format, creating additional memory overhead.

The following example creates a paletted texture. The colors are 32-bit RGBA, 16 of them
are stored in the beginning of the texture map. The base mipmap level is 8 × 8 texels, so
the palette is followed by 8 · 8/2 = 32 bytes of 4-bit indices. The PALTEX macro packs
two such indices into a single unsigned byte. The texture contains also 3 mipmap levels
(4×4, 2×2, and 1×1). The decompressed texture looks like that in Figure 9.1. For more
details about mipmapping, see the next section.

#define PALTEX(left,right) ((left << 4) | (right))

static const GLubyte palette_texture[] =
{
/* 16-entry palette with 32bpp colors */
0, 0, 0,255, 10,10,10,255, 20,20,20,255, 30,30,30,255,
40,40,40,255, 50,50,50,255, 60,60,60,255, 70,70,70,255,

202 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

80,80,80,255, 90,90,90,255, 100,100,100,255, 110,110,110,255,
120,120,120,255, 130,130,130,255, 140,140,140,255, 150,150,150,255,

/* mipmap level 0 (base) is (8x8), one palette index is 4 bits */
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),
PALTEX(0,2), PALTEX(4,6), PALTEX(8,10), PALTEX(12,14),

/* mipmap level 1 is 4x4 */
PALTEX(1,5), PALTEX(9,13),
PALTEX(1,5), PALTEX(9,13),
PALTEX(1,5), PALTEX(9,13),
PALTEX(1,5), PALTEX(9,13),

/* mipmap level 2 is 2x2 */
PALTEX(3,11),
PALTEX(3,11),

/* the last mipmap level (3) is 1x1 */
PALTEX(7,7)

};
...

/**
* Prepare compressed texture.
* |level|+1 is the number of mipmap levels.
* Here we have: |—3|+1 = 4 levels.
***/

glGenTextures(1, &texture_handle);
glBindTexture(GL_TEXTURE_2D, texture_handle);
glCompressedTexImage2D(GL_TEXTURE_2D, —3, GL_PALETTE4_RGBA8_OES,

8, 8, 0, sizeof(palette_texture),
palette_texture);

9.2.3 TEXTURE FILTERING

The basic ideas in texture filtering were introduced in Section 3.4.1 and illustrated in
Figure 3.13. The texture coordinates are interpolated for each fragment within a primitive.
The coordinates are interpreted so that 0 at the first component (s) maps to the left side
of the first texel on a given row of the texture map, and 1.0 maps to the right side of
the last texel on that row. The row is determined by the t-coordinate, 0 corresponding to
the bottom of the bottom row, and 1.0 to the top of the top row. The texture fetch and
filtering machinery then has to come up with a filtered color value from the texture map.

S E C T I O N 9 . 2 TEXTURE MAPPING 203

Basic filtering modes

The basic filtering choices are point sampling and linear interpolation. Point sampling
simply returns the value of the texel nearest to the interpolated texture coordinate, while
linear interpolation takes a weighted average of the neighboring texel values. These filter-
ing modes can be set separately for magnification where one texel maps to several pixels
and for minification where several texels map to a single pixel. They can be set by calling

void glTexParameter{ifx}(GL_TEXTURE_2D, GLenum pname, T param)
void glTexParameter{ifx}v(GL_TEXTURE_2D, GLenum pname, const T * param)

where pname is either GL_TEXTURE_MAG_FILTER or GL_TEXTURE_MIN_FILTER
and param is either GL_NEAREST or GL_LINEAR.

Mipmap specification

If a drastic minification is required, that is, a large number of texels would project to a
single pixel, neither of those sampling approaches works well. The selection of which texel
(or the interpolation of which four texels) is used would essentially be random. This would
create both visual artifacts and result in inefficient memory access patterns. Mipmapping
provides a solution by providing prefiltered texture maps that can be chosen so that the
pixel-texel size ratio is sufficiently close to one.

There are three ways of specifying mipmaps: give them one level at a time for regular
textures, ask the system to automatically generate them (from OpenGL ES 1.1 onward),
or provide them all at once for compressed textures.

If the levels are given one at a time, they are given withglTexImage2D and other related
commands using the parameter level. The base level is zero, while level 1 needs to be half
the size both in width and height, unless one of them is already 1. As an example, for
a 64 × 32 texture the level 1 mipmap is 32 × 16, level 2 is 16 × 8, and so on until
level 5 is 2 × 1 and the final level 6 is a 1 × 1 texture. The texture will not be complete
until all mipmaps have been given, they have correct sizes as described above, and the
texture formats of the different levels match. Incomplete texture behaves as if texturing
was disabled for the texture units where the texture is bound.

OpenGL ES 1.1 supports automatic generation of mipmap levels. The levels are typically
obtained by averaging four texels at a finer level to create one texel at a coarser level. Auto-
matic mipmap level generation is not enabled by default, but can be enabled with

glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);

and disabled with

glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_FALSE);

When automatic mipmap generation is activated, the server automatically recomputes
the contents of all mipmap levels whenever the base level is updated.

204 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

Pitfall: Implementations may free the automatically generated mipmap levels
when GL_GENERATE_MIPMAP is disabled to save memory. Toggling this parameter
on/off may slow down rendering considerably.

The mipmap levels of compressed textures are specified in yet another way. They cannot
be generated automatically, and with paletted textures all levels have to be given at once.
The level argument of glCompressedTexImage2D is 0 if only the base level is given,
whereas a negative number tells how many mipmap levels are given in the data argument.
For example, for a texture map where the base is 64 × 32, levels must be −6. The example
on page 202 illustrates this concept. More generally, the extension specification states for
a given texture compression format how the mipmap levels are handled.

Mipmap filtering modes

There are several additional filtering modes available for mipmapping, and they are
set with

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_X_MIPMAP_Y);

where you replace X and Y with either NEAREST or LINEAR. Specifying X to be
NEAREST means that within one mipmap level point sampling will be used, whereas
LINEAR means that the texel values will be interpolated. Specifying Y selects interpola-
tion across mipmap levels: NEARESTmeans that only the mipmap level where texels most
closely match the pixel size is selected, while LINEAR means that two closest-matching
mipmap levels are chosen and evaluated separately (using the X setting), and the results
are finally linearly interpolated. To clarify,

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);

would perform a full tri-linear filtering whereas

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);

would just take the closest mipmap level and perform a bilinear filtering on that.
Depending on the mode, either 1, 2, 4, or 8 texels will be averaged together.

Recall that mipmapping relates only to minification, as magnification always operates
using the highest-resolution mipmap level and you may only choose eitherGL_NEAREST
or GL_LINEAR to be used as its filter.

Texture filtering can be an expensive operation, especially for a software implementa-
tion of OpenGL ES. Typically point sampling is faster than bilinear filtering, and pick-
ing the closest mipmap level is less expensive than filtering between two levels. Typically
bilinear filtering is as fast as point sampling with hardware rasterizers, at least if only one
texture unit is used. The use of mipmaps is always a good idea for both performance and

S E C T I O N 9 . 2 TEXTURE MAPPING 205

visual quality, since accessing the coarser mipmap levels reduces the texel fetch bandwidth,
improves texture cache coherency, and provides higher-quality filtering.

9.2.4 TEXTURE WRAP MODES

OpenGL ES supports two texture addressing modes: GL_CLAMP_TO_EDGE and
GL_REPEAT. GL_CLAMP_TO_EDGE clamps the texture coordinates to [min, max]
where min = 1/ (2N) and max = 1 − min, and N is either the width or height of the
texture map. The effect is that texture coordinates that would map to the left of the center
of the first texel (in s direction) are clamped to the center of that texel. Similar clamping is
applied to coordinates mapping to the right of the center of the last texel. Negative coordi-
nates, or coordinates greater than 1.0, thus fetch a boundary texel. This effect is illustrated
in Figure 3.12 (b).

The effect of GL_REPEAT is shown in Figure 3.12 (c). If the texture coordinate at a frag-
ment is outside the [0,1] range, the coordinates are wrapped so that the integer part is
ignored, and only the fractional part is used to access the texel data. The fractional part of
f is defined as f − � f� regardless of the sign of f. Let us analyze a 1D situation (not related
to Figure 3.12) where one triangle vertex has s = −0.7 and the neighboring vertex has
s = 3.0. The initial −0.7 becomes −0.7− (−1) = 0.3, and as you travel from the first ver-
tex toward the next one, as −0.7 grows toward 0.0, the wrapped coordinate grows from
0.3 toward 1.0. Once the interpolated s reaches 0.0, the wrapped version also repeats from
0.0. This is repeated twice more, at 1.0 and 2.0. The end result is that the texture map
repeats 3.7 times between the two vertices.

The wrap modes are set separately for s and t coordinates as follows:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

9.2.5 BASIC TEXTURE FUNCTIONS

Each fragment gets a color that is interpolated from the vertex colors. This is combined
with the texture source color (obtained through filtering as described above), and a
user-given constant color, using one of the functions GL_REPLACE, GL_MODULATE,
GL_DECAL, GL_BLEND, or GL_ADD. The details of how these functions work are
described in Section 3.4.1. The functions are selected like this:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

and the constant color is given like this:

glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, color);

where color points to a float array storing the RGBA color.

206 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

We have now covered enough texture mapping features to show an example that
completely sets up a texture object with mipmapping, filtering, and wrapping modes.
texture_data_base is a pointer to an 8 × 8 texture map data, while texture_
data_mip_1 through texture_data_mip_3 point to smaller prefiltered versions
of the same texture map.

glEnable(GL_TEXTURE_2D);
glGenTextures(1, &tex_handle);
glBindTexture(GL_TEXTURE_2D, tex_handle);
ver = glGetString(GL_VERSION);

if(ver[strlen(ver)—1] > ’0’)
{
/* the minor version is at least 1, autogenerate mipmaps */
glHint(GL_GENERATE_MIPMAP_HINT, GL_NICEST);
glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 8, 8, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texture_data_base);
}
else
{
/* OpenGL ES 1.0, specify levels one at a time */
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 8, 8, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texture_data_base);
glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, 4, 4, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texture_data_mip_1);
glTexImage2D(GL_TEXTURE_2D, 2, GL_RGBA, 2, 2, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texture_data_mip_2);
glTexImage2D(GL_TEXTURE_2D, 3, GL_RGBA, 1, 1, 0, GL_RGBA,

GL_UNSIGNED_BYTE, texture_data_mip_3);
}

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

9.2.6 MULTI-TEXTURING

OpenGL ES supports multi-texturing, i.e., the results of one texturing unit can be piped
to the next one. When using version 1.0 you might get only one texturing unit, whereas
1.1 guarantees at least two units. The actual number of units can be queried with

GLint n_units;
glGetIntegerv(GL_MAX_TEXTURE_UNITS, &n_units);

S E C T I O N 9 . 2 TEXTURE MAPPING 207

Texture mapping calls glTexImage2D, glTexSubImage2D, and glTexPara-
meter affect the state of the current texture object, while glTexEnv affects only the
active texture unit. Texture object settings affect all texture units where the texture object
is bound when a draw call is issued. A unit can be activated with glActiveTexture,
and then you can both bind a texture object to the unit and modify that unit’s texture
matrix. The following example sets up a spinning diffuse texture in the first unit, a pro-
jective light map in the second unit, and disables the rest of the units.

/* the base texture spins around the center of the texture map */
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, tex_handle);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glTranslatef(0.5, 0.5, 0.0f);
glRotatef(time*20, 0.f, 0.f, 1.f);
glTranslatef(—0.5, —0.5, 0.0f);
/* the second unit has a light map */
glActiveTexture(GL_TEXTURE1);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, lightmap_handle);
glLoadMatrixf(my_projective_light_matrix);
/* make sure the rest of the texture units are disabled */
GLint maxtex, i;
glGetIntegerv(GL_MAX_TEXTURE_UNITS, maxtex)
for(i = 2; i < maxtex; i++)
{
glActiveTexture(GL_TEXTURE0 + i);
glDisable(GL_TEXTURE_2D);

}

As described in the previous chapter, for texture coordinates the active texture unit is
selected with glClientActiveTexture, after which the coordinates are specified
with glTexCoordPointer.

The output of one texturing unit cascades as input to the next enabled unit. This happens
in order, starting from unit 0, and disabled units are simply skipped over as if they did
not exist in the first place.

9.2.7 TEXTURE COMBINERS

OpenGL ES 1.1 introduces a set of more powerful texture functions called texture com-
biners. The combiners are activated by calling

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);

With combiners one can specify different texture functions for RGB and alpha, using one
of the six functions, which take from one to three arguments Arg0, Arg1, Arg2.

208 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

color

color color

alphaalpha

Primary
color

Texture

s0

s0

s0s2 � s1(1 � s2)

s0

s1

s2 Output
1 � x

GL_INTERPOLATE

GL_REPLACE

F igure 9.2: Example of combining a texture map into the untextured fragment color in proportion to the texture alpha
channel. The resulting color is Cp ∗ (1 − At) + Ct ∗ At, where Cp is the untextured color, and Ct and At are the color and alpha
of the texture map.

GL_REPLACE simply copies Arg0.
GL_MODULATE multiplies two arguments as Arg0 ∗ Arg1.
GL_ADD adds them up as Arg0 + Arg1, while
GL_ADD_SIGNED treats Arg1 as a signed value in [− 0.5, 0.5]: Arg0 + Arg1 − 0.5.
GL_INTERPOLATE linearly interpolates two inputs using the third: Arg0∗Arg2+Arg1∗
(1 − Arg2).
GL_SUBTRACT subtracts the second from the first Arg0 − Arg1.

Additionally, GL_DOT3_RGB and GL_DOT3_RGBA can be used only for RGB; they cal-
culate a dot product between the two argument colors as 4 ∗ (sr + sg + sb), where sr is
defined as (Arg0r − 0.5) ∗ (Arg1r − 0.5) and sg and sb are defined in a similar way. The
resulting scalar value is copied either to the RGB or RGBA of the output. To illustrate
how the texture combiners are used, we give an example that blends a texture map into
the triangle color based on the alpha channel of the texture map. Figure 9.2 illustrates the
combiner setup for this operation. The combiner functions are set as follows:

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);

The arguments can be taken from the filtered texture color (GL_TEXTURE), untextured
fragmentcolor(GL_PRIMARY_COLOR),user-specifiedconstantcolor(GL_CONSTANT,
specified usingGL_TEXTURE_ENV_COLOR), or the output color from the previous tex-
ture unit (GL_PREVIOUS). In the example above,GL_INTERPOLATE takes three argu-
ments while GL_REPLACE takes only one. They could be specified with

glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR);

S E C T I O N 9 . 2 TEXTURE MAPPING 209

Finally, you need to specify whether you want to use the RGB or alpha as input for the
RGB part (for alpha you can only use the alpha component), and these operands can be
either taken as is (arg), or inverted (1 − arg), before being passed to the function.

glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);

9.2.8 POINT SPRITE TEXTURING

Point sprites are another feature introduced in OpenGL ES 1.1. Many natural phenomena
such as fire or smoke can be emulated by overlaying several copies of textures depicting
flames or smoke puffs. Using quads (quadrangles made of pairs of triangles) to place the
textures is inefficient as four vertices have to be transformed for each quad. It is much
more efficient to use a single point for each sprite instead, to specify the point size, and
paste the texture image across the point. However, normal points have only a single texture
coordinate which is shared by every fragment on the point. With point sprites you can
generate texture coordinates so they are interpolated across the point. If you call

glEnable(GL_POINT_SPRITE_OES);
glTexEnvi(GL_POINT_SPRITE_OES, COORD_REPLACE_OES, GL_TRUE);

the antialiasing mode of the point is ignored, the point is treated as a screen-aligned
square, and texture coordinates are interpolated across the point so that the upper left
corner has coordinates (0,0) while the lower right corner has coordinates (1,1). That is,
the t-coordinate direction is the reverse of the usual OpenGL convention. Note also that
you have to enable the texture coordinate interpolation separately for each texturing unit.
To disable the interpolation of a unit simply call the function with GL_FALSE. Other
features of texture mapping work exactly the same way as triangles.

9.2.9 IMPLEMENTATION DIFFERENCES

Some features of texture mapping are left optional. For example, the OpenGL ES
specification does not require an implementation to perform the texture coordinate
interpolation in a perspectively correct fashion. Although hardware implementations
are likely to handle this correctly, software implementations often use a much cheaper
screen-space linear interpolation instead. Some of them support both perspective
correct and linear interpolation, and allow choosing between them using glHint
(see Section 10.3).

In a similar fashion, some implementations may only choose the closest mipmap
level instead of interpolating between them, even if the filtering mode asks for it.

210 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

The effects of auto-mipmap generation of OpenGL ES 1.1 may also vary across
implementations.

Finally, the OpenGL ES specification does not require that the division of the texture
coordinates’ s and t components by the q component is performed separately at each pixel.
Instead, an implementation may do the division by q at vertices, and then interpolate the
coordinates.

9.3 FOG

The next step after texture mapping is fog generation. Fog is used to simulate aerial
perspective, and to make more distant objects fade into a constant color. A detailed
description of fog functions and their parameters can be found in Section 3.4.4. Frag-
ments are blended with a constant fog color; the blending factor is based on the distance
to the viewer and the current fog mode. Although the fog distance computation is con-
ceptually performed as a part of the fragment-processing pipeline, implementations often
compute the fog values for the vertices of a primitive and then interpolate them. The
quality of the fog computation may be controlled with glHint (see Section 10.3).

The fog color is specified with

void glFog{fx}v(GL_FOG_COLOR, const T * params)

where params points to an RGBA color. Other parameters are set by calling

void glFog{fx}(GLenum pname, T param)

With pname GL_FOG_MODE you can select between params GL_EXP (default),
GL_LINEAR, and GL_EXP2. Further pname GL_FOG_DENSITY applies for the expo-
nential modes, and pnames GL_FOG_START and GL_FOG_END set the start and end
distances for the linear mode.

By default fog is turned off. It can be enabled by calling glEnable(GL_FOG).
The following example shows how fog is used. As you can see in Figure 3.20, with these
values theGL_LINEAR andGL_EXP2modes behave in a similar manner, but GL_EXP2
provides a smoother transition.

static const GLfloat bluish_fog[4] = { .5f, .5f, .8f, 1.f };
glEnable(GL_FOG)
glHint(GL_FOG_HINT, GL_DONT_CARE);
glFogfv(GL_FOG_COLOR, bluish_fog);
if(linear)
{
glFogf(GL_FOG_MODE, GL_LINEAR);
glFogf(GL_FOG_START, 20.0f);
glFogf(GL_FOG_END, 70.0f);

}

S E C T I O N 9 . 4 ANTIALIASING 211

else
{
glFogf(GL_FOG_MODE, GL_EXP2);
glFogf(GL_FOG_DENSITY, 0.02f);

}
... /* draw the object */
glDisable(GL_FOG);

Note that once you enable fog, it is applied to almost every operation, and even if you do
not see much effect (depending on the mode and values you set), you pay the penalty of
the increased processing load. Do not forget to disable the fog when you do not need it
any more.

9.4 ANTIALIASING

There are two basic ways for performing antialiasing in OpenGL ES: edge antialiasing,
which is supported for lines and points, and multisampling, which supports all primitives.
It is also possible to implement antialiasing by combining other OpenGL ES features.

9.4.1 EDGE ANTIALIASING

OpenGL ES supports edge antialiasing for line and point primitives. This means that a
partial pixel coverage percentage is computed for all fragments, and the alpha value of the
fragment is then modulated by the coverage percentage. To create the desired antialiasing
effect, blending must be enabled.

There are some problems with edge antialiasing, however. First, there are no quality
guarantees. There are so many possible ways to implement edge antialiasing that a precise
specification would preclude many feasible approaches. Therefore you do not know how
the antialiasing is implemented; some implementations may even choose to ignore the
request for antialiasing. An even greater problem is that the results depend on the render-
ing order. Say you first render white lines on a blue background. Some of the edge pixels
are going to get a color which is a mix of white and blue. Now if you draw something that
is yellow that is farther from the camera than your white line, but closer than the blue
background, the result can be pretty ugly. Instead of the white line blending smoothly to
the yellow background, many of the boundary pixels have traces of blue.

The advantage is that since an implementation can precalculate analytically how much
the line covers each pixel, this method can give much higher quality and more efficient
line and point antialiasing than, for example, multisampling. However, for best results the
lines and primitives should be sorted by depth, and drawn in a back-to-front order after
all other parts of the scene have already been drawn.

Edge antialiasing complicates the triangle rasterization rules, and traditionally edge
antialiasing has not been used much for triangles. Therefore OpenGL ES supports it

212 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

only for points and lines, which makes it relatively straightforward to implement. It is
enabled by calling glEnablewith the arguments GL_LINE_SMOOTH or GL_POINT_
SMOOTH.

9.4.2 MULTISAMPLING

Some OpenGL ES implementations support multisampling, an antialiasing mechanism
where each pixel is represented by multiple samples which are combined together at
the end of the frame. This is a somewhat expensive feature, and likely to be found
only in hardware implementations. Multisampling can be enabled or disabled using the
token GL_MULTISAMPLE, and by default it is enabled. Basic multisampling is that easy.
However, you have to make sure that your EGL configuration supports multisampling
(see Chapter 11).

The advantage of multisampling is that it is easy to use: unlike edge antialiasing, it does
not require sorting the objects, and blending does not have to be enabled. The disadvan-
tage is the cost of implementation complexity, and higher use of computation resources.
Depending on the implementation it may or may not execute at the same speed as single-
sampled rendering. The quality of antialiasing depends on the number of samples. Even
on mobile hardware engines the number is not likely to be very high: typically two or four
samples per pixel are supported.

In order to find out whether multisampling is supported by the currently active EGL sur-
face, query the value of GL_SAMPLE_ BUFFERS: here 1 means supported, 0 indicates
not supported. GL_SAMPLES then tells how many samples per pixel are stored. You can-
not usually turn multisampling on or off per primitive; it should be either enabled or
disabled for the whole rendering pass.

Blending with multisampling

If multisampling is supported, you can use it for a fast approximation to simple blending.
However, beware: on some implementations the overhead of multisampling may be much
bigger than that of blending, so this trick may also slow you down.

The idea is that if some of the samples come from one object and others come from
another, and the samples are then averaged, we get a reasonable approximation of real
blending. For example, if you want to blend two objects 50–50, and your multisampling
system takes 4 samples, instead of rendering the 4 samples twice, and reading pixel values
from the frame buffer to do the blending, you only need to render 2 samples twice and skip
frame buffer reads and blending, resulting in much more than 2 times the performance
increase.

The first approach is to use the alpha values to determine the number of samples to
be generated: low alpha means fewer samples. This is enabled with glEnable
(GL_ SAMPLE_ALPHA_TO_MASK). In most cases you can now simply ignore the

S E C T I O N 9 . 4 ANTIALIASING 213

alpha values, as blending is done by the multisampling machinery, but in case you do
care (you have an RGBA frame buffer instead of RGB, or blending has been enabled), as
you take fewer samples, the alpha of those samples should set to 1.0. For this effect call
glEnable (GL_SAMPLE_ALPHA_TO_ONE).

The second possibility is to not use alpha, but to define the sample coverage value directly.
For this you enable GL_SAMPLE_MASK and use

void glSampleCoverage(GLclampf value, GLboolean invert)
void glSampleCoveragex(GLclampx value, GLboolean invert)

where the value parameter tells the percentage of the samples that a “fragment mask”
selects to pass if invert is false. If invert is true, the samples that would have passed are
killed, and the samples that would have been killed will pass. For example, the following
code would take 75% of the samples from the first object, and 25% from the second object,
allowing a faster way to blend, for example, two different level-of-detail versions of the
same object.

glEnable(GL_SAMPLE_MASK);
glSampleCoverage(0.75f, GL_TRUE);
... /* here draw object 1 */
glSampleCoverage(0.75f, GL_FALSE);
... /* draw object 2 */
glDisable(GL_SAMPLE_MASK);

This guarantees that the objects get different samples. So if every pixel gets 4 samples, 3
of them would sample object 1, and the last one would sample object 2.

9.4.3 OTHER ANTIALIASING APPROACHES

It is possible to do antialiasing by using feathered RGBA texture maps. Feathering means
that the boundaries are faded, pixels closer to the boundary get progressively smaller alpha
value, and beyond the boundaries the alpha values are zero. Like edge antialiasing, blend-
ing must be enabled for this approach.

The best alpha mask is obtained by rendering the image at a much higher resolution than
the final image, reading it from the server to the client, running a client-side program that
filters the image down [GW02], and redrawing using the filtered image. This approach,
however, is too slow for real-time interactive applications, but can give high-quality results
for still image rendering. A faster but perhaps lower-quality version of this could render
the image directly into a texture map in twice the resolution of the desired final image,
carefully set the texture coordinates so that pixel centers map between the texels, and use
bilinear filtering so that the hardware can do the filtering. This works much faster since
the image doesn’t have to be fetched from the server (GPU) to the client (CPU), but the
whole processing is done at the server.

214 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

9.5 PIXEL TESTS

Toward the end of the graphics pipeline the pixels are subjected to a sequence of tests.
The first of the tests is the scissor test which allows only pixels within a rectangular box
to pass. This is followed by alpha, stencil, and depth tests. All of these tests compare
one component of the pixel, i.e., the alpha, stencil, or depth component, to a reference
value. The comparison function can be set to always pass the pixel (GL_ALWAYS), never
pass it (GL_NEVER), or pass depending on the relative value of the component with
respect to the reference value (GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL,
GL_EQUAL, or GL_NOTEQUAL).

9.5.1 SCISSORING

The scissor test, if enabled, allows only pixels within the scissor box to be modified by
drawing commands. The scissor box is defined by calling

void glScissor(GLint x, GLint y, GLint width, GLint height)

By default, the scissor test is not enabled. The scissor box is defined by giving the lower
left corner, followed by the width and height in pixels. For example,

glEnable(GL_SCISSOR_TEST);
glScissor(10, 5, 100, 200);

defines a scissor box starting from (10, 5) and extending to (110, 205). If the scissor box is
not enabled, the result is the same as if the box covered the entire window. Changing the
scissor box may require flushing the graphics pipeline, so it is advisable to set it up only
in the beginning of the frame.

9.5.2 ALPHA TEST

The next test after the scissor test is the alpha test. It discards incoming fragments based
on a comparison between the fragment’s alpha value and a reference value. This can be
useful when combined with alpha blending, as it can be used to skip the rest of the pipeline
when completely transparent texels are encountered in a texture map. Alpha test is a rela-
tively cheap operation even in software implementations of OpenGL ES, and if a texture
contains many discardable texels, using it can even accelerate the rendering.

void glAlphaFunc(GLenum func, GLclampf ref)
void glAlphaFuncx(GLenum func, GLclampx ref)

is used for selecting the comparison function and the reference alpha value. The parameter
func should be one of the tests on page 214, while ref specifies the reference value. The
reference alpha value is clamped to [0, 1] where 0 indicates completely transparent and 1
fully opaque. To allow skipping the fully transparent pixels call

S E C T I O N 9 . 5 PIXEL TESTS 215

glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_NOTEQUAL, 0.0f);

Here is a longer example for the alpha test. If you have a drawing routine that has both
opaque and translucent objects, you should first render the opaque ones before blending
the translucent ones on top of them. During the first pass depth writing should be
enabled, during the second pass it should be disabled, though the depth test itself should
be executed. Now transparent objects behind solids will not be drawn, but the ones in
front of them will all blend in. To guarantee correct blending the transparent objects
should be sorted and drawn in back-to-front order.

glEnable(GL_DEPTH_TEST); /* enable depth test */
glDepthFunc(GL_LESS); /* use default depth func */
glDepthMask(GL_TRUE); /* allow z-buffer update */
glEnable(GL_ALPHA_TEST); /* enable alpha test */
glAlphaFunc(GL_GEQUAL, 0.999f); /* draw only solids */
myDrawFunc(); /* draw the scene */
glDepthMask(GL_FALSE); /* disable z-buffer update */
glAlphaFunc(GL_LESS, 0.999f); /* draw only translucent surfaces */
glEnable(GL_BLEND); /* set up blending */
glBlendFunc(GL_SRC_ALPHA, /* typical blending mode */

GL_ONE_MINUS_SRC_ALPHA);
myDrawFunc(); /* draw the scene, again */
glDisable(GL_ALPHA_TEST); /* reset to typical state */
glDisable(GL_BLEND); /* reset to typical state */
glDepthMask(GL_TRUE); /* reset to typical state */

9.5.3 STENCIL TEST

Stencil testing, in its basic form, is a more general scissoring function. One can first draw
an arbitrary 2D shape, or stencil, into the stencil buffer, and then incoming fragments
are kept or discarded depending on whether they fall within the stencil shape. However,
if your stencil shape is a box, it is much cheaper to use the scissor test instead. Uses for
stencil buffer, in addition to the arbitrary-shaped scissor areas, include many advanced
algorithms, such as drawing line drawings with hidden lines removed, drawing arbitrary
polygons with holes and indentations, and creating volumetric lighting effects and shad-
ows. However, this versatile tool has a high cost: it needs its own buffer, and therefore
not all implementations support stenciling. To find out whether the currently active EGL
surface has a stencil buffer, and how deep it is, you can query for GL_STENCIL_BITS
(8 is a typical number of stencil bits). Of course, at first you should ask for an EGL config
that supports stencil buffers as described in Chapter 11.

The stencil test function is set like the alpha test. It needs to be enabled with glEnable
(GL_STENCIL_TEST), and you need to select one of the tests on page 214 (the
initial mode is GL_ALWAYS) by calling

void glStencilFunc(GLenum func, GLint ref, GLuint mask)

216 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

The reference value ref is an integer value [0, 2s − 1] where s is the number of bits in
the stencil buffer. The default reference value is 0. The third argument is mask, which is
ANDed with both the reference value and the stored stencil value before the comparison
test (the default mask has all bits set to one). If there is no stencil buffer, the stencil test
always passes.

The values of the stencil buffer are set using

void glStencilOp(GLenum sfail, GLenum zfail, GLenum zpass)

which instructs how the stencil buffer is updated based on whether the stencil test fails,
the depth test fails, or whether the depth test passes. The following update functions are
supported

GL_KEEP leaves the existing stencil buffer contents unmodified

GL_ZERO sets the stencil buffer value to zero

GL_REPLACE copies the stencil reference value to the buffer

GL_INCR increments the stencil buffer value by one (clamps to 2s − 1)

GL_DECR decrements the stencil buffer value by one (clamps to 0)

GL_INVERT performs a bitwise inversion to the stencil buffer value

The initial state corresponds to glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP)
which never modifies the stencil buffer.

Here is a simple stencil example, which draws an irregular stencil shape and then uses that
to delimit later drawing.

glEnable(GL_STENCIL_TEST);
glClearStencil(0); /* prepare to clear to 0 */
glClear(GL_STENCIL_BUFFER_BIT); /* actually clear */
glStencilFunc(GL_ALWAYS, 1, 1); /* set ref and mask to 1 */
glStencilOp(GL_REPLACE, GL_REPLACE, /* set to one where you draw */

GL_REPLACE);
... /* draw the stencil shape */
glStencilOp(GL_KEEP, GL_KEEP, /* do not modify further */

GL_KEEP);
glStencilFunc(GL_EQUAL, 1, 1); /* draw inside the stencil */
... /* your drawing routine */
glStencilFunc(GL_NOTEQUAL, 1, 1); /* draw outside the stencil */
... /* your drawing routine */
glDisable(GL_STENCIL_TEST);

The following is a more complex example that uses stencil buffers for volumetric shadows
[Hei91]. The idea is to first draw the scene with only ambient lighting. For the parts of
the scene that do not get any direct lighting, that is, are in the shadow, that is all there is
to do. The shadow volumes are modeled as geometry, and are used to update the stencil

S E C T I O N 9 . 5 PIXEL TESTS 217

buffer. If the front surface of a shadow volume is between the camera and object, that
object is potentially in the shadow. Every such shadow will increase the stencil buffer by
one. However, if the back surface of the shadow volume is also between camera and the
object, then that volume does not reach up to the object, and the stencil buffer is decreased
by one. In the end, pixels with stencil values equaling zero are not in shadow, and should
be redrawn with full lighting. Note that this example makes several assumptions of light
directions and the view frustum setup, and only works for simple cases, as it is meant to
illustrate mostly the stencil buffer processing.

/* prepare to draw the scene with ambient lights, store depth */
glDisable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_TRUE);
glCullFace(GL_BACK);

draw_scene_with_ambient_lights();

/* now don’t touch color or depth */
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthMask(GL_FALSE);
/* Render front triangles only */
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
/* INCRement stencil where depth test passes */
glEnable(GL_STENCIL_TEST);
glStencilMask(0xffffffff);
glStencilFunc(GL_ALWAYS, 0x00000000, 0xffffffff);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);

draw_shadow_volumes();

/* render back triangles only */
glCullFace(GL_FRONT);
/* DECRement stencil where depth test passes */
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);

draw_shadow_volumes();

/* pass stencil test ONLY when stencil is zero (not in shadow) */
glStencilFunc(GL_EQUAL, 0x00000000, 0xffffffff);
/* process only visible surface front pixels */
glCullFace(GL_BACK);
glDepthFunc(GL_EQUAL);
/* redraw color buffer on surviving pixels */
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

draw_scene_with_normal_light();

218 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

9.5.4 DEPTH TESTING

Depth testing is the final test in the OpenGL ES fragment pipeline. It is used for sorting
the primitives at each pixel based on their distance from the camera. Typically we want the
closest object to cover the ones farther away. However, some algorithms exist that need
other depth orderings. Depth test is globally turned on or off by calling glEnable or
glDisable with the symbolic constant GL_DEPTH_TEST.

void glDepthFunc(GLenum func)

selects between the eight depth comparison functions on page 214. This function is used
to compare a fragment’s depth value against the one already stored in the depth buffer at
the same pixel location. The default function is GL_LESS.

The extended shadow volume example in the previous section also illustrates the use of
the depth test. When the scene is drawn for the first time, the basic comparison mode
glDepthFunc(GL_LESS) is used to discard all the fragments but the ones closest
to the camera. When it is drawn for the second time, we switch the comparison function
to glDepthFunc(GL_EQUAL) so that only those fragments that are visible are
retained. If the mode would still be GL_LESS no fragments would survive the depth test
on the second round.

Polygon offsets

Polygon offsets are used for modifying the depth values of triangles. This is a useful feature
for, e.g., rendering decals on top of flat surfaces. With polygon offsets you can make sure
that the decal is in front of the surface, but not so far that a noticeable gap would show
between them. The feature can be turned on or off using glEnable or glDisable
with GL_POLYGON_OFFSET_FILL.

void glPolygonOffset(GLfloat factor, GLfloat units)
void glPolygonOffsetx(GLfloat factor, GLfixed units)

defines the scale factor and units that are used to modify the fragment’s depth value.
Both are initially set to 0. See Section 3.5.1 for a more detailed discussion of polygon
offsets.

9.6 APPLYING FRAGMENTS TO THE COLOR BUFFER

Once a fragment has been fully processed, it is applied to the color buffer. Three alterna-
tive mechanisms exist: the fragment can be copied directly to replace the correspond-
ing pixel in the color buffer, the fragment can be blended with the color buffer, or
a logical operation may be applied to combine the fragment with the color buffer.
Finally, some frame buffer channels might be masked so that writes are not performed
to them.

S E C T I O N 9 . 6 APPLYING FRAGMENTS TO THE COLOR BUFFER 219

9.6.1 BLENDING

Blending takes the incoming fragment color (with texturing and fog already applied) and
the color that already exists in the frame buffer, and uses them to come up with a new
color to be stored in the frame buffer. Blending was described in Section 3.5.2.

Blending can be turned on and off by using glEnable and glDisable with the
symbolic constant GL_BLEND. Blending is disabled by default. When enabled, a blend
operation multiplies the incoming, or source, fragment color Cs by a source blend factor
Fs, and the pixel in the color buffer, or destination color Cd, by a destination blend factor
Fd, multiplies and adds component-wise CsFs + CdFd, clamps it to [0,1], and stores the
result into the color buffer.

void glBlendFunc(GLenum sfactor, GLenum dfactor)

sets up the source and destination blend factors. The following table lists the allowed
tokens, describes the actual factors, and tells whether they are permissible to be used as a
source or a destination factor, or both.

Token Factor src dst

GL_ZERO (0, 0, 0, 0)
√ √

GL_ONE (1, 1, 1, 1)
√ √

GL_SRC_COLOR (Rs, Gs, Bs, As)
√

GL_ONE_MINUS_SRC_COLOR (1, 1, 1, 1) − (Rs, Gs, Bs, As)
√

GL_DST_COLOR (Rd, Gd, Bd, Ad)
√

GL_ONE_MINUS_DST_COLOR (1, 1, 1, 1) − (Rd, Gd, Bd, Ad)
√

GL_SRC_ALPHA (As, As, As, As)
√ √

GL_ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) − (As, As, As, As)
√ √

GL_DST_ALPHA (Ad, Ad, Ad, Ad)
√ √

GL_ONE_MINUS_DST_ALPHA (1, 1, 1, 1) − (Ad, Ad, Ad, Ad)
√ √

GL_SRC_ALPHA_SATURATE (f, f, f, 1), f = min(As, 1 − Ad)
√

If the color buffer does not include an alpha channel, the destination alpha Ad is consid-
ered to be 1 in the previous equations.

Probably the most common uses for blending are rendering translucent objects and edge
antialiasing. You would prepare blending by calling

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

To get the correct blending results, you should first draw the opaque objects, then sort the
transparent ones, and render them in a back-to-front order.

220 OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING C H A P T E R 9

9.6.2 DITHERING

Dithering is a mechanism for reducing the visual artifacts generated by quantization of
color values to low bit-depth displays (see Figure 3.24). For example, a 5-bit per channel
display shows clearly visible banding in smooth color gradients. Dithering masks this
banding by applying noise to the image when converting the fragment RGB components
from a higher bit depth to a lower one. This usually improves the quality of the result-
ing image. However, when rendering scenes that contain a lot of overlapping transparent
surfaces (e.g., particle systems), the dithering process itself may create visible artifacts as
the noise patterns are applied multiple times to each pixel. In such situations it may make
sense to manually disable the dithering. This is done by using glDisablewith the sym-
bolic constant GL_DITHER (by default dithering is enabled). Note that dithering is not
a required feature for an OpenGL ES implementation.

9.6.3 LOGIC OPS

Logical operations are an alternative to blending. When enabled, the operation between
the fragment and the corresponding pixel in the frame buffer is a bit-wise logical one
rather than arithmetic, and blending is disabled, regardless of whether GL_BLEND is
enabled or not. Logic ops are turned on and off using glEnable and glDisablewith
the symbolic constant GL_COLOR_LOGIC_OP. By default logic ops are disabled.

void glLogicOp(GLenum opcode)

is used for selecting the logical operation. The following symbols are supported:
GL_CLEAR, GL_SET, GL_COPY, GL_COPY_INVERTED, GL_NOOP, GL_INVERT,
GL_AND, GL_NAND, GL_OR, GL_NOR, GL_XOR, GL_EQUIV, GL_AND_REVERSE,
GL_AND_INVERTED, GL_OR _REVERSE, and GL_OR_INVERTED.

Pitfall: Even though the specification requires support of logic ops, there are some hard-
ware implementations that do not support them.

9.6.4 MASKING FRAME BUFFER CHANNELS

The last stage of the graphics pipeline involves optional masking of some channels of the
frame buffer to disallow writes to them.

void glColorMask(GLboolean red, GLboolean green, GLboolean blue,
GLboolean alpha)

is used for selecting which of the RGBA channels are active. By default, rendering is per-
formed for all four channels.

Pitfall: Some existing hardware implementations slow down if you mask independent
color channels. Disabling and enabling all of the channels is typically fast, however.

S E C T I O N 9 . 6 APPLYING FRAGMENTS TO THE COLOR BUFFER 221

void glStencilMask(GLuint mask)

defines a bitmask that is used to disable writing to individual stencil planes. A stencil plane
is enabled if the corresponding bit is set to one. By default all the planes are enabled.

void glDepthMask(GLboolean flag)

controls whether the depth buffer is updated after a successful depth comparison. By
default, depth writes are performed, and this is the wanted behavior for most shaders.
However, when transparent surfaces are rendered, it often makes sense not to update the
depth buffer. Also in multipass algorithms the latter passes often enable depth test but
disable depth writing.

The mask functions are applied to all operations that affect the corresponding buffer, i.e.,
rendering calls and glClear.

This page intentionally left blank

10

C
H

A
P

T
E

R

MISCELLANEOUS OPENGL ES
FEATURES

This chapter covers OpenGL ES functionality that is not part of either the geometry
or the rasterization pipelines. Such functionality includes state control, whole-screen
operations, state queries, hints, and some extensions.

10.1 FRAME BUFFER OPERATIONS

Several operations affect the entire frame buffer. A number of API calls are provided for
clearing the various buffers, and reading back the contents of the color buffer.

10.1.1 CLEARING THE BUFFERS

Typically, the first operation on a new frame is clearing the various buffers to preset values.
Often the color buffer is cleared to contain the color of the sky or other background, the
depth buffer is initialized to the maximum depth value, and the stencil buffer is set to
zero. Although the buffers could also be initialized by rendering a quad that covers the
entire screen, using the dedicated glClear call is usually much faster.

void glClear(GLbitfield mask)

223

224 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

is used for clearing the various buffers all at the same time. The input parameter mask
is a bitwise OR of symbolic constants that indicate which buffers should be cleared.
Supported constants are GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, and
GL_STENCIL_BUFFER_BIT. The value that the buffer is filled with during the clear-
ing is set with the following functions:

void glClearColor{fx}(T red, T green, T blue, T alpha)

void glClearDepth{fx}(T depth)

void glClearStencil(GLint s)

The color or depth argument values are clamped to the range [0, 1], whereas the stencil
value is ANDed with 2s−1, where s is the number of stencil bits in the stencil buffer. Their
initial values, respectively, are (0, 0, 0, 0), 1.0, and 0. Here is an example of how these calls
are used:

glClearColorf(1.0f, 0.0f, 0.0f, 0.0f);
glClearDepthf(1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

10.1.2 READING BACK THE COLOR BUFFER

Of the different frame buffer channels only the color buffer can be read back. OpenGL ES
1.x does not provide any mechanism for reading the contents of the depth or stencil
buffers. One should note that even reading back the color buffer can be a very time-
consuming operation. This is because the call has to flush the rendering pipeline as all
buffered rendering commands need to be executed before the function returns. Modern
graphics hardware have very deep pipelines, often buffering hundreds or thousands of
triangles, in some architectures even from different frames. Also, if the rendering server
is implemented on an external accelerator chip, the bus connecting it back to the client
can be very slow.

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum

format, GLenum type, GLvoid * pixels)

is used for reading back the contents of the color buffer. The parameters x, y, width, and
height are all expressed in pixels, and define a rectangular portion of the screen that is
copied. The only supported format–type pair copied from desktop OpenGL is GL_RGBA
and GL_UNSIGNED_BYTE. OpenGL ES implementations must support one additional
format–type pair which can be chosen by the implementation. This usually corresponds
to the native format of the color buffer, so that no expensive conversion operations
need take place while reading pixels, and must be one of the combinations in Table 9.1.
The values of format and type in this case may be obtained by calling glGetIntegerv
with the tokens GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES and
GL_IMPLEMENTATION_COLOR_READ_TYPE_OES, respectively. The last parame-
ter pixels points to a memory block into which the requested portion of the frame
buffer is copied.

S E C T I O N 10 . 2 STATE QUERIES 225

void glPixelStorei(GL_PACK_ALIGNMENT, GLint param)

is used to control the packing alignment of pixel transfer operations. As explained in
Section 9.2.2, this command specifies the memory alignment at the beginning of each
row. The default value is 4, meaning that at the beginning of a new row the storage pointer
is advanced between 0 and 3 bytes before writing so that the memory address of the first
pixel in the row becomes divisible by 4. If the value is 1 no alignment is done. Other
possible values are 2 and 8.

The following code sets word-aligned packing (a word is 4 bytes), and reads in the lower-
left 240 × 320 pixel box. Aligned writes are likely to execute faster than unaligned ones.

GLubyte buffer[4*240*320 + 3];
/* get aligned pointer */
pixels = ((buffer + 3) >> 2) << 2;
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glReadPixels(0, 0, 240, 320, GL_RGBA, GL_UNSIGNED_BYTE, pixels);

10.1.3 FLUSHING THE COMMAND STREAM

Some commands, such as glReadPixels, implicitly synchronize the client and the
server. You can also perform the synchronization explicitly. Calling

void glFlush(void)

gives the server an asynchronous signal telling that now would be a good time to start
executing all the possibly buffered GL calls—new ones might not be coming for a while.
However, you do not know when the rendering has completed, just that it will sometime
in the future. A synchronous version that only returns after all the rendering has been
completed is

void glFinish(void)

Even thoughglFinish guarantees that all calls have been completed, applications using
double-buffered window surfaces cannot verify it, as eglSwapBuffers is the actual
call that finally triggers the buffer swap. eglSwapBuffers implicitly calls glFinish.
With pbuffer surfaces the application really gets the pixels only after eglCopyBuffers
or glReadPixels. For more details, see Chapter 11.

10.2 STATE QUERIES

State queries can be divided into two broad categories: static and dynamic. Static queries
are the ones that produce the same result throughout the lifetime of a context, such as
querying the number of supported texturing mapping units, or the list of supported
extensions. Dynamic state queries return information that may vary during the execution
of a program, for example the current line width or dimensions of the scissor rectangle.

226 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

With the exception of the error state, OpenGL ES 1.0 does not support querying any
of the dynamic state. OpenGL ES 1.1, on the other hand, has wide support for dynamic
state queries.

10.2.1 STATIC STATE

In OpenGL ES 1.0 only the static state describing the implementation can be queried.
With

void glGetIntegerv(GLenum pname, GLint * params)

you can query for the following values.

GL_ALIASED_POINT_SIZE_RANGE the smallest and largest supported size for
aliased points, the range must include 1.

GL_ALIASED_LINE_WIDTH_RANGE the smallest and largest supported width for
aliased lines the range must include 1.

GL_ALPHA_BITS the number of alpha bitplanes in the color buffer.

GL_BLUE_BITS the number of blue bitplanes in the color buffer.

GL_COMPRESSED_TEXTURE_FORMATS a list of supported compressed texture
formats, GL_NUM_COMPRESSED_TEXTURE_FORMATS of them.

GL_DEPTH_BITS the number of bitplanes in the depth buffer.

GL_GREEN_BITS the number of green bitplanes in the color buffer.

GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES the preferred format for
pixel read-back.

GL_IMPLEMENTATION_COLOR_READ_TYPE_OES the preferred type for pixel
read-back.

GL_MAX_ELEMENTS_INDICES the recommended maximum vertex array index
count.

GL_MAX_ELEMENTS_VERTICES the recommended maximum vertex array vertex
count.

GL_MAX_LIGHTS the number of supported lights (≥ 8).

GL_MAX_MODELVIEW_STACK_DEPTH the depth of the modelview matrix stack
(≥ 16).

GL_MAX_PROJECTION_STACK_DEPTH the depth of the projection matrix
stack (≥ 2).

GL_MAX_TEXTURE_SIZE an estimate of the largest texture the engine can
handle (≥ 64).

GL_MAX_TEXTURE_STACK_DEPTH the depth of the texture matrix stacks (≥ 2).

GL_MAX_TEXTURE_UNITS the number of supported texture units (≥ 1).

S E C T I O N 10 . 2 STATE QUERIES 227

GL_MAX_VIEWPORT_DIMS two numbers: the maximum supported width and
height of the viewport. Must be at least as large as the visible dimensions of the
display.

GL_NUM_COMPRESSED_TEXTURE_FORMATS the number of supported com-
pressed texture formats.

GL_RED_BITS the number of red bitplanes in the color buffer.

GL_SMOOTH_LINE_WIDTH_RANGE the smallest and largest widths of antialiased
lines.

GL_SMOOTH_POINT_SIZE_RANGE the smallest and largest sizes of antialiased
points.

GL_STENCIL_BITS the number of bitplanes in the stencil buffer.

GL_SUBPIXEL_BITS an estimate of the number of bits for subpixel resolution for
window coordinate positions in rasterization (≥ 4).

const GLubyte * glGetString(GLenum name)

can be used to query the following null-terminated strings:

GL_EXTENSIONS a space-separated list of supported extensions.

GL_RENDERER the name of the renderer, typically specific to a particular configura-
tion of a hardware platform.

GL_VENDOR the name of the company responsible for this implementation.

GL_VERSION “OpenGL ES-XX Y.Z” where XX = CM for Common Profile, XX =
CL for Common Lite Profile, Y is the major version, Z is the minor version.
For OpenGL ES Common Profile version 1.0 the string is “OpenGL ES-CM 1.0”
(without the quotes).

Here is an example on how to use the query functions.

GLint red_bits, max_viewport[2];
GLubyte *str_ptr;
glGetIntegerv(GL_RED_BITS, &red_bits);
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, max_viewport);
str_ptr = glGetString(GL_EXTENSIONS);

10.2.2 DYNAMIC STATE QUERIES

OpenGL ES 1.1 introduces many more queries that can be performed with variants of
glGet. In addition to glGetIntegerv we have

void glGetBooleanv(GLenum pname, GLboolean * params)

void glGetFixedv(GLenum pname, GLfixed * params)

void glGetFloatv(GLenum pname, GLfloat * params)

228 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

If a glGet command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. With glGetBooleanv, a zero
converts to GL_FALSE and other values convert to GL_TRUE. With glGetIntegerv
a boolean converts to 1 or 0, and a float is rounded to the nearest integer, except for colors,
depths, or normal coordinates, which are mapped so that 1.0 maps to the most positive
representable integer value, and −1.0 to the most negative one. For glGetFloatv, a
boolean maps to either 1.0 or 0.0, and an integer is coerced to float. If a value is too large
to be represented with the requested type, the nearest representable value is returned.

The new pnames that are supported in addition to those already in OpenGL ES 1.0 are
listed below.

GL_ALPHA_TEST_FUNC the alpha test function.

GL_ALPHA_TEST_REF the reference value for alpha test.

GL_BLEND_DST the destination blend function.

GL_BLEND_SRC the source blend function.

GL_COLOR_ARRAY_BUFFER_BINDING the buffer object name bound to the color
array.

GL_COLOR_ARRAY_SIZE the number of components per color in the color array.

GL_COLOR_ARRAY_STRIDE the byte offset between consecutive colors.

GL_COLOR_ARRAY_TYPE the data type of each component in the color array.

GL_COLOR_CLEAR_VALUE four values, the RGBA clear color.

GL_COLOR_WRITEMASK four booleans indicating whether RGBA writes to color
buffer are enabled.

GL_CULL_FACE a symbolic constant indicating whether front or back faces are
culled.

GL_DEPTH_CLEAR_VALUE the depth buffer clear value.

GL_DEPTH_FUNC the depth comparison function.

GL_DEPTH_RANGE two values, the near and far mapping limits for depth.

GL_DEPTH_WRITEMASK a boolean indicating whether the depth buffer is enabled
for writing.

GL_FOG_COLOR four values, the RGBA fog color.

GL_FOG_DENSITY the fog density.

GL_FOG_END the end fog distance for linear fog.

GL_FOG_HINT the current fog hint.

GL_FOG_MODE the current fog equation.

GL_FOG_START the start fog distance for linear fog.

GL_FRONT_FACE whether clockwise or counterclockwise winding is treated as front-
facing.

S E C T I O N 10 . 2 STATE QUERIES 229

GL_LIGHT_MODEL_AMBIENT the four RGBA components for the global ambient
light color.

GL_LIGHT_MODEL_TWO_SIDE a boolean stating whether two-sided lighting is
enabled.

GL_LINE_SMOOTH_HINT the current line antialiasing hint.

GL_LINE_WIDTH the current line width.

GL_LOGIC_OP_MODE the current logic operation mode.

GL_MATRIX_MODE which matrix stack is currently the target of matrix operations.

GL_MAX_CLIP_PLANES how many clip planes the implementation supports (≥ 1).

GL_MODELVIEW_MATRIX sixteen values, the matrix on top of the modelview
matrix stack.

GL_MODELVIEW_MATRIX_FLOAT_AS_INT_BITS modelview matrix elements as
integer array, according to the IEEE 754 floating-point single format bit layout.

GL_MODELVIEW_STACK_DEPTH the number of matrices in the modelview matrix
stack.

GL_NORMAL_ARRAY_BUFFER_BINDING the buffer object name bound to the
normal array.

GL_NORMAL_ARRAY_STRIDE byte offset between normals.

GL_NORMAL_ARRAY_TYPE type of each normal.

GL_PACK_ALIGNMENT the byte alignment used for writing pixel data to memory.

GL_PERSPECTIVE_CORRECTION_HINT the current perspective correction hint.

GL_POINT_SIZE the current point size.

GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES the buffer object name bound
to the point size array.

GL_POINT_SIZE_ARRAY_STRIDE_OES byte offset between elements.

GL_POINT_SIZE_ARRAY_TYPE_OES type of point sizes.

GL_POINT_SMOOTH_HINT the current point antialiasing hint.

GL_POLYGON_OFFSET_FACTOR the polygon offset scaling factor.

GL_POLYGON_OFFSET_UNITS the units argument for polygon offset.

GL_PROJECTION_MATRIX sixteen values, the matrix on top of the projection
matrix stack.

GL_PROJECTION_MATRIX_FLOAT_AS_INT_BITS projection matrix elements as
integer array, according to the IEEE 754 floating-point single format bit layout.

GL_PROJECTION_STACK_DEPTH the number of matrices in the projection matrix
stack.

GL_SAMPLE_COVERAGE_INVERT a boolean indicating whether the sample
coverage set by glSampleCoverage is inverted.

230 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

GL_SAMPLE_COVERAGE_VALUE the sample coverage value set by glSample-
Coverage.

GL_SCISSOR_BOX four values describing the current scissor box: x, y, width, height.

GL_SHADE_MODEL the current shade model.

GL_STENCIL_CLEAR_VALUE value stencil buffer is cleared to.

GL_STENCIL_FAIL the action that is taken when the stencil test fails.

GL_STENCIL_FUNC the current stencil test function.

GL_STENCIL_PASS_DEPTH_FAIL the action taken when the stencil test passes and
the depth test fails.

GL_STENCIL_PASS_DEPTH_PASS the action taken when both the stencil test and
the depth test pass.

GL_STENCIL_REF the current reference value used for stencil comparison.

GL_STENCIL_VALUE_MASK the current mask that is applied both to the stencil
reference value and the stencil buffer value before comparison.

GL_STENCIL_WRITEMASK the current mask controlling writing to stencil buffer.

GL_TEXTURE_BINDING_2D the name of the texture currently bound to
GL_TEXTURE_2D.

GL_TEXTURE_ARRAY_BUFFER_BINDING the buffer object name bound to the
texture array.

GL_TEXTURE_ARRAY_SIZE the number of coordinates per element.

GL_TEXTURE_ARRAY_STRIDE the byte offset between elements.

GL_TEXTURE_ARRAY_TYPE the coordinate data type.

GL_TEXTURE_MATRIX sixteen values, the matrix on top of the texture matrix stack.

GL_TEXTURE_MATRIX_FLOAT_AS_INT_BITS texture matrix elements as integer
array, according to the IEEE 754 floating-point single format bit layout.

GL_TEXTURE_STACK_DEPTH the number of matrices in the texture matrix stack.

GL_UNPACK_ALIGNMENT the byte alignment used for reading pixel data from
memory.

GL_VIEWPORT four values describing the current viewport: x, y, width, height.

GL_VERTEX_ARRAY_BUFFER_BINDING the buffer object name bound to the ver-
tex array.

GL_VERTEX_ARRAY_SIZE the number of coordinates per element array.

GL_VERTEX_ARRAY_STRIDE the byte offset between elements.

GL_VERTEX_ARRAY_TYPE the coordinate data type.

There are also several additional query functions.

void glGetBufferParameteriv(GL_ARRAY_BUFFER, GLenum pname,

GLint * params)

S E C T I O N 10 . 2 STATE QUERIES 231

is used for querying information about buffer objects. Supported pnames are:

GL_BUFFER_SIZE size of the data storage.

GL_BUFFER_USAGE expected usage, either GL_STATIC_DRAW or GL_DYNAMIC_
DRAW.

GL_BUFFER_ACCESS access capability, always GL_WRITE_ONLY.

void glGetClipPlane{fx}(GLenum pname, T eqn[4])

returns the plane equation of the clip plane pname (e.g., GL_CLIP_PLANE0) in eye
coordinates.

void glGetLight{fx}v(GLenum light, GLenum pname, T * params)

returns the parameters of the light source light such asGL_LIGHT0. The valid pnames are

GL_AMBIENT four-component ambient RGBA light intensity.

GL_DIFFUSE four-component diffuse RGBA light intensity.

GL_SPECULAR four-component specular RGBA light intensity.

GL_EMISSION four-component emissive RGBA light intensity.

GL_SPOT_DIRECTION three-component spot light direction.

GL_SPOT_EXPONENT spot exponent [0, 128].

GL_CONSTANT_ATTENUATION attenuation factor.

GL_LINEAR_ATTENUATION attenuation factor.

GL_QUADRATIC_ATTENUATION attenuation factor.

void glGetMaterial{fx}v(GL_FRONT_AND_BACK, GLenum pname, T * params)

returns material parameter values. Accepted symbols for pname are

GL_AMBIENT four-component ambient RGBA reflectance.

GL_DIFFUSE four-component diffuse RGBA reflectance.

GL_SPECULAR four-component specular RGBA reflectance.

GL_EMISSION four-component emissive RGBA reflectance.

GL_SHININESS specular exponent of the material.

void glGetPointerv(GLenum pname, void ** params)

returns client-side pointer information. Accepted values for pname are

GL_COLOR_ARRAY_POINTER

GL_NORMAL_ARRAY_POINTER

GL_TEXTURE_ARRAY_POINTER

232 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

GL_VERTEX_ARRAY_POINTER

GL_POINT_SIZE_ARRAY_POINTER_OES

void glGetTexEnv{ifx}v(GL_TEXTURE_ENV, GLenum pname, T * params)

returns information about the texture environment. Accepted values for pname are

GL_TEXTURE_ENV_MODE texture environment mode such as GL_MODULATE.

GL_TEXTURE_ENV_COLOR four-component RGBA texture environment color.

GL_COMBINE_RGB texture combine function for color.

GL_COMBINE_ALPHA texture combine function for alpha.

GL_SRC012_RGB texture combine source 012 for color.

GL_SRC012_ALPHA texture combine source 012 for alpha.

GL_OPERAND012_RGB texture combine operand 012 for color.

GL_OPERAND012_ALPHA texture combine operand 012 for alpha.

GL_RGB_SCALE texture combine color scale.

GL_ALPHA_SCALE texture combine alpha scale.

void glGetTexParameter{ifx}v(GL_TEXTURE_2D, GLenum pname, T * params)

returns information about the current texture. Accepted values for pname are

GL_MIN_FILTER texture minification function.

GL_MAG_FILTER texture magnification function.

GL_TEXTURE_WRAP_S wrap parameter for texture coordinate s.

GL_TEXTURE_WRAP_T wrap parameter for texture coordinate t.

GL_GENERATE_MIPMAP whether mipmap generation is enabled.

GLboolean glIsBuffer(GLuint buffer)

returns a boolean value indicating whether the specified name corresponds to a buffer
object.

GLboolean glIsEnabled(GLenum cap)

returns a boolean value indicating whether the specified capability is enabled. The valid
capabilities are

S E C T I O N 10 . 3 HINTS 233

GL_ALPHA_TEST, GL_ARRAY_BUFFER_BINDING, GL_BLEND,
GL_CLIP_PLANEi, GL_COLOR_ARRAY, GL_COLOR_LOGIC_OP,
GL_COLOR_MATERIAL, GL_CULL_FACE, GL_DEPTH_TEST, GL_DITHER,
GL_FOG, GL_LIGHTi, GL_LIGHTING, GL_LINE_SMOOTH,
GL_MULTISAMPLE, GL_NORMAL_ARRAY, GL_NORMALIZE,
GL_POINT_SIZE_ARRAY_OES, GL_POINT_SMOOTH,
GL_POINT_SPRITE_OES, GL_POLYGON_OFFSET_FILL,
GL_RESCALE_NORMAL, GL_SAMPLE_ALPHA_TO_COVERAGE,
GL_SAMPLE_ALPHA_TO_ONE, GL_SAMPLE_COVERAGE,
GL_SCISSOR_TEST, GL_STENCIL_TEST, GL_TEXTURE_2D,
GL_TEXTURE_COORD_ARRAY, GL_VERTEX_ARRAY.

GLboolean glIsTexture(GLuint texture)

returns a boolean value indicating whether the specified name corresponds to a texture
object.

10.3 HINTS

Hints are used to control quality-speed trade-offs for certain features that are regarded as
implementation-specific details. They are set by calling

void glHint(GLenum target, GLenum mode)

The mode can be either GL_FASTEST indicating that the highest-performance option
should be used, GL_NICEST asking for the highest quality, or GL_DONT_CARE indicat-
ing that the user has no preference. The default value for all targets is GL_DONT_CARE.

The valid targets are:

GL_PERSPECTIVE_CORRECTION_HINT gives a hint whether vertex data such as
texture coordinates (and maybe even colors) are interpolated using perspective-
correct interpolation, as opposed to faster but lower-quality screen-linear inter-
polation. The effect is usually most visible with large textured polygons (see
Figure 3.16 and Section 3.4.2).

GL_POINT_SMOOTH_HINT and GL_LINE_SMOOTH_HINT control the rendering
quality of antialiased points and lines.

GL_FOG_HINT relates to the quality of fog calculations. The typical trade-off would
be computing fog at each pixel versus only computing it at the vertices and inter-
polating the resulting gradients across the primitive.

GL_GENERATE_MIPMAP_HINT was introduced in OpenGL ES 1.1. It controls the
quality of automatically generated mipmaps.

234 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

10.4 EXTENSIONS

OpenGL ES inherits the extension mechanism of the desktop OpenGL. Any vendor can
create their own extensions to the basic behavior. Additionally, the OpenGL ES specifica-
tion defines a few optional extensions that are likely to be implemented by several vendors,
as it would not be very useful if the vendors implemented them in slightly different ways.

We first explain the mechanism for querying which extensions are present and obtaining
pointers to the extension functions. We continue by describing three extensions: query
matrix, matrix palette, and draw texture.

10.4.1 QUERYING EXTENSIONS

The list of supported extensions can be queried by calling glGetStringwith the argu-
ment GL_EXTENSIONS. This call returns a space-separated string containing the list of
all supported extensions. The application can then parse this string and use an OS-specific
mechanism for obtaining access to the extension functions. If the platform supports EGL,
then the function eglGetProcAddress can be used for receiving the address of an
extension function:

/* define a function pointer of the right type, set to NULL */
void (*_glDrawTexx)(GLfixed, GLfixed, GLfixed, GLfixed, GLfixed) = NULL;

if(strstr(glGetString(GL_EXTENSIONS), "GL_OES_draw_texture"))
{
_glDrawTexx = (void (*)(GLfixed, GLfixed, GLfixed, GLfixed, GLfixed))

eglGetProcAddress("glDrawTexxOES");
}

In the example the return value fromeglGetProcAddress is cast to a function pointer
that matches the extension function prototype. If your implementation has the glext.h
header file that contains a ready-made prototype for the extension, you can use it instead.

Note that eglGetProcAddress does not work for the core OpenGL ES func-
tions. When extensions are folded into the core in newer versions, the extensions for
the same functionality are also left in place so that they can still be queried with
eglGetProcAddress.

10.4.2 QUERY MATRIX

TheOES_query_matrix extension introduces the function glQueryMatrixxOES
that can be used for reading back the top of the current matrix stack. This somewhat
surprising function was introduced in OpenGL ES 1.0 as there was no support for any
dynamic state queries, yet the working group felt that matrix read-back would be useful
at least for debugging purposes. The function returns the matrix components’ mantissas
and exponents separately, thus providing a representation that is independent of the
actual internal implementation of the matrix stack.

S E C T I O N 10 . 4 EXTENSIONS 235

GLbitfield glQueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])

queries the matrix at the top of the current matrix stack. The mantissa array will contain
the signed 16.16 mantissas of the 4×4 matrix, and the exponent array the exponents. Each
entry is then mantissa ∗ 2exponent. The function returns status, which is a bitfield, which is
zero if all the components are valid. If status & (1<<i) != 0, then component
i is invalid (e.g., NaN or +−infinity). The following example queries the elements of the
current matrix and converts them to floats. The mantissa is first converted to a float, then,
depending on the sign of the exponent, it is either multiplied or divided by a suitable
power of two.

int i,j;
GLfixed mantissa[16];
GLint exponent[16];
GLfloat matrix[16];
GLbitfield status;

status = glQueryMatrixxOES(mantissa, exponent);

if(0 == status)
{
for(i = 0; i < 16; i++)
{
float t = (float)mantissa[i] / 65536.0f;
matrix[i] = t * pow(2, exponent[i]);

}
}

Note that this extension has been deprecated in OpenGL ES 1.1. A new extension,
OES_matrix_get is provided instead. This allows querying the internal floating-point
matrices as integer bit patterns.

10.4.3 MATRIX PALETTE

Vertex skinning is brought into OpenGL ES by the optional OES_matrix_palette
extension. This is a somewhat simplified version of the ARB_matrix_palette exten-
sion from the desktop world. Matrix palettes were first introduced to OpenGL ES in
version 1.1.

Here is a short example code that first checks whether the optional extension is supported,
then queries the extension function pointers, sets up the required OpenGL ES state to use
the matrix palette, and finally sets up a few matrices in the matrix palette:

/* Check if extension is supported, bail out if not */
if(!strstr(glGetString(GL_EXTENSIONS), "GL_OES_matrix_palette"))
{
return NULL;

}

236 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

/* Get the extension function pointers and store to global store */
_glCurrentPaletteMatrix =

(void (*)(GLuint))
eglGetProcAddress("glCurrentPaletteMatrixOES");

_glLoadPaletteFromModelViewMatrix =
(void (*)(void))
eglGetProcAddress("glLoadPaletteFromModelViewMatrixOES");

_glMatrixIndexPointer =
(void (*)(GLint, GLenum, GLsizei, const GLvoid *))
eglGetProcAddress("glMatrixIndexPointerOES");

_glWeightPointer =
(void (*)(GLint, GLenum, GLsizei, const GLvoid *))
eglGetProcAddress("glWeightPointerOES");

_glWeightPointer(3, GL_FLOAT, 0, mtxweights);
_glMatrixIndexPointer(3, GL_UNSIGNED_BYTE, 0, mtxindices);
glEnableClientState(GL_MATRIX_INDEX_ARRAY_OES);
glEnableClientState(GL_WEIGHT_ARRAY_OES);
glEnable(GL_MATRIX_PALETTE_OES);

/* set up basic modelview matrix */
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0, 0, -4.f);
glScalef(0.2f, 0.2f, 0.2f);

/* set up matrices in palette indices 0 and 1 */
glMatrixMode(GL_MATRIX_PALETTE_OES);
_glCurrentPaletteMatrix(0);
_glLoadPaletteFromModelViewMatrix();
glTranslatef(0.7f, 0, 0);
_glCurrentPaletteMatrix(0);
_glLoadPaletteFromModelViewMatrix();
glTranslatef(-0.2f, 0, 0);

void glCurrentPaletteMatrixOES(GLuint matrixpaletteindex)

defines which matrix is affected by future matrix manipulation calls.

void glLoadPaletteFromModelViewMatrixOES(void)

copies the top of the modelview matrix stack to the current matrix palette.

void glMatrixIndexPointerOES(GLint size, GLenum type, GLsizei stride, const

GLvoid * pointer)

defines an array of matrix indices. The parameter size determines the number of indices
per vertex, type is the data type of the indices (only GL_UNSIGNED_BYTE accepted),

S E C T I O N 10 . 4 EXTENSIONS 237

stride is the stride in bytes between consecutive matrix indices, and pointer points to
the matrix index of the first vertex in the array. This vertex array is enabled by calling
glEnableClientState with the argument GL_MATRIX_INDEX_ARRAY_OES.

void glWeightPointerOES(GLint size, GLenum type, GLsizei stride, const

GLvoid * pointer)

defines an array of matrix weights. The parameter size defines the number of weights per
vertex, type is the data type used for the weights (GL_FIXED and GL_FLOAT are sup-
ported), stride is the stride in bytes between consecutive weights, and pointer points to the
first weight of the first vertex. This vertex array is enabled by calling glEnableClient
State with the argument GL_WEIGHT_ARRAY_OES.

There are several state queries that become possible if the matrix palette extension is
supported. They are

GL_MATRIX_INDEX_ARRAY_BUFFER_BINDING_OES the buffer object name
bound to the matrix index array.

GL_MATRIX_INDEX_ARRAY_SIZE_OES the number of matrix indices per vertex.

GL_MATRIX_INDEX_ARRAY_STRIDE_OES the byte offset between elements.

GL_MATRIX_INDEX_ARRAY_TYPE_OES the type of matrix indices.

GL_MAX_PALETTE_MATRICES_OES the number of supported matrix palettes
(≥ 9).

GL_MAX_VERTEX_UNITS_OES the number of supported matrices per vertex (≥ 3).

GL_WEIGHT_ARRAY_BUFFER_BINDING_OES the buffer object name bound to
weight array.

GL_WEIGHT_ARRAY_SIZE_OES the number of weights per vertex.

GL_WEIGHT_ARRAY_STRIDE_OES byte offset between weights.

GL_WEIGHT_ARRAY_TYPE_OES type of weights.

void glGetPointerv(GLenum pname, void ** params)

supports two additional tokens:

GL_MATRIX_INDEX_ARRAY_POINTER_OES

GL_WEIGHT_ARRAY_POINTER_OES

GLboolean glIsEnabled(GLenum cap)

supports these additional capabilities:

GL_MATRIX_PALETTE_OES

GL_MATRIX_INDEX_ARRAY_OES

GL_WEIGHT_ARRAY_OES

238 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

Pitfall: Implementations only need to support 9 bones for a single vertex array. How-
ever, many models use more bones than 9, for example, a human character typi-
cally requires at least 15, even over 40 bones. If the model uses more bones than the
OpenGL ES implementation can handle, you have to split the model into smaller par-
titions and render the mesh with several glDrawElements calls.

10.4.4 DRAW TEXTURE

The OES_draw_texture extension introduced in OpenGL ES 1.1 provides a mech-
anism for rendering a two-dimensional texture-mapped pixel rectangle to a rectangular
portion of the screen.

void glDrawTex{sifx}OES(T x, T y, T z, T width, T height)

renders a texture-mapped pixel block to the screen. Here x and y define the window coor-
dinates of the lower-left corner of the rectangle, and z is a value between 0 and 1 where
0 maps to the near plane and 1 maps to the far plane of the current depth range. The
parameters width and height give the size of the screen rectangle in pixels.

void glDrawTex{sifx}vOES(const T * coords)

provides variants that take the five input coordinates as an array.

10.4.5 USING EXTENSIONS

When using an extension, you should first implement a generic version, and switch to the
faster-executing extension only if it is available. The following example shows how this
is done. Here point sprites are the preferred method, draw texture comes next, and the
ultimate fall-back is to render two texture-mapped triangles. For the complete drawing
code, see the full example on the accompanying web site.

{
/* initial values for decision variables */
int oes11 = 0;
int drawtexture = 0;
int pot = 0;
int pointsize = 0;

/* check GL version */
ver = glGetString(GL_VERSION);
major = ver[strlen(ver)-3];
minor = ver[strlen(ver)-1];
if(minor > ’0’) oes11 = 1;

/* Check drawtexture extension */
if(strstr(glGetString(GL_EXTENSIONS), "GL_OES_draw_texture"))

S E C T I O N 10 . 4 EXTENSIONS 239

{
drawtexture = 1;
_glDrawTexx = (void (*)(GLfixed, GLfixed, GLfixed, GLfixed,

GLfixed))
eglGetProcAddress("glDrawTexxOES");

}

Next, we check whether the dimensions of the source are powers of two and whether the
source region size is inside the supported point size range.

/* check if dimensions are power-of-two */
if((getnextpow2(image_width) == image_width) &&

(getnextpow2(image_height) == image_height))
{
pot = 1;

}

/* is the size supported? Supported point sprite
range is the same as aliased point size range */

{
GLfloat pointsizerange[2];
glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, pointsizerange);

if((image_width >= pointsizerange[0]) &&
(image_height <= pointsizerange[1]))

{
pointsize = 1;

}
}

Now the decision variables are ready for a final decision on which method is going to be
used for rendering. The basic fall-back is to draw the region using two triangles.

/* if everything else fails, use two triangles */
method = BLIT_DRAW_METHOD_TRIANGLES;

/* if width == height AND power of two AND we have OpenGL ES 1.1 AND
the point size is inside the supported range we use point sprites */

if((BLIT_WIDTH == BLIT_HEIGHT) && oes11 && pot && pointsize)
{
method = BLIT_DRAW_METHOD_POINTSPRITE;

}
else if(drawtexture)
{
/* if draw_texture extension is supported, use it */
method = BLIT_DRAW_METHOD_DRAWTEXTURE;

}

Each of these methods has different setup and drawing codes. Refer to the blit example
on the companion web site for a fully working example that also does the setup of the

240 MISCELLANEOUS OPENGL ES FEATURES C H A P T E R 10

methods and actual rendering. The example also shows the correct handling of point
clipping for point sprites.

If you end up using a pair of texture-mapped triangles, the easiest approach is to set the
modelview matrix, projection matrix, and viewport so that a single step in the x or y
direction in vertex data is equal to a step of a single pixel on the display.

11

C
H

A
P

T
E

R

EGL

When the desktop OpenGL API was first specified, the windowing system and operating
system dependent parts were left out of the core specification. Different windowing sys-
tems have their own ways to handle displays, windows, graphics devices, and contexts, and
different operating systems developed their own companion APIs for initializing graphics
resources. For X11 there is GLX, Mac has AGL, and Windows uses WGL.

Even though all of these APIs differ from each other, it is possible to create a “template
API” that mostly abstracts out platform differences, but allows platform-dependent data
types to be used where absolutely necessary. EGL unifies the OpenGL ES–related resource
management across platforms, and defines standard function names and tokens for
the implementations and applications to use. This increases source-level portability for
OpenGL ES applications across the many operating systems in the mobile domain,
e.g., Symbian, BREW, Linux, and Palm OS.

Some parameter types in EGL are really placeholders for OS-specific types. For example

EGLDisplay eglGetDisplay(NativeDisplayType display_id)

takes in an OS-dependent display type, initializes EGL to use that display, and returns an
OS-independent type EGLDisplay. NativeDisplayType is usually typedef ’d, as the
name implies, to a handle to the native display type.

With this approach application developers ideally need only to change a few lines in their
EGL initialization code when porting from one platform to another. Typically, an appli-
cation developer only needs to take care of initializing the platform-dependent window,

241

242 EGL C H A P T E R 11

and to provide it as a parameter to eglCreateWindowSurface. All other EGL calls
are portable across the different platforms.

One thing to note is that EGL is an optional API—platforms are free to choose how
they bind their windowing with OpenGL ES. Luckily most platforms that have adop-
ted OpenGL ES have also chosen to support EGL. This is good news for application
portability.

This chapter begins with an example and an overview of the EGL functionality, then pro-
ceeds to describe EGL configuration, the different surface types supported by EGL, and
the OpenGL ES/EGL context. We cover EGL extensions and describe how the surfaces
can be used to mix OpenGL ES and other graphics library calls. We also cover additions
introduced by EGL 1.1: optional support for rendering directly into texture maps, and
better support for power events and power optimization.

11.1 API OVERVIEW

Here is a walk-through of a simplified EGL initialization code without error checking.

#include <GLES/egl.h>

const EGLint attrib_list[] =
{

EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_DEPTH_SIZE, 16,
EGL_NONE

};

EGLDisplay display;
EGLConfig config;
EGLContext context;
EGLSurface surface;

void initEgl(void)
{

int numofconfigs;
display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(display, NULL, NULL);
eglChooseConfig(display, attrib_list, &config, 1,

&numofconfigs);
context = eglCreateContext(display, config,

EGL_NO_CONTEXT, NULL);
/* replace WINDOW() with the OS dependent window type */
surface = eglCreateWindowSurface(display, config,

WINDOW(), NULL);

S E C T I O N 11 . 1 API OVERVIEW 243

eglMakeCurrent(display, surface, surface, context);
}

void renderOneFrame(void)
{

/* some GL rendering calls ... */
eglSwapBuffers(display, surface);

}

void terminateEgl(void)
{

eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE,
EGL_NO_CONTEXT);

eglDestroySurface(display, surface);
eglDestroyContext(display, context);
eglTerminate(display);

}

First, we need to acquire a display. Some devices may support multiple displays, but in this
example we simply use the default display, which we can do in a source-level portable way
using the token EGL_DEFAULT_DISPLAY. Other than the default display, the display
handling is platform-dependent, and you need to consult platform documentation to find
out how displays are controlled. On some systems the display control may partially take
place even outside EGL.

EGLDisplay eglGetDisplay void can be used to get the currently active display
that is associated with the current context.

After the display handle has been acquired, EGL is initialized with

EGLBoolean eglInitialize(EGLDisplay dpy, EGLint * major, EGLint * minor)

which returnsEGL_TRUE on success, and if major and minor are not NULL they are filled
with the EGL version number. If initialization fails, the function returnsEGL_FALSE and
sets up an error flag, which can be retrieved with

EGLint eglGetError(void)

Possible errors returned by eglGetError are listed in Table 11.1.

After EGL has been initialized, you need to select a buffer configuration. Either
eglChooseConfig or eglGetConfigs may be used to choose the configuration
that best matches the given attributes. In the example code we simply retrieve a configu-
ration that has at least 8 bits for each of the red, green, and blue color channels, at least 16
bits for the depth buffer, and that supports window surfaces (different surface types are
covered later).

After a configuration is chosen, a surface and a context can be created. Contexts are con-
tainers that carry the whole internal state of OpenGL ES. You can use several contexts for
each surface or use the same context for different surfaces. Surfaces represent containers
where the actual rendered pixels will end up. In this example, we create a window surface,
so the pixels will end up inside a window on the device display.

244 EGL C H A P T E R 11

Tab le 11.1: EGL error codes.

Error Meaning

EGL_SUCCESS No errors

EGL_NOT_INITIALIZED EGL not initialized, or could not be initialized

EGL_BAD_ACCESS EGL cannot access the requested resource

EGL_BAD_ALLOC EGL failed to allocate resources

EGL_BAD_ATTRIBUTE Undefined attribute or attribute value

EGL_BAD_CONFIG Config is not valid

EGL_BAD_CONTEXT Context is not valid

EGL_BAD_CURRENT_SURFACE Current surface is no longer valid

EGL_BAD_DISPLAY Not a valid display or EGL not initialized on the
requested display

EGL_BAD_MATCH Arguments inconsistent

EGL_BAD_NATIVE_PIXMAP NativePixmapType is not valid

EGL_BAD_NATIVE_WINDOW NativeWindowType is not valid

EGL_BAD_PARAMETER One of the parameters is not valid

EGL_BAD_SURFACE Surface is not valid

EGL_CONTEXT_LOST Power management event occurred, context lost

OpenGL ES rendering calls can be made only after a context and surface have been bound
to the current thread by calling eglMakeCurrent. After the frame has been rendered,
eglSwapBuffers is called to initiate transfer of pixels from the GL color buffer into
an EGL surface (in this case the window).

Finally, EGL is terminated by first releasing the active surfaces and contexts with a call to
eglMakeCurrent, then destroying them, and finally calling

EGLBoolean eglTerminate(EGLDisplay dpy)

to free all the resources associated with an EGL display connection.

11.2 CONFIGURATION

Different implementations may support different color depths, depth buffer depths, and
so on, and a typical implementation supports 20 to 30 different configurations with dif-
ferent combinations of these attributes. However, the specification does not limit the
number of configurations that may be supported. EGLConfig is an opaque handle to a
configuration.

S E C T I O N 11 . 2 CONFIGURATION 245

Table 11.2 lists all attributes that are specified for a single EGLConfig. Out of these
attributes, the first thirteen are the ones that typical applications use.

EGLBoolean eglGetConfigAttrib(EGLDisplay dpy, EGLConfig config,
EGLint attribute, EGLint * value)

Tab le 11.2: EGLConfig attributes, EGL 1.1 attributes marked with asterisk (*).

Attribute Type More info

EGL_SURFACE_TYPE bitmask surface types configs must supported

EGL_RED_SIZE integer red bits in color buffer

EGL_GREEN_SIZE integer green bits in color buffer

EGL_BLUE_SIZE integer blue bits in color buffer

EGL_ALPHA_SIZE integer alpha bits in color buffer

EGL_BUFFER_SIZE integer bits in the color buffer

EGL_DEPTH_SIZE integer bits in depth buffer

EGL_SAMPLE_BUFFERS integer number of multisample buffers

EGL_SAMPLES integer number of samples per pixel

EGL_STENCIL_SIZE integer bits in stencil buffer

EGL_MAX_PBUFFER_WIDTH integer maximum width of pbuffer

EGL_MAX_PBUFFER_HEIGHT integer maximum height of pbuffer

EGL_MAX_PBUFFER_PIXELS integer maximum size of pbuffer

EGL_BIND_TO_TEXTURE_RGB * boolean true if bindable to RGB textures

EGL_BIND_TO_TEXTURE_RGBA * boolean true if bindable to RGBA textures

EGL_CONFIG_CAVEAT enum caveats for the configuration

EGL_CONFIG_ID integer unique EGLConfig identifier

EGL_LEVEL integer frame buffer level: 0 = main,
> 0 overlays, < 0 underlays

EGL_MAX_SWAP_INTERVAL * integer maximum swap interval

EGL_MIN_SWAP_INTERVAL * integer minimum swap interval

EGL_NATIVE_RENDERABLE boolean true if native APIs can render to surface

EGL_NATIVE_VISUAL_ID integer handle of corresponding native visual

EGL_NATIVE_VISUAL_TYPE integer native visual type of the associated visual

EGL_TRANSPARENT_TYPE enum type of transparency supported

EGL_TRANSPARENT_RED_VALUE integer transparent red value

EGL_TRANSPARENT_GREEN_VALUE integer transparent green value

EGL_TRANSPARENT_BLUE_VALUE integer transparent blue value

246 EGL C H A P T E R 11

can be used to query the value of an attribute from a selected config.

EGLBoolean eglGetConfigs(EGLDisplay dpy, EGLConfig * configs,
EGLint config_size, EGLint * num_configs)

can be used to find out the EGLConfigs supported by the display dpy. If configs is NULL,
the number of configurations the implementation supports is returned in num_configs.
Otherwise configs should have room for config_size configurations, and configs is filled
with at most config_size configurations. The actual number of configurations returned is
stored in num_configs.

EGLBoolean eglChooseConfig(EGLDisplay dpy, const EGLint * attrib_list,
EGLConfig * configs, EGLint config_size,
EGLint * num_config)

returns a list of configs that match the specified attributes. Again, if configs is NULL, only
the number of matching configs is returned. The requirements are stored in attrib_list,
which contains a token, its value, next token, its value, and so on, until the list is termi-
nated with the tokenEGL_NONE. The list returned in configs contains only configurations
that fulfill the minimum requirements defined by attrib_list. The list returned is sorted
using a pre-defined set of rules.

Table 11.3 lists the selection and sorting rules and sort priorities for each attribute. Selec-
tion criteria give the function for comparing an application-specified attribute value with
the value of the configuration being processed. For example, for EGL_DEPTH_SIZE the
selection rule is “AtLeast.” This means that only configurations whose depth buffer bits
equal or exceed the number specified by the application will be matched. In the example
code in Section 11.1, only configs with a minimum of 16 bits of depth buffer are matched.
“Exact” in the list means that the value must be matched exactly, and “Mask” means that
all the bits defined by a bitmask must be set in order to obtain a match.

Sorting criteria for configurations are shown in Table 11.3. First the highest-priority
sorting rule is applied to get an initial ordering for the configurations. For configurations
that have the same sorting importance the rule with the next-highest priority is applied
as a tie-breaker. This process is reiterated until the configurations have a clearly defined
order. EGL_CONFIG_CAVEAT is sorted first, EGL_X_SIZE (where X = RED, GREEN,
BLUE, orALPHA) is sorted next, and so on.EGL_CONFIG_ID, which has the lowest pri-
ority, guarantees that there always exists a unique sorting order as no two configurations
can have the same identifier number.

Pitfall: Specifying EGL_CONFIG_ID in the attrib_list makes EGL match that ID
exactly. The ID enumeration is not standardized, thus code relying on specific ID values
is not portable.

The table also lists a sorting order for each attribute. For the depth buffer size the
sort order is “Smaller.” This means that the smaller depth buffer size values are ranked
higher in the returned list. Note however that the sort priority for depth buffer size is

S E C T I O N 11 . 2 CONFIGURATION 247

Tab le 11.3: EGLConfig matching criteria.

Attribute Default value Selection Sort Sort
rule order priority

EGL_CONFIG_CAVEAT EGL_DONT_CARE Exact Special 1

EGL_RED_SIZE 0 AtLeast Special 2

EGL_GREEN_SIZE 0 AtLeast Special 2

EGL_BLUE_SIZE 0 AtLeast Special 2

EGL_ALPHA_SIZE 0 AtLeast Special 2

EGL_BUFFER_SIZE 0 AtLeast Smaller 3

EGL_SAMPLE_BUFFERS 0 AtLeast Smaller 4

EGL_SAMPLES 0 AtLeast Smaller 5

EGL_DEPTH_SIZE 0 AtLeast Smaller 6

EGL_STENCIL_SIZE 0 AtLeast Smaller 7

EGL_NATIVE_VISUAL_TYPE EGL_DONT_CARE Exact Special 8

EGL_CONFIG_ID EGL_DONT_CARE Exact Smaller 9 (last)

EGL_BIND_TO_TEXTURE_RGB EGL_DONT_CARE Exact None —

EGL_BIND_TO_TEXTURE_RGBA EGL_DONT_CARE Exact None —

EGL_LEVEL 0 Exact None —

EGL_NATIVE_RENDERABLE EGL_DONT_CARE Exact None —

EGL_MAX_SWAP_INTERVAL EGL_DONT_CARE Exact None —

EGL_MIN_SWAP_INTERVAL EGL_DONT_CARE Exact None —

EGL_SURFACE_TYPE EGL_WINDOW_BIT Mask None —

EGL_TRANSPARENT_TYPE EGL_NONE Exact None —

EGL_TRANSPARENT_RED_VALUE EGL_DONT_CARE Exact None —

EGL_TRANSPARENT_GREEN_VALUE EGL_DONT_CARE Exact None —

EGL_TRANSPARENT_BLUE_VALUE EGL_DONT_CARE Exact None —

6, so it is processed after many other sorting rules and thus it may not be triggered at
all if the previous rules already produce a unique order. Some of the sorting orders are
marked “Special” which means that for those attributes a more complex sorting order
is specified in the EGL specification. For EGL_X_SIZE (where X can be RED, GREEN,
BLUE, or ALPHA) the special rule states that configurations having a larger sum of the
bits of the color components get ranked higher. Attributes whose matching values are
marked zero (the default) or EGL_DONT_CARE are not considered during the sort. A
more in-depth discussion of the other special sorting rules can be found in the EGL
specification [Khr03].

248 EGL C H A P T E R 11

Pitfall: Trying to create a surface with a configuration ID that does not support
rendering into such a surface type will fail. The best way to avoid this is to always spec-
ify EGL_SURFACE_TYPE when selecting configurations. Some implementations may
support all surface types in every config, others may have configs that only support a
particular surface, such as a pbuffer or a window surface.

Do not ask for multisampling in your config selection if it is not strictly needed. See
Section 11.10 for an example of how to do proper selection of a multisampling buffer.
Also, in some of the antialiasing methods sampling is really a part of the surface and
cannot be dynamically enabled or disabled withGL_MULTISAMPLE. Although not quite
compatible with the OpenGL ES specification, implementations may defer those changes
to the next eglSwapBuffers call and the change may cause total reinitialization of
the surface. Turning multisampling on and off each frame may really slow down the
application.

As you may have noticed, the sorting rules and priorities are fixed, which may make it
difficult to get exactly what you want. Also, in some cases like multisampling, you need
to go through the returned list in the application code to get what you want. An example
on how to properly take care of these issues while doing the configuration selection can
be found in Section 11.10.

All implementations should provide at least one configuration that supports rendering
into a window surface, and has at least 16 bits of color buffer and 15 bits of depth buffer
resolution. However, all other bets are off. For example, the implementation may offer
you only configurations that have zero bits in alpha or stencil buffers, indicating that
destination alpha or stencil buffer operations are not supported. Similarly, if you find
a configuration that has 24 bits of color and 8 bits of stencil that can render into pbuffers,
there is no guarantee that there is an otherwise similar configuration that can render into
window surfaces. Most implementations do support pbuffer surfaces as they usually are
easy to implement. However, rendering through a native graphics API may or may not be
supported (this can be specified with EGL_NATIVE_RENDERABLE).

EGL is becoming a central piece of the various Khronos APIs. It will be used for setting
up rendering in other APIs apart from OpenGL ES and OpenVG. Some implementations
may also support cross-API rendering. For example, you might be able to render with
OpenVG into an OpenGL ES texture, or you could first render a 3D scene with OpenGL
ES and then render some 2D overlay information to the same surface with OpenVG. Also,
as the OpenGL ES 2.0 API is completely separate from OpenGL ES 1.x, it is addressed in
future EGL versions as a different API.

11.3 SURFACES

Surfaces are buffers into which pixels are drawn. With window surfaces the color buffer
contents will be sent to a window on the display. With pbuffer surfaces the contents will
be kept in the graphics memory until they are either copied into a native pixmap with a

S E C T I O N 11 . 3 SURFACES 249

call to eglCopyBuffers, or read to the application memory using glReadPixels.
For pixmap surfaces the color buffer is in the same format as the native bitmaps. Out of
these surfaces, only the window surfaces are really double-buffered.

Pitfall: The EGL specification does not mandate which surface types must be supported.
For maximum portability, applications should be able to cope with any of the three
surface types. Typically at least window surfaces are supported.

EGL window surfaces for OpenGL ES are always double-buffered. After completing a
swap with eglSwapBuffers the contents of the new color buffer are undefined. Cer-
tain implementations may have the results of some previous frames in the buffers, but
this behavior cannot be guaranteed. For this reason, applications should not make any
assumptions on the contents of the new color buffer.

Performance tip: Window surfaces are double-buffered and thus typically provide the
best performance of all surface types. Pixmap surfaces have the most constraints from
the point of view of the GL engine, and therefore usually have the worst performance.
See Section 11.7 for more information.

EGLSurface eglCreateWindowSurface(EGLDisplay dpy, EGLConfig config,
NativeWindowType window, const
EGLint * attrib_list)

is used to create a window surface. The parameter config gives the configuration that the
surface is initialized with, and window provides the platform-dependent window where
the surface should be initialized. For example in Symbian OS the native window type is
(RWindow *). attrib_list is a placeholder for surface attributes to be used in the future.
Since EGL 1.1 does not specify any attributes for a window surface, attrib_list should either
beNULL, or it should point to an attribute list that has justEGL_NONE as its first element.

On success, this function returns a handle to the window surface. If window is not com-
patible with config, or if config does not support window surface rendering, the error
EGL_BAD_MATCH is generated.

Pitfall: As EGL does not specify exactly how the system interacts with the window sur-
face, the behavior may vary, for example, when an OS dialog appears on top of a window
surface. Some implementations may simply stop swapping pixels to the window surface
but continue to accept GL calls; others may keep updating the part of the OpenGL ES
window that remains visible, at a performance cost. The best practice is to pause the
application whenever it loses the window focus.

EGLSurface eglCreatePbufferSurface(EGLDisplay dpy, EGLConfig config,
const EGLint * attrib_list)

is used to create an off-screen surface called a pbuffer surface. All the parameters have
the same meaning as with eglCreateWindowSurface. As pbuffer surfaces do not

250 EGL C H A P T E R 11

have an associated window, the size of the buffer has to be defined using the parameter
attrib_list. Two attributes EGL_WIDTH and EGL_HEIGHT are supported. An example
of a valid list is { EGL_WIDTH, 320, EGL_HEIGHT, 240, EGL_NONE }. If the values are
not specified, the default value of zero is used instead.

You can use glReadPixels to transfer the pixels of a pbuffer into client-side memory,
and then copy them to the display using native graphics APIs. Alternatively you can use

EGLSurface eglCopyBuffers(EGLDisplay dpy, EGLSurface surface,
NativePixmapType target)

which copies the color buffer values from a surface into a native bitmap. In an EGL 1.1
implementation, this function can return EGL_CONTEXT_LOST which indicates that a
power management event occurred that caused the GL context to be lost. In this case the
context should be reinitialized. Note also that this function calls internally glFinish to
get all of the rendering results into the bitmap. The parameter surface is the surface from
which the pixels are copied, and target specifies the platform-specific bitmap where the
pixels are stored (in Symbian OS this is defined as CFbsBitmap).

The target bitmap should be compatible with the surface. This means that its color depth
should match that of the configuration that was used to initialize the surface. However,
implementations may in practice relax this for the alpha value if they do not properly
support bitmaps with an alpha channel. Some platforms, e.g., older Symbian versions,
allow storing alpha channel values only in a separate single-channel bitmap.

Pbuffer surfaces are useful for doing off-screen platform-independent rendering that is
not connected to the native windowing system in any way. Also, pbuffers can be used in
conjunction with the render-to-texture functionality of EGL 1.1. This is covered in more
detail in Section 11.6.

Performance tip: Reading pixels with glReadPixels is typically very slow, espe-
cially if the graphics accelerator is on a separate chip and the read-back channel is slow.
Typically eglCopyBuffers is also many times slower than rendering directly into a
window surface.

EGLSurface eglCreatePixmapSurface(EGLDisplay dpy, EGLConfig config,
NativePixmapType pixmap, const
EGLint * attrib_list)

is used to initialize a rendering surface whose render buffer is the underlying buffer
of the bitmap. Parameters are otherwise similar to eglCreateWindowSurface
with the exception that the platform-dependent type pixmap is here a bitmap. No
attributes are currently supported for pixmap surfaces. If the platform-specific bitmap
is not compatible with the config, or config does not support pixmap surfaces, the error
EGL_BAD_MATCH is returned.

EGLBoolean eglDestroySurface(EGLDisplay dpy, EGLSurface surface)

S E C T I O N 11 . 3 SURFACES 251

is used to destroy a surface that was created using the functions described earlier. Note
that if the surface is currently bound, the resources may not be freed until the surface is
unbound.

EGLBoolean eglQuerySurface(EGLDisplay dpy, EGLSurface surface,
EGLint attribute, EGLint * value)

is used for querying surface attributes. surface indicates the surface we are interested in,
attribute tells which attribute we want to know, and value points to the memory location
where the result is stored. For a list of queriable values, see Table 11.4. In the table create
means that the value can be used when creating the surface, set means that it can be set
after the surface has been created, and query means that it may be queried.

EGLBoolean eglSurfaceAttrib(EGLDisplay dpy, EGLSurface surface,
EGLint attribute, EGLint value)

is used for setting surface attributes. Currently only EGL_MIPMAP_LEVEL can be set,
and only for pbuffers that are mapped to a texture map.

EGLSurface eglGetCurrentSurface(EGLint readdraw)

returns the current surface. readdraw should be eitherEGL_READ orEGL_DRAW to indi-
cate whether the current read or write surface should be returned.

EGLBoolean eglSwapBuffers(EGLDisplay dpy, EGLSurface surface)

is used to copy contents of a surface onto the native window on dpy. Note that dpy
should be the same display the surface was initialized to. If an error occurs the func-
tion returns EGL_FALSE, and the error code can be fetched with eglGetError. In an

Tab le 11.4: Surface attributes. EGL 1.1 attributes marked with asterisk (*).

Attribute Usage Meaning

EGL_PBUFFER_WIDTH create, query pbuffer width

EGL_PBUFFER_HEIGHT create, query pbuffer height

EGL_CONFIG_ID query id of EGLConfig that was used to
create surface

EGL_LARGEST_PBUFFER create, query if true, create largest pbuffer
possible

EGL_TEXTURE_FORMAT * create, query format of texture: RGB/RGBA/no
texture

EGL_TEXTURE_TARGET * create, query type of texture: 2D or no texture

EGL_MIPMAP_TEXTURE * create, query surface has mipmaps for render-
to-texture

EGL_MIPMAP_LEVEL * set, query mipmap level to render to

252 EGL C H A P T E R 11

EGL 1.1 implementation, the error can be EGL_CONTEXT_LOST which indicates that a
power management event occurred that caused the GL context to be lost. In this case the
context should be reinitialized.

When rendering into native bitmaps, some synchronization is required between GL and
the native rendering system.

EGLBoolean eglWaitGL(void)

waits until the GL engine has completed rendering to the currently bound surface. All
OpenGL ES calls executed previously are guaranteed to have completed after the function
returns. Applications using pixmap surfaces should call this function before moving from
GL rendering to native 2D operations.

EGLBoolean eglWaitNative(EGLint engine)

can be used to wait for the native side to finish. All native rendering calls done with
the library denoted by engine are guaranteed to have executed fully before this func-
tion returns. The default engine is selected with token EGL_CORE_NATIVE_ENGINE.
Applications doing mixed rendering should call this function when moving from native
rendering back to GL rendering.

As the native rendering APIs do not typically use depth, stencil, or multisample buffers,
all native rendering is always drawn on top of the frame buffer without modifying
these buffers. Since native rendering usually draws into the front buffer, mixed ren-
dering into window surfaces should do GL rendering followed by eglSwapBuffers
followed by native rendering. Note that the results of native rendering calls are only guar-
anteed to be visible on top of the GL rendering if the selected configuration supports
EGL_NATIVE_RENDERABLE.

Pitfall: Not every EGL implementation is guaranteed to support multithreaded use.
With Symbian OS, for example, the RWindow handle that is given as a parameter
to eglCreateWindowSurface is thread-specific. Calling EGL commands that
require access to the native window (such as eglSwapBuffers) from a different
thread than the one that created it may panic and exit the application. For ultimate
portability, limit EGL and GL usage to the main application thread.

11.4 CONTEXTS

A context is a container for the internal state of OpenGL ES. Entities such as texture
objects, vertex buffer objects, matrix stacks, and lighting and material values are stored in
a context. The application must create at least one context and make it active in order to
perform any OpenGL ES rendering.

EGLContext eglCreateContext(EGLDisplay dpy, EGLConfig config,
EGLContext share_context, const
EGLint * attrib_list)

S E C T I O N 11 . 5 EXTENSIONS 253

creates a rendering context that is compatible with config and dpy. This context can then
be made current with a compatible rendering surface. The context shares all the shareable
data with share_context and with the contexts that share_context shares data with, unless
share_context is set to EGL_NO_CONTEXT. With OpenGL ES 1.0 and EGL 1.0 only tex-
ture objects could be shared across contexts. With OpenGL ES 1.1 and EGL 1.1 it is also
possible to share vertex buffer objects. There are no supported attributes for attrib_list,
but extensions may define some if needed.

EGLBoolean eglDestroyContext(EGLDisplay dpy, EGLContext ctx)

destroys the context ctx. Note that if the context is currently bound, the resources may not
be freed until ctx is unbound.

EGLBoolean eglQueryContext(EGLDisplay dpy, EGLContext ctx,
EGLint attribute, EGLint * value)

is used to query value of attribute from the context ctx. The result is stored to the memory
location pointed by value. Currently the only supported attribute is EGL_CONFIG_ID.

EGLBoolean eglMakeCurrent(EGLDisplay dpy, EGLSurface draw,
EGLSurface read, EGLContext ctx)

binds the draw and read surfaces and the context ctx to the current rendering thread. draw
specifies the surface where rendering results will appear, whereas read specifies the surface
from which operations such as glReadPixels and glCopyTexImage2D will read
data. In most cases read and write point to the same surface.

Applications may create multiple contexts and surfaces and make them current at any
time by calling eglMakeCurrent. However, some context changes may be expensive.
For example, binding rendering to a recently created context and surface can cause full
hardware reconfiguration.

EGLContext eglGetCurrentContext(void)

returns the currently bound context, or EGL_NO_CONTEXT if none exists.

EGLDisplay eglGetCurrentDisplay(void)

returns the currently active display, or EGL_NO_DISPLAY if there is none.

11.5 EXTENSIONS

The EGL API provides a mechanism for adding extensions to both EGL itself and to the
core rendering APIs, such as OpenGL ES and OpenVG. Extensions may add new tokens
for existing functions, e.g., by adding a new texture format GL_RGBA_9675_XXX, or
they can add new functions such as glPrintfXXX, where XXX is replaced with the
vendor ID such as ATI, NV, or SGI. The extension EXT is used for multi-vendor extensions
and OES for extensions specified by the OpenGL ES working group.

254 EGL C H A P T E R 11

You can find out the extensions supported by OpenGL ES by calling glGetString
(GL_EXTENSIONS) which returns a space-separated list of extension names. An
equivalent function call in EGL is

const char * eglQueryString(EGLDisplay dpy, EGLint name)

which returns information about EGL running on display dpy. The queried name can
be EGL_VENDOR for obtaining the name of the EGL vendor, EGL_VERSION for get-
ting the EGL version string, or EGL_EXTENSIONS for receiving a space-separated list
of supported extensions. The format of the EGL_VERSION string is

<major_version>.<minor_version><space><vendor specific info>

The extension list only itemizes the supported extensions; it does not describe how they
are used. All the details of the added tokens and new functions are presented in an
extension specification. There is a public extension registry at www.khronos.org/
registry/ where companies can submit their extension specifications. The Khronos
site also hosts the extension header file glext.h which contains function prototypes
and tokens for the extensions listed in the registry.

If the extension merely adds tokens to otherwise existing functions, the extension can be
used directly by including the header glext.h. However, if the extension introduces
new functions, their entry points need to be retrieved by calling

void (* eglGetProcAddress(const char * procname))()

which returns a pointer to an extension function for both GL and EGL extensions. One
can then cast this pointer into a function pointer with the correct function signature.

11.6 RENDERING INTO TEXTURES

Pbuffers with configurations supporting either EGL_BIND_TO_TEXTURE_RGB or
EGL_BIND_TO_TEXTURE_RGBA can be used for rendering directly into texture maps.
The pbuffer must be created with special attributes as illustrated below.

EGLint pbuf_attribs[] =
{
EGL_WIDTH, width,
EGL_HEIGHT, height,
EGL_TEXTURE_FORMAT, EGL_TEXTURE_RGBA,
EGL_TEXTURE_TARGET, EGL_TEXTURE_2D,
EGL_MIPMAP_TEXTURE, EGL_TRUE,
EGL_NONE

};

S E C T I O N 11 . 7 WRITING HIGH-PERFORMANCE EGL CODE 255

surface = eglCreatePbufferSurface(eglGetCurrentDisplay(),
config, pbuf_attribs);

eglSurfaceAttrib(eglGetCurrentDisplay(), surface,
EGL_TEXTURE_LEVEL, 0);

Texture dimensions are specified with EGL_WIDTH and EGL_HEIGHT, and they
must be powers of two. EGL_TEXTURE_FORMAT specifies the base internal format
for the texture, and must be either EGL_TEXTURE_RGB or EGL_TEXTURE_RGBA.
EGL_TEXTURE_TARGET must be EGL_TEXTURE_2D. EGL_MIPMAP_TEXTURE
tells EGL to allocate mipmap levels for the pbuffer.

EGL_TEXTURE_LEVEL can be set witheglSurfaceAttrib to set the current target
texture mipmap level.

After rendering into a pbuffer is completed, the pbuffer can be bound as a texture with

EGLBoolean eglBindTexImage(EGLDisplay dpy, EGLSurface surface,
EGLint buffer)

where buffer must beEGL_BACK_BUFFER. This is roughly equivalent to freeing all mip-
map levels of the currently bound texture, and then calling glTexImage2D to define
new texture contents using the data in surface with texture properties such as texture tar-
get, format, and size being defined by the pbuffer attributes.

Mipmap levels are automatically generated by the GL implementation if the following
hold at the time eglBindTexImage is called:

• EGL_MIPMAP_TEXTURE is set to EGL_TRUE for the pbuffer

• GL_GENERATE_MIPMAP is set for the currently bound texture

• value of EGL_MIPMAP_LEVEL is equal to the value of GL_TEXTURE_BASE_
LEVEL

No calls to swap or to finish rendering are required. After surface is bound as a texture it is
no longer available for reading or writing. Any read operations such as glReadPixels
or eglCopyBuffers will produce undefined results.

After the texture is not needed anymore, it can be released with

EGLBoolean eglReleaseTexImage(EGLDisplay dpy, EGLSurface surface,
EGLint buffer)

11.7 WRITING HIGH-PERFORMANCE EGL CODE

As the window surface is multi-buffered, all graphics system pipeline units (CPU, vertex
unit, fragment unit, display) are able to work in parallel. Single-buffered surfaces typically

256 EGL C H A P T E R 11

require that the rendering be working on a frame N while the vertex unit is working on
frame N+1 completed when some synchronous API call to read pixels is performed. Only
after the completion can new hardware calls be submitted for the same frame or the next
one. When multi-buffered surfaces are used, the hardware has the choice of parallelizing
between the frames, e.g., the fragment unit can be working on frame N while the vertex
unit is working on frame N + 1.

EGL buffer swaps may be implemented in various ways. Typically they are done either as
a copy to the system frame buffer or using a flip chain. The copy is simple: the back buffer
is copied as a block to the display frame buffer. A flip chain avoids this copy by using a
list of display-size buffers. While one of the buffers is used to refresh the display, another
buffer is used as an OpenGL ES back buffer. At the swap, instead of copying the whole
frame to another buffer, one hardware pointer register is changed to activate the earlier
OpenGL ES back buffer as the display refresh buffer, from which the display is directly
refreshed.

A call to eglSwapBuffers can return immediately after the swap command, either a
flip or a frame copy, is inserted into the command FIFO of the graphics hardware. See
also Section 3.6.

Performance tip: To get the best performance out of window surfaces, you should
match the configuration color format to that of the system frame buffer. You should
also use full-screen window surfaces if possible, as that may enable the system to use
direct flips instead of copies.

Window surfaces can be expected to be the best-performing surfaces of most OpenGL ES
implementations since they provide more opportunities for parallelism. However, the
application can force even double-buffered window surfaces into a nonparallel mode by
calling glReadPixels. Now the hardware is forced to flush the rendering pipeline and
transfer the results to the client-side memory before the function can return. If the imple-
mentation was running the vertex and fragment units in parallel, e.g., vertex unit is on
a DSP chip and the fragment unit runs on dedicated rasterization hardware, the engine
needs to complete the previous frame on the rasterizer first and submit that to flip. After
that, the implementation must force a flush to the vertex unit to get the results for the
current frame and then force the fragment unit to render the pixels, while the vertex unit
remains idle. Finally all the pixels are copied into client-side memory. During all this time,
the CPU is waiting for the call to finish and cannot do any work in the same thread. As
you can see, forcing a pipeline flush slows the system down considerably even if the appli-
cation parallelizes well among the CPU, vertex unit, and rasterizer within a single frame.
To summarize: calling glReadPixels every frame effectively kills all parallelism and
can slow the application down by a factor of two or more.

Pbuffer surfaces have the same performance penalty as glReadPixels has for
window surfaces. Using pbuffers forces the hardware to work in single-buffered mode
as the pixels are extracted either via glReadPixels oreglCopyBuffers. Out of
these two,eglCopyBuffers is often better as it may allow the buffer to be copied

S E C T I O N 11 . 8 MIXING OPENGL ES AND 2D RENDERING 257

into a hardware-accelerated operating system bitmap instead of having to transmit the
pixel data back to the host memory. If pbuffers are used to render into texture, the
results remain on the server. However, using the results during the same frame may
still create a synchronization point as all previous operations need to complete before
the texture map can be used. If at all possible, you should access that texture at the
earliest during the next frame.

You should also avoid calling EGL surface and context binding commands during ren-
dering. Making a new surface current may force a flush of the previous frame before the
new surface can be bound. Also, whenever the context is changed, the hardware state may
need to be fully reloaded from the host memory if the context is not fully contained in a
server-side object.

11.8 MIXING OPENGL ES AND 2D RENDERING

There are several ways to tie in the 3D frame buffer with the 2D native windowing system.
The actual implementation should not be visible to the programmer, except when you try
to combine 3D and 2D native rendering into the same frame. One reason to do so is if you
want to add native user-interface components into your application or draw text using a
font engine provided by the operating system. This is when the different properties of the
various EGL surfaces become important.

As a general rule, double-buffered window surfaces are fastest for pure 3D rendering.
However, they may be implemented so that the system’s 2D imaging framework has no
awareness of the content of the surface, e.g., the 3D frame buffer can be drawn into a sepa-
rate overlay buffer, and the 2D and 3D surfaces are mixed only when the system refreshes
the physical display. Pbuffers allow you to render into a buffer in server-side memory,
from which you can copy the contents to a bitmap which can be used under the con-
trol of the native window system. Finally, pixmap surfaces are the most flexible choice, as
they allow both the 3D API and the native 2D API to directly render into the same sur-
face. However, not all systems support pixmap surfaces, or window surfaces that are also
EGL_NATIVE_RENDERABLE.

In the following we describe three ways to mix OpenGL ES and native 2D rendering. No
matter which approach you choose, the best performance is obtained if the number of
switches from 3D to 2D or vice versa is minimized. For best results you should implement
them all, measure their performance when the application is initialized, and dynamically
choose the one that performs best.

11.8.1 METHOD 1: WINDOW SURFACE IS IN CONTROL

The most portable approach is to let OpenGL ES and EGL control the final compositing
inside the mixing window. You should first draw the bitmaps using a 2D library, either

258 EGL C H A P T E R 11

the one that is native to the operating system, or for ultimate portability your own 2D
library. You should then create an OpenGL ES texture map from that bitmap, and finally
render the texture into the OpenGL ES back buffer using a pair of triangles. A call to
eglSwapBuffers transfers all the graphics to the display. This approach works best if
the 2D bitmap does not need to change at every frame.

11.8.2 METHOD 2: PBUFFER SURFACES AND BITMAPS

The second approach is to render with OpenGL ES into a hardware-accelerated pbuffer
surface. Whenever there is a switch from 2D to 3D rendering, texture uploading is used
as in the previous method. Whenever there is a switch from 3D rendering into 2D,
eglCopyBuffers copies the contents of the pbuffer into a native pixmap. From there
the native 2D API can be used to transfer the graphics to the display, or further 2D-to-
3D and 3D-to-2D rendering mode switches can be made. glReadPixels can also be
used to obtain the color buffer from OpenGL ES, but eglCopyBuffers is faster if
the implementation supports optimized server-side transfers of data from pbuffers into
OS bitmaps. With glReadPixels the back buffer of OpenGL ES has to be copied into
CPU-accessible memory.

Note that the texture upload may be very costly. If there are many 2D-to-3D-to-2D
switches during a single frame, the texture transfers and the cost of eglCopyBuffers
begin to dominate the rendering performance as the graphics hardware remains idle most
of the time.

Performance tip: Modifying an existing texture that has already been transferred to the
server memory may be more costly than you think. In fact, in some implementations it
may be cheaper to just create a new texture object and specify its data from scratch.

11.8.3 METHOD 3: PIXMAP SURFACES

EGL pixmap surfaces, if the system supports them, can be used for both native 2D and
OpenGL ES 3D rendering. When switching from one API to another, EGL synchroniza-
tion functions eglWaitNative and eglWaitGL are used. When all rendering passes
have been performed, pixels from the bitmap may be transferred to the display using an
OS-specific bit blit operation.

On some systems the pixel data may be stored on the graphics server at all times, and
the only data transfers are between the 3D subsystem and the 2D subsystem. Nev-
ertheless, switching from one API to another typically involves at least a full 3D
pipeline flush at each switch, which may prevent the hardware from operating in a fully
parallel fashion.

S E C T I O N 11 . 9 OPTIMIZING POWER USAGE 259

11.9 OPTIMIZING POWER USAGE

As mobile devices are battery-powered, minimizing power usage is crucial to avoid
draining the battery too quickly. In this section we cover the power management support
of EGL. We first discuss what the driver may do automatically to manage power consump-
tion. We then tell what the programmer may do to minimize power consumption in the
active mode where the application runs in the foreground, and then consider the idle mode
where the application is sent to the background. Finally we find out how power consump-
tion can be measured, and conclude with actual power measurements using some of the
presented strategies.

11.9.1 POWER MANAGEMENT IMPLEMENTATIONS

Mobile operating systems differ on how they handle power management. Some operating
systems try to make application programming easier and hide the complexity of power
management altogether. For example, on a typical S60 device, the application developer
can always assume that the context is not lost between power events. Then again, others
fully expose the power management handling and events to the applications. For example,
the application may be responsible for restoring the state of some of the resources, e.g.,
the graphics context, when returning from power saving mode.

For the operating systems where applications have more responsibility for power manage-
ment, EGL 1.1 provides limited support for recognizing power management events. The
functions eglSwapBuffers and eglCopyBuffers indicate a failure by returning
EGL_FALSE and setting the EGL error code to EGL_CONTEXT_LOST. In these cases
the application is responsible for restoring the OpenGL ES state from scratch, including
textures, matrices, and other states.

In addition to the EGL power management support, driver implementations may have
other ways to save power. Some drivers may do the power management so that whenever
the application is between eglInitialize and eglTerminate, no power saving
is performed. When EGL is not active, the driver may allow the system to enter a deeper
sleep mode to save power. For such implementations, 3D applications that have lost their
focus should terminate EGL to free up power and memory resources.

Some drivers may be more intelligent about power saving and try to do it by analyzing the
activity of the software or hardware and determining from that whether some automatic
power state change events should be made. For example, if there have been no OpenGL ES
calls in the previous 30 seconds, the driver may automatically allow the system to enter
deeper sleep modes. In these cases, EGL may either set an EGL_CONTEXT_LOST error
on eglSwapBuffers, or it may handle everything automatically so that when new GL
calls are made, the context is restored automatically. In some cases the inactivity analysis
may be done at various granularity levels, also within a single frame of rendering.

260 EGL C H A P T E R 11

In certain cases the clock frequency and voltage of the graphics chip can be controlled
based on the activity of the graphics hardware. Here the driver may attempt to detect
how much of the hardware is actually being used for graphics processing. For example,
if the graphics hardware is only used at 30% capacity for a duration of 10 seconds, the
hardware may be reset to a lower clock frequency and voltage until the graphics usage is
increased again.

A power-usage aware application on, for example, the S60 platform could look like the
one below. The application should listen to the foreground/background event that the
application framework provides. In this example, if the application goes to background,
it starts a 30-second timer. If the timer triggers before the application comes to the fore-
ground again, a callback to free up resources is triggered. The timer is used to minimize
EGL reinitialization latency if the application is sent to background only for a brief
period. For a complete example, see the example programs provided in the accompanying
web site.

void CMyAppUI::HandleForegroundEventL(TBool aForeground)
{
if(!aForeground)
{
/* we were switched to background */
... disable frame loop timer ...
... start a timer for 30 seconds to call to a callback ...
iMyState->iWaitingForIdleTimer = ETrue;

}
else
{
/* we were switched to foreground */
if(!iMyState->iInitialized)
{
/* we are not initialized */
initEGL();
iMyState->iWaitingForTimer = EFalse;

}
}

}

void CMyAppUI::initEGL()
{
... calls to initialize EGL from scratch ...
... calls to reload textures & setup render state ...
... restart frame loop timer ...
iMyState->iInitialized = ETrue;

}

void myTimerCallBack(TAny *aPtr)
{
... cast aPtr to appui class ...
appUI->iWaitingForTimer = EFalse;
appUI->iInitialized = EFalse;

S E C T I O N 11 . 9 OPTIMIZING POWER USAGE 261

... calls to terminate EGL ...
}

void myRenderCallBack(TAny *aPtr)
{
... cast aPtr to appui class ...
... GL rendering calls ...

if(!eglSwapBuffers(iDisplay, iSurface))
{
EGLint err = eglGetError();
if(err == EGL_CONTEXT_LOST)
{
/* suspend or some other power event occurred, context lost */
appUI->initEGL(); /* reinitialize EGL */

}
}

}

11.9.2 OPTIMIZING THE ACTIVE MODE

Several tricks can be employed to conserve the battery for a continuously running
application. First, the frame rate of the application should be kept to a minimum. Depend-
ing on the EGL implementation, the buffer swap rate is either capped to the display refresh
rate or it may be completely unrestricted. If the maximum display refresh is 60Hz and
your application only requires an update rate of 15 frames per second, you can cut the
workload roughly to one-quarter by manually limiting the frame rate.

A simple control is to limit the rate of eglSwapBuffers calls from the application.
In an implementation that is not capped to display refresh this will limit the frame rate
roughly to your call rate of eglSwapBuffers, provided that it is low enough. In imple-
mentations synchronized to the display refresh this will cause EGL to miss some of the
display refresh periods, and get the swap to be synchronized to the next active display
refresh period.

There is one problematic issue with this approach. As the display refresh is typically
handled completely by the graphics driver and the screen driver, an application has no
way of limiting the frame rate to, e.g., half of the maximum display refresh rate. This
issue is remedied in EGL 1.1 which provides an API call for setting the swap intervals.
You can call

EGLBoolean eglSwapInterval(EGLDisplay dpy, EGLint interval)

to set the minimum number of vertical refresh periods (interval) that should occur
for each eglSwapBuffers call. The interval is silently clamped to the range defined
by the values of the EGL_MIN_SWAP_INTERVAL and EGL_MAX_SWAP_INTERVAL
attributes of the EGLConfig used to create the current context. If interval is set to

262 EGL C H A P T E R 11

zero, buffer swaps are not synchronized in any way to the display refresh. Note that
EGL implementations may set the minimum and maximum to be zero to flag that only
unsynchronized swaps are supported, or they may set the minimum and maximum
to one to flag that only normal synchronized refreshes (without frame skipping) are
supported. The swap interval may in some implementations be only properly supported
for full-screen windows.

Another way to save power is to simplify the rendered content. Using fewer triangles
and limiting texture mapping reduces both the memory bandwidth and the processing
required to generate the fragments. Both of these factors contribute to the system power
usage. Combining content optimizations with reduced refresh rates can yield significant
power savings. Power optimization strategies can vary significantly from one system to
another. Using the above tricks will generally optimize power efficiency for all platforms,
but optimizing the last drop of energy from the battery requires device-specific measure-
ments and optimizations.

11.9.3 OPTIMIZING THE IDLE MODE

If an application knows in advance that graphics processing is not needed for a while, it
should attempt to temporarily release its graphics resources. A typical case is where the
application loses focus and is switched to the background. In this case it may be that the
user has switched a game to background because a more important activity such as a
phone call requires her attention.

Under some power management schemes, even if the 3D engine does not produce any
new frames, some reserved resources may prevent deeper sleep modes of the hardware.
In such a case the battery of the device may be drained much faster than in other idle sit-
uations. The application could then save power by releasing all EGL resources and calling
eglTerminate to free all the remaining resources held by EGL.

Note, however, that ifeglTerminate is called, the application needs to restore its con-
text and surfaces from scratch. This may fail due to out-of-memory conditions, and even
if it succeeds, it may take some time as all active textures and vertex buffer objects need
to be reloaded from permanent memory. For this reason applications should wait a bit
before freeing all EGL resources. Tying the freeing of EGL resources to the activation of the
screen saver makes sense assuming the operating system signals this to the applications.

11.9.4 MEASURING POWER USAGE

You have a couple of choices for verifying how much the power optimizations in your
application code improve the power usage of the device. If you know the pinout of the
battery of your mobile device, you can try to measure the current and voltage from the
battery interface and calculate the power usage directly from that. Otherwise, you can
use a simple software-based method to get a rough estimate.

S E C T I O N 11 . 9 OPTIMIZING POWER USAGE 263

The basic idea is to fully charge the battery, then start your application, and let it execute
until the battery runs out. The time it takes for a fully charged battery to become empty is
the measured value. One way to time this is to use a regular stopwatch, but as the batteries
may last for several hours, a more useful way is to instrument the application to make
timed entries into a log file. After the battery is emptied, the log file reveals the last time
stamp when the program was still executing.

Here are some measurements from a simple application that submits about 3000 small
triangles for rendering each frame. Triangles are drawn as separate triangles, so about
9000 vertices have to be processed each frame. This test was run on a Nokia N93 mobile
phone. The largest mipmap level is defined to be 256 × 256 pixels. In the example code
there are five different test runs:

1. Render textured (not mipmapped), lit triangles, at an unbounded frame rate (about
30–35 FPS on this device);

2. Render textured (not mipmapped), lit triangles, at 15 FPS;

3. Render textured, mipmapped, lit triangles, at 15 FPS;

4. Render nontextured, lit triangles, at 15 FPS;

5. Render nontextured, nonlit triangles (fetching colors from the vertex color array),
at 15 FPS.

From these measurements two figures were produced. Figure 11.1 shows the difference in
the lengths of the power measurement runs. In the first run the frame rate was unlimited,
while in the second run the frame rate was limited to 15 frames per second. Figure 11.2
shows the difference between different state settings when the frame rate is kept at 15 FPS.

100

50

Length of
the test run

(%)

1 2

F igure 11.1: Duration of the test with unbounded frame rate (test 1) and with frame rate capped
to 15 FPS (test 2).

264 EGL C H A P T E R 11

100

90
2 3 4 5

Length of
the test run

(%)

F igure 11.2: Duration with frame rate capped to 15 FPS but with different features enabled.
2 = textured and lit, 3 = textured with mipmaps and lit, 4 = nontextured and lit, 5 = nontextured,
no lighting.

Studying Figure 11.1 one can see that dropping the frame rate has the biggest effect on
how long the batteries last (about 30%). Enabling mipmapping also saves some energy by
allowing more coherent memory access patterns, as can be seen in Figure 11.2. Disabling
texture mapping has some effect, as well as dropping lighting altogether. Although on this
particular hardware the optimizations in examples 2–5 did not provide significant wins,
on some other hardware the effect may be more noticeable, especially if the vertex pipeline
is not hardware accelerated.

11.10 EXAMPLE ON EGL CONFIGURATION
SELECTION

The criteria for optimal EGL configuration selection logic depend on the application, so
no generic optimal solution can be implemented. If it were possible, it would already be
implemented in EGL! In this example, the primary goal is to find a configuration that
matches at least the minimum color buffer and depth buffer bit depths requested by the
application. A secondary goal is to find a configuration that has at least as many stencil
bits as requested by the application. If such a configuration does not exist, stencil selec-
tion will be completely ignored by the rest of the code. Finally, a configuration with the
best antialiasing quality is selected among the configurations that otherwise match the
requirements. The example function does not return any information about the config-
uration that was selected, as these can be queried using the various glGet functions.

An alternate way for compactly specifying the requirements in the application would
be to let the application specify both the minimum and optimal requirements for the
attributes, and then sort the requirements in the order of importance. In this case

S E C T I O N 11 . 10 EXAMPLE ON EGL CONFIGURATION SELECTION 265

the configuration that matches the optimal requirements would be searched for, and
if multiple candidates are found, the one with the best antialiasing support would
be picked. If no configurations fulfill the optimal requirements, a configuration that
matches at least the minimum requirements would be selected. If no configuration is
found that supports even the minimum requirements, none would be returned, and
the application would have to exit.

In the first code snippet, we construct a list of configuration attributes and filter out
with eglChooseConfig the configurations that clearly do not match our surface type
requirements (set by the caller), color depth, and depth buffer bits. If stencil bits are
requested, they are also set as a requirement to the attribute list.

EGLConfig select_config(int surfacetype, int framebuf_bits,
int depthbuf_bits, int stencil_bits)

{
EGLBoolean err;
EGLint amount;
EGLint attrib_list[5*2];
EGLConfig configs[64], best_config;
EGLint *ptr = &attrib_list[0];

*ptr++ = EGL_SURFACE_TYPE;
*ptr++ = surfacetype;
*ptr++ = EGL_BUFFER_SIZE;
*ptr++ = framebuf_bits;
*ptr++ = EGL_DEPTH_SIZE;
*ptr++ = depthbuf_bits;

if(stencil_bits)
{
*ptr++ = EGL_STENCIL_SIZE;
*ptr++ = stencil_bits;

}
*ptr++ = EGL_NONE;

err = eglChooseConfig(eglGetDisplay(EGL_DEFAULT_DISPLAY),
&attrib_list[0], &configs[0],
64, &amount);

Now, amount contains the number of configurations that fulfill our requirements. If
no configurations were returned, a new call to eglChooseConfig is made with an
attribute list where the stencil requirement is dropped.

if(amount == 0)
{
attrib_list[6] = EGL_NONE;
err = eglChooseConfig(eglGetDisplay(EGL_DEFAULT_DISPLAY),

&attrib_list[0], &configs[0],
64, &amount);

}

266 EGL C H A P T E R 11

At this stage, we either have a list of configurations supporting stencil, or we have
configurations that do not support stencil, or we have zero configurations if the basic
requirements are not met. If no configurations exist, we just exit the code. Otherwise, we
continue by finding the one with the best antialiasing, i.e., most samples per pixel.

if(amount > 0)
{
int i, best_samples;

best_samples = 0;
best_config = configs[0];

for(i = 0; i < amount; i++)
{
int samp;

eglGetConfigAttrib(eglGetDisplay(EGL_DEFAULT_DISPLAY),
configs[i], EGL_SAMPLES, &samp);

if(samp > best_samples)
{
best_config = configs[i];
best_samples = samp;

}
}
return best_config;

}
else
{
return (EGLConfig) 0;

}
}

PART III
M3G

This page intentionally left blank

12

C
H

A
P

T
E

R

INTRODUCING M3G

Practically all mobile phones sold in developed countries are equipped with Java Micro
Edition (Java ME), making it the most widely deployed application platform in the his-
tory of computing. A rapidly growing subset of those devices come pre-installed with
M3G (Mobile 3D Graphics API for Java ME; also known as JSR 184) [JCP05]. As of 2007,
there are more than a dozen device vendors shipping M3G-enabled devices, with yearly
shipments in the order of hundreds of millions. To get hold of such a device, just pick up—
for example—any Nokia or Sony Ericsson phone with a quarter-VGA display (240× 320
pixels).

This chapter introduces M3G, putting it in the context of the mobile Java environment,
OpenGL ES, and other scene graph engines. The later chapters will get you started with
programming on M3G. Our presentation is aligned with Part I of this book, and builds
on concepts introduced there. In other words, we assume that you are familiar with the
OpenGL (ES) rendering model, scene graphs, keyframe animation, mesh deformation,
and so on. Reading Part II will give you further insight to the inner workings of M3G,
but it is not a prerequisite for understanding the following chapters or for utilizing M3G
in practice.

This book is not about teaching Java programming; you should already have working
knowledge of objects, classes, inheritance, exceptions, garbage collection, Java virtual
machines, and other basic concepts of object-oriented programming. Neither is this book
about mobile Java per se; we do not explain how to use its 2D graphics libraries, or how to
write well-behaving applications. Familiarity with these topics may help, but is not strictly

269

270 INTRODUCING M3G C H A P T E R 12

necessary, as our example framework (available on the companion web site) takes care of
all the non–3D-related code.

12.1 OVERVIEW

The Mobile 3D Graphics API provides Java programmers with an efficient and compact
interface for managing and rendering 3D scenes. It is based on the established OpenGL
rendering pipeline, yet designed for Java with an object-oriented mindset, providing for
a shallow learning curve for beginners, and high productivity for seasoned 3D program-
mers. Due to its retained-mode design, it minimizes the performance overhead of the Java
virtual machine. The strict specifications and rigorous conformance tests of M3G ensure
application portability from one device to another, allowing developers to reach hundreds
of millions of devices from different vendors with a reasonable effort.

12.1.1 MOBILE JAVA

Figure 12.1 shows an overview of the mobile Java software architecture and the position-
ing of M3G in it. At the top of the diagram, we have the applications, called midlets in
this environment. The term originates from MIDP, the Mobile Information Device Pro-
file, which is shown in the diagram just beneath the application layer. MIDP defines the
structuring and packaging of mobile Java applications, as well as the basic features that
are available to them in the runtime execution environment.

All midlets must adhere to an event-driven framework that is intended to make them
better behaved with respect to shared resources and system events, such as incoming
phone calls. To this end, midlets cannot have amainmethod, but must instead implement

M3G MIDP Other JSRs

OpenGL ES VM (CLDC/CDC)

Java applications (midlets)

F igure 12.1: The mobile Java software stack.

S E C T I O N 12 . 1 OVERVIEW 271

a set of event handlers like startApp and pauseApp, as shown in Figure 12.2. Along
with the application framework, MIDP also provides basic facilities for controlling the
display, polling the keypad, rendering 2D graphics and text, accessing the network, play-
ing back audio, and so on.

A contemporary mobile handset has a dozen or so built-in APIs that are standardized
under various Java Specification Requests. The most widely available ones include the
Mobile Media API (JSR 135), the Wireless Messaging API (JSR 120), and of course M3G.
Some devices also include vendor-specific packages, residing in namespaces other than
the standard javax.microedition. For example, the fairly widespread Nokia UI
API resides in the com.nokia.mid.ui package.

Going back to Figure 12.1 and proceeding to the bottom layer there, we first encounter
OpenGL ES. As discussed in Section 5.2.4, M3G is conceptually based on OpenGL ES,

PAUSED

ACTIVE

DESTROYED

new

startApp pauseApp

destroyApp

destroyApp

F igure 12.2: The life cycle of an application in Java MIDP. The application may be in one of three
states: paused, active, or destroyed. State transitions are controlled by the application framework, and
signaled to the midlet via the three event handlers shown in the diagram. All midlets must implement
these event handlers, as well as a constructor; some of the methods may be empty, though. The
midlet is responsible for acquiring and releasing its resources as appropriate upon each event.

272 INTRODUCING M3G C H A P T E R 12

but some implementations use tailor-made software rasterizers instead. All hardware-
accelerated devices are probably using OpenGL ES, though.

Finally, at the bottom right of Figure 12.1, we have the Java Virtual Machine (VM) with its
core libraries. The core libraries are defined in CLDC (Connected Limited Device Con-
figuration) for typical devices, or the less limited CDC on some high-end devices. There
are other flavors of mobile Java than the one presented here, mainly in Japan, but the
CLDC/MIDP combination is so dominant that we will use it as a synonym to Java Micro
Edition in this book. Besides, M3G has been deployed on all variants of mobile Java, as
well as on desktop Java, and it works the same way on all of them.

Compared to desktop Java, some of the most important differences in mobile Java
(CLDC/MIDP) are the lack of the Java Native Interface (JNI), lack of dynamic class load-
ing, and limited built-in libraries. These restrictions are in place to help guarantee secu-
rity and to reduce hardware requirements. As a result, you cannot include native code
with your midlet, load and unload classes to optimize memory use, or load classes over
the network to dynamically extend your application. You must also implement some
basic things like inverse trigonometric functions in your own code. Appendix B provides
further information on the inner workings of Java virtual machines.

12.1.2 FEATURES AND STRUCTURE

M3G can be thought of as an object-oriented interface to OpenGL ES at the low level,
and as a link to digital content creation tools—such as 3ds Max or Maya from Autodesk,1

Softimage,2 or the freely available Blender3—at the high level.

Figure 12.3 shows the class diagram of M3G. All the classes are defined in the javax.
microedition.m3g package. We will refer to this figure in the later chapters as we
discuss each class in detail. The base class of the hierarchy is Object3D; all objects that
can be rendered or be part of a scene graph are derived from it. These objects are col-
lectively known as scene graph objects, and they form the bulk of the API. There are only
four classes that are not derived from Object3D: Graphics3D takes care of all ren-
dering; Loader is for importing art assets and scenes from files or over the network;
Transform represents a generic 4 × 4 matrix; and RayIntersection is used for
picking objects in the scene.

At its foundation, M3G wraps coherent blocks of OpenGL ES state into retained-mode
objects that are controlled by the M3G engine, and can thus be stored and processed
completely in native code (see Section 5.3). Classes that can be considered simple wrap-
pers for OpenGL concepts are indicated by the dashed outline in Figure 12.3. Nearly all

1 www.autodesk.com

2 www.softimage.com

3 www.blender.org

S E C T I O N 12 . 1 OVERVIEW 273

Object3D

Material

Fog

Texture2D

PolygonMode

Background

Compositing
Mode

Image2D

Transformable

Graphics3D

Loader

Transform

RayInter
section

Node Group World

Mesh Skinned
Mesh

Morphing
Mesh

Animation
Track

Animation
Controller

Keyframe
Sequence

Appearance

VertexArray

IndexBuffer Triangle
StripArray

Sprite3D

Camera

Light

VertexBuffer

F igure 12.3: The M3G class hierarchy consists of 30 classes, all but four of them derived from Object3D. Classes that
are simple wrappers for OpenGL ES and EGL functionality are demarcated by the dashed line. The other classes provide
capabilities that are beyond the scope of OpenGL, such as object and scene representation, keyframe animation, and content
loading.

features of OpenGL ES 1.0 are available through M3G, although a few were abstracted
into a simplified form, e.g., blending and depth testing, and certain rarely used features
were dropped altogether, e.g., logic ops, points, and lines. Also, to provide developers with
a less fragmented platform, anything that is optional in OpenGL ES or poorly supported
in hardware was left out, e.g., stencil buffering. Refer back to Figure 3.1 to see how the
rendering pipeline differs from that of OpenGL ES 1.1.

Building on the core rendering features, M3G defines a scene graph where the retained-
mode components can be linked with each other to form complete objects, groups of
objects, and ultimately an entire scene. M3G supports the types of scene graph nodes that
one would expect to find in a scene graph API, including Camera, Light, Group, and
a basic rigid-body Mesh. In addition, there are two deformable variants of Mesh: the
SkinnedMesh that is animated by a bone hierarchy, and the MorphingMesh that is
deformed by linear blending of morph targets. Figure 12.4 illustrates how these and other
high-level features relate to the OpenGL ES vertex pipeline. The scene graph nodes also
include Sprite3D, which is useful for 2D billboards and overlays, and World, which
is the scene graph root. A simple example of a scene graph is shown in Figure 12.5.

To keep the scene graph lightweight and uncomplicated, M3G does not include explicit
support for terrains, shadows, portals, particles, and other advanced high-level features.

274 INTRODUCING M3G C H A P T E R 12

Morphing

Position

Scaling

Skinning

Viewport xform

TexCoord0..NNormal Color

Texture xform

Division by q

Rasterization

Scaling

Lighting

Biasing Biasing

Alpha factor
M
3
G

O
P
E
N
G
L

E
S

View transformation

Projection

Division by w

Clipping

F igure 12.4: The transformation and lighting pipeline of M3G. The back end of the pipeline is the same as in OpenGL ES.
The front end provides morphing, skinning, scaling, biasing, and the alpha factor. These are described in Chapters 14 through
16. Although not indicated by this diagram, morphing and skinning are mutually exclusive.

Also, the scene graph nodes can have at most one parent, i.e., there is no support for
instancing at the node level. However, all substantial data, e.g., textures, vertices, indices,
and animations, are in the node components, and can be shared by arbitrarily many
nodes. Node instancing was dropped to keep things simple; many scene graph operations
are easier to define and implement on a tree, as compared to a directed acyclic graph.

S E C T I O N 12 . 1 OVERVIEW 275

Background Image2D

IndexBuffer VertexArray
(texcoords)

VertexArray
(texcoords)

VertexArray
(normals)

Appearance

VertexBuffer

Material

Texture2D

Texture2D

Polygon
Mode

Image2D

Image2D

Compositing
Mode

Fog

VertexArray
(coordinates)

IndexBuffer

Appearance

VertexBuffer

VertexArray
(coordinates)

VertexArray
(texcoords)

World

Camera Light
Skinned

Mesh

Group

Light Group Group

MeshGroupGroup

… ...

F igure 12.5: An example scene graph. The gray, rounded boxes are scene graph nodes, while the square boxes are node
components. Note how some of the Appearance components are shared by the SkinnedMesh and the regular Mesh.

The recommended way of using M3G is to set up a complete scene graph in the beginning,
and only make relatively minor modifications to it on a per-frame basis. It is possible to
render individual objects in the immediate mode, but rendering an entire scene graph in
one go, using the retained mode, is far more efficient. Using the retained mode reduces
the amount of Java code executed and the number of methods called, allows the engine to
draw the objects in an optimal order, enables the use of hierarchical view frustum culling,
and so on. In some cases, the best approach is to render most of the scene in retained
mode, adding perhaps a player character and some special effects into the scene using the
immediate mode.

One of the key features of M3G is its keyframe animation engine. It can animate any prop-
erty of any object by sampling a user-specified animation curve. It is conceptually simple,
yet allows almost any arbitrary animation curve to be exported from DCC tools using
only a modest number of keyframes. The animation engine is decoupled from rendering,

276 INTRODUCING M3G C H A P T E R 12

allowing you to first apply some predefined animations, add in some programmatic
animation on top, and only then render the scene. Any properties targeted by the anima-
tion engine can be equally well modified by calling individual methods in the API. The
animation engine merely adds a conceptual model on top, allows complex animations to
be predefined in authoring tools, and provides better performance by running in native
code. You can use it for simple playback of predefined animations, or as the back-end of
a more comprehensive system driven by physics or AI, for instance.

The keyframe animation system is composed of three classes. KeyframeSequence
stores the actual keyframes and specifies the interpolation mode and whether the sequence
is looping or not. AnimationController defines the speed of the animation as a
function of world time, which is provided by the application at each call to animate.
This is demonstrated in the “Hello, World” example below. AnimationTrack links
together the keyframe sequence, the animation controller, and the target object.

Finally, M3G offers a binary file format that has a one-to-one mapping with the API. The
file format and the related utility functions facilitate separation of artistic content from
programmable application logic.

12.1.3 HELLO, WORLD

To give you a quick glimpse of how the API is used, without yet explaining things in detail,
let us introduce the “Hello, World” of M3G. This piece of code, shown below, is possibly
the shortest fully functional M3G animation player you can write. The midlet first loads
a complete scene from a .m3g file, and then proceeds to animate and render it at the
maximum frame rate until the user presses a key.

import javax.microedition.m3g.*;
import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.GameCanvas;
import javax.microedition.midlet.MIDlet;

// The ‘‘main’’ class of a midlet is always derived from MIDlet,
// and must implement the three event handlers discussed earlier.
// Here we are leaving pauseApp and destroyApp empty, and using
// an implicit constructor, which is also empty.
//
public class HelloWorld extends MIDlet
{

public void startApp() {
MyCanvas myCanvas = new MyCanvas();
Display.getDisplay(this).setCurrent(myCanvas);
myCanvas.animateAndRender();
notifyDestroyed();

}
public void pauseApp() {}
public void destroyApp(boolean unconditional) {}

}

S E C T I O N 12 . 2 DESIGN PRINCIPLES AND CONVENTIONS 277

class MyCanvas extends GameCanvas
{

MyCanvas() { super(true); }

public void animateAndRender() {
try {

World world = (World)Loader.load("/res/world.m3g")[0];
Graphics graphics = getGraphics();
Graphics3D g3d = Graphics3D.getInstance();
long start = System.currentTimeMillis();
for (long time=0; getKeyStates()==0;) {

time = System.currentTimeMillis() - start;
world.animate((int)time);
g3d.bindTarget(graphics);
g3d.render(world);
g3d.releaseTarget();
flushGraphics();
Thread.yield();

}
} catch (Exception e) {}

}
}

The public class HelloWorld implements the three event handlers that are mandatory
for all midlets. In startApp, we first create a GameCanvas and make it appear on
the screen, then invoke our rendering loop, and finally terminate. The other two event
handlers do nothing in this bare-bones example. Note that this midlet is not very well-
behaved: it uses almost all the available processing time, does not handle pauses or excep-
tions properly, and so on.

In our GameCanvas, we first use the M3G Loader to import a complete World from
the midlet’s JAR package. Next, we obtain a Graphics object, which you can think of
as a handle to the frame buffer, and the singleton Graphics3D, which takes care of 3D
rendering.

All the interesting stuff happens in the for loop: updating animations in the scene to the
currenttime, binding the frame buffer to theGraphics3D, rendering the scene, releas-
ing the frame buffer, and finally flushing it to the screen. After rendering each frame, we
give any other threads in the system a chance to do their job by calling Thread.yield.
Note that we animate the scene to wall-clock time; this way, the animation will not go into
fast-forward mode if the device is very fast, but will only play back more smoothly.

12.2 DESIGN PRINCIPLES AND CONVENTIONS

The design goals of M3G were described in Section 1.3: the standardization group wanted
a system that is small, fast, and easy to use for both novices and experts. The API should

278 INTRODUCING M3G C H A P T E R 12

also work the same way on all devices, save for the unavoidable performance differences.
In this section, we discuss some of the key decisions that were made in an effort to meet
these goals. We also introduce some general programming conventions of M3G that will
help you navigate the API and the rest of this book.

12.2.1 HIGH ABSTRACTION LEVEL

Choosing the right level of abstraction for the M3G API was difficult because of conflict-
ing requirements. On one hand, desktop and console developers are often demanding
uninhibited access to the GPU, and of course the CPU. High-level game engines and mid-
dleware are gaining popularity, but a lot of major titles are still built from the ground up.
Some developers regard any single abstraction layer between their code and the hardware
as one too many, despite the fact that popular engines like Gamebryo,4 Unreal Engine,5

Torque,6 or Vicious Engine7 ship with full source code to enable deep customization
for each title. Mobile developers often share that point of view, and many consider even
software implementations of OpenGL ES too abstract and too slow when compared to a
renderer that is tailored to a particular game.

On the other hand, the rules of desktop and console development do not apply to mobile
Java. First of all, mobile devices are so many and so heterogeneous that tuning your code
and content to perfectly match the capabilities of any single device only makes sense as a
hobby, whereas in console development it is almost a prerequisite. Such tuning would be
hard anyway, because device vendors are notoriously secretive about their hardware and
software configurations, and Java isolates you even further from the details. Furthermore,
the performance differential between native code and Java (see Appendix B) suggests that
as much processing and data as possible should be shifted to the native side—but that is
something only the device vendor can do.

The M3G standardization group first considered doing direct bindings to OpenGL ES,
but settled on a higher-level design for three main reasons: First, to compensate for
the Java performance overhead by building in more functionality; second, to provide a
closer match with modeling tools; and third, to make for a less fragmented platform by
abstracting the underlying renderer. The renderer need not be any particular version of
OpenGL ES, or in fact any version of OpenGL ES at all—it may as well be a proprietary
software rasterizer, which is indeed very common, or even Direct3D Mobile.

Having decided on a retained-mode API, the group first tried taking a subset of Java 3D
(version 1.3) as the basis of M3G, augmenting it with new functionality where necessary.
We went pretty far along that route, but it turned out to be a dead end. The number

4 www.gamebryo.com

5 www.unrealtechnology.com

6 www.garagegames.com/products/torque/tge

7 www.viciousengine.com

S E C T I O N 12 . 2 DESIGN PRINCIPLES AND CONVENTIONS 279

one problem was the sheer size of Java 3D: by any measure, it is an order of magnitude
more complex than M3G eventually came to be. Despite its size, it still lacks many of the
features that we considered essential, such as keyframe animation, skinning, or importing
of complete scene graphs. We ended up pruning, collapsing, merging, and augmenting
the class hierarchy in such a radical way that the result bore very little resemblance to
Java 3D. Yet another problem was that the Java 3D specification was not detailed enough
to let us really figure out what each method should be doing—the “standard” was in fact
defined by the sole existing implementation.

The exercise of trimming down Java 3D was hugely beneficial, though. Compared to start-
ing from scratch, we had a much better idea of what we did and did not want. There were
a lot of good things in Java 3D that we readily copied, and a lot of things that everyone in
the group was happy to design in a completely different way. Starting from a clean table,
we could also better match the feature set of OpenGL ES 1.0, which was being defined
concurrently with M3G.

Some critics considered the retained-mode approach to be short-lived as Java would
surely catch up with native performance very soon, making an immediate-mode API like
OpenGL ES more attractive. Java virtual machines have indeed improved by leaps and
bounds, but recently the law of diminishing returns appears to have taken over, while
native code still remains in the lead by a comfortable margin. As of this writing, the jury
is still out on whether the current level of Java acceleration is adequate for a low-level
API like OpenGL ES; it will be interesting to observe the performance of JSR 239 (which
implements a direct binding to OpenGL ES) when it becomes available on real devices in
the market.

Note that the immediate mode in M3G is not as immediate as in OpenGL ES, which allows
all attributes and data, except for textures, to be held in application memory (or the client
side in OpenGL parlance). M3G, on the other hand, keeps everything wrapped up into
Java objects whose contents can only be accessed through the API. This design allows a
rendering call to run completely in native code, without having to access any information
from the garbage-collected Java heap. The inevitable downside is that dynamic updates
to mesh data, such as vertex arrays, are slower than in native OpenGL ES.

12.2.2 NO EVENTS OR CALLBACKS

Strictly speaking, M3G is not really an object-oriented scene graph. Sure, there is a hier-
archy of classes, even some dynamic binding here and there, but there are no interfaces,
event handlers, or abstract classes that the application could implement, no methods that
it could override to change the behavior of the built-in methods. The ability to extend API
classes is a cornerstone of object-oriented programming, and that is missing from M3G.

The way that you use M3G is almost as if you were programming in C. You set up some
structures, and then pass them as parameters to a function like animate or render.
The main difference to a C API is that those data structures are hidden. Thus, rather
than reading and writing some public variables directly, you need to use setter and getter

280 INTRODUCING M3G C H A P T E R 12

methods. Having a lot of setters and getters is, again, not very good object-oriented design,
but is necessary so that the data can be retained on the native side for good performance.

All methods in M3G are fully synchronous. This means that when you call a method, you
will not regain control until the method either completes its operation or throws an excep-
tion. In particular, there is nothing that would interrupt the animation and rendering
methods. For example, there is no user-defined method that would be called after queu-
ing objects up for rendering but before dispatching them to OpenGL ES. Also, no M3G
methods will block waiting for system resources (such as a rendering surface) to become
available, but will instead throw an error or exception. This is to ensure that the system
will never go into a deadlock.

Callbacks are eliminated from the API for a number of reasons. First, allowing the scene
graph to be modified while the implementation is processing it is a risk to system sta-
bility and security. Second, any visibility-culling or state-sorting optimizations would
be thwarted if the position, shape, or rendering attributes of scene graph objects could
change after the system has queued them up for rendering (or while it is doing that).
Third, interrupting the relatively tight rendering traversal code to jump into an arbitrary
Java method is bound to slow down the rendering. Finally, the procedure of calling Java
code from native code tends to be slow and not portable from one Java virtual machine
to another.

Callbacks could be restricted to work around these issues—as is done in Java 3D, for
instance—by limiting the number of callbacks per frame or by disallowing modifications
to scene graph objects. However, that would more or less defeat the purpose of having
callbacks in the first place, as there would no longer be much in the way of added flexi-
bility or developer control over the rendering process. In the end, the M3G expert group
considered it more important to keep scene graph traversal and rendering as simple and
robust as possible.

12.2.3 ROBUST ARITHMETIC

Unlike in OpenGL ES, there is no Common Lite profile or any other provisions for
limited-dynamic-range arithmetic in M3G. All scene graph operations and vertex trans-
formations, including skinning, have to be done at the full dynamic range. This guarantees
that overflows do not occur in practical use, which is crucially important when porting
content across different devices and implementations.

The full dynamic range in M3G is equivalent to a 24-bit floating-point format having
seven bits of exponent, sixteen bits of mantissa, and one sign bit. This yields 16-bit pre-
cision across a dynamic range of about 38 orders of magnitude, compared to just four
orders of magnitude at the same precision for signed 16.16 fixed point.

There are many ways to fulfill these requirements even if no FPU is available. For
example, custom floating-point routines that dispense with denormals and other special

S E C T I O N 12 . 2 DESIGN PRINCIPLES AND CONVENTIONS 281

cases can easily achieve double the performance of standard library routines. Switching
to a custom floating-point representation, with perhaps mantissas and exponents stored
separately, can yield even greater speed-up. Also, it often pays off to use specialized rou-
tines for different tasks, e.g., skinning. Finally, it may be possible to switch to fixed-point
routines altogether if the inputs have narrow enough dynamic range. See Appendix A for
further details.

Of course, operations that are not susceptible to disastrous overflows are allowed to use
a much reduced precision and range. In particular, color operations in the pixel pipeline
are clamped to [0, 1] in any case, so they only need to match the precision of the frame
buffer. Similarly, rasterization can be done entirely in fixed point, because the maximum
viewport dimensions set predefined limits to the accuracy and range.

12.2.4 CONSISTENT METHODS

There are thirty classes and some four hundred methods and enumerations in the M3G
API, so it is important that their names be consistent, and the syntax and behavior of each
method predictable. Although the specification is in Javadoc format, and therefore easy
to browse, it would quickly become a burden for the developer if he or she were forced to
constantly look things up from the documentation.

There are very few methods in the API whose names consist of a single verb, but these
methods are doing almost all the work, i.e., animate, align, render, clear, pick,
load, find, duplicate, and maybe a dozen others that are related to matrix arith-
metic. The methods have descriptive enough names that you should be able to make an
educated guess about what each of them is for.

The vast majority of methods in the API are simple getters and setters, also known as
accessors, that just read or write an attribute of the Java object that they are invoked on.
As a naming convention, setters are prefixed by set and getters by get, followed by one
or more nouns designating the attribute that they set or get (e.g., setTexture). To
make for more readable code, getters that retrieve boolean flags are prefixed by is, as in
isDepthTestEnabled. In addition to getters and setters, there are also a few “adders”
and “removers” in the API (e.g., addChild and removeChild); they operate on data
structures that can grow and shrink depending on the number of elements.

M3G includes getters corresponding to almost everything that the application can set or
change, as well as a special static getter for properties that are constant for each device.
Static properties include information such as whether the device supports antialiasing;
we will discuss the static properties in detail in Section 13.1.4.

There is generally one getter for each parameter that can be set. For example, the
setWrapping(int wrapS, int wrapT) method in Texture2D is accompanied by
getWrappingS and getWrappingT. If the parameter is a vector or matrix, it is
returned in an array instead of having separate getters for each component. For example,

282 INTRODUCING M3G C H A P T E R 12

getScale(float[] scale) fills in the X, Y, and Z scaling factors into the given array.
Note that the method does not return a new array, as that would create garbage, but fills
in an array provided by the user. This is again a general principle that is followed by all
getters in the API.

Note that the value returned by a getter may not be the same value that was set; instead,
it may be any value that produces an equivalent result. This typically happens with
floating-point values, as they may be converted into lower-precision formats to speed up
internal computations. Having to store both the value that was set and the value that
is used internally would place an unnecessary burden on the implementations with no
obvious benefit.

We mentioned above that there are getters for almost everything in the API. Indeed, there
is only one thing in M3G 1.1 that you cannot read back—the pixels in an Image2D—
and that limitation is imposed by OpenGL ES. However, some three dozen getters were
omitted from M3G 1.0 to minimize the footprint of the API, and then reinstated in version
1.1. As it turned out, spending some ten or twenty kilobytes of extra memory was not an
issue for anybody, after all. The getters that are only available in M3G 1.1 are listed in
Section 12.3.

12.2.5 PARAMETER PASSING

The parameter-passing semantics of Java are very easy to remember: int, float, and
other primitive types are passed by value, everything else by reference. However, what
happens to a referenced object is up to each method. It may be written to, its contents
may be copied in, or the reference itself may be copied in. The only way to find out for
sure is to read the documentation of each method, or by trial and error. To alleviate that
burden, the following two rules for parameter handling were adopted throughout the API.

The first rule is that scene graph objects—that is, all objects derived from Object3D—
are copied in by reference. This means that your application and M3G will share each
instance of Object3D that you pass in. As you construct a Mesh, for example, you give
the constructor a VertexBuffer that you created earlier. The constructor copies in the
reference to your VertexBuffer, but does not copy any of the vertex data. If you later
modify some vertices in the buffer, the mesh will change accordingly. You are also free to
lose your copy of the reference, since you can get it back from the Mesh at any time, using
getVertexBuffer.

The second rule is that all non-scene graph objects are copied in by value. This means
that M3G creates its own private copy of the object that you pass in, effectively taking a
snapshot of its contents. For example, you can set up the projection matrix in Camera
by passing in a Transform object:

myCamera.setProjection(myTransform); // matrix is copied in by
// value

myTransform.setIdentity(); // this does not affect
// myCamera

S E C T I O N 12 . 2 DESIGN PRINCIPLES AND CONVENTIONS 283

Since Transform is not derived from Object3D, it is copied in by value, that value
being a 4 × 4 matrix. There is no reference from myCamera to myTransform, so you
may freely reset the Transform to identity and start using it for something else without
affecting the Camera.

There are two exceptions to the second rule, but they are obvious given their context.
The first exception is the arbitrary user object that can be attached to any scene graph
object. The user object is quite obviously stored by reference, because otherwise we
would not be storing the same object as the user. The other special case is when a ren-
dering target is bound to M3G. The target is held by reference, but you are not sup-
posed to access it while it is bound. If you do that, the rendered image may become
corrupt.

The way that arrays of Object3Ds are treated is a logical consequence of the two
rules. Using the Mesh again as an example, you also provide its constructor an array of
IndexBuffers. The array itself is copied in by value, but the values happen to be
IndexBuffer references, which are copied in by reference. If you thereafter let the array
and its contents go out of scope, the garbage collector will reclaim the array, but not the
IndexBuffers, because they are also held by the Mesh.

12.2.6 NUMERIC VALUES

The default numeric formats in M3G are float and int. Almost everything is read and
written in these formats. In fact, only images and vertices are handled differently.

Pixels are fed intoImage2D in byte arrays, one byte per color component in RGBA order.
This is the format that raw images are usually stored in, and it is accepted as such by
OpenGL ES. On the other hand, colors that are passed in to setters individually, such as
material colors, are packed into integers in the 0xAARRGGBB order. For example, fully
opaque dark red would be 0xFF800000. This cuts the number of parameters from
four to one, reducing method call overhead significantly. The same format is also used
in MIDP.

Vertex attributes in VertexArray are read and written in either byte or short
arrays. Supporting float and int vertex arrays was also considered, but ultimately
rejected due to their high memory requirements, the performance penalty of floating-
point transformation and lighting in absence of dedicated hardware, and finally the lack
of compelling use cases. We adopted a cheaper alternative instead, whereby the transfor-
mation matrices are in floating point, allowing accurate placement and smooth animation
of objects in the 3D world without fear of overflowing.

Note also that there is no fixed-point data type in M3G, and no methods that would
take 16.16 fixed-point parameters. This is mainly because there would not be much per-
formance benefit to it, because the time-consuming internal operations are subject to
the floating-point precision and range criteria regardless of the input format. Another

284 INTRODUCING M3G C H A P T E R 12

reason is the lack of typedef in Java: there is no efficient way to define a fixed data
type to distinguish 16.16 fixed-point values from ordinary int variables. Without this
capability, fixed-point code becomes even more unreadable and error-prone than other-
wise. Finally, the benefit of doing fixed-point arithmetic may not be as great in Java as in
native code, because you cannot use assembly language, and because the extra bit-shifting
requires more bytecodes than the corresponding float operations. See the Java section
in Appendix A for more information.

12.2.7 ENUMERATIONS

As the Java programming language has no support for enumerations, they are represented
as constant integer values (i.e., static final int). Enumerations are defined in the
class where they are needed, and do not apply anywhere else. For example, the RGB pixel
format token in Image2D has the decimal value 99, and is the only token in the API
having that particular value.

Having to prefix all enumerations by their class name is cumbersome, but if you need a
particular enumeration very often, you can copy it into a local variable or instance variable
like this:

int REPEAT = Texture2D.WRAP_REPEAT;
myTexture1.setWrapping(REPEAT, REPEAT);
myTexture2.setWrapping(REPEAT, REPEAT);

12.2.8 ERROR HANDLING

As in any proper Java API, error handling in M3G is based on the built-in exception mech-
anism. Thanks to exceptions, no methods in the API need to return error codes or set
internal error flags that the application would have to check separately. There are seven
different types of exceptions the API may throw, roughly indicating the type of error. The
exceptions are listed in Table 12.1.

M3G is generally more stringent about error checking than OpenGL ES. For
example, indexing a vertex array out-of-bounds has “undefined” effects in OpenGL ES,
but causes a well-defined exception in M3G. The extra error checking may have a minor
impact on performance, but it also makes debugging easier and the implementations
more robust against buggy or malicious code. Debugging facilities on mobile devices tend
to be poor or nonexistent, so any help in that area is particularly welcome. To minimize
the performance overhead, errors are checked at the earliest possible occasion, typically at
constructors and setters. Final validation of the scene graph must be deferred until ren-
dering time, however. This is because the validity of an object often depends on other
objects that the application may change at any time.

S E C T I O N 12 . 3 M3G 1.1 285

Tab le 12.1: The exceptions that may be thrown by M3G, and their typical causes. Note that the list of causes is not
exhaustive.

Type Typical Causes

ArithmeticException Supplying an uninvertible transformation as a parameter

IllegalArgumentException Supplying a wrong enumeration as a parameter

IllegalStateException Attempting to render an incomplete or invalid object, such as a Mesh
with no VertexBuffer attached

IndexOutOfBoundsException Attempting to read or write beyond the boundaries of some internal
data structure, such as the list of child nodes in Group, or the list of
textures in Appearance

NullPointerException Supplying a null reference as a parameter

SecurityException Attempting to load a remote file without having sufficient network
access permissions

IOException Attempting to load an invalid file, or attempting to load a remote file
when the device is out of network coverage

12.3 M3G 1.1

To combat market fragmentation, the upgrade cycle of M3G has been kept relatively
slow. M3G 1.1 was released in June 2005, a year and a half after the original, but unlike
OpenGL ES 1.1, it does not add any new rendering features. It is focused on merely
improving the performance and interoperability of the existing functionality—in other
words, fixing errors and omissions in the original spec. Importantly, the file format was
not changed at all. A complete change log is available on the Overview page of the speci-
fication [JCP05]; here we review only the changes that have practical significance.

12.3.1 PURE 3D RENDERING

The most important addition to M3G 1.1 is the OVERWRITE hint. It lets you tell the
implementation that you intend to do full-screen 3D rendering, so any pre-existing con-
tents of the designated render target may be discarded. Having to preserve the old frame
buffer contents is generally very expensive on hardware-accelerated devices (see the next
chapter for details), so we advise you to use this hint whenever possible.

12.3.2 ROTATION INTERPOLATION

A persistent interoperability issue that was resolved in M3G 1.1 was due to keyframe-
animated rotations, or more precisely, interpolation of quaternions (see Section 4.1.2).
Some devices and content exporters had taken the liberty to interpolate along the shortest
path in 3D space, which is not always the same as the shortest path in 4D quaternion space.

286 INTRODUCING M3G C H A P T E R 12

If the content producer (i.e., the exporter) assumes that the shortest 3D path is taken, and
the runtime engine takes the shortest 4D path, or vice versa, the resulting animation will
look fascinating, to say the least. The typical symptom is some occasional flickering in the
animation sequence; when examined more closely and in slow motion, it turns out that
the object does a full 360◦ spin around multiple axes when it should only rotate a degree
or two. This happens between two successive keyframes, which is often just a blink of an
eye, and is thus perceived as flickering.

This issue has been fixed in all the publicly available exporters, as far as we know, but you
may well run into it if you pull some generic quaternion interpolation routine from the
web, and use that in your application or proprietary content processing tools. See page 372
in Section 16.2 for more information.

12.3.3 PNG AND JPEG LOADING

Another frequent source of problems prior to M3G 1.1 was loading of PNG images
that contain transparency information. The PNG file format supports various forms
of transparency, including color-keying, palette entries with alpha information, and
complete alpha channels. M3G 1.1 makes it explicit that all these formats must be
supported, regardless of whether the base image is grayscale, indexed color (palletized),
or true color. The mapping of these formats to the Image2D internal formats is now
well-specified, too.

Support for JPEG images was left optional in both M3G 1.0 and 1.1, for fear of risking
the royalty-free status of M3G and thereby hindering its adoption. Thus, depending on
the device, you may or may not be able to load JPEG files using the built-in Loader.
On the other hand, including them into .m3g files was ruled out completely, as that
would have compromised the portability of art assets.

However, these decisions have been later reversed by the new Mobile Service Architecture
(MSA, JSR 248) standard [JCP06]: it requires full JPEG support across the board, includ-
ing in.m3gfiles.8 JPEG is clearly superior to PNG for photographic images, and everyone
in the industry has a license for it these days, so it makes sense to use it as widely as pos-
sible. The downside is that we now have three kinds of devices in the market with respect
to the availability of JPEG: those with full support, those with no support, and those with
partial support. As a further complication, some pre-MSA devices may expand grayscale
JPEGs into RGB, increasing their size by a factor of two to four.

If you wish to target your application for all M3G-enabled devices that have ever shipped,
with a minimum effort, we advise you to use .png for images that have no transparency,
and .m3g for those that include alpha.

8 Luckily, this is the only material change that MSA imposes on M3G.

S E C T I O N 12 . 3 M3G 1.1 287

12.3.4 NEW GETTERS

As we mentioned in the previous section, M3G 1.1 also adds more than thirty getters
that were missing from the original release. With the complete set of getters available,
applications need no longer keep duplicate copies of M3G state attributes on the Java side.
The getters are also useful for debugging, diagnostics, and content processing purposes.
The complete list of new getters in each class is shown below.

AnimationController:
int getRefWorldTime()

Graphics3D:
Object getTarget()
boolean isDepthBufferEnabled()
int getHints()
int getViewportX()
int getViewportY()
int getViewportWidth()
int getViewportHeight()
float getDepthRangeNear()
float getDepthRangeFar()
Camera getCamera()
int getLightCount()
Light getLight(int index, Transform transform)

IndexBuffer:
int getIndexCount()
void getIndices(int[] indices)

KeyframeSequence:
int getComponentCount()
int getKeyframeCount()
int getInterpolationType()
int getKeyframe(int index, float[] value)
int getValidRangeFirst()
int getValidRangeLast()

Node:
int getAlignmentTarget(int axis)
Node getAlignmentReference(int axis)

PolygonMode:
boolean isLocalCameraLightingEnabled()
boolean isPerspectiveCorrectionEnabled()

SkinnedMesh:
void getBoneTransform(Node bone, Transform transform)
int getBoneVertices(Node bone, int[] indices, float[] weights)

Texture2D:
int getLevelFilter()
int getImageFilter()

288 INTRODUCING M3G C H A P T E R 12

VertexArray:
int getVertexCount()
int getComponentCount()
int getComponentType()
void get(int firstVertex, int numVertices, byte[] values)
void get(int firstVertex, int numVertices, short[] values)

12.3.5 OTHER CHANGES

The other incompatibilities addressed in M3G 1.1 were very minor, and many of them
had been discovered by proofreading the specification, not because they would have posed
problems for developers. One thing perhaps worth mentioning is that the Loader now
treats file names as case sensitive; previously this was left ambiguous.

Finally, the new version relaxes error checking on situations where the added security
or diagnostic value of throwing an exception was questionable. For example, M3G 1.0
used to throw an exception if a polygon mesh had lighting enabled but was lacking nor-
mal vectors. Now, M3G 1.1 just leaves the normals undefined. Viewing the erroneously
shaded mesh on the screen probably makes it easier for the developer to figure out what
is wrong than getting an exception that may be caused by half a dozen other reasons.

13

C
H

A
P

T
E

R

BASIC M3G CONCEPTS

Now is the time to get your hands dirty and begin programming with M3G. To get started,
you will need a device that supports M3G; almost any mid-category or high-end phone
will do. For your development PC, you will need a software development kit (SDK) such
as the Java Wireless Toolkit by Sun Microsystems1 or Carbide.j by Nokia.2 We also recom-
mend that you download the official M3G 1.1 specification [JCP05], available as either
zipped HTML or PDF. Forum Nokia are also hosting an online, browser-friendly copy in
their Java ME Developers Library.3 More detailed instructions for setting up your devel-
opment environment are provided on the companion web site of this book.

The first thing that a well-behaved M3G application needs to do is to check the availability
of M3G, as it may not be present on some older devices. If M3G is available, its version
number should be verified, as many devices only support the 1.0 version. The examples in
this book are based on M3G 1.1; subtle changes may be needed in some cases to make the
code work robustly on a 1.0 implementation. The version number can be queried from
the system property microedition.m3g.version, as shown below:

String version = System.getProperty("microedition.m3g.version");
if (version == null) { ... } // M3G not supported
else if (version.equals("1.0")) { ... } // M3G 1.0

1 java.sun.com/products/sjwtoolkit/

2 www.forum.nokia.com/carbide

3 www.forum.nokia.com/ME_Developers_Library/

289

290 BASIC M3G CONCEPTS C H A P T E R 13

else if (version.equals("1.1")) { ... } // M3G 1.1
else { ... } // M3G 2.0+

Once you have confirmed that M3G is indeed supported on your target device, you can
go ahead and start using the javax.microedition.m3g package. The first class that
you are going to need from that package is most probably Graphics3D, and that is also
the logical starting point for learning the API.

13.1 Graphics3D

The only class in M3G that you cannot avoid if you want to draw anything at all is the
3D rendering context, Graphics3D. This is where all rendering and render target man-
agement takes place, so you can think of it as a combination of OpenGL ES and EGL.
It is a lot simpler, though, because most of the OpenGL ES state information is stored
elsewhere, leaving only the viewport, camera, lights, and a few hints to be managed by
Graphics3D. Most of EGL is not exposed at all. Instead, you just provide a render tar-
get, and all the complexities of managing surfaces and configurations are taken care of
under the hood.

13.1.1 RENDER TARGETS

There is only one instance of Graphics3D in the system, and that has been graciously
created for you in advance. All you need to do is to get a handle on that single object,
bind a rendering target to it, render your scene, and release the target. This is shown
in the example below. Since we have not yet discussed rendering, let us just clear the
screen:

void paint(Graphics graphics) {
Graphics3D g3d = Graphics3D.getInstance();
try {
g3d.bindTarget(graphics);
g3d.clear(null);

}
finally {
g3d.releaseTarget();

}
}

This example shows a typical scenario, in which you implement the paint callback
for your Canvas. A Canvas represents a displayable surface in MIDP that may or
may not be visible, and may or may not cover the entire display, but for all practical
purposes you can think of it as the screen. The rendering target that you bind is not
the Canvas itself, however, but its 2D rendering context, a Graphics object. This
is because a Canvas is guaranteed to have access to the frame buffer (or back buffer)

S E C T I O N 13 . 1 GRAPHICS3D 291

only when its Graphics is available to the application. Binding to a Graphics also
simplifies things for the developer: you can get a Graphics for off-screen images as
well, which means that your code will work unmodified for both on-screen and off-screen
targets. Rendering to a texture works the same way, except that you bind an Image2D
object (see Section 13.2) instead of a Graphics.

So what exactly happens when you bind and then later release a target? From the
developer’s point of view, nothing much: bindTarget simply flushes all 2D drawing
commands so that 3D rendering can proceed, and releaseTarget does the opposite.
As a result, the pre-existing contents of the target are nicely overlaid or overwritten by
the 3D scene. There are only three ground rules: First, do not touch the target while it
is bound, as that may yield unpredictable results. In particular, do not try to render any
2D graphics with MIDP. Second, do not assume anything about the contents of the depth
buffer after bindTarget, because the contents are undefined. Third, make sure that
your render target gets released no matter what exceptions occur, so that your applica-
tion has a chance to recover, or at least make a clean exit. The easiest way to do that is a
try—finally construct as shown in the example above.

If you care about performance, there are two more things to keep in mind. First, minimize
the number of render targets that you use. Binding to a new target may require setting up
a new OpenGL ES rendering context and/or a new back buffer. Second, minimize the
number of binds and releases that you do per frame. Every bind and release bears some
amount of overhead, and on hardware-accelerated devices that overhead can be dramatic.
The reasons boil down to the notoriously poor interworking of 2D and 3D rendering on
most Java ME implementations.

Synchronizing 2D and 3D

In a typical MIDP implementation, the font engine and all other 2D routines are running
on the CPU, and can only use a back buffer that resides in main memory, while the 3D
hardware can only use a back buffer that resides in its local memory. The 2D back buffer
is copied from the main memory to the graphics memory at each bindTarget, and a
reverse copy takes place at each releaseTarget. The extra copying is bad in itself, but
the hidden penalties are even worse. First of all, reading the 3D frame buffer defeats all
parallelism among the CPU and the different stages of the GPU. As explained in Section
3.6, this can cut two-thirds of the potential performance. Second, the only way to copy the
2D back buffer into the 3D back buffer may be to upload it into an OpenGL ES texture
and then render a full-screen quad mapped with that texture. Texture uploading is a very
costly operation on some architectures.

There is no sure-fire way to completely avoid the expensive 2D/3D synchronization points
on all devices; sometimes all you can do is to give some hints to MIDP and M3G and
then cross your fingers, hoping for the best. A reasonably good advice is to make your
application pure, full-screen 3D: keep yourCanvas in full-screen mode, and do not allow

292 BASIC M3G CONCEPTS C H A P T E R 13

anything other than M3G to access it. The best and most explicit hint you can provide,
however, is the OVERWRITE flag at bindTarget:

g3d.bindTarget(graphics, ..., Graphics3D.OVERWRITE);

This tells the implementation not to burn cycles on preserving the pre-existing contents of
the 2D back buffer. We have observed frame rates increasing two-, three-, even five-fold on
some devices just because of this. The OVERWRITE hint is only available since M3G 1.1,
but some 1.0 devices provide an indirect means to achieve the same effect: just clear the
entire screen before drawing anything. The implementation may then conclude that the
2D back buffer does not have to be copied in, as it will be completely cleared anyway.

Antialiasing and dithering

There are three other hint bits available in Graphics3D besides OVERWRITE. If you
want to use more than one of them at a time, you need to bitwise-OR them together:

int hints = Graphics3D.OVERWRITE | Graphics3D.ANTIALIAS;
g3d.bindTarget(graphics, ..., hints);

This example shows the overwrite hint combined with ANTIALIAS, requesting the
implementation to turn on antialiasing if possible, even at the expense of reduced per-
formance. No specific method of antialiasing is mandated, but some form of full-scene
antialiasing (FSAA) is recommended, and in practice the industry has converged on
multisampling (see Section 3.4.5). There are very few devices on the market that sup-
port any kind of antialiasing, as not even all the hardware-accelerated models can do
it, but those few devices do a pretty good job at it. They achieve good quality without
much performance overhead, so we recommend that you at least try the ANTIALIAS
hint. To find out if antialiasing is supported on your target platform, use the static
Graphics3D.getProperties method (see Section 13.1.4).

The remaining two hint bits in Graphics3D are DITHER and TRUE_COLOR. The for-
mer turns on dithering to increase the apparent color depth of the display (see
Section 3.5.3). The latter instructs the renderer to use its maximum internal color pre-
cision, even if the display can only reproduce, say, 256 or 4096 colors. These hints seemed
useful back in 2002, but the incredibly fast development of color displays soon made
them obsolete—no M3G-enabled device ever shipped with less than 65K colors! Today,
most implementations render in true color regardless of the display color depth or the
TRUE_COLOR hint, and any dithering takes place automatically at the display controller,
also regardless of the DITHER hint.

Disabling the depth buffer

One final thing to mention about bindTarget is the depth buffer enable flag:

boolean enableDepthBuffer = false;
g3d.bindTarget(graphics, enableDepthBuffer, hints);

S E C T I O N 13 . 1 GRAPHICS3D 293

This lets you disable depth buffering at the outset if you are drawing some very simple
content that is independent of rendering order, or if you are resolving the visibility by
yourself, such as when using a height map for simple terrain rendering. The implemen-
tation can then decide not to allocate a depth buffer at all, saving some 150K bytes
of memory on the typical quarter-VGA device. Those savings may not be realized in
practice, though. Situations where depth buffering is not needed are so few and far
between that M3G implementations generally allocate the buffer just in case. Besides,
depth buffering is typically very efficient, particularly on hardware implementations, and
things may only slow down if you come up with clever tricks to avoid it.

13.1.2 VIEWPORT

M3G rendering does not necessarily affect the entire rendering target. The area that will
be rendered to is determined by the intersection of the viewport defined in Graphics3D
and the clipping rectangle defined inGraphics.Image2D targets do not have a clipping
rectangle, so the renderable area is defined by the viewport alone. If you go with the default
settings in Graphics3D, the viewport will cover the entire Canvas, which is usually a
good thing. If you nonetheless want to restrict your rendering to some rectangular sub-
area of the screen, you need to call thesetViewportmethod afterbindTarget. Note
that you will have to do that every frame, as bindTarget resets the viewport back to
its default, full-screen state.

As described in Section 2.6, the viewport transformation maps vertices from normalized
device coordinates (NDC) to screen or window coordinates. The mapping is parame-
terized by the width, height, and top-left corner of the viewport, all specified in screen
pixels. To illustrate, let us expand our earlier screen clearing example so that the top half
is cleared with the red color and the bottom half with blue. This is done by setting up a
Background object and supplying it as a parameter to clear:

int width = graphics.getClipWidth();
int height = graphics.getClipHeight();
try {
g3d.bindTarget(graphics, true, hints);
g3d.setViewport(0, 0, width, height/2); // top half
myBackground.setColor(0x00FF0000); // red in 0xARGB format
g3d.clear(myBackground);
g3d.setViewport(0, height/2, width, height); // bottom half
myBackground.setColor(0x000000FF); // blue
g3d.clear(myBackground);

} ...

The Background class is pretty self-explanatory. It defines whether and how the view-
port and the corresponding area in the depth buffer are cleared. In this example we used a
constant clear color, but with a few more lines of code we could have used a tiled or scaled
background image; see Section 14.4.1 for details.

294 BASIC M3G CONCEPTS C H A P T E R 13

Performance tip: On hardware-accelerated devices, it is a good idea to clear the color
buffer and depth buffer completely and in one go, even if the whole screen will be
redrawn. Various hardware optimizations can only be enabled when starting from a
clean table, and some devices can clear the screen by just flipping a bit. Even with soft-
ware implementations, clearing everything is typically faster than clearing a slightly
smaller viewport.

Note that the viewport need not lie inside the render target; it can even be larger than
the render target. The view that you render is automatically scaled to fit the viewport.
For example, if you have a viewport of 1024 by 1024 pixels on a QVGA screen, you will
only see about 7% of the rendered image (the nonvisible parts are not really rendered, of
course, so there is no performance penalty); see the code example in Section 13.1.4. The
maximum size allowed for the viewport does not depend on the type of rendering target,
but only on the implementation. All implementations are required to support viewports
up to 256 by 256 pixels, but in practice the upper bound is 1024 by 1024 or higher. The
exact limit can be queried from Graphics3D.getProperties.

Pitfall: Contrary to OpenGL ES, there is no separate function for setting the scissor rect-
angle (see Section 3.5). Instead, the scissor rectangle is implicitly defined as the inter-
section of the viewport and the Graphics clipping rectangle.

A concept closely related to the viewport is the depth range, set by
setDepthRange(float near, float far), where near and far are in the range [0, 1].
Similar to the viewport, the depth range also defines a mapping from normalized device
coordinates to screen coordinates, only this time the screen coordinates are depth values
that lie in the [0, 1] range. Section 2.6 gives insight on the depth range and how it can be
used to make better use of the depth buffer resolution or to speed up your application.

13.1.3 RENDERING

As we move toward more ambitious goals than merely clearing the screen, the next
step is to render some 3D content. For simplicity, let us just assume that we have mag-
ically come into possession of a complete 3D scene that is all set up for rendering.
In case of M3G, this means that we have a World object, which is the root node of
the scene graph and includes by reference all the cameras, lights, and polygon meshes
that we need. To render a full-screen view of the world, all we need to do within the
bindTarget-releaseTarget block is this:

g3d.render(myWorld);

This takes care of clearing the depth buffer and color buffer, setting up the camera and
lights, and finally rendering everything that there is to render. This is called retained-mode
rendering, because all the information necessary for rendering is retained by the World

S E C T I O N 13 . 1 GRAPHICS3D 295

and its descendants in the scene graph. In the immediate mode, you would first clear
the screen, then set up the camera and lights, and finally draw your meshes one by one
in a loop.

The retained mode and immediate mode are designed so that you can easily mix and
match them in the same application. Although the retained mode has less overhead on
the Java side, and is generally recommended, it may sometimes be more convenient to
handle overlays, particle effects, or the player character, for instance, separately from the
rest of the scene. To ease the transition from retained mode to immediate mode at the end
of the frame, the camera and lights of the World are automatically set up as the current
camera and lights in Graphics3D, overwriting the previous settings.

The projection matrix (see Chapter 2) is defined in a Camera object, which in turn is
attached to Graphics3D using setCamera(Camera camera, Transform trans-
form). The latter parameter specifies the transformation from camera space, also known
as eye space or view space, into world space. The Camera class is described in detail in
Section 14.3.1. For now, it suffices to say that it allows you to set an arbitrary 4×4 matrix,
but also provides convenient methods for defining the typical perspective and parallel
projections. The following example defines a perspective projection with a 60◦ vertical
field of view and the same aspect ratio as the Canvas that we are rendering to:

Camera camera = new Camera();
float width = myCanvas.getWidth();
float height = myCanvas.getHeight();
camera.setPerspective(60.0f, width/height, 10.0f, 500.0f);
g3d.setCamera(camera, null);

Note that we callsetCamerawith thetransform parameter set tonull. As a general
principle in M3G, a null transformation is treated as identity, which in this case implies
that the camera is sitting at the world-space origin, looking toward the negative Z axis
with Y pointing up.

Light sources are set up similarly to the camera, using addLight(Light light,Trans-
form transform). The transform parameter again specifies the transformation from local
coordinates to world space. Lighting is discussed in Section 14.3.2, but for the sake of
illustration, let us set up a single directional white light that shines in the direction at
which our camera is pointing:

Light light = new Light();
g3d.addLight(light, null);

Now that the camera and lights are all set up, we can proceed with rendering. There are
three differentrender methods in immediate mode, one having a higher level of abs-
traction than the other two. The high-level method render(Node node, Transform
transform) draws an individual object or scene graph branch. You can go as far as ren-
dering an entire World with it, as long as the camera and lights are properly set up in

296 BASIC M3G CONCEPTS C H A P T E R 13

Graphics3D. For instance, viewing myWorld with the camera that we just placed at
the world space origin is as simple as this:

g3d.render(myWorld, null);

Of course, the typical way of using this method is to draw individual meshes rather
than entire scenes, but that decision is up to you. The low-level render methods, on
the other hand, are restricted to drawing a single triangle mesh. The mesh is defined
by a vertex buffer, an index buffer, and an appearance. As with the camera and lights, a
transformation from model space to world space must be given as the final parameter:

g3d.render(myVertices, myIndices, myAppearance, myTransform);

The other render variant is similar, but takes in an integer scope mask as an additional
parameter. The scope mask is bitwise-ANDed with the corresponding mask of the current
camera, and the mesh is rendered if and only if the result is non-zero. The same applies for
lights. The scope mask is discussed further in Chapter 15, as it is more useful in retained
mode than in immediate mode.

13.1.4 STATIC PROPERTIES

We mentioned in Section 12.2 that there is a static getter for retrieving implementation-
specific information, such as whether antialiasing is supported. This special getter is
defined in Graphics3D, and is called getProperties. It returns a java.util.
Hashtable that contains Integer and Boolean values keyed by Strings. The
static properties, along with some helpful notes, are listed in Table 13.1. To illustrate the
use of static properties, let us create a viewport that is as large as the implementation
can support, and use it to zoom in on a high-resolution rendering of myWorld:

Hashtable properties = Graphics3D.getProperties();
maxViewport = ((Integer)properties.get("maxViewportDimension")).

intValue();
...
g3d.bindTarget(graphics, true, hints);
int topLeftX = —(maxViewport — graphics.getClipWidth())/2;
int topLeftY = —(maxViewport — graphics.getClipHeight())/2;
g3d.setViewport(topLeftX, topLeftY, maxViewport, maxViewport);
g3d.render(myWorld);
g3d.releaseTarget();

We first query for maxViewportDimension from the Hashtable. The value is
returned as a java.lang.Object, which we need to cast into an Integer and
then convert into a primitive int before we can use it in computations. Later on, at the
paint method, we set the viewport to its maximum size, so that our Canvas lies at
its center. Assuming a QVGA screen and a 1024-pixel-square viewport, we would have
a zoom factor of about 14. The zoomed-in view can be easily panned by adjusting the
top-left X and Y.

S E C T I O N 13 . 2 IMAGE2D 297

Tab le 13.1: The system properties contained in the Hashtable returned by Graphics3D.getProperties.
There may be other properties, as well, but they are not standardized.

Key (String) Value Notes

supportAntialiasing Boolean true on some hardware-accelerated devices

supportTrueColor Boolean false on all devices that we know of

supportDithering Boolean false on all devices that we know of

supportMipmapping Boolean false on surprisingly many devices

supportPerspectiveCorrection Boolean true on all devices, but quality varies

supportLocalCameraLighting Boolean false on almost all devices

maxLights Integer ≥ 8 typically 8

maxViewportWidth Integer ≥ 256 typically 256 or 1024; M3G 1.1 only

maxViewportHeight Integer ≥ 256 typically 256 or 1024; M3G 1.1 only

maxViewportDimension Integer ≥ 256 typically 256 or 1024

maxTextureDimension Integer ≥ 256 typically 256 or 1024

maxSpriteCropDimension Integer ≥ 256 typically 256 or 1024

maxTransformsPerVertex Integer ≥ 2 typically 2, 3, or 4

numTextureUnits Integer ≥ 1 typically 2

13.2 Image2D

There are a few cases where M3G deals with 2D image data. Texturing, sprites, and
background images need images as sources, and rendering to any of them is also
supported.

Image2D, as the name suggests, stores a 2D array of image data. It is similar in many
respects to the javax.microedition.lcdui.Image class, but the important dif-
ference is that Image2D objects are fully managed by M3G. This lets M3G implementa-
tions achieve better performance, as there is no need to synchronize with the 2D drawing
functions in MIDP.

Similarly to the MIDP Image, an Image2D object can be either mutable or immutable.
To create an immutable image, you must supply the image data in the constructor:

Image2D(int format, int width, int height, byte[] image)

The format parameter specifies the type of the image data: it can be one of ALPHA,
LUMINANCE, LUMINANCE_ALPHA, RGB, and RGBA. The width and height parame-
ters determine the size of the image, and the image array contains data for a total of
width×height pixels. The layout of each pixel is determined by format: each image com-
ponent takes one byte and the components are interleaved. For example, the data for

298 BASIC M3G CONCEPTS C H A P T E R 13

a LUMINANCE_ALPHA image would consist of two bytes giving the luminance and
alpha of the first pixel, followed by two bytes giving the luminance and alpha of
the second pixel, and so on. The pixels are ordered top-down and left to right, i.e.,
the first width pixels provide the topmost row of the image starting from the left.
Upon calling the constructor, the data is copied into internal memory allocated by
M3G, allowing you to discard or reuse the source array. Note that while the image is
input upside-down compared to OpenGL ES (Section 9.2.2), the t texture coordinate
is similarly reversed, so the net effect is that you can use the same texture images
and coordinates on both OpenGL ES and M3G.

Unfortunately, there is no support in M3G for packed image formats, such as RGB565.
This is partially because OpenGL ES does not give any guarantees regarding the internal
color depth of a texture image, but also because the image formats were intentionally
kept few and simple. In retrospect, being able to input the image data in a packed format
would have been useful in its own right, regardless of what happens when the image is
sent to OpenGL ES.

As a form of image compression, you can also create a paletted image:

Image2D(int format, int width, int height, byte[] image, byte[] palette)

Here, the only difference is that the image array contains one-byte indices into the palette
array, which stores up to 256 color values. The layout of the color values is again as indi-
cated by format. There is no guarantee that the implementation will internally maintain
the image in the paletted format, though.

Pitfall: The amount of memory that an Image2D consumes is hard to predict.
Depending on the device, non-palletized RGB and RGBA images may be stored at 16
or 32 bits per pixel, while palletized images are sometimes expanded from 8 bpp to
16 or 32 bpp. Some implementations always generate the mipmap pyramid, consum-
ing 33% extra memory. Some devices need to store two copies of each image: one in
the GL driver, the other on the M3G side. Finally, all or part of this memory may be
allocated from somewhere other than the Java heap. This means that you can run out
of memory even if the Java heap has plenty of free space! You can try to detect this
case by using smaller images. As for remedies, specific texture formats may be more
space-efficient than others, but you should refer to the developer pages of the device
manufacturers for details.

A third constructor lets you copy the data from a MIDP Image:

Image2D(int format, java.lang.Object image)

Note that the destination format is explicitly specified. The source format is either RGB
or RGBA, for mutable and immutable MIDP images, respectively. Upon copying the
data, M3G automatically converts it from the source format into the destination format.

S E C T I O N 13 . 2 IMAGE2D 299

As a general rule, the conversion happens by copying the respective components of the
source image and setting any missing components to 1.0 (or 0xFF for 8-bit colors). A cou-
ple of special cases deserve to be mentioned. When converting an RGB or RGBA source
image into LUMINANCE or LUMINANCE_ALPHA, the luminance channel is obtained
by converting the RGB values into grayscale. A similar conversion is done when convert-
ing an RGB image into ALPHA. This lets you read an alpha mask from a regular PNG
or JPEG image through Image.createImage, or create one with the 2D drawing
functions of MIDP, for example.

Often the most convenient way to create an Image2D is to load it from a file. You can
do that with the Loader, as discussed in Section 13.5. All implementations are required
to support the M3G and PNG formats, but JPEG is often supported as well.4 Loading
an image file yields a new Image2D whose format matches that of the image stored in
the file. JPEG can do both color and grayscale, yielding the internal formats RGB and
LUMINANCE, respectively, but has no concept of transparency or alpha. PNG supports
all of the Image2D formats except for ALPHA. It has a palletized format, too, but unfor-
tunately the on-device PNG loaders tend to expand such data into raw RGB or RGBA
before it ever reaches the Image2D. M3G files obviously support all the available for-
mats, including those with a palette.

Pitfall: The various forms of transparency supported by PNG are hard to get right.
For example, the M3G loader in some early Nokia models (e.g., the 6630), does not
support any form of PNG transparency, whereas some later models (e.g., the 6680)
support the alpha channel but not color-keying. Possible workarounds include using
Image.createImage or switching from PNG files to M3G files. These issues have
been resolved in M3G 1.1; see Section 12.3.

Finally, you can create a mutable Image2D:

Image2D(int format, int width, int height)

The image is initialized to opaque white by default. It can be subsequently modified by
using set(int x, int y, int width, int height, byte[] pixels). This method copies
a rectangle of width by height pixels into the image, starting at the pixel at (x, y) and
proceeding to the right and down. The origin for the Image2D is in its top left corner.

A mutable Image2D can also be bound to Graphics3D as a rendering target. The
image can still be used like an immutable Image2D. This lets you, for example, render
dynamic reflections or create feedback effects.

4 JPEG support is in fact required by the Mobile Service Architecture (MSA) specification, also known as
JSR 248. MSA is an umbrella JSR that aims to unify the Java ME platform.

300 BASIC M3G CONCEPTS C H A P T E R 13

Tab le 13.2: The available Image2D formats and their capabilities. The shaded cells show the capabilities of most

devices, as these cases are not dictated by the specification. Mipmapping is entirely optional, and palletized images may
be silently expanded into the corresponding raw formats, typically RGB. Most devices support mipmapping and palletized
images otherwise, but will not generate mipmaps for palletized textures, nor load a palletized PNG without expanding it.
There are some devices that can do better, though. Finally, note that JPEG does not support the alpha channel, and that
PNG does not support images with only an alpha channel.

Load
from
M3G

Load
from
PNG

Load
from
JPEG

Copy
from

Image

Render
Target

Back-
ground

Mutable Texture Mipmap Sprite

ALPHA � � � � � � � � �

LUMINANCE � � � � � � � � �

LUM_ALPHA � � � � � � � � � �

RGB � � � � � � � � � �

RGBA � � � � � � � � � �

Palette � � � � � � � �� �� � �

�

�

� �

�

Performance tip: Beware that updating an Image2D, whether done by rendering or
through the setter, can be a very costly operation. For example, the internal format
and layout of the image may not be the same as in the set method, requiring heavy
conversion and pixel reordering. If your frame rate or memory usage on a particular
device is not what you would expect, try using immutable images only.

While Image2D is a general-purpose class as such, there are various restrictions on what
kind of images can be used for a specific purpose. For example, textures must have power-
of-two dimensions, and render targets can only be in RGB or RGBA formats. Table 13.2
summarizes the capabilities and restrictions of the different Image2D formats.

13.3 MATRICES AND TRANSFORMATIONS

One of the most frequently asked questions about M3G is the difference between
Transform and Transformable. The short answer is that Transform is a sim-
ple container for a 4 × 4 matrix with no inherent meaning, essentially a float array
wrapped into an object, whereas Transformable stores such a matrix in a compo-
nentized, animatable form, and for a particular purpose: constructing the modelview
matrix or the texture matrix. The rest of this section provides the long answer.

13.3.1 Transform

Transform stores an arbitrary 4× 4 matrix and defines a set of basic utility functions
for operating on such matrices. You can initialize a Transform to identity, copy it in

S E C T I O N 13 . 3 MATRICES AND TRANSFORMATIONS 301

from another Transform, or copy it from a float[] in row-major order (note that
this is different from OpenGL ES, which uses the unintuitive column-major ordering).
setIdentity resets a Transform back to its default state, facilitating object reuse.

Creating a matrix

To give an example, the following code fragment creates a matrix with a uniform scaling
component [2 2 2] and a translation component [3 4 5]. In other words, a vector
multiplied by this matrix is first scaled by a factor of two, then moved by three units
along the x axis, four units along y, and five units along z:

Transform myTransform = new Transform();
myTransform.set(new float[] { 2f, 0f, 0f, 3f,

0f, 2f, 0f, 4f,
0f, 0f, 2f, 5f,
0f, 0f, 0f, 1f });

Matrix operations

Once you have created a Transform, you can start applying some basic arithmetic
functions to it: You cantranspose the matrix (M ′ = MT),invert it (M ′ = M−1),
or multiply it with another matrix (M ′ = M A). Note that each of these operations
overwrites the pre-existing value of the Transform with the result (M ′). The matrix
multiplication functions come in several flavors:

void postMultiply(Transform transform)

void postScale(float sx, float sy, float sz)

void postTranslate(float tx, float ty, float tz)

void postRotate(float angle, float ax, float ay, float az)

void postRotateQuat(float qx, float qy, float qz, float qw)

The post prefix indicates that the matrix is multiplied from the right by the given matrix
(e.g., M ′ = M A); pre would mean multiplying from the left (e.g., M ′ = A M), but
there are no such methods in Transform. Going through the list of methods above,
the first three probably need no deeper explanation. The rotation method comes in two
varieties:postRotateQuat uses a quaternion to represent the rotation (see Section
2.3.1), whereas postRotate uses the axis-angle format: looking along the positive
rotation axis

[
ax ay az

]
, the rotation is angle degrees clockwise.

To make things more concrete, let us use postScale and postTranslate to con-
struct the same matrix that we typed in manually in the previous example:

Transform myTransform = new Transform();
myTransform.postTranslate(3f, 4f, 5f);
myTransform.postScale(2f, 2f, 2f);

302 BASIC M3G CONCEPTS C H A P T E R 13

Transforming vertices

As in OpenGL, you should think that the matrix operations apply to vertices in the
reverse order that they are written. If you apply the transformation T S to a vertex v,
the vertex is first scaled and then translated: T (S v). Let us write out the matrices and
confirm that the above code fragment does indeed yield the correct result:

M′ = I T S =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 3

0 1 0 4

0 0 1 5

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2 0 0 3

0 2 0 4

0 0 2 5

0 0 0 1

⎤
⎥⎥⎥⎦

One of the most obvious things to do with a transformation matrix is to transform
an array of vectors with it. The Transform class defines two convenience methods
for this purpose. The first, transform(float[] vectors) multiplies each 4-element
vector in the vectors array by this matrix and overwrites the original vectors with the
results (v′ = M v, where v is a column vector). The other transform variant is a bit
more complicated:

void transform(VertexArray in, float[] out, boolean w)

Here, we take in 2D or 3D vectors in a VertexArray, set the fourth component to zero
or one depending on the w parameter, and write the transformed 4-element vectors to
the out array. The input array remains unmodified.

The transform methods are provided mostly for convenience, as they play no role in
rendering or any other function of the API. Nonetheless, if you have a large number of vec-
tors that you need to multiply with a matrix for whatever purpose, these built-in methods
are likely to perform better than doing the same thing in Java code. The VertexArray
variant also serves a more peculiar purpose: it is the only way to read back vertices from a
VertexArray on many devices, as the necessary VertexArray.get methods were
only added in M3G 1.1.

Other use cases

Now that you know how to set up Transform objects and use them to transform ver-
tices, let us look at what else you can use them for. First of all, in Graphics3D you
need them to specify the local-to-world transformations of the immediate-mode camera,
lights, and meshes. In both immediate mode and retained mode, you need a Transform
to set up an oblique or otherwise special projection in Camera, or any kind of projec-
tion for texture coordinates in Texture2D. Finally, you can (but do not have to) use a
Transform in the local-to-parent transformation of a Node. Each of these cases will
come up later on in this book.

S E C T I O N 13 . 3 MATRICES AND TRANSFORMATIONS 303

13.3.2 Transformable

Transformable is an abstract base class for the scene graph objects Node and
Texture2D. Conceptually, it is a 4 × 4 matrix representing a node transformation or a
texture coordinate transformation. The matrix is made up of four components that can be
manipulated separately: translation T, orientation R, scale S, and a generic 4 × 4 matrix
M. During rendering, and otherwise when necessary, M3G multiplies the components
together to yield the composite transformation:

C = T R S M (13.1)

A homogeneous vector p =
[

x y z w
]T

, representing a vertex coordinate or texture

coordinate, is then transformed into p′ =
[

x ′ y ′ z ′ w ′]T
by:

p′ = C p (13.2)

The components are kept separate so that they can be controlled and animated indepen-
dent of each other and independent of their previous values. For example, it makes no
difference whether you first adjust S and then T, or vice versa; the only thing that matters
is what values the components have when C needs to be recomputed. Contrast this with
the corresponding operations in Transform, which are in fact matrix multiplications
and thus very much order-dependent.

Note that for node transformations, the bottom row of the M component is restricted
to [0 0 0 1]—in other words, projections are not allowed in the scene graph. Texture
matrices do not have this limitation, so projective texture mapping is fully supported (see
Section 3.4.3).

Methods

The following four methods in Transformable allow you to set the transformation
components:

void setTranslation(float tx, float ty, float tz)

void setOrientation(float angle, float ax, float ay, float az)

void setScale(float sx, float sy, float sz)

void setTransform(Transform transform)

The complementary methods,translate,preRotate,postRotate, and scale,
each modify the current value of the respective component by applying an additional
translation, rotation, or scaling. The user-provided rotation can be applied to the left

304 BASIC M3G CONCEPTS C H A P T E R 13

(pre) or to the right (post) of the current R; scaling and translation are
order-independent. These methods take the same parameters as their setter counterparts.

Transformable also defines a getter for each of the four components, as well as for
the composite transformation C:

void getTranslation(float[] translation)

void getOrientation(float[] angleAxis)

void getScale(float[] scale)

void getTransform(Transform transform)

void getCompositeTransform(Transform transform)

Note that there is indeed only one getter for each component, not separate ones for tx,
ty, tz, angle, and so on. Consistent with the API conventions, the values are filled in to a
float array or Transform object designated by the user, thus facilitating object reuse.

Rotations

Rotations in Transformable are specified in the axis-angle format, which is very
intuitive, but unfortunately less robust and sometimes less convenient than quaternions.
There are no utility methods in the API to convert between the two representations, but
luckily this is quite simple to do in your own code. Denoting a normalized axis-angle
pair by [â θ] = [ax ay az θ], and a unit quaternion by q̂ = [qv qw] = [qx qy qz qw], the
conversions are as follows:

[qv qw] = [â sin(θ/2) cos(θ/2)] (13.3)

[â θ] =
[

qv/
√

1 − qw
2 2 acos(qw)

]
. (13.4)

Both formulas assume the input axis or quaternion to be normalized, and will produce
normalized output. If the axis-angle output is intended for M3G, however, you do not need
to normalize the axis because M3G will do that in any case. You may therefore skip the
square root term, yielding a significantly faster conversion from quaternion to axis-angle:

[a θ] = [qv 2 acos(qw)]. (13.5)

In other words, only the rotation angle needs to be computed, because qv can be used as
the rotation axis as such. Remember that the angle needs to be degrees, and if your acos()
returns the angle in radians, the resulting θ must be multiplied with $180/π. Note that the
input quaternion must still be normalized, or else acos(qw) will yield an incorrect value
for θ. A quaternion can be normalized just like any other vector:

q̂ = q/
√

qx
2 + qy

2 + qz
2 + qw

2. (13.6)

S E C T I O N 13 . 3 MATRICES AND TRANSFORMATIONS 305

Pitfall: Due to the unfortunate lack of inverse trigonometric functions in mobile Java,
you will have to write an acos routine yourself, or download one from the web. In
any case, ensure that the routine has sufficient precision, or otherwise you will not get
smooth animation.

Pivot transformations

The scale, orientation, and translation components are not sufficient to fully represent
affine transformations (that is, all 3 × 4 matrices). For that, we would also need scale ori-
entation O and pivot translation P. Scale orientation provides for scaling along arbitrary
orthonormal axes, rather than just the primary axes. Pivot translation allows any 3D point
to be set as the center of rotation, instead of just the origin. The composite transformation
would then become

C = T P R P−1 O S O−1 M (13.7)

Scale orientation and pivot translation were omitted from M3G, because they are rarely
needed in practice. They would also add substantial storage and processing overhead to
scene graph nodes, even when not used. If you do need a full affine transformation, how-
ever, you can composite one in your own code, and feed it in as the generic M compo-
nent. This works for both texture transformations and node transformations. For node
transformations, you have an easier alternative: use some extra Group nodes and split the
transformation into multiple parts, depending on which components you need to control
separately. Typically, P and O remain constant, while the translation, rotation, and scale
are animated. In this case, you could assign the components into one extra Group and
the original leaf node as shown in Figure 13.1. Note that T and P are combined into TA.

Group A

Node B

TA 5 T P
RA 5 R
SA 5 I
MA5 I

TB 5 P21

RB 5 O
SB 5 S
MB5 O21

F igure 13.1: Using an extra Group node to implement rotation around a pivot point (P R P−1) and
oriented scaling (O S O−1).

306 BASIC M3G CONCEPTS C H A P T E R 13

This works fine withtranslate, but if you usesetTranslation, you must remem-
ber to factor in the pivot translation.

13.4 Object3D

Object3D is an abstract base class for all objects that can be part of a 3D scene. As
shown in Figure 12.3, all but four classes in the whole API are derived from Object3D.
It defines properties and capabilities that are common to all scene graph objects, including
the ability to be keyframe-animated, duplicated, or imported from a file.

13.4.1 ANIMATING

Arguably the single most powerful method in Object3D is animate(int time),
which invokes the built-in keyframe animation system. The animate method first
updates all animated properties in the Object3D that it is called on, then in all
Object3Ds that are referenced from it, and so on in a recursive manner. In other words,
animate updates all objects that are reachable from the initial object by following a
chain of references. There are two kinds of references that are not followed, though:
those that go upward in the scene graph, and those that go sideways, jumping from
one branch to another. This is all very intuitive—if you animate a particular branch
of the scene graph, you expect all objects in that branch to be updated, not just the
root node. On the other hand, you do not expect the rest of the scene to be animated
with it.

Recalling thatWorld is derived fromObject3D, and correctly deducing that there must
be a chain of references from a World object to everything in the scene graph, it follows
that we can animate an entire scene with this single line of code:

myWorld.animate(myWorldTime);

This updates all animated properties in myWorld to the given time. You can then render
the updated scene as such, or further animate it using ordinary Java code. animate is
typically called once per frame, and the world time increased by the number of millisec-
onds elapsed since the previous frame. The keyframe animation system is described in
detail in Chapter 16.

13.4.2 ITERATING AND CLONING

There are three other methods in Object3D that follow the same principles of traversing
the scene graph as animate. Let us start with getReferences, which helps you
iterate through the scene graph in your own code:

int getReferences(Object3D[] references)

S E C T I O N 13 . 4 OBJECT3D 307

This method retrieves all objects that are directly referenced by an Object3D, again
not including references to parent nodes or other branches. The integer return value
tells you how many such direct references there are. Typically you would first invoke
getReferences(null) to get the number of references, then allocate an array of
sufficient size and call the method again to get the list of objects. Note that there may be
duplicate objects in the list, as each reference is treated separately.

To illustrate a case when getReferences is highly useful, consider the following
utility method that retrieves all objects of the given class type that are reachable from
the given root object, eliminating duplicates along the way. For example, to retrieve all
cameras in the scene, you would call getUniqueObjects(cameras, myWorld,
Class.forName("javax.microedition.m3g.Camera")), just making sure
that the cameras array is large enough.

// A recursive method to find all Object3Ds of given ’type’ that
// are reachable from ’root’. Returns the number of unique,
// matching objects and inserts them into the ’found’ array.
// This method is not very efficient: it takes O(N^2) time and
// O(N) memory, where N is the number of objects traversed.
// On the other hand, finding objects in the scene graph is
// typically a one−off process.
//
int getUniqueObjects(Object3D[] found, Object3D root, Class type)
{
int i, numUnique = 0;

// Retrieve the scene graph objects that are directly referenced
// by ’root’ and process them recursively. Note that we create
// a new ’references’ array at each step of the recursion; this
// is not recommended as a general practice, but in this case we
// are favoring brevity and clarity over efficiency.
//
Object3D[] references = new Object3D[root.getReferences(null)];
root.getReferences(references);
for (i=0; i < references.length; i++) {
numUnique += getUniqueObjects(found, references[i], type);

}

// Check whether ’root’ is an instance of ’type’, and if so,
// insert it at the end of the ’found’ array, provided that
// there is at least one empty slot left. Then loop through
// the array, checking if ’root’ has been inserted before.
// If not, we let it remain in the array and increase the
// count of unique objects by one.
//
if (type.isAssignableFrom(root.getClass()) &&

numUnique < found.length) {
found[numUnique] = root;
for (i=0; found[i] != root; i++);

308 BASIC M3G CONCEPTS C H A P T E R 13

if (i == numUnique) numUnique++;
}
return numUnique;

}

That is just fifteen lines of code, excluding comments, of which only five are spent actually
traversing the scene graph. If it were not for getReferences, those five lines would be
replaced with a horrendous switch-case construct, probably using up several hun-
dred lines of code.

The second utility method in Object3D that deals with chains of references is
duplicate. This method creates a copy of the object that it is called on. For most
objects that amounts to a shallow copy, in which the instance variables and references are
copied, but the referenced objects themselves are not. However, for non-leaf scene graph
nodes, a deep copy is necessary to maintain the integrity of the duplicated scene graph
branch. Given the rule that scene graph nodes can have at most one parent in M3G, how
should we go about cloning a Group node, for instance? The children of that group can-
not be in both the new and the old group at the same time, so there are two choices:
leave the new group empty, or clone the entire subtree. M3G does the latter, because cre-
ating a “duplicate” that has none of the original contents would be rather misleading
and pointless.

Now that you know how duplicate works, you may wonder why it has to exist in the
first place. We already have clone in java.lang.Object, right? Wrong: there is no
clone in CLDC/MIDP. It does exist on the higher-end CDC platform, though, and may
some day exist on CLDC. On such platforms,Object3Dwill include both duplicate
and clone. However, the behavior of clone on Object3D and its derived classes is
left undefined in the M3G specification, so we recommend using duplicate instead.

13.4.3 TAGS AND ANNOTATIONS

The one remaining scene graph traversal method, find(int userID), is best utilized
together with the M3G file format. Importing content from .m3g files is discussed in the
next section, but what is important for understanding the benefits of find is that since
you can load an arbitrarily large number of objects in one go, locating the objects that you
need may be difficult. If there are a thousand meshes in the scene, how do you identify the
flashlight object that your player character should be able to pick up? That is when find
and userID come in handy.

Finding objects by ID

Despite being just a simple integer, the userID is a very powerful tool that allows
the graphics designer and application programmer to synchronize their work. First, the
designer assigns a unique userID for each object that needs individual treatment at

S E C T I O N 13 . 4 OBJECT3D 309

runtime. For instance, the player character might be tagged with the ID 1000, her right
hand with 1010, and different items that she can hold with IDs 2000-2010. The designer
then exports the 3D scene into a .m3g file. Finally, at runtime, the scene is loaded in and
the relevant objects retrieved using find:

Node player = (Node)myWorld.find(1000);
Node playerRightHand = (Node)player.find(1010);
Mesh flashlight = (Mesh)myWorld.find(2000);
...
Mesh knife = (Mesh)myWorld.find(2010);

Formally, Object3D.find retrieves the first Object3D that has the given userID
and is reachable from the object where the search is started. The definition of being reach-
able is the same as with animate.

Adding metadata

The UserObject is another mechanism that allows the designer to communicate
with the runtime engine. The user object is simply an arbitrary block of metadata that
can be associated with any scene graph object. The interpretation of that metadata is
up to you; M3G itself never touches the user object. You can associate a user object
with an Object3D either at runtime, in which case it can be anything derived from
java.lang. Object, or through the M3G file format, in which case it will be a
java.util.Hashtable filled with byte[] elements that are keyed by Integers.
It is then up to the application to parse the byte arrays to extract their meaning.

Advanced annotations

As an advanced example that leverages both the UserID and the UserObject, let us
associate symbolic names with those bones of a SkinnedMesh that we need to manipu-
late at runtime. The names of the bones have been agreed on by the designer and the pro-
grammer, and they are of the form “left_arm.” The designer identifies the relevant bones
in the authoring tool, assigns the agreed-upon names and any arbitrary userIDs to
them, and finally, with a little support from the exporter, stores the (userID, name)
pairs into the UserObject field of the SkinnedMesh.

At runtime, having loaded the M3G file, we first retrieve the UserObject that has by
now taken the form of a Hashtable with (Integer,byte[]) pairs. In this case,
the integers are actually our user IDs, while the byte arrays are the names. We then
iterate through the hash table: take the user ID, find the bone that corresponds to it,
and finally build a new hash table (called bones) that associates each bone with its
name:

// Load the SkinnedMesh and get the table of (userID, name) pairs,
// then set up a new hash table that will associate bones with

310 BASIC M3G CONCEPTS C H A P T E R 13

// their symbolic names.
//
SkinnedMesh creature = (SkinnedMesh)Loader.

load("/creature.m3g")[0];
Hashtable names = (Hashtable)creature.getUserObject();
Hashtable bones = new Hashtable(names.size());

// For each UserID in the (userID, name) table:
// 1. Get the name corresponding to that UserID.
// 2. Convert the name from a byte array into a Java String.
// 3. Find the bone Node corresponding to the UserID.
// 4. Insert the String and the Node into the new hash table.
//
Enumeration userIDs = names.keys();
while (userIDs.hasMoreElements()) {
Integer userID = (Integer)userIDs.nextElement();
String name = new String((byte[])names.get(userID));
Node bone = (Node)creature.find(userID.intValue());
bones.put(name, bone);

}

// Finally, bind the (name, bone) table as the UserObject
// of our SkinnedMesh, replacing the (userID, name) table
// (assuming that it will not be needed anymore).
//
mySkinnedMesh.setUserObject(bones);

Now that we have some semantics associated with our bones, it becomes a breeze to ani-
mate any specific part of the character in our main loop. For example, to move the left
arm into a certain position relative to the left shoulder, you just do this:

Node leftArm = (Node)bones.get("left_arm");
leftArm.translate(...);

Note that if you are going to update leftArm very often, it may be smart to cache
it in an instance variable rather than looking it up from the hash table every
time.

Annotating bones—or any scene graph objects, for that matter—with symbolic names
is a good idea, because it allows the designer to change the scene representation with-
out the programmer having to change the application code. If the application relies on
the left arm being a certain number of steps from the skinned mesh root, for example,
things will break down immediately if the artist decides to add a few fix-up bones to the
shoulder region. Furthermore, using plain-text names rather than just integers leaves less
room for typing errors for both the artist and the programmer, and is of great help in
debugging.

S E C T I O N 13 . 5 IMPORTING CONTENT 311

13.5 IMPORTING CONTENT

The easiest way to construct a scene graph in M3G is to import it from the JAR package
or a network URL using the built-in Loader. The loader can import individual images
from PNG and JPEG files, and complete or partial scene graphs from M3G files. There
are numerous M3G exporters available for 3ds Max, Maya, Softimage, Lightwave, and
Blender; see the companion web site for an up-to-date list. For a step-by-step tutorial on
creating some M3G content in Blender, see Chapter 10 of Mobile 3D Graphics: Learning
3D Graphics with the Java Micro Edition by Claus Höfele [Hö07].

We begin this section by explaining how to use the Loader, then proceed to discuss
the M3G file format in enough detail to get you started with your own content proces-
sing tools.

13.5.1 Loader

The Loader will accept at least PNG and M3G files on any device, but JPEG is also
supported on many devices.5 Loading a PNG or JPEG yields a singleImage2D object (see
also Section 13.2). M3G files, on the other hand, can store anything up to and including
an array of complete scene graphs. They may even include an arbitrary number of other
files by reference. The number of objects per file and the total size of those objects are
bounded only by the available memory in each device.

Methods

Loader is one of the four special classes in M3G that are not derived from Object3D
(see the class diagram in Figure 12.3). Moreover, it cannot be instantiated, and its only
members are these two static load methods:

Object3D[] load(String name)

Object3D[] load(byte[] data, int offset)

The first variant loads the content from a named resource, which can be a file in the JAR
package or a URL (typically of the form http://...). Named resources are treated
as case-sensitive, and must specify an absolute path (e.g., /bg.png rather than just
bg.png). This method is what you will probably use in most cases.

The other form of load reads the data from a byte array. This method may be useful in
special cases: if you need to embed some art assets into your Java class files for whatever
reason, this method allows you to do that. It also lets you manually load and preprocess
your content before forwarding it to the loader. For example, you could make it harder to

5 At least on those that conform to the MSA (JSR 248) specification.

312 BASIC M3G CONCEPTS C H A P T E R 13

rip off or reverse-engineer your assets by keeping them in encrypted form, only decrypting
them at runtime.

Both load methods are synchronous, i.e., they only return when the entire contents of
the given input have been successfully loaded, along with any files that are included by
reference. It is therefore not possible to render or otherwise process a partially loaded file.
There is also no way to get any progress information from the loader. If loading takes a lot
of time in your application and you need a good progress bar, our advice is to split your
assets into multiple files that are loaded separately.

Output

Both load methods return an Object3D array. This array contains the root objects of
the file. A root object is one that is not referenced by any other object in the file. There may
be an arbitrary number of root objects in a file, and the root objects may, in turn, reference
an arbitrary number of non-root objects. Finding the objects that you need from within
that mass of objects is made easier by the Object3D methods find(int userID) and
getReferences, as discussed in the previous section.

All the returned objects, whether root or non-root, are guaranteed to be consistent,
meaning that you might as well have constructed them with the API without getting any
exceptions thrown. However, they are not guaranteed to be in a renderable condition.
For example, there may be textures or other components missing, causing an exception
if you try to render the scene. This is fully intentional, as it allows you to store a partial
scene graph in a file and patch in the missing pieces at runtime.

Pitfall: The peak memory consumption of many applications occurs at the setup stage,
and asset loading plays a big role in that. Let us hypothesize what may be happening
behind the scenes when you load a PNG image into a MIDP Image and then convert
it into an Image2D. The PNG file is first decompressed from the JAR; then the PNG
itself is decompressed into the Image; finally, the Image is copied into Image2D. In
the worst case, you may have one compressed copy and two uncompressed copies of the
image in memory at the same time! The temporary copies are of course released in the
end, but that does not help with your peak memory consumption. If you keep running
out of memory while loading, we would suggest you to split your content into parts that
are loaded separately.

Example

The following code fragment gives a concrete example of using the Loader. The code
first loads the file myscene.m3g from the /res subdirectory of the JAR package, and
then uses the runtime type information provided by Java to find the first World object

S E C T I O N 13 . 5 IMPORTING CONTENT 313

among the potentially many root objects. Note that if there are any Worlds in the file,
they are guaranteed to be among the root objects.

try {
Object3D[] objects = Loader.load("/res/myscene.m3g");
for (int i=0; i < objects.length; i++) {
if (objects[i] instanceof World) {
myWorld = (World)objects[i];
break;

}
}

} catch (Exception e) { ... }

Catching any exceptions that might occur during the loading is not only good program-
ming practice, but actually required: the Loader may throw an IOException, which
is a special kind of exception in that it must be either explicitly caught or declared to be
thrown to the calling method. You cannot just not mention it and let the caller take care
of it.

Note that the above example will not work reliably if there are several World objects in
the file, because the Loader does not guarantee that they are returned in any particular
order. On the other hand, if we are certain that there is never going to be more than one
root object in the file, that being our desired World, we can omit the for loop altogether
and just do this:

myWorld = (World)Loader.load("/res/myscene.m3g")[0];

Using Loader.load is so straightforward that there is not much else to say about it,
so let us continue with the M3G file format instead. You may now want to fast-forward
to the next chapter if you do not intend to debug any .m3g files or develop any M3G
content processing tools in the foreseeable future.

13.5.2 THE FILE FORMAT

The graphics industry is certainly not suffering from a shortage of file formats. There must
be a thousand 3D file formats in existence, so why did the M3G standardization group
have to invent yet another one? Well, probably for the same reasons as most of the file
format designers before us: we needed a format that matches the runtime API perfectly,
not just so-and-so. We wanted to leave as little room for interpretation as possible, and
that is best achieved if every object and field in the file format has a one-to-one mapping
with the API.

One of the key features of the file format is its simplicity. We opted for quick and easy
reading and writing, rather than extensibility, maximum compression, random access,
streaming, error concealment, or a number of other things that are best handled elsewhere
or not required at all. You will no doubt value that decision if you ever need to write your

314 BASIC M3G CONCEPTS C H A P T E R 13

own exporters, viewers, or optimization tools for M3G content, or simply need to debug
an existing file.

The simplicity is achieved by four primary means: First, there is a one-to-one mapping
between object types in the file format and Java classes in the run-time API. Second, there
are no forward references, so objects can only refer to objects that reside earlier in the file.
Third, compression is based on the widely available zlib, rather than specialized encod-
ings for different data types, or complex algorithms such as arithmetic coding. Finally,
the Loader has an all-or-nothing policy: a file is either loaded completely or not at all.
No attempt is made to recover from errors.

We will now go through the structure of the file format, shown at a high level in
Figure 13.2. To shed light on individual details, we will refer to the example file in
Figure 13.3. Note that what follows is not intended to be an exhaustive description or
a replacement for the specification, but only to give you an idea of how things are laid
out. Having read this, you should be able to more quickly dig up whatever details you
need in the spec.

File structure

M3G files are easy to recognize in a text editor by their file identifier, <<JSR184>>,
located at the very beginning. To be exact, the identifier consists of that string and a few
special characters to quickly catch file transmission errors, for a total of twelve bytes (in
hexadecimal): AB 4A 53 52 31 38 34 BB 0D 0A 1A 0A.

File Identifier

File Section Object Data

Header Section

Scene Section n

Compressed: {0, 1}

Total Section Length

Uncompressed
Length

Object 0

Object n

Checksum

Object Type
(SkinnedMesh = 16)

Length

Data

......

Object3D

Transformable

Node

Mesh

SkinnedMesh

XREF Section

Scene Section 0

F igure 13.2: M3G files are divided into sections, each containing one or more objects, which are further divided into fields.
The fields are laid out in the order of class inheritance; for example, a SkinnedMesh object is derived from Object3D,
Transformable, Node, and Mesh, as shown in Figure 12.3.

S E C T I O N 13 . 5 IMPORTING CONTENT 315

‘«’ ‘4’‘J’ ‘S’ ‘R’ ‘1’ ‘8’ ‘»’ 0x0D 0x0A 0x1A 0x0A

0 TotalSectionLength=30 0 ObjectLength=12UncompressedLength=30

ApproximateSize=16612 null
Section Checksum

0 TotalSectionLength=26 255 ObjectLength=8UncompressedLength=26

Section Checksum

0 TotalSectionLength=44 17 ObjectLength=26
UserID=0x1234

UncompressedLength=44

false false
ObjectIndex=2

AnimationTrackCount=0 UserParameterCount=0

228 241 241 210 2100 0 0

1 0 true TotalFileSize=112

‘/’ ‘b’ ‘g’ ‘.’ ‘p’ ‘n’ ‘g’ null

Section Checksum

Object3D fields
Transformable fields
Texture2D fields

ObjectType 0: Header

File Identifier

Header Section

XREF Section

Scene Section

ObjectType 255: XREF

ObjectType 17: Texture2D

Blend mode:
REPLACE Wrap mode: (REPEAT, REPEAT)

Blend
color:

(0, 0, 0)

Filter mode: (NEAREST, NEAREST)

F igure 13.3: The complete contents of our example file, byte by byte. There is one root object in the file, a Texture2D,
and one non-root object, an Image2D that is loaded from the external file /bg.png. All sections are uncompressed. Object
data are shown in gray boxes, section data in white.

Beyond the file identifier, M3G files are divided into sections that contain one or
more objects each. Sections may be individually compressed with zlib; this allows
you to selectively compress the sections for which it makes most sense. Each section
also has an Adler32 checksum (provided by zlib) to allow the Loader to quickly
reject a corrupt file without parsing it further. Note that the loader will make
no attempt to recover the contents of a damaged file, but will simply throw an
IOException.

There are three kinds of sections. The header section must be present in every file, must
be uncompressed, and must be located right after the file identifier. The external refer-
ence section is optional, but must immediately follow the header section if present. The
rest of the file is composed of an arbitrary number of scene sections. Any legal M3G
file must have at least one section besides the header, and must not have any empty
sections.

316 BASIC M3G CONCEPTS C H A P T E R 13

Data types

The file format has data types corresponding to the built-in boolean, byte, short,
int, andfloat types in Java. Booleans are encoded as a single byte, such that 1 indicates
true, 0 indicates false, and other values are disallowed. The integer and float types
are stored so that the least significant byte comes first.

Besides the basic types, M3G files may also contain null-terminated strings, 3-element
floating-point vectors, 4 × 4 matrices, RGB and RGBA colors encoded at 8 bits per color
component, references to other objects, and arbitrary-length arrays of any basic or com-
pound type.

Object references

Upon loading, objects are read sequentially from the beginning of the file and assigned a
running number as their index. The first object in the file, which is a special header object,
gets the index one, the first actual scene object gets the index two, and so on. The index
zero is reserved for null references.

Objects can only reference other objects that reside at lower indices, i.e., those that have
already been imported. This is to guarantee that the Loader can parse any M3G file
from start to finish in one pass, and also to allow it to type-check the references immedi-
ately. Note that the lack of forward references means that a scene graph loaded from a file
can never have cycles, although they are permitted in the runtime scene graph for node
alignment; see Section 15.3.2.

Header section

The header section contains exactly one object, the header object, which cannot be present
anywhere else in the file. As shown in Figure 13.3, the header object begins with a two-byte
version number, identifying variants of the file format. The only legal version number
at this time is 1.0. Note that the file format does not necessarily have the same version
number as the M3G API.

Following the version number is a boolean flag telling whether the external reference sec-
tion is present (in our example, it is). The header object also stores the total size of the file,
both with and without the external references. The size that includes the external refer-
ences is regarded to be a hint and need not be accurate, so as to allow the referenced files
to be modified independently of the root file. In our example, the root file is 112 bytes
(exactly), and the externally referenced PNG is (estimated to be) 16500 bytes.

The final item in the header object is the AuthoringFieldwhere the authoring tool or
the author herself may store an arbitrary null-terminated string of text, such as a copyright
notice. In our example the field is left empty, containing just the terminating null.

S E C T I O N 13 . 5 IMPORTING CONTENT 317

External reference section

The external reference section stores one or more external references, or XREFs for short.
External references allow you to build up your scene from a collection of separate M3G
and image files. Images are typically included by reference rather than embedded into
the host file, because dedicated image formats provide better compression than plain
zlib. A minor disadvantage with external image files is that they have no user ID or user
parameters.

External references are simply null-terminated strings pointing at named resources, such
as network URLs or files in the JAR package. Each external reference yields exactly one
root-level Object3D. Our example file in Figure 13.3 has just one XREF, pointing at
/bg.png in the JAR package. It will be imported as a single Image2D.

M3G files may reference an arbitrary number of other M3G files, which in turn may freely
reference another set of M3G files, and so on, but the references are not allowed to form
a cycle. Also, if you intend an M3G file to be referenced from another, make sure that it
only has one root object. If there are many root objects, the Loader will pick only the
first one and discard the rest.

Scene sections

Scene sections store the actual scene graph—or several scene graphs. Each scene sec-
tion can contain one or more objects, and again each object corresponds to exactly one
Object3D in the runtime API. The contents of each object are generally the same as that
of the corresponding class in the API.

In our example file, there is one scene section, containing a single Texture2D. The base
class data forObject3D comes first, followed by the other base classTransformable.
The data for the concrete class is stored last. This is the case with all types of objects in the
file format.

For simplicity, we have no animation tracks or user parameters in our example, and
no texture matrix in Transformable. The two false entries in Transformable
indicate that the T R S components as well as the M component will assume their default
values, i.e., the identity matrix. The fields of the Texture2D object itself are pretty
obvious. The main thing to note is that the image in /bg.png must have power-of-
two dimensions. Also note that the Image2D is assigned the object index 2, because the
header object always gets the index one, and zero is reserved for null.

Special compression

We said in the beginning of this section that there are no special compression formats
for different data types in the M3G file format, just zlib for everything, but that is

318 BASIC M3G CONCEPTS C H A P T E R 13

not strictly true. The VertexArray and KeyframeSequence classes do in fact have
special encodings as an option. However, the encodings are almost trivial.

Vertex arrays—including colors, normals, texture coordinates and vertex positions—can
be compressed with delta encoding. This means that each vertex attribute is stored as a dif-
ference vector relative to the previous value. The differences are unsigned, so for exam-
ple a difference of −2 is encoded as 254 (in case of a byte array) or 65534 (in case of
a short array). Thus, the deltas take up the same number of bits as the raw integers
(8 or 16 bits per component), making the whole encoding seem rather pointless. How-
ever, the deltas tend to have fewer significant bits, causing the same bit patterns to repeat
more often across the array. This, in turn, allows zlib to compress the array more effi-
ciently. Note that delta encoding and zlib are both lossless.

Keyframes, which are 32-bit float values in raw format, can be encoded by quantizing
them to 16-bit or 8-bit integers which are then scaled and offset using a bias value. The
quantized keyframes consume only a half or a quarter of the file size compared to the raw
format, and that is further reduced by zlib. Floating-point bit patterns, on the other
hand, are poorly compressed by zlib.

14

C
H

A
P

T
E

R

LOW-LEVEL MODELING IN M3G

M3G builds upon the common low-level concepts set forth in Chapter 3. It offers most
of the same functionality that OpenGL ES provides for native applications, but with an
object-oriented Java interface. Some features are slightly more abstracted in order to reduce
API complexity, but the underlying rendering pipeline, be that implemented in software
or hardware, can be shared with OpenGL ES. Also, while familiarity with OpenGL ES
is not a prerequisite for understanding M3G, existing knowledge on OpenGL ES will
not be wasted on M3G.

In this chapter, we walk through the lowest-level parts of M3G. By the end of the chapter,
you will know how to use M3G to draw polygon meshes in immediate mode, similarly
to OpenGL ES. The components discussed here will also serve as building blocks for the
higher-level functions which are covered in the following chapters.

14.1 BUILDING MESHES

Meshes in M3G are built out of vertex array and buffer objects, triangle buffer objects,
and shading parameters specified in various rendering state objects.

14.1.1 VertexArray

Low-level modeling begins by defining your vertex data. The VertexArray class
stores an array of vectors that can then be used for any per-vertex data: positions, normals,

319

320 LOW-LEVEL MODELING IN M3G C H A P T E R 14

colors, or texture coordinates. The class constructor is VertexArray(int numVertices,
int numComponents, int componentSize), where the parameters are the number
of vertices, number of components per vertex, and size of the data type used,
respectively. componentSize is 1 for byte, and 2 for short data. For a mesh with
100 vertices having vertex positions and colors only, for example, you could create two
arrays:

myPositions = new VertexArray(100, 3, 2); // 16-bit positions
myColors = new VertexArray(100, 4, 1); // 8-bit RGBA colors

Vertex data is loaded into the arrays using the set function, which copies a range of
vertex values from a byte or short array:

void set(int firstVertex, int numVertices, byte[] values)
void set(int firstVertex, int numVertices, short[] values)

Pitfall: If you plan on reading data back from VertexArray, you may soon find that
the get method for that is not included in M3G 1.0—it was one of the many getters
dropped to minimize the API footprint.

The get methods were added to VertexArray in M3G 1.1, but if you abso-
lutely need equivalent functionality with M3G 1.0, it can be done using the
Transform.transform method as described in Section 13.3. Even then, you will
only get the vertex data in floating-point format, not the original 8-bit or 16-bit integers.

Now, assume that you have your positions in a short array myPositionData and
your colors in a byte array myColorData. The arrays should have at least 300 and
400 elements, respectively. We can then load the data values for all 100 vertices into the
previously created vertex arrays:

myPositions.set(0, 100, myPositionData);
myColors.set(0, 100, myColorData);

M3G makes a copy of the data you load into a VertexArray, so myPositionData
and myColorData can be discarded at this point. In fact, all data in M3G is stored
internally—client-side arrays are only referenced when copying data from them. This
allows M3G to internally organize the data in the most efficient way.

14.1.2 VertexBuffer

Once you have the vertex arrays you need, they must be combined into a
VertexBuffer to form the actual vertices. The constructor for VertexBuffer
simply creates an empty set of vertices. The necessary component arrays are added using
the setPositions, setNormals, setColors, and setTexCoords functions.
Note that there are certain restrictions on what kind of vertex data you can use for

S E C T I O N 14 . 1 BUILDING MESHES 321

Tab le 14.1: Supported vertex array types in M3G (ticks), relative to OpenGL ES 1.1 (ticks and
crosses). The grayed-out boxes indicate combinations that are supported in neither API.

Byte Short Fixed Float 2D 3D 4D

Vertices � � � � � � �

Texcoords � � � � � � �

Normals � � � � �

Colors � � � � �

each vertex component—those are summarized in Table 14.1. The setters for colors
and normals are trivial, only taking in the array you wish to use for that vertex com-
ponent. Normals are automatically normalized. For positions, however, additional scale
and bias values must be supplied:

void setPositions(VertexArray positions, float scale, float[] bias)

Since M3G only supports 8- and 16-bit vertices, scale and bias let you map the quantized
vertices into a wider floating-point domain. Before M3G uses any of your vertex data,
each quantized vertex vi is converted into an equivalent floating-point vertex vi

′:

vi
′ = svi + b (14.1)

where s and b are the values of scale and bias, respectively. This way, you can author your
model in floating point, quantize the vertices to 16 or 8 bits, and still use the resulting
VertexArray in M3G as you would the original data. The precision is sufficient for
just about any model, while the memory usage is only a half or one-quarter of full
floating-point vertices. M3G implementations are also made more efficient, as there is
no need to implement a full floating-point vertex pipeline.

Again, using our example arrays, let us set up a VertexBuffer:

myVertices = new VertexBuffer();
myVertices.setColors(myColors);
myVertices.setPositions(myPositions, 100.f / (1<<16), null);

In this case, we set bias to null, signaling a default bias of (0, 0, 0). The scale parameter
scales our 16-bit position data so that the coordinates span 100 units in floating point
domain. If the full 16-bit range is utilized inmyPositions, our model therefore extends
from −50 to +50 on each coordinate axis.

Performance tip: Always make use of the full range available for your vertex
positions and texture coordinates. Quantize your floating-point coordinates so that they
fill the 8- or 16-bit numeric range optimally, then map the data back to floating point
by using the scale and bias values. There is no additional runtime cost from doing this,
but it will let you achieve the maximum precision possible.

322 LOW-LEVEL MODELING IN M3G C H A P T E R 14

Texture coordinates take one more additional parameter, the index of the texturing unit:

void setTexCoords(int index, VertexArray texcoords, float scale, float[] bias)

When using multi-texturing, VertexBuffer must contain a set of texture coordi-
nates for each texture unit. Of course, you can—and often will—also set the same
VertexArray for each texture unit; no data replication is required. Arrays can also be
shared between any number of vertex buffers, and nothing prevents you from, for exam-
ple, using the same array for both vertex normals and texture coordinates.

Performance tip: Always prefer multi-texturing over multi-pass rendering. With multi-
texturing, you get multiple layers of texture by only rendering the geometry once,
whereas multi-pass rendering incurs the transformation and lighting overhead for each
pass. Blending and other frame buffer processing will also add to this overhead.

Vertex positions are the only piece of data that is required for all rendering. If you want
to use lighting, your VertexBuffer will also need normal vectors, and we already
mentioned that texture coordinates are required to apply a texture. For vertex colors,
you have a choice of using either a per-vertex color array or a single color for the entire
buffer, set using setDefaultColor. To construct a buffer where all the vertices are
red, you can do:

myVertices = new VertexBuffer();
myVertices.setPositions(myPositions, 100.f / (1<<16), null);
myVertices.setDefaultColor(0xFF0000);

Pitfall: M3G versions 1.0 and 1.1 specify slightly different error handling for vertex
components, with M3G 1.0 being more strict. It throws exceptions for many cases of
missing data, such as texturing without valid texture coordinates. This was viewed as an
extra burden on implementations, and in M3G 1.1 error checking was relaxed so that
vertex normals and texture coordinates default to some undefined value if the respective
arrays do not exist during rendering.

As an application developer, you should be aware of the fact that you may not get an
exception if you are missing a required piece of vertex data. Instead, your rendering
results will simply be incorrect. The reason may be tricky to identify even if you know
what to look for, so if you want to use lighting or texturing, remember to supply those
normals or texture coordinates!

Performance tip: Note that you can use set at any time to modify the contents of a
VertexArray, and you can also use the setters on VertexBuffer to change the
arrays being used. Be aware, however, that this may not be cheap, as the implementation
may have to recompute bounding volumes or other cached data that is dependent on

S E C T I O N 14 . 1 BUILDING MESHES 323

the vertex values. As a rule, create your vertex arrays and buffers during the initialization
phase of your application and only modify their contents after that if you really
need to.

14.1.3 IndexBuffer AND RENDERING PRIMITIVES

Vertices alone do not let you render anything. You also need to specify the kind of prim-
itives you want to draw. For this purpose, M3G has the abstract IndexBuffer class
that is specialized for each type of primitive. With the primitive types, M3G takes rather
an ascetic approach, as the only kind of primitive currently supported is a triangle strip
(see Section 3.1.1). Comparing to OpenGL ES in Table 14.2, we see that this is quite
a cut in features. Lines and points were dropped because they would have added a lot
of complexity to support quite a few use cases; if necessary, they can be emulated with
triangles, which is how most renderers implement them in any case.

The reasoning behind supporting triangles as strips only was that they are an efficient
primitive both for storing a shape and for rendering it, and most M3G content will come
from authoring tools that can easily generate the strips. It was perceived that quite a bit
of implementation complexity could be dropped this way. Looking back now, this was
one of the decisions where features were a little too aggressively cut down in the effort
to minimize complexity—having to use triangle strips instead of triangle lists is quite an
annoyance when generating meshes in code, for example.

The TriangleStripArray class lets you construct an array of several triangle strips.
You have a choice of two flavors of strips: implicit and explicit. The former assumes that
the source vertices are ordered sequentially in the ascending order of indices, and you only
have to specify the starting vertex and the length of each subsequent strip:

TriangleStripArray(int firstVertex, int[] stripLengths)

The number of entries in the stripLengths array gives the number of strips. For example,
if stripLengths is {3, 4, 3}, the call TriangleStripArray(2, stripLengths)
will create three strips with the indices {2,3,4}, {5,6,7,8}, and {9,10,11}. This

Tab le 14.2: Supported rendering primitives in M3G, relative to OpenGL ES 1.1. The grayed-out
boxes indicate combinations that are supported in neither API.

Byte Short Implicit Strip Fan List

Triangles � � � � � �

Lines � � � � � �

Points � � � �

Points sprites � � � �

324 LOW-LEVEL MODELING IN M3G C H A P T E R 14

is not very useful for most real-world meshes, but can save some space in certain special
cases and procedurally generated meshes.

The other alternative, explicit strips, is what you normally want to use. Here, the difference
is that instead of a starting vertex, you give a list of indices:

TriangleStripArray(int[] indices, int[] stripLengths)

The indices array is then split into as many separate triangle strips as specified in the
stripLengths array. For a simple example, let us construct an IndexBuffer contain-
ing two strips, one with five and the other with three vertices; this translates into three
and one triangles, respectively.

static final int myStripIndices[] = { 0, 3, 1, 4, 5, 7, 6, 8 };
static final int myStripLengths[] = { 5, 3 };
myTriangles = new TriangleStripArray(myStripIndices, myStripLengths);

Performance tip: While triangle strips in general are very efficient, there is a consider-
able setup cost associated with rendering each strip. Very small strips are therefore not
efficient to render at all, and it is important to try to keep your strips as long as possi-
ble. It may even be beneficial to join several strips together using degenerate triangles,
duplicating the end index of the first and the beginning index of the second strip so
that zero-area triangles are created to join the two strips. Such degenerate triangles are
detected and quickly discarded by most M3G implementations.

As usual, your mileage may vary. With the large spectrum of M3G-enabled devices
out there, some software-only implementations may in fact be able to render short
strips fairly efficiently, whereas some other implementations may optimize the strips
themselves regardless of how you specify them. Submitting already optimized strips may
therefore yield little or no benefit on some devices.

Note that unlike vertex arrays and buffers, the index buffers cannot be modified once
created—this was seen as an unnecessary feature and left out in the name of implementa-
tion complexity, but perhaps overlooked the fact that someone might still want to recycle
an IndexBuffer rather than create a new one. Nevertheless, index buffers need not
have a one-to-one correspondence to vertices, and you can use as many index buffers per
vertex buffer as you want to. The index buffer size does not have to match the size of the
vertex buffer, and you can reference any vertex from multiple index buffers, or multiple
times from the same index buffer. The only restriction is that you may not index outside
of the vertex buffer. As a concrete use case, you could implement a level-of-detail scheme
by generating multiple index buffers for your vertex buffer, with fewer vertices used for
each lower detail level, and quickly select one of them each time you render based on the
distance to the camera or some other metric.

S E C T I O N 14 . 1 BUILDING MESHES 325

14.1.4 EXAMPLE

Now we know how to build some geometry in M3G and draw it. Let us illustrate this
with a more comprehensive example where we create some colored triangles and render
them. We assume that you have set up your Graphics3D and Camera as described
in Chapter 13; make sure your Camera sits at its default position and orientation at the
origin. You will also see that we construct an Appearance object, which we have not
described yet. In this example, it merely tells M3G to use the default shading parameters—
we will cover Appearance in detail in the next section.

First, let us define our vertex and triangle data. You could put these as static members in
one of your Java classes.

static final byte positions[] = { 0,100,0, 100,0,0, 0,—100,0, —100,0,0,
0,50,0, 45,20,0, —45,20,0 };

static final byte colors[] = { 0,0,255,255, 0,255,0,255, 255,0,0,255,
255,255,255,255, 255,0,255,255,
255,255,0,255, 0,255,255,255 };

static final int indices[] = { 0,3,1, 1,3,2, 4,6,5 };
static final int strips[] = { 3, 3, 3 };

Note that since M3G only supports triangle strips, individual triangles must be declared as
strips of three vertices each. This is not a problem when exporting from a content creation
tool that creates the strips automatically, but is a small nuisance when constructing small
test applications by hand. In this case, we could also easily combine the first two triangles
into a single strip like this:

static final int indices[] = { 0,3,1,2, 4,6,5 };
static final int strips[] = { 4, 3 };

Once we have the vertex and index data in place, we can create the objects representing
our polygon mesh. You would typically place this code in the initialization phase of your
application.

// Create the vertex arrays
VertexArray myPositionArray = new VertexArray(7, 3, 1);
VertexArray myColorArray = new VertexArray(7, 4, 1);

// Set values for 7 vertices starting at vertex 0
myPositionArray.set(0, 7, positions);
myColorArray.set(0, 7, colors);

// Create the vertex buffer; for the vertex positions,
// we set the scale to 1.0 and the bias to zero
VertexBuffer myVertices = new VertexBuffer();
myVertices.setPositions(myPositionArray, 1.0f, null);
myVertices.setColors(myColorArray);

// Create the indices for five triangles as explicit triangle strips
IndexBuffer myTriangles = new TriangleStripArray(indices, strips);

326 LOW-LEVEL MODELING IN M3G C H A P T E R 14

// Use the default shading parameters
Appearance myAppearance = new Appearance();

// Set up a modeling transformation
Transform myModelTransform = new Transform();
myModelTransform.postTranslate(0.0f, 0.0f, —150.0f);

With all of that done, we can proceed to rendering the mesh. You will normally do this in
the paint method for your MIDP Canvas.

void paint(Graphics g) {
Graphics3D g3d = Graphics3D.getInstance();
try {

g3d.bindTarget(g);
g3d.clear(null);
g3d.render(myVertices, myTriangles, myAppearance, myModelTransform);

}
finally {

g3d.releaseTarget();
}

}

Assuming everything went well, you should now see your geometry in the middle of the
screen. You can play around with your vertex and index setup, modeling transformation,
and camera settings to see what happens.

14.2 ADDING COLOR AND LIGHT: Appearance

You can now create a plain polygon mesh and draw it. To make your meshes look more
interesting, we will next take a closer look at the Appearance class we met in the pre-
vious section. This is one of the most powerful classes in M3G, providing a wide range
of control over the rendering and compositing process of each mesh. An Appearance
object is needed for everything you render in M3G, so let us begin with the simplest pos-
sible example—use the default rendering parameters as we already did above.

Appearance myAppearance = new Appearance();

In fact, the Appearance class in itself does very little. There is only one piece of data
native to an Appearance object—the rendering layer—and we will not need that until
we start using the M3G scene graph. Instead, the functionality of Appearance is split
into five component classes. Each of the component classes wraps a logical section of the
low-level rendering pipeline, so that together they cover most of the rendering state of
OpenGL ES. You can then collect into an Appearance object only the state you want to
control explicitly and leave the rest to null, saving you from the hassle of doing a lot of
settings, and letting you share state data between different meshes. We will see how this
works in practice, as we follow the rendering pipeline through the individual component
classes.

S E C T I O N 14 . 2 ADDING COLOR AND LIGHT: Appearance 327

14.2.1 PolygonMode

The PolygonMode class affects how your input geometry is interpreted and treated at
a triangle level. It allows you to set your winding, culling, and shading modes, as well as
control some lighting parameters and perspective correction.

By default, M3G assumes that your input triangles wind counterclockwise and that only
the front side of each triangle should be drawn and lit. Triangles are shaded using Gouraud
shading, and local camera lighting and perspective correction are not explicitly required.
You can override any of these settings by creating a PolygonMode object, specify-
ing the settings you want to change, and including the object into your Appearance
object. For example, to render both sides of your mesh with full lighting and perspective
correction, use PolygonMode as follows:

PolygonMode myPolygonMode = new PolygonMode();
myAppearance.setPolygonMode(myPolygonMode);

myPolygonMode.setCulling(PolygonMode.CULL_NONE);
myPolygonMode.setTwoSidedLightingEnable(true);
myPolygonMode.setPerspectiveCorrectionEnable(true);
myPolygonMode.setLocalCameraLightingEnable(true);

For the setCulling function, you can set any of CULL_BACK, CULL_FRONT, and
CULL_NONE. The setTwoSidedLightingEnable function controls whether
the vertex normals are flipped when computing lighting for the back side of triangles
(should they not be culled), and setWinding controls which side of your
triangles is the front side. For setWinding, you have the options WINDING_CCW
and WINDING_CW. Additionally, there is setShading, where the default of
SHADE_SMOOTH produces Gouraud-shaded and SHADE_FLAT flat-shaded triangles.
You may wish to refer to Section 9.1 for the equivalent OpenGL ES functions.

Finally, it is worth pointing out that the perspective correction and local camera lighting
flags are only hints to the implementation. The very low-end implementations may not
support perspective correction at all, and local camera lighting is unsupported in most
implementations that we know of. If supported, both come at a cost, especially on soft-
ware renderers, so you should pay attention to only using them where necessary. Do use
them where necessary, though: when rendering slanted, textured surfaces made of large
triangles, the possible performance gain of disabling perspective correction is not usually
worth the resulting visual artifacts.

Pitfall: There is quite a lot of variety in the speed and quality of perspective correction
among different M3G implementations. What works for one implementation, may not
work for others. For quality metrics you can refer to benchmark applications such as
JBenchmark.

328 LOW-LEVEL MODELING IN M3G C H A P T E R 14

14.2.2 Material

The Material class is where you specify the lighting parameters for a mesh in M3G.
Putting a non-null Material into your Appearance implicitly enables lighting for
all meshes rendered using that Appearance.

M3G uses the traditional OpenGL lighting model as explained in Section 3.2. If you are
familiar with OpenGL lighting (see Section 8.3.1), you will find the same parameters
in M3G.

The setColor(int target, int argb) function lets you set each of the material
parameters with target set to AMBIENT, DIFFUSE, SPECULAR, and EMISSIVE,
respectively. The alpha component of the color is only used for DIFFUSE. You
can also make the ambient and diffuse components track the vertex color with
setVertexColorTrackingEnable(true). Additionally, you can specify the
specular exponent with setShininess. If you want something resembling red plastic,
you could set it up like this:

redPlastic = new Material();
redPlastic.setColor(Material.AMBIENT, 0xFF0000); // red
redPlastic.setColor(Material.DIFFUSE, 0xFFFF0000); // opaque red
redPlastic.setColor(Material.SPECULAR, 0xFFFFFF); // white
redPlastic.setColor(Material.EMISSIVE, 0x000000); // black
redPlastic.setShininess(2.0f);

A shinier material, something like gold, could look like this:

golden = new Material();
golden.setColor(Material.AMBIENT, 0xFFDD44); // yellowish orange
golden.setColor(Material.DIFFUSE, 0xFFFFDD44); // opaque yellowish orange
golden.setColor(Material.SPECULAR, 0xFFDD44); // yellowish orange
golden.setColor(Material.EMISSIVE, 0x000000); // black
golden.setShininess(100.0f);

You can also bitwise-OR the color specifiers for setColor, for example setColor
(Material.AMBIENT | Material.DIFFUSE, 0xFFFFFFFF), to set multiple
components to the same value.

Materials need light to interact with. If you try to use Material alone, only the emissive
component will produce other than black results. Light is provided through light sources,
which we will discuss later in Section 14.3.2, but for a quick start, you can just create a
default light source and put it into your Graphics3D like this:

Light myLight = new Light();
g3d.addLight(myLight, null);

Since both the light and the camera have the same transformation (now null), that light
will be shining from the origin in the same direction as your camera is looking, and you
should get some light on the materials.

S E C T I O N 14 . 2 ADDING COLOR AND LIGHT: Appearance 329

14.2.3 Texture2D

Texturing lets you add detail beyond vertex positions, colors, and normals to your
surfaces—look at the low-polygon bikers in Figure 14.1 for an example. After lighting,
your triangles are rasterized and converted into fragments or, roughly, individual pixels.
Texturing then takes an Image2D and combines that with the interpolated post-lighting
color of each fragment using one of a few predefined functions.

To enable texturing, add a Texture2D object into your Appearance. A valid texture
image must be specified at all times, so the constructor takes a reference to an Image2D
object. You can, however, change the image later with a call to setImage. Texture images
must have power-of-two dimensions, and neither dimension may exceed the maximum
texture dimension queriable with Graphics3D.getProperties. Assuming that we
have such an image, called myTextureImage, we can proceed:

Texture2D myTexture = new Texture2D(myTextureImage);
myAppearance.setTexture(0, myTexture);

Note the 0 in the setTexture call: that is the index of the texturing unit. At least one
unit is guaranteed to exist, but multi-texturing support is optional for M3G implementa-
tions. You can query the number of texturing units available in a particular implementa-
tion, again via Graphics3D.getProperties. If the implementation supports two
texturing units, you will also have unit 1 at your disposal, and so forth. In this case each
additional texturing unit further modifies the output of the previous unit.

Wrapping and filtering modes

When sampling from the texture image, M3G takes your input texture coordinates,
interpolated for each fragment, and maps them to the image. The top left-hand corner
of the image is the origin, (0, 0). The bottom right corner is (1, 1). By default, the texture
coordinates wrap around so that if your coordinates go from −1.0 to +3.0, for example,

F igure 14.1: Texturing can add a lot of detail to low-polygon models, allowing large numbers of
them on-screen without excessive geometry loads. (Images copyright c© Digital Chocolate.)

330 LOW-LEVEL MODELING IN M3G C H A P T E R 14

the texture image will repeat four times. You can control this behavior with
setWrapping(int wrapS, int wrapT), where wrapS and wrapT can be either
WRAP_REPEAT or WRAP_CLAMP. The latter will, instead of repeating, clamp that
coordinate to the center of the edge pixel of the image. These are equivalent to the
texture wrapping modes in OpenGL ES (Section 9.2.4). If your texture has a pattern
that is only designed to tile smoothly in the horizontal direction, for example, you may
want to disable wrapping in the vertical direction with

myTexture.setWrapping(Texture2D.WRAP_REPEAT, Texture2D.WRAP_CLAMP);

Once the sampling point inside the texture is determined, M3G can either pick the clos-
est texel or perform some combination of mipmapping and bilinear filtering, similarly
to OpenGL ES (Section 9.2.3). This is controlled with setFiltering(int levelFilter,
int imageFilter). You can choose between FILTER_NEAREST and FILTER_LINEAR
for imageFilter, to use either point sampling or bilinear filtering within each mipmap
image. For levelFilter, you can choose the same for nearest or linear filtering between
mipmap levels, or FILTER_BASE_LEVEL to use just the base-level image. If you enable
mipmapping, the other mipmap levels will be automatically generated from the base-level
image. However, all filtering beyond point-sampling the base level is optional; you will
encounter a lot of devices that do not even support mipmapping.

Performance tip: Always enable mipmapping. Not only does it make your graphics look
better, it also allows the underlying renderer to save valuable memory bandwidth and
spend less time drawing your better-looking graphics. In rare cases, you may want to
opt for the small memory saving of not using mipmapping, but depending on the M3G
implementation, this saving may not even be realized in practice.

Unlike mipmapping, choosing between FILTER_NEAREST and FILTER_
LINEAR is a valid trade-off between quality and performance, especially when using a
software renderer.

Texture application

Once the texture samples are fetched, they are combined with the input fragments accord-
ing to the texture blending function you choose—blending was a somewhat unfortunate
choice of name here, as it is easy to confuse with frame-buffer blending, but we shall
have to live with that. The setBlending function lets you select one of FUNC_ADD,
FUNC_BLEND, FUNC_DECAL, FUNC_MODULATE, and FUNC_REPLACE. These
directly correspond to the texture functions described in Section 3.4.1—refer there for
details on how each function works. The texture blend color used by FUNC_DECAL can
be set via setBlendColor.

As an example, a common case in texturing is combining a texture with per-vertex light-
ing; it makes no difference whether you have M3G compute the lighting dynamically or
use an off-line algorithm to bake the lighting into per-vertex colors—the texture is applied

S E C T I O N 14 . 2 ADDING COLOR AND LIGHT: Appearance 331

the same way. To do this, we only need to modulate (multiply) the interpolated fragment
colors with a texture. Assuming we have, say, a repeating brick pattern in an Image2D
called brickImage:

// Create a repeating texture image to multiply with the incoming color
Texture2D myTexture = new Texture2D(brickImage);
myTexture.setWrapping(Texture2D.WRAP_REPEAT, Texture2D.WRAP_REPEAT);
myTexture.setBlending(Texture2D.FUNC_MODULATE);
myTexture.setFiltering(Texture2D.FILTER_NEAREST,

Texture2D.FILTER_NEAREST);

// Set as the first texture to an Appearance object created earlier;
// the other texture slots are assumed to be null
myAppearance.setTexture(0, myTexture);

In fact, WRAP_REPEAT and FUNC_MODULATE are the default settings for a
Texture2D, so the related two lines in the example above could be skipped. Depending
on your target hardware, you may also want to experiment with different filtering modes
to see which one is the best compromise between performance and image quality.

Multi-texturing

If you are targeting an M3G implementation capable of multi-texturing, you may want
to bake your static lighting into a light map texture instead—this lets you get detailed
lighting without excess vertices, which can be useful if the vertex transformations would
otherwise become the performance bottleneck; for example, if rasterization is hardware-
accelerated but transformations are done in software. If you have your light map in an
Image2D calledlightmapImage, you could then implement the above example using
two textures only, without any per-vertex colors or lighting:

// Create the textures for the brick pattern and our light map.
// We omit the default wrapping settings for the brick image;
// light maps do not normally repeat, so we clamp that
Texture2D myTexture = new Texture2D(brickImage);
myTexture.setFiltering(Texture2D.FILTER_NEAREST,

Texture2D.FILTER_NEAREST);
Texture2D myLightmap = new Texture2D(lightmapImage);
myLightmap.setFiltering(Texture2D.FILTER_NEAREST,

Texture2D.FILTER_LINEAR);
myLightmap.setWrapping(Texture2D.WRAP_CLAMP, Texture2D.WRAP_CLAMP);

// Create the final fragment color by just multiplying the two textures
myAppearance.setTexture(0, myLightmap);
myLightmap.setBlending(Texture2D.FUNC_REPLACE);
myAppearance.setTexture(1, myTexture);
myTexture.setBlending(Texture2D.FUNC_MODULATE);

Note that you will also need to include texture coordinates in your VertexBuffer for
each texturing unit you are using. With multi-texturing, however, you may be able to
share the same coordinates among many of your textures.

332 LOW-LEVEL MODELING IN M3G C H A P T E R 14

Pitfall: As in OpenGL, textures in M3G are applied after lighting. If you want your
lighting to modulate the texture, which is the common case when representing surface
detail with textures, this only works well with diffuse reflection. You should then render
a second, specular-only pass to get any kind of specular highlights on top of your texture,
or use multi-texturing and add a specular map. Either of these will give you the effect you
can see in the specular highlight in Figure 3.2—compare the images with and without
a separate specular pass.

Texture transformations

Now that we have covered the basics, note that the Texture2D class is derived from
Transformable. This means that you can apply the full transformation functionality
to your texture coordinates prior to sampling the texture. The transformation constructed
via the Transformable functions is applied to the texture coordinates in exactly the
same way as the modelview matrix is to vertex coordinates.

Performance tip: The scale and bias parameters of VertexBuffer are all you should
need for normal texturing. To avoid an unnecessary performance penalty, especially on
software-only implementations, limit the use of the texture transformation to special
effects that really need it.

Finally, note that you can share the Image2D object used as the texture image with as
many Texture2D objects as you want. This lets you use different texture transforma-
tions, or even different wrapping and filtering modes on the same image in different use
cases. If the texture image is mutable, you can also render into it for dynamic effects.

14.2.4 Fog

The next component of Appearance to affect your rendering results is Fog. It is a
fairly simple simulation of atmospheric effects that gets applied to your fragments after
they have been textured. Let us add some Fog into our Appearance:

myFog = new Fog();
myAppearance.setFog(myfog);

This creates a default black fog that obscures everything more than one unit away from
the camera, so it may not be very useful as such. To get something more like atmospheric
perspective, let us set some parameters:

myFog.setMode(Fog.EXPONENTIAL};
myFog.setDensity(0.01f);
myFog.setColor(0x6688FF); // pale blue tint

We have a choice between two flavors in the setMode function: EXPONENTIAL and
LINEAR fog. For the former, we just set the density of the fog using setDensity. The

S E C T I O N 14 . 2 ADDING COLOR AND LIGHT: Appearance 333

latter has a linear ramp from no fog to fully fogged, specified with setLinear(float
near, float far). Finally, there is the fog color, set via setColor. Refer to Section 3.4.4
for the details of fog arithmetic.

Pitfall: Despite the name, setLinear does not make the fog LINEAR—you must set
the fog mode and parameters separately:

myFog.setMode(Fog.LINEAR);
myFog.setLinear(0.0, 10.0);

Note that there is no EXP2 fog mode in M3G, although it is frequently used in OpenGL
(see Section 3.4.4). This was, again, done to drop one code path from proprietary software
implementations; today, it may seem like rather an arbitrary choice.

14.2.5 CompositingMode

After fog has been applied to your fragments, they are ready to hit the frame buffer. By
default, anything you render is depth-tested and, should the depth test pass, replaces the
previously existing frame buffer values. The CompositingMode class lets you control
what is written to the frame buffer and how it blends with the existing pixels for com-
positing and multi-pass rendering effects.

myCompositingMode = new CompositingMode();
myAppearance.setCompositingMode(myCompositingMode);

Fragment tests

The first operation done on any fragment at the compositing stage is the alpha test. M3G
simplifies this down to a single threshold alpha value that your fragment must have in
order to pass. The threshold is set via setAlphaThreshold, and must have a value
between zero and one. Any fragment with an alpha value less than the threshold gets
rejected right away. The default value of 0.0 lets all pixels pass. A common use for the
alpha channel is transparency, and you usually want to reject fragments with small alpha
values so that the transparent regions do not mess up the depth buffer:

myCompositingMode.setAlphaThreshold(0.5f);

Note that this is equivalent to enabling the alpha test in OpenGL ES and calling
glAlphaFunc(GL_GEQUAL, 0.5f). See Section 9.5.2 for more details on the
OpenGL ES functionality.

Performance tip: The alpha test is the fastest way to discard individual fragments, as
it does not require a comparison with the depth buffer. For example, your rendering
speed may improve by using alpha testing to discard transparent areas already before
the blending stage. In practice, many implementations detect these discarded fragments
much earlier in the rendering pipeline, providing savings from other stages as well.

334 LOW-LEVEL MODELING IN M3G C H A P T E R 14

If the alpha test passes, the depth test then compares the depth value of the fragment
with the depth buffer at the screen location of the fragment. If the depth test passes,
the fragment will be written into the color and depth buffers. Depth testing in M3G is
also simplified from OpenGL ES so that the test is hard coded to “less than or equal”
(GL_LEQUAL). That is, fragments farther away than the existing depth buffer value
are discarded. It is, however, possible to disable the depth test entirely with
setDepthTestEnable(false). Pixels in the frame buffer can then be overwritten
even if they were closer to the camera than the fragments being drawn.

Prior to depth testing, you can optionally add an offset value to all fragment depth
values, similarly to glPolygonOffset shown in Section 9.5.4. This helps solve z-
fighting problems that you may encounter with multi-pass rendering algorithms. The
offset can be set with setDepthOffset(float factor, float units). Here, factor is
a multiplier for the maximum depth gradient and units the number of smallest resolvable
depth buffer units to add. For example:

myCompositingMode.setDepthOffset(—1.0f, —1.0f);

brings your geometry closer to the camera by an amount equal to one depth buffer unit
plus the largest depth difference between two adjacent pixels in a triangle. The depth offset
is constant for each individual polygon. For more details, see Section 3.5.1.

All fragments that pass the depth test are written to both the color buffer and the
depth buffer by default, but you can disable writing to either if you need to. Depth
buffer writes are controlled withsetDepthWriteEnable. Note that disabling depth
writes does not disable the depth test, and vice versa. Controlling color buffer writes
is split between setColorWriteEnable and setAlphaWriteEnable. The
RGB channels are lumped together and cannot be individually disabled—the equiv-
alent OpenGL ES call would be glColorMask(colorWrite, colorWrite,
colorWrite, alphaWrite).

Performance tip: Disabling color writes or alpha writes can force certain hardware
implementations into hugely expensive workarounds. If your frame rate is much less
than you would expect, first make sure that all objects in the scene have alpha writes
enabled. Note that this does not concern depth writes.

Blending

Color and alpha channels can be blended with the existing color buffer pixels in a number
of ways. To reduce implementation complexity, M3G simplifies the blending arithmetic
somewhat from OpenGL ES, exposing a predefined set of blending modes rather than
independent source and destination operands—this is another restriction that nowadays
exists mostly for historical reasons. The blending mode is set with setBlending, and
the available modes are summarized in Table 14.3. The default value, REPLACE, does not
perform blending but overwrites the existing pixels. ALPHA is traditional alpha blend-
ing, where the fragment alpha value controls the amount of fragment color blended with

S E C T I O N 14 . 2 ADDING COLOR AND LIGHT: Appearance 335

the color buffer—1.0 results in pure fragment color, 0.5 in a 50:50 mix, and so on. It
is most often used for per-pixel transparency and translucency. ALPHA_ADD adds the
alpha-weighted fragment color to the color buffer instead of blending. This is good for
additive light effects such as lens flares. MODULATE and MODULATE_X2 multiply the
fragment and color buffer colors to produce the final color, with the latter multiplying the
end result by two (the result is still clamped before writing to the depth buffer, though).
A common use case for these is light mapping, where the light map is rendered first and
modulated with a detail texture in a second pass.

Example: separate specular pass

Let us illustrate multi-pass rendering with an example that renders a separate specular
pass on top of textured geometry, with the level of specularity additionally controlled by
the alpha channel of the texture. Figure 14.2 demonstrates this technique. Assuming that

Tab le 14.3: The blending modes supported in M3G. Cs is the incoming fragment color, As is the
fragment alpha, and Cd is the color in the color buffer.

Mode Function

ALPHA Cd = CsAs + Cd(1 − As)

ALPHA_ADD Cd = Cd + CsAs

MODULATE Cd = CsCd

MODULATE_X2 Cd = 2CsCd

REPLACE Cd = Cs

F igure 14.2: Demonstrating a separate specular pass with controllable degree of glossiness. The
per-pixel gloss factors can be stored in the alpha channel of the base texture map. (Image copyright
c© AMD.) (See the color plate.)

336 LOW-LEVEL MODELING IN M3G C H A P T E R 14

you have your texture in an RGBA javax.microedition.lcdui.Image object
myTextureImage, you need to construct two Appearance objects:

// First pass applies diffuse lighting modulated by the texture

Appearance diffusePass = new Appearance();

Image2D myTextureColor = new Image2D(Image2D.RGB, myTextureImage);
Texture2D diffuseTexture = new Texture2D(myTextureColor);
diffuseTexture.setFiltering(Texture2D.FILTER_NEAREST,

Texture2D.FILTER_NEAREST);
diffusePass.setTexture(0, diffuseTexture);

Material diffuseMaterial = new Material();
diffuseMaterial.setColor(Material.AMBIENT|Material.DIFFUSE,

0xFFFFFFFF);
diffusePass.setMaterial(diffuseMaterial);

// Second pass adds specular lighting on top of the previous pass

Appearance specularPass = new Appearance();

Image2D myTextureGloss = new Image2D(Image2D.ALPHA, myTextureImage);
Texture2D specularTexture = new Texture2D(myTextureGloss);
specularTexture.setFiltering(Texture2D.FILTER_NEAREST,

Texture2D.FILTER_NEAREST);
specularTexture.setBlending(Texture2D.FUNC_REPLACE);
specularPass.setTexture(0, specularTexture);

Material specularMaterial = new Material();
specularMaterial.setColor(Material.AMBIENT|Material.DIFFUSE, 0);
specularMaterial.setColor(Material.SPECULAR, 0xFFFFFF);
specularMaterial.setShininess(50.f);
specularPass.setMaterial(specularMaterial);

CompositingMode additiveAlphaBlend = new CompositingMode();
additiveAlphaBlend.setBlending(CompositingMode.ALPHA_ADD);

Now, when you render your geometry first with diffusePass and then
specularPass, you get specular highlights over your diffuse texturing based on the
per-pixel alpha value. You may also want to disable the depth writes on the second pass,
as the same depth values are already written in the first pass.

Pitfall: Blending has no effect on depth writes. If you have an alpha-blended surface
and you want anything from behind it to show through, you must order your rendering
carefully so that the blended geometry is rendered last. You may also be able to just use
the alpha test if your transparency boundaries are sharp enough. Note that transparent
parts may also overlap within the same object.

We have now reached the end of the fragment pipeline and our fragments have been
written to the frame buffer. With its combination of blending modes and write masks,

S E C T I O N 14 . 3 LIGHTS AND CAMERA 337

CompositingMode can be used to build more complex multi-pass rendering effects
than shown here. With the layer mechanism in Appearance, all of those can also be
incorporated into M3G scene graphs, as we shall discuss in Chapter 15.

Now, you can play around with the various Appearance settings we have constructed
so far in the example. Make note of how they affect the rendering results, but also be aware
of the fact that, for example, the CompositingMode settings are greatly dependent on
what you are compositing with and in which order, and Material really needs some
light to work properly.

14.3 LIGHTS AND CAMERA

So far, we have hinted at lighting and cameras, and the Light and Camera classes,
without going into much detail. Let us now take a closer look at how to manipulate the
camera from our examples, and how to use the built-in lighting functionality.

14.3.1 Camera

Similarly to a real-life camera, through Camera you can control your projection and
viewpoint. Camera can be used in both scene graphs and immediate mode.

Using the Camera class is actually rather simple. First, create your camera:

myCamera = new Camera();

This gives you a camera with a default projection—an identity projection matrix, to be
more precise—as we have seen in the examples so far. The default projection maps your
3D coordinates onto the screen so that X at −1 maps to the left and +1 to the right edge
of the screen; Y at −1 to the bottom and +1 to the top; and only objects within Z range
from −1 at the near and +1 at the far clipping plane are visible. There is no perspective in
this projection; in other words, it is a parallel projection.

Projections

To keep the parallel projection, but change the parameters, call:

setParallel(float fovy, float aspectRatio, float near, float far)

Here, fovy is the height of the view volume in camera coordinates, aspectRatio is the ratio
of width to height, and near and far give the distances to the near and far clipping planes.
By using a negative distance, you can place one or both of the planes behind the camera
location. Note that you can also specify the clipping planes in arbitrary order—if far is
less than near, then objects farther down the Z axis will appear to be closer.

338 LOW-LEVEL MODELING IN M3G C H A P T E R 14

For a perspective projection, call:

setPerspective(float fovy, float aspectRatio, float near, float far)

Again, fovy gives the vertical size of the viewing volume, but as an angle of anything
between]0, 180[degrees. aspectRatio is the ratio of viewport width to viewport height,
and near and far give the clipping distances. With perspective projection, the distances
must be positive, and near must be less than far.

Finally, if you need a more customized projection, you can call:

setGeneric(Transform transform)

This lets you handle special cases such as off-center projections and infinitely far clipping
planes, should you need them.

Camera transformations

The camera, by default, looks from the origin in the direction of the negative Z axis. This
is boring, so you can supply a camera transformation when setting the camera to your
Graphics3D for immediate mode rendering:

Graphics3D g3d = Graphics3D.getInstance();
g3d.setCamera(myCamera, myCameraTransform);

This makes myCamera the camera to use for subsequent immediate mode rendering,
after transforming it with the Transform object myCameraTransform. You can
also keep calling this to just update the camera transformation as necessary. Your
Camera is transformed exactly like light sources and polygon meshes. You can also use
a null Transform to indicate identity.

Let us illustrate how you could position and aim your camera based on your own position,
yaw, and pitch variables, as well as set a desired maximum field of view from another
variable. We assume that myCanvas points to your MIDP Canvas object:

Camera myCamera = new Camera();

Transform cameraTransform = new Transform();
cameraTransform.postTranslate(cameraX, cameraY, cameraZ);
cameraTransform.postRotate(cameraYaw, 0, —1.f, 0);
cameraTransform.postRotate(cameraPitch, 1.f, 0, 0);
g3d.setCamera(myCamera, cameraTransform);

float width = myCanvas.getWidth();
float height = myCanvas.getHeight();
if (height >= width) {
myCamera.setPerspective(cameraFOV, width/height, 1.0f, 100.0f);

}

S E C T I O N 14 . 3 LIGHTS AND CAMERA 339

else {
myCamera.setPerspective(cameraFOV*height/width, width/height,

1.0f, 100.0f);
}

Note that this will not give you an exactly fixed field of view on a wide display—that
would require using the atan function, which is not available in the Java ME math pack-
age. Barring extreme cases, though, the accuracy of the example above should suffice for
normal use.

Pitfall: Make sure that your scene is in front of your camera. It is easy to get confused
with the various coordinate systems and to lose track of where everything needs to be
in relation to the camera. In particular, do remember that the positive Z axis points
out of the screen, i.e., behind the camera. To make sure that your camera is working,
you can always revert back to an identity camera transformation and try placing your
objects at a suitable distance away on the negative Z axis. If this makes them visible,
you probably have moved something or rotated the camera in the wrong direction.

Note that as the camera is conceptually the eye that everything is rendered through, the
renderer actually needs to transform everything else relative to the camera as discussed in
Section 2.4. For that purpose, the camera transformation is not applied to the camera,
instead the inverse of that transformation is applied to everything else to move the world
into the camera’s coordinate system, the eye coordinates. If the camera transformation
is not invertible, your whole world vanishes into a singularity before the camera has a
chance to see it. But if you simply place your camera in the 3D world like any other object,
everything works just fine.

In summary, the modelview transformation in M3G is really composed of two parts:
model, which you supply with each rendered mesh, and view, which comes from the
camera transformation. This is then combined with the projection matrix to give the full
vertex transformation to normalized device coordinates

TNDC = PC−1M (14.2)

where P is the projection matrix, C the camera transformation, and M the modeling
transformation.

14.3.2 Light

Lights in M3G are represented by the Light class. It is also a scene graph node, but
serves a second function as an immediate mode light source. We will concentrate on the
general functionality here, and revisit the scene graph related aspects of lighting in the
next chapter.

340 LOW-LEVEL MODELING IN M3G C H A P T E R 14

Similarly to Material, Light is a very straightforward wrapper for equivalent parts of
the OpenGL lighting model. Some of the details are arranged differently in the interest of
user-friendliness and to make it more obvious how things work, and some simplifications
have been made to the capabilities of individual light sources. However, using multiple
light sources, you can get the same functionality with both APIs, with one exception:
M3G only lets you control the specular and diffuse lighting contributions separately at
material level, not in light sources.

Let us begin by creating a light source:

myLight = new Light();

This creates a directional light that is white. Directional and spot lights in M3G always
shine in the direction of the negative Z axis in their local coordinate system. The light
direction is changed with transformations applied to the light. Similarly, the default posi-
tion of the light source at the origin can only be modified through transformations.

Managing lights

To use the light for immediate mode rendering, we have to add it to the Graphics3D
object:

Transform myLightTransform = new Transform();
myLightTransform.postRotate(90.0f, —1.0f, 0, 0);
g3d.addLight(myLight, myLightTransform);

The Graphics3D.addLight function inserts a new light source into the
Graphics3D object. You can insert as many lights as you want, and these lights
will be used for lighting in subsequent immediate mode rendering. However, only a
fixed maximum number of lights will be used to light any single mesh—this value can
be queried using Graphics3D.getProperties. If you exceed this limit, M3G will
automatically select a subset of the light sources currently set to Graphics3D.

Pitfall: Basically, there is no guarantee that a particular M3G implementation will select
a good subset of lights if you have set a large number of them. For best results, select the
most important light sources yourself, and only add those to Graphics3D, or use the
scoping functionality (Section 15.6.2) to control light selection.

The Transform object, myLightTransform, gives the transformation from the
local coordinate system of the light source to world coordinates—in other words, lights
are transformed exactly like polygon meshes. You can also specify null to indicate an
identity transformation. In our example, the light will be shining down the negative Y axis
after the transformation. The transformation is copied in, so any changes made to it after
calling Graphics3D.addLight have no effect on the light. The transformation of the

S E C T I O N 14 . 3 LIGHTS AND CAMERA 341

Light node itself is also ignored when used for immediate mode lighting, but changes
to other light source parameters do, however, affect subsequent rendering.

In addition to addLight, Graphics3D also offers setLight, which you can use
to modify the lights added with addLight. addLight returns an integer index for
each light you add, and you can pass this index to setLight to set a new light source
or new light transformation for that slot. You can also remove a light by setting its slot to
null. You can remove all lights by calling Graphics3D.resetLights.

Types of light sources

The type of light source is selected viasetMode(int mode). The default, as we have
seen, is DIRECTIONAL for a directional light. AMBIENT makes the light shine equally
from all directions, whereas OMNI makes the light shine from its position toward
all directions. SPOT adds directionality and the spot cone parameters. These are set
using setSpotAngle(float angle) andsetSpotExponent(float exponent).

Performance tip: The different light types have different runtime performance costs.
AMBIENT is virtually free, and DIRECTIONAL is cheap enough that it can often be
used with software-only M3G implementations. OMNI and especially SPOT are con-
siderably more expensive, so their use should be limited to where absolutely necessary.

Regardless of the light type, you can set the light color through setColor
using the familiar hexadecimal 0xAARRGGBB color notation. For example,
myLight.setColor(0x00FF3311) gives myLight a strong red tint. The inten-
sity of the light is set separately in floating point using thesetIntensity function—
this lets you animate either one independently of the other. Multiplying the color and
intensity gives the light value used in the lighting computations. Note that “overbright”
and even negative intensities are quite acceptable. As a simplification from the OpenGL
model, the same color and intensity are used for both specular and diffuse lighting.

Finally, you can specify attenuation parameters for OMNI and SPOT lights through
setAttenuation(float constant, float linear, float quadratic). For AMBIENT
and DIRECTIONAL lights, attenuation has no effect. For a detailed explanation of the
attenuation parameters, as well as other lighting parameters, refer to Section 3.2.

Performance tip: In general, lighting is rather complex and should only be used when
you really need it. Features like spot lights and attenuation are particularly expensive
performance-wise.

For static scenes, you will always get better results by baking the lighting information
into your vertex colors or texture maps. For dynamic scenes, you can use texture maps

342 LOW-LEVEL MODELING IN M3G C H A P T E R 14

and texture transformations to very cheaply simulate diffuse lighting and even add some
reflections.

Be especially warned that some of the early mobile graphics hardware may have
hardware-accelerated transformations, but run the lighting pipeline in software. This
means that using the traditional lighting can completely kill your otherwise good ren-
dering performance—the Sony Ericsson W900i is one example you might encounter in
the real world.

Example

Let us conclude with an example on setting up lights and materials.

static final int red = 0xFFFF0000;
static final int white = 0xFFFFFFFF;
static final int red_transp = 0x00FF0000;
static final int blueish = 0xFF2066FF;
static final int black = 0;

Graphics3D g3d = Graphics3D.getInstance();

// Create a scene global ambient light

Light ambient = new Light();
ambient.setMode(Light.AMBIENT);
ambient.setColor(red);
ambient.setIntensity(0.2f);
g3d.addLight(ambient, null);

// Create a directional light at the origin, shining in the direction
// of the negative Z axis

Light dirLight = new Light();
dirLight.setMode(Light.DIRECTIONAL);
dirLight.setColor(white);
dirLight.setIntensity(1.0f);
g3d.addLight(dirLight, null);

// Create a spot light close to the origin, aimed diagonally down
// and to the left — — note that in immediate mode, the transformation
// in the Light object is ignored, so we pass it as a separate object

Light spotLight = new Light();
spotLight.setTranslation(5.f, 5.f, 0.f);
spotLight.setOrientation(60.f, —1.f, 1.f, 0.f);
spotLight.setMode(Light.SPOT);
spotLight.setColor(white);
spotLight.setIntensity(5.0f);
spotLight.setSpotAngle(40.f);
spotLight.setSpotExponent(10.f);
spotLight.setAttenuation(0.f, 1.f, 0.f);

Transform t = new Transform();
spotLight.getCompositeTransform(t);
g3d.addLight(spotLight, t);

S E C T I O N 14 . 4 2D PRIMITIVES 343

// Create a material to receive the lights

Material material = new Material();
material.setColor(Material.AMBIENT|Material.DIFFUSE, blueish);
material.setColor(Material.SPECULAR, red_transp);
material.setColor(Material.EMISSIVE, black);
material.setShininess(15.f);

14.4 2D PRIMITIVES

In addition to polygon meshes, M3G can also render 2D graphics to some extent. The
Background class allows you to clear the viewport with a solid color or an image.
Sprite3D represents a slightly more versatile object, letting you draw a 2D image that
has a 3D position and interacts with the 3D graphics. Both of these can be used in both
immediate and retained mode rendering.

The 2D features were some of the more controversial topics discussed by the M3G
standardization group, with opinions strung between compatibility with the coming
OpenGL ES standard, and enabling proprietary optimizations on software engines that
would not be using hardware acceleration. In the end, the group tried to compromise
between the two camps, which unfortunately meant including some nasty limitations
and special cases in the 2D feature set. It soon turned out, however, that this lean toward
proprietary software engines was largely in vain, as all the major implementations were
moving toward full OpenGL ES compatibility more quickly than anticipated. This left
the possibility for software 2D graphics optimizations mostly unused. Nevertheless, the
2D feature set exists in the API and can be used for the intended purposes, barring a few
loopholes which we will highlight below.

14.4.1 Background

By default, the color buffer is cleared with transparent black and the depth buffer with
the maximum depth value. The color buffer can also be cleared with a given color and
alpha, or with a background image that can be independently scaled, tiled and centered
in the horizontal and vertical directions. The depth buffer can only be cleared with the
maximum depth value of 1.0, or not cleared at all.

Recall that in immediate mode, you need to clear the screen manually. In retained mode,
we will see how the Background object can be associated with your World.

To enable and disable clearing the color and frame buffers and to set the clear color, use
the following methods:

void setColor(int ARGB)
void setColorClearEnable(boolean enable)
void setDepthClearEnable(boolean enable)

344 LOW-LEVEL MODELING IN M3G C H A P T E R 14

If you want to use a background image, you will need the following methods in
Background:

void setImage(Image2D image)
void setImageMode(int modeX, int modeY)
void setCrop(int cropX, int cropY, int width, int height)

Only RGB and RGBA formats are allowed for a background image, and the format
must match that of the rendering target. In other words, you can use an RGBA format
background image only when rendering into an M3G Image2D that has an alpha
channel; RGB is the only allowed format for MIDP rendering targets, as Canvas and
mutableImage objects never have an alpha channel. This restriction was incorporated to
save software M3G implementations from having to implement dedicated blitting func-
tions for each combination of formats. However, implementations today typically rely on
OpenGL ES texturing for drawing background images, making the restriction completely
unnecessary—if you wish, you can also easily implement your background as a textured
quad, a skybox, or any other suitable geometry, and side-step the whole issue.

The size and position of the background image is controlled with setCrop(int cropX,
int cropY, int width, int height). The point (cropX, cropY) in the image is placed in
the top left corner of the viewport, with the width by height pixels to the right and down
from there scaled to fill the viewport.

The setImageMode function controls whether the background image should be tiled
or not, separately in either direction. Specifying BORDER fills areas outside of the image
with the specified background color, whereas REPEAT tiles the image ad infinitum. The
tiling modes can be different for X and Y directions.

Example: scrolling background

Pulling all this together, let us clear our QVGA screen so that the background image resides
at the top of the screen and is scrolled in the horizontal direction, while the area below the
image is cleared with a light green color and later filled by rendering some 3D content.
The code to do that is shown below, and the end result is shown in Figure 14.3.

// initialization

myBg = new Background();
myBg.setColor(0x00CCFFCC);
myBg.setImage(new Image2D(Image2D.RGB, 256, 128, myBgImage));
myBg.setImageMode(Background.REPEAT, Background.BORDER);

// per frame stuff: scroll the background horizontally.
// the screen is 240 pixels wide

cropX = (cropX+1) % 240;
myBg.setCrop(cropX, 18, 240, 320);
g3d.clear(myBg);

S E C T I O N 14 . 4 2D PRIMITIVES 345

F igure 14.3: An illustration of what our example code for Background does.

It should be noted, however, that since the crop rectangle is specified in integers, it is not
possible to achieve entirely smooth scrolling or zooming at arbitrary speeds, since there
is no way to address the image at sub-pixel precision. This is another limitation you can
easily overcome with textured quads.

Pitfall: Background images are allowed to have any size, but in practice, M3G imple-
mentations usually render them using OpenGL ES textures. This means that inter-
nally, background images are still subject to the same limitations as images used for
texturing. This may adversely affect the quality or performance of your backgrounds
if you use images that map poorly to the restrictions of the underlying renderer. We
strongly advise you to only use background images that could as well be used as texture
images on your target implementation; in other words, use power-of-two dimensions
and keep the size within the limits allowed for textures. The limit can be queried with
Graphics3D.getProperties.

346 LOW-LEVEL MODELING IN M3G C H A P T E R 14

14.4.2 Sprite3D

The name “sprite” originates from Commodore 64-era home computers that had special-
ized circuitry for drawing a movable block of pixels on the screen. That is almost exactly
whatSprite3D does, only with slightly more features and, in all cases we know of, with-
out the specialized circuits. Sprite3D takes an Image2D and draws it on the screen at
the projected position of its 3D location. The image can additionally be scaled with dis-
tance, and different regions of the image can be selected to be displayed.

The Sprite3D class was originally introduced into M3G in order to allow fast 2D prim-
itives on software engines, and considerable effort was put into specifying how sprites
should function. In retrospect, this was largely a wasted effort, as it soon became evident
that all major implementations would have to be compatible with OpenGL ES, making
proprietary optimizations impractical. Sprite3D also turned out to be a nuisance to
implement using OpenGL ES textures, as its specification is not quite aligned with the
limitations on texture size in OpenGL ES. As a result, sprites remain something of a niche
feature in the API. They are little more than wrappers for textured quads, but they are still
available and do make common 2D effects somewhat easier to implement.

There are two main use cases for Sprite3D: you can use it as an impostor for 3D
objects, or for 2D overlays such as lighting effects or text labels on top of your 3D graph-
ics. For impostors, you can use a static image of a complex object and draw multiple
instances quickly. Alternatively, you can take advantage of the support for using a mutable
Image2D for a sprite, and re-render your 3D object into the impostor when the projec-
tion has changed by a significant amount. A simple lighting effect could be to draw a light
bloom around a light source: use a suitable bloom image, place your sprite at the location
of the light source, and enable additive blending for the sprite.

Performance tip: Do not confuse Sprite3D with point sprites in OpenGL ES.
Because each instance of Sprite3D incorporates its own transformation, it is
too slow for most use cases of point sprites. The scaling computations are also
more complex than for point sprites. Particle systems, for example, are far more
efficiently created in M3G by explicitly constructing quads to represent the particles.
The essential bit here is that you can then draw all the particles at once from a single
VertexBuffer, even though you have to animate them manually.

Sprite functions

Let us create a scaled sprite for starters:

Sprite3D mySprite = new Sprite3D(true, mySpriteImage, myAppearance);

The first parameter tells whether our sprite is scaled or not—in our example, we specified
true for a scaled sprite. A scaled sprite is drawn like a unit quad filled with the sprite
image, centered about the 3D location of the sprite, and facing the camera. An unscaled
sprite is otherwise similar, but drawn with a 1:1 match between the sprite image and

S E C T I O N 14 . 4 2D PRIMITIVES 347

the screen pixels, regardless of the distance between the camera and the sprite. The depth
of the sprite is, however, equal to the depth of its 3D position for both scaled and
unscaled sprites.

As in the Texture2D class, you have to specify the sprite image in the constructor
but can change it with the setImage function later on if you need to. Unlike texture
images, however, Sprite3D imposes no restrictions on the image dimensions—any
image will do.

Performance tip: Like background images, most implementations simply implement
Sprite3D using textured quads, and in practice the limits of texture images apply. To
maximize performance and quality, stick to the texture image restrictions with sprites
as well.

You can specify only a subset of the image to be shown with the function setCrop(int
x, int y, int width, int height). The image rectangle of width by height pixels starting
at (x, y), relative to the upper left corner of the image, is used to draw the sprite. Note
that for scaled sprites, this only changes the contents of the projected rectangle, whereas
for unscaled sprites, the on-screen size is changed to match the crop rectangle size. Addi-
tionally, you can mirror the image about either or both of the X and Y axes by specifying
a negative width or height.

One thing you can do using setCrop is an animated sprite. For example, assume that we
have a set of eight animation frames, 32 × 32 pixels each. If we put those into a 256 × 32
Image2D, called myAnimationFrames in this example, we can easily flip between
the frames to animate the sprite:

// Create the sprite
Sprite3D mySprite = new Sprite3D(true, myAnimationFrames, myAppearance);
int frame = 0;

// Animation (per frame)
mySprite.setCrop(frame * 32, 0, 32, 32);
frame = ++frame % 8;

Compositing sprites

Sprite rendering is also controlled by an Appearance object. The only Appearance
attributes that concern sprites are CompositingMode, Fog, and the layer index.
All of them function exactly as with mesh rendering, whereas all other Appearance
components are simply ignored. You must give the Appearance object to the
constructor, too, but unlike the image, you can specify a null Appearance
initially and set it later with the setAppearance function. The one thing you will
often want to include into your sprite appearance is a CompositingMode with
setAlphaThreshold(0.5f). This lets you set the shape of the sprite with the

348 LOW-LEVEL MODELING IN M3G C H A P T E R 14

alpha channel, as pixels below the alpha threshold are discarded when rendering. In
our example above, we should add

myAppearance.setCompositingMode(new CompositingMode());
myAppearance.getCompositingMode().setAlphaThreshold(0.5f);

into the initialization code.

To draw your sprite, call Graphics3D.rendermySprite, myTransform, where
myTransform is the world-space transformation for your sprite. The attached
Appearance object is used for the shading.

Pitfall: Remember that sprites reside at their true depth in the 3D scene. If you want
your sprite as a 2D overlay on top of the 3D graphics, make sure you draw it last with
depth testing disabled.

15

C
H

A
P

T
E

R

THE M3G SCENE GRAPH

M3G has been designed from the ground up to be a retained-mode scene graph API.
While low-level rendering is all fine and dandy, to really make the most of M3G you will
want to take advantage of the scene graph functionality. In this chapter we will take what
we learned about low-level rendering so far, and see how that fits into the concept of scene
graphs.

While the scene graph is an elementary component of M3G that you really should under-
stand, you have the freedom to use as much or as little of it as you want. Immediate and
retained mode rendering in M3G are not mutually exclusive—on the contrary, M3G has
been intentionally designed to let you mix the two as you like.

For background information on scene graphs, as well as some insight into the actual
design process of the M3G scene graph model, please refer to Chapter 5.

15.1 SCENE GRAPH BASICS: Node, Group, AND World

Scene graphs are built from Node objects. Node is an abstract base class with certain
common functions and properties. Each node has a transformation relative to its parent,
and rendering can be enabled and disabled individually for each node. There is also an
alpha factor that you can use to control the transparency of each node or group of nodes.
The basic Node class is specialized into different scene graph objects, of which Camera,

349

350 THE M3G SCENE GRAPH C H A P T E R 15

Light, and Sprite3D are already familiar. In this chapter, we will introduce Group,
Mesh, and World. With these classes you can create a simple scene graph:

Mesh myCarBody, myCarWheel[];
float wheelX[], wheelY[], wheelZ[];
Light mySpotLight;
Background myBackground;

// Some initialization code would go here -- omitted for brevity

World myCarScene = new World();
myCarScene.setBackground(myBackground);

Group myCar = new Group();
myCar.addChild(myCarBody);
for (int i = 0; i < 4; ++i) {
myCar.addChild(myCarWheel[i]);
myCarWheel[i].setTranslation(wheelX[i], wheelY[i], wheelZ[i]);

}

myCarScene.addChild(myCar);
myCar.setScale(0.1f, 0.1f, 0.1f);
myCar.setOrientation(—30.f, 0.f, 1.f, 0.f);

myCarScene.addChild(spotLight);
spotLight.setTranslation(10.f, 20.f, 30.f);
spotLight.setOrientation(40.f, —1.f, 1.f, 0.f);

Camera camera = new Camera();
myCarScene.addChild(camera);
camera.setTranslation(0.f, 3.f, 20.f);

myCarScene.setActiveCamera(camera);

Note how, unlike in immediate mode, the node transformations are directly used in
the scene graph—there is usually no need to use separate Transform objects to move
nodes around.

Groups and inherited properties

One special kind of Node is Group. This lets you group several Node objects together
and treat them as one—for example, it lets you transform or animate the entire group
instead of having to do that for each object separately. In other words, grouping allows par-
titioning the scene into logical entities. An obvious example is creating composite objects,
such as a car with individual wheels; another could be putting all objects of a particular
type into a group so that you can apply some operation to all of them at once.

We already mentioned that node transformations are relative to the parent node. Sim-
ilarly, flags enabling rendering and alpha factor values from groups are cumulatively
inherited by their children: disabling rendering of a group will also disable rendering of its

S E C T I O N 15 . 2 Mesh OBJECTS 351

children, and putting a half-opaque node inside a half-opaque group will result in a one-
quarter-opaque node. Rendering is enabled or disabled via setRenderingEnable,
and alpha factors can be set with setAlphaFactor. The alpha factor is effectively mul-
tiplied into the post-lighting vertex alpha value of Mesh objects, and the per-pixel alpha
value of Sprite3D objects.

Pitfall: Alpha factor is a poor fit with per-vertex colors, as it has to be premultiplied into
them in certain cases. Especially avoid using alpha factors, at least other than 0 and 1, in
combination with per-vertex alpha and texturing. Depending on the implementation,
there may be other performance bottlenecks triggered by alpha factors as well.

We will show some more use cases for groups later, but for now, it suffices to say that to
add a child Node into a Group, you call the function

void addChild(Node child).

The group into which you add child is then said to be the parent of the child. You can
query the parent of any Nodewith the getParent function. Since M3G does not allow
loops in the scene graph, each node can only have a single parent, and consequently child
must have a null parent when calling addChild. You are still free to reassign nodes
into groups as you please—just call removeChild(Node child) to remove a node from
its current group prior to adding it into a different one.

World

There is also a special kind of Group called World. It is special in one particular way:
it cannot be a child of any other Node. World serves as the root of your scene graph,
a container for all other scene graph objects, and it defines Camera and Background
objects used by your entire scene graph. It is possible to use scene graphs without using
World, but World is what ultimately allows you to draw all of it with what is perhaps
the single most powerful command in M3G: render(myWorld). This call clears the
screen with the selected background, sets up the currently active camera and lights, and
renders the entire scene, all in a single operation.

You should now have a fairly good idea about the basics of using scene graphs in M3G. In
the rest of this chapter, we will look at the new classes in detail, as well as introduce some
advanced scene graph concepts.

15.2 Mesh OBJECTS

In immediate mode, we used VertexArray, VertexBuffer, IndexBuffer, and
Appearance to build our polygon meshes. The scene graph equivalent is the Mesh
class. It takes exactly the same data as one would use in immediate mode rendering:

myMesh = new Mesh(myVertices, myTriangles, myAppearance);

352 THE M3G SCENE GRAPH C H A P T E R 15

The parameters above are, respectively, a VertexBuffer, an IndexBuffer, and an
Appearance. In essence, the Mesh object serves as a container for your immediate
mode render call. You can place it in the scene graph, move, rotate, and animate it,
and have it drawn with the rest of the scene.

You can also group multiple batches of triangles, or submeshes in M3G parlance, into a
single Mesh object:

IndexBuffer[] mySubMeshes;
Appearance[] myAppearances;

// Set up the above arrays here...

myMesh2 = new Mesh(myVertices, mySubMeshes, myAppearances);

This lets you create composite objects with patches having different rendering proper-
ties. It also allows multi-pass rendering for simulating more complex material properties,
especially when combined with the layer index mechanism of Appearance. We will
discuss that later in Section 15.4.

Performance tip: The number of submeshes is best kept to a minimum, as rendering
each submesh typically has some fixed amount of overhead. When rendering lots of
triangles in small batches, the individual low-level drawing calls that M3G will have to
perform internally may become the main bottleneck of the whole system.

The submeshes themselves cannot be changed once the mesh is created, but you can
use setAppearance to change the Appearance of each submesh. This lets you
change the material properties on the fly, or to exclude the submesh from rendering alto-
gether by setting its appearance to null. The submeshes can share vertices across the
entire mesh, so you can also, for example, represent different levels of detail with dedi-
cated index buffers and use setAppearance to control which LOD level gets rendered:

// Initialization -- create an LOD Mesh.

VertexBuffer vertices;
IndexBuffer highDetail, mediumDetail, lowDetail;

// (initialization of buffers omitted -- each index buffer should
// contain successively fewer polygons)

IndexBuffer triangleLODs[3] = { highDetail, mediumDetail, lowDetail };
static final float maxLODDistance[3] = { 10.f, 20.f, 40.f };

Mesh myLODMesh = new Mesh(vertices, triangleLODs, null);
Appearance myMeshAppearance = new Appearance();

// Rendering time -- select the LOD to draw based on some distance

S E C T I O N 15 . 2 Mesh OBJECTS 353

// metric, called ‘‘distanceToMesh’’ here. Note that the mesh will
// not be drawn at all when exceeding the threshold distance for the
// lowest level of detail.

int lod = 0;
for (int i = 0; i < 3; ++i) {
myLODMesh.setAppearance(i, null);
if (distanceToMesh > maxLODDistance[lod]) {
++lod;

}
}
if (lod < 3) {
myLODMesh.setAppearance(lod, myMeshAppearance);

}

Data instancing

All the data you put into a Mesh can be shared by several Mesh instances. While you
cannot directly create several instances of the same Mesh, you canduplicate it as you
please without worrying about excessive memory usage. As an example, assume that you
want to create a new instance of myMesh, but with a different material color. A shallow
copy is made by default, so you can change just the properties you want to:

Mesh copyMesh = myMesh.duplicate();
copyMesh.setAppearance(copyMesh.getAppearance().duplicate());
Material copyMaterial = copyMesh.getAppearance().getMaterial().

duplicate();
copyMesh.getAppearance().setMaterial(copyMaterial);
copyMaterial.setColor(Material.AMBIENT|Material.DIFFUSE,

0xFF88FF44);

In this example, the Appearance object and its Material are duplicated so that they
can be changed without affecting the original, but any other Appearance components
are shared between the two meshes.

There are also two subclasses of the basic Mesh: MorphingMesh and SkinnedMesh,
used for animating your meshes. We will return to them in Chapter 16.

Performance tip: Make sure that you only include the data you really need in your
Mesh objects. In particular, some content authoring tools may include vertex normals
by default, even if you do not intend to use lighting. This can get expensive when skin-
ning is used, as M3G may end up doing unnecessary work transforming the normal
vectors that never get used. It is possible for the implementation to detect the case and
skip processing the normals when lighting is not enabled, but it is equally likely that the
implementation simply assumes that any data you have supplied is needed. In any case,

354 THE M3G SCENE GRAPH C H A P T E R 15

excess data will always use up memory for no good reason. This applies to data such as
texture coordinates and vertex colors as well—if you have no use for some piece of data,
drop it before putting it into the M3G format.

Next, let us figure out how to move the objects around in the World.

15.3 TRANSFORMING OBJECTS

Remember how in immediate mode rendering you had to pass in a modeling transforma-
tion for each rendering call? In the scene graph, all you have to do is to move the objects
themselves. Let us move the meshes we created in the previous section:

myMesh.setTranslation(0.0f, 0.0f, —20.0f);
myMesh2.setTranslation(10.0f, 0.0f, —20.f);
myMesh2.setOrientation(30.0f, 1.0f, 1.0f, 0.0f);

Node is derived from Transformable, which provides you with the functions for
setting various transformation components as discussed in Section 13.3: translation T,
rotation R, scale S, and an arbitrary 4 × 4 matrix M. These are combined into a single
composite transformation in each node:

C = TRSM (15.1)

For scene graph Node objects, there is an additional restriction that the bottom row of
the matrix component must be (0 0 0 1)—in other words, the W component will retain its
value of 1 in all scene graph node transformations. There is normally no need for projec-
tive transformations in this context, so supporting them would unnecessarily complicate
M3G implementations.

Querying transformations

In addition to the getters for each of the transformation components, you can also
query the composite transformation C directly. To do this, call Transformable.
getCompositeTransform(Transform transform). Upon return, transform will
contain the composite transformation matrix. This is usually faster than combining the
individual components in Java code.

The node transformations are concatenated hierarchically within the scene graph. If you
have a Group with a Mesh inside it, the composite world-space transformation of the
Mesh object is

Cmesh-to-world = CgroupCmesh (15.2)

where Cgroup and Cmesh are the composite transformations of the group and mesh, respec-
tively. Note that the transformation of World nodes is always ignored, as only observers
outside a world would notice when the whole world moves.

S E C T I O N 15 . 3 TRANSFORMING OBJECTS 355

Often, you will want to do some computation between two objects in the scene graph. For
that, you need to know the transformation from one object to the other so that you can
do your computations in a single coordinate system. To get the composite transformation
from one Node to another, call the Node member function:

boolean getTransformTo(Node target, Transform transform)

where target is the node you want to transform to, and transform is the resulting composite
transformation. M3G will automatically find the shortest path between the two nodes or
return false if no path exists, i.e., the two nodes are not in the same scene graph. The
only restriction is that all transformations along the path must be nonsingular, as inverse
node transformations may be needed in order to compute the composite transformation.
As an example, this will return the world space transformation of myMesh:

boolean pathFound = myMesh.getTransformTo(myWorld,
myMeshToWorldTransform);

Reversing the nodes will give you the transformation from world space to your node:

boolean pathFound = myWorld.getTransformTo(myMesh,
myWorldToMeshTransform);

Note that this is mathematically equivalent to calling invert on myMeshToWorld-
Transform. Numeric precision issues may, however, cause the results to
differ, and M3G may be able to compute the inverse faster if it knows to look for it in
the first place.

15.3.1 Camera, Light, AND VIEWING TRANSFORMATIONS

Concatenating the node transformations up to world space gives us the modeling trans-
formation for each object. As discussed in Section 14.3.1, the viewing part of the model-
view transformation is obtained from the Camera class.

Moving to the scene graph world, the only difference from our treatise of the subject
in Section 14.3.1 is that you no longer have to give the viewing transformation explic-
itly. Instead, you can place your camera—or as many cameras as you like—in the scene
graph like any other nodes. They can be placed directly into the World, or inside Group
objects. The inverse of the camera-to-world transformation is then automatically com-
puted and concatenated with each modeling transformation when rendering the scene.

Let us add some light and cameras to our world:

Light sunLight = new Light();
sunLight.setMode(Light.DIRECTIONAL);
sunLight.setColor(0xFFEE88);
sunLight.setIntensity(1.5f);
sunLight.setOrientation(20.f, -1.f, 0.f, 1.f);
myWorld.addChild(sunLight);

356 THE M3G SCENE GRAPH C H A P T E R 15

// Note that these getters are only available in M3G 1.1
float aspectRatio = g3d.getViewportWidth() /

g3d.getViewportHeight();
float fovXToY = 1.f / aspectRatio;

Camera myWideCamera = new Camera();
myWorld.addChild(myWideCamera);
myWideCamera.setPerspective(60.f*fovXToY, aspectRatio, 1.f, 100.f);

Camera myTeleCamera = new Camera();
myWorld.addChild(myTeleCamera);
myTeleCamera.setTranslation(-50.f, 20.f, -30.f);
myTeleCamera.setOrientation(30.f, 0.f, -1.f, 0.f);
myTeleCamera.postRotate(10.f, -1.f, 0.f, 0.f);
myTeleCamera.setPerspective(20.f*fovXToY, aspectRatio, 1.f, 100.f);

myWorld.setActiveCamera(myWideCamera);

Now, you can use setActiveCamera to switch between the two cameras. This saves
you the trouble of having to move a single camera around the scene graph to switch
between different predefined viewpoints.

Pitfall: Your camera must be a part of your World! Otherwise, M3G will be unable to
compute the camera-to-world transformation, and will raise an exception.

Pitfall: If you want an entire World garbage-collected, it will not happen as long as its
camera and lights are referenced fromGraphics3D (see Section 13.1.3). It is therefore
not enough to do myWorld = null in your cleanup code; you also need to do
g3d.setCamera(null, null) and g3d.resetLights().

15.3.2 NODE ALIGNMENT

In addition to setting the transformations explicitly, there is a semi-automatic mechanism
for orienting nodes of which you can take advantage in some cases. Node alignment lets
you, for example, force an object to always face some other object or maintain an upright
position in the world. Alignment can be forced for any Node and the entire subtree of
its descendants with a single function call. Typically, you would place alignment after all
animations, just before rendering:

myWorld.align(myWorld.getActiveCamera()); // apply node alignments
g3d.render(myWorld); // draw the world

Let us leave the details of that align call for later, though. First, we will discuss how
alignment works and what you can do with it.

The specification for node alignment is rather involved because it attempts to ensure that
all implementations work in the same way. The actual operation is much simpler. For
both the Z and the Y axis of a node, you can specify that the axis should always point

S E C T I O N 15 . 3 TRANSFORMING OBJECTS 357

toward a specific point or direction in the scene. If you specify alignment for both of the
axes, it is the Z axis that rules: it will always be exactly aligned, while the Y axis will only
make its best effort thereafter. We will clarify this with a couple of examples in a moment.

Pitfall: Some early M3G implementations lack sufficient numeric range and precision
to compute alignments accurately. You may not be able to rely on alignment working
reliably across the entire range of M3G-enabled devices.

Setting up node alignment

To set up alignment for a Node, call:

void setAlignment(Node zRef, int zTarget, Node yRef, int yTarget)

This looks complicated, but note that there are two identical sets of parameters compris-
ing a reference node and an alignment target for each axis. Looking at the Z parameters,
the reference node zRef is what you want your node to use as a guide when aligning itself;
zTarget is what in zRef you want your node to align to. The same goes for the equivalent
Y parameters.

Valid values for zTarget and yTarget areNONE,ORIGIN,X_AXIS,Y_AXIS, andZ_AXIS.
NONE, fairly obviously, disables alignment for that axis. ORIGIN makes the axis point
toward the origin of the reference node. The three axis targets make the aligned axis point
in the same direction as the specified axis of the reference node. Here are two examples:

myMesh.setAlignment(null, Node.NONE, myWorld, Node.Y_AXIS);
myMesh2.setAlignment(myWorld, Node.ORIGIN, null, Node.NONE);

Now, the Y axis of myMesh will always point in the same direction as the Y axis of
myWorld; and the Z axis of myMesh2 will always point toward the origin of myWorld.

Note that we are specifying no alignment for the Y axis of myMesh2—this means that
the Y axis will point in whatever direction it happens to point after myMesh2 is rotated
to align its Z axis. The M3G specification states that the alignment rotation will always
start from a fixed reference orientation, without any rotation applied. Therefore, even
though you may not know the exact orientation of your object after the alignment, you
can still rely on the Y axis behaving nicely: given a target Z axis direction, you will always
get a deterministic Y axis direction, and it will change smoothly rather than jump around
randomly each frame.

Pitfall: Make sure that your alignment reference nodes are in the same scene graph as
the nodes being aligned! Otherwise, M3G will be unable to compute the alignment and
will throw an exception that may be hard to track down.

In addition to fixed nodes, you can also easily align objects based on the current camera,
without giving an explicit node reference to it. To make a billboard that always faces the
camera, you could apply this setting on a piece of flat geometry:

myNode.setAlignment(null, Node.ORIGIN, null, Node.NONE);

358 THE M3G SCENE GRAPH C H A P T E R 15

Note that we left zRef and yRef null in this example. Then, return to our first code
example on alignment and notice how we passed in the active camera of the world. The
only argument to align is a Node to be used as the alignment reference in all cases
where you have specified a null zRef or yRef. The most common use for this is passing
in the currently active camera as in our example. You could of course specify any Camera
node as a reference to setAlignment—however, if you have multiple cameras in your
scene graph, using null instead lets you switch between them, or even create new cam-
eras, without having to reset the alignment for any camera-aligned nodes. It is therefore
good practice to use null to mean “align to my current camera.”

Alignment examples

Now, let us try a couple of more examples to illustrate what you can do with alignment.
These examples, again, assume that you are passing the active camera of your world to
each align call.

As an alternative to our billboard example above, you may want to align the billboard
with the Z axis of the camera rather than aiming it at the camera origin:

myNode.setAlignment(null, Node.Z_AXIS, null, Node.NONE);

This may be faster on some M3G implementations, but the result will also look slightly
different—especially with a wide field of view—because the billboard will align to
the orientation of the camera rather than its position. You can see this difference in
Figure 15.1. Which alternative looks better depends on the desired effect of the billboard.

Of course, we can also make a billboard and align its Y axis. If you want to emulate
Sprite3D, you can align the billboard with both the Z and Y axes of the camera:

myNode.setAlignment(null, Node.Z_AXIS, null, Node.Y_AXIS);

Note that unlikeSprite3D, this still lets you use any geometry you want, as well as apply
multi-texturing and multi-pass rendering. Of course, if you just want to draw a sprite, the
dedicated sprite class is optimized for that and may give you better performance, but on
many practical implementations you are unlikely to notice a difference.

To simulate complex objects such as trees, as in Figure 15.1, you may want to have the
impostor geometry and textures oriented vertically with respect to the world, while turn-
ing about the vertical axis to face the camera—in other words, have the orientation of
your billboard constrained by a fixed axis. Since Y-axis alignment is subordinate to Z-axis
alignment in M3G, we must use the Z axis as the constraint. Assuming that the Y axis
represents the vertical direction, or height, in your world, you would align your impostor
trees like this:

myNode.setAlignment(myWorld, Node.Y_AXIS, null, Node.ORIGIN);

Of course, you must also model your geometry so that the Z axis is the vertical axis of
your impostor geometry.

S E C T I O N 15 . 3 TRANSFORMING OBJECTS 359

F igure 15.1: Two variants of billboard trees. On the left, the trees are aligned with the Z axis of the

camera; on the right, they are aligned to face the camera origin. In both cases, the vertical axis of each

tree is constrained to be perpendicular to the ground plane.

Performance tip: Alignment comes at a price, as it involves quite a bit of computation.
It may therefore not be the best idea to use our example above to make lots of trees using
aligning billboards—note that you cannot just group them and align the group as one
object, because you want each tree to stay at a fixed location, so you would have to align
them individually. You will likely get better performance if you limit that technique to
a few close-by or medium distance trees, and implement the faraway ones using static
impostor objects representing larger portions of the forest.

Targeting the camera and lights

Our final example is also a common one: a target camera. Often, you will want your camera
or lights to track an object. To do this, let us aim the Z axis at the object myTarget,
and align the Y axis with the world Y axis so that the camera stays upright while
tracking:

myCamera.setAlignment(myTarget, Node.ORIGIN, myWorld, Node.Y_AXIS);
myCamera.setScale(—1, 1, —1);

What is it with that setScale line? Remember that the camera in M3G looks in the
direction of the negative Z axis. Alignment aims the positive Z axis at myTarget, so
the camera will by default look away from the target. We need to rotate the camera by
180◦ after the alignment to aim it in the right direction. We could wrap the camera in
an extra Group node and align that instead, but reversing the X and Z axes of the cam-
era itself achieves the same result for free. The scale component of the node transfor-
mation does not affect alignment computations; if you refer to Equation 15.1, you will
see that the rotation component, which is replaced by the alignment rotation, resides on
the left side of the scale and matrix components. In practice, this means that the scale
and matrix components of the node itself are ignored when computing the alignment
rotation.

360 THE M3G SCENE GRAPH C H A P T E R 15

What we said about cameras above applies equally to lights, except that the Y axis does not
matter for them: all M3G lights are symmetric about the Z axis, so you only need to align
that. You can therefore save some processing time by specifying null and Node.NONE
for yRef and yTarget, respectively.

15.4 LAYERING AND MULTI-PASS EFFECTS

There is a default sorting rule in the M3G scene graph that all blended primi-
tives, i.e., primitives using a blending mode of anything other than REPLACE in
CompositingMode, are drawn after all nonblended primitives. This is sufficient to
cover many cases where semitransparent geometry and opaque geometry are used—such
as our example on rendering a separate specular lighting pass in Section 14.2.5, which is
easily enough wrapped into a Mesh object:

IndexBuffer primitives[2] = { myTriangles, myTriangles };
Appearance passes[2] = { diffusePass, specularPass };
Mesh mesh = new Mesh(myVertexBuffer, primitives, passes);

This works, regardless of the order in which you specify your rendering passes, because
diffusePass used the default REPLACE blending mode, whereas specularPass
used ALPHA_ADD (refer back to page 336 for the details). However, sometimes you will
want to override this default sorting, or force sorting based on some other criteria. This
is where rendering layers come into the picture.

Pitfall: Other than the default sorting rule, the M3G specification does not require
implementations to sort semitransparent primitives in any particular way—such as
back-to-front. This was intentionally left out, as sorting can be an expensive operation
and it still does not quite solve all of the problems associated with rendering semitrans-
parent geometry. In the end, it is your responsibility to make sure that your blended tri-
angles get drawn in the correct order. However, if transparency is rare enough that you
do not routinely expect to view transparent objects through other transparent objects,
the default rule will be quite sufficient.

Rendering layers

When discussing Appearance in Section 14.2, we already mentioned the subject of
rendering layers, but dismissed it as something that is only useful in scene graphs. Each
Appearance object has a rendering layer index that you can set with setLayer(int
layer). Valid values for layer range from −63 to 63, with the default being 0.

The layer index overrides the default sorting rule when determining the rendering order
for submeshes and sprites. The default rule is still obeyed within each layer, but the layers
are sorted in ascending order. The layer with the smallest index gets drawn first. For

S E C T I O N 15 . 4 LAYERING AND MULTI-PASS EFFECTS 361

example, we could use a sprite as a waypoint or some other marker overlaid on top of the
3D scene:

Image2D markerImage = ...

CompositingMode alphaOverlay = new CompositingMode();
alphaOverlay.setBlending(CompositingMode.ALPHA);
alphaOverlay.setDepthTestEnable(false);
alphaOverlay.setDepthWriteEnable(false);

Appearance overlay = new Appearance();
overlay.setCompositingMode(alphaOverlay);
overlay.setLayer(63);

Sprite3D myMarker = new Sprite3D(false, markerImage, overlay);

Setting the rendering layer to 63, the maximum value, ensures that our marker is drawn
last, and not overwritten by anything in the scene.

You can use the layer index to separate things into discrete passes or to do a coarse sorting.
For example, if you know that some semitransparent geometry will always be close to the
viewer, put it in one of the higher layers (that is, larger-numbered) to have it drawn on top
of anything behind it. If you have two-sided transparent geometry, use an Appearance
with a lower index on the “inside” polygons to make them correctly visible through the
“outside” polygons drawn in front. Any lens flares and other light blooming effects should
be in the highest layers so that they are drawn on top of the entire scene.

Performance tip: If you have a sky cube, draw it last to save fill rate. If you have geometry
that you know will always be close to the viewer, draw that first to occlude larger parts of
the scene early on. This way, depth buffering can drop the hidden pixels before they are
drawn at all, saving the work of shading and texturing them. Translucent objects will
naturally need different sorting for blending to work.

Multi-pass Meshes

Inmulti-passrendering,youcanjustputthesameIndexBuffer intoyourMeshmultiple
times, with a differentAppearanceobject for each rendering pass, and use the layer index
to indicate the order in which to render the passes. This way, you can easily do shading bey-
ond simple light mapping without having to explicitly draw your objects multiple times.

Performance tip: When rendering multiple passes of the same geometry, make the first
pass opaque and disable depth writes for all subsequent passes. Depth testing is still
needed, but you save the cost of rewriting the existing values into the depth buffer. Also
note that the layer sorting works across all objects in the scene, so the first opaque pass
will save on fill rate for all subsequent passes of any occluded geometry.

Once the layer indices are set, M3G handles the sorting of multiple rendering passes auto-
matically. The specified depth test function also guarantees that multiple passes of the

362 THE M3G SCENE GRAPH C H A P T E R 15

same geometry get drawn at the same depth, allowing you to blend arbitrarily many layers
on top of a single opaque layer.

15.5 PICKING

Picking is one more thing you can only do with the scene graph. Put briefly, picking lets
you fire a ray into a Group in the scene graph and see what you hit.

Pitfall: The performance of picking varies widely from one implementation to another.
As a rule of thumb, consider picking a once-in-a-while utility function rather than a
tool that your physics engine can make extensive use of.

Picking through the camera

You can use picking in either of two ways: picking through a camera plane, or picking
from a 3D point. To use the first alternative, call the Group member function:

boolean pick(int scope, float x, float y, Camera camera,
RayIntersection ri).

The first parameter, scope, is tested for a match with the scope mask of each node
(Section 15.6.2) prior to performing the actual picking test. The x and y parameters spec-
ify a point on the image plane of camera that the ray is fired from. The origin is in the
upper left corner of the viewport, with (1, 1) being in the lower right corner, so you can
fire a ray through the center of the camera image by specifying (0.5, 0.5). The direc-
tion of the ray is always away from the eye, i.e., the origin of the Camera node. Note
that you can pick from any camera in the scene, not just the current active camera. By
using the active camera, though, it is easy to pick the object in the center of your current
view:

RayIntersection hitInfo;
if (myWorld.pick(—1, 0.5f, 0.5f, myWorld.getActiveCamera(),

hitInfo)) {
Node objectHit = hitInfo.getIntersected();
float distance = hitInfo.getDistance();
...

}

Note that the ray is fired from the near clipping plane—you cannot hit objects closer to
the camera than that. The unit of distance is equal to the distance between the near and
far clipping planes, as measured along the picking ray, so that distance 0 is at the near
clipping plane and 1 at the far clipping plane. This lets you easily determine whether the
hit object is actually visible when rendered. The actual origin and direction of the ray, in
the coordinates of the world or group node being picked, can also be queried from the
RayIntersection object.

S E C T I O N 15 . 5 PICKING 363

Performance tip: If you really want to fire the ray from the origin of your camera, you
can use getTransformTo to get the transformation from your camera to world
space: myCamera.getTransformTo(myWorld, myMatrix). Now, the last
column of myMatrix gives you the origin of the ray, and the third one is the (pos-
itive) Z axis of the camera, which you can use as the ray direction. You can then pass
these to the other picking variant which we introduce below.

Picking with an explicit ray

The other pick variant lets you specify the picking ray explicitly:

boolean pick(int scope, float ox, float oy, float oz, float dx, float dy,
float dz, RayIntersection ri).

The point (ox, oy, oz) is the origin of the picking ray and (dx, dy, dz) is its direction. Both
are expressed in the local coordinate system of the node that pick is invoked from.
Obviously, you do not need a camera to use this variant:

RayIntersection hitInfo;
if (myWorld.pick(—1, 0.f, 0.f, 0.f, 0.f, 0.f, 1000.f, hitInfo)) {
Node objectHit = hitInfo.getIntersected();
...

}

The example fires a picking ray from the origin of myWorld along the positive Z axis.
Here, the unit of distance is the length of the given direction vector. In this case, we gave a
non-unit direction vector, so our distance would be scaled accordingly; if the world coor-
dinates are in meters, for example, the picking distance returned would be in kilometers.

Picking traversal

In either case, the picking ray will only be tested against objects inside the scene subtree
spanned by the group you invoked pick for. The return value tells you if anything was hit
in the first place. If it is true, details about the closest object intersected are returned in
the RayIntersection object. Table 15.1 lists the functions you can use for retrieving
data about the intersection.

Like rendering, picking is controlled hierarchically via the setPickingEnable func-
tion. If you disable picking on a group node, picking from higher up in the scene graph,
such as from your root World object, will ignore everything inside that group. However,
if you fire your picking ray from a child of a disabled group, picking traversal will proceed
normally to all enabled nodes inside that child group.

Performance tip: Always choose the smallest possible group of objects for picking. For
example, if you only want to test against the terrain, create a separate group to hold just
your terrain, and fire your picking ray into that. This saves the picking traversal from
visiting all the non-terrain objects in your scene.

364 THE M3G SCENE GRAPH C H A P T E R 15

Tab le 15.1: RayIntersection member functions for querying data about the closest inter-
section when picking. The surface normal at the intersection point is interpolated if vertex normals
are present, otherwise its value is undefined.

Function Data returned

float getDistance() The distance from the origin of the ray to the
intersection point. The unit corresponds to
the length of the direction vector of the ray—
see getRay below.

Node getIntersected() The Mesh or Sprite3D object intersected.

float getNormalX()

float getNormalY()

float getNormalZ()

The X, Y, or Z component of the surface nor-
mal at the intersection point.

void getRay(float[] ray) The origin, in elements 0 to 2, and direction,
in elements 3 to 5 of ray, of the pick ray.

int getSubmeshIndex() The index of the submesh intersected.
Always zero for sprites.

float getTextureT(int
index)

float getTextureS(int
index)

The S or T texture coordinate, for texture
unit index, at the intersection point. For
sprites, this is the point within the sprite crop
rectangle, with (0, 0) being at the top left
corner of the displayed area and (1, 1) at the
bottom right.

Performance tip: Picking complex models can be very slow. To speed it up, use sepa-
rate picking geometry. Make two Mesh objects for your model: one for rendering, and
another, simplified one, for picking. Disable picking on the rendering model, and dis-
able rendering on the picking model. Group them together and use the transformation
of the Group node to transform them.

15.6 OPTIMIZING PERFORMANCE

It is easy to fill your scene graph with more objects than M3G can handle with reason-
able performance. When building real-life applications, you will almost certainly run into
problems where M3G is not drawing your world quite as quickly as you would like. While
M3G seems to offer very few tools explicitly geared for helping you with performance
problems, there are a few relatively easy things you can do with the scene graph that may
help you along the way.

S E C T I O N 15 . 6 OPTIMIZING PERFORMANCE 365

15.6.1 VISIBILITY OPTIMIZATION

M3G as a specification takes no position on visibility optimization; it neither mandates
nor recommends any specific method. However, most if not all commercially deployed
implementations are doing view frustum culling, either on a per-mesh basis, or also
hierarchically at the group node level.

Pitfall: Early M3G-enabled devices from many vendors were plagued with bugs related
to view frustum culling, causing meshes and/or sprites to disappear when they were
definitely not supposed to. Some devices are known to exhibit problems when a
VertexBuffer is shared by multiple Mesh objects, others fail to update the bound-
ing box for animated meshes, and so forth. If you are developing for older devices and
are experiencing weird visibility problems, we suggest that you pay a visit to the handset
vendor’s developer forums.

As a rule, any visibility optimization that a generic scene graph API does, a carefully
crafted game specific engine can do better, and do it without burning cycles on opti-
mizations that are not helpful with the particular game genre that the engine is designed
for. This is one of the reasons that generic scene graphs have not met with great success
on PCs, game consoles, and other native platforms. But again, the mobile Java platform
is different. A complex culling scheme written in Java is not likely to compare well with a
scheme that is running in native code, even if the complex system would be able to cull a
larger percentage of objects.

Fortunately, the developer has the option to combine the best of both worlds: to employ
a spatial data structure that is optimized for the specific application, but also leverage
retained-mode rendering. The scene can be organized into an appropriate spatial hierar-
chy, for example an octree, by using Group nodes. The application must do a pre-render
traversal of the scene graph, marking the potentially visible and definitely hidden groups
of objects by setting or clearing the rendering enable flags of the corresponding Group
nodes with Node.setRenderingEnable. M3G can then render the potentially vis-
ible set efficiently in one render(World) call. This approach is likely to perform much
better than rendering the leaf nodes one by one in immediate mode.

15.6.2 SCOPE MASKS

Every Node object in M3G has a 32-bit integer scope mask that you can freely set
with setScope. Scope masks are another way to reduce the workload of M3G in com-
plex scenes. You can use scope masks to exclude objects from rendering or picking, as well
as reduce the number of lights affecting an object.

When rendering via any of the render variants, the scope mask of each rendered mesh
or sprite is compared with the scope mask of the current camera, and the object is ren-
dered only if the masks share at least one bit that is set to 1. The same is done for each

366 THE M3G SCENE GRAPH C H A P T E R 15

light source prior to computing lighting, in immediate as well as retained mode. Also, the
scope parameter of pick is similarly compared with the scope mask of each object, and
the object is only tested if the masks share at least one bit. Note, however, that scope masks
are not inherited—the scope masks for Group nodes are therefore effectively ignored.

To give a concrete example, imagine a scene with lots of objects and light sources scattered
among multiple rooms. Each light can only interact with a small subset of the objects, so
it is advantageous for you to inform M3G about that in advance. If you can determine
which rooms each light can illuminate, you can encode that information into the scope
masks:

static final int LIVING_ROOM = 1<<0;
static final int KITCHEN = 1<<1;
static final int BEDROOM = 1<<2;
static final int STAIRCASE = 1<<3;
static final int HALL = 1<<4;
...
Light kitchenLight, bedroomLight, livingRoomLight, hallLight;
...
kitchenLight.setScope(KITCHEN|LIVING_ROOM|HALL);
bedroomLight.setScope(BEDROOM|STAIRCASE);
livingRoomLight.setScope(LIVING_ROOM|KITCHEN);
hallLight.setScope(HALL|STAIRCASE|KITCHEN);

Then, for each object you can just mark the room it is in:

sofa.setScope(LIVING_ROOM);
armchair.setScope(LIVING_ROOM);
kitchenSink.setScope(KITCHEN);
bed.setScope(BEDROOM);

Finally, you can dynamically set the scope of the camera based on which rooms it can see
from its current position:

camera.setScope(LIVING_ROOM|HALL);

Now, when you render, you will already have significantly reduced your set of visible
objects and light interactions, saving a lot of work for the M3G implementation. You will
still have to determine the potentially visible rooms each time the camera moves, though.

Essentially, scope masks let you segment your scene into 32 groups or regions that are
independent of the scene graph topology. For each camera and light, you can then decide
which of those 32 groups it can see or affect. Similarly, for picking you can choose to detect
different kinds of objects at different times. 32 groups may not sound like much, but since
the scoping mechanism is completely orthogonal to the scene topology, you can use both
scoping and Group nodes together when segmenting the scene.

16

C
H

A
P

T
E

R

ANIMATION IN M3G

The final part of our tour of the M3G API is animation. M3G boasts a simple, yet flexible,
animation engine with advanced features geared for the needs of modern games. The
thinking behind the engine is to provide you with the basic building blocks you need,
while leaving you in charge of using them in the way that best suits your application. You
can use the animation engine as such or build a more comprehensive animation system
on top of it, whichever best suits your particular needs.

Fundamentally, animation in M3G is nothing more than a way to quickly set a number of
object properties to pre-programmed, time-dependent values upon command. All of the
properties modified by animation can be equally modified by calling setters and getters.
The animation engine merely adds a conceptual model on top, enables pre-authoring of
complex animations through the binary file format, and provides better performance via
its native math engine.

For background information on the animation concepts we will be dealing with in this
chapter, please refer to Chapter 4.

16.1 KEYFRAME ANIMATION: KeyframeSequence

The principal component of the M3G animation engine is keyframe animation
(see Section 4.1). You can create keyframe sequences for most settable properties and

367

368 ANIMATION IN M3G C H A P T E R 16

Skinned
Mesh

Group Keyframe
Sequence

Keyframe
Sequence

Keyframe
Sequence

Keyframe
Sequence

Keyframe
Sequence

Keyframe
Sequence

Animation
Track

Animation
Track

Animation
Controller

Animation
Controller

Animation
Track

Animation
Track

Animation
Track

Animation
Track

Animation
Track

Keyframe
Sequence

Group Group

LightGroupGroup

…

... ...

Mesh

Target = COLOR

Target =
ORIENTATION

…

Keyframe
Sequence

Animation
Track

Animation
ControllerTarget =

TRANSLATION

F igure 16.1: A SkinnedMesh object with animations applied to the translation of the root node and the orientations of the
bone nodes. The AnimationTrack class links a keyframe sequence into its target property, while AnimationController
supplies timing and control data.

attach them to different objects for animation. Figure 16.1 shows an example of how the
different animation classes link together; we will describe the classes in detail in the rest
of this chapter.

The KeyframeSequence class lets you create sequences of parameter values
placed on a timeline and choose how to interpolate between them. For example,
KeyframeSequence(10,3,KeyframeSequence.LINEAR) creates a sequence
of ten 3-vector keyframes for linear interpolation. Table 16.1 lists the available interpola-
tion types, which are explained in more detail in Sections 4.1.1 and 4.1.2. The keyframe val-
ues forSTEP,LINEAR, andSPLINE can be vectors with arbitrarily many components—
including scalars as 1-vectors—whereasSLERP andSQUAD require quaternion keyframes
represented as 4-vectors. In all cases, all keyframes must have the same dimensionality
within any single sequence.

S E C T I O N 16 . 1 KEYFRAME ANIMATION: KeyframeSequence 369

Tab le 16.1: Types of keyframe interpolation available in M3G.

Name Description

STEP Step function, no interpolation.

LINEAR Linear interpolation.

SPLINE Spline interpolation.

SLERP Linear interpolation of quaternions.

SQUAD Spline interpolation of quaternions.

Note that when creating a keyframe sequence, you must decide both the number of
keyframes and the interpolation type beforehand. This allows M3G to select all the
required resources at construction time, avoiding potentially costly data reorganization
later on. While fixing the number of keyframes may seem restrictive, you can still modify
them dynamically and use only a subset of the sequence at any given time. More on that
later.

Setting up the keyframes

After creating your new KeyframeSequence, you will want to put some data into it.
Often, you will be loading pre-authored animations from resource files using theLoader
class, but you could as well want to create your sequences at runtime for a number of
reasons—for example, if you are streaming the animation data over a network connection
or generating it procedurally at runtime. You can set your desired values to the keyframes
by calling,int time, float[]value, where index is the index of the keyframe in the sequence,
time is the time position of the keyframe, and value is a floating-point vector that gives the
actual data value to be assigned to the keyframe. The keyframe times are given relative to
the beginning of the sequence, and must be monotonically increasing so that no keyframe
has a time preceding any of the previous keyframes. In other words, the keyframes must
be on the timeline in the same order as their indices. It is acceptable to have multiple
keyframes at the same point in time, though.

pitfall: The M3G file format offers a choice between 16-bit integer and 32-bit floating-
point keyframes to enable potential space savings in the JAR file. However, some early
M3G implementations (including the Sun Wireless Toolkit) exhibit problems when
loading 16-bit keyframes, so you may find that your target platform can only use the
floating-point variant.

pitfall: There are no getters for keyframe times or values in M3G 1.0; they were
only added in 1.1. The same goes for the number of keyframes and components, the
interpolationmode,andthevalidrange.However,youcanextract thatdatabyabusingthe
exceptions defined insetValidRange,setKeyframeandObject3D.animate.

370 ANIMATION IN M3G C H A P T E R 16

The interpolation mode can be inferred by interpolating between known keyframes.
Extracting all the hidden data takes some 200 lines of code and is dog-slow, but you
can do it if you must for some pressing reason, such as for debugging purposes. Our
companion web site includes example code implementing a class that you can readily
use for this purpose.

Note that we are talking about time without specifying any time unit. This is intentional,
since M3G leaves the choice of time units to you. Feel free to use milliseconds, seconds,
or microseconds for your keyframes, and M3G will happily produce the results you want
as long as you are consistent. In fact, you can even use different time units for different
sequences if you happen to need that sort of thing. Refer to Section 16.3 for information
on doing that.

Duration and looping

After setting all your keyframes, you must also set the duration of your keyframe sequence
by calling setDuration. This information is used by M3G when you want your
keyframe sequences to loop, but it also serves as a sanity check for your keyframe times.

pitfall: Your keyframe sequences are not valid until a valid duration is set. This concerns
all sequences, regardless of whether they loop or not.

We mentioned looping sequences, and often you will use exactly those. For example,
the motion of a helicopter rotor is easily defined using just two quaternion keyframes
that repeat over and over. To enable looping, call setRepeatMode(Keyframe-
Sequence.LOOP)—the default value of KeyframeSequence.CONSTANT means
that the sequence maintains the value of the first or last keyframe when sampled outside
of the beginning or end of the sequence, respectively. With looping enabled, the keyframes
are conceptually repeated in time at intervals of the sequence duration d, to infinity and
beyond in both directions. An example is shown in Figure 16.2. The effect is exactly the
same as replicating each keyframe at every time instant (. . . , t−2d, t−d, t, t+d, t+2d, . . .),
where t is the original time of the keyframe, but without any additional memory use.

To wrap up the basic steps of keyframe sequence creation, let us create a looping sequence
that you can use to perpetually rotate an object about the Z axis at a steady pace. This
sequence will interpolate quaternion keyframes, using spherical linear interpolation, so
that the target object completes one revolution every one thousand time units:

static float kf0[4] = { 0.f, 0.f, 0.000f, 1.0f };
static float kf1[4] = { 0.f, 0.f, 0.866f, —0.5f };
static float kf2[4] = { 0.f, 0.f, —0.866f, —0.5f };

KeyframeSequence rotationSeq = new KeyframeSequence(3, 4,
KeyframeSequence.SLERP);

S E C T I O N 16 . 1 KEYFRAME ANIMATION: KeyframeSequence 371

virtual keyframes real keyframes virtual keyframes

-d 0 d 2d

F igure 16.2: A looping KeyframeSequence: virtual keyframes are created around the original sequence at intervals of
duration d.

rotationSeq.setDuration(2000);
rotationSeq.setRepeatMode(KeyframeSequence.LOOP);
rotationSeq.setKeyframe(0, 0, kf0);
rotationSeq.setKeyframe(1, 667, kf1);
rotationSeq.setKeyframe(2, 1333, kf2);

The keyframe values are unit quaternions corresponding to rotations of 0, 240, and
480 degrees, respectively—since we are using quaternions, we will complete two revo-
lutions in 3D when rotating one full circle in the quaternion space (refer to Sections 2.3.1
and 4.1.2). Hence, we set the duration to 2000 time units to match our desired time for one
revolution. Alternatively, we could set keyframes at 0, 180, and 360 degrees at 0, 500, and
1000 milliseconds, respectively, and set the sequence duration at 1000 milliseconds. How-
ever, that would introduce a discontinuity into our interpolated quaternion data, which
would cause awkward jumps in the animation if we later tried to blend (Section 16.5.2)
our rotation with another orientation sequence.

Valid keyframe range

One more feature of KeyframeSequence is the valid range. As we already hinted, this
lets you choose a subset of the entire sequence. That subset is then used exactly like
a sequence comprising just those keyframes. For example, calling setValidRange
(3, 7) would only take the keyframes with indices 3 to 7 into account when you use
the sequence. You can also specify a valid range that wraps around: setValidRange
(8, 2) would treat your 10-keyframe sequence as if it comprised keyframes 8, 9, 0, 1,

372 ANIMATION IN M3G C H A P T E R 16

and 2, in that order—keyframe 8 would then have to have the lowest time value for the
sequence to be valid. The valid range is useful if, for any reason, you want to dynamically
modify the contents or length of your animation sequence, as it saves you from creating
new sequences and inducing garbage collection. We will show some example use cases
later on.

16.2 ANIMATION TARGETS: AnimationTrack

A KeyframeSequence on its own does very little—you need something to connect
the animation to. In M3G parlance, each animatable property on each object is
called an animation target. To connect a keyframe sequence with an animation
target, you create an AnimationTrack object and add it to your target object via
Object3D.addAnimationTrack.

Animatable properties are enumerated in the AnimationTrack class as listed in
Table 16.2. AnimationTrack associates a keyframe sequence with one of these prop-
erties. To create a track for animating the position of the scene graph node myNode
using the KeyframeSequence object mySequence, for example, you could use
this piece of code:

AnimationTrack myPositionTrack;
myPositionTrack = AnimationTrack(mySequence,

AnimationTrack.POSITION);
myNode.addAnimationTrack(myPositionTrack);

We can also animate myNode with the rotation sequence we created in the earlier
example:

AnimationTrack rotationTrack;
rotationTrack = new AnimationTrack(rotationSeq,

AnimationTrack.ORIENTATION);
myNode.addAnimationTrack(rotationTrack);

Every object can be animated with multiple tracks at the same time, so doing both of the
above would make myNode both move and rotate.

All properties are animated as floating-point values interpolated from the keyframes. For
boolean properties, values of 0.5 or higher are interpreted as “true,” and values under 0.5
as “false.” Values for certain properties, such as colors, are clamped between 0 and 1 after
interpolation. For the ORIENTATION property, the quaternion values are automatically
normalized after interpolation.

Performance tip: Quaternions do not require SLERP or SQUAD interpolation. Due
to the automatic normalization, using plain LINEAR or SPLINE interpolation will
make you only lose the constant velocity property. For many animations this is good

S E C T I O N 16 . 2 ANIMATION TARGETS: AnimationTrack 373

Tab le 16.2: List of animatable properties in M3G 1.1.

Name Applicable properties

ALPHA Alpha component of Background, Material, and
VertexBuffer color; Node alpha factor.

AMBIENT_COLOR Ambient color in Material.

COLOR Color of Light, Background, Fog, and VertexBuffer;
Texture2D blend color.

CROP Cropping rectangle in Background and Sprite3D.

DENSITY Fog density.

DIFFUSE_COLOR Diffuse Material color.

EMISSIVE_COLOR Emissive Material color.

FAR_DISTANCE Far distance in Camera and Fog.

FIELD_OF_VIEW Camera field of view.

INTENSITY Light intensity.

MORPH_WEIGHTS MorphingMesh weights.

NEAR_DISTANCE Near distance in Camera and Fog.

ORIENTATION Transformable orientation.

PICKABILITY Picking enable flag of Node.

SCALE Transformable scale.

SHININESS Material shininess.

SPECULAR_COLOR Specular Material color.

SPOT_ANGLE Spotlight angle of Light.

SPOT_EXPONENT Spotlight exponent of Light.

TRANSLATION Transformable translation.

VISIBILITY Rendering enable flag in Node.

enough, and if you can use simpler interpolation on most of the animations, you will
save valuable processing time for other things. For example, try the simple LINEAR or
SPLINE modes on your bone orientations.

pitfall: There is something of an infamous problem regarding SLERP interpolation in
several M3G 1.0 implementations as well as early content authoring tools, as discussed
in Section 12.3.2

This issue was resolved in M3G 1.1, but if you want your content to be compatible
with the faulty M3G 1.0 implementations as well as with the correctly implemented
ones, you must take extra precautions in constructing your SLERP keyframe sequences:
make sure that the angle between the orientations described by adjacent keyframes is less

374 ANIMATION IN M3G C H A P T E R 16

than 180◦ in 3D space. In practice, this means that the dot product of any two adjacent
quaternion keyframes must be positive. If this is not the case with your source data, you
can enforce it by adding extra keyframes for segments that rotate 180◦ or more in 3D
space.

Note that each AnimationTrack object only defines the type of property to be ani-
mated, without specifying an object. An AnimationTrack can therefore be associ-
ated with multiple objects to animate the same property, in the same way, for each one.
Similarly, a KeyframeSequence can be associated with multiple AnimationTrack
objects, and hence multiple animation targets of possibly different types. The only restric-
tion is that the keyframe types and animated properties must be compatible. This makes it
possible to share the keyframe data between multiple objects, while being able to control
the animation of each one individually.

16.3 TIMING AND SPEED: AnimationController

In addition to a KeyframeSequence and an AnimationTrack, each individual
animation needs anAnimationController to “drive” the animation. The controller
is attached to each AnimationTrack object to define the speed and timing of that
particular animation. Again, a single controller can be attached to multiple animation
tracks, and in noninteractive animation, a single controller will often handle the entire
scene. However, using multiple controllers will give you the degree of flexibility you want
for playing back multiple animations simultaneously.

For example, assuming one object with two animation tracks, motionTrack and
rotationTrack, it makes sense to control both using a single controller:

myObject.addAnimationTrack(motionTrack);
myObject.addAnimationTrack(rotationTrack);

AnimationController control = new AnimationController();
control.setActiveInterval(10000, 25000);
control.setPosition(0.f, 10000);
control.setSpeed(0.5f);

motionTrack.setController(control);
rotationTrack.setController(control);

Assuming milliseconds for the time unit, this would begin the animation of your
object at ten seconds into the animation, animate it at half speed for fifteen seconds,
and then stop. The animation would start playing from the beginning of your keyframe
sequences.

World time and sequence time

Before we look at AnimationController in more detail, we must be more spe-
cific about time as it applies to M3G animation. With KeyframeSequence, we are

S E C T I O N 16 . 3 TIMING AND SPEED: AnimationController 375

talking in terms of sequence time: time 0 (zero) is the start of our keyframe sequence, and
all keyframes in the sequence are defined relative to that. What you want to feed to the
animation system from the application, however, is usually world time: that can be time
passed since the start of your application, game session, or composite animation, or it
may be the time of day if you so desire. Individual animation tracks may start and stop
at arbitrary points in world time. It would often be impractical to build your keyframe
sequences using world time, so AnimationController lets you easily map world
time to the time of each keyframe sequence.

AnimationController uses two pieces of data to convert between world time and
sequence time: a reference point and relative speed. You set the reference point by calling
setPosition(float sequenceTime, int worldTime). This is exactly equivalent to
saying “I want my sequence time to be sequenceTime when the world clock reaches world-
Time.” Often, your desired sequenceTime will be zero and you are just saying “I want my
sequence to start at worldTime,” but M3G gives you a bit more flexibility in mapping the
times.

In addition to setting the position of your animation sequence, you may want to set
the speed at which the sequence time passes relative to the world clock. Figure 16.3

sequence time

world time

reference point

speed 5 2.0

speed 5 0.5

speed 5 1.0

F igure 16.3: Relationship of world time and sequence time with different speed settings.

376 ANIMATION IN M3G C H A P T E R 16

illustrates the relationship of the reference times and speed. By default, sequence time
and world time are synchronized, but you can speed up or slow down a particular
animation, or specify different units of time for your keyframes. You do this by calling
setSpeed(float speed, int worldTime). A speed of 0.5, for example, will make
your sequence run at half the normal speed, whereas 2.0 makes it twice as fast. A speed
of 0.001 would let you specify your keyframes as whole seconds if your world time is in
milliseconds.

Note the other parameter, worldTime. Why do you need to specify that? That is the point in
world time at which your sequence speed change occurs. Imagine you have been running
a long animation sequence for a while, and suddenly want to speed it up for one reason or
another. You will still want to continue the animation from the current position, so if you
were to just change the speed factor, you would have to adjust the reference time point
to avoid a sudden jump. Instead, setSpeed takes the current world time as input and
automatically makes that the new reference point. The sequence time at the new refer-
ence point is changed to match whatever it was for your animation before you decided to
change the speed. As a result, you will only notice that your animation continues to run
smoothly at the new speed.

Weight and active interval

In addition to the speed of a controller, you can also set its weight via setWeight
(float weight). The interpolated animation data is then multiplied by weight prior to
applying it to its animation target. This is useful for animation blending, which we will
describe in more detail in Section 16.5.2.

Performance tip: You can speed up the animation process by telling M3G to ignore any
animations you do not need at any given moment. You can do that by either setting
the weight of the respective controller to zero, or setting the controller of an animation
track to NULL.

Finally, each AnimationController has an active interval, set via
setActiveInterval(int start, int end). start and end are the world times at
which the activity of this animation controller begins and ends, respectively. Each con-
troller is only considered in animation calculations if the current world time falls within
its active interval; otherwise, it is as if the animations controlled by that controller did
not exist at all.

pitfall: The animations controlled by an inactive controller (either zero weight or out-
side of the active interval) are not updated at all. In other words, the animation targets
are not reset to any default values when a controller becomes inactive. In particular,
if you make a jump in your animation that lands the world time outside of the active
interval of any controller, the values animated through that controller will retain the
values they had before the jump.

S E C T I O N 16 . 4 ANIMATION EXECUTION 377

On a related note, an animated M3G scene will contain initial values for everything
when loaded from an M3G file, but there is no direct way to reset those initial values.
You must either reload the file, or have your animations active at time zero to set the
correct values.

16.4 ANIMATION EXECUTION

So, you have set up your KeyframeSequence, AnimationTrack, and
AnimationController. You have added the track to an object—say, myMesh. How
do you effect your animation to the mesh? You call animate(int worldTime), passing
in the time currently displayed by the world clock you maintain in your application:

static long startTime = System.currentTimeMillis();
...
myMesh.animate(System.currentTimeMillis() - startTime);

You can call animate on myMesh, or if myMesh happens to be a part of myWorld,
you can animate all of myWorld with a single animate call.

myWorld.addChild(myMesh);
...
myWorld.animate(System.currentTimeMillis() - startTime);

Animation in M3G is always requested by the application. There are no timers or events
involved unless you want to involve them. Neither does the animation engine have any
state that you need to change to play, stop, or rewind your animations. All you do is pass
in your desired world time to animate, and everything is updated to reflect that point
in time.

Let us look at an example on event-based animation. Assume an animation controller,
actionController, controls a composite animation representing an action that a
game entity would perform in response to some event. To trigger the animation upon
receiving that event, we only need one line of code in addition to the previous example:

actionController.setPosition(0.0f, eventTime);

Here, eventTime is the world time of the event. When myWorld.animate() is
next called, the animation controlled by actionController is automatically effected
on the target objects. To re-trigger the animation in the future, another call to
setPosition is sufficient.

Performance tip: There is no way to read back the current state of a par-
ticular animation in M3G, but you may want to know the phase of an animation in
order to execute some corresponding action in the game logic. The duration of each
animation could be encoded in the user data field of the animation controller, but you
can also link that information directly to your animation: create an empty Group node

378 ANIMATION IN M3G C H A P T E R 16

and attach an animation track to its alpha factor. You can then set the keyframe values
so that the alpha factor will contain any desired data values, synchronized to the actual
animation, which you can query directly. If you only need a binary state, you can use
the node enable flags instead.

Animation proceeds recursively: all objects reachable from the object being animated,
according to the rules set forth in Section 13.4.1, are automatically animated as well. If you
call animate on a World object, for example, everything in your World is animated;
if you animate a Group, only objects within that group are touched. Note, however, that
all referenced objects are animated—if your Group has a Mesh using a Texture2D
via an Appearance, the transformation of the Texture2D will also update if it has
an animation attached. Normally, you need not worry about this—M3G just handles it
automatically for you, and the result is what you would expect in most cases.

We mentioned at the beginning of this chapter that animation in M3G is essentially just
a way of quickly setting a number of parameters, and that is exactly what happens.
When your animate function call returns, all the animated parameters will have
their new values and the animation engine leaves the rest up to you. Normally, you
will just proceed to Graphics3D.render and draw your scene, but you are free
to modify anything between animation and rendering if you want to. One common
step is to call align on your entire world or some specific nodes to compute any
node alignments you have defined. However, you can do any other processing before
rendering. You do not even have to render; you can just keep on animating if you
have a special use case for that—for example, you could use the spline interpolation
to generate vertex data by reading back the animated values after each animation call,
then assigning the data to a vertex array.

16.5 ADVANCED ANIMATION

We have now covered the basic setup and execution of keyframe animation in M3G. By
now, you can get simple animations up and running to modify your object parameters.
We can now look at how to make more complex animations involving animated meshes,
blending between multiple animation sequences, and some useful animation features not
explicitly described in the M3G specification.

16.5.1 DEFORMABLE MESHES

In Section 4.2 we discussed how morphing and skinning can be used to bring polygon
meshes to life. M3G has support for both of these techniques via the MorphingMesh
and SkinnedMesh classes. The former allows morphing between sets of vertex
attributes, and the latter implements skinning.

S E C T I O N 16 . 5 ADVANCED ANIMATION 379

MorphingMesh

Creating a MorphingMesh is very similar to creating a regular Mesh. In fact, the only
difference is that you need to pass in an additional targets parameter:

MorphingMesh(VertexBuffer base, VertexBuffer[] targets, IndexBuffer[]

submeshes, Appearance[] appearances)

The targets array is your set of morph targets. The base vertex buffer gives the vertices for
your undeformed mesh, and each buffer in the targets array is one morphed version of the
original mesh. The morph targets only need to contain the vertex properties that change.
For example, if all of the morph targets share the same texture coordinates, those may be
specified only in the base mesh. Morph targets cannot contain vertex attributes that are
not present in the base mesh, and the set of attributes in each morph target must be the
same. Refer to the M3G specification for more details.

In the common case, you want to blend vertex positions and normals between multiple
shapes, while retaining per-vertex colors or texture coordinates. This is illustrated in
Figure 16.4, and easily achieved in code:

1-�w w0 w1 w2

F igure 16.4: An example of morphing in M3G. The base mesh, top left, is modified by blending in positions and normals
from three morph targets. See the code example in text.

380 ANIMATION IN M3G C H A P T E R 16

VertexArray basePositions, baseNormals, colors, texCoords;
VertexArray morphedPositions[3], morphedNormals[3];
IndexBuffer primitives;
Appearance appearance;

// Array initialization omitted...

// Initialize the base vertex buffer

VertexBuffer baseVertices = new VertexBuffer();
baseMesh.setPositions(basePositions, 1.f, null);
baseMesh.setNormals(baseNormals);
baseMesh.setTexCoords(0, texCoords, 1/128.f, null);
baseMesh.setColors(colors);

// Initialize the morph target vertex buffers -- note that
// only the morphed attributes, i.e., positions and normals,
// are needed for these

VertexBuffer morphedVertices[] = new VertexBuffer[3];
for (int i = 0; i < 3; ++i) {
morphedVertices[i] = new VertexBuffer();
morphedVertices[i].setPositions(morphedPositions[i], 1.f, null);
morphedVertices[i].setNormals(morphedNormals[i]);

}

// Create the final mesh object

MorphingMesh mesh = new MorphingMesh(baseVertices,
morphedVertices,
primitives,
appearance);

// Set to an even blend between the base mesh and each morph target

float weights[3] = { 0.25f, 0.25f, 0.25f };
mesh.setWeights(weights);

Once you have theMorphingMesh constructed, you can animate it via the morph target
weights. You can either call setWeights(float[] weights) to set them directly, or
animate the MORPH_WEIGHTS property of the mesh. The keyframes in that case will be
vectors that have one floating-point weight corresponding to each morph target. However
you apply the weights, each morph target will contribute to the final mesh shape according
to its weight. The actual equation is

M = B +
∑

wi(Ti − B) = (1 −
∑

wi)B +
∑

wiTi, (16.1)

that is, the difference between the base mesh B and each morph target T is weighted and
added to the base mesh to produce the final shape M. Note that if the weights sum to

S E C T I O N 16 . 5 ADVANCED ANIMATION 381

one, the effect of the base mesh is canceled out and you are only blending between your
morphed shapes. You are free to use any weights, though, including negative ones. An
alternative way of thinking about this is that each morph target represents a single feature,
and you can blend these features to alter your base mesh. This approach is often used to
produce facial animation, with different expressions being blended in.

pitfall: In morphing, it is your responsibility to make sure that the morphed vertex coor-
dinates do not overflow the numeric range of your vertex buffer. M3G can handle very
large intermediate results (from weighting each morph target), but the end result must
still fit within the original range of either 8 or 16 bits.

SkinnedMesh

Now, let us build a complete animated character using skinning. Most of this will
already be familiar, so we will begin with a practical example before introducing the
new functions in detail. While the code is fairly straightforward, there is quite a bit
of it, so we have split it into a couple of sections. The entire example is also available
from the companion web site.

Example: Building a Skinned Character

Our skinned character is shown in Figure 16.5. First, we will construct the skinned mesh
object with the various bones that we can control separately:

pelvis
(root node) left thighright thigh

torso
left upper armright upper arm

left fore armright fore arm

neck

head

left shinright shin

F igure 16.5: Our example of a skinned character. The rendered figure is shown on the left, and the
skeleton group on the right. The illustration shows the origin (sphere) and primary axis (triangle) of
each bone, while the arrows indicate parent-child relationships in the scene graph. The torso node
is co-located with the root node, pelvis, emphasized.

382 ANIMATION IN M3G C H A P T E R 16

private SkinnedMesh stickMan;
private Group torso, neck, head;
private Group leftThigh, rightThigh, leftShin, rightShin;
private Group leftUpperArm, rightUpperArm, leftForeArm,

rightForeArm;

We have defined simple 2D vertex data along the outlines of our character. From this, we
construct the vertex and index buffers as well as the actual mesh object in a way that is
similar to past examples:

static private byte vertices[] = {
// Head and neck
—10, 127, 0, 10, 127, 0, —25, 103, 0, 25, 103, 0,
—10, 80, 0, 10, 80, 0, —15, 70, 0, 15, 70, 0,
// Arms and torso
—120, 55, 0, —120, 40, 0, —80, 60, 0, —80, 40, 0, —40, 65, 0,
—40, 40, 0, 120, 55, 0, 120, 40, 0, 80, 60, 0, 80, 40, 0,
40, 65, 0, 40, 40, 0, —20, 0, 0, 20, 0, 0,

// Lower body and legs
—30, —20, 0, 0, —30, 0, 30, —20, 0, —30, —60, 0,
—5, —60, 0, —30, —120, 0, —10, —120, 0, 5, —60, 0,
30, —60, 0, 10, —120, 0, 30, —120, 0

};

static private int tristrips[] = {
1, 0, 3, 2, 5, 4, 7, 6,
8, 9, 10, 11, 12, 13, 6, 20, 7, 21, 18, 19, 16, 17, 14, 15,
20, 22, 21, 23, 24,
23, 22, 26, 25, 28, 27,
24, 23, 30, 29, 32, 31

};

static private int striplens[] = { 8, 16, 5, 6, 6 };

// Create the vertices and triangle strips for the mesh

VertexArray pos = new VertexArray(vertices.length / 3, 3, 1);
pos.set(0, vertices.length / 3, vertices);

VertexBuffer vb = new VertexBuffer();
vb.setPositions(pos, 1.f, null);
vb.setDefaultColor(0x000000);

IndexBuffer ib = new TriangleStripArray(tristrips, striplens);

stickMan = new SkinnedMesh(vb, ib, new Appearance(),
new Group());

S E C T I O N 16 . 5 ADVANCED ANIMATION 383

Connecting the Bones

So far, our mesh is no different from regular Mesh class objects, except that there is an
empty group to serve as a skeleton. Next, we will create the bones and connect them into
a skeleton as shown in Figure 16.5, starting with the group we already inserted above:

Group pelvis = stickMan.getSkeleton();

// Connect the torso, neck, and head

torso = new Group();
pelvis.addChild(torso);

neck = new Group();
torso.addChild(neck);
neck.setTranslation(0.f, 60.f, 0.f);

head = new Group();
neck.addChild(head);
head.setTranslation(0.f, 20.f, 0.f);

// Connect the arms to the torso

leftUpperArm = new Group();
torso.addChild(leftUpperArm);
leftUpperArm.setTranslation(30.f, 50.f, 0.f);
leftUpperArm.setOrientation(—90.f, 0.f, 0.f, 1.f);

leftForeArm = new Group();
leftUpperArm.addChild(leftForeArm);
leftForeArm.setTranslation(0.f, 50.f, 0.f);

...

Note how the arms, for example, are offset inside the torso group. The translation of each
bone determines the location of its hinge point (origin) relative to the hinge point of its
parent bone. We have also used a convention where the Y axis of each bone runs along
the length of the bone, so we are rotating some of the bones. The character defined by the
untransformed vertices is standing with arms stretched out to the sides, and our bones
now match that rest pose.

Attaching the Skin

The final step in creating a skinned character is attaching flesh to the bones. We must
tell M3G which vertices each bone should affect, and if multiple bones affect any single
vertex, M3G will average their influences based on the weights assigned to each bone. You
can use any integer values for the weights—in this example, we use a nominal scale of 0
to 100. We have also laid out the vertex data so that we can attach each bone to a group
of vertices at once:

384 ANIMATION IN M3G C H A P T E R 16

stickMan.addTransform(torso, 100, 6, 2); // Vertices 6, 7,
stickMan.addTransform(torso, 100, 12, 2); // 12, 13,
stickMan.addTransform(torso, 100, 18, 2); // 18, 19,
stickMan.addTransform(torso, 100, 20, 2); // 20, and 21

stickMan.addTransform(neck, 30, 4, 4); // Vertices 4, 5, 6, and 7
stickMan.addTransform(head, 100, 0, 6); // etc.

stickMan.addTransform(rightForeArm, 100, 8, 4);
stickMan.addTransform(rightUpperArm, 100, 10, 4);

...

Our mesh is now ready for animation. Any further transformations to the bones will
deform the mesh accordingly, so let us make our character raise his right hand to say
hello:

leftUpperArm.postRotate(—80.f, 0.f, 0.f, 1.f);
rightUpperArm.postRotate(—60.f, 0.f, 0.f, 1.f);
rightForeArm.postRotate(—30.f, 0.f, 0.f, 1.f);

API review

Constructing a SkinnedMesh is, again, similar to creating a regular Mesh except for
the extra skeleton parameter:

SkinnedMesh(VertexBuffer vertices, IndexBuffer[] submeshes, Appearance[]

appearances, Group skeleton)

The set of bones for your skinning animation are contained by the skeleton group. It
is actually a completely generic scene graph branch that can contain any objects—even
other SkinnedMesh nodes are permitted. Each node to be used as a bone is defined
by calling addTransform(Node bone, intweight, int firstVertex, int numVertices).
This specifies that transformations of the skeleton node bone will influence the
numVertices vertices starting at firstVertex with a given weight. The weights for skinning
are normalized during vertex transformation by dividing the bone weights with the sum
of all weights contributing to each vertex. After adding all bone influences, animating the
transformations of the bone nodes will automatically deform the SkinnedMesh.

Note that the transformations Bi for the rest pose (Section 4.2.2) are not explicitly
given to the API. These are inferred from the bone node transformations at the time of
the addTransform function call. So, before using addTransform, be sure to set
your bones to their initial positions.

Skinning in OpenGL and graphics hardware usually uses a fixed maximum number of
per-vertex transformations—that is, you can specify a maximum of, for example, only
four matrices to be used for each particular vertex. Whereas M3G conceptually allows
you to specify an unlimited number of bone influences per vertex, the lowest-weighted
transformations will be ignored if the capacity of the underlying renderer is exceeded.

S E C T I O N 16 . 5 ADVANCED ANIMATION 385

You can check how many transformations per vertex it makes sense to use, though. If you
call Graphics3D.getProperties, the maxTransformsPerVertex property returned
gives the number of transformations per vertex that M3G will actually use. No more than
maxTransformsPerVertex bones will ever influence a single vertex.

Altogether, the setup for skinning is quite involved. Even though the operations are
simple, you need to do a lot of them. However, you will rarely have to explicitly set up
a SkinnedMesh. Because a good-looking skinned character will require tweaking the
vertex weights and bone positions by hand, they are practically always exported directly
from a modeling tool such as 3ds Max, Maya, or Blender. What is left for you to do in
code, then, is to identify the parts of the skeleton that you need to animate, or the pre-
defined animation controllers that you use for the different animations built into the
ready-made model. The M3G user ID mechanism can be a big help here, as discussed
in Section 13.4.3.

Combined Morphing and Skinning

We mentioned that morphing is often used for facial animation, whereas skinning handles
characters. Now, if you want to combine skinning and morphing—if, for example, your
skinned character has a face that you wish to morph—you will find that you can only
choose one or the other per mesh. In practice, you can use a MorphingMesh for the
head or face of your character and SkinnedMesh for all other parts, then hide the seams
as best as you can. For example, the texture below the chin and on the neck is often smooth
enough that you can split your mesh there without anyone noticing. Note that you can
still use your “head” mesh as a part of the skeleton, attaching it directly to your “neck”
bone or equivalent. You can even use it for skinning, like any other bone node.

16.5.2 ANIMATION BLENDING

In interactive applications, you often have cases where you have multiple predefined
animation sequences between which you want to switch. For example, your game
character could have a walking sequence, a running sequence, a jumping sequence, and a
swinging-a-sword sequence. When the player wants to go from walking to running, you
need to switch between animation sequences, but you still want to keep the motion fluid
and avoid a discontinuity. Animation blending can help you there.

As we already mentioned, AnimationController has a weight that you can set and
use for blending. In the example of transitioning between walking and running, you can
use one controller for each of the sequences—for example myWalkController and
myRunController. When the player is walking, you have the weight for
myWalkController set to one, and the weight for myRunController set to zero;
for running, the opposite is true. Now, when the player hits the “run” button, you do
not instantly switch to the running sequence. Instead, you gradually, over several frames

386 ANIMATION IN M3G C H A P T E R 16

or a fixed time delay, ramp the weight of myRunController up while simultaneously
reducing the weight of myWalkController to zero:

static int transitionTime = 400;
walkController.setWeight(1.f);
runController.setWeight(0.f);

// Log the starting time when you begin the transition
static long transitionStart = System.currentTimeMillis();
...

// At rendering time, adjust the blend for each frame
protected void paint(Graphics g) {
...
long time = System.currentTimeMillis();
int delta = time - transitionStart;
if (delta < transitionTime) {
runController.setWeight(delta / (float) transitionTime);
walkController.setWeight((transitionTime - delta) /

(float) transitionTime);
}
else {
runController.setWeight(1.f);
walkController.setWeight(0.f);

}
...

}

As a result, there is no sudden jump, and the motion will smoothly change from walking
to running.

There are a few points to observe in blending animations, though. You need to synchro-
nize your sequences so that, for example in our walk-to-run example above, each foot
is moving in the same direction in both sequences—that is, the phase of the animation
is maintained during blending. If your running sequence has the left foot touching the
ground and the walking sequence the right foot touching the ground when you blend
between them, the result will no doubt look odd. Synchronization is easily achieved if both
of the animations being blended take the same time to complete one cycle, as they will then
always stay in sync. Otherwise, you will have to tweak the position and/or speed of one or
both animations when you begin (and possibly during) the transition from one sequence
to another. The details of such blending are beyond the scope of this book; instead,
look into papers on the topic of motion blending [BW95, KG03] or motion graphs
[KGP02]. However, the M3G animation engine gives you the basic tools you need to get
it done.

Another point worth noting is that the blended animations need not target all the same
features. You can have one AnimationController controlling only the feet of your
character, while another controls both the feet and the upper body. Mixing those two

S E C T I O N 16 . 5 ADVANCED ANIMATION 387

animations is, again, not readily solved for you by M3G. Rather, it is something you can
take advantage of in special cases.

16.5.3 CREATING DISCONTINUITIES

Sometimes you want to make sudden jumps in the middle of an animated sequence, or
wish to control the tangents more precisely. A common case is camera animation. You
may want your camera to pan, track, or dolly for one shot, then cut into a completely dif-
ferent viewpoint for the next shot. For other shots, you may want the camera to remain
absolutely stationary. Splitting your animation into multiple keyframe sequences is cum-
bersome, so it is easier to introduce discontinuities into the animation track.

Adding discontinuities is actually quite easy once you know how. Just introduce a segment
that has a duration of zero, and M3G will jump over it when animating. In other words,
place two keyframes at the same point in time, but with different data values, as illustrated
in Figure 16.6. The intermediate values will never be produced by the animation engine.
This is all you need for linear interpolation.

For spline interpolation, recall from Chapter 4 that M3G looks at four keyframes in total
to determine the tangent vectors for each segment. To control the tangents around the
discontinuity, you need four coincident keyframes in total—two on each side of the jump.
As a matter of fact, this allows you explicit control over tangents anywhere you may need
it, not just around discontinuities.

va
lu

e

K2

K0

K1 K3

time

F igure 16.6: Creating a discontinuity in a LINEAR keyframe sequence by duplicating a keyframe.
Keyframes 1 and 2 are at the same position in time, but have different data values.

388 ANIMATION IN M3G C H A P T E R 16

Referring to Section 4.1.1 and Equations 4.6, 4.4, and 4.5, we can generate any tangent
value anywhere in an M3G animation sequence. Given our three keyframes, a, b,
and c, and placing a and b at the same point in time, we see that Equation 4.5
becomes

b′+ =
Δtbc

Δtbc
b′

=
c − a

2

(16.2)

after substituting for b′ from Equation 4.6. In other words, the value of the tangent coming
out of the discontinuity can be controlled simply by changing the value of keyframe a. The
zero-length segment between a and b is never used by the M3G spline interpolator, so a
only affects the tangent. If we place b and c at the same point in time instead, the tangent
b′− can be similarly controlled with the value of c.

16.5.4 DYNAMIC ANIMATION

Sometimes static animation sequences may not be suitable for your needs. For example,
you could use splines to create motion paths for nonplayer entities in a game in order to
avoid explicitly moving them around, yet you want them to react dynamically to game
events. Alternatively, you might want to stream a long piece of animation over a network
connection. In either case, you have an unbounded number of keyframes coming from
some source, and you cannot create a single, long KeyframeSequence to contain all
of them.

We have already hinted at how the valid range in KeyframeSequence can be useful
if you want to change the contents of your sequences. In particular, it allows you to use
a single KeyframeSequence object as a circular buffer in which you can cache the
currently required part of any dynamic or streaming animation.

Let us assume that you get a stream of spline keyframes from some source—be it your
game’s AI subsystem, a network connection, or something else—and you want to use
them to drive the motion of some game entity. You will create your AnimationTrack
andAnimationController as usual. For theKeyframeSequence, you only need
to allocate a minimum of four keyframes, as needed for a single spline segment:

myBuffer = new KeyframeSequence(4, 3, KeyframeSequence.SPLINE);

Initially, you will retrieve the first four keyframes of your sequence and set them to
myBuffer. Then set the duration ofmyBuffer to the time of the last keyframe inserted
into the buffer; the duration will be used to keep track of the length of animation you have
“downloaded” into the buffer so far.

Now you will run your animation exactly as before, except for one additional check before
each animate call. Each time you run out of data, you need to retrieve a new keyframe

S E C T I O N 16 . 5 ADVANCED ANIMATION 389

and insert that into the buffer. You can easily check for this by comparing the sequence
time with the duration of your buffer:

if (myController.getPosition(worldTime) >= myBuffer.getDuration()) {
float[] nextKeyframe = new float[3];
int nextKeyframeTime = myGetNextKeyframeFunction(nextKeyframe);

Then, insert your new keyframe into the buffer, replacing the oldest keyframe and cycling
the valid range forward by one keyframe:

int firstValid = myBuffer.getValidRangeFirst();
int lastValid = firstValid;
firstValid = (firstValid + 1) % myBuffer.getKeyframeCount();
myBuffer.setValidRange(firstValid, lastValid);

myBuffer.setKeyframe(lastValid, nextKeyframeTime, nextKeyframe);
myBuffer.setDuration(nextKeyframeTime);

}

That is all there is to it! The sequence myBuffer now has the latest segment of your
dynamically created spline, and you can proceed to animating as usual. With this simple
added step, you can create or stream arbitrarily long animations. In a real-life application,
especially if streaming over an uncertain and laggy network connection, you will want to
use a longer buffer, but the basic mechanism remains the same.

This page intentionally left blank

PART IV
APPENDIX

This page intentionally left blank

A

A
P

P
E

N
D

IX

FIXED-POINT MATHEMATICS

OpenGL is a floating-point API, but practically no mobile phones at the time when
OpenGL ES 1.0 was defined had any hardware support for floating-point arithmetic. Most
C compilers support floating-point operations, but emulating IEEE floats using integer
hardware can be painfully slow.

However, integers can be used to represent decimal numbers. For example, to store a
number such as 87.65432 with the accuracy of four decimal points, you could store it as
876543, and either instruct a decimal point to be moved four steps left, or, equivalently,
say that the number we really mean is the number we store, only divided by 10000. Now
you can do your arithmetic using integer operations which can run much faster than
emulating floats.

We can do the same with 32-bit two’s complement (signed) binary integers. In the exam-
ple before, we used powers of ten, but since computers naturally use powers of two, we
also switch to that base. Since we want to allocate as many bits for numbers smaller than
one as for numbers greater than one, it makes sense to divide by 216 = 65536. That is, to
convert a floating-point value to fixed point, you should multiply it by 65536 and round,
and to convert a fixed-point value into a float you should divide it by 65536.0. We call
these numbers 16.16 fixed-point numbers. Here the first number denotes the integer bits
and the second the decimal bits.

When using 16.16 fixed-point values we get the a from −32768 to almost 32768, whereas
single precision IEEE floating-point values may have magnitudes up to 1038. OpenGL

393

394 FIXED-POINT MATHEMATICS A P P E N D I X A

does not require this large a range, as only magnitudes up to 232 need to be representable,
and for colors even 210 is enough. The precision of these fixed-point numbers is fixed:
(1/65536), whereas the precision of floats depends on the magnitude of the values. Values
close to zero have a very high accuracy: two consecutive floats at around 1.0 have a preci-
sion of 1/16777216, floats at around 250.0 have roughly the same precision as fixed-point
numbers, while larger numbers become more inaccurate (two consecutive floats around
17 million are further than 1.0 units apart). OpenGL requires only accuracy of one part
in 105, which is a little under 17 bits; single-precision floats have 24 bits of accuracy.

Below are C macros for converting from float to fixed and vice versa:

#define float_to_fixed(a) (int) ((a) * (1<<16))
#define fixed_to_float(a) (((float)a) / (1<<16))

These are “quick-and-dirty” versions of conversion. float_to_fixed can overflow
if the magnitude of the float value is too great, or underflow if it is too small.
fixed_to_float can be made slightly more accurate by rounding. For example,
asymmetric arithmetic rounding works by adding 0.5 to the number before truncating
it to an integer, e.g., (int)floor((a) / 65536.0f + 0.5f).

Finally, note that some of these conversions are expensive on some processors and thus
should not be used in performance-critical code such as inner loops.

Here are some 16.16 fixed-point numbers, expressed in hexadecimal, and the correspond-
ing decimal numbers:

0x 0001 0000 1.0

0x 0002 0000 2.0

0x 0010 0000 16.0

0x 0000 8000 0.5

0x 0000 4000 0.25

0x 0000 2000 0.125

0x 0000 0001 1.0/65536

0x ffff ffff −1.0/65536

0x fffe 0000 −2.0

Depending on the situation it may make sense to move the decimal point to some other
location, although 16.16 is a good general choice. For example, if you are only interested in
numbers between zero and one (but excluding one), you should move the decimal point
all the way to the left; if you use 32 bits denote that with u0.32 (here u stands for unsigned).
In rasterization, the number of sub-pixel bits and the size of the screen in pixels determine
the number of bits you should have on the right side of the decimal point. Signed 16.16
is a compromise that is relatively easy to use, and gives the same relative importance to
numbers between zero and one as to values above one.

S E C T I O N A . 1 FIXED-POINT METHODS IN C 395

In the upcoming examples we also use other fixed-point formats. For example, a 32.32
fixed-point value would be stored using 64 bits and it could be converted to a float by
dividing it by 232, whereas 32.16 would take 48 bits and have 32 integer and 16 decimal
bits, and 32.0 would denote a regular 32-bit signed integer. To distinguish between
unsigned (such as u0.32) and signed two’s complement fixed-point formats we prepend
unsigned formats with u.

In this appendix, we first go through fixed-point processing in C. We then follow by
showing what you can do by using assembly language, and conclude with a section on
fixed-point programming in Java.

A.1 FIXED-POINT METHODS IN C

In this section we first discuss the basic fixed-point operations, followed by the shared
exponent approach for vector operations, and conclude with an example that precalcu-
lates trigonometric functions in a table.

A.1.1 BASIC OPERATIONS

The addition of two fixed-point numbers is usually very straightforward (and subtraction
is just a signed add):

#define add_fixed_fixed(a, b) ((a)+(b))

We have to watch out, though; the operation may overflow. As opposed to floats, the
overflow is totally silent, there is no warning about the result being wrong. Therefore, you
should always insert a debugging code to your fixed-point math, the main idea being that
the results before and after clamping from 64-bit integers to 32-bit integers have to agree.1

Here is an example of how that can be done:

#if defined(DEBUG)
int add_fixed_fixed_chk(int a, int b)
{
int64 bigresult = ((int64)a) + ((int64)b);
int smallresult = a + b;
assert(smallresult == bigresult);
return smallresult;

}
#endif

#if defined(DEBUG)
define add_fixed_fixed(a, b) add_fixed_fixed_chk(a, b)
#else
define add_fixed_fixed(a, b) ((a)+(b))
#endif

1 Code examples are not directly portable. Minimally you have to select the correct platform 64-bit type. Examples:
long long, __int64, int64

396 FIXED-POINT MATHEMATICS A P P E N D I X A

Another point to note is that these fixed-point routines should always be macros or inlined
functions, not called through regular functions. The function calling overhead would take
away most of the speed benefits of fixed-point programming. For the debug versions using
regular functions is fine, though.

Multiplications are more complicated than additions. Let us analyze the case of mul-
tiplying two 16.16 numbers and storing the result into another 16.16 number. When
we multiply two 16.16 numbers, the accurate result is a 32.32 number. We ignore the
last 16 bits of the result simply by shifting right 16 steps, yielding a 32.16 number. If
all the remaining bits are zero, either one or both of the operands were zero, or we
underflowed, i.e., the magnitude of the result was too small to be represented in a 16.16
fixed-point number. Similarly, if the result is too large to fit in 16.16, we overflow. But if
the result is representable as a 16.16 number, we can simply take the lowest 32 bits. Note
that the intermediate result must be stored in a 64-bit integer, unless the magnitude of
the result is known to be under 1.0 before multiplication. We are finally ready to define
multiplication:

#define mul_fixed_fixed(a, b) (int)(((int64)(a)*(int64)(b)) >> 16)

If one of the multiplicands is an int, then the inputs are 16.16 and 32.0, the result is 48.16,
and we can omit the shift operation:

#define mul_fixed_int(a, b) (int)((int64)(a) * (int64)(b))

Multiplications overflow even more easily than additions. The following example shows
how you can check for overflows in debug builds:

#if defined(DEBUG)
int mul_fixed_fixed_chk(int a, int b)
{
int64 bigresult = (((int64)a) * ((int64)b)) >> 16;

/* high bits must be just sign bits (0’s or 1’s) */
int64 sign = (bigresult >> 32);
assert((sign == 0) || (sign == —1));

return (int)bigresult;
}
#endif

Note also that multiplications by power-of-two are typically faster when done with shifts
instead of normal multiplication. For example:

assert((a << 4) == (a * 16));

Let us then see how division works. Dividing two 16.16 numbers gives you an integer,
and loses precision in the process. However, as we want the result to be 16.16, we should
shift the nominator left 16 steps and store it in an int64 before the division. This also

S E C T I O N A . 1 FIXED-POINT METHODS IN C 397

avoids losing the fractional bits. Here are several versions of the division with different
arguments (fixed or int), producing a 16.16 result:

#define div_fixed_fixed(a, b) (int)((((int64)(a))<<16) / (b))
#define div_int_int(a, b) (int)((((int64)(a))<<16) / (b))
#define div_int_fixed(a, b) (int)((((int64)(a))<<32) / (b))
#define div_fixed_int(a, b) ((a) / (b))

These simple versions do not check for overflows, nor do they trap the case b = 0. Divi-
sion, however, is usually a much slower operation than multiplication. If the interval of
operations is small enough, it may be possible to precalculate a table of reciprocals and
perform multiplication. With a wider interval one can do a sparse table of reciprocals and
interpolate the nearest results.

For slightly more precision, we can incorporate rounding into the fixed-point operations.
Rounding works much the same way as when converting a float to a fixed-point number:
add 0.5 before truncating to an integer. Since we use integer division in the operations,
we just have to add 0.5 before the division. For multiplication this is easy and fairly cheap:
since our divider is the fixed value of 1 << 16, we add one half of that, 1 << 15, before
the shift:

#define mul_fixed_fixed_round(a, b) \
(int)(((int64)(a) * (int64)(b) + (1<<15)) >> 16)

Similarly, for correct rounding in division of a by b, we should add b/2 to a before
dividing by b.

A.1.2 SHARED EXPONENTS

Sometimes the range that is required for calculations is too great to fit into 32-bit registers.
In some of those cases you can still avoid the use of full floating point. For example, you
can create your own floating-point operations that do not deal with the trickiest parts of
the IEEE standard, e.g., the handling of infinities, NaNs (Not-a-Numbers), or floating-
point exceptions.

However, with vector operations, which are often needed in 3D graphics, another pos-
sibility is to store the meaningful bits, the mantissas, separately into integers, perform
integer calculations using them, and to share the exponent across all terms. For example,
if you need to calculate a dot product of a floating-point vector against a vector of inte-
ger or fixed-point numbers, you could normalize the floating-point vector to a common
base exponent, perform the multiplications and additions in fixed point, and finally, if
needed, adjust the base exponent depending on the result. Another name for this practice
of shared exponents is block floating point.

Using a shared exponent may lead to underflow, truncating some of the terms to zero. In
some cases such truncation may lead to a large error. Here is a bit contrived example of a

398 FIXED-POINT MATHEMATICS A P P E N D I X A

worst-case error: [1.0e40, 1.0e8, 1.0e8, 1.0e8] · [0, 32768, 32768, 32768]. With a shared
exponent the first vector becomes [1, 0, 0, 0] ∗ 1e40, which, when dotted with the second
vector, produces a result that is very different from the true answer.

The resulting number sequence, mantissas together with the shared exponent, is really a
vectorized floating-point number and needs to be treated as such in the subsequent calcu-
lations, until to the point where the exponent can be finally eliminated. It may seem that
since the exponent must be normalized in the end in any case, we are not saving much.
Keep in mind, though, that the most expensive operations are only performed once for
the full dot product. It may even be possible that the required multiplication and addi-
tion operations can be done with efficient multiply-and-accumulate (MAC) operations
in assembler if the processor supports such operations.

Conversion from floating point vectors into vectorized floating point is only useful in
situations where the cost of conversion can be amortized somehow. For example, if you
run 50 dot products where the floating-point vector stays the same and the fixed-point
vectors vary, this method can save a lot of computation. An example where you might
need this kind of functionality is in your physics library. A software implementation of
vertex array transformation by modelview and projection matrices is another example
where this approach could be attempted: multiplication of a homogeneous vertex with a
4 × 4 matrix can be done with four dot products.

Many processors support operations that can be used for normalizing the result. For
example ARM processors with the ARMv5 instruction set or later support the CLZ
instruction that counts the number of leading zero bits in an integer. Even when the
processor supports these operations, they are only typically expressed either as compiler-
specific intrinsic functions or through inline assembler. For example, a portable version
of count-leading-zeros can be implemented as follows:

/* Table stores the CLZ value for a byte */
static unsigned char clz_table[256] = { 8, 7, 6, 6, ... };

INLINE int clz_unsigned(unsigned int num)
{
int res = 24;

if (num >> 16)
{
num >>= 16;
res —= 16;

}

if (num > 255)
{
num >>= 8;
res —= 8;

}

S E C T I O N A . 1 FIXED-POINT METHODS IN C 399

return clz_table[num] + res;
}

GCC compiler has a built-in command for CLZ that can be used like this:

INLINE int clz_unsigned(unsigned int num)
{
return __builtin_clz(num);

}

The built-in will get compiled to ARM CLZ opcode when compiled to ARM target.

The performance of this routine depends on the processor architecture, and for some
processors it may be faster to calculate the result with arithmetic instructions instead of
table lookups.

In comparison, the ARM assembly variant of the same thing is:

INLINE int clz_unsigned(unsigned int num)
{
int result;
__asm
{
clz result, num

}
return result;

}

A.1.3 TRIGONOMETRIC OPERATIONS

The use of trigonometric functions such as sin, cos, or arctan can be expensive both in
floating-point and fixed-point domains. But since these functions are repeating, sym-
metric, have a compact range [−1,1], and can sometimes be expressed in terms of each
other (e.g., sin(θ+90◦) = cos(θ)), you can precalculate them directly into tables and store
the results in fixed point.

A case in point is sin (and from that cos), for which only a 90◦ segment needs to be tab-
ulated, and the rest can be obtained through the symmetry and continuity properties of
sin. Since the table needs to be indexed by an integer, the input parameter needs to be
discretized as well. Quantizing 90◦ to 1024 steps usually gives a good trade-off between
accuracy, table size, and ease of manipulation of angle values (since 1024 is a power of
two). The following code precalculates such a table.

short sintable[1024];
int ang;

for(ang = 0; ang < 1024 ; ang++)

400 FIXED-POINT MATHEMATICS A P P E N D I X A

{
/* angle_in_radians = ang/1024 * pi/2 */
double rad_angle = (ang * PI) / (1024.0 * 2.0);
sintable[ang] = (short)(—sin(rad_angle) * 32768.0);

}

In the loop we first convert the table index into radians. Using that value we evaluate sin
and scale the result to the chosen fixed-point range. The values of sin vary from 0.0 to 1.0
within the first quadrant. If we multiply value 1.0 of sin by 32768.0 and convert to short,
the result overflows to zero. A solution is to negate the sin values in the table and negate
those back after the value is read from the table.

Here is an example function of extracting values for sin. Note that the return value is sin
scaled by 32768.0.

INLINE int fixed_sin(int angle)
{
int phase = angle & (1024 + 2048);
int subang = angle & 1023;

if (phase == 0) return —(int)sintable[subang];
else if (phase == 1024) return —(int)sintable[1023 — subang];
else if (phase == 2048) return (int)sintable[subang];
else return (int)sintable[1023 — subang];

}

A.2 FIXED-POINT METHODS IN ASSEMBLY
LANGUAGE

Typically all processors have instructions that are helpful for fixed-point computations.
For example, most processors support multiplication of two 32-bit values into a 64-
bit result. However, it may be difficult for the compiler to find the optimal instruction
sequence for the C code; direct assembly code is sometimes the only way to achieve good
performance. Depending on the compiler and the processor, improvements of more than
2× can be often achieved using optimized assembly code.

Let us take the fixed-point multiplication covered earlier as an example. If you multiply
two 32-bit integers, the result will also be a 32-bit integer, which may overflow the results
before you have a chance to shift the results back into a safe range. Even if the target
processor supports the optimized multiplication, it may be impossible to get a compiler
to generate such assembly instructions. To be safe, you have to promote at least one of the
arguments to a 64-bit integer. There are two solutions to this dilemma. The first (easy)
solution is to use a good optimizing compiler that detects the casts around the operands,
and then performs a narrower and faster multiplication. You might even be able to study
the machine code sequences that the compiler produces to learn how to express operations

S E C T I O N A . 2 FIXED-POINT METHODS IN ASSEMBLY LANGUAGE 401

so that they lead to efficient machine code. The second solution is to use inlined assembly
and explicitly use the narrowest multiply that you can get away with.

Here we show an example of how to do fixed-point operations using ARM assembler.
ARM processor is a RISC-type processor with sixteen 32-bit registers (r0-r15), out of
which r15 is restricted to program counter (PC) and r13 to stack pointer (SP), and r14 is
typically used as a link register (LR); the rest are available for arbitrary use.

All ARM opcodes can be prefixed with a conditional check based on which the operation
is either executed or ignored. All data opcodes have three-register forms where a constant
shift operation can be applied to the rightmost register operand with no performance
cost. For example, the following C-code

int INLINE foo(int a, int b)
{
int t = a + (b >> 16);

if(t < 0) return —t;
else return t;

}

executes in just two cycles when converted to ARM:

adds r0,r2,r3,asr #16 ; r0 = r2 + (r3 >> 16) and update flags
rsbmi r0,r0,#0 ; if result (r0) was negative, r0 = 0 — r0

(reverse subtract)

For more details about ARM assembler, see www.arm.com/documentation.

Note that the following examples are not optimized for any particular ARM implementa-
tion. The pipelining rules for different ARM variants, as well as different implementations
of each variant, can be different.

The following example code multiplies a u0.32 fixed-point number with another u0.32
fixed-point number and stores the resulting high 32 bits to register r0.

; assuming:
; r2 = input value 0
; r3 = input value 1

umull r1,r0,r2,r3 ; (high:low) r0:r1 = r2*r3

; result is directly in r0 register, low bits in r1

In the example above there is no need to actually shift the result by 32 as we can directly
store the high bits of the result to the correct register. To fully utilize this increased control
of operations and intermediate result ranges, you should combine primitive operations
(add, sub, mul) into larger blocks. The following example shows how to multiply a nor-
malized vec4 dot product with a vertex or a normal vector represented as 16.16 fixed point.

402 FIXED-POINT MATHEMATICS A P P E N D I X A

We want to make the code run as fast as possible and we have selected the fixed-point
ranges accordingly. In the example we have chosen the range of the normalized vector of
the transformation matrix to be 0.30, as we are going to accumulate the results of four
multiplications together, and we need 2 bits of extra room for accumulation:

; input:
; r0 = pointer to the 16.16 vector data (will be looped over)
; r1-r4 = vec4 (assumed to be same over N input vectors) X,Y,Z,W
;
; in the code:
; r8 = high 32 bits of the accumulated 64-bit number
; r7 = low 32 bits -’’-

ldr r5,[r0],#4 ; r5 = *r0++; (x)
ldr r6,[r0],#4 ; r6 = *r0++; (y)
smull r7,r8,r1,r5 ; multiply X*x: (low:high) r7:r8 = r1 * r5
ldr r5,[r0],#4 ; r5 = *r0++; (z)
smlal r7,r8,r2,r6 ; multiply AND accumulate Y*y
ldr r6,[r0],#4 ; r6 = *r0++; (w)
smlal r7,r8,r3,r5 ; multiply AND accumulate Z*z
smlal r7,r8,r4,r6 ; multiply AND accumulate W*w

; 64-bit output is in r8:r7,
; we take the high 32 bits (r8 register) directly

As we implemented the whole operation as one vec4 · vec4 dot product instead of a
collection of primitive fixed-point operations, we avoided intermediate shifts and thus
improved the accuracy of the result. By using the 0.30 fixed-point format we reduced
the accuracy of the input vector by 2 bits, but usually the effect is negligible: remember
that even IEEE floats have only 24 significant bits. With careful selection of ranges, we
avoided overflows altogether and eliminated a 64-bit shift operation which would require
several cycles. By using ARM-specific multiply-and-accumulate instructions that operate
directly in 64 bits, we avoided doing 64-bit accumulations that usually require 2 assembly
opcodes: ADD and ADC (add with carry).

In the previous example the multiplication was done in fixed point. If the input values,
e.g., vertex positions, are small, some accuracy is lost in the final output because of the
fixed position of the decimal point. For more accuracy, the exponents should be tracked
as well. In the following example the input matrix is stored in a format where each matrix
column has a common exponent and the scalar parts are normalized to that exponent.
The code shows how one row is multiplied. Note that this particular variant assumes
availability of the ARMv5 instruction CLZ and will thus not run on ARMv4 devices.

; input:
; r0 = pointer to the 16.16 vector data
; r1 = pointer to the matrix (format: x0 y0 z0 w0 e0 x1...)
;
; in the code:

S E C T I O N A . 2 FIXED-POINT METHODS IN ASSEMBLY LANGUAGE 403

; r2—r6 = X,Y,Z,W,E (exponent)

ldmia r1!,{r2—r6} ; r2 = *r1++; r3 = *r1++; ... r6 = *r1++;
ldr r7,[r0],#4 ; r7 = *r0++; (x)
smull r8,r9,r2,r7 ; multiply X*x
ldr r7,[r0],#4 ; r7 = *r0++; (y)
smlal r8,r9,r3,r7 ; multiply and accumulate Y*y
ldr r7,[r0],#4 ; r7 = *r0++; (z);
smlal r8,r9,r4,r7 ; multiply and accumulate Z*z
ldr r7,[r0],#4 ; r7 = *r0++; (w)
smlal r8,r9,r5,r7 ; multiply and accumulate W*w

; Code below does not do tight normalization (e.g., if
; we have number 0x00000000 00000001, we don’t return
; 0x40000000, but we subtract the exponent with 32 and return
; 0x00000001). This is because we do only highest-bit
; counting in the high 32 bits of the result. No accuracy
; is lost due to this at this stage.
;
; If tight normalization is required, it can be added with
; extra comparisons.

; The following opcode (eor) calculates the rough abs(r9)
; value. Positive values stay the same, but negative
; values are bit-inverted —> outcome of ~abs(—1) = 0 etc.
; This is enough for our range calculation. Note that we
; use arithmetic shift that extends the sign bits.
; It is used to get a mask of 111's for negative numbers
; and a mask of 000's for positive numbers.

eor r7,r9,r9,asr #31 ; r7 = r9 ^ (r9 >> 31)

clz r7,r7 ; Count Leading Zeros of abs(high) [0,32]
subs r7,r7,#1 ; We don’t shift if CLZ gives 1 (changes sign)

; note: if (clz—1) resulted in —1, we just want to take the high
; value of the result and not touch the exponent at all.
; This is achieved by appending rest of the opcodes with
; PL (plus) conditional.

; note2: ARM register shift with zero returns the original value
; and register shift with 32 returns zero. The code below
; works thus for any shift value from 0 to 32 that can come
; from the CLZ instruction above.

subpl r6,r6,r7 ; subtract from the base exponent
rsbpl r3,r7,#32 ; calculate 32-shift value to r3
movpl r9,r9,lsl r7 ; r9 = high bits << (leading zeros—1)
orrpl r9,r9,r8,lsr r3 ; r9 = low bits >> (32—(leading zeros—1))

; output in r9 (scalar) and r6 (exponent)

404 FIXED-POINT MATHEMATICS A P P E N D I X A

In these examples we showed the programs as a list of assembly instructions. It is not
possible to compile them into a working program without some modifications. Here is
an example of an inlined assembly routine that you can actually call from your C program
(using an ARM GCC compiler):

INLINE int mul_fixed_fixed(int a, int b)
{
int result, tmp;
__asm__ ("smull %0,%1,%2,%3 \n\t"

"mov %0,%0,lsr #16 \n\t"
"orr %0,%0,%1,lsl #16 \n\t"
: "=&r" (result), "=&r" (tmp),
: "r" (a), "r" (b)
: ""

);
return result;

}

Here the compiler allocates the registers and places the register of result to argument %0,
tmp to %1, a to %2, and b to %3. For result and tmp = means that the register is going
to be written to, and & indicates that this register cannot be used for anything else inside
this __asm__statement. The first line performs a signed multiply of a and b and stores the
low 32 bits to result and the high 32 bits to tmp.

The second line shifts the result right 16 times, the third line shifts tmp left 16 times, and
combines tmp and result into result using a bitwise OR. The interested reader may want
to consult a more in-depth exposition on GCC inline assembly [S03, Bat].

Another compiler that is used a lot for mobile development is the ARM RVCT compiler.
It also handles the register allocation of the inline assembly. RVCT goes a step further
though: there is no need to specify registers and their constraints as they are automatically
handled by the compiler. Here is the previous example code in the inline assembler format
used by RVCT:

INLINE int mul_fixed_fixed(int a, int b)
{
int result, tmp;
__asm
{
smull result, tmp, a, b
mov result, result, lsr #16
orr result, result, tmp, lsl #16

}
return result;

}

For a list of supported instructions, check ARM Instruction Set Quick Reference
Card [Arm].

S E C T I O N A . 3 FIXED-POINT METHODS IN JAVA 405

A.3 FIXED-POINT METHODS IN JAVA

Fixed-point routines in Java work almost exactly as in C, except that you do not have to
struggle with the portability of 64-bit integers, because the long type in Java is always
64 bits. Also, since there is no #define nor an inline keyword in Java, you need
to figure out alternative means to get your code inlined. This is crucially important
because the method call overhead will eliminate any benefit that you get from faster
arithmetic otherwise. One way to be sure is to inline your code manually, and that is
what you probably end up doing anyway, as soon as you need to go beyond the basic
16.16 format. Note that the standard javac compiler does not do any inlining; see
Appendix B for suggestions on other tools that may be able to do it.

The benefit of using fixed-point in Java depends greatly on the Java virtual machine. The
benefit can be very large on VMs that leverage Jazelle (see Appendix B), or just-in-time
(JIT) or ahead-of-time (AOT) compilation, but very modest on traditional interpreters.
To give a ballpark estimate, a DOT4 done in fixed-point using 64-bit intermediate reso-
lution might be ten times faster than a pure float routine on a compiling VM, five times
faster on Jazelle, but only twice as fast on an interpreter.

On a traditional interpreter, float is relatively efficient because it requires only one
bytecode for each addition, multiplication, or division. Fixed point, on the other hand,
takes extra bytecodes due to the bit-shifting. The constant per-bytecode overhead is very
large on a software interpreter.

On Jazelle, integer additions and multiplications get mapped to native machine instruc-
tions directly, whereas float operations require a function call. The extra bytecodes
are still there, however, taking their toll. Finally, a JIT/AOT compiler is looking at longer
sequences of bytecode and can probably combine the bit-shifts with other operations in
the compiled code, as we did in the previous section.

To conclude, using fixed-point arithmetic generally does pay off in Java, and even more
so with the increasing prevalence of Jazelle and JIT/AOT compilers. There is a caveat,
though: if you need to do a lot of divides, or need to convert between fixed and float
frequently, you may be better off just using floats and spending your optimization efforts
elsewhere. Divides are very slow regardless of the number format and the VM, and will
quickly dominate the execution time. Also, they are much slower in 64-bit integer than in
32-bit floating point!

This page intentionally left blank

B

A
P

P
E

N
D

IX

JAVA PERFORMANCE TUNING

Although M3G offers a lot of high-level functionality implemented in efficient native
code, it will not write your game for you. You need to create a lot of Java code yourself,
and that code will ultimately make or break your game, so it had better be good.

The principles of writing efficient code on the Java ME platform are much like on any
other platform. In order to choose the best data structures and algorithms, and to imple-
ment them in the most efficient way, you need to know the strengths and weaknesses of
your target architecture, programming language, and compiler. The problem compared
to native platforms is that there are more variables and unknowns: a multitude of differ-
ent VMs, using different acceleration techniques, running on different operating systems
and hardware. Hence, spending a lot of time optimizing your code on an emulator or just
one or two devices can easily do you more harm than good.

In this appendix we briefly describe the main causes of performance problems in Java ME,
and suggest some techniques to overcome them. This is not to be taken as final truth;
your mileage may vary, and the only way to be sure is to profile your application on the
devices that you are targeting. That said, we hope this will help you avoid the most obvious
performance traps and also better understand some of the decisions that we made when
designing M3G.

407

408 JAVA PERFORMANCE TUNING A P P E N D I X B

B.1 VIRTUAL MACHINES

The task of the Java Virtual Machine is to execute Java bytecode, just like a real, nonvirtual
CPU executes its native assembly language. The instruction set of the Java VM is in stark
contrast to that of any widely used embedded CPU, however.

To start with, bytecode instructions take their operands off the top of an internal operand
stack, whereas native instructions pick theirs from a fixed set of typically sixteen registers.
The arbitrary depth of the operand stack prevents it from being mapped to the regis-
ters in a straightforward manner. This increases the number of costly memory accesses
compared to native code. The stack-based architecture is very generic, allowing imple-
mentations on almost any imaginable processor, but it is also hard to map efficiently onto
a machine that is really based on registers.

Another complication is due to bytecode instructions having variable length, compared to
the fixed-length codewords of a RISC processor. This makes bytecode very compact: most
instructions require just one byte of memory, whereas native instructions are typically four
bytes each. The downside is that instruction fetching and decoding becomes more complex.

Furthermore, the bytecode instruction set is a very mixed bag, having instructions at widely
varying levels of abstraction. The bytecodes range from basic arithmetic and bitwise oper-
ations to things that are usually considered to be in the operating system’s domain, such
as memory allocation (new). Most of the bytecodes are easily mapped to native machine
instructions, except for having to deal with the operand stack, but some of the high-level
ones require complex subroutines and interfacing with the operating system. Adding into
the equation the facts that all memory accesses are type-checked and bounds-checked, that
memory must be garbage-collected, and so on, it becomes clear that designing an efficient
Java VM, while maintaining security and robustness, is a formidable task.

There are three basic approaches that virtual machines are taking to execute bytecode:
interpretation, just-in-time compilation, and ahead-of-time compilation. The predom-
inant approach in mobile devices is interpretation: bytecodes are fetched, decoded, and
translated into machine code one by one. Each bytecode instruction takes several machine
instructions to translate, so this method is obviously much slower than executing native
code. The slowdown used to be some two orders of magnitude in early implementations,
but has since then been reduced to a factor of 5–10, thanks to assembly-level optimiza-
tions in the interpreter loops.

The second approach is to compile (parts of) the program into machine code at runtime.
These just-in-time (JIT) compilers yield good results in long-running benchmarks, but
perform poorly when only limited time and memory are available for the compiler and
the compiled code. The memory problems are exacerbated by the fact that compiled code
can easily take five times as much space as bytecode. Moreover, runtime compilation will
necessarily delay, interrupt, or slow down the program execution. To minimize the dis-
turbance, JIT compilers are restricted to very basic and localized optimizations. In theory,
the availability of runtime profiling information should allow JIT compilers to produce

S E C T I O N B . 2 BYTECODE OPTIMIZATION 409

smaller and faster code than any static C compiler, but that would require a drastic increase
in the available memory, and the compilation time would still remain a problem for inter-
active applications. Today, we estimate well-written C code to outperform embedded JIT
compilers by a factor of 3–5.

The third option is to compile the program into native code already before it is run, typ-
ically at installation time. This ahead-of-time (AOT) tactic allows the compiler to apply
more aggressive optimizations than is feasible at runtime. On the other hand, the com-
piled code consumes significantly more memory than the original bytecode.

Any of these three approaches can be accelerated substantially with hardware support.
The seemingly obvious solution is to build a CPU that uses Java bytecode as its machine
language. This has been tried by numerous companies, including Nazomi, Zucotto, inSil-
icon, Octera, NanoAmp, and even Sun Microsystems themselves, but to our knowledge
all such attempts have failed either technically or commercially, or both. The less radical
approach of augmenting a conventional CPU design with Java acceleration seems to be
working better.

The Jazelle extension to ARM processors [Por05a] runs the most common bytecodes
directly on the CPU, and manages to pull that off at a negligible extra cost in terms of
silicon area. Although many bytecodes are still emulated in software, this yields perfor-
mance roughly equivalent to current embedded JIT compilers, but without the excessive
memory usage and annoying interruptions. The main weakness of Jazelle is that it must
execute each and every bytecode separately, whereas a compiler might be able to turn a
sequence of bytecodes into just one machine instruction.

Taking a slightly different approach to hardware acceleration, Jazelle RCT (Runtime
Compilation Target) [Por05b], augments the native ARM instruction set with additional
instructions that can be used by JIT and AOT compilers to speed up array bounds check-
ing and exception handling, for example. The extra instructions also help to reduce the
size of the compiled machine code almost to the level of the original bytecode.

As an application developer, you will encounter all these different types of virtual machines.
In terms of installed base, traditional interpreters still have the largest market share, but
Jazelle, JIT, and AOT are quickly catching up. According to the JBenchmark ACE results
database,1 most newer devices appear to be using one of these acceleration techniques.
Jazelle RCT has not yet been used in any mobile devices by the time of this writing, but
we expect it to be widely deployed over the next few years.

B.2 BYTECODE OPTIMIZATION

As we pointed out before, Java bytecode is less than a perfect match for modern embedded
RISC processors. Besides being stack-based and having instructions at wildly varying

1 www.jbenchmark.com/ace

410 JAVA PERFORMANCE TUNING A P P E N D I X B

levels of abstraction, it also lacks many features that native code can take advantage of,
at least when using assembly language. For instance, there are no bytecodes correspond-
ing to the kind of data-parallel (SIMD) instructions that are now commonplace also in
embedded CPUs and can greatly speed up many types of processing. To take another
example, there are no conditional (also known as predicated) instructions to provide a
faster alternative to short forward branches.

Most of the bytecode limitations can be attributed to the admirable goal of platform
independence, and are therefore acceptable. It is much harder to accept the notoriously
poor quality of the code that the javac compiler produces. In fact, you are better off
assuming that it does no optimization whatsoever. For instance, if you compute a con-
stant expression like 16*a/4 in your inner loop, rest assured that the entire expression
will be meticulously evaluated at every iteration—and of course using real multiplies and
divides rather than bit-shifts (as in a<<2).

The lack of optimization in javac is presumably because it trusts the virtual machine to
apply advanced optimization techniques at runtime. That may be a reasonable assump-
tion in the server environment, but not on mobile devices, where resources are scarce
and midlet start-up times must be minimized. Traditional interpreters and Jazelle take a
serious performance hit from badly optimized bytecode, but just-in-time and ahead-of-
time compilers are not immune, either. If the on-device compiler could trust javac to
inline trivial methods, eliminate constant expressions and common subexpressions, con-
vert power-of-two multiplications and divisions into bit-shifts, and so on, it could spend
more time on things that cannot be done at the bytecode level, such as register allocation
or eliminating array bounds checking.

Given the limitations of javac, your best bet is to use other off-line compilers, bytecode
optimizers, and obfuscators such as GCJ,2 mBooster,3 DashO,4 ProGuard,5 Java Global
Optimizer,6 Bloat,7 or Soot.8 None of these tools is a superset of the others, so it might
make sense to use more than one on the same application.

B.3 GARBAGE COLLECTION

All objects, including arrays, are allocated from the Java heap using the new operator.
They are never explicitly deallocated; instead, the garbage collector (GC) automatically
reclaims any objects that are no longer referenced by the executing program.

2 gcc.gnu.org/java

3 www.innaworks.com

4 www.preemptive.com

5 proguard.sourceforge.net

6 www.garret.ru/Äknizhnik/javago/ReadMe.htm
7 www.cs.purdue.edu/s3/projects/bloat/

8 www.sable.mcgill.ca/soot/

S E C T I O N B . 4 MEMORY ACCESSES 411

Automatic garbage collection eliminates masses of insidious bugs, but also bears
significant overhead. Explicit memory management using malloc and free has been
shown to be faster and require less physical memory. For example, in a study by Hertz and
Berger [HB05], the best-performing garbage collector degraded application performance
by 70% compared to an explicit memory manager, even when the application only used
half of the available memory. Performance of the garbage collector declined rapidly as
memory was running out. Thus, for best performance, you should leave some reasonable
percentage of the Java heap unused. More importantly, you should not create any garbage
while in the main loop, so as not to trigger the garbage collector in the first place.

Pitfall: There is no reliable way to find out how much memory your midlet
is consuming, or how much more it has available. The numbers you get from
Runtime.getRuntime().freeMemory() are not to be trusted, because you
may run out of native heap before you run out of Java heap, or vice versa, and because
the Java heap may be dynamically resized behind your back.

A common technique to avoid generating garbage is to allocate a set of objects and arrays
at the setup stage and then reuse them throughout your code. In other words, start off your
application by allocating all the objects that you are ever going to need, and then hold on
to them until you quit the midlet. Although this is not object-oriented and not very pretty,
it goes a long way toward eliminating the GC overhead—not all the way, though. There are
built-in methods that do not facilitate object reuse, forcing you to create a new instance
when you really only wanted to change some attribute. Even worse, there are built-in APIs
that allocate and release temporary objects internally without you ever knowing about it.

Strings are particularly easy to trip on, because they are immutable in Java. Thus,
concatenating two strings creates a new String object simply because the existing ones
cannot be changed. If you need to deal with strings on a per-frame basis, for example
to update the player’s score, you need to be extra careful to avoid creating any garbage.
Perhaps the only way to be 100% sure is to revert to C-style coding and only use char
arrays.

B.4 MEMORY ACCESSES

One of the most frequent complaints that C programmers have about Java is the lack of
direct memory access. Indeed, there are no pointers in the Java programming language,
and no bytecode instructions to read or write arbitrary memory locations. Instead, there
are only references to strongly typed objects that reside in the garbage-collected heap. You
do not know where in physical memory each particular object lies at any given time, nor
how many bytes it occupies. Furthermore, all memory accesses are type-checked, and in
case of arrays, also bounds-checked. These restrictions are an integral part of the Java
security model, and one of the reasons the platform is so widely deployed, but they also
rule out many optimizations that C programmers are used to.

412 JAVA PERFORMANCE TUNING A P P E N D I X B

As an example, consider a bitmap image stored in RGBA format at 32 bits per pixel. In C,
you would use a byte array, but still access the pixels as integers where necessary, to speed
up copying and some other operations. The lack of type-checking in C therefore allows
you to coalesce four consecutive memory accesses into one. Java does not give you that
flexibility: you need to choose either bytes or integers and stick to that. To take another
example, efficient floating-point processing on FPU-less devices requires custom routines
that operate directly on the integer bit patterns of float values, and that is something
you cannot do in Java. To illustrate, the following piece of C code computes the absolute
value of a float in just one machine instruction, but relies on pointer casting to do so:

float fabs(float a)
{
int bits = *(int*)(&a); // extract the bit pattern
bits &= 0x7fffffff; // clear the sign bit
return *(float*)(&bits); // cast back to float
}

Type-checking is not the only thing in Java that limits your choice of data structures and
algorithms. For example, if you want to build an aggregate object (such as an array of
structures) in C, you can either inline the component objects (the structures) or refer-
ence them with pointers; Java only gives you the latter option. Defining a cache-friendly
data structure where objects are aligned at, say, 16-byte boundaries is another thing that
you cannot do in Java. Moreover, you do not have the choice of quickly allocating local
variables from the CPU stack. Finally, the lack of pointer arithmetic forces you to follow
object references even when the target address could be computed without any memory
accesses.

Unlike type checking, array bounds checking does not limit your choice of data struc-
tures. It does impose a performance penalty, though, and the more dimensions you have
in the array, the higher the cost per access. Thus, you should always use a flat array, even
if the data is inherently multidimensional; for instance, a 4 × 4 matrix should be allo-
cated as a flat array of 16 elements. Advanced JIT/AOT compilers may be able to elim-
inate a range check if the array index can be proven to be within the correct range.
The compiler is more likely to come up with the proof if you use new int[100]
rather than new int[getCount()] to allocate an array, and index<100 instead
of index<getCount() to iterate over its elements. Do not let this complicate your
code too much, however, as this sort of optimization may be beyond the capabilities of
the current compilers.

To minimize memory accesses in general, it is a good idea to use the built-in primitive
types such as int and float rather than objects. Also, the input parameters and local
variables of a method are likely to be faster than class variables or instance variables.
Finally, using System.arraycopy pays off almost universally: it amounts to a native
memcpy with some extra type-checking and range-checking up front. The savings can
be huge compared to doing the same checks for each element separately.

S E C T I O N B . 5 METHOD CALLS 413

B.5 METHOD CALLS

Method invocations in Java are more expensive and more restricted than function calls in
C or C++. The virtual machine must first look up the method from an internal symbol
table, and then check the type of each argument against the method signature. A C/C++
function call, on the other hand, requires very few machine instructions.

In general, privatemethods are faster to call than public or protected ones, and
stand a better chance of being inlined. Also, static methods are faster than instance
methods, and final methods are faster than those that can be re-implemented in
derived classes. synchronized methods are by far the slowest, and should be used
only when necessary. Depending on the VM, native methods can also bear high overhead,
particularly if large objects or arrays are passed to or from native code.

As a final note, code and data are strictly separated in Java. There is no way for a method
to read or write its own bytecode or that of any other method. There is also no way
to transfer program control to the data area, or in fact anywhere else than one of the
predefined method entry points. These restrictions are absolutely mandatory from the
security standpoint, but they have the unfortunate side-effect that any kind of runtime
code generation is prevented. In other words, you could not implement a JIT compiler
in Java!

This page intentionally left blank

C

A
P

P
E

N
D

IX

GLOSSARY

AABB Axis-Aligned Bounding Box

AOT Ahead-Of-Time compilation; particularly for Java

API Application Programming Interface

ARB OpenGL Architecture Review Board

ARM Advanced RISC Machines; a popular embedded processor family

ARM7 ARM processor family with ARMv4 instruction set

ARM9 ARM processor family with ARMv5 instruction set

ARM11 ARM processor family with ARMv6 instruction set

ARMv4 ARM processor instruction set version four

ARMv5 ARM processor instruction set version five

ARMv6 ARM processor instruction set version six

baseband The part of a mobile phone that handles radio communication

BRDF Bidirectional Reflectance Distribution Function

BREW Binary Runtime Environment for Wireless; an execution environment controlled
by Qualcomm

BSP Binary Space Partitioning

415

416 GLOSSARY A P P E N D I X C

BVH Bounding Volume Hierarchy

CDC Connected Device Configuration; the high-end configuration of mobile Java

CL Common Lite; the OpenGL ES profile with no floating-point support

CLDC Connected Limited Device Configuration; the mainstream configuration of
mobile Java

CLZ Count Leading Zeros; machine instruction on ARMv5 processors and later

CM Common; the mainstream OpenGL ES profile

COLLADA COLLAborative Design Activity; an interchange format for digital content
creation tools; a Khronos standard

CPU Central Processing Unit

DAG Directed Acyclic Graph

DCC Digital Content Creation; usually relates to tools for creating 3D content, such as
3ds Max or Maya

DCT Discrete Cosine Transform; used in, e.g., JPEG image compression

DLL Dynamic Link Library

DOM Document Object Model; relates to SVG and other W3C standards

DSP Digital Signal Processor

EG Expert Group

EGL OpenGL ES Native Platform Graphics Interface; a Khronos standard

FBO Frame Buffer Object

FIFO First-In-First-Out, a queue data structure

FPU Floating-Point Unit

GCC GNU C Compiler

GL Graphics Library (short for OpenGL)

GPS Global Positioning System

GPU Graphics Processing Unit; graphics hardware

GSM Global System for Mobile

IEEE Institute of Electrical and Electronics Engineers

IVA Imaging and Video Accelerator; particularly in mobile devices

Java ME Java Micro Edition; the most ubiquitous application platform for mobile devices

JAR Java Archive; the delivery format of Java applications

JCP Java Community Process; the Java standardization organization that produces JSRs

JIT Just-In-Time compilation; particularly for Java

JNI Java Native Interface

JPEG Joint Photographic Experts Group; a compressed image file format

A P P E N D I X C GLOSSARY 417

JSR Java Specification Request

JSR 135 Mobile Media API (MMAPI)

JSR 184 Mobile 3D Graphics API (M3G)

JSR 226 Scalable Vector Graphics API

JSR 239 Java bindings for OpenGL ES

JSR 248 Mobile Service API for CLDC

JSR 287 Scalable Vector Graphics API 2.0

JSR 297 Mobile 3D Graphics API (M3G) 2.0

JVM Java Virtual Machine

JWT Java Wireless Toolkit by Sun Microsystems

LCD Liquid Crystal Display

LCDUI Limited Connected Device User Interface, in Java MIDP

LOD Level-Of-Detail; a technique for showing simpler models for far-away objects to
speed up rendering

MAC Multiply-And-Accumulate; a machine instruction for multiplication followed by
addition

M3G Mobile 3D Graphics API (JSR 184)

MHz Megahertz

midlet A Java application for mobile Java (Java MIDP); also known as MIDlet

MIDP Mobile Information Device Profile; the most widespread Java profile

MSA Mobile Service Architecture (JSR 248); combines multiple JSRs into a more unified
platform

native code Machine code; compiled into the native instruction set of the CPU

NDC Normalized Device Coordinates

node Element in a scene graph

OBB Oriented Bounding Box

OpenGL Open Graphics Library

OpenGL ES OpenGL for Embedded Systems; a Khronos standard

OpenKODE A collection of Khronos multimedia APIs, plus a core API that abstracts
operating system resources to minimize source code changes when porting games
and applications

OpenMAX A Khronos API that provides streaming media codecs (for sound, video) and
application portability

OpenML Open Multimedia Library; the first standard produced by Khronos (not aimed
for embedded devices)

OpenSL ES Open Sound Library for Embedded Systems; a Khronos standard

418 GLOSSARY A P P E N D I X C

OpenVG Open Vector Graphics; a Khronos standard

OS Operating System

PDA Personal Digital Assistant; a handheld data organizer

PNG Portable Network Graphics; a popular lossless image format

PVS Potentially Visible Set

RAM Random Access Memory

RISC Reduced Instruction Set CPU

ROM Read-Only Memory

QVGA Quarter-VGA resolution; 320 × 240 or 240 × 320 pixels

RGB Red-Green-Blue

RGBA Red-Green-Blue-Alpha

RVCT RealView Compiler Tools from ARM

S60 Symbian-based UI platform from Nokia, previously known as Series 60

SDK Software Development Kit

SVG Scalable Vector Graphics; a W3C standard

UI User Interface

URL Universal Resource Locator; a link to Internet content

VBO Vertex Buffer Object

VGA Video Graphics Array, a display resolution of 640 × 480 pixels

VM Virtual Machine; particularly for Java

WIPI Wireless Internet Platform for Interoperability; mobile platform used in South
Korea

W3C World Wide Web Consortium

XML eXtensible Markup Language

XREF eXternal REFerence; particularly in the M3G file format

BIBLIOGRAPHY
[AB06] Remi Arnaud and Mark C. Barnes. COLLADA: Sailing the Gulf of 3D

Digital Content Creation. AK Peters, Ltd., 2006.

[Air90] John Airey. Increasing Update Rates in the Building Walk-through System
with Automatic Model-Space Subdivision and Potentially Visible Set
Calculations. PhD thesis, UNC CH CS Department, 1990.

[AMH02] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering, Second
Edition. AK Peters, Ltd., 2002.

[AS06] Kurt Akeley and Jonathan Su. Minimum triangle separation for correct
Z-buffer occlusion. In Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 27–30, 2006.

[BAC96] Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha. Rendering
from compressed textures. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (SIGGRAPH), pages 373–378.
ACM Press, 1996.

[Bat] Batched. Arm gcc inline assembler paper. http://www.milw0rm.com/
papers/128.

[Bly06] David Blythe. The Direct3D 10 system. ACM Transactions on Graphics,
25(3):724–734, 2006.

[BN76] James F. Blinn and Martin E. Newell. Texture and reflection in computer
generated images. Communications of the ACM, 19(10):542–547, 1976.

[Boo01] Carl De Boor. A Practical Guide to Splines. Springer, 2001.

[BSD+89] A.C. Barkans, B.D. Schroeder, T.L. Durant, D. Gordon, and J. Lach.
Guardband clipping method and apparatus for 3d graphics display
system. U.S. Patent 4,88,712, 1989.

[BW95] Armin Bruderlin and Lance Williams. Motion signal processing. In
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, pages 97–104, 1995.

[Cat72] Edwin Catmull. A system for computer generated movies. In Proc. ACM
Annual Conf., pages 422–431, August 1972.

[Cat74] Edwin Earl Catmull. A subdivision algorithm for computer display of curved
surfaces. PhD thesis, 1974.

419

420 BIBLIOGRAPHY

[CR74] E. Catmull and R. Rom. A class of local interpolating splines. In
R. Barnhill and R. Riesenfeld, editors, Computer Aided Geometric Design,
pages 317–326. Academic Press, 1974.

[Cro77] Franklin C. Crow. Shadow algorithms for computer graphics. In
SIGGRAPH ’77: Proceedings of the 4th annual conference on Computer
graphics and interactive techniques, pages 242–248. ACM Press, 1977.

[EK02] C. Everitt and M. Kilgard. Practical and robust stenciled shadow volumes
for hardware-accelerated rendering. Technical report, NVIDIA
corporation, 2002.

[EMP+02] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and
Steven Worley. Texturing & Modeling: A Procedural Approach. Morgan
Kaufmann, third edition, 2002.

[Fen03] Simon Fenney. Texture compression using low-frequency signal
modulation. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 84–91. Eurographics
Association, 2003.

[FvFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer graphics: principles and practice (2nd ed.). Addison-Wesley
Longman Publishing Co., Inc., 1990.

[Gou71] Henri Gouraud. Computer display of curved surfaces. IEEE Transactions
on Computers, 20(6):623–629, 1971.

[GW02] Rafael Gonzales and Richard Woods. Digital Image Processing, Second
Edition. Prentice Hall, 2002.

[Hö7] Claus Höfele. Mobile 3D Graphics: Learning 3D Graphics with the Java
Micro Edition. Thomson Course Technology, 2007.

[HB05] Matthew Hertz and Emery D. Berger. Quantifying the performance of
garbage collection vs. explicit memory management. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, pages 313–326.
ACM Press, 2005.

[Hei] Tim Heidmann. Real shadows real time. IRIS Universe, (18):28–31.

[Hop99] Hugues Hoppe. Optimization of mesh locality for transparent vertex
caching. In Computer Graphics (SIGGRAPH ’99 Proceedings), Computer
Graphics Proceedings, Annual Conference Series, pages 269–276. ACM,
ACM Press/ACM SIGGRAPH, 1999.

[HS98] Wolfgang Heidrich and Hans-Peter Seidel. View-independent
environment maps. In Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 39–45, 1998.

BIBLIOGRAPHY 421

[HS99] Wolfgang Heidrich and Hans-Peter Seidel. Realistic, hardware-accelerated
shading and lighting. In SIGGRAPH ’99: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 171–178.
ACM Press/Addison-Wesley Publishing Co, 1999.

[JCP03] JCP. Mobile 3D Graphics API (JSR-184). Java Community Process, 2003.
http://www.jcp.org/en/jsr/detail?id=184.

[JCP05] JCP. Mobile 3D Graphics API (JSR-184) v1.1. Java Community Process,
2005. http://www.jcp.org/en/jsr/detail?id=184.

[JCP06] JCP. Mobile Service Architecture (JSR-248). Java Community Process, 2006.
http://www.jcp.org/en/jsr/detail?id=248.

[KB84] Doris H.U. Kochanek and Richard H. Bartels. Interpolating splines with
local tension, continuity, and bias control. In Proceedings of the 11th
annual conference on Computer graphics and interactive techniques
(SIGGRAPH), pages 33–41. ACM Press, 1984.

[KG03] Lucas Kovar and Michael Gleicher. Flexible automatic motion blending
with registration curves. In Proceedings of the 2003 ACM SIGGRAPH/
Eurographics symposium on Computer animation, pages 214–224.
Eurographics Association, 2003.

[KGP02] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs, 2002.

[Khr03] Khronos. OpenGL ES Native Platform Graphics Interface (Version 1.0). The
Khronos Group, 2003.

[Lan98] Jeff Lander. Skin them bones: Game programming for the web generation.
Game Developer Magazine, pages 11–16, May 1998.

[Lan02] H. Landis. RenderMan in Production. ACM SIGGRAPH course, 2002.

[Len04] Eric Lengyel. Mathematics for 3D game programming & computer graphics,
second edition. Charles River Media, 2004.

[LG95] David Luebke and Chris Georges. Portals and mirrors: Simple, fast
evaluation of potentially visible sets. In Symposium of Interactive 3D
Graphics. ACM Press, 1995.

[LK05] Sing Li and Jonathan Knudsen. Beginning J2ME: From Novice to
Professional, Third Edition. Apress, Inc., 2005.

[Ltd] ARM Ltd. Arm instruction set quick reference card. http://www.arm.
com/pdfs/QRC0001H_rvct_v2.1_arm.pdf.

[MB05] Tom McReynolds and David Blythe. Advanced Graphics Programming
Using OpenGL. Morgan Kaufmann, 2005.

[Mil94] Gavin Miller. Efficient algorithms for local and global accessibility
shading. In Proceedings of ACM SIGGRAPH 94, pages 319–326, 1994.

422 BIBLIOGRAPHY

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), 1965.

[OG97] Marc Olano and Trey Greer. Triangle scan conversion using 2d
homogeneous coordinates. In Proceedings of ACM SIGGRAPH/
Eurographics Workshop on Graphics Hardware, pages 89–95, 1997.

[PARV05] Kari Pulli, Tomi Aarnio, Kimmo Roimela, and Jani Vaarala. Designing
graphics programming interfaces for mobile devices. IEEE Computer
Graphics and Applications, 25(8), 2005.

[PD84] Thomas Porter and Tom Duff. Compositing digital images. In Computer
Graphics (SIGGRAPH ’84 Proceedings), Computer Graphics Proceedings,
Annual Conference Series, pages 253–259. ACM, ACM Press/ACM
SIGGRAPH, 1984.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311–317, 1975.

[PMTH01] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A real-time procedural shading system for programmable
graphics hardware. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 159–170.
ACM Press, 2001.

[POAU00] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive
multi-pass programmable shading. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques (SIGGRAPH),
pages 425–432. ACM Press/Addison-Wesley Publishing Co., 2000.

[Por05a] Chris Porthouse. Jazelle DBX white paper. ARM Limited, 2005. http:
//www.arm.com/pdfs/JazelleWhitePaper.pdf.

[Por05b] Chris Porthouse. Jazelle RCT white paper. ARM Limited, 2005. http:
//www.arm.com/pdfs/JazelleRCTWhitePaper_final1.0_.pdf.

[PT96] Les A. Piegl and Wayne Tiller. The NURBS Book. Springer, 1996.

[RH94] John Rohlf and James Helman. Iris performer: a high performance
multiprocessing toolkit for real-time 3d graphics. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pages
381–394. ACM Press, 1994.

[Ros04] Randi Rost. OpenGL Shading Language. Addison Wesley, 2004.

[S03] S. Sandeep. Gcc-inline-assembly-howto. http://www.ibiblio.org/
gferg/ldp/GCC-Inline-Assembly-HOWTO.html, 2003.

[SAM05] Jacob Ström and Tomas Akenine-Möller. ipackman: high-quality, low-
complexity texture compression for mobile phones. In HWWS ’05:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 63–70. ACM Press, 2005.

BIBLIOGRAPHY 423

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings
of the 12th annual conference on Computer graphics and interactive
techniques (SIGGRAPH), pages 245–254. ACM Press, 1985.

[Sho87] Ken Shoemake. Quaternion calculus and fast animation. In SIGGRAPH
Course Notes, pages 101–121, 1987.

[SKv+92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul
Haeberli. Fast shadows and lighting effects using texture mapping. In
Proceedings of the 19th annual conference on Computer graphics and
interactive techniques, pages 249–252. ACM Press, 1992.

[Smi95] Alvy Ray Smith. A pixel is not a little square, a pixel is not a little square,
a pixel is not a little square! (and a voxel is not a little cube). Technical
Report Technical Memo 6, Microsoft Research, 1995.

[Str03] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press,
third edition, 2003.

[SWN05] Dave Shreiner, Mason Woo, and Jackie Neider. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 2 (5th Edition).
Addison-Wesley, 2005.

[Wil83] Lance Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph.,
17(3):1–11, 1983.

[WW92] Alan Watt and Mark Watt. Advanced animation and rendering techniques.
ACM Press/Addison-Wesley Publishing Co., 1992.

[ZSD+00] Denis Zorin, Peter Schröder, Tony DeRose, Leif Kobbelt, Adi Levin, and
Wim Sweldens. Subdivision for modeling and animation. SIGGRAPH
2000 Course Notes, ACM SIGGRAPH, http://mrl.nyu.edu/
publications/subdiv-course2000/, 2000.

This page intentionally left blank

Index

2D/3D synchronization points,
291–292

2D primitives, 343–348
2D rendering, mixing, 257–258
2D vector graphics, 21–23

interfaces, 23
requirements, 22
scalable, 21–22

3DMark Mobile 06, 16
3D objects, 118
3D user interfaces, 15, 16
accessibility shading, 86

A
accessors, 281
active mode, optimizing, 261–262
addChild, 351
ADD function, 80
addLight, 295, 340
addTransform, 384, 385
affine transformations, 35–42

hierarchical modeling
example, 39–42

illustrated, 36
rigid, 38
rotation, 36–38
scaling, 38
shearing, 38
translation, 36
types, 35–38
See also transformation(s)

aggressive culling, 150
ahead-of-time (AOT) approach,

405, 409
aliasing

approximating area light sources, 92
temporal, 92

align, 356–358, 378
See also antialiasing

alpha channel, 62
alpha factor, 349
alpha test, 93, 214–215

defined, 214
example, 214–215
M3G, 333
uses, 214
See also fragments

ambient occlusion, 86
ambient reflectance, 65–66
AND operation, 100
animate, 105, 113–115, 275–277, 279,

281, 306, 370, 374, 377–378, 389
animation

advanced, 378–389
blending, 385–387
deforming meshes, 113–116
dynamic, 388–389
execution, 377–378
keyframe, 105–112, 367–372
M3G, 367–389
OpenGL ES, 105–116
phase, 386
targets, 372–374

AnimationController class, 276,
374–377

active interval, 376–377
defined, 375
weight, 376

AnimationTrack class, 276, 372–374
with multiple objects, 374
object creation, 372

anisotropic filtering, 78
annotations, 309–310
ANTIALIAS hint, 292
antialiasing, 90–92, 211–213

approaches, 213
defined, 90
edge, 91, 211–212

feathered RGBA texture maps, 213
full-scene (FSAA), 91, 292
multisampling, 212–213
optimal, 90

Appearance class, 326
layer index mechanism, 352
rendering layer, 326

application code, as performance
bottleneck, 140

application programming interfaces
(APIs), 2

high-level, 19–20, 117
low-level, 19
See also M3G; OpenGL ES

ARM RVCT compiler, 404
artifacts, clipping, 72–73
assembly language fixed-point

methods, 400–404
axes, 27
axis-aligned bounding box

(AABB), 131

B
back-face culling, 71, 195–196

conceptual performance, 196
defined, 195
See also culling

Background class, 293, 343–345
background images

M3G support, 61
position, 344
scrolling, 344–345
size, 344, 345

banding, 99, 219–220
basis matrix, 111
benchmark programs, 137
Bézier patches, 59
bias matrix, 85

425

426 INDEX

bidirectional reflectance distribution
function (BRDF), 65

bilinear interpolation, 77
billboards, 357, 358

defined, 357
tree variants, 359

bindTarget, 277, 290–294, 296, 326
bitplanes, 92
BLEND function, 80
blending

alpha interpretations, 96
animation, 385–387
animation phase and, 386
defined, 95
depth writes and, 336
equations, 96–97
factors, 96–97
fragment color and, 218
M3G, 334–335
with multisampling, 212–213
OpenGL, 95–99
turning on/off, 219

block floating point, 397
bottlenecks. See performance

bottlenecks
bounding volumes

hierarchy (BVH), 122 , 130
types of, 131

buffer objects, 147
bytecode instruction set, 408
bytecode optimization, 409–410

C
callbacks, M3G and, 280
Camera class, 337–339

defined, 337
projection, 337–338

camera coordinates. See eye coordinate
system

cameras
as conceptual eye, 339
creating, 337
picking through, 362–363
projection, 337–338
setup, 129–130
switching between, 356
target, 359–360
transformations, 338–339

cap parameter, 179
Catmull-Rom splines, 109, 111

C fixed-point methods, 395–400
addition, 395
basic operations, 395–397
multiplications, 396, 400–401
overflows, 396, 397
shared exponents, 397–399
trigonometric operations, 399–400
See also fixed-point mathematics

checklists, 142–145
performance, 144
portability, 145
power usage, 144
quality, 143, 144

circular buffers, 388
clamp-to-edge, 76
classes

AnimationController, 276, 374–377
AnimationTrack, 276, 372–374
Appearance, 326
Background, 293, 343–345
Camera, 337–339
CompositingMode, 333–337
Graphics3D, 272, 290–297
Image2D, 297–300
IndexBuffer, 323–324
KeyframeSequence, 276, 318,

367–372
Light, 339–343
Loader, 272, 311–313
Material, 328
Mesh, 351–354
MorphingMesh, 353, 379–380
Node, 349–350, 365–366
Object3D, 272, 306–310
PolygonMode, 327
RayIntersection, 272, 362–364
SkinnedMesh, 353, 368, 384–385
Sprite3D, 346–348
Texture2D, 329–332
Transform, 272, 283, 300–302
Transformable, 303–306
TriangleStripArray, 323
VertexArray, 318, 319–320
VertexBuffer, 320–323

class hierarchy, 125–128, 273
clipping, 46

to arbitrary plane, 73
artifacts caused by, 72–73
guard band, 73
planes, 73
point, 175–176

rectangles, 293
to view frustum, 72

COLLADA, 24, 157
color(s), 61 –63

channels, 62
defined, 61
destination, 95
fog, 210
handling, 190
material tracking, 152
primary, 62
source, 95
specifying, 189–190

color buffers
applying fragments to, 218–221
clearing, 343
reading back, 224–225

command stream, flushing, 225
Common (CM) profile, 161
Common Lite (CL) profile, 161
CompositingMode class, 333–337

blending, 334–335
defined, 333
fragment tests, 333–334
settings, 337

compound transformations, 33–34
compressed texture formats, 200–202
Connected Limited Device

Configuration (CLDC), 272
contexts, 252–253

binding commands, 257
bound, 244
defined, 243, 252

coordinates
homogeneous, 31, 49
object, 119
texture, 75–76

coordinate systems, 27–31
axes, 27
defined, 27
definition, 29
eye, 42–44
homogeneous coordinates, 31
normalized device (NDC), 51
orthonormal, 27
pixel, 52
points, 29
right-handed, 27, 28
three-dimensional, 27
transformations, 28

INDEX 427

vector products, 29–30
vectors, 29

copy
deep, 308
from frame buffers, 199–200
shallow, 308

core extensions, 165
cos, 399
cross product, 30
culling, 150–151

aggressive, 150
back-face, 71, 195–196
conservative strategies, 150
detail, 150
distance-based, 150–151
frustum, 150
occlusion, 150
view-frustum, 71–73

curve interpolation, 109

D
DCC tools, 123
DECAL function, 80
deep copy, 308
deformable meshes, 378–385
deforming meshes, 113–116

morphing, 113–114
skinning, 114–116
See also animation; meshes

delta encoding, 318
depth buffer, 45–47

clearing, 343
defined, 45
disabling, 292–293
resolution, 47
size, 45
writes, 334

depth offset, 94–95
depth ordering, 149
depth range, 52, 294
depth test, 94, 217–218

defined, 217
M3G, 334
polygon offsets and, 218
See also fragments

detail culling, 150
diffuse reflectance, 66–67

defined, 66
geometry, 66

digital content creation (DCC)
tools, 24

directional lights, 69
discontinuities, 387–388

creating, 387–388
uses, 387

display lists, 128, 177
display technology, 5–6
distance-based culling, 150–151
DITHER hint, 292
dithering, 99–100, 219–220

approaches, 99–100
banding and, 99, 219–220
defined, 219

DoCoMo Java (DoJa), 21
documentation, OpenGL ES, 160
Document Object Model (DOM), 22
DOM API, 22
dot product, 29, 30

definition, 29
in matrix multiplication, 33

double buffering, 101
downscaling, 134
dynamic animation, 388–389
dynamic lighting, 152

E
ease-in/ease-out, 108
edge antialiasing, 91, 211–212

problems with, 211
triangle rasterization rules

and, 211–212
See also antialiasing

EGL, 18, 166, 241–288
API overview, 242–244
buffer configuration, 243
buffer swaps, 256
configuration, 244–248
configuration selection

example, 264–266
contexts, 243, 252–253
error codes, 244
extensions, 253–254
high-performance code,

writing, 255–257
initialization, 243
as optional API, 242
parameter types, 241
power usage optimization, 259–264
rendering into textures, 254–255

surfaces, 248–252
version number, 243

EGLConfig
attributes, 245
defined, 244
matching criteria, 247
sorting rules/priorities, 248

EGL functions
eglBindTexImage, 255
eglChooseConfig, 243, 265
eglCopyBuffers, 249, 255, 256
eglCreateWindowSurface, 249–250, 252
eglDestroyContext, 253
eglGetConfigs, 243
eglGetCurrentContext, 253
eglGetCurrentDisplay, 253
eglGetCurrentSurface, 251
eglGetError, 243
eglMakeCurrent, 253
eglQueryContext, 253
eglQueryString, 254
eglReleaseTexImage, 255
eglSurfaceAttrib, 251
eglSwapBuffers, 249, 251, 252
eglTerminate, 262

emission, 68
enumerations (M3G), 284
environment mapping, 86–88

defined, 86
light diffusion, 87
parabolic, 86
spherical, 86, 87

error codes, 169
error handling

M3G, 284
OpenGL ES, 168–170

Euler angles, 36–37
exceptions (M3G), 285
explicit indexing, 59
exponential (EXP) fog, 89
exponential function, 89
exponents

array, 235
shared, 397–399

extensibility
mobile devices, 125
scene graph, 125

extensions, 165–166, 234–240
core, 165
draw texture, 238

428 INDEX

extensions (Continued)
EGL, 253–254
list, 234, 254
matrix palette, 235–238
multi-vendor, 166
OpenGL ES, 165–166, 234–240
optional, 165–166
pack, 166
querying, 234
query matrix, 234–235
using, 238–240
vendor-specific, 166

eye coordinate system, 42–44
defined, 42
definition illustration, 43
viewing frustum, 45
See also coordinate systems

F
feature phones, 4
files

external reference section, 315, 317
format, 313–318
header section, 316–317
identifier, 314
M3G, sections, 314
scene sections, 315–316, 317
special compression formats, 318
structure, 314–316

first-in-first-out (FIFO) buffers,
101, 102

fixed-point mathematics, 393–405
assembly language, 400–404
C language, 395–400
Java, 405

flat shading, 193
defined, 64
using, 193
See also shading

floating point
conversion, 398
values, 162
vectorized, 398

fog, 88–90, 210–211
color, 210
defined, 88
EXP2, 89
EXP, 89
functions, 89
generation, 210
M3G, 332–333

OpenGL support, 88
performance, 90

fragments, 74
alpha test, 93, 333
applying to color buffer, 218–221
depth test, 94, 334
pipeline, 163–164
scissor test, 92–93
stencil test, 93–94
tests, 92–95, 333–334

Frame Buffer Objects (FBOs), 129
frame buffers

channels, masking, 220–221
clearing, 223–224, 343
copying from, 199–200
operations, 164, 223–225

frame life cycle, 100–103
frustum culling, 150
full-scene antialiasing (FSAA), 91 , 292

G
garbage collector (GC), 410 –411

defined, 410
overhead, 411
performance, 411

gDEBugger ES, 141–142
geometric primitives, 57–60

OpenGL ES, 58
types, 57
See also primitives

getters
defined, 281
getCompositeTransform, 304
getOrientation, 304
getParent, 351
getProperties, 296
getReferences, 306–307
getScale, 304
getTransform, 304
getTranslation, 304
getUniqueObjects, 307
getVertexBuffer, 282
M3G 1.1, 287–288
static, 281
values returned by, 282

gimbal lock, 37
GLBenchmark benchmarking suite, 15
GLfloat type, 162
GL functions, 167, 168

glActiveTexture, 186, 207

glAlphaFunc, 214
glBegin, 177
glBindBuffer, 181–183
glBindTexture, 196–197, 202,

206–207
glBlendFunc, 219
glBufferData, 181–182
glBufferSubData, 181–182
glClear, 223
glClearColor, 224
glClearDepth, 224
glClearStencil, 224
glClientActiveTexture, 207
glClipPlane, 189
glColor, 189
glColorMask, 220
glColorPointer, 189
glCompressedTexImage2D, 200
glCompressedTexSubImage2D, 201
glCopyTexImage2D, 199
glCopyTexSubImage2D, 200
glCullFace, 195–196
glDeleteBuffers, 181
glDeleteTextures, 197
glDepthFunc, 218
glDepthMask, 221
glDepthRange, 288
glDisable, 168, 170, 193–195, 197,

207, 211, 213, 215–220
glDisableClientState, 168, 179
glDrawArrays, 179–180
glDrawElements, 182
glEnable, 190, 209
glEnableClientState, 168, 171, 179,

237
glFinish, 225
glFlush, 225
glFog, 210
glFrontFace, 192, 196
glFrustum, 185
glGenBuffers, 181–182
glGenTextures, 196–197, 202, 206
glGetBoolean, 227–228
glGetBufferParameter, 231
glGetClipPlane, 231
glGetError, 168–169
glGetFixed, 227
glGetFloat, 227–228, 239
glGetInteger, 206
glGetLight, 231
glGetMaterial, 231

INDEX 429

glGetPointer, 168, 231, 237
glGetProcAddress, 234
glGetString, 234
glGetTexEnv, 232
glGetTexParameter, 232
glHint, 206, 209–210, 233
glIsBuffer, 232
glIsEnabled, 168, 232, 237
glIsTexture, 233
glLight, 191
glLightModel, 192
glLineWidth, 176
glLoadIdentify, 184
glLoadMatrix, 184
glLogicOp, 220
glMaterial, 189, 190
glMatrixMode, 171, 183–188, 193,

207, 236
glMultMatrix, 184
glMultiTexCoord4, 179
glNormal, 3, 179
glNormalPointer, 177–178, 194
glOrtho, 185
glPixelStore, 199, 225
glPointParameter, 175
glPointSize, 174–175
glPolygonOffset, 218
glPopMatrix, 188
glPushMatrix, 288
glRead, 224
glReadPixels, 249, 250, 255, 256
glRotate, 184
glSampleCoverage, 213
glScale, 184
glScissor, 214
glShadeModel, 170, 193
glStencilFunc, 215
glStencilMask, 220
glStencilOp, 216
glTexCoordPointer, 207
glTexEnv, 205
glTexImage2D, 197
glTexParameter, 203–205
glTexSubImage2D, 198
glTranslate, 184
glVertexPointer, 171, 177–178, 180,

183, 187–188, 194
glViewport, 188

global ambient light, 68
global lighting model, 64
GLSL ES, 18

GLU, 166
GLUT, 166
Gouraud shading, 64, 193
Graphics3D class, 272, 290–297

defined, 290
instance, 290
rendering, 294–296
render targets, 290–293
static properties, 296–297
viewport, 293–294

graphics
handheld devices, 3–11
system, 101–102

Graphics Device Interface (GDI), 101
graphics hardware, 8–9

design constraints, 9
performance per milliwatt, 9
power efficiency, 8

group nodes, 127
groups, 350–351

disabling rendering, 350–351
hidden, 365
parent, 351
use cases, 351

guard band clipping, 73

H
hierarchical modeling, 39–42
high dynamic range (HDR), 62
high-level APIs, 19–20
homogeneous coordinates, 31

normalized, 31
usefulness, 49

I
identity matrix, 33
idle mode, optimizing, 262
Image2D class, 297–300

constructors, 297–299
defined, 297
formats/capabilities, 300
memory use, 298
mutable, 299
updating, 300

image arrays, 298
images

paletted, 298
size parameters, 297
texture, 329

implicit indexing, 59

IndexBuffer class, 283, 323–324
recycling, 324
triangle strips, 323, 324

index buffers, 324
intermediate mode, 275

clearing screen, 343
defined, 294

interpolation, 105, 106–111
bilinear, 77
curve, 109
gradients, 82–83
keyframe sequence, 106
linear, 78–79, 108, 112
perspective-correct, 83
piecewise manner, 106
rotation, 285–286
screen linear, 82–83
spline, 387
step, 107

J
Java, 11

bytecode optimization, 409–410
fixed-point methods, 405
garbage collection, 410–411
memory accesses, 411–412
method calls, 413
overhead, 19
performance tuning, 407–413
type-checking, 412

javac, 410
Java Community Process (JCP), 13
Java Micro Edition (Java ME), 11 , 269

code writing, 407
performance problems, 407

Java Virtual Machine (VM), 272 , 408
Jazelle RCT (Runtime Compilation

Target), 409
JBenchmark benchmarking suite,

20, 409
JPEG images, 286
JSR 226, 23
JSR 239, 21
JSR 287, 23
just-in-time (JIT) compilers, 405, 408

K
keyframe animation, 105–112

benefit, 106
interpolation, 105, 106–111

430 INDEX

keyframe animation (Continued)
M3G, 275–276, 367–372
OpenGL ES, 105–112
quaternions, 111–112

keyframes
curve interpolation, 109
dimensionality, 368
duration, 370–371
interpolating between, 370
linear interpolation, 108
looping, 370–371
M3G interpolation types, 369
setting up, 369–370
spline, 388
step interpolation, 107
tangents, 110
valid range, 371–372

KeyframeSequence class, 99, 276, 318,
367–372

default value, 370
defined, 368
looping, 371
minimum keyframe allocation, 389
with multiple AnimationTrack

objects, 374
object as circular buffer, 388
valid range, 371–372

keyframe sequences, 367–373
splitting into, 387
synchronization, 386

Khronos Group, 13, 22, 24, 157–158
Kochanek-Bartels splines, 111

L
layers

index, 360, 361
rendering, 132, 360–361

lerping, 108
level-of-detail rendering, 151
libraries, naming scheme, 170
light(s), 68 –70, 190–192

attenuation, 69–70
defined, 61
directional, 69
global ambient, 68
managing, 340–341
OpenGL, 62
point, 68
properties, 190
setup, 129–130

sources, 68
sources, types of, 341–343
sources illustration, 69
spot, 69
spot cutoff angle, 192
stored values, 62
targeting, 359–360

Light class, 339–343
defined, 340
light management, 340–341
light source types, 341–343

lighting, 61–70
complexity, 341
dynamic, 152
example, 193–194
full equation, 70
global model, 64
local model, 64–65
OpenGL ES, 163
pipeline (M3G), 274
pipeline (OpenGL ES), 151
precomputed illumination, 151–152
projective, 85–86
static, 151
texture-based, 83–88
two-sided, 192

light mapping, 85
light map textures, 331
linear algebra, 27–53

affine transformations, 35–42
coordinate systems, 27–31
eye coordinate system, 42–44
matrices, 31–35
projections, 44–51

linear fog, 88
linear interpolation, 78–79

screen, 82–83
spherical (slerp), 112

lines
defining, 176
OpenGL, 57
width, 57, 176

Loader class, 272, 311–313
example, 312–313
methods, 311–312
output, 312

local lighting model, 64–65
logical buffers, 92
logical operations, 100
logic ops, 220
low-level rendering, 55–103

M
M3G 1.1, 285–288

3D rendering, 285
animatable properties, 373
getters, 287–288
OVERWRITE hint, 285
PNG/JPEG loading, 286
rotation interpolation, 285–286

M3G, 2, 5
accessors, 281
animation, 20, 367–389
arithmetic, 280–281
background images, 343–345
background image support, 61
birth of, 13
blending, 334–335
callbacks and, 280
classes, 281
class hierarchy, 126, 273
concepts, 289–318
content production pipeline, 123
conventions, 277–285
defined, 19
design principles, 277–285
device support, 14
enumerations, 284
error handling, 284–285
exceptions, 285
features and structure, 272–276
file format, 313–318
fog, 332–333
fragment tests, 333–334
getters/setters, 281–282
“Hello, World” example, 276–277
high abstraction level, 278–279
immediate mode, 279
Java game use, 19
JBenchmark benchmarking suite, 20
keyframe animation, 275–276
method consistency, 281–282
methods, 280
modelview transformation, 339
morphing, 20, 379
nodes, 19
numeric values, 283–284
overview, 270–277
parameter passing, 282–283
programmable shaders, 20
scene graph rendering, 129
scene graphs, 349–366
skinning support, 20

INDEX 431

sprites, 346–348
sprite support, 61
standardization group, 278
triangle meshes, 118–120
visibility hierarchy, 122

magnification, 77
mantissa array, 235
masking, 100

frame buffer channels, 220–221
per-fragment operation, 100

Material class, 328
materials

components, 189
handling, 190
specifying, 189–190

matrices, 31–35
basis, 111
bias, 85
creating, 301
identity, 33
inverse, 33
modelview, 183
multiplication, 33
operations, 301
products, 32–33
projection, 183, 295
rotation, 36–38
scaling, 38
shearing, 38
texture, 183
transformation, 33–34

matrix palette, 165, 235–238
matrix stacks, 188
memory accesses, 411–412

minimizing, 412
type-checking, 411–412

memory bandwidth bottleneck, 139
Mesh class, 351–354

data instancing, 353–354
defined, 351
duplication, 353
subclasses, 353

meshes
animating, 353
building, 319–326
deformable, 113–116, 378–385
dynamic deformation, 116
lighting parameters, 328
multi-pass, 361–362
skinned, 130

submeshes, 352
triangle, 118–120

metadata, 309
methods

calls, 413
consistency, 281–282
fully synchronous, 280
Loader class, 311–312
Transformable class, 303–304
Transform class, 302

midlets
defined, 270
event-driven framework, 270

minification, 77, 203
mipmaps, 78, 254

automatic generation, 203
filtering modes, 204–205
levels, 203, 204
specification, 203–204

mobile 3D graphics, 1
mobile devices

basic, 4
categories, 4–5
digital cameras, 5
display resolutions, 2
display technology, 5–6
extensibility, 17
feature, 4
graphics, 3–11
graphics hardware, 8–9
hardware-friendly features, 17
low complexity, 17
minimal fragmentation, 17
orthogonal feature set, 17
performance, 15
processing power, 6–7
productivity, 17
rich feature set, 17
small applications, 17
smart, 4, 7

mobile graphics standards, 12–24
2D vector graphics, 21–23
COLLADA, 24
de facto, 13
design principles, 14–18
DoCoMo Java (DoJa), 21
OpenGL for Java (JSR 239), 21
planning, 14
See also M3G; OpenGL ES

Mobile Information Device Profile
(MIDP), 270 , 271

mobile Java, 270–272, 278
desktop Java versus, 272
midlets, 270
overhead, 19
software stack, 270

Mobile Media API (JSR 135), 271
model data, 146–148

triangle, 148
vertex, 147–148

modelview
matrix, 183
transformation, 339

MODULATE function, 80
Moore’s law, 1–2
morphing, 20, 113–114

for complex deformations, 114
drawbacks, 114
illustrated, 113
M3G, 379
morph targets, 113, 381
skinning combined with, 385

MorphingMesh class, 353, 379–380
defined, 378
object creation, 379

motion blur, 92
multi-pass meshes, 361–362
multi-pass rendering, 99–100

defined, 98
example, 98
multi-texturing and, 98

multiply-and-accumulate (MAC)
operations, 398

multisampling, 91, 212–213
advantage, 212
blending with, 212–213
defined, 212

multi-texturing, 80–82, 152,
206–207

default, 80
multi-pass versus, 322
units, 81

multi-vendor extensions, 166

N
NaNs (Not-a-Numbers), 397
node alignment, 356–360

for both axes, 357
defined, 356
examples, 358–359
setting up, 357–358

432 INDEX

Node class, 349–350
defined, 349
objects, 349–350
scope mask, 365–366

nodes, 19
Camera, 128
class hierarchy, 126
Group, 350–351, 365
group, types, 127
Light, 128
reversing, 355
SkinnedMesh, 130
transformations, 354–355

nonuniform rational b-splines
(NURBS), 59 –60

normalized device coordinates
(NDC), 51 , 293

normal vectors, 34–35, 63–64
for mesh vertices, 64
transforming, 185–186
See also vectors

numeric values (M3G), 283–284

O
Object3D class, 272, 306–310

animating, 306
annotations, 308–310
cloning, 306–308
defined, 306
duplicate method, 308
iterating, 306–308
tags, 308–310

objects
3D, 118
buffer, 147
composite, 352
coordinates, 119
finding by ID, 308–309
hierarchies, 148–149
internal structure, 148
non-scene graph, 282
potentially visible, finding, 130–131
references, 316
retained-mode, 272
root, 312
scene graph, 272
texture, 196–197
transforming, 354–360

occlusion culling, 150
OES draw texture extension, 238

OES matrix palette
extension, 235–238

OES query matrix extension, 234–235
opacity, 96
OpenGL, 157

extensibility, 165
OpenGL ES versus, 159

OpenGL ES 1.0, 161–164
fixed-point values, 162
floating-point values, 162
fragment pipeline, 163–164
frame buffer operations, 164
lighting, 163
primitives, 163
texturing, 163
transformation, 163
vertex data, 162

OpenGL ES 1.1, 164–170
auto-mipmap generation, 210
draw texture, 165
dynamic state queries, 165
matrix palette, 165
point sprites, 165
texturing enhancements, 165
user clip planes, 165
vertex buffer objects, 164

OpenGL ES, 2, 5
2D rendering and, 257–258
alpha channel, 62
antialiasing, 211–213
API overview, 161–170
application profiling, 141
bindings, 18
birth of, 13
buffer objects, 147
call logs, 141
color material tracking, 152
conventions, 167–170
defined, 18
design principles, 158–159
documentation, 160
EGL, 18
error handling, 168–169
evolution, 18
example, 170–171
extension mechanism, 165–166,

234–240
extension pack, 166
fog, 88, 210–211
gDEBugger ES, 141–142

GLBenchmark benchmarking
suite, 15

GLSL ES, 18
hardware, 14
implementations, 160–161
Khronos Group and, 157–158
libraries, 161
light representation, 62
matrix palette extension, 115
OpenGL versus, 159
packaging, 169–170
pipeline illustration, 56
pixels tests, 213–218
prefixes/suffixes, 167–168
primitives, 58
profiles, 161
reflectance model, 61
reflection models, 65
resources, 159–161
shading support, 193
software-based, 11
state machine model, 168
support, 158
technical support, 160
texture mapping, 196–210
uses, 14
utility APIs, 166–167
versions, 161
working group, 158

OpenGL SC, 18
OpenKODE, 10, 157
open native platform, 10
OpenVG, 22, 23, 157
operand stack, 408
operating systems, 9–11

Java, 11
native applications, 10–11
open development

environments, 9–10
optional extensions, 165–166
oriented bounding box (OBB), 131
OR operation, 100
overflow, 396, 397
OVERWRITE hint, 285, 292

P
packaging, 169–170
packed image formats, 298
painter’s algorithm, 94
palette array, 298

INDEX 433

parabolic mapping, 86
parallel projection, 50–51
parameter passing, 282–283
parametric cubic curves, 109
pbuffer surfaces

bitmaps and, 258
defined, 248–250
performance penalty, 256
rendering into textures, 254–255
uses, 250
See also surfaces

performance
benchmark programs, 137
characteristics, 133
checklists, 142–145
optimization, 137–145, 364–366
problems, 137
scope masks and, 365–366
visibility optimization, 365

performance bottlenecks
application code, 140
determining, 138
in fill rate limited rendering, 138
in geometry limited rendering, 139
memory bandwidth, 139
pixel pipeline, 137–139
submission, 140
vertex pipeline, 139–140

per-fragment operations, 92–100
blending, 95–99
dithering, 99–100
fragment tests, 92–95
logical, 100
masking, 100

perspective-correct interpolation, 83
perspective foreshortening effect, 44
perspective projection, 44

parallel projection versus, 50
view frustum, 47–50

Phong shading, 64
picking, 362–364

with explicit ray, 363
hierarchical control, 363
through camera, 362–363
traversal, 363–364
use methods, 362

pivot transformations, 305–306
pivot translation, 305
pixel coordinate system, 52
pixel pipeline, 137–139
pixel tests, 213–218

alpha, 214–215
depth, 217–218
scissor, 214
stencil, 215–217

pixmap surfaces
defined, 249
uses, 258
See also surfaces

PNG files, 286, 312
point attenuation

components, 175
size, 174

pointer parameter, 177
point lights, 68, 69
points, 29, 174

homogeneous, 31
OpenGL, 57
size, 57, 174

point sampling, 78
point size arrays, 174
point sprites, 165, 174

enabling, 175
texturing, 209

PolygonMode class, 327
polygon offsets, 218
polygons, 57, 58, 176
portability check list, 145
portal rendering, 150
Potentially Visible Sets (PVSs), 150
power usage

check list, 144
management implementations,

259–261
measuring, 262–264
optimization, 259–264
optimizing active mode, 261–262
optimizing idle mode, 262

prefixes, 167–168
primitives

2D, 343–348
assembly, 73
batched, 59
drawing, 173–183
geometric, 57–60
OpenGL ES, 163
raster, 60–61
rendering, 57–61
smooth, 60
types, 174–176

processing power, 6–7
processors

application, 7
baseband, 6

products
dot, 29, 30
matrix, 32–33
scalar, 29, 30
vector, 29–30

profiles
Common, 161
Common Lite (CL), 161
defined, 161
Safety-Critical (SC), 161

projection matrix, 183, 295
projections, 44–51

camera, 337–338
center of, 44
near/far planes, 45–47
parallel, 50–51
perspective, 44

projective lighting, 85–86
projectors, 44

Q
quads (quadrilaterals), 57, 58
qualcomm BREW platform, 5
quality check list, 144
quaternions, 111–112

defined, 111
slerp, 112
splines (squad), 112

R
rasterization, 73–92

antialiasing, 90–92
fog, 88–90
interpolation gradients, 82–83
texture-based lighting, 83–88
texture mapping, 74–82

Rasteroid package, 160
raster primitives, 60–61

advantages, 60
defined, 60
OpenGL support, 60
texture mapping, 60

RayIntersection class, 272, 362–364
member functions, 364
object, 362, 363

rectangles, clipping, 293
reflectance

ambient, 65–66

434 INDEX

reflectance (Continued)
diffuse, 66–67
specular, 67–68

reflection models, 64–65
ambient reflectance, 65–66
diffuse reflectance, 66–67
specular reflectance, 67–68

registers, 408
rendering

asynchronous multibuffered, 103
into textures, 254–255
layers, 132, 360–361
level-of-detail, 151
low-level, 55–103
multi-pass, 98–99
order, 149
portal, 150
primitives, 57–61
retained mode, 128–132
sprite, 347–348
state, 130, 132
synchronized, 102–103
transparent objects, 97–98

render methods, 296
render targets, 290–293

antialiasing, 292
binding, 291
disabling depth buffer, 292–293
dithering, 292
minimizing number of, 291
synchronizing 2D and 3D, 291–292

REPLACE function, 80
retained-mode objects, 272
retained mode rendering, 128–132

camera/light setup, 129–130
defined, 128, 294
display lists, 128
state, resolving, 130

RGBA format, 80
root objects, 312
rotation interpolation, 285–286
rotations, 36–38

defined, 36
illustrated, 36
Transformable, 304–305

S
Safety-Critical (SC) profile, 161
scalability, 134–136

background elements, 136

detail objects, 136
special effects, 135–136
texture mapping, 134

Scalable Vector Graphics (SVG), 22
scalar product, 29, 30
scale orientation, 305
scaling

downscaling, 134
matrix, 38
uniform, 38

scene graph objects, 272
scene graphs (M3G), 349 –366

basics, 349–351
groups, 350–351
layering, 360–361
Mesh objects, 351–354
multi-pass effects, 361–362
Node objects, 349–350
object transformation, 354–360
performance optimization, 364–366
picking, 362–364
World, 351

scene graphs (OpenGL ES), 120 –128
application area, 120–121
class hierarchy, 125–128
content creation, 123–125
defined, 120
example, 275
extensibility, 125
nodes, 273
Performer by SGI, 128
spatial data structure, 121–123

scene management, 117–132
scissor test, 92–93, 214
scope masks, 365–366

defined, 365
example, 366

screen linear interpolation, 82–83
scrolling backgrounds, 344–345
separate specular pass, 335–337
sequence time, 375
setters

setActiveCamera, 356
setAlignment, 358, 359
setAlphaThreshold, 348
setAppearance, 352
setAttenuation, 341
setBlending, 334
setColor, 320, 328, 333, 341, 343
setCrop, 344, 347
setCulling, 327

setDefaultColor, 322
setDepth, 343
setDepthRange, 294
setDuration, 370
setGeneric, 338
setImage, 344
setImageMode, 344
setIntensity, 341
setKeyframe, 369
setLight, 341
setLinear, 333
setMode, 332
setNormals, 320
setParallel, 337
setPerspective, 338
setPickingEnable, 363
setPositions, 320, 321
setScope, 365
setSpeed, 376
setTexCoords, 320, 322
setTranslation, 306
setTwoSidedLightingEnable, 327
setValidRange, 369
setWeight, 376
setWinding, 327

shading
accessibility, 86
flat, 64, 193
Gouraud, 64, 193
model, changing, 193
OpenGL ES support, 193
Phong, 64

shallow copy, 308
shared exponents, 397–399
shearing, 38
shininess power, 68
sin, 399–400
single buffering, 101
skinned characters, 381–385

attaching skin, 383–385
build example, 381–383
combining morphing/skinning, 385
connecting bones, 383–384
illustrated, 382

SkinnedMesh class, 353
construction, 384
nodes, 384
object, 368

skinning, 20, 114–116
animation from, 115–116
as de facto standard, 114

INDEX 435

defined, 114
hardware-accelerated, 115
with matrix palette extension,

235–238
morphing combined with, 385
skeleton hierarchy, 114

smart phones, 4, 7
special effects, scalability, 135–136
specular reflectance, 67–68

defined, 67
geometry, 67

spherical environment mapping, 86, 87
spherical linear interpolation

(slerp), 112
spline interpolation, 387
spot lights, 69
Sprite3D class, 346–348

defined, 346
sprite image specification, 347
use cases, 346

sprites
Appearance attributes, 347
compositing, 347–348
creating, 346–347
functions, 346–347
M3G support, 61
rendering, 347–348

squad, 112
squared exponential (EXP2) fog, 89
state, 132

changes, optimizing, 146
changing, 145–146
querying, 145–146
resolving, 130
sorting, 132

state machine model, 168
static lighting, 151
static properties, 296–297
stencil buffers, 216
stencil test, 93–94, 215–217

defined, 215
enabling, 215
example, 216–217
See also fragments

stippling, 176
stride parameter, 177, 178
subdivision surfaces, 59
submeshes, 352

Appearance, changing, 352
number of, 352
vertices, sharing, 352

suffixes, 167–168
supersampling, 91
surfaces, 248–252

attributes, 251
binding commands, 257
defined, 248
double-buffered, 249
pbuffer, 248–249, 250
pixmap, 249, 258
window, 248

SVG Basic, 22
SVG Tiny, 22
synchronization

2D/3D points, 291–292
points, 102–103
sequence, 386–387

T
tags, 308–310
target cameras, 359–360
technical support, OpenGL ES, 160
temporal aliasing, 92
Texture2D class, 329–332
texture-based lighting, 83–88

ambient occlusion, 86
approaches, 84–85
environment mapping, 86–88
light mapping, 85
projective lighting, 85–86
See also lighting

texture combiners, 207–209
defined, 207
use example, 208

texture coordinates, 75–76
rotation, 188
transformation, 186–188
values less than zero, 76
wrapping modes, 76

texture data, specifying, 197–202
texture filtering, 76–78, 202–205

anisotropic, 78
bilinear, 78
as expensive operation, 204
illustrated, 77
mipmap modes, 204–205
mipmap specification, 203–204
modes, 203

texture images, 329–330
texture mapping, 60, 74, 74–82,

196–210

hardware implementation, 152
illustrated, 75
scalability, 134
software implementation, 152
texture coordinates, 75–76

texture matrix, 183
manipulation code example, 187
transformation, 186

texture objects, 196–197
texture names, 196
use pattern, 197

textures, 152–154
borders, 78–79
combiner functions, 80–81
combining, 153
compressed formats, 200–202
formats, 79–80, 198
functions, 79–80, 81, 205–206
image data, 153
light map, 331
OpenGL ES, 163
rendering into, 254–255
sampling, 330
storage, 152–154
wrap modes, 205

texture transformations, 332
texturing

point sprite, 209
units, 165, 207

Transformable class, 303–306
defined, 303
false entries, 317
methods, 303–304
pivot transformations, 305–306
rotations, 304–305

transformation(s)
affine, 35–42
around pivots, 39
camera, 338–339
compound, 33–34
hierarchies, 121, 149
modelview, 339
node, 354–355
normal vectors, 34–35, 185–186
object, 354–360
OpenGL ES, 163
pivot, 305–306
rigid, 38
rotation, 36–38
scaling, 38
shearing, 38

436 INDEX

transformation(s) (Continued)
texture, 332
texture coordinate, 186–188
texture matrix, 186
translation, 36
viewing, 355–356
viewport, 183, 188–189

transformation pipeline, 148–151
culling, 150–151
object hierarchies, 148–149
rendering order, 149

Transform class, 272, 283, 300–302
defined, 300
initializing, 300–301
matrix creation, 301
matrix multiplication functions, 301
matrix operations, 301
methods, 302
use cases, 302
vertices transformation, 302

translation, 36
transparent objects, 97–98
transpose operation, 31
triangle data, 148
triangle meshes, 118–120

appearance, 118
components, 118
defined, 118
object coordinates, 119
vertex arrays, 119

triangles, 57
definition methods, 176
fan, 176
index array, 148
mesh, 58
planar, 63
separate, 176
sorting, 148

TriangleStripArray class, 323
triangle strips, 176, 323, 324
trigonometric operations, 399–400
TRUE COLOR hint, 292
two-sided lighting, 192
type-checking, 412
type parameter, 177
typographic conventions, this book, 3

U
user clip planes, 165, 189

V
vectors

cross product, 30
dot product, 29, 30
normal, 34–35, 63–64
products, 29–30
scalar product, 29, 30
transforming, 34–35

vendor-specific extensions, 166
VertexArray class, 283, 318, 319–320

defined, 319–320
get method, 320

vertex arrays
binding VBOs to, 182
defined, 177
delta encoding, 318
packed data, 178
sizes, 178
stride and, 178
supported types, 321

VertexBuffer class, 282, 320–323
constructor, 320
setters, 320–321

vertex buffer objects (VBOs), 129 ,
164, 180–183

array indices in, 182–183
binding to vertex attribute array, 182
creation, 180–181
defined, 180
list, 181

vertex data, 147–148, 162
format, 178
specifying, 177–179

vertex ordering, 192
vertex pipeline, 139–140
vertex shaders, 116
vertex transformation

pipeline, 183–189
illustrated, 183
matrices, 183–185
matrix stacks, 188
texture coordinate

transformation, 186–188
transforming normals, 185–186
user clip planes, 189
viewport transformation, 188–189

vertices, 173
defined, 29
dynamically uploaded data, 116
positions, 322
submesh sharing, 352

transforming, 302

view frustum, 47–50

asymmetric, 48

clipping to, 72

culling, 71–73

defined, 45

eye coordinate system, 45

general, definition, 48

viewport, 293–294

depth range and, 294

maximum size, 294

transformation, 183, 293

Vincent, 160

virtual machines, 408–409

ahead-of-time (AOT) tactic, 409

approaches, 408

interpretation, 408

just-in-time (JIT) compilers, 408

visibility optimization, 364–365

visibility processing, 121, 122

W

water simulation, 116

window surfaces

as best performing, 256

in control, 257–258

defined, 248

See also surfaces

Wireless Messaging API (JSR 120), 271

word-aligned packing, 225

world time, 375, 376

X

XOR operation, 100

Z

Z axis, 357, 360

alignment, 357

negative, 359

positive, 359

z-buffer, 45

z-fighting, 47, 94

zTarget, 357

COLOR PLATE 1: (Figure 1.5) Uses of OpenGL ES in the Nokia N95 multimedia computer. On the left the
multimedia menu and the mapping application of Nokia N95; on the right, a mobile game. Images Copyright c©
2007 Nokia Corporation.

COLOR PLATE 2: (Figure 1.6) Screen shot from the GLBenchmark benchmarking suite for OpenGL ES.
Image copyright c© Kishonti Informatics LP.

COLOR PLATE 3: (Figure 1.7) More 3D user interface examples. Images copyright c© Acrodea.

COLOR PLATE 4: (Figure 1.8) 3D user interface examples. Images copyright c© TAT.

COLOR PLATE 5: (Figure 1.9) A VGA resolution screen shot from 3DMark Mobile 06,
and OpenGL ES benchmark program. Image copyright c© Futuremark.

COLOR PLATE 6: (Figure 1.10) Demonstrating some of the advanced shading capabilities
made possible by OpenGL ES 2.0. Images copyright c© AMD.

COLOR PLATE 7: (Figure 1.11) Java games using M3G. Images copyright c© Digital
Chocolate.

COLOR PLATE 8: (Figure 1.12) Screen shot from the Jbenchmark performance bench-
marking suite for M3G. Image copyright c© Kishonti Informatics LP.

COLOR PLATE 9: (Figure 3.2) Illustrating the various stages of shading discussed in Chapters 3 and 8–10.
Top row, left to right: wire frame model; filled model; diffuse lighting; diffuse and Phong specular lighting.
Bottom row: texturing added; texturing with a separate specular pass; bump mapping added; and rendered with
an intersecting translucent object to demonstrate Z-buffering and alpha blending.

10% 15% 34% 60%

128 3 128 64 3 64 32 3 32 16 3 16

1

COLOR PLATE 10: (Figure 3.14) Rendering a light bloom effect by blurring the highlights
and compositing on top of the normal scene. Images copyright c© AMD.

COLOR PLATE 11: (Figure 3.15) The effect of different texture functions. Top: incoming
fragment colors (left) and texture (right); transparency is indicated with the checkerboard
pattern behind the image. Bottom: resulting textures after each texture operation; left to right:
REPLACE, MODULATE, DECAL, BLEND, ADD. For the BLEND mode, the user-defined blending color
is pure yellow.

COLOR PLATE 12: (Figure 3.17) Several passes of a scene: bump mapping, projective
lighting (using the circular light map on left middle), adding environment map reflection to
the barrel (the cube map at left bottom), adding shadows, final image. Image copyright c©
AMD.

COLOR PLATE 13: (Figure 3.19) An environment cube map (right) and refraction map (center) used to render
a well. Image copyright c© AMD.

COLOR PLATE 14: (Figure 6.11) An example of automatically packing textures into a texture atlas (refer to
Section 6.7.1). Image courtesy of Bruno Levy.

COLOR PLATE 15: (Figure 8.3) Screen shot of the texture matrix manipulation example
code.

COLOR PLATE 16: (Figure 14.2) Demonstrating a separate specular pass with controllable
degree of glossiness. The per-pixel gloss factors can be stored in the alpha channel of the base
texture map. Image copyright c© AMD.

This page intentionally left blank

	cover
	Contents
	1. INTRODUCTION
	PART I. ANATOMY OF A GRAPHICS ENGINE
	2. LINEAR ALGEBRA FOR 3D GRAPHICS
	3. LOW-LEVEL RENDERING
	4. ANIMATION
	5. SCENE MANAGEMENT
	6. PERFORMANCE AND SCALABILITY
	PART II. OPENGL ES AND EGL
	7. INTRODUCING OPENGL ES
	8. OPENGL ES TRANSFORMATION AND LIGHTING
	9. OPENGL ES RASTERIZATION AND FRAGMENT PROCESSING
	10. MISCELLANEOUS OPENGL ES FEATURES
	11. EGL
	PART III. M3G
	12. INTRODUCINGM3G
	13. BASIC M3G CONCEPTS
	14. LOW-LEVEL MODELING IN M3G
	15. THE M3G SCENE GRAPH
	16. ANIMATION IN M3G
	PART IV. APPENDIX
	A. FIXED-POINT MATHEMATICS
	B. JAVA PERFORMANCE TUNING
	C. GLOSSARY
	Bibliography
	Index

