
Memory Management Programming
Guide for Cocoa
Cocoa > Objective-C Language

2008-02-08



Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND

YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.



Contents

Introduction to Memory Management Programming Guide for Cocoa 7

Who Should Read This Document 7
Organization of This Document 7

Object Ownership and Disposal 9

Object Ownership Policy 9
Creating Objects Using Convenience Methods 10
Objects Returned by Reference 11

Delayed Release 11
Owning Objects 12

Validity of Shared Objects 13
Retain Cycles 13
Weak References to Objects 14

Deallocating an Object 15
Summary 16

Practical Memory Management 17

Basics 17
Simple Examples 18
Using Accessor Methods 19

Implementing a reset method 20
Common Mistakes 20

Cases which Often Cause Confusion 21

Allocating and Initializing Objects 23

Objective-C Creation and Initialization Methods 23
How to Allocate and Initialize Objective-C Objects 23

Autorelease Pools 25

Overview of Autorelease Pools 25
Autorelease Pools in Non-AppKit Programs 26
Autorelease Pools and Threads 27
Scope of Autorelease Pools and Implications of Nested Autorelease Pools 27
Guaranteeing the Foundation Ownership Policy 28

3
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.



Accessor Methods 31

Value Objects and Copying 32

Implementing Object Copy 33

Deep Versus Shallow Copies 33
Independent Copy 34
Inheriting NSCopying from the Superclass 34

Using the “alloc, init...” Approach 35
Using NSCopyObject() 35
Copying Mutable Versus Immutable Objects 37

Memory Management of Core Foundation Objects in Cocoa 39

Using Memory Zones 41

Creating and Managing Zones 41
Allocating Memory in Zones 42

Memory Management of Nib Objects 43

Memory Management Rules 45

Document Revision History 47

4
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.



Figures and Listings

Object Ownership and Disposal 9

Figure 1 An illustration of retain cycles 14

Autorelease Pools 25

Listing 1 Example of a main function for a non-AppKit program 26

Implementing Object Copy 33

Figure 1 Copying instance variables both shallowly and deeply 34
Figure 2 Initialization of the reference count during a copy 37

Memory Management of Nib Objects 43

Figure 1 Top-level objects in a nib file 43

5
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.



6
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.



Memory management, especially as it concerns Objective-C programs, is an important subject. Some
of the more common problems encountered by novice application developers derive from poor
memory management. Cocoa provides mechanisms and a policy to assist you in the proper creation,
retention, and disposal of objects.

Memory management in Cocoa is largely object-oriented. This programming topic addresses the
object-ownership policy and related techniques for creating, copying, retaining, and disposing of
objects using “managed memory”.

Important: In Mac OS X v10.5 and later, you can use automatic memory management by adopting
garbage collection. This is described in Garbage Collection Programming Guide.

Who Should Read This Document

The material in this programming topic relates to Objective-C objects and is of interest primarily to
Objective-C programmers. If you are starting a new project targeted at Mac OS X v10.5 and later, you
should typically use garbage collection unless you have good reason to use the techniques described
here.

Organization of This Document

This document contains the following articles:

 ■ “Object Ownership and Disposal” (page 9) describes the primary policy.

 ■ “Allocating and Initializing Objects” (page 23) explains techniques for allocating and initializing
Objective-C objects.

 ■ “Autorelease Pools” (page 25) describes the use of autorelease pools—a mechanism for deferred
deallocation—in Cocoa programs.

 ■ “Accessor Methods” (page 31) describes how to implement accessor methods.

Who Should Read This Document 7
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Memory Management
Programming Guide for Cocoa



 ■ “Implementing Object Copy” (page 33) discusses issues related to object copying, such as deciding
whether to implement a deep or shallow copy and approaches for implementing object copy in
your subclasses.

 ■ “Memory Management of Core Foundation Objects in Cocoa” (page 39) gives guidelines and
techniques for memory management of Core Foundation objects in Cocoa code.

 ■ “Using Memory Zones” (page 41) discusses the use of memory zones.

 ■ “Memory Management Rules” (page 45) summarizes the rules for object ownership and disposal.

Additional information about memory management and nib files can be found in Resource Programming
Guide > Nib Files and Cocoa > “The Nib Object Life Cycle.”

8 Organization of This Document
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Memory Management Programming Guide for Cocoa



This document discusses the policy for ownership of Objective-C objects and how and when to dispose
of objects.

To fully understand how the object ownership policy is implemented in Cocoa, you must also read
“Autorelease Pools” (page 25).

Object Ownership Policy

In an Objective-C program, objects are constantly creating and disposing of other objects. It is important
to dispose of objects when they are no longer needed to ensure that your application does not use
more memory than necessary. Much of the time an object creates things for private use and can dispose
of them as needed. However, when an object passes something to another object through a method
invocation, the lines of ownership—and responsibility for disposal—blur. For example, suppose you
have a Thingamajig object that contains a number of Sprocket objects, which other objects access using
the following method:

– (NSArray *)sprockets

This declaration says nothing about who should dispose of the returned array. It is reasonable to
suggest, however, that if your Thingamajig object returns an instance variable, it is responsible for
the array. If on the other hand you create a new Thingamajig object, then you are responsible for
disposing of the new object. This, though, introduces a possible source of confusion. “Disposal” tends
to imply “get rid of” or “deallocate”.

As noted earlier, it is possible (in fact common) for one object to create another object and then pass
it to another. It is important not to get rid of the new object until the third party has finished using
it. It is better, therefore, to think of memory management in terms of object ownership, where any
object may have one or more owner. So long as an object has at least one owner, it continues to exist.
If an object has no owners, the runtime system disposes of it (deallocates it) automatically.

To make sure it is clear when you own an object and when you do not, and what responsibilities you
have as an owner, Cocoa sets the following policy:

 ■ You own any object you create.

You "create" an object using a method whose name begins with “alloc” or “new” or contains
“copy” (for example, alloc, newObject, or mutableCopy).

Object Ownership Policy 9
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



 ■ If you own an object, you are responsible for relinquishing ownership when you have finished
with it.

One way to relinquish ownership of an object is to send it a release message. In Cocoa
terminology, relinquishing ownership of an object is typically referred to as "releasing" an object.

 ■ If you do not own an object, you must not release it.

This policy applies both to GUI-based Cocoa applications and to command-line Foundation tools.

Consider the following example:

Thingamajig *thingamajig = [[Thingamajig alloc] init];
// ...
NSArray *sprockets = [thingamajig sprockets];
// ...
[thingamajig release];

This example properly adheres to the policy. You create the Thingamajig object using the alloc
method, so you subsequently send it a release message. You obtain the sprockets array from the
Thingamajig object—you do not "create" the array—so you do not send it a release message.

Creating Objects Using Convenience Methods

Many classes provide methods of the form +className... that you can use to obtain a new instance
of the class. Often referred to as “convenience constructors”, these methods create a new instance of
the class, initialize it, and return it for you to use. Although you might think you are responsible for
releasing objects created in this manner, that is not the case according to the policy Cocoa set—the
method name does not contain "alloc" or "copy", or begin with "new". Because the class creates the
new object, it is responsible for disposing of the new object. As an illustration, the following code
example is wrong:

Thingamajig *thingamajig = [Thingamajig thingamajig];
[thingamajig release]; // wrong

Although if you try this you will not see an error as soon as the release message is sent, it will cause
an exception later (for some definition of later, as discussed in “Autorelease Pools” (page 25)).

This does, though, raise the issue of how the Thingamajig class can abide by the ownership policy.
It is responsible for releasing the new object, but it must not do so before the recipient has had a
chance to claim ownership. To illustrate, consider two possible implementations of the thingamajig
method.

1. This is wrong because after the new Thingamajig is returned to the caller the class loses its reference
to the new object so cannot send it a release message to relinquish ownership:

+ (Thingamajig *)thingamajig
{

id newThingamajig = [[Thingamajig alloc] init];
return newThingamajig;

}

2. This is also wrong because although the class properly relinquishes ownership of the new object,
after the release message is sent the new Thingamajig object has no owner so is immediately
disposed of by the system:

10 Object Ownership Policy
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



+ (Thingamajig *)thingamajig
{

id newThingamajig = [[Thingamajig alloc] init];
[newThingamajig release];
return newThingamajig; // newThingamajig is invalid here

}

The Thingamajig class needs a way to mark an object for relinquish ownership at a later time, after
the recipient has had a chance to use it. Cocoa provides a mechanism to do this, called "autoreleasing",
discussed in “Delayed Release” (page 11).

Objects Returned by Reference

Some methods in Cocoa specify that an object is returned by reference. There are several examples
that use an NSError object that contains information about an error if one occurs, such as:

 ■ initWithContentsOfURL:ofType:error: (NSDocument)

 ■ initWithContentsOfURL:options:error: (NSData)

 ■ initWithContentsOfFile:encoding:error: (NSString)

In these cases, the same rules apply as have already been described. When you invoke any of these
methods, you do not create the NSError object so you do not own it—there is therefore no need to
release it.

NSString *fileName = ... ;
NSError *error;
NSString *string = [[NSString alloc] initWithContentsOfFile:fileName

encoding:NSUTF8StringEncoding error:&error];
if (string == nil) {

// deal with error ...
}
// ...
[string release];

If for any reason ownership of returned object does not follow the basic rules, this is stated explicitly
in the documentation for the method (see for example,
dataFromPropertyList:format:errorDescription:).

Delayed Release

The autoreleasemethod, defined by NSObject, marks the receiver for later release. By autoreleasing
an object—that is, by sending it an autorelease message—you declare that you don't want to own
the object beyond the scope in which you sent autorelease. The scope is defined by the current
autorelease pool—see “Autorelease Pools” (page 25).

The sprockets method mentioned above could be implemented in this way:

– (NSArray *)sprockets
{

Delayed Release 11
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



NSArray *array;

array = [[NSArray alloc] initWithObjects:mainSprocket,
auxiliarySprocket, nil];

return [array autorelease];
}

When another method gets the array of Sprocket objects, that method can assume that the array will
be disposed of when it is no longer needed, but can still be safely used anywhere within its scope (see
“Validity of Shared Objects” (page 13)). It can even return the array to its invoker, since the application
object defines the bottom of the call stack for your code. The autorelease method thus allows every
object to use other objects without worrying about disposing of them.

Just as it is an error to release an object after it is already been deallocated, it’s an error to send so
many autorelease messages that the object would later be released after it had already been
deallocated. You should send release or autorelease to an object only as many times as are allowed
by its creation (one) plus the number of retain messages you have sent it (retain messages are
described below).

Owning Objects

There are times when you don’t want a received object to be disposed of; for example, you may need
to cache the object in an instance variable. In this case, only you know when the object is no longer
needed, so you need the power to ensure that the object is not disposed of while you are still using
it. You do this with a retain message, which stays the effect of a pending autorelease (or preempts
a later release or autoreleasemessage). By retaining an object you ensure that it won’t be deallocated
until you are done with it. For example, if your object allows its main Sprocket to be set, you might
want to retain that Sprocket like this:

– (void)setMainSprocket:(Sprocket *)newSprocket
{

[mainSprocket autorelease];
mainSprocket = [newSprocket retain]; /* Claim the new Sprocket. */
return;

}

Now, setMainSprocket: might get invoked with a Sprocket that the invoker intends to keep around,
which means your object would be sharing the Sprocket with that other object. If that object changes
the Sprocket, your object’s main Sprocket changes. You might want that, but if your Thingamajig
needs to have its own Sprocket the method should make a private copy:

– (void)setMainSprocket:(Sprocket *)newSprocket
{

[mainSprocket autorelease];
mainSprocket = [newSprocket copy]; /* Get a private copy. */
return;

}

Note that both of these methods autorelease the original main sprocket, so they don’t need to check
that the original main sprocket and the new one are the same. If they simply released the original
when it was the same as the new one, that sprocket would be released and possibly deallocated,
causing an error as soon as it was retained or copied. The following code solves that problem:

12 Owning Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



– (void)setMainSprocket:(Sprocket *)newSprocket
{

if (mainSprocket != newSprocket) {
[mainSprocket release];
mainSprocket = [newSprocket retain];

}
}

Validity of Shared Objects

Cocoa’s ownership policy specifies that received objects should remain valid throughout the scope
of the calling method. It should also be possible to return a received object from the current scope
without fear of it being released. It should not matter to your application that the getter method of
an object returns a cached instance variable or a computed value. What matters is that the object
remains valid for the time you need it.

There are exceptions to this rule. For example, collection classes do not attempt to extend the lifetime
of objects placed inside them. Removing an object from a mutable array could invalidate any copies
of the object previously acquired, as in the following example:

value = [array objectAtIndex:n];
[array removeObjectAtIndex:n];
// value could now be invalid.

Another problem situation is when an object is deallocated after a call to one of its getter methods:

sprocket = [thingamajig mainSprocket];
[thingamajig release];
// sprocket could now be invalid.

To protect against situations like this, you could retain sprocket upon receiving it and release it when
you have finished with it. Because it may not always be obvious when a caller should retain an object
in this manner, the objects themselves should strive to return results that are valid in the current
calling scope. In many cases, understanding how accessor methods are implemented, and implementing
accessor methods appropriately, will resolve any confusion—see “Accessor Methods” (page 31).

Retain Cycles

In some situations, two objects may have cyclical references; that is, each object contains an instance
variable that refers to the other object. For example, consider a text program with the object
relationships shown in Figure 1 (page 14). The Document object creates a Page object for each page
in the document. Each Page object has an instance variable that keeps track of which document it is
in. If the Document object retained the Page object and the Page object retained the Document object,
neither object would ever be released. The Document’s reference count cannot become 0 until the
Page object is released, and the Page object won’t be released until the Document object is deallocated.

Owning Objects 13
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



Figure 1 An illustration of retain cycles

text
parent

parent
paragraph

Paragraph

Page

page

Document

retain
don’t
retain

don’t
retain

retain

The solution to the problem of retain cycles is that the “parent” object should retain its “children,”
but that the children should not retain their parents. So, in Figure 1 (page 14) the document object
retains its page objects but the page object does not retain the document object. The child’s reference
to its parent is an example of a weak reference, which is described more fully in “Weak References
to Objects” (page 14).

Weak References to Objects

Retaining an object creates a “strong” reference to that object. An object cannot be deallocated until
all of its strong references are released. An object’s lifetime is thereby determined by the owners of
its strong references. In some cases, this behavior may not be desired. You may want to have a reference
to an object without preventing the object from deallocating itself. For these cases, you can obtain a
“weak” reference. A weak reference is created by storing a pointer to an object without retaining the
object.

Weak references are essential in cases where a circular reference would otherwise be set up. For
example, if Object A and Object B communicate with each other, each needs a reference to the other.
If each retains the other, neither object ever gets deallocated until the connection is broken, but the
connection is not broken until one of the objects is deallocated. Catch-22. To break the circle, one
object takes a subordinate role and obtains a weak reference to the other. As a concrete example, in
a view hierarchy, a parent view owns, and hence retains, its child views, but a child view does not
own its parent; the child still needs to know who its parent is, so it keeps a weak reference to its parent.

Additional cases of weak references in Cocoa include, but are not restricted to, table data sources,
outline view items, notification observers, and miscellaneous targets and delegates.

14 Owning Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



Important: In Cocoa, references to table data sources, outline view items, notification observers, and
delegates are all considered weak (for example, an NSTableView object does not retain its data source
and the NSApplication object does not retain its delegate). The documentation only describes
exceptions to this convention.

You need to be careful about sending messages to objects for which you only hold a weak reference.
If you send a message to an object after it has been deallocated, your application will crash. You must
have well-defined conditions for when the object is valid. In most cases, the weak-referenced object
is aware of the other object’s weak reference to it, as is the case for circular references, and is responsible
for notifying the other object when it deallocates. For example, when you register an object with a
notification center, the notification center stores a weak reference to the object and sends messages
to it when the appropriate notifications are posted. When the object is deallocated, you need to
unregister it with the notification center to prevent the notification center from sending any further
messages to the object, which no longer exists. Likewise, when a delegate object is deallocated, you
need to remove the delegate link by sending a setDelegate: message with a nil argument to the
other object. These messages are normally sent from the object’s dealloc method.

Deallocating an Object

Cocoa implements its ownership policy through a mechanism called “reference counting” or “retain
counting”—see The Runtime System. When you create an object, it has a retain count of 1. When you
send an object a retainmessage, its retain count is increased by 1. When you send an object a release
message, its retain count is decreased by 1 (autorelease causes the retain count to be decremented
in the future).

Important: Typically there should be no reason to explicitly ask an object what its retain count is. The
result is often misleading, as you may be unaware of what framework objects have retained an object
in which you are interested. In debugging memory management issues, you should be concerned
only with ensuring that your code adheres to the ownership rules—see “Summary” (page 16).

When its retain count drops to 0, an object's memory is reclaimed—in Cocoa terminology it is "freed"
or "deallocated". When an object is deallocated, its dealloc method is invoked automatically. The
role of the dealloc method is to to free the object's own memory, and dispose of any resources it
holds, including its object instance variables.

If your class has object instance variables, you must implement a dealloc method that releases them,
and then invokes super's implementation. For example, if the Thingamajig class had name and
sprockets instance variables, you would implement its dealloc method as follows:

- (void)dealloc
{

[sprockets release];
[name release];
[super dealloc];

}

You should never invoke another object's dealloc method directly.

Deallocating an Object 15
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



Note that when an application terminates, objects may not be sent a dealloc message since the
process’s memory is automatically cleared on exit—it is more efficient simply to allow the operating
system to clean up resources than to invoke all the memory management methods. For more details
about object creation and deallocation, see Object Creation.

Summary

Now that the concepts behind the Cocoa’s object ownership policy have been introduced, they can
be expressed as a short list of rules—see “Memory Management Rules” (page 45).

16 Summary
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Object Ownership and Disposal



This article provides a practical perspective on memory management.

Cocoa does not use garbage collection. You must do your own memory management through reference
counting. Following a few simple rules can make memory management easy. Failure to adhere to the
rules will almost certainly lead at some point to memory leaks, or runtime exceptions due to messages
being sent to freed objects.

Basics

To keep memory consumption as low as possible in an application, you should get rid of objects that
are not being used, but you need to make sure that you don’t get rid of an object that is being used.
You therefore need a mechanism that allows you to mark an object as still being useful. In many
respects, memory management is thus best understood in terms of “object ownership.”

 ■ An object may have one or more owners.

(By way of an analogy, consider a timeshare apartment.)

 ■ When an object has no owners, it is destroyed.

(To stretch an analogy, consider a timeshare complex that is not loved by the local population. If
there are no owners, the complex will be torn down.)

 ■ To make sure an object you’re interested in is not destroyed, you must become an owner.

(You can either build a new apartment, or take a stake in an existing one.)

To support this model, Cocoa provides a mechanism called “reference counting” or “retain counting.”
Every object has a retain count. An object is created with a retain count of 1. When the retain count
drops to 0, an object is deallocated (destroyed). You manipulate the retain count (take and relinquish
ownership) using a variety of methods:

alloc
Allocates memory for an object, and returns it with retain count of 1

You own objects you create using alloc.

copy
Makes a copy of an object, and returns it with retain count of 1

If you copy an object, you own the copy.

Basics 17
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Practical Memory Management



retain
Increases the reference count of an object by 1

Takes ownership of an object.

release
Decreases the reference count of an object by 1

Relinquishes ownership of an object.

autorelease
Decreases the reference count of an object by 1 at some stage in the future

Relinquishes ownership of an object at some stage in the future.

The following rules apply:

 ■ Within a given block of code, the number of times you use copy, alloc and retain should equal
the number of times you use release and autorelease.

 ■ You only own objects you created using a method whose name begins with “alloc” or “new” or
contains “copy” (for example, alloc, newObject, or mutableCopy), or if you send it a retain
message.

 ■ Implement a dealloc method to release the instance variables you own.

 ■ You should never invoke dealloc directly (other than when you invoke super’s implementation
in a custom dealloc method).

Many classes provide methods of the form +className... that you can use to obtain a new instance
of the class. Often referred to as “convenience constructors”, these methods create a new instance of
the class, initialize it, and return it for you to use. You do not own objects returned from convenience
constructors, or from other accessor methods.

Simple Examples

The following simple examples illustrate the contrast between creating a new object using alloc,
using a convenience constructor, and using an accessor method.

The first example creates a new string object using alloc. It must therefore be released.

- (void)printHello
{

NSString *string;
string = [[NSString alloc] initWithString:@"Hello"];
NSLog(string);
[string release];

}

The second example creates a new string object using a convenience constructor. There is no additional
work to do.

- (void)printHello
{

NSString *string;
string = [NSString stringWithFormat:@"Hello"];
NSLog(string);

18 Simple Examples
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Practical Memory Management



}

The third example retrieves a string object using an accessor method. As with the convenience
constructor, there is no additional work to do.

- (void)printWindowTitle
{

NSString *string;
string = [myWindow title];
NSLog(string);

}

Using Accessor Methods

Sometimes it might seem tedious or pedantic, but if you use accessor methods consistently the chances
of having problems with memory management decrease considerably. If you are using retain and
release on a class’s instance variables throughout your code, you are almost certainly doing the
wrong thing.

Consider a Counter object whose count you want to set.

@interface Counter : NSObject
{

NSNumber *count;
}

To get and set the count, you define two accessor methods. In the get accessor, you just pass back a
variable so there is no need for retain or release:

- (NSNumber *)count
{

return count;
}

In the set method, if everyone else is playing by the same rules you have to assume the new count
may be disposed of at any time so you have to take ownership of the object—by sending it a retain
message—to ensure it won’t be. You must also relinquish ownership of the old count object here by
sending it a release message. (Sending a message to nil is allowed in Objective-C, so this will still
work if count hasn't yet been set.) You must send this after [newCount retain] in case the two are
the same object—you don't want to inadvertently cause it to be deallocated.

- (void)setCount:(NSNumber *)newCount
{

[newCount retain];
[count release];
// make the new assignment
count = newCount;

}

These examples present a simple perspective on accessor methods. They are described in greater
detail in “Accessor Methods” (page 31).

Since the Counter class has an object instance variable, you must also implement a dealloc method:

Using Accessor Methods 19
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Practical Memory Management



- (void)dealloc
{

[self setCount:nil];
[super dealloc];

}

Implementing a reset method

Suppose you want to implement a method to reset the counter. You have a couple of choices. The
first uses a convenience constructor to create a new NSNumber object—there is therefore no need for
any retain or release messages. Note that both use the class’s set accessor method.

- (void)reset
{

NSNumber *zero = [NSNumber numberWithInt:0];
[self setCount:zero];

}

The second creates the NSNumber instance with alloc, so you balance that with a release.

- (void)reset
{

NSNumber *zero = [[NSNumber alloc] initWithInt:0];
[self setCount:zero];
[zero release];

}

Common Mistakes

The following sections illustrate common mistakes.

Accessor not used

The following will almost certainly work correctly for simple cases, but tempting as it may be to
eschew accessor methods, this will also almost certainly lead to a mistake at some stage.

- (void)reset
{

NSNumber *zero = [[NSNumber alloc] initWithInt:0];
[count release];
count = zero;

}

Note in particular that if you are using key-value observing (see Key-Value Observing Programming
Guide), then changing the variable in this way is not KVO-compliant.

Instance leaks

- (void)reset
{

NSNumber *zero = [[NSNumber alloc] initWithInt:0];
[self setCount:zero];

20 Using Accessor Methods
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Practical Memory Management



}

The retain count of the new number is 1 (from alloc) and is not balanced by a release within the
scope of the method. The new number is unlikely ever to be freed, which will result in a memory
leak.

Instance you don’t own is sent release

- (void)reset
{

NSNumber *zero = [NSNumber numberWithInt:0];
[self setCount:zero];
[zero release];

}

Absent any other invocations of retain, this will fail the first time you subsequently access count
after the current autorelease pool has been released. The convenience constructor method returns an
autoreleased object, so you don't have to send another release. Doing so will mean that when the
release due to autorelease is sent, it will reduce the retain count to 0, and the object will be freed.
When you next access count you will be sending a message to a freed object (typically you'll get a
SIGBUS 10 error).

Cases which Often Cause Confusion

When you add an object to a collection such as an array, dictionary, or set, the collection takes
ownership of it. The collection will relinquish ownership when the object is removed from the collection
or when the collection is itself released. Thus, for example, if you want to create an array of numbers
you might do either of the following:

NSMutableArray *array;
int i;
// ...
for (i = 0; i < 10; i++) {

NSNumber *convenienceNumber = [NSNumber numberWithInt: i];
[array addObject: convenienceNumber];

}

In this case, you didn’t invoke alloc, so there’s no need to call release. There is no need to retain
the new numbers (convenienceNumber), since the array will do so.

NSMutableArray *array;
int i;
// ...
for (i = 0; i < 10; i++) {

NSNumber *allocedNumber = [[NSNumber alloc] initWithInt: i];
[array addObject: allocedNumber];
[allocedNumber release];

}

In this case do you need to send allocedNumber a release message within the scope of the for loop
to balance the alloc. Since the array retained the number when it was added by addObject:, it will
not be deallocated while it's in the array.

Cases which Often Cause Confusion 21
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Practical Memory Management



To understand this, put yourself in the position of the person who implemented the collection class.
You want to make sure that no objects you're given to look after disappear out from under you, so
you send them a retainmessage as they're passed in. If they're removed, you have to send a balancing
release message, and any remaining objects should be sent a release message during your own
dealloc method.

22 Cases which Often Cause Confusion
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Practical Memory Management



This document describes how to allocate memory for and initialize Cocoa objects. It also discusses
some related issues.

Objective-C Creation and Initialization Methods

The class methods alloc, allocWithZone: and new allocate memory for an object and initialize that
object’s reference to its class. Every object that inherits directly or indirectly from NSObject is connected
to the run-time system through its isa instance variable. isa identifies the object’s class; it references
a structure that is compiled from the class definition. Through isa, an object can find whatever
information it needs at run-time—such as its place in the inheritance hierarchy, the size and structure
of its instance variables, and the location of the method implementations it can perform in response
to messages. The object-creation methods also initialize all instance variables to zero (or nil, NULL,
or whatever is appropriate for that type).

Note: Objects created and returned by these methods are owned by the receiving object, which is
responsible for their disposal.

The initialization methods—instance methods of each class with the name of init or a name beginning
with init—initialize individual objects by setting their instance variables to initial values.

In addition, classes frequently define “factory” methods—convenience class methods—that allocate
and initialize instances for the receiver.

How to Allocate and Initialize Objective-C Objects

Invoke alloc or allocWithZone: on a class to create an instance of that class. The alloc method
uses the default zone (that is, the zone returned by the NSDefaultMallocZone function) when it
allocates memory for an object.

TheClass *newObject = [TheClass alloc];

Objective-C Creation and Initialization Methods 23
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Allocating and Initializing Objects



Once you have created an object with alloc, allocWithZone:, or new, you can initialize the object
with an init... method. Typically the allocation and initialization messages are combined in one
statement.

TheClass *newObject = [[TheClass alloc] init];

In some cases, an initmethod might release the new object and return a substitute. Programs should
therefore always use the object returned by init and not necessarily the one returned by alloc or
allocWithZone: in subsequent code as illustrated in the following code sample. Note the assignment
of self in the test, and use of two pairs of parentheses to avoid compiler warnings with some strict
flags.

- (id)init {
if ((self = [super init])) {// superclass may return nil

// your initialization code goes here
}
return self;

}

Subclasses should implement init... to return the new object (self) after it has been successfully
initialized; these methods should first invoke super to incorporate the initialization code for the
classes they inherit from. If the instance cannot be initialized, they should release the object and return
nil.

When one object creates another, it is often a good idea to make sure they are both allocated from the
same region of memory. The zone method (declared in the NSObject protocol) can be used for this
purpose; it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocWithZone:[self zone]] init];

Note that it is your responsibility to release objects (with either release or autorelease) returned
by the object-creation methods.

24 How to Allocate and Initialize Objective-C Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Allocating and Initializing Objects



This document contains information on fine-tuning your application’s handling of autorelease pools;
see the document “Object Ownership and Disposal” (page 9) for general information on using the
autorelease mechanism.

Overview of Autorelease Pools

An autorelease pool is an instance of NSAutoreleasePool that “contains” other objects that have
received an autorelease message; when the autorelease pool is deallocated it sends a release
message to each of those objects. An object can be put into an autorelease pool several times, and
receives a releasemessage for each time it was put into the pool. Thus, sending autorelease instead
of release to an object extends the lifetime of that object at least until the pool itself is released (the
object may survive longer if it is retained in the interim).

Cocoa always expects there to be an autorelease pool available. If a pool is not available, autoreleased
objects do not get released and you leak memory. If you send an autorelease message when a pool is
not available, Cocoa logs a suitable error message.

You create an NSAutoreleasePool object with the usual alloc and init messages, and dispose of
it with release (an exception is raised if you send autorelease or retain to an autorelease pool).
An autorelease pool should always be released in the same context (invocation of a method or function,
or body of a loop) in which it was created.

Autorelease pools are arranged in a stack, although they are commonly referred to as being "nested."
When you create a new autorelease pool, it is added to the top of the stack. When pools are deallocated,
they are removed from the stack. When an object is sent an autorelease message, it is added to the
current topmost pool for the current thread.

The ability to nest autorelease pools means that you can include them in any function or method. For
example, a main function may create an autorelease pool and call another function that creates another
autorelease pool. Or a single method might have an autorelease pool for an outer loop, and another
autorelease pool for an inner loop. The ability to nest autorelease pools is a definite advantage, but
there are side effects when exceptions occur (see “Scope of Autorelease Pools and Implications of
Nested Autorelease Pools” (page 27)).

Overview of Autorelease Pools 25
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Autorelease Pools



The Application Kit automatically creates a pool at the beginning of an event cycle (or event-loop
iteration), such as a mouse down event, and releases it at the end, so your code normally does not
have to worry about them. There are three cases, though, where you might create and destroy your
own autorelease pools:

 ■ If you are writing a program that is not based on the Application Kit, such as a command-line
tool, there is no built-in support for autorelease pools; you must create and destroy them yourself.

 ■ If you spawn a secondary thread, you must create your own autorelease pool as soon as the thread
begins executing; otherwise, you will leak objects. (See “Autorelease Pools and Threads” (page
27) for details.)

 ■ If you write a loop that creates many temporary objects, you may create an autorelease pool inside
the loop to dispose of those objects before the next iteration. This can help reduce the maximum
memory footprint of the application.

Autorelease pools are used "in line". There should typically be no reason why you should make an autorelease
pool an instance variable of an object.

Autorelease Pools in Non-AppKit Programs

Enabling the autorelease mechanism in a program that is not based on the Application Kit is easy.
You can simply create an autorelease pool at the beginning of the main() function, and release it at
the end—this is the pattern used by the Foundation Tool template in Xcode. This establishes a pool
for the lifetime of the task. However, this also means that any autoreleased objects created during the
lifetime of the task are not disposed of until the task completes. This may lead to the task's memory
footprint increasing unnecessarily. You can also consider creating pools with a narrower scope.

Many programs have a high-level loops where they do much of their work. To enable the autorelease
mechanism you can create an autorelease pool at the beginning of an iteration through this loop and
release it at the end.

Your main function might look like the code in Listing 1.

Listing 1 Example of a main function for a non-AppKit program

void main()
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSArray *args = [[NSProcessInfo processInfo] arguments];
unsigned count, limit = [args count];

for (count = 0; count < limit; count++)
{

NSAutoreleasePool *loopPool = [[NSAutoreleasePool alloc] init];
NSString *fileContents;
NSString *fileName;

fileName = [args objectAtIndex:count];
fileContents = [[[NSString alloc] initWithContentsOfFile:fileName]

autorelease];
// this is equivalent to using stringWithContentsOfFile:

26 Autorelease Pools in Non-AppKit Programs
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Autorelease Pools



/* Process the file, creating and autoreleasing more objects. */

[loopPool release];
}

/* Do whatever cleanup is needed. */
[pool release];

exit (EXIT_SUCCESS);
}

This program processes files passed in on the command line. The for loop processes one file at a
time. An NSAutoreleasePool object is created at the beginning of this loop and released at the end.
Therefore, any object sent an autorelease message inside the loop (such as fileContents) is added
to loopPool, and when loopPool is released at the end of the loop those objects are also released.
Additionally, any autoreleased objects created in the context of the for loop (such as fileName) are
released when loopPool is released even if they’re not explicitly sent an autorelease message.

Autorelease Pools and Threads

Each thread in a Cocoa application maintains its own stack of NSAutoreleasePool objects. When a
thread terminates, it automatically releases all of the autorelease pools associated with itself.
Autorelease pools are automatically created and destroyed in the main thread of applications based
on the Application Kit, so your code normally does not have to deal with them there. If you are making
Cocoa calls outside of the Application Kit's main thread, however, you need to create your own
autorelease pool. This is the case if you are writing a Foundation-only application or if you detach a
thread.

If your application or thread is long-lived and potentially generates a lot of autoreleased objects, you
should periodically destroy and create autorelease pools (like the Application Kit does on the main
thread); otherwise, autoreleased objects accumulate and your memory footprint grows. If your
detached thread does not make Cocoa calls, you do not need to create an autorelease pool.

Note: If you create secondary threads using the POSIX thread APIs instead of NSThread, you cannot
use Cocoa—including NSAutoreleasePool—unless Cocoa is in multithreading mode. Cocoa enters
multithreading mode only after detaching its first NSThread object. To use Cocoa on secondary POSIX
threads, your application must first detach at least one NSThread object, which can immediately exit.
You can test whether Cocoa is in multithreading mode with the NSThread class method
isMultiThreaded.

Scope of Autorelease Pools and Implications of Nested
Autorelease Pools

It is common to speak of autorelease pools as being nested because of the enclosure evident in code,
as illustrated in Listing 1 (page 26). But you can also think of nested autorelease pools as being on a
stack, with the “innermost” autorelease pool being on top of the stack. As noted earlier, this is actually

Autorelease Pools and Threads 27
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Autorelease Pools



how nested autorelease pools are implemented: Each thread in a program maintains a stack of
autorelease pools. When you create an autorelease pool, it is pushed onto the top of the current
thread’s stack. When an object is autoreleased—that is, when an object is sent an autorelease message or
when it passed as the argument to the addObject: class method—it is always put in the autorelease pool at
the top of the stack.

The scope of an autorelease pool is therefore defined by its position in the stack and the simple fact
of its existence. The topmost pool is the pool to which autoreleased objects are added. If another pool
is created, the current topmost pool effectively goes out of scope until the new pool is released (at
which point the original pool once again becomes the topmost pool). It (obviously) goes out of scope
permanently when it is itself released.

If you release an autorelease pool that is not the top of the stack, this causes all (unreleased) autorelease
pools above it on the stack to be released, along with all their objects. If you neglect to send release
to an autorelease pool when you are finished with it (something not recommended), it is released
when one of the autorelease pools in which it nests is released.

This behavior has implications for exceptional conditions. If an exception occurs, and the thread
suddenly transfers out of the current context, the pool associated with that context is released. However,
if that pool is not the top pool on the thread’s stack, all the pools above the released pool are also
released (releasing all their objects in the process). The top autorelease pool on the thread’s stack then
becomes the pool previously underneath the released pool associated with the exceptional condition.
Because of this behavior, exception handlers do not need to release objects that were sent autorelease.
Neither is it necessary or even desirable for an exception handler to send release to its autorelease
pool, unless the handler is re-raising the exception.

Guaranteeing the Foundation Ownership Policy

By creating an autorelease pool instead of simply releasing objects, you extend the lifetime of temporary
objects to the lifetime of that pool. After an autorelease pool is deallocated, you should regard any
object that was autoreleased while that pool was active as “disposed of”, and not send a message to
that object or return it to the invoker of your method.

If you must use a temporary object beyond an autorelease context, you can do so by sending a retain
message to the object within the context and then send it autorelease after the pool has been released
as in:

– findMatchingObject:anObject
{

id match = nil;

while (match == nil) {
NSAutoreleasePool *subPool = [[NSAutoreleasePool alloc] init];

/* Do a search that creates a lot of temporary objects. */
match = [self expensiveSearchForObject:anObject];

if (match != nil)
[match retain]; /* Keep match around. */

[subPool release];
}

28 Guaranteeing the Foundation Ownership Policy
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Autorelease Pools



return [match autorelease]; /* Let match go and return it. */
}

By sending retain to match while subpool is in effect and sending autorelease to it after subpool
has been released, match is effectively moved from subpool to the pool that was previously active.
This extends the lifetime of match and allows it to receive messages outside the loop and be returned
to the invoker of findMatchingObject:.

Guaranteeing the Foundation Ownership Policy 29
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Autorelease Pools



30 Guaranteeing the Foundation Ownership Policy
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Autorelease Pools



For simple object values, getters and setters can be written in one of the following three ways:

1. Getter retains and autoreleases the value before returning it; setter releases the old value and
retains (or copies) the new value.

2. Getter returns the value; setter autoreleases the old value and retains (or copies) the new value.

3. Getter returns the value; setter releases the old value and retains (or copies) the new value.

In technique 1, values returned by the getter are autoreleased within the calling scope:

- (NSString*) title
{

return [[title retain] autorelease];
}

- (void) setTitle: (NSString*) newTitle
{

if (title != newTitle) {
[title release];
title = [newTitle retain]; // or copy depending on your needs

}
}

As with values manufactured by class convenience methods, the returned object is autoreleased in
the current scope and thus remains valid if the property value is changed. One issue with this technique
is performance. If you expect your getter method to be called frequently, the added cost of retaining
and autoreleasing the object may not be worth the performance cost.

Technique 2 also uses an autorelease technique, but this time does so in the setter method:

- (NSString*) title
{

return title;
}

- (void) setTitle: (NSString*) newTitle
{

[title autorelease];
title = [newTitle retain];

}

31
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Accessor Methods



The performance of technique 2 is significantly better than technique 1 in situations where the getter
is called much more often than the setter.

Technique 3 avoids the use of autorelease altogether:

- (NSString*) title
{

return title;
}

- (void) setTitle: (NSString*) newTitle
{

if (newTitle != title) {
[title release];
title = [newtitle retain];

}
}

The approach used by technique 3 is good for frequently called getter and setter methods. It is also
good for objects that do not want to extend the lifetime of their values, such as collection classes.
However, because of the potential dangers of invalidating objects prematurely, use of this technique
should be used sparingly and well documented.

Value Objects and Copying

It is common practice in Objective-C code to copy value objects—objects that represent attributes.
C-type variables can usually be substituted for value objects, but value objects have the advantage
of encapsulating convenient utilities for common manipulations. For example, NSString objects are
used instead of character pointers because they encapsulate encoding and storage. Despite NSString
functionality, the role played by NSString objects parallels the role played by character pointers.

When value objects are passed as method arguments or returned from a method, it is common to use
a copy instead of the object itself. For example, consider the following method for assigning a string
to an object’s name instance variable.

- (void)setName:(NSString *)aName
{

[name autorelease];
name = [aName copy];

}

Storing a copy of aName has the effect of producing an object that is independent of the original, but
has the same contents. Subsequent changes to the copy don’t affect the original, and changes to the
original don’t affect the copy. Similarly, it is common to return a copy of an instance variable instead
of the instance variable itself. For example, this method returns a copy of the name instance variable:

- (NSString *)name
{

return [[name copy] autorelease];
}

32 Value Objects and Copying
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Accessor Methods



This article describes two approaches to implementing the NSCopying protocol’s copyWithZone:
method for the purpose of copying objects.

There are two basic approaches to creating copies by implementing the NSCopying protocol’s
copyWithZone: method. You can use alloc and init..., or you can use NSCopyObject. To choose
the one that is right for your class, you need to consider the following questions:

 ■ Do I need a deep or shallow copy?

 ■ Do I inherit NSCopying behavior from my superclass?

These are described in the following sections.

Deep Versus Shallow Copies

Generally, copying an object involves creating a new instance and initializing it with the values in
the original object. Copying the values for non-pointer instance variables, such as booleans, integers,
and floating points, is straightforward. When copying pointer instance variables there are two
approaches. One approach, called a shallow copy, copies the pointer value from the original object
into the copy. Thus, the original and the copy share referenced data. The other approach, called a
deep copy, duplicates the data referenced by the pointer and assigns it to the copy’s instance variable.

The implementation of an instance variable’s set method should reflect the kind of copying you need
to use. You should deeply copy the instance variable if the corresponding set method copies the new
value as in this method:

- (void)setMyVariable:(id)newValue
{

[myVariable autorelease];
myVariable = [newValue copy];

}

You should shallowly copy the instance variable if the corresponding set method retains the new
value as illustrated by this method:

- (void)setMyVariable:(id)newValue
{

[myVariable autorelease];

Deep Versus Shallow Copies 33
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Implementing Object Copy



myVariable = [newValue retain];
}

Similarly, you should shallowly copy the instance variable if its set method simply assigns the new
value to the instance variable without copying or retaining it as in the following example—although
this is typically rare:

- (void)setMyVariable:(id)newValue
{

myVariable = newValue;
}

Independent Copy

To produce a copy of an object that is truly independent of the original, the entire object must be
deeply copied. Every instance variable must be duplicated. If the instance variables themselves have
instance variables, those too must be duplicated, and so on. In many cases, a mixed approach is more
useful. Pointer instance variables that can be thought of as data containers are generally deeply copied,
while more sophisticated instance variables like delegates are shallowly copied.

@interface Product : NSObject <NSCopying>
{

NSString *productName;
float price;
id delegate;

}

@end

For example, a Product class adopts NSCopying. Product instances have a name, a price, and a delegate
as declared in this interface.

Copying a Product instance produces a deep copy of productName because it represents a flat data
value. On the other hand, the delegate instance variable is a more complex object capable of
functioning properly for both Products. The copy and the original should therefore share the delegate.
Figure 1 (page 34) represents the images of a Product instance and a copy in memory.

Figure 1 Copying instance variables both shallowly and deeply

The different pointer values for productName illustrate that the original and the copy each have their
own productName string object. The pointer values for delegate are the same, indicating that the
two product objects share the same object as their delegate.

Inheriting NSCopying from the Superclass

If the superclass does not implement NSCopying, your class’s implementation has to copy the instance
variables it inherits as well as those declared in your class. Generally, the safest way to do this is by
using alloc, init..., and set methods.

34 Deep Versus Shallow Copies
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Implementing Object Copy



On the other hand, if your class inherits NSCopying behavior and has declared additional instance
variables, you need to implement copyWithZone:, too. In this method, invoke the superclass’s
implementation to copy inherited instance variables and then copy the additional instance variables.
How you handle the new instance variables depends on your familiarity with the superclass’s
implementation. If the superclass used or might have used NSCopyObject, you must handle instance
variables differently than you would if alloc and init... were used.

Using the “alloc, init...” Approach

If a class does not inherit NSCopying behavior, you should implement copyWithZone: using alloc,
init..., and set methods. For example, an implementation of copyWithZone: for the Product class
described in “Independent Copy” (page 34) might be implemented in the following way:

- (id)copyWithZone:(NSZone *)zone
{

Product *copy = [[[self class] allocWithZone: zone]
initWithProductName:[self productName]
price:[self price]];

[copy setDelegate:[self delegate]];

return copy;
}

Because implementation details associated with inherited instance variables are encapsulated in the
superclass, it is generally better to implement NSCopying with the alloc, init... approach. Doing
so uses policy implemented in set methods to determine the kind of copying needed of instance
variables.

Using NSCopyObject()

When a class inherits NSCopying behavior, you must consider the possibility that the superclass’s
implementation uses the NSCopyObject function. NSCopyObject creates an exact shallow copy of an
object by copying instance variable values but not the data they point to. For example, NSCell's
implementation of copyWithZone: could be defined in the following way:

- (id)copyWithZone:(NSZone *)zone
{

NSCell *cellCopy = NSCopyObject(self, 0, zone);
/* Assume that other initialization takes place here. */

cellCopy->image = nil;
[cellCopy setImage:[self image]];

return cellCopy;
}

In the implementation above, NSCopyObject creates an exact shallow copy of the original cell. This
behavior is desirable for copying instance variables that are not pointers or are pointers to non-retained
data that is shallowly copied. Pointer instance variables for retained objects need additional treatment.

Using the “alloc, init...” Approach 35
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Implementing Object Copy



In the copyWithZone: example above, image is a pointer to a retained object. The policy to retain the
image is reflected in the following implementation of the setImage: accessor method.

- (void)setImage:(NSImage *)anImage
{

[image autorelease];
image = [anImage retain];

}

Notice that setImage: autoreleases image before it reassigns it. If the above implementation of
copyWithZone: had not explicitly set the copy’s image instance variable to nil before invoking
setImage:, the image referenced by the copy and the original would be released without a
corresponding retain.

Even though image points to the right object, it is conceptually uninitialized. Unlike the instance
variables that are created with alloc and init..., these uninitialized variables are not nil-valued.
You should explicitly assign initial values to these variables before using them. In this case, cellCopy’s
image instance variable is set to nil, then it is set using the setImage: method.

The effects of NSCopyObject extend to a subclass’s implementation. For example, an implementation
of NSSliderCell could copy a new titleCell instance variable in the following way.

- (id)copyWithZone:(NSZone *)zone
{

id cellCopy = [super copyWithZone:zone];
/* Assume that other initialization takes place here. */

cellCopy->titleCell = nil;
[cellCopy setTitleCell:[self titleCell]];

return cellCopy;
}

where it is assumed the super’s copyWithZone: method does something like this:

id copy = [[[self class] allocWithZone: zone] init];

The superclass’s copyWithZone: method is invoked to copy inherited instance variables. When you
invoke a superclass’s copyWithZone: method, assume that new object instance variables are
uninitialized if there is any chance that the superclass implementation uses NSCopyObject. Explicitly
assign a value to them before using them. In this example, titleCell is explicitly set to nil before
setTitleCell: is invoked.

The implementation of an object’s retain count is another consideration when using NSCopyObject.
If an object stores its retain count in an instance variable, the implementation of copyWithZone: must
correctly initialize the copy’s retain count. Figure 2 (page 37) illustrates the process.

36 Using NSCopyObject()
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Implementing Object Copy



Figure 2 Initialization of the reference count during a copy

original 0xf2ae4

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 1
productName 0xe81f4
price 0.00
delegate 0xe83c8

The copy produced by
NSCopyObject

The copy after unitialized
instance variables are assigned
in copyWithZone:

The first object in Figure 2 (page 37) represents a Product instance in memory. The value in refCount
indicates that the instance has been retained three times. The second object is a copy of the Product
instance produced with NSCopyObject. Its refCount value matches the original. The third object
represents the copy returned from copyWithZone: after refCount is correctly initialized. After
copyWithZone: creates the copy with NSCopyObject, it assigns the value 1 to the refCount instance
variable. The sender of copyWithZone: implicitly retains the copy and is responsible for releasing it.

Copying Mutable Versus Immutable Objects

Where the concept “immutable vs. mutable” applies to an object, NSCopying produces immutable
copies whether the original is immutable or not. Immutable classes can implement NSCopying very
efficiently. Since immutable objects don’t change, there is no need to duplicate them. Instead, NSCopying
can be implemented to retain the original. For example, copyWithZone: for an immutable string
class can be implemented in the following way.

- (id)copyWithZone:(NSZone *)zone {
return [self retain];

}

Use the NSMutableCopying protocol to make mutable copies of an object. The object itself does not
need to be mutable to support mutable copying. The protocol declares the method
mutableCopyWithZone:. Mutable copying is commonly invoked with the convenience NSObject
method mutableCopy, which invokes mutableCopyWithZone: with the default zone.

Copying Mutable Versus Immutable Objects 37
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Implementing Object Copy



38 Copying Mutable Versus Immutable Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Implementing Object Copy



A number of Core Foundation and Cocoa instances can simply be type-cast to each other, such as
CFString and NSString objects. This document explains how to manage Core Foundation objects in
Cocoa. See “Object Ownership and Disposal” (page 9) for general information on object ownership.

Important: This article describes using Cocoa and Core Foundation in a managed memory environment.
The semantics are different if you are using garbage collection—see Garbage Collection Programming
Guide.

Core Foundation's memory allocation policy is that functions with “Copy” or “Create” in their name
return values the caller needs to release; all other functions return values you should not release.

In Cocoa, objects created with “alloc”, “copy” , or “new” functions or methods need to be released
by the caller.

The conventions used by both Core Foundation and Cocoa are very similar, and because the
allocation/retain/release implementations are compatible, equivalent functions and methods from
each environment can be used in an intermixed fashion. So,

NSString *str = [[NSString alloc] initWithCharacters: ...];
...
[str release];

is equivalent to

CFStringRef str = CFStringCreateWithCharacters(...);
...
CFRelease(str);

and

NSString *str = (NSString *)CFStringCreateWithCharacters(...);
...
[str release];

and

NSString *str = (NSString *)CFStringCreateWithCharacters(...);
...
[str autorelease];

39
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Memory Management of Core Foundation
Objects in Cocoa



As these code samples show, once created, the type-casted objects can be treated as Cocoa or Core
Foundation and look “native” in each environment.

It has been observed that a larger percentage of Core Foundation functions tend to be “Create” or
“Copy” functions when compared to Cocoa’s “alloc”, “copy”, or “new” functions and methods, so
it is important to remember to release or autorelease Core Foundation-created objects if appropriate.

Additional information about working with Core Foundation and Carbon data types can be found
in the Interchangeable Data Types section of Carbon-Cocoa Integration Guide.

40
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Memory Management of Core Foundation Objects in Cocoa



Zones are page-aligned areas of memory that hold the objects and data allocated by an application.
Each zone contains a private memory heap, with its own free list and pool of memory pages. The
system assigns each application a “default” zone initially and applications can create additional zones
later. The use of additional zones has both advantages and disadvantages and should be considered
with great care. In most circumstances, using the default zone is faster and more efficient than creating
a separate zone.

Because zones maintain their own pool of memory, creating new zones increases the memory footprint
of your application. However, this increased memory footprint can yield performance advantages in
other areas. For example, allocating a group of related objects in the same zone co-locates those objects
in the same area of memory. If a page fault occurs when trying to access one of the objects, loading
the page brings in all of the related objects, which could significantly reduce the number of future
page faults.

Zones are represented in Cocoa by the opaque data type NSZone.

Creating and Managing Zones

Creating a zone for your application is not required since the system creates a default zone for you
automatically. In fact, creating zones is generally the exception to the rule and should only be used
in situations where the need for better performance or memory efficiency outweighs the overhead
of maintaining a zone. Most of your memory allocations will otherwise occur in your application’s
default zone.

To create a new zone, you use the NSCreateZone function. This function uses the system zone allocation
routines to set aside an area of memory for your zone. When you call this function, you specify the
initial size of the zone and the amount by which to grow the zone. If you attempt to allocate memory
beyond the size of your zone, the system automatically expands the zone by the amount you indicate
in the second parameter. Thus, if you allocate memory for a contiguous block of structures, you can
grow the memory by the exact size of the structure. The following example allocates an 8K block of
memory and specifies that the block should grow by 4K when more space is needed.

NSZone* tempZone = NSCreateZone(8192, 4096, YES);

Creating and Managing Zones 41
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Memory Zones



The Foundation Kit defines several functions for setting and getting the name of a zone and for finding
existing zones. You can use the NSZoneSetName function to assign a name to a zone and the NSZoneName
function to retrieve that name later. The NSZoneFromPointer function takes a pointer to a block of
memory and returns the memory zone in which the block was allocated.

To destroy a zone completely, you must use the system level function malloc_destroy_zone. However,
destroying a zone that still contains referenced objects can cause severe problems in your application.
Before you destroy a zone, you should make absolutely sure that it does not contain any referenced
objects or memory blocks. You should never destroy the default zone assigned to your application.

Allocating Memory in Zones

To allocate Cocoa objects in a zone, use the allocWithZone: class method of NSObject. This method
allocates memory for your object in the zone you specify and returns the object pointer to you. The
alloc method also allocates memory in a zone, the default zone in that case, and is equivalent to
calling allocWithZone: with a parameter of nil. To release an object, you use the same release and
autorelease methods you would normally use.

Note: Although the allocWithZone: method lets you specify a zone in which to allocate the object,
the provided zone is only a suggestion. The object’s implementation may ignore the zone if it chooses
to.

In addition to allocating Cocoa objects in zones, you can allocate your own custom data structures
using functions defined in Foundation Kit. You might use these functions to allocate memory for a
C-type data structure or to optimize the storage implementation of one of your classes. The Foundation
Kit function names and behaviors are based on routines from the standard C library but include
support for allocating memory in zones.

To allocate a block of memory, use the NSZoneMalloc function. This function allocates a memory
block of a fixed size and returns a basic pointer for you to use. If you want to allocate a block of
contiguous memory, use the NSZoneCalloc function instead. You can resize a pointer block using
the NSZoneRealloc function and deallocate a block using NSZoneFree.

42 Allocating Memory in Zones
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Memory Zones



At various points in a Cocoa application’s runtime life, one or more nib files are loaded and the objects
they contain are unarchived. Who is responsible for releasing those objects when they are no longer
needed?

Let’s begin by briefly reviewing what’s in an nib file. When you open a nib file in Interface Builder,
the items you see in the Instances pane of the nib file window are known as top-level objects (see
Figure 1). Some of these items, such as File’s Owner and First Responder, have special significance;
they function as proxies or aliases that confer a certain status on true objects. For example, the File’s
Owner instance represents an object external to the nib file that is considered its owner; it’s usually
(but not necessarily) the object that loads the nib file. Other instances in a nib file window are the root
objects of object graphs, such as windows, panels, and menus. And yet other instances can be without
graph dependencies, such as mediating controllers used for bindings or custom controller proxies
used for making target-action and outlet connections. When a nib file is loaded and its objects
unarchived, all top-level objects are assigned a reference count of one.

Figure 1 Top-level objects in a nib file

Note: For more on nib files and their contents, see Resource Programming Guide and the section on
object archives and nib files in “The Core Application Architecture" of Cocoa Fundamentals Guide.

The File’s Owner of a nib file is typically responsible for releasing the top-level objects in a nib file as
well as any non-object resources created by the objects in the nib. The release of the root object of an
object graph sets in motion the release of all dependent objects. The File’s Owner of an application’s
main nib file (which contains the application menu and possibly other items) is the global application
object NSApp. However, when a Cocoa application terminates, top level objects in the main nib do not
automatically get dealloc messages just because NSApp is being deallocated. In other words, even in
the main nib file, you have to manage the memory of top-level objects.

The Application Kit offers a couple of features that help to ensure that nib objects are properly released:

 ■ NSWindow objects (including panels) have an isReleasedWhenClosed attribute, which if set to
YES instructs the window to release itself (and consequently all dependent objects in its view
hierarchy) when it is closed. In Interface Builder, you set this option through the “Release when
closed” check box in the Attributes pane of the inspector.

 ■ If the File’s Owner of an nib file is an NSWindowController object (the default in document nibs
in document-based applications), it automatically disposes of the windows it manages.

43
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Memory Management of Nib Objects



So in general, you are responsible for releasing top-level objects in a nib file. But in practice, if your
nib file’s owner is an instance of NSWindowController it releases the top-level object for you. If one
of your objects loads the nib itself (and the owner is not an instance of NSWindowController), you
can define outlets to each top-level object so that at the appropriate time you can release them using
those references. If you don’t want to have outlets to all top-level objects, you can use the
instantiateNibWithOwner:topLevelObjects: method of the NSNib class to get an array of a nib
file’s top-level objects.

The issue of responsibility for nib object disposal becomes clearer when you consider the various
kinds of applications. Most Cocoa applications are of two kinds: single window applications and
document-based applications. In both cases, memory management of nib objects is automatically
handled for you to some degree. With single-window applications, objects in the main nib file persist
through the runtime life of the application and are released when the application terminates; however,
dealloc is not guaranteed to be automatically invoked on objects from the main nib file when an
application terminates. In document-based applications each document window is managed by an
NSWindowController object which handles memory management for a document nib file.

Some applications may have a more complex arrangement of nib files and top-level objects. For
example, an application could have multiple nib file with multiple window controllers, loadable
panels, and inspectors. But in most of these cases, if you use NSWindowController objects to manage
windows and panels or if you set the “released when closed” window attribute, memory management
is largely taken care of. If you decide against using window controllers and do not want to set the
“release when closed” attribute, you should explicitly free your nib file’s windows and other top-level
objects when the window is closed. Also, if your application uses an inspector panel, (after being
lazily loaded) the panel should typically persist throughout the lifetime of the application—there is
no need to dispose of the inspector and its resources.

44
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Memory Management of Nib Objects



This document summarizes the rules for memory management in Objective-C.

This is the fundamental rule:

 ■ You take ownership of an object if you create it using a method whose name begins with “alloc”
or “new” or contains “copy” (for example, alloc, newObject, or mutableCopy), or if you send it
a retain message. You are responsible for relinquishing ownership of objects you own using
release or autorelease. Any other time you receive an object, you must not release it.

The following rules derive from the fundamental rule, or cope with edge cases:

 ■ As a corollary of the fundamental rule, if you need to store a received object as a property in an
instance variable, you must retain or copy it. (This is not true for weak references, described at
“Weak References to Objects” (page 14), but these are typically rare.)

 ■ A received object is normally guaranteed to remain valid within the method it was received in
(exceptions include multithreaded applications and some Distributed Objects situations, although
you must also take care if you modify the object from which you received the object). That method
may also safely return the object to its invoker.

Use retain in combination with release or autorelease when needed to prevent an object
from being invalidated as a normal side-effect of a message (see “Validity of Shared Objects” (page
13)).

 ■ autorelease just means “send a release message later” (for some definition of later—see
“Autorelease Pools” (page 25)).

For a more complete discussion of memory management in Objective-C see “Object Ownership and
Disposal” (page 9).

45
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Memory Management Rules



46
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Memory Management Rules



This table describes the changes to Memory Management Programming Guide for Cocoa.

NotesDate

Corrected a broken link to the "Carbon-Cocoa Integration Guide."2008-02-08

Corrected typographical errors.2007-12-11

Updated for Mac OS X v10.5. Corrected minor typographical errors.2007-10-31

Corrected minor typographical errors.2007-06-06

Corrected typographical errors.2007-05-03

Added article on memory management of nib files.2007-01-08

Added a note about dealloc and application termination.2006-06-28

Reorganized articles in this document to improve flow; updated "Object
Ownership and Disposal."

2006-05-23

Clarified discussion of object ownership and dealloc. Moved discussion
of accessor methods to a separate article.

2006-03-08

Corrected typographical errors. Updated title from "Memory Management."2006-01-10

Changed Related Topics links and updated topic introduction.2004-08-31

Expanded description of what gets released when an autorelease pool is
released to include both explicitly and implicitly autoreleased objects in
“Autorelease Pools” (page 25).

2003-06-06

Added link in “Memory Management of Core Foundation Objects in
Cocoa” (page 39) to Integrating Carbon and Cocoa in Your Application.

2003-06-03

Revision history was added to existing topic. It will be used to record
changes to the content of the topic.

2002-11-12

47
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History



48
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History


	Memory Management Programming Guide for Cocoa
	Contents
	Figures and Listings
	Introduction
	Object Ownership and Disposal
	Object Ownership Policy
	Creating Objects Using Convenience Methods
	Objects Returned by Reference

	Delayed Release
	Owning Objects
	Validity of Shared Objects
	Retain Cycles
	Weak References to Objects

	Deallocating an Object
	Summary

	Practical Memory Management
	Basics
	Simple Examples
	Using Accessor Methods
	Implementing a reset method
	Common Mistakes
	Accessor not used
	Instance leaks
	Instance you don’t own is sent release


	Cases which Often Cause Confusion

	Allocating and Initializing Objects
	Objective-C Creation and Initialization Methods
	How to Allocate and Initialize Objective-C Objects

	Autorelease Pools
	Overview of Autorelease Pools
	Autorelease Pools in Non-AppKit Programs
	Autorelease Pools and Threads
	Scope of Autorelease Pools and Implications of Nested Autorelease Pools
	Guaranteeing the Foundation Ownership Policy

	Accessor Methods
	Value Objects and Copying

	Implementing Object Copy
	Deep Versus Shallow Copies
	Independent Copy
	Inheriting NSCopying from the Superclass

	Using the “alloc, init...” Approach
	Using NSCopyObject()
	Copying Mutable Versus Immutable Objects

	Memory Management of Core Foundation Objects in Cocoa
	Using Memory Zones
	Creating and Managing Zones
	Allocating Memory in Zones

	Memory Management of Nib Objects
	Memory Management Rules
	Revision History


