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In Mac OS X version 10.5, the Cocoa programming environment is enhanced with automatic memory
management—commonly known as "garbage collection." The "traditional" system of memory
management (using retain, release, and autorelease pools) coexists both for binary compatibility with
existing programs as well as for those that choose to not make use of the new facility. Garbage collection
is hence an opt-in system.

These documents describe the complete garbage collection system provided for Cocoa, the functionality
provided, and some of the issues that arise if you adopt this technology.

Who Should Read This Document?

If you are developing applications using Cocoa, you should read at least “Garbage Collection for
Cocoa Essentials” (page 11) to gain an understanding of the garbage collection system. It is strongly
recommended that you also read “Adopting Garbage Collection” (page 17) and “Implementing a
finalize Method” (page 31). You are expected to already understand the Objective-C language (see
The Objective-C 2.0 Programming Language) and to have some familiarity with Cocoa.

Organization of This Document

The following articles explain the problems the garbage collection system addresses, the solutions it
provides, its basic functionality, and common tasks you might perform:

 ■ “Garbage Collection for Cocoa Essentials” (page 11) describes the essential details of the garbage
collection system for Cocoa. At a minimum, you should you read this article.

 ■ “Adopting Garbage Collection” (page 17) describes issues related to adopting garbage collection.

 ■ “Architecture” (page 19) describes the design goals and architecture of the technology, and the
benefits you get from using it.

 ■ “Design Patterns” (page 25) describes Cocoa programming patterns that are new and deprecated
with garbage collection.

 ■ “Implementing a finalize Method” (page 31) describes how to correctly implement a finalize
method.

Who Should Read This Document? 9
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 ■ “Using Core Foundation with Garbage Collection” (page 35) describes how to use Core Foundation
objects with garbage collection.

 ■ “Garbage Collection API” (page 41) provides a summary of API used in garbage collection.

See Also

The following documents provide information about related aspects of Cocoa and the Objective-C
language.

 ■ The Objective-C 2.0 Programming Language describes object-oriented programming and describes
the Objective-C programming language.

 ■ Objective-C 2.0 Runtime Reference describes the data structures and functions of the Objective-C
runtime support library.

 ■ Memory Management Programming Guide for Cocoa addresses Cocoa's object-ownership policy for
manual memory management and related techniques for creating, copying, retaining, and
disposing of objects.

 ■ Garbage Collection Release Notes provides information about the current release of the technology.

10 See Also
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This article describes the basic concepts and features of the garbage collection technology that are
essential for a Cocoa developer to understand. It does not provide a complete treatment of the
subject—you are expected to read the other articles in this document to gain a deeper understanding.
In particular, you should also read “Implementing a finalize Method” (page 31).

Basic Concepts

When you use the Cocoa garbage collection technology, it manages your application's memory for
you. All Cocoa objects are garbage collected. There is no need to explicitly manage objects' retain
counts to ensure that they remain "live" or that the memory they take up is reclaimed when they are
no longer used. For example, with garbage collection enabled the following method (although
inefficient!) does not result in any memory leaks:

- (NSString *)fullName {
NSMutableString *mString = [[NSMutableString alloc] init];
if ([self firstName] != nil)

[mString appendString:[self firstName]];
if (([self firstName] != nil) && ([self lastName] != nil))

[mString appendString:@" "];
if ([self lastName] != nil)

[mString appendString:[self lastName]];
return [mString copy];

}

How the Garbage Collector Works

The garbage collector's goal is to form a set of reachable objects that constitute the "valid" objects in
your application, and then to discard any others. When a collection is initiated, the collector initializes
the set with all well-known root objects. The collector then recursively follows strong references from
these objects to other objects, and adds these to the set. At the end of the process, all objects that are
not reachable through a chain of strong references to objects in the root set are designated as "garbage."
At the end of the collection sequence, the unreachable objects are finalized and immediately afterwards
the memory they occupy is recovered.

Basic Concepts 11
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Root Set and Reference Types

The initial root set of objects is comprised of global variables, stack variables, and objects with external
references. These objects are never considered as garbage. The root set is comprised of all objects
reachable from root objects and all possible references found by examining the call stacks of every
Cocoa thread.

As implied earlier, there are two types of reference between objects—strong and weak. All references
to objects (id, NSObject *, and so on) are considered strong by default. Objects have strong behavior,
but so can other memory blocks and Core Foundation-style objects. You can create a weak reference
using the keyword __weak, or by adding objects to a collection configured to use weak references
(see NSHashTable and NSMapTable).

A strong reference is visible to the collector, a weak reference is not. A non-root object is only live if
it can be reached via strong references from a root object. An important corollary is that simply because
you have a strong reference to an object does not mean that that object will survive garbage collection,
as illustrated in the following figure.

BC

NSApp

A DDD

GGGHHHXXX

EEE

FFF

There is a strong reference from a global object (the shared NSApplication instance) to object A,
which in turn has a strong reference to B, which has a strong reference to C. All of these objects are
therefore valid. There is a weak reference from B to X, therefore X will be treated as garbage.

There is a strong reference from D to E, but since neither has a strong reference from a root object,
both are treated as garbage. As an extension of the latter case, objects F, G, and H illustrate a retain
cycle. In managed memory applications this may be a problem (see Object Ownership and Disposal);
in a garbage collected application, since none of these objects has a strong reference from a root object
all are treated as garbage and all are properly reclaimed.

12 Basic Concepts
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Enabling Garbage Collection

Garbage collection is an optional feature; you need to set an appropriate flag for the compiler to mark
code as being GC capable. The compiler will then use garbage collector write-barrier assignment
primitives within the Objective-C runtime. An application marked GC capable will be started by the
runtime with garbage collection enabled.

There are three possible compiler settings:

 ■ No flag. This means that GC is not supported.

 ■ -fobjc-gc-only This means that only GC logic is present.

Code compiled as GC Required is presumed to not use traditional Cocoa retain/release methods
and may not be loaded into an application that is not running with garbage collection enabled.

 ■ -fobjc-gc This means that both GC and retain/release logic is present.

Code compiled as GC Supported is presumed to also contain traditional retain/release method
logic and can be loaded into any application.

You can choose an option most easily by selecting the appropriate build setting in Xcode, as illustrated
in Figure 1 (page 14).

Enabling Garbage Collection 13
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Figure 1 Xcode code generation build settings for garbage collection

Design Patterns to Use, and to Avoid

Don't try to optimize details in advance.

Finalizing objects

In a garbage-collected application, you should ideally ensure that any external resources held by an
object (such as open file descriptors) are closed prior to an object’s destruction. If you do need to
perform some operations just before an object is reclaimed, you should do so in a finalize method.
For more details, see “Implementing a finalize Method” (page 31). Note that you should never invoke
finalize directly (except to invoke super’s implementation in the finalize method itself).

14 Design Patterns to Use, and to Avoid
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Garbage Collection for Cocoa Essentials



Don't manage scarce resources with object lifecycle

If an object holds on to a scarce resource, such as a file descriptor, you should indicate that the resource
is no longer required using an invalidation method. You should not wait until the object is collected
and release the resource in finalize. For more details, again see “Implementing a finalize
Method” (page 31).

Nib files

Since the collector follows strong references from root objects, and treats as garbage all objects that
cannot be reached from a root object, you must ensure that there are strong references to all top-level
objects in a nib file (including for example, stand-alone controllers)—otherwise they will be collected.
You can create a strong reference simply by adding an outlet to the File's Owner and connecting it to
a top-level object. (In practice this is rarely likely to be an issue.)

Triggering garbage collection

In a standard application, Cocoa automatically hints at a suitable point in the event cycle that collection
may be appropriate. The collector then initiates collection if memory load exceeds a threshold. Typically
this should be sufficient to provide good performance. Sometimes, however, you may provide a hint
to the collector that collection may be warranted—for example after a loop in which you create a large
number of temporary objects. You can do this using the NSGarbageCollector method
collectIfNeeded.

// Create temporary objects
NSGarbageCollector *collector = [NSGarbageCollector defaultCollector];
[collector collectIfNeeded];

Threading

Garbage collection is performed on its own thread—a thread is explicitly registered with the collector
if it calls NSThread's currentThread method (or if it uses an autorelease pool). There is no other
explicit API for registering a pthread with the collector.

Prune caches

The collector scans memory to find reachable objects, so by definition keeps the working set hot. You
should therefore make sure you get rid of objects you don't need.

Avoid allocating large numbers of short-lived objects

Object allocation is no less expensive an operation in a garbage collected environment than in a
managed memory environment. You should avoid creating large numbers of (typically short-lived)
objects.

Design Patterns to Use, and to Avoid 15
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Compile GC-Only

In general, you should not try to design your application to be dual-mode (that is, to support both
garbage collection and managed memory environments). The exception is if you are developing
frameworks and you expect clients to operate in either mode.

C++

In general, C++ code should remain unchanged: you can assume memory allocated from standard
malloc zone. If you need to ensure the longevity of Objective-C objects, you should use CFRetain
instead of retain.

16 Design Patterns to Use, and to Avoid
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Garbage collection provides trade-offs that you need to consider when choosing whether to adopt
the technology.

Potentially, any application that uses a runloop may use garbage collection, however there are issues
you should consider when deciding whether it is appropriate for your application. Garbage collection
provides several advantages when compared with manually managed memory; there are also, though,
some disadvantages. The benefits tend to be greater if the application is threaded and has a reasonably
large working set; they tend to be less if the latency of memory recovery is important. Moreover,
managed memory and garbage collected applications use a number of different idioms and patterns.

For information relating to garbage collection in the current release of Mac OS X, see Garbage Collection
Release Notes.

Note: The process of migrating a large project that uses managed memory can be difficult and
error-prone—some patterns that work correctly with manual memory management will be incorrect
after translation. In general, it is recommended that you use garbage collection only in new projects.
If you already have a well-architected, well-understood application that uses managed memory, there
should be little reason to migrate to GC.

Advantages and Disadvantages

Garbage collection offers some significant advantages over a managed memory environment:

 ■ Most obviously, it typically simplifies the task of managing memory in your application and
obviates most of the memory-related problems that occur, such as retain cycles.

 ■ It reduces the amount of code you have to write and maintain, and may make some aspects of
development easier—for example, zeroing weak references facilitate use of objects that may
disappear.

 ■ It usually makes it easier to write multi-threaded code: you do not have to use locks to ensure
the atomicity of accessor methods and you do not have to deal with per-thread autorelease pools.
(Note that although garbage collection simplifies some aspects of multi-threaded programming,
it does not automatically make your application thread-safe. For more about thread-safe application
development, see Threading Programming Guide.)

Garbage collection does though have some disadvantages:

Advantages and Disadvantages 17
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 ■ The application’s working set may be larger.

 ■ Performance may not be as good as if you hand-optimize memory management (for more details,
see “Performance” (page 18)).

 ■ A common design pattern whereby resources are tied to the lifetime of objects does not work
effectively under GC.

 ■ You must ensure that for any object you want to be long-lived you maintain a chain of strong
references to it from a root object, or resort to reference counting for that object.

Performance

The performance characteristics of an application that uses garbage collection are different from those
of an application that uses managed memory. In some areas, a garbage-collected application may
have better performance, for example:

 ■ Multi-threaded applications may perform better with garbage collection because of better thread
support;

 ■ Accessor methods are much more efficient (you can implement them using simple assignment
with no locks);

 ■ Your application is unlikely to have leaks or stale references.

In other areas, however, performance may be worse:

 ■ Allocation may be a significant consideration if your application allocates large numbers of
(possibly short-lived) objects.

 ■ The working set may be larger—in particular, the overall heap can grow larger due to allocation
outpacing collection.

 ■ The collector scans heap memory to find reachable objects, so by definition keeps the working
set hot. This may be a significant consideration, particularly if your application uses a large cache.

 ■ The collector runs in a secondary thread. As such, a GC-enabled application will in almost all
cases consume more CPU cycles than a managed memory application.

When analyzing the performance of a garbage-collected application, you typically need to take a
longer-term approach than with a managed memory application. When assessing its memory footprint,
it may be appropriate to measure after the application has been running for several minutes since the
memory footprint may be greater shortly after launch. The profiling tools you can use include heap,
gdb flags, and the Instruments application.

18 Performance
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Garbage collection simplifies memory management and makes it easier to ensure thread and exception
safety. It also avoids common problems such as retain cycles, and simplifies some code patterns (such
as accessor methods in Cocoa). Together these make applications more robust.

Motivation and Design Goals

Garbage collection systems were first developed around 1960 and have undergone much research
and refinement since then. Most garbage collection systems restrict direct access to memory pointers.
This has the benefit that you never have to be concerned about memory errors—either leaks due to
cyclic data structures or due to the use of a dangling pointer. The Objective-C language, however,
has no such restrictions on pointer use. Although a few garbage collection systems have been developed
for use with the C language, their assumptions and performance make them unsuitable for use with
Cocoa objects. Cocoa therefore uses a custom non-copying conservative garbage collection system
that in normal use brings safety and a simplified programming model.

Restricted pointer access-languages allow for fully-automatic garbage collection. If you program
purely in objects, then garbage collection in Cocoa can also be fully automatic. Beyond programming
purely in objects, however, the collector also provides access to a new collection-based memory
allocation system. Core Foundation objects are also garbage collected, but you must follow specific
rules to allocate and dispose of them properly. In order to understand how you can take advantage
of these features, you need to understand some of the architectural details described in this document.

The immediate benefits of garbage collection can be highlighted using a simple class definition and
implementation. The Widget class is declared as follows:

@interface Widget : NSObject
{
@private

Widget *nextWidget;
}
- (Widget *)nextWidget;
- (void)setNextWidget:(Widget *)aWidget;
@end

Listing 1 (page 20) illustrates a full-featured, thread-safe, traditional Cocoa implementation of the
Widget class.

Motivation and Design Goals 19
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Architecture



Listing 1 Full-featured implementation of the Widget class

@implementation Widget
- (Widget *)nextWidget
{

@synchronized(self)
{

return [[nextWidget retain] autorelease];
}

}

- (void)setNextWidget:(Widget *)aWidget
{

@synchronized(self)
{

if (nextWidget != aWidget)
{

[nextWidget release];
nextWidget = [aWidget retain];

}
}

}
@end

There are many other permutations that trade increased speed for less safety (see Basic Accessor
Methods).

If you do not implement memory management correctly, your application will suffer from memory
leaks that bloat its memory footprint, or even worse, from dangling pointers which lead to crashes.
Retain cycles, or circular references, can cause significant problems in traditional Cocoa programming
(see, for example, Object Ownership and Disposal). Consider the following trivial example.

Widget *widget1 = [[Widget alloc] init];
Widget *widget2 = [[Widget alloc] init];
[widget1 setNextWidget:widget2];
[widget2 setNextWidget:widget1];

If you use manual memory management and the accessor methods described earlier, this sets up a
retain cycle between the two widgets and is likely to lead to a memory leak.

If you use a garbage collector, the implementation of the Widget class is much simpler.

@implementation Widget
- (Widget *)nextWidget
{

return nextWidget;
}

- (void)setNextWidget:(Widget *)aWidget
{

nextWidget = aWidget;
}
@end

Retain cycles are not a problem if you use garbage collection: as soon as both objects become
unreachable, they are marked for deletion.

20 Motivation and Design Goals
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High-Level Architecture

The garbage collector is implemented as a reusable library (called “auto”). The Objective-C runtime
is a client of the library.

Application Kit

Foundation Core Foundation

Objective-C Runtime

auto

TerminalTextEdit Xcode

The collector does not scan all areas of memory (see Figure 1 (page 22)). The stack and global variables
are always scanned; the malloc zone is never scanned. The collector provides a special area of memory
known as the auto zone from which all garbage-collected blocks of memory are dispensed. You can
use the collector to allocate blocks of memory in the auto zone—these blocks are then managed by
the collector.

How the Garbage Collector Works

The mechanism of garbage collection is fairly simple to describe although the implementation is more
complicated. The garbage collector's goal is to form a set of reachable objects that constitute the "valid"
objects in your application. When a collection is initiated, the collector initializes the set with all known
root objects such as stack-allocated and global variables (for example, the NSApplication shared
instance). The collector then recursively follows strong references from these objects to other objects,
and adds these to the set. All objects that are not reachable through a chain of strong references to
objects in the root set are designated as “garbage”. At the end of the collection sequence, the garbage
objects are finalized and immediately afterwards the memory they occupy is recovered.
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Figure 1 Scanned and unscanned memory
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There are several points of note regarding the collector:

 ■ The collector is conservative—it never compacts the heap by moving blocks of memory and
updating pointers. Once allocated, an object always stays at its original memory location.

 ■ The collector is both request and demand driven. The Cocoa implementation makes requests at
appropriate times. You can also programmatically request consideration of a garbage collection
cycle, and if a memory threshold has been exceeded a collection is run automatically.

 ■ The collector runs on its own thread in the application. At no time are all threads stopped for a
collection cycle, and each thread is stopped for as short a time as is possible. It is possible for
threads requesting collector actions to block during a critical section on the collector thread's part.
Only threads that have directly or indirectly performed an [NSThread self] operation are subject
to garbage collection.

 ■ The collector is generational (see “Write Barriers” (page 23))—most collections are very fast and
recover significant amounts of recently-allocated memory, but not all possible memory. Full
collections are also fast and do collect all possible memory, but are run less frequently, at times
unlikely to impact user event processing, and may be aborted in the presence of new user events.

22 High-Level Architecture
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Closed vs. Open Systems

Most garbage collection systems are "closed"—that is, the language, compiler, and runtime collaborate
to be able to identify the location of every pointer reference to a collectable block of memory. This
allows such collectors to reallocate and copy blocks of memory and update each and every referring
pointer to reflect the new address. The movement has the beneficial effect of compacting memory
and eliminating memory wastage due to fragmentation.

In contrast to closed collection systems, "open" systems allow pointers to garbage collected blocks to
reside anywhere, and in particular where pointers reside in stack frames as local variables. Such
garbage collectors are deemed "conservative." Their design point is often that since programmers can
spread pointers to any and all kinds of memory, then all memory must be scanned to determine
unreachable (garbage) blocks. This leads to frequent long collection times to minimize memory use.
Memory collection is instead often delayed, leading to large memory use which, if it induces paging,
can lead to very long pauses. As a result, conservative garbage collection schemes are not widely
used.

Cocoa's garbage collector strikes a balance between being "closed" and "open" by knowing exactly
where pointers to scanned blocks are wherever it can, by easily tracking "external" references, and
being "conservative" only where it must. By tracking the allocation age of blocks, and using write
barriers, the Cocoa collector also implements partial (“incremental” or “generational”) collections
which scan an even smaller amount of the heap. This eliminates the need for the collector to have to
scan all of memory seeking global references and provides a significant performance advantage over
traditional conservative collectors.

Write Barriers

In most applications, objects are typically short-lived—they are created on a temporary basis, consulted,
and never used again. Cocoa's Garbage Collector is generational—it divides allocated memory into
"generations" and prioritizes recovery of memory from the newest generations. This means that the
memory from short-lived objects can often be reclaimed quickly and easily.

In order to recover these objects, the compiler introduces what is known as a write-barrier whenever
it detects that an object pointer is stored (“assigned”) into another object, or more completely, whenever
a pointer to a garbage collected block of memory is stored into either another garbage collected block
(or into global memory).

What Does a Write-Barrier Do?

Within the collector, memory is split into several generations—old and newer. The write-barrier
simply marks a "clump" of objects when a "newer" object is stored somewhere within an older. The
number of "clumps" of older generation objects that get marked is usually very low. When an
incremental garbage collection is requested, the stack and the objects within marked clumps are
examined recursively for "newer" objects that have been attached and are now reachable. These
"newer" objects are then marked "older" (promoted). All unreachable "newer" objects are reclaimed
after any necessary finalization.

Write Barriers 23
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A generational collection does not discover any older generation objects that are no longer reachable
and so, over time, the oldest generation needs to be examined with a "full" collection. In principle
there can be many generations—a generational collection in the midst of work with a lot of temporary
objects will promote the temporary objects to an older generation where they could be recovered
without resorting to a full collection. The Cocoa collector runs with 2 to 8 generations.

Write-Barrier Implementation

Consider the following example.

static id LastLink;
@interface Link2 : NSObject {

id theLink;
}
- link;
- (void)setLink:newLink;
@end

@implementation Link2
- link {

return theLink;
}
- (void)setLink: newLink
{

theLink = newLink;
LastLink = newLink;

}
@end

Behind the scenes the compiler calls an intrinsic helper function to deal with the assignment and
when garbage collection is enabled the helper function calls into the collector to note the store of a
pointer. Effectively the two assignments within setLink: are rewritten by the compiler to be:

objc_assignIvar(newLink, self, offsetof(theLink));
objc_assignGlobal(newlink, &LastLink);

These helper functions are almost without cost when not running with garbage collection—there is
only a two instruction penalty. At runtime, if garbage collection is enabled these routines are rewritten
at startup to include the write-barrier logic.

24 Write Barriers
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Because of the different idioms and patterns that are used in managed memory and garbage collected
applications, some patterns that work correctly with manual memory management are not suitable
in a garbage collected environment. Moreover, there are new patterns to adopt. This article describes
differences between the two environments.

Old Patterns

Garbage collection introduces some new runtime properties regarding memory lifetime, and as such
certain existing programming practices no longer work. The following sections discuss patterns that
have been observed in existing Cocoa code and which do not translate well to a garbage collected
environment, and describe alternate patterns.

Reference counting

If you use garbage collection, the methods that are used to implement the manual reference counting
system (retain, release, dealloc, autorelease, and retainCount) have no effect—the Objective-C
messenger short circuits their dispatch. As a result, overriding release and dealloc is not supported
when garbage collection is enabled—this makes obsolete some object caching patterns.

Note, however, that CFRetain and CFRelease do still have an effect in Core Foundation objects. See
also “Adopting Garbage Collection” (page 17).

dealloc

When you use “classic” memory management, you typically implement a dealloc method that
performs “clean-up” operations such as releasing instance variables, unregistering the object from a
notification center, and closing resources. In a garbage-collected application, the analog of the dealloc
method is finalize.

In a garbage-collected application, there is obviously no need to release instance variables, however
you should ideally ensure that other resources are closed prior to an object’s destruction. For more
details, see “Implementing a finalize Method” (page 31).
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Although there are conceptual similarities between dealloc and finalize, there are some constraints
on the implementation of finalize that do not apply to dealloc. In particular, you must ensure that
there are no ordering issues.

Occasionally, within a completely captive subgraph, significant work is done in dealloc methods as
they do recursive releases and subsequent deallocations. Many applications that use managed memory
make use of the deterministic ordering of object deallocation. If one object A retains another object
B, A can guarantee that during its dealloc method the B is valid (object B’s dealloc method has not
been called) and so send B messages and otherwise interact with it.

If you use garbage collection, it is possible for A and B to become invalid at the same time. Moreover,
there is no ordering of the invocation of objects’ finalize methods. If object A has a strong reference
to object B, and object A and object B are both reclaimed during a given collection cycle, then there
is no guarantee that object A’s finalizemethod will be invoked first. Object A cannot therefore make
any assumptions about the state of object B in its finalize method. Or, conversely, object B must be
prepared to be messaged after its finalize method is invoked.

Since finalize messages may be sent in any order, existing code that relies on side effects during
dealloc methods will need to introduce new methods to achieve a similar graph walking effect.

Enumerations

If you use weak collections, the count of the collection may change during an iteration loop. This will
obviously lead to problems if you to iterate over the contents of the collection directly using a for
loop. On the other hand, enumeration objects can cause resurrection of the collection or its objects if
all are found to be garbage at the same time—this is particularly likely to occur if you use a pattern
where you have a collection of helper objects and on finalization they perform cleanup work (see
“Avoiding Resurrection” (page 32)).

To avoid these problems, you should use the NSFastEnumeration protocol (see Fast Enumeration)
to iterate over the contents of a collection.

Resource wrapper objects

A common pattern is to associate an object with an external resource—for example, a file
descriptor—that needs "management" or other state that the object coordinates, often across several
threads. The typical implementation is to use a non-retaining CFDictionary coupled with a global
lock at the lookup and deallocation stages. This pattern does not work when you use garbage collection
because there is a timing window during finalization where the object is no longer reachable from a
root, yet is still in the dictionary and can be resurrected.

The solution is to use an NSMapTable object. A map table can hold keys, values, or both weakly, and
when the objects are discovered unreachable the table is immediately cleared of such entries before
any finalization is performed. This prevents resurrection of the object being finalized. For resources
created and destroyed within the application, such as file descriptors, this is an adequate solution.
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Leaked but not lost objects

Cocoa used to have several classes of object (fonts and images) where a global table of strong keys
held weak value references to the objects. The object would remove itself from the global table on
dealloc. But it would also be the case that there would be some universally known objects that never
went away, and the pattern was to allocate these at startup using [[alloc ] init] and simply place
them in the weak table. The reference count for these objects would never decrease and so they would
live indefinitely. Under garbage collection, in the absence of a strong reference these universal objects
are collected. The solution is to use [[NSGarbageCollector defaultCollector]
disableCollectorForPointer:object] on these objects before placing them in the weak table.

Delegate references

If you do not use garbage collection, references to delegates are typically “weak” (in that the delegate
is not retained). This is to avoid retain cycle problems. With garbage collection, retain cycles do not
pose a problem, so there is no need to declare references to delegates as __weak.

Memory zones

You cannot allocate objects in separate zones—all Cocoa objects must be allocated in a single managed
heap. If your application is running in garbage collection mode, the zone parameter in
NSAllocateObject is ignored. With garbage collection enabled, [NSObject allocWithZone:zone]
calls NSAllocateObject(cls, extra, zone), which in turn calls objc_allocate_object(cls,
extra).

You can allocate memory such that is is scanned using NSAllocateCollectable or
NSReallocateCollectable.

New Patterns

There are two new patterns you can adopt in a garbage collected environment, cycles and zeroing
weak references.

Cycles

A problem when using manually managed memory is that it is possible to create retain cycles. If two
objects retain each other, and you do not have a reference to either, then they will remain valid for
the lifetime of your application—constituting a memory leak (see, for example, Object Ownership
and Disposal).

With garbage collection, retain cycles are not a problem. Since the collector traces strong reference
from root objects, even if two objects have strong references to each other they can be collected if
neither has a reference from a root object.
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Weak and zeroing weak references

Sometimes you need a reference to an object but do not want to form a strong relationship to that
object to prevent its being collected if it has no other references. For example, a notification center
should not form strong relationships to registered observers, otherwise it artificially prolongs the
lifetime of those objects indefinitely. You can specify a weak reference—one that the collector does
not follow—using the keyword __weak.

NSMapTable, NSHashTable, and NSPointerArray provide collection objects that have the option of
maintaining zeroing weak references to their elements. If an element is collected, the reference from
the collection object is simply removed.

Managing opaque pointers

There are several Cocoa methods and Core Foundation functions that have as one parameter an
opaque pointer (void *). In a garbage collected environment, the general policy is that the lifetime
of any object passed as a void * should be either managed by the callbacks or known to be safe.

For example, in Cocoa, there are a several “asynchronous” methods that take a delegate object, a
selector, and a context and send the selector to the delegate object at some later point passing the
context as an argument. These APIs typically declare the context as a void * and represent it as such
in their internal state. A common example of this kind of code flow is seen with sheets, especially
sheets that are created by a temporary controller object as illustrated in the following code fragment:

@implementation MySheetController
- (IBAction)showDoSomethingSheetAction:(id)action
{

id contextObject = /* ... */;
// code omitted

// point A
[NSApp beginSheet:sheetWindow

modalForWindow:window
modalDelegate:delegate
didEndSelector:@selector(sheetDidEnd:returnCode:contextInfo:);
contextInfo:(void *)contextObject];

}
@end

@implementation MySheetControllerDelegate
- (void)sheetDidEnd:(NSWindow *)sheet returnCode:(int)returnCode contextInfo:(void
*)contextInfo
{

// point B
id contextObject = (id)context;

[contextObject doSomething];
// ...

}
@end
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The problem is that in between points A and B, a garbage collection can occur and—if there are no
strong references to it from a root object—the context object can be collected. (This example is somewhat
simplified, but in a complex application it's a situation that can happen when the only strong reference
to the object passed via the context parameter is on the stack—which for a sheet will be unwound all
the way to the main run loop.)

The solution is to use a CFRetain/CFRelease pair as the value is put into/taken out of the void *
parameter. This ensures that the object that will be used as context won't be collected until after it's
no longer used (see “Memory Management Semantics” (page 36)).

@implementation MySheetController
- (IBAction)showDoSomethingSheetAction:(id)action
{

id contextObject = /* ... */;
// code omitted

// point A
CFRetain(contextObject);

[NSApp beginSheet:sheetWindow
modalForWindow:window
modalDelegate:delegate
didEndSelector:@selector(sheetDidEnd:returnCode:contextInfo:);
contextInfo:(void *)contextObject];

}
@end

@implementation MySheetControllerDelegate
- (void)sheetDidEnd:(NSWindow *)sheet returnCode:(int)returnCode contextInfo:(void
*)contextInfo
{

// point B
id contextObject = (id)contextInfo;
// code omitted
[contextObject doSomething];
CFRelease(contextObject);

}
@end
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This article describes how to correctly and efficiently implement a finalize method.

Design Patterns

Object finalization occurs at most once during the lifetime of an object—when it is collected. When
more than one object is finalized, the order in which they are sent a finalizemessage is indeterminate,
even if there are references between them. If you send messages between objects when they are being
finalized, you must take extreme care to avoid anomalous behavior. To ease correctness concerns
alone, it is best not to attempt any work in a finalizer. Moreover, however, time spent in object
finalization incurs application overhead. Your design goal should therefore be to not have a finalizer
at all. If you must use a finalizer, you should keep it as short as possible, and reference as few other
objects as possible in its implementation.

Efficiency

Memory recovery time is typically not the best time to reclaim resources or do clean-up work (such
as releasing instance variables and closing resources). Your finalize code is part of the garbage
collector’s critical path, and so should be kept to a minimum if not eliminated entirely. You should
implement invalidation code that is distinct from your deallocation or finalization code and invoke
it when appropriate.

To make your finalize method as efficient as possible, you should typically not do any of the
following:

 ■ Disconnect object graphs

 ■ Set instance variables to nil

 ■ For view classes, remove self from the existing view hierarchy

 ■ Remove self as an observer of a notification center (in a garbage collected environment,
notification centers use zeroing weak references).
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You should typically use NSMakeCollectable() on Core Foundation objects rather than relying on
CFRelease() in finalize—this way collectable Core Foundation objects are actually collected sooner.
(Collectable objects are collected with the source object whereas released objects are simply marked
as being eligible for collection—these must wait for the next collection cycle to be collected.)

Messaging Other Objects

No objects are deallocated until all finalizers are complete (otherwise, no finalizer could use any other
object anywhere, including objects like NSString that don’t have a finalizer) so you can access
already-finalized objects—but only in other finalizers. Within a finalize method, therefore, you
should reference as few other objects as possible. You can't necessarily know what other objects might
have a reference to your instance, or whether they might message your instance from their finalizer,
you must therefore code defensively to try to keep your instance as fully functional as is possible to
support messages it might receive after finalization. Similarly, since you don't know in what order
objects will be finalized, it may be that objects you message during a finalizemethod have themselves
already been cleared.

For example, some objects use collection objects (arrays, dictionaries, or sets) to hold other related
objects. Sometimes during finalization the collection is accessed and messages sent to each and every
contained object. If the collection itself had been finalized and had discharged its objects, the algorithm
would fail on that account alone. Similarly, if any of the objects in the collection can no longer respond
correctly to the requested message after it is finalized, the algorithm again will fail.

Avoiding Resurrection

Some Cocoa objects make assumptions about how many references are kept about themselves and
where, for example by implementing the release method to trap the transition to a known value
(typically of 0) and then distributing cleanup work among their holders. In a garbage-collected
environment, this pattern can lead to “resurrection” of an object—that is, it becomes valid again after
having been finalized.

Resurrection occurs when a finalize method stores self in a non-garbage object. The resurrected
object becomes a zombie. It logs all messages that are sent to it, but it is otherwise useless. It is
eventually deallocated when it becomes garbage again (when its container is collected). You should
consider resurrection to be a programming error.

The following example illustrates a trivial, albeit unlikely, case:

- (void)finalize
{

[NSArray arrayWithObject:self];
}

Managing an External Resource

The following example illustrates what happens if an object must manage an external resource—in
this case, a Logger object is given a file descriptor to use for writing logging messages. File descriptors
are not inexhaustible, and so the object provides a close method to relinquish the resource. In an
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ideal scenario, you should have closed the file descriptor before the finalize method is called. If,
however—as is implied in this example—you have a shared or singleton object, it may not be possible
to actively manage the object's resources, and you will have to rely on finalize to clean up. To ensure
that the file descriptor is not kept beyond the object's lifetime, therefore, the close method is invoked
in the finalize method.

@interface Logger : NSObject
{

int fileDescriptor;
}
- initWithFileDescriptor:(int)aFileDescriptor;
- (void)close;
- (void)log:(NSString *)message;
@end

@implementation Logger
- initWithFileDescriptor:(int)aFileDescriptor
{

fileDescriptor = aFileDescriptor;
return self;

}

- (void)close
{

if (fileDescriptor != -1) close(fileDescriptor);
fileDescriptor = -1;

}

- (void)finalize
{

[self close];
[super finalize];

}

- (void)log:(NSString *)message
{

// Implementation continues ...
}
@end

The runtime invokes the finalize method after it determines that a logger object can no longer be
reached. The message is sent once and it is an error for a finalizing object to have a new reference
created to it in a reachable object. In other words, the object may not be revived (resurrected) once
found to be unreachable.

A problem emerges even in this simple example. What would happen if a Logger object were created
to track some other “larger” object, for example a window or a drawer or a network connection? This
larger object might offer a logging API that enabled notations to be delivered to the file descriptor to
mark progress. It might be natural to then have in this larger object one last message in its finalizer:

- (void)finalize
{

[logger log:@"saying goodbye!"];
[logger close];
[super finalize];

}
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Unfortunately the results would not always match your expectation, because the final message would
sometimes appear and sometimes not. This is because the larger object and the logger object would
both be found to be garbage in the same collection cycle and both would be put on the finalizer list
in some order, and that order would require that the logger be after the larger object in order for the
file descriptor resource to still be open.
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Sometimes you want to integrate Core Foundation objects into your application. If your application
uses garbage collection, you must then ensure that you manage the memory for these objects correctly.

Core Foundation provides C-based opaque types for a number of data-types—including strings and
dates and numbers and collections—that have counterparts in Cocoa Objective-C classes (for example,
CFString corresponds to NSString). There are also Core Foundation opaque objects that don't have
a direct Objective-C counterpart, yet also respond to basic Objective-C messages (such as hash and
isEqual:). These opaque data types can be treated by Cocoa as objects—for example, they can be
stored in collections. Since these objects are nearly indistinguishable from those created directly in
Objective-C, they are also allocated and collected by the garbage collector, although they do require
some special handling at time of creation.

Allocation

The collection system supports multiple memory zones. When you create a Core Foundation object,
you specify the zone using the allocator parameter. In a garbage collected environment, the standard
default Core Foundation allocator (which normally points to the default malloc zone) is aimed at one
that uses the garbage collector system—so by default all Core Foundation objects are allocated by the
collector. The following list summarizes the behavior of the allocators in a garbage collected
environment:

 ■ NULL, kCFAllocatorDefault, and kCFAllocatorSystemDefault specify allocation from the
garbage collection zone.

By default, all Core Foundation objects are allocated in the garbage collection zone.

 ■ kCFAllocatorMallocZone specifies allocation from default malloc zone.

 ■ kCFAllocatorMalloc specifies allocation explicitly with malloc() and deallocation with free().
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Memory Management Semantics

Because you can use Core Foundation objects in applications that use garbage collection or managed
memory, the Core Foundation memory management functions CFRetain() and CFRelease() are
required to interoperate correctly in either environment. As a policy, they function in the same way
in both—they respectively increment and decrement the reference counts of Core Foundation objects.

In a garbage collected environment, the CFRetain and CFRelease implementations are redirected to
also use the garbage collectors reference counting mechanism. The collector does not collect any object
with a non-zero count (or any object reachable from such an object—Core Foundation objects with a
retain count greater than zero act as root objects). Within C based code, therefore, CFRetain and
CFRelease still perform the same logical functions that they always do—it’s just that the memory
source and the location of the reference count bits is different.

Note: You can take advantage of this feature if you have to store a reference into non-scanned memory
and cannot (and should not) guarantee that a valid reference exists elsewhere. This is similar to
creating a JNI Global Reference to hold onto a Java object from C code. See also, though,
disableCollectorForPointer:.

By default, therefore, in a garbage-collected environment you manage Core Foundation objects exactly
as you would in a managed memory environment (as described in Memory Management Programming
Guide for Core Foundation > Ownership Policy). If you create or copy a Core Foundation object, you
must subsequently release it when you’re finished with it. If you want to keep hold of a Core
Foundation object, you must retain it and again subsequently release it when you’re finished with it.

The difference between the garbage-collected environment and managed memory environment is in
the timing of the object’s deallocation. In a managed memory environment, when the object’s retain
count drops to 0 it is deallocated immediately; in a garbage-collected environment, what happens
when a Core Foundation object's retain count transitions from 1 to 0 depends on where it resides in
memory:

 ■ If the object is in the malloc zone, it is deallocated immediately.

 ■ If the object is in the garbage collected zone, the last CFRelease() does not immediately free the
object, it simply makes it eligible to be reclaimed by the collector when it is discovered to be
unreachable—that is, once all strong references to it are gone. Thus as long as the object is still
referenced from an object-type instance variable (that hasn't been marked as__weak), a register,
the stack, or a global variable, it will not be collected.

This behavioral difference gives you some additional flexibility in a garbage collected environment.
In a non-garbage-collected application you call CFRelease() only when you want to relinquish
ownership; in a garbage-collected application you may call CFRelease() immediately after allocation
and the object will be collected when appropriate. Better still, though, you can use CFMakeCollectable
instead of CFRelease. CFMakeCollectable calls CFRelease, but has two supplementary features:
first, it ensures that the object was allocated in the scanned zone; second, it’s a no-op if you use
managed memory. (In addition, it more clearly signals your intent.) For example:

CFStringRef myCFString = CFMakeCollectable(CFStringCreate...(...));

You can also use NSMakeCollectable. This is exactly the same as CFMakeCollectable except that it
returns an id—you can use this to avoid the need for casting, as illustrated in the following example:
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id myNSString = NSMakeCollectable(CFStringCreate...(...));

You could imagine the implementation of CFMakeCollectable as being similar to this:

id CFMakeCollectable(CFTypeRef object)
{

if (object != NULL)
{

CFAllocatorRef allocator = CFGetAllocator(object);
if ((allocator != kCFAllocatorDefault) && (allocator !=

kCFAllocatorSystemDefault))
{

// register an error
}
CFRelease([(id)object retain]);

}
return object;

}

Similarly, you could define a hypothetical MakeUncollectable() function as follows:

id MakeUncollectable(id object)
{

[CFRetain(object) release];
return object;

}

This makes a currently collectable object uncollectable by giving it a retain count of 1.

There are three important corollaries here:

1. A single CFMakeCollectable (and hence NSMakeCollectable) balances a single CFRetain. For
example, absent any additional memory management code, the following code fragment will
result in myCFString “leaking”:

CFStringRef myCFString = CFMakeCollectable(CFStringCreate...(...));
CFRetain(myCFString);

You must balance the CFRetain with a further CFMakeCollectable.

2. Because CFMakeCollectable is a no-op in a managed memory environment, if you use it with
mixed mode code you do need to use CFRelease when running without garbage collection.

CFStringRef myCFString = CFMakeCollectable(CFStringCreate...(...));
// do interesting things with myCFString...
if ([NSGarbageCollector defaultCollector] == NULL) CFRelease(myCFString);

3. It is important to appreciate the asymmetry between Core Foundation and Cocoa—where retain,
release, and autorelease are no-ops. If, for example, you have balanced a CFCreate… with
release or autorelease, you will leak the object in a garbage collected environment:

NSString *myString = (NSString *)CFStringCreate...(...);
// do interesting things with myString...
[myString release]; // leaked in a garbage collected environment

Conversely, using CFRelease to release an object you have previously retained using retain
will result in a reference count underflow error.
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Core Foundation Variables

Instance variables

The garbage collector can only track a reference if it knows that it should be treated as an object. If
you declare a Core Foundation structure as an instance variable, the compiler regards it only as an
opaque structure pointer, not as an object. Assignments will not therefore by default generate the
write-barriers required by the collector, the compiler needs some explicit information—this is also
true for Core Foundation variables declared globally.

To indicate that a Core Foundation structure should be treated as a collectable object, you use the
__strong keyword. This denotes that scanned memory references are to be stored into a given variable
and that write-barriers should be issued.

@interface MyClass
__strong CFDateRef myDate;
@end

@implementation MyClass

- (id)init
{

if (self = [super init])
{

myDate = CFMakeCollectable(CFDateCreate(NULL, 0));
}
return self;

}

/*
There is no need for a finalize method here
*/
@end

If you want to see when write barriers are generated, you can ask the compiler to emit a warning at
every point it issues a write-barrier by using the -fobjc-assign-warning flag.

Local Variables

If you allocate a Core Foundation object locally, you can use CFRetain and CFRelease just as you
would in a non-garbage collected application, for example:

- (void)doSomethingInterestingWithALocalCFDate
{

CFDateRef epoch = CFDateCreate(NULL, 0);
// ...
CFRelease(epoch);

}

If you return the value, however, to ensure that the returned value is eligible for collection you must
balance the Create with NSMakeCollectable (or CFMakeCollectable) as illustrated in the following
example:
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- (id)anInterestingDate
{

CFDateRef epoch = CFDateCreate(NULL, 0);
// ...
return NSMakeCollectable(epoch);

}

If you are writing mixed-mode code (code that has to run in both a garbage-collected and managed
memory environments), you can use NSMakeCollectable (or CFMakeCollectable) to bring Core
Foundation objects into the NSObject world as shown in this example (remember that
CFMakeCollectable is a no-op in a managed memory environment and autorelease is a no-op in
a garbage collected environment):

- (NSString *)languageForString:(NSString *)string
{

CFStringTokenizerRef tokenizer;
// create and configure the tokenizer...
CFStringRef language = CFStringTokenizerCopyCurrentTokenAttribute(tokenizer,

kCFStringTokenizerAttributeLanguage);
CFRelease(tokenizer);
return [NSMakeCollectable(language) autorelease];

}

Core Foundation Collection Semantics

Collections (such as arrays and dictionaries) allocated in the scanned zone use strong references
instead of reference counting (this is important for good garbage collection performance).

__strong CFMutableArrayRef myList;

Core Foundation collection objects such as dictionaries have different properties than their Objective-C
Cocoa counterparts. In particular, they allow for non-retained entries which need not be objects but
may be other pointers or even values of pointer size. This allows you, for example, to use integers as
keys in a dictionary object. To accomplish this you pass NULL callbacks at collection object creation.
This has the effect of just copying the pointer sized value into the collection object with no additional
processing.

When the values are in fact objects they are stored as non-retained (weak) pointers, and if those objects
are somehow reclaimed, what is stored becomes dangling references. Although unsafe, this practice
is correctly supported when running under GC. Both the standard retaining as well as the
non-retaining, weak (NULL) callbacks are supported correctly.
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This article summarizes the classes, methods, and functions associated with garbage collection.

Foundation

Foundation provides several classes to help support design patterns associated with garbage collection,
and the behavior of several methods in existing classes is changed when running under garbage
collection.

In prior releases of Mac OS X, NSHashTable and NSMapTable were opaque structure pointers that
were configured and used with C function callout structures. C functions were used to access void
* elements. In Mac OS X v10.5, these structures have been minimally converted to objects and exactly
preserve the behaviors of prior releases. In addition, however, the NSHashTable and NSMapTable
objects feature Objective-C-based API patterned after NSSet and NSDictionary respectively. Both
classes offer the ability to configure the tables using zero-ing weak pointer memory when running
under garbage collection (GC), as well as the ability to copy elements when input, or alternatively to
have the objects be treated using pointer identity and hashing. The void * C functions, as well as the
new methods, work on both kinds of table.

NSObject

NSObject adds the finalize method; other methods listed below are ignored completely or have
changed semantics when used in a garbage collected environment.

+allocWithZone:(NSZone *)zone
The zone argument is ignored.

- (id)autorelease
This method is a no-op.

-(void)dealloc
This method is a no-op.

-(void)finalize
Conceptually similar to the traditional dealloc—for more details, see “Implementing a finalize
Method” (page 31).
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- (oneway void)release
This method is a no-op.

- (id)retain
This method is a no-op.

- (NSUInteger)retainCount
The return value is undefined.

NSAutoreleasePool

NSAutoreleasePool adds the drain method.

-(void)drain
Triggers garbage collection if memory allocated since last collection is greater than the current
threshold. (This method ultimately calls objc_collect_if_needed().)

NSGarbageCollector

NSGarbageCollector provides an object-oriented abstraction of the garbage collector. You use
defaultCollector to return the collector (this returns nil in a managed memory environment).

You can use disableCollectorForPointer: to ensure that memory at a given address will not be
scanned—for example, to create new root objects. You balance this with
enableCollectorForPointer:, which makes collectable memory that was previously marked as
uncollectible.

Collection Classes

NSHashTable is a new collection class like NSMutableSet but which (amongst other features) provides
the ability to create weak references to its contents.

NSMapTable is a new collection class like NSMutableDictionary but which (amongst other features)
provides the ability to create weak references to its contents.

NSPointerArray is a new collection class like NSArray but it can also hold NULL values, which can
be inserted or extracted (and contribute to the object’s count). Also unlike traditional arrays, you can
set the count of the array directly. Under Garbage Collection and using a zeroing weak memory
configuration, NULL values appear when elements are collected. A pointer array uses an instance of
NSPointerFunctions to define callout functions appropriate for managing a pointer reference held
somewhere else.

NSValue

NSValue has a method to wrap a non-retained object, valueWithNonretainedObject:.
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+(id)valueWithNonRetainedObject:(id)anObject
Creates a new NSValue object containing a weak reference to anObject. If anObject is garbage
collected, the reference is set to nil.

NSThread

NSThread provides additional functionality for currentThread.

Returns the thread object representing the current thread of execution.currentThread

Foundation Functions

Various functions have been added.

void *NSAllocateCollectable(NSUInteger size, NSUInteger options)
Allocates size bytes of memory using the given option.

id NSAllocateObject(Class aClass, NSUInteger extraBytes, NSZone *zone);
The zone parameter is ignored by NSAllocateObject in GC mode.

id NSMakeCollectable(CFTypeRef cf)
This function is a wrapper for CFMakeCollectable (see “Core Foundation Functions” (page
44)), but its return type is id, avoiding the need to cast if you assign the value to a Cocoa object.

This function may be useful when returning Core Foundation objects in code that must support
both garbage-collected and non-garbage-collected environments, as illustrated in the following
example.

- (NSString *)description
{

CFStringRef myCFString = CFStringCreate...(...);
return [NSMakeCollectable(myCFString) autorelease];

}

Core Foundation

The behavior of several functions is different under garbage collection. The Core Foundation collection
types (such as CFSet, CFMutableSet, CFDictionary, and CFArray) correctly support the standard
“retaining” callbacks under GC in a way that allows cycles to be recovered, unlike non-GC behavior.
Note also that NULL callbacks will weakly reference objects, but are not done with zeroing memory—you
still need to remove objects from the collection. If you need zeroing weak object behavior, use
NSHashTable or NSMapTable instead.

CFMutableArray

Changed semantics when creating with NULL arguments.
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CFArrayCreateMutable(NULL, 0, NULL)
References contents weakly, does not zero. You must remove objects from the array.

CFMutableDictionary

Changed semantics when creating with NULL arguments.

CFDictionaryCreateMutable(NULL, 0, NULL, NULL)
References contents weakly, does not zero. You must remove objects from the dictionary.

Core Foundation Functions

New and changed functions.

CFTypeRef CFMakeCollectable(CFTypeRef anObject)
Checks that anObject is a Core Foundation object allocated in the scanned memory zone and,
in a garbage collected environment, releases it. This function is a no-op in a managed memory
environment.

void CFRelease(CFTypeRef anObject)
Decrements the retain count for anObject. If anObject was allocated in a garbage collected
zone, then if its retain count is reduced to zero it is not actually deallocated until next collection.
If anObject was allocated in a malloc zone, then if its retain count is reduced to zero it is
deallocated immediately. Thus for GC objects, CFRelease() no longer has immediate
side-effects.

Language Support

New features and functions.

__strong
Specifies a reference that is visible to (followed by) the garbage collector (see “How the Garbage
Collector Works” (page 11)).

__strong modifies an instance variable or struct field declaration to inform the compiler to
unconditionally issue a write-barrier to write to memory. __strong is implicitly part of any
declaration of an Objective-C object reference type. You must use it explicitly if you need to
use Core Foundation types, void *, or other non-object references (__strong modifies pointer
assignments, not scalar assignments).

__strong essentially modifies all levels of indirection of a pointer to use write-barriers, except
when the final indirection produces a non-pointer l-value. When you declare a variable, you
can put __strong on either side of the *; in the following example, all the variable declarations
are equivalent:

@interface MyClass {
__strong int *ptr1;
int * __strong ptr2;
int __strong * ptr3;

}
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__weak
Specifies a reference that is not visible to (followed by) the garbage collector (see “How the
Garbage Collector Works” (page 11)).

__weak informs the compiler to use a zeroing weak reference for instance variables. All writes
are done using a weak write-barrier, and all reads use a weak read-barrier. This allows you to
reference another object without necessarily preventing the object from being garbage collected.
If the object is collected, then your instance variable will be cleared always prior to that object's
being finalized. Thus, if both objects are being finalized at the same time, you can guarantee
that the object holding a weak reference will see the value nil in its __weak instance variable.

objc_allocate_object(cls, extra)
Allocates a new object.

id objc_msgSend(id theReceiver, SEL theSelector, ...)
Ignores these selectors: retain, release, autorelease, retainCount, dealloc. This is faster
than messaging nil.

void objc_collect_if_needed(int options)
Triggers garbage collection if memory allocated since last collection is greater than the current
threshold. Pass OBJC_GENERATIONAL to run generational collection.

This function must only be called from the main thread.

Runtime Information

New environment variable.

OBJC_PRINT_GC
When debugging, you can perform a runtime check by setting the environment variable
OBJC_PRINT_GC=YES. This prints the GC state of each Objective-C image, and whether GC is
on or off for the process.
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This table describes the changes to Garbage Collection Programming Guide.

NotesDate

Corrected typographical errors.2008-03-11

Added an article to discuss integrating Core Foundation and garbage
collection.

2007-12-11

Corrected minor typographical errors.2007-10-31

Corrected minor typographical errors.2007-07-12

New document that describes the garbage collection system for Cocoa.Leopard WWDC
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