
Foundation Framework Reference
Core Services Layer: Foundation

2008-06-27

Apple Inc.
© 1997, 2008 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon,
Cocoa, eMac, Mac, Mac OS, Macintosh,
Objective-C, Pages, Safari, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder, iPhone, and Numbers are
trademarks of Apple Inc.

Adobe, Acrobat, and PostScript are
trademarks or registered trademarks of
Adobe Systems Incorporated in the U.S.
and/or other countries.

Intel and Intel Core are registered
trademarks of Intel Corportation or its
subsidiaries in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction The Foundation Framework 23

Introduction 24

Part I Classes 31

Chapter 1 NSArray Class Reference 33

Overview 34
Adopted Protocols 36
Tasks 36
Class Methods 40
Instance Methods 44

Chapter 2 NSAssertionHandler Class Reference 69

Overview 69
Tasks 70
Class Methods 70
Instance Methods 71

Chapter 3 NSAutoreleasePool Class Reference 73

Overview 73
Tasks 75
Class Methods 75
Instance Methods 76

Chapter 4 NSBundle Class Reference 79

Overview 79
Tasks 80
Class Methods 83
Instance Methods 88
Constants 105
Notifications 106

3
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Chapter 5 NSCachedURLResponse Class Reference 107

Overview 107
Tasks 108
Instance Methods 108
Constants 110

Chapter 6 NSCalendar Class Reference 113

Overview 113
Tasks 114
Class Methods 116
Instance Methods 117
Constants 127

Chapter 7 NSCharacterSet Class Reference 131

Overview 131
Adopted Protocols 132
Tasks 132
Class Methods 134
Instance Methods 143
Constants 145

Chapter 8 NSCoder Class Reference 147

Overview 147
Tasks 148
Instance Methods 151

Chapter 9 NSCondition Class Reference 169

Overview 169
Tasks 170
Instance Methods 171

Chapter 10 NSConditionLock Class Reference 175

Overview 175
Adopted Protocols 176
Tasks 176
Instance Methods 177

Chapter 11 NSCountedSet Class Reference 183

Overview 183

4
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Tasks 184
Instance Methods 185

Chapter 12 NSData Class Reference 189

Overview 189
Adopted Protocols 190
Tasks 190
Class Methods 192
Instance Methods 197
Constants 208

Chapter 13 NSDate Class Reference 209

Overview 209
Adopted Protocols 211
Tasks 211
Class Methods 213
Instance Methods 216
Constants 223

Chapter 14 NSDateComponents Class Reference 225

Overview 225
Tasks 226
Instance Methods 227
Constants 236

Chapter 15 NSDateFormatter Class Reference 237

Overview 237
Tasks 238
Class Methods 242
Instance Methods 243
Constants 272

Chapter 16 NSDecimalNumber Class Reference 275

Overview 275
Tasks 276
Class Methods 278
Instance Methods 283
Constants 292

5
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 17 NSDecimalNumberHandler Class Reference 295

Overview 295
Adopted Protocols 296
Tasks 296
Class Methods 296
Instance Methods 298

Chapter 18 NSDictionary Class Reference 299

Overview 299
Adopted Protocols 301
Tasks 302
Class Methods 305
Instance Methods 309

Chapter 19 NSDirectoryEnumerator Class Reference 331

Overview 331
Tasks 332
Instance Methods 332

Chapter 20 NSDistributedNotificationCenter Class Reference 335

Class at a Glance 335
Overview 336
Constants 337

Chapter 21 NSEnumerator Class Reference 339

Overview 339
Tasks 340
Instance Methods 340

Chapter 22 NSError Class Reference 343

Overview 343
Adopted Protocols 344
Tasks 344
Class Methods 345
Instance Methods 346
Constants 350

Chapter 23 NSException Class Reference 353

Overview 353

6
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Adopted Protocols 354
Tasks 354
Class Methods 355
Instance Methods 357
Constants 359

Chapter 24 NSFileHandle Class Reference 361

Overview 361
Tasks 362
Class Methods 364
Instance Methods 367
Constants 378
Notifications 379

Chapter 25 NSFileManager Class Reference 383

Overview 383
Tasks 384
Class Methods 388
Instance Methods 388
Delegate Methods 413
Constants 419

Chapter 26 NSFormatter Class Reference 427

Overview 427
Tasks 428
Instance Methods 429

Chapter 27 NSHTTPCookie Class Reference 435

Overview 435
Adopted Protocols 436
Tasks 436
Class Methods 437
Instance Methods 438
Constants 443

Chapter 28 NSHTTPCookieStorage Class Reference 447

Overview 447
Tasks 448
Class Methods 448
Instance Methods 449
Constants 452

7
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Notifications 452

Chapter 29 NSHTTPURLResponse Class Reference 455

Overview 455
Adopted Protocols 456
Tasks 456
Class Methods 456
Instance Methods 457

Chapter 30 NSIndexPath Class Reference 459

Overview 459
Adopted Protocols 460
Tasks 460
Class Methods 461
Instance Methods 462

Chapter 31 NSIndexSet Class Reference 467

Overview 467
Adopted Protocols 468
Tasks 468
Class Methods 470
Instance Methods 471

Chapter 32 NSInputStream Class Reference 481

Overview 481
Tasks 482
Class Methods 483
Instance Methods 484

Chapter 33 NSInvocation Class Reference 487

Overview 487
Adopted Protocols 488
Tasks 488
Class Methods 489
Instance Methods 490

Chapter 34 NSInvocationOperation Class Reference 497

Overview 497
Tasks 498
Instance Methods 498

8
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Constants 500

Chapter 35 NSKeyedArchiver Class Reference 501

Overview 501
Tasks 502
Class Methods 504
Instance Methods 506
Delegate Methods 513
Constants 515

Chapter 36 NSKeyedUnarchiver Class Reference 517

Overview 517
Tasks 518
Class Methods 520
Instance Methods 522
Delegate Methods 528
Constants 531

Chapter 37 NSLocale Class Reference 533

Overview 533
Tasks 534
Class Methods 535
Instance Methods 541
Constants 543
Notifications 546

Chapter 38 NSLock Class Reference 547

Overview 547
Adopted Protocols 548
Tasks 548
Instance Methods 548

Chapter 39 NSMachPort Class Reference 551

Overview 551
Tasks 552
Class Methods 552
Instance Methods 553
Delegate Methods 556
Constants 556

9
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 40 NSMessagePort Class Reference 559

Overview 559

Chapter 41 NSMethodSignature Class Reference 561

Overview 561
Tasks 562
Instance Methods 562

Chapter 42 NSMutableArray Class Reference 567

Overview 567
Tasks 568
Class Methods 570
Instance Methods 571

Chapter 43 NSMutableCharacterSet Class Reference 587

Overview 587
Tasks 588
Instance Methods 588

Chapter 44 NSMutableData Class Reference 593

Overview 593
Tasks 594
Class Methods 595
Instance Methods 596

Chapter 45 NSMutableDictionary Class Reference 603

Class at a Glance 603
Overview 604
Tasks 605
Class Methods 605
Instance Methods 606

Chapter 46 NSMutableIndexSet Class Reference 611

Overview 611
Tasks 612
Instance Methods 612

10
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 47 NSMutableSet Class Reference 617

Overview 617
Tasks 618
Class Methods 619
Instance Methods 619

Chapter 48 NSMutableString Class Reference 625

Overview 625
Tasks 626
Class Methods 626
Instance Methods 627

Chapter 49 NSMutableURLRequest Class Reference 633

Overview 633
Tasks 634
Instance Methods 634

Chapter 50 NSNetService Class Reference 641

Overview 641
Tasks 642
Class Methods 644
Instance Methods 645
Delegate Methods 654
Constants 658

Chapter 51 NSNetServiceBrowser Class Reference 661

Overview 661
Tasks 662
Instance Methods 663
Delegate Methods 667

Chapter 52 NSNotification Class Reference 673

Overview 673
Adopted Protocols 674
Tasks 674
Class Methods 675
Instance Methods 676

11
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 53 NSNotificationCenter Class Reference 679

Class at a Glance 679
Overview 681
Tasks 682
Class Methods 682
Instance Methods 683

Chapter 54 NSNotificationQueue Class Reference 687

Overview 687
Tasks 688
Class Methods 688
Instance Methods 689
Constants 691

Chapter 55 NSNull Class Reference 693

Overview 693
Adopted Protocols 693
Tasks 694
Class Methods 694

Chapter 56 NSNumber Class Reference 695

Overview 695
Tasks 696
Class Methods 699
Instance Methods 704

Chapter 57 NSNumberFormatter Class Reference 719

Overview 719
Tasks 720
Class Methods 727
Instance Methods 728
Constants 771

Chapter 58 NSObject Class Reference 777

Overview 777
Adopted Protocols 779
Tasks 779
Class Methods 783
Instance Methods 797

12
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 59 NSOperation Class Reference 815

Overview 815
Tasks 818
Instance Methods 819
Constants 826

Chapter 60 NSOperationQueue Class Reference 829

Overview 829
Tasks 830
Instance Methods 831
Constants 834

Chapter 61 NSOutputStream Class Reference 837

Overview 837
Tasks 838
Class Methods 839
Instance Methods 840

Chapter 62 NSPipe Class Reference 845

Overview 845
Tasks 846
Class Methods 846
Instance Methods 846

Chapter 63 NSPort Class Reference 849

Overview 849
Adopted Protocols 850
Tasks 850
Class Methods 852
Instance Methods 853
Delegate Methods 857
Notifications 857

Chapter 64 NSProcessInfo Class Reference 859

Overview 859
Tasks 860
Class Methods 861
Instance Methods 861
Constants 866

13
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 65 NSPropertyListSerialization Class Reference 869

Overview 869
Tasks 870
Class Methods 870
Constants 872

Chapter 66 NSProxy Class Reference 875

Overview 875
Adopted Protocols 876
Tasks 876
Class Methods 877
Instance Methods 879

Chapter 67 NSRecursiveLock Class Reference 883

Overview 883
Adopted Protocols 884
Tasks 884
Instance Methods 884

Chapter 68 NSRunLoop Class Reference 887

Overview 887
Tasks 888
Class Methods 889
Instance Methods 890
Constants 897

Chapter 69 NSScanner Class Reference 899

Overview 899
Adopted Protocols 900
Tasks 900
Class Methods 902
Instance Methods 903

Chapter 70 NSSet Class Reference 915

Overview 915
Adopted Protocols 917
Tasks 917
Class Methods 919
Instance Methods 923

14
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 71 NSSortDescriptor Class Reference 937

Overview 937
Adopted Protocols 938
Tasks 938
Instance Methods 939

Chapter 72 NSStream Class Reference 943

Overview 943
Tasks 945
Instance Methods 946
Delegate Methods 950
Constants 950

Chapter 73 NSString Class Reference 957

Overview 957
Adopted Protocols 960
Tasks 960
Class Methods 969
Instance Methods 977
Constants 1041

Chapter 74 NSThread Class Reference 1049

Overview 1049
Tasks 1050
Class Methods 1052
Instance Methods 1057
Notifications 1062

Chapter 75 NSTimer Class Reference 1065

Overview 1065
Tasks 1066
Class Methods 1067
Instance Methods 1069

Chapter 76 NSTimeZone Class Reference 1073

Overview 1073
Adopted Protocols 1074
Tasks 1074
Class Methods 1076
Instance Methods 1082

15
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Constants 1088
Notifications 1089

Chapter 77 NSURL Class Reference 1091

Overview 1091
Adopted Protocols 1092
Tasks 1093
Class Methods 1094
Instance Methods 1096
Constants 1104

Chapter 78 NSURLAuthenticationChallenge Class Reference 1105

Overview 1105
Tasks 1106
Instance Methods 1106

Chapter 79 NSURLCache Class Reference 1111

Overview 1111
Tasks 1112
Class Methods 1113
Instance Methods 1114

Chapter 80 NSURLConnection Class Reference 1119

Overview 1119
Tasks 1120
Class Methods 1122
Instance Methods 1124
Delegate Methods 1127

Chapter 81 NSURLCredential Class Reference 1133

Overview 1133
Adopted Protocols 1133
Tasks 1134
Class Methods 1134
Instance Methods 1135
Constants 1137

Chapter 82 NSURLCredentialStorage Class Reference 1139

Overview 1139
Tasks 1139

16
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Class Methods 1140
Instance Methods 1140
Notifications 1143

Chapter 83 NSURLProtectionSpace Class Reference 1145

Overview 1145
Adopted Protocols 1145
Tasks 1146
Instance Methods 1146
Constants 1150

Chapter 84 NSURLProtocol Class Reference 1153

Overview 1153
Tasks 1154
Class Methods 1155
Instance Methods 1159

Chapter 85 NSURLRequest Class Reference 1163

Overview 1163
Adopted Protocols 1164
Tasks 1164
Class Methods 1165
Instance Methods 1166
Constants 1170

Chapter 86 NSURLResponse Class Reference 1173

Overview 1173
Adopted Protocols 1174
Tasks 1174
Instance Methods 1174
Constants 1177

Chapter 87 NSUserDefaults Class Reference 1179

Overview 1179
Tasks 1180
Class Methods 1183
Instance Methods 1184
Constants 1200
Notifications 1200

17
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 88 NSValue Class Reference 1201

Overview 1201
Adopted Protocols 1202
Tasks 1202
Class Methods 1203
Instance Methods 1205

Chapter 89 NSXMLParser Class Reference 1209

Overview 1209
Tasks 1210
Instance Methods 1212
Delegate Methods 1219
Constants 1229

Part II Protocols 1243

Chapter 90 NSCoding Protocol Reference 1245

Overview 1245
Tasks 1246
Instance Methods 1246

Chapter 91 NSCopying Protocol Reference 1249

Overview 1249
Tasks 1250
Instance Methods 1250

Chapter 92 NSDecimalNumberBehaviors Protocol Reference 1251

Overview 1251
Tasks 1252
Instance Methods 1252
Constants 1254

Chapter 93 NSErrorRecoveryAttempting Protocol Reference 1257

Overview 1257
Tasks 1258
Instance Methods 1258

18
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 94 NSFastEnumeration Protocol Reference 1261

Overview 1261
Tasks 1262
Instance Methods 1262
Constants 1263

Chapter 95 NSKeyValueCoding Protocol Reference 1265

Overview 1265
Tasks 1266
Class Methods 1267
Instance Methods 1267
Constants 1278

Chapter 96 NSKeyValueObserving Protocol Reference 1281

Overview 1281
Tasks 1282
Class Methods 1283
Instance Methods 1284
Constants 1291

Chapter 97 NSLocking Protocol Reference 1297

Overview 1297
Tasks 1298
Instance Methods 1298

Chapter 98 NSMutableCopying Protocol Reference 1299

Overview 1299
Tasks 1300
Instance Methods 1300

Chapter 99 NSObject Protocol Reference 1301

Overview 1301
Tasks 1302
Instance Methods 1303

Chapter 100 NSURLAuthenticationChallengeSender Protocol Reference 1315

Overview 1315
Tasks 1316
Instance Methods 1316

19
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 101 NSURLProtocolClient Protocol Reference 1319

Overview 1319
Tasks 1319
Instance Methods 1320

Part III Functions 1325

Chapter 102 Foundation Functions Reference 1327

Overview 1327
Functions by Task 1327
Functions 1335

Part IV Data Types 1399

Chapter 103 Foundation Data Types Reference 1401

Overview 1401
Data Types 1401

Part V Constants 1411

Chapter 104 Foundation Constants Reference 1413

Overview 1413
Constants 1413

Document Revision History 1433

Index 1435

20
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures and Tables

Introduction The Foundation Framework 23

Figure I-1 Cocoa Objective-C Hierarchy for Foundation 26

Chapter 30 NSIndexPath Class Reference 459

Figure 30-1 Index path 1.4.3.2 460

Chapter 53 NSNotificationCenter Class Reference 679

Table 53-1 Types of dispatch table entries 680
Table 53-2 Example notification dispatch table 680

21
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

22
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

F I G U R E S A N D T A B L E S

Framework /System/Library/Frameworks/Foundation.framework

Header file directories /System/Library/Frameworks/Foundation.framework/Headers

Declared in: FoundationErrors.h
NSArray.h
NSAutoreleasePool.h
NSBundle.h
NSByteOrder.h
NSCalendar.h
NSCharacterSet.h
NSCoder.h
NSData.h
NSDate.h
NSDateFormatter.h
NSDecimal.h
NSDecimalNumber.h
NSDictionary.h
NSEnumerator.h
NSError.h
NSException.h
NSFileHandle.h
NSFileManager.h
NSFormatter.h
NSHTTPCookie.h
NSHTTPCookieStorage.h
NSIndexPath.h
NSIndexSet.h
NSInvocation.h
NSKeyValueCoding.h
NSKeyValueObserving.h
NSKeyedArchiver.h
NSLocale.h
NSLock.h
NSMethodSignature.h
NSNetServices.h
NSNotification.h
NSNotificationQueue.h
NSNull.h
NSNumberFormatter.h
NSObjCRuntime.h

23
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

NSObject.h
NSOperation.h
NSPathUtilities.h
NSPort.h
NSProcessInfo.h
NSPropertyList.h
NSProxy.h
NSRange.h
NSRunLoop.h
NSScanner.h
NSSet.h
NSSortDescriptor.h
NSStream.h
NSString.h
NSThread.h
NSTimeZone.h
NSTimer.h
NSURL.h
NSURLAuthenticationChallenge.h
NSURLCache.h
NSURLConnection.h
NSURLCredential.h
NSURLCredentialStorage.h
NSURLError.h
NSURLProtectionSpace.h
NSURLProtocol.h
NSURLRequest.h
NSURLResponse.h
NSUserDefaults.h
NSValue.h
NSXMLParser.h
NSZone.h

Important: This is a preliminary document for an API or technology in development. Although this
document has been reviewed for technical accuracy, it is not final. Apple is supplying this information
to help you plan for the adoption of the technologies and programming interfaces described herein.
This information is subject to change, and software implemented according to this document should
be tested with final operating system software and final documentation. Newer versions of this
document may be provided with future seeds of the API or technology. For information about updates
to this and other developer documentation, view the New & Updated sidebars in subsequent
documentation seeds.

Introduction

The Foundation framework defines a base layer of Objective-C classes. In addition to providing a set
of useful primitive object classes, it introduces several paradigms that define functionality not covered
by the Objective-C language. The Foundation framework is designed with these goals in mind:

24 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

 ■ Provide a small set of basic utility classes.

 ■ Make software development easier by introducing consistent conventions for things such as
deallocation.

 ■ Support Unicode strings, object persistence, and object distribution.

 ■ Provide a level of OS independence, to enhance portability.

The Foundation framework includes the root object class, classes representing basic data types such
as strings and byte arrays, collection classes for storing other objects, classes representing system
information such as dates, and classes representing communication ports. See Figure I-1 (page 26)
for a list of those classes that make up the Foundation framework.

The Foundation framework introduces several paradigms to avoid confusion in common situations,
and to introduce a level of consistency across class hierarchies. This consistency is done with some
standard policies, such as that for object ownership (that is, who is responsible for disposing of objects),
and with abstract classes like NSEnumerator. These new paradigms reduce the number of special and
exceptional cases in an API and allow you to code more efficiently by reusing the same mechanisms
with various kinds of objects.

Foundation Framework Classes

The Foundation class hierarchy is rooted in the Foundation framework’s NSObject class (see Figure
I-1 (page 26)). The remainder of the Foundation framework consists of several related groups of
classes as well as a few individual classes. Many of the groups form what are called class
clusters—abstract classes that work as umbrella interfaces to a versatile set of private subclasses.
NSString and NSMutableString, for example, act as brokers for instances of various private subclasses
optimized for different kinds of storage needs. Depending on the method you use to create a string,
an instance of the appropriate optimized class will be returned to you.

Introduction 25
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

Note: In the following class-hierarchy diagrams, blue-shaded areas include classes that are available
in Mac OS X and iPhone OS; gray-shaded areas include classes that are available in Mac OS X only.

Figure I-1 Cocoa Objective-C Hierarchy for Foundation

Value Objects

NSValue NSNumber

NSDate
NSDateComponents

NSCalendarDate

NSDecimalNumberHandler
NSLocale

NSDecimalNumber
NSTimeZone

NSData NSMutableData

NSNull

Collections

NSEnumerator NSDirectoryEnumerator

NSSet NSMutableSet NSCountedSet

NSDictionary NSMutableDictionary
NSArray NSMutableArray

Strings

NSFormatter NSDateFormatter
NSNumberFormatter

NSMutableStringNSString

NSMutableAttributedStringNSAttributedString

NSScanner

NSObject
NSValueTransformer

NSAffineTransform
NSCalendar

NSSortDescriptor

NSIndexSet
NSIndexPath

NSPointerArray
NSPointerFunctions

NSMutableIndexSet

XML
NSXMLDocument
NSXMLDTD
NSXMLDTDNode
NSXMLElement

NSExpression NSComparisonPredicate
NSCompoundPredicate

Predicates

NSMapTable

NSPredicate

NSHashTable

NSMutableCharacterSetNSCharacterSet

NSXMLNode
NSXMLParser

26 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

Operating-System Services

Interprocess Communication

NSHost
NSNetService
NSNetServiceBrowser
NSProcessInfo
NSRunLoop

File System
NSBundle
NSFileHandle
NSFileManager

NSPort
NSMachPort
NSMessagePort
NSSocketPort

NSPipe

NSTimer
NSUserDefaults

URL
NSCachedURLResponse
NSHTTPCookie

Locking/Threading
NSConditionLock
NSDistributedLock
NSLock
NSOperation
NSOperationQueue
NSRecursiveLock
NSTask
NSThread

NSHTTPCookieStorage
NSURL
NSURLAuthorizationChallenge
NSURLCache
NSURLConnection

NSURLProtocol
NSURLRequest
NSURLResponse

NSURLCredential
NSURLCredentialStorage
NSURLDownload
NSURLProtectionSpace

NSObject

NSError

NSMutableURLRequest
NSHTTPURLResponse

NSInvocationOperation

NSStream
NSInputStream
NSOutputStream

Objective-C Foundation Continued

NSSpellServer

NSMetadataItem
NSMetadataQuery
NSMetadataQueryAttributeValueTuple
NSMetadataQueryResultGroup

NSPortNameServer NSMachBootstrapServer
NSMessagePortNameServer
NSSocketPortNameServer

NSPortMessage

Introduction 27
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

NSProxy

Notifications
NSNotification
NSNotificationCenter
NSNotificationQueue

NSDistributedNotificationCenter

Archiving and Serialization
NSCoder
NSPropertyListSerialization

NSArchiver
NSKeyedArchiver
NSKeyedUnarchiver

NSUnarchiver

Objective-C Language Services

NSMethodSignature
NSInvocation

NSException
NSClassDescription
NSAutoreleasePool
NSAssertionHandler

Scripting
NSScriptClassDescription

NSAppleScript

NSScriptObjectSpecifier

NSScriptCommandDescription

NSPositionalSpecifier

NSScriptCoercionHandler

NSScriptCommand

NSCloneCommand
NSCloseCommand
NSCountCommand
NSCreateCommand
NSDeleteCommand
NSExistsCommand
NSGetCommand
NSMoveCommand
NSQuitCommand
NSSetCommand

NSScriptExecutionContext

NSScriptSuiteRegistry

NSIndexSpecifier
NSMiddleSpecifier
NSNameSpecifier
NSPropertySpecifier
NSRandomSpecifier
NSRangeSpecifier
NSRelativeSpecifier
NSUniqueIDSpecifier
NSWhoseSpecifier

NSScriptWhoseTest NSLogicalTest
NSSpecifierTest

NSAppleEventManager

NSAppleEventDescriptor

NSObject

Objective-C Foundation Continued

NSPortCoder

NSUndoManager

NSGarbageCollector

Distributed Objects

NSDistantObjectRequest
NSConnection

NSDistantObject
NSProtocolChecker

Many of these classes have closely related functionality:

 ■ Data storage. NSData and NSString provide object-oriented storage for arrays of bytes. NSValue
and NSNumber provide object-oriented storage for arrays of simple C data values. NSArray,
NSDictionary, and NSSet provide storage for Objective-C objects of any class.

 ■ Text and strings. NSCharacterSet represents various groupings of characters that are used by
the NSString and NSScanner classes. The NSString classes represent text strings and provide
methods for searching, combining, and comparing strings. An NSScanner object is used to scan
numbers and words from an NSString object.

 ■ Dates and times. The NSDate, NSTimeZone, and NSCalendar classes store times and dates and
represent calendrical information. They offer methods for calculating date and time differences.
Together with NSLocale, they provide methods for displaying dates and times in many formats,
and for adjusting times and dates based on location in the world.

28 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

 ■ Application coordination and timing. NSNotification, NSNotificationCenter, and
NSNotificationQueue provide systems that an object can use to notify all interested observers
of changes that occur. You can use an NSTimer object to send a message to another object at
specific intervals.

 ■ Object creation and disposal. NSAutoreleasePool is used to implement the delayed-release
feature of the Foundation framework.

 ■ Object distribution and persistence. The data that an object contains can be represented in an
architecture-independent way using NSPropertyListSerialization. The NSCoder and its
subclasses take this process a step further by allowing class information to be stored along with
the data. The resulting representations are used for archiving and for object distribution.

 ■ Operating-system services. Several classes are designed to insulate you from the idiosyncrasies
of various operating systems. NSFileManager provides a consistent interface for file operations
(creating, renaming, deleting, and so on). NSThread and NSProcessInfo let you create
multithreaded applications and query the environment in which an application runs.

 ■ URL loading system. A set of classes and protocols provide access to common Internet protocols.

Introduction 29
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

30 Introduction
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

The Foundation Framework

31
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I

Classes

32
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I

Classes

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSArray.h
Foundation/NSKeyValueCoding.h
Foundation/NSKeyValueObserving.h
Foundation/NSPathUtilities.h
Foundation/NSPredicate.h
Foundation/NSSortDescriptor.h

Companion guides: Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide
Property List Programming Guide for Cocoa
Predicate Programming Guide

33
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSArray and its subclass NSMutableArraymanage collections of objects called arrays. NSArray creates
static arrays, and NSMutableArray creates dynamic arrays.

The NSArray and NSMutableArray classes adopt the NSCopying and NSMutableCopying protocols,
making it convenient to convert an array of one type to the other.

NSArray and NSMutableArray are part of a class cluster, so arrays are not actual instances of the
NSArray or NSMutableArray classes but of one of their private subclasses. Although an array’s class
is private, its interface is public, as declared by these abstract superclasses, NSArray and
NSMutableArray.

NSArray’s two primitive methods—count (page 47) and objectAtIndex: (page 57)—provide the
basis for all other methods in its interface. The count method returns the number of elements in the
array; objectAtIndex: gives you access to the array elements by index, with index values starting
at 0.

The methods objectEnumerator (page 58) and reverseObjectEnumerator (page 60) also grant
sequential access to the elements of the array, differing only in the direction of travel through the
elements. These methods are provided so that arrays can be traversed in a manner similar to that
used for objects of other collection classes, such as NSDictionary. See the objectEnumeratormethod
description for a code excerpt that shows how to use these methods to access the elements of an array.
In Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

NSArray provides methods for querying the elements of the array. The indexOfObject: (page 50)
method searches the array for the object that matches its argument. To determine whether the search
is successful, each element of the array is sent an isEqual: (page 1306) message, as declared in the
NSObject protocol. Another method, indexOfObjectIdenticalTo: (page 51), is provided for the
less common case of determining whether a specific object is present in the array. The
indexOfObjectIdenticalTo: method tests each element in the array to see whether its id matches
that of the argument.

NSArray’s filteredArrayUsingPredicate:method allows you to create a new array from an existing
array filtered using a predicate (see Predicate Programming Guide).

NSArray’s makeObjectsPerformSelector: (page 56) and
makeObjectsPerformSelector:withObject: (page 57) methods let you send messages to all objects
in the array. To act on the array as a whole, a variety of other methods are defined. You can create a
sorted version of the array (sortedArrayUsingSelector: (page 64) and

34 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

sortedArrayUsingFunction:context: (page 62), extract a subset of the array
(subarrayWithRange: (page 64)), or concatenate the elements of an array of NSString objects into
a single string (componentsJoinedByString: (page 46)). In addition, you can compare two arrays
using the isEqualToArray: (page 56) and firstObjectCommonWithArray: (page 49) methods.
Finally, you can create new arrays that contain the objects in an existing array and one or more
additional objects with arrayByAddingObject: (page 45) and
arrayByAddingObjectsFromArray: (page 45).

Arrays maintain strong references to their contents—in a managed memory environment, each object
receives a retain message before its id is added to the array and a release message when it is
removed from the array or when the array is deallocated. If you want a collection with different object
ownership semantics, consider using CFArray Reference, NSPointerArray, or NSHashTable instead.

NSArray is “toll-free bridged” with its Core Foundation counterpart, CFArray Reference. What this
means is that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object, providing you cast one type to the other. Therefore, in an API where you see an
NSArray * parameter, you can pass in a CFArrayRef, and in an API where you see a CFArrayRef
parameter, you can pass in an NSArray instance. This arrangement also applies to your concrete
subclasses of NSArray. See Carbon-Cocoa Integration Guide for more information on toll-free bridging.

Subclassing Notes

Most developers would not have any reason to subclass NSArray. The class does well what it is
designed to do—maintain an ordered collection of objects. But there are situations where a custom
NSArray object might come in handy. Here are a few possibilities:

 ■ Changing how NSArray stores the elements of its collection. You might do this for performance
reasons or for better compatibility with legacy code.

 ■ Changing how NSArray retains and releases its elements.

 ■ Acquiring more information about what is happening to the collection (for example, statistics
gathering).

Methods to Override

Any subclass of NSArray must override the primitive instance methods count (page 47) and
objectAtIndex: (page 57). These methods must operate on the backing store that you provide for
the elements of the collection. For this backing store you can use a static array, a standard NSArray
object, or some other data type or mechanism. You may also choose to override, partially or fully,
any other NSArray method for which you want to provide an alternative implementation.

You might want to implement an initializer for your subclass that is suited to the backing store that
the subclass is managing. The NSArray class does not have a designated initializer, so your initializer
need only invoke the init (page 803) method of super. The NSArray class adopts the NSCopying,
NSMutableCopying, and NSCoding protocols; if you want instances of your own custom subclass
created from copying or coding, override the methods in these protocols.

Remember that NSArray is the public interface for a class cluster and what this entails for your subclass.
The primitive methods of NSArray do not include any designated initializers. This means that you
must provide the storage for your subclass and implement the primitive methods that directly act on
that storage.

Overview 35
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Special Considerations

In most cases your custom NSArray class should conform to Cocoa’s object-ownership conventions.
Thus you must send retain (page 1312) to each object that you add to your collection and release (page
1310) to each object that you remove from the collection. Of course, if the reason for subclassing NSArray
is to implement object-retention behavior different from the norm (for example, a non-retaining array),
then you can ignore this requirement.

Alternatives to Subclassing

Before making a custom class of NSArray, investigate NSPointerArray, NSHashTable, and the
corresponding Core Foundation type, CFArray Reference. Because NSArray and CFArray are “toll-free
bridged,” you can substitute a CFArray object for a NSArray object in your code (with appropriate
casting). Although they are corresponding types, CFArray and NSArraydo not have identical interfaces
or implementations, and you can sometimes do things with CFArray that you cannot easily do with
NSArray. For example, CFArray provides a set of callbacks, some of which are for implementing
custom retain-release behavior. If you specify NULL implementations for these callbacks, you can
easily get a non-retaining array.

If the behavior you want to add supplements that of the existing class, you could write a category on
NSArray. Keep in mind, however, that this category will be in effect for all instances of NSArray that
you use, and this might have unintended consequences.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

NSMutableCopying
– mutableCopyWithZone: (page 1300)

Tasks

Creating an Array

+ array (page 40)
Creates and returns an empty array.

+ arrayWithArray: (page 40)
Creates and returns an array containing the objects in another given array.

+ arrayWithContentsOfFile: (page 41)
Creates and returns an array containing the contents of the file specified by a given path.

36 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

+ arrayWithContentsOfURL: (page 41)
Creates and returns an array containing the contents specified by a given URL.

+ arrayWithObject: (page 42)
Creates and returns an array containing a given object.

+ arrayWithObjects: (page 42)
Creates and returns an array containing the objects in the argument list.

+ arrayWithObjects:count: (page 43)
Creates and returns an array that includes a given number of objects from a given C array.

Initializing an Array

– initWithArray: (page 52)
Initializes a newly allocated array by placing in it the objects contained in a given array.

– initWithArray:copyItems: (page 53)
Initializes a newly allocated array using anArray as the source of data objects for the array.

– initWithContentsOfFile: (page 53)
Initializes a newly allocated array with the contents of the file specified by a given path.

– initWithContentsOfURL: (page 54)
Initializes a newly allocated array with the contents of the location specified by a given URL.

– initWithObjects: (page 54)
Initializes a newly allocated array by placing in it the objects in the argument list.

– initWithObjects:count: (page 55)
Initializes a newly allocated array to include a given number of objects from a given C array.

Querying an Array

– containsObject: (page 46)
Returns a Boolean value that indicates whether a given object is present in the receiver.

– count (page 47)
Returns the number of objects currently in the receiver.

– getObjects: (page 49)
Copies all the objects contained in the receiver to aBuffer.

– getObjects:range: (page 50)
Copies the objects contained in the receiver that fall within the specified range to aBuffer.

– indexOfObject: (page 50)
Returns the lowest index whose corresponding array value is equal to a given object.

– indexOfObject:inRange: (page 50)
Returns the lowest index within a specified range whose corresponding array value is equal
to a given object .

– indexOfObjectIdenticalTo: (page 51)
Returns the lowest index whose corresponding array value is identical to a given object.

– indexOfObjectIdenticalTo:inRange: (page 52)
Returns the lowest index within a specified range whose corresponding array value is equal
to a given object .

Tasks 37
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

– lastObject (page 56)
Returns the object in the array with the highest index value.

– objectAtIndex: (page 57)
Returns the object located at index.

– objectsAtIndexes: (page 58)
Returns an array containing the objects in the receiver at the indexes specified by a given index
set.

– objectEnumerator (page 58)
Returns an enumerator object that lets you access each object in the receiver.

– reverseObjectEnumerator (page 60)
Returns an enumerator object that lets you access each object in the receiver, in reverse order.

Sending Messages to Elements

– makeObjectsPerformSelector: (page 56)
Sends to each object in the receiver the message identified by a given selector, starting with
the first object and continuing through the array to the last object.

– makeObjectsPerformSelector:withObject: (page 57)
Sends the aSelector message to each object in the array, starting with the first object and
continuing through the array to the last object.

Comparing Arrays

– firstObjectCommonWithArray: (page 49)
Returns the first object contained in the receiver that’s equal to an object in another given array.

– isEqualToArray: (page 56)
Compares the receiving array to another array.

Deriving New Arrays

– arrayByAddingObject: (page 45)
Returns a new array that is a copy of the receiver with a given object added to the end.

– arrayByAddingObjectsFromArray: (page 45)
Returns a new array that is a copy of the receiver with the objects contained in another array
added to the end.

– subarrayWithRange: (page 64)
Returns a new array containing the receiver’s elements that fall within the limits specified by
a given range.

Sorting

– sortedArrayHint (page 61)
Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint
is supplied to sortedArrayUsingFunction:context:hint: (page 63).

38 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

– sortedArrayUsingFunction:context: (page 62)
Returns a new array that lists the receiver’s elements in ascending order as defined by the
comparison function comparator.

– sortedArrayUsingFunction:context:hint: (page 63)
Returns a new array that lists the receiver’s elements in ascending order as defined by the
comparison function comparator.

– sortedArrayUsingDescriptors: (page 61)
Returns a copy of the receiver sorted as specified by a given array of sort descriptors.

– sortedArrayUsingSelector: (page 64)
Returns an array that lists the receiver’s elements in ascending order, as determined by the
comparison method specified by a given selector.

Working with String Elements

– componentsJoinedByString: (page 46)
Constructs and returns an NSString object that is the result of interposing a given separator
between the elements of the receiver’s array.

Creating a Description

– description (page 47)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale: (page 48)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale:indent: (page 48)
Returns a string that represents the contents of the receiver, formatted as a property list.

– writeToFile:atomically: (page 65)
Writes the contents of the receiver to a file at a given path.

– writeToURL:atomically: (page 66)
Writes the contents of the receiver to the location specified by a given URL.

Collecting Paths

– pathsMatchingExtensions: (page 59)
Returns an array containing all the pathname elements in the receiver that have filename
extensions from a given array.

Key-Value Observing

– addObserver:forKeyPath:options:context: (page 44)
Raises an exception.

– removeObserver:forKeyPath: (page 59)
Raises an exception.

Tasks 39
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 44)
Registers anObserver to receive key value observer notifications for the specified keypath
relative to the objects at indexes.

– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 60)
Removes anObserver from all key value observer notifications associated with the specified
keyPath relative to the receiver’s objects at indexes.

Key-Value Coding

– setValue:forKey: (page 61)
Invokes setValue:forKey: on each of the receiver's items using the specified value and key.

– valueForKey: (page 65)
Returns an array containing the results of invoking valueForKey: using key on each of the
receiver's objects.

Class Methods

array
Creates and returns an empty array.

+ (id)array

Return Value
An empty array.

Discussion
This method is used by mutable subclasses of NSArray.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ arrayWithObject: (page 42)
+ arrayWithObjects: (page 42)

Declared In
NSArray.h

arrayWithArray:
Creates and returns an array containing the objects in another given array.

+ (id)arrayWithArray:(NSArray *)anArray

Parameters

anArray
An array.

40 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Return Value
An array containing the objects in anArray.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ arrayWithObjects: (page 42)
– initWithObjects: (page 54)

Declared In
NSArray.h

arrayWithContentsOfFile:
Creates and returns an array containing the contents of the file specified by a given path.

+ (id)arrayWithContentsOfFile:(NSString *)aPath

Parameters

aPath
The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 65) method.

Return Value
An array containing the contents of the file specified by aPath. Returns nil if the file can’t be opened
or if the contents of the file can’t be parsed into an array.

Discussion
The array representation in the file identified by aPath must contain only property list objects
(NSString, NSData, NSArray, or NSDictionary objects).

Availability
Available in iPhone OS 2.0 and later.

See Also
– writeToFile:atomically: (page 65)

Declared In
NSArray.h

arrayWithContentsOfURL:
Creates and returns an array containing the contents specified by a given URL.

+ (id)arrayWithContentsOfURL:(NSURL *)aURL

Parameters

aURL
The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 66) method.

Class Methods 41
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Return Value
An array containing the contents specified by aURL. Returns nil if the location can’t be opened or if
the contents of the location can’t be parsed into an array.

Discussion
The array representation at the location identified by aURL must contain only property list objects
(NSString, NSData, NSArray, or NSDictionary objects).

Availability
Available in iPhone OS 2.0 and later.

See Also
– writeToURL:atomically: (page 66)

Declared In
NSArray.h

arrayWithObject:
Creates and returns an array containing a given object.

+ (id)arrayWithObject:(id)anObject

Parameters

anObject
An object.

Return Value
An array containing the single element anObject.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ array (page 40)
+ arrayWithObjects: (page 42)

Declared In
NSArray.h

arrayWithObjects:
Creates and returns an array containing the objects in the argument list.

+ (id)arrayWithObjects:(id)firstObj, ...

Parameters

firstObj, ...
A comma-separated list of objects ending with nil.

Return Value
An array containing the objects in the argument list.

42 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Discussion
This code example creates an array containing three different types of element:

NSArray *myArray;
NSDate *aDate = [NSDate distantFuture];
NSValue *aValue = [NSNumber numberWithInt:5];
NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:aDate, aValue, aString, nil];

Availability
Available in iPhone OS 2.0 and later.

See Also
+ array (page 40)
+ arrayWithObject: (page 42)

Declared In
NSArray.h

arrayWithObjects:count:
Creates and returns an array that includes a given number of objects from a given C array.

+ (id)arrayWithObjects:(const id *)objects count:(NSUInteger)count

Parameters

objects
A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will
be the count of the new array—it must not be negative or greater than the number of elements
in objects.

Return Value
A new array including the first count objects from objects.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count.

Availability
Available in iPhone OS 2.0 and later.

See Also
– getObjects: (page 49)
– getObjects:range: (page 50)

Declared In
NSArray.h

Class Methods 43
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Instance Methods

addObserver:forKeyPath:options:context:
Raises an exception.

- (void)addObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options context:(void *)context

Parameters

observer
The object to register for KVO notifications. The observer must implement the key-value
observing method observeValueForKeyPath:ofObject:change:context: (page 1287).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions (page 1291) values that specifies what is
included in observation notifications. For possible values, see NSKeyValueObservingOptions.

context
Arbitrary data that is passed to observer in
observeValueForKeyPath:ofObject:change:context: (page 1287).

Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray
object. Instead of observing an array, observe the to-many relationship for which the array is the
collection of related objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObserver:forKeyPath: (page 59)
– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 44)

Declared In
NSKeyValueObserving.h

addObserver:toObjectsAtIndexes:forKeyPath:options:context:
Registers anObserver to receive key value observer notifications for the specified keypath relative
to the objects at indexes.

- (void)addObserver:(NSObject *)anObserver toObjectsAtIndexes:(NSIndexSet *)indexes
forKeyPath:(NSString *)keyPath options:(NSKeyValueObservingOptions)options
context:(void *)context

Discussion
The options determine what is included in the notifications, and the context is passed in the
notifications.

44 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

This is not merely a convenience method; invoking this method is potentially much faster than
repeatedly invoking addObserver:forKeyPath:options:context: (page 1284).

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 60)

Declared In
NSKeyValueObserving.h

arrayByAddingObject:
Returns a new array that is a copy of the receiver with a given object added to the end.

- (NSArray *)arrayByAddingObject:(id)anObject

Parameters

anObject
An object.

Return Value
A new array that is a copy of the receiver with anObject added to the end.

Discussion
If anObject is nil, an NSInvalidArgumentException is raised.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObject: (page 571) (NSMutableArray)

Declared In
NSArray.h

arrayByAddingObjectsFromArray:
Returns a new array that is a copy of the receiver with the objects contained in another array added
to the end.

- (NSArray *)arrayByAddingObjectsFromArray:(NSArray *)otherArray

Parameters

otherArray
An array.

Return Value
A new array that is a copy of the receiver with the objects contained in otherArray added to the end.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 45
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

See Also
– addObjectsFromArray: (page 571) (NSMutableArray)

Declared In
NSArray.h

componentsJoinedByString:
Constructs and returns an NSString object that is the result of interposing a given separator between
the elements of the receiver’s array.

- (NSString *)componentsJoinedByString:(NSString *)separator

Parameters

separator
The string to interpose between the elements of the receiver’s array.

Return Value
An NSString object that is the result of interposing separator between the elements of the receiver’s
array. If the receiver has no elements, returns an NSString object representing an empty string.

Discussion
For example, this code excerpt writes "here be dragons" to the console:

NSArray *pathArray = [NSArray arrayWithObjects:@"here",
@"be", @"dragons", nil];

NSLog(@"%@",
[pathArray componentsJoinedByString:@" "]);

Special Considerations

Each element in the receiver’s array must handle description.

Availability
Available in iPhone OS 2.0 and later.

See Also
– componentsSeparatedByString: (page 985) (NSString)

Declared In
NSArray.h

containsObject:
Returns a Boolean value that indicates whether a given object is present in the receiver.

- (BOOL)containsObject:(id)anObject

Parameters

anObject
An object.

Return Value
YES if anObject is present in the receiver, otherwise NO.

46 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Discussion
This method determines whether anObject is present in the receiver by sending an isEqual: (page
1306) message to each of the receiver’s objects (and passing anObject as the parameter to each isEqual:
message).

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexOfObject: (page 50)
– indexOfObjectIdenticalTo: (page 51)

Declared In
NSArray.h

count
Returns the number of objects currently in the receiver.

- (NSUInteger)count

Return Value
The number of objects currently in the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– objectAtIndex: (page 57)

Declared In
NSArray.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Availability
Available in iPhone OS 2.0 and later.

See Also
– descriptionWithLocale: (page 48)
– descriptionWithLocale:indent: (page 48)

Declared In
NSArray.h

Instance Methods 47
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

descriptionWithLocale:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Parameters

locale
An NSLocale object or an NSDictionary object that specifies options used for formatting each
of the receiver’s elements (where recognized). Specify nil if you don’t want the elements
formatted.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
For a description of how locale is applied to each element in the receiving array, see
descriptionWithLocale:indent: (page 48).

Availability
Available in iPhone OS 2.0 and later.

See Also
– description (page 47)
– descriptionWithLocale:indent: (page 48)

Declared In
NSArray.h

descriptionWithLocale:indent:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale indent:(NSUInteger)level

Parameters

locale
An NSLocale object or an NSDictionary object that specifies options used for formatting each
of the receiver’s elements (where recognized). Specify nil if you don’t want the elements
formatted.

level
A level of indent, to make the output more readable: set level to 0 to use four spaces to indent,
or 1 to indent the output with a tab character.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
The returned NSString object contains the string representations of each of the receiver’s elements,
in order, from first to last. To obtain the string representation of a given element,
descriptionWithLocale:indent: proceeds as follows:

 ■ If the element is an NSString object, it is used as is.

48 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

 ■ If the element responds to descriptionWithLocale:indent:, that method is invoked to obtain
the element’s string representation.

 ■ If the element responds to descriptionWithLocale: (page 48), that method is invoked to obtain
the element’s string representation.

 ■ If none of the above conditions is met, the element’s string representation is obtained by invoking
its description (page 47) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– description (page 47)
– descriptionWithLocale: (page 48)

Declared In
NSArray.h

firstObjectCommonWithArray:
Returns the first object contained in the receiver that’s equal to an object in another given array.

- (id)firstObjectCommonWithArray:(NSArray *)otherArray

Parameters

otherArray
An array.

Return Value
Returns the first object contained in the receiver that’s equal to an object in otherArray. If no such
object is found, returns nil.

Discussion
This method uses isEqual: (page 1306) to check for object equality.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsObject: (page 46)

Declared In
NSArray.h

getObjects:
Copies all the objects contained in the receiver to aBuffer.

- (void)getObjects:(id *)aBuffer

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 49
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

See Also
+ arrayWithObjects:count: (page 43)

Declared In
NSArray.h

getObjects:range:
Copies the objects contained in the receiver that fall within the specified range to aBuffer.

- (void)getObjects:(id *)aBuffer range:(NSRange)aRange

Availability
Available in iPhone OS 2.0 and later.

See Also
+ arrayWithObjects:count: (page 43)

Declared In
NSArray.h

indexOfObject:
Returns the lowest index whose corresponding array value is equal to a given object.

- (NSUInteger)indexOfObject:(id)anObject

Parameters

anObject
An object.

Return Value
The lowest index whose corresponding array value is equal to anObject. If none of the objects in the
receiver is equal to anObject, returns NSNotFound.

Discussion
Objects are considered equal if isEqual: (page 1306) returns YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsObject: (page 46)
– indexOfObjectIdenticalTo: (page 51)

Declared In
NSArray.h

indexOfObject:inRange:
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object .

50 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

- (NSUInteger)indexOfObject:(id)anObject inRange:(NSRange)range

Parameters

anObject
An object.

range
The range of indexes in the receiver within which to search for anObject.

Return Value
The lowest index within range whose corresponding array value is equal to anObject. If none of the
objects within range is equal to anObject, returns NSNotFound.

Discussion
Objects are considered equal if isEqual: (page 1306) returns YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsObject: (page 46)
– indexOfObjectIdenticalTo:inRange: (page 52)

Declared In
NSArray.h

indexOfObjectIdenticalTo:
Returns the lowest index whose corresponding array value is identical to a given object.

- (NSUInteger)indexOfObjectIdenticalTo:(id)anObject

Parameters

anObject
An object.

Return Value
The lowest index whose corresponding array value is identical to anObject. If none of the objects in
the receiver is identical to anObject, returns NSNotFound.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsObject: (page 46)
– indexOfObject: (page 50)

Declared In
NSArray.h

Instance Methods 51
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

indexOfObjectIdenticalTo:inRange:
Returns the lowest index within a specified range whose corresponding array value is equal to a given
object .

- (NSUInteger)indexOfObjectIdenticalTo:(id)anObject inRange:(NSRange)range

Parameters

anObject
An object.

range
The range of indexes in the receiver within which to search for anObject.

Return Value
The lowest index within range whose corresponding array value is identical to anObject. If none of
the objects within range is identical to anObject, returns NSNotFound.

Discussion
Objects are considered identical if their object addresses are the same.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsObject: (page 46)
– indexOfObject:inRange: (page 50)

Declared In
NSArray.h

initWithArray:
Initializes a newly allocated array by placing in it the objects contained in a given array.

- (id)initWithArray:(NSArray *)anArray

Parameters

anArray
An array.

Return Value
An array initialized to contain the objects in anArray. The returned object might be different than the
original receiver.

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ arrayWithObject: (page 42)
– initWithObjects: (page 54)

52 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Declared In
NSArray.h

initWithArray:copyItems:
Initializes a newly allocated array using anArray as the source of data objects for the array.

- (id)initWithArray:(NSArray *)array copyItems:(BOOL)flag

Parameters

array
An array.

flag
If YES, each object in array receives a copyWithZone: message to create a copy of the object.
In a managed memory environment, this is instead of the retain message the object would
otherwise receive. The object copy is then added to the returned array.

If NO, then in a managed memory environment each object in array simply receives a retain
message as it’s added to the returned array.

Return Value
An array initialized to contain the objects—or if flag is YES, copies of the objects—in array. The
returned object might be different than the original receiver.

Discussion
After an immutable array has been initialized in this way, it cannot be modified.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithArray: (page 52)
+ arrayWithObject: (page 42)
– initWithObjects: (page 54)

Declared In
NSArray.h

initWithContentsOfFile:
Initializes a newly allocated array with the contents of the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)aPath

Parameters

aPath
The path to a file containing a string representation of an array produced by the
writeToFile:atomically: (page 65) method.

Return Value
An array initialized to contain the contents of the file specified by aPath or nil if the file can’t be
opened or the contents of the file can’t be parsed into an array. The returned object might be different
than the original receiver.

Instance Methods 53
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Discussion
The array representation in the file identified by aPath must contain only property list objects
(NSString, NSData, NSArray, or NSDictionary objects).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ arrayWithContentsOfFile: (page 41)
– writeToFile:atomically: (page 65)

Declared In
NSArray.h

initWithContentsOfURL:
Initializes a newly allocated array with the contents of the location specified by a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters

aURL
The location of a file containing a string representation of an array produced by the
writeToURL:atomically: (page 66) method.

Return Value
An array initialized to contain the contents specified by aURL. Returns nil if the location can’t be
opened or if the contents of the location can’t be parsed into an array. The returned object might be
different than the original receiver.

Discussion
The array representation at the location identified by aURL must contain only property list objects
(NSString, NSData, NSArray, or NSDictionary objects).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ arrayWithContentsOfURL: (page 41)
– writeToURL:atomically: (page 66)

Declared In
NSArray.h

initWithObjects:
Initializes a newly allocated array by placing in it the objects in the argument list.

- (id)initWithObjects:(id)firstObj, ...

Parameters

firstObj, ...
A comma-separated list of objects ending with nil.

54 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Return Value
An array initialized to include the objects in the argument list. The returned object might be different
than the original receiver.

Discussion
After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithObjects:count: (page 55)
+ arrayWithObjects: (page 42)
– initWithArray: (page 52)

Declared In
NSArray.h

initWithObjects:count:
Initializes a newly allocated array to include a given number of objects from a given C array.

- (id)initWithObjects:(const id *)objects
count:(NSUInteger)count

Parameters

objects
A C array of objects.

count
The number of values from the objects C array to include in the new array. This number will
be the count of the new array—it must not be negative or greater than the number of elements
in objects.

Return Value
A newly allocated array including the first count objects from objects. The returned object might
be different than the original receiver.

Discussion
Elements are added to the new array in the same order they appear in objects, up to but not including
index count.

After an immutable array has been initialized in this way, it can’t be modified.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithObjects: (page 54)
+ arrayWithObjects: (page 42)
– initWithArray: (page 52)

Declared In
NSArray.h

Instance Methods 55
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

isEqualToArray:
Compares the receiving array to another array.

- (BOOL)isEqualToArray:(NSArray *)otherArray

Parameters

otherArray
An array.

Return Value
YES if the contents of otherArray are equal to the contents of the receiver, otherwise NO.

Discussion
Two arrays have equal contents if they each hold the same number of objects and objects at a given
index in each array satisfy the isEqual: (page 1306) test.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSArray.h

lastObject
Returns the object in the array with the highest index value.

- (id)lastObject

Return Value
The object in the array with the highest index value. If the array is empty, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeLastObject (page 575) (NSMutableArray)

Declared In
NSArray.h

makeObjectsPerformSelector:
Sends to each object in the receiver the message identified by a given selector, starting with the first
object and continuing through the array to the last object.

- (void)makeObjectsPerformSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies the message to send to the objects in the receiver. The method must
not take any arguments, and must not have the side effect of modifying the receiving array.

Discussion
This method raises an NSInvalidArgumentException if aSelector is NULL.

56 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– makeObjectsPerformSelector:withObject: (page 57)

Declared In
NSArray.h

makeObjectsPerformSelector:withObject:
Sends the aSelector message to each object in the array, starting with the first object and continuing
through the array to the last object.

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

Parameters

aSelector
A selector that identifies the message to send to the objects in the receiver. The method must
take a single argument of type id, and must not have the side effect of modifying the receiving
array.

anObject
The object to send as the argument to each invocation of the aSelector method.

Discussion
This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in iPhone OS 2.0 and later.

See Also
– makeObjectsPerformSelector: (page 56)

Declared In
NSArray.h

objectAtIndex:
Returns the object located at index.

- (id)objectAtIndex:(NSUInteger)index

Parameters

index
An index within the bounds of the receiver.

Return Value
The object located at index.

Discussion
If index is beyond the end of the array (that is, if index is greater than or equal to the value returned
by count), an NSRangeException is raised.

Instance Methods 57
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– count (page 47)
– objectsAtIndexes: (page 58)

Declared In
NSArray.h

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at
the lowest index upwards.

Discussion
Returns an enumerator object that lets you access each object in the receiver, in order, starting with
the element at index 0, as in:

NSEnumerator *enumerator = [myArray objectEnumerator];
id anObject;

while (anObject = [enumerator nextObject]) {
/* code to act on each element as it is returned */

}

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

Availability
Available in iPhone OS 2.0 and later.

See Also
– reverseObjectEnumerator (page 60)
– nextObject (page 341) (NSEnumerator)

Declared In
NSArray.h

objectsAtIndexes:
Returns an array containing the objects in the receiver at the indexes specified by a given index set.

- (NSArray *)objectsAtIndexes:(NSIndexSet *)indexes

58 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Return Value
An array containing the objects in the receiver at the indexes specified by indexes.

Discussion
The returned objects are in the ascending order of their indexes in indexes, so that object in returned
array with higher index in indexes will follow the object with smaller index in indexes.

Raises an NSRangeException exception if any location in indexes exceeds the bounds of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– count (page 47)
– objectAtIndex: (page 57)

Declared In
NSArray.h

pathsMatchingExtensions:
Returns an array containing all the pathname elements in the receiver that have filename extensions
from a given array.

- (NSArray *)pathsMatchingExtensions:(NSArray *)filterTypes

Parameters

filterTypes
An array of NSString objects containing filename extensions. The extensions should not include
the dot (“.”) character.

Return Value
An array containing all the pathname elements in the receiver that have filename extensions from
the filterTypes array.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

removeObserver:forKeyPath:
Raises an exception.

- (void)removeObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath

Parameters

observer
The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which observer is registered to receive KVO change
notifications. This value must not be nil.

Instance Methods 59
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Special Considerations

NSArray objects are not observable, so this method raises an exception when invoked on an NSArray
object. Instead of observing an array, observe the to-many relationship for which the array is the
collection of related objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObserver:forKeyPath:options:context: (page 44)
– removeObserver:fromObjectsAtIndexes:forKeyPath: (page 60)

Declared In
NSKeyValueObserving.h

removeObserver:fromObjectsAtIndexes:forKeyPath:
Removes anObserver from all key value observer notifications associated with the specified keyPath
relative to the receiver’s objects at indexes.

- (void)removeObserver:(NSObject *)anObserver fromObjectsAtIndexes:(NSIndexSet
*)indexes forKeyPath:(NSString *)keyPath

Discussion
This is not merely a convenience method; invoking this method is potentially much faster than
repeatedly invoking removeObserver:forKeyPath: (page 1288).

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObserver:toObjectsAtIndexes:forKeyPath:options:context: (page 44)

Declared In
NSKeyValueObserving.h

reverseObjectEnumerator
Returns an enumerator object that lets you access each object in the receiver, in reverse order.

- (NSEnumerator *)reverseObjectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver, in order, from the element at
the highest index down to the element at index 0.

Special Considerations

When you use this method with mutable subclasses of NSArray, you must not modify the array during
enumeration.

On Mac OS X v10.5 and later, it is more efficient to use the fast enumeration protocol (see
NSFastEnumeration).

60 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– objectEnumerator (page 58)
– nextObject (page 341) (NSEnumerator)

Declared In
NSArray.h

setValue:forKey:
Invokes setValue:forKey: on each of the receiver's items using the specified value and key.

- (void)setValue:(id)value forKey:(NSString *)key

Availability
Available in iPhone OS 2.0 and later.

See Also
– valueForKey: (page 65)

Declared In
NSKeyValueCoding.h

sortedArrayHint
Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied
to sortedArrayUsingFunction:context:hint: (page 63).

- (NSData *)sortedArrayHint

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortedArrayUsingFunction:context:hint: (page 63)

Declared In
NSArray.h

sortedArrayUsingDescriptors:
Returns a copy of the receiver sorted as specified by a given array of sort descriptors.

- (NSArray *)sortedArrayUsingDescriptors:(NSArray *)sortDescriptors

Parameters

sortDescriptors
An array of NSSortDescriptor objects.

Instance Methods 61
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Return Value
A copy of the receiver sorted as specified by sortDescriptors.

Discussion
The first descriptor specifies the primary key path to be used in sorting the receiver’s contents. Any
subsequent descriptors are used to further refine sorting of objects with duplicate values. See
NSSortDescriptor for additional information.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortedArrayUsingSelector: (page 64)
– sortedArrayUsingFunction:context: (page 62)
– sortedArrayUsingFunction:context:hint: (page 63)

Declared In
NSSortDescriptor.h

sortedArrayUsingFunction:context:
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

- (NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void *))comparator
context:(void *)context

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparison function is used to compare two elements at a time and should return
NSOrderedAscending if the first element is smaller than the second, NSOrderedDescending if the
first element is larger than the second, and NSOrderedSame if the elements are equal. Each time the
comparison function is called, it’s passed context as its third argument. This allows the comparison
to be based on some outside parameter, such as whether character sorting is case-sensitive or
case-insensitive.

Given anArray (an array of NSNumber objects) and a comparison function of this type:

NSInteger intSort(id num1, id num2, void *context)
{

int v1 = [num1 intValue];
int v2 = [num2 intValue];
if (v1 < v2)

return NSOrderedAscending;
else if (v1 > v2)

return NSOrderedDescending;
else

return NSOrderedSame;
}

A sorted version of anArray is created in this way:

NSArray *sortedArray; sortedArray = [anArray sortedArrayUsingFunction:intSort
context:NULL];

62 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 61)
– sortedArrayUsingFunction:context:hint: (page 63)
– sortedArrayUsingSelector: (page 64)

Declared In
NSArray.h

sortedArrayUsingFunction:context:hint:
Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison
function comparator.

- (NSArray *)sortedArrayUsingFunction:(NSInteger (*)(id, id, void *))comparator
context:(void *)context hint:(NSData *)hint

Discussion
The new array contains references to the receiver’s elements, not copies of them.

This method is similar to sortedArrayUsingFunction:context: (page 62), except that it uses the
supplied hint to speed the sorting process. When you know the array is nearly sorted, this method
is faster than sortedArrayUsingFunction:context:. If you sorted a large array (N entries) once,
and you don’t change it much (P additions and deletions, where P is much smaller than N), then you
can reuse the work you did in the original sort by conceptually doing a merge sort between the N
“old” items and the P “new” items.

To obtain an appropriate hint, use sortedArrayHint (page 61). You should obtain this hint when
the original array has been sorted, and keep hold of it until you need it, after the array has been
modified. The hint is computed by sortedArrayHint (page 61) in O(N) (where N is the number of
items). This assumes that items in the array implement a -hash method. Given a suitable hint, and
assuming that the hash function is a “good” hash function,
-sortedArrayUsingFunction:context:hint: (page 63) sorts the array in O(P*LOG(P)+N) where P
is the number of adds or deletes. This is an improvement over the unhinted sort, O(N*LOG(N)), when
P is small.

The hint is simply an array of size N containing the N hashes. To re-sort you need internally to create
a map table mapping a hash to the index. Using this map table on the new array, you can get a first
guess for the indices, and then sort that. For example, a sorted array {A, B, D, E, F} with corresponding
hash values {25, 96, 78, 32, 17}, may be subject to small changes that result in contents {E, A, C, B, F}.
The mapping table maps the hashes {25, 96, 78, 32, 17} to the indices {#0, #1, #2, #3, #4}. If the hashes
for {E, A, C, B, F} are {32, 25, 99, 96, 17}, then by using the mapping table you can get a first order sort
{#3, #0, ?, #1, #4}, so therefore create an initial semi-sorted array {A, B, E, F}, and then perform a cheap
merge sort with {C} that yields {A, B, C, E, F}.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 61)
– sortedArrayUsingFunction:context: (page 62)

Instance Methods 63
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

– sortedArrayUsingSelector: (page 64)

Declared In
NSArray.h

sortedArrayUsingSelector:
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by a given selector.

- (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Parameters

comparator
A selector that identifies the method to use to compare two elements at a time. The method
should return NSOrderedAscending if the receiver is smaller than the argument,
NSOrderedDescending if the receiver is larger than the argument, and NSOrderedSame if they
are equal.

Return Value
An array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by the selector comparator.

Discussion
The new array contains references to the receiver’s elements, not copies of them.

The comparator message is sent to each object in the array and has as its single argument another
object in the array.

For example, an array of NSString objects can be sorted by using the caseInsensitiveCompare: (page
979) method declared in the NSString class. Assuming anArray exists, a sorted version of the array
can be created in this way:

NSArray *sortedArray =
[anArray sortedArrayUsingSelector:@selector(caseInsensitiveCompare:)];

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortedArrayUsingDescriptors: (page 61)
– sortedArrayUsingFunction:context: (page 62)
– sortedArrayUsingFunction:context:hint: (page 63)

Declared In
NSArray.h

subarrayWithRange:
Returns a new array containing the receiver’s elements that fall within the limits specified by a given
range.

- (NSArray *)subarrayWithRange:(NSRange)range

64 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Parameters

range
A range within the receiver’s range of elements.

Return Value
A new array containing the receiver’s elements that fall within the limits specified by range.

Discussion
If range isn’t within the receiver’s range of elements, an NSRangeException is raised.

For example, the following code example creates an array containing the elements found in the first
half of wholeArray (assuming wholeArray exists).

NSArray *halfArray;
NSRange theRange;

theRange.location = 0;
theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRange];

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSArray.h

valueForKey:
Returns an array containing the results of invoking valueForKey: using key on each of the receiver's
objects.

- (id)valueForKey:(NSString *)key

Discussion
The returned array contains NSNull elements for each object that returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:forKey: (page 61)

Declared In
NSKeyValueCoding.h

writeToFile:atomically:
Writes the contents of the receiver to a file at a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Instance Methods 65
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Parameters

path
The path at which to write the contents of the receiver.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1031) before invoking this method.

flag
If YES, the array is written to an auxiliary file, and then the auxiliary file is renamed to path.
If NO, the array is written directly to path. The YES option guarantees that path, if it exists at
all, won’t be corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

Discussion
If the receiver’s contents are all property list objects (NSString, NSData, NSArray, or NSDictionary
objects), the file written by this method can be used to initialize a new array with the class method
arrayWithContentsOfFile: (page 41) or the instance method initWithContentsOfFile: (page
53). This method recursively validates that all the contained objects are property list objects before
writing out the file, and returns NO if all the objects are not property list objects, since the resultant
file would not be a valid property list.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithContentsOfFile: (page 53)

Declared In
NSArray.h

writeToURL:atomically:
Writes the contents of the receiver to the location specified by a given URL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag

Parameters

aURL
The location at which to write the receiver.

flag
If YES, the array is written to an auxiliary location, and then the auxiliary location is renamed
to aURL. If NO, the array is written directly to aURL. The YES option guarantees that aURL, if it
exists at all, won’t be corrupted even if the system should crash during writing.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
If the receiver’s contents are all property list objects (NSString, NSData, NSArray, or NSDictionary
objects), the location written by this method can be used to initialize a new array with the class method
arrayWithContentsOfURL: (page 41) or the instance method initWithContentsOfURL: (page 54).

66 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithContentsOfURL: (page 54)

Declared In
NSArray.h

Instance Methods 67
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

68 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

NSArray Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSException.h

Companion guide: Assertions and Logging

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSAssertionHandler objects are automatically created to handle false assertions. Assertion macros,
such as NSAssert and NSCAssert, are used to evaluate a condition, and, if the condition evaluates to
false, the macros pass a string to an NSAssertionHandler object describing the failure. Each thread
has its own NSAssertionHandler object. When invoked, an assertion handler prints an error message
that includes the method and class (or function) containing the assertion and raises an
NSInternalInconsistencyException.

You create assertions only using the assertion macros—you rarely need to invoke NSAssertionHandler
methods directly. The macros for use inside methods and functions send
handleFailureInMethod:object:file:lineNumber:description: (page 71) and
handleFailureInFunction:file:lineNumber:description: (page 71) messages respectively to

Overview 69
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSAssertionHandler Class Reference

the current assertion handler. The assertion handler for the current thread is obtained using the
currentHandler (page 70) class method. If you need to customize the behavior of
NSAssertionHandler, create a subclass, overriding the above two methods, and install your instance
into the current thread’s attributes dictionary with the key NSAssertionHandler.

Tasks

Handling Assertion Failures

+ currentHandler (page 70)
Returns the NSAssertionHandler object associated with the current thread.

– handleFailureInFunction:file:lineNumber:description: (page 71)
Logs (using NSLog) an error message that includes the name of the function, the name of the
file, and the line number.

– handleFailureInMethod:object:file:lineNumber:description: (page 71)
Logs (using NSLog) an error message that includes the name of the method that failed, the class
name of the object, the name of the source file, and the line number.

Class Methods

currentHandler
Returns the NSAssertionHandler object associated with the current thread.

+ (NSAssertionHandler *)currentHandler

Return Value
The NSAssertionHandler object associated with the current thread.

Discussion
If no assertion handler is associated with the current thread, this method creates one and assigns it
to the thread.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSException.h

70 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSAssertionHandler Class Reference

Instance Methods

handleFailureInFunction:file:lineNumber:description:
Logs (using NSLog) an error message that includes the name of the function, the name of the file, and
the line number.

- (void)handleFailureInFunction:(NSString *)functionName file:(NSString *)fileName
lineNumber:(NSInteger)line description:(NSString *)format, ...

Parameters

functionName
The function that failed.

object
The object that failed.

fileName
The name of the source file.

line
The line in which the failure occurred.

format,...
A format string followed by a comma-separated list of arguments to substitute into the format
string. See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSException.h

handleFailureInMethod:object:file:lineNumber:description:
Logs (using NSLog) an error message that includes the name of the method that failed, the class name
of the object, the name of the source file, and the line number.

- (void)handleFailureInMethod:(SEL)selector object:(id)object file:(NSString
*)fileName lineNumber:(NSInteger)line description:(NSString *)format, ...

Parameters

selector
The selector for the method that failed

object
The object that failed.

fileName
The name of the source file.

line
The line in which the failure occurred.

Instance Methods 71
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSAssertionHandler Class Reference

format,...
A format string followed by a comma-separated list of arguments to substitute into the format
string. See Formatting String Objects for more information.

Discussion
Raises NSInternalInconsistencyException.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSException.h

72 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

NSAssertionHandler Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSAutoreleasePool.h

Companion guide: Memory Management Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSAutoreleasePool class is used to support Cocoa’s memory management system. An autorelease
pool stores objects that are sent a release message when the pool itself is released.

In a managed memory environment (as opposed to one which uses garbage collection) an
NSAutoreleasePool object contains objects that have received an autorelease (page 1303) message
and when deallocated sends a release (page 1310) message to each of those objects. An object can be
put into the same pool several times and receives a release (page 1310) message for each time it was
put into the pool. Thus, sending autorelease (page 1303) instead of release (page 1310) to an object
extends the lifetime of that object at least until the pool itself is released (it may be longer if the object
is subsequently retained).

Overview 73
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSAutoreleasePool Class Reference

Cocoa expects there to be an autorelease pool always available. If a pool is not available, autoreleased
objects do not get released and you leak memory. NSAutoreleasePool objects are automatically
created and destroyed in the main thread of applications based on the Application Kit, so your code
normally does not have to deal with them. The Application Kit creates a pool at the beginning of the
event loop and releases it at the end, thereby periodically releasing any autoreleased objects generated
while processing events.

If your application creates a lot of temporary autoreleased objects within the event loop, it may be
beneficial to create local autorelease pools to help to minimize the peak memory footprint. You create
an NSAutoreleasePool object with the usual alloc and init messages and dispose of it with
release (page 77) or drain (page 76) (to understand the difference, see “Garbage Collection” (page
74)). You should always drain an autorelease pool in the same context (invocation of a method or
function, or body of a loop) that it was created. See Autorelease Pools for more details and several
code samples using autorelease pools.

Each thread (including the main thread) maintains its own stack of NSAutoreleasePool objects (see
“Threads” (page 74)). As new pools are created, they get added to the top of the stack. When pools
are deallocated, they are removed from the stack. Autoreleased objects are placed into the top
autorelease pool for the current thread. When a thread terminates, it automatically releases all of the
autorelease pools associated with itself.

Threads

If you are making Cocoa calls outside of the Application Kit’s main thread—for example if you create
a Foundation-only application or if you detach a thread—you need to create your own autorelease
pool.

If your application or thread is long-lived and potentially generates a lot of autoreleased objects, you
should periodically destroy and create autorelease pools (like the Application Kit does on the main
thread); otherwise, autoreleased objects accumulate and your memory footprint grows. If, however,
your detached thread does not make Cocoa calls, you do not need to create an autorelease pool.

Note: If you are creating secondary threads using the POSIX thread APIs instead of NSThread objects,
you cannot use Cocoa, including NSAutoreleasePool, unless Cocoa is in multithreading mode. Cocoa
enters multithreading mode only after detaching its first NSThread object. To use Cocoa on secondary
POSIX threads, your application must first detach at least one NSThread object, which can immediately
exit. You can test whether Cocoa is in multithreading mode with the NSThread class method
isMultiThreaded (page 1054).

Garbage Collection

In a garbage collected environment, there is no need for autorelease pools. You can, though, use
autorelease pools to hint to the collector that collection may be appropriate. In a garbage collected
environment, sending a drain (page 76) message to a pool triggers garbage collection if necessary
(release (page 77), however, is a no-op). In a managed memory environment, drain (page 76) has
the same effect as release (page 77). Typically, therefore, if you write code that is intended to be
compiled for garbage collected and managed memory environments, you should use drain (page
76) instead of release (page 77).

74 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSAutoreleasePool Class Reference

Tasks

Managing a Pool

– release (page 77)
Releases and pops the receiver.

– drain (page 76)
In a garbage collected environment, triggers garbage collection if memory allocated since last
collection is greater than the current threshold; otherwise behaves as release (page 1310).

– autorelease (page 76)
Raises an exception.

– retain (page 77)
Raises an exception.

Adding an Object to a Pool

+ addObject: (page 75)
Adds a given object to the active autorelease pool in the current thread.

– addObject: (page 76)
Adds a given object to the receiver

Class Methods

addObject:
Adds a given object to the active autorelease pool in the current thread.

+ (void)addObject:(id)object

Parameters

object
The object to add to the active autorelease pool in the current thread.

Discussion
The same object may be added several times to the active pool and, when the pool is deallocated, it
will receive a release (page 1310) message for each time it was added.

Normally you don’t invoke this method directly—you send autorelease (page 1303) to object instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObject: (page 76)

Tasks 75
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSAutoreleasePool Class Reference

Declared In
NSAutoreleasePool.h

Instance Methods

addObject:
Adds a given object to the receiver

- (void)addObject:(id)object

Parameters

object
The object to add to the receiver.

Discussion
The same object may be added several times to the same pool and, when the pool is deallocated, it
will receive a release (page 1310) message for each time it was added.

Normally you don’t invoke this method directly—you send autorelease (page 1303) to object instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ addObject: (page 75)

Declared In
NSAutoreleasePool.h

autorelease
Raises an exception.

- (id)autorelease

Return Value
self

Discussion
In a managed memory environment, this method raises an exception.

drain
In a garbage collected environment, triggers garbage collection if memory allocated since last collection
is greater than the current threshold; otherwise behaves as release (page 1310).

- (void)drain

76 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSAutoreleasePool Class Reference

Discussion
In a garbage collected environment, this method triggers garbage collection if the memory allocated
since the last collection is greater than the current threshold. This method ultimately calls
objc_collect_if_needed.

In a managed memory environment, this behaves the same as calling release (page 1310).

Special Considerations

In a garbage collected environment, release is a no-op, so unless you do not want to give the compiler
a hint it is important to use drain in any code that may be compiled for a garbage collected
environment.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSAutoreleasePool.h

release
Releases and pops the receiver.

- (void)release

Discussion
When an autorelease pool is deallocated, it sends a release message to all its autoreleased objects. If
an object is added several times to the same pool, when the pool is deallocated it receives a
release (page 1310) message for each time it was added.

Special Considerations

In a garbage collected environment, release is a no-op, so typically you should use drain (page 76)
in any code that may be compiled for a garbage collected environment.

retain
Raises an exception.

- (id)retain

Return Value
self

Discussion
In a managed memory environment, this method raises an exception.

Instance Methods 77
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSAutoreleasePool Class Reference

78 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

NSAutoreleasePool Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSBundle.h

Companion guides: Bundle Programming Guide
Resource Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSBundle object represents a location in the file system that groups code and resources that can
be used in a program. NSBundle objects locate program resources, dynamically load and unload
executable code, and assist in localization. You build a bundle in Xcode using one of these project
types: Application, Framework, Loadable Bundle, Palette.

See also NSBundle Additions in the Application Kit framework, which defines methods for loading
nib files and locating image resources.

Overview 79
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Unlike some other Foundation classes with corresponding Core Foundation names (such as NSString
and CFString), NSBundle objects cannot be cast (“toll-free bridged”) to CFBundle references. If you
need functionality provided in CFBundle, you can still create a CFBundle and use the CFBundle API.
See Interchangeable Data Types for more information on toll-free bridging.

Tasks

Initializing an NSBundle

– initWithPath: (page 92)
Returns an NSBundle object initialized to correspond to a given directory.

Getting an NSBundle

+ bundleForClass: (page 83)
Returns the NSBundle object with which a given class is associated.

+ bundleWithIdentifier: (page 84)
Returns the previously created NSBundle instance that has a given bundle identifier.

+ bundleWithPath: (page 84)
Returns an NSBundle object that corresponds to the specified directory.

+ mainBundle (page 85)
Returns the NSBundle object that corresponds to the directory where the current application
executable is located.

+ allBundles (page 83)
Returns an array of all the application’s non-framework bundles.

+ allFrameworks (page 83)
Returns an array of all of the application’s bundles that represent frameworks.

Getting a Bundled Class

– classNamed: (page 89)
Returns the Class object for the specified name.

– principalClass (page 102)
Returns the receiver’s principal class.

Finding a Resource

+ pathForResource:ofType:inDirectory: (page 85)
Returns the full pathname for the resource file identified by a given name and extension and
residing in a given bundle directory.

– pathForResource:ofType: (page 97)
Returns the full pathname for the resource identified by a given name and specified file
extension.

80 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

– pathForResource:ofType:inDirectory: (page 98)
Returns the full pathname for the resource identified by the given name and file extension and
located in the specified bundle subdirectory.

– pathForResource:ofType:inDirectory:forLocalization: (page 99)
Returns the full pathname for the resource identified by the given name and file extension,
located in the specified bundle subdirectory, and limited to global resources and those associated
with the specified localization.

+ pathsForResourcesOfType:inDirectory: (page 86)
Returns an array containing the pathnames for all bundle resources having a given extension
and residing in the bundle directory specified by a given path.

– pathsForResourcesOfType:inDirectory: (page 99)
Returns an array containing the pathnames for all bundle resources having the specified
filename extension and residing in the resource subdirectory.

– pathsForResourcesOfType:inDirectory:forLocalization: (page 100)
Returns an array containing the pathnames for all bundle resources having the specified
filename extension, residing in the specified resource subdirectory, and limited to global
resources and those associated with the specified localization.

– resourcePath (page 103)
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

Getting the Bundle Directory

– bundlePath (page 89)
Returns the full pathname of the receiver’s bundle directory.

Getting Bundle Information

– builtInPlugInsPath (page 88)
Returns the full pathname of the receiver's subdirectory containing plug-ins.

– bundleIdentifier (page 89)
Returns the receiver’s bundle identifier.

– executablePath (page 91)
Returns the full pathname of the receiver's executable file.

– infoDictionary (page 91)
Returns a dictionary that contains information about the receiver.

– objectForInfoDictionaryKey: (page 96)
Returns the value associated with a given key in the receiver's property list.

– pathForAuxiliaryExecutable: (page 96)
Returns the full pathname of the executable with a given name in the receiver’s bundle.

– privateFrameworksPath (page 103)
Returns the full pathname of the receiver's subdirectory containing private frameworks.

– sharedFrameworksPath (page 104)
Returns the full pathname of the receiver's subdirectory containing shared frameworks.

– sharedSupportPath (page 104)
Returns the full pathname of the receiver's subdirectory containing shared support files.

Tasks 81
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Managing Localized Resources

– localizedStringForKey:value:table: (page 95)
Returns a localized version of the string designated by a given key in a given table.

Loading a Bundle’s Code

– executableArchitectures (page 90)
Returns an array of numbers indicating the architecture types supported by the bundle’s
executable.

– preflightAndReturnError: (page 101)
Returns a Boolean value indicating whether the bundle’s executable code could be loaded
successfully.

– load (page 93)
Dynamically loads the bundle’s executable code into a running program, if the code has not
already been loaded.

– loadAndReturnError: (page 93)
Loads the bundle’s executable code and returns any errors.

– isLoaded (page 92)
Obtains information about the load status of a bundle.

– unload (page 104)
Unloads the code associated with the receiver.

Managing Localizations

+ preferredLocalizationsFromArray: (page 87)
Returns one or more localizations from the specified list that a bundle object would use to
locate resources for the current user.

+ preferredLocalizationsFromArray:forPreferences: (page 88)
Returns the localizations that a bundle object would prefer, given the specified bundle and
user preference localizations.

– localizations (page 94)
Returns a list of all the localizations contained within the receiver’s bundle.

– developmentLocalization (page 90)
Returns the localization used to create the bundle.

– preferredLocalizations (page 101)
Returns one or more localizations contained in the receiver’s bundle that the receiver uses to
locate resources based on the user’s preferences.

– localizedInfoDictionary (page 94)
Returns a dictionary with the keys from the bundle’s localized property list.

82 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Class Methods

allBundles
Returns an array of all the application’s non-framework bundles.

+ (NSArray *)allBundles

Return Value
An array of all the application’s non-framework bundles.

Discussion
The returned array includes the main bundle and all bundles that have been dynamically created but
doesn’t contain any bundles that represent frameworks.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

allFrameworks
Returns an array of all of the application’s bundles that represent frameworks.

+ (NSArray *)allFrameworks

Return Value
An array of all of the application’s bundles that represent frameworks. Only frameworks with one
or more Objective-C classes in them are included.

Discussion
The returned array includes frameworks that are linked into an application when the application is
built and bundles for frameworks that have been dynamically created.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

bundleForClass:
Returns the NSBundle object with which a given class is associated.

+ (NSBundle *)bundleForClass:(Class)aClass

Parameters

aClass
A class.

Class Methods 83
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Return Value
The NSBundle object that dynamically loaded aClass (a loadable bundle), the NSBundle object for
the framework in which aClass is defined, or the main bundle object if aClass was not dynamically
loaded or is not defined in a framework.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ mainBundle (page 85)
+ bundleWithPath: (page 84)

Declared In
NSBundle.h

bundleWithIdentifier:
Returns the previously created NSBundle instance that has a given bundle identifier.

+ (NSBundle *)bundleWithIdentifier:(NSString *)identifier

Parameters

identifier
The identifier for an existing NSBundle instance.

Return Value
The previously created NSBundle instance that has the bundle identifier identifier. Returns nil if
the requested bundle is not found.

Discussion
This method is typically used by frameworks and plug-ins to locate their own bundle at runtime.
This method may be somewhat more efficient than trying to locate the bundle using the
bundleForClass: (page 83) method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

bundleWithPath:
Returns an NSBundle object that corresponds to the specified directory.

+ (NSBundle *)bundleWithPath:(NSString *)fullPath

Parameters

fullPath
The path to a directory. This must be a full pathname for a directory; if it contains any symbolic
links, they must be resolvable.

Return Value
The NSBundle object that corresponds to fullPath, or nil if fullPath does not identify an accessible
bundle directory.

84 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Discussion
This method allocates and initializes the returned object if there is no existing NSBundle associated
with fullPath, in which case it returns the existing object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ mainBundle (page 85)
+ bundleForClass: (page 83)
– initWithPath: (page 92)

Declared In
NSBundle.h

mainBundle
Returns the NSBundle object that corresponds to the directory where the current application executable
is located.

+ (NSBundle *)mainBundle

Return Value
The NSBundle object that corresponds to the directory where the application executable is located, or
nil if a bundle object could not be created.

Discussion
This method allocates and initializes a bundle object if one doesn’t already exist. The new object
corresponds to the directory where the application executable is located. Be sure to check the return
value to make sure you have a valid bundle. This method may return a valid bundle object even for
unbundled applications.

In general, the main bundle corresponds to an application file package or application wrapper: a
directory that bears the name of the application and is marked by a “.app” extension.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ bundleForClass: (page 83)
+ bundleWithPath: (page 84)

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:
Returns the full pathname for the resource file identified by a given name and extension and residing
in a given bundle directory.

+ (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)bundlePath

Class Methods 85
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Parameters

name
The name of a resource file contained in the bundle specified by bundlePath.

extension
If extension is an empty string or nil, the returned pathname is the first one encountered
that exactly matches name.

bundlePath
The path of a top-level bundle directory. This must be a valid path. For example, to specify
the bundle directory for an application, you might specify the path /Applications/MyApp.app.

Return Value
The full pathname for the resource file or nil if the file could not be located. This method also returns
nil if the bundle specified by the bundlePath parameter does not exist or is not a readable directory.

Discussion
The method first looks for a matching resource file in the nonlocalized resource directory (typically
Resources) of the specified bundle. If a matching resource file is not found, it then looks in the top
level of any available language-specific “.lproj” directories. (The search order for the language-specific
directories corresponds to the user’s preferences.) It does not recurse through other subdirectories at
any of these locations. For more details see Bundles and Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where
you need to retrieve bundle resources, it is preferable to use the NSBundle instance methods instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 95)
– pathForResource:ofType: (page 97)
– pathForResource:ofType:inDirectory: (page 98)
+ pathsForResourcesOfType:inDirectory: (page 86)
– pathsForResourcesOfType:inDirectory: (page 99)

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:
Returns an array containing the pathnames for all bundle resources having a given extension and
residing in the bundle directory specified by a given path.

+ (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)bundlePath

Parameters

extension
If extension is an empty string or nil, all bundle resources in the top-level resource directories
are returned.

86 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

bundlePath
The top-level directory of a bundle. This must represent a valid path.

Return Value
An array containing the full pathnames for all bundle resources with the specified extension. This
method returns an empty array of no matching resource files are found. It also returns an empty array
if the bundle specified by the bundlePath parameter does not exist or is not a readable directory.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same
type.

The method first looks for matching resource files in the nonlocalized resource directory (typically
Resources) of the specified bundle. It then looks in the top level of any available language-specific
“.lproj” directories. It does not recurse through other subdirectories at any of these locations. For
more details see Bundles and Localization.

Note: This method is best suited only for the occasional retrieval of resource files. In most cases where
you need to retrieve bundle resources, it is preferable to use the NSBundle instance methods instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 95)
– pathForResource:ofType: (page 97)
– pathForResource:ofType:inDirectory: (page 98)
+ pathForResource:ofType:inDirectory: (page 85)

Declared In
NSBundle.h

preferredLocalizationsFromArray:
Returns one or more localizations from the specified list that a bundle object would use to locate
resources for the current user.

+ (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray

Parameters

localizationsArray
An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.

Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the
array according to the current user's language preferences and are taken from the strings in the
localizationsArray parameter.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 87
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Declared In
NSBundle.h

preferredLocalizationsFromArray:forPreferences:
Returns the localizations that a bundle object would prefer, given the specified bundle and user
preference localizations.

+ (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray
forPreferences:(NSArray *)preferencesArray

Parameters

localizationsArray
An array of NSString objects, each of which specifies the name of a localization that the bundle
supports.

preferencesArray
An array of NSString objects containing the user's preferred localizations. If this parameter is
nil, the method uses the current user's localization preferences.

Return Value
An array of NSString objects containing the preferred localizations. These strings are ordered in the
array according to the specified preferences and are taken from the strings in the localizationsArray
parameter.

Discussion
Use the argument localizationsArray to specify the supported localizations of the bundle and use
preferencesArray to specify the user’s localization preferences.

If none of the user-preferred localizations are available in the bundle, this method chooses one of the
bundle localizations and returns it.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

Instance Methods

builtInPlugInsPath
Returns the full pathname of the receiver's subdirectory containing plug-ins.

- (NSString *)builtInPlugInsPath

Return Value
The full pathname of the receiving bundle’s subdirectory containing plug-ins.

Discussion
This method returns the appropriate path for modern application and framework bundles. This
method may not return a path for non-standard bundle formats or for some older bundle formats.

88 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

bundleIdentifier
Returns the receiver’s bundle identifier.

- (NSString *)bundleIdentifier

Return Value
The receiver’s bundle identifier, which is defined by the CFBundleIdentifier key in the bundle’s
information property list.

Availability
Available in iPhone OS 2.0 and later.

See Also
– infoDictionary (page 91)

Declared In
NSBundle.h

bundlePath
Returns the full pathname of the receiver’s bundle directory.

- (NSString *)bundlePath

Return Value
The full pathname of the receiver’s bundle directory.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

classNamed:
Returns the Class object for the specified name.

- (Class)classNamed:(NSString *)className

Parameters

className
The name of a class.

Return Value
The Class object for className. Returns NIL if className is not one of the classes associated with
the receiver or if there is an error loading the executable code containing the class implementation.

Instance Methods 89
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Discussion
If the bundle’s executable code is not yet loaded, this method dynamically loads it into memory.
Classes (and categories) are loaded from just one file within the bundle directory; this code file has
the same name as the directory, but without the extension (“.bundle”, “.app”, “.framework”). As
a side effect of code loading, the receiver posts NSBundleDidLoadNotification (page 106) after all
classes and categories have been loaded; see “Notifications” (page 106) for details.

The following example loads a bundle’s executable code containing the class “FaxWatcher”:

- (void)loadBundle:(id)sender
{

Class exampleClass;
id newInstance;
NSString *str = @"~/BundleExamples/BundleExample.bundle";
NSBundle *bundleToLoad = [NSBundle bundleWithPath:str];
if (exampleClass = [bundleToLoad classNamed:@"FaxWatcher"]) {

newInstance = [[exampleClass alloc] init];
// [newInstance doSomething];
}

}

Availability
Available in iPhone OS 2.0 and later.

See Also
– principalClass (page 102)
– load (page 93)

Declared In
NSBundle.h

developmentLocalization
Returns the localization used to create the bundle.

- (NSString *)developmentLocalization

Return Value
The localization used to create the bundle.

Discussion
The returned localization corresponds to the value in the CFBundleDevelopmentRegion key of the
bundle’s property list (Info.plist).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

executableArchitectures
Returns an array of numbers indicating the architecture types supported by the bundle’s executable.

90 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

- (NSArray *)executableArchitectures

Return Value
An array of NSNumber objects, each of which contains an integer value corresponding to a supported
processor architecture. For a list of common architecture types, see the constants in “Mach-O
Architecture” (page 105). If the bundle does not contain a Mach-O executable, this method returns
nil.

Discussion
This method scans the bundle’s Mach-O executable and returns all of the architecture types it finds.
Because they are taken directly from the executable, the returned values may not always correspond
to one of the well-known CPU types defined in “Mach-O Architecture” (page 105).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

executablePath
Returns the full pathname of the receiver's executable file.

- (NSString *)executablePath

Return Value
The full pathname of the receiving bundle’s executable file.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

infoDictionary
Returns a dictionary that contains information about the receiver.

- (NSDictionary *)infoDictionary

Return Value
A dictionary, constructed from the bundle's Info.plist file, that contains information about the
receiver. If the bundle does not contain an Info.plist file, a valid dictionary is returned but this
dictionary contains only private keys that are used internally by the NSBundle class.

Discussion
Common keys for accessing the values of the dictionary are CFBundleIdentifier, NSMainNibFile,
and NSPrincipalClass.

Availability
Available in iPhone OS 2.0 and later.

See Also
– principalClass (page 102)

Instance Methods 91
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Declared In
NSBundle.h

initWithPath:
Returns an NSBundle object initialized to correspond to a given directory.

- (id)initWithPath:(NSString *)fullPath

Parameters

fullPath
The path to a directory. This must be a full pathname for a directory; if it contains any symbolic
links, they must be resolvable.

Return Value
An NSBundle object initialized to correspond to fullPath. This method initializes and returns a new
instance only if there is no existing bundle associated with fullPath, otherwise it deallocates self
and returns the existing object. If fullPath doesn’t exist or the user doesn’t have access to it, returns
nil.

Discussion
It’s not necessary to allocate and initialize an instance for the main bundle; use the mainBundle (page
85) class method to get this instance. You can also use the bundleWithPath: (page 84) class method
to obtain a bundle identified by its directory path.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ bundleForClass: (page 83)

Declared In
NSBundle.h

isLoaded
Obtains information about the load status of a bundle.

- (BOOL)isLoaded

Return Value
YES if the bundle’s code is currently loaded, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– load (page 93)

Declared In
NSBundle.h

92 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

load
Dynamically loads the bundle’s executable code into a running program, if the code has not already
been loaded.

- (BOOL)load

Return Value
YES if the method successfully loads the bundle’s code or if the code has already been loaded, otherwise
NO.

Discussion
You can use this method to load the code associated with a dynamically loaded bundle, such as a
plug-in or framework. Prior to Mac OS X version 10.5, a bundle would attempt to load its code—if it
had any—only once. Once loaded, you could not unload that code. In Mac OS X version 10.5 and
later, you can unload a bundle’s executable code using the unload (page 104) method.

You don’t need to load a bundle’s executable code to search the bundle’s resources.

Availability
Available in iPhone OS 2.0 and later.

See Also
– loadAndReturnError: (page 93)
– isLoaded (page 92)
– unload (page 104)
– classNamed: (page 89)
– principalClass (page 102)

Declared In
NSBundle.h

loadAndReturnError:
Loads the bundle’s executable code and returns any errors.

- (BOOL)loadAndReturnError:(NSError **)error

Parameters

error
On input, a pointer to an error object variable. On output, this variable may contain an error
object indicating why the bundle’s executable could not be loaded. If no error occurred, this
parameter is left unmodified. You may specify nil for this parameter if you are not interested
in the error information.

Return Value
YES if the bundle’s executable code was loaded successfully or was already loaded; otherwise, NO if
the code could not be loaded.

Discussion
If this method returns NO and you pass a value for the error parameter, a suitable error object is
returned in that parameter. Potential errors returned are in the Cocoa error domain and include the
types that follow. For a full list of error types, see FoundationErrors.h.

 ■ NSFileNoSuchFileError - returned if the bundle’s executable file was not located.

Instance Methods 93
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

 ■ NSExecutableNotLoadableError - returned if the bundle’s executable file exists but could not
be loaded. This error is returned if the executable is not recognized as a loadable executable. It
can also be returned if the executable is a PEF/CFM executable but the current process does not
support that type of executable.

 ■ NSExecutableArchitectureMismatchError - returned if the bundle executable does not include
code that matches the processor architecture of the current processor.

 ■ NSExecutableRuntimeMismatchError - returned if the bundle’s required Objective-C runtime
information is not compatible with the runtime of the current process.

 ■ NSExecutableLoadError - returned if the bundle’s executable failed to load for some detectable
reason prior to linking. This error might occur if the bundle depends on a framework or library
that is missing or if the required framework or library is not compatible with the current
architecture or runtime version.

 ■ NSExecutableLinkError - returned if the executable failed to load due to link errors but is
otherwise alright.

The error object may contain additional debugging information in its description that you can use to
identify the cause of the error. (This debugging information should not be displayed to the user.) You
can obtain the debugging information by invoking the error object’s description method in your
code or by using the print-object command on the error object in gdb.

Availability
Available in iPhone OS 2.0 and later.

See Also
– load (page 93)
– unload (page 104)

Declared In
NSBundle.h

localizations
Returns a list of all the localizations contained within the receiver’s bundle.

- (NSArray *)localizations

Return Value
An array, containing NSString objects, that specifies all the localizations contained within the receiver’s
bundle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

localizedInfoDictionary
Returns a dictionary with the keys from the bundle’s localized property list.

94 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

- (NSDictionary *)localizedInfoDictionary

Return Value
A dictionary with the keys from the bundle’s localized property list (InfoPList.strings).

Discussion
This method uses the preferred localization for the current user when determining which resources
to return. If the preferred localization is not available, this method chooses the most appropriate
localization found in the bundle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

localizedStringForKey:value:table:
Returns a localized version of the string designated by a given key in a given table.

- (NSString *)localizedStringForKey:(NSString *)key value:(NSString *)value
table:(NSString *)tableName

Parameters

key
The key for a string in the table identified by tableName.

value
The value to return if key is nil or if a localized string for key can’t be found in the table.

tableName
The receiver’s string table to search. If tableName is nil or is an empty string, the method
attempts to use the table in Localizable.strings.

Return Value
A localized version of the string designated by key in table tableName. If value is nil or an empty
string, and a localized string is not found in the table, returns key. If key and value are both nil,
returns the empty string.

Discussion
For more details about string localization and the specification of a .strings file, see “Working With
Localized Strings.”

Using the user default NSShowNonLocalizedStrings, you can alter the behavior of
localizedStringForKey:value:table: (page 95) to log a message when the method can’t find a
localized string. If you set this default to YES (in the global domain or in the application’s domain),
then when the method can’t find a localized string in the table, it logs a message to the console and
capitalizes key before returning it.

The following example cycles through a static array of keys when a button is clicked, gets the value
for each key from a strings table named Buttons.strings, and sets the button title with the returned
value:

- (void)changeTitle:(id)sender
{

static int keyIndex = 0;

Instance Methods 95
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];

NSString *locString = [thisBundle
localizedStringForKey:assortedKeys[keyIndex++]
value:@"No translation" table:@"Buttons"];

[sender setTitle:locString];
if (keyIndex == MAXSTRINGS) keyIndex=0;

}

Availability
Available in iPhone OS 2.0 and later.

See Also
– pathForResource:ofType: (page 97)
– pathForResource:ofType:inDirectory: (page 98)
– pathsForResourcesOfType:inDirectory: (page 99)
+ pathForResource:ofType:inDirectory: (page 85)
+ pathsForResourcesOfType:inDirectory: (page 86)

Declared In
NSBundle.h

objectForInfoDictionaryKey:
Returns the value associated with a given key in the receiver's property list.

- (id)objectForInfoDictionaryKey:(NSString *)key

Parameters

key
A key in the receiver's property list.

Return Value
The value associated with key in the receiver's property list (Info.plist). The localized value of a
key is returned when one is available.

Discussion
Use of this method is preferred over other access methods because it returns the localized value of a
key when one is available.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

pathForAuxiliaryExecutable:
Returns the full pathname of the executable with a given name in the receiver’s bundle.

- (NSString *)pathForAuxiliaryExecutable:(NSString *)executableName

96 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Parameters

executableName
The name of an executable file.

Return Value
The full pathname of the executable executableName in the receiver’s bundle.

Discussion
This method returns the appropriate path for modern application and framework bundles. This
method may not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

pathForResource:ofType:
Returns the full pathname for the resource identified by a given name and specified file extension.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension

Parameters

name
The name of the resource file.

extension
The file extension of a resource with the name name.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
If extension is an empty string or nil, the returned pathname is the first one encountered where the
file name exactly matches name.

The method first looks for a matching resource file in the nonlocalized resource directory (typically
Resources) of the specified bundle. If a matching resource file is not found, it then looks in the top
level of any available language-specific “.lproj” directories. (The search order for the language-specific
directories corresponds to the user’s preferences.) It does not recurse through other subdirectories at
any of these locations. For more details see Bundles and Localization.

The following code fragment gets the path to a localized sound, creates an NSSound instance from it,
and plays the sound.

NSString *soundPath;
NSSound *thisSound;
NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];
if (soundPath = [thisBundle pathForResource:@"Hello" ofType:@"snd"]) {

thisSound = [[[NSSound alloc] initFromSoundfile:soundPath] autorelease];
[thisSound play];

}

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 97
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

See Also
– localizedStringForKey:value:table: (page 95)
– pathForResource:ofType: (page 97)
– pathForResource:ofType:inDirectory: (page 98)
+ pathForResource:ofType:inDirectory: (page 85)
+ pathsForResourcesOfType:inDirectory: (page 86)

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:
Returns the full pathname for the resource identified by the given name and file extension and located
in the specified bundle subdirectory.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)subpath

Parameters

name
The name of the resource file.

extension
The file extension of the specified resource file.

subpath
The name of the bundle subdirectory.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
If extension is an empty string or nil, the returned pathname is the first one encountered where the
file name exactly matches name.

If subpath is nil, this method searches the top-level nonlocalized resource directory (typically
Resources) and the top-level of any language-specific directories. For example, suppose you have a
modern bundle and specify @"Documentation" for the subpath parameter. This method would first
look in the Contents/Resources/Documentation directory of the bundle, followed by the
Documentation subdirectories of each language-specific .lproj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse
through any other subdirectories at any of these locations. For more details see Bundles and
Localization.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 95)
– pathForResource:ofType: (page 97)
– pathsForResourcesOfType:inDirectory: (page 99)
+ pathForResource:ofType:inDirectory: (page 85)
+ pathsForResourcesOfType:inDirectory: (page 86)

98 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Declared In
NSBundle.h

pathForResource:ofType:inDirectory:forLocalization:
Returns the full pathname for the resource identified by the given name and file extension, located
in the specified bundle subdirectory, and limited to global resources and those associated with the
specified localization.

- (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension
inDirectory:(NSString *)subpath forLocalization:(NSString *)localizationName

Parameters

name
The name of the resource file.

extension
The file extension of the specified resource file.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the
bundle's language-specific resource directories without the .lproj extension.

Return Value
The full pathname for the resource file or nil if the file could not be located.

Discussion
This method is equivalent to pathForResource:ofType:inDirectory: (page 98), except that only
nonlocalized resources and those in the language-specific .lproj directory specified by
localizationName are searched.

There should typically be little reason to use this method—see Getting the Current Language and
Locale. See also preferredLocalizationsFromArray:forPreferences: (page 88) for how to determine
what localizations are available.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:
Returns an array containing the pathnames for all bundle resources having the specified filename
extension and residing in the resource subdirectory.

- (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)subpath

Parameters

extension
The file extension of the files to retrieve.

Instance Methods 99
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

subpath
The name of the bundle subdirectory to search.

Return Value
An array containing the full pathnames for all bundle resources matching the specified criteria. This
method returns an empty array of no matching resource files are found.

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same
type. If extension is an empty string or nil, all bundle resources in the specified resource directory
are returned.

The argument subpath specifies the name of a specific subdirectory to search within the current
bundle’s resource directory hierarchy. If subpath is nil, this method searches the top-level nonlocalized
resource directory (typically Resources) and the top-level of any language-specific directories. For
example, suppose you have a modern bundle and specify @"Documentation" for the subpath
parameter. This method would first look in the Contents/Resources/Documentation directory of
the bundle, followed by the Documentation subdirectories of each language-specific .lproj directory.
(The search order for the language-specific directories corresponds to the user’s preferences.) This
method does not recurse through any other subdirectories at any of these locations. For more details
see Bundles and Localization.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedStringForKey:value:table: (page 95)
– pathForResource:ofType: (page 97)
– pathForResource:ofType:inDirectory: (page 98)
+ pathForResource:ofType:inDirectory: (page 85)
+ pathsForResourcesOfType:inDirectory: (page 86)

Declared In
NSBundle.h

pathsForResourcesOfType:inDirectory:forLocalization:
Returns an array containing the pathnames for all bundle resources having the specified filename
extension, residing in the specified resource subdirectory, and limited to global resources and those
associated with the specified localization.

- (NSArray *)pathsForResourcesOfType:(NSString *)extension inDirectory:(NSString
*)subpath forLocalization:(NSString *)localizationName

Parameters

extension
The file extension of the files to retrieve.

subpath
The name of the bundle subdirectory to search.

localizationName
The name of the localization. This parameter should correspond to the name of one of the
bundle's language-specific resource directories without the .lproj extension.

100 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Return Value
An array containing the full pathnames for all bundle resources matching the specified criteria. This
method returns an empty array of no matching resource files are found.

Discussion
This method is equivalent to pathsForResourcesOfType:inDirectory: (page 99), except that only
nonlocalized resources and those in the language-specific .lproj directory specified by
localizationName are searched.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

preferredLocalizations
Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate
resources based on the user’s preferences.

- (NSArray *)preferredLocalizations

Return Value
One or more localizations contained in the receiver’s bundle that the receiver uses to locate resources
based on the user’s preferences.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ preferredLocalizationsFromArray: (page 87)
– localizations (page 94)

Declared In
NSBundle.h

preflightAndReturnError:
Returns a Boolean value indicating whether the bundle’s executable code could be loaded successfully.

- (BOOL)preflightAndReturnError:(NSError **)error

Parameters

error
On input, a pointer to an error object variable. On output, this variable may contain an error
object indicating why the bundle’s executable could not be loaded. If no error would occur,
this parameter is left unmodified. You may specify nil for this parameter if you are not
interested in the error information.

Return Value
YES if the bundle’s executable code could be loaded successfully or is already loaded; otherwise, NO
if the code could not be loaded.

Instance Methods 101
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Discussion
This method does not actually load the bundle’s executable code. Instead, it performs several checks
to see if the code could be loaded and with one exception returns the same errors that would occur
during an actual load operation. The one exception is the NSExecutableLinkError error, which
requires the actual loading of the code to verify link errors.

For a list of possible load errors, see the discussion for the loadAndReturnError: (page 93) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– loadAndReturnError: (page 93)

Declared In
NSBundle.h

principalClass
Returns the receiver’s principal class.

- (Class)principalClass

Return Value
The receiver’s principal class—after ensuring that the code containing the definition of that class is
dynamically loaded. If the receiver encounters errors in loading or if it can’t find the executable code
file in the bundle directory, returns NIL.

Discussion
The principal class typically controls all the other classes in the bundle; it should mediate between
those classes and classes external to the bundle. Classes (and categories) are loaded from just one file
within the bundle directory. NSBundle obtains the name of the code file to load from the dictionary
returned from infoDictionary (page 91), using “NSExecutable” as the key. The bundle determines
its principal class in one of two ways:

 ■ It first looks in its own information dictionary, which extracts the information encoded in the
bundle’s property list (Info.plist). NSBundle obtains the principal class from the dictionary
using the key NSPrincipalClass. For nonloadable bundles (applications and frameworks), if
the principal class is not specified in the property list, the method returns NIL.

 ■ If the principal class is not specified in the information dictionary, NSBundle identifies the first
class loaded as the principal class. When several classes are linked into a dynamically loadable
file, the default principal class is the first one listed on the ld command line. In the following
example, Reporter would be the principal class:

ld -o myBundle -r Reporter.o NotePad.o QueryList.o

The order of classes in Xcode’s project browser is the order in which they will be linked. To designate
the principal class, control-drag the file containing its implementation to the top of the list.

As a side effect of code loading, the receiver posts NSBundleDidLoadNotification (page 106) after
all classes and categories have been loaded; see “Notifications” (page 106) for details.

102 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

The following method obtains a bundle by specifying its path (bundleWithPath: (page 84)), then
loads the bundle with principalClass (page 102) and uses the returned class object to allocate and
initialize an instance of that class:

- (void)loadBundle:(id)sender
{

Class exampleClass;
id newInstance;
NSString *path = @"/tmp/Projects/BundleExample/BundleExample.bundle";
NSBundle *bundleToLoad = [NSBundle bundleWithPath:path];
if (exampleClass = [bundleToLoad principalClass]) {

newInstance = [[exampleClass alloc] init];
[newInstance doSomething];

}
}

Availability
Available in iPhone OS 2.0 and later.

See Also
– classNamed: (page 89)
– infoDictionary (page 91)
– load (page 93)

Declared In
NSBundle.h

privateFrameworksPath
Returns the full pathname of the receiver's subdirectory containing private frameworks.

- (NSString *)privateFrameworksPath

Return Value
The full pathname of the receiver's subdirectory containing private frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This
method may not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

resourcePath
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

- (NSString *)resourcePath

Return Value
The full pathname of the receiving bundle’s subdirectory containing resources.

Instance Methods 103
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– bundlePath (page 89)

Declared In
NSBundle.h

sharedFrameworksPath
Returns the full pathname of the receiver's subdirectory containing shared frameworks.

- (NSString *)sharedFrameworksPath

Return Value
The full pathname of the receiver's subdirectory containing shared frameworks.

Discussion
This method returns the appropriate path for modern application and framework bundles. This
method may not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

sharedSupportPath
Returns the full pathname of the receiver's subdirectory containing shared support files.

- (NSString *)sharedSupportPath

Return Value
The full pathname of the receiver's subdirectory containing shared support files.

Discussion
This method returns the appropriate path for modern application and framework bundles. This
method may not return a path for non-standard bundle formats or for some older bundle formats.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

unload
Unloads the code associated with the receiver.

- (BOOL)unload

104 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Return Value
YES if the bundle was successfully unloaded or was not already loaded; otherwise, NO if the bundle
could not be unloaded.

Discussion
This method attempts to unload a bundle’s executable code using the underlying dynamic loader
(typically dyld). You may use this method to unload plug-in and framework bundles when you no
longer need the code they contain. You should use this method to unload bundles that were loaded
using the methods of the NSBundle class only. Do not use this method to unload bundles that were
originally loaded using the bundle-manipulation functions in Core Foundation.

It is the responsibility of the caller to ensure that no in-memory objects or data structures refer to the
code being unloaded. For example, if you have an object whose class is defined in a bundle, you must
release that object prior to unloading the bundle. Similarly, your code should not attempt to access
any symbols defined in an unloaded bundle.

Special Considerations

Prior to Mac OS X version 10.5, code could not be unloaded once loaded, and this method would
always return NO. In Mac OS X version 10.5 and later, you can unload a bundle’s executable code
using this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– loadAndReturnError: (page 93)
– load (page 93)

Declared In
NSBundle.h

Constants

Mach-O Architecture
These constants describe the CPU types that a bundle’s executable code may support.

enum {
NSBundleExecutableArchitectureI386 = 0x00000007,
NSBundleExecutableArchitecturePPC = 0x00000012,
NSBundleExecutableArchitectureX86_64 = 0x01000007,
NSBundleExecutableArchitecturePPC64 = 0x01000012

};

Constants
NSBundleExecutableArchitectureI386

Specifies the 32-bit Intel architecture.

Available in iPhone OS 2.0 and later.

Declared in NSBundle.h

Constants 105
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

NSBundleExecutableArchitecturePPC
Specifies the 32-bit PowerPC architecture.

Available in iPhone OS 2.0 and later.

Declared in NSBundle.h

NSBundleExecutableArchitectureX86_64
Specifies the 64-bit Intel architecture.

Available in iPhone OS 2.0 and later.

Declared in NSBundle.h

NSBundleExecutableArchitecturePPC64
Specifies the 64-bit PowerPC architecture.

Available in iPhone OS 2.0 and later.

Declared in NSBundle.h

Declared In
NSBundle.h

Notifications

NSBundleDidLoadNotification
NSBundle posts NSBundleDidLoadNotification to notify observers which classes and categories
have been dynamically loaded. When a request is made to an NSBundle object for a class (classNamed:
(page 89) or principalClass (page 102)), the bundle dynamically loads the executable code file that
contains the class implementation and all other class definitions contained in the file. After the module
is loaded, the bundle posts the NSBundleDidLoadNotification.

The notification object is the NSBundle instance that dynamically loads classes. The userInfodictionary
contains the following information:

ValueKey

An NSArray object containing the names (as
NSString objects) of each class that was loaded

@"NSLoadedClasses"

In a typical use of this notification, an object might want to enumerate the userInfo array to check
if each loaded class conformed to a certain protocol (say, an protocol for a plug-and-play tool set); if
a class does conform, the object would create an instance of that class and add the instance to another
NSArray object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

106 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

NSBundle Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLCache.h

Companion guide: URL Loading System

Overview

Important: This is a preliminary document for an API or technology in development. Although this
document has been reviewed for technical accuracy, it is not final. Apple is supplying this information
to help you plan for the adoption of the technologies and programming interfaces described herein.
This information is subject to change, and software implemented according to this document should
be tested with final operating system software and final documentation. Newer versions of this
document may be provided with future seeds of the API or technology. For information about updates
to this and other developer documentation, view the New & Updated sidebars in subsequent
documentation seeds.

An NSCachedURLResponse object encapsulates an NSURLResponse object, an NSData object containing
the content corresponding to the response, and an NSDictionary containing application specific
information.

The NSURLCache system stores and retrieves instances of NSCachedURLResponse.

Overview 107
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSCachedURLResponse Class Reference

Tasks

Creating a Cached URL Response

– initWithResponse:data: (page 108)
Initializes an NSCachedURLResponse object.

– initWithResponse:data:userInfo:storagePolicy: (page 109)
Initializes an NSCachedURLResponse object.

Getting Cached URL Response Properties

– data (page 108)
Returns the receiver’s cached data.

– response (page 110)
Returns the NSURLResponse object associated with the receiver.

– storagePolicy (page 110)
Returns the receiver’s cache storage policy.

– userInfo (page 110)
Returns the receiver’s user info dictionary.

Instance Methods

data
Returns the receiver’s cached data.

- (NSData *)data

Return Value
The receiver’s cached data.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCache.h

initWithResponse:data:
Initializes an NSCachedURLResponse object.

- (id)initWithResponse:(NSURLResponse *)response data:(NSData *)data

108 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSCachedURLResponse Class Reference

Parameters

response
The response to cache.

data
The data to cache.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Discussion
The cache storage policy is set to the default, NSURLCacheStorageAllowed, and the user info dictionary
is set to nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithResponse:data:userInfo:storagePolicy: (page 109)

Declared In
NSURLCache.h

initWithResponse:data:userInfo:storagePolicy:
Initializes an NSCachedURLResponse object.

- (id)initWithResponse:(NSURLResponse *)response data:(NSData *)data
userInfo:(NSDictionary *)userInfo
storagePolicy:(NSURLCacheStoragePolicy)storagePolicy

Parameters

response
The response to cache.

data
The data to cache.

userInfo
An optional dictionary of user information. May be nil.

storagePolicy
The storage policy for the cached response.

Return Value
The NSCachedURLResponse object, initialized using the given data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithResponse:data: (page 108)

Declared In
NSURLCache.h

Instance Methods 109
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSCachedURLResponse Class Reference

response
Returns the NSURLResponse object associated with the receiver.

- (NSURLResponse *)response

Return Value
The NSURLResponse object associated with the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCache.h

storagePolicy
Returns the receiver’s cache storage policy.

- (NSURLCacheStoragePolicy)storagePolicy

Return Value
The receiver’s cache storage policy.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCache.h

userInfo
Returns the receiver’s user info dictionary.

- (NSDictionary *)userInfo

Return Value
An NSDictionary object containing the receiver’s user info, or nil if there is no such object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCache.h

Constants

NSURLCacheStoragePolicy
These constants specify the caching strategy used by an NSCachedURLResponse object.

110 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSCachedURLResponse Class Reference

typedef enum
{

NSURLCacheStorageAllowed,
NSURLCacheStorageAllowedInMemoryOnly,
NSURLCacheStorageNotAllowed,

} NSURLCacheStoragePolicy;

Constants
NSURLCacheStorageAllowed

Specifies that storage in NSURLCache is allowed without restriction.

Important: iPhone OS ignores this cache policy, and instead treats it as
NSURLCacheStorageAllowedInMemoryOnly.

Available in iPhone OS 2.0 and later.

Declared in NSURLCache.h

NSURLCacheStorageAllowedInMemoryOnly
Specifies that storage in NSURLCache is allowed; however storage should be restricted to memory
only.

Available in iPhone OS 2.0 and later.

Declared in NSURLCache.h

NSURLCacheStorageNotAllowed
Specifies that storage in NSURLCache is not allowed in any fashion, either in memory or on
disk.

Available in iPhone OS 2.0 and later.

Declared in NSURLCache.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCache.h

Constants 111
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSCachedURLResponse Class Reference

112 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

NSCachedURLResponse Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSCalendar.h

Companion guides: Date and Time Programming Guide for Cocoa
Data Formatting Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

Calendars encapsulate information about systems of reckoning time in which the beginning, length,
and divisions of a year are defined. They provide information about the calendar and support for
calendrical computations such as determining the range of a given calendrical unit and adding units
to a given absolute time.

In a calendar, day, week, weekday, month, and year numbers are generally 1-based, but there may
be calendar-specific exceptions. Ordinal numbers, where they occur, are 1-based. Some calendars
represented by this API may have to map their basic unit concepts into year/month/week/day/…

Overview 113
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

nomenclature. For example, a calendar composed of 4 quarters in a year instead of 12 months uses
the month unit to represent quarters. The particular values of the unit are defined by each calendar,
and are not necessarily consistent with values for that unit in another calendar.

To do calendar arithmetic, you use NSDate objects in conjunction with a calendar. For example, to
convert between a decomposed date in one calendar and another calendar, you must first convert
the decomposed elements into a date using the first calendar, then decompose it using the second.
NSDate provides the absolute scale and epoch (reference point) for dates and times, which can then
be rendered into a particular calendar, for calendrical computations or user display.

Two NSCalendar methods that return a date object, dateFromComponents: (page 120),
dateByAddingComponents:toDate:options: (page 119), take as a parameter an NSDateComponents
object that describes the calendrical components required for the computation. You can provide as
many components as you need (or choose to). When there is incomplete information to compute an
absolute time, default values similar to 0 and 1 are usually chosen by a calendar, but this is a
calendar-specific choice. If you provide inconsistent information, calendar-specific disambiguation
is performed (which may involve ignoring one or more of the parameters). Related methods
(components:fromDate: (page 117) and components:fromDate:toDate:options: (page 118)) take
a bit mask parameter that specifies which components to calculate when returning an
NSDateComponents object. The bit mask is composed of NSCalendarUnit constants (see
“Constants” (page 127)).

NSCalendar is “toll-free bridged” with its Core Foundation counterpart, CFCalendar. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSCalendar * parameter, you can pass
in a CFCalendarRef, and in a function where you see a CFCalendarRef parameter, you can pass in
an NSCalendar instance. See Interchangeable Data Types for more information on toll-free bridging.

Tasks

System Locale Information

+ currentCalendar (page 116)
Returns the logical calendar for the current user.

+ autoupdatingCurrentCalendar (page 116)
Returns the current logical calendar for the current user.

Initializing a Calendar

– initWithCalendarIdentifier: (page 121)
Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

– setFirstWeekday: (page 125)
Sets the index of the first weekday for the receiver.

– setLocale: (page 125)
Sets the locale for the receiver.

– setMinimumDaysInFirstWeek: (page 126)
Sets the minimum number of days in the first week of the receiver.

114 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

– setTimeZone: (page 126)
Sets the time zone for the receiver.

Getting Information About a Calendar

– calendarIdentifier (page 117)
Returns the identifier for the receiver.

– firstWeekday (page 121)
Returns the index of the first weekday of the receiver.

– locale (page 121)
Returns the locale for the receiver.

– maximumRangeOfUnit: (page 122)
The maximum range limits of the values that a given unit can take on in the receive

– minimumDaysInFirstWeek (page 122)
Returns the minimum number of days in the first week of the receiver.

– minimumRangeOfUnit: (page 123)
Returns the minimum range limits of the values that a given unit can take on in the receiver.

– ordinalityOfUnit:inUnit:forDate: (page 123)
Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a
day) within a specified larger calendar unit (such as a week).

– rangeOfUnit:inUnit:forDate: (page 124)
Returns the range of absolute time values that a smaller calendar unit (such as a day) can take
on in a larger calendar unit (such as a month) that includes a specified absolute time.

– rangeOfUnit:startDate:interval:forDate: (page 124)
Returns by reference the starting time and duration of a given calendar unit that contains a
given date.

– timeZone (page 127)
Returns the time zone for the receiver.

Calendrical Calculations

– components:fromDate: (page 117)
Returns a NSDateComponents object containing a given date decomposed into specified
components.

– components:fromDate:toDate:options: (page 118)
Returns, as an NSDateComponents object using specified components, the difference between
two supplied dates.

– dateByAddingComponents:toDate:options: (page 119)
Returns a new NSDate object representing the absolute time calculated by adding given
components to a given date.

– dateFromComponents: (page 120)
Returns a new NSDate object representing the absolute time calculated from given components.

Tasks 115
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

Class Methods

autoupdatingCurrentCalendar
Returns the current logical calendar for the current user.

+ (id)autoupdatingCurrentCalendar

Return Value
The current logical calendar for the current user.

Discussion
Settings you get from this calendar do change as the user’s settings change (contrast with
currentCalendar (page 116)).

Note that if you cache values based on the calendar or related information those caches will of course
not be automatically updated by the updating of the calendar object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ currentCalendar (page 116)
– initWithCalendarIdentifier: (page 121)
– calendarIdentifier (page 117)

Declared In
NSCalendar.h

currentCalendar
Returns the logical calendar for the current user.

+ (id)currentCalendar

Return Value
The logical calendar for the current user.

Discussion
The returned calendar is formed from the settings for the current user’s chosen system locale overlaid
with any custom settings the user has specified in System Preferences. Settings you get from this
calendar do not change as System Preferences are changed, so that your operations are consistent
(contrast with autoupdatingCurrentCalendar (page 116)).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ autoupdatingCurrentCalendar (page 116)
– initWithCalendarIdentifier: (page 121)
– calendarIdentifier (page 117)

116 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

Declared In
NSCalendar.h

Instance Methods

calendarIdentifier
Returns the identifier for the receiver.

- (NSString *)calendarIdentifier

Return Value
The identifier for the receiver. For valid identifiers, see NSLocale.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ autoupdatingCurrentCalendar (page 116)
– initWithCalendarIdentifier: (page 121)

Declared In
NSCalendar.h

components:fromDate:
Returns a NSDateComponents object containing a given date decomposed into specified components.

- (NSDateComponents *)components:(NSUInteger)unitFlags fromDate:(NSDate *)date

Parameters

unitFlags
The components into which to decompose date—a bitwise OR of NSCalendarUnit constants.

date
The date for which to perform the calculation.

Return Value
An NSDateComponents object containing date decomposed into the components specified by
unitFlags. Returns nil if date falls outside of the defined range of the receiver or if the computation
cannot be performed

Discussion
The Weekday ordinality, when requested, refers to the next larger (than Week) of the requested units.
Some computations can take a relatively long time.

The following example shows how to use this method to determine the current year, month, and day,
using an existing calendar (gregorian):

unsigned unitFlags = NSYearCalendarUnit | NSMonthCalendarUnit |
NSDayCalendarUnit;
NSDate *date = [NSDate date];

Instance Methods 117
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

NSDateComponents *comps = [gregorian components:unitFlags fromDate:date];

Availability
Available in iPhone OS 2.0 and later.

See Also
– dateFromComponents: (page 120)
– components:fromDate:toDate:options: (page 118)
– dateByAddingComponents:toDate:options: (page 119)

Declared In
NSCalendar.h

components:fromDate:toDate:options:
Returns, as an NSDateComponents object using specified components, the difference between two
supplied dates.

- (NSDateComponents *)components:(NSUInteger)unitFlags fromDate:(NSDate
*)startingDate toDate:(NSDate *)resultDate options:(NSUInteger)opts

Parameters

unitFlags
Specifies the components for the returned NSDateComponents object—a bitwise OR of
NSCalendarUnit constants.

startingDate
The start date for the calculation.

resultDate
The end date for the calculation.

opts
Options for the calculation.

If you specify a “wrap” option (NSWrapCalendarComponents), the specified components are
incremented and wrap around to zero/one on overflow, but do not cause higher units to be
incremented. When the wrap option is false, overflow in a unit carries into the higher units,
as in typical addition.

Return Value
An NSDateComponents object whose components are specified by unitFlags and calculated from
the difference between the resultDate and startDate using the options specified by opts. Returns
nil if either date falls outside the defined range of the receiver or if the computation cannot be
performed.

Discussion
The result is lossy if there is not a small enough unit requested to hold the full precision of the
difference. Some operations can be ambiguous, and the behavior of the computation is calendar-specific,
but generally larger components will be computed before smaller components; for example, in the
Gregorian calendar a result might be 1 month and 5 days instead of, for example, 0 months and 35
days. The resulting component values may be negative if resultDate is before startDate.

The following example shows how to get the approximate number of months and days between two
dates using an existing calendar (gregorian):

118 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

NSDate *startDate = ...;
NSDate *endDate = ...;
unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit;
NSDateComponents *comps = [gregorian components:unitFlags fromDate:startDate
toDate:endDate options:0];
int months = [comps month];
int days = [comps day];

Note that some computations can take a relatively long time.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dateByAddingComponents:toDate:options: (page 119)
– dateFromComponents: (page 120)

Declared In
NSCalendar.h

dateByAddingComponents:toDate:options:
Returns a new NSDate object representing the absolute time calculated by adding given components
to a given date.

- (NSDate *)dateByAddingComponents:(NSDateComponents *)comps toDate:(NSDate *)date
options:(NSUInteger)opts

Parameters

comps
The components to add to date.

date
The date to which comps are added.

opts
Options for the calculation. See “NSDateComponents wrapping behavior” (page 129) for
possible values. Pass 0 to specify no options.

If you specify no options (you pass 0), overflow in a unit carries into the higher units (as in
typical addition).

Return Value
A new NSDate object representing the absolute time calculated by adding to date the calendrical
components specified by comps using the options specified by opts. Returns nil if date falls outside
the defined range of the receiver or if the computation cannot be performed.

Discussion
Some operations can be ambiguous, and the behavior of the computation is calendar-specific, but
generally components are added in the order specified.

The following example shows how to add 2 months and 3 days to the current date and time using
an existing calendar (gregorian):

NSDate *currentDate = [NSDate date];
NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setMonth:2];

Instance Methods 119
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

[comps setDay:3];
NSDate *date = [gregorian dateByAddingComponents:comps toDate:currentDate
options:0];
[comps release];

Note that some computations can take a relatively long time.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dateFromComponents: (page 120)
– components:fromDate:toDate:options: (page 118)

Declared In
NSCalendar.h

dateFromComponents:
Returns a new NSDate object representing the absolute time calculated from given components.

- (NSDate *)dateFromComponents:(NSDateComponents *)comps

Parameters

comps
The components from which to calculate the returned date.

Return Value
A new NSDate object representing the absolute time calculated from comps. Returns nil if the receiver
cannot convert the components given in comps into an absolute time. The method also returns nil
and for out-of-range values.

Discussion
When there are insufficient components provided to completely specify an absolute time, a calendar
uses default values of its choice. When there is inconsistent information, a calendar may ignore some
of the components parameters or the method may return nil. Unnecessary components are ignored
(for example, Day takes precedence over Weekday and Weekday ordinals).

The following example shows how to use this method to create a date object to represent 14:10:00 on
6 January 1965, for a given calendar (gregorian).

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setYear:1965];
[comps setMonth:1];
[comps setDay:6];
[comps setHour:14];
[comps setMinute:10];
[comps setSecond:0];
NSDate *date = [gregorian dateFromComponents:comps];
[comps release];

Note that some computations can take a relatively long time to perform.

Availability
Available in iPhone OS 2.0 and later.

120 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

See Also
– components:fromDate: (page 117)
– dateFromComponents: (page 120)

Declared In
NSCalendar.h

firstWeekday
Returns the index of the first weekday of the receiver.

- (NSUInteger)firstWeekday

Return Value
The index of the first weekday of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setFirstWeekday: (page 125)

Declared In
NSCalendar.h

initWithCalendarIdentifier:
Initializes a newly-allocated NSCalendar object for the calendar specified by a given identifier.

- (id)initWithCalendarIdentifier:(NSString *)string

Parameters

string
The identifier for the new calendar. For valid identifiers, see NSLocale.

Return Value
The initialized calendar, or nil if the identifier is unknown (if, for example, it is either an unrecognized
string or the calendar is not supported by the current version of the operating system).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ autoupdatingCurrentCalendar (page 116)
– calendarIdentifier (page 117)

Declared In
NSCalendar.h

locale
Returns the locale for the receiver.

Instance Methods 121
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

- (NSLocale *)locale

Return Value
The locale for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLocale: (page 125)

Declared In
NSCalendar.h

maximumRangeOfUnit:
The maximum range limits of the values that a given unit can take on in the receive

- (NSRange)maximumRangeOfUnit:(NSCalendarUnit)unit

Parameters

unit
The unit for which the maximum range is returned.

Return Value
The maximum range limits of the values that the unit specified by unit can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the maximum range of values for the Day unit is 1-31.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minimumRangeOfUnit: (page 123)

Declared In
NSCalendar.h

minimumDaysInFirstWeek
Returns the minimum number of days in the first week of the receiver.

- (NSUInteger)minimumDaysInFirstWeek

Return Value
The minimum number of days in the first week of the receiver

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMinimumDaysInFirstWeek: (page 126)

122 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

Declared In
NSCalendar.h

minimumRangeOfUnit:
Returns the minimum range limits of the values that a given unit can take on in the receiver.

- (NSRange)minimumRangeOfUnit:(NSCalendarUnit)unit

Parameters

unit
The unit for which the maximum range is returned.

Return Value
The minimum range limits of the values that the unit specified by unit can take on in the receiver.

Discussion
As an example, in the Gregorian calendar the minimum range of values for the Day unit is 1-28.

Availability
Available in iPhone OS 2.0 and later.

See Also
– maximumRangeOfUnit: (page 122)

Declared In
NSCalendar.h

ordinalityOfUnit:inUnit:forDate:
Returns, for a given absolute time, the ordinal number of a smaller calendar unit (such as a day)
within a specified larger calendar unit (such as a week).

- (NSUInteger)ordinalityOfUnit:(NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate:(NSDate *)date

Parameters

smaller
The smaller calendar unit

larger
The larger calendar unit

date
The absolute time for which the calculation is performed

Return Value
The ordinal number of smaller within larger at the time specified by date. Returns NSNotFound if
larger is not logically bigger than smaller in the calendar, or the given combination of units does
not make sense (or is a computation which is undefined).

Discussion
The ordinality is in most cases not the same as the decomposed value of the unit. Normal return
values are 1 and greater. For example, the time 00:45 is in the first hour of the day, and for units
Hour and Day respectively, the result would be 1.

Instance Methods 123
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

Note that some computations can take a relatively long time.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rangeOfUnit:inUnit:forDate: (page 124)
– rangeOfUnit:startDate:interval:forDate: (page 124)

Declared In
NSCalendar.h

rangeOfUnit:inUnit:forDate:
Returns the range of absolute time values that a smaller calendar unit (such as a day) can take on in
a larger calendar unit (such as a month) that includes a specified absolute time.

- (NSRange)rangeOfUnit:(NSCalendarUnit)smaller inUnit:(NSCalendarUnit)larger
forDate:(NSDate *)date

Parameters

smaller
The smaller calendar unit.

larger
The larger calendar unit.

date
The absolute time for which the calculation is performed.

Return Value
The range of absolute time values smaller can take on in larger at the time specified by date. Returns
{NSNotFound, NSNotFound} if larger is not logically bigger than smaller in the calendar, or the
given combination of units does not make sense (or is a computation which is undefined).

Discussion
You can use this method to calculate, for example, the range the Day unit can take on in the Month
in which date lies.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rangeOfUnit:startDate:interval:forDate: (page 124)
– ordinalityOfUnit:inUnit:forDate: (page 123)

Declared In
NSCalendar.h

rangeOfUnit:startDate:interval:forDate:
Returns by reference the starting time and duration of a given calendar unit that contains a given
date.

124 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

- (BOOL)rangeOfUnit:(NSCalendarUnit)unit startDate:(NSDate **)datep
interval:(NSTimeInterval *)tip forDate:(NSDate *)date

Parameters

unit
A calendar unit (see “Calendar Units” (page 127) for possible values).

datep
Upon return, contains the starting time of the calendar unit unit that contains the date date

tip
Upon return, contains the duration of the calendar unit unit that contains the date date

date
A date.

Return Value
YES if the starting time and duration of a unit could be calculated, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rangeOfUnit:inUnit:forDate: (page 124)
– ordinalityOfUnit:inUnit:forDate: (page 123)

Declared In
NSCalendar.h

setFirstWeekday:
Sets the index of the first weekday for the receiver.

- (void)setFirstWeekday:(NSUInteger)weekday

Parameters

weekday
The first weekday for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– firstWeekday (page 121)

Declared In
NSCalendar.h

setLocale:
Sets the locale for the receiver.

- (void)setLocale:(NSLocale *)locale

Instance Methods 125
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

Parameters

locale
The locale for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– locale (page 121)

Declared In
NSCalendar.h

setMinimumDaysInFirstWeek:
Sets the minimum number of days in the first week of the receiver.

- (void)setMinimumDaysInFirstWeek:(NSUInteger)mdw

Parameters

mdw
The minimum number of days in the first week of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minimumDaysInFirstWeek (page 122)

Declared In
NSCalendar.h

setTimeZone:
Sets the time zone for the receiver.

- (void)setTimeZone:(NSTimeZone *)tz

Parameters

tz
The time zone for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeZone (page 127)

Declared In
NSCalendar.h

126 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

timeZone
Returns the time zone for the receiver.

- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTimeZone: (page 126)

Declared In
NSCalendar.h

Constants

NSCalendarUnit
Defines a type used to specify calendrical units such as day and month.

typedef NSUInteger NSCalendarUnit;

Discussion
See “Calendar Units” (page 127) for possible values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCalendar.h

Calendar Units
Specify calendrical units such as day and month.

Constants 127
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

enum {
NSEraCalendarUnit = kCFCalendarUnitEra,
NSYearCalendarUnit = kCFCalendarUnitYear,
NSMonthCalendarUnit = kCFCalendarUnitMonth,
NSDayCalendarUnit = kCFCalendarUnitDay,
NSHourCalendarUnit = kCFCalendarUnitHour,
NSMinuteCalendarUnit = kCFCalendarUnitMinute,
NSSecondCalendarUnit = kCFCalendarUnitSecond,
NSWeekCalendarUnit = kCFCalendarUnitWeek,
NSWeekdayCalendarUnit = kCFCalendarUnitWeekday,
NSWeekdayOrdinalCalendarUnit = kCFCalendarUnitWeekdayOrdinal

};

Constants
NSEraCalendarUnit

Specifies the era unit.

The corresponding value is an int. Equal to kCFCalendarUnitEra.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSYearCalendarUnit
Specifies the year unit.

The corresponding value is an int. Equal to kCFCalendarUnitYear.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSMonthCalendarUnit
Specifies the month unit.

The corresponding value is an int. Equal to kCFCalendarUnitMonth.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSDayCalendarUnit
Specifies the day unit.

The corresponding value is an int. Equal to kCFCalendarUnitDay.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSHourCalendarUnit
Specifies the hour unit.

The corresponding value is an int. Equal to kCFCalendarUnitHour.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSMinuteCalendarUnit
Specifies the minute unit.

The corresponding value is an int. Equal to kCFCalendarUnitMinute.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

128 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

NSSecondCalendarUnit
Specifies the second unit.

The corresponding value is a double. Equal to kCFCalendarUnitSecond.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSWeekCalendarUnit
Specifies the week unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeek.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSWeekdayCalendarUnit
Specifies the weekday unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeekday. The weekday units
are the numbers 1 through N (where for the Gregorian calendar N=7 and 1 is Sunday).

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

NSWeekdayOrdinalCalendarUnit
Specifies the ordinal weekday unit.

The corresponding value is an int. Equal to kCFCalendarUnitWeekdayOrdinal. The weekday
ordinal unit describes ordinal position within the month unit of the corresponding weekday
unit. For example, in the Gregorian calendar a weekday ordinal unit of 2 for a weekday unit
3 indicates "the second Tuesday in the month".

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

Discussion
Calendar units may be used as a bit mask to specify a combination of units. Values in this enum are
equal to the corresponding constants in the CFCalendarUnit enum.

Declared In
NSCalendar.h

NSDateComponents wrapping behavior
The wrapping option specifies wrapping behavior for calculations involving NSDateComponents
objects.

enum
{

NSWrapCalendarComponents = kCFCalendarComponentsWrap,
};

Constants
NSWrapCalendarComponents

Specifies that the components specified for an NSDateComponents object should be incremented
and wrap around to zero/one on overflow, but should not cause higher units to be incremented.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

Constants 129
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

Declared In
NSCalendar.h

130 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

NSCalendar Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSCharacterSet.h

Companion guide: String Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSCharacterSet object represents a set of Unicode-compliant characters. NSString and NSScanner
objects use NSCharacterSet objects to group characters together for searching operations, so that
they can find any of a particular set of characters during a search. The cluster’s two public classes,
NSCharacterSet and NSMutableCharacterSet, declare the programmatic interface for static and
dynamic character sets, respectively.

Overview 131
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

The objects you create using these classes are referred to as character set objects (and when no confusion
will result, merely as character sets). Because of the nature of class clusters, character set objects aren’t
actual instances of the NSCharacterSet or NSMutableCharacterSet classes but of one of their private
subclasses. Although a character set object’s class is private, its interface is public, as declared by these
abstract superclasses, NSCharacterSet and NSMutableCharacterSet. The character set classes adopt
the NSCopying and NSMutableCopying protocols, making it convenient to convert a character set of
one type to the other.

The NSCharacterSet class declares the programmatic interface for an object that manages a set of
Unicode characters (see the NSString class cluster specification for information on Unicode).
NSCharacterSet’s principal primitive method, characterIsMember: (page 143), provides the basis
for all other instance methods in its interface. A subclass of NSCharacterSet needs only to implement
this method, plus mutableCopyWithZone: (page 1300), for proper behavior. For optimal performance,
a subclass should also override bitmapRepresentation (page 143), which otherwise works by invoking
characterIsMember: (page 143) for every possible Unicode value.

NSCharacterSet is “toll-free bridged” with its Cocoa Foundation counterpart, CFCharacterSet. This
means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSCharacterSet * parameter, you can
pass a CFCharacterSetRef, and in a function where you see a CFCharacterSetRef parameter, you
can pass an NSCharacterSet instance (you cast one type to the other to suppress compiler warnings).
See Interchangeable Data Types for more information on toll-free bridging.

The mutable subclass of NSCharacterSet is NSMutableCharacterSet.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
copyWithZone: (page 1250)

NSMutableCopying
mutableCopyWithZone: (page 1300)

Tasks

Creating a Standard Character Set

+ alphanumericCharacterSet (page 134)
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

+ capitalizedLetterCharacterSet (page 135)
Returns a character set containing the characters in the category of Titlecase Letters.

132 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

+ controlCharacterSet (page 137)
Returns a character set containing the characters in the categories of Control or Format
Characters.

+ decimalDigitCharacterSet (page 138)
Returns a character set containing the characters in the category of Decimal Numbers.

+ decomposableCharacterSet (page 138)
Returns a character set containing all individual Unicode characters that can also be represented
as composed character sequences.

+ illegalCharacterSet (page 138)
Returns a character set containing values in the category of Non-Characters or that have not
yet been defined in version 3.2 of the Unicode standard.

+ letterCharacterSet (page 139)
Returns a character set containing the characters in the categories Letters and Marks.

+ lowercaseLetterCharacterSet (page 139)
Returns a character set containing the characters in the category of Lowercase Letters.

+ newlineCharacterSet (page 140)
Returns a character set containing the newline characters.

+ nonBaseCharacterSet (page 140)
Returns a character set containing the characters in the category of Marks.

+ punctuationCharacterSet (page 140)
Returns a character set containing the characters in the category of Punctuation.

+ symbolCharacterSet (page 141)
Returns a character set containing the characters in the category of Symbols.

+ uppercaseLetterCharacterSet (page 141)
Returns a character set containing the characters in the categories of Uppercase Letters and
Titlecase Letters.

+ whitespaceAndNewlineCharacterSet (page 142)
Returns a character set containing only the whitespace characters space (U+0020) and tab
(U+0009) and the newline and nextline characters (U+000A–U+000D, U+0085).

+ whitespaceCharacterSet (page 142)
Returns a character set containing only the in-line whitespace characters space (U+0020) and
tab (U+0009).

Creating a Custom Character Set

+ characterSetWithCharactersInString: (page 136)
Returns a character set containing the characters in a given string.

+ characterSetWithRange: (page 137)
Returns a character set containing characters with Unicode values in a given range.

– invertedSet (page 144)
Returns a character set containing only characters that don’t exist in the receiver.

Tasks 133
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

Creating and Managing Character Sets as Bitmap Representations

+ characterSetWithBitmapRepresentation: (page 135)
Returns a character set containing characters determined by a given bitmap representation.

+ characterSetWithContentsOfFile: (page 136)
Returns a character set read from the bitmap representation stored in the file a given path.

– bitmapRepresentation (page 143)
Returns an NSData object encoding the receiver in binary format.

Testing Set Membership

– characterIsMember: (page 143)
Returns a Boolean value that indicates whether a given character is in the receiver.

– hasMemberInPlane: (page 144)
Returns a Boolean value that indicates whether the receiver has at least one member in a given
character plane.

– isSupersetOfSet: (page 144)
Returns a Boolean value that indicates whether the receiver is a superset of another given
character set.

– longCharacterIsMember: (page 145)
Returns a Boolean value that indicates whether a given long character is a member of the
receiver.

Class Methods

alphanumericCharacterSet
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

+ (id)alphanumericCharacterSet

Return Value
A character set containing the characters in the categories Letters, Marks, and Numbers.

Discussion
Informally, this set is the set of all characters used as basic units of alphabets, syllabaries, ideographs,
and digits.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ letterCharacterSet (page 139)
+ decimalDigitCharacterSet (page 138)

Declared In
NSCharacterSet.h

134 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

capitalizedLetterCharacterSet
Returns a character set containing the characters in the category of Titlecase Letters.

+ (id)capitalizedLetterCharacterSet

Return Value
A character set containing the characters in the category of Titlecase Letters.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ letterCharacterSet (page 139)
+ uppercaseLetterCharacterSet (page 141)

Declared In
NSCharacterSet.h

characterSetWithBitmapRepresentation:
Returns a character set containing characters determined by a given bitmap representation.

+ (id)characterSetWithBitmapRepresentation:(NSData *)data

Parameters

data
A bitmap representation of a character set.

Return Value
A character set containing characters determined by data.

Discussion
This method is useful for creating a character set object with data from a file or other external data
source.

A raw bitmap representation of a character set is a byte array of 2^16 bits (that is, 8192 bytes). The
value of the bit at position n represents the presence in the character set of the character with decimal
Unicode value n. To add a character with decimal Unicode value n to a raw bitmap representation,
use a statement such as the following:

unsigned char bitmapRep[8192];
bitmapRep[n >> 3] |= (((unsigned int)1) << (n & 7));

To remove that character:

bitmapRep[n >> 3] &= ~(((unsigned int)1) << (n & 7));

Availability
Available in iPhone OS 2.0 and later.

See Also
– bitmapRepresentation (page 143)
+ characterSetWithContentsOfFile: (page 136)

Class Methods 135
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

Declared In
NSCharacterSet.h

characterSetWithCharactersInString:
Returns a character set containing the characters in a given string.

+ (id)characterSetWithCharactersInString:(NSString *)aString

Parameters

aString
A string containing characters for the new character set.

Return Value
A character set containing the characters in aString. Returns an empty character set if aString is
empty.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCharacterSet.h

characterSetWithContentsOfFile:
Returns a character set read from the bitmap representation stored in the file a given path.

+ (id)characterSetWithContentsOfFile:(NSString *)path

Parameters

path
A path to a file containing a bitmap representation of a character set. The path name must end
with the extension .bitmap.

Return Value
A character set read from the bitmap representation stored in the file at path.

Discussion
To read a bitmap representation from any file, use the NSData
methoddataWithContentsOfFile:options:error: (page 195) and pass the result to
characterSetWithBitmapRepresentation: (page 135).

This method doesn’t use filenames to check for the uniqueness of the character sets it creates. To
prevent duplication of character sets in memory, cache them and make them available through an
API that checks whether the requested set has already been loaded.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCharacterSet.h

136 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

characterSetWithRange:
Returns a character set containing characters with Unicode values in a given range.

+ (id)characterSetWithRange:(NSRange)aRange

Parameters

aRange
A range of Unicode values.

aRange.location is the value of the first character to remove; aRange.location +
aRange.length– 1 is the value of the last.

Return Value
A character set containing characters whose Unicode values are given by aRange. If aRange.length
is 0, returns an empty character set.

Discussion
This code excerpt creates a character set object containing the lowercase English alphabetic characters:

NSRange lcEnglishRange;
NSCharacterSet *lcEnglishLetters;

lcEnglishRange.location = (unsigned int)'a';
lcEnglishRange.length = 26;
lcEnglishLetters = [NSCharacterSet characterSetWithRange:lcEnglishRange];

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCharacterSet.h

controlCharacterSet
Returns a character set containing the characters in the categories of Control or Format Characters.

+ (id)controlCharacterSet

Return Value
A character set containing the characters in the categories of Control or Format Characters.

Discussion
These characters are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ illegalCharacterSet (page 138)

Declared In
NSCharacterSet.h

Class Methods 137
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

decimalDigitCharacterSet
Returns a character set containing the characters in the category of Decimal Numbers.

+ (id)decimalDigitCharacterSet

Return Value
A character set containing the characters in the category of Decimal Numbers.

Discussion
Informally, this set is the set of all characters used to represent the decimal values 0 through 9. These
characters include, for example, the decimal digits of the Indic scripts and Arabic.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ alphanumericCharacterSet (page 134)

Declared In
NSCharacterSet.h

decomposableCharacterSet
Returns a character set containing all individual Unicode characters that can also be represented as
composed character sequences.

+ (id)decomposableCharacterSet

Return Value
A character set containing all individual Unicode characters that can also be represented as composed
character sequences (such as for letters with accents), by the definition of “standard decomposition”
in version 3.2 of the Unicode character encoding standard.

Discussion
These characters include compatibility characters as well as pre-composed characters.

Note: This character set doesn’t currently include the Hangul characters defined in version 2.0 of the
Unicode standard.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ nonBaseCharacterSet (page 140)

Declared In
NSCharacterSet.h

illegalCharacterSet
Returns a character set containing values in the category of Non-Characters or that have not yet been
defined in version 3.2 of the Unicode standard.

138 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

+ (id)illegalCharacterSet

Return Value
A character set containing values in the category of Non-Characters or that have not yet been defined
in version 3.2 of the Unicode standard.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ controlCharacterSet (page 137)

Declared In
NSCharacterSet.h

letterCharacterSet
Returns a character set containing the characters in the categories Letters and Marks.

+ (id)letterCharacterSet

Return Value
A character set containing the characters in the categories Letters and Marks.

Discussion
Informally, this set is the set of all characters used as letters of alphabets and ideographs.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ alphanumericCharacterSet (page 134)
+ lowercaseLetterCharacterSet (page 139)
+ uppercaseLetterCharacterSet (page 141)

Declared In
NSCharacterSet.h

lowercaseLetterCharacterSet
Returns a character set containing the characters in the category of Lowercase Letters.

+ (id)lowercaseLetterCharacterSet

Return Value
A character set containing the characters in the category of Lowercase Letters.

Discussion
Informally, this set is the set of all characters used as lowercase letters in alphabets that make case
distinctions.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 139
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

See Also
+ uppercaseLetterCharacterSet (page 141)
+ letterCharacterSet (page 139)

Declared In
NSCharacterSet.h

newlineCharacterSet
Returns a character set containing the newline characters.

+ (id)newlineCharacterSet

Return Value
A character set containing the newline characters (U+000A–U+000D, U+0085).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 142)
+ whitespaceCharacterSet (page 142)

Declared In
NSCharacterSet.h

nonBaseCharacterSet
Returns a character set containing the characters in the category of Marks.

+ (id)nonBaseCharacterSet

Return Value
A character set containing the characters in the category of Marks.

Discussion
This set is also defined as all legal Unicode characters with a non-spacing priority greater than 0.
Informally, this set is the set of all characters used as modifiers of base characters.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ decomposableCharacterSet (page 138)

Declared In
NSCharacterSet.h

punctuationCharacterSet
Returns a character set containing the characters in the category of Punctuation.

140 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

+ (id)punctuationCharacterSet

Return Value
A character set containing the characters in the category of Punctuation.

Discussion
Informally, this set is the set of all non-whitespace characters used to separate linguistic units in
scripts, such as periods, dashes, parentheses, and so on.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCharacterSet.h

symbolCharacterSet
Returns a character set containing the characters in the category of Symbols.

+ (id)symbolCharacterSet

Return Value
A character set containing the characters in the category of Symbols.

Discussion
These characters include, for example, the dollar sign ($) and the plus (+) sign.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCharacterSet.h

uppercaseLetterCharacterSet
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase
Letters.

+ (id)uppercaseLetterCharacterSet

Return Value
A character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.

Discussion
Informally, this set is the set of all characters used as uppercase letters in alphabets that make case
distinctions.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ capitalizedLetterCharacterSet (page 135)
+ lowercaseLetterCharacterSet (page 139)
+ letterCharacterSet (page 139)

Class Methods 141
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

Declared In
NSCharacterSet.h

whitespaceAndNewlineCharacterSet
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009)
and the newline and nextline characters (U+000A–U+000D, U+0085).

+ (id)whitespaceAndNewlineCharacterSet

Return Value
A character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the
newline and nextline characters (U+000A–U+000D, U+0085).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ newlineCharacterSet (page 140)
+ whitespaceCharacterSet (page 142)

Declared In
NSCharacterSet.h

whitespaceCharacterSet
Returns a character set containing only the in-line whitespace characters space (U+0020) and tab
(U+0009).

+ (id)whitespaceCharacterSet

Return Value
A character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).

Discussion
This set doesn’t contain the newline or carriage return characters.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ whitespaceAndNewlineCharacterSet (page 142)
+ newlineCharacterSet (page 140)

Declared In
NSCharacterSet.h

142 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

Instance Methods

bitmapRepresentation
Returns an NSData object encoding the receiver in binary format.

- (NSData *)bitmapRepresentation

Return Value
An NSData object encoding the receiver in binary format.

Discussion
This format is suitable for saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 2^16 bits (that is, 8192 bytes). The
value of the bit at position n represents the presence in the character set of the character with decimal
Unicode value n. To test for the presence of a character with decimal Unicode value n in a raw bitmap
representation, use an expression such as the following:

unsigned char bitmapRep[8192];
if (bitmapRep[n >> 3] & (((unsigned int)1) << (n & 7))) {

/* Character is present. */
}

Availability
Available in iPhone OS 2.0 and later.

See Also
+ characterSetWithBitmapRepresentation: (page 135)

Declared In
NSCharacterSet.h

characterIsMember:
Returns a Boolean value that indicates whether a given character is in the receiver.

- (BOOL)characterIsMember:(unichar)aCharacter

Parameters

aCharacter
The character to test for membership of the receiver.

Return Value
YES if aCharacter is in the receiving character set, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– longCharacterIsMember: (page 145)

Instance Methods 143
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

Declared In
NSCharacterSet.h

hasMemberInPlane:
Returns a Boolean value that indicates whether the receiver has at least one member in a given
character plane.

- (BOOL)hasMemberInPlane:(uint8_t)thePlane

Parameters

thePlane
A character plane.

Return Value
YES if the receiver has at least one member in thePlane, otherwise NO.

Discussion
This method makes it easier to find the plane containing the members of the current character set.
The Basic Multilingual Plane is plane 0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCharacterSet.h

invertedSet
Returns a character set containing only characters that don’t exist in the receiver.

- (NSCharacterSet *)invertedSet

Return Value
A character set containing only characters that don’t exist in the receiver.

Discussion
Inverting an immutable character set is much more efficient than inverting a mutable character set.

Availability
Available in iPhone OS 2.0 and later.

See Also
invert (page 590) (NSMutableCharacterSet)

Declared In
NSCharacterSet.h

isSupersetOfSet:
Returns a Boolean value that indicates whether the receiver is a superset of another given character
set.

144 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

- (BOOL)isSupersetOfSet:(NSCharacterSet *)theOtherSet

Parameters

theOtherSet
A character set.

Return Value
YES if the receiver is a superset of theOtherSet, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCharacterSet.h

longCharacterIsMember:
Returns a Boolean value that indicates whether a given long character is a member of the receiver.

- (BOOL)longCharacterIsMember:(UTF32Char)theLongChar

Parameters

theLongChar
A UTF32 character.

Return Value
YES if theLongChar is in the receiver, otherwise NO.

Discussion
This method supports the specification of 32-bit characters.

Availability
Available in iPhone OS 2.0 and later.

See Also
– characterIsMember: (page 143)

Declared In
NSCharacterSet.h

Constants

NSOpenStepUnicodeReservedBase
Specifies lower bound for a Unicode character range reserved for Apple’s corporate use.

Constants 145
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

enum {
NSOpenStepUnicodeReservedBase = 0xF400

};

Constants
NSOpenStepUnicodeReservedBase

Specifies lower bound for a Unicode character range reserved for Apple’s corporate use (the
range is 0xF400–0xF8FF).

Available in iPhone OS 2.0 and later.

Declared in NSCharacterSet.h

Declared In
NSCharacterSet.h

146 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

NSCharacterSet Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSCoder.h
Foundation/NSKeyedArchiver.h
Foundation/NSGeometry.h

Companion guide: Archives and Serializations Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and
other Objective-C data items between memory and some other format. This capability provides the
basis for archiving (where objects and data items are stored on disk) and distribution (where objects
and data items are copied between different processes or threads). The concrete subclasses provided
by Foundation for these purposes are NSArchiver, NSUnarchiver, NSKeyedArchiver,
NSKeyedUnarchiver, and NSPortCoder. Concrete subclasses of NSCoder are referred to in general as
coder classes, and instances of these classes as coder objects (or simply coders). A coder object that
can only encode values is referred to as an encoder object, and one that can only decode values as a
decoder object.

Overview 147
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

NSCoder operates on objects, scalars, C arrays, structures, and strings, and on pointers to these types.
It does not handle types whose implementation varies across platforms, such as union, void *,
function pointers, and long chains of pointers. A coder object stores object type information along
with the data, so an object decoded from a stream of bytes is normally of the same class as the object
that was originally encoded into the stream. An object can change its class when encoded, however;
this is described in Archives and Serializations Programming Guide for Cocoa.

Tasks

Testing Coder

– allowsKeyedCoding (page 151)
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

– containsValueForKey: (page 151)
Returns a Boolean value that indicates whether an encoded value is available for a string.

Encoding Data

– encodeArrayOfObjCType:count:at: (page 157)
Encodes an array of count items, whose Objective-C type is given by itemType.

– encodeBool:forKey: (page 158)
Encodes boolv and associates it with the string key.

– encodeBycopyObject: (page 158)
Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created
upon decoding.

– encodeByrefObject: (page 159)
Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created
upon decoding.

– encodeBytes:length: (page 159)
Encodes a buffer of data whose types are unspecified.

– encodeBytes:length:forKey: (page 160)
Encodes a buffer of data, bytesp, whose length is specified by lenv, and associates it with the
string key.

– encodeConditionalObject: (page 160)
Can be overridden by subclasses to conditionally encode object, preserving common references
to that object.

– encodeConditionalObject:forKey: (page 161)
Conditionally encodes a reference to objv and associates it with the string key only if objv
has been unconditionally encoded with encodeObject:forKey: (page 164).

– encodeDataObject: (page 161)
Encodes a given NSData object.

– encodeDouble:forKey: (page 161)
Encodes realv and associates it with the string key.

148 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

– encodeFloat:forKey: (page 162)
Encodes realv and associates it with the string key.

– encodeInt:forKey: (page 163)
Encodes intv and associates it with the string key.

– encodeInteger:forKey: (page 163)
Encodes a given NSInteger and associates it with a given key.

– encodeInt32:forKey: (page 162)
Encodes the 32-bit integer intv and associates it with the string key.

– encodeInt64:forKey: (page 162)
Encodes the 64-bit integer intv and associates it with the string key.

– encodeObject: (page 164)
Encodes object.

– encodeObject:forKey: (page 164)
Encodes the object objv and associates it with the string key.

– encodeRootObject: (page 164)
Can be overridden by subclasses to encode an interconnected group of Objective-C objects,
starting with rootObject.

– encodeValueOfObjCType:at: (page 165)
Must be overridden by subclasses to encode a single value residing at address, whose
Objective-C type is given by valueType.

– encodeValuesOfObjCTypes: (page 165)
Encodes a series of values of potentially differing Objective-C types.

Decoding Data

– decodeArrayOfObjCType:count:at: (page 151)
Decodes an array of count items, whose Objective-C type is given by itemType.

– decodeBoolForKey: (page 152)
Decodes and returns a boolean value that was previously encoded with
encodeBool:forKey: (page 158) and associated with the string key.

– decodeBytesForKey:returnedLength: (page 152)
Decodes a buffer of data that was previously encoded with
encodeBytes:length:forKey: (page 160) and associated with the string key.

– decodeBytesWithReturnedLength: (page 153)
Decodes a buffer of data whose types are unspecified.

– decodeDataObject (page 153)
Decodes and returns an NSData object that was previously encoded with
encodeDataObject: (page 161). Subclasses must override this method.

– decodeDoubleForKey: (page 153)
Decodes and returns a double value that was previously encoded with either
encodeFloat:forKey: (page 162) or encodeDouble:forKey: (page 161) and associated with
the string key.

Tasks 149
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

– decodeFloatForKey: (page 154)
Decodes and returns a float value that was previously encoded with
encodeFloat:forKey: (page 162) or encodeDouble:forKey: (page 161) and associated with
the string key.

– decodeIntForKey: (page 155)
Decodes and returns an int value that was previously encoded with encodeInt:forKey: (page
163), encodeInteger:forKey: (page 163), encodeInt32:forKey: (page 162), or
encodeInt64:forKey: (page 162) and associated with the string key.

– decodeIntegerForKey: (page 155)
Decodes and returns an NSInteger value that was previously encoded with
encodeInt:forKey: (page 163), encodeInteger:forKey: (page 163),
encodeInt32:forKey: (page 162), or encodeInt64:forKey: (page 162) and associated with
the string key.

– decodeInt32ForKey: (page 154)
Decodes and returns a 32-bit integer value that was previously encoded with
encodeInt:forKey: (page 163), encodeInteger:forKey: (page 163),
encodeInt32:forKey: (page 162), or encodeInt64:forKey: (page 162) and associated with
the string key.

– decodeInt64ForKey: (page 154)
Decodes and returns a 64-bit integer value that was previously encoded with
encodeInt:forKey: (page 163), encodeInteger:forKey: (page 163),
encodeInt32:forKey: (page 162), or encodeInt64:forKey: (page 162) and associated with
the string key.

– decodeObject (page 155)
Decodes an Objective-C object that was previously encoded with any of the encode...Object:
methods.

– decodeObjectForKey: (page 156)
Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page 164) or encodeConditionalObject:forKey: (page 161) and
associated with the string key.

– decodeValueOfObjCType:at: (page 156)
Decodes a single value, whose Objective-C type is given by valueType.

– decodeValuesOfObjCTypes: (page 157)
Decodes a series of potentially different Objective-C types.

Managing Zones

– objectZone (page 166)
Returns the memory zone used to allocate decoded objects.

– setObjectZone: (page 166)
NSCoder’s implementation of this method does nothing.

Getting Version Information

– systemVersion (page 167)
During encoding, this method should return the system version currently in effect.

150 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

– versionForClassName: (page 167)
Returns the version in effect for the class with a given name.

Instance Methods

allowsKeyedCoding
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

- (BOOL)allowsKeyedCoding

Discussion
The default implementation returns NO. Concrete subclasses that support keyed coding, such as
NSKeyedArchiver, need to override this method to return YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

containsValueForKey:
Returns a Boolean value that indicates whether an encoded value is available for a string.

- (BOOL)containsValueForKey:(NSString *)key

Discussion
The string is passed as key. Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeArrayOfObjCType:count:at:
Decodes an array of count items, whose Objective-C type is given by itemType.

- (void)decodeArrayOfObjCType:(const char *)itemType count:(NSUInteger)count at:(void
*)address

Discussion
The items are decoded into the buffer beginning at address, which must be large enough to contain
them all. itemType must contain exactly one type code. NSCoder’s implementation invokes
decodeValueOfObjCType:at: (page 156) to decode the entire array of items. If you use this method
to decode an array of Objective-C objects, you are responsible for releasing each object.

Instance Methods 151
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

This method matches an encodeArrayOfObjCType:count:at: (page 157) message used during
encoding.

For information on creating an Objective-C type code suitable for itemType, see the “Type Encodings”
section in the “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeValuesOfObjCTypes: (page 157)

Declared In
NSCoder.h

decodeBoolForKey:
Decodes and returns a boolean value that was previously encoded with encodeBool:forKey: (page
158) and associated with the string key.

- (BOOL)decodeBoolForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeBytesForKey:returnedLength:
Decodes a buffer of data that was previously encoded with encodeBytes:length:forKey: (page
160) and associated with the string key.

- (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(NSUInteger
*)lengthp

Discussion
The buffer’s length is returned by reference in lengthp. The returned bytes are immutable. Subclasses
must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeBytes:length:forKey: (page 160)

Declared In
NSCoder.h

152 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

decodeBytesWithReturnedLength:
Decodes a buffer of data whose types are unspecified.

- (void *)decodeBytesWithReturnedLength:(NSUInteger *)numBytes

Discussion
NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 156) to decode the data as a
series of bytes, which this method then places into a buffer and returns. The buffer’s length is returned
by reference in numBytes. If you need the bytes beyond the scope of the current autorelease pool, you
must copy them.

This method matches an encodeBytes:length: (page 159) message used during encoding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 157)

Declared In
NSCoder.h

decodeDataObject
Decodes and returns an NSData object that was previously encoded with encodeDataObject: (page
161). Subclasses must override this method.

- (NSData *)decodeDataObject

Discussion
The implementation of your overriding method must match the implementation of your
encodeDataObject: (page 161) method. For example, a typical encodeDataObject: (page 161) method
encodes the number of bytes of data followed by the bytes themselves. Your override of this method
must read the number of bytes, create an NSData object of the appropriate size, and decode the bytes
into the new NSData object. Your overriding method should return an autoreleased NSData object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeDoubleForKey:
Decodes and returns a double value that was previously encoded with either
encodeFloat:forKey: (page 162) or encodeDouble:forKey: (page 161) and associated with the string
key.

- (double)decodeDoubleForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Instance Methods 153
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeFloatForKey:
Decodes and returns a float value that was previously encoded with encodeFloat:forKey: (page
162) or encodeDouble:forKey: (page 161) and associated with the string key.

- (float)decodeFloatForKey:(NSString *)key

Discussion
If the value was encoded as a double, the extra precision is lost. Also, if the encoded real value does
not fit into a float, the method raises an NSRangeException. Subclasses must override this method
if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeInt32ForKey:
Decodes and returns a 32-bit integer value that was previously encoded with encodeInt:forKey: (page
163), encodeInteger:forKey: (page 163), encodeInt32:forKey: (page 162), or
encodeInt64:forKey: (page 162) and associated with the string key.

- (int32_t)decodeInt32ForKey:(NSString *)key

Discussion
If the encoded integer does not fit into a 32-bit integer, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeInt64ForKey:
Decodes and returns a 64-bit integer value that was previously encoded with encodeInt:forKey: (page
163), encodeInteger:forKey: (page 163), encodeInt32:forKey: (page 162), or
encodeInt64:forKey: (page 162) and associated with the string key.

- (int64_t)decodeInt64ForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

154 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeIntegerForKey:
Decodes and returns an NSInteger value that was previously encoded with encodeInt:forKey: (page
163), encodeInteger:forKey: (page 163), encodeInt32:forKey: (page 162), or
encodeInt64:forKey: (page 162) and associated with the string key.

- (NSInteger)decodeIntegerForKey:(NSString *)key

Discussion
If the encoded integer does not fit into the NSInteger size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeIntForKey:
Decodes and returns an int value that was previously encoded with encodeInt:forKey: (page 163),
encodeInteger:forKey: (page 163),encodeInt32:forKey: (page 162), orencodeInt64:forKey: (page
162) and associated with the string key.

- (int)decodeIntForKey:(NSString *)key

Discussion
If the encoded integer does not fit into the default integer size, the method raises an NSRangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeObject
Decodes an Objective-C object that was previously encoded with any of the encode...Object:
methods.

- (id)decodeObject

Discussion
NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 156) to decode the object
data.

Instance Methods 155
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Subclasses may need to override this method if they override any of the corresponding
encode...Object: methods. For example, if an object was encoded conditionally using the
encodeConditionalObject: (page 160) method, this method needs to check whether the object had
actually been encoded.

The implementation for the concrete subclass NSUnarchiver returns an object that is retained by the
unarchiver and is released when the unarchiver is deallocated. Therefore, you must retain the returned
object before releasing the unarchiver. NSKeyedUnarchiver’s implementation, however, returns an
autoreleased object, so its life is the same as the current autorelease pool instead of the keyed
unarchiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeBycopyObject: (page 158)
– encodeByrefObject: (page 159)
– encodeObject: (page 164)

Declared In
NSCoder.h

decodeObjectForKey:
Decodes and returns an autoreleased Objective-C object that was previously encoded with
encodeObject:forKey: (page 164) or encodeConditionalObject:forKey: (page 161) and associated
with the string key.

- (id)decodeObjectForKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

decodeValueOfObjCType:at:
Decodes a single value, whose Objective-C type is given by valueType.

- (void)decodeValueOfObjCType:(const char *)valueType at:(void *)data

Discussion
valueTypemust contain exactly one type code, and the buffer specified by datamust be large enough
to hold the value corresponding to that type code. For information on creating an Objective-C type
code suitable for valueType, see the “Type Encodings” section in “The Objective-C Runtime System”
chapter of The Objective-C 2.0 Programming Language.

156 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Subclasses must override this method and provide an implementation to decode the value. In your
overriding implementation, decode the value into the buffer beginning at data. If your overriding
method is capable of decoding an Objective-C object, your method must also retain that object. Clients
of this method are then responsible for releasing the object.

This method matches an encodeValueOfObjCType:at: (page 165) message used during encoding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeArrayOfObjCType:count:at: (page 151)
– decodeValuesOfObjCTypes: (page 157)
– decodeObject (page 155)

Declared In
NSCoder.h

decodeValuesOfObjCTypes:
Decodes a series of potentially different Objective-C types.

- (void)decodeValuesOfObjCTypes:(const char *)valueTypes, ...

Discussion
valueTypes is a single string containing any number of type codes. The variable arguments to this
method consist of one or more pointer arguments, each of which specifies the buffer in which to place
a single decoded value. For each type code in valueTypes, you must specify a corresponding pointer
argument whose buffer is large enough to hold the decoded value. If you use this method to decode
Objective-C objects, you are responsible for releasing them.

This method matches an encodeValuesOfObjCTypes: (page 165) message used during encoding.

NSCoder’s implementation invokes decodeValueOfObjCType:at: (page 156) to decode individual
types. Subclasses that implement the decodeValueOfObjCType:at: (page 156) method do not need
to override this method.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeArrayOfObjCType:count:at: (page 151)

Declared In
NSCoder.h

encodeArrayOfObjCType:count:at:
Encodes an array of count items, whose Objective-C type is given by itemType.

Instance Methods 157
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

- (void)encodeArrayOfObjCType:(const char *)itemType count:(NSUInteger)count
at:(const void *)address

Discussion
The values are encoded from the buffer beginning at address. itemType must contain exactly one
type code. NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 165) to encode the
entire array of items. Subclasses that implement the encodeValueOfObjCType:at: (page 165) method
do not need to override this method.

This method must be matched by a subsequent decodeArrayOfObjCType:count:at: (page 151)
message.

For information on creating an Objective-C type code suitable for itemType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C Programming Language.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeValueOfObjCType:at: (page 165)
– encodeValuesOfObjCTypes: (page 165)
– encodeBytes:length: (page 159)

Declared In
NSCoder.h

encodeBool:forKey:
Encodes boolv and associates it with the string key.

- (void)encodeBool:(BOOL)boolv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeBoolForKey: (page 152)

Declared In
NSCoder.h

encodeBycopyObject:
Can be overridden by subclasses to encode object so that a copy, rather than a proxy, is created upon
decoding.

- (void)encodeBycopyObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 164).

158 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

This method must be matched by a corresponding decodeObject (page 155) message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeRootObject: (page 164)
– encodeConditionalObject: (page 160)
– encodeByrefObject: (page 159)

Declared In
NSCoder.h

encodeByrefObject:
Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created upon
decoding.

- (void)encodeByrefObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 164).

This method must be matched by a corresponding decodeObject (page 155) message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeBycopyObject: (page 158)

Declared In
NSCoder.h

encodeBytes:length:
Encodes a buffer of data whose types are unspecified.

- (void)encodeBytes:(const void *)address length:(NSUInteger)numBytes

Discussion
The buffer to be encoded begins at address, and its length in bytes is given by numBytes.

This method must be matched by a corresponding decodeBytesWithReturnedLength: (page 153)
message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 157)

Instance Methods 159
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Declared In
NSCoder.h

encodeBytes:length:forKey:
Encodes a buffer of data, bytesp, whose length is specified by lenv, and associates it with the string
key.

- (void)encodeBytes:(const uint8_t *)bytesp length:(NSUInteger)lenv forKey:(NSString
*)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeBytesForKey:returnedLength: (page 152)

Declared In
NSCoder.h

encodeConditionalObject:
Can be overridden by subclasses to conditionally encode object, preserving common references to
that object.

- (void)encodeConditionalObject:(id)object

Discussion
In the overriding method, object should be encoded only if it’s unconditionally encoded elsewhere
(with any other encode...Object: method).

This method must be matched by a subsequent decodeObject (page 155) message. Upon decoding,
if objectwas never encoded unconditionally, decodeObject returns nil in place of object. However,
if object was encoded unconditionally, all references to object must be resolved.

NSCoder’s implementation simply invokes encodeObject: (page 164).

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeRootObject: (page 164)
– encodeObject: (page 164)
– encodeBycopyObject: (page 158)
– encodeConditionalObject: (NSArchiver)

Declared In
NSCoder.h

160 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

encodeConditionalObject:forKey:
Conditionally encodes a reference to objv and associates it with the string key only if objv has been
unconditionally encoded with encodeObject:forKey: (page 164).

- (void)encodeConditionalObject:(id)objv forKey:(NSString *)key

Discussion
Subclasses must override this method if they support keyed coding.

The encoded object is decoded with the decodeObjectForKey: (page 156) method. If objv was never
encoded unconditionally, decodeObjectForKey: (page 156) returns nil in place of objv.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

encodeDataObject:
Encodes a given NSData object.

- (void)encodeDataObject:(NSData *)data

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDataObject (page 153) message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeObject: (page 164)

Declared In
NSCoder.h

encodeDouble:forKey:
Encodes realv and associates it with the string key.

- (void)encodeDouble:(double)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeDoubleForKey: (page 153)
– decodeFloatForKey: (page 154)

Instance Methods 161
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Declared In
NSCoder.h

encodeFloat:forKey:
Encodes realv and associates it with the string key.

- (void)encodeFloat:(float)realv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeFloatForKey: (page 154)
– decodeDoubleForKey: (page 153)

Declared In
NSCoder.h

encodeInt32:forKey:
Encodes the 32-bit integer intv and associates it with the string key.

- (void)encodeInt32:(int32_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeIntForKey: (page 155)
– decodeIntegerForKey: (page 155)
– decodeInt32ForKey: (page 154)
– decodeInt64ForKey: (page 154)

Declared In
NSCoder.h

encodeInt64:forKey:
Encodes the 64-bit integer intv and associates it with the string key.

- (void)encodeInt64:(int64_t)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

162 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeIntForKey: (page 155)
– decodeIntegerForKey: (page 155)
– decodeInt32ForKey: (page 154)
– decodeInt64ForKey: (page 154)

Declared In
NSCoder.h

encodeInt:forKey:
Encodes intv and associates it with the string key.

- (void)encodeInt:(int)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeIntForKey: (page 155)
– decodeIntegerForKey: (page 155)
– decodeInt32ForKey: (page 154)
– decodeInt64ForKey: (page 154)

Declared In
NSCoder.h

encodeInteger:forKey:
Encodes a given NSInteger and associates it with a given key.

- (void)encodeInteger:(NSInteger)intv forKey:(NSString *)key

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeIntForKey: (page 155)
– decodeIntegerForKey: (page 155)
– decodeInt32ForKey: (page 154)
– decodeInt64ForKey: (page 154)

Instance Methods 163
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Declared In
NSCoder.h

encodeObject:
Encodes object.

- (void)encodeObject:(id)object

Discussion
NSCoder’s implementation simply invokes encodeValueOfObjCType:at: (page 165) to encode object.
Subclasses can override this method to encode a reference to object instead of object itself. For
example, NSArchiver detects duplicate objects and encodes a reference to the original object rather
than encode the same object twice.

This method must be matched by a subsequent decodeObject (page 155) message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeRootObject: (page 164)
– encodeConditionalObject: (page 160)
– encodeBycopyObject: (page 158)

Declared In
NSCoder.h

encodeObject:forKey:
Encodes the object objv and associates it with the string key.

- (void)encodeObject:(id)objv forKey:(NSString *)key

Discussion
Subclasses must override this method to identify multiple encodings of objv and encode a reference
to objv instead. For example, NSKeyedArchiver detects duplicate objects and encodes a reference to
the original object rather than encode the same object twice.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decodeObjectForKey: (page 156)

Declared In
NSCoder.h

encodeRootObject:
Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting
with rootObject.

164 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

- (void)encodeRootObject:(id)rootObject

Discussion
NSCoder’s implementation simply invokes encodeObject: (page 164).

This method must be matched by a subsequent decodeObject (page 155) message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeObject: (page 164)
– encodeConditionalObject: (page 160)
– encodeBycopyObject: (page 158)
– encodeRootObject: (NSArchiver)

Declared In
NSCoder.h

encodeValueOfObjCType:at:
Must be overridden by subclasses to encode a single value residing at address, whose Objective-C
type is given by valueType.

- (void)encodeValueOfObjCType:(const char *)valueType at:(const void *)address

Discussion
valueType must contain exactly one type code.

This method must be matched by a subsequent decodeValueOfObjCType:at: (page 156) message.

For information on creating an Objective-C type code suitable for valueType, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 157)
– encodeValuesOfObjCTypes: (page 165)

Declared In
NSCoder.h

encodeValuesOfObjCTypes:
Encodes a series of values of potentially differing Objective-C types.

- (void)encodeValuesOfObjCTypes:(const char *)valueTypes, ...

Instance Methods 165
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Discussion
valueTypes is a single string containing any number of type codes. The variable arguments to this
method consist of one or more pointer arguments, each of which specifies a buffer containing the
value to be encoded. For each type code in valueTypes, you must specify a corresponding pointer
argument.

This method must be matched by a subsequent decodeValuesOfObjCTypes: (page 157) message.

NSCoder’s implementation invokes encodeValueOfObjCType:at: (page 165) to encode individual
types. Subclasses that implement the encodeValueOfObjCType:at: (page 165) method do not need
to override this method. However, subclasses that provide a more efficient approach for encoding a
series of values may override this method to implement that approach.

For information on creating Objective-C type codes suitable for valueTypes, see the “Type Encodings”
section in “The Objective-C Runtime System” chapter of The Objective-C 2.0 Programming Language.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeArrayOfObjCType:count:at: (page 157)
– encodeValueOfObjCType:at: (page 165)

Declared In
NSCoder.h

objectZone
Returns the memory zone used to allocate decoded objects.

- (NSZone *)objectZone

Discussion
NSCoder’s implementation simply returns the default memory zone, as given by
NSDefaultMallocZone().

Subclasses must override this method and the setObjectZone: (page 166) method to allow objects
to be decoded into a zone other than the default zone. In its overriding implementation of this method,
your subclass should return the current memory zone (if one has been set) or the default zone (if no
other zone has been set).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

setObjectZone:
NSCoder’s implementation of this method does nothing.

- (void)setObjectZone:(NSZone *)zone

166 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Discussion
Can be overridden by subclasses to set the memory zone used to allocate decoded objects.

Subclasses must override this method and objectZone (page 166) to allow objects to be decoded into
a zone other than the default zone. In its overriding implementation of this method, your subclass
should store a reference to the current memory zone.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

systemVersion
During encoding, this method should return the system version currently in effect.

- (unsigned)systemVersion

Discussion
During decoding, this method should return the version that was in effect when the data was encoded.

By default, this method returns the current system version, which is appropriate for encoding but
not for decoding. Subclasses that implement decoding must override this method to return the system
version of the data being decoded.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSCoder.h

versionForClassName:
Returns the version in effect for the class with a given name.

- (NSInteger)versionForClassName:(NSString *)className

Return Value
The version in effect for the class named className or NSNotFound if no class named className
exists.

Discussion
When encoding, this method returns the current version number of the class. When decoding, this
method returns the version number of the class being decoded. Subclasses must override this method.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 167
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

See Also
+ setVersion: (page 795) (NSObject)
+ version (page 796) (NSObject)

Declared In
NSCoder.h

168 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

NSCoder Class Reference

Inherits from: NSObject

Conforms to: NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSLock.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSCondition class implements a condition variable whose semantics follow those used for
POSIX-style conditions. A condition object acts as both a lock and a checkpoint in a given thread. The
lock protects your code while it tests the condition and performs the task triggered by the condition.
The checkpoint behavior requires that the condition be true before the thread proceeds with its task.
While the condition is not true, the thread blocks. It remains blocked until another thread signals the
condition object.

The semantics for using an NSCondition object are as follows:

1. Lock the condition object.

Overview 169
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

NSCondition Class Reference

2. Test a boolean predicate. (This predicate is a boolean flag or other variable in your code that
indicates whether it is safe to perform the task protected by the condition.)

3. If the boolean predicate is false, call the condition object’s wait or waitUntilDate: method to
block the thread. Upon returning from these methods, go to step 2 to retest your boolean predicate.
(Continue waiting and retesting the predicate until it is true.)

4. If the boolean predicate is true, perform the task.

5. Optionally update any predicates (or signal any conditions) affected by your task.

6. When your task is done, unlock the condition object.

The pseudocode for performing the preceding steps would therefore look something like the following:

lock the condition
while (!(boolean_predicate)) {

wait on condition
}
do protected work
(optionally, signal or broadcast the condition again or change a predicate value)
unlock the condition

Whenever you use a condition object, the first step is to lock the condition. Locking the condition
ensures that your predicate and task code are protected from interference by other threads using the
same condition. Once you have completed your task, you can set other predicates or signal other
conditions based on the needs of your code. You should always set predicates and signal conditions
while holding the condition object’s lock.

When a thread waits on a condition, the condition object unlocks its lock and blocks the thread. When
the condition is signaled, the system wakes up the thread. The condition object then reacquires its
lock before returning from the wait or waitUntilDate: method. Thus, from the point of view of the
thread, it is as if it always held the lock.

A boolean predicate is an important part of the semantics of using conditions because of the way
signaling works. Signaling a condition does not guarantee that the condition itself is true. There are
timing issues involved in signaling that may cause false signals to appear. Using a predicate ensures
that these spurious signals do not cause you to perform work before it is safe to do so. The predicate
itself is simply a flag or other variable in your code that you test in order to acquire a Boolean result.

For more information on how to use conditions, see Using POSIX Thread Locks in Threading
Programming Guide.

Tasks

Waiting for the Lock

– wait (page 172)
Blocks the current thread until the condition is signaled.

– waitUntilDate: (page 173)
Blocks the current thread until the condition is signaled or the specified time limit is reached.

170 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

NSCondition Class Reference

Signaling Waiting Threads

– signal (page 172)
Signals the condition, waking up one thread waiting on it.

– broadcast (page 171)
Signals the condition, waking up all threads waiting on it.

Accessor Methods

– setName: (page 172)
Assigns a name to the receiver.

– name (page 171)
Returns the name associated with the receiver.

Instance Methods

broadcast
Signals the condition, waking up all threads waiting on it.

- (void)broadcast

Discussion
If no threads are waiting on the condition, this method does nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setName: (page 172)

Instance Methods 171
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

NSCondition Class Reference

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters

newName
The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a condition object within your code. Cocoa also uses this name
as part of any error descriptions involving the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– name (page 171)

Declared In
NSLock.h

signal
Signals the condition, waking up one thread waiting on it.

- (void)signal

Discussion
You use this method to wake up one thread that is waiting on the condition. You may call this method
multiple times to wake up multiple threads. If no threads are waiting on the condition, this method
does nothing.

To avoid race conditions, you should invoke this method only while the receiver is locked.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

wait
Blocks the current thread until the condition is signaled.

- (void)wait

Discussion
You must lock the receiver prior to calling this method.

172 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

NSCondition Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– lock (page 1298) (NSLocking)

Declared In
NSLock.h

waitUntilDate:
Blocks the current thread until the condition is signaled or the specified time limit is reached.

- (BOOL)waitUntilDate:(NSDate *)limit

Parameters

limit
The time at which to wake up the thread if the condition has not been signaled.

Return Value
YES if the condition was signaled; otherwise, NO if the time limit was reached.

Discussion
You must lock the receiver prior to calling this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lock (page 1298) (NSLocking)

Declared In
NSLock.h

Instance Methods 173
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

NSCondition Class Reference

174 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

NSCondition Class Reference

Inherits from: NSObject

Conforms to: NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSLock.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSConditionLock class defines objects whose locks can be associated with specific, user-defined
conditions. Using an NSConditionLock object, you can ensure that a thread can acquire a lock only
if a certain condition is met. Once it has acquired the lock and executed the critical section of code,
the thread can relinquish the lock and set the associated condition to something new. The conditions
themselves are arbitrary: you define them as needed for your application.

Overview 175
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

Adopted Protocols

NSLocking
lock (page 1298)
unlock (page 1298)

Tasks

Initializing an NSConditionLock Object

– initWithCondition: (page 177)
Initializes a newly allocated NSConditionLock object and sets its condition.

Returning the Condition

– condition (page 177)
Returns the condition associated with the receiver.

Acquiring and Releasing a Lock

– lockBeforeDate: (page 177)
Attempts to acquire a lock before a specified moment in time.

– lockWhenCondition: (page 178)
Attempts to acquire a lock.

– lockWhenCondition:beforeDate: (page 178)
Attempts to acquire a lock before a specified moment in time.

– tryLock (page 180)
Attempts to acquire a lock without regard to the receiver’s condition.

– tryLockWhenCondition: (page 180)
Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.

– unlockWithCondition: (page 180)
Relinquishes the lock and sets the receiver’s condition.

Accessor Methods

– setName: (page 179)
Assigns a name to the receiver.

– name (page 179)
Returns the name associated with the receiver.

176 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

Instance Methods

condition
Returns the condition associated with the receiver.

- (NSInteger)condition

Return Value
The condition associated with the receiver. If no condition has been set, returns 0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

initWithCondition:
Initializes a newly allocated NSConditionLock object and sets its condition.

- (id)initWithCondition:(NSInteger)condition

Parameters

condition
The user-defined condition for the lock. The value of condition is user-defined; see the class
description for more information.

Return Value
An initialized condition lock object; may be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

lockBeforeDate:
Attempts to acquire a lock before a specified moment in time.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters

limit
The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

Instance Methods 177
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

Discussion
The condition associated with the receiver isn’t taken into account in this operation. This method
blocks the thread’s execution until the receiver acquires the lock or limit is reached.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lockWhenCondition:beforeDate: (page 178)

Declared In
NSLock.h

lockWhenCondition:
Attempts to acquire a lock.

- (void)lockWhenCondition:(NSInteger)condition

Parameters

condition
The condition to match on.

Discussion
The receiver’s condition must be equal to condition before the locking operation will succeed. This
method blocks the thread’s execution until the lock can be acquired.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lockWhenCondition:beforeDate: (page 178)
– unlockWithCondition: (page 180)

Declared In
NSLock.h

lockWhenCondition:beforeDate:
Attempts to acquire a lock before a specified moment in time.

- (BOOL)lockWhenCondition:(NSInteger)condition beforeDate:(NSDate *)limit

Parameters

condition
The condition to match on.

limit
The date by which the lock must be acquired or the attempt will time out.

Return Value
YES if the lock is acquired within the time limit, NO otherwise.

178 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

Discussion
The receiver’s condition must be equal to condition before the locking operation will succeed. This
method blocks the thread’s execution until the lock can be acquired or limit is reached.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lockBeforeDate: (page 177)
– lockWhenCondition: (page 178)

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setName: (page 179)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters

newName
The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a condition lock within your code. Cocoa also uses this name
as part of any error descriptions involving the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– name (page 179)

Declared In
NSLock.h

Instance Methods 179
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

tryLock
Attempts to acquire a lock without regard to the receiver’s condition.

- (BOOL)tryLock

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
This method returns immediately.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tryLockWhenCondition: (page 180)

Declared In
NSLock.h

tryLockWhenCondition:
Attempts to acquire a lock if the receiver’s condition is equal to the specified condition.

- (BOOL)tryLockWhenCondition:(NSInteger)condition

Return Value
YES if the lock could be acquired, NO otherwise.

Discussion
As part of its implementation, this method invokes lockWhenCondition:beforeDate: (page 178).
This method returns immediately.

Availability
Available in iPhone OS 2.0 and later.

See Also
– tryLock (page 180)

Declared In
NSLock.h

unlockWithCondition:
Relinquishes the lock and sets the receiver’s condition.

- (void)unlockWithCondition:(NSInteger)condition

Parameters

condition
The user-defined condition for the lock. The value of condition is user-defined; see the class
description for more information.

180 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– lockWhenCondition: (page 178)

Declared In
NSLock.h

Instance Methods 181
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

182 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

NSConditionLock Class Reference

Inherits from: NSMutableSet : NSSet : NSObject

Conforms to: NSCoding (NSSet)
NSCopying (NSSet)
NSMutableCopying (NSSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSSet.h

Companion guide: Collections Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set
of objects. NSCountedSet provides support for the mathematical concept of a counted set. A counted
set, both in its mathematical sense and in the implementation of NSCountedSet, is an unordered
collection of elements, just as in a regular set, but the elements of the set aren’t necessarily distinct.
A counted set is also known as a bag.

Overview 183
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

NSCountedSet Class Reference

Each distinct object inserted into an NSCountedSet object has a counter associated with it.
NSCountedSet keeps track of the number of times objects are inserted and requires that objects be
removed the same number of times. Thus, there is only one instance of an object in an NSSet object
even if the object has been added to the set multiple times. The count (page 925) method defined by
the superclass NSSet has special significance; it returns the number of distinct objects, not the total
number of times objects are represented in the set. The NSSet and NSMutableSet classes are provided
for static and dynamic sets (respectively) whose elements are distinct.

You add objects to or remove objects from a counted set using the addObject: (page 185) and
removeObject: (page 187) methods. You can traverse elements of an NSCountedSet object using the
enumerator returned by objectEnumerator (page 187). The countForObject: (page 185) method
returns the number of times a given object has been added to this set.

Tasks

Initializing a Counted Set

– initWithArray: (page 185)
Returns a counted set object initialized with the contents of a given array.

– initWithSet: (page 186)
Returns a counted set object initialized with the contents of a given set.

– initWithCapacity: (page 186)
Returns a counted set object initialized with enough memory to hold a given number of objects.

Adding and Removing Entries

– addObject: (page 185)
Adds a given object to the receiver.

– removeObject: (page 187)
Removes a given object from the receiver.

Examining a Counted Set

– countForObject: (page 185)
Returns the count associated with a given object in the receiver.

– objectEnumerator (page 187)
Returns an enumerator object that lets you access each object in the set once, independent of
its count.

184 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

NSCountedSet Class Reference

Instance Methods

addObject:
Adds a given object to the receiver.

- (void)addObject:(id)anObject

Parameters

anObject
The object to add to the receiver.

Discussion
If anObject is already a member, addObject: increments the count associated with the object. If
anObject is not already a member, it is sent a retain (page 1312) message.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSet.h

countForObject:
Returns the count associated with a given object in the receiver.

- (NSUInteger)countForObject:(id)anObject

Parameters

anObject
The object for which to return the count.

Return Value
The count associated with anObject in the receiver, which can be thought of as the number of
occurrences of anObject present in the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– count (page 925) (NSSet)

Declared In
NSSet.h

initWithArray:
Returns a counted set object initialized with the contents of a given array.

- (id)initWithArray:(NSArray *)anArray

Instance Methods 185
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

NSCountedSet Class Reference

Parameters

anArray
An array of objects to add to the new set.

Return Value
An initialized counted set object with the contents of anArray. The returned object might be different
than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
initWithArray: (page 926) (NSSet)
setWithArray: (page 920) (NSSet)

Declared In
NSSet.h

initWithCapacity:
Returns a counted set object initialized with enough memory to hold a given number of objects.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters

numItems
The initial capacity of the new counted set.

Return Value
A counted set object initialized with enough memory to hold numItems objects

Discussion
The method is the designated initializer for NSCountedSet.

Note that the capacity is simply a hint to help initial memory allocation—the initial count of the object
is 0, and the set still grows and shrinks as you add and remove objects. The hint is typically useful if
the set will become large.

Availability
Available in iPhone OS 2.0 and later.

See Also
initWithCapacity: (page 620) (NSMutableSet)
setWithCapacity: (page 619) (NSMutableSet)

Declared In
NSSet.h

initWithSet:
Returns a counted set object initialized with the contents of a given set.

- (id)initWithSet:(NSSet *)aSet

186 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

NSCountedSet Class Reference

Parameters

aSet
An set of objects to add to the new set.

Return Value
An initialized counted set object with the contents of aSet. The returned object might be different
than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
initWithSet: (page 927) (NSSet)
setWithSet: (page 922) (NSSet)

Declared In
NSSet.h

objectEnumerator
Returns an enumerator object that lets you access each object in the set once, independent of its count.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the set once, independent of its count.

Discussion
If you add a given object to the counted set multiple times, an enumeration of the set will produce
that object only once.

You shouldn’t modify the set during enumeration. If you intend to modify the set, use the
allObjects (page 923) method to create a “snapshot,” then enumerate the snapshot and modify the
original set.

Availability
Available in iPhone OS 2.0 and later.

See Also
nextObject (page 341) (NSEnumerator)

Declared In
NSSet.h

removeObject:
Removes a given object from the receiver.

- (void)removeObject:(id)anObject

Parameters

anObject
The object to remove from the receiver.

Instance Methods 187
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

NSCountedSet Class Reference

Discussion
If anObject is present in the set, decrements the count associated with it. If the count is decremented
to 0, anObject is removed from the set and sent a release (page 1310) message. removeObject: does
nothing if anObject is not present in the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– countForObject: (page 185)

Declared In
NSSet.h

188 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

NSCountedSet Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSData.h
Foundation/NSSerialization.h (Deprecated)

Companion guides: Binary Data Programming Guide for Cocoa
Property List Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSData and its mutable subclass NSMutableData provide data objects, object-oriented wrappers for
byte buffers. Data objects let simple allocated buffers (that is, data with no embedded pointers) take
on the behavior of Foundation objects.

Overview 189
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

NSData creates static data objects, and NSMutableData creates dynamic data objects. NSData and
NSMutableData are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications.

Using 32-bit Cocoa, the size of the data is subject to a theoretical 2GB limit (in practice, because memory
will be used by other objects this limit will be smaller); using 64-bit Cocoa, the size of the data is
subject to a theoretical limit of about 8EB (in practice, the limit should not be a factor).

NSData is “toll-free bridged” with its Core Foundation counterpart, CFData. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSData * parameter, you can pass a CFDataRef, and in a
function where you see a CFDataRef parameter, you can pass an NSData instance (you cast one type
to the other to suppress compiler warnings). This also applies to your concrete subclasses of NSData.
See Interchangeable Data Types for more information on toll-free bridging.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

NSMutableCopying
– mutableCopyWithZone: (page 1300)

Tasks

Creating Data Objects

+ data (page 192)
Creates and returns an empty data object.

+ dataWithBytes:length: (page 192)
Creates and returns a data object containing a given number of bytes copied from a given
buffer.

+ dataWithBytesNoCopy:length: (page 193)
Creates and returns a data object that holds length bytes from the buffer bytes.

+ dataWithBytesNoCopy:length:freeWhenDone: (page 194)
Creates and returns a data object that holds a given number of bytes from a given buffer.

+ dataWithContentsOfFile: (page 194)
Creates and returns a data object by reading every byte from the file specified by a given path.

+ dataWithContentsOfFile:options:error: (page 195)
Creates and returns a data object by reading every byte from the file specified by a given path.

190 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

+ dataWithContentsOfMappedFile: (page 195)
Creates and returns a data object from the mapped file specified by path.

+ dataWithContentsOfURL: (page 196)
Returns a data object containing the data from the location specified by a given URL.

+ dataWithContentsOfURL:options:error: (page 196)
Creates and returns a data object containing the data from the location specified by aURL.

+ dataWithData: (page 197)
Creates and returns a data object containing the contents of another data object.

– initWithBytes:length: (page 200)
Returns a data object initialized by adding to it a given number of bytes of data copied from
a given buffer.

– initWithBytesNoCopy:length: (page 200)
Returns a data object initialized by adding to it a given number of bytes of data from a given
buffer.

– initWithBytesNoCopy:length:freeWhenDone: (page 201)
Initializes a newly allocated data object by adding to it length bytes of data from the buffer
bytes.

– initWithContentsOfFile: (page 201)
Returns a data object initialized by reading into it the data from the file specified by a given
path.

– initWithContentsOfFile:options:error: (page 202)
Returns a data object initialized by reading into it the data from the file specified by a given
path.

– initWithContentsOfMappedFile: (page 202)
Returns a data object initialized by reading into it the mapped file specified by a given path.

– initWithContentsOfURL: (page 203)
Initializes a newly allocated data object initialized with the data from the location specified by
aURL.

– initWithContentsOfURL:options:error: (page 203)
Returns a data object initialized with the data from the location specified by a given URL.

– initWithData: (page 204)
Returns a data object initialized with the contents of another data object.

Accessing Data

– bytes (page 197)
Returns a pointer to the receiver’s contents.

– description (page 198)
Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.

– getBytes: (page 198)
Copies a data object’s contents into a given buffer.

– getBytes:length: (page 199)
Copies up to a given number of bytes from the start of the receiver's data into a given buffer.

– getBytes:range: (page 199)
Copies into a given buffer the contents from a given range within the bytes in the receiver.

Tasks 191
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

– subdataWithRange: (page 205)
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified
by a given range.

Testing Data

– isEqualToData: (page 204)
Compares the receiving data object to otherData.

– length (page 205)
Returns the number of bytes contained in the receiver.

Storing Data

– writeToFile:atomically: (page 205)
Writes the bytes in the receiver to the file specified by a given path.

– writeToFile:options:error: (page 206)
Writes the bytes in the receiver to the file specified by a given path.

– writeToURL:atomically: (page 206)
Writes the bytes in the receiver to the location specified by aURL.

– writeToURL:options:error: (page 207)
Writes the bytes in the receiver to the location specified by a given URL.

Class Methods

data
Creates and returns an empty data object.

+ (id)data

Return Value
An empty data object.

Discussion
This method is declared primarily for the use of mutable subclasses of NSData.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSData.h

dataWithBytes:length:
Creates and returns a data object containing a given number of bytes copied from a given buffer.

192 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

+ (id)dataWithBytes:(const void *)bytes length:(NSUInteger)length

Parameters

bytes
A buffer containing data for the new object.

length
The number of bytes to copy from bytes. This value must not exceed the length of bytes.

Return Value
A data object containing length bytes copied from the buffer bytes. Returns nil if the data object
could not be created.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithBytesNoCopy:length: (page 193)
+ dataWithBytesNoCopy:length:freeWhenDone: (page 194)

Declared In
NSData.h

dataWithBytesNoCopy:length:
Creates and returns a data object that holds length bytes from the buffer bytes.

+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters

bytes
A buffer containing data for the new object. bytes must point to a memory block allocated
with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

Return Value
A data object that holds length bytes from the buffer bytes. Returns nil if the data object could not
be created.

Discussion
The returned object takes ownership of the bytes pointer and frees it on deallocation. Therefore,
bytes must point to a memory block allocated with malloc.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithBytes:length: (page 192)
+ dataWithBytesNoCopy:length:freeWhenDone: (page 194)

Declared In
NSData.h

Class Methods 193
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

dataWithBytesNoCopy:length:freeWhenDone:
Creates and returns a data object that holds a given number of bytes from a given buffer.

+ (id)dataWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone:(BOOL)freeWhenDone

Parameters

bytes
A buffer containing data for the new object. If freeWhenDone is YES, bytes must point to a
memory block allocated with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

freeWhenDone
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Return Value
A data object that holds length bytes from the buffer bytes. Returns nil if the data object could not
be created.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithBytes:length: (page 192)
+ dataWithBytesNoCopy:length: (page 193)

Declared In
NSData.h

dataWithContentsOfFile:
Creates and returns a data object by reading every byte from the file specified by a given path.

+ (id)dataWithContentsOfFile:(NSString *)path

Parameters

path
The absolute path of the file from which to read data.

Return Value
A data object by reading every byte from the file specified by path. Returns nil if the data object
could not be created.

Discussion
This method is equivalent to dataWithContentsOfFile:options:error: (page 195) with no options.
If you need to know what was the reason for failure, use
dataWithContentsOfFile:options:error: (page 195).

A sample using this method can be found in Working With Binary Data.

Availability
Available in iPhone OS 2.0 and later.

194 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

See Also
+ dataWithContentsOfFile:options:error: (page 195)
+ dataWithContentsOfMappedFile: (page 195)

Declared In
NSData.h

dataWithContentsOfFile:options:error:
Creates and returns a data object by reading every byte from the file specified by a given path.

+ (id)dataWithContentsOfFile:(NSString *)path options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters

path
The absolute path of the file from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in
“Options for NSData Reading Methods” (page 208).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object by reading every byte from the file specified by path. Returns nil if the data object
could not be created.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSData.h

dataWithContentsOfMappedFile:
Creates and returns a data object from the mapped file specified by path.

+ (id)dataWithContentsOfMappedFile:(NSString *)path

Parameters

path
The absolute path of the file from which to read data.

Return Value
A data object from the mapped file specified by path. Returns nil if the data object could not be
created.

Discussion
Because of file mapping restrictions, this method should only be used if the file is guaranteed to exist
for the duration of the data object’s existence. It is generally safer to use the
dataWithContentsOfFile: (page 194) method.

Class Methods 195
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

This methods assumes mapped files are available from the underlying operating system. A mapped
file uses virtual memory techniques to avoid copying pages of the file into memory until they are
actually needed.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithContentsOfFile: (page 194)

Declared In
NSData.h

dataWithContentsOfURL:
Returns a data object containing the data from the location specified by a given URL.

+ (id)dataWithContentsOfURL:(NSURL *)aURL

Parameters

aURL
The URL from which to read data.

Return Value
A data object containing the data from the location specified by aURL. Returns nil if the data object
could not be created.

Discussion
If you need to know what was the reason for failure, use
dataWithContentsOfURL:options:error: (page 196).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithContentsOfURL:options:error: (page 196)
– initWithContentsOfURL: (page 203)

Declared In
NSData.h

dataWithContentsOfURL:options:error:
Creates and returns a data object containing the data from the location specified by aURL.

+ (id)dataWithContentsOfURL:(NSURL *)aURL options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters

aURL
The URL from which to read data.

196 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

mask
A mask that specifies options for reading the data. Constant components are described in
“Options for NSData Reading Methods” (page 208).

errorPtr
If there is an error reading in the data, upon return contains an NSError object that describes
the problem.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithContentsOfURL: (page 203)

Declared In
NSData.h

dataWithData:
Creates and returns a data object containing the contents of another data object.

+ (id)dataWithData:(NSData *)aData

Parameters

aData
A data object.

Return Value
A data object containing the contents of aData. Returns nil if the data object could not be created.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithData: (page 204)

Declared In
NSData.h

Instance Methods

bytes
Returns a pointer to the receiver’s contents.

- (const void *)bytes

Return Value
A read-only pointer to the receiver’s contents.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 197
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

See Also
– description (page 198)
– getBytes: (page 198)
– getBytes:length: (page 199)
– getBytes:range: (page 199)

Declared In
NSData.h

description
Returns an NSString object that contains a hexadecimal representation of the receiver’s contents.

- (NSString *)description

Return Value
An NSString object that contains a hexadecimal representation of the receiver’s contents in NSData
property list format.

Availability
Available in iPhone OS 2.0 and later.

See Also
– bytes (page 197)
– getBytes: (page 198)
– getBytes:length: (page 199)
– getBytes:range: (page 199)

Declared In
NSData.h

getBytes:
Copies a data object’s contents into a given buffer.

- (void)getBytes:(void *)buffer

Parameters

buffer
A buffer into which to copy the receiver's data. The buffer must be at least length (page 205)
bytes.

Discussion
You can see a sample using this method in Working With Binary Data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– bytes (page 197)
– description (page 198)
– getBytes:length: (page 199)

198 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

– getBytes:range: (page 199)

Declared In
NSData.h

getBytes:length:
Copies up to a given number of bytes from the start of the receiver's data into a given buffer.

- (void)getBytes:(void *)buffer length:(NSUInteger)length

Parameters

buffer
A buffer into which to copy data.

length
The number of bytes from the start of the receiver's data to copy to buffer.

Availability
Available in iPhone OS 2.0 and later.

See Also
– bytes (page 197)
– description (page 198)
– getBytes: (page 198)
– getBytes:range: (page 199)

Declared In
NSData.h

getBytes:range:
Copies into a given buffer the contents from a given range within the bytes in the receiver.

- (void)getBytes:(void *)buffer range:(NSRange)range

Parameters

buffer
A buffer into which to copy data.

range
The range of bytes in the receiver's data to copy to buffer. The range must lie within the range
of bytes of the receiver's data.

Discussion
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

Availability
Available in iPhone OS 2.0 and later.

See Also
– bytes (page 197)
– description (page 198)
– getBytes: (page 198)

Instance Methods 199
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

– getBytes:length: (page 199)

Declared In
NSData.h

initWithBytes:length:
Returns a data object initialized by adding to it a given number of bytes of data copied from a given
buffer.

- (id)initWithBytes:(const void *)bytes length:(NSUInteger)length

Discussion
A data object initialized by adding to it length bytes of data copied from the buffer bytes. The
returned object might be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithBytes:length: (page 192)
– initWithBytesNoCopy:length: (page 200)
– initWithBytesNoCopy:length:freeWhenDone: (page 201)

Declared In
NSData.h

initWithBytesNoCopy:length:
Returns a data object initialized by adding to it a given number of bytes of data from a given buffer.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length

Parameters

bytes
A buffer containing data for the new object. bytes must point to a memory block allocated
with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

Return Value
A data object initialized by adding to it length bytes of data from the buffer bytes. The returned
object might be different than the original receiver.

Discussion
The returned object takes ownership of the bytes pointer and frees it on deallocation. Therefore,
bytes must point to a memory block allocated with malloc.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithBytes:length: (page 192)

200 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

– initWithBytes:length: (page 200)
– initWithBytesNoCopy:length:freeWhenDone: (page 201)

Declared In
NSData.h

initWithBytesNoCopy:length:freeWhenDone:
Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Parameters

bytes
A buffer containing data for the new object. If flag is YES, bytes must point to a memory
block allocated with malloc.

length
The number of bytes to hold from bytes. This value must not exceed the length of bytes.

flag
If YES, the returned object takes ownership of the bytes pointer and frees it on deallocation.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithBytesNoCopy:length:freeWhenDone: (page 194)
– initWithBytes:length: (page 200)
– initWithBytesNoCopy:length: (page 200)

Declared In
NSData.h

initWithContentsOfFile:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)path

Parameters

path
The absolute path of the file from which to read data.

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object
might be different than the original receiver.

Discussion
This method is equivalent to initWithContentsOfFile:options:error: (page 202) with no options.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 201
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

See Also
+ dataWithContentsOfFile: (page 194)
– initWithContentsOfMappedFile: (page 202)

Declared In
NSData.h

initWithContentsOfFile:options:error:
Returns a data object initialized by reading into it the data from the file specified by a given path.

- (id)initWithContentsOfFile:(NSString *)path options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters

path
The absolute path of the file from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in
“Options for NSData Reading Methods” (page 208).

errorPtr
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
A data object initialized by reading into it the data from the file specified by path. The returned object
might be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithContentsOfFile:options:error: (page 195)

Declared In
NSData.h

initWithContentsOfMappedFile:
Returns a data object initialized by reading into it the mapped file specified by a given path.

- (id)initWithContentsOfMappedFile:(NSString *)path

Parameters

path
The absolute path of the file from which to read data.

Return Value
A data object initialized by reading into it the mapped file specified by path. The returned object
might be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

202 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

See Also
+ dataWithContentsOfMappedFile: (page 195)
– initWithContentsOfFile: (page 201)

Declared In
NSData.h

initWithContentsOfURL:
Initializes a newly allocated data object initialized with the data from the location specified by aURL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters

aURL
The URL from which to read data

Return Value
An NSData object initialized with the data from the location specified by aURL. The returned object
might be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithContentsOfURL: (page 196)

Declared In
NSData.h

initWithContentsOfURL:options:error:
Returns a data object initialized with the data from the location specified by a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters

aURL
The URL from which to read data.

mask
A mask that specifies options for reading the data. Constant components are described in
“Options for NSData Reading Methods” (page 208).

errorPtr
If there is an error reading in the data, upon return contains an NSError object that describes
the problem.

Return Value
A data object initialized with the data from the location specified by aURL. The returned object might
be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 203
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

See Also
+ dataWithContentsOfURL:options:error: (page 196)

Declared In
NSData.h

initWithData:
Returns a data object initialized with the contents of another data object.

- (id)initWithData:(NSData *)data

Parameters

data
A data object.

Return Value
A data object initialized with the contents data. The returned object might be different than the
original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithData: (page 197)

Declared In
NSData.h

isEqualToData:
Compares the receiving data object to otherData.

- (BOOL)isEqualToData:(NSData *)otherData

Parameters

otherData
The data object with which to compare the receiver.

Return Value
YES if the contents of otherData are equal to the contents of the receiver, otherwise NO.

Discussion
Two data objects are equal if they hold the same number of bytes, and if the bytes at the same position
in the objects are the same.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSData.h

204 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

length
Returns the number of bytes contained in the receiver.

- (NSUInteger)length

Return Value
The number of bytes contained in the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSData.h

subdataWithRange:
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by
a given range.

- (NSData *)subdataWithRange:(NSRange)range

Parameters

range
The range in the receiver from which to copy bytes. The range must not exceed the bounds of
the receiver.

Return Value
A data object containing a copy of the receiver’s bytes that fall within the limits specified by range.

Discussion
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

A sample using this method can be found in Working With Binary Data.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSData.h

writeToFile:atomically:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters

path
The location to which to write the receiver's bytes. If path contains a tilde (~) character, you
must expand it with stringByExpandingTildeInPath (page 1031) before invoking this method.

atomically
If YES, the data is written to a backup file, and then—assuming no errors occur—the backup
file is renamed to the name specified by path; otherwise, the data is written directly to path.

Instance Methods 205
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– writeToURL:atomically: (page 206)

Declared In
NSData.h

writeToFile:options:error:
Writes the bytes in the receiver to the file specified by a given path.

- (BOOL)writeToFile:(NSString *)path options:(NSUInteger)mask error:(NSError
**)errorPtr

Parameters

path
The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in
“Options for NSData Writing Methods” (page 208).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes
the problem.

Return Value
YES if the operation succeeds, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– writeToURL:options:error: (page 207)

Declared In
NSData.h

writeToURL:atomically:
Writes the bytes in the receiver to the location specified by aURL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)atomically

Parameters

aURL
The location to which to write the receiver's bytes. Only file:// URLs are supported.

206 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

atomically
If YES, the data is written to a backup location, and then—assuming no errors occur—the
backup location is renamed to the name specified by aURL; otherwise, the data is written directly
to aURL. atomically is ignored if aURL is not of a type the supports atomic writes.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:atomically: (page 205), except for the type of the first argument.

Availability
Available in iPhone OS 2.0 and later.

See Also
– writeToFile:atomically: (page 205)

Declared In
NSData.h

writeToURL:options:error:
Writes the bytes in the receiver to the location specified by a given URL.

- (BOOL)writeToURL:(NSURL *)aURL options:(NSUInteger)mask error:(NSError **)errorPtr

Parameters

aURL
The location to which to write the receiver's bytes.

mask
A mask that specifies options for writing the data. Constant components are described in
“Options for NSData Writing Methods” (page 208).

errorPtr
If there is an error writing out the data, upon return contains an NSError object that describes
the problem.

Return Value
YES if the operation succeeds, otherwise NO.

Discussion
Since at present only file:// URLs are supported, there is no difference between this method and
writeToFile:options:error: (page 206), except for the type of the first argument.

Availability
Available in iPhone OS 2.0 and later.

See Also
– writeToFile:options:error: (page 206)

Declared In
NSData.h

Instance Methods 207
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

Constants

Options for NSData Reading Methods
Options for methods used to read NSData objects.

enum {
NSMappedRead = 1,
NSUncachedRead = 2

};

Constants
NSMappedRead

A hint indicating the file should be mapped into virtual memory, if possible.

Available in iPhone OS 2.0 and later.

Declared in NSData.h

NSUncachedRead
A hint indicating the file should not be stored in the file-system caches.

For data being read once and discarded, this option can improve performance.

Available in iPhone OS 2.0 and later.

Declared in NSData.h

Declared In
NSData.h

Options for NSData Writing Methods
Options for methods used to write NSData objects.

enum {
NSAtomicWrite = 1

};

Constants
NSAtomicWrite

A hint to use an auxiliary file when saving data and then exchange the files.

Available in iPhone OS 2.0 and later.

Declared in NSData.h

Declared In
NSData.h

208 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

NSData Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSDate.h
Foundation/NSCalendarDate.h

Companion guides: Date and Time Programming Guide for Cocoa
Property List Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSDate objects represent a single point in time. NSDate is a class cluster; its single public superclass,
NSDate, declares the programmatic interface for specific and relative time values. The objects you
create using NSDate are referred to as date objects. They are immutable objects. Because of the nature
of class clusters, objects returned by the NSDate class are instances not of that abstract class but of
one of its private subclasses. Although a date object’s class is private, its interface is public, as declared
by the abstract superclass NSDate. Generally, you instantiate a suitable date object by invoking one
of the date... class methods.

Overview 209
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing
dates, computing intervals, and similar functionality. NSDate presents a programmatic interface
through which suitable date objects are requested and returned. Date objects returned from NSDate
are lightweight and immutable since they represent an invariant point in time. This class is designed
to provide the foundation for arbitrary calendrical representations.

The sole primitive method of NSDate, timeIntervalSinceReferenceDate (page 223), provides the
basis for all the other methods in the NSDate interface. This method returns a time value relative to
an absolute reference date—the first instant of 1 January 2001, GMT.

NSDate provides several methods to interpret and to create string representations of dates (for example,
dateWithNaturalLanguageString:locale: and descriptionWithLocale:). In general, on Mac OS X v10.4
and later you should use an instance of NSDateFormatter to parse and generate strings using the
methods dateFromString: (page 244) and stringFromDate: (page 268)—see NSDateFormatter on
MacÂ OSÂ XÂ 10.4 for more details.

NSDate models the change from the Julian to the Gregorian calendar in October 1582, and calendrical
calculations performed in conjunction with NSCalendar take this transition into account. Note,
however, that some locales adopted the Gregorian calendar at other times; for example, Great Britain
didn't switch over until September 1752.

NSDate is “toll-free bridged” with its Cocoa Foundation counterpart, CFDate Reference. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSDate * parameter, you can pass a
CFDateRef, and in a function where you see a CFDateRef parameter, you can pass an NSDate instance
(you cast one type to the other to suppress compiler warnings). See Interchangeable Data Types for
more information on toll-free bridging.

Subclassing Notes

The major reason for subclassing NSDate is to create a class with convenience methods for working
with a particular calendrical system. But you could also require a custom NSDate class for other
reasons, such as to get a date and time value that provides a finer temporal granularity.

Methods to Override

If you want to subclass NSDate to obtain behavior different than that provided by the private or public
subclasses, you must do these things:

 ■ Declare a suitable instance variable to hold the date and time value (relative to an absolute
reference date).

 ■ Override the timeIntervalSinceReferenceDate (page 223) instance method to provide the
correct date and time value based on your instance variable.

 ■ Override initWithTimeIntervalSinceReferenceDate: (page 220), the designated initializer
method.

If you are creating a subclass that represents a calendrical system, you must also define methods that
partition past and future periods into the units of this calendar.

210 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Because the NSDate class adopts the NSCopying and NSCoding protocols, your subclass must also
implement all of the methods in these protocols.

Special Considerations

Your subclass may use a different reference date than the absolute reference date used by NSDate
(the first instance of 1 January 2001, GMT). If it does, it must still use the absolute reference date in
its implementations of the methods timeIntervalSinceReferenceDate (page 223) and
initWithTimeIntervalSinceReferenceDate: (page 220). That is, the reference date referred to in
the titles of these methods is the absolute reference date. If you do not use the absolute reference date
in these methods, comparisons between NSDate objects of your subclass and NSDate objects of a
private subclass will not work.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
copyWithZone: (page 1250)

Tasks

Creating and Initializing Date Objects

+ date (page 213)
Creates and returns a new date set to the current date and time.

+ dateWithTimeIntervalSinceNow: (page 214)
Creates and returns an NSDate object set to a given number of seconds from the current date
and time.

+ dateWithTimeIntervalSinceReferenceDate: (page 214)
Creates and returns an NSDate object set to a given number of seconds from the first instant
of 1 January 2001, GMT.

+ dateWithTimeIntervalSince1970: (page 213)
Creates and returns an NSDate object set to the given number of seconds from the first instant
of 1 January 1970, GMT.

– init (page 218)
Returns an NSDate object initialized to the current date and time.

– initWithTimeIntervalSinceNow: (page 219)
Returns an NSDate object initialized relative to the current date and time by a given number
of seconds.

Adopted Protocols 211
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

– initWithTimeInterval:sinceDate: (page 219)
Returns an NSDate object initialized relative to another given date by a given number of seconds.

– initWithTimeIntervalSinceReferenceDate: (page 220)
Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given
number of seconds.

Getting Temporal Boundaries

+ distantFuture (page 215)
Creates and returns an NSDate object representing a date in the distant future.

+ distantPast (page 215)
Creates and returns an NSDate object representing a date in the distant past.

Comparing Dates

– isEqualToDate: (page 220)
Returns a Boolean value that indicates whether a given object is an NSDate object and exactly
equal the receiver.

– earlierDate: (page 218)
Returns the earlier of the receiver and another given date.

– laterDate: (page 221)
Returns the later of the receiver and another given date.

– compare: (page 217)
Returns an NSComparisonResult value that indicates the temporal ordering of the receiver
and another given date.

Getting Time Intervals

– timeIntervalSinceDate: (page 222)
Returns the interval between the receiver and another given date.

– timeIntervalSinceNow (page 222)
Returns the interval between the receiver and the current date and time.

+ timeIntervalSinceReferenceDate (page 215)
Returns the interval between the first instant of 1 January 2001, GMT and the current date and
time.

– timeIntervalSinceReferenceDate (page 223)
Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

– timeIntervalSince1970 (page 221)
Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

Adding a Time Interval

– addTimeInterval: (page 216)
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.

212 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Representing Dates as Strings

– description (page 217)
Returns a string representation of the receiver in the international format (YYYY-MM-DD HH:MM:SS
±HHMM).

Class Methods

date
Creates and returns a new date set to the current date and time.

+ (id)date

Return Value
A new date object set to the current date and time.

Discussion
This method uses the default initializer method for the class, init (page 218).

The following code sample shows how to use date to get the current date:

NSDate *today = [NSDate date];

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDate.h

dateWithTimeIntervalSince1970:
Creates and returns an NSDate object set to the given number of seconds from the first instant of 1
January 1970, GMT.

+ (id)dateWithTimeIntervalSince1970:(NSTimeInterval)seconds

Parameters

seconds
The number of seconds from the reference date, 1 January 1970, GMT, for the new date. Use
a negative argument to specify a date before this date.

Return Value
An NSDate object set to seconds seconds from the reference date.

Discussion
This method is useful for creating NSDate objects from time_t values returned by BSD system
functions.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 213
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

See Also
– timeIntervalSince1970 (page 221)

Declared In
NSDate.h

dateWithTimeIntervalSinceNow:
Creates and returns an NSDate object set to a given number of seconds from the current date and
time.

+ (id)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Parameters

seconds
The number of seconds from the current date and time for the new date. Use a negative value
to specify a date before the current date.

Return Value
An NSDate object set to seconds seconds from the current date and time.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTimeIntervalSinceNow: (page 219)

Declared In
NSDate.h

dateWithTimeIntervalSinceReferenceDate:
Creates and returns an NSDate object set to a given number of seconds from the first instant of 1
January 2001, GMT.

+ (id)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Parameters

seconds
The number of seconds from the absolute reference date (the first instant of 1 January 2001,
GMT) for the new date. Use a negative argument to specify a date and time before the reference
date.

Return Value
An NSDate object set to seconds seconds from the absolute reference date.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTimeIntervalSinceReferenceDate: (page 220)

Declared In
NSDate.h

214 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

distantFuture
Creates and returns an NSDate object representing a date in the distant future.

+ (id)distantFuture

Return Value
An NSDate object representing a date in the distant future (in terms of centuries).

Discussion
You can pass this value when an NSDate object is required to have the date argument essentially
ignored. For example, the NSWindowmethod nextEventMatchingMask:untilDate:inMode:dequeue:
returns nil if an event specified in the event mask does not happen before the specified date. You
can use the object returned by distantFuture as the date argument to wait indefinitely for the event
to occur.

myEvent = [myWindow nextEventMatchingMask:myEventMask
untilDate:[NSDate distantFuture]
inMode:NSDefaultRunLoopMode
dequeue:YES];

Availability
Available in iPhone OS 2.0 and later.

See Also
+ distantPast (page 215)

Declared In
NSDate.h

distantPast
Creates and returns an NSDate object representing a date in the distant past.

+ (id)distantPast

Return Value
An NSDate object representing a date in the distant past (in terms of centuries).

Discussion
You can use this object as a control date, a guaranteed temporal boundary.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ distantFuture (page 215)

Declared In
NSDate.h

timeIntervalSinceReferenceDate
Returns the interval between the first instant of 1 January 2001, GMT and the current date and time.

Class Methods 215
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

+ (NSTimeInterval)timeIntervalSinceReferenceDate

Return Value
The interval between the system’s absolute reference date (the first instant of 1 January 2001, GMT)
and the current date and time.

Discussion
This method is the primitive method for NSDate. If you subclass NSDate, you must override this
method with your own implementation for it.

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeIntervalSinceReferenceDate (page 223)
– timeIntervalSinceDate: (page 222)
– timeIntervalSince1970 (page 221)
– timeIntervalSinceNow (page 222)

Declared In
NSDate.h

Instance Methods

addTimeInterval:
Returns a new NSDate object that is set to a given number of seconds relative to the receiver.

- (id)addTimeInterval:(NSTimeInterval)seconds

Parameters

seconds
The number of seconds to add to the receiver. Use a negative value for seconds to have the
returned object specify a date before the receiver.

Return Value
A new NSDate object that is set to seconds seconds relative to the receiver. The date returned might
have a representation different from the receiver’s.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTimeInterval:sinceDate: (page 219)
– timeIntervalSinceDate: (page 222)

Declared In
NSDate.h

216 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

compare:
Returns an NSComparisonResult value that indicates the temporal ordering of the receiver and
another given date.

- (NSComparisonResult)compare:(NSDate *)anotherDate

Parameters

anotherDate
The date with which to compare the receiver.

This value must not be nil. If the value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
If:

 ■ The receiver and anotherDate are exactly equal to each other, NSOrderedSame

 ■ The receiver is later in time than anotherDate, NSOrderedDescending

 ■ The receiver is earlier in time than anotherDate, NSOrderedAscending.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less
fine granularity, use timeIntervalSinceDate: (page 222) to compare the two dates.

Availability
Available in iPhone OS 2.0 and later.

See Also
– earlierDate: (page 218)
– isEqual: (page 1306) (NSObject protocol)
– laterDate: (page 221)

Declared In
NSDate.h

description
Returns a string representation of the receiver in the international format (YYYY-MM-DD HH:MM:SS
±HHMM).

- (NSString *)description

Return Value
A string representation of the receiver in the international format YYYY-MM-DD HH:MM:SS ±HHMM,
where ±HHMM represents the time zone offset in hours and minutes from GMT (for example,
“2001-03-24 10:45:32 +0600”).

Instance Methods 217
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Special Considerations

Important: The NSDate implementation of the description (page 217) method uses NSCalendarDate,
which is slated for deprecation. Moreover, NSCalendarDate does not model the transition from the
Julian to the Gregorian calendar, so the description (created using NSDate’s description (page 217)
method) of a date prior to October 1582 does not match the actual date the object represents. For
accurate descriptions, use an instance of NSDateFormatter (see Data Formatting Programming Guide
for Cocoa).

Availability
Available in iPhone OS 2.0 and later.

See Also
description (NSCalendarDate)

Declared In
NSDate.h

earlierDate:
Returns the earlier of the receiver and another given date.

- (NSDate *)earlierDate:(NSDate *)anotherDate

Parameters

anotherDate
The date with which to compare the receiver.

Return Value
The earlier of the receiver and anotherDate, determined using timeIntervalSinceDate: (page 222).
If the receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– compare: (page 217)
– isEqual: (page 1306) (NSObject protocol)
– laterDate: (page 221)

Declared In
NSDate.h

init
Returns an NSDate object initialized to the current date and time.

- (id)init

Return Value
An NSDate object initialized to the current date and time.

218 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page
220).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ date (page 213)
– initWithTimeIntervalSinceReferenceDate: (page 220)

Declared In
NSDate.h

initWithTimeInterval:sinceDate:
Returns an NSDate object initialized relative to another given date by a given number of seconds.

- (id)initWithTimeInterval:(NSTimeInterval)seconds sinceDate:(NSDate *)refDate

Parameters

seconds
The number of seconds to add to refDate. A negative value means the receiver will be earlier
than refDate.

refDate
The reference date.

Return Value
An NSDate object initialized relative to refDate by seconds seconds.

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page
220).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDate.h

initWithTimeIntervalSinceNow:
Returns an NSDate object initialized relative to the current date and time by a given number of seconds.

- (id)initWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Parameters

seconds
The number of seconds from relative to the current date and time to which the receiver should
be initialized. A negative value means the returned object will represent a date in the past.

Return Value
An NSDate object initialized relative to the current date and time by seconds seconds.

Instance Methods 219
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Discussion
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate: (page
220).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dateWithTimeIntervalSinceNow: (page 214)

Declared In
NSDate.h

initWithTimeIntervalSinceReferenceDate:
Returns an NSDate object initialized relative the first instant of 1 January 2001, GMT by a given number
of seconds.

- (id)initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Parameters

seconds
The number of seconds to add to the reference date (the first instant of 1 January 2001, GMT).
A negative value means the receiver will be earlier than the reference date.

Return Value
An NSDate object initialized relative to the absolute reference date by seconds seconds.

Discussion
This method is the designated initializer for the NSDate class and is declared primarily for the use of
subclasses of NSDate. When you subclass NSDate to create a concrete date class, you must override
this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dateWithTimeIntervalSinceReferenceDate: (page 214)

Declared In
NSDate.h

isEqualToDate:
Returns a Boolean value that indicates whether a given object is an NSDate object and exactly equal
the receiver.

- (BOOL)isEqualToDate:(NSDate *)anotherDate

Parameters

anotherDate
The date to compare with the receiver.

220 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Return Value
YES if the anotherDate is an NSDate object and is exactly equal to the receiver, otherwise NO.

Discussion
This method detects sub-second differences between dates. If you want to compare dates with a less
fine granularity, use timeIntervalSinceDate: (page 222) to compare the two dates.

Availability
Available in iPhone OS 2.0 and later.

See Also
– compare: (page 217)
– earlierDate: (page 218)
– isEqual: (page 1306) (NSObject protocol)
– laterDate: (page 221)

Declared In
NSDate.h

laterDate:
Returns the later of the receiver and another given date.

- (NSDate *)laterDate:(NSDate *)anotherDate

Parameters

anotherDate
The date with which to compare the receiver.

Return Value
The later of the receiver and anotherDate, determined using timeIntervalSinceDate: (page 222).
If the receiver and anotherDate represent the same date, returns the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– compare: (page 217)
– earlierDate: (page 218)
– isEqual: (page 1306) (NSObject protocol)

Declared In
NSDate.h

timeIntervalSince1970
Returns the interval between the receiver and the first instant of 1 January 1970, GMT.

- (NSTimeInterval)timeIntervalSince1970

Return Value
The interval between the receiver and the reference date, 1 January 1970, GMT. If the receiver is earlier
than the reference date, the value is negative.

Instance Methods 221
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeIntervalSinceDate: (page 222)
– timeIntervalSinceNow (page 222)
– timeIntervalSinceReferenceDate (page 223)
+ timeIntervalSinceReferenceDate (page 215)

Declared In
NSDate.h

timeIntervalSinceDate:
Returns the interval between the receiver and another given date.

- (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate

Parameters

anotherDate
The date with which to compare the receiver.

Return Value
The interval between the receiver and anotherDate. If the receiver is earlier than anotherDate, the
return value is negative.

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeIntervalSince1970 (page 221)
– timeIntervalSinceNow (page 222)
– timeIntervalSinceReferenceDate (page 223)

Declared In
NSDate.h

timeIntervalSinceNow
Returns the interval between the receiver and the current date and time.

- (NSTimeInterval)timeIntervalSinceNow

Return Value
The interval between the receiver and the current date and time. If the receiver is earlier than the
current date and time, the return value is negative.

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeIntervalSinceDate: (page 222)
– timeIntervalSince1970 (page 221)

222 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

– timeIntervalSinceReferenceDate (page 223)

Declared In
NSDate.h

timeIntervalSinceReferenceDate
Returns the interval between the receiver and the first instant of 1 January 2001, GMT.

- (NSTimeInterval)timeIntervalSinceReferenceDate

Return Value
The interval between the receiver and the system’s absolute reference date (the first instant of 1 January
2001, GMT). If the receiver is earlier than the reference date, the value is negative.

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeIntervalSinceDate: (page 222)
– timeIntervalSinceNow (page 222)
+ timeIntervalSinceReferenceDate (page 215)

Declared In
NSDate.h

Constants

NSTimeIntervalSince1970
NSDate provides a constant that specifies the number of seconds from 1 January 1970 to the reference
date, 1 January 2001.

#define NSTimeIntervalSince1970 978307200.0

Constants
NSTimeIntervalSince1970

The number of seconds from 1 January 1970 to the reference date, 1 January 2001.

Available in iPhone OS 2.0 and later.

Declared in NSDate.h

Discussion
1 January 1970 is the epoch (or starting point) for Unix time.

Declared In
NSDate.h

Constants 223
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

224 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 3

NSDate Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSCalendar.h

Companion guide: Date and Time Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSDateComponents encapsulates the components of a date in an extendable, object-oriented manner.
It is used to specify a date by providing the temporal components that make up a date and time: hour,
minutes, seconds, day, month, year, and so on. It can also be used to specify a duration of time, for
example, 5 hours and 16 minutes. An NSDateComponents object is not required to define all the
component fields. When a new instance of NSDateComponents is created the date components are
set to NSUndefinedDateComponent.

Overview 225
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

Important: An NSDateComponents object is meaningless in itself; you need to know what calendar
it is interpreted against, and you need to know whether the values are absolute values of the units,
or quantities of the units.

An instance of NSDateComponents is not responsible for answering questions about a date beyond
the information with which it was initialized. For example, if you initialize one with May 6, 2004, its
weekday is NSUndefinedDateComponent, not Thursday. To get the correct day of the week, you must
create a suitable instance of NSCalendar, create an NSDate object using dateFromComponents: and
then use components:fromDate: to retrieve the weekday—as illustrated in the following example.

NSDateComponents *comps = [[NSDateComponents alloc] init];
[comps setDay:6];
[comps setMonth:5];
[comps setYear:2004];
NSCalendar *gregorian = [[NSCalendar alloc]

initWithCalendarIdentifier:NSGregorianCalendar];
NSDate *date = [gregorian dateFromComponents:comps];
[comps release];
NSDateComponents *weekdayComponents =

[gregorian components:NSWeekdayCalendarUnit fromDate:date];
int weekday = [weekdayComponents weekday];

For more details, see Calendars in Date and Time Programming Guide for Cocoa.

Tasks

Getting Information About an NSDateComponents Object

– era (page 228)
Returns the number of era units for the receiver.

– year (page 235)
Returns the number of year units for the receiver.

– month (page 229)
Returns the number of month units for the receiver.

– day (page 227)
Returns the number of day units for the receiver.

– hour (page 228)
Returns the number of hour units for the receiver.

– minute (page 228)
Returns the number of minute units for the receiver.

– second (page 229)
Returns the number of second units for the receiver.

– week (page 234)
Returns the number of week units for the receiver.

– weekday (page 234)
Returns the number of weekday units for the receiver.

226 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

– weekdayOrdinal (page 235)
Returns the ordinal number of weekday units for the receiver.

Setting Information for an NSDateComponents Object

– setEra: (page 230)
Sets the number of era units for the receiver.

– setYear: (page 234)
Sets the number of year units for the receiver.

– setMonth: (page 231)
Sets the number of month units for the receiver.

– setDay: (page 230)
Sets the number of day units for the receiver.

– setHour: (page 231)
Sets the number of hour units for the receiver.

– setMinute: (page 231)
Sets the number of minute units for the receiver.

– setSecond: (page 232)
Sets the number of second units for the receiver.

– setWeek: (page 232)
Sets the number of week units for the receiver.

– setWeekday: (page 233)
Sets the number of weekday units for the receiver.

– setWeekdayOrdinal: (page 233)
Sets the ordinal number of weekday units for the receiver.

Instance Methods

day
Returns the number of day units for the receiver.

- (NSInteger)day

Return Value
The number of day units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDay: (page 230)

Instance Methods 227
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

Declared In
NSCalendar.h

era
Returns the number of era units for the receiver.

- (NSInteger)era

Return Value
The number of era units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setEra: (page 230)

Declared In
NSCalendar.h

hour
Returns the number of hour units for the receiver.

- (NSInteger)hour

Return Value
The number of hour units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setHour: (page 231)

Declared In
NSCalendar.h

minute
Returns the number of minute units for the receiver.

- (NSInteger)minute

228 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

Return Value
The number of minute units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMinute: (page 231)

Declared In
NSCalendar.h

month
Returns the number of month units for the receiver.

- (NSInteger)month

Return Value
The number of month units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMonth: (page 231)

Declared In
NSCalendar.h

second
Returns the number of second units for the receiver.

- (NSInteger)second

Return Value
The number of second units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 229
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

See Also
– setSecond: (page 232)

Declared In
NSCalendar.h

setDay:
Sets the number of day units for the receiver.

- (void)setDay:(NSInteger)v

Parameters

v
The number of day units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– day (page 227)

Declared In
NSCalendar.h

setEra:
Sets the number of era units for the receiver.

- (void)setEra:(NSInteger)v

Parameters

v
The number of era units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– era (page 228)

Declared In
NSCalendar.h

230 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

setHour:
Sets the number of hour units for the receiver.

- (void)setHour:(NSInteger)v

Parameters

v
The number of hour units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– hour (page 228)

Declared In
NSCalendar.h

setMinute:
Sets the number of minute units for the receiver.

- (void)setMinute:(NSInteger)v

Parameters

v
The number of minute units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minute (page 228)

Declared In
NSCalendar.h

setMonth:
Sets the number of month units for the receiver.

- (void)setMonth:(NSInteger)v

Parameters

v
The number of month units for the receiver.

Instance Methods 231
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– month (page 229)

Declared In
NSCalendar.h

setSecond:
Sets the number of second units for the receiver.

- (void)setSecond:(NSInteger)v

Parameters

v
The number of second units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– second (page 229)

Declared In
NSCalendar.h

setWeek:
Sets the number of week units for the receiver.

- (void)setWeek:(NSInteger)v

Parameters

v
The number of week units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

232 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

See Also
– week (page 234)

Declared In
NSCalendar.h

setWeekday:
Sets the number of weekday units for the receiver.

- (void)setWeekday:(NSInteger)v

Parameters

v
The number of weekday units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– weekday (page 234)

Declared In
NSCalendar.h

setWeekdayOrdinal:
Sets the ordinal number of weekday units for the receiver.

- (void)setWeekdayOrdinal:(NSInteger)v

Parameters

v
The ordinal number of weekday units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– weekdayOrdinal (page 235)

Declared In
NSCalendar.h

Instance Methods 233
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

setYear:
Sets the number of year units for the receiver.

- (void)setYear:(NSInteger)v

Parameters

v
The number of year units for the receiver.

Discussion
This value will be interpreted in the context of the calendar with which it is used—see Calendars in
Date and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– year (page 235)

Declared In
NSCalendar.h

week
Returns the number of week units for the receiver.

- (NSInteger)week

Return Value
The number of week units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setWeek: (page 232)

Declared In
NSCalendar.h

weekday
Returns the number of weekday units for the receiver.

- (NSInteger)weekday

Return Value
The number of weekday units for the receiver.

234 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setWeekday: (page 233)

Declared In
NSCalendar.h

weekdayOrdinal
Returns the ordinal number of weekday units for the receiver.

- (NSInteger)weekdayOrdinal

Return Value
The ordinal number of weekday units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setWeekdayOrdinal: (page 233)

Declared In
NSCalendar.h

year
Returns the number of year units for the receiver.

- (NSInteger)year

Return Value
The number of year units for the receiver.

Discussion
This value is interpreted in the context of the calendar with which it is used—see Calendars in Date
and Time Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setYear: (page 234)

Instance Methods 235
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

Declared In
NSCalendar.h

Constants

NSDateComponents undefined component identifier
This constant specifies that an NSDateComponents component is undefined.

enum {
NSUndefinedDateComponent = 0x7fffffff

};

Constants
NSUndefinedDateComponent

Specifies that the component is undefined.

Available in iPhone OS 2.0 and later.

Declared in NSCalendar.h

Declared In
NSCalendar.h

236 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 4

NSDateComponents Class Reference

Inherits from: NSFormatter : NSObject

Conforms to: NSObject (NSObject)
NSCoding (NSFormatter)
NSCopying (NSFormatter)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSDateFormatter.h

Companion guide: Data Formatting Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

Instances of NSDateFormatter create string representations of NSDate (and NSCalendarDate) objects,
and convert textual representations of dates and times into NSDate objects. You can express the
representation of dates and times flexibly: “Thu 22 Dec 1994” is just as acceptable as “12/22/94.”

With Mac OS X v10.4 and later, NSDateFormatter has two modes of operation (or behaviors). By
default, instances of NSDateFormatter have the same behavior as they did on Mac OS X versions
10.0 to 10.3. You can, however, configure instances (or set a default for all instances) to adopt a new
behavior implemented for Mac OS X version 10.4. See Data Formatting Programming Guide for Cocoa
for a full description of the old and new behaviors.

Overview 237
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

If you initialize a formatter using initWithDateFormat:allowNaturalLanguage:, you are (for
backwards compatibility reasons) creating an “old-style” date formatter. To use the new behavior,
you initialize the formatter with init (page 248). If you have not set the default class behavior (see
setDefaultFormatterBehavior: (page 243)), you send the instance a setFormatterBehavior: (page
253) message with the argument NSDateFormatterBehavior10_4. You can then set the date format
as appropriate, typically using a format style as illustrated in the following code fragment.

// assume default behavior set for class using
// [NSDateFormatter setDefaultFormatterBehavior:NSDateFormatterBehavior10_4];

NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init] autorelease];
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
[dateFormatter setTimeStyle:NSDateFormatterNoStyle];

NSDate *date = [NSDate dateWithTimeIntervalSinceReferenceDate:118800];
NSString *formattedDateString = [dateFormatter stringFromDate:date];
NSLog(@"formattedDateString for locale %@: %@",

[[dateFormatter locale] localeIdentifier], formattedDateString);

// Output: formattedDateString for locale en_US: Jan 2, 2001

Note that the format for a given style is dependent on a user’s preferences, including the locale setting.

Note also that by default the new-style formatter returns NSDate objects instead of NSCalendarDate
objects. You can change this behavior using setGeneratesCalendarDates: (page 253).

Important: Date formatters created in Interface Builder are initialized with
initWithDateFormat:allowNaturalLanguage:, and hence use the Mac OS X version 10.0 behavior.

Tasks

Initializing a Date Formatter

– init (page 248)
Initializes and returns an NSDateFormatter instance.

Managing Behavior

– formatterBehavior (page 246)
Returns the formatter behavior for the receiver.

– setFormatterBehavior: (page 253)
Sets the formatter behavior for the receiver.

+ defaultFormatterBehavior (page 242)
Returns the default formatting behavior for instances of the class.

+ setDefaultFormatterBehavior: (page 243)
Sets the default formatting behavior for instances of the class.

238 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– generatesCalendarDates (page 246)
Returns a Boolean value that indicates whether the receiver generates calendar dates.

– setGeneratesCalendarDates: (page 253)
Sets whether the receiver generates calendar dates.

– isLenient (page 248)
Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a
string.

– setLenient: (page 254)
Sets whether the receiver uses heuristics when parsing a string.

Converting Objects

– dateFromString: (page 244)
Returns a date representation of a given string interpreted using the receiver’s current settings.

– stringFromDate: (page 268)
Returns a string representation of a given date formatted using the receiver’s current settings.

– getObjectValue:forString:range:error: (page 247)
Returns by reference a date representation of a given string and the range of the string used,
and returns a Boolean value that indicates whether the string could be parsed.

Managing Formats and Styles

– dateFormat (page 244)
Returns the date format string used by the receiver.

– setDateFormat: (page 251)
Sets the date format for the receiver.

– dateStyle (page 245)
Returns the date style of the receiver.

– setDateStyle: (page 252)
Sets the date style of the receiver.

– timeStyle (page 268)
Returns the time style of the receiver.

– setTimeStyle: (page 261)
Sets the time style of the receiver.

Managing Attributes

– calendar (page 244)
Returns the calendar for the receiver.

– setCalendar: (page 251)
Sets the calendar for the receiver.

– defaultDate (page 245)
Returns the default date for the receiver.

Tasks 239
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– setDefaultDate: (page 252)
Sets the default date for the receiver.

– locale (page 249)
Returns the locale for the receiver.

– setLocale: (page 254)
Sets the locale for the receiver.

– timeZone (page 269)
Returns the time zone for the receiver.

– setTimeZone: (page 261)
Sets the time zone for the receiver.

– twoDigitStartDate (page 269)
Returns the earliest date that can be denoted by a two-digit year specifier.

– setTwoDigitStartDate: (page 261)
Sets the two-digit start date for the receiver.

– gregorianStartDate (page 247)
Returns the start date of the Gregorian calendar for the receiver.

– setGregorianStartDate: (page 254)
Sets the start date of the Gregorian calendar for the receiver.

Managing AM and PM Symbols

– AMSymbol (page 243)
Returns the AM symbol for the receiver.

– setAMSymbol: (page 250)
Sets the AM symbol for the receiver.

– PMSymbol (page 250)
Returns the PM symbol for the receiver.

– setPMSymbol: (page 256)
Sets the PM symbol for the receiver.

Managing Weekday Symbols

– weekdaySymbols (page 271)
Returns the array of weekday symbols for the receiver.

– setWeekdaySymbols: (page 263)
Sets the weekday symbols for the receiver.

– shortWeekdaySymbols (page 266)
Returns the array of short weekday symbols for the receiver.

– setShortWeekdaySymbols: (page 259)
Sets the short weekday symbols for the receiver.

– veryShortWeekdaySymbols (page 271)
Returns the array of very short weekday symbols for the receiver.

– setVeryShortWeekdaySymbols: (page 263)
Sets the vert short weekday symbols for the receiver

240 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– standaloneWeekdaySymbols (page 267)
Returns the array of standalone weekday symbols for the receiver.

– setStandaloneWeekdaySymbols: (page 260)
Sets the standalone weekday symbols for the receiver.

– shortStandaloneWeekdaySymbols (page 266)
Returns the array of short standalone weekday symbols for the receiver.

– setShortStandaloneWeekdaySymbols: (page 258)
Sets the short standalone weekday symbols for the receiver.

– veryShortStandaloneWeekdaySymbols (page 270)
Returns the array of very short standalone weekday symbols for the receiver.

– setVeryShortStandaloneWeekdaySymbols: (page 263)
Sets the very short standalone weekday symbols for the receiver.

Managing Month Symbols

– monthSymbols (page 249)
Returns the month symbols for the receiver.

– setMonthSymbols: (page 255)
Sets the month symbols for the receiver.

– shortMonthSymbols (page 264)
Returns the array of short month symbols for the receiver.

– setShortMonthSymbols: (page 256)
Sets the short month symbols for the receiver.

– veryShortMonthSymbols (page 269)
Returns the very short month symbols for the receiver.

– setVeryShortMonthSymbols: (page 262)
Sets the very short month symbols for the receiver.

– standaloneMonthSymbols (page 267)
Returns the standalone month symbols for the receiver.

– setStandaloneMonthSymbols: (page 259)
Sets the standalone month symbols for the receiver.

– shortStandaloneMonthSymbols (page 265)
Returns the short standalone month symbols for the receiver.

– setShortStandaloneMonthSymbols: (page 257)
Sets the short standalone month symbols for the receiver.

– veryShortStandaloneMonthSymbols (page 270)
Returns the very short month symbols for the receiver.

– setVeryShortStandaloneMonthSymbols: (page 262)
Sets the very short standalone month symbols for the receiver.

Managing Quarter Symbols

– quarterSymbols (page 250)
Returns the quarter symbols for the receiver.

Tasks 241
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– setQuarterSymbols: (page 256)
Sets the quarter symbols for the receiver.

– shortQuarterSymbols (page 264)
Returns the short quarter symbols for the receiver.

– setShortQuarterSymbols: (page 257)
Sets the short quarter symbols for the receiver.

– standaloneQuarterSymbols (page 267)
Returns the standalone quarter symbols for the receiver.

– setStandaloneQuarterSymbols: (page 260)
Sets the standalone quarter symbols for the receiver.

– shortStandaloneQuarterSymbols (page 265)
Returns the short standalone quarter symbols for the receiver.

– setShortStandaloneQuarterSymbols: (page 258)
Sets the short standalone quarter symbols for the receiver.

Managing Era Symbols

– eraSymbols (page 245)
Returns the era symbols for the receiver.

– setEraSymbols: (page 252)
Sets the era symbols for the receiver.

– longEraSymbols (page 249)
Returns the long era symbols for the receiver

– setLongEraSymbols: (page 255)
Sets the long era symbols for the receiver.

Class Methods

defaultFormatterBehavior
Returns the default formatting behavior for instances of the class.

+ (NSDateFormatterBehavior)defaultFormatterBehavior

Return Value
The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 273).

Discussion
The default is NSDateFormatterBehavior10_0.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setDefaultFormatterBehavior: (page 243).

242 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– formatterBehavior (page 246)
– setFormatterBehavior: (page 253)

Declared In
NSDateFormatter.h

setDefaultFormatterBehavior:
Sets the default formatting behavior for instances of the class.

+ (void)setDefaultFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters

behavior
The default formatting behavior for instances of the class. For possible values, see
NSDateFormatterBehavior (page 273).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 242)
– formatterBehavior (page 246)
– setFormatterBehavior: (page 253)

Declared In
NSDateFormatter.h

Instance Methods

AMSymbol
Returns the AM symbol for the receiver.

- (NSString *)AMSymbol

Return Value
The AM symbol for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setAMSymbol: (page 250)
– PMSymbol (page 250)
– setPMSymbol: (page 256)

Declared In
NSDateFormatter.h

Instance Methods 243
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

calendar
Returns the calendar for the receiver.

- (NSCalendar *)calendar

Return Value
The calendar for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setCalendar: (page 251)

Declared In
NSDateFormatter.h

dateFormat
Returns the date format string used by the receiver.

- (NSString *)dateFormat

Return Value
The date format string used by the receiver.

Discussion
See Date Format String Syntax (Mac OS X Versions 10.0 to 10.3) for a list of the conversion specifiers
permitted in date format strings.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDateFormat: (page 251)

Declared In
NSDateFormatter.h

dateFromString:
Returns a date representation of a given string interpreted using the receiver’s current settings.

- (NSDate *)dateFromString:(NSString *)string

Parameters

string
The string to parse.

Return Value
A date representation of string interpreted using the receiver’s current settings.

Availability
Available in iPhone OS 2.0 and later.

244 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

See Also
– getObjectValue:forString:range:error: (page 247)
– stringFromDate: (page 268)

Declared In
NSDateFormatter.h

dateStyle
Returns the date style of the receiver.

- (NSDateFormatterStyle)dateStyle

Return Value
The date style of the receiver. For possible values, see NSDateFormatterStyle (page 272).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDateStyle: (page 252)

Declared In
NSDateFormatter.h

defaultDate
Returns the default date for the receiver.

- (NSDate *)defaultDate

Return Value
The default date for the receiver.

Discussion
The default default date is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDefaultDate: (page 252)

Declared In
NSDateFormatter.h

eraSymbols
Returns the era symbols for the receiver.

- (NSArray *)eraSymbols

Instance Methods 245
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Return Value
An array containing NSString objects representing the era symbols for the receiver (for example,
{“B.C.E.”, “C.E.”}).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setEraSymbols: (page 252)
– longEraSymbols (page 249)

Declared In
NSDateFormatter.h

formatterBehavior
Returns the formatter behavior for the receiver.

- (NSDateFormatterBehavior)formatterBehavior

Return Value
The formatter behavior for the receiver. For possible values, see NSDateFormatterBehavior (page
273).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 242).
+ setDefaultFormatterBehavior: (page 243)
– setFormatterBehavior: (page 253)

Declared In
NSDateFormatter.h

generatesCalendarDates
Returns a Boolean value that indicates whether the receiver generates calendar dates.

- (BOOL)generatesCalendarDates

Return Value
YES if the receiver generates calendar dates, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setGeneratesCalendarDates: (page 253)

Declared In
NSDateFormatter.h

246 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

getObjectValue:forString:range:error:
Returns by reference a date representation of a given string and the range of the string used, and
returns a Boolean value that indicates whether the string could be parsed.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string range:(inout NSRange
*)rangep error:(NSError **)error

Parameters

obj
If the receiver is able to parse string, upon return contains a date representation of string.

string
The string to parse.

rangep
If the receiver is able to parse string, upon return contains the range of string used to create
the date.

error
If the receiver is unable to create a date by parsing string, upon return contains an NSError
object that describes the problem.

Return Value
YES if the receiver can create a date by parsing string, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dateFromString: (page 244)
– stringForObjectValue: (page 433)

Declared In
NSDateFormatter.h

gregorianStartDate
Returns the start date of the Gregorian calendar for the receiver.

- (NSDate *)gregorianStartDate

Return Value
The start date of the Gregorian calendar for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setGregorianStartDate: (page 254)

Declared In
NSDateFormatter.h

Instance Methods 247
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

init
Initializes and returns an NSDateFormatter instance.

- (id)init

Return Value
An NSDateFormatter instance initialized with locale, time zone, calendar, and behavior set to the
appropriate default values.

Discussion
There are many new attributes you can get and set on a 10.4-style date formatter, including the locale,
time zone, calendar, format string, the two-digit-year cross-over date, the default date which provides
unspecified components, and there is also access to the various textual strings, like the month names.
You are encouraged, however, not to change individual settings. Instead you should accept the default
settings established on initialization and specify the format using setDateStyle: (page 252),
setTimeStyle: (page 261), and appropriate style constants (see NSDateFormatterStyle (page
272)—these are styles that the user can configure in the International preferences panel in System
Preferences).

Special Considerations

If you want the Mac OS X 10.4 behavior but have not set the class’s default behavior to
NSDateFormatterBehavior10_4, you also need to send the new instance a
setFormatterBehavior: (page 253) message with the argument NSDateFormatterBehavior10_4.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDateStyle: (page 252)
– setTimeStyle: (page 261)

Declared In
NSDateFormatter.h

isLenient
Returns a Boolean value that indicates whether the receiver uses heuristics when parsing a string.

- (BOOL)isLenient

Return Value
YES if the receiver has been set to use heuristics when parsing a string to guess at the date which is
intended, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLenient: (page 254)

Declared In
NSDateFormatter.h

248 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

locale
Returns the locale for the receiver.

- (NSLocale *)locale

Return Value
The locale for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLocale: (page 254)

Declared In
NSDateFormatter.h

longEraSymbols
Returns the long era symbols for the receiver

- (NSArray *)longEraSymbols

Return Value
An array containing NSString objects representing the era symbols for the receiver (for example,
{“Before Common Era”, “Common Era”}).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLongEraSymbols: (page 255)
– eraSymbols (page 245)

Declared In
NSDateFormatter.h

monthSymbols
Returns the month symbols for the receiver.

- (NSArray *)monthSymbols

Return Value
An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMonthSymbols: (page 255)
– shortMonthSymbols (page 264)
– veryShortMonthSymbols (page 269)

Instance Methods 249
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– standaloneMonthSymbols (page 267)
– shortStandaloneMonthSymbols (page 265)
– veryShortStandaloneMonthSymbols (page 270)

Declared In
NSDateFormatter.h

PMSymbol
Returns the PM symbol for the receiver.

- (NSString *)PMSymbol

Return Value
The PM symbol for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPMSymbol: (page 256)
– AMSymbol (page 243)
– setAMSymbol: (page 250)

Declared In
NSDateFormatter.h

quarterSymbols
Returns the quarter symbols for the receiver.

- (NSArray *)quarterSymbols

Return Value
An array containing NSString objects representing the quarter symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setQuarterSymbols: (page 256)
– shortQuarterSymbols (page 264)
– standaloneQuarterSymbols (page 267)
– shortStandaloneQuarterSymbols (page 265)

Declared In
NSDateFormatter.h

setAMSymbol:
Sets the AM symbol for the receiver.

250 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

- (void)setAMSymbol:(NSString *)string

Parameters

string
The AM symbol for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– AMSymbol (page 243)
– PMSymbol (page 250)
– setPMSymbol: (page 256)

Declared In
NSDateFormatter.h

setCalendar:
Sets the calendar for the receiver.

- (void)setCalendar:(NSCalendar *)calendar

Parameters

calendar
The calendar for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– calendar (page 244)

Declared In
NSDateFormatter.h

setDateFormat:
Sets the date format for the receiver.

- (void)setDateFormat:(NSString *)string

Parameters

string
The date format for the receiver. See Data Formatting Programming Guide for Cocoa for a list of
the conversion specifiers permitted in date format strings.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dateFormat (page 244).

Instance Methods 251
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setDateStyle:
Sets the date style of the receiver.

- (void)setDateStyle:(NSDateFormatterStyle)style

Parameters

style
The date style of the receiver. For possible values, see NSDateFormatterStyle (page 272).

Availability
Available in iPhone OS 2.0 and later.

See Also
– dateStyle (page 245).

Declared In
NSDateFormatter.h

setDefaultDate:
Sets the default date for the receiver.

- (void)setDefaultDate:(NSDate *)date

Parameters

date
The default date for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– defaultDate (page 245)

Declared In
NSDateFormatter.h

setEraSymbols:
Sets the era symbols for the receiver.

- (void)setEraSymbols:(NSArray *)array

Parameters

array
An array containing NSString objects representing the era symbols for the receiver (for example,
{“B.C.E.”, “C.E.”}).

252 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– eraSymbols (page 245)
– longEraSymbols (page 249)

Declared In
NSDateFormatter.h

setFormatterBehavior:
Sets the formatter behavior for the receiver.

- (void)setFormatterBehavior:(NSDateFormatterBehavior)behavior

Parameters

behavior
The formatter behavior for the receiver. For possible values, see
NSDateFormatterBehavior (page 273).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 242).
+ setDefaultFormatterBehavior: (page 243)
– formatterBehavior (page 246)

Declared In
NSDateFormatter.h

setGeneratesCalendarDates:
Sets whether the receiver generates calendar dates.

- (void)setGeneratesCalendarDates:(BOOL)b

Parameters

b
A Boolean value that specifies whether the receiver generates calendar dates.

Availability
Available in iPhone OS 2.0 and later.

See Also
– generatesCalendarDates (page 246).

Declared In
NSDateFormatter.h

Instance Methods 253
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

setGregorianStartDate:
Sets the start date of the Gregorian calendar for the receiver.

- (void)setGregorianStartDate:(NSDate *)array

Parameters

array
The start date of the Gregorian calendar for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– gregorianStartDate (page 247)

Declared In
NSDateFormatter.h

setLenient:
Sets whether the receiver uses heuristics when parsing a string.

- (void)setLenient:(BOOL)b

Parameters

b
YES to use heuristics when parsing a string to guess at the date which is intended, otherwise
NO.

Discussion
If a formatter is set to be lenient, when parsing a string it uses heuristics to guess at the date which
is intended. As with any guessing, it may get the result date wrong (that is, a date other than that
which was intended).

Availability
Available in iPhone OS 2.0 and later.

See Also
– isLenient (page 248)

Declared In
NSDateFormatter.h

setLocale:
Sets the locale for the receiver.

- (void)setLocale:(NSLocale *)locale

Parameters

locale
The locale for the receiver.

254 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– locale (page 249)

Declared In
NSDateFormatter.h

setLongEraSymbols:
Sets the long era symbols for the receiver.

- (void)setLongEraSymbols:(NSArray *)array

Parameters

array
An array containing NSString objects representing the era symbols for the receiver (for example,
{“Before Common Era”, “Common Era”}).

Availability
Available in iPhone OS 2.0 and later.

See Also
– longEraSymbols (page 249)
– eraSymbols (page 245)

Declared In
NSDateFormatter.h

setMonthSymbols:
Sets the month symbols for the receiver.

- (void)setMonthSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– monthSymbols (page 249)
– setShortMonthSymbols: (page 256)
– setVeryShortMonthSymbols: (page 262)
– setStandaloneMonthSymbols: (page 259)
– setShortStandaloneMonthSymbols: (page 257)
– setVeryShortStandaloneMonthSymbols: (page 262)

Instance Methods 255
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setPMSymbol:
Sets the PM symbol for the receiver.

- (void)setPMSymbol:(NSString *)string

Parameters

string
The PM symbol for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– PMSymbol (page 250)
– AMSymbol (page 243)
– setAMSymbol: (page 250)

Declared In
NSDateFormatter.h

setQuarterSymbols:
Sets the quarter symbols for the receiver.

- (void)setQuarterSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the quarter symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– quarterSymbols (page 250)
– setShortQuarterSymbols: (page 257)
– setStandaloneQuarterSymbols: (page 260)
– setShortStandaloneQuarterSymbols: (page 258)

Declared In
NSDateFormatter.h

setShortMonthSymbols:
Sets the short month symbols for the receiver.

- (void)setShortMonthSymbols:(NSArray *)array

256 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Parameters

array
An array of NSString objects that specify the short month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shortMonthSymbols (page 264)
– setMonthSymbols: (page 255)
– setVeryShortMonthSymbols: (page 262)
– setStandaloneMonthSymbols: (page 259)
– setShortStandaloneMonthSymbols: (page 257)
– setVeryShortStandaloneMonthSymbols: (page 262)

Declared In
NSDateFormatter.h

setShortQuarterSymbols:
Sets the short quarter symbols for the receiver.

- (void)setShortQuarterSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the short quarter symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shortQuarterSymbols (page 264)
– setQuarterSymbols: (page 256)
– setStandaloneQuarterSymbols: (page 260)
– setShortStandaloneQuarterSymbols: (page 258)

Declared In
NSDateFormatter.h

setShortStandaloneMonthSymbols:
Sets the short standalone month symbols for the receiver.

- (void)setShortStandaloneMonthSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 257
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

See Also
– shortStandaloneMonthSymbols (page 265)
– setMonthSymbols: (page 255)
– setShortMonthSymbols: (page 256)
– setVeryShortMonthSymbols: (page 262)
– setStandaloneMonthSymbols: (page 259)
– setVeryShortStandaloneMonthSymbols: (page 262)

Declared In
NSDateFormatter.h

setShortStandaloneQuarterSymbols:
Sets the short standalone quarter symbols for the receiver.

- (void)setShortStandaloneQuarterSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the short standalone quarter symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shortStandaloneQuarterSymbols (page 265)
– setQuarterSymbols: (page 256)
– setShortQuarterSymbols: (page 257)
– setStandaloneQuarterSymbols: (page 260)

Declared In
NSDateFormatter.h

setShortStandaloneWeekdaySymbols:
Sets the short standalone weekday symbols for the receiver.

- (void)setShortStandaloneWeekdaySymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the short standalone weekday symbols for the
receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shortStandaloneWeekdaySymbols (page 266)
– setWeekdaySymbols: (page 263)
– setShortWeekdaySymbols: (page 259)

258 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– setVeryShortWeekdaySymbols: (page 263)
– setStandaloneWeekdaySymbols: (page 260)
– setVeryShortStandaloneWeekdaySymbols: (page 263)

Declared In
NSDateFormatter.h

setShortWeekdaySymbols:
Sets the short weekday symbols for the receiver.

- (void)setShortWeekdaySymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shortWeekdaySymbols (page 266)
– setWeekdaySymbols: (page 263)
– setVeryShortWeekdaySymbols: (page 263)
– setStandaloneWeekdaySymbols: (page 260)
– setShortStandaloneWeekdaySymbols: (page 258)
– setVeryShortStandaloneWeekdaySymbols: (page 263)

Declared In
NSDateFormatter.h

setStandaloneMonthSymbols:
Sets the standalone month symbols for the receiver.

- (void)setStandaloneMonthSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– standaloneMonthSymbols (page 267)
– setMonthSymbols: (page 255)
– setShortMonthSymbols: (page 256)
– setVeryShortMonthSymbols: (page 262)
– setShortStandaloneMonthSymbols: (page 257)
– setVeryShortStandaloneMonthSymbols: (page 262)

Instance Methods 259
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setStandaloneQuarterSymbols:
Sets the standalone quarter symbols for the receiver.

- (void)setStandaloneQuarterSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the standalone quarter symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setStandaloneQuarterSymbols: (page 260)
– setQuarterSymbols: (page 256)
– setShortQuarterSymbols: (page 257)
– setShortStandaloneQuarterSymbols: (page 258)

Declared In
NSDateFormatter.h

setStandaloneWeekdaySymbols:
Sets the standalone weekday symbols for the receiver.

- (void)setStandaloneWeekdaySymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the standalone weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– standaloneWeekdaySymbols (page 267)
– setWeekdaySymbols: (page 263)
– setShortWeekdaySymbols: (page 259)
– setVeryShortWeekdaySymbols: (page 263)
– setShortStandaloneWeekdaySymbols: (page 258)
– setVeryShortStandaloneWeekdaySymbols: (page 263)

Declared In
NSDateFormatter.h

260 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

setTimeStyle:
Sets the time style of the receiver.

- (void)setTimeStyle:(NSDateFormatterStyle)style

Parameters

style
The time style for the receiver. For possible values, see NSDateFormatterStyle (page 272).

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeStyle (page 268)

Declared In
NSDateFormatter.h

setTimeZone:
Sets the time zone for the receiver.

- (void)setTimeZone:(NSTimeZone *)tz

Parameters

tz
The time zone for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeZone (page 269)

Declared In
NSDateFormatter.h

setTwoDigitStartDate:
Sets the two-digit start date for the receiver.

- (void)setTwoDigitStartDate:(NSDate *)date

Parameters

date
The earliest date that can be denoted by a two-digit year specifier.

Availability
Available in iPhone OS 2.0 and later.

See Also
– twoDigitStartDate (page 269)

Instance Methods 261
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Declared In
NSDateFormatter.h

setVeryShortMonthSymbols:
Sets the very short month symbols for the receiver.

- (void)setVeryShortMonthSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– veryShortMonthSymbols (page 269)
– setMonthSymbols: (page 255)
– setShortMonthSymbols: (page 256)
– setStandaloneMonthSymbols: (page 259)
– setShortStandaloneMonthSymbols: (page 257)
– setVeryShortStandaloneMonthSymbols: (page 262)

Declared In
NSDateFormatter.h

setVeryShortStandaloneMonthSymbols:
Sets the very short standalone month symbols for the receiver.

- (void)setVeryShortStandaloneMonthSymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the very short standalone month symbols for the
receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– veryShortStandaloneMonthSymbols (page 270)
– setMonthSymbols: (page 255)
– setShortMonthSymbols: (page 256)
– setVeryShortMonthSymbols: (page 262)
– setStandaloneMonthSymbols: (page 259)
– setShortStandaloneMonthSymbols: (page 257)

Declared In
NSDateFormatter.h

262 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

setVeryShortStandaloneWeekdaySymbols:
Sets the very short standalone weekday symbols for the receiver.

- (void)setVeryShortStandaloneWeekdaySymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the very short standalone weekday symbols for the
receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– veryShortStandaloneWeekdaySymbols (page 270)
– setWeekdaySymbols: (page 263)
– setShortWeekdaySymbols: (page 259)
– setVeryShortWeekdaySymbols: (page 263)
– setStandaloneWeekdaySymbols: (page 260)
– setShortStandaloneWeekdaySymbols: (page 258)

Declared In
NSDateFormatter.h

setVeryShortWeekdaySymbols:
Sets the vert short weekday symbols for the receiver

- (void)setVeryShortWeekdaySymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the very short weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– veryShortWeekdaySymbols (page 271)
– setWeekdaySymbols: (page 263)
– setShortWeekdaySymbols: (page 259)
– setStandaloneWeekdaySymbols: (page 260)
– setShortStandaloneWeekdaySymbols: (page 258)
– setVeryShortStandaloneWeekdaySymbols: (page 263)

Declared In
NSDateFormatter.h

setWeekdaySymbols:
Sets the weekday symbols for the receiver.

Instance Methods 263
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

- (void)setWeekdaySymbols:(NSArray *)array

Parameters

array
An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– weekdaySymbols (page 271)
– setShortWeekdaySymbols: (page 259)
– setVeryShortWeekdaySymbols: (page 263)
– setStandaloneWeekdaySymbols: (page 260)
– setShortStandaloneWeekdaySymbols: (page 258)
– setVeryShortStandaloneWeekdaySymbols: (page 263)

Declared In
NSDateFormatter.h

shortMonthSymbols
Returns the array of short month symbols for the receiver.

- (NSArray *)shortMonthSymbols

Return Value
An array containing NSString objects representing the short month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShortMonthSymbols: (page 256)
– monthSymbols (page 249)
– veryShortMonthSymbols (page 269)
– standaloneMonthSymbols (page 267)
– shortStandaloneMonthSymbols (page 265)
– veryShortStandaloneMonthSymbols (page 270)

Declared In
NSDateFormatter.h

shortQuarterSymbols
Returns the short quarter symbols for the receiver.

- (NSArray *)shortQuarterSymbols

Return Value
An array containing NSString objects representing the short quarter symbols for the receiver.

264 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShortQuarterSymbols: (page 257)
– quarterSymbols (page 250)
– standaloneQuarterSymbols (page 267)
– shortStandaloneQuarterSymbols (page 265)

Declared In
NSDateFormatter.h

shortStandaloneMonthSymbols
Returns the short standalone month symbols for the receiver.

- (NSArray *)shortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the short standalone month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShortStandaloneMonthSymbols: (page 257)
– monthSymbols (page 249)
– shortMonthSymbols (page 264)
– veryShortMonthSymbols (page 269)
– standaloneMonthSymbols (page 267)
– veryShortStandaloneMonthSymbols (page 270)

Declared In
NSDateFormatter.h

shortStandaloneQuarterSymbols
Returns the short standalone quarter symbols for the receiver.

- (NSArray *)shortStandaloneQuarterSymbols

Return Value
An array containing NSString objects representing the short standalone quarter symbols for the
receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShortStandaloneQuarterSymbols: (page 258)
– quarterSymbols (page 250)

Instance Methods 265
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– shortQuarterSymbols (page 264)
– standaloneQuarterSymbols (page 267)

Declared In
NSDateFormatter.h

shortStandaloneWeekdaySymbols
Returns the array of short standalone weekday symbols for the receiver.

- (NSArray *)shortStandaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the short standalone weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShortStandaloneWeekdaySymbols: (page 258)
– weekdaySymbols (page 271)
– shortWeekdaySymbols (page 266)
– veryShortWeekdaySymbols (page 271)
– standaloneWeekdaySymbols (page 267)
– veryShortStandaloneWeekdaySymbols (page 270)

Declared In
NSDateFormatter.h

shortWeekdaySymbols
Returns the array of short weekday symbols for the receiver.

- (NSArray *)shortWeekdaySymbols

Return Value
An array of NSString objects that specify the short weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShortWeekdaySymbols: (page 259)
– weekdaySymbols (page 271)
– veryShortWeekdaySymbols (page 271)
– standaloneWeekdaySymbols (page 267)
– shortStandaloneWeekdaySymbols (page 266)
– veryShortStandaloneWeekdaySymbols (page 270)

Declared In
NSDateFormatter.h

266 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

standaloneMonthSymbols
Returns the standalone month symbols for the receiver.

- (NSArray *)standaloneMonthSymbols

Return Value
An array of NSString objects that specify the standalone month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– monthSymbols (page 249)
– setStandaloneMonthSymbols: (page 259)
– shortMonthSymbols (page 264)
– veryShortMonthSymbols (page 269)
– shortStandaloneMonthSymbols (page 265)
– veryShortStandaloneMonthSymbols (page 270)

Declared In
NSDateFormatter.h

standaloneQuarterSymbols
Returns the standalone quarter symbols for the receiver.

- (NSArray *)standaloneQuarterSymbols

Return Value
An array containing NSString objects representing the standalone quarter symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setStandaloneQuarterSymbols: (page 260)
– quarterSymbols (page 250)
– shortQuarterSymbols (page 264)
– shortStandaloneQuarterSymbols (page 265)

Declared In
NSDateFormatter.h

standaloneWeekdaySymbols
Returns the array of standalone weekday symbols for the receiver.

- (NSArray *)standaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the standalone weekday symbols for the receiver.

Instance Methods 267
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– setStandaloneWeekdaySymbols: (page 260)
– weekdaySymbols (page 271)
– shortWeekdaySymbols (page 266)
– veryShortWeekdaySymbols (page 271)
– shortStandaloneWeekdaySymbols (page 266)
– veryShortStandaloneWeekdaySymbols (page 270)

Declared In
NSDateFormatter.h

stringFromDate:
Returns a string representation of a given date formatted using the receiver’s current settings.

- (NSString *)stringFromDate:(NSDate *)date

Parameters

date
The date to format.

Return Value
A string representation of date formatted using the receiver’s current settings.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dateFromString: (page 244)

Declared In
NSDateFormatter.h

timeStyle
Returns the time style of the receiver.

- (NSDateFormatterStyle)timeStyle

Return Value
The time style of the receiver. For possible values, see NSDateFormatterStyle (page 272).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTimeStyle: (page 261)

Declared In
NSDateFormatter.h

268 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

timeZone
Returns the time zone for the receiver.

- (NSTimeZone *)timeZone

Return Value
The time zone for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTimeZone: (page 261)

Declared In
NSDateFormatter.h

twoDigitStartDate
Returns the earliest date that can be denoted by a two-digit year specifier.

- (NSDate *)twoDigitStartDate

Return Value
The earliest date that can be denoted by a two-digit year specifier.

Discussion
If the two-digit start date is set to January 6, 1976, then “January 1, 76” is interpreted as New Year's
Day in 2076, whereas “February 14, 76” is interpreted as Valentine's Day in 1976.

The default date is December 31, 1949.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTwoDigitStartDate: (page 261)

Declared In
NSDateFormatter.h

veryShortMonthSymbols
Returns the very short month symbols for the receiver.

- (NSArray *)veryShortMonthSymbols

Return Value
An array of NSString objects that specify the very short month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 269
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

See Also
– setVeryShortMonthSymbols: (page 262)
– monthSymbols (page 249)
– shortMonthSymbols (page 264)
– standaloneMonthSymbols (page 267)
– shortStandaloneMonthSymbols (page 265)
– veryShortStandaloneMonthSymbols (page 270)

Declared In
NSDateFormatter.h

veryShortStandaloneMonthSymbols
Returns the very short month symbols for the receiver.

- (NSArray *)veryShortStandaloneMonthSymbols

Return Value
An array of NSString objects that specify the very short standalone month symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setVeryShortStandaloneMonthSymbols: (page 262)
– monthSymbols (page 249)
– shortMonthSymbols (page 264)
– veryShortMonthSymbols (page 269)
– standaloneMonthSymbols (page 267)
– shortStandaloneMonthSymbols (page 265)

Declared In
NSDateFormatter.h

veryShortStandaloneWeekdaySymbols
Returns the array of very short standalone weekday symbols for the receiver.

- (NSArray *)veryShortStandaloneWeekdaySymbols

Return Value
An array of NSString objects that specify the very short standalone weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShortStandaloneWeekdaySymbols: (page 258)
– weekdaySymbols (page 271)
– shortWeekdaySymbols (page 266)
– veryShortWeekdaySymbols (page 271)

270 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

– standaloneWeekdaySymbols (page 267)
– shortStandaloneWeekdaySymbols (page 266)

Declared In
NSDateFormatter.h

veryShortWeekdaySymbols
Returns the array of very short weekday symbols for the receiver.

- (NSArray *)veryShortWeekdaySymbols

Return Value
An array of NSString objects that specify the very short weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setVeryShortWeekdaySymbols: (page 263)
– weekdaySymbols (page 271)
– shortWeekdaySymbols (page 266)
– standaloneWeekdaySymbols (page 267)
– shortStandaloneWeekdaySymbols (page 266)
– veryShortStandaloneWeekdaySymbols (page 270)

Declared In
NSDateFormatter.h

weekdaySymbols
Returns the array of weekday symbols for the receiver.

- (NSArray *)weekdaySymbols

Return Value
An array of NSString objects that specify the weekday symbols for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setWeekdaySymbols: (page 263)
– shortWeekdaySymbols (page 266)
– veryShortWeekdaySymbols (page 271)
– standaloneWeekdaySymbols (page 267)
– shortStandaloneWeekdaySymbols (page 266)
– veryShortStandaloneWeekdaySymbols (page 270)

Declared In
NSDateFormatter.h

Instance Methods 271
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Constants

NSDateFormatterStyle
The following constants specify predefined date and time format styles.

typedef enum {
NSDateFormatterNoStyle = kCFDateFormatterNoStyle,
NSDateFormatterShortStyle = kCFDateFormatterShortStyle,
NSDateFormatterMediumStyle = kCFDateFormatterMediumStyle,
NSDateFormatterLongStyle = kCFDateFormatterLongStyle,
NSDateFormatterFullStyle = kCFDateFormatterFullStyle

} NSDateFormatterStyle;

Constants
NSDateFormatterNoStyle

Specifies no style.

Equal to kCFDateFormatterNoStyle.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

NSDateFormatterShortStyle
Specifies a short style, typically numeric only, such as “11/23/37” or “3:30pm”.

Equal to kCFDateFormatterShortStyle.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

NSDateFormatterMediumStyle
Specifies a medium style, typically with abbreviated text, such as “Nov 23, 1937”.

Equal to kCFDateFormatterMediumStyle.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

NSDateFormatterLongStyle
Specifies a long style, typically with full text, such as “November 23, 1937” or “3:30:32pm”.

Equal to kCFDateFormatterLongStyle.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

NSDateFormatterFullStyle
Specifies a full style with complete details, such as “Tuesday, April 12, 1952 AD” or “3:30:42pm
PST”.

Equal to kCFDateFormatterFullStyle.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

Discussion
The format for these date and time styles is not exact because they depend on the locale, user preference
settings, and the operating system version. Do not use these constants if you want an exact format.

272 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDateFormatter.h

NSDateFormatterBehavior
Constants that specify the behavior NSDateFormatter should exhibit.

typedef enum {
NSDateFormatterBehaviorDefault = 0,
NSDateFormatterBehavior10_0 = 1000,
NSDateFormatterBehavior10_4 = 1040,

} NSDateFormatterBehavior;

Constants
NSDateFormatterBehaviorDefault

Specifies default formatting behavior.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

NSDateFormatterBehavior10_0
Specifies formatting behavior equivalent to that in Mac OS X 10.0.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

NSDateFormatterBehavior10_4
Specifies formatting behavior equivalent for Mac OS X 10.4.

Available in iPhone OS 2.0 and later.

Declared in NSDateFormatter.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDateFormatter.h

Constants 273
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

274 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 5

NSDateFormatter Class Reference

Inherits from: NSNumber : NSValue : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSDecimalNumber.h

Companion guide: Number and Value Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSDecimalNumber, an immutable subclass of NSNumber, provides an object-oriented wrapper for
doing base-10 arithmetic. An instance can represent any number that can be expressed as mantissa
x 10^exponent where mantissa is a decimal integer up to 38 digits long, and exponent is an integer
from –128 through 127.

Overview 275
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Tasks

Creating a Decimal Number

+ decimalNumberWithDecimal: (page 278)
Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.

+ decimalNumberWithMantissa:exponent:isNegative: (page 279)
Creates and returns an NSDecimalNumber object equivalent to the number specified by the
arguments.

+ decimalNumberWithString: (page 279)
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given
numeric string.

+ decimalNumberWithString:locale: (page 280)
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given
numeric string, interpreted using a given locale.

+ one (page 282)
Returns an NSDecimalNumber object equivalent to the number 1.0.

+ zero (page 283)
Returns an NSDecimalNumber object equivalent to the number 0.0.

+ notANumber (page 282)
Returns an NSDecimalNumber object that specifies no number.

Initializing a Decimal Number

– initWithDecimal: (page 290)
Returns an NSDecimalNumber object initialized to represent a given decimal.

– initWithMantissa:exponent:isNegative: (page 290)
Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

– initWithString: (page 291)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string.

– initWithString:locale: (page 291)
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given
numeric string, interpreted using a given locale.

Performing Arithmetic

– decimalNumberByAdding: (page 284)
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another
given NSDecimalNumber object.

– decimalNumberBySubtracting: (page 288)
Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber
object subtracted from the value of the receiver.

276 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

– decimalNumberByMultiplyingBy: (page 286)
Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by
that of another given NSDecimalNumber object.

– decimalNumberByDividingBy: (page 285)
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by
that of another given NSDecimalNumber object.

– decimalNumberByRaisingToPower: (page 287)
Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a
given power.

– decimalNumberByMultiplyingByPowerOf10: (page 286)
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

– decimalNumberByAdding:withBehavior: (page 284)
Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber
object.

– decimalNumberBySubtracting:withBehavior: (page 289)
Subtracts decimalNumber from the receiver and returns the difference, a newly created
NSDecimalNumber object.

– decimalNumberByMultiplyingBy:withBehavior: (page 286)
Multiplies the receiver by decimalNumber and returns the product, a newly created
NSDecimalNumber object.

– decimalNumberByDividingBy:withBehavior: (page 285)
Divides the receiver by decimalNumber and returns the quotient, a newly created
NSDecimalNumber object.

– decimalNumberByRaisingToPower:withBehavior: (page 288)
Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

– decimalNumberByMultiplyingByPowerOf10:withBehavior: (page 287)
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

Rounding Off

– decimalNumberByRoundingAccordingToBehavior: (page 288)
Rounds the receiver off in the way specified by behavior and returns the result, a newly
created NSDecimalNumber object.

Accessing the Value

– decimalValue (page 289)
Returns the receiver’s value, expressed as an NSDecimal structure.

– doubleValue (page 290)
Returns the approximate value of the receiver as a double.

– descriptionWithLocale: (page 289)
Returns a string, specified according to a given locale, that represents the contents of the
receiver.

Tasks 277
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

– objCType (page 292)
Returns a C string containing the Objective-C type of the data contained in the receiver, which
for an NSDecimalNumber object is always “d” (for double).

Managing Behavior

+ defaultBehavior (page 281)
Returns the way arithmetic methods, like decimalNumberByAdding: (page 284), round off and
handle error conditions.

+ setDefaultBehavior: (page 283)
Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 284), round
off and handle error conditions.

Comparing Decimal Numbers

– compare: (page 283)
Returns an NSComparisonResult value that indicates the numerical ordering of the receiver
and another given NSDecimalNumber object.

Getting Maximum and Minimum Possible Values

+ maximumDecimalNumber (page 281)
Returns the largest possible value of an NSDecimalNumber object.

+ minimumDecimalNumber (page 282)
Returns the smallest possible value of an NSDecimalNumber object.

Class Methods

decimalNumberWithDecimal:
Creates and returns an NSDecimalNumber object equivalent to a given NSDecimal structure.

+ (NSDecimalNumber *)decimalNumberWithDecimal:(NSDecimal)decimal

Parameters

decimal
An NSDecimal structure that specifies the value for the new decimal number object.

Return Value
An NSDecimalNumber object equivalent to decimal.

Discussion
You can initialize decimal programmatically or generate it using the NSScanner method,
scanDecimal: (page 905)

278 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithMantissa:exponent:isNegative:
Creates and returns an NSDecimalNumber object equivalent to the number specified by the arguments.

+ (NSDecimalNumber *)decimalNumberWithMantissa:(unsigned long long)mantissa
exponent:(short)exponent isNegative:(BOOL)isNegative

Parameters

mantissa
The mantissa for the new decimal number object.

exponent
The exponent for the new decimal number object.

isNegative
A Boolean value that specifies whether the sign of the number is negative.

Discussion
The arguments express a number in a kind of scientific notation that requires the mantissa to be an
integer. So, for example, if the number to be represented is –12.345, it is expressed as
12345x10^–3—mantissa is 12345; exponent is –3; and isNegative is YES, as illustrated by the
following example.

NSDecimalNumber *number = [NSDecimalNumber decimalNumberWithMantissa:12345
exponent:-3
isNegative:YES];

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberWithString:
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric
string.

+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString

Parameters

numericString
A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate
the exponent of a number in scientific notation; and a single NSDecimalSeparator to divide
the fractional from the integral part of the number.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Class Methods 279
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Discussion
Whether the NSDecimalSeparator is a period (as is used, for example, in the United States) or a
comma (as is used, for example, in France) depends on the default locale.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ decimalNumberWithString:locale: (page 280)

Declared In
NSDecimalNumber.h

decimalNumberWithString:locale:
Creates and returns an NSDecimalNumber object whose value is equivalent to that in a given numeric
string, interpreted using a given locale.

+ (NSDecimalNumber *)decimalNumberWithString:(NSString *)numericString
locale:(NSDictionary *)locale

Parameters

numericString
A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate
the exponent of a number in scientific notation; and a single NSDecimalSeparator to divide
the fractional from the integral part of the number.

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret
the number in numericString.

Return Value
An NSDecimalNumber object whose value is equivalent to numericString.

Discussion
The locale parameter determines whether the NSDecimalSeparator is a period (as is used, for
example, in the United States) or a comma (as is used, for example, in France).

The following strings show examples of acceptable values for numericString:

“2500.6” (or “2500,6”, depending on locale)
“–2500.6” (or “–2500.6”)
“–2.5006e3” (or “–2,5006e3”)
“–2.5006E3” (or “–2,5006E3”)

The following strings are unacceptable:

“2,500.6”
“2500 3/5”
“2.5006x10e3”
“two thousand five hundred and six tenths”

280 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
+ decimalNumberWithString: (page 279)

Declared In
NSDecimalNumber.h

defaultBehavior
Returns the way arithmetic methods, like decimalNumberByAdding: (page 284), round off and handle
error conditions.

+ (id < NSDecimalNumberBehaviors >)defaultBehavior

Discussion
By default, the arithmetic methods use the NSRoundPlain behavior; that is, the methods round to the
closest possible return value. The methods assume your need for precision does not exceed 38
significant digits and raise exceptions when they try to divide by 0 or produce a number too big or
too small to be represented.

If this default behavior doesn’t suit your application, you should use methods that let you specify
the behavior, like decimalNumberByAdding:withBehavior: (page 284). If you find yourself using a
particular behavior consistently, you can specify a different default behavior with
setDefaultBehavior: (page 283).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

maximumDecimalNumber
Returns the largest possible value of an NSDecimalNumber object.

+ (NSDecimalNumber *)maximumDecimalNumber

Return Value
The largest possible value of an NSDecimalNumber object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ minimumDecimalNumber (page 282)

Declared In
NSDecimalNumber.h

Class Methods 281
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

minimumDecimalNumber
Returns the smallest possible value of an NSDecimalNumber object.

+ (NSDecimalNumber *)minimumDecimalNumber

Return Value
The smallest possible value of an NSDecimalNumber object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ maximumDecimalNumber (page 281)

Declared In
NSDecimalNumber.h

notANumber
Returns an NSDecimalNumber object that specifies no number.

+ (NSDecimalNumber *)notANumber

Return Value
An NSDecimalNumber object that specifies no number.

Discussion
Any arithmetic method receiving notANumber as an argument returns notANumber.

This value can be a useful way of handling non-numeric data in an input file. This method can also
be a useful response to calculation errors. For more information on calculation errors, see the
exceptionDuringOperation:error:leftOperand:rightOperand: (page 1252) method description
in the NSDecimalNumberBehaviors protocol specification.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

one
Returns an NSDecimalNumber object equivalent to the number 1.0.

+ (NSDecimalNumber *)one

Return Value
An NSDecimalNumber object equivalent to the number 1.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ zero (page 283)

282 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Declared In
NSDecimalNumber.h

setDefaultBehavior:
Specifies the way that arithmetic methods, like decimalNumberByAdding: (page 284), round off and
handle error conditions.

+ (void)setDefaultBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior must conform to the NSDecimalNumberBehaviors protocol.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

zero
Returns an NSDecimalNumber object equivalent to the number 0.0.

+ (NSDecimalNumber *)zero

Return Value
An NSDecimalNumber object equivalent to the number 0.0.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ one (page 282)

Declared In
NSDecimalNumber.h

Instance Methods

compare:
Returns an NSComparisonResult value that indicates the numerical ordering of the receiver and
another given NSDecimalNumber object.

- (NSComparisonResult)compare:(NSNumber *)decimalNumber

Instance Methods 283
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Parameters

decimalNumber
The number with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
NSOrderedAscending if the value of decimalNumber is greater than the receiver; NSOrderedSame if
they’re equal; and NSOrderedDescending if the value of decimalNumber is less than the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByAdding:
Returns a new NSDecimalNumber object whose value is the sum of the receiver and another given
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber

Parameters

decimalNumber
The number to add to the receiver.

Return Value
A new NSDecimalNumber object whose value is the sum of the receiver and decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decimalNumberByAdding:withBehavior: (page 284)
+ defaultBehavior (page 281)

Declared In
NSDecimalNumber.h

decimalNumberByAdding:withBehavior:
Adds decimalNumber to the receiver and returns the sum, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

284 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByDividingBy:
Returns a new NSDecimalNumber object whose value is the value of the receiver divided by that of
another given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber

Parameters

decimalNumber
The number by which to divide the receiver.

Return Value
A new NSDecimalNumber object whose value is the value of the receiver divided by decimalNumber.

Discussion
This method uses the default behavior when handling calculation errors and rounding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decimalNumberByDividingBy:withBehavior: (page 285)
+ defaultBehavior (page 281)

Declared In
NSDecimalNumber.h

decimalNumberByDividingBy:withBehavior:
Divides the receiver by decimalNumber and returns the quotient, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

Instance Methods 285
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

decimalNumberByMultiplyingBy:
Returns a new NSDecimalNumber object whose value is the value of the receiver multiplied by that
of another given NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber

Parameters

decimalNumber
The number by which to multiply the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber multiplied by the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decimalNumberByMultiplyingBy:withBehavior: (page 286)
+ defaultBehavior (page 281)

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingBy:withBehavior:
Multiplies the receiver by decimalNumber and returns the product, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

286 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– decimalNumberByMultiplyingByPowerOf10:withBehavior: (page 287)
+ defaultBehavior (page 281)

Declared In
NSDecimalNumber.h

decimalNumberByMultiplyingByPowerOf10:withBehavior:
Multiplies the receiver by 10^power and returns the product, a newly created NSDecimalNumber
object.

- (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByRaisingToPower:
Returns a new NSDecimalNumber object whose value is the value of the receiver raised to a given
power.

- (NSDecimalNumber *)decimalNumberByRaisingToPower:(NSUInteger)power

Parameters

power
The power to which to raise the receiver.

Return Value
A new NSDecimalNumber object whose value is the value of the receiver raised to the power power.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decimalNumberByRaisingToPower:withBehavior: (page 288)
+ defaultBehavior (page 281)

Declared In
NSDecimalNumber.h

Instance Methods 287
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

decimalNumberByRaisingToPower:withBehavior:
Raises the receiver to power and returns the result, a newly created NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByRaisingToPower:(NSUInteger)power withBehavior:(id
< NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberByRoundingAccordingToBehavior:
Rounds the receiver off in the way specified by behavior and returns the result, a newly created
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberByRoundingAccordingToBehavior:(id <
NSDecimalNumberBehaviors >)behavior

Discussion
For a description of the different ways of rounding, see the roundingMode (page 745) method in the
NSDecimalNumberBehaviors protocol specification.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:
Returns a new NSDecimalNumber object whose value is that of another given NSDecimalNumber object
subtracted from the value of the receiver.

- (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber

Parameters

decimalNumber
The number to subtract from the receiver.

Return Value
A new NSDecimalNumber object whose value is decimalNumber subtracted from the receiver.

Discussion
This method uses the default behavior when handling calculation errors and when rounding.

Availability
Available in iPhone OS 2.0 and later.

288 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

See Also
– decimalNumberBySubtracting:withBehavior: (page 289)
+ defaultBehavior (page 281)

Declared In
NSDecimalNumber.h

decimalNumberBySubtracting:withBehavior:
Subtracts decimalNumber from the receiver and returns the difference, a newly created
NSDecimalNumber object.

- (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber
withBehavior:(id < NSDecimalNumberBehaviors >)behavior

Discussion
behavior specifies the handling of calculation errors and rounding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

decimalValue
Returns the receiver’s value, expressed as an NSDecimal structure.

- (NSDecimal)decimalValue

Return Value
The receiver’s value, expressed as an NSDecimal structure.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

descriptionWithLocale:
Returns a string, specified according to a given locale, that represents the contents of the receiver.

- (NSString *)descriptionWithLocale:(NSDictionary *)locale

Parameters

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to generate
the returned string.

Return Value
A string that represents the contents of the receiver, according to locale.

Instance Methods 289
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

doubleValue
Returns the approximate value of the receiver as a double.

- (double)doubleValue

Return Value
The approximate value of the receiver as a double.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

initWithDecimal:
Returns an NSDecimalNumber object initialized to represent a given decimal.

- (id)initWithDecimal:(NSDecimal)decimal

Parameters

decimal
The value of the new object.

Return Value
An NSDecimalNumber object initialized to represent decimal.

Discussion
This method is the designated initializer for NSDecimalNumber.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

initWithMantissa:exponent:isNegative:
Returns an NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

- (id)initWithMantissa:(unsigned long long)mantissa exponent:(short)exponent
isNegative:(BOOL)flag

Parameters

mantissa
The mantissa for the new decimal number object.

290 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

exponent
The exponent for the new decimal number object.

flag
A Boolean value that specifies whether the sign of the number is negative.

Return Value
An NSDecimalNumber object initialized using the given mantissa, exponent, and sign.

Discussion
The arguments express a number in a type of scientific notation that requires the mantissa to be an
integer. So, for example, if the number to be represented is 1.23, it is expressed as 123x10^–2—mantissa
is 123; exponent is –2; and isNegative, which refers to the sign of the mantissa, is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ decimalNumberWithMantissa:exponent:isNegative: (page 279)

Declared In
NSDecimalNumber.h

initWithString:
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string.

- (id)initWithString:(NSString *)numericString

Parameters

numericString
A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate
the exponent of a number in scientific notation; and a single NSDecimalSeparator to divide
the fractional from the integral part of the number. For a listing of acceptable and unacceptable
strings, see the class method decimalNumberWithString:locale: (page 280).

Return Value
An NSDecimalNumber object initialized so that its value is equivalent to that in numericString.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

initWithString:locale:
Returns an NSDecimalNumber object initialized so that its value is equivalent to that in a given numeric
string, interpreted using a given locale.

- (id)initWithString:(NSString *)numericString locale:(NSDictionary *)locale

Instance Methods 291
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Parameters

numericString
A numeric string.

Besides digits, numericString can include an initial “+” or “–”; a single “E” or “e”, to indicate
the exponent of a number in scientific notation; and a single NSDecimalSeparator to divide
the fractional from the integral part of the number.

locale
A dictionary that defines the locale (specifically the NSDecimalSeparator) to use to interpret
the number in numericString.

Return Value
An NSDecimalNumber object initialized so that its value is equivalent to that in numericString,
interpreted using locale.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ decimalNumberWithString:locale: (page 280)

Declared In
NSDecimalNumber.h

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver, which for an
NSDecimalNumber object is always “d” (for double).

- (const char *)objCType

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

Constants

NSDecimalNumber Exception Names
Names of the various exceptions raised by NSDecimalNumber to indicate computational errors.

292 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

extern NSString *NSDecimalNumberExactnessException;
extern NSString *NSDecimalNumberOverflowException;
extern NSString *NSDecimalNumberUnderflowException;
extern NSString *NSDecimalNumberDivideByZeroException;

Constants
NSDecimalNumberExactnessException

The name of the exception raised if there is an exactness error.

Available in iPhone OS 2.0 and later.

Declared in NSDecimalNumber.h

NSDecimalNumberOverflowException
The name of the exception raised on overflow.

Available in iPhone OS 2.0 and later.

Declared in NSDecimalNumber.h

NSDecimalNumberUnderflowException
The name of the exception raised on underflow.

Available in iPhone OS 2.0 and later.

Declared in NSDecimalNumber.h

NSDecimalNumberDivideByZeroException
The name of the exception raised on divide by zero.

Available in iPhone OS 2.0 and later.

Declared in NSDecimalNumber.h

Declared In
NSDecimalNumber.h

Constants 293
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

294 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 6

NSDecimalNumber Class Reference

Inherits from: NSObject

Conforms to: NSDecimalNumberBehaviors
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSDecimalNumber.h

Companion guide: Number and Value Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSDecimalNumberHandler is a class that adopts the NSDecimalNumberBehaviors protocol. This class
allows you to set the way an NSDecimalNumber object rounds off and handles errors, without having
to create a custom class.

You can use an instance of this class as an argument to any of the NSDecimalNumber methods that
end with ...Behavior:. If you don’t think you need special behavior, you probably don’t need this
class—it is likely that NSDecimalNumber's default behavior will suit your needs.

For more information, see the NSDecimalNumberBehaviors protocol specification.

Overview 295
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

NSDecimalNumberHandler Class
Reference

Adopted Protocols

NSDecimalNumberBehaviors
– roundingMode (page 1253)
– scale (page 1253)
– exceptionDuringOperation:error:leftOperand:rightOperand: (page 1252)

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

Tasks

Creating a Decimal Number Handler

+ defaultDecimalNumberHandler (page 297)
Returns the default instance of NSDecimalNumberHandler.

+decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero:(page
296)

Returns an NSDecimalNumberHandler object with customized behavior.

Initializing a Decimal Number Handler

– initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero:(page
298)

Returns an NSDecimalNumberHandler object initialized so it behaves as specified by the
method’s arguments.

Class Methods

decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:
raiseOnUnderflow:raiseOnDivideByZero:
Returns an NSDecimalNumberHandler object with customized behavior.

+ (id)decimalNumberHandlerWithRoundingMode:(NSRoundingMode)roundingMode
scale:(short)scale raiseOnExactness:(BOOL)raiseOnExactness
raiseOnOverflow:(BOOL)raiseOnOverflow raiseOnUnderflow:(BOOL)raiseOnUnderflow
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

296 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

NSDecimalNumberHandler Class Reference

Parameters

roundingMode
The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown,
NSRoundPlain, and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnExactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will
ignore the error and return control to the calling method.

raiseOnOverflow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will
ignore the error and return control to the calling method

raiseOnUnderflow
If YES, in the event of an underflow error the handler will raise an exception, otherwise it will
ignore the error and return control to the calling method

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it
will ignore the error and return control to the calling method

Return Value
An NSDecimalNumberHandler object with customized behavior.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

defaultDecimalNumberHandler
Returns the default instance of NSDecimalNumberHandler.

+ (id)defaultDecimalNumberHandler

Return Value
The default instance of NSDecimalNumberHandler.

Discussion
This default decimal number handler rounds to the closest possible return value. It assumes your
need for precision does not exceed 38 significant digits, and it raises an exception when its
NSDecimalNumber object tries to divide by 0 or when its NSDecimalNumber object produces a number
too big or too small to be represented.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

Class Methods 297
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

NSDecimalNumberHandler Class Reference

Instance Methods

initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero:
Returns an NSDecimalNumberHandler object initialized so it behaves as specified by the method’s
arguments.

- (id)initWithRoundingMode:(NSRoundingMode)roundingMode scale:(short)scale
raiseOnExactness:(BOOL)raiseOnExactness raiseOnOverflow:(BOOL)raiseOnOverflow
raiseOnUnderflow:(BOOL)raiseOnUnderflow
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

Parameters

roundingMode
The rounding mode to use. There are four possible values: NSRoundUp, NSRoundDown,
NSRoundPlain, and NSRoundBankers.

scale
The number of digits a rounded value should have after its decimal point.

raiseOnExactness
If YES, in the event of an exactness error the handler will raise an exception, otherwise it will
ignore the error and return control to the calling method.

raiseOnOverflow
If YES, in the event of an overflow error the handler will raise an exception, otherwise it will
ignore the error and return control to the calling method

raiseOnUnderflow
If YES, in the event of an underflow error the handler will raise an exception, otherwise it will
ignore the error and return control to the calling method

raiseOnDivideByZero
If YES, in the event of a divide by zero error the handler will raise an exception, otherwise it
will ignore the error and return control to the calling method

Return Value
An initialized NSDecimalNumberHandler object initialized with customized behavior. The returned
object might be different than the original receiver.

Discussion
See the NSDecimalNumberBehaviors protocol specification for a complete explanation of the possible
behaviors.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

298 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 7

NSDecimalNumberHandler Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSDictionary.h
Foundation/NSFileManager.h
Foundation/NSKeyValueCoding.h

Companion guides: Collections Programming Topics for Cocoa
Property List Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSDictionary class declares the programmatic interface to objects that manage immutable
associations of keys and values. Use this class or its subclass NSMutableDictionary when you need
a convenient and efficient way to retrieve data associated with an arbitrary key. (For convenience,
we use the term dictionary to refer to any instance of one of these classes without specifying its exact
class membership.)

Overview 299
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents
the key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is,
no two keys in a single dictionary are equal (as determined by isEqual: (page 1306)). In general, a key
can be any object (provided that it conforms to the NSCopying protocol—see below), but note that
when using key-value coding the key must be a string (see Key-Value Coding Fundamentals). Neither
a key nor a value can be nil; if you need to represent a null value in a dictionary, you should use
NSNull.

An instance of NSDictionary is an immutable dictionary: you establish its entries when it’s created
and cannot modify them afterward. An instance of NSMutableDictionary is a mutable dictionary:
you can add or delete entries at any time, and the object automatically allocates memory as needed.
The dictionary classes adopt the NSCopying and NSMutableCopying protocols, making it convenient
to convert a dictionary of one type to the other.

NSDictionary and NSMutableDictionary are part of a class cluster, so the objects you create with
this interface are not actual instances of the these two classes. Rather, the instances belong to one of
their private subclasses. Although a dictionary’s class is private, its interface is public, as declared by
these abstract superclasses, NSDictionary and NSMutableDictionary.

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value
given the corresponding key. However, the methods defined in this cluster insulate you from the
complexities of working with hash tables, hashing functions, or the hashed value of keys. The methods
described below take keys directly, not their hashed form.

Methods that add entries to dictionaries—whether as part of initialization (for all dictionaries) or
during modification (for mutable dictionaries)—copy each key argument (keys must conform to the
NSCopying protocol) and add the copies to the dictionary. Each corresponding value object receives
a retain (page 1312) message to ensure that it won’t be deallocated before the dictionary is through
with it.

Enumeration

You can enumerate the contents of a dictionary by key or by value using the NSEnumerator object
returned by keyEnumerator (page 325) and objectEnumerator (page 326) respectively. On Mac OS X
v10.5 and later, NSDictionary supports the NSFastEnumeration protocol. You can use the for…in
construct to enumerate the keys of a dictionary, as illustrated in the following example.

NSArray *keys = [NSArray arrayWithObjects:@"key1", @"key2", @"key3", nil];
NSArray *objects = [NSArray arrayWithObjects:@"value1", @"value2", @"value3",
nil];
NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:objects
forKeys:keys];

for (id key in dictionary)
{

NSLog(@"key: %@, value: %@", key, [dictionary objectForKey:key]);
}

300 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Primitive Methods

Three primitive methods of NSDictionary—count (page 311), objectForKey: (page 327), and
keyEnumerator (page 325)—provide the basis for all of the other methods in its interface. The
count (page 311) method returns the number of entries in the dictionary. objectForKey: (page 327)
returns the value associated with a given key. keyEnumerator (page 325) returns an object that lets
you iterate through each of the keys in the dictionary. The other methods declared here operate by
invoking one or more of these primitives. The non-primitive methods provide convenient ways of
accessing multiple entries at once.

Descriptions and Persistence

You can use the description... and writeToFile:atomically: (page 328) methods to write a
property list representation of a dictionary to a string or to a file, respectively. These are not intended
to be used for general persistent storage of your custom data objects—see instead Archives and
Serializations Programming Guide for Cocoa.

Toll-Free Bridging

NSDictionary is “toll-free bridged” with its Core Foundation counterpart, CFDictionary. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSDictionary * parameter, you can
pass in a CFDictionaryRef, and where you see a CFDictionaryRef parameter, you can pass in an
NSDictionary instance (you cast one type to the other to suppress compiler warnings). This bridging
also applies to concrete subclasses of NSDictionary. See Interchangeable Data Types for more
information on toll-free bridging.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

NSMutableCopying
– mutableCopyWithZone: (page 1300)

NSFastEnumeration
– countByEnumeratingWithState:objects:count: (page 1262)

Adopted Protocols 301
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Tasks

Creating a Dictionary

+ dictionary (page 305)
Creates and returns an empty dictionary.

+ dictionaryWithContentsOfFile: (page 305)
Creates and returns a dictionary using the keys and values found in a file specified by a given
path.

+ dictionaryWithContentsOfURL: (page 306)
Creates and returns a dictionary using the keys and values found in a resource specified by a
given URL.

+ dictionaryWithDictionary: (page 306)
Creates and returns a dictionary containing the keys and values from another given dictionary.

+ dictionaryWithObject:forKey: (page 307)
Creates and returns a dictionary containing a given key and value.

+ dictionaryWithObjects:forKeys: (page 307)
Creates and returns a dictionary containing entries constructed from the contents of an array
of keys and an array of values.

+ dictionaryWithObjects:forKeys:count: (page 308)
Creates and returns a dictionary containing count objects from the objects array.

+ dictionaryWithObjectsAndKeys: (page 309)
Creates and returns a dictionary containing entries constructed from the specified set of values
and keys.

Initializing an NSDictionary Instance

– initWithContentsOfFile: (page 320)
Initializes a newly allocated dictionary using the keys and values found in a file at a given
path.

– initWithContentsOfURL: (page 321)
Initializes a newly allocated dictionary using the keys and values found at a given URL.

– initWithDictionary: (page 321)
Initializes a newly allocated dictionary by placing in it the keys and values contained in another
given dictionary.

– initWithDictionary:copyItems: (page 322)
Initializes a newly allocated dictionary using the objects contained in another given dictionary.

– initWithObjects:forKeys: (page 322)
Initializes a newly allocated dictionary with entries constructed from the contents of the objects
and keys arrays.

– initWithObjects:forKeys:count: (page 323)
Initializes a newly allocated dictionary with count entries.

302 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

– initWithObjectsAndKeys: (page 324)
Initializes a newly allocated dictionary with entries constructed from the specified set of values
and keys.

Counting Entries

– count (page 311)
Returns the number of entries in the receiver.

Comparing Dictionaries

– isEqualToDictionary: (page 324)
Returns a Boolean value that indicates whether the contents of the receiver are equal to the
contents of another given dictionary.

Accessing Keys and Values

– allKeys (page 309)
Returns a new array containing the receiver’s keys.

– allKeysForObject: (page 310)
Returns a new array containing the keys corresponding to all occurrences of a given object in
the receiver.

– allValues (page 310)
Returns a new array containing the receiver’s values.

– getObjects:andKeys: (page 320)
Returns by reference C arrays of the keys and values in the receiver.

– keyEnumerator (page 325)
Returns an enumerator object that lets you access each key in the receiver.

– keysSortedByValueUsingSelector: (page 325)
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted
by its values.

– objectEnumerator (page 326)
Returns an enumerator object that lets you access each value in the receiver.

– objectForKey: (page 327)
Returns the value associated with a given key.

– objectsForKeys:notFoundMarker: (page 327)
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

– valueForKey: (page 328)
Returns the value associated with a given key.

Storing Dictionaries

– writeToFile:atomically: (page 328)
Writes a property list representation of the contents of the receiver to a given path.

Tasks 303
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

– writeToURL:atomically: (page 329)
Writes a property list representation of the contents of the receiver to a given URL.

Accessing File Attributes

– fileCreationDate (page 313)
Returns the value for the NSFileCreationDate key.

– fileExtensionHidden (page 314)
Returns the value for the NSFileExtensionHidden key.

– fileGroupOwnerAccountID (page 314)
Returns the value for the NSFileGroupOwnerAccountID key.

– fileGroupOwnerAccountName (page 314)
Returns the value for the NSFileGroupOwnerAccountName key.

– fileHFSCreatorCode (page 315)
Returns the value for the NSFileHFSCreatorCode key.

– fileHFSTypeCode (page 315)
Returns the value for the NSFileHFSTypeCode key.

– fileIsAppendOnly (page 315)
Returns the value for the NSFileAppendOnly key.

– fileIsImmutable (page 316)
Returns the value for the NSFileImmutable key.

– fileModificationDate (page 316)
Returns the value for the key NSFileModificationDate.

– fileOwnerAccountID (page 316)
Returns the value for the NSFileOwnerAccountID key.

– fileOwnerAccountName (page 317)
Returns the value for the key NSFileOwnerAccountName.

– filePosixPermissions (page 317)
Returns the value for the key NSFilePosixPermissions.

– fileSize (page 318)
Returns the value for the key NSFileSize.

– fileSystemFileNumber (page 318)
Returns the value for the key NSFileSystemFileNumber.

– fileSystemNumber (page 319)
Returns the value for the key NSFileSystemNumber.

– fileType (page 319)
Returns the value for the key NSFileType.

Creating a Description

– description (page 311)
Returns a string that represents the contents of the receiver, formatted as a property list.

304 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

– descriptionInStringsFileFormat (page 312)
Returns a string that represents the contents of the receiver, formatted in .strings file format.

– descriptionWithLocale: (page 312)
Returns a string object that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale:indent: (page 312)
Returns a string object that represents the contents of the receiver, formatted as a property list.

Class Methods

dictionary
Creates and returns an empty dictionary.

+ (id)dictionary

Return Value
A new empty dictionary.

Discussion
This method is declared primarily for use with mutable subclasses of NSDictionary.

If you don’t want a temporary object, you can also create an empty dictionary using alloc... and
init.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDictionary.h

dictionaryWithContentsOfFile:
Creates and returns a dictionary using the keys and values found in a file specified by a given path.

+ (id)dictionaryWithContentsOfFile:(NSString *)path

Parameters

path
A full or relative pathname. The file identified by path must contain a string representation
of a property list whose root object is a dictionary. The dictionary must contain only property
list objects (instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary).
For more details, see Property List Programming Guide for Cocoa.

Return Value
A new dictionary that contains the dictionary at path, or nil if there is a file error or if the contents
of the file are an invalid representation of a dictionary.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 305
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

See Also
– initWithContentsOfFile: (page 320)

Declared In
NSDictionary.h

dictionaryWithContentsOfURL:
Creates and returns a dictionary using the keys and values found in a resource specified by a given
URL.

+ (id)dictionaryWithContentsOfURL:(NSURL *)aURL

Parameters

aURL
An URL that identifies a resource containing a string representation of a property list whose
root object is a dictionary. The dictionary must contain only property list objects (instances of
NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see
Property List Programming Guide for Cocoa.

Return Value
A new dictionary that contains the dictionary at aURL, or nil if there is an error or if the contents of
the resource are an invalid representation of a dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithContentsOfURL: (page 321)

Declared In
NSDictionary.h

dictionaryWithDictionary:
Creates and returns a dictionary containing the keys and values from another given dictionary.

+ (id)dictionaryWithDictionary:(NSDictionary *)otherDictionary

Parameters

otherDictionary
A dictionary containing keys and values for the new dictionary.

Return Value
A new dictionary containing the keys and values found in otherDictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithDictionary: (page 321)

Declared In
NSDictionary.h

306 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

dictionaryWithObject:forKey:
Creates and returns a dictionary containing a given key and value.

+ (id)dictionaryWithObject:(id)anObject forKey:(id)aKey

Parameters

anObject
The value corresponding to aKey.

aKey
The key for anObject.

Return Value
A new dictionary containing a single object, anObject, for a single key, aKey.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 307)
+ dictionaryWithObjects:forKeys:count: (page 308)
+ dictionaryWithObjectsAndKeys: (page 309)

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:
Creates and returns a dictionary containing entries constructed from the contents of an array of keys
and an array of values.

+ (id)dictionaryWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Parameters

objects
An array containing the values for the new dictionary. Each value object receives a retain (page
1312) message before being added to the dictionary.

keys
An array containing the keys for the new dictionary. Each key is copied (using
copyWithZone: (page 1250); keys must conform to the NSCopying protocol), and the copy is
added to the dictionary.

Return Value
A new dictionary containing entries constructed from the contents of objects and keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it
goes. An NSInvalidArgumentException is raised if objects and keys don’t have the same number of
elements.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 307
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

See Also
– initWithObjects:forKeys: (page 322)
+ dictionaryWithObject:forKey: (page 307)
+ dictionaryWithObjects:forKeys:count: (page 308)
+ dictionaryWithObjectsAndKeys: (page 309)

Declared In
NSDictionary.h

dictionaryWithObjects:forKeys:count:
Creates and returns a dictionary containing count objects from the objects array.

+ (id)dictionaryWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters

objects
A C array of values for the new dictionary. Each value object receives a retain (page 1312)
message before being added to the new dictionary.

keys
A C array of keys for the new dictionary. Each key is copied (using copyWithZone: (page 1250);
keys must conform to the NSCopying protocol), and the copy is added to the new dictionary.

count
The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it
goes. An NSInvalidArgumentException is raised if a key or value object is nil.

The following code fragment illustrates how to create a dictionary that associates the alphabetic
characters with their ASCII values:

static const NSInteger N_ENTRIES = 26;
NSDictionary *asciiDict;
NSString *keyArray[N_ENTRIES];
NSNumber *valueArray[N_ENTRIES];
NSInteger i;

for (i = 0; i < N_ENTRIES; i++)
{

char charValue = 'a' + i;
keyArray[i] = [NSString stringWithFormat:@"%c", charValue];
valueArray[i] = [NSNumber numberWithChar:charValue];

}

asciiDict = [NSDictionary dictionaryWithObjects:(id *)valueArray
forKeys:(id *)keyArray count:N_ENTRIES];

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithObjects:forKeys:count: (page 323)

308 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

+ dictionaryWithObject:forKey: (page 307)
+ dictionaryWithObjects:forKeys: (page 307)
+ dictionaryWithObjectsAndKeys: (page 309)

Declared In
NSDictionary.h

dictionaryWithObjectsAndKeys:
Creates and returns a dictionary containing entries constructed from the specified set of values and
keys.

+ (id)dictionaryWithObjectsAndKeys:(id)firstObject , ...

Parameters

firstObject
The first value to add to the new dictionary.

...
First the key for firstObject, then a null-terminated list of alternating values and keys. If any
key is nil, an NSInvalidArgumentException is raised.

Discussion
This method is similar to dictionaryWithObjects:forKeys: (page 307), differing only in the way
key-value pairs are specified.

For example:

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
@"value1", @"key1", @"value2", @"key2", nil];

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithObjectsAndKeys: (page 324)
+ dictionaryWithObject:forKey: (page 307)
+ dictionaryWithObjects:forKeys: (page 307)
+ dictionaryWithObjects:forKeys:count: (page 308)

Declared In
NSDictionary.h

Instance Methods

allKeys
Returns a new array containing the receiver’s keys.

- (NSArray *)allKeys

Instance Methods 309
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Return Value
A new array containing the receiver’s keys, or an empty array if the receiver has no entries.

Discussion
The order of the elements in the array is not defined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allValues (page 310)
– allKeysForObject: (page 310)
– getObjects:andKeys: (page 320)

Declared In
NSDictionary.h

allKeysForObject:
Returns a new array containing the keys corresponding to all occurrences of a given object in the
receiver.

- (NSArray *)allKeysForObject:(id)anObject

Parameters

anObject
The value to look for in the receiver.

Return Value
A new array containing the keys corresponding to all occurrences of anObject in the receiver. If no
object matching anObject is found, returns an empty array.

Discussion
Each object in the receiver is sent an isEqual: (page 1306) message to determine if it’s equal to anObject.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allKeys (page 309)
– keyEnumerator (page 325)

Declared In
NSDictionary.h

allValues
Returns a new array containing the receiver’s values.

- (NSArray *)allValues

Return Value
A new array containing the receiver’s values, or an empty array if the receiver has no entries.

310 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Discussion
The order of the values in the array isn’t defined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allKeys (page 309)
– getObjects:andKeys: (page 320)
– objectEnumerator (page 326)

Declared In
NSDictionary.h

count
Returns the number of entries in the receiver.

- (NSUInteger)count

Return Value
The number of entries in the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDictionary.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
If each key in the receiver is an NSString object, the entries are listed in ascending order by key,
otherwise the order in which the entries are listed is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– descriptionWithLocale: (page 312)
– descriptionWithLocale:indent: (page 312)

Declared In
NSDictionary.h

Instance Methods 311
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

descriptionInStringsFileFormat
Returns a string that represents the contents of the receiver, formatted in .strings file format.

- (NSString *)descriptionInStringsFileFormat

Return Value
A string that represents the contents of the receiver, formatted in .strings file format.

Discussion
The order in which the entries are listed is undefined.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDictionary.h

descriptionWithLocale:
Returns a string object that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Parameters

locale
An object that specifies options used for formatting each of the receiver’s keys and values; pass
nil if you don’t want them formatted.

Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5
and later, it may also be an NSLocale object.

Discussion
For a description of how locale is applied to each element in the receiver, see
descriptionWithLocale:indent: (page 312).

If each key in the dictionary responds to compare:, the entries are listed in ascending order by key,
otherwise the order in which the entries are listed is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– description (page 311)
– descriptionWithLocale:indent: (page 312)

Declared In
NSDictionary.h

descriptionWithLocale:indent:
Returns a string object that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale indent:(NSUInteger)level

312 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Parameters

locale
An object that specifies options used for formatting each of the receiver’s keys and values; pass
nil if you don’t want them formatted.

Prior to Mac OS X v10.5, locale must be an instance of NSDictionary. With Mac OS X v10.5
and later, it may also be an NSLocale object.

level
Specifies a level of indent, to make the output more readable: set level to 0 to use four spaces
to indent, or 1 to indent the output with a tab character

Return Value
A string object that represents the contents of the receiver, formatted as a property list.

Discussion
The returned NSString object contains the string representations of each of the receiver’s entries.
descriptionWithLocale:indent: obtains the string representation of a given key or value as follows:

 ■ If the object is an NSString object, it is used as is.

 ■ If the object responds to descriptionWithLocale:indent:, that method is invoked to obtain
the object’s string representation.

 ■ If the object responds to descriptionWithLocale:, that method is invoked to obtain the object’s
string representation.

 ■ If none of the above conditions is met, the object’s string representation is obtained by invoking
its description method.

If each key in the dictionary responds to compare:, the entries are listed in ascending order, by key.
Otherwise, the order in which the entries are listed is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– description (page 311)
– descriptionWithLocale: (page 312)

Declared In
NSDictionary.h

fileCreationDate
Returns the value for the NSFileCreationDate key.

- (NSDate *)fileCreationDate

Return Value
The value for the NSFileCreationDate key, or nil if the receiver doesn’t have an entry for the key.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 313
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Declared In
NSFileManager.h

fileExtensionHidden
Returns the value for the NSFileExtensionHidden key.

- (BOOL)fileExtensionHidden

Return Value
The value for the NSFileExtensionHidden key, or NO if the receiver doesn’t have an entry for the
key.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileGroupOwnerAccountID
Returns the value for the NSFileGroupOwnerAccountID key.

- (NSNumber *)fileGroupOwnerAccountID

Return Value
The value for the NSFileGroupOwnerAccountID key, or nil if the receiver doesn’t have an entry for
the key.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileGroupOwnerAccountName
Returns the value for the NSFileGroupOwnerAccountName key.

- (NSString *)fileGroupOwnerAccountName

Return Value
The value for the key NSFileGroupOwnerAccountName, or nil if the receiver doesn’t have an entry
for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the name of the corresponding file’s group.

314 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileHFSCreatorCode
Returns the value for the NSFileHFSCreatorCode key.

- (OSType)fileHFSCreatorCode

Return Value
The value for the NSFileHFSCreatorCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the OSType data type.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileHFSTypeCode
Returns the value for the NSFileHFSTypeCode key.

- (OSType)fileHFSTypeCode

Return Value
The value for the NSFileHFSTypeCode key, or 0 if the receiver doesn’t have an entry for the key.

Discussion
See HFS File Types for details on the OSType data type.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileIsAppendOnly
Returns the value for the NSFileAppendOnly key.

- (BOOL)fileIsAppendOnly

Return Value
The value for the NSFileAppendOnly key, or NO if the receiver doesn’t have an entry for the key.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 315
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Declared In
NSFileManager.h

fileIsImmutable
Returns the value for the NSFileImmutable key.

- (BOOL)fileIsImmutable

Return Value
The value for the NSFileImmutable key, or NO if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileModificationDate
Returns the value for the key NSFileModificationDate.

- (NSDate *)fileModificationDate

Return Value
The value for the key NSFileModificationDate, or nil if the receiver doesn’t have an entry for the
key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the date that the file’s data was last modified.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileOwnerAccountID
Returns the value for the NSFileOwnerAccountID key.

- (NSNumber *)fileOwnerAccountID

316 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Return Value
The value for the NSFileOwnerAccountID key, or nil if the receiver doesn’t have an entry for the
key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the account name of the file’s owner.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileOwnerAccountName
Returns the value for the key NSFileOwnerAccountName.

- (NSString *)fileOwnerAccountName

Return Value
The value for the key NSFileOwnerAccountName, or nil if the receiver doesn’t have an entry for the
key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the account name of the file’s owner.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

filePosixPermissions
Returns the value for the key NSFilePosixPermissions.

- (NSUInteger)filePosixPermissions

Return Value
The value, as an unsigned long, for the key NSFilePosixPermissions, or 0 if the receiver doesn’t
have an entry for the key.

Instance Methods 317
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the file’s permissions.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileSize
Returns the value for the key NSFileSize.

- (unsigned long long)fileSize

Return Value
The value, as an unsigned long long, for the key NSFileSize, or 0 if the receiver doesn’t have an
entry for the key.

Discussion
This and the other file... methods are for use with a dictionary such, as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the file’s size.

Special Considerations

If the file has a resource fork, the returned value does not include the size of the resource fork.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileSystemFileNumber
Returns the value for the key NSFileSystemFileNumber.

- (NSUInteger)fileSystemFileNumber

Return Value
The value, as an unsigned long, for the key NSFileSystemFileNumber, or 0 if the receiver doesn’t
have an entry for the key

318 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the file’s inode.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileSystemNumber
Returns the value for the key NSFileSystemNumber.

- (NSInteger)fileSystemNumber

Return Value
The value, as an unsigned long, for the key NSFileSystemNumber, or 0 if the receiver doesn’t have
an entry for the key

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the ID of the device containing the file.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

fileType
Returns the value for the key NSFileType.

- (NSString *)fileType

Return Value
The value for the key NSFileType, or nil if the receiver doesn’t have an entry for the key.

Discussion
This and the other file... methods are for use with a dictionary, such as those returned from the
methods fileAttributesAtPath:traverseLink: (page 401) (NSFileManager),
directoryAttributes (page 332) (NSDirectoryEnumerator), and fileAttributes (page 332)
(NSDirectoryEnumerator), that represents the POSIX attributes of a file or directory. This method
returns the file’s type. Possible return values are described in the “Constants” section of
NSFileManager.

Instance Methods 319
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

getObjects:andKeys:
Returns by reference C arrays of the keys and values in the receiver.

- (void)getObjects:(id *)objects andKeys:(id *)keys

Parameters

objects
Upon return, contains a C array of the values in the receiver.

keys
Upon return, contains a C array of the keys in the receiver.

Discussion
The elements in the returned arrays are ordered such that the first element in objects is the value
for the first key in keys and so on.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allKeys (page 309)
– allValues (page 310)
– objectForKey: (page 327)
– objectsForKeys:notFoundMarker: (page 327)

Declared In
NSDictionary.h

initWithContentsOfFile:
Initializes a newly allocated dictionary using the keys and values found in a file at a given path.

- (id)initWithContentsOfFile:(NSString *)path

Parameters

path
A full or relative pathname. The file identified by path must contain a string representation
of a property list whose root object is a dictionary. The dictionary must contain only property
list objects (instances of NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary).
For more details, see Property List Programming Guide for Cocoa.

Return Value
An initialized object—which might be different than the original receiver—that contains the dictionary
at path, or nil if there is a file error or if the contents of the file are an invalid representation of a
dictionary.

320 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dictionaryWithContentsOfFile: (page 305)

Declared In
NSDictionary.h

initWithContentsOfURL:
Initializes a newly allocated dictionary using the keys and values found at a given URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

Parameters

aURL
An URL that identifies a resource containing a string representation of a property list whose
root object is a dictionary. The dictionary must contain only property list objects (instances of
NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary). For more details, see
Property List Programming Guide for Cocoa.

Return Value
An initialized object—which might be different than the original receiver—that contains the dictionary
at aURL, or nil if there is an error or if the contents of the resource are an invalid representation of a
dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dictionaryWithContentsOfURL: (page 306)

Declared In
NSDictionary.h

initWithDictionary:
Initializes a newly allocated dictionary by placing in it the keys and values contained in another given
dictionary.

- (id)initWithDictionary:(NSDictionary *)otherDictionary

Parameters

otherDictionary
A dictionary containing keys and values for the new dictionary.

Return Value
An initialized object—which might be different than the original receiver—containing the keys and
values found in otherDictionary.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 321
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

See Also
+ dictionaryWithDictionary: (page 306)

Declared In
NSDictionary.h

initWithDictionary:copyItems:
Initializes a newly allocated dictionary using the objects contained in another given dictionary.

- (id)initWithDictionary:(NSDictionary *)otherDictionary copyItems:(BOOL)flag

Parameters

otherDictionary
A dictionary containing keys and values for the new dictionary.

flag
A flag that specifies whether values in otherDictionary should be copied. If YES, the members
of otherDictionary are copied, and the copies are added to the receiver. If NO, the values of
otherDictionary are retained by the new dictionary.

Return Value
An initialized object—which might be different than the original receiver—containing the keys and
values found in otherDictionary.

Discussion
Note that copyWithZone: (page 1250) is used to make copies. Thus, the receiver’s new member objects
may be immutable, even though their counterparts in otherDictionarywere mutable. Also, members
must conform to the NSCopying protocol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithDictionary: (page 321)

Declared In
NSDictionary.h

initWithObjects:forKeys:
Initializes a newly allocated dictionary with entries constructed from the contents of the objects and
keys arrays.

- (id)initWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Parameters

objects
An array containing the values for the new dictionary. Each value object receives a retain (page
1312) message before being added to the new dictionary.

322 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

keys
An array containing the keys for the new dictionary. Each key is copied (using
copyWithZone: (page 1250); keys must conform to the NSCopying protocol), and the copy is
added to the new dictionary.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it
goes. An NSInvalidArgumentException is raised if the objects and keys arrays do not have the same
number of elements.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dictionaryWithObjects:forKeys: (page 307)
– initWithObjects:forKeys:count: (page 323)
– initWithObjectsAndKeys: (page 324)

Declared In
NSDictionary.h

initWithObjects:forKeys:count:
Initializes a newly allocated dictionary with count entries.

- (id)initWithObjects:(id *)objects forKeys:(id *)keys count:(NSUInteger)count

Parameters

objects
A C array of values for the new dictionary. Each value object receives a retain (page 1312)
message before being added to the new dictionary.

keys
A C array of keys for the new dictionary. Each key is copied (using copyWithZone: (page 1250);
keys must conform to the NSCopying protocol), and the copy is added to the new dictionary.

count
The number of elements to use from the keys and objects arrays. count must not exceed the
number of elements in objects or keys.

Discussion
This method steps through the objects and keys arrays, creating entries in the new dictionary as it
goes. An NSInvalidArgumentException is raised if a key or value object is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dictionaryWithObjects:forKeys:count: (page 308)
– initWithObjects:forKeys: (page 322)
– initWithObjectsAndKeys: (page 324)

Declared In
NSDictionary.h

Instance Methods 323
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

initWithObjectsAndKeys:
Initializes a newly allocated dictionary with entries constructed from the specified set of values and
keys.

- (id)initWithObjectsAndKeys:(id)firstObject , ...

Parameters

firstObject
The first value to add to the new dictionary.

...
First the key for firstObject, then a null-terminated list of alternating values and keys. If any
key is nil, an NSInvalidArgumentException is raised.

Discussion
This method is similar to initWithObjects:forKeys: (page 322), differing only in the way in which
the key-value pairs are specified.

For example:

NSDictionary *dict = [[NSDictionary alloc] initWithObjectsAndKeys:
@"value1" @"key1", @"value2", @"key2", nil];

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dictionaryWithObjectsAndKeys: (page 309)
– initWithObjects:forKeys: (page 322)
– initWithObjects:forKeys:count: (page 323)

Declared In
NSDictionary.h

isEqualToDictionary:
Returns a Boolean value that indicates whether the contents of the receiver are equal to the contents
of another given dictionary.

- (BOOL)isEqualToDictionary:(NSDictionary *)otherDictionary

Parameters

otherDictionary
The dictionary with which to compare the receiver.

Return Value
YES if the contents of otherDictionary are equal to the contents of the receiver, otherwise NO.

Discussion
Two dictionaries have equal contents if they each hold the same number of entries and, for a given
key, the corresponding value objects in each dictionary satisfy the isEqual: (page 1306) test.

Availability
Available in iPhone OS 2.0 and later.

324 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

See Also
– isEqual: (page 1306) (NSObject protocol)

Declared In
NSDictionary.h

keyEnumerator
Returns an enumerator object that lets you access each key in the receiver.

- (NSEnumerator *)keyEnumerator

Return Value
An enumerator object that lets you access each key in the receiver.

Discussion
The following code fragment illustrates how you might use this method.

NSEnumerator *enumerator = [myDictionary keyEnumerator];
id key;

while ((key = [enumerator nextObject])) {
/* code that uses the returned key */

}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not
modify the entries during enumeration. If you intend to modify the entries, use the allKeys (page
309) method to create a “snapshot” of the dictionary’s keys. Then use this snapshot to traverse the
entries, modifying them along the way.

Note that the objectEnumerator (page 326) method provides a convenient way to access each value
in the dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allKeys (page 309)
– allKeysForObject: (page 310)
– getObjects:andKeys: (page 320)
– objectEnumerator (page 326)
– nextObject (page 341) (NSEnumerator)

Declared In
NSDictionary.h

keysSortedByValueUsingSelector:
Returns an array of the receiver’s keys, in the order they would be in if the receiver were sorted by
its values.

- (NSArray *)keysSortedByValueUsingSelector:(SEL)comparator

Instance Methods 325
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Parameters

comparator
A selector that specifies the method to use to compare the values in the receiver.

The comparator method should return NSOrderedAscending if the receiver is smaller than
the argument, NSOrderedDescending if the receiver is larger than the argument, and
NSOrderedSame if they are equal.

Return Value
An array of the receiver’s keys, in the order they would be in if the receiver were sorted by its values.

Discussion
Pairs of dictionary values are compared using the comparison method specified by comparator; the
comparator message is sent to one of the values and has as its single argument the other value from
the dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allKeys (page 309)
– sortedArrayUsingSelector: (page 64) (NSArray)

Declared In
NSDictionary.h

objectEnumerator
Returns an enumerator object that lets you access each value in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each value in the receiver.

Discussion
The following code fragment illustrates how you might use the method.

NSEnumerator *enumerator = [myDictionary objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
/* code that acts on the dictionary’s values */

}

If you use this method with instances of mutable subclasses of NSDictionary, your code should not
modify the entries during enumeration. If you intend to modify the entries, use the allValues (page
310) method to create a “snapshot” of the dictionary’s values. Work from this snapshot to modify the
values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– keyEnumerator (page 325)
– nextObject (page 341) (NSEnumerator)

326 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Declared In
NSDictionary.h

objectForKey:
Returns the value associated with a given key.

- (id)objectForKey:(id)aKey

Parameters

aKey
The key for which to return the corresponding value.

Return Value
The value associated with aKey, or nil if no value is associated with aKey.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allKeys (page 309)
– allValues (page 310)
– getObjects:andKeys: (page 320)

Declared In
NSDictionary.h

objectsForKeys:notFoundMarker:
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

- (NSArray *)objectsForKeys:(NSArray *)keys notFoundMarker:(id)anObject

Parameters

keys
The keys for which to return corresponding values.

anObject
The marker object to place in the corresponding element of the returned array if an object isn’t
found in the receiver to correspond to a given key.

Discussion
The objects in the returned array and the keys array have a one-for-one correspondence, so that the
nth object in the returned array corresponds to the nth key in keys.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allKeys (page 309)
– allValues (page 310)
– getObjects:andKeys: (page 320)

Instance Methods 327
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Declared In
NSDictionary.h

valueForKey:
Returns the value associated with a given key.

- (id)valueForKey:(NSString *)key

Parameters

key
The key for which to return the corresponding value. Note that when using key-value coding,
the key must be a string (see Key-Value Coding Fundamentals).

Return Value
The value associated with key.

Discussion
If key does not start with “@”, invokes objectForKey: (page 327). If key does start with “@”, strips
the “@” and invokes [super valueForKey:] with the rest of the key.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:forKey: (page 609) (NSMutableDictionary)
– getObjects:andKeys: (page 320)

Declared In
NSKeyValueCoding.h

writeToFile:atomically:
Writes a property list representation of the contents of the receiver to a given path.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag

Parameters

path
The path at which to write the file.

If path contains a tilde (~) character, you must expand it with
stringByExpandingTildeInPath (page 1031) before invoking this method.

flag
A flag that specifies whether the file should be written atomically.

If flag is YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed
to path. If flag is NO, the dictionary is written directly to path. The YES option guarantees that
path, if it exists at all, won’t be corrupted even if the system should crash during writing.

Return Value
YES if the file is written successfully, otherwise NO.

328 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Discussion
This method recursively validates that all the contained objects are property list objects (instances of
NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and
returns NO if all the objects are not property list objects, since the resultant file would not be a valid
property list.

If the receiver’s contents are all property list objects, the file written by this method can be used to
initialize a new dictionary with the class method dictionaryWithContentsOfFile: (page 305) or
the instance method initWithContentsOfFile: (page 320).

For more information about property lists, see Property List Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDictionary.h

writeToURL:atomically:
Writes a property list representation of the contents of the receiver to a given URL.

- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag

Parameters

aURL
The URL to which to write the receiver.

flag
A flag that specifies whether the output should be written atomically.

If flag is YES, the receiver is written to an auxiliary location, and then the auxiliary location
is renamed to aURL. If flag is NO, the dictionary is written directly to aURL. The YES option
guarantees that aURL, if it exists at all, won’t be corrupted even if the system should crash
during writing. flag is ignored if aURL is of a type that cannot be written atomically.

Return Value
YES if the location is written successfully, otherwise NO.

Discussion
This method recursively validates that all the contained objects are property list objects (instances of
NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary) before writing out the file, and
returns NO if all the objects are not property list objects, since the resultant output would not be a valid
property list.

If the receiver’s contents are all property list objects, the location written by this method can be used
to initialize a new dictionary with the class method dictionaryWithContentsOfURL: (page 306) or
the instance method initWithContentsOfURL: (page 321).

For more information about property lists, see Property List Programming Guide for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDictionary.h

Instance Methods 329
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

330 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 8

NSDictionary Class Reference

Inherits from: NSEnumerator : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSFileManager.h

Companion guide: Low-Level File Management Programming Topics

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSDirectoryEnumerator object enumerates the contents of a directory, returning the pathnames
of all files and directories contained within that directory. These pathnames are relative to the directory.

An enumeration is recursive, including the files of all subdirectories, and crosses device boundaries.
An enumeration does not resolve symbolic links, or attempt to traverse symbolic links that point to
directories.

Overview 331
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

NSDirectoryEnumerator Class Reference

Tasks

Getting File and Directory Attributes

– directoryAttributes (page 332)
Returns an NSDictionary object that contains the attributes of the directory at which
enumeration started.

– fileAttributes (page 332)
Returns an NSDictionary object that contains the attributes of the most recently returned file
or subdirectory (as referenced by the pathname).

Skipping Subdirectories

– skipDescendents (page 333)
Causes the receiver to skip recursion into the most recently obtained subdirectory.

Instance Methods

directoryAttributes
Returns an NSDictionary object that contains the attributes of the directory at which enumeration
started.

- (NSDictionary *)directoryAttributes

Return Value
An NSDictionary object that contains the attributes of the directory at which enumeration started.

Discussion
See the description of the fileAttributesAtPath:traverseLink: (page 401) method of
NSFileManager for details on obtaining the attributes from the dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
createDirectoryAtPath:attributes: (page 394) (NSFileManager)

Declared In
NSFileManager.h

fileAttributes
Returns an NSDictionary object that contains the attributes of the most recently returned file or
subdirectory (as referenced by the pathname).

332 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

NSDirectoryEnumerator Class Reference

- (NSDictionary *)fileAttributes

Return Value
An NSDictionary object that contains the attributes of the most recently returned file or subdirectory
(as referenced by the pathname).

Discussion
See the description of the fileAttributesAtPath:traverseLink: (page 401) method of
NSFileManager for details on obtaining the attributes from the dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

skipDescendents
Causes the receiver to skip recursion into the most recently obtained subdirectory.

- (void)skipDescendents

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

Instance Methods 333
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

NSDirectoryEnumerator Class Reference

334 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 9

NSDirectoryEnumerator Class Reference

Inherits from: NSNotificationCenter : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Declared in: Foundation/NSDistributedNotificationCenter.h

Companion guide: Notification Programming Topics for Cocoa

Class at a Glance

The NSDistributedNotificationCenter class provides a way to send notifications to objects in
other tasks. It takes NSNotification objects and broadcasts them to any objects in other tasks that
have registered for the notification with their task’s default distributed notification center.

Principal Attributes

 ■ Notification dispatch table. See “Class at a Glance” > “Principal Attributes” in NSNotificationCenter
Class Reference for information about the dispatch table.

In addition to the notification name and sender, dispatch table entries for distributed notification
centers specify when the notification center delivers notifications to its observers. See the
postNotificationName:object:userInfo:deliverImmediately: method, “Suspending and
Resuming Notification Delivery” (page ?), and NSNotificationSuspensionBehavior for
details.

Commonly Used Methods

defaultCenter
Accesses the default distributed notification center.

Class at a Glance 335
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

NSDistributedNotificationCenter Class
Reference

addObserver:selector:name:object:suspensionBehavior:
Registers an object to receive a notification with a specified behavior when notification delivery
is suspended.

postNotificationName:object:userInfo:deliverImmediately:
Creates and posts a notification.

removeObserver:name:object:
Specifies that an object no longer wants to receive certain notifications.

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSDistributedNotificationCenter class implements a notification center that can distribute
notifications asynchronously to tasks other than the one in which the notification was posted. An
instance of this class are known as a distributed notification center.

Each task has a default distributed notification center that you access with the defaultCenter class
method. There may be different types of distributed notification centers. Currently there is a single
type—NSLocalNotificationCenterType. This type of distributed notification center handles
notifications that can be sent between tasks on a single computer. For communication between tasks
on different computers, use Distributed Objects.

Posting a distributed notification is an expensive operation. The notification gets sent to a system-wide
server that distributes it to all the tasks that have objects registered for distributed notifications. The
latency between posting the notification and the notification’s arrival in another task is unbounded.
In fact, when too many notifications are posted and the server’s queue fills up, notifications may be
dropped.

Distributed notifications are delivered via a task’s run loop. A task must be running a run loop in one
of the “common” modes, such as NSDefaultRunLoopMode, to receive a distributed notification. For
multithreaded applications running in Mac OS X v10.3 and later, distributed notifications are always
delivered to the main thread. For multithreaded applications running in Mac OS X v10.2.8 and earlier,
notifications are delivered to the thread that first used the distributed notifications API, which in
most cases is the main thread.

336 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

NSDistributedNotificationCenter Class Reference

Note: NSDistributedNotificationCenter objects should not be used to send notifications between
threads within the same task. Use Distributed Objects or the NSObject method
performSelectorOnMainThread:withObject:waitUntilDone: (page 811), instead. You can also
setup an NSPort object to receive and distribute messages from other threads.

Constants

Notification Posting Behavior
These constants specify the behavior of notifications posted using the
postNotificationName:object:userInfo:options: method.

enum {
NSNotificationDeliverImmediately = (1 << 0),
NSNotificationPostToAllSessions = (1 << 1)

};

Constants
NSNotificationDeliverImmediately

When set, the notification is delivered immediately to all observers, regardless of their
suspension behavior or suspension state. When not set, allows the normal suspension behavior
of notification observers to take place.

NSNotificationPostToAllSessions
When set, the notification is posted to all sessions. When not set, the notification is sent only
to applications within the same login session as the posting task.

Declared In
NSDistributedNotificationCenter.h

Constants 337
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

NSDistributedNotificationCenter Class Reference

338 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 0

NSDistributedNotificationCenter Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)
NSFastEnumeration

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSEnumerator.h

Companion guide: Collections Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSEnumerator is an abstract class, instances of whose subclasses enumerate collections of other objects,
such as arrays and dictionaries.

All creation methods are defined in the collection classes—such as NSArray, NSSet, and
NSDictionary—which provide special NSEnumerator objects with which to enumerate their contents.
For example, NSArray has two methods that return an NSEnumerator object: objectEnumerator (page
931) and reverseObjectEnumerator (page 60). NSDictionary also has two methods that return an
NSEnumerator object: keyEnumerator (page 325) and objectEnumerator (page 326). These methods
let you enumerate the contents of a dictionary by key or by value, respectively.

Overview 339
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

NSEnumerator Class Reference

You send nextObject (page 341) repeatedly to a newly created NSEnumerator object to have it return
the next object in the original collection. When the collection is exhausted, nil is returned. You cannot
“reset” an enumerator after it has exhausted its collection. To enumerate a collection again, you need
a new enumerator.

The enumerator subclasses used by NSArray, NSDictionary, and NSSet retain the collection during
enumeration. When the enumeration is exhausted, the collection is released.

Note: It is not safe to modify a mutable collection while enumerating through it. Some enumerators
may currently allow enumeration of a collection that is modified, but this behavior is not guaranteed
to be supported in the future.

Tasks

Getting the Enumerated Objects

– allObjects (page 340)
Returns an array of objects the receiver has yet to enumerate.

– nextObject (page 341)
Returns the next object from the collection being enumerated.

Instance Methods

allObjects
Returns an array of objects the receiver has yet to enumerate.

- (NSArray *)allObjects

Return Value
An array of objects the receiver has yet to enumerate.

Discussion
Put another way, the array returned by this method does not contain objects that have already been
enumerated with previous nextObject (page 341) messages.

Invoking this method exhausts the enumerator’s collection so that subsequent invocations of
nextObject return nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSEnumerator.h

340 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

NSEnumerator Class Reference

nextObject
Returns the next object from the collection being enumerated.

- (id)nextObject

Return Value
The next object from the collection being enumerated, or nil when all objects have been enumerated.

Discussion
The following code illustrates how this method works using an array:

NSArray *anArray = // ... ;
NSEnumerator *enumerator = [anArray objectEnumerator];
id object;

while ((object = [enumerator nextObject])) {
// do something with object...

}

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSEnumerator.h

Instance Methods 341
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

NSEnumerator Class Reference

342 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 1

NSEnumerator Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSError.h
Foundation/NSURLError.h

Companion guide: Error Handling Programming Guide For Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSError object encapsulates richer and more extensible error information than is possible using
only an error code or error string. The core attributes of an NSError object are an error domain
(represented by a string), a domain-specific error code and a user info dictionary containing application
specific information.

Several well-known domains are defined corresponding to Mach, POSIX, and OSStatus errors. In
addition, NSError allows you to attach an arbitrary user info dictionary to an error object, and provides
the means to return a human-readable description for the error.

Overview 343
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

NSError is not an abstract class, and can be used directly. Applications may choose to create subclasses
of NSError to provide better localized error strings by overriding localizedDescription (page 347).

In general, a method should signal an error condition by—for example—returning NO or nil rather
than by the simple presence of an error object. The method can then optionally return an NSError
object by reference, in order to further describe the error.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
copyWithZone: (page 1250)

Tasks

Creating Error Objects

+ errorWithDomain:code:userInfo: (page 345)
Creates and initializes an NSError object for a given domain and code with a given userInfo
dictionary.

– initWithDomain:code:userInfo: (page 346)
Returns an NSError object initialized for a given domain and code with a given userInfo
dictionary.

Getting Error Properties

– code (page 346)
Returns the receiver’s error code.

– domain (page 346)
Returns the receiver’s error domain.

– userInfo (page 349)
Returns the receiver's user info dictionary.

Getting a Localized Error Description

– localizedDescription (page 347)
Returns a string containing the localized description of the error.

344 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

– localizedRecoveryOptions (page 348)
Returns an array containing the localized titles of buttons appropriate for displaying in an alert
panel.

– localizedRecoverySuggestion (page 348)
Returns a string containing the localized recovery suggestion for the error.

– localizedFailureReason (page 348)
Returns a string containing the localized explanation of the reason for the error.

Getting the Error Recovery Attempter

– recoveryAttempter (page 349)
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

Class Methods

errorWithDomain:code:userInfo:
Creates and initializes an NSError object for a given domain and code with a given userInfo
dictionary.

+ (id)errorWithDomain:(NSString *)domain code:(NSInteger)code userInfo:(NSDictionary
*)dict

Parameters

domain
The error domain—this can be one of the predefined NSError domains, or an arbitrary string
describing a custom domain. domain must not be nil.

code
The error code for the error.

dict
The userInfo dictionary for the error. userInfo may be nil.

Return Value
An NSError object for domain with the specified error code and the dictionary of arbitrary data
userInfo.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSError.h

Class Methods 345
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

Instance Methods

code
Returns the receiver’s error code.

- (NSInteger)code

Return Value
The receiver’s error code.

Discussion
Note that errors are domain specific.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedDescription (page 347)
– domain (page 346)
– userInfo (page 349)

Declared In
NSError.h

domain
Returns the receiver’s error domain.

- (NSString *)domain

Return Value
A string containing the receiver’s error domain.

Availability
Available in iPhone OS 2.0 and later.

See Also
– code (page 346)
– localizedDescription (page 347)
– userInfo (page 349)

Declared In
NSError.h

initWithDomain:code:userInfo:
Returns an NSError object initialized for a given domain and code with a given userInfo dictionary.

- (id)initWithDomain:(NSString *)domain code:(NSInteger)code userInfo:(NSDictionary
*)dict

346 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

Parameters

domain
The error domain—this can be one of the predefined NSError domains, or an arbitrary string
describing a custom domain. domain must not be nil.

code
The error code for the error.

dict
The userInfo dictionary for the error. userInfo may be nil.

Return Value
An NSError object initialized for domain with the specified error code and the dictionary of arbitrary
data userInfo.

Discussion
This is the designated initializer for NSError.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ errorWithDomain:code:userInfo: (page 345)

Declared In
NSError.h

localizedDescription
Returns a string containing the localized description of the error.

- (NSString *)localizedDescription

Return Value
A string containing the localized description of the error.

By default this method returns the object in the user info dictionary for the key
NSLocalizedDescriptionKey. If the user info dictionary doesn’t contain a value for
NSLocalizedDescriptionKey, a default string is constructed from the domain and code.

Discussion
This method can be overridden by subclasses to present customized error strings.

Availability
Available in iPhone OS 2.0 and later.

See Also
– code (page 346)
– domain (page 346)
– userInfo (page 349)

Declared In
NSError.h

Instance Methods 347
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

localizedFailureReason
Returns a string containing the localized explanation of the reason for the error.

- (NSString *)localizedFailureReason

Return Value
A string containing the localized explanation of the reason for the error. By default this method returns
the object in the user info dictionary for the key NSLocalizedFailureReasonErrorKey.

Discussion
This method can be overridden by subclasses to present customized error strings.

Availability
Available in iPhone OS 2.0 and later.

See Also
– code (page 346)
– domain (page 346)
– userInfo (page 349)

Declared In
NSError.h

localizedRecoveryOptions
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

- (NSArray *)localizedRecoveryOptions

Return Value
An array containing the localized titles of buttons appropriate for displaying in an alert panel. By
default this method returns the object in the user info dictionary for the key
NSLocalizedRecoveryOptionsErrorKey. If the user info dictionary doesn’t contain a value for
NSLocalizedRecoveryOptionsErrorKey, nil is returned.

Discussion
The first string is the title of the right-most and default button, the second the one to the left of that,
and so on. The recovery options should be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 348). If the user info dictionary doesn’t contain a value for
NSLocalizedRecoveryOptionsErrorKey, only an OK button is displayed.

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSError.h

localizedRecoverySuggestion
Returns a string containing the localized recovery suggestion for the error.

348 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

- (NSString *)localizedRecoverySuggestion

Return Value
A string containing the localized recovery suggestion for the error. By default this method returns
the object in the user info dictionary for the key NSLocalizedRecoverySuggestionErrorKey. If the
user info dictionary doesn’t contain a value for NSLocalizedRecoverySuggestionErrorKey, nil is
returned.

Discussion
The returned string is suitable for displaying as the secondary message in an alert panel.

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSError.h

recoveryAttempter
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

- (id)recoveryAttempter

Return Value
An object that conforms to the NSErrorRecoveryAttempting informal protocol. By default this
method returns the object for the user info dictionary for the key NSRecoveryAttempterErrorKey.
If the user info dictionary doesn’t contain a value for NSRecoveryAttempterErrorKey, nil is returned.

Discussion
The recovery attempter must be an object that can correctly interpret an index into the array returned
by localizedRecoveryOptions (page 348).

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedRecoveryOptions (page 348)

Declared In
NSError.h

userInfo
Returns the receiver's user info dictionary.

- (NSDictionary *)userInfo

Return Value
The receiver's user info dictionary, or nil if the user info dictionary has not been set.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 349
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

See Also
– code (page 346)
– domain (page 346)
– localizedDescription (page 347)

Declared In
NSError.h

Constants

User info dictionary keys
These keys may exist in the user info dictionary.

extern NSString *NSLocalizedDescriptionKey;
extern NSString *NSErrorFailingURLStringKey;
const NSString *NSFilePathErrorKey;
const NSString *NSStringEncodingErrorKey;
const NSString *NSUnderlyingErrorKey;
const NSString *NSURLErrorKey;
const NSString *NSLocalizedFailureReasonErrorKey;
const NSString *NSLocalizedRecoverySuggestionErrorKey;
const NSString *NSLocalizedRecoveryOptionsErrorKey;
const NSString *NSRecoveryAttempterErrorKey;

Constants
NSLocalizedDescriptionKey

The corresponding value is a localized string representation of the error that, if present, will
be returned by localizedDescription (page 347).

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSErrorFailingURLStringKey
The corresponding value is the URL that caused the error. This key is only present in the
NSURLErrorDomain.

Available in Mac OS X v10.2 with Safari 1.0 installed.

Available in Mac OS X v10.2.7 and later.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSFilePathErrorKey
Contains the file path of the error.

The corresponding value is an NSString object.

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

350 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

NSStringEncodingErrorKey
The corresponding value is an NSNumber object containing the NSStringEncoding value.

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSUnderlyingErrorKey
The corresponding value is an error that was encountered in an underlying implementation
and caused the error that the receiver represents to occur.

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSURLErrorKey
The corresponding value is an NSURL object.

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSLocalizedFailureReasonErrorKey
The corresponding value is a localized string representation containing the reason for the
failure that, if present, will be returned by localizedFailureReason (page 348).

This string provides a more detailed explanation of the error than the description.

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSLocalizedRecoverySuggestionErrorKey
The corresponding value is a string containing the localized recovery suggestion for the error.

This string is suitable for displaying as the secondary message in an alert panel.

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSLocalizedRecoveryOptionsErrorKey
The corresponding value is an array containing the localized titles of buttons appropriate for
displaying in an alert panel.

The first string is the title of the right-most and default button, the second the one to the left,
and so on. The recovery options should be appropriate for the recovery suggestion returned
by localizedRecoverySuggestion (page 348).

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

Constants 351
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

NSRecoveryAttempterErrorKey
The corresponding value is an object that conforms to the NSErrorRecoveryAttempting
informal protocol.

The recovery attempter must be an object that can correctly interpret an index into the array
returned by recoveryAttempter (page 349).

Available in Mac OS X 10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

Declared In
NSError.h

Error Domains
The following error domains are predefined.

const NSString *NSPOSIXErrorDomain;
const NSString *NSOSStatusErrorDomain;
const NSString *NSMachErrorDomain;

Constants
NSPOSIXErrorDomain

POSIX/BSD errors

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSOSStatusErrorDomain
Mac OS 9/Carbon errors

Available in iPhone OS 2.0 and later.

Declared in NSError.h

NSMachErrorDomain
Mach errors

Available in iPhone OS 2.0 and later.

Declared in NSError.h

Discussion
Additionally, the following error domain is defined by Core Foundation:

Defines constants for values returned in the domain field of the
CFStreamError structure.

CFStreamErrorDomain

Declared In
NSError.h

352 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 2

NSError Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSException.h

Companion guide: Exception Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSException is used to implement exception handling and contains information about an exception.
An exception is a special condition that interrupts the normal flow of program execution. Each
application can interrupt the program for different reasons. For example, one application might
interpret saving a file in a directory that is write-protected as an exception. In this sense, the exception
is equivalent to an error. Another application might interpret the user’s keypress (for example,
Control-C) as an exception: an indication that a long-running process should be aborted.

Overview 353
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

Note: The exception handling mechanism uses longjmp to control the flow of execution. Any code
written for an application that uses exception handling is therefore subject to the restrictions associated
with this functionality. See your compiler documentation for more information on the longjmp
function.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Creating and Raising an NSException Object

+ exceptionWithName:reason:userInfo: (page 355)
Creates and returns an exception object .

+ raise:format: (page 355)
A convenience method that creates and raises an exception.

+ raise:format:arguments: (page 356)
Creates and raises an exception with the specified name, reason, and arguments.

– initWithName:reason:userInfo: (page 357)
Initializes and returns a newly allocated exception object.

– raise (page 358)
Raises the receiver, causing program flow to jump to the local exception handler.

Querying an NSException Object

– name (page 358)
Returns an NSString object used to uniquely identify the receiver.

– reason (page 358)
Returns an NSString object containing a “human-readable” reason for the receiver.

– userInfo (page 359)
Returns an NSDictionary object containing application-specific data pertaining to the receiver.

354 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

Getting Exception Stack Frames

– callStackReturnAddresses (page 357)
Returns the call return addresses related to a raised exception.

Class Methods

exceptionWithName:reason:userInfo:
Creates and returns an exception object .

+ (NSException *)exceptionWithName:(NSString *)name reason:(NSString *)reason
userInfo:(NSDictionary *)userInfo

Parameters

name
The name of the exception.

reason
A human-readable message string summarizing the reason for the exception.

userInfo
A dictionary containing user-defined information relating to the exception

Return Value
The created NSException object or nil if the object couldn't be created.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithName:reason:userInfo: (page 357)
– name (page 358)
– reason (page 358)
– userInfo (page 359)

Declared In
NSException.h

raise:format:
A convenience method that creates and raises an exception.

+ (void)raise:(NSString *)name format:(NSString *)format, ...

Parameters

name
The name of the exception.

format,
A human-readable message string (that is, the exception reason) with conversion specifications
for the variable arguments that follow.

Class Methods 355
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

...
Variable information to be inserted into the formatted exception reason (in the manner of
printf).

Discussion
The user-defined information is nil for the generated exception object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ raise:format:arguments: (page 356)
– raise (page 358)

Declared In
NSException.h

raise:format:arguments:
Creates and raises an exception with the specified name, reason, and arguments.

+ (void)raise:(NSString *)name format:(NSString *)format arguments:(va_list)argList

Parameters

name
The name of the exception.

format
A human-readable message string (that is, the exception reason) with conversion specifications
for the variable arguments in argList.

argList
Variable information to be inserted into the formatted exception reason (in the manner of
vprintf).

Discussion
The user-defined dictionary of the generated object is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ raise:format: (page 355)
– raise (page 358)

Declared In
NSException.h

356 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

Instance Methods

callStackReturnAddresses
Returns the call return addresses related to a raised exception.

- (NSArray *)callStackReturnAddresses

Return Value
An array of NSNumber objects encapsulating NSUInteger values. Each value is a call frame return
address. The array of stack frames starts at the point at which the exception was first raised, with the
first items being the most recent stack frames.

Discussion
NSException subclasses posing as the NSException class or subclasses or other API elements that
interfere with the exception-raising mechanism may not get this information.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSException.h

initWithName:reason:userInfo:
Initializes and returns a newly allocated exception object.

- (id)initWithName:(NSString *)name reason:(NSString *)reason userInfo:(NSDictionary
*)userInfo

Parameters

name
The name of the exception.

reason
A human-readable message string summarizing the reason for the exception.

userInfo
A dictionary containing user-defined information relating to the exception

Return Value
The created NSException object or nil if the object couldn't be created.

Discussion
This is the designated initializer.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 355)

Declared In
NSException.h

Instance Methods 357
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

name
Returns an NSString object used to uniquely identify the receiver.

- (NSString *)name

Availability
Available in iPhone OS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 355)
– initWithName:reason:userInfo: (page 357)

Declared In
NSException.h

raise
Raises the receiver, causing program flow to jump to the local exception handler.

- (void)raise

Discussion
All other methods that raise an exception invoke this method, so set a breakpoint here if you are
debugging exceptions. When there are no exception handlers in the exception handler stack, unless
the exception is raised during the posting of a notification, this method calls the uncaught exception
handler, in which last-minute logging can be performed. The program then terminates, regardless of
the actions taken by the uncaught exception handler.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ raise:format: (page 355)
+ raise:format:arguments: (page 356)

Declared In
NSException.h

reason
Returns an NSString object containing a “human-readable” reason for the receiver.

- (NSString *)reason

Availability
Available in iPhone OS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 355)
– initWithName:reason:userInfo: (page 357)

358 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

Declared In
NSException.h

userInfo
Returns an NSDictionary object containing application-specific data pertaining to the receiver.

- (NSDictionary *)userInfo

Discussion
Returns nil if no application-specific data exists. As an example, if a method’s return value caused
the exception to be raised, the return value might be available to the exception handler through this
method.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ exceptionWithName:reason:userInfo: (page 355)
– initWithName:reason:userInfo: (page 357)

Declared In
NSException.h

Constants

The string constants for exceptions are listed and described in the "Constants" (page 1413) chapter.

Constants 359
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

360 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 3

NSException Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSFileHandle.h

Companion guide: Low-Level File Management Programming Topics

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSFileHandle objects provide an object-oriented wrapper for accessing open files or communications
channels.

Overview 361
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Tasks

Getting a File Handle

+ fileHandleForReadingAtPath: (page 364)
Returns a file handle initialized for reading the file, device, or named socket at the specified
path.

+ fileHandleForWritingAtPath: (page 365)
Returns a file handle initialized for writing to the file, device, or named socket at the specified
path.

+ fileHandleForUpdatingAtPath: (page 364)
Returns a file handle initialized for reading and writing to the file, device, or named socket at
the specified path.

+ fileHandleWithStandardError (page 366)
Returns the file handle associated with the standard error file.

+ fileHandleWithStandardInput (page 366)
Returns the file handle associated with the standard input file.

+ fileHandleWithStandardOutput (page 367)
Returns the file handle associated with the standard output file.

+ fileHandleWithNullDevice (page 365)
Returns a file handle associated with a null device.

Creating a File Handle

– initWithFileDescriptor: (page 370)
Returns a file handle initialized with a file descriptor.

– initWithFileDescriptor:closeOnDealloc: (page 370)
Returns a file handle initialized with a file handle, using a specified deallocation policy.

Getting a File Descriptor

– fileDescriptor (page 369)
Returns the file descriptor associated with the receiver.

Reading from a File Handle

– availableData (page 368)
Returns the data available through the receiver.

– readDataToEndOfFile (page 372)
Returns the data available through the receiver up to the end of file or maximum number of
bytes.

– readDataOfLength: (page 371)
Reads data up to a specified number of bytes from the receiver.

362 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Writing to a File Handle

– writeData: (page 377)
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

Communicating Asynchronously

– acceptConnectionInBackgroundAndNotify (page 367)
Accepts a socket connection (for stream-type sockets only) in the background and creates a
file handle for the “near” (client) end of the communications channel.

– acceptConnectionInBackgroundAndNotifyForModes: (page 368)
Accepts a socket connection (for stream-type sockets only) in the background and creates a
file handle for the “near” (client) end of the communications channel.

– readInBackgroundAndNotify (page 372)
Reads from the file or communications channel in the background and posts a notification
when finished.

– readInBackgroundAndNotifyForModes: (page 373)
Reads from the file or communications channel in the background and posts a notification
when finished.

– readToEndOfFileInBackgroundAndNotify (page 373)
Reads to the end of file from the file or communications channel in the background and posts
a notification when finished.

– readToEndOfFileInBackgroundAndNotifyForModes: (page 374)
Reads to the end of file from the file or communications channel in the background and posts
a notification when finished.

– waitForDataInBackgroundAndNotify (page 376)
Checks to see if data is available in a background thread.

– waitForDataInBackgroundAndNotifyForModes: (page 376)
Checks to see if data is available in a background thread.

Seeking Within a File

– offsetInFile (page 371)
Returns the position of the file pointer within the file represented by the receiver.

– seekToEndOfFile (page 375)
Puts the file pointer at the end of the file referenced by the receiver and returns the new file
offset.

– seekToFileOffset: (page 375)
Moves the file pointer to the specified offset within the file represented by the receiver.

Operating on a File

– closeFile (page 369)
Disallows further access to the represented file or communications channel and signals end of
file on communications channels that permit writing.

Tasks 363
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

– synchronizeFile (page 375)
Causes all in-memory data and attributes of the file represented by the receiver to be written
to permanent storage.

– truncateFileAtOffset: (page 376)
Truncates or extends the file represented by the receiver to a specified offset within the file
and puts the file pointer at that position.

Class Methods

fileHandleForReadingAtPath:
Returns a file handle initialized for reading the file, device, or named socket at the specified path.

+ (id)fileHandleForReadingAtPath:(NSString *)path

Parameters

path
The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to NSFileHandle
read... messages.

Availability
Available in iPhone OS 2.0 and later.

See Also
– availableData (page 368)
– initWithFileDescriptor: (page 370)
– readDataOfLength: (page 371)
– readDataToEndOfFile (page 372)

Declared In
NSFileHandle.h

fileHandleForUpdatingAtPath:
Returns a file handle initialized for reading and writing to the file, device, or named socket at the
specified path.

+ (id)fileHandleForUpdatingAtPath:(NSString *)path

Parameters

path
The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

364 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Discussion
The file pointer is set to the beginning of the file. The returned object responds to both NSFileHandle
read... messages and writeData: (page 377).

Availability
Available in iPhone OS 2.0 and later.

See Also
– availableData (page 368)
– initWithFileDescriptor: (page 370)
– readDataOfLength: (page 371)
– readDataToEndOfFile (page 372)

Declared In
NSFileHandle.h

fileHandleForWritingAtPath:
Returns a file handle initialized for writing to the file, device, or named socket at the specified path.

+ (id)fileHandleForWritingAtPath:(NSString *)path

Parameters

path
The path to the file, device, or named socket to access.

Return Value
The initialized file handle, or nil if no file exists at path.

Discussion
The file pointer is set to the beginning of the file. The returned object responds only to
writeData: (page 377).

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithFileDescriptor: (page 370)

Declared In
NSFileHandle.h

fileHandleWithNullDevice
Returns a file handle associated with a null device.

+ (id)fileHandleWithNullDevice

Return Value
A file handle associated with a null device.

Class Methods 365
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Discussion
You can use null-device file handles as “placeholders” for standard-device file handles or in collection
objects to avoid exceptions and other errors resulting from messages being sent to invalid file handles.
Read messages sent to a null-device file handle return an end-of-file indicator (an empty NSData
object) rather than raise an exception. Write messages are no-ops, whereas fileDescriptor (page
369) returns an illegal value. Other methods are no-ops or return “sensible” values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithFileDescriptor: (page 370)

Declared In
NSFileHandle.h

fileHandleWithStandardError
Returns the file handle associated with the standard error file.

+ (id)fileHandleWithStandardError

Return Value
The shared file handle associated with the standard error file.

Discussion
Conventionally this is a terminal device to which error messages are sent. There is one standard error
file handle per process; it is a shared instance.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ fileHandleWithNullDevice (page 365)
– initWithFileDescriptor: (page 370)

Declared In
NSFileHandle.h

fileHandleWithStandardInput
Returns the file handle associated with the standard input file.

+ (id)fileHandleWithStandardInput

Return Value
The shared file handle associated with the standard input file.

Discussion
Conventionally this is a terminal device on which the user enters a stream of data. There is one
standard input file handle per process; it is a shared instance.

Availability
Available in iPhone OS 2.0 and later.

366 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

See Also
+ fileHandleWithNullDevice (page 365)
– initWithFileDescriptor: (page 370)

Declared In
NSFileHandle.h

fileHandleWithStandardOutput
Returns the file handle associated with the standard output file.

+ (id)fileHandleWithStandardOutput

Return Value
The shared file handle associated with the standard output file.

Discussion
Conventionally this is a terminal device that receives a stream of data from a program. There is one
standard output file handle per process; it is a shared instance.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ fileHandleWithNullDevice (page 365)
– initWithFileDescriptor: (page 370)

Declared In
NSFileHandle.h

Instance Methods

acceptConnectionInBackgroundAndNotify
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotify

Discussion
This method is asynchronous. In a separate “safe” thread it accepts a connection, creates a file handle
for the other end of the connection, and returns that object to the client by posting an
NSFileHandleConnectionAcceptedNotification (page 379) in the run loop of the client. The
notification includes as data a userInfodictionary containing the created NSFileHandle object; access
this object using the NSFileHandleNotificationFileHandleItem key.

The receiver must be created by an initWithFileDescriptor: (page 370) message that takes as an
argument a stream-type socket created by the appropriate system routine. The object that will write
data to the returned file handle must add itself as an observer of
NSFileHandleConnectionAcceptedNotification (page 379).

Instance Methods 367
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Note that this method does not continue to listen for connection requests after it posts
NSFileHandleConnectionAcceptedNotification. If you want to keep getting notified, you need
to call acceptConnectionInBackgroundAndNotify again in your observer method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 690)
(NSNotificationQueue)
– readInBackgroundAndNotify (page 372)
– readToEndOfFileInBackgroundAndNotify (page 373)

Declared In
NSFileHandle.h

acceptConnectionInBackgroundAndNotifyForModes:
Accepts a socket connection (for stream-type sockets only) in the background and creates a file handle
for the “near” (client) end of the communications channel.

- (void)acceptConnectionInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters

modes
The runloop modes in which the connection accepted notification can be posted.

Discussion
See acceptConnectionInBackgroundAndNotify (page 367) for details of how this method operates.
This method differs from acceptConnectionInBackgroundAndNotify (page 367) in that modes
specifies the run-loop mode (or modes) in which
NSFileHandleConnectionAcceptedNotification (page 379) can be posted.

Availability
Available in iPhone OS 2.0 and later.

See Also
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 690)
(NSNotificationQueue)
– readInBackgroundAndNotifyForModes: (page 373)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 374)

Declared In
NSFileHandle.h

availableData
Returns the data available through the receiver.

- (NSData *)availableData

Return Value
The data currently available through the receiver.

368 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Discussion
If the receiver is a file, returns the data obtained by reading the file from the file pointer to the end of
the file. If the receiver is a communications channel, reads up to a buffer of data and returns it; if no
data is available, the method blocks. Returns an empty data object if the end of file is reached. Raises
NSFileHandleOperationException if attempts to determine file-handle type fail or if attempts to
read from the file or channel fail.

Availability
Available in iPhone OS 2.0 and later.

See Also
– readDataOfLength: (page 371)
– readDataToEndOfFile (page 372)

Declared In
NSFileHandle.h

closeFile
Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing.

- (void)closeFile

Discussion
The file or communications channel is available for other uses after the file handle is closed. Further
read and write messages sent to a file handle to which closeFile has been sent raises an exception.

Sending closeFile to a file handle does not cause its deallocation. Deallocation of a file handle deletes
its descriptor and closes the represented file or channel only if the handle was created using
initWithFileDescriptor:closeOnDealloc: (page 370) with YES as the flag argument.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

fileDescriptor
Returns the file descriptor associated with the receiver.

- (int)fileDescriptor

Return Value
The POSIX file descriptor associated with the receiver.

Discussion
You can send this message to file handles originating from both file descriptors and file handles and
receive a valid file descriptor so long as the file handle is open. If the file handle has been closed by
sending it closeFile (page 369), this method raises an exception.

Instance Methods 369
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithFileDescriptor: (page 370)

Declared In
NSFileHandle.h

initWithFileDescriptor:
Returns a file handle initialized with a file descriptor.

- (id)initWithFileDescriptor:(int)fileDescriptor

Parameters

fileDescriptor
The POSIX file descriptor with which to initialize the file handle.

Return Value
A file handle initialized with fileDescriptor.

Discussion
You can create a file handle for a socket by using the result of a socket call as fileDescriptor.

Special Considerations

The object creating a file handle using this method owns fileDescriptor and is responsible for its
disposition.

Availability
Available in iPhone OS 2.0 and later.

See Also
– closeFile (page 369)

Declared In
NSFileHandle.h

initWithFileDescriptor:closeOnDealloc:
Returns a file handle initialized with a file handle, using a specified deallocation policy.

- (id)initWithFileDescriptor:(int)fileDescriptor closeOnDealloc:(BOOL)flag

Parameters

fileDescriptor
The POSIX file descriptor with which to initialize the file handle.

flag
YES if the file descriptor should be closed when the receiver is deallocated, otherwise NO.

Return Value
A file handle initialized with fileDescriptor with a deallocation policy specified by flag.

370 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Special Considerations

If flag is NO, the object creating a file handle using this method owns fileDescriptor and is
responsible for its disposition.

Availability
Available in iPhone OS 2.0 and later.

See Also
– closeFile (page 369)

Declared In
NSFileHandle.h

offsetInFile
Returns the position of the file pointer within the file represented by the receiver.

- (unsigned long long)offsetInFile

Return Value
The position of the file pointer within the file represented by the receiver.

Special Considerations

Raises an exception if the message is sent to a file handle representing a pipe or socket or if the file
descriptor is closed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– seekToEndOfFile (page 375)
– seekToFileOffset: (page 375)

Declared In
NSFileHandle.h

readDataOfLength:
Reads data up to a specified number of bytes from the receiver.

- (NSData *)readDataOfLength:(NSUInteger)length

Parameters

length
The number of bytes to read from the receiver.

Return Value
The data available through the receiver up to a maximum of length bytes.

Discussion
If the receiver is a file, returns the data obtained by reading from the file pointer to length or to the
end of the file, whichever comes first. If the receiver is a communications channel, the method reads
data from the channel up to length. Returns an empty NSData object if the file is positioned at the

Instance Methods 371
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

end of the file or if an end-of-file indicator is returned on a communications channel. Raises
NSFileHandleOperationException if attempts to determine file-handle type fail or if attempts to
read from the file or channel fail.

Availability
Available in iPhone OS 2.0 and later.

See Also
– availableData (page 368)
– readDataToEndOfFile (page 372)

Declared In
NSFileHandle.h

readDataToEndOfFile
Returns the data available through the receiver up to the end of file or maximum number of bytes.

- (NSData *)readDataToEndOfFile

Return Value
The data available through the receiver up to UINT_MAX bytes (the maximum value for unsigned
integers) or, if a communications channel, until an end-of-file indicator is returned.

Discussion
This method invokes readDataOfLength: (page 371) as part of its implementation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– availableData (page 368)

Declared In
NSFileHandle.h

readInBackgroundAndNotify
Reads from the file or communications channel in the background and posts a notification when
finished.

- (void)readInBackgroundAndNotify

Discussion
This method performs an asynchronous availableData (page 368) operation on a file or
communications channel and posts an NSFileHandleReadCompletionNotification (page 380) to
the client process’s run loop.

The length of the data is limited to the buffer size of the underlying operating system. The notification
includes a userInfo dictionary that contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

372 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadCompletionNotification (page 380). In communication via stream-type sockets,
the receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 379).

Note that this method does not cause a continuous stream of notifications to be sent. If you wish to
keep getting notified, you’ll also need to call readInBackgroundAndNotify in your observer method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 367)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 374)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 690)
(NSNotificationQueue)

Declared In
NSFileHandle.h

readInBackgroundAndNotifyForModes:
Reads from the file or communications channel in the background and posts a notification when
finished.

- (void)readInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters

modes
The runloop modes in which the read completion notification can be posted.

Discussion
See readInBackgroundAndNotify (page 372) for details of how this method operates. This method
differs from readInBackgroundAndNotify (page 372) in that modes specifies the run-loop mode (or
modes) in which NSFileHandleReadCompletionNotification (page 380) can be posted.

Availability
Available in iPhone OS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 368)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 690)
(NSNotificationQueue)

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotify
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

- (void)readToEndOfFileInBackgroundAndNotify

Instance Methods 373
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Discussion
This method performs an asynchronous readToEndOfFile operation on a file or communications
channel and posts an NSFileHandleReadToEndOfFileCompletionNotification (page 380) to the
client process’s run loop.

The notification includes a userInfo dictionary that contains the data read; access this object using
the NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadToEndOfFileCompletionNotification (page 380). In communication via
stream-type sockets, the receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification (page 379).

Availability
Available in iPhone OS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotify (page 367)
– readToEndOfFileInBackgroundAndNotifyForModes: (page 374)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 690)
(NSNotificationQueue)

Declared In
NSFileHandle.h

readToEndOfFileInBackgroundAndNotifyForModes:
Reads to the end of file from the file or communications channel in the background and posts a
notification when finished.

- (void)readToEndOfFileInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters

modes
The runloop modes in which the read completion notification can be posted.

Discussion
See readToEndOfFileInBackgroundAndNotify (page 373) for details of this method's operation. The
method differs from readToEndOfFileInBackgroundAndNotify (page 373) in that modes specifies
the run-loop mode (or modes) in which
NSFileHandleReadToEndOfFileCompletionNotification (page 380) can be posted.

Availability
Available in iPhone OS 2.0 and later.

See Also
– acceptConnectionInBackgroundAndNotifyForModes: (page 368)
– enqueueNotification:postingStyle:coalesceMask:forModes: (page 690)
(NSNotificationQueue)

Declared In
NSFileHandle.h

374 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

seekToEndOfFile
Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset.

- (unsigned long long)seekToEndOfFile

Return Value
The file offset with the file pointer at the end of the file. This is therefore equal to the size of the file.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket or
if the file descriptor is closed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– offsetInFile (page 371)

Declared In
NSFileHandle.h

seekToFileOffset:
Moves the file pointer to the specified offset within the file represented by the receiver.

- (void)seekToFileOffset:(unsigned long long)offset

Parameters

offset
The offset to seek to.

Special Considerations

Raises an exception if the message is sent to an NSFileHandle object representing a pipe or socket,
if the file descriptor is closed, or if any other error occurs in seeking.

Availability
Available in iPhone OS 2.0 and later.

See Also
– offsetInFile (page 371)

Declared In
NSFileHandle.h

synchronizeFile
Causes all in-memory data and attributes of the file represented by the receiver to be written to
permanent storage.

- (void)synchronizeFile

Instance Methods 375
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Discussion
This method should be invoked by programs that require the file to always be in a known state. An
invocation of this method does not return until memory is flushed.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

truncateFileAtOffset:
Truncates or extends the file represented by the receiver to a specified offset within the file and puts
the file pointer at that position.

- (void)truncateFileAtOffset:(unsigned long long)offset

Parameters

offset
The offset within the file that will mark the new end of the file.

Discussion
If the file is extended (if offset is beyond the current end of file), the added characters are null bytes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotify
Checks to see if data is available in a background thread.

- (void)waitForDataInBackgroundAndNotify

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 379). After the notification has been posted, the
thread is terminated.

Availability
Available in iPhone OS 2.0 and later.

See Also
– waitForDataInBackgroundAndNotifyForModes: (page 376)

Declared In
NSFileHandle.h

waitForDataInBackgroundAndNotifyForModes:
Checks to see if data is available in a background thread.

376 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

- (void)waitForDataInBackgroundAndNotifyForModes:(NSArray *)modes

Parameters

modes
The runloop modes in which the data available notification can be posted.

Discussion
When the data becomes available, the thread notifies all observers with
NSFileHandleDataAvailableNotification (page 379). After the notification has been posted, the
thread is terminated. This method differs from waitForDataInBackgroundAndNotify (page 376) in
that modes specifies the run-loop mode (or modes) in which
NSFileHandleDataAvailableNotification (page 379) can be posted.

Availability
Available in iPhone OS 2.0 and later.

See Also
– waitForDataInBackgroundAndNotify (page 376)

Declared In
NSFileHandle.h

writeData:
Synchronously writes data to the file, device, pipe, or socket represented by the receiver.

- (void)writeData:(NSData *)data

Parameters

data
The data to be written.

Discussion
If the receiver is a file, writing takes place at the file pointer’s current position. After it writes the data,
the method advances the file pointer by the number of bytes written. Raises an exception if the file
descriptor is closed or is not valid, if the receiver represents an unconnected pipe or socket endpoint,
if no free space is left on the file system, or if any other writing error occurs.

Availability
Available in iPhone OS 2.0 and later.

See Also
– availableData (page 368)
– readDataOfLength: (page 371)
– readDataToEndOfFile (page 372)

Declared In
NSFileHandle.h

Instance Methods 377
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Constants

Keys for Notification UserInfo Dictionary
Strings that are used as keys in a userinfo dictionary in a file handle notification.

NSString * const NSFileHandleNotificationFileHandleItem;
NSString * const NSFileHandleNotificationDataItem;

Constants
NSFileHandleNotificationFileHandleItem

A key in the userinfo dictionary in a NSFileHandleConnectionAcceptedNotification (page 379)
notification.

The corresponding value is the NSFileHandle object representing the “near” end of a socket
connection.

Available in iPhone OS 2.0 and later.

Declared in NSFileHandle.h

NSFileHandleNotificationDataItem
A key in the userinfo dictionary in a NSFileHandleReadCompletionNotification (page 380) and
NSFileHandleReadToEndOfFileCompletionNotification (page 380).

The corresponding value is an NSData object containing the available data read from a socket
connection.

Available in iPhone OS 2.0 and later.

Declared in NSFileHandle.h

Declared In
NSFileHandle.h

Exception Names
Constant that defines the name of a file operation exception.

extern NSString *NSFileHandleOperationException;

Constants
NSFileHandleOperationException

Raised by NSFileHandle if attempts to determine file-handle type fail or if attempts to read
from a file or channel fail.

Available in iPhone OS 2.0 and later.

Declared in NSFileHandle.h

Declared In
NSFileHandle.h

Unused Constant
Constant that is currently unused.

378 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

NSString * const NSFileHandleNotificationMonitorModes;

Constants
NSFileHandleNotificationMonitorModes

Currently unused.

Available in iPhone OS 2.0 and later.

Declared in NSFileHandle.h

Declared In
NSFileHandle.h

Notifications

NSFileHandle posts several notifications related to asynchronous background I/O operations. They
are set to post when the run loop of the thread that started the asynchronous operation is idle.

NSFileHandleConnectionAcceptedNotification
This notification is posted when an NSFileHandle object establishes a socket connection between two
processes, creates an NSFileHandle object for one end of the connection, and makes this object
available to observers by putting it in the userInfo dictionary. To cause the posting of this notification,
you must send either acceptConnectionInBackgroundAndNotify (page 367) or
acceptConnectionInBackgroundAndNotifyForModes: (page 368) to an NSFileHandle object
representing a server stream-type socket.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

The NSFileHandle object representing the “near”
end of a socket connection

NSFileHandleNotificationFileHandleItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

NSFileHandleDataAvailableNotification
This notification is posted when the background thread determines that data is currently available
for reading in a file or at a communications channel. The observers can then issue the appropriate
messages to begin reading the data. To cause the posting of this notification, you must send either
waitForDataInBackgroundAndNotify (page 376) orwaitForDataInBackgroundAndNotifyForModes:
(page 376) to an appropriate NSFileHandle object.

Notifications 379
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

The notification object is the NSFileHandle object that sent the notification. This notification does not
contain a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

NSFileHandleReadCompletionNotification
This notification is posted when the background thread reads the data currently available in a file or
at a communications channel. It makes the data available to observers by putting it in the userInfo
dictionary. To cause the posting of this notification, you must send either readInBackgroundAndNotify
(page 372) or readInBackgroundAndNotifyForModes: (page 373) to an appropriate NSFileHandle
object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

An NSData object containing the available data
read from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

NSFileHandleReadToEndOfFileCompletionNotification
This notification is posted when the background thread reads all data in the file or, if a communications
channel, until the other process signals the end of data. It makes the data available to observers by
putting it in the userInfo dictionary. To cause the posting of this notification, you must send either
readToEndOfFileInBackgroundAndNotify (page 373) or
readToEndOfFileInBackgroundAndNotifyForModes: (page 374) to an appropriate NSFileHandle
object.

The notification object is the NSFileHandle object that sent the notification. The userInfo dictionary
contains the following information:

ValueKey

An NSData object containing the available data
read from a socket connection

NSFileHandleNotificationDataItem

An NSNumber object containing an integer
representing the UNIX-type error which occurred

@"NSFileHandleError"

380 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

Notifications 381
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

382 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 4

NSFileHandle Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSFileManager.h

Companion guide: Low-Level File Management Programming Topics

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSFileManager enables you to perform many generic file-system operations and insulates an
application from the underlying file system.

Overview 383
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Tasks

Getting the Default Manager

+ defaultManager (page 388)
Returns the default NSFileManager object for the file system.

Moving an Item

– fileManager:shouldMoveItemAtPath:toPath: (page 414) delegate method
An NSFileManager object sends this message immediately before attempting to move to a
given path.

– moveItemAtPath:toPath:error: (page 408)
Moves the directory or file specified by a given path to a different location in the file system
identified by another path.

– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 417) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to move to
a given path.

Copying an Item

– fileManager:shouldCopyItemAtPath:toPath: (page 413) delegate method
An NSFileManager object sends this message immediately before attempting to copy to a given
path.

– copyItemAtPath:toPath:error: (page 393)
Copies the directory or file specified in a given path to a different location in the file system
identified by another path.

– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 416) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to copy to
a given path.

Removing an Item

– fileManager:shouldRemoveItemAtPath: (page 418) delegate method
An NSFileManager object sends this message immediately before attempting to copy to a given
path.

– removeItemAtPath:error: (page 409)
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in
the directory) identified by a given path.

– fileManager:shouldProceedAfterError:removingItemAtPath: (page 417) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to delete a
given path.

384 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Creating an Item

– createDirectoryAtPath:attributes: (page 394)
Creates a directory (without contents) at a given path with given attributes.

– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 394)
Creates a directory with given attributes at a specified path.

– createFileAtPath:contents:attributes: (page 395)
Creates a file at a given path that has given attributes and contents.

Linking an Item

– fileManager:shouldLinkItemAtPath:toPath: (page 413) delegate method
An NSFileManager object sends this message immediately before attempting to link to a given
path.

– linkItemAtPath:toPath:error: (page 407)
Creates a link from a source to a destination.

– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 416) delegate method
An NSFileManager object sends this message if an error occurs during an attempt to link to a
given path.

Symbolic-Link Operations

– createSymbolicLinkAtPath:pathContent: (page 396)
Creates a symbolic link identified by a given path that refers to a given location.

– createSymbolicLinkAtPath:withDestinationPath:error: (page 396)
Creates a symbolic link identified by a given path that refers to a given location.

– pathContentOfSymbolicLinkAtPath: (page 408)
Returns the path of the directory or file that a symbolic link at a given path refers to.

– destinationOfSymbolicLinkAtPath:error: (page 398)
Returns an NSString object containing the path of the item pointed at by the symlink specified
by a given path.

Handling File Operations
The methods described in this section are methods to be implemented by the callback handler passed
to several methods of NSFileManager.

– fileManager:shouldProceedAfterError: (page 414) delegate method
An NSFileManager object sends this message to its handler for each error it encounters when
copying, moving, removing, or linking files or directories.

– fileManager:willProcessPath: (page 419) delegate method
An NSFileManager object sends this message to a handler immediately before attempting to
move, copy, rename, or delete, or before attempting to link to a given path.

Tasks 385
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Getting and Comparing File Contents

– contentsAtPath: (page 391)
Returns as an NSData object the contents of the file at at given path.

– contentsEqualAtPath:andPath: (page 392)
Returns a Boolean value that indicates whether the files or directories in specified paths have
the same contents.

Discovering Directory Contents

– directoryContentsAtPath: (page 398)
Returns an array of NSString objects identifying the directories and files (including symbolic
links) contained in a given directory.

– contentsOfDirectoryAtPath:error: (page 392)
Returns an array of NSString objects identifying the directories and files (including symbolic
links) contained in a given directory.

– enumeratorAtPath: (page 400)
Creates and returns an NSDirectoryEnumerator object that enumerates the contents of the
directory at a given path.

– subpathsAtPath: (page 411)
Returns an array that contains (as NSString objects) the contents of the directory identified
by a given path.

– subpathsOfDirectoryAtPath:error: (page 412)
Returns an array that contains the filenames of the items in the directory specified by a given
path and all its subdirectories recursively.

Determining Access to Files

– fileExistsAtPath: (page 402)
Returns a Boolean value that indicates whether a file exists at a given path.

– fileExistsAtPath:isDirectory: (page 403)
Returns a Boolean value that indicates whether a specified file exists.

– isReadableFileAtPath: (page 406)
Returns a Boolean value that indicates whether the invoking object appears able to read a
specified file.

– isWritableFileAtPath: (page 406)
Returns a Boolean value that indicates whether the invoking object appears able to write to a
specified file.

– isExecutableFileAtPath: (page 405)
Returns a Boolean value that indicates whether the operating system appears able to execute
a specified file.

– isDeletableFileAtPath: (page 405)
Returns a Boolean value that indicates whether the invoking object appears able to delete a
specified file.

386 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Getting and Setting Attributes

– componentsToDisplayForPath: (page 391)
Returns an array of NSString objects representing the user-visible components of a given path.

– displayNameAtPath: (page 399)
Returns the name of the file or directory at a given path in a localized form appropriate for
presentation to the user.

– fileAttributesAtPath:traverseLink: (page 401)
Returns a dictionary that describes the POSIX attributes of the file specified at a given.

– attributesOfItemAtPath:error: (page 389)
An NSDictionary object containing the attributes of the item at a given path.

– fileSystemAttributesAtPath: (page 403)
Returns a dictionary that describes the attributes of the mounted file system on which a given
path resides.

– attributesOfFileSystemForPath:error: (page 388)
Returns a dictionary that describes the attributes of the mounted file system on which a given
path resides.

– changeFileAttributes:atPath: (page 390)
Changes the attributes of a given file or directory.

– setAttributes:ofItemAtPath:error: (page 409)
Sets the attributes of a given file or directory.

Getting Representations of File Paths

– fileSystemRepresentationWithPath: (page 404)
Returns a C-string representation of a given path that properly encodes Unicode strings for
use by the file system.

– stringWithFileSystemRepresentation:length: (page 411)
Returns an NSString object converted from the C-string representation of a pathname in the
current file system.

Managing the Delegate

– setDelegate: (page 410)
Sets the delegate for the receiver.

– delegate (page 398)
Returns the delegate for the receiver.

Managing the Current Directory

– changeCurrentDirectoryPath: (page 389)
Changes the path of the current directory for the current process to a given path.

– currentDirectoryPath (page 397)
Returns the path of the program’s current directory.

Tasks 387
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Class Methods

defaultManager
Returns the default NSFileManager object for the file system.

+ (NSFileManager *)defaultManager

Return Value
The default NSFileManager object for the file system.

Discussion
You invoke all NSFileManager instance methods with this object as the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

Instance Methods

attributesOfFileSystemForPath:error:
Returns a dictionary that describes the attributes of the mounted file system on which a given path
resides.

- (NSDictionary *)attributesOfFileSystemForPath:(NSString *)patherror:(NSError
**)error

Parameters

path
Any pathname within the mounted file system.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
An NSDictionary object that describes the attributes of the mounted file system on which path
resides. See “File-System Attribute Keys” (page 424) for a description of the keys available in the
dictionary.

Discussion
This method does not traverse an initial symbolic link.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileSystemAttributesAtPath: (page 403)

388 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

– fileAttributesAtPath:traverseLink: (page 401)
– changeFileAttributes:atPath: (page 390)

Declared In
NSFileManager.h

attributesOfItemAtPath:error:
An NSDictionary object containing the attributes of the item at a given path.

- (NSDictionary *)attributesOfItemAtPath:(NSString *)patherror:(NSError **)error

Parameters

path
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
An NSDictionary object that describes the attributes (file, directory, symlink, and so on) of the file
specified by path. The keys in the dictionary are described in “File Attribute Keys” (page 419).

Discussion
This method does not traverse an initial symbolic link.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileAttributesAtPath:traverseLink: (page 401)
– changeFileAttributes:atPath: (page 390)

Declared In
NSFileManager.h

changeCurrentDirectoryPath:
Changes the path of the current directory for the current process to a given path.

- (BOOL)changeCurrentDirectoryPath:(NSString *)path

Parameters

path
The path of the directory to which to change.

Return Value
YES if successful, otherwise NO.

Discussion
All relative pathnames refer implicitly to the current working directory. The current working directory
is stored per process.

Instance Methods 389
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– currentDirectoryPath (page 397)
– fileExistsAtPath:isDirectory: (page 403)
– directoryContentsAtPath: (page 398)
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 394)
– createDirectoryAtPath:attributes: (page 394)

Declared In
NSFileManager.h

changeFileAttributes:atPath:
Changes the attributes of a given file or directory.

- (BOOL)changeFileAttributes:(NSDictionary *)attributes atPath:(NSString *)path

Parameters

attributes
A dictionary containing as keys the attributes to set for path and as values the corresponding
value for the attribute. You can set following: NSFileBusy, NSFileCreationDate,
NSFileExtensionHidden, NSFileGroupOwnerAccountID, NSFileGroupOwnerAccountName,
NSFileHFSCreatorCode, NSFileHFSTypeCode, NSFileImmutable, NSFileModificationDate,
NSFileOwnerAccountID, NSFileOwnerAccountName, NSFilePosixPermissions. You can
change single attributes or any combination of attributes; you need not specify keys for all
attributes.

For the NSFilePosixPermissions value, specify a file mode from the OR’d permission bit
masks defined in sys/stat.h. See the man page for the chmod function (man 2 chmod) for an
explanation.

path
A path to a file or directory.

Return Value
YES if all changes succeed. If any change fails, returns NO, but it is undefined whether any changes
actually occurred.

Discussion
As in the POSIX standard, the application either must own the file or directory or must be running
as superuser for attribute changes to take effect. The method attempts to make all changes specified
in attributes and ignores any rejection of an attempted modification.

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern. NSFileHFSCreatorCode and NSFileHFSTypeCode will only be heeded
when path specifies a file.

Special Considerations

On Mac OS X v10.5 and later, use setAttributes:ofItemAtPath:error: (page 409) instead.

Availability
Available in iPhone OS 2.0 and later.

390 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

See Also
– fileAttributesAtPath:traverseLink: (page 401)
– setAttributes:ofItemAtPath:error: (page 409)

Declared In
NSFileManager.h

componentsToDisplayForPath:
Returns an array of NSString objects representing the user-visible components of a given path.

- (NSArray *)componentsToDisplayForPath:(NSString *)path

Parameters

path
A pathname.

Return Value
An array of NSString objects representing the user-visible (for the Finder, Open and Save panels,
and so on) components of path.

Discussion
These components cannot be used for path operations and are only suitable for display to the user.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

contentsAtPath:
Returns as an NSData object the contents of the file at at given path.

- (NSData *)contentsAtPath:(NSString *)path

Parameters

path
The path of a file.

Return Value
The contents of the file specified by path as an NSData object. If path specifies a directory, or if some
other error occurs, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentsEqualAtPath:andPath: (page 392)
– createFileAtPath:contents:attributes: (page 395)

Declared In
NSFileManager.h

Instance Methods 391
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

contentsEqualAtPath:andPath:
Returns a Boolean value that indicates whether the files or directories in specified paths have the
same contents.

- (BOOL)contentsEqualAtPath:(NSString *)path1 andPath:(NSString *)path2

Parameters

path1
The path of a file or directory to compare with the contents of path2.

path2
The path of a file or directory to compare with the contents of path1.

Return Value
YES if file or directory specified in path1 has the same contents as that specified in path2, otherwise
NO.

Discussion
If path1 and path2 are directories, the contents are the list of files and subdirectories each
contains—contents of subdirectories are also compared. For files, this method checks to see if they’re
the same file, then compares their size, and finally compares their contents. This method does not
traverse symbolic links, but compares the links themselves.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentsAtPath: (page 391)

Declared In
NSFileManager.h

contentsOfDirectoryAtPath:error:
Returns an array of NSString objects identifying the directories and files (including symbolic links)
contained in a given directory.

- (NSArray *)contentsOfDirectoryAtPath:(NSString *)patherror:(NSError **)error

Parameters

path
A path to a directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
An array of NSString objects identifying the directories and files (including symbolic links) contained
in path. Returns an empty array if the directory exists but has no contents. Returns nil if the directory
specified at path does not exist or there is some other error accessing it.

392 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Discussion
The search is shallow and therefore does not return the contents of any subdirectories. This returned
array does not contain strings for the current directory (“.”), parent directory (“..”), or resource forks
(begin with “._”) and does not traverse symbolic links.

Availability
Available in iPhone OS 2.0 and later.

See Also
– directoryContentsAtPath: (page 398)
– currentDirectoryPath (page 397)
– fileExistsAtPath:isDirectory: (page 403)
– enumeratorAtPath: (page 400)
– subpathsAtPath: (page 411)

Declared In
NSFileManager.h

copyItemAtPath:toPath:error:
Copies the directory or file specified in a given path to a different location in the file system identified
by another path.

- (BOOL)copyItemAtPath:(NSString *)srcPathtoPath:(NSString *)dstPatherror:(NSError
**)error

Parameters

srcPath
The path of a file or directory.

dstPath
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
YES if the operation was successful, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileManager:shouldCopyItemAtPath:toPath: (page 413)
– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 416)
– linkItemAtPath:toPath:error: (page 407)
– moveItemAtPath:toPath:error: (page 408)
– removeItemAtPath:error: (page 409)

Declared In
NSFileManager.h

Instance Methods 393
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

createDirectoryAtPath:attributes:
Creates a directory (without contents) at a given path with given attributes.

- (BOOL)createDirectoryAtPath:(NSString *)path attributes:(NSDictionary *)attributes

Parameters

path
The path at which to create the new directory. The directory to be created must not yet exist,
but its parent directory must exist.

attributes
The file attributes for the new directory. The attributes you can set are owner and group
numbers, file permissions, and modification date. If you specify nil for attributes, default
values for these attributes are set (particularly write access for the creator and read access for
others). The “Constants” (page 419) section lists the global constants used as keys in the
attributes dictionary. Some of the keys, such as NSFileHFSCreatorCode and
NSFileHFSTypeCode, do not apply to directories.

Return Value
YES if the operation was successful, otherwise NO.

Special Considerations

On Mac OS X v10.5 and later, use
createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 394) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 394)
– changeCurrentDirectoryPath: (page 389)
– changeFileAttributes:atPath: (page 390)
– createFileAtPath:contents:attributes: (page 395)
– currentDirectoryPath (page 397)

Declared In
NSFileManager.h

createDirectoryAtPath:withIntermediateDirectories:attributes:error:
Creates a directory with given attributes at a specified path.

- (BOOL)createDirectoryAtPath:(NSString
*)pathwithIntermediateDirectories:(BOOL)createIntermediatesattributes:(NSDictionary
*)attributeserror:(NSError **)error

Parameters

path
The path at which to create the new directory. The directory to be created must not yet exist.

createIntermediates
If YES, then the method will also create any necessary intermediate directories; if NO, then the
method will fail if any parent of the directory to be created does not exist.

394 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

attributes
The file attributes for the new directory. The attributes you can set are owner and group
numbers, file permissions, and modification date. If you specify nil for attributes, the
directory is created according to the umask of the process. The “Constants” (page 419) section
lists the global constants used as keys in the attributes dictionary. Some of the keys, such
as NSFileHFSCreatorCode and NSFileHFSTypeCode, do not apply to directories.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
YES if the operation was successful, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– createDirectoryAtPath:attributes: (page 394)
– changeCurrentDirectoryPath: (page 389)
– setAttributes:ofItemAtPath:error: (page 409)
– createFileAtPath:contents:attributes: (page 395)
– currentDirectoryPath (page 397)

Declared In
NSFileManager.h

createFileAtPath:contents:attributes:
Creates a file at a given path that has given attributes and contents.

- (BOOL)createFileAtPath:(NSString *)path contents:(NSData *)contents
attributes:(NSDictionary *)attributes

Parameters

path
The path for the new file.

contents
The contents for the new file.

attributes
A dictionary that describes the attributes of the new file. The file attributes you can set are
owner and group numbers, file permissions, and modification date. “File Attribute Keys” (page
419) lists the global constants used as keys in the attributes dictionary. If you specify nil for
attributes, the file is given a default set of attributes.

Return Value
YES if the operation was successful, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentsAtPath: (page 391)

Instance Methods 395
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

– changeFileAttributes:atPath: (page 390)
– setAttributes:ofItemAtPath:error: (page 409)
– fileAttributesAtPath:traverseLink: (page 401)
– attributesOfItemAtPath:error: (page 389)

Declared In
NSFileManager.h

createSymbolicLinkAtPath:pathContent:
Creates a symbolic link identified by a given path that refers to a given location.

- (BOOL)createSymbolicLinkAtPath:(NSString *)path pathContent:(NSString *)otherPath

Parameters

path
The path for a symbolic link.

otherPath
The path to which path should refer.

Return Value
YES if the operation is successful, otherwise NO. Returns NO if a file, directory, or symbolic link identical
to path already exists.

Discussion
Creates a symbolic link identified by path that refers to the location otherPath in the file system.

Special Considerations

On Mac OS X v10.5 and later, use createSymbolicLinkAtPath:withDestinationPath:error: (page
396) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– createSymbolicLinkAtPath:withDestinationPath:error: (page 396)
– pathContentOfSymbolicLinkAtPath: (page 408)

Declared In
NSFileManager.h

createSymbolicLinkAtPath:withDestinationPath:error:
Creates a symbolic link identified by a given path that refers to a given location.

- (BOOL)createSymbolicLinkAtPath:(NSString *)pathwithDestinationPath:(NSString
*)destPatherror:(NSError **)error

Parameters

path
The path for a symbolic link.

396 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

destPath
The path to which path should refer.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
YES if the operation is successful, otherwise NO. Returns NO if a file, directory, or symbolic link identical
to path already exists.

Discussion
Creates a symbolic link identified by path that refers to the location destPath in the file system.

This method does not traverse an initial symlink.

Availability
Available in iPhone OS 2.0 and later.

See Also
– createSymbolicLinkAtPath:pathContent: (page 396)
– pathContentOfSymbolicLinkAtPath: (page 408)

Declared In
NSFileManager.h

currentDirectoryPath
Returns the path of the program’s current directory.

- (NSString *)currentDirectoryPath

Return Value
The path of the program’s current directory. If the program’s current working directory isn’t accessible,
returns nil.

Discussion
The string returned by this method is initialized to the current working directory; you can change
the working directory by invoking changeCurrentDirectoryPath: (page 389).

Relative pathnames refer implicitly to the current directory. For example, if the current directory is
/tmp, and the relative pathname reports/info.txt is specified, the resulting full pathname is
/tmp/reports/info.txt.

Availability
Available in iPhone OS 2.0 and later.

See Also
– changeCurrentDirectoryPath: (page 389)
– createDirectoryAtPath:attributes: (page 394)
– createDirectoryAtPath:withIntermediateDirectories:attributes:error: (page 394)

Declared In
NSFileManager.h

Instance Methods 397
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

delegate
Returns the delegate for the receiver.

- (id)delegate

Return Value
The delegate for the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

destinationOfSymbolicLinkAtPath:error:
Returns an NSString object containing the path of the item pointed at by the symlink specified by a
given path.

- (NSString *)destinationOfSymbolicLinkAtPath:(NSString *)patherror:(NSError **)error

Parameters

path
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
An NSString object containing the path of the directory or file to which the symbolic link path refers,
or nil upon failure. If the symbolic link is specified as a relative path, that relative path is returned.

Discussion
This method does not traverse an initial symlink.

Availability
Available in iPhone OS 2.0 and later.

See Also
– pathContentOfSymbolicLinkAtPath: (page 408)
– createSymbolicLinkAtPath:withDestinationPath:error: (page 396)

Declared In
NSFileManager.h

directoryContentsAtPath:
Returns an array of NSString objects identifying the directories and files (including symbolic links)
contained in a given directory.

- (NSArray *)directoryContentsAtPath:(NSString *)path

398 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Parameters

path
A path to a directory.

Return Value
An array of NSString objects identifying the directories and files (including symbolic links) contained
in path. Returns an empty array if the directory exists but has no contents. Returns nil if the directory
specified at path does not exist or there is some other error accessing it.

Discussion
The search is shallow and therefore does not return the contents of any subdirectories. This returned
array does not contain strings for the current directory (“.”), parent directory (“..”), or resource forks
(begin with “._”) and does not traverse symbolic links.

Special Considerations

On Mac OS X v10.5 and later, use contentsOfDirectoryAtPath:error: (page 392) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– contentsOfDirectoryAtPath:error: (page 392)
– currentDirectoryPath (page 397)
– fileExistsAtPath:isDirectory: (page 403)
– enumeratorAtPath: (page 400)
– subpathsAtPath: (page 411)

Declared In
NSFileManager.h

displayNameAtPath:
Returns the name of the file or directory at a given path in a localized form appropriate for presentation
to the user.

- (NSString *)displayNameAtPath:(NSString *)path

Parameters

path
The path of a file or directory.

Return Value
The name of the file or directory at path in a localized form appropriate for presentation to the user.
If there is no file or directory at path, or if an error occurs, returns [path lastPathComponent].

Discussion
The returned value is localized where appropriate. For example, if you have selected French as your
preferred language, the following code fragment logs “Bibliothèque”:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSLibraryDirectory,
NSUserDomainMask, YES);
if ([paths count] > 0)
{

NSString *documentsDirectory = [paths objectAtIndex:0];

Instance Methods 399
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *displayNameAtPath = [fileManager

displayNameAtPath:documentsDirectory];
NSLog(@"%@", displayNameAtPath);

}

Availability
Available in iPhone OS 2.0 and later.

See Also
– lastPathComponent (page 1011) (NSString)

Declared In
NSFileManager.h

enumeratorAtPath:
Creates and returns an NSDirectoryEnumerator object that enumerates the contents of the directory
at a given path.

- (NSDirectoryEnumerator *)enumeratorAtPath:(NSString *)path

Parameters

path
The path of the directory to enumerate.

Return Value
An NSDirectoryEnumerator object that enumerates the contents of the directory at path. If path is
a symbolic link, this method evaluates the link and returns an enumerator for the file or directory the
link points to. If the link cannot be evaluated, the method returns nil.

If path is a filename, the method returns an enumerator object that enumerates no files—the first call
to nextObject (page 341) will return nil.

Discussion
Because the enumeration is deep—that is, it lists the contents of all subdirectories—this enumerator
object is useful for performing actions that involve large file-system subtrees. If the method is passed
a directory on which another file system is mounted (a mount point), it traverses the mount point.
This method does not resolve symbolic links encountered in the traversal process, nor does it recurse
through them if they point to a directory.

This code fragment enumerates the subdirectories and files under a user’s Documents directory and
processes all files with an extension of .doc:

NSString *file;
NSString *docsDir = [NSHomeDirectory() stringByAppendingPathComponent:
@"Documents"];
NSDirectoryEnumerator *dirEnum =

[[NSFileManager defaultManager] enumeratorAtPath:docsDir];

while (file = [dirEnum nextObject]) {
if ([[file pathExtension] isEqualToString: @"doc"]) {

[self scanDocument: [docsDir stringByAppendingPathComponent:file]];
}

}

400 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

The NSDirectoryEnumerator class has methods for obtaining the attributes of the existing path and
of the parent directory and for skipping descendants of the existing path.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currentDirectoryPath (page 397)
– fileAttributesAtPath:traverseLink: (page 401)
– directoryContentsAtPath: (page 398)
– subpathsAtPath: (page 411)

Declared In
NSFileManager.h

fileAttributesAtPath:traverseLink:
Returns a dictionary that describes the POSIX attributes of the file specified at a given.

- (NSDictionary *)fileAttributesAtPath:(NSString *)path traverseLink:(BOOL)flag

Parameters

path
A file path.

flag
If path is not a symbolic link, this parameter has no effect. If path is a symbolic link, then:

 ■ If YES the attributes of the linked-to file are returned, or if the link points to a nonexistent
file the method returns nil.

 ■ If NO, the attributes of the symbolic link are returned.

Return Value
An NSDictionary object that describes the POSIX attributes of the file specified at path. The keys in
the dictionary are described in “File Attribute Keys” (page 419). If there is no item at path, returns
nil.

Discussion
This code example gets several attributes of a file and logs them.

NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *path = @"/tmp/List";
NSDictionary *fileAttributes = [fileManager fileAttributesAtPath:path
traverseLink:YES];

if (fileAttributes != nil) {
NSNumber *fileSize;
NSString *fileOwner;
NSDate *fileModDate;
if (fileSize = [fileAttributes objectForKey:NSFileSize]) {

NSLog(@"File size: %qi\n", [fileSize unsignedLongLongValue]);
}
if (fileOwner = [fileAttributes objectForKey:NSFileOwnerAccountName]) {

NSLog(@"Owner: %@\n", fileOwner);
}

Instance Methods 401
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

if (fileModDate = [fileAttributes objectForKey:NSFileModificationDate]) {
NSLog(@"Modification date: %@\n", fileModDate);

}
}
else {

NSLog(@"Path (%@) is invalid.", path);
}

As a convenience, NSDictionary provides a set of methods (declared as a category in
NSFileManager.h) for quickly and efficiently obtaining attribute information from the returned
dictionary: fileGroupOwnerAccountName (page 314), fileModificationDate (page 316),
fileOwnerAccountName (page 317), filePosixPermissions (page 317), fileSize (page 318),
fileSystemFileNumber (page 318), fileSystemNumber (page 319), and fileType (page 319). For
example, you could rewrite the file modification statement in the code example above as:

if (fileModDate = [fileAttributes fileModificationDate])
NSLog(@"Modification date: %@\n", fileModDate);

Special Considerations

On Mac OS X v10.5 and later, use attributesOfItemAtPath:error: (page 389) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– attributesOfItemAtPath:error: (page 389)
– changeFileAttributes:atPath: (page 390)

Declared In
NSFileManager.h

fileExistsAtPath:
Returns a Boolean value that indicates whether a file exists at a given path.

- (BOOL)fileExistsAtPath:(NSString *)path

Parameters

path
The path of a file or directory. If path begins with a tilde (~), it must first be expanded with
stringByExpandingTildeInPath (page 1031), or this method will return NO.

Return Value
YES if a file specified in path exists, otherwise NO. If path specifies a symbolic link, this method
traverses the link and returns YES or NO based on the existence of the file at the link destination.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileExistsAtPath:isDirectory: (page 403)

Declared In
NSFileManager.h

402 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

fileExistsAtPath:isDirectory:
Returns a Boolean value that indicates whether a specified file exists.

- (BOOL)fileExistsAtPath:(NSString *)path isDirectory:(BOOL *)isDirectory

Parameters

path
The path of a file or directory. If path begins with a tilde (~), it must first be expanded with
stringByExpandingTildeInPath (page 1031), or this method will return NO.

isDirectory
Upon return, contains YES if path is a directory or if the final path element is a symbolic link
that points to a directory, otherwise contains NO. If path doesn’t exist, the return value is
undefined. Pass NULL if you do not need this information.

Return Value
YES if there is a file or directory at path, otherwise NO. If path specifies a symbolic link, this method
traverses the link and returns YES or NO based on the existence of the file or directory at the link
destination.

Discussion
If you need to further determine if path is a package, use the NSWorkspace method
isFilePackageAtPath:.

This example gets an array that identifies the fonts in the user's fonts directory:

NSArray *subpaths;
BOOL isDir;

NSArray *paths = NSSearchPathForDirectoriesInDomains
(NSLibraryDirectory, NSUserDomainMask, YES);

if ([paths count] == 1) {

NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *fontPath = [[paths objectAtIndex:0]

stringByAppendingPathComponent:@"Fonts"];

if ([fileManager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir) {
subpaths = [fileManager subpathsAtPath:fontPath];

// ...

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileExistsAtPath: (page 402)

Declared In
NSFileManager.h

fileSystemAttributesAtPath:
Returns a dictionary that describes the attributes of the mounted file system on which a given path
resides.

Instance Methods 403
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

- (NSDictionary *)fileSystemAttributesAtPath:(NSString *)path

Parameters

path
Any pathname within the mounted file system.

Return Value
An NSDictionary object that describes the attributes of the mounted file system on which path
resides. See “File-System Attribute Keys” (page 424) for a description of the keys available in the
dictionary.

Discussion
The following code example checks to see if there’s sufficient space on the file system before adding
a new file to it:

NSData *contents = [myImage TIFFRepresentation];
NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *path = ...;
NSString *fileName = ...;
NSDictionary *fsAttributes =

[fileManager fileSystemAttributesAtPath:path];
if ([[fsAttributes objectForKey:NSFileSystemFreeSize] unsignedLongLongValue]
>

[contents length])
[fileManager createFileAtPath:[path stringByAppendingPathComponent:fileName]

contents:contents attributes:nil];

Special Considerations

On Mac OS X v10.5 and later, use attributesOfFileSystemForPath:error: (page 388) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– attributesOfFileSystemForPath:error: (page 388)
– fileAttributesAtPath:traverseLink: (page 401)
– changeFileAttributes:atPath: (page 390)

Declared In
NSFileManager.h

fileSystemRepresentationWithPath:
Returns a C-string representation of a given path that properly encodes Unicode strings for use by
the file system.

- (const char *)fileSystemRepresentationWithPath:(NSString *)path

Parameters

path
A file path.

Return Value
A C-string representation of path that properly encodes Unicode strings for use by the file system.

404 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Discussion
If you need the C string beyond the scope of your autorelease pool, you must copy it. This method
raises an exception upon error. Use this method if your code calls system routines that expect C-string
path arguments.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringWithFileSystemRepresentation:length: (page 411)

Declared In
NSFileManager.h

isDeletableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to delete a specified
file.

- (BOOL)isDeletableFileAtPath:(NSString *)path

Parameters

path
A file path.

Return Value
YES if the invoking object appears able to delete the file specified in path, otherwise NO. If the file at
path does not exist, this method returns NO.

Discussion
For a directory or file to be able to be deleted, either the parent directory of path must be writable or
its owner must be the same as the owner of the application process. If path is a directory, every item
contained in path must be able to be deleted.

This method does not traverse symbolic links.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

isExecutableFileAtPath:
Returns a Boolean value that indicates whether the operating system appears able to execute a specified
file.

- (BOOL)isExecutableFileAtPath:(NSString *)path

Parameters

path
A file path.

Instance Methods 405
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Return Value
YES if the operating system appears able to execute the file specified in path, otherwise NO. If the file
at path does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed
to the effective user and group IDs, to determine if the file is executable.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

isReadableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to read a specified
file.

- (BOOL)isReadableFileAtPath:(NSString *)path

Parameters

path
A file path.

Return Value
YES if the invoking object appears able to read the file specified in path, otherwise NO. If the file at
path does not exist, this method returns NO.

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed
to the effective user and group IDs, to determine if the file is readable.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

isWritableFileAtPath:
Returns a Boolean value that indicates whether the invoking object appears able to write to a specified
file.

- (BOOL)isWritableFileAtPath:(NSString *)path

Parameters

path
A file path.

Return Value
YES if the invoking object appears able to write to the file specified in path, otherwise NO. If the file
at path does not exist, this method returns NO.

406 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Discussion
This method traverses symbolic links. This method uses the real user ID and group ID, as opposed
to the effective user and group IDs, to determine if the file is writable.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

linkItemAtPath:toPath:error:
Creates a link from a source to a destination.

- (BOOL)linkItemAtPath:(NSString *)srcPathtoPath:(NSString *)dstPatherror:(NSError
**)error

Parameters

srcPath
A path that identifies a source file or directory.

The file, link, or directory specified by srcPath must exist.

dstPath
A path that identifies a destination file or directory.

The destination should not yet exist. The destination path must end in a filename; there is no
implicit adoption of the source filename.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
YES if the link operation is successful, otherwise NO.

Discussion
If pathname srcPath identifies a file, this method hard-links the file specified in dstPath to it. If
srcPath is a directory or symbolic link, this method copies it to dstPath instead of creating a hard
link. Symbolic links in srcPath are not traversed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileManager:shouldLinkItemAtPath:toPath: (page 413)
– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 416)
– createSymbolicLinkAtPath:withDestinationPath:error: (page 396)
– copyItemAtPath:toPath:error: (page 393)
– moveItemAtPath:toPath:error: (page 408)

Declared In
NSFileManager.h

Instance Methods 407
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

moveItemAtPath:toPath:error:
Moves the directory or file specified by a given path to a different location in the file system identified
by another path.

- (BOOL)moveItemAtPath:(NSString *)srcPathtoPath:(NSString *)dstPatherror:(NSError
**)error

Parameters

srcPath
The path of a file or directory to move. srcPath must exist.

dstPath
The path to which the file or directory at srcPath is moved. destination must not yet exist.
The destination path must end in a filename; there is no implicit adoption of the source filename.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
YES if the move operation is successful, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileManager:shouldMoveItemAtPath:toPath: (page 414)
– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 417)

Declared In
NSFileManager.h

pathContentOfSymbolicLinkAtPath:
Returns the path of the directory or file that a symbolic link at a given path refers to.

- (NSString *)pathContentOfSymbolicLinkAtPath:(NSString *)path

Parameters

path
The path of a symbolic link.

Return Value
The path of the directory or file to which the symbolic link path refers, or nil upon failure. If the
symbolic link is specified as a relative path, that relative path is returned.

Special Considerations

On Mac OS X v10.5 and later, use destinationOfSymbolicLinkAtPath:error: (page 398) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– destinationOfSymbolicLinkAtPath:error: (page 398)
– createSymbolicLinkAtPath:pathContent: (page 396)

408 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Declared In
NSFileManager.h

removeItemAtPath:error:
Deletes the file, link, or directory (including, recursively, all subdirectories, files, and links in the
directory) identified by a given path.

- (BOOL)removeItemAtPath:(NSString *)patherror:(NSError **)error

Parameters

path
The path of a file, link, or directory to delete. The value must not be "." or "..".

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
YES if the removal operation is successful, otherwise NO.

Discussion
Since the removal of directory contents is so thorough and final, be careful when using this method.
If you specify "." or ".." for path an NSInvalidArgumentException exception is raised. This method
does not traverse symbolic links.

Availability
Available in iPhone OS 2.0 and later.

See Also
– copyItemAtPath:toPath:error: (page 393)
– linkItemAtPath:toPath:error: (page 407)
– moveItemAtPath:toPath:error: (page 408)
– fileManager:shouldRemoveItemAtPath: (page 418)
– fileManager:shouldProceedAfterError:removingItemAtPath: (page 417)

Declared In
NSFileManager.h

setAttributes:ofItemAtPath:error:
Sets the attributes of a given file or directory.

- (BOOL)setAttributes:(NSDictionary *)attributesofItemAtPath:(NSString
*)patherror:(NSError **)error

Instance Methods 409
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Parameters

attributes
A dictionary containing as keys the attributes to set for path and as values the corresponding
value for the attribute. You can set following: NSFileBusy, NSFileCreationDate,
NSFileExtensionHidden, NSFileGroupOwnerAccountID, NSFileGroupOwnerAccountName,
NSFileHFSCreatorCode, NSFileHFSTypeCode, NSFileImmutable, NSFileModificationDate,
NSFileOwnerAccountID, NSFileOwnerAccountName, NSFilePosixPermissions. You can
change single attributes or any combination of attributes; you need not specify keys for all
attributes.

path
The path of a file or directory.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
YES if all changes succeed. If any change fails, returns NO, but it is undefined whether any changes
actually occurred.

Discussion
As in the POSIX standard, the application either must own the file or directory or must be running
as superuser for attribute changes to take effect. The method attempts to make all changes specified
in attributes and ignores any rejection of an attempted modification.

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern. NSFileHFSCreatorCode and NSFileHFSTypeCode will only be heeded
when path specifies a file.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id)delegate

Parameters

delegate
The delegate for the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

410 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

stringWithFileSystemRepresentation:length:
Returns an NSString object converted from the C-string representation of a pathname in the current
file system.

- (NSString *)stringWithFileSystemRepresentation:(const char *)string
length:(NSUInteger)len

Parameters

string
A C string representation of a pathname.

len
The number of characters in string.

Return Value
An NSString object converted from the C-string representation stringwith length len of a pathname
in the current file system.

Discussion
Use this method if your code receives paths as C strings from system routines.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileSystemRepresentationWithPath: (page 404)

Declared In
NSFileManager.h

subpathsAtPath:
Returns an array that contains (as NSString objects) the contents of the directory identified by a given
path.

- (NSArray *)subpathsAtPath:(NSString *)path

Parameters

path
The path of the directory to list.

Return Value
An array that contains (as NSString objects) the contents of the directory identified by path. If path
is a symbolic link, subpathsAtPath: traverses the link. Returns nil if it cannot get the device of the
linked-to file.

Discussion
This list of directory contents goes very deep and hence is very useful for large file-system subtrees.
The method skips “.” and “..”.

This method reveals every element of the subtree at path, including the contents of file packages
(such as applications, nib files, and RTFD files). This code fragment gets the contents of
/System/Library/Fonts after verifying that the directory exists:

BOOL isDir=NO;
NSArray *subpaths;

Instance Methods 411
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

NSString *fontPath = @"/System/Library/Fonts";
NSFileManager *fileManager = [NSFileManager defaultManager];
if ([fileManager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir)

subpaths = [fileManager subpathsAtPath:fontPath];

Special Considerations

On Mac OS X v10.5 and later, use subpathsOfDirectoryAtPath:error: (page 412) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– subpathsOfDirectoryAtPath:error: (page 412)
– directoryContentsAtPath: (page 398)
– enumeratorAtPath: (page 400)

Declared In
NSFileManager.h

subpathsOfDirectoryAtPath:error:
Returns an array that contains the filenames of the items in the directory specified by a given path
and all its subdirectories recursively.

- (NSArray *)subpathsOfDirectoryAtPath:(NSString *)patherror:(NSError **)error

Parameters

path
The path of the directory to list.

error
If an error occurs, upon return contains an NSError object that describes the problem. Pass
NULL if you do not want error information.

Return Value
An array that contains NSString objects representing the filenames of the items in the directory
specified by path and all its subdirectories recursively. If path is a symbolic link,
subpathsOfDirectoryAtPath:error: traverses the link. Returns nil if it cannot get the device of
the linked-to file.

Discussion
This list of directory contents goes very deep and hence is very useful for large file-system subtrees.
The method skips “.” and “..”.

Availability
Available in iPhone OS 2.0 and later.

See Also
– subpathsAtPath: (page 411)
– directoryContentsAtPath: (page 398)
– enumeratorAtPath: (page 400)

Declared In
NSFileManager.h

412 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Delegate Methods

fileManager:shouldCopyItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to copy to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldCopyItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters

fileManager
The NSFileManager object that sent this message.

srcPath
The path or a file or directory that manager is about to attempt to copy.

dstPath
The path or a file or directory to which manager is about to attempt to copy.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– copyItemAtPath:toPath:error: (page 393)
– fileManager:shouldProceedAfterError:copyingItemAtPath:toPath: (page 416)

Declared In
NSFileManager.h

fileManager:shouldLinkItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to link to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldLinkItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters

fileManager
The NSFileManager object that sent this message.

srcPath
The path or a file or directory that manager is about to attempt to link.

dstPath
The path or a file or directory to which manager is about to attempt to link.

Return Value
YES if the operation should proceed, otherwise NO.

Delegate Methods 413
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– linkItemAtPath:toPath:error: (page 407)
– fileManager:shouldProceedAfterError:linkingItemAtPath:toPath: (page 416)

Declared In
NSFileManager.h

fileManager:shouldMoveItemAtPath:toPath:
An NSFileManager object sends this message immediately before attempting to move to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldMoveItemAtPath:(NSString
*)srcPath toPath:(NSString *)dstPath

Parameters

fileManager
The NSFileManager object that sent this message.

srcPath
The path or a file or directory that manager is about to attempt to move.

dstPath
The path or a file or directory to which manager is about to attempt to move.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– moveItemAtPath:toPath:error: (page 408)
– fileManager:shouldProceedAfterError:movingItemAtPath:toPath: (page 417)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:
An NSFileManager object sends this message to its handler for each error it encounters when copying,
moving, removing, or linking files or directories.

- (BOOL)fileManager:(NSFileManager *)manager shouldProceedAfterError:(NSDictionary
*)errorInfo

414 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Parameters

manager
The file manager that sent this message.

errorInfo
A dictionary that contains two or three pieces of information (all NSString objects) related to
the error:

ValueKey

The path related to the error (usually the source path)@"Path"

A description of the error@"Error"

The destination path (not all errors)@"ToPath"

Return Value
YES if the operation (which is often continuous within a loop) should proceed, otherwise NO.

Discussion
An NSFileManager object, manager, sends this message for each error it encounters when copying,
moving, removing, or linking files or directories. The return value is passed back to the invoker of
copyPath:toPath:handler:, movePath:toPath:handler:, removeFileAtPath:handler:, or
linkPath:toPath:handler:. If an error occurs and your handler has not implemented this method,
the invoking method automatically returns NO.

The following implementation of fileManager:shouldProceedAfterError:displays the error string
in an alert dialog and leaves it to the user whether to proceed or stop:

-(BOOL)fileManager:(NSFileManager *)manager
shouldProceedAfterError:(NSDictionary *)errorInfo

{
int result;
result = NSRunAlertPanel(@"Gumby App", @"File operation error:

%@ with file: %@", @"Proceed", @"Stop", NULL,
[errorInfo objectForKey:@"Error"],
[errorInfo objectForKey:@"Path"]);

if (result == NSAlertDefaultReturn)
return YES;

else
return NO;

}

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileManager:willProcessPath: (page 419)

Declared In
NSFileManager.h

Delegate Methods 415
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

fileManager:shouldProceedAfterError:copyingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to copy to a given
path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
*)error copyingItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath

Parameters

fileManager
The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

srcPath
The path or a file or directory that manager is attempting to copy.

dstPath
The path or a file or directory to which manager is attempting to copy.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– copyItemAtPath:toPath:error: (page 393)
– fileManager:shouldCopyItemAtPath:toPath: (page 413)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:linkingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to link to a given
path.

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldProceedAfterError:(NSError *)error
linkingItemAtPath:(NSString *)srcPath
toPath:(NSString *)dstPath

Parameters

fileManager
The NSFileManager object that sent this message.

error
The error that occurred during the attempt to link.

srcPath
The path or a file or directory that manager is attempting to link.

416 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

dstPath
The path or a file or directory to which manager is attempting to link.

Return Value
YES if the operation should proceed, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– linkItemAtPath:toPath:error: (page 407)
– fileManager:shouldLinkItemAtPath:toPath: (page 413)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:movingItemAtPath:toPath:
An NSFileManager object sends this message if an error occurs during an attempt to move to a given
path.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldProceedAfterError:(NSError
*)error movingItemAtPath:(NSString *)srcPath toPath:(NSString *)dstPath;

Parameters

fileManager
The NSFileManager object that sent this message.

error
The error that occurred during the attempt to move.

srcPath
The path or a file or directory that manager is attempting to move.

dstPath
The path or a file or directory to which manager is attempting to move.

Return Value
YES if the operation should proceed, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– moveItemAtPath:toPath:error: (page 408)
– fileManager:shouldMoveItemAtPath:toPath: (page 414)

Declared In
NSFileManager.h

fileManager:shouldProceedAfterError:removingItemAtPath:
An NSFileManager object sends this message if an error occurs during an attempt to delete a given
path.

Delegate Methods 417
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldProceedAfterError:(NSError *)error
removingItemAtPath:(NSString *)path

Parameters

fileManager
The NSFileManager object that sent this message.

error
The error that occurred during the attempt to copy.

path
The path or a file or directory that manager is attempting to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeItemAtPath:error: (page 409)
– fileManager:shouldRemoveItemAtPath: (page 418)

Declared In
NSFileManager.h

fileManager:shouldRemoveItemAtPath:
An NSFileManager object sends this message immediately before attempting to copy to a given path.

- (BOOL)fileManager:(NSFileManager *)fileManager
shouldRemoveItemAtPath:(NSString *)path

Parameters

fileManager
The NSFileManager object that sent this message.

path
The path or a file or directory that manager is about to attempt to delete.

Return Value
YES if the operation should proceed, otherwise NO.

Discussion
You can implement this method in your delegate to monitor file operations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeItemAtPath:error: (page 409)
– fileManager:shouldProceedAfterError:removingItemAtPath: (page 417)

Declared In
NSFileManager.h

418 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

fileManager:willProcessPath:
An NSFileManager object sends this message to a handler immediately before attempting to move,
copy, rename, or delete, or before attempting to link to a given path.

- (void)fileManager:(NSFileManager *)manager willProcessPath:(NSString *)path

Parameters

manager
The NSFileManager object that sent this message.

path
The path or a file or directory that manager is about to attempt to move, copy, rename, delete,
or link to.

Discussion
You can implement this method in your handler to monitor file operations.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileManager.h

Constants

File Attribute Keys
These keys access file attribute values contained in NSDictionary objects used by
changeFileAttributes:atPath: (page 390), fileAttributesAtPath:traverseLink: (page 401),
createDirectoryAtPath:attributes: (page 394), and
createFileAtPath:contents:attributes: (page 395).

Constants 419
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

NSString *NSFileType;
NSString *NSFileTypeDirectory;
NSString *NSFileTypeRegular;
NSString *NSFileTypeSymbolicLink;
NSString *NSFileTypeSocket;
NSString *NSFileTypeCharacterSpecial;
NSString *NSFileTypeBlockSpecial;
NSString *NSFileTypeUnknown;
NSString *NSFileSize;
NSString *NSFileModificationDate;
NSString *NSFileReferenceCount;
NSString *NSFileDeviceIdentifier;
NSString *NSFileOwnerAccountName;
NSString *NSFileGroupOwnerAccountName;
NSString *NSFilePosixPermissions;
NSString *NSFileSystemNumber;
NSString *NSFileSystemFileNumber;
NSString *NSFileExtensionHidden;
NSString *NSFileHFSCreatorCode;
NSString *NSFileHFSTypeCode;
NSString *NSFileImmutable;
NSString *NSFileAppendOnly;
NSString *NSFileCreationDate;
NSString *NSFileOwnerAccountID;
NSString *NSFileGroupOwnerAccountID;
NSString *NSFileBusy;

Constants
NSFileAppendOnly

The key in a file attribute dictionary whose value indicates whether the file is read-only.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileBusy
The key in a file attribute dictionary whose value indicates whether the file is busy.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileCreationDate
The key in a file attribute dictionary whose value indicates the file's creation date.

The corresponding value is an NSDate object.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileOwnerAccountName
The key in a file attribute dictionary whose value indicates the name of the file's owner.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

420 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

NSFileGroupOwnerAccountName
The key in a file attribute dictionary whose value indicates the group name of the file's owner.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileDeviceIdentifier
The key in a file attribute dictionary whose value indicates the identifier for the device on
which the file resides.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileExtensionHidden
The key in a file attribute dictionary whose value indicates whether the file's extension is
hidden.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileGroupOwnerAccountID
The key in a file attribute dictionary whose value indicates the file's group ID.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileHFSCreatorCode
The key in a file attribute dictionary whose value indicates the file's HFS creator code.

The corresponding value is an NSNumber object containing an unsigned long. See HFS File
Types for possible values.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileHFSTypeCode
The key in a file attribute dictionary whose value indicates the file's HFS type code.

The corresponding value is an NSNumber object containing an unsigned long. See HFS File
Types for possible values.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileImmutable
The key in a file attribute dictionary whose value indicates whether the file is mutable.

The corresponding value is an NSNumber object containing a Boolean value.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

Constants 421
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

NSFileModificationDate
The key in a file attribute dictionary whose value indicates the file's last modified date.

The corresponding value is an NSDate object.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileOwnerAccountID
The key in a file attribute dictionary whose value indicates the file's owner's account ID.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFilePosixPermissions
The key in a file attribute dictionary whose value indicates the file's Posix permissions.

The corresponding value is an NSNumber object containing an unsigned long.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileReferenceCount
The key in a file attribute dictionary whose value indicates the file's reference count.

The corresponding value is an NSNumber object containing an unsigned long.

The number specifies the number of hard links to a file.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileSize
The key in a file attribute dictionary whose value indicates the file's size in bytes.

The corresponding value is an NSNumber object containing an unsigned long long.

Important: If the file has a resource fork, the returned value does not include the size of the resource
fork.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileSystemFileNumber
The key in a file attribute dictionary whose value indicates the file's filesystem file number.

The corresponding value is an NSNumber object containing an unsigned long. The value
corresponds to the value of st_ino, as returned by stat(2).

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileType
The key in a file attribute dictionary whose value indicates the file's type.

The corresponding value is an NSString object (see below for possible values).

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

Discussion
NSFileDeviceIdentifier is used to access the identifier of a remote device.

422 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Declared In
NSFileManager.h

File Type Attribute Keys
These strings the possible values for the NSFileType attribute key contained in the NSDictionary
object returned from NSFileManager's fileAttributesAtPath:traverseLink: (page 401).

extern NSString *NSFileTypeDirectory;
extern NSString *NSFileTypeRegular;
extern NSString *NSFileTypeSymbolicLink;
extern NSString *NSFileTypeSocket;
extern NSString *NSFileTypeCharacterSpecial;
extern NSString *NSFileTypeBlockSpecial;
extern NSString *NSFileTypeUnknown;

Constants
NSFileTypeDirectory

Directory

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileTypeRegular
Regular file

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileTypeSymbolicLink
Symbolic link

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileTypeSocket
Socket

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileTypeCharacterSpecial
Character special file

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileTypeBlockSpecial
Block special file

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileTypeUnknown
Unknown

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

Constants 423
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Declared In
NSFileManager.h

File-System Attribute Keys
Keys to access the file attribute values contained in the NSDictionary object returned from
NSFileManager’s fileSystemAttributesAtPath: (page 403) method.

extern NSString *NSFileSystemSize;
extern NSString *NSFileSystemFreeSize;
extern NSString *NSFileSystemNodes;
extern NSString *NSFileSystemFreeNodes;
extern NSString *NSFileSystemNumber;

Constants
NSFileSystemSize

The key in a file system attribute dictionary whose value indicates the size of the file system.

The corresponding value is an NSNumber object that specifies the size of the file system in bytes.
The value is determined by statfs().

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileSystemFreeSize
The key in a file system attribute dictionary whose value indicates the amount of free space
on the file system.

The corresponding value is an NSNumber object that specifies the amount of free space on the
file system in bytes. The value is determined by statfs().

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileSystemNodes
The key in a file system attribute dictionary whose value indicates the number of nodes in the
file system.

The corresponding value is an NSNumber object that specifies the number of nodes in the file
system.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

NSFileSystemFreeNodes
The key in a file system attribute dictionary dictionary whose value indicates the number of
free nodes in the file system.

The corresponding value is an NSNumber object that specifies the number of free nodes in the
file system.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

424 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

NSFileSystemNumber
The key in a file system attribute dictionary dictionary whose value indicates the filesystem
number of the file system.

The corresponding value is an NSNumber object that specifies the filesystem number of the file
system. The value corresponds to the value of st_dev, as returned by stat(2).

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

Declared In
NSFileManager.h

Resource Fork Support
Specifies the version of the Foundation framework in which NSFileManager first supported resource
forks.

#define NSFoundationVersionWithFileManagerResourceForkSupport 412

Constants
NSFoundationVersionWithFileManagerResourceForkSupport

The version of the Foundation framework in which NSFileManager first supported resource
forks.

Available in iPhone OS 2.0 and later.

Declared in NSFileManager.h

Declared In
NSFileManager.h

Constants 425
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

426 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 5

NSFileManager Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSFormatter.h

Companion guide: Data Formatting Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSFormatter is an abstract class that declares an interface for objects that create, interpret, and validate
the textual representation of cell contents. The Foundation framework provides two concrete subclasses
of NSFormatter to generate these objects: NSNumberFormatter and NSDateFormatter.

Overview 427
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

Subclassing Notes

NSFormatter is intended for subclassing. A custom formatter can restrict the input and enhance the
display of data in novel ways. For example, you could have a custom formatter that ensures that
serial numbers entered by a user conform to predefined formats. Before you decide to create a custom
formatter, make sure that you cannot configure the public subclasses NSDateFormatter and
NSNumberFormatter to satisfy your requirements.

For instructions on how to create your own custom formatter, see Creating a Custom Formatter.

Tasks

Textual Representation of Cell Content

– stringForObjectValue: (page 433)
The default implementation of this method raises an exception.

– attributedStringForObjectValue:withDefaultAttributes: (page 429)
The default implementation returns nil to indicate that the formatter object does not provide
an attributed string.

– editingStringForObjectValue: (page 429)
The default implementation of this method invokes stringForObjectValue: (page 433).

Object Equivalent to Textual Representation

– getObjectValue:forString:errorDescription: (page 430)
The default implementation of this method raises an exception.

Dynamic Cell Editing

– isPartialStringValid:newEditingString:errorDescription: (page 431)
Returns a Boolean value that indicates whether a partial string is valid.

– isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:errorDescription:(page
432)

This method should be implemented in subclasses that want to validate user changes to a
string in a field, where the user changes are not necessarily at the end of the string, and preserve
the selection (or set a different one, such as selecting the erroneous part of the string the user
has typed).

428 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

Instance Methods

attributedStringForObjectValue:withDefaultAttributes:
The default implementation returns nil to indicate that the formatter object does not provide an
attributed string.

- (NSAttributedString *)attributedStringForObjectValue:(id)anObject
withDefaultAttributes:(NSDictionary *)attributes

Parameters

anObject
The object for which a textual representation is returned.

attributes
The default attributes to use for the returned attributed string.

Return Value
An attributed string that represents anObject.

Discussion
When implementing a subclass, return an NSAttributedString object if the string for display should
have some attributes. For instance, you might want negative values in a financial application to appear
in red text. Invoke your implementation of stringForObjectValue: (page 433) to get the non-attributed
string, then create an NSAttributedString object with it (see initWithString:). Use the attributes
default dictionary to reset the attributes of the string when a change in value warrants it (for example,
a negative value becomes positive) For information on creating attributed strings, see Attributed Strings
Programming Guide.

Availability
Available in iPhone OS 2.0 and later.

See Also
– editingStringForObjectValue: (page 429)

Declared In
NSFormatter.h

editingStringForObjectValue:
The default implementation of this method invokes stringForObjectValue: (page 433).

- (NSString *)editingStringForObjectValue:(id)anObject

Parameters

anObject
The object for which to return an editing string.

Return Value
An NSString object that is used for editing the textual representation of anObject.

Instance Methods 429
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

Discussion
When implementing a subclass, override this method only when the string that users see and the
string that they edit are different. In your implementation, return an NSString object that is used for
editing, following the logic recommended for implementing stringForObjectValue: (page 433). As
an example, you would implement this method if you want the dollar signs in displayed strings
removed for editing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 429)

Declared In
NSFormatter.h

getObjectValue:forString:errorDescription:
The default implementation of this method raises an exception.

- (BOOL)getObjectValue:(id *)anObject forString:(NSString *)string
errorDescription:(NSString **)error

Parameters

anObject
If conversion is successful, upon return contains the object created from string.

string
The string to parse.

error
If non-nil, if there is a error during the conversion, upon return contains an NSString object
that describes the problem.

Return Value
YES if the conversion from string to cell content object was successful, otherwise NO.

Discussion
When implementing a subclass, return by reference the object anObject after creating it from string.
Return YES if the conversion is successful. If you return NO, also return by indirection (in error) a
localized user-presentable NSString object that explains the reason why the conversion failed; the
delegate (if any) of the NSControl object managing the cell can then respond to the failure in
control:didFailToFormatString:errorDescription:. However, if error is nil, the sender is not
interested in the error description, and you should not attempt to assign one.

The following example (which is paired with the example given in stringForObjectValue: (page
433)) converts a string representation of a dollar amount that includes the dollar sign; it uses an
NSScanner instance to convert this amount to a float after stripping out the initial dollar sign.

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string
errorDescription:(NSString **)error
{

float floatResult;
NSScanner *scanner;
BOOL returnValue = NO;

430 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

scanner = [NSScanner scannerWithString: string];
[scanner scanString: @"$" intoString: NULL]; //ignore return value
if ([scanner scanFloat:&floatResult] && ([scanner isAtEnd])) {

returnValue = YES;
if (obj)

*obj = [NSNumber numberWithFloat:floatResult];
} else {

if (error)
*error = NSLocalizedString(@"Couldn’t convert to float", @"Error

converting");
}
return returnValue;

}

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringForObjectValue: (page 433)

Declared In
NSFormatter.h

isPartialStringValid:newEditingString:errorDescription:
Returns a Boolean value that indicates whether a partial string is valid.

- (BOOL)isPartialStringValid:(NSString *)partialString newEditingString:(NSString
**)newString errorDescription:(NSString **)error

Parameters

partialString
The text currently in a cell.

newString
If partialString needs to be modified, upon return contains the replacement string.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialString is an acceptable value, otherwise NO.

Discussion
This method is invoked each time the user presses a key while the cell has the keyboard focus—it lets
you verify and edit the cell text as the user types it.

In a subclass implementation, evaluate partialString according to the context, edit the text if
necessary, and return by reference any edited string in newString. Return YES if partialString is
acceptable and NO if partialString is unacceptable. If you return NO and newString is nil, the cell
displays partialString minus the last character typed. If you return NO, you can also return by
indirection an NSString object (in error) that explains the reason why the validation failed; the
delegate (if any) of the NSControl object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:. The selection range will always
be set to the end of the text if replacement occurs.

Instance Methods 431
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

This method is a compatibility method. If a subclass overrides this method and does not override
isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 432), this method will be called as before
(isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription: (page 432) just calls this one by default).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFormatter.h

isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:
errorDescription:
This method should be implemented in subclasses that want to validate user changes to a string in a
field, where the user changes are not necessarily at the end of the string, and preserve the selection
(or set a different one, such as selecting the erroneous part of the string the user has typed).

- (BOOL)isPartialStringValid:(NSString **)partialStringPtr
proposedSelectedRange:(NSRangePointer)proposedSelRangePtr
originalString:(NSString *)origString originalSelectedRange:(NSRange)origSelRange
errorDescription:(NSString **)error

Parameters

partialStringPtr
The new string to validate.

proposedSelRangePtr
The selection range that will be used if the string is accepted or replaced.

origString
The original string, before the proposed change.

origSelRange
The selection range over which the change is to take place.

error
If non-nil, if validation fails contains an NSString object that describes the problem.

Return Value
YES if partialStringPtr is acceptable, otherwise NO.

Discussion
In a subclass implementation, evaluate partialString according to the context. Return YES if
partialStringPtr is acceptable and NO if partialStringPtr is unacceptable. Assign a new string
to partialStringPtr and a new range to proposedSelRangePtr and return NO if you want to replace
the string and change the selection range. If you return NO, you can also return by indirection an
NSString object (in error) that explains the reason why the validation failed; the delegate (if any) of
the NSControl object managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription:.

Availability
Available in iPhone OS 2.0 and later.

432 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

See Also
– isPartialStringValid:newEditingString:errorDescription: (page 431)

Declared In
NSFormatter.h

stringForObjectValue:
The default implementation of this method raises an exception.

- (NSString *)stringForObjectValue:(id)anObject

Parameters

anObject
The object for which a textual representation is returned.

Return Value
An NSString object that textually represents object for display. Returns nil if object is not of the
correct class.

Discussion
When implementing a subclass, return the NSString object that textually represents the cell’s object
for display and—if editingStringForObjectValue: (page 429) is unimplemented—for editing. First
test the passed-in object to see if it’s of the correct class. If it isn’t, return nil; but if it is of the right
class, return a properly formatted and, if necessary, localized string. (See the specification of the
NSString class for formatting and localizing details.)

The following implementation (which is paired with the
getObjectValue:forString:errorDescription: (page 430) example above) prefixes a two-digit
float representation with a dollar sign:

- (NSString *)stringForObjectValue:(id)anObject
{

if (![anObject isKindOfClass:[NSNumber class]]) {
return nil;

}
return [NSString stringWithFormat:@"$%.2f", [anObject floatValue]];

}

Availability
Available in iPhone OS 2.0 and later.

See Also
– attributedStringForObjectValue:withDefaultAttributes: (page 429)
– editingStringForObjectValue: (page 429)
– getObjectValue:forString:errorDescription: (page 430)

Declared In
NSFormatter.h

Instance Methods 433
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

434 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 6

NSFormatter Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSHTTPCookie.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSHTTPCookie object represents an HTTP cookie. It’s an immutable object initialized from a
dictionary containing the cookie attributes.

Two versions of cookies are supported:

 ■ Version 0: This version refers to “traditional” or “old-style” cookies, the original cookie format
defined by Netscape. The majority of cookies encountered are in this format.

 ■ Version 1: This version refers to cookies as defined in RFC 2965, HTTP State Management
Mechanism.

Overview 435
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Adopted Protocols

NSCopying
– copyWithZone: (page 1250)

Tasks

Create Cookie Instances

+ cookiesWithResponseHeaderFields:forURL: (page 437)
Returns an array of NSHTTPCookie objects corresponding to the provided response header
fields for the provided URL.

+ cookieWithProperties: (page 437)
Creates and initializes an NSHTTPCookie object using the provided properties.

– initWithProperties: (page 440)
Returns an initialized NSHTTPCookie object using the provided properties.

Convert Cookies to Request Headers

+ requestHeaderFieldsWithCookies: (page 438)
Returns a dictionary of header fields corresponding to a provided array of cookies.

Getting Cookie Properties

– comment (page 438)
Returns the receiver's comment string.

– commentURL (page 439)
Returns the receiver’s comment URL.

– domain (page 439)
Returns the domain of the receiver’s cookie.

– expiresDate (page 439)
Returns the receiver’s expiration date.

– isSecure (page 440)
Returns whether his cookie should only be sent over secure channels.

– isSessionOnly (page 440)
Returns whether the receiver should be discarded at the end of the session (regardless of
expiration date).

– name (page 441)
Returns the receiver’s name.

– path (page 441)
Returns the receiver’s path.

436 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

– portList (page 441)
Returns the receiver's port list.

– properties (page 442)
Returns the receiver’s cookie properties.

– value (page 442)
Returns the receiver’s value.

– version (page 442)
Returns the receiver’s version.

Class Methods

cookiesWithResponseHeaderFields:forURL:
Returns an array of NSHTTPCookie objects corresponding to the provided response header fields
for the provided URL.

+ (NSArray *)cookiesWithResponseHeaderFields:(NSDictionary *)headerFields
forURL:(NSURL *)theURL

Parameters

headerFields
The header fields used to create the NSHTTPCookie objects.

theURL
The URL associated with the created cookies.

Return Value
The array of newly created cookies.

Discussion
This method will ignore irrelevant header fields in headerFields, allowing dictionaries to contain
additional data.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

cookieWithProperties:
Creates and initializes an NSHTTPCookie object using the provided properties.

+ (id)cookieWithProperties:(NSDictionary *)properties

Parameters

properties
The properties for the new cookie object, expressed as key value pairs.

Return Value
The newly created cookie object. Returns nil if the provided properties are invalid.

Class Methods 437
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Discussion
See “Constants” (page 443) for more information on the available header field constants and the
constraints imposed on the values in the dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithProperties: (page 440)

Declared In
NSHTTPCookie.h

requestHeaderFieldsWithCookies:
Returns a dictionary of header fields corresponding to a provided array of cookies.

+ (NSDictionary *)requestHeaderFieldsWithCookies:(NSArray *)cookies

Parameters

cookies
The cookies from which the header fields are created.

Return Value
The dictionary of header fields created from the provided cookies. This dictionary can be used to add
cookies to a request.

Discussion
See “Constants” (page 443) for details on the header field keys and values in the returned dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

Instance Methods

comment
Returns the receiver's comment string.

- (NSString *)comment

Return Value
The receiver’s comment string or nil if the cookie has no comment. This string is suitable for
presentation to the user, explaining the contents and purpose of this cookie.

Availability
Available in iPhone OS 2.0 and later.

438 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Declared In
NSHTTPCookie.h

commentURL
Returns the receiver’s comment URL.

- (NSURL *)commentURL

Return Value
The receiver’s comment URL or nil if the cookie has none. This value specifies a URL which is suitable
for presentation to the user as a link for further information about this cookie.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

domain
Returns the domain of the receiver’s cookie.

- (NSString *)domain

Return Value
The domain of the receiver’s cookie.

Discussion
If the domain does not start with a dot, then the cookie will only be sent to the exact host specified
by the domain. If the domain does start with a dot, then the cookie will be sent to other hosts in that
domain as well, subject to certain restrictions. See RFC 2965 for more detail.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

expiresDate
Returns the receiver’s expiration date.

- (NSDate *)expiresDate

Return Value
The receiver’s expiration date, or nil if there is no specific expiration date such as in the case of
“session-only” cookies. The expiration date is the date when the cookie should be deleted.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 439
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Declared In
NSHTTPCookie.h

initWithProperties:
Returns an initialized NSHTTPCookie object using the provided properties.

- (id)initWithProperties:(NSDictionary *)properties

Parameters

properties
The properties for the new cookie object, expressed as key value pairs.

Return Value
The initialized cookie object. Returns nil if the provided properties are invalid.

Discussion
See “Constants” (page 443) for more information on the available header field constants and the
constraints imposed on the values in the dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ cookieWithProperties: (page 437)

Declared In
NSHTTPCookie.h

isSecure
Returns whether his cookie should only be sent over secure channels.

- (BOOL)isSecure

Return Value
YES if this cookie should only be sent over secure channels, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

isSessionOnly
Returns whether the receiver should be discarded at the end of the session (regardless of expiration
date).

- (BOOL)isSessionOnly

440 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Return Value
YES if the receiver should be discarded at the end of the session (regardless of expiration date),
otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

name
Returns the receiver’s name.

- (NSString *)name

Return Value
The receiver's name.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

path
Returns the receiver’s path.

- (NSString *)path

Return Value
The receiver's path.

Discussion
The cookie will be sent with requests for this path in the cookie's domain, and all paths that have this
prefix. A path of “/” means the cookie will be sent for all URLs in the domain.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

portList
Returns the receiver's port list.

- (NSArray *)portList

Instance Methods 441
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Return Value
The list of ports for the cookie, returned as an array of NSNumber objects containing integers. If the
cookie has no port list this method returns nil and the cookie will be sent to any port. Otherwise, the
cookie is only sent to ports specified in the port list.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

properties
Returns the receiver’s cookie properties.

- (NSDictionary *)properties

Return Value
A dictionary representation of the receiver’s cookie properties.

Discussion
This dictionary can be used with initWithProperties: (page 440) or cookieWithProperties: (page
437) to create an equivalent NSHTTPCookie object.

See initWithProperties: (page 440) for more information on the constraints imposed on the
properties dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

value
Returns the receiver’s value.

- (NSString *)value

Return Value
The receiver's value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

version
Returns the receiver’s version.

- (NSUInteger)version

442 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Return Value
The receiver's version. Version 0 maps to “old-style” Netscape cookies. Version 1 maps to RFC 2965
cookies.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookie.h

Constants

HTTP Cookie Property Keys
These constants define the supported keys in a dictionary containing cookie attributes.

extern NSString *NSHTTPCookieComment;
extern NSString *NSHTTPCookieCommentURL;
extern NSString *NSHTTPCookieDiscard;
extern NSString *NSHTTPCookieDomain;
extern NSString *NSHTTPCookieExpires;
extern NSString *NSHTTPCookieMaximumAge;
extern NSString *NSHTTPCookieName;
extern NSString *NSHTTPCookieOriginURL;
extern NSString *NSHTTPCookiePath;
extern NSString *NSHTTPCookiePort;
extern NSString *NSHTTPCookieSecure;
extern NSString *NSHTTPCookieValue;
extern NSString *NSHTTPCookieVersion;

Constants
NSHTTPCookieComment

An NSString object containing the comment for the cookie.

Only valid for Version 1 cookies and later. This header field is optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieCommentURL
An NSURL object or NSString object containing the comment URL for the cookie.

Only valid for Version 1 cookies or later. This header field is optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieDiscard
An NSString object stating whether the cookie should be discarded at the end of the session.

String value must be either “TRUE” or “FALSE”. This header field is optional. Default is
“FALSE”, unless this is cookie is version 1 or greater and a value for NSHTTPCookieMaximumAge
is not specified, in which case it is assumed “TRUE”.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

Constants 443
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

NSHTTPCookieDomain
An NSString object containing the domain for the cookie.

A value must be specified for either NSHTTPCookieDomain or NSHTTPCookieOriginURL. If this
header field is missing the domain is inferred from the value for NSHTTPCookieOriginURL.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieExpires
An NSDate object or NSString object specifying the expiration date for the cookie.

This header field is only used for Version 0 cookies. This header field is optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieMaximumAge
An NSString object containing an integer value stating how long in seconds the cookie should
be kept, at most.

Only valid for Version 1 cookies and later. Default is “0”. This field is optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieName
An NSString object containing the name of the cookie. This field is required.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieOriginURL
An NSURL or NSString object containing the URL that set this cookie.

A value must be specified for either NSHTTPCookieDomain or NSHTTPCookieOriginURL.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookiePath
An NSString object containing the path for the cookie.

Inferred from the value for NSHTTPCookieOriginURL if not provided. Default is “/”. This
header field is optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookiePort
An NSString object containing comma-separated integer values specifying the ports for the
cookie.

Only valid for Version 1 cookies or later. The default value is an empty string (““). This header
field is optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

444 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

NSHTTPCookieSecure
An NSString object stating whether the cookie should be transmitted only over secure channels.

String value must be either “TRUE” or “FALSE”. Default is “FALSE”. This header field is
optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieValue
An NSString object containing the value of the cookie.

This header field is required.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

NSHTTPCookieVersion
An NSString object that specifies the version of the cookie.

Must be either “0” or “1”. The default is “0”. This header field is optional.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookie.h

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSHTTPCookie.h

Constants 445
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

446 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 7

NSHTTPCookie Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSHTTPCookieStorage.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSHTTPCookieStorage implements a singleton object (shared instance) that manages the shared
cookie storage. These cookies are shared among all applications and are kept in sync cross-process.

Overview 447
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

Note: Changes made to the cookie accept policy will affect all currently running applications using
the cookie storage.

Tasks

Getting the Shared Cookie Storage Object

+ sharedHTTPCookieStorage (page 448)
Returns the shared cookie storage instance.

Getting and Setting the Cookie Accept Policy

– cookieAcceptPolicy (page 449)
Returns the receiver’s cookie accept policy.

– setCookieAcceptPolicy: (page 451)
Sets the cookie accept policy of the receiver

Adding and Removing Cookies

– cookies (page 449)
Returns the receiver’s cookies.

– cookiesForURL: (page 449)
Returns all the receiver's cookies that will be sent to a specified URL.

– deleteCookie: (page 450)
Deletes the specified cookie from the receiver.

– setCookie: (page 450)
Stores a specified cookie in the receiver if the receiver's cookie accept policy permits.

– setCookies:forURL:mainDocumentURL: (page 451)
Adds an array of cookies to the receiver if the receiver’s cookie acceptance policy permits.

Class Methods

sharedHTTPCookieStorage
Returns the shared cookie storage instance.

+ (NSHTTPCookieStorage *)sharedHTTPCookieStorage

Return Value
The shared cookie storage instance.

448 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookieStorage.h

Instance Methods

cookieAcceptPolicy
Returns the receiver’s cookie accept policy.

- (NSHTTPCookieAcceptPolicy)cookieAcceptPolicy

Return Value
The receiver's cookie accept policy. The default cookie accept policy is
NSHTTPCookieAcceptPolicyAlways.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setCookieAcceptPolicy: (page 451)

Declared In
NSHTTPCookieStorage.h

cookies
Returns the receiver’s cookies.

- (NSArray *)cookies

Return Value
An array containing all of the receiver’s cookies.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cookiesForURL: (page 449)

Declared In
NSHTTPCookieStorage.h

cookiesForURL:
Returns all the receiver's cookies that will be sent to a specified URL.

- (NSArray *)cookiesForURL:(NSURL *)theURL

Instance Methods 449
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

Parameters

theURL
The URL to filter on.

Return Value
An array of cookies whose URL matches the provided URL.

Discussion
An application can use NSHTTPCookie’s requestHeaderFieldsWithCookies: (page 438) method to
turn this array into a set of header fields to add to an NSMutableURLRequest object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cookies (page 449)

Declared In
NSHTTPCookieStorage.h

deleteCookie:
Deletes the specified cookie from the receiver.

- (void)deleteCookie:(NSHTTPCookie *)aCookie

Parameters

aCookie
The cookie to delete.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookieStorage.h

setCookie:
Stores a specified cookie in the receiver if the receiver's cookie accept policy permits.

- (void)setCookie:(NSHTTPCookie *)aCookie

Parameters

aCookie
The cookie to store.

Discussion
The cookie will replace an existing cookie with the same name, domain and path, if one exists in the
cookie storage. This method will accept the cookie only if the receiver’s cookie accept policy is
NSHTTPCookieAcceptPolicyAlways or NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain.
The cookie will be ignored if the receiver’s cookie accept policy is NSHTTPCookieAcceptPolicyNever.

Availability
Available in iPhone OS 2.0 and later.

450 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

Declared In
NSHTTPCookieStorage.h

setCookieAcceptPolicy:
Sets the cookie accept policy of the receiver

- (void)setCookieAcceptPolicy:(NSHTTPCookieAcceptPolicy)aPolicy

Parameters

aPolicy
The new cookie accept policy.

Discussion
The default cookie accept policy is NSHTTPCookieAcceptPolicyAlways. Changing the cookie policy
will effect all currently running applications using the cookie storage.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cookieAcceptPolicy (page 449)

Declared In
NSHTTPCookieStorage.h

setCookies:forURL:mainDocumentURL:
Adds an array of cookies to the receiver if the receiver’s cookie acceptance policy permits.

- (void)setCookies:(NSArray *)cookies forURL:(NSURL *)theURL mainDocumentURL:(NSURL
*)mainDocumentURL

Parameters

cookies
The cookies to add.

theURL
The URL associated with the added cookies.

mainDocumentURL
The URL of the main HTML document for the top-level frame, if known. Can be nil. This URL
is used to determine if the cookie should be accepted if the cookie accept policy is
NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain.

Discussion
The cookies will replace existing cookies with the same name, domain, and path, if one exists in the
cookie storage. The cookie will be ignored if the receiver's cookie accept policy is
NSHTTPCookieAcceptPolicyNever.

To store cookies from a set of response headers, an application can use
cookiesWithResponseHeaderFields:forURL: (page 437) passing a header field dictionary and then
use this method to store the resulting cookies in accordance with the receiver’s cookie acceptance
policy.

Instance Methods 451
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookieStorage.h

Constants

NSHTTPCookieAcceptPolicy
NSHTTPCookieAcceptPolicy specifies the cookie acceptance policies implemented by the
NSHTTPCookieStorage class.

typedef enum {
NSHTTPCookieAcceptPolicyAlways,
NSHTTPCookieAcceptPolicyNever,
NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain

} NSHTTPCookieAcceptPolicy;

Constants
NSHTTPCookieAcceptPolicyAlways

Accept all cookies. This is the default cookie accept policy.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookieStorage.h

NSHTTPCookieAcceptPolicyNever
Reject all cookies.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookieStorage.h

NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain
Accept cookies only from the main document domain.

Available in iPhone OS 2.0 and later.

Declared in NSHTTPCookieStorage.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookieStorage.h

Notifications

NSHTTPCookieManagerCookiesChangedNotification
This notification is posted when the cookies stored in the NSHTTPCookieStorage instance have
changed. Since cookies are shared among applications, this notification can be sent in response to
another application’s actions.

452 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

The notification object is the NSHTTPCookieStorage instance. This notification does not contain a
userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookieStorage.h

NSHTTPCookieManagerAcceptPolicyChangedNotification
This notification is posted when the acceptance policy of the NSHTTPCookieStorage instance has
changed. Since cookies are shared among applications, this notification can be sent in response to
another application’s actions.

The notification object is the NSHTTPCookieStorage instance. This notification does not contain a
userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSHTTPCookieStorage.h

Notifications 453
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

454 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 8

NSHTTPCookieStorage Class Reference

Inherits from: NSURLResponse : NSObject

Conforms to: NSCopying (NSURLResponse)
NSCoding (NSURLResponse)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLResponse.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSHTTPURLResponse object represents a response to an HTTP URL load request. It’s a subclass
of NSURLResponse that provides methods for accessing information specific to HTTP protocol
responses.

Overview 455
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

NSHTTPURLResponse Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Getting HTTP Response Headers

– allHeaderFields (page 457)
Returns all the HTTP header fields of the receiver.

Getting Response Status Code

+ localizedStringForStatusCode: (page 456)
Returns a localized string corresponding to a specified HTTP status code.

– statusCode (page 457)
Returns the receiver’s HTTP status code.

Class Methods

localizedStringForStatusCode:
Returns a localized string corresponding to a specified HTTP status code.

+ (NSString *)localizedStringForStatusCode:(NSInteger)statusCode

Parameters

statusCode
The HTTP status code.

Return Value
A localized string suitable for displaying to users that describes the specified status code.

Availability
Available in iPhone OS 2.0 and later.

See Also
– statusCode (page 457)

456 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

NSHTTPURLResponse Class Reference

Declared In
NSURLResponse.h

Instance Methods

allHeaderFields
Returns all the HTTP header fields of the receiver.

- (NSDictionary *)allHeaderFields

Return Value
A dictionary containing all the HTTP header fields of the receiver. By examining this dictionary clients
can see the “raw” header information returned by the HTTP server.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLResponse.h

statusCode
Returns the receiver’s HTTP status code.

- (NSInteger)statusCode

Return Value
The receiver’s HTTP status code.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ localizedStringForStatusCode: (page 456)

Declared In
NSURLResponse.h

Instance Methods 457
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

NSHTTPURLResponse Class Reference

458 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2 9

NSHTTPURLResponse Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSIndexPath.h

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSIndexPath class represents the path to a specific node in a tree of nested array collections. This
path is known as an index path.

Each index in an index path represents the index into an array of children from one node in the tree
to another, deeper, node. For example, the index path 1.4.3.2 specifies the path shown in Figure
30-1.

Overview 459
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

Figure 30-1 Index path 1.4.3.2

Array 3

0
1
2
3
4
5
6
7
8
9

10

Array 2

0
1
2
3
4
5
6
7
8
9

Array 1

0
1
2
3
4
5
6
7

Array 0

0
1
2
3
4
5
6

NSIndexPath objects are uniqued and shared. If an index path containing the specified index or
indexes already exists, that object is returned instead of a new instance.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Creating Index Paths

+ indexPathWithIndex: (page 461)
Creates an one-node index path.

+ indexPathWithIndexes:length: (page 462)
Creates an index path with one or more nodes.

– initWithIndex: (page 464)
Initializes an allocated NSIndexPath (page 459) object with a one-node index path.

460 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

– initWithIndexes:length: (page 464)
Initializes an allocated NSIndexPath (page 459) object with an index path of a specific length.

Querying Index Paths

– getIndexes: (page 463)
Provides a reference to the receiver’s indexes.

– indexAtPosition: (page 463)
Provides the index at a particular node in the receiver.

– indexPathByAddingIndex: (page 463)
Provides an index path containing the indexes in the receiver and another index.

– indexPathByRemovingLastIndex (page 464)
Provides an index path with the indexes in the receiver, excluding the last one.

– length (page 465)
Provides the number of indexes in the receiver.

Comparing Index Paths

– compare: (page 462)
Indicates the depth-first traversal order of the receiver and another index path.

Class Methods

indexPathWithIndex:
Creates an one-node index path.

+ (id)indexPathWithIndex:(NSUInteger)index

Parameters

index
Index of the item in node 0 to point to.

Return Value
One-node index path with index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithIndex: (page 464)

Declared In
NSIndexPath.h

Class Methods 461
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

indexPathWithIndexes:length:
Creates an index path with one or more nodes.

+ (id)indexPathWithIndexes:(NSUInteger *)indexes length:(NSUInteger)length

Parameters

indexes
Array of indexes to make up the index path.

length
Number of nodes to include in the index path.

Return Value
Index path with indexes up to length.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithIndexes:length: (page 464)

Declared In
NSIndexPath.h

Instance Methods

compare:
Indicates the depth-first traversal order of the receiver and another index path.

- (NSComparisonResult)compare:(NSIndexPath *)indexPath

Parameters

indexPath
Index path to compare.

This value must not be nil. If the value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
The depth-first traversal ordering of the receiver and indexPath.

 ■ NSOrderedAscending: The receiver comes before indexPath.

 ■ NSOrderedDescending: The receiver comes after indexPath.

 ■ NSOrderedSame: The receiver and indexPath are the same index path.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexPath.h

462 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

getIndexes:
Provides a reference to the receiver’s indexes.

- (void)getIndexes:(NSUInteger *)indexes

Parameters

indexes
Pointer to an unsigned integer array. On return, the receiver indexes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexPath.h

indexAtPosition:
Provides the index at a particular node in the receiver.

- (NSUInteger)indexAtPosition:(NSUInteger)node

Parameters

node
Node with the desired index. Node numbering starts at zero.

Return Value
Index at node.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexPath.h

indexPathByAddingIndex:
Provides an index path containing the indexes in the receiver and another index.

- (NSIndexPath *)indexPathByAddingIndex:(NSUInteger)index

Parameters

index
Index to append to the receiver’s indexes.

Return Value
New NSIndexPath (page 459) object containing the receiver’s indexes and index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathByRemovingLastIndex (page 464)

Instance Methods 463
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

Declared In
NSIndexPath.h

indexPathByRemovingLastIndex
Provides an index path with the indexes in the receiver, excluding the last one.

- (NSIndexPath *)indexPathByRemovingLastIndex

Return Value
New index path with the receiver’s indexes, excluding the last one.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexPathByAddingIndex: (page 463)

Declared In
NSIndexPath.h

initWithIndex:
Initializes an allocated NSIndexPath (page 459) object with a one-node index path.

- (id)initWithIndex:(NSUInteger)index

Parameters

index
Index of the item in node 0 to point to.

Return Value
Initialized NSIndexPath (page 459) object representing a one-node index path with index.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ indexPathWithIndex: (page 461)

Declared In
NSIndexPath.h

initWithIndexes:length:
Initializes an allocated NSIndexPath (page 459) object with an index path of a specific length.

- (id)initWithIndexes:(NSUInteger *)indexes length:(NSUInteger)length

Parameters

indexes
Array of indexes to make up the index path.

464 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

length
Number of nodes to include in the index path.

Return Value
Initialized NSIndexPath (page 459) object with indexes up to length.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ indexPathWithIndexes:length: (page 462)

Declared In
NSIndexPath.h

length
Provides the number of indexes in the receiver.

- (NSUInteger)length

Return Value
Number of indexes in the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexPath.h

Instance Methods 465
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

466 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 0

NSIndexPath Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSMutableCopying
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSIndexSet.h

Companion guide: Collections Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSIndexSet class represents an immutable collection of unique unsigned integers, known as
indexes because of the way they are used. This collection is referred to as a index set.

You use index sets in your code to store indexes into some other data structure. For example, given
an NSArray object, you could use an index set to identify a subset of objects in that array.

Overview 467
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Each index value can appear only once in the index set. This is an important concept to understand
and is why you would not use index sets to store an arbitrary collection of integer values. To illustrate
how this works, if you created an NSIndexSet object with the values 4, 5, 2, and 5, the resulting set
would only have the values 4, 5, and 2 in it. Because index values are always maintained in sorted
order, the actual order of the values when you created the set would be 2, 4, and then 5.

In most cases, using an index set is more efficient than storing a collection of individual integers.
Internally, the NSIndexSet class represents indexes using ranges. For maximum performance and
efficiency, overlapping ranges in an index set are automatically coalesced—that is, ranges merge
rather than overlap. Thus, the more contiguous the indexes in the set, the fewer ranges are required
to specify those indexes.

The designated initializers of the NSIndexSet class are: initWithIndexesInRange: (page 477) and
initWithIndexSet: (page 477).

You must not subclass the NSIndexSet class.

The mutable subclass of NSIndexSet is NSMutableIndexSet.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

NSMutableCopying
– mutableCopyWithZone: (page 1300)

Tasks

Creating Index Sets

+ indexSet (page 470)
Creates an empty index set.

+ indexSetWithIndex: (page 470)
Creates an index set with an index.

+ indexSetWithIndexesInRange: (page 470)
Creates an index set with an index range.

– init (page 476)
Initializes an allocated NSIndexSet (page 467) object.

– initWithIndex: (page 476)
Initializes an allocated NSIndexSet (page 467) object with an index.

468 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

– initWithIndexesInRange: (page 477)
Initializes an allocated NSIndexSet (page 467) object with an index range.

– initWithIndexSet: (page 477)
Initializes an allocated NSIndexSet (page 467) object with an index set.

Querying Index Sets

– containsIndex: (page 471)
Indicates whether the receiver contains a specific index.

– containsIndexes: (page 471)
Indicates whether the receiver contains a superset of the indexes in another index set.

– containsIndexesInRange: (page 472)
Indicates whether the receiver contains the indexes represented by an index range.

– intersectsIndexesInRange: (page 478)
Indicates whether the receiver contains any of the indexes in a range.

– count (page 472)
Returns the number of indexes in the receiver.

– countOfIndexesInRange: (page 473)
Returns the number of indexes in the receiver that are members of a given range.

Comparing Index Sets

– isEqualToIndexSet: (page 478)
Indicates whether the indexes in the receiver are the same indeces contained in another index
set.

Getting Indexes

– firstIndex (page 473)
Returns either the first index in the receiver or the not-found indicator.

– lastIndex (page 479)
Returns either the last index in the receiver or the not-found indicator.

– indexLessThanIndex: (page 475)
Returns either the closest index in the receiver that is less than a specific index or the not-found
indicator.

– indexLessThanOrEqualToIndex: (page 476)
Returns either the closest index in the receiver that is less than or equal to a specific index or
the not-found indicator.

– indexGreaterThanOrEqualToIndex: (page 475)
Returns either the closest index in the receiver that is greater than or equal to a specific index
or the not-found indicator.

– indexGreaterThanIndex: (page 474)
Returns either the closest index in the receiver that is greater than a specific index or the
not-found indicator.

Tasks 469
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

– getIndexes:maxCount:inIndexRange: (page 473)
The receiver fills an index buffer with the indexes contained both in the receiver and in an
index range, returning the number of indexes copied.

Class Methods

indexSet
Creates an empty index set.

+ (id)indexSet

Return Value
NSIndexSet (page 467) object with no members.

Availability
Available in iPhone OS 2.0 and later.

See Also
– init (page 476)

Declared In
NSIndexSet.h

indexSetWithIndex:
Creates an index set with an index.

+ (id)indexSetWithIndex:(NSUInteger)index

Parameters

index
An index.

Return Value
NSIndexSet (page 467) object containing index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithIndex: (page 476)

Declared In
NSIndexSet.h

indexSetWithIndexesInRange:
Creates an index set with an index range.

+ (id)indexSetWithIndexesInRange:(NSRange)indexRange

470 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Parameters

indexRange
An index range.

Return Value
NSIndexSet (page 467) object containing indexRange.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithIndexesInRange: (page 477)

Declared In
NSIndexSet.h

Instance Methods

containsIndex:
Indicates whether the receiver contains a specific index.

- (BOOL)containsIndex:(NSUInteger)index

Parameters

index
Index being inquired about.

Return Value
YES when the receiver contains index, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsIndexes: (page 471)
– containsIndexesInRange: (page 472)

Declared In
NSIndexSet.h

containsIndexes:
Indicates whether the receiver contains a superset of the indexes in another index set.

- (BOOL)containsIndexes:(NSIndexSet *)indexSet

Parameters

indexSet
Index set being inquired about.

Instance Methods 471
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Return Value
YES when the receiver contains a superset of the indexes in indexSet, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsIndex: (page 471)
– containsIndexesInRange: (page 472)

Declared In
NSIndexSet.h

containsIndexesInRange:
Indicates whether the receiver contains the indexes represented by an index range.

- (BOOL)containsIndexesInRange:(NSRange)indexRange

Parameters

indexRange
The index range being inquired about.

Return Value
YES when the receiver contains the indexes in indexRange, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsIndex: (page 471)
– containsIndexes: (page 471)
– intersectsIndexesInRange: (page 478)

Declared In
NSIndexSet.h

count
Returns the number of indexes in the receiver.

- (NSUInteger)count

Return Value
Number of indexes in the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– countOfIndexesInRange: (page 473)

472 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Declared In
NSIndexSet.h

countOfIndexesInRange:
Returns the number of indexes in the receiver that are members of a given range.

- (NSUInteger)countOfIndexesInRange:(NSRange)indexRange

Parameters

indexRange
Index range being inquired about.

Return Value
Number of indexes in the receiver that are members of indexRange.

Availability
Available in iPhone OS 2.0 and later.

See Also
– count (page 472)

Declared In
NSIndexSet.h

firstIndex
Returns either the first index in the receiver or the not-found indicator.

- (NSUInteger)firstIndex

Return Value
First index in the receiver or NSNotFound (page 1418) when the receiver is empty.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lastIndex (page 479)

Declared In
NSIndexSet.h

getIndexes:maxCount:inIndexRange:
The receiver fills an index buffer with the indexes contained both in the receiver and in an index
range, returning the number of indexes copied.

- (NSUInteger)getIndexes:(NSUInteger *)indexBuffer maxCount:(NSUInteger)bufferSize
inIndexRange:(NSRangePointer)indexRangePointer

Instance Methods 473
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Parameters

indexBuffer
Index buffer to fill.

bufferSize
Maximum size of indexBuffer.

indexRange
Index range to compare with indexes in the receiver; nil represents all the indexes in the
receiver. Indexes in the index range and in the receiver are copied to indexBuffer. On output,
the range of indexes not copied to indexBuffer.

Return Value
Number of indexes placed in indexBuffer.

Discussion
You are responsible for allocating the memory required for indexBuffer and for releasing it later.

Suppose you have an index set with contiguous indexes from 1 to 100. If you use this method to
request a range of (1, 100)—which represents the set of indexes 1 through 100—and specify a buffer
size of 20, this method returns 20 indexes—1 through 20—in indexBuffer and sets indexRange to
(21, 80)—which represents the indexes 21 through 100.

Use this method to retrieve entries quickly and efficiently from an index set. You can call this method
repeatedly to retrieve blocks of index values and then process them. When doing so, use the return
value and indexRange to determine when you have finished processing the desired indexes. When
the return value is less than bufferSize, you have reached the end of the range.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexSet.h

indexGreaterThanIndex:
Returns either the closest index in the receiver that is greater than a specific index or the not-found
indicator.

- (NSUInteger)indexGreaterThanIndex:(NSUInteger)index

Parameters

index
Index being inquired about.

Return Value
Closest index in the receiver greater than index; NSNotFound (page 1418) when the receiver contains
no qualifying index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexLessThanIndex: (page 475)
– indexGreaterThanOrEqualToIndex: (page 475)
– indexLessThanOrEqualToIndex: (page 476)

474 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Declared In
NSIndexSet.h

indexGreaterThanOrEqualToIndex:
Returns either the closest index in the receiver that is greater than or equal to a specific index or the
not-found indicator.

- (NSUInteger)indexGreaterThanOrEqualToIndex:(NSUInteger)index

Parameters

index
Index being inquired about.

Return Value
Closest index in the receiver greater than or equal to index; NSNotFound (page 1418) when the receiver
contains no qualifying index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexGreaterThanIndex: (page 474)
– indexLessThanIndex: (page 475)
– indexLessThanOrEqualToIndex: (page 476)

Declared In
NSIndexSet.h

indexLessThanIndex:
Returns either the closest index in the receiver that is less than a specific index or the not-found
indicator.

- (NSUInteger)indexLessThanIndex:(NSUInteger)index

Parameters

index
Index being inquired about.

Return Value
Closest index in the receiver less than index; NSNotFound (page 1418) when the receiver contains no
qualifying index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexGreaterThanIndex: (page 474)
– indexGreaterThanOrEqualToIndex: (page 475)
– indexLessThanOrEqualToIndex: (page 476)

Instance Methods 475
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Declared In
NSIndexSet.h

indexLessThanOrEqualToIndex:
Returns either the closest index in the receiver that is less than or equal to a specific index or the
not-found indicator.

- (NSUInteger)indexLessThanOrEqualToIndex:(NSUInteger)index

Parameters

index
Index being inquired about.

Return Value
Closest index in the receiver less than or equal to index; NSNotFound (page 1418) when the receiver
contains no qualifying index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– indexGreaterThanIndex: (page 474)
– indexLessThanIndex: (page 475)
– indexGreaterThanOrEqualToIndex: (page 475)

Declared In
NSIndexSet.h

init
Initializes an allocated NSIndexSet (page 467) object.

- (id)init

Return Value
Initialized, empty NSIndexSet (page 467) object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ indexSet (page 470)

Declared In
NSIndexSet.h

initWithIndex:
Initializes an allocated NSIndexSet (page 467) object with an index.

- (id)initWithIndex:(NSUInteger)index

476 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Parameters

index
An index.

Return Value
Initialized NSIndexSet (page 467) object with index.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ indexSetWithIndex: (page 470)

Declared In
NSIndexSet.h

initWithIndexesInRange:
Initializes an allocated NSIndexSet (page 467) object with an index range.

- (id)initWithIndexesInRange:(NSRange)indexRange

Parameters

indexRange
An index range. Must include only indexes representable as unsigned integers.

Return Value
Initialized NSIndexSet (page 467) object with indexRange.

Discussion
This method raises an NSRangeException when indexRange would add an index that exceeds the
maximum allowed value for unsigned integers.

This method is a designated initializer for NSIndexSet (page 467).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ indexSetWithIndexesInRange: (page 470)

Declared In
NSIndexSet.h

initWithIndexSet:
Initializes an allocated NSIndexSet (page 467) object with an index set.

- (id)initWithIndexSet:(NSIndexSet *)indexSet

Parameters

indexSet
An index set.

Instance Methods 477
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Return Value
Initialized NSIndexSet (page 467) object with indexSet.

Discussion
This method is a designated initializer for NSIndexSet (page 467).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexSet.h

intersectsIndexesInRange:
Indicates whether the receiver contains any of the indexes in a range.

- (BOOL)intersectsIndexesInRange:(NSRange)indexRange

Parameters

indexRange
Index range being inquired about.

Return Value
YES when the receiver contains one or more of the indexes in indexRange, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– containsIndexesInRange: (page 472)

Declared In
NSIndexSet.h

isEqualToIndexSet:
Indicates whether the indexes in the receiver are the same indeces contained in another index set.

- (BOOL)isEqualToIndexSet:(NSIndexSet *)indexSet

Parameters

indexSet
Index set being inquired about.

Return Value
YES when the indexes in the receiver are the same indexes indexSet contains, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexSet.h

478 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

lastIndex
Returns either the last index in the receiver or the not-found indicator.

- (NSUInteger)lastIndex

Return Value
Last index in the receiver or NSNotFound (page 1418) when the receiver is empty.

Availability
Available in iPhone OS 2.0 and later.

See Also
– firstIndex (page 473)

Declared In
NSIndexSet.h

Instance Methods 479
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

480 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 1

NSIndexSet Class Reference

Inherits from: NSStream : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSStream.h

Companion guide: Stream Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSInputStream is a subclass of NSStream that provides read-only stream functionality.

Subclassing Notes

NSInputStream is a concrete subclass of NSStream that gives you standard read-only access to stream
data. Although NSInputStream is probably sufficient for most situations requiring access to stream
data, you can create a subclass of NSInputStream if you want more specialized behavior (for example,
you want to record statistics on the data in a stream).

Overview 481
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

NSInputStream Class Reference

Methods to Override

To create a subclass of NSInputStream you may have to implement initializers for the type of stream
data supported and suitably reimplement existing initializers. You must also provide complete
implementations of the following methods:

 ■ read:maxLength: (page 485)

From the current read index, take up to the number of bytes specified in the second parameter
from the stream and place them in the client-supplied buffer (first parameter). The buffer must
be of the size specified by the second parameter. Return the actual number of bytes placed in the
buffer; if there is nothing left in the stream, return 0. Reset the index into the stream for the next
read operation.

 ■ getBuffer:length: (page 484)

Return in 0(1) a pointer to the subclass-allocated buffer (first parameter). Return by reference in
the second parameter the number of bytes actually put into the buffer. The buffer’s contents are
valid only until the next stream operation. Return NO if you cannot access data in the buffer;
otherwise, return YES. If this method is not appropriate for your type of stream, you may return
NO.

 ■ hasBytesAvailable (page 484)

Return YES if there is more data to read in the stream, NO if there is not. If you want to be
semantically compatible with NSInputStream, return YES if a read must be attempted to determine
if bytes are available.

Tasks

Creating Streams

+ inputStreamWithData: (page 483)
Creates and returns an initialized NSInputStream object for reading from a given NSData
object.

+ inputStreamWithFileAtPath: (page 483)
Creates and returns an initialized NSInputStream object that reads data from the file at a given
path.

– initWithData: (page 485)
Initializes and returns an NSInputStream object for reading from a given NSData object.

– initWithFileAtPath: (page 485)
Initializes and returns an NSInputStream object that reads data from the file at a given path.

Using Streams

– read:maxLength: (page 485)
Reads up to a given number of bytes into a given buffer, and returns the actual number of
bytes read.

482 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

NSInputStream Class Reference

– getBuffer:length: (page 484)
Returns by reference a pointer to a read buffer and, by reference, the number of bytes available,
and returns a Boolean value that indicates whether the buffer is available.

– hasBytesAvailable (page 484)
Returns a Boolean value that indicates whether the receiver has bytes available to read.

Class Methods

inputStreamWithData:
Creates and returns an initialized NSInputStream object for reading from a given NSData object.

+ (id)inputStreamWithData:(NSData *)data

Parameters

data
The data object from which to read. The contents of data are copied.

Return Value
An initialized NSInputStream object for reading from data. If data is not an NSData object, this
method returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ inputStreamWithFileAtPath: (page 483)
– initWithData: (page 485)

Declared In
NSStream.h

inputStreamWithFileAtPath:
Creates and returns an initialized NSInputStream object that reads data from the file at a given path.

+ (id)inputStreamWithFileAtPath:(NSString *)path

Parameters

path
The path to the file.

Return Value
An initialized NSInputStream object that reads data from the file at path. If the file specified by path
doesn’t exist or is unreadable, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ inputStreamWithData: (page 483)

Class Methods 483
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

NSInputStream Class Reference

– initWithFileAtPath: (page 485)

Declared In
NSStream.h

Instance Methods

getBuffer:length:
Returns by reference a pointer to a read buffer and, by reference, the number of bytes available, and
returns a Boolean value that indicates whether the buffer is available.

- (BOOL)getBuffer:(uint8_t **)buffer length:(NSUInteger *)len

Parameters

buffer
Upon return, contains a pointer to a read buffer. The buffer is only valid until the next stream
operation is performed.

len
Upon return, contains the number of bytes available.

Return Value
YES if the buffer is available, otherwise NO.

Subclasses of NSInputStream may return NO if this operation is not appropriate for the stream type.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

hasBytesAvailable
Returns a Boolean value that indicates whether the receiver has bytes available to read.

- (BOOL)hasBytesAvailable

Return Value
YES if the receiver has bytes available to read, otherwise NO. May also return YES if a read must be
attempted in order to determine the availability of bytes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

484 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

NSInputStream Class Reference

initWithData:
Initializes and returns an NSInputStream object for reading from a given NSData object.

- (id)initWithData:(NSData *)data

Parameters

data
The data object from which to read. The contents of data are copied.

Return Value
An initialized NSInputStream object for reading from data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithFileAtPath: (page 485)
+ inputStreamWithData: (page 483)

Declared In
NSStream.h

initWithFileAtPath:
Initializes and returns an NSInputStream object that reads data from the file at a given path.

- (id)initWithFileAtPath:(NSString *)path

Parameters

path
The path to the file.

Return Value
An initialized NSInputStream object that reads data from the file at path. If the file specified by path
doesn’t exist or is unreadable, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithData: (page 485)
+ inputStreamWithFileAtPath: (page 483)

Declared In
NSStream.h

read:maxLength:
Reads up to a given number of bytes into a given buffer, and returns the actual number of bytes read.

- (NSInteger)read:(uint8_t *)buffer maxLength:(NSUInteger)len

Instance Methods 485
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

NSInputStream Class Reference

Parameters

buffer
A data buffer. The buffer must be large enough to contain the number of bytes specified by
len.

len
The maximum number of bytes to read.

Return Value
The actual number of bytes read.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

486 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 2

NSInputStream Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSInvocation.h

Companion guide: Distributed Objects

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSInvocation is an Objective-C message rendered static, that is, it is an action turned into an
object. NSInvocation objects are used to store and forward messages between objects and between
applications, primarily by NSTimer objects and the distributed objects system.

An NSInvocation object contains all the elements of an Objective-C message: a target, a selector,
arguments, and the return value. Each of these elements can be set directly, and the return value is
set automatically when the NSInvocation object is dispatched.

An NSInvocation object can be repeatedly dispatched to different targets; its arguments can be
modified between dispatch for varying results; even its selector can be changed to another with the
same method signature (argument and return types). This flexibility makes NSInvocation useful for

Overview 487
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

repeating messages with many arguments and variations; rather than retyping a slightly different
expression for each message, you modify the NSInvocation object as needed each time before
dispatching it to a new target.

NSInvocation does not support invocations of methods with either variable numbers of arguments
or union arguments. You should use the invocationWithMethodSignature: (page 489) class method
to create NSInvocation objects; you should not create these objects using alloc (page 783) and
init (page 803).

This class does not retain the arguments for the contained invocation by default. If those objects might
disappear between the time you create your instance of NSInvocation and the time you use it, you
should explicitly retain the objects yourself or invoke the retainArguments method to have the
invocation object retain them itself.

Note: NSInvocation conforms to the NSCodingprotocol, but only supports coding by an NSPortCoder.
NSInvocation does not support archiving.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

Tasks

Creating NSInvocation Objects

+ invocationWithMethodSignature: (page 489)
Returns an NSInvocation object able to construct messages using a given method signature.

Configuring an Invocation Object

– setSelector: (page 494)
Sets the receiver’s selector.

– selector (page 493)
Returns the receiver’s selector, or 0 if it hasn’t been set.

– setTarget: (page 495)
Sets the receiver’s targe.

– target (page 495)
Returns the receiver’s target, or nil if the receiver has no target.

– setArgument:atIndex: (page 493)
Sets an argument of the receiver.

488 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

– getArgument:atIndex: (page 490)
Returns by indirection the receiver's argument at a specified index.

– argumentsRetained (page 490)
Returns YES if the receiver has retained its arguments, NO otherwise.

– retainArguments (page 493)
If the receiver hasn’t already done so, retains the target and all object arguments of the receiver
and copies all of its C-string arguments.

– setReturnValue: (page 494)
Sets the receiver’s return value.

– getReturnValue: (page 491)
Gets the receiver's return value.

Dispatching an Invocation

– invoke (page 491)
Sends the receiver’s message (with arguments) to its target and sets the return value.

– invokeWithTarget: (page 492)
Sets the receiver’s target, sends the receiver’s message (with arguments) to that target, and sets
the return value.

Getting the Method Signature

– methodSignature (page 492)
Returns the receiver’s method signature.

Class Methods

invocationWithMethodSignature:
Returns an NSInvocation object able to construct messages using a given method signature.

+ (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)signature

Parameters

signature
An object encapsulating a method signature.

Discussion
The new object must have its selector set with setSelector: (page 494) and its arguments set with
setArgument:atIndex: (page 493) before it can be invoked. Do not use the alloc (page 783)/init (page
803) approach to create NSInvocation objects.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 489
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

Declared In
NSInvocation.h

Instance Methods

argumentsRetained
Returns YES if the receiver has retained its arguments, NO otherwise.

- (BOOL)argumentsRetained

Availability
Available in iPhone OS 2.0 and later.

See Also
– retainArguments (page 493)

Declared In
NSInvocation.h

getArgument:atIndex:
Returns by indirection the receiver's argument at a specified index.

- (void)getArgument:(void *)buffer atIndex:(NSInteger)index

Parameters

buffer
An untyped buffer to hold the returned argument. See the discussion below relating to argument
values that are objects.

index
An integer specifying the index of the argument to get.

Indices 0 and 1 indicate the hidden arguments self and _cmd, respectively; these values can
be retrieved directly with the target and selector methods. Use indices 2 and greater for
the arguments normally passed in a message.

Discussion
This method copies the argument stored at index into the storage pointed to by buffer. The size of
buffer must be large enough to accommodate the argument value.

When the argument value is an object, pass a pointer to the variable (or memory) into which the object
should be placed:

NSArray *anArray;
[invocation getArgument:&anArray atIndex:3];

This method raises NSInvalidArgumentException if index is greater than the actual number of
arguments for the selector.

Availability
Available in iPhone OS 2.0 and later.

490 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

See Also
– setArgument:atIndex: (page 493)
– numberOfArguments (page 564) (NSMethodSignature)

Declared In
NSInvocation.h

getReturnValue:
Gets the receiver's return value.

- (void)getReturnValue:(void *)buffer

Parameters

buffer
An untyped buffer into which the receiver copies its return value. It should be large enough
to accommodate the value. See the discussion below for more information about buffer.

Discussion
Use the NSMethodSignature method methodReturnLength (page 564) to determine the size needed
for buffer:

unsigned int length = [[myInvocation methodSignature] methodReturnLength];
buffer = (void *)malloc(length);
[invocation getReturnValue:buffer];

When the return value is an object, pass a pointer to the variable (or memory) into which the object
should be placed:

id anObject;
NSArray *anArray;
[invocation1 getReturnValue:&anObject];
[invocation2 getReturnValue:&anArray];

If the NSInvocation object has never been invoked, the result of this method is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setReturnValue: (page 494)
– methodReturnType (page 564) (NSMethodSignature)

Declared In
NSInvocation.h

invoke
Sends the receiver’s message (with arguments) to its target and sets the return value.

- (void)invoke

Discussion
You must set the receiver’s target, selector, and argument values before calling this method.

Instance Methods 491
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– getReturnValue: (page 491)
– setSelector: (page 494)
– setTarget: (page 495)
– setArgument:atIndex: (page 493)

Declared In
NSInvocation.h

invokeWithTarget:
Sets the receiver’s target, sends the receiver’s message (with arguments) to that target, and sets the
return value.

- (void)invokeWithTarget:(id)anObject

Parameters

anObject
The object to set as the receiver's target.

Discussion
You must set the receiver’s selector and argument values before calling this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– getReturnValue: (page 491)
– invoke (page 491)
– setSelector: (page 494)
– setTarget: (page 495)
– setArgument:atIndex: (page 493)

Declared In
NSInvocation.h

methodSignature
Returns the receiver’s method signature.

- (NSMethodSignature *)methodSignature

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSInvocation.h

492 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

retainArguments
If the receiver hasn’t already done so, retains the target and all object arguments of the receiver and
copies all of its C-string arguments.

- (void)retainArguments

Discussion
Before this method is invoked, argumentsRetained (page 490) returns NO; after, it returns YES.

For efficiency, newly created NSInvocations don’t retain or copy their arguments, nor do they retain
their targets or copy C strings. You should instruct an NSInvocation to retain its arguments if you
intend to cache it, since the arguments may otherwise be released before the NSInvocation is invoked.
NSTimers always instruct their NSInvocations to retain their arguments, for example, because there’s
usually a delay before an NSTimer fires.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSInvocation.h

selector
Returns the receiver’s selector, or 0 if it hasn’t been set.

- (SEL)selector

Availability
Available in iPhone OS 2.0 and later.

See Also
– setSelector: (page 494)

Declared In
NSInvocation.h

setArgument:atIndex:
Sets an argument of the receiver.

- (void)setArgument:(void *)buffer atIndex:(NSInteger)index

Parameters

buffer
An untyped buffer containing an argument to be assigned to the receiver. See the discussion
below relating to argument values that are objects.

index
An integer specifying the index of the argument.

Indices 0 and 1 indicate the hidden arguments self and _cmd, respectively; you should set
these values directly with the setTarget: (page 495) and setSelector: (page 494) methods.
Use indices 2 and greater for the arguments normally passed in a message.

Instance Methods 493
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

Discussion
This method copies the contents of buffer as the argument at index. The number of bytes copied is
determined by the argument size.

When the argument value is an object, pass a pointer to the variable (or memory) from which the
object should be copied:

NSArray *anArray;
[invocation setArgument:&anArray atIndex:3];

This method raises NSInvalidArgumentException if the value of index is greater than the actual
number of arguments for the selector.

Availability
Available in iPhone OS 2.0 and later.

See Also
– getArgument:atIndex: (page 490)
– numberOfArguments (page 564) (NSMethodSignature)

Declared In
NSInvocation.h

setReturnValue:
Sets the receiver’s return value.

- (void)setReturnValue:(void *)buffer

Parameters

buffer
An untyped buffer whose contents are copied as the receiver's return value.

Discussion
This value is normally set when you send an invoke (page 491) or invokeWithTarget: (page 492)
message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– getReturnValue: (page 491)
– methodReturnLength (page 564) (NSMethodSignature)
– methodReturnType (page 564) (NSMethodSignature)

Declared In
NSInvocation.h

setSelector:
Sets the receiver’s selector.

- (void)setSelector:(SEL)selector

494 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

Parameters

selector
The selector to assign to the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– selector (page 493)

Declared In
NSInvocation.h

setTarget:
Sets the receiver’s targe.

- (void)setTarget:(id)anObject

Parameters

anObject
The object to assign to the receiver as target. The target is the receiver of the message sent by
invoke (page 491).

Discussion

Availability
Available in iPhone OS 2.0 and later.

See Also
– target (page 495)
– invokeWithTarget: (page 492)

Declared In
NSInvocation.h

target
Returns the receiver’s target, or nil if the receiver has no target.

- (id)target

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTarget: (page 495)

Declared In
NSInvocation.h

Instance Methods 495
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

496 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 3

NSInvocation Class Reference

Inherits from: NSOperation : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSOperation.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSInvocationOperation class is a concrete subclass of NSOperation that manages the execution
of a single encapsulated task specified as an invocation. You can use this class to initiate an operation
that consists of invoking a selector on a specified object. This class implements a non-concurrent
operation.

For more information on concurrent versus non-concurrent operations, see NSOperation Class Reference.

Overview 497
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

NSInvocationOperation Class Reference

Tasks

Initialization

– initWithTarget:selector:object: (page 498)
Returns an NSInvocationOperation object initialized with the specified target and selector.

– initWithInvocation: (page 498)
Returns an NSInvocationOperation object initialized with the specified invocation object.

Getting Attributes

– invocation (page 499)
Returns the receiver’s invocation object.

– result (page 499)
Returns the result of the invocation or method.

Instance Methods

initWithInvocation:
Returns an NSInvocationOperation object initialized with the specified invocation object.

- (id)initWithInvocation:(NSInvocation *)inv

Parameters

inv
The invocation object identifying the target object, selector, and parameter objects.

Return Value
An initialized NSInvocationOperation object or nil if the object could not be initialized.

Discussion
This method is the designated initializer. The receiver tells the invocation object to retain its arguments.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

initWithTarget:selector:object:
Returns an NSInvocationOperation object initialized with the specified target and selector.

- (id)initWithTarget:(id)target selector:(SEL)sel object:(id)arg

498 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

NSInvocationOperation Class Reference

Parameters

target
The object defining the specified selector.

sel
The selector to invoke when running the operation. The selector may take 0 or 1 parameters.
If it accepts a parameter, the type of that parameter should be id.

arg
The parameter object to pass to the selector. If the selector does not take an argument, specify
nil.

Return Value
An initialized NSInvocationOperation object or nil if the target object does not implement the
specified selector.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

invocation
Returns the receiver’s invocation object.

- (NSInvocation *)invocation

Return Value
The invocation object identifying the target object, selector, and parameters to use to execute the
operation’s task.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTarget:selector:object: (page 498)
– initWithInvocation: (page 498)

Declared In
NSOperation.h

result
Returns the result of the invocation or method.

- (id)result

Return Value
The object returned by the method or an NSValue object containing the return value if it is not an
object. If the method or invocation is not finished executing, this method returns nil.

Instance Methods 499
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

NSInvocationOperation Class Reference

Discussion
If an exception was raised during the execution of the method or invocation, this method raises that
exception again. If the operation was cancelled or the invocation or method has a void return type,
calling this method raises an exception; see “Result Exceptions” (page 500).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

Constants

Result Exceptions
Names of exceptions raised by NSInvocationOperation if there is an error when calling the
result (page 499) method.

extern NSString * const NSInvocationOperationVoidResultException;
extern NSString * const NSInvocationOperationCancelledException;

Constants
NSInvocationOperationVoidResultException

The name of the exception raised if the result method is called for an invocation method with
a void return type.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

NSInvocationOperationCancelledException
The name of the exception raised if the result method is called after the operation was
cancelled.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

Declared In
NSOperation.h

500 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 4

NSInvocationOperation Class Reference

Inherits from: NSCoder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSKeyedArchiver.h

Companion guide: Archives and Serializations Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSKeyedArchiver, a concrete subclass of NSCoder, provides a way to encode objects (and scalar
values) into an architecture-independent format that can be stored in a file. When you archive a set
of objects, the class information and instance variables for each object are written to the archive.
NSKeyedArchiver’s companion class, NSKeyedUnarchiver, decodes the data in an archive and creates
a set of objects equivalent to the original set.

A keyed archive differs from a non-keyed archive in that all the objects and values encoded into the
archive are given names, or keys. When decoding a non-keyed archive, values have to be decoded
in the same order in which they were encoded. When decoding a keyed archive, because values are
requested by name, values can be decoded out of sequence or not at all. Keyed archives, therefore,
provide better support for forward and backward compatibility.

Overview 501
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

The keys given to encoded values must be unique only within the scope of the current object being
encoded. A keyed archive is hierarchical, so the keys used by object A to encode its instance variables
do not conflict with the keys used by object B, even if A and B are instances of the same class. Within
a single object, however, the keys used by a subclass can conflict with keys used in its superclasses.

An NSArchiver object can write the archive data to a file or to a mutable-data object (an instance of
NSMutableData) that you provide.

Tasks

Initializing an NSKeyedArchiver Object

– initForWritingWithMutableData: (page 510)
Returns the receiver, initialized for encoding an archive into a given a mutable-data object.

Archiving Data

+ archivedDataWithRootObject: (page 504)
Returns an NSData object containing the encoded form of the object graph whose root object
is given.

+ archiveRootObject:toFile: (page 504)
Archives an object graph rooted at a given object by encoding it into a data object then atomically
writes the resulting data object to a file at a given path, and returns a Boolean value that
indicates whether the operation was successful.

– finishEncoding (page 510)
Instructs the receiver to construct the final data stream.

– outputFormat (page 511)
Returns the format in which the receiver encodes its data.

– setOutputFormat: (page 512)
Sets the format in which the receiver encodes its data.

Encoding Data and Objects

– archiver:didEncodeObject: (page 513) delegate method
Informs the delegate that a given object has been encoded.

– archiverDidFinish: (page 514) delegate method
Notifies the delegate that encoding has finished.

– archiver:willEncodeObject: (page 513) delegate method
Informs the delegate that object is about to be encoded.

– archiverWillFinish: (page 514) delegate method
Notifies the delegate that encoding is about to finish.

– archiver:willReplaceObject:withObject: (page 514) delegate method
Informs the delegate that one given object is being substituted for another given object.

502 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

– encodeBool:forKey: (page 506)
Encodes a given Boolean value and associates it with a given key.

– encodeBytes:length:forKey: (page 507)
Encodes a given number of bytes from a given C array of bytes and associates them with the
a given key.

– encodeConditionalObject:forKey: (page 507)
Encodes a reference to a given object and associates it with a given key only if it has been
unconditionally encoded elsewhere in the archive with encodeObject:forKey: (page 510).

– encodeDouble:forKey: (page 508)
Encodes a given double value and associates it with a given key.

– encodeFloat:forKey: (page 508)
Encodes a given float value and associates it with a given key.

– encodeInt:forKey: (page 509)
Encodes a given int value and associates it with a given key.

– encodeInt32:forKey: (page 509)
Encodes a given 32-bit integer value and associates it with a given key.

– encodeInt64:forKey: (page 509)
Encodes a given 64-bit integer value and associates it with a given key.

– encodeObject:forKey: (page 510)
Encodes a given object and associates it with a given key.

Managing Delegates

– delegate (page 506)
Returns the receiver’s delegate.

– setDelegate: (page 512)
Sets the delegate for the receiver.

Managing Classes and Class Names

+ setClassName:forClass: (page 505)
Adds a class translation mapping to NSKeyedArchiver whereby instances of of a given class
are encoded with a given class name instead of their real class names.

+ classNameForClass: (page 504)
Returns the class name with which NSKeyedArchiver encodes instances of a given class.

– setClassName:forClass: (page 511)
Adds a class translation mapping to the receiver whereby instances of of a given class are
encoded with a given class name instead of their real class names.

– classNameForClass: (page 506)
Returns the class name with which the receiver encodes instances of a given class.

Tasks 503
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Class Methods

archivedDataWithRootObject:
Returns an NSData object containing the encoded form of the object graph whose root object is given.

+ (NSData *)archivedDataWithRootObject:(id)rootObject

Parameters

rootObject
The root of the object graph to archive.

Return Value
An NSData object containing the encoded form of the object graph whose root object is rootObject.
The format of the archive is NSPropertyListBinaryFormat_v1_0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

archiveRootObject:toFile:
Archives an object graph rooted at a given object by encoding it into a data object then atomically
writes the resulting data object to a file at a given path, and returns a Boolean value that indicates
whether the operation was successful.

+ (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path

Parameters

rootObject
The root of the object graph to archive.

path
The path of the file in which to write the archive.

Return Value
YES if the operation was successful, otherwise NO.

Discussion
The format of the archive is NSPropertyListBinaryFormat_v1_0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

classNameForClass:
Returns the class name with which NSKeyedArchiver encodes instances of a given class.

504 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

+ (NSString *)classNameForClass:(Class)cls

Parameters

cls
The class for which to determine the translation mapping.

Return Value
The class name with which NSKeyedArchiver encodes instances of cls. Returns nil if
NSKeyedArchiver does not have a translation mapping for cls.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setClassName:forClass: (page 505)
– classNameForClass: (page 506)

Declared In
NSKeyedArchiver.h

setClassName:forClass:
Adds a class translation mapping to NSKeyedArchiver whereby instances of of a given class are
encoded with a given class name instead of their real class names.

+ (void)setClassName:(NSString *)codedName forClass:(Class)cls

Parameters

codedName
The name of the class that NSKeyedArchiver uses in place of cls.

cls
The class for which to set up a translation mapping.

Discussion
When encoding, the class’s translation mapping is used only if no translation is found first in an
instance’s separate translation map.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ classNameForClass: (page 504)
– setClassName:forClass: (page 511)

Declared In
NSKeyedArchiver.h

Class Methods 505
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Instance Methods

classNameForClass:
Returns the class name with which the receiver encodes instances of a given class.

- (NSString *)classNameForClass:(Class)cls

Parameters

cls
The class for which to determine the translation mapping.

Return Value
The class name with which the receiver encodes instances of cls. Returns nil if the receiver does not
have a translation mapping for cls. The class’s separate translation map is not searched.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setClassName:forClass: (page 511)
+ classNameForClass: (page 504)

Declared In
NSKeyedArchiver.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver's delegate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDelegate: (page 512)

Declared In
NSKeyedArchiver.h

encodeBool:forKey:
Encodes a given Boolean value and associates it with a given key.

- (void)encodeBool:(BOOL)boolv forKey:(NSString *)key

506 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Parameters

boolv
The value to encode.

key
The key with which to associate boolv.

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeBoolForKey: (page 522) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeBytes:length:forKey:
Encodes a given number of bytes from a given C array of bytes and associates them with the a given
key.

- (void)encodeBytes:(const uint8_t *)bytesp length:(NSUInteger)lenv forKey:(NSString
*)key

Parameters

bytesp
A C array of bytes to encode.

lenv
The number of bytes from bytesp to encode.

key
The key with which to associate the encoded value.

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeBytesForKey:returnedLength: (page 523) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeConditionalObject:forKey:
Encodes a reference to a given object and associates it with a given key only if it has been
unconditionally encoded elsewhere in the archive with encodeObject:forKey: (page 510).

- (void)encodeConditionalObject:(id)objv forKey:(NSString *)key

Parameters

objv
The object to encode.

Instance Methods 507
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

key
The key with which to associate the encoded value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

encodeDouble:forKey:
Encodes a given double value and associates it with a given key.

- (void)encodeDouble:(double)realv forKey:(NSString *)key

Parameters

realv
The value to encode.

key
The key with which to associate realv.

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeDoubleForKey: (page 523) (NSKeyedUnarchiver)
decodeFloatForKey: (page 524) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeFloat:forKey:
Encodes a given float value and associates it with a given key.

- (void)encodeFloat:(float)realv forKey:(NSString *)key

Parameters

realv
The value to encode.

key
The key with which to associate realv.

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeFloatForKey: (page 524) (NSKeyedUnarchiver)
decodeDoubleForKey: (page 523) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

508 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

encodeInt32:forKey:
Encodes a given 32-bit integer value and associates it with a given key.

- (void)encodeInt32:(int32_t)intv forKey:(NSString *)key

Parameters

intv
The value to encode.

key
The key with which to associate intv.

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeInt32ForKey: (page 524) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt64:forKey:
Encodes a given 64-bit integer value and associates it with a given key.

- (void)encodeInt64:(int64_t)intv forKey:(NSString *)key

Parameters

intv
The value to encode.

key
The key with which to associate intv.

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeInt64ForKey: (page 525) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeInt:forKey:
Encodes a given int value and associates it with a given key.

- (void)encodeInt:(int)intv forKey:(NSString *)key

Parameters

intv
The value to encode.

key
The key with which to associate intv.

Instance Methods 509
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeIntForKey: (page 525) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

encodeObject:forKey:
Encodes a given object and associates it with a given key.

- (void)encodeObject:(id)objv forKey:(NSString *)key

Parameters

objv
The value to encode.

key
The key with which to associate objv.

Availability
Available in iPhone OS 2.0 and later.

See Also
decodeObjectForKey: (page 526) (NSKeyedUnarchiver)

Declared In
NSKeyedArchiver.h

finishEncoding
Instructs the receiver to construct the final data stream.

- (void)finishEncoding

Discussion
No more values can be encoded after this method is called. You must call this method when finished.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initForWritingWithMutableData: (page 510)

Declared In
NSKeyedArchiver.h

initForWritingWithMutableData:
Returns the receiver, initialized for encoding an archive into a given a mutable-data object.

510 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

- (id)initForWritingWithMutableData:(NSMutableData *)data

Parameters

data
The mutable-data object into which the archive is written.

Return Value
The receiver, initialized for encoding an archive into data.

Discussion
When you finish encoding data, you must invoke finishEncoding (page 510) at which point data is
filled. The format of the receiver is NSPropertyListBinaryFormat_v1_0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

outputFormat
Returns the format in which the receiver encodes its data.

- (NSPropertyListFormat)outputFormat

Return Value
The format in which the receiver encodes its data. The available formats are
NSPropertyListXMLFormat_v1_0 and NSPropertyListBinaryFormat_v1_0.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setOutputFormat: (page 512)

Declared In
NSKeyedArchiver.h

setClassName:forClass:
Adds a class translation mapping to the receiver whereby instances of of a given class are encoded
with a given class name instead of their real class names.

- (void)setClassName:(NSString *)codedName forClass:(Class)cls

Parameters

codedName
The name of the class that the receiver uses uses in place of cls.

cls
The class for which to set up a translation mapping.

Discussion
When encoding, the receiver’s translation map overrides any translation that may also be present in
the class’s map.

Instance Methods 511
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– classNameForClass: (page 506)
+ setClassName:forClass: (page 505)

Declared In
NSKeyedArchiver.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id)delegate

Parameters

delegate
The delegate for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– delegate (page 506)

Declared In
NSKeyedArchiver.h

setOutputFormat:
Sets the format in which the receiver encodes its data.

- (void)setOutputFormat:(NSPropertyListFormat)format

Parameters

format
The format in which the receiver encodes its data. format can be
NSPropertyListXMLFormat_v1_0 or NSPropertyListBinaryFormat_v1_0.

Availability
Available in iPhone OS 2.0 and later.

See Also
– outputFormat (page 511)

Declared In
NSKeyedArchiver.h

512 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Delegate Methods

archiver:didEncodeObject:
Informs the delegate that a given object has been encoded.

- (void)archiver:(NSKeyedArchiver *)archiver didEncodeObject:(id)object

Parameters

archiver
The archiver that sent the message.

object
The object that has been encoded. object may be nil.

Discussion
The delegate might restore some state it had modified previously, or use this opportunity to keep
track of the objects that are encoded.

This method is not called for conditional objects until they are actually encoded (if ever).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

archiver:willEncodeObject:
Informs the delegate that object is about to be encoded.

- (id)archiver:(NSKeyedArchiver *)archiver willEncodeObject:(id)object

Parameters

archiver
The archiver that sent the message.

object
The object that is about to be encoded. This value is never nil.

Return Value
Either object or a different object to be encoded in its stead. The delegate can also modify the coder
state. If the delegate returns nil, nil is encoded.

Discussion
This method is called after the original object may have replaced itself with
replacementObjectForKeyedArchiver: (page 814).

This method is called whether or not the object is being encoded conditionally.

This method is not called for an object once a replacement mapping has been set up for that object
(either explicitly, or because the object has previously been encoded). This method is also not called
when nil is about to be encoded.

Delegate Methods 513
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

archiver:willReplaceObject:withObject:
Informs the delegate that one given object is being substituted for another given object.

- (void)archiver:(NSKeyedArchiver *)archiver willReplaceObject:(id)object
withObject:(id)newObject

Parameters

archiver
The archiver that sent the message.

object
The object being replaced in the archive.

newObject
The object replacing object in the archive.

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution. The delegate
may use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

archiverDidFinish:
Notifies the delegate that encoding has finished.

- (void)archiverDidFinish:(NSKeyedArchiver *)archiver

Parameters

archiver
The archiver that sent the message.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

archiverWillFinish:
Notifies the delegate that encoding is about to finish.

- (void)archiverWillFinish:(NSKeyedArchiver *)archiver

514 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Parameters

archiver
The archiver that sent the message.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

Constants

Keyed Archiving Exception Names
Names of exceptions that are raised by NSKeyedArchiver if there is a problem creating an archive.

extern NSString *NSInvalidArchiveOperationException;

Constants
NSInvalidArchiveOperationException

The name of the exception raised by NSKeyedArchiver if there is a problem creating an archive.

Available in iPhone OS 2.0 and later.

Declared in NSKeyedArchiver.h

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSKeyedArchiver.h

Constants 515
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

516 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 5

NSKeyedArchiver Class Reference

Inherits from: NSCoder : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSKeyedArchiver.h

Companion guide: Archives and Serializations Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSKeyedUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of named
objects (and scalar values) from a keyed archive. Such archives are produced by instances of the
NSKeyedArchiver class.

A keyed archive is encoded as a hierarchy of objects. Each object in the hierarchy serves as a namespace
into which other objects are encoded. The objects available for decoding are restricted to those that
were encoded within the immediate scope of a particular object. Objects encoded elsewhere in the
hierarchy, whether higher than, lower than, or parallel to this particular object, are not accessible. In
this way, the keys used by a particular object to encode its instance variables need to be unique only
within the scope of that object.

Overview 517
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

If you invoke one of the decode... methods of this class using a key that does not exist in the archive,
a non-positive value is returned. This value varies by decoded type. For example, if a key does not
exist in an archive, decodeBoolForKey: (page 522) returns NO, decodeIntForKey: (page 525) returns
0, and decodeObjectForKey: (page 526) returns nil.

NSKeyedUnarchiver supports limited type coercion. A value encoded as any type of integer, whether
a standard int or an explicit 32-bit or 64-bit integer, can be decoded using any of the integer decode
methods. Likewise, a value encoded as a float or double can be decoded as either a float or a
double value. If an encoded value is too large to fit within the coerced type, the decoding method
raises an NSRangeException. Further, when trying to coerce a value to an incompatible type, for
example decoding an int as a float, the decoding method raises an
NSInvalidUnarchiveOperationException.

Tasks

Initializing a Keyed Unarchiver

– initForReadingWithData: (page 527)
Initializes the receiver for decoding an archive previously encoded by NSKeyedArchiver.

Unarchiving Data

+ unarchiveObjectWithData: (page 521)
Decodes and returns the object graph previously encoded by NSKeyedArchiver and stored in
a given NSData object.

+ unarchiveObjectWithFile: (page 521)
Decodes and returns the object graph previously encoded by NSKeyedArchiver written to the
file at a given path.

Decoding Data

– containsValueForKey: (page 522)
Returns a Boolean value that indicates whether the archive contains a value for a given key
within the current decoding scope.

– decodeBoolForKey: (page 522)
Decodes a Boolean value associated with a given key.

– decodeBytesForKey:returnedLength: (page 523)
Decodes a stream of bytes associated with a given key.

– decodeDoubleForKey: (page 523)
Decodes a double-precision floating-point value associated with a given key.

– decodeFloatForKey: (page 524)
Decodes a single-precision floating-point value associated with a given key.

– decodeIntForKey: (page 525)
Decodes an integer value associated with a given key.

518 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

– decodeInt32ForKey: (page 524)
Decodes a 32-bit integer value associated with a given key.

– decodeInt64ForKey: (page 525)
Decodes a 64-bit integer value associated with a given key.

– decodeObjectForKey: (page 526)
Decodes and returns an object associated with a given key.

– finishDecoding (page 527)
Tells the receiver that you are finished decoding objects.

Managing the Delegate

– delegate (page 526)
Returns the receiver’s delegate.

– setDelegate: (page 528)
Sets the receiver’s delegate.

Managing Class Names

+ setClass:forClassName: (page 520)
Adds a class translation mapping to NSKeyedUnarchiver whereby objects encoded with a
given class name are decoded as instances of a given class instead.

+ classForClassName: (page 520)
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with a given
class name.

– setClass:forClassName: (page 527)
Adds a class translation mapping to the receiver whereby objects encoded with a given class
name are decoded as instances of a given class instead.

– classForClassName: (page 522)
Returns the class from which the receiver instantiates an encoded object with a given class
name.

Decoding Objects

– unarchiver:cannotDecodeObjectOfClassName:originalClasses: (page 528) delegate method
Informs the delegate that the class with a given name is not available during decoding.

– unarchiver:didDecodeObject: (page 529) delegate method
Informs the delegate that a given object has been decoded.

– unarchiver:willReplaceObject:withObject: (page 529) delegate method
Informs the delegate that one object is being substituted for another.

Finishing Decoding

– unarchiverDidFinish: (page 530) delegate method
Notifies the delegate that decoding has finished.

Tasks 519
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

– unarchiverWillFinish: (page 530) delegate method
Notifies the delegate that decoding is about to finish.

Class Methods

classForClassName:
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with a given class
name.

+ (Class)classForClassName:(NSString *)codedName

Parameters

codedName
The ostensible name of a class in an archive.

Return Value
The class from which NSKeyedUnarchiver instantiates an object encoded with the class name
codedName. Returns nil if NSKeyedUnarchiver does not have a translation mapping for codedName.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setClass:forClassName: (page 520)
– classForClassName: (page 522)

Declared In
NSKeyedArchiver.h

setClass:forClassName:
Adds a class translation mapping to NSKeyedUnarchiverwhereby objects encoded with a given class
name are decoded as instances of a given class instead.

+ (void)setClass:(Class)cls forClassName:(NSString *)codedName

Parameters

cls
The class with which to replace instances of the class named codedName.

codedName
The ostensible name of a class in an archive.

Discussion
When decoding, the class’s translation mapping is used only if no translation is found first in an
instance’s separate translation map.

Availability
Available in iPhone OS 2.0 and later.

520 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

See Also
+ classForClassName: (page 520)
– setClass:forClassName: (page 527)

Declared In
NSKeyedArchiver.h

unarchiveObjectWithData:
Decodes and returns the object graph previously encoded by NSKeyedArchiver and stored in a given
NSData object.

+ (id)unarchiveObjectWithData:(NSData *)data

Parameters

data
An object graph previously encoded by NSKeyedArchiver.

Return Value
The object graph previously encoded by NSKeyedArchiver and stored in data.

Discussion
This method raises an NSInvalidArchiveOperationException (page 515) if data is not a valid archive.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

unarchiveObjectWithFile:
Decodes and returns the object graph previously encoded by NSKeyedArchiver written to the file at
a given path.

+ (id)unarchiveObjectWithFile:(NSString *)path

Parameters

path
A path to a file that contains an object graph previously encoded by NSKeyedArchiver.

Return Value
The object graph previously encoded by NSKeyedArchiver written to the file path. Returns nil if
there is no file at path.

Discussion
This method raises an NSInvalidArgumentException if the file at path does not contain a valid
archive.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

Class Methods 521
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Instance Methods

classForClassName:
Returns the class from which the receiver instantiates an encoded object with a given class name.

- (Class)classForClassName:(NSString *)codedName

Parameters

codedName
The name of a class.

Return Value
The class from which the receiver instantiates an encoded object with the class name codedName.
Returns nil if the receiver does not have a translation mapping for codedName.

Discussion
The class’s separate translation map is not searched.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setClass:forClassName: (page 527)
+ classForClassName: (page 520)

Declared In
NSKeyedArchiver.h

containsValueForKey:
Returns a Boolean value that indicates whether the archive contains a value for a given key within
the current decoding scope.

- (BOOL)containsValueForKey:(NSString *)key

Parameters

key
A key in the archive within the current decoding scope.

Return Value
YES if the archive contains a value for key within the current decoding scope, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

decodeBoolForKey:
Decodes a Boolean value associated with a given key.

522 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

- (BOOL)decodeBoolForKey:(NSString *)key

Parameters

key
A key in the archive within the current decoding scope.

Return Value
The Boolean value associated with the key key. Returns NO if key does not exist.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeBool:forKey: (page 506) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeBytesForKey:returnedLength:
Decodes a stream of bytes associated with a given key.

- (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(NSUInteger
*)lengthp

Parameters

key
A key in the archive within the current decoding scope.

lengthp
Upon return, contains the number of bytes returned.

Return Value
The stream of bytes associated with the key key. Returns NULL if key does not exist.

Discussion
The returned value is a pointer to a temporary buffer owned by the receiver. The buffer goes away
with the unarchiver, not the containing autorelease pool. You must copy the bytes into your own
buffer if you need the data to persist beyond the life of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeBytes:length:forKey: (page 507) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeDoubleForKey:
Decodes a double-precision floating-point value associated with a given key.

- (double)decodeDoubleForKey:(NSString *)key

Instance Methods 523
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Parameters

key
A key in the archive within the current decoding scope.

Return Value
The double-precision floating-point value associated with the key key. Returns 0.0 if key does not
exist.

Discussion
If the archived value was encoded as single-precision, the type is coerced.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeDouble:forKey: (page 508) (NSKeyedArchiver)
– encodeFloat:forKey: (page 508) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeFloatForKey:
Decodes a single-precision floating-point value associated with a given key.

- (float)decodeFloatForKey:(NSString *)key

Parameters

key
A key in the archive within the current decoding scope.

Return Value
The single-precision floating-point value associated with the key key. Returns 0.0 if key does not
exist.

Discussion
If the archived value was encoded as double precision, the type is coerced, loosing precision. If the
archived value is too large for single precision, the method raises an NSRangeException.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeFloat:forKey: (page 508) (NSKeyedArchiver)
– encodeDouble:forKey: (page 508) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeInt32ForKey:
Decodes a 32-bit integer value associated with a given key.

- (int32_t)decodeInt32ForKey:(NSString *)key

524 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Parameters

key
A key in the archive within the current decoding scope.

Return Value
The 32-bit integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced. If
the archived value is too large to fit into a 32-bit integer, the method raises an NSRangeException.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeInt32:forKey: (page 509) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeInt64ForKey:
Decodes a 64-bit integer value associated with a given key.

- (int64_t)decodeInt64ForKey:(NSString *)key

Parameters

key
A key in the archive within the current decoding scope.

Return Value
The 64-bit integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeInt64:forKey: (page 509) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeIntForKey:
Decodes an integer value associated with a given key.

- (int)decodeIntForKey:(NSString *)key

Parameters

key
A key in the archive within the current decoding scope.

Instance Methods 525
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Return Value
The integer value associated with the key key. Returns 0 if key does not exist.

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced. If
the archived value is too large to fit into the default size for an integer, the method raises an
NSRangeException.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeInt:forKey: (page 509) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

decodeObjectForKey:
Decodes and returns an object associated with a given key.

- (id)decodeObjectForKey:(NSString *)key

Parameters

key
A key in the archive within the current decoding scope.

Return Value
The object associated with the key key. Returns nil if key does not exist.

Availability
Available in iPhone OS 2.0 and later.

See Also
– encodeObject:forKey: (page 510) (NSKeyedArchiver)

Declared In
NSKeyedArchiver.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver's delegate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDelegate: (page 528)

526 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Declared In
NSKeyedArchiver.h

finishDecoding
Tells the receiver that you are finished decoding objects.

- (void)finishDecoding

Discussion
Invoking this method allows the receiver to notify its delegate and to perform any final operations
on the archive. Once this method is invoked, the receiver cannot decode any further values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

initForReadingWithData:
Initializes the receiver for decoding an archive previously encoded by NSKeyedArchiver.

- (id)initForReadingWithData:(NSData *)data

Parameters

data
An archive previously encoded by NSKeyedArchiver.

Return Value
An NSKeyedUnarchiver object initialized for for decoding data.

Discussion
When you finish decoding data, you should invoke finishDecoding (page 527).

This method raises an NSInvalidArchiveOperationException (page 515) if data is not a valid archive.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

setClass:forClassName:
Adds a class translation mapping to the receiver whereby objects encoded with a given class name
are decoded as instances of a given class instead.

- (void)setClass:(Class)cls forClassName:(NSString *)codedName

Parameters

cls
The class with which to replace instances of the class named codedName.

Instance Methods 527
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

codedName
The ostensible name of a class in an archive.

Discussion
When decoding, the receiver’s translation map overrides any translation that may also be present in
the class’s map (see setClass:forClassName: (page 520)).

Availability
Available in iPhone OS 2.0 and later.

See Also
– classForClassName: (page 522)
+ setClass:forClassName: (page 520)

Declared In
NSKeyedArchiver.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters

delegate
The delegate for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– delegate (page 526)

Declared In
NSKeyedArchiver.h

Delegate Methods

unarchiver:cannotDecodeObjectOfClassName:originalClasses:
Informs the delegate that the class with a given name is not available during decoding.

- (Class)unarchiver:(NSKeyedUnarchiver *)unarchiver
cannotDecodeObjectOfClassName:(NSString *)name originalClasses:(NSArray
*)classNames

Parameters

unarchiver
An unarchiver for which the receiver is the delegate.

name
The name of the class of an object unarchiver is trying to decode.

528 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

classNames
An array describing the class hierarchy of the encoded object, where the first element is the
class name string of the encoded object, the second element is the class name of its immediate
superclass, and so on.

Return Value
The class unarchiver should use in place of the class named name.

Discussion
The delegate may, for example, load some code to introduce the class to the runtime and return the
class, or substitute a different class object. If the delegate returns nil, unarchiving aborts and the
method raises an NSInvalidUnarchiveOperationException.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

unarchiver:didDecodeObject:
Informs the delegate that a given object has been decoded.

- (id)unarchiver:(NSKeyedUnarchiver *)unarchiver didDecodeObject:(id)object

Parameters

unarchiver
An unarchiver for which the receiver is the delegate.

object
The object that has been decoded. object may be nil.

Return Value
The object to use in place of object. The delegate can either return object or return a different object
to replace the decoded one. If the delegate returns nil, nil is the result of decoding object.

Discussion
This method is called after object has been sent initWithCoder: (page 1246) and
awakeAfterUsingCoder: (page 797).

The delegate may use this method to keep track of the decoded objects.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

unarchiver:willReplaceObject:withObject:
Informs the delegate that one object is being substituted for another.

- (void)unarchiver:(NSKeyedUnarchiver *)unarchiver willReplaceObject:(id)object
withObject:(id)newObject

Delegate Methods 529
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Parameters

unarchiver
An unarchiver for which the receiver is the delegate.

object
An object in the archive.

newObject
The object with which unarchiver will replace object.

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution with
unarchiver:didDecodeObject: (page 529).

The delegate may use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

unarchiverDidFinish:
Notifies the delegate that decoding has finished.

- (void)unarchiverDidFinish:(NSKeyedUnarchiver *)unarchiver

Parameters

unarchiver
An unarchiver for which the receiver is the delegate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

unarchiverWillFinish:
Notifies the delegate that decoding is about to finish.

- (void)unarchiverWillFinish:(NSKeyedUnarchiver *)unarchiver

Parameters

unarchiver
An unarchiver for which the receiver is the delegate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

530 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Constants

Keyed Unarchiving Exception Names
Names of exceptions that are raised by NSKeyedUnarchiver if there is a problem extracting an archive.

extern NSString *NSInvalidUnarchiveOperationException;

Constants
NSInvalidUnarchiveOperationException

The name of the exception raised by NSKeyedArchiver if there is a problem extracting an
archive.

Available in iPhone OS 2.0 and later.

Declared in NSKeyedArchiver.h

Declared In
NSKeyedUnarchiver.h

Constants 531
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

532 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 6

NSKeyedUnarchiver Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSLocale.h

Companion guides: Locales
Data Formatting Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

Locales encapsulate information about linguistic, cultural, and technological conventions and standards.
Examples of information encapsulated by a locale include the symbol used for the decimal separator
in numbers and the way dates are formatted.

Locales are typically used to provide, format, and interpret information about and according to the
user’s customs and preferences. They are frequently used in conjunction with formatters (see Data
Formatting Programming Guide for Cocoa). Although you can use many locales, you usually use the one
associated with the current user.

Overview 533
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

NSLocale is “toll-free bridged” with its Core Foundation counterpart, CFLocale. This means that the
Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSLocale * parameter, you can pass a CFLocaleRef,
and in a function where you see a CFLocaleRef parameter, you can pass an NSLocale instance (you
cast one type to the other to suppress compiler warnings). See Interchangeable Data Types for more
information on toll-free bridging.

Tasks

Getting and Initializing Locales

– initWithLocaleIdentifier: (page 542)
Initializes the receiver using a given locale identifier.

+ systemLocale (page 540)
Returns the “root”, canonical locale, that contains fixed “backstop” settings that provide values
for otherwise undefined keys.

+ currentLocale (page 537)
Returns the logical locale for the current user.

+ autoupdatingCurrentLocale (page 535)
Returns the current logical locale for the current user.

Getting Information About a Locale

– displayNameForKey:value: (page 541)
Returns the display name for the given value.

– localeIdentifier (page 542)
Returns the identifier for the receiver.

– objectForKey: (page 543)
Returns the object corresponding to the specified key.

Getting System Locale Information

+ availableLocaleIdentifiers (page 536)
Returns an array of NSString objects, each of which identifies a locale available on the system.

+ ISOCountryCodes (page 538)
Returns an array of NSString objects that represents all known legal country codes.

+ ISOCurrencyCodes (page 538)
Returns an array of NSString objects that represents all known legal ISO currency codes.

+ ISOLanguageCodes (page 539)
Returns an array of NSString objects that represents all known legal ISO language codes.

+ commonISOCurrencyCodes (page 536)
Returns an array of common ISO currency codes

534 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

Converting Between Identifiers

+ canonicalLocaleIdentifierFromString: (page 536)
Returns the canonical identifier for a given locale identification string.

+ componentsFromLocaleIdentifier: (page 537)
Returns a dictionary that is the result of parsing a locale ID.

+ localeIdentifierFromComponents: (page 539)
Returns a locale identifier from the components specified in a given dictionary.

Getting Preferred Languages

+ preferredLanguages (page 540)
Returns the user's language preference order as an array of strings.

Class Methods

autoupdatingCurrentLocale
Returns the current logical locale for the current user.

+ (id)autoupdatingCurrentLocale

Return Value
The current logical locale for the current user. The locale is formed from the settings for the current
user’s chosen system locale overlaid with any custom settings the user has specified in System
Preferences.

The object always reflects the current state of the current user's locale settings.

Discussion
Settings you get from this locale do change as the user’s settings change (contrast with
currentLocale (page 537)).

Note that if you cache values based on the locale or related information, those caches will of course
not be automatically updated by the updating of the locale object. You can recompute caches upon
receipt of the notification (NSCurrentLocaleDidChangeNotification) that gets sent out for locale
changes (see Notification Programming Topics for Cocoa to learn how to register for and receive
notifications).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ systemLocale (page 540)
+ currentLocale (page 537)

Declared In
NSLocale.h

Class Methods 535
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

availableLocaleIdentifiers
Returns an array of NSString objects, each of which identifies a locale available on the system.

+ (NSArray *)availableLocaleIdentifiers

Return Value
An array of NSString objects, each of which identifies a locale available on the system.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ ISOLanguageCodes (page 539)
+ ISOCountryCodes (page 538)
+ ISOCurrencyCodes (page 538)
+ commonISOCurrencyCodes (page 536)

Declared In
NSLocale.h

canonicalLocaleIdentifierFromString:
Returns the canonical identifier for a given locale identification string.

+ (NSString *)canonicalLocaleIdentifierFromString:(NSString *)string

Parameters

string
A locale identification string.

Return Value
The canonical identifier for an the locale identified by string.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ componentsFromLocaleIdentifier: (page 537)
+ localeIdentifierFromComponents: (page 539)

Declared In
NSLocale.h

commonISOCurrencyCodes
Returns an array of common ISO currency codes

+ (NSArray *)commonISOCurrencyCodes

Return Value
An array of NSString objects that represents common ISO currency codes.

536 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

Discussion
Common codes may include, for example, AED, AUD, BZD, DKK, EUR, GBP, JPY, KES, MXN, OMR,
STD, USD, XCD, and ZWD.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 536)
+ ISOCountryCodes (page 538)
+ ISOCurrencyCodes (page 538)

Declared In
NSLocale.h

componentsFromLocaleIdentifier:
Returns a dictionary that is the result of parsing a locale ID.

+ (NSDictionary *)componentsFromLocaleIdentifier:(NSString *)string

Parameters

string
A locale ID, consisting of language, script, country, variant, and keyword/value pairs, for
example, "en_US@calendar=japanese".

Return Value
A dictionary that is the result of parsing string as a locale ID. The keys are the constant NSString
constants corresponding to the locale ID components, and the values correspond to constants where
available. For the complete set of dictionary keys, see “Constants” (page 543).

Discussion
For example: the locale ID "en_US@calendar=japanese" yields a dictionary with three entries:
NSLocaleLanguageCode=en, NSLocaleCountryCode=US, and
NSLocaleCalendar=NSJapaneseCalendar.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ localeIdentifierFromComponents: (page 539)
+ canonicalLocaleIdentifierFromString: (page 536)

Declared In
NSLocale.h

currentLocale
Returns the logical locale for the current user.

+ (id)currentLocale

Class Methods 537
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

Return Value
The logical locale for the current user. The locale is formed from the settings for the current user’s
chosen system locale overlaid with any custom settings the user has specified in System Preferences.

This method may return a retained cached object.

Discussion
Settings you get from this locale do not change as System Preferences are changed so that your
operations are consistent. Typically you perform some operations on the returned object and then
allow it to be disposed of. Moreover, since the returned object may be cached, you do not need to
hold on to it indefinitely. Contrast with autoupdatingCurrentLocale (page 535).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ systemLocale (page 540)
+ autoupdatingCurrentLocale (page 535)

Declared In
NSLocale.h

ISOCountryCodes
Returns an array of NSString objects that represents all known legal country codes.

+ (NSArray *)ISOCountryCodes

Return Value
An array of NSString objects that represents all known legal country codes.

Discussion
Note that many of country codes do not have any supporting locale data in Mac OS X.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 536)
+ ISOLanguageCodes (page 539)
+ ISOCurrencyCodes (page 538)
+ commonISOCurrencyCodes (page 536)

Declared In
NSLocale.h

ISOCurrencyCodes
Returns an array of NSString objects that represents all known legal ISO currency codes.

+ (NSArray *)ISOCurrencyCodes

538 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

Return Value
An array of NSString objects that represents all known legal ISO currency codes.

Discussion
Note that some of the currency codes may not have any supporting locale data in Mac OS X.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 536)
+ ISOCountryCodes (page 538)
+ ISOLanguageCodes (page 539)
+ commonISOCurrencyCodes (page 536)

Declared In
NSLocale.h

ISOLanguageCodes
Returns an array of NSString objects that represents all known legal ISO language codes.

+ (NSArray *)ISOLanguageCodes

Return Value
An array of NSString objects that represents all known legal ISO language codes.

Discussion
Note that many of the language codes will not have any supporting locale data in Mac OS X.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ availableLocaleIdentifiers (page 536)
+ ISOCountryCodes (page 538)
+ ISOCurrencyCodes (page 538)
+ commonISOCurrencyCodes (page 536)

Declared In
NSLocale.h

localeIdentifierFromComponents:
Returns a locale identifier from the components specified in a given dictionary.

+ (NSString *)localeIdentifierFromComponents:(NSDictionary *)dict

Parameters

dict
A dictionary containing components that specify a locale. For valid dictionary keys, see
“Constants” (page 543).

Class Methods 539
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

Return Value
A locale identifier created from the components specified in dict.

Discussion
This reverses the actions of componentsFromLocaleIdentifier: (page 537), so for example the
dictionary {NSLocaleLanguageCode="en", NSLocaleCountryCode="US",
NSLocaleCalendar=NSJapaneseCalendar} becomes "en_US@calendar=japanese".

Availability
Available in iPhone OS 2.0 and later.

See Also
+ componentsFromLocaleIdentifier: (page 537)
+ canonicalLocaleIdentifierFromString: (page 536)
+ ISOLanguageCodes (page 539)

Declared In
NSLocale.h

preferredLanguages
Returns the user's language preference order as an array of strings.

+ (NSArray *)preferredLanguages

Return Value
The user's language preference order as an array of NSString objects, each of which is a canonicalized
IETF BCP 47 language identifier.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLocale.h

systemLocale
Returns the “root”, canonical locale, that contains fixed “backstop” settings that provide values for
otherwise undefined keys.

+ (id)systemLocale

Return Value
The “root”, canonical locale, that contains fixed “backstop” settings that provide values for otherwise
undefined keys.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ autoupdatingCurrentLocale (page 535)
+ autoupdatingCurrentLocale (page 535)

540 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

Declared In
NSLocale.h

Instance Methods

displayNameForKey:value:
Returns the display name for the given value.

- (NSString *)displayNameForKey:(id)key value:(id)value

Parameters

key
Specifies which of the locale property keys value is (see “Constants” (page 543)),

value
A value for key.

Return Value
The display name for value.

Discussion
Not all locale property keys have values with display name values.

You can use the NSLocaleIdentifier key to get the name of a locale in the language of another
locale, as illustrated in the following examples. The first uses the fr_FR locale.

NSLocale *frLocale = [[[NSLocale alloc] initWithLocaleIdentifier:@"fr_FR"]
autorelease];
NSString *displayNameString = [frLocale displayNameForKey:NSLocaleIdentifier
value:@"fr_FR"];
NSLog(@"displayNameString fr_FR: %@", displayNameString);
displayNameString = [frLocale displayNameForKey:NSLocaleIdentifier
value:@"en_US"];
NSLog(@"displayNameString en_US: %@", displayNameString);

returns

displayNameString fr_FR: français (France)
displayNameString en_US: anglais (États-Unis)

The following example uses the en_GB locale.

NSLocale *gbLocale = [[[NSLocale alloc] initWithLocaleIdentifier:@"en_GB"]
autorelease];
displayNameString = [gbLocale displayNameForKey:NSLocaleIdentifier
value:@"fr_FR"];
NSLog(@"displayNameString fr_FR: %@", displayNameString);
displayNameString = [gbLocale displayNameForKey:NSLocaleIdentifier
value:@"en_US"];
NSLog(@"displayNameString en_US: %@", displayNameString);

returns

displayNameString fr_FR: French (France)

Instance Methods 541
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

displayNameString en_US: English (United States)

Availability
Available in iPhone OS 2.0 and later.

See Also
– localeIdentifier (page 542)

Declared In
NSLocale.h

initWithLocaleIdentifier:
Initializes the receiver using a given locale identifier.

- (id)initWithLocaleIdentifier:(NSString *)string

Parameters

string
The identifier for the new locale.

Return Value
The initialized locale.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLocale.h

localeIdentifier
Returns the identifier for the receiver.

- (NSString *)localeIdentifier

Return Value
The identifier for the receiver. This may not be the same string that the locale was created with, since
NSLocale may canonicalize it.

Discussion
Equivalent to sending objectForKey: with key NSLocaleIdentifier.

Availability
Available in iPhone OS 2.0 and later.

See Also
– displayNameForKey:value: (page 541)

Declared In
NSLocale.h

542 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

objectForKey:
Returns the object corresponding to the specified key.

- (id)objectForKey:(id)key

Parameters

key
The key for which to return the corresponding value. For valid values of key, see
“Constants” (page 543).

Return Value
The object corresponding to key.

Availability
Available in iPhone OS 2.0 and later.

See Also
– displayNameForKey:value: (page 541)

Declared In
NSLocale.h

Constants

NSLocale Component Keys
The following constants specify keys used to retrieve components of a locale with objectForKey: (page
543).

extern NSString * const NSLocaleIdentifier;
extern NSString * const NSLocaleLanguageCode;
extern NSString * const NSLocaleCountryCode;
extern NSString * const NSLocaleScriptCode;
extern NSString * const NSLocaleVariantCode;
extern NSString * const NSLocaleExemplarCharacterSet;
extern NSString * const NSLocaleCalendar;
extern NSString * const NSLocaleCollationIdentifier;
extern NSString * const NSLocaleUsesMetricSystem;
extern NSString * const NSLocaleMeasurementSystem;
extern NSString * const NSLocaleDecimalSeparator;
extern NSString * const NSLocaleGroupingSeparator;
extern NSString * const NSLocaleCurrencySymbol;
extern NSString * const NSLocaleCurrencyCode;

Constants
NSLocaleIdentifier

The key for the locale identifier.

The corresponding value is an NSString object. An example value might be "es_ES_PREEURO".

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

Constants 543
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

NSLocaleLanguageCode
The key for the locale language code.

The corresponding value is an NSString object. An example value might be "es".

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleCountryCode
The key for the locale country code.

The corresponding value is an NSString object. An example value might be "ES".

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleScriptCode
The key for the locale script code.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleVariantCode
The key for the locale variant code.

The corresponding value is an NSString object. An example value might be "PREEURO".

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleExemplarCharacterSet
The key for the exemplar character set for the locale.

The corresponding value is an NSCharacterSet object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleCalendar
The key for the calendar associated with the locale.

The corresponding value is an NSCalendar object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleCollationIdentifier
The key for the collation associated with the locale.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleUsesMetricSystem
The key for the flag that indicates whether the locale uses the metric system.

The corresponding value is a Boolean NSNumber object. If the value is NO, you can typically
assume American measurement units (for example, the statute mile).

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

544 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

NSLocaleMeasurementSystem
The key for the measurement system associated with the locale.

The corresponding value is an NSString object containing a description of the measurement
system used by the locale, for example “Metric” or “U.S.”.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleDecimalSeparator
The key for the decimal separator associated with the locale.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleGroupingSeparator
The key for the numeric grouping separator associated with the locale.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleCurrencySymbol
The key for the currency symbol associated with the locale.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSLocaleCurrencyCode
The key for the currency code associated with the locale.

The corresponding value is an NSString object.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

Declared In
NSLocale.h

NSLocale Calendar Keys
These constants identify NSCalendar instances.

extern NSString * const NSGregorianCalendar;
extern NSString * const NSBuddhistCalendar;
extern NSString * const NSChineseCalendar;
extern NSString * const NSHebrewCalendar;
extern NSString * const NSIslamicCalendar;
extern NSString * const NSIslamicCivilCalendar;
extern NSString * const NSJapaneseCalendar;

Constants
NSGregorianCalendar

Identifier for the Gregorian calendar.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

Constants 545
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

NSBuddhistCalendar
Identifier for the Buddhist calendar.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSChineseCalendar
Identifier for the Chinese calendar (unsupported).

Note that the Chinese calendar is not supported in Mac OS X v10.4-10.5. Although you can
create a calendar using this constant, the object will not function correctly.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSHebrewCalendar
Identifier for the Hebrew calendar.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSIslamicCalendar
Identifier for the Islamic calendar.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSIslamicCivilCalendar
Identifier for the Islamic civil calendar.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

NSJapaneseCalendar
Identifier for the Japanese calendar.

Available in iPhone OS 2.0 and later.

Declared in NSLocale.h

Discussion
You use these identifiers to initialize a new NSCalendar object, using
initWithCalendarIdentifier: (page 121). You get one of these identifiers as the return value from
calendarIdentifier (page 117).

Declared In
NSLocale.h

Notifications

NSCurrentLocaleDidChangeNotification
Notification that indicates that the user’s locale changed.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLocale.h

546 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 7

NSLocale Class Reference

Inherits from: NSObject

Conforms to: NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSLock.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSLock object is used to coordinate the operation of multiple threads of execution within the same
application. An NSLock object can be used to mediate access to an application’s global data or to
protect a critical section of code, allowing it to run atomically.

Warning: The NSLock class uses POSIX threads to implement its locking behavior. When sending
an unlock message to an NSLock object, you must be sure that message is sent from the same
thread that sent the initial lock message. Unlocking a lock from a different thread can result in
undefined behavior.

Overview 547
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

NSLock Class Reference

You should not use this class to implement a recursive lock. Calling the lock method twice on the
same thread will lock up your thread permanently. Use the NSRecursiveLock class to implement
recursive locks instead.

Unlocking a lock that is not locked is considered a programmer error and should be fixed in your
code. The NSLock class reports such errors by printing an error message to the console when they
occur.

Adopted Protocols

NSLocking
– lock (page 1298)
– unlock (page 1298)

Tasks

Acquiring a Lock

– lockBeforeDate: (page 548)
Attempts to acquire a lock before a given time and returns a Boolean value indicating whether
the attempt was successful.

– tryLock (page 550)
Attempts to acquire a lock and immediately returns a Boolean value that indicates whether
the attempt was successful.

Naming the Lock

– setName: (page 549)
Assigns a name to the receiver.

– name (page 549)
Returns the name associated with the receiver.

Instance Methods

lockBeforeDate:
Attempts to acquire a lock before a given time and returns a Boolean value indicating whether the
attempt was successful.

- (BOOL)lockBeforeDate:(NSDate *)limit

548 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

NSLock Class Reference

Parameters

limit
The time limit for attempting to acquire a lock.

Return Value
YES if the lock is acquired before limit, otherwise NO.

Discussion
The thread is blocked until the receiver acquires the lock or limit is reached.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setName: (page 549)

Declared In
NSLock.h

setName:
Assigns a name to the receiver.

- (void)setName:(NSString *)newName

Parameters

newName
The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a lock within your code. Cocoa also uses this name as part of
any error descriptions involving the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– name (page 549)

Instance Methods 549
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

NSLock Class Reference

Declared In
NSLock.h

tryLock
Attempts to acquire a lock and immediately returns a Boolean value that indicates whether the attempt
was successful.

- (BOOL)tryLock

Return Value
YES if the lock was acquired, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

550 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 8

NSLock Class Reference

Inherits from: NSPort : NSObject

Conforms to: NSCoding (NSPort)
NSCopying (NSPort)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSPort.h

Companion guide: Distributed Objects

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSMachPort is a subclass of NSPort that can be used as an endpoint for distributed object connections
(or raw messaging). NSMachPort is an object wrapper for a Mach port, the fundamental communication
port in Mac OS X. NSMachPort allows for local (on the same machine) communication only. A
companion class, NSSocketPort, allows for both local and remote distributed object communication,
but may be more expensive than NSMachPort for the local case.

To use NSMachPort effectively, you should be familiar with Mach ports, port access rights, and Mach
messages. See the Mach OS documentation for more information.

Overview 551
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

Note: NSMachPort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSPort and its subclasses do not support archiving.

Tasks

Creating and Initializing

+ portWithMachPort: (page 552)
Creates and returns a port object configured with the given Mach port.

+ portWithMachPort:options: (page 553)
Creates and returns a port object configured with the specified options and the given Mach
port.

– initWithMachPort: (page 553)
Initializes a newly allocated NSMachPort object with a given Mach port.

– initWithMachPort:options: (page 554)
Initializes a newly allocated NSMachPort object with a given Mach port and the specified
options.

Getting the Mach Port

– machPort (page 554)
Returns as an int the Mach port used by the receiver.

Scheduling the Port on a Run Loop

– removeFromRunLoop:forMode: (page 555)
Removes the receiver from the run loop mode mode of runLoop.

– scheduleInRunLoop:forMode: (page 555)
Schedules the receiver into the run loop mode mode of runLoop.

Handling Mach Messages

– handleMachMessage: (page 556) delegate method
Process an incoming Mach message.

Class Methods

portWithMachPort:
Creates and returns a port object configured with the given Mach port.

552 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

+ (NSPort *)portWithMachPort:(uint32_t)machPort

Parameters

machPort
The Mach port for the new port. This parameter should originally be of type mach_port_t.

Return Value
An NSMachPort object that uses machPort to send or receive messages.

Discussion
Creates the port object if necessary. Depending on the access rights associated with machPort, the
new port object may be usable only for sending messages.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

portWithMachPort:options:
Creates and returns a port object configured with the specified options and the given Mach port.

+ (NSPort *)portWithMachPort:(uint32_t)machPort options:(NSUInteger)options

Parameters

machPort
The Mach port for the new port. This parameter should originally be of type mach_port_t.

options
Specifies options for what to do with the underlying port rights when the NSMachPort object
is invalidated or destroyed. For a list of constants, see “Mach Port Rights” (page 556).

Return Value
An NSMachPort object that uses machPort to send or receive messages.

Discussion
Creates the port object if necessary. Depending on the access rights associated with machPort, the
new port object may be usable only for sending messages.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

Instance Methods

initWithMachPort:
Initializes a newly allocated NSMachPort object with a given Mach port.

- (id)initWithMachPort:(uint32_t)machPort

Instance Methods 553
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

Parameters

machPort
The Mach port for the new port. This parameter should originally be of type mach_port_t.

Return Value
Returns an initialized NSMachPort object that uses machPort to send or receive messages. The returned
object might be different than the original receiver

Discussion
Depending on the access rights for machPort, the new port may be able to only send messages. If a
port with machPort already exists, this method deallocates the receiver, then retains and returns the
existing port.

This method is the designated initializer for the NSMachPort class.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

initWithMachPort:options:
Initializes a newly allocated NSMachPort object with a given Mach port and the specified options.

- (id)initWithMachPort:(uint32_t)machPort options:(NSUInteger)options

Parameters

machPort
The Mach port for the new port. This parameter should originally be of type mach_port_t.

options
Specifies options for what to do with the underlying port rights when the NSMachPort object
is invalidated or destroyed. For a list of constants, see “Mach Port Rights” (page 556).

Return Value
Returns an initialized NSMachPort object that uses machPort to send or receive messages. The returned
object might be different than the original receiver

Discussion
Depending on the access rights for machPort, the new port may be able to only send messages. If a
port with machPort already exists, this method deallocates the receiver, then retains and returns the
existing port.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

machPort
Returns as an int the Mach port used by the receiver.

- (uint32_t)machPort

554 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

Return Value
The Mach port used by the receiver. Cast this value to a mach_port_twhen using it with Mach system
calls.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

removeFromRunLoop:forMode:
Removes the receiver from the run loop mode mode of runLoop.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters

runLoop
The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver.

Discussion
When the receiver is removed, the run loop stops monitoring the Mach port for incoming messages.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 555)

Declared In
NSPort.h

scheduleInRunLoop:forMode:
Schedules the receiver into the run loop mode mode of runLoop.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters

runLoop
The run loop to which to add the receiver.

mode
The run loop mode in which to add the receiver.

Discussion
When the receiver is scheduled, the run loop monitors the mach port for incoming messages and,
when a message arrives, invokes the delegate method handleMachMessage: (page 556).

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 555
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

See Also
– removeFromRunLoop:forMode: (page 555)

Declared In
NSPort.h

Delegate Methods

handleMachMessage:
Process an incoming Mach message.

- (void)handleMachMessage:(void *)machMessage

Parameters

machMessage
A pointer to a Mach message, cast as a pointer to void.

Discussion
The delegate should interpret this data as a pointer to a Mach message beginning with a msg_header_t
structure and should handle the message appropriately.

The delegate should implement only one of handleMachMessage: and handlePortMessage: (page
857).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

Constants

Mach Port Rights
Used to remove access rights to a mach port when the NSMachPort object is invalidated or destroyed.

enum {
NSMachPortDeallocateNone = 0,
NSMachPortDeallocateSendRight = (1 << 0),
NSMachPortDeallocateReceiveRight = (1 << 1)

};

Constants
NSMachPortDeallocateNone

Do not remove any send or receive rights.

Available in iPhone OS 2.0 and later.

Declared in NSPort.h

556 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

NSMachPortDeallocateSendRight
Deallocate a send right when the NSMachPort object is invalidated or destroyed.

Available in iPhone OS 2.0 and later.

Declared in NSPort.h

NSMachPortDeallocateReceiveRight
Remove a receive right when the NSMachPort object is invalidated or destroyed.

Available in iPhone OS 2.0 and later.

Declared in NSPort.h

Declared In
NSPort.h

Constants 557
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

558 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3 9

NSMachPort Class Reference

Inherits from: NSPort : NSObject

Conforms to: NSCoding (NSPort)
NSCopying (NSPort)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSPort.h

Companion guide: Distributed Objects

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSMessagePort is a subclass of NSPort that can be used as an endpoint for distributed object
connections (or raw messaging). NSMessagePort allows for local (on the same machine) communication
only. A companion class, NSSocketPort, allows for both local and remote communication, but may
be more expensive than NSMessagePort for the local case.

NSMessagePort defines no additional methods over those already defined by NSPort.

Note: NSMessagePort conforms to the NSCodingprotocol, but only supports coding by an NSPortCoder
object. NSPort and its subclasses do not support archiving.

Overview 559
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

NSMessagePort Class Reference

560 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 0

NSMessagePort Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSMethodSignature.h

Companion guides: Distributed Objects
The Objective-C 2.0 Programming Language

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSMethodSignature object records type information for the arguments and return value of a
method. It is used to forward messages that the receiving object does not respond to—most notably
in the case of distributed objects. An NSMethodSignature object is typically created using NSObject’s
methodSignatureForSelector: (page 805) instance method. It is then used to create an NSInvocation
object, which is passed as the argument to a forwardInvocation: (page 801) message to send the
invocation on to whatever other object can handle the message. In the default case, NSObject invokes
doesNotRecognizeSelector: (page 799), which raises an exception. For distributed objects, the
NSInvocation object is encoded using the information in the NSMethodSignature object and sent to
the real object represented by the receiver of the message.

Overview 561
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

NSMethodSignature Class Reference

An NSMethodSignature object presents its argument types by index with the
getArgumentTypeAtIndex: (page 563) method. The hidden arguments for every method, self and
_cmd, are at indices 0 and 1, respectively. The arguments normally specified in a message invocation
follow these. In addition to the argument types, an NSMethodSignature object offers the total number
of arguments with numberOfArguments (page 564), the total stack frame length occupied by all
arguments with frameLength (page 562) (this varies with hardware architecture), and the length and
type of the return value with methodReturnLength (page 564) and methodReturnType (page 564).
Finally, applications using distributed objects can determine if the method is asynchronous with the
isOneway (page 563) method.

For more information about the nature of a method, including the hidden arguments, see “How
Messaging Works” in “The Language” in The Objective-C 2.0 Programming Language.

Tasks

Getting Information on Argument Types

– getArgumentTypeAtIndex: (page 563)
Returns the type encoding for the argument at a given index.

– numberOfArguments (page 564)
Returns the number of arguments recorded in the receiver.

– frameLength (page 562)
Returns the number of bytes that the arguments, taken together, occupy on the stack.

Getting Information on Return Types

– methodReturnType (page 564)
Returns a C string encoding the return type of the method in Objective-C type encoding.

– methodReturnLength (page 564)
Returns the number of bytes required for the return value.

Determining Synchronous Status

– isOneway (page 563)
Returns a Boolean value that indicates whether the receiver is asynchronous when invoked
through distributed objects.

Instance Methods

frameLength
Returns the number of bytes that the arguments, taken together, occupy on the stack.

562 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

NSMethodSignature Class Reference

- (NSUInteger)frameLength

Return Value
The number of bytes that the arguments, taken together, occupy on the stack.

Discussion
This number varies with the hardware architecture the application runs on.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSMethodSignature.h

getArgumentTypeAtIndex:
Returns the type encoding for the argument at a given index.

- (const char *)getArgumentTypeAtIndex:(NSUInteger)index

Parameters

index
The index of the argument to get.

Return Value
The type encoding for the argument at index.

Discussion
Indices begin with 0. The hidden arguments self (of type id) and _cmd (of type SEL) are at indices
0 and 1; method-specific arguments begin at index 2. Raises NSInvalidArgumentException if index
is too large for the actual number of arguments.

Argument types are given as C strings with Objective-C type encoding. This encoding is
implementation-specific, so applications should use it with caution.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSMethodSignature.h

isOneway
Returns a Boolean value that indicates whether the receiver is asynchronous when invoked through
distributed objects.

- (BOOL)isOneway

Return Value
YES if the receiver is asynchronous when invoked through distributed objects, otherwise NO.

Discussion
If the method is oneway, the sender of the remote message doesn’t block awaiting a reply.

Instance Methods 563
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

NSMethodSignature Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSMethodSignature.h

methodReturnLength
Returns the number of bytes required for the return value.

- (NSUInteger)methodReturnLength

Return Value
The number of bytes required for the return value.

Availability
Available in iPhone OS 2.0 and later.

See Also
– methodReturnType (page 564)

Declared In
NSMethodSignature.h

methodReturnType
Returns a C string encoding the return type of the method in Objective-C type encoding.

- (const char *)methodReturnType

Return Value
A C string encoding the return type of the method in Objective-C type encoding.

Discussion
This encoding is implementation-specific, so applications should use it with caution.

Availability
Available in iPhone OS 2.0 and later.

See Also
– methodReturnLength (page 564)

Declared In
NSMethodSignature.h

numberOfArguments
Returns the number of arguments recorded in the receiver.

- (NSUInteger)numberOfArguments

Return Value
The number of arguments recorded in the receiver.

564 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

NSMethodSignature Class Reference

Discussion
There are always at least 2 arguments, because an NSMethodSignature object includes the hidden
arguments self and _cmd, which are the first two arguments passed to every method implementation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSMethodSignature.h

Instance Methods 565
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

NSMethodSignature Class Reference

566 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 1

NSMethodSignature Class Reference

Inherits from: NSArray : NSObject

Conforms to: NSCoding (NSArray)
NSCopying (NSArray)
NSMutableCopying (NSArray)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSArray.h
Foundation/NSPredicate.h
Foundation/NSSortDescriptor.h

Companion guides: Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable
array of objects. This class adds insertion and deletion operations to the basic array-handling behavior
inherited from NSArray.

Overview 567
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

NSArray and NSMutableArray are part of a class cluster, so arrays are not actual instances of the
NSArray or NSMutableArray classes but of one of their private subclasses. Although an array’s class
is private, its interface is public, as declared by these abstract superclasses, NSArray and
NSMutableArray. NSMutableArray‘s methods are conceptually based on these primitive methods:

insertObject:atIndex: (page 572)
removeObjectAtIndex: (page 577)
addObject: (page 571)
removeLastObject (page 575)
replaceObjectAtIndex:withObject: (page 581)

In a subclass, you must override all these methods, although you can implement the required
functionality using just the first two (however this is likely to be inefficient).

The other methods in NSMutableArray‘s interface provide convenient ways of inserting an object
into a specific slot in the array and removing an object based on its identity or position in the array.

Like NSArray, instances of NSMutableArray maintain strong references to their contents. If you do
not use garbage collection, when you add an object to an array, the object receives a retain (page
1312) message. When an object is removed from a mutable array, it receives a release (page 1310)
message. If there are no further references to the object, this means that the object is deallocated. If
your program keeps a reference to such an object, the reference will become invalid unless you send
the object a retain (page 1312) message before it’s removed from the array. For example, if anObject
is not retained before it is removed from the array, the third statement below could result in a runtime
error:

id anObject = [[anArray objectAtIndex:0] retain];
[anArray removeObjectAtIndex:0];
[anObject someMessage];

NSMutableArray’s filterUsingPredicate: provides in-place in-memory filtering of an array using
a predicate. If you use the Core Data framework, this provides an efficient means of filtering an
existing array of objects without—as a fetch does—requiring a round trip to a persistent data store.

Tasks

Creating and Initializing a Mutable Array

+ arrayWithCapacity: (page 570)
Creates and returns an NSMutableArray object with enough allocated memory to initially hold
a given number of objects.

– initWithCapacity: (page 572)
Returns an array, initialized with enough memory to initially hold a given number of objects.

Adding Objects

– addObject: (page 571)
Inserts a given object at the end of the receiver.

568 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

– addObjectsFromArray: (page 571)
Adds the objects contained in another given array to the end of the receiver’s content.

– insertObject:atIndex: (page 572)
Inserts a given object into the receiver's contents at a given index.

– insertObjects:atIndexes: (page 573)
Inserts the objects in in a given array into the receiver at the specified indexes.

Removing Objects

– removeAllObjects (page 575)
Empties the receiver of all its elements.

– removeLastObject (page 575)
Removes the object with the highest-valued index in the receiver

– removeObject: (page 575)
Removes all occurrences in the receiver of a given object.

– removeObject:inRange: (page 576)
Removes all occurrences within a specified range in the receiver of a given object.

– removeObjectAtIndex: (page 577)
Removes the object at index .

– removeObjectsAtIndexes: (page 578)
Removes the objects at the specified indexes from the receiver.

– removeObjectIdenticalTo: (page 577)
Removes all occurrences of a given object in the receiver.

– removeObjectIdenticalTo:inRange: (page 578)
Removes all occurrences of anObject within the specified range in the receiver.

– removeObjectsFromIndices:numIndices: (page 579)
Removes the specified number of objects from the receiver, beginning at the specified index.

– removeObjectsInArray: (page 580)
Removes from the receiver the objects in another given array.

– removeObjectsInRange: (page 580)
Removes from the receiver each of the objects within a given range.

Replacing Objects

– replaceObjectAtIndex:withObject: (page 581)
Replaces the object at index with anObject.

– replaceObjectsAtIndexes:withObjects: (page 581)
Replaces the objects in the receiver at specified locations specified with the objects from a given
array.

– replaceObjectsInRange:withObjectsFromArray:range: (page 582)
Replaces the objects in the receiver specified by one given range with the objects in another
array specified by another range.

Tasks 569
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

– replaceObjectsInRange:withObjectsFromArray: (page 582)
Replaces the objects in the receiver specified by a given range with all of the objects from a
given array.

– setArray: (page 583)
Sets the receiver’s elements to those in another given array.

Rearranging Content

– exchangeObjectAtIndex:withObjectAtIndex: (page 571)
Exchanges the objects in the receiver at given indices.

– sortUsingDescriptors: (page 583)
Sorts the receiver using a given array of sort descriptors.

– sortUsingFunction:context: (page 584)
Sorts the receiver’s elements in ascending order as defined by the comparison function compare.

– sortUsingSelector: (page 584)
Sorts the receiver’s elements in ascending order, as determined by the comparison method
specified by a given selector.

Class Methods

arrayWithCapacity:
Creates and returns an NSMutableArray object with enough allocated memory to initially hold a
given number of objects.

+ (id)arrayWithCapacity:(NSUInteger)numItems

Parameters

numItems
The initial capacity of the new array.

Return Value
A new NSMutableArray object with enough allocated memory to hold numItems objects.

Discussion
Mutable arrays expand as needed; numItems simply establishes the object’s initial capacity.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithCapacity: (page 572)

Declared In
NSArray.h

570 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Instance Methods

addObject:
Inserts a given object at the end of the receiver.

- (void)addObject:(id)anObject

Parameters

anObject
The object to add to the end of the receiver's content. This value must not be nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObjectsFromArray: (page 571)
– removeObject: (page 575)
– setArray: (page 583)

Declared In
NSArray.h

addObjectsFromArray:
Adds the objects contained in another given array to the end of the receiver’s content.

- (void)addObjectsFromArray:(NSArray *)otherArray

Parameters

otherArray
An array of objects to add to the end of the receiver’s content.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setArray: (page 583)
– removeObject: (page 575)

Declared In
NSArray.h

exchangeObjectAtIndex:withObjectAtIndex:
Exchanges the objects in the receiver at given indices.

- (void)exchangeObjectAtIndex:(NSUInteger)idx1 withObjectAtIndex:(NSUInteger)idx2

Instance Methods 571
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Parameters

idx1
The index of the object with which to replace the object at index idx2.

idx2
The index of the object with which to replace the object at index idx1.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSArray.h

initWithCapacity:
Returns an array, initialized with enough memory to initially hold a given number of objects.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters

numItems
The initial capacity of the new array.

Return Value
An array initialized with enough memory to hold numItems objects. The returned object might be
different than the original receiver.

Discussion
Mutable arrays expand as needed; numItems simply establishes the object’s initial capacity.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ arrayWithCapacity: (page 570)

Declared In
NSArray.h

insertObject:atIndex:
Inserts a given object into the receiver's contents at a given index.

- (void)insertObject:(id)anObject atIndex:(NSUInteger)index

572 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Parameters

anObject
The object to add to the receiver's content. This value must not be nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

index
The index in the receiver at which to insert anObject. This value must not be greater than the
count of elements in the array.

Important: Raises an NSRangeException if index is greater than the number of elements in the array.

Discussion
If index is already occupied, the objects at index and beyond are shifted by adding 1 to their indices
to make room.

Note that NSArray objects are not like C arrays. That is, even though you specify a size when you
create an array, the specified size is regarded as a “hint”; the actual size of the array is still 0. This
means that you cannot insert an object at an index greater than the current count of an array. For
example, if an array contains two objects, its size is 2, so you can add objects at indices 0, 1, or 2. Index
3 is illegal and out of bounds; if you try to add an object at index 3 (when the size of the array is 2),
NSMutableArray raises an exception.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObjectAtIndex: (page 577)

Declared In
NSArray.h

insertObjects:atIndexes:
Inserts the objects in in a given array into the receiver at the specified indexes.

- (void)insertObjects:(NSArray *)objects atIndexes:(NSIndexSet *)indexes

Parameters

objects
An array of objects to insert into the receiver.

indexes
The indexes at which the objects in objects should be inserted. The count of locations in
indexes must equal the count of objects. For more details, see the Discussion.

Discussion
Each object in objects is inserted into the receiver in turn at the corresponding location specified in
indexes after earlier insertions have been made. The implementation is conceptually similar to that
illustrated in the following example.

- void insertObjects:(NSArray *additions) atIndexes:(NSIndexSet *indexes)
{

Instance Methods 573
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

int currentIndex = [indexes firstIndex];
int i, count = [indexes count];

for (i = 0; i < count; i++)
{

[self insertObject:[additions objectAtIndex:i] atIndex:currentIndex];
currentIndex = [indexes indexGreaterThanIndex:currentIndex];

}
}

The resulting behavior is illustrated by the following example.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:3];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, a, two, b, three, four)

The locations specified by indexesmay therefore only exceed the bounds of the receiver if one location
specifies the count of the array or the count of the array after preceding insertions, and other locations
exceeding the bounds do so in a contiguous fashion from that location, as illustrated in the following
examples.

In this example, both new objects are appended to the end of the array.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:5];
[indexes addIndex:4];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, two, three, four, a, b)

If you replace [indexes addIndex:4] with [indexes addIndex:6] (so that the indexes are 5 and
6), then the application will fail with an out of bounds exception.

In this example, two objects are added into the middle of the array, and another at the current end
of the array (index 4) which means that it is third from the end of the modified array.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"two",
@"three", @"four", nil];
NSArray *newAdditions = [NSArray arrayWithObjects: @"a", @"b", @"c", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:2];
[indexes addIndex:4];
[array insertObjects:newAdditions atIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, a, b, two, c, three, four)

If you replace [indexes addIndex:4] with [indexes addIndex:6] (so that the indexes are 1, 2, and
6), then the output is (one, a, b, two, three, four, c).

574 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertObject:atIndex: (page 572)

Declared In
NSArray.h

removeAllObjects
Empties the receiver of all its elements.

- (void)removeAllObjects

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObject: (page 575)
– removeLastObject (page 575)
– removeObjectAtIndex: (page 577)
– removeObjectIdenticalTo: (page 577)

Declared In
NSArray.h

removeLastObject
Removes the object with the highest-valued index in the receiver

- (void)removeLastObject

Discussion
removeLastObject raises an NSRangeException if there are no objects in the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 575)
– removeObject: (page 575)
– removeObjectAtIndex: (page 577)
– removeObjectIdenticalTo: (page 577)

Declared In
NSArray.h

removeObject:
Removes all occurrences in the receiver of a given object.

Instance Methods 575
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

- (void)removeObject:(id)anObject

Parameters

anObject
The object to remove from the receiver.

Discussion
This method uses indexOfObject: (page 50) to locate matches and then removes them by using
removeObjectAtIndex: (page 577). Thus, matches are determined on the basis of an object’s response
to the isEqual:message. If the receiver does not contain anObject, the method has no effect (although
it does incur the overhead of searching the contents).

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 575)
– removeLastObject (page 575)
– removeObjectAtIndex: (page 577)
– removeObjectIdenticalTo: (page 577)
– removeObjectsInArray: (page 580)

Declared In
NSArray.h

removeObject:inRange:
Removes all occurrences within a specified range in the receiver of a given object.

- (void)removeObject:(id)anObject inRange:(NSRange)aRange

Parameters

anObject
The object to remove from the receiver's content.

aRange
The range from which to remove anObject.

Important: Raises an NSRangeException if aRange exceeds the bounds of the receiver.

Discussion
Matches are determined on the basis of an object’s response to the isEqual: message. If the receiver
does not contain anObject within aRange, the method has no effect (although it does incur the
overhead of searching the contents).

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 575)
– removeLastObject (page 575)
– removeObjectAtIndex: (page 577)

576 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

– removeObjectIdenticalTo: (page 577)
– removeObjectsInArray: (page 580)

Declared In
NSArray.h

removeObjectAtIndex:
Removes the object at index .

- (void)removeObjectAtIndex:(NSUInteger)index

Parameters

index
The index from which to remove the object in the receiver. The value must not exceed the
bounds of the receiver.

Important: Raises an NSRangeException if index is beyond the end of the receiver.

Discussion
To fill the gap, all elements beyond index are moved by subtracting 1 from their index.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertObject:atIndex: (page 572)
– removeAllObjects (page 575)
– removeLastObject (page 575)
– removeObject: (page 575)
– removeObjectIdenticalTo: (page 577)
– removeObjectsFromIndices:numIndices: (page 579)

Declared In
NSArray.h

removeObjectIdenticalTo:
Removes all occurrences of a given object in the receiver.

- (void)removeObjectIdenticalTo:(id)anObject

Parameters

anObject
The object to remove from the receiver.

Discussion
This method uses the indexOfObjectIdenticalTo: (page 51) method to locate matches and then
removes them by using removeObjectAtIndex: (page 577). Thus, matches are determined using
object addresses. If the receiver does not contain anObject, the method has no effect (although it does
incur the overhead of searching the contents).

Instance Methods 577
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 575)
– removeLastObject (page 575)
– removeObject: (page 575)
– removeObjectAtIndex: (page 577)

Declared In
NSArray.h

removeObjectIdenticalTo:inRange:
Removes all occurrences of anObject within the specified range in the receiver.

- (void)removeObjectIdenticalTo:(id)anObject inRange:(NSRange)aRange

Parameters

anObject
The object to remove from the receiver within aRange.

aRange
The range in the receiver from which to remove anObject.

Important: Raises an NSRangeException if aRange exceeds the bounds of the receiver.

Discussion
This method uses the indexOfObjectIdenticalTo: (page 51) method to locate matches and then
removes them by using removeObjectAtIndex: (page 577). Thus, matches are determined using
object addresses. If the receiver does not contain anObject within aRange, the method has no effect
(although it does incur the overhead of searching the contents).

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 575)
– removeLastObject (page 575)
– removeObject: (page 575)
– removeObjectAtIndex: (page 577)
– removeObjectsAtIndexes: (page 578)

Declared In
NSArray.h

removeObjectsAtIndexes:
Removes the objects at the specified indexes from the receiver.

- (void)removeObjectsAtIndexes:(NSIndexSet *)indexes

578 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Parameters

indexes
The indexes of the objects to remove from the receiver. The locations specified by indexes
must lie within the bounds of the receiver.

Discussion
This method is similar to removeObjectAtIndex: (page 577), but allows you to efficiently remove
multiple objects with a single operation. indexes specifies the locations of objects to be removed
given the state of the receiver when the method is invoked, as illustrated in the following example.

NSMutableArray *array = [NSMutableArray arrayWithObjects: @"one", @"a", @"two",
@"b", @"three", @"four", nil];
NSMutableIndexSet *indexes = [NSMutableIndexSet indexSetWithIndex:1];
[indexes addIndex:3];
[array removeObjectsAtIndexes:indexes];
NSLog(@"array: %@", array);

// Output: array: (one, two, three, four)

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithCapacity: (page 572)
– removeObjectAtIndex: (page 577)
– removeObject:inRange: (page 576)

Declared In
NSArray.h

removeObjectsFromIndices:numIndices:
Removes the specified number of objects from the receiver, beginning at the specified index.

- (void)removeObjectsFromIndices:(NSUInteger *)indices numIndices:(NSUInteger)count

Parameters

indices
A C array of the indices of the objects to remove from the receiver.

count
The number of objects to remove from the receiver.

Discussion
This method is similar to removeObjectAtIndex: (page 577), but allows you to efficiently remove
multiple objects with a single operation. If you sort the list of indices in ascending order, you will
improve the speed of this operation.

This method cannot be sent to a remote object with distributed objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithCapacity: (page 572)

Instance Methods 579
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

– removeObjectAtIndex: (page 577)
– removeObject:inRange: (page 576)
– removeObjectsAtIndexes: (page 578)

Declared In
NSArray.h

removeObjectsInArray:
Removes from the receiver the objects in another given array.

- (void)removeObjectsInArray:(NSArray *)otherArray

Parameters

otherArray
An array containing the objects to be removed from the receiver.

Discussion
This method is similar to removeObject: (page 575), but allows you to efficiently remove large sets
of objects with a single operation. If the receiver does not contain objects in otherArray, the method
has no effect (although it does incur the overhead of searching the contents).

This method assumes that all elements in otherArray respond to hash and isEqual:.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 575)
– removeObjectIdenticalTo: (page 577)
– removeObjectsAtIndexes: (page 578)

Declared In
NSArray.h

removeObjectsInRange:
Removes from the receiver each of the objects within a given range.

- (void)removeObjectsInRange:(NSRange)aRange

Parameters

aRange
The range of the objects to remove from the receiver.

Discussion
The objects are removed using removeObjectAtIndex: (page 577).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSArray.h

580 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

replaceObjectAtIndex:withObject:
Replaces the object at index with anObject.

- (void)replaceObjectAtIndex:(NSUInteger)index withObject:(id)anObject

Parameters

index
The index of the object to be replaced. This value must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if index is beyond the end of the receiver.

anObject
The object with which to replace the object at index index in the receiver. This value must not
be nil.

Important: Raises an NSInvalidArgumentException if anObject is nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertObject:atIndex: (page 572)
– removeObjectAtIndex: (page 577)
– removeObjectsAtIndexes: (page 578)
– replaceObjectsAtIndexes:withObjects: (page 581)

Declared In
NSArray.h

replaceObjectsAtIndexes:withObjects:
Replaces the objects in the receiver at specified locations specified with the objects from a given array.

- (void)replaceObjectsAtIndexes:(NSIndexSet *)indexes withObjects:(NSArray *)objects

Parameters

indexes
The indexes of the objects to be replaced.

objects
The objects with which to replace the objects in the receiver at the indexes specified by indexes.
The count of locations in indexes must equal the count of objects.

Discussion
The indexes in indexes are used in the same order as the objects in objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertObject:atIndex: (page 572)

Instance Methods 581
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

– removeObjectAtIndex: (page 577)
– replaceObjectAtIndex:withObject: (page 581)

Declared In
NSArray.h

replaceObjectsInRange:withObjectsFromArray:
Replaces the objects in the receiver specified by a given range with all of the objects from a given
array.

- (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:(NSArray
*)otherArray

Parameters

aRange
The range of objects to replace in (or remove from) the receiver.

otherArray
The array of objects from which to select replacements for the objects in aRange.

Discussion
If otherArray has fewer objects than are specified by aRange, the extra objects in the receiver are
removed. If otherArray has more objects than are specified by aRange, the extra objects from
otherArray are inserted into the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertObject:atIndex: (page 572)
– removeObjectAtIndex: (page 577)
– replaceObjectAtIndex:withObject: (page 581)
– replaceObjectsAtIndexes:withObjects: (page 581)

Declared In
NSArray.h

replaceObjectsInRange:withObjectsFromArray:range:
Replaces the objects in the receiver specified by one given range with the objects in another array
specified by another range.

- (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:(NSArray
*)otherArray range:(NSRange)otherRange

Parameters

aRange
The range of objects to replace in (or remove from) the receiver.

otherArray
The array of objects from which to select replacements for the objects in aRange.

582 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

otherRange
The range of objects to select from otherArray as replacements for the objects in aRange.

Discussion
The lengths of aRange and otherRange don’t have to be equal: if aRange is longer than otherRange,
the extra objects in the receiver are removed; if otherRange is longer than aRange, the extra objects
from otherArray are inserted into the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– insertObject:atIndex: (page 572)
– removeObjectAtIndex: (page 577)
– replaceObjectAtIndex:withObject: (page 581)
– replaceObjectsAtIndexes:withObjects: (page 581)

Declared In
NSArray.h

setArray:
Sets the receiver’s elements to those in another given array.

- (void)setArray:(NSArray *)otherArray

Parameters

otherArray
The array of objects with which to replace the receiver's content.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObjectsFromArray: (page 571)
– insertObject:atIndex: (page 572)

Declared In
NSArray.h

sortUsingDescriptors:
Sorts the receiver using a given array of sort descriptors.

- (void)sortUsingDescriptors:(NSArray *)sortDescriptors

Parameters

sortDescriptors
An array containing the NSSortDescriptor objects to use to sort the receiver's contents.

Discussion
See NSSortDescriptor for additional information.

Instance Methods 583
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortUsingFunction:context: (page 584)
– sortUsingSelector: (page 584)
– sortedArrayUsingDescriptors: (page 61) (NSArray)

Declared In
NSSortDescriptor.h

sortUsingFunction:context:
Sorts the receiver’s elements in ascending order as defined by the comparison function compare.

- (void)sortUsingFunction:(int (*)(id, id, void *))compare context:(void *)context

Parameters

compare
The comparison function to use to compare two elements at a time.

The function's parameters are two objects to compare and the context parameter, context.
The function should return NSOrderedAscending if the first element is smaller than the second,
NSOrderedDescending if the first element is larger than the second, and NSOrderedSame if the
elements are equal.

context
The context argument to pass to the compare function.

Discussion
This approach allows the comparison to be based on some outside parameter, such as whether
character sorting is case-sensitive or case-insensitive.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortUsingDescriptors: (page 583)
– sortUsingSelector: (page 584)
– sortedArrayUsingFunction:context: (page 62) (NSArray)

Declared In
NSArray.h

sortUsingSelector:
Sorts the receiver’s elements in ascending order, as determined by the comparison method specified
by a given selector.

- (void)sortUsingSelector:(SEL)comparator

584 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Parameters

comparator
A selector that specifies the comparison method to use to compare elements in the receiver.

The comparator message is sent to each object in the receiver and has as its single argument
another object in the array. The comparator method should return NSOrderedAscending if
the receiver is smaller than the argument, NSOrderedDescending if the receiver is larger than
the argument, and NSOrderedSame if they are equal.

Availability
Available in iPhone OS 2.0 and later.

See Also
– sortUsingDescriptors: (page 583)
– sortUsingFunction:context: (page 584)
– sortedArrayUsingSelector: (page 64) (NSArray)

Declared In
NSArray.h

Instance Methods 585
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

586 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 2

NSMutableArray Class Reference

Inherits from: NSCharacterSet : NSObject

Conforms to: NSCopying
NSMutableCopying
NSCoding (NSCharacterSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSCharacterSet.h

Companion guide: String Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSMutableCharacterSet class declares the programmatic interface to objects that manage a
modifiable set of Unicode characters. You can add or remove characters from a mutable character set
as numeric values in NSRange structures or as character values in strings, combine character sets by
union or intersection, and invert a character set.

Mutable character sets are less efficient to use than immutable character sets. If you don’t need to
change a character set after creating it, create an immutable copy with copy and use that.

Overview 587
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

NSMutableCharacterSet Class Reference

NSMutableCharacterSet defines no primitive methods. Subclasses must implement all methods
declared by this class in addition to the primitives of NSCharacterSet. They must also implement
mutableCopyWithZone: (page 1300).

Tasks

Adding and Removing Characters

– addCharactersInRange: (page 588)
Adds to the receiver the characters whose Unicode values are in a given range.

– removeCharactersInRange: (page 590)
Removes from the receiver the characters whose Unicode values are in a given range.

– addCharactersInString: (page 589)
Adds to the receiver the characters in a given string.

– removeCharactersInString: (page 591)
Removes from the receiver the characters in a given string.

Combining Character Sets

– formIntersectionWithCharacterSet: (page 589)
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

– formUnionWithCharacterSet: (page 590)
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

Inverting a Character Set

– invert (page 590)
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

Instance Methods

addCharactersInRange:
Adds to the receiver the characters whose Unicode values are in a given range.

- (void)addCharactersInRange:(NSRange)aRange

Parameters

aRange
The range of characters to add.

aRange.location is the value of the first character to add; aRange.location +
aRange.length– 1 is the value of the last. If aRange.length is 0, this method has no effect.

588 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

NSMutableCharacterSet Class Reference

Discussion
This code excerpt adds to a character set the lowercase English alphabetic characters:

NSMutableCharacterSet *aCharacterSet = [[NSMutableCharacterSet alloc] init];
NSRange lcEnglishRange;

lcEnglishRange.location = (unsigned int)'a';
lcEnglishRange.length = 26;
[aCharacterSet addCharactersInRange:lcEnglishRange];

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeCharactersInRange: (page 590)
– addCharactersInString: (page 589)

Declared In
NSCharacterSet.h

addCharactersInString:
Adds to the receiver the characters in a given string.

- (void)addCharactersInString:(NSString *)aString

Parameters

aString
The characters to add to the receiver.

Discussion
This method has no effect if aString is empty.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeCharactersInString: (page 591)
– addCharactersInRange: (page 588)

Declared In
NSCharacterSet.h

formIntersectionWithCharacterSet:
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

- (void)formIntersectionWithCharacterSet:(NSCharacterSet *)otherSet

Parameters

otherSet
The character set with which to perform the intersection.

Instance Methods 589
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

NSMutableCharacterSet Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– formUnionWithCharacterSet: (page 590)

Declared In
NSCharacterSet.h

formUnionWithCharacterSet:
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

- (void)formUnionWithCharacterSet:(NSCharacterSet *)otherSet

Availability
Available in iPhone OS 2.0 and later.

See Also
– formIntersectionWithCharacterSet: (page 589)

Declared In
NSCharacterSet.h

invert
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

- (void)invert

Discussion
Inverting a mutable character set, whether by invert or by invertedSet (page 144), is much less
efficient than inverting an immutable character set with invertedSet.

Availability
Available in iPhone OS 2.0 and later.

See Also
– invertedSet (page 144) (NSCharacterSet)

Declared In
NSCharacterSet.h

removeCharactersInRange:
Removes from the receiver the characters whose Unicode values are in a given range.

- (void)removeCharactersInRange:(NSRange)aRange

590 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

NSMutableCharacterSet Class Reference

Parameters

aRange
The range of characters to remove.

aRange.location is the value of the first character to remove; aRange.location +
aRange.length– 1 is the value of the last. If aRange.length is 0, this method has no effect.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addCharactersInRange: (page 588)
– removeCharactersInString: (page 591)

Declared In
NSCharacterSet.h

removeCharactersInString:
Removes from the receiver the characters in a given string.

- (void)removeCharactersInString:(NSString *)aString

Parameters

aString
The characters to remove from the receiver.

Discussion
This method has no effect if aString is empty.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addCharactersInString: (page 589)
– removeCharactersInRange: (page 590)

Declared In
NSCharacterSet.h

Instance Methods 591
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

NSMutableCharacterSet Class Reference

592 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 3

NSMutableCharacterSet Class Reference

Inherits from: NSData : NSObject

Conforms to: NSCoding (NSData)
NSCopying (NSData)
NSMutableCopying (NSData)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSData.h
Foundation/NSSerialization.h (Deprecated)

Companion guide: Binary Data Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSMutableData (and its superclass NSData) provide data objects, object-oriented wrappers for byte
buffers. Data objects let simple allocated buffers (that is, data with no embedded pointers) take on
the behavior of Foundation objects. They are typically used for data storage and are also useful in
Distributed Objects applications, where data contained in data objects can be copied or moved between
applications. NSData creates static data objects, and NSMutableData creates dynamic data objects.
You can easily convert one type of data object to the other with the initializer that takes an NSData
object or an NSMutableData object as an argument.

Overview 593
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

NSMutableData is “toll-free bridged” with its Core Foundation counterpart, CFData. This means that
the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSMutableData * parameter, you can pass a
CFDataRef, and in a function where you see a CFDataRef parameter, you can pass an NSMutableData
instance (you cast one type to the other to suppress compiler warnings). See Interchangeable Data
Types for more information on toll-free bridging.

Tasks

Creating and Initializing an NSMutableData Object

+ dataWithCapacity: (page 595)
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ dataWithLength: (page 595)
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

– initWithCapacity: (page 597)
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

– initWithLength: (page 598)
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

Adjusting Capacity

– increaseLengthBy: (page 597)
Increases the length of the receiver by a given number of bytes.

– setLength: (page 601)
Extends or truncates a mutable data object to a given length.

Accessing Data

– mutableBytes (page 598)
Returns a pointer to the receiver’s data.

Adding Data

– appendBytes:length: (page 596)
Appends to the receiver a given number of bytes from a given buffer.

– appendData: (page 596)
Appends the content of another NSData object to the receiver.

594 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

Modifying Data

– replaceBytesInRange:withBytes: (page 599)
Replaces with a given set of bytes a given range within the contents of the receiver.

– replaceBytesInRange:withBytes:length: (page 599)
Replaces with a given set of bytes a given range within the contents of the receiver.

– resetBytesInRange: (page 600)
Replaces with zeroes the contents of the receiver in a given range.

– setData: (page 600)
Replaces the entire contents of the receiver with the contents of another data object.

Class Methods

dataWithCapacity:
Creates and returns an NSMutableData object capable of holding the specified number of bytes.

+ (id)dataWithCapacity:(NSUInteger)aNumItems

Parameters

aNumItems
The number of bytes the new data object can initially contain.

Return Value
A new NSMutableData object capable of holding aNumItems bytes.

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects
allocate additional memory as needed, so aNumItems simply establishes the object’s initial capacity.
When it does allocate the initial memory, though, it allocates the specified amount. This method sets
the length of the data object to 0.

If the capacity specified in aNumItems is greater than four memory pages in size, this method may
round the amount of requested memory up to the nearest full page.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithLength: (page 595)
– initWithCapacity: (page 597)
– initWithLength: (page 598)

Declared In
NSData.h

dataWithLength:
Creates and returns an NSMutableData object containing a given number of zeroed bytes.

Class Methods 595
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

+ (id)dataWithLength:(NSUInteger)length

Parameters

length
The number of bytes the new data object initially contains.

Return Value
A new NSMutableData object of length bytes, filled with zeros.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithCapacity: (page 595)
– initWithCapacity: (page 597)
– initWithLength: (page 598)

Declared In
NSData.h

Instance Methods

appendBytes:length:
Appends to the receiver a given number of bytes from a given buffer.

- (void)appendBytes:(const void *)bytes length:(NSUInteger)length

Parameters

bytes
A buffer containing data to append to the receiver's content.

length
The number of bytes from bytes to append.

Discussion
A sample using this method can be found in Working With Mutable Binary Data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– appendData: (page 596)

Declared In
NSData.h

appendData:
Appends the content of another NSData object to the receiver.

- (void)appendData:(NSData *)otherData

596 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

Parameters

otherData
The data object whose content is to be appended to the contents of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– appendBytes:length: (page 596)

Declared In
NSData.h

increaseLengthBy:
Increases the length of the receiver by a given number of bytes.

- (void)increaseLengthBy:(NSUInteger)extraLength

Parameters

extraLength
The number of bytes by which to increase the receiver's length.

Discussion
The additional bytes are all set to 0.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLength: (page 601)

Declared In
NSData.h

initWithCapacity:
Returns an initialized NSMutableData object capable of holding the specified number of bytes.

- (id)initWithCapacity:(NSUInteger)capacity

Parameters

capacity
The number of bytes the data object can initially contain.

Return Value
An initialized NSMutableData object capable of holding capacity bytes.

Discussion
This method doesn’t necessarily allocate the requested memory right away. Mutable data objects
allocate additional memory as needed, so aNumItems simply establishes the object’s initial capacity.
When it does allocate the initial memory, though, it allocates the specified amount. This method sets
the length of the data object to 0.

Instance Methods 597
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

If the capacity specified in aNumItems is greater than four memory pages in size, this method may
round the amount of requested memory up to the nearest full page.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithCapacity: (page 595)
– initWithLength: (page 598)

Declared In
NSData.h

initWithLength:
Initializes and returns an NSMutableData object containing a given number of zeroed bytes.

- (id)initWithLength:(NSUInteger)length

Parameters

length
The number of bytes the object initially contains.

Return Value
An initialized NSMutableData object containing length zeroed bytes.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataWithCapacity: (page 595)
+ dataWithLength: (page 595)
– initWithCapacity: (page 597)

Declared In
NSData.h

mutableBytes
Returns a pointer to the receiver’s data.

- (void *)mutableBytes

Return Value
A pointer to the receiver’s data.

Discussion
If the length of the receiver’s data is not zero, this function is guaranteed to return a pointer to the
object's internal bytes. If the length of receiver’s data is zero, this function may or may not return NULL
dependent upon many factors related to how the object was created (moreover, in this case the method
result might change between different releases).

A sample using this method can be found in Working With Mutable Binary Data.

598 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSData.h

replaceBytesInRange:withBytes:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes

Parameters

range
The range within the receiver's contents to replace with bytes. The range must not exceed the
bounds of the receiver.

bytes
The data to insert into the receiver's contents.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

A sample using this method is given in Working With Mutable Binary Data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– replaceBytesInRange:withBytes:length: (page 599)
– resetBytesInRange: (page 600)

Declared In
NSData.h

replaceBytesInRange:withBytes:length:
Replaces with a given set of bytes a given range within the contents of the receiver.

- (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)replacementBytes
length:(NSUInteger)replacementLength

Parameters

range
The range within the receiver's contents to replace with bytes. The range must not exceed the
bounds of the receiver.

replacementBytes
The data to insert into the receiver's contents.

replacementLength
The number of bytes to take from replacementBytes.

Instance Methods 599
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

Discussion
If the length of range is not equal to replacementLength, the receiver is resized to accommodate the
new bytes. Any bytes past range in the receiver are shifted to accommodate the new bytes. You can
therefore pass NULL for replacementBytes and 0 for replacementLength to delete bytes in the
receiver in the range range. You can also replace a range (which might be zero-length) with more
bytes than the length of the range, which has the effect of insertion (or “replace some and insert
more”).

Availability
Available in iPhone OS 2.0 and later.

See Also
– replaceBytesInRange:withBytes: (page 599)

Declared In
NSData.h

resetBytesInRange:
Replaces with zeroes the contents of the receiver in a given range.

- (void)resetBytesInRange:(NSRange)range

Parameters

range
The range within the contents of the receiver to be replaced by zeros. The range must not
exceed the bounds of the receiver.

Discussion
If the location of range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The
receiver is resized to accommodate the new bytes, if necessary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– replaceBytesInRange:withBytes: (page 599)

Declared In
NSData.h

setData:
Replaces the entire contents of the receiver with the contents of another data object.

- (void)setData:(NSData *)aData

Parameters

aData
The data object whose content replaces that of the receiver.

Discussion
As part of its implementation, this method calls replaceBytesInRange:withBytes: (page 599).

600 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSData.h

setLength:
Extends or truncates a mutable data object to a given length.

- (void)setLength:(NSUInteger)length

Parameters

length
The new length for the receiver.

Discussion
If the mutable data object is extended, the additional bytes are filled with zeros.

Availability
Available in iPhone OS 2.0 and later.

See Also
– increaseLengthBy: (page 597)

Declared In
NSData.h

Instance Methods 601
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

602 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 4

NSMutableData Class Reference

Inherits from: NSDictionary : NSObject

Conforms to: NSCoding (NSDictionary)
NSCopying (NSDictionary)
NSMutableCopying (NSDictionary)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSDictionary.h

Companion guide: Collections Programming Topics for Cocoa

Class at a Glance

An NSDictionary object stores a mutable set of entries.

Principal Attributes

 ■ A count of the number of entries in the dictionary

 ■ The set of keys contained in the dictionary

 ■ The objects that correspond to the keys in the dictionary

dictionaryWithCapacity: (page 605)
Returns an empty dictionary with enough allocated space to hold a specified number of objects.

Class at a Glance 603
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

Commonly Used Methods

removeObjectForKey: (page 607)
Removes the specified entry from the dictionary.

removeObjectsForKeys: (page 608)
Removes multiple entries from the dictionary.

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable
associations of keys and values. With its two efficient primitive methods—setObject:forKey: (page
609) and removeObjectForKey: (page 607)—this class adds modification operations to the basic
operations it inherits from NSDictionary.

The other methods declared here operate by invoking one or both of these primitives. The non-primitive
methods provide convenient ways of adding or removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects that make up the
entry receive release (page 1310) messages. If there are no further references to the objects, they’re
deallocated. Note that if your program keeps a reference to such an object, the reference will become
invalid unless you remember to send the object a retain message before it’s removed from the
dictionary. For example, the third statement below would result in a runtime error if anObject was
not retained before it was removed:

id anObject = [[aDictionary objectForKey:theKey] retain];

[aDictionary removeObjectForKey:theKey];
[anObject someMessage];

604 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

Tasks

Creating and Initializing a Mutable Dictionary

+ dictionaryWithCapacity: (page 605)
Creates and returns a mutable dictionary, initially giving it enough allocated memory to hold
a given number of entries.

– initWithCapacity: (page 607)
Initializes a newly allocated mutable dictionary, allocating enough memory to hold numItems
entries.

Adding Entries to a Mutable Dictionary

– setObject:forKey: (page 609)
Adds a given key-value pair to the receiver.

– setValue:forKey: (page 609)
Adds a given key-value pair to the receiver.

– addEntriesFromDictionary: (page 606)
Adds to the receiver the entries from another dictionary.

– setDictionary: (page 608)
Sets the contents of the receiver to entries in a given dictionary.

Removing Entries From a Mutable Dictionary

– removeObjectForKey: (page 607)
Removes a given key and its associated value from the receiver.

– removeAllObjects (page 607)
Empties the receiver of its entries.

– removeObjectsForKeys: (page 608)
Removes from the receiver entries specified by elements in a given array.

Class Methods

dictionaryWithCapacity:
Creates and returns a mutable dictionary, initially giving it enough allocated memory to hold a given
number of entries.

+ (id)dictionaryWithCapacity:(NSUInteger)numItems

Parameters

numItems
The initial capacity of the new dictionary.

Tasks 605
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

Return Value
A new mutable dictionary with enough allocated memory to hold numItems entries.

Discussion
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the
object’s initial capacity.

Availability
Available in iPhone OS 2.0 and later.

See Also
dictionary (page 305) (NSDictionary)
dictionaryWithContentsOfFile: (page 305) (NSDictionary)
dictionaryWithContentsOfURL: (page 306): (NSDictionary)
dictionaryWithObject:forKey: (page 307) (NSDictionary)
dictionaryWithObjects:forKeys: (page 307): (NSDictionary)
dictionaryWithObjects:forKeys:count: (page 308) (NSDictionary)
dictionaryWithObjectsAndKeys: (page 309) (NSDictionary)
– initWithCapacity: (page 607)

Declared In
NSDictionary.h

Instance Methods

addEntriesFromDictionary:
Adds to the receiver the entries from another dictionary.

- (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary

Parameters

otherDictionary
The dictionary from which to add entries

Discussion
Each value object from otherDictionary is sent a retain (page 1312) message before being added to
the receiver. In contrast, each key object is copied (using copyWithZone: (page 1250)—keys must
conform to the NSCopying protocol), and the copy is added to the receiver.

If both dictionaries contain the same key, the receiver’s previous value object for that key is sent a
release message, and the new value object takes its place.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setObject:forKey: (page 609)

Declared In
NSDictionary.h

606 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

initWithCapacity:
Initializes a newly allocated mutable dictionary, allocating enough memory to hold numItems entries.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters

numItems
The initial capacity of the initialized dictionary.

Return Value
An initialized mutable dictionary, which might be different than the original receiver.

Discussion
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the
object’s initial capacity.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dictionaryWithCapacity: (page 605)

Declared In
NSDictionary.h

removeAllObjects
Empties the receiver of its entries.

- (void)removeAllObjects

Discussion
Each key and corresponding value object is sent a release (page 1310) message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObjectForKey: (page 607)
– removeObjectsForKeys: (page 608)

Declared In
NSDictionary.h

removeObjectForKey:
Removes a given key and its associated value from the receiver.

- (void)removeObjectForKey:(id)aKey

Parameters

aKey
The key to remove.

Instance Methods 607
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

Discussion
Does nothing if aKey does not exist.

For example, assume you have an archived dictionary that records the call letters and associated
frequencies of radio stations. To remove an entry for a defunct station, you could write code similar
to the following:

NSMutableDictionary *stations = nil;

stations = [[NSMutableDictionary alloc]
initWithContentsOfFile: pathToArchive];

[stations removeObjectForKey:@"KIKT"];

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 607)
– removeObjectsForKeys: (page 608)

Declared In
NSDictionary.h

removeObjectsForKeys:
Removes from the receiver entries specified by elements in a given array.

- (void)removeObjectsForKeys:(NSArray *)keyArray

Parameters

keyArray
An array of objects specifying the keys to remove.

Discussion
If a key in keyArray does not exist, the entry is ignored.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObjectForKey: (page 607)
– removeObjectForKey: (page 607)

Declared In
NSDictionary.h

setDictionary:
Sets the contents of the receiver to entries in a given dictionary.

- (void)setDictionary:(NSDictionary *)otherDictionary

608 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

Parameters

otherDictionary
A dictionary containing the new entries.

Discussion
All entries are removed from the receiver (with removeAllObjects (page 607)), then each entry from
otherDictionary added into the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDictionary.h

setObject:forKey:
Adds a given key-value pair to the receiver.

- (void)setObject:(id)anObject forKey:(id)aKey

Parameters

anObject
The value for key. The object receives a retain message before being added to the receiver.
This value must not be nil.

aKey
The key for value. The key is copied (using copyWithZone: (page 1250); keys must conform to
the NSCopying protocol). The key must not be nil.

Discussion
Raises an NSInvalidArgumentException if aKey or anObject is nil. If you need to represent a nil
value in the dictionary, use NSNull.

If aKey already exists in the receiver, the receiver’s previous value object for that key is sent a
release (page 1310) message and anObject takes its place.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObjectForKey: (page 607)

Declared In
NSDictionary.h

setValue:forKey:
Adds a given key-value pair to the receiver.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters

value
The value for key.

Instance Methods 609
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

key
The key for value. Note that when using key-value coding, the key must be a string (see
Key-Value Coding Fundamentals).

Discussion
This method adds value and key to the receiver using setObject:forKey: (page 609), unless value
is nil in which case the method instead attempts to remove key using removeObjectForKey: (page
607).

Availability
Available in iPhone OS 2.0 and later.

See Also
valueForKey: (page 328) (NSDictionary)

Declared In
NSKeyValueCoding.h

610 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 5

NSMutableDictionary Class Reference

Inherits from: NSIndexSet : NSObject

Conforms to: NSCopying (NSIndexSet)
NSMutableCopying (NSIndexSet)
NSCoding (NSIndexSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSIndexSet.h

Companion guide: Collections Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSMutableIndexSet class represents a mutable collection of unique unsigned integers, known
as indexes because of the way they are used. This collection is referred to as a mutable index set.

The values in a mutable index set are always sorted, so the order in which values are added is
irrelevant.

You must not subclass the NSMutableIndexSet class.

Overview 611
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

NSMutableIndexSet Class Reference

Tasks

Adding Indexes

– addIndex: (page 612)
Adds an index to the receiver.

– addIndexes: (page 613)
Adds the indexes in an index set to the receiver.

– addIndexesInRange: (page 613)
Adds the indexes in an index range to the receiver.

Removing Indexes

– removeIndex: (page 614)
Removes an index from the receiver.

– removeIndexes: (page 614)
Removes the indexes in an index set from the receiver.

– removeAllIndexes (page 613)
Removes the receiver’s indexes.

– removeIndexesInRange: (page 615)
Removes the indexes in an index range from the receiver.

Shifting Index Groups

– shiftIndexesStartingAtIndex:by: (page 615)
Shifts a group of indexes to the left or the right within the receiver.

Instance Methods

addIndex:
Adds an index to the receiver.

- (void)addIndex:(NSUInteger)index

Parameters

index
Index to add.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addIndexes: (page 613)

612 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

NSMutableIndexSet Class Reference

– addIndexesInRange: (page 613)

Declared In
NSIndexSet.h

addIndexes:
Adds the indexes in an index set to the receiver.

- (void)addIndexes:(NSIndexSet *)indexSet

Parameters

indexSet
Index set to add.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addIndex: (page 612)
– addIndexesInRange: (page 613)

Declared In
NSIndexSet.h

addIndexesInRange:
Adds the indexes in an index range to the receiver.

- (void)addIndexesInRange:(NSRange)indexRange

Parameters

indexRange
Index range to add. Must include only indexes representable as unsigned integers.

Discussion
This method raises an NSRangeException when indexRange would add an index that exceeds the
maximum allowed value for unsigned integers.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addIndex: (page 612)
– addIndexes: (page 613)

Declared In
NSIndexSet.h

removeAllIndexes
Removes the receiver’s indexes.

Instance Methods 613
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

NSMutableIndexSet Class Reference

- (void)removeAllIndexes

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeIndex: (page 614)
– removeIndexes: (page 614)
– removeIndexesInRange: (page 615)

Declared In
NSIndexSet.h

removeIndex:
Removes an index from the receiver.

- (void)removeIndex:(NSUInteger)index

Parameters

index
Index to remove.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllIndexes (page 613)
– removeIndexes: (page 614)
– removeIndexesInRange: (page 615)

Declared In
NSIndexSet.h

removeIndexes:
Removes the indexes in an index set from the receiver.

- (void)removeIndexes:(NSIndexSet *)indexSet

Parameters

indexSet
Index set to remove.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeIndex: (page 614)
– removeAllIndexes (page 613)
– removeIndexesInRange: (page 615)

614 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

NSMutableIndexSet Class Reference

Declared In
NSIndexSet.h

removeIndexesInRange:
Removes the indexes in an index range from the receiver.

- (void)removeIndexesInRange:(NSRange)indexRange

Parameters

indexRange
Index range to remove.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeIndex: (page 614)
– removeIndexes: (page 614)
– removeAllIndexes (page 613)

Declared In
NSIndexSet.h

shiftIndexesStartingAtIndex:by:
Shifts a group of indexes to the left or the right within the receiver.

- (void)shiftIndexesStartingAtIndex:(NSUInteger)startIndex by:(NSInteger)delta

Parameters

startIndex
Head of the group of indexes to shift.

delta
Amount and direction of the shift. Positive integers shift the indexes to the right. Negative
integers shift the indexes to the left.

Discussion
The group of indexes shifted is made up by startIndex and the indexes that follow it in the receiver.

A left shift deletes the indexes in the range (startIndex-delta,delta) from the receiver.

A right shift inserts empty space in the range (indexStart,delta) in the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSIndexSet.h

Instance Methods 615
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

NSMutableIndexSet Class Reference

616 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 6

NSMutableIndexSet Class Reference

Inherits from: NSSet : NSObject

Conforms to: NSCoding (NSSet)
NSCopying (NSSet)
NSMutableCopying (NSSet)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSSet.h

Companion guide: Collections Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set
of objects. NSMutableSet provides support for the mathematical concept of a set. A set, both in its
mathematical sense and in the NSMutableSet implementation, is an unordered collection of distinct
elements.

The NSCountedSet class, which is a concrete subclass of NSMutableSet, supports mutable sets that
can contain multiple instances of the same element. The NSSet class supports creating and managing
immutable sets.

Overview 617
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

You add objects to an NSMutableSet object with addObject: (page 619), which adds a single object
to the set; addObjectsFromArray: (page 620), which adds all objects from a specified array to the set;
or unionSet: (page 623), which adds all the objects from another set. You remove objects from an
NSMutableSet object using any of the methods intersectSet: (page 621), minusSet: (page 621),
removeAllObjects (page 622), or removeObject: (page 622).

When an object is added to a set, it receives a retain (page 1312) message. When an object is removed
from a mutable set, it receives a release (page 1310) message. If there are no further references to the
object, this means that the object is deallocated. If your program keeps a reference to such an object,
the reference will become invalid unless you send the object a retain (page 1312) message before it’s
removed from the array. For example, if anObject is not retained before it is removed from the set,
the third statement below could result in a runtime error:

id anObject = [[aSet anyObject] retain];
[aSet removeObject:anObject];
[anObject someMessage];

Tasks

Creating a Mutable Set

+ setWithCapacity: (page 619)
Creates and returns a mutable set with a given initial capacity.

– initWithCapacity: (page 620)
Returns an initialized mutable set with a given initial capacity.

Adding and Removing Entries

– addObject: (page 619)
Adds a given object to the receiver, if it is not already a member.

– removeObject: (page 622)
Removes a given object from the receiver.

– removeAllObjects (page 622)
Empties the receiver of all of its members.

– addObjectsFromArray: (page 620)
Adds to the receiver each object contained in a given array that is not already a member.

Combining and Recombining Sets

– unionSet: (page 623)
Adds to the receiver each object contained in another given set that is not already a member.

– minusSet: (page 621)
Removes from the receiver each object contained in another given set that is present in the
receiver.

618 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

– intersectSet: (page 621)
Removes from the receiver each object that isn’t a member of another given set.

– setSet: (page 622)
Empties the receiver, then adds to the receiver each object contained in another given set.

Class Methods

setWithCapacity:
Creates and returns a mutable set with a given initial capacity.

+ (id)setWithCapacity:(NSUInteger)numItems

Parameters

numItems
The initial capacity of the new set.

Return Value
A mutable set with initial capacity to hold numItems members.

Discussion
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial
capacity.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithCapacity: (page 620)
+ set (page 919) (NSSet)
+ setWithObjects:count: (page 921) (NSSet)

Declared In
NSSet.h

Instance Methods

addObject:
Adds a given object to the receiver, if it is not already a member.

- (void)addObject:(id)anObject

Parameters

anObject
The object to add to the receiver.

Discussion
If anObject is already present in the set, this method has no effect on either the set or anObject.

Class Methods 619
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObjectsFromArray: (page 620)
– unionSet: (page 623)

Declared In
NSSet.h

addObjectsFromArray:
Adds to the receiver each object contained in a given array that is not already a member.

- (void)addObjectsFromArray:(NSArray *)anArray

Parameters

anArray
An array of objects to add to the receiver.

Discussion
If a given element of the array is already present in the set, this method has no effect on either the set
or the array element.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObject: (page 619)
– unionSet: (page 623)

Declared In
NSSet.h

initWithCapacity:
Returns an initialized mutable set with a given initial capacity.

- (id)initWithCapacity:(NSUInteger)numItems

Parameters

numItems
The initial capacity of the set.

Return Value
An initialized mutable set with initial capacity to hold numItemsmembers. The returned object might
be different than the original receiver.

Discussion
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial
capacity.

Availability
Available in iPhone OS 2.0 and later.

620 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

See Also
+ setWithCapacity: (page 619)

Declared In
NSSet.h

intersectSet:
Removes from the receiver each object that isn’t a member of another given set.

- (void)intersectSet:(NSSet *)otherSet

Parameters

otherSet
The set with which to perform the intersection.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObject: (page 622)
– removeAllObjects (page 622)
– minusSet: (page 621)

Declared In
NSSet.h

minusSet:
Removes from the receiver each object contained in another given set that is present in the receiver.

- (void)minusSet:(NSSet *)otherSet

Parameters

otherSet
The set of objects to remove from the receiver.

Discussion
If any member of otherSet isn’t present in the receiving set, this method has no effect on either the
receiver or the otherSet member.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObject: (page 622)
– removeAllObjects (page 622)
– intersectSet: (page 621)

Declared In
NSSet.h

Instance Methods 621
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

removeAllObjects
Empties the receiver of all of its members.

- (void)removeAllObjects

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObject: (page 622)
– minusSet: (page 621)
– intersectSet: (page 621)

Declared In
NSSet.h

removeObject:
Removes a given object from the receiver.

- (void)removeObject:(id)anObject

Parameters

anObject
The object to remove from the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllObjects (page 622)
– minusSet: (page 621)
– intersectSet: (page 621)

Declared In
NSSet.h

setSet:
Empties the receiver, then adds to the receiver each object contained in another given set.

- (void)setSet:(NSSet *)otherSet

Parameters

otherSet
The set whose members replace the receiver's content.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSet.h

622 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

unionSet:
Adds to the receiver each object contained in another given set that is not already a member.

- (void)unionSet:(NSSet *)otherSet

Parameters

otherSet
The set of objects to add to the receiver.

Discussion
If any member of otherSet is already present in the receiver, this method has no effect on either the
receiver or the otherSet member.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObject: (page 619)
– addObjectsFromArray: (page 620)

Declared In
NSSet.h

Instance Methods 623
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

624 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 7

NSMutableSet Class Reference

Inherits from: NSString : NSObject

Conforms to: NSCoding (NSString)
NSCopying (NSString)
NSMutableCopying (NSString)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSString.h

Companion guide: String Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSMutableString class declares the programmatic interface to an object that manages a mutable
string—that is, a string whose contents can be edited—that conceptually represents an array of Unicode
characters. To construct and manage an immutable string—or a string that cannot be changed after
it has been created—use an object of the NSString class.

The NSMutableString class adds one primitive
method—replaceCharactersInRange:withString: (page 629)—to the basic string-handling behavior
inherited from NSString. All other methods that modify a string work through this method. For

Overview 625
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

example, insertString:atIndex: (page 629) simply replaces the characters in a range of 0 length,
while deleteCharactersInRange: (page 628) replaces the characters in a given range with no
characters.

Tasks

Creating and Initializing a Mutable String

+ stringWithCapacity: (page 626)
Returns an empty NSMutableString object with initial storage for a given number of characters.

– initWithCapacity: (page 628)
Returns an NSMutableString object initialized with initial storage for a given number of
characters,

Modifying a String

– appendFormat: (page 627)
Adds a constructed string to the receiver.

– appendString: (page 627)
Adds to the end of the receiver the characters of a given string.

– deleteCharactersInRange: (page 628)
Removes from the receiver the characters in a given range.

– insertString:atIndex: (page 629)
Inserts into the receiver the characters of a given string at a given location.

– replaceCharactersInRange:withString: (page 629)
Replaces the characters from aRange with those in aString.

– replaceOccurrencesOfString:withString:options:range: (page 630)
Replaces all occurrences of a given string in a given range with another given string, returning
the number of replacements.

– setString: (page 631)
Replaces the characters of the receiver with those in a given string.

Class Methods

stringWithCapacity:
Returns an empty NSMutableString object with initial storage for a given number of characters.

+ (id)stringWithCapacity:(NSUInteger)capacity

626 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

Parameters

capacity
The number of characters the string is expected to initially contain.

Return Value
An empty NSMutableString object with initial storage for capacity characters.

Discussion
The number of characters indicated by capacity is simply a hint to increase the efficiency of data
storage. The value does not limit the length of the string.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

Instance Methods

appendFormat:
Adds a constructed string to the receiver.

- (void)appendFormat:(NSString *)format ...

Parameters

format
A format string. See Formatting String Objects for more information. This value must not be
nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Discussion
The appended string is formed using NSString's stringWithFormat: (page 976) method with the
arguments listed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– appendString: (page 627)

Declared In
NSString.h

appendString:
Adds to the end of the receiver the characters of a given string.

Instance Methods 627
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

- (void)appendString:(NSString *)aString

Parameters

aString
The string to append to the receiver. aString must not be nil

Availability
Available in iPhone OS 2.0 and later.

See Also
– appendFormat: (page 627)

Declared In
NSString.h

deleteCharactersInRange:
Removes from the receiver the characters in a given range.

- (void)deleteCharactersInRange:(NSRange)aRange

Parameters

aRange
The range of characters to delete. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

initWithCapacity:
Returns an NSMutableString object initialized with initial storage for a given number of characters,

- (id)initWithCapacity:(NSUInteger)capacity

Parameters

capacity
The number of characters the string is expected to initially contain.

Return Value
An initialized NSMutableString object with initial storage for capacity characters. The returned
object might be different than the original receiver.

Discussion
The number of characters indicated by capacity is simply a hint to increase the efficiency of data
storage. The value does not limit the length of the string.

628 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

insertString:atIndex:
Inserts into the receiver the characters of a given string at a given location.

- (void)insertString:(NSString *)aString atIndex:(NSUInteger)anIndex

Parameters

aString
The string to insert into the receiver. aString must not be nil.

anIndex
The location at which aString is inserted. The location must not exceed the bounds of the
receiver.

Important: Raises an NSRangeException if anIndex lies beyond the end of the string.

Discussion
The new characters begin at anIndex and the existing characters from anIndex to the end are shifted
by the length of aString.

This method treats the length of the string as a valid index value that returns an empty string.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

replaceCharactersInRange:withString:
Replaces the characters from aRange with those in aString.

- (void)replaceCharactersInRange:(NSRange)aRange withString:(NSString *)aString

Parameters

aRange
The range of characters to replace. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the receiver.

aString
The string with which to replace the characters in aRange. aString must not be nil.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Instance Methods 629
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

replaceOccurrencesOfString:withString:options:range:
Replaces all occurrences of a given string in a given range with another given string, returning the
number of replacements.

- (NSUInteger)replaceOccurrencesOfString:(NSString *)target withString:(NSString
*)replacement options:(NSStringCompareOptions)opts range:(NSRange)searchRange

Parameters

target
The string to replace.

Important: Raises an NSInvalidArgumentException if target is nil.

replacement
The string with which to replace target.

Important: Raises an NSInvalidArgumentException if replacement is nil.

opts
A mask specifying search options. See String Programming Guide for Cocoa for details.

If opts is NSBackwardsSearch, the search is done from the end of the range. If opts is
NSAnchoredSearch, only anchored (but potentially multiple) instances are replaced.
NSLiteralSearch and NSCaseInsensitiveSearch also apply.

searchRange
The range of characters to replace. aRange must not exceed the bounds of the receiver. Specify
searchRange as NSMakeRange(0, [receiver length]) to process the entire string.

Important: Raises an NSRangeException if any part of searchRange lies beyond the end of the
receiver.

Return Value
The number of replacements made.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

630 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

setString:
Replaces the characters of the receiver with those in a given string.

- (void)setString:(NSString *)aString

Parameters

aString
The string with which to replace the receiver's content. aString must not be nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

Instance Methods 631
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

632 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 8

NSMutableString Class Reference

Inherits from: NSURLRequest : NSObject

Conforms to: NSCopying (NSURLRequest)
NSMutableCopying (NSURLRequest)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLRequest.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSMutableURLRequest is a subclass of NSURLRequest provided to aid developers who may find it
more convenient to mutate a single request object for a series of URL load requests instead of creating
an immutable NSURLRequest for each load.

This programming model is supported by the following contract between NSMutableURLRequest
and NSURLConnection: NSURLConnection makes a deep copy of each NSMutableURLRequest object
passed to one of its initializers.

Overview 633
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

NSMutableURLRequest, like NSURLRequest, is designed to be extended to support additional
protocols by adding categories that access protocol specific values from a property object using
NSURLProtocol’s propertyForKey:inRequest: (page 1156) and
setProperty:forKey:inRequest: (page 1158) methods.

Tasks

Setting Request Properties

– setCachePolicy: (page 635)
Sets the cache policy of the receiver.

– setMainDocumentURL: (page 637)
Sets the main document URL for the receiver.

– setTimeoutInterval: (page 638)
Sets the receiver’s timeout interval, in seconds.

– setURL: (page 638)
Sets the URL of the receiver

Setting HTTP Specific Properties

– addValue:forHTTPHeaderField: (page 634)
Adds an HTTP header to the receiver’s HTTP header dictionary.

– setAllHTTPHeaderFields: (page 635)
Replaces the receiver's header fields with the passed values.

– setHTTPBody: (page 636)
Sets the request body of the receiver to the specified data.

– setHTTPBodyStream: (page 636)
Sets the request body of the receiver to the contents of a specified input stream.

– setHTTPMethod: (page 636)
Sets the receiver’s HTTP request method.

– setHTTPShouldHandleCookies: (page 637)
Sets whether the receiver should use the default cookie handling for the request.

– setValue:forHTTPHeaderField: (page 638)
Sets the specified HTTP header field.

Instance Methods

addValue:forHTTPHeaderField:
Adds an HTTP header to the receiver’s HTTP header dictionary.

- (void)addValue:(NSString *)value forHTTPHeaderField:(NSString *)field

634 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

Parameters

value
The value for the header field.

field
The name of the header field. In keeping with the HTTP RFC, HTTP header field names are
case-insensitive

Discussion
This method provides the ability to add values to header fields incrementally. If a value was previously
set for the specified field, the supplied value is appended to the existing value using the appropriate
field delimiter. In the case of HTTP, this is a comma.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:forHTTPHeaderField: (page 638)

Declared In
NSURLRequest.h

setAllHTTPHeaderFields:
Replaces the receiver's header fields with the passed values.

- (void)setAllHTTPHeaderFields:(NSDictionary *)headerFields

Parameters

headerFields
A dictionary with the new header fields. HTTP header fields must be string values; therefore,
each object and key in the headerFields dictionary must be a subclass of NSString. If either
the key or value for a key-value pair is not a subclass of NSString, the key-value pair is skipped.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:forHTTPHeaderField: (page 638)

Declared In
NSURLRequest.h

setCachePolicy:
Sets the cache policy of the receiver.

- (void)setCachePolicy:(NSURLRequestCachePolicy)policy

Parameters

policy
The new cache policy.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 635
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

See Also
– cachePolicy (page 1166)

Declared In
NSURLRequest.h

setHTTPBody:
Sets the request body of the receiver to the specified data.

- (void)setHTTPBody:(NSData *)data

Parameters

data
The new request body for the receiver. This is sent as the message body of the request, as in
an HTTP POST request.

Discussion
Setting the HTTP body data clears any input stream set by setHTTPBodyStream: (page 636). These
values are mutually exclusive.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

setHTTPBodyStream:
Sets the request body of the receiver to the contents of a specified input stream.

- (void)setHTTPBodyStream:(NSInputStream *)inputStream

Parameters

inputStream
The input stream that will be the request body of the receiver. The entire contents of the stream
will be sent as the body, as in an HTTP POST request. The inputStream should be unopened
and the receiver will take over as the stream’s delegate.

Discussion
Setting a body stream clears any data set by setHTTPBody: (page 636). These values are mutually
exclusive.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

setHTTPMethod:
Sets the receiver’s HTTP request method.

636 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

- (void)setHTTPMethod:(NSString *)method

Parameters

method
The new HTTP request method. The default HTTP method is “GET”.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

setHTTPShouldHandleCookies:
Sets whether the receiver should use the default cookie handling for the request.

- (void)setHTTPShouldHandleCookies:(BOOL)handleCookies

Parameters

handleCookies
YES if the receiver should use the default cookie handling for the request, NO otherwise. The
default is YES.

Special Considerations

In Mac OS X v10.2 with Safari 1.0 the value set by this method is not respected by the framework.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

setMainDocumentURL:
Sets the main document URL for the receiver.

- (void)setMainDocumentURL:(NSURL *)theURL

Parameters

theURL
The new main document URL. Can be nil.

Discussion
The caller should set the main document URL to an appropriate main document, if known. For
example, when loading a web page the URL of the HTML document for the top-level frame would
be appropriate. This URL will be used for the “only from same domain as main document” cookie
accept policy.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

Instance Methods 637
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

setTimeoutInterval:
Sets the receiver’s timeout interval, in seconds.

- (void)setTimeoutInterval:(NSTimeInterval)timeoutInterval

Parameters

timeoutInterval
The timeout interval, in seconds. If during a connection attempt the request remains idle for
longer than the timeout interval, the request is considered to have timed out. The default
timeout interval is 60 seconds.

Availability
Available in iPhone OS 2.0 and later.

See Also
– timeoutInterval (page 1169)

Declared In
NSURLRequest.h

setURL:
Sets the URL of the receiver

- (void)setURL:(NSURL *)theURL

Parameters

theURL
The new URL.

Availability
Available in iPhone OS 2.0 and later.

See Also
– URL (page 1170)

Declared In
NSURLRequest.h

setValue:forHTTPHeaderField:
Sets the specified HTTP header field.

- (void)setValue:(NSString *)value forHTTPHeaderField:(NSString *)field

Parameters

value
The new value for the header field. Any existing value for the field is replaced by the new
value.

field
The name of the header field to set. In keeping with the HTTP RFC, HTTP header field names
are case-insensitive.

638 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– addValue:forHTTPHeaderField: (page 634)

Declared In
NSURLRequest.h

Instance Methods 639
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

640 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4 9

NSMutableURLRequest Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSNetServices.h

Companion guides: Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSNetService class represents a network service that your application publishes or uses as a
client. This class and the NSNetServiceBrowser class use multicast DNS to convey information about
network services to and from your application. The API of NSNetService provides a convenient way
to publish the services offered by your application and to resolve the socket address for a service.

The types of services you access using NSNetService are the same types that you access directly
using BSD sockets. HTTP and FTP are two services commonly provided by systems. (For a list of
common services and the ports used by those services, see the file /etc/services.) Applications can
also define their own custom services to provide specific data to clients.

Overview 641
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

You can use the NSNetService class as either a publisher of a service or as a client of a service. If your
application publishes a service, your code must acquire a port and prepare a socket to communicate
with clients. Once your socket is ready, you use the NSNetService class to notify clients that your
service is ready. If your application is the client of a network service, you can either create an
NSNetService object directly (if you know the exact host and port information) or you can use an
NSNetServiceBrowser object to browse for services.

To publish a service, you must initialize your NSNetService object with the service name, domain,
type, and port information. All of this information must be valid for the socket created by your
application. Once initialized, you call the publish (page 649) method to broadcast your service
information out to the network.

When connecting to a service, you would normally use the NSNetServiceBrowser class to locate the
service on the network and obtain the corresponding NSNetService object. Once you have the object,
you proceed to call the resolveWithTimeout: (page 651) method to verify that the service is available
and ready for your application. If it is, the addresses (page 645) method returns the socket information
you can use to connect to the service.

The methods of NSNetService operate asynchronously so that your application is not impacted by
the speed of the network. All information about a service is returned to your application through the
NSNetService object’s delegate. You must provide a delegate object to respond to messages and to
handle errors appropriately.

Tasks

Creating Network Services

– initWithDomain:type:name: (page 647)
Returns the receiver, initialized as a network service of a given type and sets the initial host
information.

– initWithDomain:type:name:port: (page 648)
Initializes the receiver as a network service of type type at the socket location specified by
domain, name, and port.

Configuring Network Services

+ dataFromTXTRecordDictionary: (page 644)
Returns an NSData object representing a TXT record formed from a given dictionary.

+ dictionaryFromTXTRecordData: (page 645)
Returns a dictionary representing a TXT record given as an NSData object.

– addresses (page 645)
Returns an array containing NSData objects, each of which contains a socket address for the
service.

– domain (page 646)
Returns the domain name of the service.

642 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

– getInputStream:outputStream: (page 646)
Retrieves by reference the input and output streams for the receiver and returns a Boolean
value that indicates whether they were retrieved successfully.

– hostName (page 647)
Returns the host name of the computer providing the service.

– name (page 649)
Returns the name of the service.

– type (page 654)
Returns the type of the service.

– TXTRecordData (page 654)
Returns the TXT record for the receiver.

– setTXTRecordData: (page 652)
Sets the TXT record for the receiver, and returns a Boolean value that indicates whether the
operation was successful.

– delegate (page 646)
Returns the delegate for the receiver.

– setDelegate: (page 652)
Sets the delegate for the receiver.

Managing Run Loops

– scheduleInRunLoop:forMode: (page 652)
Adds the service to the specified run loop.

– removeFromRunLoop:forMode: (page 650)
Removes the service from the given run loop for a given mode.

Using Network Services

– publish (page 649)
Attempts to advertise the receiver’s on the network.

– publishWithOptions: (page 650)
Attempts to advertise the receiver on the network, with the given options.

– netServiceWillPublish: (page 657) delegate method
Notifies the delegate that the network is ready to publish the service.

– netService:didNotPublish: (page 654) delegate method
Notifies the delegate that a service could not be published.

– netServiceDidPublish: (page 656) delegate method
Notifies the delegate that a service was successfully published.

– resolveWithTimeout: (page 651)
Starts a resolve process of a finite duration for the receiver.

– netServiceWillResolve: (page 657) delegate method
Notifies the delegate that the network is ready to resolve the service.

– netService:didNotResolve: (page 655) delegate method
Informs the delegate that an error occurred during resolution of a given service.

Tasks 643
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

– netServiceDidResolveAddress: (page 656) delegate method
Informs the delegate that the address for a given service was resolved.

– port (page 649)
Provides the port of the receiver.

– startMonitoring (page 653)
Starts the monitoring of TXT-record updates for the receiver.

– netService:didUpdateTXTRecordData: (page 655) delegate method
Notifies the delegate that the TXT record for a given service has been updated.

– stop (page 653)
Halts a currently running attempt to publish or resolve a service.

– stopMonitoring (page 653)
Stops the monitoring of TXT-record updates for the receiver.

– netServiceDidStop: (page 656) delegate method
Informs the delegate that a publish (page 649) or resolveWithTimeout: (page 651) request
was stopped.

Deprecated

– resolve (page 651)
Starts a resolve process for the receiver. (Deprecated. Use resolveWithTimeout: (page 651)
instead.)

Class Methods

dataFromTXTRecordDictionary:
Returns an NSData object representing a TXT record formed from a given dictionary.

+ (NSData *)dataFromTXTRecordDictionary:(NSDictionary *)txtDictionary

Parameters

txtDictionary
A dictionary containing a TXT record.

Return Value
An NSData object representing TXT data formed from txtDictionary. Returns nil if txtDictionary
cannot be represented as an NSData.

Availability
Available in iPhone OS 2.0 and later.

See Also
– TXTRecordData (page 654)
+ dictionaryFromTXTRecordData: (page 645)

Declared In
NSNetServices.h

644 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

dictionaryFromTXTRecordData:
Returns a dictionary representing a TXT record given as an NSData object.

+ (NSDictionary *)dictionaryFromTXTRecordData:(NSData *)txtData

Parameters

txtData
A data object encoding a TXT record.

Return Value
A dictionary representing txtData. The dictionary’s keys are NSString objects using UTF8 encoding.
The values associated with all the dictionary’s keys are NSData objects that encapsulate strings or
data.

Returns nil if txtData cannot be represented as an NSDictionary object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– TXTRecordData (page 654)
+ dataFromTXTRecordDictionary: (page 644)

Declared In
NSNetServices.h

Instance Methods

addresses
Returns an array containing NSData objects, each of which contains a socket address for the service.

- (NSArray *)addresses

Return Value
An array containing NSData objects, each of which contains a socket address for the service. Each
NSData object in the returned array contains an appropriate sockaddr structure that you can use to
connect to the socket. The exact type of this structure depends on the service to which you are
connecting. If no addresses were resolved for the service, the returned array contains zero elements.

Discussion
It is possible for a single service to resolve to more than one address or not resolve to any addresses.
A service might resolve to multiple addresses if the computer publishing the service is currently
multihoming.

Availability
Available in iPhone OS 2.0 and later.

See Also
– resolve (page 651)

Instance Methods 645
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Declared In
NSNetServices.h

delegate
Returns the delegate for the receiver.

- (id)delegate

Return Value
The delegate for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDelegate: (page 652)

Declared In
NSNetServices.h

domain
Returns the domain name of the service.

- (NSString *)domain

Return Value
The domain name of the service.

This can be an explicit domain name or it can contain the generic local domain name, @"local."
(note the trailing period, which indicates an absolute name).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

getInputStream:outputStream:
Retrieves by reference the input and output streams for the receiver and returns a Boolean value that
indicates whether they were retrieved successfully.

- (BOOL)getInputStream:(NSInputStream **)inputStream outputStream:(NSOutputStream
**)outputStream

Parameters

inputStream
Upon return, the input stream for the receiver.

outputStream
Upon return, the output stream for the receiver.

646 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Return Value
YES if the streams are created successfully, otherwise NO.

Discussion
After this method is called, no delegate callbacks are called by the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

hostName
Returns the host name of the computer providing the service.

- (NSString *)hostName

Return Value
The host name of the computer providing the service. Returns nil if a successful resolve has not
occurred.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

initWithDomain:type:name:
Returns the receiver, initialized as a network service of a given type and sets the initial host information.

- (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name

Parameters

domain
The domain for the service. For the local domain, use @"local." not @"".

type
The network service type.

type must contain both the service type and transport layer information. To ensure that the
mDNS responder searches for services, as opposed to hosts, prefix both the service name and
transport layer name with an underscore character (“_”). For example, to search for an HTTP
service on TCP, you would use the type string "_http._tcp.". Note that the period character
at the end of the string, which indicates that the domain name is an absolute name, is required.

name
The name of the service to resolve.

Return Value
The receiver, initialized as a network service named name of type type in the domain domain.

Discussion
This method is the appropriate initializer to use to resolve a service—to publish a service, use
initWithDomain:type:name:port: (page 648).

Instance Methods 647
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

If you know the values for domain, type, and name of the service you wish to connect to, you can
create an NSNetService object using this initializer and call resolveWithTimeout: (page 651) on the
result.

You cannot use this initializer to publish a service. This initializer passes an invalid port number to
the designated initializer, which prevents the service from being registered. Calling publish (page
649) on an NSNetService object initialized with this method generates a call to your delegate’s
netService:didNotPublish: (page 654) method with an NSNetServicesBadArgumentError error.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithDomain:type:name:port: (page 648)

Declared In
NSNetServices.h

initWithDomain:type:name:port:
Initializes the receiver as a network service of type type at the socket location specified by domain,
name, and port.

- (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name
port:(int)port

Parameters

domain
The domain for the service. For the local domain, use @"local." not @"".

It is generally preferred to use a NSNetServiceBrowser object to obtain the local registration
domain in which to publish your service. To use this default domain, simply pass in an empty
string (@"").

type
The network service type.

type must contain both the service type and transport layer information. To ensure that the
mDNS responder searches for services, as opposed to hosts, prefix both the service name and
transport layer name with an underscore character (“_”). For example, to search for an HTTP
service on TCP, you would use the type string "_http._tcp.". Note that the period character
at the end of the string, which indicates that the domain name is an absolute name, is required.

name
The name by which the service is identified to the network. The name must be unique.

port
The port on which the service is published.

port must be a port number acquired by your application for the service.

Discussion
You use this method to create a service that you wish to publish on the network. Although you can
also use this method to create a service you wish to resolve on the network, it is generally more
appropriate to use the initWithDomain:type:name: (page 647) method instead.

648 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

When publishing a service, you must provide valid arguments in order to advertise your service
correctly. If the host computer has access to multiple registration domains, you must create separate
NSNetService objects for each domain. If you attempt to publish in a domain for which you do not
have registration authority, your request may be denied.

It is acceptable to use an empty string for the domain argument when publishing or browsing a service,
but do not rely on this for resolution.

This method is the designated initializer.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithDomain:type:name: (page 647)

Declared In
NSNetServices.h

name
Returns the name of the service.

- (NSString *)name

Return Value
The name of the service.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

port
Provides the port of the receiver.

- (NSInteger)port

Return Value
The receiver’s port. -1 when it has not been resolved.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

publish
Attempts to advertise the receiver’s on the network.

Instance Methods 649
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

- (void)publish

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stop (page 653)

Declared In
NSNetServices.h

publishWithOptions:
Attempts to advertise the receiver on the network, with the given options.

- (void)publishWithOptions:(NSNetServiceOptions)serviceOptions

Parameters

serviceOptions
Options for the receiver.

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

removeFromRunLoop:forMode:
Removes the service from the given run loop for a given mode.

- (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters

aRunLoop
The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver. Possible values for mode are discussed
in the "Constants" section of NSRunLoop.

Discussion
You can use this method in conjunction with scheduleInRunLoop:forMode: (page 652) to transfer
the service to a different run loop. Although it is possible to remove an NSNetService object completely
from any run loop and then attempt actions on it, it is an error to do so.

Availability
Available in iPhone OS 2.0 and later.

650 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

See Also
– scheduleInRunLoop:forMode: (page 652)

Declared In
NSNetServices.h

resolve
Starts a resolve process for the receiver. (Deprecated. Use resolveWithTimeout: (page 651) instead.)

- (void)resolve

Discussion
Attempts to determine at least one address for the receiver. This method returns immediately, with
success or failure indicated by the callbacks to the delegate.

In Mac OS X v10.4, this method calls resolveWithTimeout: (page 651) with a timeout value of 5.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addresses (page 645)
– stop (page 653)
– resolveWithTimeout: (page 651)

Declared In
NSNetServices.h

resolveWithTimeout:
Starts a resolve process of a finite duration for the receiver.

- (void)resolveWithTimeout:(NSTimeInterval)timeout

Parameters

timeout
The maximum number of seconds to attempt a resolve.

Discussion
If the resolve succeeds before the timeout period lapses, the receiver sends
netServiceDidResolveAddress: (page 656) to the delegate. Otherwise, the receiver sends
netService:didNotResolve: (page 655) to the delegate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addresses (page 645)
– stop (page 653)

Declared In
NSNetServices.h

Instance Methods 651
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

scheduleInRunLoop:forMode:
Adds the service to the specified run loop.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters

aRunLoop
The run loop to which to add the receiver.

mode
The run loop mode to which to add the receiver. Possible values for mode are discussed in the
"Constants" section of NSRunLoop.

Discussion
You can use this method in conjunction with removeFromRunLoop:forMode: (page 650) to transfer a
service to a different run loop. You should not attempt to run a service on multiple run loops.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 650)

Declared In
NSNetServices.h

setDelegate:
Sets the delegate for the receiver.

- (void)setDelegate:(id)delegate

Parameters

delegate
The delegate for the receiver.

Discussion
The delegate is not retained.

Availability
Available in iPhone OS 2.0 and later.

See Also
– delegate (page 646)

Declared In
NSNetServices.h

setTXTRecordData:
Sets the TXT record for the receiver, and returns a Boolean value that indicates whether the operation
was successful.

- (BOOL)setTXTRecordData:(NSData *)recordData

652 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Parameters

recordData
The TXT record for the receiver.

Return Value
YES if recordData is successfully set as the TXT record, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– TXTRecordData (page 654)

Declared In
NSNetServices.h

startMonitoring
Starts the monitoring of TXT-record updates for the receiver.

- (void)startMonitoring

Discussion
The delegate must implement netService:didUpdateTXTRecordData: (page 655), which is called
when the TXT record for the receiver is updated.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stopMonitoring (page 653)

Declared In
NSNetServices.h

stop
Halts a currently running attempt to publish or resolve a service.

- (void)stop

Discussion
This method results in the sending of a netServiceDidStop: (page 656) message to the delegate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

stopMonitoring
Stops the monitoring of TXT-record updates for the receiver.

Instance Methods 653
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

- (void)stopMonitoring

Availability
Available in iPhone OS 2.0 and later.

See Also
– startMonitoring (page 653)

Declared In
NSNetServices.h

TXTRecordData
Returns the TXT record for the receiver.

- (NSData *)TXTRecordData

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTXTRecordData: (page 652)
+ dictionaryFromTXTRecordData: (page 645)
+ dataFromTXTRecordDictionary: (page 644)

Declared In
NSNetServices.h

type
Returns the type of the service.

- (NSString *)type

Return Value
The type of the service.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

Delegate Methods

netService:didNotPublish:
Notifies the delegate that a service could not be published.

- (void)netService:(NSNetService *)sender didNotPublish:(NSDictionary *)errorDict

654 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Parameters

sender
The service that could not be published.

errorDict
A dictionary containing information about the problem. The dictionary contains the keys
NSNetServicesErrorCode and NSNetServicesErrorDomain.

Discussion
This method may be called long after a netServiceWillPublish: (page 657) message has been
delivered to the delegate.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

netService:didNotResolve:
Informs the delegate that an error occurred during resolution of a given service.

- (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict

Parameters

sender
The service that did not resolve.

errorDict
A dictionary containing information about the problem. The dictionary contains the keys
NSNetServicesErrorCode and NSNetServicesErrorDomain.

Discussion
Clients may try to resolve again upon receiving this error. For example, a DNS rotary may yield
different IP addresses on different resolution requests.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

netService:didUpdateTXTRecordData:
Notifies the delegate that the TXT record for a given service has been updated.

- (void)netService:(NSNetService *)sender didUpdateTXTRecordData:(NSData *)data

Parameters

sender
The service whose TXT record was updated.

data
The new TXT record.

Delegate Methods 655
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– startMonitoring (page 653)

Declared In
NSNetServices.h

netServiceDidPublish:
Notifies the delegate that a service was successfully published.

- (void)netServiceDidPublish:(NSNetService *)sender

Parameters

sender
The service that was published.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

netServiceDidResolveAddress:
Informs the delegate that the address for a given service was resolved.

- (void)netServiceDidResolveAddress:(NSNetService *)sender

Parameters

sender
The service that was resolved.

Discussion
The delegate can use the addresses (page 645) method to retrieve the service’s address.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addresses (page 645)

Declared In
NSNetServices.h

netServiceDidStop:
Informs the delegate that a publish (page 649) or resolveWithTimeout: (page 651) request was
stopped.

- (void)netServiceDidStop:(NSNetService *)sender

656 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Parameters

sender
The service that stopped.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stop (page 653)

Declared In
NSNetServices.h

netServiceWillPublish:
Notifies the delegate that the network is ready to publish the service.

- (void)netServiceWillPublish:(NSNetService *)sender

Parameters

sender
The service that is ready to publish.

Discussion
Publication of the service proceeds asynchronously and may still generate a call to the delegate’s
netService:didNotPublish: (page 654) method if an error occurs.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

netServiceWillResolve:
Notifies the delegate that the network is ready to resolve the service.

- (void)netServiceWillResolve:(NSNetService *)sender

Parameters

sender
The service that the network is ready to resolve.

Discussion
Resolution of the service proceeds asynchronously and may still generate a call to the delegate’s
netService:didNotResolve: (page 655) method if an error occurs.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

Delegate Methods 657
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Constants

NSNetServices Errors
If an error occurs, the delegate error-handling methods return a dictionary with the following keys.

extern NSString *NSNetServicesErrorCode;
extern NSString *NSNetServicesErrorDomain;

Constants
NSNetServicesErrorCode

This key identifies the error that occurred during the most recent operation.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

NSNetServicesErrorDomain
This key identifies the originator of the error, which is either the NSNetService object or the
mach network layer. For most errors, you should not need the value provided by this key.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

Declared In
NSNetServices.h

NSNetServicesError
These constants identify errors that can occur when accessing net services.

typedef enum {
NSNetServicesUnknownError = -72000,
NSNetServicesCollisionError = -72001,
NSNetServicesNotFoundError = -72002,
NSNetServicesActivityInProgress = -72003,
NSNetServicesBadArgumentError = -72004,
NSNetServicesCancelledError = -72005,
NSNetServicesInvalidError = -72006,
NSNetServicesTimeoutError = -72007,

} NSNetServicesError;

Constants
NSNetServicesUnknownError

An unknown error occurred.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

NSNetServicesCollisionError
The service could not be published because the name is already in use. The name could be in
use locally or on another system.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

658 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

NSNetServicesNotFoundError
The service could not be found on the network.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

NSNetServicesActivityInProgress
The net service cannot process the request at this time. No additional information about the
network state is known.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

NSNetServicesBadArgumentError
An invalid argument was used when creating the NSNetService object.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

NSNetServicesCancelledError
The client canceled the action.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

NSNetServicesInvalidError
The net service was improperly configured.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

NSNetServicesTimeoutError
The net service has timed out.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

Declared In
NSNetServices.h

NSNetServiceOptions
These constants specify options for a network service.

enum {
NSNetServiceNoAutoRename = 1 << 0

};
typedef NSUInteger NSNetServiceOptions;

Constants
NSNetServiceNoAutoRename

Specifies that the network service not rename itself in the event of a name collision.

Available in iPhone OS 2.0 and later.

Declared in NSNetServices.h

Availability
Available in iPhone OS 2.0 and later.

Constants 659
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Declared In
NSNetServices.h

660 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 0

NSNetService Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSNetServices.h

Companion guides: Bonjour Overview
NSNetServices and CFNetServices Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSNetServiceBrowser class defines an interface for finding published services on a network
using multicast DNS. An instance of NSNetServiceBrowser is known as a network service browser.

Services can range from standard services, such as HTTP and FTP, to custom services defined by
other applications. You can use a network service browser in your code to obtain the list of accessible
domains and then to obtain an NSNetService object for each discovered service. Each network service
browser performs one search at a time, so if you want to perform multiple simultaneous searches,
use multiple network service browsers.

Overview 661
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

A network service browser performs all searches asynchronously using the current run loop to execute
the search in the background. Results from a search are returned through the associated delegate
object, which your client application must provide. Searching proceeds in the background until the
object receives a stop (page 667) message.

To use an NSNetServiceBrowser object to search for services, allocate it, initialize it, and assign a
delegate. (If you wish, you can also use the scheduleInRunLoop:forMode: (page 664) and
removeFromRunLoop:forMode: (page 664) methods to execute searches on a run loop other than the
current one.) Once your object is ready, you begin by gathering the list of accessible domains using
either the searchForRegistrationDomains (page 665) or searchForBrowsableDomains (page 665)
methods. From the list of returned domains, you can pick one and use the
searchForServicesOfType:inDomain: (page 666) method to search for services in that domain.

The NSNetServiceBrowser class provides two ways to search for domains. In most cases, your client
should use the searchForRegistrationDomains (page 665) method to search only for local domains
to which the host machine has registration authority. This is the preferred method for accessing
domains as it guarantees that the host machine can connect to services in the returned domains. Access
to domains outside this list may be more limited.

Tasks

Creating Network Service Browsers

– init (page 663)
Initializes an allocated NSNetServiceBrowser (page 661) object.

Configuring Network Service Browsers

– delegate (page 663)
Returns the receiver’s delegate.

– setDelegate: (page 666)
Sets the receiver’s delegate.

Using Network Service Browsers

– searchForBrowsableDomains (page 665)
Initiates a search for domains visible to the host. This method returns immediately.

– searchForRegistrationDomains (page 665)
Initiates a search for domains in which the host may register services.

– netServiceBrowser:didFindDomain:moreComing: (page 667) delegate method
Tells the delegate the sender found a domain.

– netServiceBrowser:didRemoveDomain:moreComing: (page 669) delegate method
Tells the delegate the a domain has disappeared or has become unavailable.

– searchForServicesOfType:inDomain: (page 666)
Starts a search for services of a particular type within a specific domain.

662 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

– netServiceBrowser:didFindService:moreComing: (page 668) delegate method
Tells the delegate the sender found a service.

– netServiceBrowser:didRemoveService:moreComing: (page 669) delegate method
Tells the delegate a service has disappeared or has become unavailable.

– netServiceBrowserWillSearch: (page 670) delegate method
Tells the delegate that a serch is commencing.

– netServiceBrowser:didNotSearch: (page 668) delegate method
Tells the delegate that a search was not successful.

– stop (page 667)
Halts a currently running search or resolution.

– netServiceBrowserDidStopSearch: (page 670) delegate method
Tells the delegate that a search was stopped.

Managing Run Loops

– scheduleInRunLoop:forMode: (page 664)
Adds the receiver to the specified run loop.

– removeFromRunLoop:forMode: (page 664)
Removes the receiver from the specified run loop.

Instance Methods

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
Delegate for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDelegate: (page 666)

Declared In
NSNetServices.h

init
Initializes an allocated NSNetServiceBrowser (page 661) object.

- (id)init

Instance Methods 663
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Return Value
Initialized NSNetServiceBrowser (page 661) object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

removeFromRunLoop:forMode:
Removes the receiver from the specified run loop.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)runLoopMode

Parameters

runLoop
Run loop from which to remove the receiver.

runLoopMode
Run loop mode in which to perform this operation, such as NSDefaultRunLoopMode. See the
“Constants” (page 897) section of the NSRunLoop class for other run loop mode values.

Discussion
You can use this method in conjunction with scheduleInRunLoop:forMode: (page 664) to transfer
the receiver to a run loop other than the default one. Although it is possible to remove an NSNetService
object completely from any run loop and then attempt actions on it, you must not do it.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 664)

Declared In
NSNetServices.h

scheduleInRunLoop:forMode:
Adds the receiver to the specified run loop.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)runLoopMode

Parameters

runLoop
Run loop from which to remove the receiver.

runLoopMode
Run loop mode in which to perform this operation, such as NSDefaultRunLoopMode. See the
“Constants” (page 897) section of the NSRunLoop class for other run loop mode values.

Discussion
You can use this method in conjunction with removeFromRunLoop:forMode: (page 664) to transfer
the receiver to a run loop other than the default one. You should not attempt to run the receiver on
multiple run loops.

664 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 664)

Declared In
NSNetServices.h

searchForBrowsableDomains
Initiates a search for domains visible to the host. This method returns immediately.

- (void)searchForBrowsableDomains

Discussion
The delegate receives a netServiceBrowser:didFindDomain:moreComing: (page 667) message for
each domain discovered.

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchForRegistrationDomains (page 665)

Declared In
NSNetServices.h

searchForRegistrationDomains
Initiates a search for domains in which the host may register services.

- (void)searchForRegistrationDomains

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch: (page 670) message
to the delegate if the network was ready to initiate the search. The delegate receives a subsequent
netServiceBrowser:didFindDomain:moreComing: (page 667) message for each domain discovered.

Most network service browser clients do not have to use this method—it is sufficient to publish a
service with the empty string, which registers it in any available registration domains automatically.

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchForBrowsableDomains (page 665)
– searchForServicesOfType:inDomain: (page 666)
– netServiceBrowser:didFindDomain:moreComing: (page 667)
– netServiceBrowserWillSearch: (page 670)

Declared In
NSNetServices.h

Instance Methods 665
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

searchForServicesOfType:inDomain:
Starts a search for services of a particular type within a specific domain.

- (void)searchForServicesOfType:(NSString *)serviceType inDomain:(NSString
*)domainName

Parameters

serviceType
Type of the service to search for.

domainName
Domain name in which to perform the search.

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch: (page 670) message
to the delegate if the network was ready to initiate the search.The delegate receives subsequent
netServiceBrowser:didFindService:moreComing: (page 668) messages for each service discovered.

The serviceType argument must contain both the service type and transport layer information. To
ensure that the mDNS responder searches for services, rather than hosts, make sure to prefix both
the service name and transport layer name with an underscore character (“_”). For example, to search
for an HTTP service on TCP, you would use the type string “_http._tcp.“. Note that the period
character at the end is required.

The domainName argument can be an explicit domain name, the generic local domain @"local." (note
trailing period, which indicates an absolute name), or the empty string (@""), which indicates the
default registration domain. Usually, you pass in an empty string. Note that it is acceptable to use an
empty string for the domainName argument when publishing or browsing a service, but do not rely
on this for resolution.

Availability
Available in iPhone OS 2.0 and later.

See Also
– netServiceBrowser:didFindService:moreComing: (page 668)
– netServiceBrowserWillSearch: (page 670)

Declared In
NSNetServices.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters

delegate
Object to serve as the receiver’s delegate. Must not be nil.

Discussion
The delegate is not retained. The receiver calls the methods of your delegate to receive information
about discovered domains and services.

666 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– delegate (page 663)

Declared In
NSNetServices.h

stop
Halts a currently running search or resolution.

- (void)stop

Discussion
This method sends a netServiceBrowserDidStopSearch: (page 670) message to the delegate and
causes the browser to discard any pending search results.

Availability
Available in iPhone OS 2.0 and later.

See Also
– netServiceBrowserDidStopSearch: (page 670)

Declared In
NSNetServices.h

Delegate Methods

netServiceBrowser:didFindDomain:moreComing:
Tells the delegate the sender found a domain.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didFindDomain:(NSString *)domainName moreComing:(BOOL)moreDomainsComing

Parameters

netServiceBrowser
Sender of this delegate message.

domainName
Name of the domain found by netServiceBrowser.

moreDomainsComing
YES when netServiceBrowser is waiting for additional domains. NO when there are no
additional domains.

Discussion
The delegate uses this message to compile a list of available domains. It should wait until
moreDomainsComing is NO to do a bulk update of user interface elements.

Delegate Methods 667
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchForBrowsableDomains (page 665)
– searchForRegistrationDomains (page 665)

Declared In
NSNetServices.h

netServiceBrowser:didFindService:moreComing:
Tells the delegate the sender found a service.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didFindService:(NSNetService *)netService moreComing:(BOOL)moreServicesComing

Parameters

netServiceBrowser
Sender of this delegate message.

netService
Network service found by netServiceBrowser. The delegate can use this object to connect to
and use the service.

moreServicesComing
YES when netServiceBrowser is waiting for additional services. NO when there are no
additional services.

Discussion
The delegate uses this message to compile a list of available services. It should wait until
moreServicesComing is NO to do a bulk update of user interface elements.

Special Considerations

If the delegate chooses to resolve netService, it should retain netService and set itself as that
service’s delegate. The delegate should, therefore, release that service when it receives the
netServiceDidResolveAddress: (page 656) or netService:didNotResolve: (page 655) delegate
messages of the NSNetService class.

Availability
Available in iPhone OS 2.0 and later.

See Also
– searchForServicesOfType:inDomain: (page 666)

Declared In
NSNetServices.h

netServiceBrowser:didNotSearch:
Tells the delegate that a search was not successful.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didNotSearch:(NSDictionary *)errorInfo

668 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Parameters

netServiceBrowser
Sender of this delegate message.

errorInfo
Dictionary with the reasons the search was unsuccessful. Use the dictionary keys
NSNetServicesErrorCode and NSNetServicesErrorDomain to retrieve the error information
from the dictionary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– netServiceBrowserWillSearch: (page 670)

Declared In
NSNetServices.h

netServiceBrowser:didRemoveDomain:moreComing:
Tells the delegate the a domain has disappeared or has become unavailable.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didRemoveDomain:(NSString *)domainName moreComing:(BOOL)moreDomainsComing

Parameters

netServiceBrowser
Sender of this delegate message.

domainName
Name of the domain that became unavailable.

moreDomainsComing
YES when netServiceBrowser is waiting for additional domains. NO when there are no
additional domains.

Discussion
The delegate uses this message to compile a list of unavailable domains. It should wait until
moreDomainsComing is NO to do a bulk update of user interface elements.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

netServiceBrowser:didRemoveService:moreComing:
Tells the delegate a service has disappeared or has become unavailable.

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
didRemoveService:(NSNetService *)netService moreComing:(BOOL)moreServicesComing

Delegate Methods 669
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Parameters

netServiceBrowser
Sender of this delegate message.

netService
Network service that has become unavailable.

moreServicesComing
YES when netServiceBrowser is waiting for additional services. NO when there are no
additional services.

Discussion
The delegate uses this message to compile a list of unavailable services. It should wait until
moreServicesComing is NO to do a bulk update of user interface elements.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNetServices.h

netServiceBrowserDidStopSearch:
Tells the delegate that a search was stopped.

- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)netServiceBrowser

Parameters

netServiceBrowser
Sender of this delegate message.

Discussion
When netServiceBrowser receives a stop (page 667) message from its client, netServiceBrowser
sends a netServiceBrowserDidStopSearch: message to its delegate. The delegate then performs
any necessary cleanup.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stop (page 667)

Declared In
NSNetServices.h

netServiceBrowserWillSearch:
Tells the delegate that a serch is commencing.

- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)netServiceBrowser

Parameters

netServiceBrowser
Sender of this delegate message.

670 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Discussion
This message is sent to the delegate only if the underlying network layer is ready to begin a search.
The delegate can use this notification to prepare its data structures to receive data.

Availability
Available in iPhone OS 2.0 and later.

See Also
– netServiceBrowser:didNotSearch: (page 668)

Declared In
NSNetServices.h

Delegate Methods 671
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

672 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 1

NSNetServiceBrowser Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSNotification.h

Companion guide: Notification Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSNotification objects encapsulate information so that it can be broadcast to other objects by an
NSNotificationCenter object. An NSNotification object (referred to as a notification) contains a name,
an object, and an optional dictionary. The name is a tag identifying the notification. The object is any
object that the poster of the notification wants to send to observers of that notification (typically, it is
the object that posted the notification). The dictionary stores other related objects, if any. NSNotification
objects are immutable objects.

Overview 673
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

NSNotification Class Reference

You can create a notification object with the class methods notificationWithName:object: (page
675) or notificationWithName:object:userInfo: (page 675). However, you don’t usually create
your own notifications directly. The NSNotificationCenter methods
postNotificationName:object: (page 684) and postNotificationName:object:userInfo: (page
684) allow you to conveniently post a notification without creating it first.

NSCopying Protocol

The NSNotification class adopts the NSCopying protocol, making it possible to treat notifications as
context-independent values that can be copied and reused. You can store a notification for later use
or use the distributed objects system to send a notification to another process. The NSCopying protocol
essentially allows clients to deal with notifications as first class values that can be copied by collections.
You can put notifications in an array and send the copy message to that array, which recursively
copies every item.

Creating Subclasses

You can subclass NSNotification to contain information in addition to the notification name, object,
and dictionary. This extra data must be agreed upon between notifiers and observers.

NSNotification is a class cluster with no instance variables. As such, you must subclass NSNotification
and override the primitive methods name (page 676), object (page 676), and userInfo (page 677). You
can choose any designated initializer you like, but be sure that your initializer does not call
NSNotification’s implementation of init (via [super init]). NSNotification is not meant to be
instantiated directly, and its init method raises an exception.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Creating Notifications

+ notificationWithName:object: (page 675)
Returns a new notification object with a specified name and object.

+ notificationWithName:object:userInfo: (page 675)
Returns a notification object with a specified name, object, and user information.

674 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

NSNotification Class Reference

Getting Notification Information

– name (page 676)
Returns the name of the notification.

– object (page 676)
Returns the object associated with the notification.

– userInfo (page 677)
Returns the user information dictionary associated with the receiver.

Class Methods

notificationWithName:object:
Returns a new notification object with a specified name and object.

+ (id)notificationWithName:(NSString *)aName object:(id)anObject

Parameters

aName
The name for the new notification. May not be nil.

anObject
The object for the new notification.

Availability
Available in iPhone OS 2.0 and later.

See Also
– postNotificationName:object: (page 684) (NSNotificationCenter)

Declared In
NSNotification.h

notificationWithName:object:userInfo:
Returns a notification object with a specified name, object, and user information.

+ (id)notificationWithName:(NSString *)aName object:(id)anObject
userInfo:(NSDictionary *)userInfo

Parameters

aName
The name for the new notification. May not be nil.

anObject
The object for the new notification.

userInfo
The user information dictionary for the new notification. May be nil.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 675
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

NSNotification Class Reference

See Also
+ notificationWithName:object: (page 675)
– postNotificationName:object:userInfo: (page 684) (NSNotificationCenter)

Declared In
NSNotification.h

Instance Methods

name
Returns the name of the notification.

- (NSString *)name

Return Value
The name of the notification. Typically you use this method to find out what kind of notification you
are dealing with when you receive a notification.

Special Considerations

Notification names can be any string. To avoid name collisions, you might want to use a prefix that’s
specific to your application.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotification.h

object
Returns the object associated with the notification.

- (id)object

Return Value
The object associated with the notification. This is often the object that posted this notification. It may
be nil.

Typically you use this method to find out what object a notification applies to when you receive a
notification.

Discussion
For example, suppose you’ve registered an object to receive the message handlePortDeath: when
the “PortInvalid” notification is posted to the notification center and that handlePortDeath: needs
to access the object monitoring the port that is now invalid. handlePortDeath: can retrieve that object
as shown here:

- (void)handlePortDeath:(NSNotification *)notification
{

...

676 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

NSNotification Class Reference

[self reclaimResourcesForPort:[notification object]];
...

}

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotification.h

userInfo
Returns the user information dictionary associated with the receiver.

- (NSDictionary *)userInfo

Return Value
Returns the user information dictionary associated with the receiver. May be nil.

The user information dictionary stores any additional objects that objects receiving the notification
might use.

Discussion
For example, in the Application Kit, NSControl objects post the
NSControlTextDidChangeNotification whenever the field editor (an NSText object) changes text
inside the NSControl. This notification provides the NSControl object as the notification's associated
object. In order to provide access to the field editor, the NSControl object posting the notification adds
the field editor to the notification's user information dictionary. Objects receiving the notification can
access the field editor and the NSControl object posting the notification as follows:

- (void)controlTextDidBeginEditing:(NSNotification *)notification
{

NSText *fieldEditor = [[notification userInfo]
objectForKey:@"NSFieldEditor"]; // the field editor

NSControl *postingObject = [notification object]; // the object that posted
the notification

...
}

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotification.h

Instance Methods 677
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

NSNotification Class Reference

678 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 2

NSNotification Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSNotification.h

Companion guide: Notification Programming Topics for Cocoa

Class at a Glance

The NSNotificationCenter class provides a way to send notifications to objects in the same task. It
takes NSNotification objects and broadcasts them to any objects in the same task that have registered
to receive the notification with the task’s default notification center.

Principal Attributes

 ■ Notification dispatch table. Each entry in this table specifies a notification set for a particular
observer. A notification set is a subset of the notifications posted to the notification center. Each
table entry contains three items:

 ❏ Notification observer: Required. The object to be notified when qualifying notifications are
posted to the notification center.

 ❏ Notification name: Optional. Specifying a name reduces the set of notifications the entry
specifies to those that have this name.

 ❏ Notification sender: Optional. Specifying a sender reduces the set of notifications the entry
specifies to those sent by this object.

Table 53-1 shows the four types of dispatch table entries and the notification sets they specify.
(This table omits the always present notification observer.)

Class at a Glance 679
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

Table 53-1 Types of dispatch table entries

Notification set specifiedNotification senderNotification name

Notifications with a particular name from a specific
sender.

SpecifiedSpecified

Notifications with a particular name by any sender.UnspecifiedSpecified

Notifications posted by a specific sender.SpecifiedUnspecified

All notifications.UnspecifiedUnspecified

Table 53-2 shows an example dispatch table with four observers.

Table 53-2 Example notification dispatch table

Notification senderNotification nameObserver

nilNSFileHandleReadCompletionNotificationobserverA

addressTableViewnilobserverB

documentWindowNSWindowDidChangeScreenNotificationobserverC

addressTableViewnilobserverC

nilnilobserverD

When notifications are posted to the notification center, each of the observers in Table 53-2 are
notified of the following notifications:

 ❏ observerA: Notifications named NSFileHandleReadCompletionNotification.

 ❏ observerB: Notifications sent by addressTableView.

 ❏ observerC: Notifications named NSWindowDidChangeScreenNotification sent by
documentWindow and notifications sent by addressTableView.

 ❏ observerD: All notifications.

Commonly Used Methods

defaultCenter (page 682)
Returns the task’s default notification center.

addObserver:selector:name:object: (page 683)
Adds an entry to the notification center’s dispatch table specifying at least an observer and a
notification message.

postNotificationName:object: (page 684)
Creates and posts a notification to the notification center.

680 Class at a Glance
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

removeObserver: (page 685)
Removes all entries from the notification center’s dispatch center that specify a particular
observer, so that it no longer receives notifications posted to that notification center.

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSNotificationCenter object (or simply, notification center) provides a mechanism for
broadcasting information within a task. An NSNotificationCenter object is essentially a notification
dispatch table.

Objects register with a notification center to receive notifications (NSNotification objects) using the
addObserver:selector:name:object: (page 683) method. Each invocation of this method specifies
a set of notifications. Therefore, objects may register as observers of different notification sets by
calling addObserver:selector:name:object: several times.

When an object (known as the notification sender) posts a notification, it sends an NSNotification
object to the notification center. The notification center then notifies any observers for which the
notification meets the criteria specified on registration by sending them the specified notification
message, passing the notification as the sole argument. The order in which observers receive
notifications is undefined. It is possible for the posting object and the observing object to be the same.

A notification center delivers notifications to observers synchronously. In other words, the
postNotification: (page 683) methods do not return until all observers have received and processed
the notification. To send notifications asynchronously use NSNotificationQueue. In a multithreaded
application, notifications are always delivered in the thread in which the notification was posted,
which may not be the same thread in which an observer registered itself.

Important: The notification center does not retain its observers, therefore, you must ensure that you
unregister observers (using removeObserver: (page 685) or removeObserver:name:object: (page
685)) before they are deallocated. (If you don't, you will generate a runtime error if the center sends a
message to a freed object.)

Each task has a default notification center. You typically don’t create your own. An
NSNotificationCenter object can deliver notifications only within a single task. If you want to post
a notification to other tasks or receive notifications from other tasks, use a
NSDistributedNotificationCenter object.

Overview 681
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

Tasks

Getting the Notification Center

+ defaultCenter (page 682)
Returns the task’s default notification center.

Managing Notification Observers

– addObserver:selector:name:object: (page 683)
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and
optional criteria: notification name and sender.

– removeObserver: (page 685)
Removes all the entries specifying a given observer from the receiver’s dispatch table.

– removeObserver:name:object: (page 685)
Removes matching entries from the receiver’s dispatch table.

Posting Notifications

– postNotification: (page 683)
Posts a given notification to the receiver.

– postNotificationName:object: (page 684)
Creates a notification with a given name and sender and posts it to the receiver.

– postNotificationName:object:userInfo: (page 684)
Creates a notification with a given name, sender, and information and posts it to the receiver.

Class Methods

defaultCenter
Returns the task’s default notification center.

+ (id)defaultCenter

Return Value
The current task’s default notification center, which is used for system notifications.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotification.h

682 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

Instance Methods

addObserver:selector:name:object:
Adds an entry to the receiver’s dispatch table with an observer, a notification selector and optional
criteria: notification name and sender.

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector
name:(NSString *)notificationName object:(id)notificationSender

Parameters

notificationObserver
Object registering as an observer. Must not be nil.

notificationSelector
Selector that specifies the message the receiver sends notificationObserver to notify it of
the notification posting. The method the selector specifies must have one and only one argument.

notificationName
The name of the notification for which to register the observer; that is, only notifications with
this name are delivered to the observer. When nil, the notification center doesn’t use a
notification’s name to decide whether to deliver it to the observer.

notificationSender
The object whose notifications the observer wants to receive; that is, only notifications sent by
this sender are delivered to the observer. When nil, the notification center doesn’t use a
notification’s sender to decide whether to deliver it to the observer.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObserver: (page 685)

Declared In
NSNotification.h

postNotification:
Posts a given notification to the receiver.

- (void)postNotification:(NSNotification *)notification

Parameters

notification
The notification to post. This value must not be nil.

Discussion
You can create a notification with the NSNotification class method
notificationWithName:object: (page 675) or notificationWithName:object:userInfo: (page
675). An exception is raised if notification is nil.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 683
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

See Also
– postNotificationName:object: (page 684)
– postNotificationName:object:userInfo: (page 684)

Declared In
NSNotification.h

postNotificationName:object:
Creates a notification with a given name and sender and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName
object:(id)notificationSender

Parameters

notificationName
The name of the notification.

notificationSender
The object posting the notification.

Discussion
This method invokes postNotificationName:object:userInfo: (page 684) with a userInfo
argument of nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– postNotification: (page 683)

Declared In
NSNotification.h

postNotificationName:object:userInfo:
Creates a notification with a given name, sender, and information and posts it to the receiver.

- (void)postNotificationName:(NSString *)notificationName
object:(id)notificationSender userInfo:(NSDictionary *)userInfo

Parameters

notificationName
The name of the notification.

notificationSender
The object posting the notification.

userInfo
Information about the the notification. May be nil.

Discussion
This method is the preferred method for posting notifications.

Availability
Available in iPhone OS 2.0 and later.

684 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

See Also
– postNotificationName:object: (page 684)

Declared In
NSNotification.h

removeObserver:
Removes all the entries specifying a given observer from the receiver’s dispatch table.

- (void)removeObserver:(id)notificationObserver

Parameters

notificationObserver
The observer to remove. Must not be nil.

Discussion
Be sure to invoke this method (or removeObserver:name:object: (page 685)) before
notificationObserver or any object specified in addObserver:selector:name:object: (page 683)
is deallocated.

The following example illustrates how to unregister someObserver for all notifications for which it
had previously registered:

[[NSNotificationCenter defaultCenter] removeObserver:someObserver];

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotification.h

removeObserver:name:object:
Removes matching entries from the receiver’s dispatch table.

- (void)removeObserver:(id)notificationObserver name:(NSString *)notificationName
object:(id)notificationSender

Parameters

notificationObserver
Observer to remove from the dispatch table. Specify an observer to remove only entries for
this observer. Must not be nil, or message will have no effect.

notificationName
Name of the notification to remove from dispatch table. Specify a notification name to remove
only entries that specify this notification name. When nil, the receiver does not use notification
names as criteria for removal.

notificationSender
Sender to remove from the dispatch table. Specify a notification sender to remove only entries
that specify this sender. When nil, the receiver does not use notification senders as criteria
for removal.

Instance Methods 685
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

Discussion
Be sure to invoke this method (or removeObserver: (page 685)) before the observer object or any
object specified in addObserver:selector:name:object: (page 683) is deallocated.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotification.h

686 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 3

NSNotificationCenter Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSNotificationQueue.h

Companion guide: Notification Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSNotificationQueue objects (or simply notification queues) act as buffers for notification centers
(instances of NSNotificationCenter). Whereas a notification center distributes notifications when
posted, notifications placed into the queue can be delayed until the end of the current pass through
the run loop or until the run loop is idle. Duplicate notifications can also be coalesced so that only
one notification is sent although multiple notifications are posted. A notification queue maintains
notifications (instances of NSNotification) generally in a first in first out (FIFO) order. When a
notification rises to the front of the queue, the queue posts it to the notification center, which in turn
dispatches the notification to all objects registered as observers.

Overview 687
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

NSNotificationQueue Class Reference

Every thread has a default notification queue, which is associated with the default notification center
for the task. You can create your own notification queues and have multiple queues per center and
thread.

Tasks

Creating Notification Queues

– initWithNotificationCenter: (page 690)
Initializes and returns a notification queue for the specified notification center.

Getting the Default Queue

+ defaultQueue (page 688)
Returns the default notification queue for the current thread.

Managing Notifications

– enqueueNotification:postingStyle: (page 689)
Adds a notification to the notification queue with a specified posting style.

– enqueueNotification:postingStyle:coalesceMask:forModes: (page 690)
Adds a notification to the notification queue with a specified posting style, criteria for coalescing,
and runloop mode.

– dequeueNotificationsMatching:coalesceMask: (page 689)
Removes all notifications from the queue that match a provided notification using provided
matching criteria.

Class Methods

defaultQueue
Returns the default notification queue for the current thread.

+ (NSNotificationQueue *)defaultQueue

Return Value
Returns the default notification queue for the current thread. This notification queue uses the default
notification center.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotificationQueue.h

688 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

NSNotificationQueue Class Reference

Instance Methods

dequeueNotificationsMatching:coalesceMask:
Removes all notifications from the queue that match a provided notification using provided matching
criteria.

- (void)dequeueNotificationsMatching:(NSNotification *)notification
coalesceMask:(NSUInteger)coalesceMask

Parameters

notification
The notification used for matching notifications to remove from the notification queue.

coalesceMask
A mask indicating what criteria to use when matching attributes of notification to attributes
of notifications in the queue. The mask is created by combining any of the constants
NSNotificationNoCoalescing, NSNotificationCoalescingOnName, and
NSNotificationCoalescingOnSender.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotificationQueue.h

enqueueNotification:postingStyle:
Adds a notification to the notification queue with a specified posting style.

- (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle

Parameters

notification
The notification to add to the queue.

postingStyle
The posting style for the notification. The posting style indicates when the notification queue
should post the notification to its notification center.

Discussion
Notifications added with this method are posted using the runloop mode NSDefaultRunLoopMode
and coalescing criteria that will coalesce only notifications that match both the notification’s name
and object.

This method invokes enqueueNotification:postingStyle:coalesceMask:forModes: (page 690).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotificationQueue.h

Instance Methods 689
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

NSNotificationQueue Class Reference

enqueueNotification:postingStyle:coalesceMask:forModes:
Adds a notification to the notification queue with a specified posting style, criteria for coalescing, and
runloop mode.

- (void)enqueueNotification:(NSNotification *)notification
postingStyle:(NSPostingStyle)postingStyle coalesceMask:(NSUInteger)coalesceMask
forModes:(NSArray *)modes

Parameters

notification
The notification to add to the queue.

postingStyle
The posting style for the notification. The posting style indicates when the notification queue
should post the notification to its notification center.

coalesceMask
A mask indicating what criteria to use when matching attributes of notification to attributes
of notifications in the queue. The mask is created by combining any of the constants
NSNotificationNoCoalescing, NSNotificationCoalescingOnName, and
NSNotificationCoalescingOnSender.

modes
The list of modes the notification may be posted in. The notification queue will only post the
notification to its notification center if the run loops is in one of the modes provided in the
array. May be nil, in which case it defaults to NSDefaultRunLoopMode.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotificationQueue.h

initWithNotificationCenter:
Initializes and returns a notification queue for the specified notification center.

- (id)initWithNotificationCenter:(NSNotificationCenter *)notificationCenter

Parameters

notificationCenter
The notification center used by the new notification queue.

Return Value
The newly initialized notification queue.

Discussion
This is the designated initializer for the NSNotificationQueue class.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotificationQueue.h

690 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

NSNotificationQueue Class Reference

Constants

NSNotificationCoalescing
These constants specify how notifications are coalesced.

typedef enum {
NSNotificationNoCoalescing = 0,
NSNotificationCoalescingOnName = 1,
NSNotificationCoalescingOnSender = 2

} NSNotificationCoalescing;

Constants
NSNotificationNoCoalescing

Do not coalesce notifications in the queue.

Available in iPhone OS 2.0 and later.

Declared in NSNotificationQueue.h

NSNotificationCoalescingOnName
Coalesce notifications with the same name.

Available in iPhone OS 2.0 and later.

Declared in NSNotificationQueue.h

NSNotificationCoalescingOnSender
Coalesce notifications with the same object.

Available in iPhone OS 2.0 and later.

Declared in NSNotificationQueue.h

Discussion
These constants are used in the third argument of
enqueueNotification:postingStyle:coalesceMask:forModes: (page 690). You can OR them
together to specify more than one.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotificationQueue.h

NSPostingStyle
These constants specify when notifications are posted.

Constants 691
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

NSNotificationQueue Class Reference

typedef enum {
NSPostWhenIdle = 1,
NSPostASAP = 2,
NSPostNow = 3

} NSPostingStyle;

Constants
NSPostASAP

The notification is posted at the end of the current notification callout or timer.

Available in iPhone OS 2.0 and later.

Declared in NSNotificationQueue.h

NSPostWhenIdle
The notification is posted when the run loop is idle.

Available in iPhone OS 2.0 and later.

Declared in NSNotificationQueue.h

NSPostNow
The notification is posted immediately after coalescing.

Available in iPhone OS 2.0 and later.

Declared in NSNotificationQueue.h

Discussion
These constants are used in both enqueueNotification:postingStyle: (page 689) and
enqueueNotification:postingStyle:coalesceMask:forModes: (page 690).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNotificationQueue.h

692 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 4

NSNotificationQueue Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSNull.h

Companion guide: Number and Value Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSNull class defines a singleton object used to represent null values in collection objects (which
don’t allow nil values).

Adopted Protocols

NSCoding

Overview 693
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

NSNull Class Reference

– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Obtaining an Instance

+ null (page 694)
Returns the singleton instance of NSNull.

Class Methods

null
Returns the singleton instance of NSNull.

+ (NSNull *)null

Return Value
The singleton instance of NSNull.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNull.h

694 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 5

NSNull Class Reference

Inherits from: NSValue : NSObject

Conforms to: NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSValue.h
Foundation/NSDecimalNumber.h

Companion guides: Number and Value Programming Topics for Cocoa
Property List Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSNumber is a subclass of NSValue that offers a value as any C scalar (numeric) type. It defines a set
of methods specifically for setting and accessing the value as a signed or unsigned char, short int,
int, long int, long long int, float, or double or as a BOOL. (Note that number objects do not
necessarily preserve the type they are created with.) It also defines a compare: (page 705) method to
determine the ordering of two NSNumber objects.

Overview 695
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Creating a Subclass of NSNumber

As with any class cluster, if you create a subclass of NSNumber, you have to override the primitive
methods of its superclass, NSValue. Furthermore, there is a restricted set of return values that your
implementation of the NSValuemethod objCType can return, in order to take advantage of the abstract
implementations of the non-primitive methods. The valid return values are “c”, “C”, “s”, “S”, “i”,
“I”, “l”, “L”, “q”, “Q”, “f”, and “d”.

Tasks

Creating an NSNumber Object

+ numberWithBool: (page 699)
Creates and returns an NSNumber object containing a given value, treating it as a BOOL.

+ numberWithChar: (page 699)
Creates and returns an NSNumber object containing a given value, treating it as a signed char.

+ numberWithDouble: (page 700)
Creates and returns an NSNumber object containing a given value, treating it as a double.

+ numberWithFloat: (page 700)
Creates and returns an NSNumber object containing a given value, treating it as a float.

+ numberWithInt: (page 700)
Creates and returns an NSNumber object containing a given value, treating it as a signed int.

+ numberWithInteger: (page 701)
Creates and returns an NSNumber object containing a given value, treating it as an NSInteger.

+ numberWithLong: (page 701)
Creates and returns an NSNumber object containing a given value, treating it as a signed long.

+ numberWithLongLong: (page 701)
Creates and returns an NSNumber object containing a given value, treating it as a signed long
long.

+ numberWithShort: (page 702)
Creates and returns an NSNumber object containing value, treating it as a signed short.

+ numberWithUnsignedChar: (page 702)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned
char.

+ numberWithUnsignedInt: (page 702)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned
int.

+ numberWithUnsignedInteger: (page 703)
Creates and returns an NSNumber object containing a given value, treating it as an NSUInteger.

+ numberWithUnsignedLong: (page 703)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned
long.

696 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

+ numberWithUnsignedLongLong: (page 704)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned
long long.

+ numberWithUnsignedShort: (page 704)
Creates and returns an NSNumber object containing a given value, treating it as an unsigned
short.

Initializing an NSNumber Object

– initWithBool: (page 707)
Returns an NSNumber object initialized to contain a given value, treated as a BOOL.

– initWithChar: (page 708)
Returns an NSNumber object initialized to contain a given value, treated as a signed char.

– initWithDouble: (page 708)
Returns an NSNumber object initialized to contain value, treated as a double.

– initWithFloat: (page 709)
Returns an NSNumber object initialized to contain a given value, treated as a float.

– initWithInt: (page 709)
Returns an NSNumber object initialized to contain a given value, treated as a signed int.

– initWithInteger: (page 709)
Returns an NSNumber object initialized to contain a given value, treated as an NSInteger.

– initWithLong: (page 710)
Returns an NSNumber object initialized to contain a given value, treated as a signed long.

– initWithLongLong: (page 710)
Returns an NSNumber object initialized to contain value, treated as a signed long long.

– initWithShort: (page 710)
Returns an NSNumber object initialized to contain a given value, treated as a signed short.

– initWithUnsignedChar: (page 711)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned char.

– initWithUnsignedInt: (page 711)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned int.

– initWithUnsignedInteger: (page 711)
Returns an NSNumber object initialized to contain a given value, treated as an NSUInteger.

– initWithUnsignedLong: (page 712)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long.

– initWithUnsignedLongLong: (page 712)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long
long.

– initWithUnsignedShort: (page 712)
Returns an NSNumber object initialized to contain a given value, treated as an unsigned short.

Tasks 697
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Accessing Numeric Values

– boolValue (page 704)
Returns the receiver’s value as a BOOL.

– charValue (page 705)
Returns the receiver’s value as a char.

– decimalValue (page 706)
Returns the receiver’s value, expressed as an NSDecimal structure.

– doubleValue (page 707)
Returns the receiver’s value as a double.

– floatValue (page 707)
Returns the receiver’s value as a float.

– intValue (page 713)
Returns the receiver’s value as an int.

– integerValue (page 713)
Returns the receiver’s value as an NSInteger.

– longLongValue (page 714)
Returns the receiver’s value as a long long.

– longValue (page 714)
Returns the receiver’s value as a long.

– shortValue (page 715)
Returns the receiver’s value as a short.

– unsignedCharValue (page 715)
Returns the receiver’s value as an unsigned char.

– unsignedIntegerValue (page 716)
Returns the receiver’s value as an NSUInteger.

– unsignedIntValue (page 716)
Returns the receiver’s value as an unsigned int.

– unsignedLongLongValue (page 716)
Returns the receiver’s value as an unsigned long long.

– unsignedLongValue (page 716)
Returns the receiver’s value as an unsigned long.

– unsignedShortValue (page 717)
Returns the receiver’s value as an unsigned short.

Retrieving String Representations

– descriptionWithLocale: (page 706)
Returns a string that represents the contents of the receiver for a given locale.

– stringValue (page 715)
Returns the receiver’s value as a human-readable string.

698 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Comparing NSNumber Objects

– compare: (page 705)
Returns an NSComparisonResult value that indicates whether the receiver is greater than,
equal to, or less than a given number.

– isEqualToNumber: (page 713)
Returns a Boolean value that indicates whether the receiver and a given number are equal.

Accessing Type Information

– objCType (page 714)
Returns a C string containing the Objective-C type of the data contained in the receiver.

Class Methods

numberWithBool:
Creates and returns an NSNumber object containing a given value, treating it as a BOOL.

+ (NSNumber *)numberWithBool:(BOOL)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a BOOL.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithChar:
Creates and returns an NSNumber object containing a given value, treating it as a signed char.

+ (NSNumber *)numberWithChar:(char)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed char.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 699
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Declared In
NSValue.h

numberWithDouble:
Creates and returns an NSNumber object containing a given value, treating it as a double.

+ (NSNumber *)numberWithDouble:(double)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a double.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithFloat:
Creates and returns an NSNumber object containing a given value, treating it as a float.

+ (NSNumber *)numberWithFloat:(float)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a float.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithInt:
Creates and returns an NSNumber object containing a given value, treating it as a signed int.

+ (NSNumber *)numberWithInt:(int)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed int.

700 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithInteger:
Creates and returns an NSNumber object containing a given value, treating it as an NSInteger.

+ (NSNumber *)numberWithInteger:(NSInteger)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSInteger.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithLong:
Creates and returns an NSNumber object containing a given value, treating it as a signed long.

+ (NSNumber *)numberWithLong:(long)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithLongLong:
Creates and returns an NSNumber object containing a given value, treating it as a signed long long.

+ (NSNumber *)numberWithLongLong:(long long)value

Parameters

value
The value for the new number.

Class Methods 701
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Return Value
An NSNumber object containing value, treating it as a signed long long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithShort:
Creates and returns an NSNumber object containing value, treating it as a signed short.

+ (NSNumber *)numberWithShort:(short)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed short.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedChar:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned char.

+ (NSNumber *)numberWithUnsignedChar:(unsigned char)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned char.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedInt:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned int.

+ (NSNumber *)numberWithUnsignedInt:(unsigned int)value

702 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned int.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedInteger:
Creates and returns an NSNumber object containing a given value, treating it as an NSUInteger.

+ (NSNumber *)numberWithUnsignedInteger:(NSUInteger)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSUInteger.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedLong:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long.

+ (NSNumber *)numberWithUnsignedLong:(unsigned long)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

Class Methods 703
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

numberWithUnsignedLongLong:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned long
long.

+ (NSNumber *)numberWithUnsignedLongLong:(unsigned long long)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

numberWithUnsignedShort:
Creates and returns an NSNumber object containing a given value, treating it as an unsigned short.

+ (NSNumber *)numberWithUnsignedShort:(unsigned short)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned short.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

Instance Methods

boolValue
Returns the receiver’s value as a BOOL.

- (BOOL)boolValue

Return Value
The receiver’s value as a BOOL, converting it as necessary.

704 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Special Considerations

Prior to Mac OS X v10.3, the value returned isn’t guaranteed to be one of YES or NO. A 0 value always
means NO or false, but any nonzero value should be interpreted as YES or true.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

charValue
Returns the receiver’s value as a char.

- (char)charValue

Return Value
The receiver’s value as a char, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

compare:
Returns an NSComparisonResult value that indicates whether the receiver is greater than, equal to,
or less than a given number.

- (NSComparisonResult)compare:(NSNumber *)aNumber

Parameters

aNumber
The number with which to compare the receiver.

This value must not be nil. If the value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
NSOrderedAscending if the value of aNumber is greater than the receiver’s, NSOrderedSame if they’re
equal, and NSOrderedDescending if the value of aNumber is less than the receiver’s.

Discussion
The compare: method follows the standard C rules for type conversion. For example, if you compare
an NSNumber object that has an integer value with an NSNumber object that has a floating point value,
the integer value is converted to a floating-point value for comparison.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

Instance Methods 705
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

decimalValue
Returns the receiver’s value, expressed as an NSDecimal structure.

- (NSDecimal)decimalValue

Return Value
The receiver’s value, expressed as an NSDecimal structure. The value returned isn’t guaranteed to be
exact for float and double values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

descriptionWithLocale:
Returns a string that represents the contents of the receiver for a given locale.

- (NSString *)descriptionWithLocale:(id)aLocale

Parameters

aLocale
An object containing locale information with which to format the description. Use nil if you
don’t want the description formatted.

Return Value
A string that represents the contents of the receiver formatted using the locale information in locale.

Discussion
For example, if you have an NSNumber object that has the integer value 522, sending it the
descriptionWithLocale: message returns the string “522”.

To obtain the string representation, this method invokes NSString’s initWithFormat:locale: (page
1006) method, supplying the format based on the type the NSNumber object was created with:

Format SpecificationData Type

%ichar

%0.16gdouble

%0.7gfloat

%iint

%lilong

%llilong long

%hishort

%uunsigned char

706 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Format SpecificationData Type

%uunsigned int

%luunsigned long

%lluunsigned long long

%huunsigned short

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringValue (page 715)

Declared In
NSValue.h

doubleValue
Returns the receiver’s value as a double.

- (double)doubleValue

Return Value
The receiver’s value as a double, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

floatValue
Returns the receiver’s value as a float.

- (float)floatValue

Return Value
The receiver’s value as a float, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithBool:
Returns an NSNumber object initialized to contain a given value, treated as a BOOL.

Instance Methods 707
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

- (id)initWithBool:(BOOL)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a BOOL.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithChar:
Returns an NSNumber object initialized to contain a given value, treated as a signed char.

- (id)initWithChar:(char)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed char.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithDouble:
Returns an NSNumber object initialized to contain value, treated as a double.

- (id)initWithDouble:(double)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a double.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

708 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

initWithFloat:
Returns an NSNumber object initialized to contain a given value, treated as a float.

- (id)initWithFloat:(float)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a float.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithInt:
Returns an NSNumber object initialized to contain a given value, treated as a signed int.

- (id)initWithInt:(int)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed int.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithInteger:
Returns an NSNumber object initialized to contain a given value, treated as an NSInteger.

- (id)initWithInteger:(NSInteger)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an NSInteger.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 709
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Declared In
NSValue.h

initWithLong:
Returns an NSNumber object initialized to contain a given value, treated as a signed long.

- (id)initWithLong:(long)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithLongLong:
Returns an NSNumber object initialized to contain value, treated as a signed long long.

- (id)initWithLongLong:(long long)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed long long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithShort:
Returns an NSNumber object initialized to contain a given value, treated as a signed short.

- (id)initWithShort:(short)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as a signed short.

710 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedChar:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned char.

- (id)initWithUnsignedChar:(unsigned char)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned char.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedInt:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned int.

- (id)initWithUnsignedInt:(unsigned int)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned int.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedInteger:
Returns an NSNumber object initialized to contain a given value, treated as an NSUInteger.

- (id)initWithUnsignedInteger:(NSUInteger)value

Parameters

value
The value for the new number.

Instance Methods 711
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Return Value
An NSNumber object containing value, treating it as an NSUInteger.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedLong:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long.

- (id)initWithUnsignedLong:(unsigned long)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedLongLong:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned long long.

- (id)initWithUnsignedLongLong:(unsigned long long)value

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned long long.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithUnsignedShort:
Returns an NSNumber object initialized to contain a given value, treated as an unsigned short.

- (id)initWithUnsignedShort:(unsigned short)value

712 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Parameters

value
The value for the new number.

Return Value
An NSNumber object containing value, treating it as an unsigned short.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

integerValue
Returns the receiver’s value as an NSInteger.

- (NSInteger)integerValue

Return Value
The receiver’s value as an NSInteger, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

intValue
Returns the receiver’s value as an int.

- (int)intValue

Return Value
The receiver’s value as an int, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

isEqualToNumber:
Returns a Boolean value that indicates whether the receiver and a given number are equal.

- (BOOL)isEqualToNumber:(NSNumber *)aNumber

Parameters

aNumber
The number with which to compare the receiver.

Instance Methods 713
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Return Value
YES if the receiver and aNumber are equal, otherwise NOr

Discussion
Two NSNumber objects are considered equal if they have the same id values or if they have equivalent
values (as determined by the compare: (page 705) method).

This method is more efficient than compare: (page 705) if you know the two objects are numbers.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

longLongValue
Returns the receiver’s value as a long long.

- (long long)longLongValue

Return Value
The receiver’s value as a long long, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

longValue
Returns the receiver’s value as a long.

- (long)longValue

Return Value
The receiver’s value as a long, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver.

- (const char *)objCType

714 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Return Value
A C string containing the Objective-C type of the data contained in the receiver, as encoded by the
@encode() compiler directive.

Special Considerations

The returned type does not necessarily match the method the receiver was created with.

shortValue
Returns the receiver’s value as a short.

- (short)shortValue

Return Value
The receiver’s value as a short, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

stringValue
Returns the receiver’s value as a human-readable string.

- (NSString *)stringValue

Return Value
The receiver’s value as a human-readable string, created by invoking descriptionWithLocale: (page
706) where locale is nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

unsignedCharValue
Returns the receiver’s value as an unsigned char.

- (unsigned char)unsignedCharValue

Return Value
The receiver’s value as an unsigned char, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

Instance Methods 715
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

unsignedIntegerValue
Returns the receiver’s value as an NSUInteger.

- (NSUInteger)unsignedIntegerValue

Return Value
The receiver’s value as an NSUInteger, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

unsignedIntValue
Returns the receiver’s value as an unsigned int.

- (unsigned int)unsignedIntValue

Return Value
The receiver’s value as an unsigned int, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

unsignedLongLongValue
Returns the receiver’s value as an unsigned long long.

- (unsigned long long)unsignedLongLongValue

Return Value
The receiver’s value as an unsigned long long, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

unsignedLongValue
Returns the receiver’s value as an unsigned long.

- (unsigned long)unsignedLongValue

Return Value
The receiver’s value as an unsigned long, converting it as necessary.

716 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

unsignedShortValue
Returns the receiver’s value as an unsigned short.

- (unsigned short)unsignedShortValue

Return Value
The receiver’s value as an unsigned short, converting it as necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

Instance Methods 717
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

718 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 6

NSNumber Class Reference

Inherits from: NSFormatter : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSNumberFormatter.h

Companion guide: Data Formatting Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

Instances of NSNumberFormatter format the textual representation of cells that contain NSNumber
objects and convert textual representations of numeric values into NSNumber objects. The representation
encompasses integers, floats, and doubles; floats and doubles can be formatted to a specified decimal
position. NSNumberFormatter objects can also impose ranges on the numeric values cells can accept.

Many new methods were added to NSNumberFormatter for Mac OS X v10.4 with the intent of making
the class interface more like that of CFNumberFormatter, the Core Foundation service on which the
class is based. The behavior of an NSNumberFormatter object can conform either to the range of
behaviors existing prior to Mac OS X v10.4 or to the range of behavior since that release. (Methods

Overview 719
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

added for and since Mac OS X v10.4 are indicated by a method’s availability statement.) You can
determine the current formatter behavior with the formatterBehavior (page 731) method and you
can set the formatter behavior with the setFormatterBehavior: (page 749) method.

Important: The pre-Mac OS X v10.4 methods of NSNumberFormatter are not compatible with the
methods added for Mac OS X v10.4. An NSNumberFormatter object should not invoke methods in
these different behavior groups indiscriminately. Use the old-style methods if you have configured
the number-formatter behavior to be NSNumberFormatterBehavior10_0. Use the new methods
instead of the older-style ones if you have configured the number-formatter behavior to be
NSNumberFormatterBehavior10_4.

Note also that number formatters created in Interface Builder use the Mac OS X v10.0 behavior—see
NSNumberFormatter on MacÂ OSÂ XÂ 10.4.

Nomenclature note: NSNumberFormatter provides several methods (such as
setMaximumFractionDigits: (page 752)) that allow you to manage the number of fraction digits
allowed as input by an instance: “fraction digits” are the numbers after the decimal separator (in
English locales typically referred to as the “decimal point”).

Tasks

Configuring Formatter Behavior and Style

– setFormatterBehavior: (page 749)
Sets the formatter behavior of the receiver.

– formatterBehavior (page 731)
Returns an NSNumberFormatterBehavior constant that indicates the formatter behavior of
the receiver.

+ setDefaultFormatterBehavior: (page 727)
Sets the default formatter behavior for new instances of NSNumberFormatter .

+ defaultFormatterBehavior (page 727)
Returns an NSNumberFormatterBehavior constant that indicates default formatter behavior
for new instances of NSNumberFormatter.

– setNumberStyle: (page 758)
Sets the number style used by the receiver.

– numberStyle (page 741)
Returns the number-formatter style of the receiver.

– setGeneratesDecimalNumbers: (page 749)
Controls whether the receiver creates instances of NSDecimalNumber when it converts strings
to number objects.

– generatesDecimalNumbers (page 731)
Returns a Boolean value that indicates whether the receiver creates instances of
NSDecimalNumber when it converts strings to number objects.

720 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Converting Between Numbers and Strings

– getObjectValue:forString:range:error: (page 732)
Returns by reference a cell-content object after creating it from a range of characters in a given
string.

– numberFromString: (page 741)
Returns an NSNumber object created by parsing a given string.

– stringFromNumber: (page 767)
Returns a string containing the formatted value of the provided number object.

Managing Localization of Numbers

– setLocale: (page 751)
Sets the locale of the receiver.

– locale (page 734)
Returns the locale of the receiver.

Configuring Rounding Behavior

– setRoundingIncrement: (page 762)
Sets the rounding increment used by the receiver.

– roundingIncrement (page 744)
Returns the rounding increment used by the receiver.

– setRoundingMode: (page 762)
Sets the rounding mode used by the receiver.

– roundingMode (page 745)
Returns the rounding mode used by the receiver.

Configuring Numeric Formats

– formatWidth (page 731)
Returns the format width of the receiver.

– setNegativeFormat: (page 756)
Sets the format the receiver uses to display negative values.

– negativeFormat (page 739)
Returns the format used by the receiver to display negative numbers.

– setPositiveFormat: (page 761)
Sets the format the receiver uses to display positive values.

– positiveFormat (page 743)
Returns the format used by the receiver to display positive numbers.

– setFormatWidth: (page 749)
Sets the format width used by the receiver.

– setMultiplier: (page 755)
Sets the multiplier of the receiver.

Tasks 721
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

– multiplier (page 738)
Returns the multiplier used by the receiver as an NSNumber object.

Configuring Numeric Symbols

– percentSymbol (page 742)
Returns the string that the receiver uses to represent the percent symbol.

– setPercentSymbol: (page 760)
Sets the string used by the receiver to represent the percent symbol.

– perMillSymbol (page 742)
Returns the string that the receiver uses for the per-thousands symbol.

– setPerMillSymbol: (page 760)
Sets the string used by the receiver to represent the per-mill (per-thousand) symbol.

– minusSign (page 738)
Returns the string the receiver uses to represent the minus sign.

– setMinusSign: (page 755)
Sets the string used by the receiver for the minus sign.

– plusSign (page 743)
Returns the string the receiver uses for the plus sign.

– setPlusSign: (page 760)
Sets the string used by the receiver to represent the plus sign.

– exponentSymbol (page 730)
Returns the string the receiver uses as an exponent symbol.

– setExponentSymbol: (page 748)
Sets the string used by the receiver to represent the exponent symbol.

– zeroSymbol (page 771)
Returns the string the receiver uses as the symbol to show the value zero.

– setZeroSymbol: (page 767)
Sets the string the receiver uses as the symbol to show the value zero.

– nilSymbol (page 740)
Returns the string the receiver uses to represent a nil value.

– setNilSymbol: (page 757)
Sets the string the receiver uses to represent nil values.

– notANumberSymbol (page 740)
Returns the symbol the receiver uses to represent NaN (“not a number”) when it converts
values.

– setNotANumberSymbol: (page 758)
Sets the string the receiver uses to represent NaN (“not a number”).

– negativeInfinitySymbol (page 739)
Returns the symbol the receiver uses to represent negative infinity.

– setNegativeInfinitySymbol: (page 756)
Sets the string used by the receiver for the negative infinity symbol.

– positiveInfinitySymbol (page 743)
Returns the string the receiver uses for the positive infinity symbol.

722 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

– setPositiveInfinitySymbol: (page 761)
Sets the string used by the receiver for the positive infinity symbol.

Configuring the Format of Currency

– setCurrencySymbol: (page 747)
Sets the string used by the receiver as a local currency symbol.

– currencySymbol (page 729)
Returns the receiver’s local currency symbol.

– setCurrencyCode: (page 746)
Sets the receiver’s currency code.

– currencyCode (page 728)
Returns the receiver’s currency code as a string.

– setInternationalCurrencySymbol: (page 750)
Sets the string used by the receiver for the international currency symbol.

– internationalCurrencySymbol (page 733)
Returns the international currency symbol used by the receiver.

– setCurrencyGroupingSeparator: (page 747)
Sets the currency grouping separator for the receiver.

– currencyGroupingSeparator (page 729)
Returns the currency grouping separator for the receiver.

Configuring Numeric Prefixes and Suffixes

– setPositivePrefix: (page 761)
Sets the string the receiver uses as the prefix for positive values.

– positivePrefix (page 744)
Returns the string the receiver uses as the prefix for positive values.

– setPositiveSuffix: (page 762)
Sets the string the receiver uses as the suffix for positive values.

– positiveSuffix (page 744)
Returns the string the receiver uses as the suffix for positive values.

– setNegativePrefix: (page 757)
Sets the string the receiver uses as a prefix for negative values.

– negativePrefix (page 739)
Returns the string the receiver inserts as a prefix to negative values.

– setNegativeSuffix: (page 757)
Sets the string the receiver uses as a suffix for negative values.

– negativeSuffix (page 740)
Returns the string the receiver adds as a suffix to negative values.

Tasks 723
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Configuring the Display of Numeric Values

– setTextAttributesForNegativeValues: (page 764)
Sets the text attributes to be used in displaying negative values .

– textAttributesForNegativeValues (page 768)
Returns a dictionary containing the text attributes that have been set for negative values.

– setTextAttributesForPositiveValues: (page 765)
Sets the text attributes to be used in displaying positive values.

– textAttributesForPositiveValues (page 770)
Returns a dictionary containing the text attributes that have been set for positive values.

– setTextAttributesForZero: (page 766)
Sets the text attributes used to display a zero value.

– textAttributesForZero (page 770)
Returns a dictionary containing the text attributes used to display a value of zero.

– setTextAttributesForNil: (page 764)
Sets the text attributes used to display the nil symbol.

– textAttributesForNil (page 769)
Returns a dictionary containing the text attributes used to display the nil symbol.

– setTextAttributesForNotANumber: (page 765)
Sets the text attributes used to display the NaN ("not a number") string.

– textAttributesForNotANumber (page 769)
Returns a dictionary containing the text attributes used to display the NaN ("not a number")
symbol.

– setTextAttributesForPositiveInfinity: (page 765)
Sets the text attributes used to display the positive infinity symbol.

– textAttributesForPositiveInfinity (page 769)
Returns a dictionary containing the text attributes used to display the positive infinity symbol.

– setTextAttributesForNegativeInfinity: (page 763)
Sets the text attributes used to display the negative infinity symbol.

– textAttributesForNegativeInfinity (page 768)
Returns a dictionary containing the text attributes used to display the negative infinity string.

Configuring Separators and Grouping Size

– setGroupingSeparator: (page 750)
Specifies the string used by the receiver for a grouping separator.

– groupingSeparator (page 732)
Returns a string containing the receiver’s grouping separator.

– setUsesGroupingSeparator: (page 766)
Controls whether the receiver displays the grouping separator.

– usesGroupingSeparator (page 770)
Returns a Boolean value that indicates whether the receiver uses the grouping separator.

– setDecimalSeparator: (page 748)
Sets the character the receiver uses as a decimal separator.

724 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

– decimalSeparator (page 730)
Returns a string containing the character the receiver uses to represent decimal separators.

– setAlwaysShowsDecimalSeparator: (page 746)
Controls whether the receiver always shows the decimal separator, even for integer numbers.

– alwaysShowsDecimalSeparator (page 728)
Returns a Boolean value that indicates whether the receiver always shows a decimal separator,
even if the number is an integer.

– setCurrencyDecimalSeparator: (page 747)
Sets the string used by the receiver as a decimal separator.

– currencyDecimalSeparator (page 729)
Returns the receiver’s currency decimal separator as a string.

– setGroupingSize: (page 750)
Sets the grouping size of the receiver.

– groupingSize (page 733)
Returns the receiver’s primary grouping size.

– setSecondaryGroupingSize: (page 763)
Sets the secondary grouping size of the receiver.

– secondaryGroupingSize (page 745)
Returns the size of secondary groupings for the receiver.

Managing the Padding of Numbers

– setPaddingCharacter: (page 758)
Sets the string that the receiver uses to pad numbers in the formatted string representation.

– paddingCharacter (page 741)
Returns a string containing the padding character for the receiver.

– setPaddingPosition: (page 759)
Sets the padding position used by the receiver.

– paddingPosition (page 742)
Returns the padding position of the receiver.

Managing Input Attributes

– setAllowsFloats: (page 745)
Sets whether the receiver allows as input floating-point values (that is, values that include the
period character [.]).

– allowsFloats (page 728)
Returns a Boolean value that indicates whether the receiver allows floating-point values as
input.

– setMinimum: (page 753)
Sets the lowest number the receiver allows as input.

– minimum (page 736)
Returns the lowest number allowed as input by the receiver.

Tasks 725
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

– setMaximum: (page 752)
Sets the highest number the receiver allows as input.

– maximum (page 735)
Returns the highest number allowed as input by the receiver.

– setMinimumIntegerDigits: (page 754)
Sets the minimum number of integer digits allowed as input by the receiver.

– minimumIntegerDigits (page 737)
Returns the minimum number of integer digits allowed as input by the receiver.

– setMinimumFractionDigits: (page 754)
Sets the minimum number of digits after the decimal separator allowed as input by the receiver.

– minimumFractionDigits (page 737)
Returns the minimum number of digits after the decimal separator allowed as input by the
receiver.

– setMaximumIntegerDigits: (page 753)
Sets the maximum number of integer digits allowed as input by the receiver.

– maximumIntegerDigits (page 736)
Returns the maximum number of integer digits allowed as input by the receiver.

– setMaximumFractionDigits: (page 752)
Sets the maximum number of digits after the decimal separator allowed as input by the receiver.

– maximumFractionDigits (page 735)
Returns the maximum number of digits after the decimal separator allowed as input by the
receiver.

Configuring Significant Digits

– setUsesSignificantDigits: (page 767)
Sets whether the receiver uses significant digits.

– usesSignificantDigits (page 771)
Returns a Boolean value that indicates whether the receiver uses significant digits.

– setMinimumSignificantDigits: (page 755)
Sets the minimum number of significant digits for the receiver.

– minimumSignificantDigits (page 737)
Returns the minimum number of significant digits for the receiver.

– setMaximumSignificantDigits: (page 753)
Sets the maximum number of significant digits for the receiver.

– maximumSignificantDigits (page 736)
Returns the maximum number of significant digits for the receiver.

Managing Leniency Behavior

– setLenient: (page 751)
Sets whether the receiver is will use heuristics to guess at the date which is intended by a string.

726 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

– isLenient (page 734)
Returns a Boolean value that indicates whether the receiver uses heuristics to guess at the date
which is intended by a string.

Managing the Validation of Partial Numeric Strings

– setPartialStringValidationEnabled: (page 759)
Sets whether partial string validation is enabled for the receiver.

– isPartialStringValidationEnabled (page 734)
Returns a Boolean value that indicates whether partial string validation is enabled.

Class Methods

defaultFormatterBehavior
Returns an NSNumberFormatterBehavior constant that indicates default formatter behavior for new
instances of NSNumberFormatter.

+ (NSNumberFormatterBehavior)defaultFormatterBehavior

Return Value
An NSNumberFormatterBehavior constant that indicates default formatter behavior for new instances
of NSNumberFormatter.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setDefaultFormatterBehavior: (page 727)

Declared In
NSNumberFormatter.h

setDefaultFormatterBehavior:
Sets the default formatter behavior for new instances of NSNumberFormatter .

+ (void)setDefaultFormatterBehavior:(NSNumberFormatterBehavior)behavior

Parameters

behavior
An NSNumberFormatterBehavior constant that indicates the revision of the class providing
the default behavior.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ defaultFormatterBehavior (page 727)

Class Methods 727
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

Instance Methods

allowsFloats
Returns a Boolean value that indicates whether the receiver allows floating-point values as input.

- (BOOL)allowsFloats

Return Value
YES if the receiver allows as input floating-point values (that is, values that include the period character
[.]), otherwise NO.

Discussion
When this method returns NO, only integer values can be provided as input. The default is YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setAllowsFloats: (page 745)

Declared In
NSNumberFormatter.h

alwaysShowsDecimalSeparator
Returns a Boolean value that indicates whether the receiver always shows a decimal separator, even
if the number is an integer.

- (BOOL)alwaysShowsDecimalSeparator

Return Value
YES if the receiver always shows a decimal separator, even if the number is an integer, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setAlwaysShowsDecimalSeparator: (page 746)

Declared In
NSNumberFormatter.h

currencyCode
Returns the receiver’s currency code as a string.

- (NSString *)currencyCode

728 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Return Value
The receiver’s currency code as a string.

Discussion
A currency code is a three-letter code that is, in most cases, composed of a country’s two-character
Internet country code plus an extra character to denote the currency unit. For example, the currency
code for the Australian dollar is “AUD”. Currency codes are based on the ISO 4217 standard.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setCurrencyCode: (page 746)

Declared In
NSNumberFormatter.h

currencyDecimalSeparator
Returns the receiver’s currency decimal separator as a string.

- (NSString *)currencyDecimalSeparator

Return Value
The receiver’s currency decimal separator as a string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currencyDecimalSeparator (page 729)

Declared In
NSNumberFormatter.h

currencyGroupingSeparator
Returns the currency grouping separator for the receiver.

- (NSString *)currencyGroupingSeparator

Return Value
The currency grouping separator for the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNumberFormatter.h

currencySymbol
Returns the receiver’s local currency symbol.

Instance Methods 729
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

- (NSString *)currencySymbol

Discussion
A country typically has a local currency symbol and an international currency symbol. The local
symbol is used within the country, while the international currency symbol is used in international
contexts to specify that country’s currency unambiguously. The local currency symbol is often
represented by a Unicode code point.

Availability
Available in iPhone OS 2.0 and later.

See Also
– internationalCurrencySymbol (page 733)
– setCurrencySymbol: (page 747)

Declared In
NSNumberFormatter.h

decimalSeparator
Returns a string containing the character the receiver uses to represent decimal separators.

- (NSString *)decimalSeparator

Return Value
A string containing the character the receiver uses to represent decimal separators.

Discussion
The return value doesn’t indicate whether decimal separators are enabled.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDecimalSeparator: (page 748)

Declared In
NSNumberFormatter.h

exponentSymbol
Returns the string the receiver uses as an exponent symbol.

- (NSString *)exponentSymbol

Return Value
The string the receiver uses as an exponent symbol.

Discussion
The exponent symbol is the “E” or “e” in the scientific notation of numbers, as in 1.0e+56.

Availability
Available in iPhone OS 2.0 and later.

730 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

See Also
– setExponentSymbol: (page 748)

Declared In
NSNumberFormatter.h

formatterBehavior
Returns an NSNumberFormatterBehavior constant that indicates the formatter behavior of the receiver.

- (NSNumberFormatterBehavior)formatterBehavior

Return Value
An NSNumberFormatterBehavior constant that indicates the formatter behavior of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setFormatterBehavior: (page 749)

Declared In
NSNumberFormatter.h

formatWidth
Returns the format width of the receiver.

- (NSUInteger)formatWidth

Discussion
The format width is the number of characters of a formatted number within a string that is either left
justified or right justified based on the value returned from paddingPosition (page 742).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setFormatWidth: (page 749)

Declared In
NSNumberFormatter.h

generatesDecimalNumbers
Returns a Boolean value that indicates whether the receiver creates instances of NSDecimalNumber
when it converts strings to number objects.

- (BOOL)generatesDecimalNumbers

Return Value
YES if the receiver creates instances of NSDecimalNumber when it converts strings to number objects,
NO if it creates instance of NSNumber.

Instance Methods 731
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– setGeneratesDecimalNumbers: (page 749)

Declared In
NSNumberFormatter.h

getObjectValue:forString:range:error:
Returns by reference a cell-content object after creating it from a range of characters in a given string.

- (BOOL)getObjectValue:(out id *)anObject forString:(NSString *)aString range:(inout
NSRange *)rangep error:(out NSError **)error

Parameters

anObject
On return, contains an instance of NSDecimalNumber or NSNumber based on the current value
of generatesDecimalNumbers (page 731). The default is to return NSDecimalNumber instances

aString
A string object with the range of characters specified in rangep that is used to create anObject.

rangep
A range of characters in aString. On return, contains the actual range of characters used to
create the object.

error
If an error occurs, upon return contains an NSError object that explains the reason why the
conversion failed. If you pass in nil for error you are indicating that you are not interested
in error information.

Return Value
YES if the conversion from string to cell-content object was successful, otherwise NO.

Discussion
If there is an error, the delegate (if any) of the control object managing the cell can then respond to
the failure in the NSController delegation method
control:didFailToFormatString:errorDescription:.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberFromString: (page 741)
– stringFromNumber: (page 767)

Declared In
NSNumberFormatter.h

groupingSeparator
Returns a string containing the receiver’s grouping separator.

732 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

- (NSString *)groupingSeparator

Return Value
A string containing the receiver’s grouping separator.

Discussion
For example, the grouping separator used in the United States is the comma (“10,000”) whereas in
France it is the period (“10.000”).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setGroupingSeparator: (page 750)

Declared In
NSNumberFormatter.h

groupingSize
Returns the receiver’s primary grouping size.

- (NSUInteger)groupingSize

Return Value
The receiver’s primary grouping size.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setGroupingSize: (page 750)

Declared In
NSNumberFormatter.h

internationalCurrencySymbol
Returns the international currency symbol used by the receiver.

- (NSString *)internationalCurrencySymbol

Discussion
A country typically has a local currency symbol and an international currency symbol. The local
symbol is used within the country, while the international currency symbol is used in international
contexts to specify that country’s currency unambiguously. The international currency symbol is
often represented by a Unicode code point.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currencySymbol (page 729)
– setInternationalCurrencySymbol: (page 750)

Instance Methods 733
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

isLenient
Returns a Boolean value that indicates whether the receiver uses heuristics to guess at the date which
is intended by a string.

- (BOOL)isLenient

Return Value
YES if the receiver uses heuristics to guess at the date which is intended by the string, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLenient: (page 751)

Declared In
NSNumberFormatter.h

isPartialStringValidationEnabled
Returns a Boolean value that indicates whether partial string validation is enabled.

- (BOOL)isPartialStringValidationEnabled

Return Value
YES if partial string validation is enabled, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPartialStringValidationEnabled: (page 759)

Declared In
NSNumberFormatter.h

locale
Returns the locale of the receiver.

- (NSLocale *)locale

Return Value
The locale of the receiver.

Discussion
A number formatter’s locale specifies default localization attributes, such as ISO country and language
codes, currency code, calendar, system of measurement, and decimal separator.

734 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLocale: (page 751)

Declared In
NSNumberFormatter.h

maximum
Returns the highest number allowed as input by the receiver.

- (NSNumber *)maximum

Return Value
The highest number allowed as input by the receiver or nil, meaning no limit.

Discussion
For versions prior to Mac OS X v10.4 (and number-formatter behavior set to
NSNumberFormatterBehavior10_0) this method returns an NSDecimalNumber object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMaximum: (page 752)
+ setDefaultFormatterBehavior: (page 727)
– formatterBehavior (page 731)
– setFormatterBehavior: (page 749)

Declared In
NSNumberFormatter.h

maximumFractionDigits
Returns the maximum number of digits after the decimal separator allowed as input by the receiver.

- (NSUInteger)maximumFractionDigits

Return Value
The maximum number of digits after the decimal separator allowed as input by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMaximumFractionDigits: (page 752)

Declared In
NSNumberFormatter.h

Instance Methods 735
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

maximumIntegerDigits
Returns the maximum number of integer digits allowed as input by the receiver.

- (NSUInteger)maximumIntegerDigits

Return Value
The maximum number of integer digits allowed as input by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMaximumIntegerDigits: (page 753)

Declared In
NSNumberFormatter.h

maximumSignificantDigits
Returns the maximum number of significant digits for the receiver.

- (NSUInteger)maximumSignificantDigits

Return Value
The maximum number of significant digits for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMaximumSignificantDigits: (page 753)
– minimumSignificantDigits (page 737)
– usesSignificantDigits (page 771)

Declared In
NSNumberFormatter.h

minimum
Returns the lowest number allowed as input by the receiver.

- (NSNumber *)minimum

Return Value
The lowest number allowed as input by the receiver or nil, meaning no limit.

Discussion
For versions prior to Mac OS X v10.4 (and number-formatter behavior set to
NSNumberFormatterBehavior10_0) this method returns an NSDecimalNumber object.

Availability
Available in iPhone OS 2.0 and later.

736 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

See Also
– setMinimum: (page 753)
+ setDefaultFormatterBehavior: (page 727)
– formatterBehavior (page 731)
– setFormatterBehavior: (page 749)

Declared In
NSNumberFormatter.h

minimumFractionDigits
Returns the minimum number of digits after the decimal separator allowed as input by the receiver.

- (NSUInteger)minimumFractionDigits

Return Value
The minimum number of digits after the decimal separator allowed as input by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMinimumFractionDigits: (page 754)

Declared In
NSNumberFormatter.h

minimumIntegerDigits
Returns the minimum number of integer digits allowed as input by the receiver.

- (NSUInteger)minimumIntegerDigits

Return Value
The minimum number of integer digits allowed as input by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMinimumIntegerDigits: (page 754)

Declared In
NSNumberFormatter.h

minimumSignificantDigits
Returns the minimum number of significant digits for the receiver.

- (NSUInteger)minimumSignificantDigits

Instance Methods 737
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Return Value
The minimum number of significant digits for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMinimumSignificantDigits: (page 755)
– maximumSignificantDigits (page 736)
– usesSignificantDigits (page 771)

Declared In
NSNumberFormatter.h

minusSign
Returns the string the receiver uses to represent the minus sign.

- (NSString *)minusSign

Return Value
The string that represents the receiver’s minus sign.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMinusSign: (page 755)

Declared In
NSNumberFormatter.h

multiplier
Returns the multiplier used by the receiver as an NSNumber object.

- (NSNumber *)multiplier

Discussion
A multiplier is a factor used in conversions between numbers and strings (that is, numbers as stored
and numbers as displayed). When the input value is a string, the multiplier is used to divide, and
when the input value is a number, the multiplier is used to multiply. These operations allow the
formatted values to be different from the values that a program manipulates internally.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMultiplier: (page 755)

Declared In
NSNumberFormatter.h

738 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

negativeFormat
Returns the format used by the receiver to display negative numbers.

- (NSString *)negativeFormat

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNegativeFormat: (page 756)

Declared In
NSNumberFormatter.h

negativeInfinitySymbol
Returns the symbol the receiver uses to represent negative infinity.

- (NSString *)negativeInfinitySymbol

Return Value
The symbol the receiver uses to represent negative infinity.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNegativeInfinitySymbol: (page 756)

Declared In
NSNumberFormatter.h

negativePrefix
Returns the string the receiver inserts as a prefix to negative values.

- (NSString *)negativePrefix

Return Value
The string the receiver inserts as a prefix to negative values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– negativeSuffix (page 740)
– setNegativePrefix: (page 757)

Declared In
NSNumberFormatter.h

Instance Methods 739
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

negativeSuffix
Returns the string the receiver adds as a suffix to negative values.

- (NSString *)negativeSuffix

Return Value
The string the receiver adds as a suffix to negative values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– negativePrefix (page 739)
– setNegativeSuffix: (page 757)

Declared In
NSNumberFormatter.h

nilSymbol
Returns the string the receiver uses to represent a nil value.

- (NSString *)nilSymbol

Return Value
The string the receiver uses to represent a nil value.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNilSymbol: (page 757)

Declared In
NSNumberFormatter.h

notANumberSymbol
Returns the symbol the receiver uses to represent NaN (“not a number”) when it converts values.

- (NSString *)notANumberSymbol

Return Value
The symbol the receiver uses to represent NaN (“not a number”) when it converts values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNotANumberSymbol: (page 758)

Declared In
NSNumberFormatter.h

740 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

numberFromString:
Returns an NSNumber object created by parsing a given string.

- (NSNumber *)numberFromString:(NSString *)string

Parameters

string
An NSString object that is parsed to generate the returned number object.

Return Value
An NSNumber object created by parsing string using the receiver’s format.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringFromNumber: (page 767)

Declared In
NSNumberFormatter.h

numberStyle
Returns the number-formatter style of the receiver.

- (NSNumberFormatterStyle)numberStyle

Return Value
An NSNumberFormatterStyle constant that indicates the number-formatter style of the receiver.

Discussion
Styles are essentially predetermined sets of values for certain properties. Examples of number-formatter
styles are those used for decimal values, percentage values, and currency.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setNumberStyle: (page 758)

Declared In
NSNumberFormatter.h

paddingCharacter
Returns a string containing the padding character for the receiver.

- (NSString *)paddingCharacter

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPaddingCharacter: (page 758)

Instance Methods 741
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

paddingPosition
Returns the padding position of the receiver.

- (NSNumberFormatterPadPosition)paddingPosition

Discussion
The returned constant indicates whether the padding is before or after the number’s prefix or suffix.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPaddingPosition: (page 759)

Declared In
NSNumberFormatter.h

percentSymbol
Returns the string that the receiver uses to represent the percent symbol.

- (NSString *)percentSymbol

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPercentSymbol: (page 760)

Declared In
NSNumberFormatter.h

perMillSymbol
Returns the string that the receiver uses for the per-thousands symbol.

- (NSString *)perMillSymbol

Return Value
The string that the receiver uses for the per-thousands symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPerMillSymbol: (page 760)

Declared In
NSNumberFormatter.h

742 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

plusSign
Returns the string the receiver uses for the plus sign.

- (NSString *)plusSign

Return Value
The string the receiver uses for the plus sign.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPlusSign: (page 760)

Declared In
NSNumberFormatter.h

positiveFormat
Returns the format used by the receiver to display positive numbers.

- (NSString *)positiveFormat

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPositiveFormat: (page 761)

Declared In
NSNumberFormatter.h

positiveInfinitySymbol
Returns the string the receiver uses for the positive infinity symbol.

- (NSString *)positiveInfinitySymbol

Return Value
The string the receiver uses for the positive infinity symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPositiveInfinitySymbol: (page 761)

Declared In
NSNumberFormatter.h

Instance Methods 743
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

positivePrefix
Returns the string the receiver uses as the prefix for positive values.

- (NSString *)positivePrefix

Return Value
The string the receiver uses as the prefix for positive values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPositivePrefix: (page 761)

Declared In
NSNumberFormatter.h

positiveSuffix
Returns the string the receiver uses as the suffix for positive values.

- (NSString *)positiveSuffix

Return Value
The string the receiver uses as the suffix for positive values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPositiveSuffix: (page 762)

Declared In
NSNumberFormatter.h

roundingIncrement
Returns the rounding increment used by the receiver.

- (NSNumber *)roundingIncrement

Return Value
The rounding increment used by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setRoundingIncrement: (page 762)

Declared In
NSNumberFormatter.h

744 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

roundingMode
Returns the rounding mode used by the receiver.

- (NSNumberFormatterRoundingMode)roundingMode

Return Value
The rounding mode used by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setRoundingMode: (page 762)

Declared In
NSNumberFormatter.h

secondaryGroupingSize
Returns the size of secondary groupings for the receiver.

- (NSUInteger)secondaryGroupingSize

Return Value
The size of secondary groupings for the receiver.

Discussion
Some locales allow the specification of another grouping size for larger numbers. For example, some
locales may represent a number such as 61, 242, 378.46 (as in the United States) as 6,12,42,378.46. In
this case, the secondary grouping size (covering the groups of digits furthest from the decimal point)
is 2.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setSecondaryGroupingSize: (page 763)

Declared In
NSNumberFormatter.h

setAllowsFloats:
Sets whether the receiver allows as input floating-point values (that is, values that include the period
character [.]).

- (void)setAllowsFloats:(BOOL)flag

Parameters

flag
YES if the receiver allows floating-point values, NO otherwise.

Discussion
By default, floating point values are allowed as input.

Instance Methods 745
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– allowsFloats (page 728)

Declared In
NSNumberFormatter.h

setAlwaysShowsDecimalSeparator:
Controls whether the receiver always shows the decimal separator, even for integer numbers.

- (void)setAlwaysShowsDecimalSeparator:(BOOL)flag

Parameters

flag
YES if the receiver should always show the decimal separator, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– alwaysShowsDecimalSeparator (page 728)

Declared In
NSNumberFormatter.h

setCurrencyCode:
Sets the receiver’s currency code.

- (void)setCurrencyCode:(NSString *)string

Parameters

string
A string specifying the receiver's new currency code.

Discussion
A currency code is a three-letter code that is, in most cases, composed of a country’s two-character
Internet country code plus an extra character to denote the currency unit. For example, the currency
code for the Australian dollar is “AUD”. Currency codes are based on the ISO 4217 standard.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currencyCode (page 728)

Declared In
NSNumberFormatter.h

746 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

setCurrencyDecimalSeparator:
Sets the string used by the receiver as a decimal separator.

- (void)setCurrencyDecimalSeparator:(NSString *)string

Parameters

string
The string to use as the currency decimal separator.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currencyDecimalSeparator (page 729)

Declared In
NSNumberFormatter.h

setCurrencyGroupingSeparator:
Sets the currency grouping separator for the receiver.

- (NSString *)setCurrencyGroupingSeparator:(NSString *)string

Parameters

string
The currency grouping separator for the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSNumberFormatter.h

setCurrencySymbol:
Sets the string used by the receiver as a local currency symbol.

- (void)setCurrencySymbol:(NSString *)string

Parameters

string
A string that represents a local currency symbol.

Discussion
The local symbol is used within the country, while the international currency symbol is used in
international contexts to specify that country’s currency unambiguously. The local currency symbol
is often represented by a Unicode code point.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currencySymbol (page 729)

Instance Methods 747
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

– setInternationalCurrencySymbol: (page 750)

Declared In
NSNumberFormatter.h

setDecimalSeparator:
Sets the character the receiver uses as a decimal separator.

- (void)setDecimalSeparator:(NSString *)newSeparator

Parameters

newSeparator
The string that specifies the decimal-separator character to use. If newSeparator contains
multiple characters, only the first one is used.

Discussion
If you don’t have decimal separators enabled through another means (such as setFormat:), using
this method enables them.

Availability
Available in iPhone OS 2.0 and later.

See Also
– decimalSeparator (page 730)
– formatterBehavior (page 731)

Declared In
NSNumberFormatter.h

setExponentSymbol:
Sets the string used by the receiver to represent the exponent symbol.

- (void)setExponentSymbol:(NSString *)string

Parameters

string
A string that represents an exponent symbol.

Discussion
The exponent symbol is the “E” or “e” in the scientific notation of numbers, as in 1.0e+56.

Availability
Available in iPhone OS 2.0 and later.

See Also
– exponentSymbol (page 730)

Declared In
NSNumberFormatter.h

748 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

setFormatterBehavior:
Sets the formatter behavior of the receiver.

- (void)setFormatterBehavior:(NSNumberFormatterBehavior)behavior

Parameters

behavior
AnNSNumberFormatterBehavior constant that indicates the revision of theNSNumberFormatter
class providing the current behavior.

Availability
Available in iPhone OS 2.0 and later.

See Also
– formatterBehavior (page 731)

Declared In
NSNumberFormatter.h

setFormatWidth:
Sets the format width used by the receiver.

- (void)setFormatWidth:(NSUInteger)number

Parameters

number
An integer that specifies the format width.

Discussion
The format width is the number of characters of a formatted number within a string that is either left
justified or right justified based on the value returned from paddingPosition (page 742).

Availability
Available in iPhone OS 2.0 and later.

See Also
– formatWidth (page 731)

Declared In
NSNumberFormatter.h

setGeneratesDecimalNumbers:
Controls whether the receiver creates instances of NSDecimalNumber when it converts strings to
number objects.

- (void)setGeneratesDecimalNumbers:(BOOL)flag

Parameters

flag
YES if the receiver should generate NSDecimalNumber instances, NO if it should generate
NSNumber instances.

Instance Methods 749
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Discussion
The default is YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– generatesDecimalNumbers (page 731)

Declared In
NSNumberFormatter.h

setGroupingSeparator:
Specifies the string used by the receiver for a grouping separator.

- (void)setGroupingSeparator:(NSString *)string

Parameters

string
A string that specifies the grouping separator to use.

Availability
Available in iPhone OS 2.0 and later.

See Also
– groupingSeparator (page 732)

Declared In
NSNumberFormatter.h

setGroupingSize:
Sets the grouping size of the receiver.

- (void)setGroupingSize:(NSUInteger)numDigits

Parameters

numDigits
An integer that specifies the grouping size.

Availability
Available in iPhone OS 2.0 and later.

See Also
– groupingSize (page 733)

Declared In
NSNumberFormatter.h

setInternationalCurrencySymbol:
Sets the string used by the receiver for the international currency symbol.

750 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

- (void)setInternationalCurrencySymbol:(NSString *)string

Parameters

string
A string that represents an international currency symbol.

Discussion
The local symbol is used within the country, while the international currency symbol is used in
international contexts to specify that country’s currency unambiguously. The local currency symbol
is often represented by a Unicode code point.

Availability
Available in iPhone OS 2.0 and later.

See Also
– internationalCurrencySymbol (page 733)

Declared In
NSNumberFormatter.h

setLenient:
Sets whether the receiver is will use heuristics to guess at the date which is intended by a string.

- (void)setLenient:(BOOL)b

Parameters

b
YES if the receiver will use heuristics to guess at the date which is intended by the string,
otherwise NO.

Discussion
If the formatter is set to be lenient, as with any guessing it may get the result date wrong (that is, a
date other than that which was intended).

Availability
Available in iPhone OS 2.0 and later.

See Also
– isLenient (page 734)

Declared In
NSNumberFormatter.h

setLocale:
Sets the locale of the receiver.

- (void)setLocale:(NSLocale *)theLocale

Parameters

theLocale
An NSLocale object representing the new locale of the receiver.

Instance Methods 751
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Discussion
The locale determines the default values for many formatter attributes, such as ISO country and
language codes, currency code, calendar, system of measurement, and decimal separator.

Availability
Available in iPhone OS 2.0 and later.

See Also
– locale (page 734)

Declared In
NSNumberFormatter.h

setMaximum:
Sets the highest number the receiver allows as input.

- (void)setMaximum:(NSNumber *)aMaximum

Parameters

aMaximum
A number object that specifies a maximum input value.

Discussion
If aMaximum is nil, checking for the maximum value is disabled. For versions prior to Mac OS X v10.4
(and number-formatter behavior set to NSNumberFormatterBehavior10_0) this method requires an
NSDecimalNumber argument.

Availability
Available in iPhone OS 2.0 and later.

See Also
– maximum (page 735)
+ setDefaultFormatterBehavior: (page 727)
– formatterBehavior (page 731)
– setFormatterBehavior: (page 749)

Declared In
NSNumberFormatter.h

setMaximumFractionDigits:
Sets the maximum number of digits after the decimal separator allowed as input by the receiver.

- (void)setMaximumFractionDigits:(NSUInteger)number

Parameters

number
The maximum number of digits after the decimal separator allowed as input.

Availability
Available in iPhone OS 2.0 and later.

752 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

See Also
– maximumFractionDigits (page 735)

Declared In
NSNumberFormatter.h

setMaximumIntegerDigits:
Sets the maximum number of integer digits allowed as input by the receiver.

- (void)setMaximumIntegerDigits:(NSUInteger)number

Parameters

number
The maximum number of integer digits allowed as input.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minimumIntegerDigits (page 737)

Declared In
NSNumberFormatter.h

setMaximumSignificantDigits:
Sets the maximum number of significant digits for the receiver.

- (void)setMaximumSignificantDigits:(NSUInteger)number

Parameters

number
The maximum number of significant digits for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– maximumSignificantDigits (page 736)
– setMinimumSignificantDigits: (page 755)
– usesSignificantDigits (page 771)

Declared In
NSNumberFormatter.h

setMinimum:
Sets the lowest number the receiver allows as input.

- (void)setMinimum:(NSNumber *)aMinimum

Instance Methods 753
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Parameters

aMinimum
A number object that specifies a minimum input value.

Discussion
If aMinimum is nil, checking for the minimum value is disabled. For versions prior to Mac OS X v10.4
(and number-formatter behavior set to NSNumberFormatterBehavior10_0) this method requires an
NSDecimalNumber argument.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minimum (page 736)
+ setDefaultFormatterBehavior: (page 727)
– formatterBehavior (page 731)
– setFormatterBehavior: (page 749)

Declared In
NSNumberFormatter.h

setMinimumFractionDigits:
Sets the minimum number of digits after the decimal separator allowed as input by the receiver.

- (void)setMinimumFractionDigits:(NSUInteger)number

Parameters

number
The minimum number of digits after the decimal separator allowed as input.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minimumFractionDigits (page 737)

Declared In
NSNumberFormatter.h

setMinimumIntegerDigits:
Sets the minimum number of integer digits allowed as input by the receiver.

- (void)setMinimumIntegerDigits:(NSUInteger)number

Parameters

number
The minimum number of integer digits allowed as input.

Availability
Available in iPhone OS 2.0 and later.

754 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

See Also
– minimumIntegerDigits (page 737)

Declared In
NSNumberFormatter.h

setMinimumSignificantDigits:
Sets the minimum number of significant digits for the receiver.

- (void)setMinimumSignificantDigits:(NSUInteger)number

Parameters

number
The minimum number of significant digits for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minimumSignificantDigits (page 737)
– setMaximumSignificantDigits: (page 753)
– usesSignificantDigits (page 771)

Declared In
NSNumberFormatter.h

setMinusSign:
Sets the string used by the receiver for the minus sign.

- (void)setMinusSign:(NSString *)string

Parameters

string
A string that represents a minus sign.

Availability
Available in iPhone OS 2.0 and later.

See Also
– minusSign (page 738)

Declared In
NSNumberFormatter.h

setMultiplier:
Sets the multiplier of the receiver.

- (void)setMultiplier:(NSNumber *)number

Instance Methods 755
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Parameters

number
A number object that represents a multiplier.

Discussion
A multiplier is a factor used in conversions between numbers and strings (that is, numbers as stored
and numbers as displayed). When the input value is a string, the multiplier is used to divide, and
when the input value is a number, the multiplier is used to multiply. These operations allow the
formatted values to be different from the values that a program manipulates internally.

Availability
Available in iPhone OS 2.0 and later.

See Also
– multiplier (page 738)

Declared In
NSNumberFormatter.h

setNegativeFormat:
Sets the format the receiver uses to display negative values.

- (void)setNegativeFormat:(NSString *)aFormat

Parameters

aFormat
A string that specifies the format for negative values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– negativeFormat (page 739)

Declared In
NSNumberFormatter.h

setNegativeInfinitySymbol:
Sets the string used by the receiver for the negative infinity symbol.

- (void)setNegativeInfinitySymbol:(NSString *)string

Parameters

string
A string that represents a negative infinity symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– negativeInfinitySymbol (page 739)

756 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setNegativePrefix:
Sets the string the receiver uses as a prefix for negative values.

- (void)setNegativePrefix:(NSString *)string

Parameters

string
A string to use as the prefix for negative values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– negativePrefix (page 739)

Declared In
NSNumberFormatter.h

setNegativeSuffix:
Sets the string the receiver uses as a suffix for negative values.

- (void)setNegativeSuffix:(NSString *)string

Parameters

string
A string to use as the suffix for negative values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– negativeSuffix (page 740)

Declared In
NSNumberFormatter.h

setNilSymbol:
Sets the string the receiver uses to represent nil values.

- (void)setNilSymbol:(NSString *)string

Parameters

string
A string that represents a nil value.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 757
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

See Also
– nilSymbol (page 740)

Declared In
NSNumberFormatter.h

setNotANumberSymbol:
Sets the string the receiver uses to represent NaN (“not a number”).

- (void)setNotANumberSymbol:(NSString *)string

Parameters

string
A string that represents a NaN symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– notANumberSymbol (page 740)

Declared In
NSNumberFormatter.h

setNumberStyle:
Sets the number style used by the receiver.

- (void)setNumberStyle:(NSNumberFormatterStyle)style

Parameters

style
An NSNumberFormatterStyle constant that specifies a formatter style.

Discussion
Styles are essentially predetermined sets of values for certain properties. Examples of number-formatter
styles are those used for decimal values, percentage values, and currency.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberStyle (page 741)

Declared In
NSNumberFormatter.h

setPaddingCharacter:
Sets the string that the receiver uses to pad numbers in the formatted string representation.

- (void)setPaddingCharacter:(NSString *)string

758 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Parameters

string
A string containing a padding character (or characters).

Availability
Available in iPhone OS 2.0 and later.

See Also
– paddingCharacter (page 741)

Declared In
NSNumberFormatter.h

setPaddingPosition:
Sets the padding position used by the receiver.

- (void)setPaddingPosition:(NSNumberFormatterPadPosition)position

Parameters

position
An NSNumberFormatterPadPosition constant that indicates a padding position (before or
after prefix or suffix).

Availability
Available in iPhone OS 2.0 and later.

See Also
– paddingPosition (page 742)

Declared In
NSNumberFormatter.h

setPartialStringValidationEnabled:
Sets whether partial string validation is enabled for the receiver.

- (void)setPartialStringValidationEnabled:(BOOL)b

Parameters

b
YES if partial string validation is enabled, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isPartialStringValidationEnabled (page 734)

Declared In
NSNumberFormatter.h

Instance Methods 759
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

setPercentSymbol:
Sets the string used by the receiver to represent the percent symbol.

- (void)setPercentSymbol:(NSString *)string

Parameters

string
A string that represents a percent symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– percentSymbol (page 742)

Declared In
NSNumberFormatter.h

setPerMillSymbol:
Sets the string used by the receiver to represent the per-mill (per-thousand) symbol.

- (void)setPerMillSymbol:(NSString *)string

Parameters

string
A string that represents a per-mill symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– perMillSymbol (page 742)

Declared In
NSNumberFormatter.h

setPlusSign:
Sets the string used by the receiver to represent the plus sign.

- (void)setPlusSign:(NSString *)string

Parameters

string
A string that represents a plus sign.

Availability
Available in iPhone OS 2.0 and later.

See Also
– plusSign (page 743)

760 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setPositiveFormat:
Sets the format the receiver uses to display positive values.

- (void)setPositiveFormat:(NSString *)aFormat

Parameters

aFormat
A string that specifies the format for positive values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– positiveFormat (page 743)

Declared In
NSNumberFormatter.h

setPositiveInfinitySymbol:
Sets the string used by the receiver for the positive infinity symbol.

- (void)setPositiveInfinitySymbol:(NSString *)string

Parameters

string
A string that represents a positive infinity symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– positiveInfinitySymbol (page 743)

Declared In
NSNumberFormatter.h

setPositivePrefix:
Sets the string the receiver uses as the prefix for positive values.

- (void)setPositivePrefix:(NSString *)string

Parameters

string
A string to use as the prefix for positive values.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 761
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

See Also
– positivePrefix (page 744)

Declared In
NSNumberFormatter.h

setPositiveSuffix:
Sets the string the receiver uses as the suffix for positive values.

- (void)setPositiveSuffix:(NSString *)string

Parameters

string
A string to use as the suffix for positive values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– positiveSuffix (page 744)

Declared In
NSNumberFormatter.h

setRoundingIncrement:
Sets the rounding increment used by the receiver.

- (void)setRoundingIncrement:(NSNumber *)number

Parameters

number
A number object specifying a rounding increment.

Availability
Available in iPhone OS 2.0 and later.

See Also
– roundingIncrement (page 744)

Declared In
NSNumberFormatter.h

setRoundingMode:
Sets the rounding mode used by the receiver.

- (void)setRoundingMode:(NSNumberFormatterRoundingMode)mode

Parameters

mode
An NSNumberFormatterRoundingMode constant that indicates a rounding mode.

762 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– roundingMode (page 745)

Declared In
NSNumberFormatter.h

setSecondaryGroupingSize:
Sets the secondary grouping size of the receiver.

- (void)setSecondaryGroupingSize:(NSUInteger)number

Parameters

number
An integer that specifies the size of secondary groupings.

Discussion
Some locales allow the specification of another grouping size for larger numbers. For example, some
locales may represent a number such as 61, 242, 378.46 (as in the United States) as 6,12,42,378.46. In
this case, the secondary grouping size (covering the groups of digits furthest from the decimal point)
is 2.

Availability
Available in iPhone OS 2.0 and later.

See Also
– secondaryGroupingSize (page 745)

Declared In
NSNumberFormatter.h

setTextAttributesForNegativeInfinity:
Sets the text attributes used to display the negative infinity symbol.

- (void)setTextAttributesForNegativeInfinity:(NSDictionary *)newAttributes

Parameters

newAttributes
A dictionary containing text attributes for the display of the negative infinity symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– textAttributesForNegativeInfinity (page 768)
– setNegativeInfinitySymbol: (page 756)

Declared In
NSNumberFormatter.h

Instance Methods 763
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

setTextAttributesForNegativeValues:
Sets the text attributes to be used in displaying negative values .

- (void)setTextAttributesForNegativeValues:(NSDictionary *)newAttributes

Parameters

newAttributes
A dictionary containing properties for the display of negative values.

Discussion
For example, this code excerpt causes negative values to be displayed in red:

NSNumberFormatter *numberFormatter =
[[[NSNumberFormatter alloc] init] autorelease];

NSMutableDictionary *newAttrs = [NSMutableDictionary dictionary];

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];
[newAttrs setObject:[NSColor redColor] forKey:@"NSColor"];
[numberFormatter setTextAttributesForNegativeValues:newAttrs];
[[textField cell] setFormatter:numberFormatter];

An even simpler way to cause negative values to be displayed in red is to include the constant [Red]
in your format string, as shown in this example:

[numberFormatter setFormat:@"$#,##0.00;[Red]($#,##0.00)"];

When you set a value’s text attributes to use color, the color appears only when the value’s cell doesn’t
have input focus. When the cell has input focus, the value is displayed in standard black.

Availability
Available in iPhone OS 2.0 and later.

See Also
– textAttributesForNegativeValues (page 768)

Declared In
NSNumberFormatter.h

setTextAttributesForNil:
Sets the text attributes used to display the nil symbol.

- (void)setTextAttributesForNil:(NSDictionary *)newAttributes

Parameters

newAttributes
A dictionary containing text attributes for the display of the nil symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– textAttributesForNil (page 769)
– nilSymbol (page 740)

764 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

setTextAttributesForNotANumber:
Sets the text attributes used to display the NaN ("not a number") string.

- (void)setTextAttributesForNotANumber:(NSDictionary *)newAttributes

Parameters

newAttributes
A dictionary containing text attributes for the display of the NaN symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForNotANumber: (page 765)
– notANumberSymbol (page 740)

Declared In
NSNumberFormatter.h

setTextAttributesForPositiveInfinity:
Sets the text attributes used to display the positive infinity symbol.

- (void)setTextAttributesForPositiveInfinity:(NSDictionary *)newAttributes

Parameters

newAttributes
A dictionary containing text attributes for the display of the positive infinity symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– positiveInfinitySymbol (page 743)
– textAttributesForPositiveInfinity (page 769)

Declared In
NSNumberFormatter.h

setTextAttributesForPositiveValues:
Sets the text attributes to be used in displaying positive values.

- (void)setTextAttributesForPositiveValues:(NSDictionary *)newAttributes

Parameters

newAttributes
A dictionary containing text attributes for the display of positive values.

Instance Methods 765
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Discussion
See setTextAttributesForNegativeValues: (page 764) for an example of how a related method might
be used.

Availability
Available in iPhone OS 2.0 and later.

See Also
– textAttributesForPositiveValues (page 770)

Declared In
NSNumberFormatter.h

setTextAttributesForZero:
Sets the text attributes used to display a zero value.

- (void)setTextAttributesForZero:(NSDictionary *)newAttributes

Parameters

newAttributes
A dictionary containing text attributes for the display of zero values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– textAttributesForZero (page 770)

Declared In
NSNumberFormatter.h

setUsesGroupingSeparator:
Controls whether the receiver displays the grouping separator.

- (void)setUsesGroupingSeparator:(BOOL)flag

Parameters

flag
YES if the receiver should display the grouping separator, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– usesGroupingSeparator (page 770)

Declared In
NSNumberFormatter.h

766 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

setUsesSignificantDigits:
Sets whether the receiver uses significant digits.

- (void)setUsesSignificantDigits:(BOOL)b

Parameters

b
YES if the receiver uses significant digits, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– usesSignificantDigits (page 771)
– setMaximumSignificantDigits: (page 753)
– setMinimumSignificantDigits: (page 755)

Declared In
NSNumberFormatter.h

setZeroSymbol:
Sets the string the receiver uses as the symbol to show the value zero.

- (void)setZeroSymbol:(NSString *)string

Parameters

string
The string the receiver uses as the symbol to show the value zero.

Discussion
By default this is 0; you might want to set it to, for example, “ - ”, similar to the way that a spreadsheet
might when a column is defined as accounting.

Special Considerations

On Mac OS X v10.4, this method works correctly for 10_0-style number formatters but does not work
correctly for 10_4-style number formatters. You can work around the problem by subclassing and
overriding the methods that convert between strings and numbers to look for the zero cases first and
provide different behavior, invoking super when not zero.

Availability
Available in iPhone OS 2.0 and later.

See Also
– zeroSymbol (page 771)

Declared In
NSNumberFormatter.h

stringFromNumber:
Returns a string containing the formatted value of the provided number object.

Instance Methods 767
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

- (NSString *)stringFromNumber:(NSNumber *)number

Parameters

number
An NSNumber object that is parsed to create the returned string object.

Return Value
A string containing the formatted value of number using the receiver’s current settings.

Availability
Available in iPhone OS 2.0 and later.

See Also
– numberFromString: (page 741)

Declared In
NSNumberFormatter.h

textAttributesForNegativeInfinity
Returns a dictionary containing the text attributes used to display the negative infinity string.

- (NSDictionary *)textAttributesForNegativeInfinity

Return Value
A dictionary containing the text attributes used to display the negative infinity string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForNegativeInfinity: (page 763)

Declared In
NSNumberFormatter.h

textAttributesForNegativeValues
Returns a dictionary containing the text attributes that have been set for negative values.

- (NSDictionary *)textAttributesForNegativeValues

Return Value
A dictionary containing the text attributes that have been set for negative values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForNegativeValues: (page 764)

Declared In
NSNumberFormatter.h

768 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

textAttributesForNil
Returns a dictionary containing the text attributes used to display the nil symbol.

- (NSDictionary *)textAttributesForNil

Return Value
A dictionary containing the text attributes used to display the nil symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForNil: (page 764)

Declared In
NSNumberFormatter.h

textAttributesForNotANumber
Returns a dictionary containing the text attributes used to display the NaN ("not a number") symbol.

- (NSDictionary *)textAttributesForNotANumber

Return Value
A dictionary containing the text attributes used to display the NaN ("not a number") symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForNotANumber: (page 765)
– notANumberSymbol (page 740)

Declared In
NSNumberFormatter.h

textAttributesForPositiveInfinity
Returns a dictionary containing the text attributes used to display the positive infinity symbol.

- (NSDictionary *)textAttributesForPositiveInfinity

Return Value
A dictionary containing the text attributes used to display the positive infinity symbol.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForPositiveInfinity: (page 765)
– positiveInfinitySymbol (page 743)

Instance Methods 769
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

textAttributesForPositiveValues
Returns a dictionary containing the text attributes that have been set for positive values.

- (NSDictionary *)textAttributesForPositiveValues

Return Value
A dictionary containing the text attributes that have been set for positive values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForPositiveValues: (page 765)

Declared In
NSNumberFormatter.h

textAttributesForZero
Returns a dictionary containing the text attributes used to display a value of zero.

- (NSDictionary *)textAttributesForZero

Return Value
A dictionary containing the text attributes used to display a value of zero.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setTextAttributesForZero: (page 766)

Declared In
NSNumberFormatter.h

usesGroupingSeparator
Returns a Boolean value that indicates whether the receiver uses the grouping separator.

- (BOOL)usesGroupingSeparator

Return Value
YES if the receiver uses the grouping separator, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setUsesGroupingSeparator: (page 766)

770 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Declared In
NSNumberFormatter.h

usesSignificantDigits
Returns a Boolean value that indicates whether the receiver uses significant digits.

- (BOOL)usesSignificantDigits

Return Value
YES if the receiver uses significant digits, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setUsesSignificantDigits: (page 767)
– maximumSignificantDigits (page 736)
– minimumSignificantDigits (page 737)

Declared In
NSNumberFormatter.h

zeroSymbol
Returns the string the receiver uses as the symbol to show the value zero.

- (NSString *)zeroSymbol

Return Value
The string the receiver uses as the symbol to show the value zero.

Discussion
For a discussion of how this is used, see setZeroSymbol: (page 767).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setZeroSymbol: (page 767)

Declared In
NSNumberFormatter.h

Constants

NSNumberFormatterStyle
These constants specify predefined number format styles.

Constants 771
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

typedef enum {
NSNumberFormatterNoStyle = kCFNumberFormatterNoStyle,
NSNumberFormatterDecimalStyle = kCFNumberFormatterDecimalStyle,
NSNumberFormatterCurrencyStyle = kCFNumberFormatterCurrencyStyle,
NSNumberFormatterPercentStyle = kCFNumberFormatterPercentStyle,
NSNumberFormatterScientificStyle = kCFNumberFormatterScientificStyle,
NSNumberFormatterSpellOutStyle = kCFNumberFormatterSpellOutStyle

} NSNumberFormatterStyle;

Constants
NSNumberFormatterNoStyle

Specifies no style.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterDecimalStyle
Specifies a decimal style format.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterCurrencyStyle
Specifies a currency style format.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterPercentStyle
Specifies a percent style format.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterScientificStyle
Specifies a scientific style format.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterSpellOutStyle
Specifies a spell-out format; for example, “23” becomes “twenty-three”.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

Discussion
These constants are used by the numberStyle (page 741) and setNumberStyle: (page 758) methods.

Declared In
NSNumberFormatter.h

NSNumberFormatterBehavior
These constants specify the behavior of a number formatter.

772 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

typedef enum {
NSNumberFormatterBehaviorDefault = 0,
NSNumberFormatterBehavior10_0 = 1000,
NSNumberFormatterBehavior10_4 = 1040,

} NSNumberFormatterBehavior;

Constants
NSNumberFormatterBehaviorDefault

The number-formatter behavior set as the default for new instances. You can set the default
formatter behavior with the class method setDefaultFormatterBehavior: (page 727).

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterBehavior10_0
The number-formatter behavior as it existed prior to Mac OS X v10.4.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterBehavior10_4
The number-formatter behavior since Mac OS X v10.4.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

Discussion
These constants are returned by the defaultFormatterBehavior (page 727) class method and the
formatterBehavior (page 731) instance methods; you set them with the
setDefaultFormatterBehavior: (page 727) class method and the setFormatterBehavior: (page
749) instance method.

Declared In
NSNumberFormatter.h

NSNumberFormatterPadPosition
These constants are used to specify how numbers should be padded.

typedef enum {
NSNumberFormatterPadBeforePrefix = kCFNumberFormatterPadBeforePrefix,
NSNumberFormatterPadAfterPrefix = kCFNumberFormatterPadAfterPrefix,
NSNumberFormatterPadBeforeSuffix = kCFNumberFormatterPadBeforeSuffix,
NSNumberFormatterPadAfterSuffix = kCFNumberFormatterPadAfterSuffix

} NSNumberFormatterPadPosition;

Constants
NSNumberFormatterPadBeforePrefix

Specifies that the padding should occur before the prefix.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterPadAfterPrefix
Specifies that the padding should occur after the prefix.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

Constants 773
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

NSNumberFormatterPadBeforeSuffix
Specifies that the padding should occur before the suffix.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterPadAfterSuffix
Specifies that the padding should occur after the suffix.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

Discussion
These constants are used by the paddingPosition (page 742) and setPaddingPosition: (page 759)
methods.

Declared In
NSNumberFormatter.h

NSNumberFormatterRoundingMode
These constants are used to specify how numbers should be rounded.

typedef enum {
NSNumberFormatterRoundCeiling = kCFNumberFormatterRoundCeiling,
NSNumberFormatterRoundFloor = kCFNumberFormatterRoundFloor,
NSNumberFormatterRoundDown = kCFNumberFormatterRoundDown,
NSNumberFormatterRoundUp = kCFNumberFormatterRoundUp,
NSNumberFormatterRoundHalfEven = kCFNumberFormatterRoundHalfEven,
NSNumberFormatterRoundHalfDown = kCFNumberFormatterRoundHalfDown,
NSNumberFormatterRoundHalfUp = kCFNumberFormatterRoundHalfUp

} NSNumberFormatterRoundingMode;

Constants
NSNumberFormatterRoundCeiling

Round up to next larger number with the proper number of digits after the decimal separator.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterRoundFloor
Round down to next smaller number with the proper number of digits after the decimal
separator.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterRoundDown
Round down to next smaller number with the proper number of digits after the decimal
separator.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterRoundHalfEven
Round the last digit, when followed by a 5, toward an even digit (.25 -> .2, .35 -> .4)

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

774 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

NSNumberFormatterRoundUp
Round up to next larger number with the proper number of digits after the decimal separator.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterRoundHalfDown
Round down when a 5 follows putative last digit.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

NSNumberFormatterRoundHalfUp
Round up when a 5 follows putative last digit.

Available in iPhone OS 2.0 and later.

Declared in NSNumberFormatter.h

Declared In
NSNumberFormatter.h

These constants are used by the roundingMode (page 745)and setRoundingMode: (page 762) methods.

Constants 775
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

776 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 7

NSNumberFormatter Class Reference

Inherits from: none (NSObject is a root class)

Conforms to: NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSObject.h
Foundation/NSArchiver.h
Foundation/NSClassDescription.h
Foundation/NSConnection.h
Foundation/NSKeyedArchiver.h
Foundation/NSObjectScripting.h
Foundation/NSPortCoder.h
Foundation/NSRunLoop.h
Foundation/NSScriptClassDescription.h
Foundation/NSThread.h

Companion guide: Cocoa Fundamentals Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSObject is the root class of most Objective-C class hierarchies. Through NSObject, objects inherit a
basic interface to the runtime system and the ability to behave as Objective-C objects.

Overview 777
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Selectors

NSObject has some special methods that take advantage of the Objective-C runtime system. For
example, you can ask a class or instance if it responds to a message before sending it a message. You
can also ask for a method implementation and invoke it using one of the perform... methods, or as
a function. The advantage of obtaining a method’s implementation and calling it as a function is that
you can invoke the implementation multiple times within a loop, or similar C construct, without the
overhead of Objective-C messaging.

These and other NSObject methods take a selector of type SEL as an argument. For efficiency, full
ASCII names are not used to represent methods in compiled code. Instead the compiler uses a unique
identifier to represent a method at runtime called a selector. A selector for a method name is obtained
using the @selector() directive:

SEL method = @selector(isEqual:);

The instanceMethodForSelector: (page 790) class method and the methodForSelector: (page 805)
instance method return a method implementation of type IMP. IMP is defined as a pointer to a function
that returns an id and takes a variable number of arguments (in addition to the two “hidden”
arguments—self and _cmd—that are passed to every method implementation):

typedef id (*IMP)(id, SEL, ...);

This definition serves as a prototype for the function pointer returned by these methods. It’s sufficient
for methods that return an object and take object arguments. However, if the selector takes different
argument types or returns anything but an id, its function counterpart will be inadequately prototyped.
Lacking a prototype, the compiler will promote floats to doubles and chars to ints, which the
implementation won’t expect. It will therefore behave differently (and erroneously) when performed
as a method.

To remedy this situation, it’s necessary to provide your own prototype. In the example below, the
declaration of the test variable serves to prototype the implementation of the isEqual: method.
test is defined as a pointer to a function that returns a BOOL and takes an id argument (in addition
to the two “hidden” arguments). The value returned by methodForSelector: (page 805) is then
similarly cast to be a pointer to this same function type:

BOOL (*test)(id, SEL, id);
test = (BOOL (*)(id, SEL, id))[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
...

}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for declaring
the variable and for casting the function pointer methodForSelector: (page 805) returns. The example
below defines the EqualIMP type for just this purpose:

typedef BOOL (*EqualIMP)(id, SEL, id);
EqualIMP test;
test = (EqualIMP)[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {
...

}

778 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Either way, it’s important to cast the return value of methodForSelector: (page 805) to the appropriate
function type. It’s not sufficient to simply call the function returned by methodForSelector: and
cast the result of that call to the desired type. Doing so can result in errors.

See “How Messaging Works” in The Objective-C 2.0 Programming Language for more information.

Adopted Protocols

NSObject
– autorelease (page 1303)
– class (page 1304)
– conformsToProtocol: (page 1304)
– description (page 1305)
– hash (page 1305)
– isEqual: (page 1306)
– isKindOfClass: (page 1306)
– isMemberOfClass: (page 1307)
– isProxy (page 1308)
– performSelector: (page 1308)
– performSelector:withObject: (page 1309)
– performSelector:withObject:withObject: (page 1309)
– release (page 1310)
– respondsToSelector: (page 1311)
– retain (page 1312)
– retainCount (page 1312)
– self (page 1313)
– superclass (page 1313)
– zone (page 1314)

Tasks

Initializing a Class

+ initialize (page 788)
Initializes the receiver before it’s used (before it receives its first message).

+ load (page 792)
Invoked whenever a class or category is added to the Objective-C runtime; implement this
method to perform class-specific behavior upon loading.

Adopted Protocols 779
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Creating, Copying, and Deallocating Objects

+ new (page 793)
Allocates a new instance of the receiving class, sends it an init (page 803) message, and returns
the initialized object.

+ alloc (page 783)
Returns a new instance of the receiving class.

+ allocWithZone: (page 783)
Returns a new instance of the receiving class where memory for the new instance is allocated
from a given zone.

– init (page 803)
Implemented by subclasses to initialize a new object (the receiver) immediately after memory
for it has been allocated.

– copy (page 798)
Returns the object returned by copyWithZone: (page 1250), where the zone is nil.

+ copyWithZone: (page 787)
Returns the receiver.

– mutableCopy (page 806)
Returns the object returned by mutableCopyWithZone: (page 1300) where the zone is nil.

+ mutableCopyWithZone: (page 792)
Returns the receiver.

– dealloc (page 799)
Deallocates the memory occupied by the receiver.

– finalize (page 800)
The garbage collector invokes this method on the receiver before disposing of the memory it
uses.

Identifying Classes

+ class (page 785)
Returns the class object.

+ superclass (page 796)
Returns the class object for the receiver’s superclass.

+ isSubclassOfClass: (page 791)
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical
to, a given class.

Testing Class Functionality

+ instancesRespondToSelector: (page 791)
Returns a Boolean value that indicates whether instances of the receiver are capable of
responding to a given selector.

780 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Testing Protocol Conformance

+ conformsToProtocol: (page 787)
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

Obtaining Information About Methods

– methodForSelector: (page 805)
Locates and returns the address of the receiver’s implementation of a method so it can be called
as a function.

+ instanceMethodForSelector: (page 790)
Locates and returns the address of the implementation of the instance method identified by a
given selector.

+ instanceMethodSignatureForSelector: (page 790)
Returns an NSMethodSignature object that contains a description of the instance method
identified by a given selector.

– methodSignatureForSelector: (page 805)
Returns an NSMethodSignature object that contains a description of the method identified by
a given selector.

Describing Objects

+ description (page 788)
Returns a string that represents the contents of the receiving class.

Sending Messages

– performSelector:withObject:afterDelay: (page 808)
Invokes a method of the receiver on the current thread using the default mode after a delay.

– performSelector:withObject:afterDelay:inModes: (page 809)
Invokes a method of the receiver on the current thread using the specified modes after a delay.

– performSelectorOnMainThread:withObject:waitUntilDone: (page 811)
Invokes a method of the receiver on the main thread using the default mode.

– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 812)
Invokes a method of the receiver on the main thread using the specified modes.

– performSelector:onThread:withObject:waitUntilDone: (page 806)
Invokes a method of the receiver on the specified thread using the default mode.

– performSelector:onThread:withObject:waitUntilDone:modes: (page 807)
Invokes a method of the receiver on the specified thread using the specified modes.

– performSelectorInBackground:withObject: (page 810)
Invokes a method of the receiver on a new background thread.

+ cancelPreviousPerformRequestsWithTarget: (page 784)
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 808) instance method.

Tasks 781
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 785)
Cancels perform requests previously registered with
performSelector:withObject:afterDelay: (page 808).

Forwarding Messages

– forwardInvocation: (page 801)
Overridden by subclasses to forward messages to other objects.

Dynamically Resolving Methods

+ resolveClassMethod: (page 794)
Dynamically provides an implementation for a given selector for a class method.

+ resolveInstanceMethod: (page 794)
Dynamically provides an implementation for a given selector for an instance method.

Error Handling

– doesNotRecognizeSelector: (page 799)
Handles messages the receiver doesn’t recognize.

Archiving

– awakeAfterUsingCoder: (page 797)
Overridden by subclasses to substitute another object in place of the object that was decoded
and subsequently received this message.

– classForCoder (page 797)
Overridden by subclasses to substitute a class other than its own during coding.

– classForKeyedArchiver (page 798)
Overridden by subclasses to substitute a new class for instances during keyed archiving.

+ classFallbacksForKeyedArchiver (page 786)
Overridden to return the names of classes that can be used to decode objects if their class is
unavailable.

+ classForKeyedUnarchiver (page 786)
Overridden by subclasses to substitute a new class during keyed unarchiving.

– replacementObjectForCoder: (page 813)
Overridden by subclasses to substitute another object for itself during encoding.

– replacementObjectForKeyedArchiver: (page 814)
Overridden by subclasses to substitute another object for itself during keyed archiving.

+ setVersion: (page 795)
Sets the receiver's version number.

+ version (page 796)
Returns the version number assigned to the class.

782 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Class Methods

alloc
Returns a new instance of the receiving class.

+ (id)alloc

Return Value
A new instance of the receiver.

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class;
memory for all other instance variables is set to 0. The new instance is allocated from the default
zone—use allocWithZone: (page 783) to specify a particular zone.

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass alloc] init];

Subclasses shouldn’t override alloc to include initialization code. Instead, class-specific versions of
init... methods should be implemented for that purpose. Class methods can also be implemented
to combine allocation and initialization, similar to the new class method.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before
returning it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this
method is responsible for releasing the returned object, using either release (page 1310) or
autorelease (page 1303).

Availability
Available in iPhone OS 2.0 and later.

See Also
– init (page 803)

Declared In
NSObject.h

allocWithZone:
Returns a new instance of the receiving class where memory for the new instance is allocated from a
given zone.

+ (id)allocWithZone:(NSZone *)zone

Parameters

zone
The memory zone in which to create the new instance.

Return Value
A new instance of the receiver, where memory for the new instance is allocated from zone.

Class Methods 783
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Discussion
The isa instance variable of the new instance is initialized to a data structure that describes the class;
memory for its other instance variables is set to 0. If zone is nil, the new instance will be allocated
from the default zone (as returned by NSDefaultMallocZone).

An init... method must be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass allocWithZone:someZone] init];

Subclasses shouldn’t override allocWithZone: to include any initialization code. Instead, class-specific
versions of init... methods should be implemented for that purpose.

When one object creates another, it’s sometimes a good idea to make sure they’re both allocated from
the same region of memory. The zone (page 1314) method (declared in the NSObject protocol) can be
used for this purpose; it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocWithZone:[self zone]] init];

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before
returning it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this
method is responsible for releasing the returned object, using either release (page 1310) or
autorelease (page 1303).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ alloc (page 783)
– init (page 803)

Declared In
NSObject.h

cancelPreviousPerformRequestsWithTarget:
Cancels perform requests previously registered with the
performSelector:withObject:afterDelay: (page 808) instance method.

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget

Parameters

aTarget
The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 808) instance method.

Discussion
All perform requests having the same target aTarget are canceled. This method removes perform
requests only in the current run loop, not all run loops.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

784 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

cancelPreviousPerformRequestsWithTarget:selector:object:
Cancels perform requests previously registered with
performSelector:withObject:afterDelay: (page 808).

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget selector:(SEL)aSelector
object:(id)anArgument

Parameters

aTarget
The target for requests previously registered with the
performSelector:withObject:afterDelay: (page 808) instance method

aSelector
The selector for requests previously registered with the
performSelector:withObject:afterDelay: (page 808) instance method.

See “Selectors” (page 778) for a description of the SEL type.

anArgument
The argument for requests previously registered with the
performSelector:withObject:afterDelay: (page 808) instance method. Argument equality
is determined using isEqual: (page 1306), so the value need not be the same object that was
passed originally. Pass nil to match a request for nil that was originally passed as the
argument.

Discussion
All perform requests are canceled that have the same target as aTarget, argument as anArgument,
and selector as aSelector. This method removes perform requests only in the current run loop, not
all run loops.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

class
Returns the class object.

+ (Class)class

Return Value
The class object.

Discussion
Refer to a class only by its name when it is the receiver of a message. In all other cases, the class object
must be obtained through this or a similar method. For example, here SomeClass is passed as an
argument to the isKindOfClass: (page 1306) method (declared in the NSObject protocol):

BOOL test = [self isKindOfClass:[SomeClass class]];

Availability
Available in iPhone OS 2.0 and later.

Class Methods 785
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

See Also
class (page 1304) (NSObject protocol)

Declared In
NSObject.h

classFallbacksForKeyedArchiver
Overridden to return the names of classes that can be used to decode objects if their class is unavailable.

+ (NSArray *)classFallbacksForKeyedArchiver

Return Value
An array of NSString objects that specify the names of classes in preferred order for unarchiving

Discussion
NSKeyedArchiver calls this method and stores the result inside the archive. If the actual class of an
object doesn’t exist at the time of unarchiving, NSKeyedUnarchiver goes through the stored list of
classes and uses the first one that does exists as a substitute class for decoding the object. The default
implementation of this method returns nil.

Developers who introduce a new class can use this method to provided some backwards compatibility
in case the archive will be read on a system that does not have that class. Sometimes there may be
another class which may work nearly as well as a substitute for the new class, and the archive keys
and archived state for the new class can be carefully chosen (or compatibility written out) so that the
object can be unarchived as the substitute class if necessary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

classForKeyedUnarchiver
Overridden by subclasses to substitute a new class during keyed unarchiving.

+ (Class)classForKeyedUnarchiver

Return Value
The class to substitute for the receiver during keyed unarchiving.

Discussion
During keyed unarchiving, instances of the receiver will be decoded as members of the returned class.
This method overrides the results of the decoder's class and instance name to class encoding tables.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyedArchiver.h

786 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

+ (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters

aProtocol
A protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
A class is said to “conform to” a protocol if it adopts the protocol or inherits from another class that
adopts it. Protocols are adopted by listing them within angle brackets after the interface declaration.
For example, here MyClass adopts the (fictitious) AffiliationRequests and Normalizationprotocols:

@interface MyClass : NSObject <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or inherits.
Protocols incorporate other protocols in the same way classes adopt them. For example, here the
AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

If a class adopts a protocol that incorporates another protocol, it must also implement all the methods
in the incorporated protocol or inherit those methods from a class that adopts it.

This method determines conformance solely on the basis of the formal declarations in header files,
as illustrated above. It doesn’t check to see whether the methods declared in the protocol are actually
implemented—that’s the programmer’s responsibility.

The protocol required as this method’s argument can be specified using the @protocol() directive:

BOOL canJoin = [MyClass conformsToProtocol:@protocol(Joining)];

Availability
Available in iPhone OS 2.0 and later.

See Also
+ conformsToProtocol: (page 787)

Declared In
NSObject.h

copyWithZone:
Returns the receiver.

+ (id)copyWithZone:(NSZone *)zone

Return Value
The receiver.

Class Methods 787
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Discussion
This method exists so class objects can be used in situations where you need an object that conforms
to the NSCopying protocol. For example, this method lets you use a class object as a key to an
NSDictionary object. You should not override this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– copy (page 798)

Declared In
NSObject.h

description
Returns a string that represents the contents of the receiving class.

+ (NSString *)description

Return Value
A string that represents the contents of the receiving class.

Discussion
The debugger’s print-object command invokes this method to produce a textual description of an
object.

NSObject's implementation of this method simply prints the name of the class.

Availability
Available in iPhone OS 2.0 and later.

See Also
description (page 1305) (NSObject protocol)

Declared In
NSObject.h

initialize
Initializes the receiver before it’s used (before it receives its first message).

+ (void)initialize

Discussion
The runtime sends initialize to each class in a program exactly one time just before the class, or
any class that inherits from it, is sent its first message from within the program. (Thus the method
may never be invoked if the class is not used.) The runtime sends the initialize message to classes
in a thread-safe manner. Superclasses receive this message before their subclasses.

For example, if the first message your program sends is this:

[NSApplication new]

788 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

the runtime system sends these three initialize messages:

[NSObject initialize];
[NSResponder initialize];
[NSApplication initialize];

because NSApplication is a subclass of NSResponder and NSResponder is a subclass of NSObject.
All the initialize messages precede the new (page 793) message.

If your program later begins to use the NSText class,

[NSText instancesRespondToSelector:someSelector]

the runtime system invokes these additional initialize messages:

[NSView initialize];
[NSText initialize];

because NSText inherits from NSObject, NSResponder, and NSView. The
instancesRespondToSelector: (page 791) message is sent only after all these classes are initialized.
Note that the initialize messages to NSObject and NSResponder aren’t repeated.

You implement initialize to provide class-specific initialization as needed. Since the runtime sends
appropriate initialize messages automatically, you should typically not send initialize to super
in your implementation.

If a particular class does not implement initialize, the initialize method of its superclass is
invoked twice, once for the superclass and once for the non-implementing subclass. If you want to
make sure that your class performs class-specific initializations only once, implement initialize
as in the following example:

@implementation MyClass
+ (void)initialize
{

if (self == [MyClass class]) {
/* put initialization code here */

}
}

Loading a subclasses of MyClass that does not implement its own initialize method will cause
MyClass's implementation to be invoked. The test clause (if (self == [MyClass class]))
ensures that the initialization code has no effect if initialize is invoked when a subclass is loaded.

Availability
Available in iPhone OS 2.0 and later.

See Also
– init (page 803)
class (page 1304) (NSObject protocol)

Declared In
NSObject.h

Class Methods 789
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

instanceMethodForSelector:
Locates and returns the address of the implementation of the instance method identified by a given
selector.

+ (IMP)instanceMethodForSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies the method for which to return the implementation address. The
selector must be non-NULL and valid for the receiver. If in doubt, use the
respondsToSelector: (page 1311) method to check before passing the selector to
methodForSelector:.

See “Selectors” (page 778) for a description of the SEL type.

Return Value
The address of the implementation of the aSelector instance method.

Discussion
An error is generated if instances of the receiver can’t respond to aSelector messages.

Use this method to ask the class object for the implementation of instance methods only. To ask the
class for the implementation of a class method, send the methodForSelector: (page 805) instance
method to the class instead.

See “Selectors” (page 778) for a description of the IMP type, and how to invoke the returned method
implementation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

instanceMethodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the instance method identified
by a given selector.

+ (NSMethodSignature *)instanceMethodSignatureForSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies the method for which to return the implementation address.

See “Selectors” (page 778) for a description of the SEL type.

Return Value
An NSMethodSignature object that contains a description of the instance method identified by
aSelector, or nil if the method can’t be found.

Availability
Available in iPhone OS 2.0 and later.

See Also
– methodSignatureForSelector: (page 805)

790 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Declared In
NSObject.h

instancesRespondToSelector:
Returns a Boolean value that indicates whether instances of the receiver are capable of responding
to a given selector.

+ (BOOL)instancesRespondToSelector:(SEL)aSelector

Parameters

aSelector
A selector. See “Selectors” (page 778) for a description of the SEL type.

Return Value
YES if instances of the receiver are capable of responding to aSelector messages, otherwise NO.

Discussion
If aSelector messages are forwarded to other objects, instances of the class are able to receive those
messages without error even though this method returns NO.

To ask the class whether it, rather than its instances, can respond to a particular message, send to the
class instead the NSObject protocol instance method respondsToSelector: (page 1311).

Availability
Available in iPhone OS 2.0 and later.

See Also
– forwardInvocation: (page 801)

Declared In
NSObject.h

isSubclassOfClass:
Returns a Boolean value that indicates whether the receiving class is a subclass of, or identical to, a
given class.

+ (BOOL)isSubclassOfClass:(Class)aClass

Parameters

aClass
A class object.

Return Value
YES if the receiving class is a subclass of—or identical to—aClass, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

Class Methods 791
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

load
Invoked whenever a class or category is added to the Objective-C runtime; implement this method
to perform class-specific behavior upon loading.

+ (void)load

Discussion
The load message is sent to classes and categories that are both dynamically loaded and statically
linked, but only if the newly loaded class or category implements a method that can respond.

On Mac OS X v10.5, the order of initialization is as follows:

1. All initializers in any framework you link to.

2. All +load methods in your image.

3. All C++ static initializers and C/C++ __attribute__(constructor) functions in your image.

4. All initializers in frameworks that link to you.

In addition:

 ■ A class’s +load method is called after all of its superclasses' +load methods.

 ■ A category +load method is called after the class's own +load method.

In a +load method, you can therefore safely message other unrelated classes from the same image,
but any +load methods on those classes may not have run yet.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

mutableCopyWithZone:
Returns the receiver.

+ (id)mutableCopyWithZone:(NSZone *)zone

Parameters

zone
The memory zone in which to create the copy of the receiver.

Return Value
The receiver.

Discussion
This method exists so class objects can be used in situations where you need an object that conforms
to the NSMutableCopying protocol. For example, this method lets you use a class object as a key to
an NSDictionary object. You should not override this method.

792 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

new
Allocates a new instance of the receiving class, sends it an init (page 803) message, and returns the
initialized object.

+ (id)new

Return Value
A new instance of the receiver.

Discussion
This method is a combination ofalloc (page 783) andinit (page 803). Likealloc (page 783), it initializes
the isa instance variable of the new object so it points to the class data structure. It then invokes the
init (page 803) method to complete the initialization process.

Unlike alloc (page 783), new (page 793) is sometimes re-implemented in subclasses to invoke a
class-specific initialization method. If the init... method includes arguments, they’re typically
reflected in a new... method as well. For example:

+ newMyClassWithTag:(int)tag data:(struct info *)data
{

return [[self alloc] initWithTag:tag data:data];
}

However, there’s little point in implementing a new... method if it’s simply a shorthand for
alloc (page 783) and init..., as shown above. Often new...methods will do more than just allocation
and initialization. In some classes, they manage a set of instances, returning the one with the requested
properties if it already exists, allocating and initializing a new instance only if necessary. For example:

+ newMyClassWithTag:(int)tag data:(struct info *)data
{

MyClass *theInstance;

if (theInstance = findTheObjectWithTheTag(tag))
return theInstance;

return [[self alloc] initWithTag:tag data:data];
}

Although it’s appropriate to define new new... methods in this way, the alloc (page 783) and
allocWithZone: (page 783) methods should never be augmented to include initialization code.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the object before
returning it. The returned object has a retain count of 1 and is not autoreleased. The invoker of this
method is responsible for releasing the returned object, using either release (page 1310) or
autorelease (page 1303).

Availability
Available in iPhone OS 2.0 and later.

Class Methods 793
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Declared In
NSObject.h

resolveClassMethod:
Dynamically provides an implementation for a given selector for a class method.

+ (BOOL)resolveClassMethod:(SEL)name

Parameters

name
The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method allows you to dynamically provides an implementation for a given selector. See
resolveInstanceMethod: (page 794) for further discussion.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ resolveInstanceMethod: (page 794)

Declared In
NSObject.h

resolveInstanceMethod:
Dynamically provides an implementation for a given selector for an instance method.

+ (BOOL)resolveInstanceMethod:(SEL)name

Parameters

name
The name of a selector to resolve.

Return Value
YES if the method was found and added to the receiver, otherwise NO.

Discussion
This method and resolveClassMethod: (page 794) allow you to dynamically provide an
implementation for a given selector.

An Objective-C method is simply a C function that take at least two arguments—self and _cmd.
Using the class_addMethod function, you can add a function to a class as a method. Given the
following function:

void dynamicMethodIMP(id self, SEL _cmd)
{

// implementation
}

794 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

you can use resolveInstanceMethod: to dynamically add it to a class as a method (called
resolveThisMethodDynamically) like this:

+ (BOOL) resolveInstanceMethod:(SEL)aSEL
{

if (aSEL == @selector(resolveThisMethodDynamically))
{

class_addMethod([self class], aSEL, (IMP) dynamicMethodIMP, "v@:");
return YES;

}
return [super resolveInstanceMethod:aSel];

}

Special Considerations

This method is called before the Objective-C forwarding mechanism (see The Runtime System in The
Objective-C 2.0 Programming Language) is invoked. If respondsToSelector: (page 1311) or
instancesRespondToSelector: (page 791) is invoked, the dynamic method resolver is given the
opportunity to provide an IMP for the given selector first.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ resolveClassMethod: (page 794)

Declared In
NSObject.h

setVersion:
Sets the receiver's version number.

+ (void)setVersion:(NSInteger)aVersion

Parameters

aVersion
The version number for the receiver.

Discussion
The version number is helpful when instances of the class are to be archived and reused later. The
default version is 0.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ version (page 796)

Declared In
NSObject.h

Class Methods 795
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

superclass
Returns the class object for the receiver’s superclass.

+ (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ class (page 785)
superclass (page 1313) (NSObject protocol)

Declared In
NSObject.h

version
Returns the version number assigned to the class.

+ (NSInteger)version

Return Value
The version number assigned to the class.

Discussion
If no version has been set, the default is 0.

Version numbers are needed for decoding or unarchiving, so older versions of an object can be detected
and decoded correctly.

Caution should be taken when obtaining the version from within an NSCoding protocol or other
methods. Use the class name explicitly when getting a class version number:

version = [MyClass version];

Don’t simply send version to the return value of class—a subclass version number may be returned
instead.

Special Considerations

The version number applies to NSArchiver/NSUnarchiver, but not to
NSKeyedArchiver/NSKeyedUnarchiver. A keyed archiver does not encode class version numbers.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setVersion: (page 795)
versionForClassName: (page 167) (NSCoder)

Declared In
NSObject.h

796 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Instance Methods

awakeAfterUsingCoder:
Overridden by subclasses to substitute another object in place of the object that was decoded and
subsequently received this message.

- (id)awakeAfterUsingCoder:(NSCoder *)aDecoder

Parameters

aDecoder
The decoder used to decode the receiver.

Return Value
The receiver, or another object to take the place of the object that was decoded and subsequently
received this message.

Discussion
This method can be used to eliminate redundant objects created by the coder. For example, if after
decoding an object you discover that an equivalent object already exists, you can return the existing
object. If a replacement is returned, your overriding method is responsible for releasing the receiver.
To prevent the accidental use of the receiver after its replacement has been returned, you should
invoke the receiver’s release method to release the object immediately.

This method is invoked by NSCoder. NSObject’s implementation simply returns self.

Availability
Available in iPhone OS 2.0 and later.

See Also
– classForCoder (page 797)
– replacementObjectForCoder: (page 813)
initWithCoder: (page 1246) (NSCoding protocol)

Declared In
NSObject.h

classForCoder
Overridden by subclasses to substitute a class other than its own during coding.

- (Class)classForCoder

Return Value
The class to substitute for the receiver's own class during coding.

Discussion
This method is invoked by NSCoder. NSObject’s implementation returns the receiver’s class. The
private subclasses of a class cluster substitute the name of their public superclass when being archived.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 797
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

See Also
– awakeAfterUsingCoder: (page 797)
– replacementObjectForCoder: (page 813)

Declared In
NSObject.h

classForKeyedArchiver
Overridden by subclasses to substitute a new class for instances during keyed archiving.

- (Class)classForKeyedArchiver

Discussion
The object will be encoded as if it were a member of the returned class. The results of this method are
overridden by the encoder class and instance name to class encoding tables. If nil is returned, the
result of this method is ignored.

Availability
Available in iPhone OS 2.0 and later.

See Also
– replacementObjectForKeyedArchiver: (page 814)

Declared In
NSKeyedArchiver.h

copy
Returns the object returned by copyWithZone: (page 1250), where the zone is nil.

- (id)copy

Return Value
The object returned by the NSCopying protocol method copyWithZone: (page 1250), where the zone is
nil.

Discussion
This is a convenience method for classes that adopt the NSCopying protocol. An exception is raised
if there is no implementation for copyWithZone: (page 1250).

NSObject does not itself support the NSCopying protocol. Subclasses must support the protocol and
implement the copyWithZone: (page 1250) method. A subclass version of the copyWithZone: (page
1250) method should send the message to super first, to incorporate its implementation, unless the
subclass descends directly from NSObject.

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in iPhone OS 2.0 and later.

798 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Declared In
NSObject.h

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
Subsequent messages to the receiver will generate an error indicating that a message was sent to a
deallocated object (provided the deallocated memory hasn’t been reused yet).

You never send a deallocmessage directly. Instead, an object’s deallocmethod is invoked indirectly
through the release (page 1310) NSObject protocol method (if the release message results in the
receiver's retain count becoming 0). See Memory Management Programming Guide for Cocoa for more
details on the use of these methods.

Subclasses must implement their own versions of dealloc to allow the release of any additional
memory consumed by the object—such as dynamically allocated storage for data or object instance
variables owned by the deallocated object. After performing the class-specific deallocation, the subclass
method should incorporate superclass versions of dealloc through a message to super:

- (void)dealloc {
[companion release];
NSZoneFree(private, [self zone])
[super dealloc];

}

Note that when an application terminates, objects may not be sent a dealloc message since the
process’s memory is automatically cleared on exit—it is more efficient simply to allow the operating
system to clean up resources than to invoke all the memory management methods.

Special Considerations

When garbage collection is enabled, the garbage collector sends finalize (page 800) to the receiver
instead of dealloc.

When garbage collection is enabled, this method is a no-op.

Availability
Available in iPhone OS 2.0 and later.

See Also
autorelease (page 1303) (NSObject protocol)
release (page 1310) (NSObject protocol)
– finalize (page 800)

Declared In
NSObject.h

doesNotRecognizeSelector:
Handles messages the receiver doesn’t recognize.

Instance Methods 799
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

- (void)doesNotRecognizeSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies a method not implemented or recognized by the receiver.

See “Selectors” (page 778) for a description of the SEL type.

Discussion
The runtime system invokes this method whenever an object receives an aSelector message it can’t
respond to or forward. This method, in turn, raises an NSInvalidArgumentException, and generates
an error message.

Any doesNotRecognizeSelector:messages are generally sent only by the runtime system. However,
they can be used in program code to prevent a method from being inherited. For example, an NSObject
subclass might renounce the copy (page 798) or init (page 803) method by re-implementing it to
include a doesNotRecognizeSelector: message as follows:

- copy
{

[self doesNotRecognizeSelector:_cmd];
}

The _cmd variable is a hidden argument passed to every method that is the current selector; in this
example, it identifies the selector for the copy method. This code prevents instances of the subclass
from responding to copy messages or superclasses from forwarding copy messages—although
respondsToSelector: (page 1311) will still report that the receiver has access to a copy method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– forwardInvocation: (page 801)

Declared In
NSObject.h

finalize
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

- (void)finalize

Discussion
The garbage collector invokes this method on the receiver before disposing of the memory it uses.
When garbage collection is enabled, this method is invoked instead of dealloc.

Note: Garbage collection is not available for use in Mac OS X before version 10.5.

You can override this method to relinquish resources the receiver has obtained, as shown in the
following example:

- (void)finalize {
if (log_file != NULL) {

fclose(log_file);

800 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

log_file = NULL;
}
[super finalize];

}

Typically, however, you are encouraged to relinquish resources prior to finalization if at all possible.
For more details, see Implementing a finalize Method.

Special Considerations

It is an error to store self into a new or existing live object (colloquially known as “resurrection”),
which implies that this method will be called only once. However, the receiver may be messaged
after finalization by other objects also being finalized at this time, so your override should guard
against future use of resources that have been reclaimed, as shown by the log_file = NULL statement
in the example. The finalize method itself will never be invoked more than once for a given object.

Important: finalize methods must be thread-safe.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dealloc (page 799)

Declared In
NSObject.h

forwardInvocation:
Overridden by subclasses to forward messages to other objects.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters

anInvocation
The invocation to forward.

Discussion
When an object is sent a message for which it has no corresponding method, the runtime system gives
the receiver an opportunity to delegate the message to another receiver. It delegates the message by
creating an NSInvocation object representing the message and sending the receiver a
forwardInvocation: message containing this NSInvocation object as the argument. The receiver’s
forwardInvocation:method can then choose to forward the message to another object. (If that object
can’t respond to the message either, it too will be given a chance to forward it.)

The forwardInvocation: message thus allows an object to establish relationships with other objects
that will, for certain messages, act on its behalf. The forwarding object is, in a sense, able to “inherit”
some of the characteristics of the object it forwards the message to.

Instance Methods 801
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Important: To respond to methods that your object does not itself recognize, you must override
methodSignatureForSelector: (page 805) in addition to forwardInvocation:. The mechanism for
forwarding messages uses information obtained from methodSignatureForSelector: (page 805) to
create the NSInvocation object to be forwarded. Your overriding method must provide an appropriate
method signature for the given selector, either by preformulating one or by asking another object for
one.

An implementation of the forwardInvocation: method has two tasks:

 ■ To locate an object that can respond to the message encoded in anInvocation. This object need
not be the same for all messages.

 ■ To send the message to that object using anInvocation. anInvocation will hold the result, and
the runtime system will extract and deliver this result to the original sender.

In the simple case, in which an object forwards messages to just one destination (such as the
hypothetical friend instance variable in the example below), a forwardInvocation: method could
be as simple as this:

- (void)forwardInvocation:(NSInvocation *)invocation
{

SEL aSelector = [invocation selector];

if ([friend respondsToSelector:aSelector])
[invocation invokeWithTarget:friend];

else
[self doesNotRecognizeSelector:aSelector];

}

The message that’s forwarded must have a fixed number of arguments; variable numbers of arguments
(in the style of printf()) are not supported.

The return value of the forwarded message is returned to the original sender. All types of return
values can be delivered to the sender: id types, structures, double-precision floating-point numbers.

Implementations of the forwardInvocation: method can do more than just forward messages.
forwardInvocation: can, for example, be used to consolidate code that responds to a variety of
different messages, thus avoiding the necessity of having to write a separate method for each selector.
A forwardInvocation: method might also involve several other objects in the response to a given
message, rather than forward it to just one.

NSObject’s implementation of forwardInvocation: simply invokes the
doesNotRecognizeSelector: (page 799) method; it doesn’t forward any messages. Thus, if you
choose not to implement forwardInvocation:, sending unrecognized messages to objects will raise
exceptions.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

802 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

init
Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it
has been allocated.

- (id)init

Return Value
The initialized receiver.

Discussion
An initmessage is generally coupled with an alloc (page 783) or allocWithZone: (page 783) message
in the same line of code:

TheClass *newObject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The initmethod defined in the NSObject
class does no initialization; it simply returns self.

Subclass implementations of this method should initialize and return the new object. If it can’t be
initialized, they should release the object and return nil. In some cases, an initmethod might release
the new object and return a substitute. Programs should therefore always use the object returned by
init, and not necessarily the one returned by alloc (page 783) or allocWithZone: (page 783), in
subsequent code.

Every class must guarantee that the init method either returns a fully functional instance of the class
or raises an exception. Subclasses should override the init method to add class-specific initialization
code. Subclass versions of init need to incorporate the initialization code for the classes they inherit
from, through a message to super:

- init
{

if ((self = [super init])) {
/* class-specific initialization goes here */

}
return self;

}

Note that the message to super precedes the initialization code added in the method. This sequencing
ensures that initialization proceeds in the order of inheritance.

Subclasses often define init... methods with additional arguments to allow specific values to be
set. The more arguments a method has, the more freedom it gives you to determine the character of
initialized objects. Classes often have a set of init... methods, each with a different number of
arguments. For example:

- init;
- initWithTag:(int)tag;
- initWithTag:(int)tag data:(struct info *)data;

The convention is that at least one of these methods, usually the one with the most arguments, includes
a message to super to incorporate the initialization of classes higher up the hierarchy. This method
is called the designated initializer for the class. The other init... methods defined in the class directly
or indirectly invoke the designated initializer through messages to self. In this way, all init...
methods are chained together. For example:

- init

Instance Methods 803
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

{
return [self initWithTag:-1];

}

- initWithTag:(int)tag
{

return [self initWithTag:tag data:NULL];
}

- initWithTag:(int)tag data:(struct info *)data
{

if ((self = [super init. . .])) {
/* class-specific initialization goes here */

}
return self;

}

In this example, the initWithTag:data: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer. This
method should begin by sending a message to super to invoke the designated initializer of its
superclass. Suppose, for example, that the three methods illustrated above are defined in the B class.
The C class, a subclass of B, might have this designated initializer:

- initWithTag:(int)tag data:(struct info *)data data:anObject
{

if ((self = [super initWithTag:tag data:data])) {
/* class-specific initialization goes here */

}
return self;

}

If inherited init... methods are to successfully initialize instances of the subclass, they must all be
made to (directly or indirectly) invoke the new designated initializer. To accomplish this, the subclass
is obliged to cover (override) only the designated initializer of the superclass. For example, in addition
to its designated initializer, the C class would also implement this method:

- initWithTag:(int)tag data:(struct info *)data
{

return [self initWithTag:tag data:data arg:nil];
}

This code ensures that all three methods inherited from the B class also work for instances of the C
class.

Often the designated initializer of the subclass overrides the designated initializer of the superclass.
If so, the subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links and ensure that the new method and all
inherited init... methods return usable, initialized objects. They also prevent the possibility of an
infinite loop wherein a subclass method sends a message (to super) to perform a superclass method,
which in turn sends a message (to self) to perform the subclass method.

This init method is the designated initializer for the NSObject class. Subclasses that do their own
initialization should override it, as described above.

804 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

methodForSelector:
Locates and returns the address of the receiver’s implementation of a method so it can be called as a
function.

- (IMP)methodForSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies the method for which to return the implementation address. The
selector must be a valid and non-NULL. If in doubt, use the respondsToSelector: (page 1311)
method to check before passing the selector to methodForSelector:.

Return Value
The address of the receiver’s implementation of the aSelector.

Discussion
If the receiver is an instance, aSelector should refer to an instance method; if the receiver is a class,
it should refer to a class method.

See “Selectors” (page 778) for a description of the IMP and SEL types, and how to invoke the returned
method implementation.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ instanceMethodForSelector: (page 790)

Declared In
NSObject.h

methodSignatureForSelector:
Returns an NSMethodSignature object that contains a description of the method identified by a given
selector.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies the method for which to return the implementation address. When
the receiver is an instance, aSelector should identify an instance method; when the receiver
is a class, it should identify a class method.

See “Selectors” (page 778) for a description of the SEL type.

Instance Methods 805
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Return Value
An NSMethodSignature object that contains a description of the method identified by aSelector, or
nil if the method can’t be found.

Discussion
This method is used in the implementation of protocols. This method is also used in situations where
an NSInvocation object must be created, such as during message forwarding. If your object maintains
a delegate or is capable of handling messages that it does not directly implement, you should override
this method to return an appropriate method signature.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ instanceMethodSignatureForSelector: (page 790)
– forwardInvocation: (page 801)

Declared In
NSObject.h

mutableCopy
Returns the object returned by mutableCopyWithZone: (page 1300) where the zone is nil.

- (id)mutableCopy

Return Value
The object returned by the NSMutableCopying protocol method mutableCopyWithZone: (page 1300),
where the zone is nil.

Discussion
This is a convenience method for classes that adopt the NSMutableCopying protocol. An exception
is raised if there is no implementation for mutableCopyWithZone: (page 1300).

Special Considerations

If you are using managed memory (not garbage collection), this method retains the new object before
returning it. The invoker of the method, however, is responsible for releasing the returned object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

performSelector:onThread:withObject:waitUntilDone:
Invokes a method of the receiver on the specified thread using the default mode.

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait

806 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Parameters

aSelector
A selector that identifies the method to invoke. The method should not have a significant return
value and should take a single argument of type id, or no arguments.

See “Selectors” (page 778) for a description of the SEL type.

thr
The thread on which to execute aSelector.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is
performed on the receiver on the specified thread. Specify YES to block this thread; otherwise,
specify NO to have this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter,
the selector is performed immediately on the current thread. If you specify NO, this method
queues the message on the thread’s run loop and returns, just like it does for other threads.
The current thread must then dequeue and process the message when it has an opportunity
to do so.

Discussion
You can use this method to deliver messages to other threads in your application. The message in
this case is a method of the current object that you want to execute on the target thread.

This method queues the message on the run loop of the target thread using the default run loop
modes—that is, the modes associated with the NSRunLoopCommonModes constant. As part of its normal
run loop processing, the target thread dequeues the message (assuming it is running in one of the
default run loop modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message
on the current thread, you must use either the performSelector:withObject:afterDelay: (page
808) or performSelector:withObject:afterDelay:inModes: (page 809) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 807)
– performSelectorInBackground:withObject: (page 810)

Declared In
NSThread.h

performSelector:onThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the specified thread using the specified modes.

- (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Instance Methods 807
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Parameters

aSelector
A selector that identifies the method to invoke. It should not have a significant return value
and should take a single argument of type id, or no arguments.

See “Selectors” (page 778) for a description of the SEL type.

thr
The thread on which to execute aSelector. This thread represents the target thread.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is
performed on the receiver on the specified thread. Specify YES to block this thread; otherwise,
specify NO to have this method return immediately.

If the current thread and target thread are the same, and you specify YES for this parameter,
the selector is performed immediately. If you specify NO, this method queues the message and
returns immediately, regardless of whether the threads are the same or different.

array
An array of strings that identifies the modes in which it is permissible to perform the specified
selector. This array must contain at least one string. If you specify nil or an empty array for
this parameter, this method returns without performing the specified selector.

Discussion
You can use this method to deliver messages to other threads in your application. The message in
this case is a method of the current object that you want to execute on the target thread.

This method queues the message on the run loop of the target thread using the run loop modes
specified in the array parameter. As part of its normal run loop processing, the target thread dequeues
the message (assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message
on the current thread, you must use either the performSelector:withObject:afterDelay: (page
808) or performSelector:withObject:afterDelay:inModes: (page 809) method instead.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone: (page 806)
– performSelectorInBackground:withObject: (page 810)

Declared In
NSThread.h

performSelector:withObject:afterDelay:
Invokes a method of the receiver on the current thread using the default mode after a delay.

808 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay

Parameters

aSelector
A selector that identifies the method to invoke. The method should not have a significant return
value and should take a single argument of type id, or no arguments.

See “Selectors” (page 778) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

delay
The minimum time before which the message is sent.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The
timer is configured to run in the default mode (NSDefaultRunLoopMode). When the timer fires, the
thread attempts to dequeue the message from the run loop and perform the selector. It succeeds if
the run loop is running and in the default mode; otherwise, the timer waits until the run loop is in
the default mode.

If you want the message to be dequeued when the run loop is in a mode other than the default mode,
use the performSelector:withObject:afterDelay:inModes: (page 809) method instead. To ensure
that the selector is performed on the main thread, use the
performSelectorOnMainThread:withObject:waitUntilDone: (page 811) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 812) method instead.
To cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 784) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 785) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ cancelPreviousPerformRequestsWithTarget:selector:object: (page 785)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 811)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 812)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 807)

Declared In
NSRunLoop.h

performSelector:withObject:afterDelay:inModes:
Invokes a method of the receiver on the current thread using the specified modes after a delay.

- (void)performSelector:(SEL)aSelector withObject:(id)anArgument
afterDelay:(NSTimeInterval)delay inModes:(NSArray *)modes

Instance Methods 809
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Parameters

aSelector
A selector that identifies the method to invoke. The method should not have a significant return
value and should take a single argument of type id, or no arguments.

See “Selectors” (page 778) for a description of the SEL type.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

delay
The minimum time before which the message is sent.

modes
An array of strings that identify the modes to associate with the timer that performs the selector.
This array must contain at least one string. If you specify nil or an empty array for this
parameter, this method returns without performing the specified selector.

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop. The
timer is configured to run in the modes specified by the modes parameter. When the timer fires, the
thread attempts to dequeue the message from the run loop and perform the selector. It succeeds if
the run loop is running and in one of the specified modes; otherwise, the timer waits until the run
loop is in one of those modes.

If you want the message to be dequeued when the run loop is in a mode other than the default mode,
use the performSelector:withObject:afterDelay:inModes: (page 809) method instead. To ensure
that the selector is performed on the main thread, use the
performSelectorOnMainThread:withObject:waitUntilDone: (page 811) or
performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 812) method instead.
To cancel a queued message, use the cancelPreviousPerformRequestsWithTarget: (page 784) or
cancelPreviousPerformRequestsWithTarget:selector:object: (page 785) method.

This method retains the receiver and the anArgument parameter until after the selector is performed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 808)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 811)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 812)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 807)
addTimer:forMode: (page 891) (NSRunLoop)
invalidate (page 1070) (NSTimer)

Declared In
NSRunLoop.h

performSelectorInBackground:withObject:
Invokes a method of the receiver on a new background thread.

- (void)performSelectorInBackground:(SEL)aSelector withObject:(id)arg

810 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Parameters

aSelector
A selector that identifies the method to invoke. The method should not have a significant return
value and should take a single argument of type id, or no arguments.

See “Selectors” (page 778) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

Discussion
This method creates a new thread in your application, putting your application into multithreaded
mode if it was not already. The method represented by aSelectormust set up the thread environment
just as you would for any other new thread in your program. For more information about how to
configure and run threads, see Threading Programming Guide.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:onThread:withObject:waitUntilDone:modes: (page 807)

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:
Invokes a method of the receiver on the main thread using the default mode.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait

Parameters

aSelector
A selector that identifies the method to invoke. The method should not have a significant return
value and should take a single argument of type id, or no arguments.

See “Selectors” (page 778) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is
performed on the receiver on the main thread. Specify YES to block this thread; otherwise,
specify NO to have this method return immediately.

If the current thread is also the main thread, and you specify YES for this parameter, the message
is delivered and processed immediately.

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events.
The message in this case is a method of the current object that you want to execute on the thread.

Instance Methods 811
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

This method queues the message on the run loop of the main thread using the default run loop
modes—that is, the modes associated with the NSRunLoopCommonModes constant. As part of its normal
run loop processing, the main thread dequeues the message (assuming it is running in one of the
default run loop modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message
on the current thread, you must use either the performSelector:withObject:afterDelay: (page
808) or performSelector:withObject:afterDelay:inModes: (page 809) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 808)
– performSelector:withObject:afterDelay:inModes: (page 809)
– performSelectorOnMainThread:withObject:waitUntilDone:modes: (page 812)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 807)

Declared In
NSThread.h

performSelectorOnMainThread:withObject:waitUntilDone:modes:
Invokes a method of the receiver on the main thread using the specified modes.

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

Parameters

aSelector
A selector that identifies the method to invoke. The method should not have a significant return
value and should take a single argument of type id, or no arguments.

See “Selectors” (page 778) for a description of the SEL type.

arg
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

wait
A Boolean that specifies whether the current thread blocks until after the specified selector is
performed on the receiver on the main thread. Specify YES to block this thread; otherwise,
specify NO to have this method return immediately.

If the current thread is also the main thread, and you pass YES, the message is performed
immediately, otherwise the perform is queued to run the next time through the run loop.

array
An array of strings that identifies the modes in which it is permissible to perform the specified
selector. This array must contain at least one string. If you specify nil or an empty array for
this parameter, this method returns without performing the specified selector.

812 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Discussion
You can use this method to deliver messages to the main thread of your application. The main thread
encompasses the application’s main run loop, and is where the NSApplication object receives events.
The message in this case is a method of the current object that you want to execute on the thread.

This method queues the message on the run loop of the main thread using the run loop modes specified
in the array parameter. As part of its normal run loop processing, the main thread dequeues the
message (assuming it is running in one of the specified modes) and invokes the desired method.

You cannot cancel messages queued using this method. If you want the option of canceling a message
on the current thread, you must use either the performSelector:withObject:afterDelay: (page
808) or performSelector:withObject:afterDelay:inModes: (page 809) method.

This method retains the receiver and the arg parameter until after the selector is performed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:withObject:afterDelay: (page 808)
– performSelector:withObject:afterDelay:inModes: (page 809)
– performSelectorOnMainThread:withObject:waitUntilDone: (page 811)
– performSelector:onThread:withObject:waitUntilDone:modes: (page 807)

Declared In
NSThread.h

replacementObjectForCoder:
Overridden by subclasses to substitute another object for itself during encoding.

- (id)replacementObjectForCoder:(NSCoder *)aCoder

Parameters

aCoder
The coder encoding the receiver.

Return Value
The object encode instead of the receiver (if different).

Discussion
An object might encode itself into an archive, but encode a proxy for itself if it’s being encoded for
distribution. This method is invoked by NSCoder. NSObject’s implementation returns self.

Availability
Available in iPhone OS 2.0 and later.

See Also
– classForCoder (page 797)
– awakeAfterUsingCoder: (page 797)

Declared In
NSObject.h

Instance Methods 813
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

replacementObjectForKeyedArchiver:
Overridden by subclasses to substitute another object for itself during keyed archiving.

- (id)replacementObjectForKeyedArchiver:(NSKeyedArchiver *)archiver

Parameters

archiver
A keyed archiver creating an archive.

Return Value
The object encode instead of the receiver (if different).

Discussion
This method is called only if no replacement mapping for the object has been set up in the encoder
(for example, due to a previous call of replacementObjectForKeyedArchiver: to that object).

Availability
Available in iPhone OS 2.0 and later.

See Also
– classForKeyedArchiver (page 798)

Declared In
NSKeyedArchiver.h

814 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 8

NSObject Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSOperation.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSOperation class manages the execution of a single encapsulated task. Operations are typically
scheduled by adding them to an operation queue object (an instance of the NSOperationQueue class),
although you can also execute them directly by explicitly invoking their start method.

Operation objects are single-shot objects, that is, they perform their task once. You cannot reuse the
same NSOperation object to perform a task (or a slight variant of the task) multiple times in succession.
Attempting to execute an operation that has already finished results in an exception.

Overview 815
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

When manually executing operations, you are responsible for making sure the object is ready to
execute. Starting an operation that is not in the ready state generally results in an exception being
thrown. If you use an operation queue to manage the execution, the NSOperationQueue object ensures
that the operation is executed only when it is ready.

Concurrent Versus Non-Concurrent Operations

Operation objects can be designed for either concurrent or non-concurrent operation. In the context
of an NSOperation object, the terms concurrent and non-concurrent do not necessarily refer to the
side-by-side execution of threads. Instead, a non-concurrent operation is one that executes using the
environment that is provided for it while a concurrent operation is responsible for setting up its own
execution environment. To understand how this might work in your code, look at the
NSOperationQueue object as an example. For a non-concurrent operation, an operation queue
automatically creates a thread and calls the operation object’s start method, the default
implementation of which configures the thread environment and calls the operation object’s main
method to run your custom code. For a concurrent operation, the queue simply calls start without
setting up a thread. The operation object is expected to provide a custom implementation of the start
method that configures the runtime environment of the operation itself.

If you always design your operations to execute on a thread, then creating non-concurrent operations
is the simplest way to go. There are some situations though where you might want to create a
concurrent operation instead, including the following:

 ■ You want to create the thread yourself.

 ■ You want to launch a separate task instead of a thread.

 ■ Your operation’s main method initiates an asynchronous call and exits. (In such a situation, the
callback function or method would then pass control to the operation object to process the request.
For example, you could use this technique to set up a timer and then use the methods of the
operation object to do some work each time the timer fires.)

By default, operations are designated as non-concurrent. For information on how to create a concurrent
operation object, see the subclassing notes for this class.

Operation Dependencies

You can configure an operation to depend on the completion of other operations by adding those
operations as dependencies. An operation object that has dependencies does not execute until all of
its dependent operation objects finish executing. Once the last dependent operation finishes, the
operation object moves to the ready state.

If a dependent operation is unable to perform its task for some reason, it is the responsibility of your
code to make that determination. Operation objects that are non-concurrent (that is, their isConcurrent
method returns NO) automatically catch and suppress any exceptions thrown by the operation object’s
main method. Thus, an operation that generates an exception may appear to finish normally even if
it did not. If you need to track errors in a dependent operation, you must build that capability into
the main method of your operation objects explicitly.

816 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

Bindable Properties

The NSOperation class is key-value coding (KVC) and key-value observing (KVO) compliant for
several of its properties. As needed, you can establish bindings to these properties to control other
parts of your application. The properties you can bind to include the following:

 ■ isCancelled- read-only property

 ■ isConcurrent- read-only property

 ■ isExecuting - read-only property

 ■ isFinished - read-only property

 ■ isReady - read-only property

 ■ dependencies - read-only property

 ■ queuePriority - readable and writable property

If you override any of the preceding properties, your implementations must maintain KVC and KVO
compliance. If you define additional properties for your NSOperation objects, it is recommended that
you make those properties KVC and KVO compliant as well. For information on how to support
key-value coding, see Key-Value Coding Programming Guide. For information on how to support
key-value observing, see Key-Value Observing Programming Guide.

Threading Considerations

The methods of the NSOperation class implement automatic synchronization on the current instance.
It is therefore safe to use a single instance of the NSOperation object from multiple threads without
creating additional locks to synchronize access to the object.

When you subclass NSOperation, the methods in your implementation should also be safe to call
from multiple threads. One way to achieve this is to synchronize access to the operation object using
the @synchronized keyword. For more information about writing thread-safe code, see Threading
Programming Guide.

Subclassing Notes

The NSOperation class does not do anything by default and must be subclassed to perform any
desired tasks. How you create your subclass depends on whether your operation is designed to
execute concurrently or non-concurrently with respect to the thread that started the operation.

Methods to Override

For non-concurrent operations, you typically implement only one method:

 ■ main

Overview 817
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

In your main method, you implement the code needed to perform the given operation. The
NSOperation class manages the changes in state for your operation automatically and reports the
appropriate condition of your operation from its methods.

If you are creating a concurrent operation, you need to override the following methods:

 ■ start

 ■ isConcurrent

 ■ isExecuting

 ■ isFinished

In your start method, you must prepare the operation for execution, which includes preparing the
runtime environment for your operation. (For example, if you wanted to create a thread yourself,
you would do it here.) Once your runtime environment is established, you can call any methods or
functions you want to subsequently start your operation. Your implementation of the start method
should not invoke super.

When implementing a concurrent operation, your custom subclass is responsible for reporting some
of the state information associated with running the operation. In particular, you must override the
isExecuting and isFinished methods to report on the current execution state of your operation.
Your overridden methods should be KVO compliant.

Responding to the Cancel Command

An operation is responsible for periodically calling its own isCancelled method and aborting
execution if it ever returns YES. Because it is bad form to kill a thread outright, the NSOperationQueue
object sends a cancel message to your operation object if it ever needs your object to stop executing.
(Other entities can similarly call the cancel method on an executing operation to ask it to stop.) The
need to cancel an operation can typically arise from a user request or in a situation where the
application or system is shutting down. When detected, your operation should clean up its environment
and exit as soon as possible.

Tasks

Initialization

– init (page 821)
Returns an initialized NSOperation object.

Executing the Operation

– start (page 825)
Begins the execution of the operation.

– main (page 823)
Performs the receiver’s non-concurrent task.

818 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

Canceling Operations

– cancel (page 820)
Advises the operation object that it should stop executing its task.

Getting the Operation Status

– isCancelled (page 821)
Returns a Boolean value indicating whether the operation has been cancelled.

– isExecuting (page 822)
Returns a Boolean value indicating whether the operation is currently executing.

– isFinished (page 822)
Returns a Boolean value indicating whether the operation is done executing.

– isConcurrent (page 822)
Returns a Boolean value indicating whether the operation runs asynchronously.

– isReady (page 823)
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

Managing Dependencies

– addDependency: (page 819)
Makes the receiver dependent on the completion of the specified operation.

– removeDependency: (page 824)
Removes the receiver’s dependence on the specified operation.

– dependencies (page 820)
Returns the operations on which the receiver is dependent.

Prioritizing Operations in an Operation Queue

– queuePriority (page 824)
Returns the priority of the operation in an operation queue.

– setQueuePriority: (page 825)
Sets the priority of the operation when used in an operation queue.

Instance Methods

addDependency:
Makes the receiver dependent on the completion of the specified operation.

- (void)addDependency:(NSOperation *)operation

Instance Methods 819
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

Parameters

operation
The operation on which the receiver is dependent. The same dependency should not be added
more than once to the receiver, and the results of doing so are undefined.

Discussion
The receiver is not considered ready to execute until all of its dependent operations finish executing.
If the receiver is already executing its task, adding dependencies is unlikely to have any practical
effect. This method may change the isReady and dependencies properties of the receiver.

It is a programmer error to create any circular dependencies among a set of operations. Doing so can
cause a deadlock among the operations and may freeze your program.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeDependency: (page 824)
– dependencies (page 820)

Declared In
NSOperation.h

cancel
Advises the operation object that it should stop executing its task.

- (void)cancel

Discussion
This method does not force your operation code to stop. The code for your operation must invoke
the isCancelled method periodically to determine whether the operation should be stopped. Once
cancelled, an operation cannot be restarted.

If the operation is already finished executing, this method has no effect. Canceling an operation that
is currently in an operation queue, but not yet executing, causes it to be removed from the queue
(although not necessarily right away).

Availability
Available in iPhone OS 2.0 and later.

See Also
– isCancelled (page 821)

Declared In
NSOperation.h

dependencies
Returns the operations on which the receiver is dependent.

- (NSArray *)dependencies

820 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

Return Value
An array of NSOperation objects representing the operations on which the receiver is dependent.

Discussion
The receiver is not considered ready to execute until all of its dependent operations finish executing.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addDependency: (page 819)
– removeDependency: (page 824)

Declared In
NSOperation.h

init
Returns an initialized NSOperation object.

- (id)init

Return Value
The initialized NSOperation object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

isCancelled
Returns a Boolean value indicating whether the operation has been cancelled.

- (BOOL)isCancelled

Return Value
YES if the operation was explicitly cancelled by an invocation of the receiver’s cancel method;
otherwise, NO. This method may return YES even if the operation is currently executing.

Discussion
Canceling an operation does not actively stop the receiver’s code from executing. An operation object
is responsible for calling this method periodically and stopping itself if the method returns YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cancel (page 820)

Declared In
NSOperation.h

Instance Methods 821
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

isConcurrent
Returns a Boolean value indicating whether the operation runs asynchronously.

- (BOOL)isConcurrent

Return Value
YES if the operation is asynchronous; otherwise, NO if the operation runs synchronously on whatever
thread started it. This method returns NO by default.

Discussion
If you are implementing a concurrent operation, you must override this method and return YES from
your implementation. For more information about the differences between concurrent and
non-concurrent operations, see “Concurrent Versus Non-Concurrent Operations” (page 816).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

isExecuting
Returns a Boolean value indicating whether the operation is currently executing.

- (BOOL)isExecuting

Return Value
YES if the operation is executing; otherwise, NO if the operation has not been started or is already
finished.

Discussion
If you are implementing a concurrent operation, you should override this method to return the
execution state of your operation. Concurrent operations are also responsible for generating the
appropriate KVO notifications whenever the execution state changes. For more information about
manually generating KVO notifications, see Key-Value Observing Programming Guide.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

isFinished
Returns a Boolean value indicating whether the operation is done executing.

- (BOOL)isFinished

Return Value
YES if the operation is no longer executing; otherwise, NO.

822 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

Discussion
If you are implementing a concurrent operation, you should override this method to return the finished
state of your operation. Concurrent operations are also responsible for generating the appropriate
KVO notifications whenever the finished state changes. For more information about manually
generating KVO notifications, see Key-Value Observing Programming Guide.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

isReady
Returns a Boolean value indicating whether the receiver’s operation can be performed now.

- (BOOL)isReady

Return Value
YES if the operation can be performed now; otherwise, NO.

Discussion
Operations may not be ready due to dependencies on other operations or because of external conditions
that might prevent needed data from being ready. The NSOperation class manages dependencies on
other operations and reports the readiness of the receiver based on those dependencies.

Note: If the receiver is cancelled before it starts, operations that are dependent on the completion of
the receiver will never become ready.

If your operation object has additional dependencies, you must override this method and return a
value that accurately reflects the readiness of the receiver. Your custom implementation should invoke
super and incorporate its return value into this method’s return value. Your custom implementation
must be KVO compliant.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dependencies (page 820)

Declared In
NSOperation.h

main
Performs the receiver’s non-concurrent task.

- (void)main

Instance Methods 823
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

Discussion
The default implementation of this method does nothing. For non-concurrent operations, you must
override this method in your NSOperation subclass to perform the desired task. In your
implementation, do not invoke super.

If you are implementing a concurrent operation, you should override the start method instead. In
your overridden startmethod, you can continue to call this method to do the actual work if separating
the work from your starting logic is practical.

Availability
Available in iPhone OS 2.0 and later.

See Also
– start (page 825)

Declared In
NSOperation.h

queuePriority
Returns the priority of the operation in an operation queue.

- (NSOperationQueuePriority)queuePriority

Return Value
The relative priority of the operation. The returned value always corresponds to one of the predefined
constants. (For a list of valid values, see “Operation Priorities” (page 826).) If no priority is explicitly
set, this method returns NSOperationQueuePriorityNormal.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setQueuePriority: (page 825)

Declared In
NSOperation.h

removeDependency:
Removes the receiver’s dependence on the specified operation.

- (void)removeDependency:(NSOperation *)operation

Parameters

operation
The dependent operation to be removed from the receiver.

Discussion
This method may change the isReady and dependencies properties of the receiver.

Availability
Available in iPhone OS 2.0 and later.

824 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

See Also
– addDependency: (page 819)
– dependencies (page 820)

Declared In
NSOperation.h

setQueuePriority:
Sets the priority of the operation when used in an operation queue.

- (void)setQueuePriority:(NSOperationQueuePriority)priority

Parameters

priority
The relative priority of the operation. For a list of valid values, see “Operation Priorities” (page
826).

Discussion
You should use priority values only as needed to classify the relative priority of non-dependent
operations. Priority values should not be used to implement dependency management among different
operation objects. If you need to establish dependencies between operations, use the addDependency:
method instead.

If you attempt to specify a priority value that does not match one of the defined constants, this method
automatically adjusts the value you specify towards the NSOperationQueuePriorityNormal priority,
stopping at the first valid constant value. For example, if you specified the value -10, this method
would adjust that value to match the NSOperationQueuePriorityVeryLow constant. Similarly, if you
specified +10, this method would adjust the value to match the NSOperationQueuePriorityVeryHigh
constant.

Availability
Available in iPhone OS 2.0 and later.

See Also
– queuePriority (page 824)
– addDependency: (page 819)

Declared In
NSOperation.h

start
Begins the execution of the operation.

- (void)start

Discussion
The default implementation of this method configures the execution environment for a non-concurrent
operation and invokes the receiver’s main method. As part of the default configuration, this method
performs several checks to ensure that the non-concurrent operation can actually run and generates
appropriate KVO notifications for each change in the operation’s state. If the receiver’s operation has

Instance Methods 825
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

already been performed, was cancelled, or is not yet ready to run, this method throws an
NSInvalidArgumentException exception. If the operation is to be performed on a separate thread,
this method may return before the operation itself completes on the other thread.

Note: An operation may not be ready to execute if it is dependent on other operations that have not
yet finished.

If you are implementing a concurrent operation, you must override this method to initiate your
operation; however, your implementation must not call super. If you override this method, you must
also override the isExecuting and isFinished methods to report when your operation begins
executing and finishes. Your implementations for these methods must maintain KVO compliance for
the associated properties by manually sending the appropriate value change messages. For more
information about manually generating KVO notifications, see Key-Value Observing Programming
Guide.

Availability
Available in iPhone OS 2.0 and later.

See Also
– main (page 823)
– isReady (page 823)
– dependencies (page 820)

Declared In
NSOperation.h

Constants

NSOperationQueuePriority
Describes the priority of an operation relative to other operations in an operation queue.

typedef NSInteger NSOperationQueuePriority;

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

Operation Priorities
These constants let you prioritize the order in which operations execute.

826 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

enum {
NSOperationQueuePriorityVeryLow = -8,
NSOperationQueuePriorityLow = -4,
NSOperationQueuePriorityNormal = 0,
NSOperationQueuePriorityHigh = 4,
NSOperationQueuePriorityVeryHigh = 8

};

Constants
NSOperationQueuePriorityVeryLow

Operations receive very low priority for execution.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

NSOperationQueuePriorityLow
Operations receive low priority for execution.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

NSOperationQueuePriorityNormal
Operations receive the normal priority for execution.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

NSOperationQueuePriorityHigh
Operations receive high priority for execution.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

NSOperationQueuePriorityVeryHigh
Operations receive very high priority for execution.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

Discussion
You can use these constants to specify the relative ordering of operations that are waiting to be started
in an operation queue. You should always use these constants (and not the defined value) for
determining priority.

Declared In
NSOperation.h

Constants 827
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

828 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5 9

NSOperation Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSOperation.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSOperationQueue class manages a set of NSOperation objects in a priority queue and regulates
their execution. Operations remain in the queue until they are explicitly cancelled or finish executing.
An application may create multiple operation queues, with each queue running up to its designated
maximum number of operations.

A specific NSOperation object can be in only one operation queue at a time. Operations within a
single queue coordinate their execution order using both priority levels and inter-operation object
dependencies. Operation objects in different queues can coordinate their execution order using
dependencies, which are not queue-specific.

Overview 829
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

Inter-operation dependencies provide an absolute execution order for operations. An operation object
is not considered ready to execute until all of its dependent operations have finished executing. For
operations that are ready to execute, the operation queue always executes the one with the highest
priority relative to the other ready operations. For details on how to set priority levels and
dependencies, see NSOperation Class Reference.

You should never manually start an operation while it is sitting in an operation queue. Once added,
an operation stays in its queue until it finishes executing or is cancelled.

If the isConcurrent method of an operation returns NO, the operation queue automatically creates a
new thread for that operation before running it. If the isConcurrentmethod returns YES, the operation
object must create its own thread or otherwise configure its own runtime environment as part of its
execution phase.

Bindable Properties

The NSOperationQueue class is key-value coding (KVC) and key-value observing (KVO) compliant.
You can establish bindings to these properties as desired to control other parts of your application.
The properties you can bind to include the following:

 ■ operations - read-only property

 ■ maxConcurrentOperationCount - readable and writable property

Threading Considerations

The methods of the NSOperationQueue class implement automatic synchronization on the current
instance. It is therefore safe to use a single instance of the NSOperationQueue object from multiple
threads without creating additional locks to synchronize access to the object.

Tasks

Managing Operations in the Queue

– addOperation: (page 831)
Adds the specified operation object to the receiver.

– operations (page 833)
Returns the operations currently in the queue.

– cancelAllOperations (page 831)
Cancels all queued and executing operations.

– waitUntilAllOperationsAreFinished (page 834)
Blocks the current thread until all of the receiver’s queued and executing operations finish
executing.

830 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

Managing the Number of Running Operations

– maxConcurrentOperationCount (page 832)
Returns the maximum number of concurrent operations that the receiver can execute.

– setMaxConcurrentOperationCount: (page 833)
Sets the maximum number of concurrent operations that the receiver can execute.

Suspending Operations

– setSuspended: (page 833)
Modifies the execution of pending operations

– isSuspended (page 832)
Returns a Boolean value indicating whether the receiver is scheduling queued operations for
execution.

Instance Methods

addOperation:
Adds the specified operation object to the receiver.

- (void)addOperation:(NSOperation *)operation

Parameters

operation
The operation object to be added to the queue.

Discussion
An operation object can be in at most one operation queue at a time and cannot be added if it is
currently executing or finished. This method throws an NSInvalidArgumentException exception if
any of these conditions is true.

Once added, the specified operation remains in the queue until it is executed or cancelled.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cancel (page 820) (NSOperation)
– isExecuting (page 822) (NSOperation)

Declared In
NSOperation.h

cancelAllOperations
Cancels all queued and executing operations.

Instance Methods 831
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

- (void)cancelAllOperations

Discussion
This method sends a cancel message to all operations currently in the queue or executing. Queued
operations are cancelled before they begin executing. If an operation is already executing, it is up to
that operation to recognize the cancellation and stop what it is doing.

Availability
Available in iPhone OS 2.0 and later.

See Also
cancel (page 820) (NSOperation)

Declared In
NSOperation.h

isSuspended
Returns a Boolean value indicating whether the receiver is scheduling queued operations for execution.

- (BOOL)isSuspended

Return Value
YES if operations are being scheduled for execution; otherwise, NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setSuspended: (page 833)

Declared In
NSOperation.h

maxConcurrentOperationCount
Returns the maximum number of concurrent operations that the receiver can execute.

- (NSInteger)maxConcurrentOperationCount

Return Value
The maximum number of concurrent operations set explicitly on the receiver using the
setMaxConcurrentOperationCount: method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setMaxConcurrentOperationCount: (page 833)

Declared In
NSOperation.h

832 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

operations
Returns the operations currently in the queue.

- (NSArray *)operations

Return Value
An array of NSOperation objects in arranged in the order in which they were added to the queue.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

setMaxConcurrentOperationCount:
Sets the maximum number of concurrent operations that the receiver can execute.

- (void)setMaxConcurrentOperationCount:(NSInteger)count

Parameters

count
The maximum number of concurrent operations. Specify the value
NSOperationQueueDefaultMaxConcurrentOperationCount if you want the receiver to choose
an appropriate value based on the number of available processors and other relevant factors.

Discussion
The specified value affects only the receiver and the operations in its queue. Other operation queue
objects can also execute their maximum number of operations in parallel.

Reducing the number of concurrent operations does not affect any operations that are currently
executing. If you specify the value NSOperationQueueDefaultMaxConcurrentOperationCount
(which is recommended), the maximum number of operations can change dynamically based on
system conditions.

Availability
Available in iPhone OS 2.0 and later.

See Also
– maxConcurrentOperationCount (page 832)

Declared In
NSOperation.h

setSuspended:
Modifies the execution of pending operations

- (void)setSuspended:(BOOL)suspend

Instance Methods 833
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

Parameters

suspend
If YES, the queue stops scheduling queued operations for execution. If NO, the queue begins
scheduling operations again.

Discussion
This method suspends or restarts the execution of queued operations only. It does not have any impact
on the state of currently running operations. Running operations continue to run until their natural
termination or until they are explicitly cancelled.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isSuspended (page 832)

Declared In
NSOperation.h

waitUntilAllOperationsAreFinished
Blocks the current thread until all of the receiver’s queued and executing operations finish executing.

- (void)waitUntilAllOperationsAreFinished

Discussion
When called, this method blocks the current thread and waits for the receiver’s current and pending
operations to finish executing. While the thread is blocked, the receiver continues to launch already
queued operations and monitor those that are executing. During this time, the current thread cannot
add operations to the queue, but other threads may. Once all of the pending operations are finished,
this method returns.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSOperation.h

Constants

Concurrent Operation Constants
Indicates the number of supported concurrent operations.

834 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

enum {
NSOperationQueueDefaultMaxConcurrentOperationCount = -1

};

Constants
NSOperationQueueDefaultMaxConcurrentOperationCount

The default maximum number of operations is determined dynamically by the
NSOperationQueue object based on current system conditions.

Available in iPhone OS 2.0 and later.

Declared in NSOperation.h

Declared In
NSOperation.h

Constants 835
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

836 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 0

NSOperationQueue Class Reference

Inherits from: NSStream : NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSStream.h

Companion guide: Stream Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSOutputStream class is a subclass of NSStream that provides write-only stream functionality.

Subclassing Notes

The NSOutputStream is a concrete subclass of NSStream that lets you write data to a stream. Although
NSOutputStream is probably sufficient for most situations requiring this capability, you can create a
subclass of NSOutputStream if you want more specialized behavior (for example, you want to record
statistics on the data in a stream).

Overview 837
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

Methods to Override

To create a subclass of NSOutputStream you may have to implement initializers for the type of stream
data supported and suitably reimplement existing initializers. You must also provide complete
implementations of the following methods:

 ■ write:maxLength: (page 842)

From the current write pointer, take up to the number of bytes specified in the maxLength:
parameter from the client-supplied buffer (first parameter) and put them onto the stream. The
buffer must be of the size specified by the second parameter. To prepare for the next operation,
offset the write pointer by the number of bytes written. Return a signed integer based on the
outcome of the current operation:

 ❏ If the write operation is successful, return the actual number of bytes put onto the stream.

 ❏ If there was an error writing to the stream, return -1.

 ❏ If the stream is of a fixed length and has reached its capacity, return zero.

 ■ hasSpaceAvailable (page 840)

Return YES if the stream can currently accept more data, NO if it cannot. If you want to be
semantically compatible with NSOutputStream, return YES if a write must be attempted to
determine if space is available.

Tasks

Creating Streams

+ outputStreamToMemory (page 840)
Creates and returns an initialized output stream that will write stream data to memory.

+ outputStreamToBuffer:capacity: (page 839)
Creates and returns an initialized output stream that can write to a provided buffer.

+ outputStreamToFileAtPath:append: (page 839)
Creates and returns an initialized output stream for writing to a specified file.

– initToMemory (page 842)
Returns an initialized output stream that will write to memory.

– initToBuffer:capacity: (page 841)
Returns an initialized output stream that can write to a provided buffer.

– initToFileAtPath:append: (page 841)
Returns an initialized output stream for writing to a specified file.

Using Streams

– hasSpaceAvailable (page 840)
Returns whether the receiver can be written to.

838 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

– write:maxLength: (page 842)
Writes the contents of a provided data buffer to the receiver.

Class Methods

outputStreamToBuffer:capacity:
Creates and returns an initialized output stream that can write to a provided buffer.

+ (id)outputStreamToBuffer:(uint8_t *)buffer capacity:(NSUInteger)capacity

Parameters

buffer
The buffer the output stream will write to.

capacity
The size of the buffer in bytes.

Return Value
An initialized output stream that can write to buffer.

Discussion
The stream must be opened before it can be used.

When the number of bytes written to buffer has reached capacity, the stream’s streamStatus (page
949) will return NSStreamStatusAtEnd.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ outputStreamToMemory (page 840)
+ outputStreamToFileAtPath:append: (page 839)
– initToBuffer:capacity: (page 841)

Declared In
NSStream.h

outputStreamToFileAtPath:append:
Creates and returns an initialized output stream for writing to a specified file.

+ (id)outputStreamToFileAtPath:(NSString *)path append:(BOOL)shouldAppend

Parameters

path
The path to the file the output stream will write to.

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Class Methods 839
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

Return Value
An initialized output stream that can write to path.

Discussion
The stream must be opened before it can be used.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ outputStreamToMemory (page 840)
+ outputStreamToBuffer:capacity: (page 839)
– initToFileAtPath:append: (page 841)

Declared In
NSStream.h

outputStreamToMemory
Creates and returns an initialized output stream that will write stream data to memory.

+ (id)outputStreamToMemory

Return Value
An initialized output stream that will write stream data to memory.

Discussion
The stream must be opened before it can be used.

You retrieve the contents of the memory stream by sending the message propertyForKey: (page 947)
to the receiver with an argument of NSStreamDataWrittenToMemoryStreamKey.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ outputStreamToBuffer:capacity: (page 839)
+ outputStreamToFileAtPath:append: (page 839)
– initToMemory (page 842)

Declared In
NSStream.h

Instance Methods

hasSpaceAvailable
Returns whether the receiver can be written to.

- (BOOL)hasSpaceAvailable

840 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

Return Value
YES if the receiver can be written to or if a write must be attempted in order to determine if space is
available, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

initToBuffer:capacity:
Returns an initialized output stream that can write to a provided buffer.

- (id)initToBuffer:(uint8_t *)buffer capacity:(NSUInteger)capacity

Parameters

buffer
The buffer the output stream will write to.

capacity
The size of the buffer in bytes.

Return Value
An initialized output stream that can write to buffer.

Discussion
The stream must be opened before it can be used.

When the number of bytes written to buffer has reached capacity, the stream’s streamStatus (page
949) will return NSStreamStatusAtEnd.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initToMemory (page 842)
– initToFileAtPath:append: (page 841)
+ outputStreamToBuffer:capacity: (page 839)

Declared In
NSStream.h

initToFileAtPath:append:
Returns an initialized output stream for writing to a specified file.

- (id)initToFileAtPath:(NSString *)path append:(BOOL)shouldAppend

Parameters

path
The path to the file the output stream will write to.

Instance Methods 841
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

shouldAppend
YES if newly written data should be appended to any existing file contents, NO otherwise.

Return Value
An initialized output stream that can write to path.

Discussion
The stream must be opened before it can be used.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initToMemory (page 842)
– initToBuffer:capacity: (page 841)
+ outputStreamToFileAtPath:append: (page 839)

Declared In
NSStream.h

initToMemory
Returns an initialized output stream that will write to memory.

- (id)initToMemory

Return Value
An initialized output stream that will write stream data to memory.

Discussion
The stream must be opened before it can be used.

The contents of the memory stream are retrieved by passing the constant
NSStreamDataWrittenToMemoryStreamKey to propertyForKey: (page 947).

Availability
Available in iPhone OS 2.0 and later.

See Also
– initToBuffer:capacity: (page 841)
– initToFileAtPath:append: (page 841)
+ outputStreamToMemory (page 840)

Declared In
NSStream.h

write:maxLength:
Writes the contents of a provided data buffer to the receiver.

- (NSInteger)write:(const uint8_t *)buffer maxLength:(NSUInteger)length

842 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

Parameters

buffer
The data to write.

length
The length of the data buffer, in bytes.

Return Value
The number of bytes actually written, or -1 if an error occurs. If the receiver is a fixed-length stream
and has reached its capacity, 0 is returned.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

Instance Methods 843
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

844 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 1

NSOutputStream Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSFileHandle.h

Companion guide: Interacting with the Operating System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSPipe objects provide an object-oriented interface for accessing pipes. An NSPipe object represents
both ends of a pipe and enables communication through the pipe. A pipe is a one-way communications
channel between related processes; one process writes data, while the other process reads that data.
The data that passes through the pipe is buffered; the size of the buffer is determined by the underlying
operating system. NSPipe is an abstract class, the public interface of a class cluster.

Overview 845
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

NSPipe Class Reference

Tasks

Creating an NSPipe Object

– init (page 847)
Returns an initialized NSPipe object.

+ pipe (page 846)
Returns an NSPipe object.

Getting the File Handles for a Pipe

– fileHandleForReading (page 846)
Returns the receiver's read file handle.

– fileHandleForWriting (page 847)
Returns the receiver's write file handle.

Class Methods

pipe
Returns an NSPipe object.

+ (id)pipe

Return Value
An initialized NSPipe object. Returns nil if the method encounters errors while attempting to create
the pipe or the NSFileHandle objects that serve as endpoints of the pipe.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

Instance Methods

fileHandleForReading
Returns the receiver's read file handle.

- (NSFileHandle *)fileHandleForReading

846 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

NSPipe Class Reference

Return Value
The receiver's read file handle.The descriptor represented by this object is deleted, and the object itself
is automatically deallocated when the receiver is deallocated.

Discussion
You use the returned file handle to read from the pipe using NSFileHandle's read
methods—availableData (page 368),readDataToEndOfFile (page 372), andreadDataOfLength: (page
371).

You don’t need to send closeFile (page 369) to this object or explicitly release the object after you
have finished using it.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

fileHandleForWriting
Returns the receiver's write file handle.

- (NSFileHandle *)fileHandleForWriting

Return Value
The receiver's write file handle. This object is automatically deallocated when the receiver is deallocated.

Discussion
You use the returned file handle to write to the pipe using NSFileHandle's writeData: (page 377)
method. When you are finished writing data to this object, send it a closeFile (page 369) message
to delete the descriptor. Deleting the descriptor causes the reading process to receive an end-of-data
signal (an empty NSData object).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSFileHandle.h

init
Returns an initialized NSPipe object.

- (id)init

Return Value
An initialized NSPipe object. Returns nil if the method encounters errors while attempting to create
the pipe or the NSFileHandle objects that serve as endpoints of the pipe.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ pipe (page 846)

Instance Methods 847
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

NSPipe Class Reference

Declared In
NSFileHandle.h

848 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 2

NSPipe Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSPort.h

Companion guides: Run Loops
Distributed Objects

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSPort is an abstract class that represents a communication channel. Communication occurs between
NSPort objects, which typically reside in different threads or tasks. The distributed objects system
uses NSPort objects to send NSPortMessage objects back and forth. You should implement
interapplication communication using distributed objects whenever possible and use NSPort objects
only when necessary.

To receive incoming messages, NSPort objects must be added to an NSRunLoop object as input sources.
NSConnection objects automatically add their receive port when initialized.

Overview 849
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

When an NSPort object receives a port message, it forwards the message to its delegate in a
handleMachMessage: (page 556) or handlePortMessage: (page 857) message. The delegate should
implement only one of these methods to process the incoming message in whatever form desired.
handleMachMessage: (page 556) provides a message as a raw Mach message beginning with a
msg_header_t structure. handlePortMessage: (page 857) provides a message as an NSPortMessage
object, which is an object-oriented wrapper for a Mach message. If a delegate has not been set, the
NSPort object handles the message itself.

When you are finished using a port object, you must explicitly invalidate the port object prior to
sending it a release message. Similarly, if your application uses garbage collection, you must
invalidate the port object before removing any strong references to it. If you do not invalidate the
port, the resulting port object may linger and create a memory leak. To invalidate the port object,
invoke its invalidate method.

Foundation defines three concrete subclasses of NSPort. NSMachPort and NSMessagePort allow local
(on the same machine) communication only. NSSocketPort allows for both local and remote
communication, but may be more expensive than the others for the local case. When creating an
NSPort object, using allocWithZone: (page 852) or port (page 852), an NSMachPort object is created
instead.

Important: NSPort conforms to the NSCoding protocol, but only supports coding by an NSPortCoder.
NSPort and its subclasses do not support archiving.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
copyWithZone: (page 1250)

Tasks

Creating Instances

+ allocWithZone: (page 852)
Returns an instance of the NSMachPort class.

+ port (page 852)
Creates and returns a new NSPort object capable of both sending and receiving messages.

850 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

Validation

– invalidate (page 853)
Marks the receiver as invalid and posts an NSPortDidBecomeInvalidNotification (page 857)
to the default notification center.

– isValid (page 853)
Returns a Boolean value that indicates whether the receiver is valid.

Setting the Delegate

– setDelegate: (page 856)
Sets the receiver’s delegate to a given object.

– delegate (page 853)
Returns the receiver’s delegate.

Setting Information

– sendBeforeDate:components:from:reserved: (page 855)
This method is provided for subclasses that have custom types of NSPort.

– sendBeforeDate:msgid:components:from:reserved: (page 856)
This method is provided for subclasses that have custom types of NSPort.

– reservedSpaceLength (page 854)
Returns the number of bytes of space reserved by the receiver for sending data.

Port Monitoring

– removeFromRunLoop:forMode: (page 854)
This method should be implemented by a subclass to stop monitoring of a port when removed
from a give run loop in a given input mode.

– scheduleInRunLoop:forMode: (page 855)
This method should be implemented by a subclass to set up monitoring of a port when added
to a given run loop in a given input mode.

Handling Port Messages

– handlePortMessage: (page 857) delegate method
Processes a given incoming message on the port.

Tasks 851
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

Class Methods

allocWithZone:
Returns an instance of the NSMachPort class.

+ (id)allocWithZone:(NSZone *)zone

Parameters

zone
The memory zone in which to allocate the new object.

Return Value
An instance of the NSMachPort class.

Discussion
For backward compatibility on Mach, allocWithZone: returns an instance of the NSMachPort class
when sent to the NSPort class. Otherwise, it returns an instance of a concrete subclass that can be
used for messaging between threads or processes on the local machine, or, in the case of NSSocketPort,
between processes on separate machines.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

port
Creates and returns a new NSPort object capable of both sending and receiving messages.

+ (NSPort *)port

Return Value
A new NSPort object capable of both sending and receiving messages.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ allocWithZone: (page 852)

Declared In
NSPort.h

852 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

Instance Methods

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDelegate: (page 856)

Declared In
NSPort.h

invalidate
Marks the receiver as invalid and posts an NSPortDidBecomeInvalidNotification (page 857) to the
default notification center.

- (void)invalidate

Discussion
You must call this method before releasing a port object (or removing strong references to it if your
application is garbage collected).

Availability
Available in iPhone OS 2.0 and later.

See Also
– isValid (page 853)

Declared In
NSPort.h

isValid
Returns a Boolean value that indicates whether the receiver is valid.

- (BOOL)isValid

Return Value
NO if the receiver is known to be invalid, otherwise YES.

Discussion
An NSPort object becomes invalid when its underlying communication resource, which is operating
system dependent, is closed or damaged.

Instance Methods 853
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– invalidate (page 853)

Declared In
NSPort.h

removeFromRunLoop:forMode:
This method should be implemented by a subclass to stop monitoring of a port when removed from
a give run loop in a given input mode.

- (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters

runLoop
The run loop from which to remove the receiver.

mode
The run loop mode from which to remove the receiver

Discussion
This method should not be called directly.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 855)

Declared In
NSPort.h

reservedSpaceLength
Returns the number of bytes of space reserved by the receiver for sending data.

- (NSUInteger)reservedSpaceLength

Return Value
The number of bytes reserved by the receiver for sending data. The default length is 0.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

854 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

scheduleInRunLoop:forMode:
This method should be implemented by a subclass to set up monitoring of a port when added to a
given run loop in a given input mode.

- (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode

Parameters

runLoop
The run loop to which to add the receiver.

mode
The run loop mode to which to add the receiver

Discussion
This method should not be called directly.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 854)

Declared In
NSPort.h

sendBeforeDate:components:from:reserved:
This method is provided for subclasses that have custom types of NSPort.

- (BOOL)sendBeforeDate:(NSDate *)limitDate components:(NSMutableArray *)components
from:(NSPort *)receivePort reserved:(NSUInteger)headerSpaceReserved

Parameters

limitDate
The last instant that a message may be sent.

components
The message components.

receivePort
The receive port.

headerSpaceReserved
The number of bytes reserved for the header.

Discussion
NSConnection calls this method at the appropriate times. This method should not be called directly.
This method could raise an NSInvalidSendPortException, NSInvalidReceivePortException, or
an NSPortSendException, depending on the type of send port and the type of error.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

Instance Methods 855
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

sendBeforeDate:msgid:components:from:reserved:
This method is provided for subclasses that have custom types of NSPort.

- (BOOL)sendBeforeDate:(NSDate *)limitDate msgid:(NSUInteger)msgID
components:(NSMutableArray *)components from:(NSPort *)receivePort
reserved:(NSUInteger)headerSpaceReserved

Parameters

limitDate
The last instant that a message may be sent.

msgID
The message ID.

components
The message components.

receivePort
The receive port.

headerSpaceReserved
The number of bytes reserved for the header.

Discussion
NSConnection calls this method at the appropriate times. This method should not be called directly.
This method could raise an NSInvalidSendPortException, NSInvalidReceivePortException, or
an NSPortSendException, depending on the type of send port and the type of error.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

setDelegate:
Sets the receiver’s delegate to a given object.

- (void)setDelegate:(id)anObject

Parameters

anObject
The delegate for the receiver.

Discussion
Does not retain anObject.

Availability
Available in iPhone OS 2.0 and later.

See Also
– delegate (page 853)

Declared In
NSPort.h

856 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

Delegate Methods

handlePortMessage:
Processes a given incoming message on the port.

- (void)handlePortMessage:(NSPortMessage *)portMessage

Parameters

portMessage
An incoming port message.

Discussion
See the NSPortMessage class specification for more information.

The delegate should implement only one ofhandleMachMessage: (page 556) andhandlePortMessage:.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

Notifications

NSPortDidBecomeInvalidNotification
Posted from the invalidate (page 853) method, which is invoked when the NSPort is deallocated
or when it notices that its communication channel has been damaged. The notification object is the
NSPort object that has become invalid. This notification does not contain a userInfo dictionary.

An NSSocketPort object cannot detect when its connection to a remote port is lost, even if the remote
port is on the same machine. Therefore, it cannot invalidate itself and post this notification. Instead,
you must detect the timeout error when the next message is sent.

The NSPort object posting this notification is no longer useful, so all receivers should unregister
themselves for any notifications involving the NSPort. A method receiving this notification should
check to see which port became invalid before attempting to do anything. In particular, observers
that receive allNSPortDidBecomeInvalidNotificationmessages should be aware that communication
with the window server is handled through an NSPort. If this port becomes invalid, drawing operations
will cause a fatal error.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPort.h

Delegate Methods 857
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

858 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 3

NSPort Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSProcessinfo.h

Companion guide: Interacting with the Operating System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSProcessInfo class provides methods to access information about the current process. Each
process has a single, shared NSProcessInfo object, known as process information agent.

The process information agent can return such information as the arguments, environment variables,
host name, or process name. The processInfo (page 861) class method returns the shared agent for
the current process—that is, the process whose object sent the message. For example, the following
line returns the NSProcessInfo object, which then provides the name of the current process:

NSString *processName = [[NSProcessInfo processInfo] processName];

The NSProcessInfo class also includes the operatingSystem (page 863) method, which returns an
enum constant identifying the operating system on which the process is executing.

Overview 859
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

NSProcessInfo objects attempt to interpret environment variables and command-line arguments in
the user's default C string encoding if they cannot be converted to Unicode as UTF-8 strings. If neither
conversion works, these values are ignored by the NSProcessInfo object.

Tasks

Getting the Process Information Agent

+ processInfo (page 861)
Returns the process information agent for the process.

Accessing Process Information

– arguments (page 862)
Returns the command-line arguments for the process.

– environment (page 862)
Returns the variable names and their values in the environment from which the process was
launched.

– processIdentifier (page 864)
Returns the identifier of the process.

– globallyUniqueString (page 862)
Returns a global unique identifier for the process.

– processName (page 864)
Returns the name of the process.

– setProcessName: (page 865)
Sets the name of the process.

Getting Host Information

– hostName (page 863)
Returns the name of the host computer.

– operatingSystem (page 863)
Returns a constant to indicate the operating system on which the process is executing.

– operatingSystemName (page 863)
Returns a string containing the name of the operating system on which the process is executing.

– operatingSystemVersionString (page 863)
Returns a string containing the version of the operating system on which the process is
executing.

860 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

Getting Computer Information

– physicalMemory (page 864)
Provides the amount of physical memory on the computer.

– processorCount (page 865)
Provides the number of processing cores available on the computer.

– activeProcessorCount (page 861)
Provides the number of active processing cores available on the computer.

Class Methods

processInfo
Returns the process information agent for the process.

+ (NSProcessInfo *)processInfo

Return Value
Shared process information agent for the process.

Discussion
An NSProcessInfo (page 859) object is created the first time this method is invoked, and that same
object is returned on each subsequent invocation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

Instance Methods

activeProcessorCount
Provides the number of active processing cores available on the computer.

- (NSUInteger)activeProcessorCount

Return Value
Number of active processing cores.

Availability
Available in iPhone OS 2.0 and later.

See Also
– processorCount (page 865)

Class Methods 861
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

Declared In
NSProcessInfo.h

arguments
Returns the command-line arguments for the process.

- (NSArray *)arguments

Return Value
Array of strings with the process’s command-line arguments.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

environment
Returns the variable names and their values in the environment from which the process was launched.

- (NSDictionary *)environment

Return Value
Dictionary of environment-variable names (keys) and their values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

globallyUniqueString
Returns a global unique identifier for the process.

- (NSString *)globallyUniqueString

Return Value
Global ID for the process. The ID includes the host name, process ID, and a time stamp, which ensures
that the ID is unique for the network.

Discussion
This method generates a new string each time it is invoked, so it also uses a counter to guarantee that
strings created from the same process are unique.

Availability
Available in iPhone OS 2.0 and later.

See Also
– processName (page 864)

862 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

Declared In
NSProcessInfo.h

hostName
Returns the name of the host computer.

- (NSString *)hostName

Return Value
Host name of the computer.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

operatingSystem
Returns a constant to indicate the operating system on which the process is executing.

- (unsigned int)operatingSystem

Return Value
Operating system identifier. See “Constants” (page 866) for a list of possible values. In Mac OS X, it’s
NSMACHOperatingSystem.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

operatingSystemName
Returns a string containing the name of the operating system on which the process is executing.

- (NSString *)operatingSystemName

Return Value
Operating system name. In Mac OS X, it’s @"NSMACHOperatingSystem"

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

operatingSystemVersionString
Returns a string containing the version of the operating system on which the process is executing.

Instance Methods 863
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

- (NSString *)operatingSystemVersionString

Return Value
Operating system version. This string is human readable, localized, and is appropriate for displaying
to the user. This string is not appropriate for parsing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

physicalMemory
Provides the amount of physical memory on the computer.

- (unsigned long long)physicalMemory

Return Value
Amount of physical memory in bytes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProcessInfo.h

processIdentifier
Returns the identifier of the process.

- (int)processIdentifier

Return Value
Process ID of the process.

Availability
Available in iPhone OS 2.0 and later.

See Also
– processName (page 864)

Declared In
NSProcessInfo.h

processName
Returns the name of the process.

- (NSString *)processName

Return Value
Name of the process.

864 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

Discussion
The process name is used to register application defaults and is used in error messages. It does not
uniquely identify the process.

Availability
Available in iPhone OS 2.0 and later.

See Also
– processIdentifier (page 864)
– setProcessName: (page 865)

Declared In
NSProcessInfo.h

processorCount
Provides the number of processing cores available on the computer.

- (NSUInteger)processorCount

Return Value
Number of processing cores.

Availability
Available in iPhone OS 2.0 and later.

See Also
– activeProcessorCount (page 861)

Declared In
NSProcessInfo.h

setProcessName:
Sets the name of the process.

- (void)setProcessName:(NSString *)name

Parameters

name
New name for the process.

Discussion

Warning: User defaults and other aspects of the environment might depend on the process
name, so be very careful if you change it. Setting the process name in this manner is not thread
safe.

Availability
Available in iPhone OS 2.0 and later.

See Also
– processName (page 864)

Instance Methods 865
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

Declared In
NSProcessInfo.h

Constants

NSProcessInfo—Operating Systems
The following constants are provided by the NSProcessInfo class as return values for
operatingSystem (page 863).

enum {
NSWindowsNTOperatingSystem = 1,
NSWindows95OperatingSystem,
NSSolarisOperatingSystem,
NSHPUXOperatingSystem,
NSMACHOperatingSystem,
NSSunOSOperatingSystem,
NSOSF1OperatingSystem

};

Constants
NSHPUXOperatingSystem

Indicates the HP UX operating system.

Available in iPhone OS 2.0 and later.

Declared in NSProcessInfo.h

NSMACHOperatingSystem
Indicates the Mac OS X operating system.

Available in iPhone OS 2.0 and later.

Declared in NSProcessInfo.h

NSOSF1OperatingSystem
Indicates the OSF/1 operating system.

Available in iPhone OS 2.0 and later.

Declared in NSProcessInfo.h

NSSolarisOperatingSystem
Indicates the Solaris operating system.

Available in iPhone OS 2.0 and later.

Declared in NSProcessInfo.h

NSSunOSOperatingSystem
Indicates the Sun OS operating system.

Available in iPhone OS 2.0 and later.

Declared in NSProcessInfo.h

NSWindows95OperatingSystem
Indicates the Windows 95 operating system.

Available in iPhone OS 2.0 and later.

Declared in NSProcessInfo.h

866 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

NSWindowsNTOperatingSystem
Indicates the Windows NT operating system.

Available in iPhone OS 2.0 and later.

Declared in NSProcessInfo.h

Declared In
NSProcessInfo.h

Constants 867
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

868 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 4

NSProcessInfo Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSPropertyList.h

Companion guides: Archives and Serializations Programming Guide for Cocoa
Property List Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSPropertyListSerialization class provides methods that convert property list objects to and
from several serialized formats. Property list objects include NSData, NSString, NSArray,
NSDictionary, NSDate, and NSNumber objects. These objects are toll-free bridged with their respective
Core Foundation types (CFData, CFString, and so on). For more about toll-free bridging, see
Interchangeable Data Types.

Property list serialization automatically takes account of endianness on different platforms—for
example, you can correctly read on an Intel-based Macintosh a binary property list created on a
PowerPC-based Macintosh.

Overview 869
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

NSPropertyListSerialization Class
Reference

Tasks

Serializing a Property List

+ dataFromPropertyList:format:errorDescription: (page 870)
Returns an NSData object containing a given property list in a specified format.

Deserializing a Property List

+ propertyListFromData:mutabilityOption:format:errorDescription: (page 871)
Returns a property list object corresponding to the representation in a given NSData object.

Validating a Property List

+ propertyList:isValidForFormat: (page 871)
Returns a Boolean value that indicates whether a given property list is valid for a given format.

Class Methods

dataFromPropertyList:format:errorDescription:
Returns an NSData object containing a given property list in a specified format.

+ (NSData *)dataFromPropertyList:(id)plist format:(NSPropertyListFormat)format
errorDescription:(NSString **)errorString

Parameters

plist
A property list object. plistmust be a kind of NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary object. Container objects must also contain only these kinds of objects.

format
A property list format. Possible values for format are described in NSPropertyListFormat (page
873).

errorString
Upon return, if the conversion is successful, errorString is nil. If the conversion fails, upon
return contains a string describing the nature of the error. If you receive a string, you must
release it.

Return Value
An NSData object containing plist in the format specified by format.

Special Considerations

Unlike the normal memory management rules for Cocoa, strings returned in errorString need to
be released by the caller.

870 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

NSPropertyListSerialization Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
+ propertyListFromData:mutabilityOption:format:errorDescription: (page 871)

Declared In
NSPropertyList.h

propertyList:isValidForFormat:
Returns a Boolean value that indicates whether a given property list is valid for a given format.

+ (BOOL)propertyList:(id)plist isValidForFormat:(NSPropertyListFormat)format

Parameters

plist
A property list object.

format
A property list format. Possible values for format are listed in NSPropertyListFormat (page
873).

Return Value
YES if plist is a valid property list in format format, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPropertyList.h

propertyListFromData:mutabilityOption:format:errorDescription:
Returns a property list object corresponding to the representation in a given NSData object.

+ (id)propertyListFromData:(NSData *)data
mutabilityOption:(NSPropertyListMutabilityOptions)opt
format:(NSPropertyListFormat *)format errorDescription:(NSString **)errorString

Parameters

data
A data object containing a serialized property list.

opt
Determines whether the property list’s contents are created as mutable objects, where possible.
Possible values are described in NSPropertyListMutabilityOptions (page 872).

format
If the property list is valid, upon return contains the format. format can be NULL, in which case
the property list format is not returned. Possible values are described in
NSPropertyListFormat (page 873).

Class Methods 871
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

NSPropertyListSerialization Class Reference

errorString
Upon return, if the conversion is successful, errorString is nil. If the conversion fails, upon
return contains a string describing the nature of the error. If you receive a string, you must
release it.

Return Value
A property list object corresponding to the representation in data. If data is not in a supported format,
returns nil.

Special Considerations

Unlike the normal memory management rules for Cocoa, strings returned in errorString need to
be released by the caller.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ dataFromPropertyList:format:errorDescription: (page 870)

Declared In
NSPropertyList.h

Constants

NSPropertyListMutabilityOptions
These constants specify mutability options in property lists.

typedef enum {
NSPropertyListImmutable = kCFPropertyListImmutable,
NSPropertyListMutableContainers = kCFPropertyListMutableContainers,
NSPropertyListMutableContainersAndLeaves =

kCFPropertyListMutableContainersAndLeaves
} NSPropertyListMutabilityOptions;

Constants
NSPropertyListImmutable

Causes the returned property list to contain immutable objects.

Available in iPhone OS 2.0 and later.

Declared in NSPropertyList.h

NSPropertyListMutableContainers
Causes the returned property list to have mutable containers but immutable leaves.

Available in iPhone OS 2.0 and later.

Declared in NSPropertyList.h

NSPropertyListMutableContainersAndLeaves
Causes the returned property list to have mutable containers and leaves.

Available in iPhone OS 2.0 and later.

Declared in NSPropertyList.h

872 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

NSPropertyListSerialization Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPropertyList.h

NSPropertyListFormat
These constants are used to specify a property list serialization format.

typedef enum {
NSPropertyListOpenStepFormat = kCFPropertyListOpenStepFormat,
NSPropertyListXMLFormat_v1_0 = kCFPropertyListXMLFormat_v1_0,
NSPropertyListBinaryFormat_v1_0 = kCFPropertyListBinaryFormat_v1_0

} NSPropertyListFormat;

Constants
NSPropertyListOpenStepFormat

Specifies the old-style ASCII property list format inherited from the OpenStep APIs.

Important: The NSPropertyListOpenStepFormat constant is not supported for writing. It can be
used only for reading old-style property lists.

Available in iPhone OS 2.0 and later.

Declared in NSPropertyList.h

NSPropertyListXMLFormat_v1_0
Specifies the XML property list format.

Available in iPhone OS 2.0 and later.

Declared in NSPropertyList.h

NSPropertyListBinaryFormat_v1_0
Specifies the binary property list format.

Available in iPhone OS 2.0 and later.

Declared in NSPropertyList.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPropertyList.h

Constants 873
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

NSPropertyListSerialization Class Reference

874 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 5

NSPropertyListSerialization Class Reference

Inherits from: none (NSProxy is a root class)

Conforms to: NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSProxy.h

Companion guide: Distributed Objects

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSProxy is an abstract superclass defining an API for objects that act as stand-ins for other objects or
for objects that don’t exist yet. Typically, a message to a proxy is forwarded to the real object or causes
the proxy to load (or transform itself into) the real object. Subclasses of NSProxy can be used to
implement transparent distributed messaging (for example, NSDistantObject) or for lazy instantiation
of objects that are expensive to create.

NSProxy implements the basic methods required of a root class, including those defined in the NSObject
protocol. However, as an abstract class it doesn’t provide an initialization method, and it raises an
exception upon receiving any message it doesn’t respond to. A concrete subclass must therefore
provide an initialization or creation method and override the forwardInvocation: (page 880) and
methodSignatureForSelector: (page 880) methods to handle messages that it doesn’t implement

Overview 875
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

itself. A subclass’s implementation of forwardInvocation: (page 880) should do whatever is needed
to process the invocation, such as forwarding the invocation over the network or loading the real
object and passing it the invocation. methodSignatureForSelector: (page 880) is required to provide
argument type information for a given message; a subclass’s implementation should be able to
determine the argument types for the messages it needs to forward and should construct an
NSMethodSignature object accordingly. See the NSDistantObject, NSInvocation, and
NSMethodSignature class specifications for more information.

Adopted Protocols

NSObject
– autorelease (page 1303)
– class (page 1304)
– conformsToProtocol: (page 1304)
– description (page 1305)
– hash (page 1305)
– isEqual: (page 1306)
– isKindOfClass: (page 1306)
– isMemberOfClass: (page 1307)
– isProxy (page 1308)
– performSelector: (page 1308)
– performSelector:withObject: (page 1309)
– performSelector:withObject:withObject: (page 1309)
– release (page 1310)
– respondsToSelector: (page 1311)
– retain (page 1312)
– retainCount (page 1312)
– self (page 1313)
– superclass (page 1313)
– zone (page 1314)

Tasks

Creating Instances

+ alloc (page 877)
Returns a new instance of the receiving class

+ allocWithZone: (page 878)
Returns a new instance of the receiving class

876 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

Deallocating Instances

– dealloc (page 879)
Deallocates the memory occupied by the receiver.

Finalizing an Object

– finalize (page 879)
The garbage collector invokes this method on the receiver before disposing of the memory it
uses.

Handling Unimplemented Methods

– forwardInvocation: (page 880)
Passes a given invocation to the real object the proxy represents.

– methodSignatureForSelector: (page 880)
Raises NSInvalidArgumentException. Override this method in your concrete subclass to
return a proper NSMethodSignature object for the given selector and the class your proxy
objects stand in for.

Introspecting a Proxy Class

+ respondsToSelector: (page 878)
Returns a Boolean value that indicates whether the receiving class responds to a given selector.

Describing a Proxy Class or Object

+ class (page 878)
Returns self (the class object).

– description (page 879)
Returns an NSString object containing the real class name and the id of the receiver as a
hexadecimal number.

Class Methods

alloc
Returns a new instance of the receiving class

+ (id)alloc

Availability
Available in iPhone OS 2.0 and later.

Class Methods 877
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

Declared In
NSProxy.h

allocWithZone:
Returns a new instance of the receiving class

+ (id)allocWithZone:(NSZone *)zone

Return Value
A new instance of the receiving class, as described in the NSObject class specification under the
allocWithZone: (page 783) class method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProxy.h

class
Returns self (the class object).

+ (Class)class

Return Value
self. Because this is a class method, it returns the class object

Availability
Available in iPhone OS 2.0 and later.

See Also
class (page 785) (NSObject)
class (page 1304) (NSObject protocol)

Declared In
NSProxy.h

respondsToSelector:
Returns a Boolean value that indicates whether the receiving class responds to a given selector.

+ (BOOL)respondsToSelector:(SEL)aSelector

Parameters

aSelector
A selector.

Return Value
YES if the receiving class responds to aSelector messages, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

878 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

Declared In
NSProxy.h

Instance Methods

dealloc
Deallocates the memory occupied by the receiver.

- (void)dealloc

Discussion
This method behaves as described in the NSObject class specification under the dealloc (page 799)
instance method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– finalize (page 879)

Declared In
NSProxy.h

description
Returns an NSString object containing the real class name and the id of the receiver as a hexadecimal
number.

- (NSString *)description

Return Value
An NSString object containing the real class name and the id of the receiver as a hexadecimal number.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProxy.h

finalize
The garbage collector invokes this method on the receiver before disposing of the memory it uses.

- (void)finalize

Discussion
This method behaves as described in the NSObject class specification under the finalize (page 800)
instance method. Note that a finalize method must be thread-safe.

Instance Methods 879
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– dealloc (page 879)

Declared In
NSProxy.h

forwardInvocation:
Passes a given invocation to the real object the proxy represents.

- (void)forwardInvocation:(NSInvocation *)anInvocation

Parameters

anInvocation
The invocation to forward.

Discussion
NSProxy’s implementation merely raises NSInvalidArgumentException. Override this method in
your subclass to handle anInvocation appropriately, at the very least by setting its return value.

For example, if your proxy merely forwards messages to an instance variable named realObject, it
can implement forwardInvocation: like this:

– (void)forwardInvocation:(NSInvocation *)anInvocation
{

[anInvocation setTarget:realObject];
[anInvocation invoke];
return;

}

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSProxy.h

methodSignatureForSelector:
Raises NSInvalidArgumentException. Override this method in your concrete subclass to return a
proper NSMethodSignature object for the given selector and the class your proxy objects stand in
for.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Parameters

aSelector
The selector for which to return a method signature.

Return Value
Not applicable. The implementation provided by NSProxy raises an exception.

880 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

Discussion
Be sure to avoid an infinite loop when necessary by checking that aSelector isn’t the selector for
this method itself and by not sending any message that might invoke this method.

For example, if your proxy merely forwards messages to an instance variable named realObject, it
can implement methodSignatureForSelector: like this:

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{

return [realObject methodSignatureForSelector:aSelector];
}

Availability
Available in iPhone OS 2.0 and later.

See Also
methodSignatureForSelector: (page 805) (NSObject)

Declared In
NSProxy.h

Instance Methods 881
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

882 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 6

NSProxy Class Reference

Inherits from: NSObject

Conforms to: NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSLock.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSRecursiveLock defines a lock that may be acquired multiple times by the same thread without
causing a deadlock, a situation where a thread is permanently blocked waiting for itself to relinquish
a lock. While the locking thread has one or more locks, all other threads are prevented from accessing
the code protected by the lock.

Overview 883
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

NSRecursiveLock Class Reference

Adopted Protocols

NSLocking
– lock (page 1298)
– unlock (page 1298)

Tasks

Acquiring a Lock

– lockBeforeDate: (page 884)
Attempts to acquire a lock before a given date.

– tryLock (page 885)
Attempts to acquire a lock, and immediately returns a Boolean value that indicates whether
the attempt was successful.

Naming the Lock

– setName: (page 885)
Assigns a name to the receiver

– name (page 885)
Returns the name associated with the receiver.

Instance Methods

lockBeforeDate:
Attempts to acquire a lock before a given date.

- (BOOL)lockBeforeDate:(NSDate *)limit

Parameters

limit
The time before which the lock should be acquired.

Return Value
YES if the lock is acquired before limit, otherwise NO.

Discussion
The thread is blocked until the receiver acquires the lock or limit is reached.

Availability
Available in iPhone OS 2.0 and later.

884 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

NSRecursiveLock Class Reference

Declared In
NSLock.h

name
Returns the name associated with the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setName: (page 885)

Declared In
NSLock.h

setName:
Assigns a name to the receiver

- (void)setName:(NSString *)newName

Parameters

newName
The new name for the receiver. This method makes a copy of the specified string.

Discussion
You can use a name string to identify a lock within your code. Cocoa also uses this name as part of
any error descriptions involving the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– name (page 885)

Declared In
NSLock.h

tryLock
Attempts to acquire a lock, and immediately returns a Boolean value that indicates whether the
attempt was successful.

- (BOOL)tryLock

Return Value
YES if successful, otherwise NO.

Instance Methods 885
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

NSRecursiveLock Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

886 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 7

NSRecursiveLock Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSRunLoop.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An
NSRunLoop object processes input for sources such as mouse and keyboard events from the window
system, NSPort objects, and NSConnection objects. An NSRunLoop object also processes NSTimer
events.

In general, your application does not need to either create or explicitly manage NSRunLoop objects.
Each NSThread object, including the application’s main thread, has an NSRunLoop object automatically
created for it as needed. If you need to access the current thread’s run loop, you do so with the class
method currentRunLoop (page 889).

Overview 887
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Note that from the perspective of NSRunloop, NSTimer objects are not "input"—they are a special type,
and one of the things that means is that they do not cause the run loop to return when they fire.

Warning: The NSRunLoop class is generally not considered to be thread-safe and its methods
should only be called within the context of the current thread. You should never try to call the
methods of an NSRunLoop object running in a different thread, as doing so might cause unexpected
results.

Tasks

Accessing Run Loops and Modes

+ currentRunLoop (page 889)
Returns the NSRunLoop object for the current thread.

– currentMode (page 892)
Returns the receiver's current input mode.

– limitDateForMode: (page 893)
Performs one pass through the run loop in the specified mode and returns the date at which
the next timer is scheduled to fire.

+ mainRunLoop (page 889)
Returns the run loop of the main thread.

– getCFRunLoop (page 893)
Returns the receiver's underlying CFRunLoop Reference object.

Managing Timers

– addTimer:forMode: (page 891)
Registers a given timer with a given input mode.

Managing Ports

– addPort:forMode: (page 890)
Adds a port as an input source to the specified mode of the run loop.

– removePort:forMode: (page 895)
Removes a port from the specified input mode of the run loop.

Running a Loop

– run (page 895)
Puts the receiver into a permanent loop, during which time it processes data from all attached
input sources.

888 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

– runMode:beforeDate: (page 896)
Runs the loop once, blocking for input in the specified mode until a given date.

– runUntilDate: (page 896)
Runs the loop until the specified date, during which time it processes data from all attached
input sources.

– acceptInputForMode:beforeDate: (page 890)
Runs the loop once or until the specified date, accepting input only for the specified mode.

Scheduling and Canceling Messages

– performSelector:target:argument:order:modes: (page 894)
Schedules the sending of a message on the current run loop.

– cancelPerformSelector:target:argument: (page 891)
Cancels the sending of a previously scheduled message.

– cancelPerformSelectorsWithTarget: (page 892)
Cancels all outstanding ordered performs scheduled with a given target.

Class Methods

currentRunLoop
Returns the NSRunLoop object for the current thread.

+ (NSRunLoop *)currentRunLoop

Return Value
The NSRunLoop object for the current thread.

Discussion
If a run loop does not yet exist for the thread, one is created and returned.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currentMode (page 892)

Declared In
NSRunLoop.h

mainRunLoop
Returns the run loop of the main thread.

+ (NSRunLoop *)mainRunLoop

Return Value
An object representing the main thread’s run loop.

Class Methods 889
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

Instance Methods

acceptInputForMode:beforeDate:
Runs the loop once or until the specified date, accepting input only for the specified mode.

- (void)acceptInputForMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Parameters

mode
The mode in which to run. You may specify custom modes or use one of the modes listed in
“Run Loop Modes” (page 897).

limitDate
The date up until which to run.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise,
it runs the run loop once, returning as soon as one input source processes a message or the specifed
time elapses.

Note: A timer is not considered an input source and may fire multiple times while waiting for this
method to return

Manually removing all known input sources and timers from the run loop is not a guarantee that the
run loop will exit. Mac OS X can install and remove additional input sources as needed to process
requests targeted at the receiver’s thread. Those sources could therefore prevent the run loop from
exiting.

Availability
Available in iPhone OS 2.0 and later.

See Also
– runMode:beforeDate: (page 896)

Declared In
NSRunLoop.h

addPort:forMode:
Adds a port as an input source to the specified mode of the run loop.

- (void)addPort:(NSPort *)aPort forMode:(NSString *)mode

890 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Parameters

aPort
The port to add to the receiver.

mode
The mode in which to add aPort. You may specify a custom mode or use one of the modes
listed in “Run Loop Modes” (page 897).

Discussion
This method schedules the port with the receiver. You can add a port to multiple input modes. When
the receiver is running in the specified mode, it dispatches messages destined for that port to the
port’s designated handler routine.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removePort:forMode: (page 895)

Declared In
NSRunLoop.h

addTimer:forMode:
Registers a given timer with a given input mode.

- (void)addTimer:(NSTimer *)aTimer forMode:(NSString *)mode

Parameters

aTimer
The timer to register with the receiver.

mode
The mode in which to add aTimer. You may specify a custom mode or use one of the modes
listed in “Run Loop Modes” (page 897).

Discussion
You can add a timer to multiple input modes. While running in the designated mode, the receiver
causes the timer to fire on or after its scheduled fire date. Upon firing, the timer invokes its associated
handler routine, which is a selector on a designated object.

The receiver retains aTimer. To remove a timer from all run loop modes on which it is installed, send
an invalidate (page 1070) message to the timer.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

cancelPerformSelector:target:argument:
Cancels the sending of a previously scheduled message.

Instance Methods 891
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

- (void)cancelPerformSelector:(SEL)aSelector target:(id)target
argument:(id)anArgument

Parameters

aSelector
The previously-specified selector.

target
The previously-specified target.

anArgument
The previously-specified argument.

Discussion
You can use this method to cancel a message previously scheduled using the
performSelector:target:argument:order:modes: (page 894) method. The parameters identify
the message you want to cancel and must match those originally specified when the selector was
scheduled. This method removes the perform request from all modes of the run loop.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

cancelPerformSelectorsWithTarget:
Cancels all outstanding ordered performs scheduled with a given target.

- (void)cancelPerformSelectorsWithTarget:(id)target

Parameters

target
The previously-specified target.

Discussion
This method cancels the previously scheduled messages associated with the target, ignoring the
selector and argument of the scheduled operation. This is in contrast to
cancelPerformSelector:target:argument: (page 891), which requires you to match the selector
and argument as well as the target. This method removes the perform requests for the object from all
modes of the run loop.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

currentMode
Returns the receiver's current input mode.

- (NSString *)currentMode

892 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Return Value
The receiver's current input mode. This method returns the current input mode only while the receiver
is running; otherwise, it returns nil.

Discussion
The current mode is set by the methods that run the run loop, such as
acceptInputForMode:beforeDate: (page 890) and runMode:beforeDate: (page 896).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ currentRunLoop (page 889)
– limitDateForMode: (page 893)
– run (page 895)
– runUntilDate: (page 896)

Declared In
NSRunLoop.h

getCFRunLoop
Returns the receiver's underlying CFRunLoop Reference object.

- (CFRunLoopRef)getCFRunLoop

Return Value
The receiver's underlying CFRunLoop Reference object.

Discussion
You can use the returned run loop to configure the current run loop using Core Foundation function
calls. For example, you might use this function to set up a run loop observer.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

limitDateForMode:
Performs one pass through the run loop in the specified mode and returns the date at which the next
timer is scheduled to fire.

- (NSDate *)limitDateForMode:(NSString *)mode

Parameters

mode
The run loop mode to search. You may specify custom modes or use one of the modes listed
in “Run Loop Modes” (page 897).

Return Value
The date at which the next timer is scheduled to fire, or nil if there are no input sources for this mode.

Instance Methods 893
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Discussion
The run loop is entered with an immediate timeout, so the run loop does not block, waiting for input,
if no input sources need processing.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRunLoop.h

performSelector:target:argument:order:modes:
Schedules the sending of a message on the current run loop.

- (void)performSelector:(SEL)aSelector target:(id)target argument:(id)anArgument
order:(NSUInteger)order modes:(NSArray *)modes

Parameters

aSelector
A selector that identifies the method to invoke. This method should not have a significant
return value and should take a single argument of type id.

target
The object that defines the selector in aSelector.

anArgument
The argument to pass to the method when it is invoked. Pass nil if the method does not take
an argument.

order
The priority for the message. If multiple messages are scheduled, the messages with a lower
order value are sent before messages with a higher order value.

modes
An array of input modes for which the message may be sent. You may specify custom modes
or use one of the modes listed in “Run Loop Modes” (page 897).

Discussion
This method sets up a timer to perform the aSelector message on the current thread’s run loop at
the start of the next run loop iteration. The timer is configured to run in the modes specified by the
modes parameter. When the timer fires, the thread attempts to dequeue the message from the run
loop and perform the selector. It succeeds if the run loop is running and in one of the specified modes;
otherwise, the timer waits until the run loop is in one of those modes.

This method returns before the aSelector message is sent. The receiver retains the target and
anArgument objects until the timer for the selector fires, and then releases them as part of its cleanup.

Use this method if you want multiple messages to be sent after the current event has been processed
and you want to make sure these messages are sent in a certain order.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cancelPerformSelector:target:argument: (page 891)

894 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Declared In
NSRunLoop.h

removePort:forMode:
Removes a port from the specified input mode of the run loop.

- (void)removePort:(NSPort *)aPort forMode:(NSString *)mode

Parameters

aPort
The port to remove from the receiver.

mode
The mode from which to remove aPort. You may specify a custom mode or use one of the
modes listed in “Run Loop Modes” (page 897).

Discussion
If you added the port to multiple input modes, you must remove it from each mode separately.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addPort:forMode: (page 890)

Declared In
NSRunLoop.h

run
Puts the receiver into a permanent loop, during which time it processes data from all attached input
sources.

- (void)run

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise,
it runs the receiver in the NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: (page
896). In other words, this method effectively begins an infinite loop that processes data from the run
loop’s input sources and timers.

Manually removing all known input sources and timers from the run loop is not a guarantee that the
run loop will exit. Mac OS X can install and remove additional input sources as needed to process
requests targeted at the receiver’s thread. Those sources could therefore prevent the run loop from
exiting.

If you want the run loop to terminate, you shouldn't use this method. Instead, use one of the other
run methods and also check other arbitrary conditions of your own, in a loop. A simple example
would be:

BOOL shouldKeepRunning = YES; // global
NSRunLoop *theRL = [NSRunLoop currentRunLoop];
while (shouldKeepRunning && [theRL runMode:NSDefaultRunLoopMode beforeDate:[NSDate
distantFuture]]);

Instance Methods 895
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

where shouldKeepRunning is set to NO somewhere else in the program.

Availability
Available in iPhone OS 2.0 and later.

See Also
– runUntilDate: (page 896)

Declared In
NSRunLoop.h

runMode:beforeDate:
Runs the loop once, blocking for input in the specified mode until a given date.

- (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Parameters

mode
The mode in which to run. You may specify custom modes or use one of the modes listed in
“Run Loop Modes” (page 897).

limitDate
The date until which to block.

Return Value
NO without starting the run loop if there are no input sources in mode; otherwise YES.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise,
it returns after either the first input source is processed or limitDate is reached. Manually removing
all known input sources and timers from the run loop is not a guarantee that the run loop will exit.
Mac OS X may install and remove additional input sources as needed to process requests targeted at
the receiver’s thread. Those sources could therefore prevent the run loop from exiting.

Note: A timer is not considered an input source and may fire multiple times while waiting for this
method to return

Availability
Available in iPhone OS 2.0 and later.

See Also
– run (page 895)
– runUntilDate: (page 896)

Declared In
NSRunLoop.h

runUntilDate:
Runs the loop until the specified date, during which time it processes data from all attached input
sources.

896 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

- (void)runUntilDate:(NSDate *)limitDate

Parameters

limitDate
The date up until which to run.

Discussion
If no input sources or timers are attached to the run loop, this method exits immediately; otherwise,
it runs the receiver in the NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: (page
896) until the specified expiration date.

Manually removing all known input sources and timers from the run loop is not a guarantee that the
run loop will exit. Mac OS X can install and remove additional input sources as needed to process
requests targeted at the receiver’s thread. Those sources could therefore prevent the run loop from
exiting.

Availability
Available in iPhone OS 2.0 and later.

See Also
– run (page 895)

Declared In
NSRunLoop.h

Constants

Run Loop Modes
NSRunLoop defines the following run loop mode.

extern NSString *NSDefaultRunLoopMode;

Constants
NSDefaultRunLoopMode

The mode to deal with input sources other than NSConnection objects.

This is the most commonly used run-loop mode.

Available in iPhone OS 2.0 and later.

Declared in NSRunLoop.h

NSRunLoopCommonModes
Objects added to a run loop using this value as the mode are monitored by all run loop modes
that have been declared as a member of the set of “common" modes; see the description of
CFRunLoopAddCommonMode for details.

Available in Mac OS X v10.5 and later.

Available in iPhone OS 2.0 and later.

Declared in NSRunLoop.h

Declared In
Foundation/NSRunLoop.h

Additional run loop modes are defined by NSConnection and NSApplication.

Constants 897
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Use this mode to indicate NSConnection objects waiting for
replies. Defined in the Foundation/NSConnection.h header file.
You rarely need to use this mode.

NSConnectionReplyMode

A run loop should be set to this mode when waiting for input
from a modal panel, such as NSSavePanel or NSOpenPanel.

NSModalPanelRunLoopMode

A run loop should be set to this mode when tracking events
modally, such as a mouse-dragging loop.

NSEventTrackingRunLoopMode

898 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 8

NSRunLoop Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSScanner.h
Foundation/NSDecimalNumber.h

Companion guide: String Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSScanner class is an abstract superclass of a class cluster that declares the programmatic interface
for an object that scans values from an NSString object.

An NSScanner object interprets and converts the characters of an NSString object into number and
string values. You assign the scanner’s string on creating it, and the scanner progresses through the
characters of that string from beginning to end as you request items.

Overview 899
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Because of the nature of class clusters, scanner objects aren’t actual instances of the NSScanner class
but one of its private subclasses. Although a scanner object’s class is private, its interface is public, as
declared by this abstract superclass, NSScanner. The primitive methods of NSScanner are string (page
913) and all of the methods listed under “Configuring a Scanner” (page 900) in the "Methods by Task"
section. The objects you create using this class are referred to as scanner objects (and when no confusion
will result, merely as scanners).

You can set an NSScanner object to ignore a set of characters as it scans the string using the
setCharactersToBeSkipped: (page 912) method. The default set of characters to skip is the whitespace
and newline character set.

To retrieve the unscanned remainder of the string, use [[scanner
string]substringFromIndex: (page 1038)[scanner scanLocation]].

Adopted Protocols

NSCopying
– copyWithZone: (page 1250)

Tasks

Creating an Scanner

+ scannerWithString: (page 902)
Returns an NSScanner object that scans a given string.

+ localizedScannerWithString: (page 902)
Returns an NSScanner object that scans a given string according to the user’s default locale.

– initWithString: (page 904)
Returns an NSScanner object initialized to scan a given string.

Getting a Scanner’s String

– string (page 913)
Returns the string with which the receiver was created or initialized.

Configuring a Scanner

– setScanLocation: (page 913)
Sets the location at which the next scan operation will begin to a given index.

– scanLocation (page 909)
Returns the character position at which the receiver will begin its next scanning operation.

– setCaseSensitive: (page 911)
Sets whether the receiver is case sensitive when scanning characters.

900 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

– caseSensitive (page 903)
Returns a Boolean value that indicates whether the receiver distinguishes case in the characters
it scans.

– setCharactersToBeSkipped: (page 912)
Sets the set of characters to ignore when scanning for a value representation.

– charactersToBeSkipped (page 903)
Returns a character set containing the characters the receiver ignores when looking for a
scannable element.

– setLocale: (page 912)
Sets the receiver’s locale to a given locale.

– locale (page 904)
Returns the receiver’s locale.

Scanning a String

– scanCharactersFromSet:intoString: (page 905)
Scans the string as long as characters from a given character set are encountered, accumulating
characters into a string that’s returned by reference.

– scanUpToCharactersFromSet:intoString: (page 910)
Scans the string until a character from a given character set is encountered, accumulating
characters into a string that’s returned by reference.

– scanDecimal: (page 905)
Scans for an NSDecimal value, returning a found value by reference.

– scanDouble: (page 906)
Scans for a double value, returning a found value by reference.

– scanFloat: (page 906)
Scans for a float value, returning a found value by reference.

– scanInteger: (page 908)
Scans for an NSInteger value from a decimal representation, returning a found value by
reference

– scanInt: (page 907)
Scans for an int value from a decimal representation, returning a found value by reference.

– scanHexInt: (page 907)
Scans for an unsigned value from a hexadecimal representation, returning a found value by
reference.

– scanLongLong: (page 909)
Scans for a long long value from a decimal representation, returning a found value by
reference.

– scanString:intoString: (page 909)
Scans a given string, returning an equivalent string object by reference if a match is found.

– scanUpToString:intoString: (page 911)
Scans the string until a given string is encountered, accumulating characters into a string that’s
returned by reference.

Tasks 901
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

– isAtEnd (page 904)
Returns a Boolean value that indicates whether the receiver has exhausted all significant
characters

Class Methods

localizedScannerWithString:
Returns an NSScanner object that scans a given string according to the user’s default locale.

+ (id)localizedScannerWithString:(NSString *)aString

Parameters

aString
The string to scan.

Return Value
An NSScanner object that scans aString according to the user’s default locale.

Discussion
Sets the string to scan by invoking initWithString: (page 904) with aString. The locale is set with
setLocale: (page 912).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSScanner.h

scannerWithString:
Returns an NSScanner object that scans a given string.

+ (id)scannerWithString:(NSString *)aString

Parameters

aString
The string to scan.

Return Value
An NSScanner object that scans aString.

Discussion
Sets the string to scan by invoking initWithString: (page 904) with aString.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSScanner.h

902 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Instance Methods

caseSensitive
Returns a Boolean value that indicates whether the receiver distinguishes case in the characters it
scans.

- (BOOL)caseSensitive

Return Value
YES if the receiver distinguishes case in the characters it scans, otherwise NO.

Discussion
Scanners are not case sensitive by default. Note that case sensitivity doesn’t apply to the characters
to be skipped.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setCaseSensitive: (page 911)
– setCharactersToBeSkipped: (page 912)

Declared In
NSScanner.h

charactersToBeSkipped
Returns a character set containing the characters the receiver ignores when looking for a scannable
element.

- (NSCharacterSet *)charactersToBeSkipped

Return Value
A character set containing the characters the receiver ignores when looking for a scannable element.

Discussion
For example, if a scanner ignores spaces and you send it a scanInt: (page 907) message, it skips spaces
until it finds a decimal digit or other character. While an element is being scanned, however, no
characters are skipped. If you scan for something made of characters in the set to be skipped (for
example, using scanInt: (page 907) when the set of characters to be skipped is the decimal digits),
the result is undefined.

The default set to skip is the whitespace and newline character set.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setCharactersToBeSkipped: (page 912)
whitespaceAndNewlineCharacterSet (page 142) (NSCharacterSet)

Instance Methods 903
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Declared In
NSScanner.h

initWithString:
Returns an NSScanner object initialized to scan a given string.

- (id)initWithString:(NSString *)aString

Parameters

aString
The string to scan.

Return Value
An NSScanner object initialized to scan aString from the beginning. The returned object might be
different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ localizedScannerWithString: (page 902)
+ scannerWithString: (page 902)

Declared In
NSScanner.h

isAtEnd
Returns a Boolean value that indicates whether the receiver has exhausted all significant characters

- (BOOL)isAtEnd

Return Value
YES if the receiver has exhausted all significant characters in its string, otherwise NO.

If only characters from the set to be skipped remain, returns YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– charactersToBeSkipped (page 903)

Declared In
NSScanner.h

locale
Returns the receiver’s locale.

- (id)locale

904 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Return Value
The receiver’s locale, or nil if it has none.

Discussion
A scanner’s locale affects the way it interprets numeric values from the string. In particular, a scanner
uses the locale’s decimal separator to distinguish the integer and fractional parts of floating-point
representations. A scanner with no locale set uses non-localized values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setLocale: (page 912)

Declared In
NSScanner.h

scanCharactersFromSet:intoString:
Scans the string as long as characters from a given character set are encountered, accumulating
characters into a string that’s returned by reference.

- (BOOL)scanCharactersFromSet:(NSCharacterSet *)scanSet intoString:(NSString
**)stringValue

Parameters

scanSet
The set of characters to scan.

stringValue
Upon return, contains the characters scanned.

Return Value
YES if the receiver scanned any characters, otherwise NO.

Discussion
Invoke this method with NULL as stringValue to simply scan past a given set of characters.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scanUpToCharactersFromSet:intoString: (page 910)

Declared In
NSScanner.h

scanDecimal:
Scans for an NSDecimal value, returning a found value by reference.

- (BOOL)scanDecimal:(NSDecimal *)decimalValue

Instance Methods 905
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Parameters

decimalValue
Upon return, contains the scanned value. See the NSDecimalNumber class specification for more
information about NSDecimal values.

Return Value
YES if the receiver finds a valid NSDecimal representation, otherwise NO.

Discussion
Invoke this method with NULL as decimalValue to simply scan past an NSDecimal representation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

scanDouble:
Scans for a double value, returning a found value by reference.

- (BOOL)scanDouble:(double *)doubleValue

Parameters

doubleValue
Upon return, contains the scanned value. Contains HUGE_VAL or –HUGE_VAL on overflow, or
0.0 on underflow.

Return Value
YES if the receiver finds a valid floating-point representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the scanner’s position is past the entire floating-point
representation.

Invoke this method with NULL as doubleValue to simply scan past a double value representation.
Floating-point representations are assumed to be IEEE compliant.

Availability
Available in iPhone OS 2.0 and later.

See Also
doubleValue (page 989) (NSString)

Declared In
NSScanner.h

scanFloat:
Scans for a float value, returning a found value by reference.

- (BOOL)scanFloat:(float *)floatValue

906 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Parameters

floatValue
Upon return, contains the scanned value. Contains HUGE_VAL or –HUGE_VAL on overflow, or
0.0 on underflow.

Return Value
YES if the receiver finds a valid floating-point representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the scanner’s position is past the entire floating-point
representation.

Invoke this method with NULL as floatValue to simply scan past a float value representation.
Floating-point representations are assumed to be IEEE compliant.

Availability
Available in iPhone OS 2.0 and later.

See Also
floatValue (page 990) (NSString)

Declared In
NSScanner.h

scanHexInt:
Scans for an unsigned value from a hexadecimal representation, returning a found value by reference.

- (BOOL)scanHexInt:(unsigned *)intValue

Parameters

intValue
Upon return, contains the scanned value. Contains INT_MAX or INT_MIN on overflow.

Return Value
Returns YES if the receiver finds a valid hexadecimal integer representation, otherwise NO.

Discussion
The hexadecimal integer representation may optionally be preceded by 0x or 0X. Skips past excess
digits in the case of overflow, so the receiver’s position is past the entire hexadecimal representation.

Invoke this method with NULL as intValue to simply scan past a hexadecimal integer representation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSScanner.h

scanInt:
Scans for an int value from a decimal representation, returning a found value by reference.

- (BOOL)scanInt:(int *)intValue

Instance Methods 907
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Parameters

intValue
Upon return, contains the scanned value. Contains INT_MAX or INT_MIN on overflow.

Return Value
YES if the receiver finds a valid decimal integer representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the receiver’s position is past the entire decimal
representation.

Invoke this method with NULL as intValue to simply scan past a decimal integer representation.

Availability
Available in iPhone OS 2.0 and later.

See Also
intValue (page 1009) (NSString)
– scanInteger: (page 908)

Declared In
NSScanner.h

scanInteger:
Scans for an NSInteger value from a decimal representation, returning a found value by reference

- (BOOL)scanInteger:(NSInteger *)value

Parameters

value
Upon return, contains the scanned value.

Return Value
YES if the receiver finds a valid integer representation, otherwise NO.

Discussion
Skips past excess digits in the case of overflow, so the receiver’s position is past the entire integer
representation.

Invoke this method with NULL as value to simply scan past a decimal integer representation.

Availability
Available in iPhone OS 2.0 and later.

See Also
integerValue (page 1008) (NSString)
– scanInt: (page 907)

Declared In
NSScanner.h

908 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

scanLocation
Returns the character position at which the receiver will begin its next scanning operation.

- (NSUInteger)scanLocation

Return Value
The character position at which the receiver will begin its next scanning operation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setScanLocation: (page 913)

Declared In
NSScanner.h

scanLongLong:
Scans for a long long value from a decimal representation, returning a found value by reference.

- (BOOL)scanLongLong:(long long *)longLongValue

Parameters

longLongValue
Upon return, contains the scanned value. Contains LONG_LONG_MAX or LONG_LONG_MIN on
overflow.

Return Value
YES if the receiver finds a valid decimal integer representation, otherwise NO.

Discussion
All overflow digits are skipped. Skips past excess digits in the case of overflow, so the receiver’s
position is past the entire decimal representation.

Invoke this method with NULL as longLongValue to simply scan past a long decimal integer
representation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSScanner.h

scanString:intoString:
Scans a given string, returning an equivalent string object by reference if a match is found.

- (BOOL)scanString:(NSString *)string intoString:(NSString **)stringValue

Parameters

string
The string for which to scan at the current scan location.

Instance Methods 909
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

stringValue
Upon return, if the receiver contains a string equivalent to string at the current scan location,
contains a string equivalent to string.

Return Value
YES if stringValue matches the characters at the scan location, otherwise NO.

Discussion
If string is present at the current scan location, then the current scan location is advanced to after
the string; otherwise the scan location does not change.

Invoke this method with NULL as stringValue to simply scan past a given string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scanUpToString:intoString: (page 911)

Declared In
NSScanner.h

scanUpToCharactersFromSet:intoString:
Scans the string until a character from a given character set is encountered, accumulating characters
into a string that’s returned by reference.

- (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)stopSet intoString:(NSString
**)stringValue

Parameters

stopSet
The set of characters up to which to scan.

stringValue
Upon return, contains the characters scanned.

Return Value
YES if the receiver scanned any characters, otherwise NO.

If the only scanned characters are in the charactersToBeSkipped (page 903) character set (which is
the whitespace and newline character set by default), then returns NO.

Discussion
Invoke this method with NULL as stringValue to simply scan up to a given set of characters.

If no characters in stopSet are present in the scanner's source string, the remainder of the source
string is put into stringValue, the receiver’s scanLocation is advanced to the end of the source
string, and the method returns YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scanCharactersFromSet:intoString: (page 905)

910 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Declared In
NSScanner.h

scanUpToString:intoString:
Scans the string until a given string is encountered, accumulating characters into a string that’s
returned by reference.

- (BOOL)scanUpToString:(NSString *)stopString intoString:(NSString **)stringValue

Parameters

stopString
The string to scan up to.

stringValue
Upon return, contains any characters that were scanned.

Return Value
YES if the receiver scans any characters, otherwise NO.

If the only scanned characters are in the charactersToBeSkipped (page 903) character set (which by
default is the whitespace and newline character set), then this method returns NO.

Discussion
If stopString is present in the receiver, then on return the scan location is set to the beginning of
that string.

If the search string (stopString) isn't present in the scanner's source string, the remainder of the
source string is put into stringValue, the receiver’s scanLocation is advanced to the end of the
source string, and the method returns YES.

Invoke this method with NULL as stringValue to simply scan up to a given string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scanString:intoString: (page 909)

Declared In
NSScanner.h

setCaseSensitive:
Sets whether the receiver is case sensitive when scanning characters.

- (void)setCaseSensitive:(BOOL)flag

Parameters

flag
If YES, the receiver will distinguish case when scanning characters, otherwise it will ignore
case distinctions.

Instance Methods 911
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Discussion
Scanners are not case sensitive by default. Note that case sensitivity doesn’t apply to the characters
to be skipped.

Availability
Available in iPhone OS 2.0 and later.

See Also
– caseSensitive (page 903)
– setCharactersToBeSkipped: (page 912)

Declared In
NSScanner.h

setCharactersToBeSkipped:
Sets the set of characters to ignore when scanning for a value representation.

- (void)setCharactersToBeSkipped:(NSCharacterSet *)skipSet

Parameters

skipSet
The characters to ignore when scanning for a value representation.

Discussion
For example, if a scanner ignores spaces and you send it a scanInt: (page 907) message, it skips spaces
until it finds a decimal digit or other character. While an element is being scanned, however, no
characters are skipped. If you scan for something made of characters in the set to be skipped (for
example, using scanInt: (page 907) when the set of characters to be skipped is the decimal digits),
the result is undefined.

The characters to be skipped are treated literally as single values. A scanner doesn’t apply its case
sensitivity setting to these characters and doesn’t attempt to match composed character sequences
with anything in the set of characters to be skipped (though it does match pre-composed characters
individually). If you want to skip all vowels while scanning a string, for example, you can set the
characters to be skipped to those in the string “AEIOUaeiou” (plus any accented variants with
pre-composed characters).

The default set of characters to skip is the whitespace and newline character set.

Availability
Available in iPhone OS 2.0 and later.

See Also
– charactersToBeSkipped (page 903)
whitespaceAndNewlineCharacterSet (page 142) (NSCharacterSet)

Declared In
NSScanner.h

setLocale:
Sets the receiver’s locale to a given locale.

912 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

- (void)setLocale:(id)aLocale

Parameters

aLocale
The locale for the receiver.

Discussion
A scanner’s locale affects the way it interprets values from the string. In particular, a scanner uses the
locale’s decimal separator to distinguish the integer and fractional parts of floating-point
representations. A new scanner’s locale is by default nil, which causes it to use non-localized values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– locale (page 904)

Declared In
NSScanner.h

setScanLocation:
Sets the location at which the next scan operation will begin to a given index.

- (void)setScanLocation:(NSUInteger)index

Parameters

index
The location at which the next scan operation will begin. Raises an NSRangeException if index
is beyond the end of the string being scanned.

Discussion
This method is useful for backing up to rescan after an error.

Rather than setting the scan location directly to skip known sequences of characters, use
scanString:intoString: (page 909) or scanCharactersFromSet:intoString: (page 905), which
allow you to verify that the expected substring (or set of characters) is in fact present.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scanLocation (page 909)

Declared In
NSScanner.h

string
Returns the string with which the receiver was created or initialized.

- (NSString *)string

Instance Methods 913
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Return Value
The string with which the receiver was created or initialized.

Availability
Available in iPhone OS 2.0 and later.

See Also
– locale (page 904)

Declared In
NSScanner.h

914 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6 9

NSScanner Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSMutableCopying
NSFastEnumeration
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSSet.h

Companion guide: Collections Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSSet, NSMutableSet, and NSCountedSet classes declare the programmatic interface to an object
that manages a set of objects. NSSet provides support for the mathematical concept of a set. A set,
both in its mathematical sense and in the implementation of NSSet, is an unordered collection of
distinct elements. The NSMutableSet (a subclass of NSSet) and NSCountedSet (a subclass of
NSMutableSet) classes are provided for sets whose contents may be altered.

Overview 915
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

NSSet and NSMutableSet are part of a class cluster, so sets are not actual instances of NSSet or
NSMutableSet. Rather, the instances belong to one of their private subclasses. (For convenience, we
use the term set to refer to any one of these instances without specifying its exact class membership.)
Although a set’s class is private, its interface is public, as declared by the abstract superclasses NSSet
and NSMutableSet. Note that NSCountedSet is not part of the class cluster; it is a concrete subclass
of NSMutableSet.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries
when it’s created, and thereafter the entries can’t be modified. NSMutableSet, on the other hand,
declares a programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows
the addition and deletion of entries at any time, automatically allocating memory as needed.

You can use sets as an alternative to arrays when the order of elements isn’t important and performance
in testing whether an object is contained in the set is a consideration—while arrays are ordered, testing
for membership is slower than with sets.

Objects in a set must respond to the NSObject protocol methods hash (page 1305) and isEqual: (page
1306)—see the NSObject protocol for more information.

Note that if mutable objects are stored in a set, either the hashmethod of the objects shouldn’t depend
on the internal state of the mutable objects or the mutable objects shouldn’t be modified while they’re
in the set (note that it can be difficult to know whether or not a given object is in a collection).

Objects added to a set are not copied; rather, an object receives a retain message before it’s added
to a set.

Typically, you create a temporary set by sending one of the set… methods to the NSSet class object.
These methods return an NSSet object containing the elements (if any) you pass in as arguments. The
set (page 919) method is a “convenience” method to create an empty mutable set.

The set classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to
convert a set of one type to the other.

NSSet provides methods for querying the elements of the set. allObjects (page 923) returns an array
containing the objects in a set. anyObject (page 924) returns some object in the set. count (page 925)
returns the number of objects currently in the set. member: (page 931) returns the object in the set that
is equal to a specified object. Additionally, intersectsSet: (page 929) tests for set intersection,
isEqualToSet: (page 929) tests for set equality, and isSubsetOfSet: (page 930) tests for one set being
a subset of another.

The objectEnumerator (page 931) method provides for traversing elements of the set one by one. For
better performance on Mac OS X v10.5 and later, you can also use the Objective-C fast enumeration
feature (see Fast Enumeration).

NSSet’s makeObjectsPerformSelector: (page 930) and
makeObjectsPerformSelector:withObject: (page 930) methods provides for sending messages to
individual objects in the set.

NSSet is “toll-free bridged” with its Core Foundation counterpart, CFSet Reference. This means that
the Core Foundation type is interchangeable in function or method calls with the bridged Foundation
object. Therefore, in a method where you see an NSSet * parameter, you can pass a CFSetRef, and
in a function where you see a CFSetRef parameter, you can pass an NSSet instance (you cast one type
to the other to suppress compiler warnings). See Interchangeable Data Types for more information
on toll-free bridging.

916 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
copyWithZone: (page 1250)

NSMutableCopying
mutableCopyWithZone: (page 1300)

Tasks

Creating a Set

+ set (page 919)
Creates and returns an empty set.

+ setWithArray: (page 920)
Creates and returns a set containing a uniqued collection of those objects contained in a given
array.

+ setWithObject: (page 920)
Creates and returns a set that contains a single given object.

+ setWithObjects: (page 921)
Creates and returns a set containing the objects in a given argument list.

+ setWithObjects:count: (page 921)
Creates and returns a set containing a specified number of objects from a given C array of
objects.

+ setWithSet: (page 922)
Creates and returns a set containing the objects from another set.

– setByAddingObject: (page 933)
Returns a new set formed by adding a given object to the collection defined by the receiver.

– setByAddingObjectsFromSet: (page 934)
Returns a new set formed by adding the objects in a given set to the collection defined by the
receiver.

– setByAddingObjectsFromArray: (page 933)
Returns a new set formed by adding the objects in a given array to the collection defined by
the receiver.

Initializing a Set

– initWithArray: (page 926)
Initializes a newly allocated set with the objects that are contained in a given array.

Adopted Protocols 917
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

– initWithObjects: (page 926)
Initializes a newly allocated set with members taken from the specified list of objects.

– initWithObjects:count: (page 927)
Initializes a newly allocated set with a specified number of objects from a given C array of
objects.

– initWithSet: (page 927)
Initializes a newly allocated set and adds to it objects from another given set.

– initWithSet:copyItems: (page 928)
Initializes a newly allocated set and adds to it members of another given set.

Counting Entries

– count (page 925)
Returns the number of members in the receiver.

Accessing Set Members

– allObjects (page 923)
Returns an array containing the receiver’s members, or an empty array if the receiver has no
members.

– anyObject (page 924)
Returns one of the objects in the receiver, or nil if the receiver contains no objects.

– containsObject: (page 924)
Returns a Boolean value that indicates whether a given object is present in the receiver.

– makeObjectsPerformSelector: (page 930)
Sends to each object in the receiver a message specified by a given selector.

– makeObjectsPerformSelector:withObject: (page 930)
Sends to each object in the receiver a message specified by a given selector.

– member: (page 931)
Determines whether the receiver contains an object equal to a given object, and returns that
object if it is present.

– objectEnumerator (page 931)
Returns an enumerator object that lets you access each object in the receiver.

Comparing Sets

– isSubsetOfSet: (page 930)
Returns a Boolean value that indicates whether every object in the receiver is also present in
another given set.

– intersectsSet: (page 929)
Returns a Boolean value that indicates whether at least one object in the receiver is also present
in another given set.

– isEqualToSet: (page 929)
Compares the receiver to another set.

918 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

– valueForKey: (page 934)
Return a set containing the results of invoking valueForKey: on each of the receiver's members.

– setValue:forKey: (page 934)
Invokes setValue:forKey: on each of the receiver’s members.

Key-Value Observing

– addObserver:forKeyPath:options:context: (page 923)
Raises an exception.

– removeObserver:forKeyPath: (page 932)
Raises an exception.

Describing a Set

– description (page 925)
Returns a string that represents the contents of the receiver, formatted as a property list.

– descriptionWithLocale: (page 925)
Returns a string that represents the contents of the receiver, formatted as a property list.

Class Methods

set
Creates and returns an empty set.

+ (id)set

Return Value
A new empty set.

Discussion
This method is declared primarily for the use of mutable subclasses of NSSet.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setWithArray: (page 920)
+ setWithObject: (page 920)
+ setWithObjects: (page 921)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)
– setByAddingObjectsFromArray: (page 933)

Declared In
NSSet.h

Class Methods 919
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

setWithArray:
Creates and returns a set containing a uniqued collection of those objects contained in a given array.

+ (id)setWithArray:(NSArray *)anArray

Parameters

anArray
An array containing the objects to add to the new set. If the same object appears more than
once objects, it is added only once to the returned set. Each object receives a retain (page
1312) message as it is added to the set.

Return Value
A new set containing a uniqued collection of those objects contained in anArray.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithObject: (page 920)
+ setWithObjects: (page 921)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)
– setByAddingObjectsFromArray: (page 933)

Declared In
NSSet.h

setWithObject:
Creates and returns a set that contains a single given object.

+ (id)setWithObject:(id)anObject

Parameters

anObject
The object to add to the new set. anObject receives a retain (page 1312) message after being
added to the set.

Return Value
A new set that contains a single member, anObject.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithArray: (page 920)
+ setWithObjects: (page 921)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)
– setByAddingObjectsFromArray: (page 933)

920 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Declared In
NSSet.h

setWithObjects:
Creates and returns a set containing the objects in a given argument list.

+ (id)setWithObjects:(id)anObject ...

Parameters

anObject
The first object to add to the new set.

...
A comma-separated list of objects, ending with nil, to add to the new set. If the same object
appears more than once objects, it is added only once to the returned set. Each object receives
a retain (page 1312) message as it is added to the set.

Return Value
A new set containing the objects in the argument list.

Discussion
As an example, the following code excerpt creates a set containing three different types of elements
(assuming aPath exits):

NSSet *mySet;
NSData *someData = [NSData dataWithContentsOfFile:aPath];
NSValue *aValue = [NSNumber numberWithInt:5];
NSString *aString = @"a string";

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithArray: (page 920)
+ setWithObject: (page 920)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)
– setByAddingObjectsFromArray: (page 933)

Declared In
NSSet.h

setWithObjects:count:
Creates and returns a set containing a specified number of objects from a given C array of objects.

+ (id)setWithObjects:(id *)objects count:(NSUInteger)count

Class Methods 921
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Parameters

objects
A C array of objects to add to the new set. If the same object appears more than once objects,
it is added only once to the returned set. Each object receives a retain (page 1312) message as
it is added to the set.

count
The number of objects from objects to add to the new set.

Return Value
A new set containing count objects from the list of objects specified by objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithArray: (page 920)
+ setWithObject: (page 920)
+ setWithObjects: (page 921)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)
– setByAddingObjectsFromArray: (page 933)

Declared In
NSSet.h

setWithSet:
Creates and returns a set containing the objects from another set.

+ (id)setWithSet:(NSSet *)aSet

Parameters

aSet
A set containing the objects to add to the new set. Each object receives a retain (page 1312)
message as it is added to the new set.

Return Value
A new set containing the objects from aSet.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithArray: (page 920)
+ setWithObject: (page 920)
+ setWithObjects: (page 921)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)
– setByAddingObjectsFromArray: (page 933)

922 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Declared In
NSSet.h

Instance Methods

addObserver:forKeyPath:options:context:
Raises an exception.

- (void)addObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options context:(void *)context

Parameters

observer
The object to register for KVO notifications. The observer must implement the key-value
observing method observeValueForKeyPath:ofObject:change:context: (page 1287).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions (page 1291) values that specifies what is
included in observation notifications. For possible values, see NSKeyValueObservingOptions.

context
Arbitrary data that is passed to observer in
observeValueForKeyPath:ofObject:change:context: (page 1287).

Special Considerations

NSSet objects are not observable, so this method raises an exception when invoked on an NSSet object.
Instead of observing a set, observe the unordered to-many relationship for which the set is the collection
of related objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObserver:forKeyPath: (page 932)

Declared In
NSKeyValueObserving.h

allObjects
Returns an array containing the receiver’s members, or an empty array if the receiver has no members.

- (NSArray *)allObjects

Return Value
An array containing the receiver’s members, or an empty array if the receiver has no members. The
order of the objects in the array isn’t defined.

Instance Methods 923
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– anyObject (page 924)
– objectEnumerator (page 931)

Declared In
NSSet.h

anyObject
Returns one of the objects in the receiver, or nil if the receiver contains no objects.

- (id)anyObject

Return Value
One of the objects in the receiver, or nil if the receiver contains no objects. The object returned is
chosen at the receiver’s convenience—the selection is not guaranteed to be random.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allObjects (page 923)
– objectEnumerator (page 931)

Declared In
NSSet.h

containsObject:
Returns a Boolean value that indicates whether a given object is present in the receiver.

- (BOOL)containsObject:(id)anObject

Parameters

anObject
The object for which to test membership of the receiver.

Return Value
YES if anObject is present in the receiver, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– member: (page 931)

Declared In
NSSet.h

924 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

count
Returns the number of members in the receiver.

- (NSUInteger)count

Return Value
The number of members in the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSet.h

description
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)description

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Availability
Available in iPhone OS 2.0 and later.

See Also
– descriptionWithLocale: (page 925)

Declared In
NSSet.h

descriptionWithLocale:
Returns a string that represents the contents of the receiver, formatted as a property list.

- (NSString *)descriptionWithLocale:(id)locale

Parameters

locale
In Mac OS X v10.4 and earlier, this must be a dictionary that specifies options used for formatting
each of the receiver’s members. In Mac OS X v10.5 and later, you can use an NSLocale object.
If you do not want the receiver’s members to be formatted, specify nil.

Return Value
A string that represents the contents of the receiver, formatted as a property list.

Discussion
This method sends each of the receiver’s members descriptionWithLocale: with locale passed
as the sole parameter. If the receiver’s members do not respond to descriptionWithLocale:, this
method sends description (page 1305) instead.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 925
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

See Also
– description (page 925)

Declared In
NSSet.h

initWithArray:
Initializes a newly allocated set with the objects that are contained in a given array.

- (id)initWithArray:(NSArray *)array

Parameters

array
An array of objects to add to the new set. If the same object appears more than once in array,
it is represented only once in the returned set. Each object receives a retain (page 1312) message
as it is added to the set.

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithObjects: (page 926)
– initWithObjects:count: (page 927)
– initWithSet: (page 927)
– initWithSet:copyItems: (page 928)
+ setWithArray: (page 920)

Declared In
NSSet.h

initWithObjects:
Initializes a newly allocated set with members taken from the specified list of objects.

- (id)initWithObjects:(id)firstObj, ...

Parameters

anObject
The first object to add to the new set.

...
A comma-separated list of objects, ending with nil, to add to the new set. If the same object
appears more than once in the list, it is represented only once in the returned set. Each object
receives a retain (page 1312) message as it is added to the set

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

926 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

See Also
– initWithArray: (page 926)
– initWithObjects:count: (page 927)
– initWithSet: (page 927)
– initWithSet:copyItems: (page 928)
+ setWithObjects: (page 921)

Declared In
NSSet.h

initWithObjects:count:
Initializes a newly allocated set with a specified number of objects from a given C array of objects.

- (id)initWithObjects:(id *)objects count:(NSUInteger)count

Parameters

objects
A C array of objects to add to the new set. If the same object appears more than once objects,
it is added only once to the returned set. Each object receives a retain (page 1312) message as
it is added to the set.

count
The number of objects from objects to add to the new set.

Return Value
An initialized object, which might be different than the original receiver.

Discussion
This method is the designated initializer for NSSet.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithArray: (page 926)
– initWithObjects: (page 926)
– initWithSet: (page 927)
– initWithSet:copyItems: (page 928)
+ setWithObjects:count: (page 921)

Declared In
NSSet.h

initWithSet:
Initializes a newly allocated set and adds to it objects from another given set.

- (id)initWithSet:(NSSet *)otherSet

Instance Methods 927
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Parameters

otherSet
A set containing objects to add to the receiver. Each object is retained as it is added to the
receiver.

Return Value
An initialized object, which might be different than the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithArray: (page 926)
– initWithObjects: (page 926)
– initWithObjects:count: (page 927)
– initWithSet:copyItems: (page 928)
+ setWithSet: (page 922)

Declared In
NSSet.h

initWithSet:copyItems:
Initializes a newly allocated set and adds to it members of another given set.

- (id)initWithSet:(NSSet *)otherSet copyItems:(BOOL)flag

Parameters

otherSet
A set containing objects to add to the new set.

flag
If YES, the members of otherSet are copied, and the copies are added to the receiver. If NO,
the members of otherSet are added to the receiver and retained.

Return Value
An initialized object that contains the members of otherSet.

This method returns an initialized object, which might be different than the original receiver.

Discussion
Note that, if flag is YES, copyWithZone: (page 1250) is invoked to make copies—thus, the receiver’s
new member objects may be immutable, even though their counterparts in otherSet were mutable.
Also, members must conform to the NSCopying protocol)

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithArray: (page 926)
– initWithObjects: (page 926)
– initWithObjects:count: (page 927)
– initWithSet: (page 927)
+ setWithSet: (page 922)

928 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Declared In
NSSet.h

intersectsSet:
Returns a Boolean value that indicates whether at least one object in the receiver is also present in
another given set.

- (BOOL)intersectsSet:(NSSet *)otherSet

Parameters

otherSet
The set with which to compare the receiver.

Return Value
YES if at least one object in the receiver is also present in otherSet, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isEqualToSet: (page 929)
– isSubsetOfSet: (page 930)

Declared In
NSSet.h

isEqualToSet:
Compares the receiver to another set.

- (BOOL)isEqualToSet:(NSSet *)otherSet

Parameters

otherSet
The set with which to compare the receiver.

Return Value
YES if the contents of otherSet are equal to the contents of the receiver, otherwise NO.

Discussion
Two sets have equal contents if they each have the same number of members and if each member of
one set is present in the other.

Availability
Available in iPhone OS 2.0 and later.

See Also
– intersectsSet: (page 929)
– isEqual: (page 1306) (NSObject protocol)
– isSubsetOfSet: (page 930)

Declared In
NSSet.h

Instance Methods 929
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

isSubsetOfSet:
Returns a Boolean value that indicates whether every object in the receiver is also present in another
given set.

- (BOOL)isSubsetOfSet:(NSSet *)otherSet

Parameters

otherSet
The set with which to compare the receiver.

Return Value
YES if every object in the receiver is also present in otherSet, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– intersectsSet: (page 929)
– isEqualToSet: (page 929)

Declared In
NSSet.h

makeObjectsPerformSelector:
Sends to each object in the receiver a message specified by a given selector.

- (void)makeObjectsPerformSelector:(SEL)aSelector

Parameters

aSelector
A selector that specifies the message to send to the members of the receiver. The method must
not take any arguments. It should not have the side effect of modifying the receiver. This value
must not be NULL.

Discussion
The message specified by aSelector is sent once to each member of the receiver. This method raises
an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in iPhone OS 2.0 and later.

See Also
– makeObjectsPerformSelector:withObject: (page 930)

Declared In
NSSet.h

makeObjectsPerformSelector:withObject:
Sends to each object in the receiver a message specified by a given selector.

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

930 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Parameters

aSelector
A selector that specifies the message to send to the receiver's members. The method must take
a single argument of type id. The method should not, as a side effect, modify the receiver. The
value must not be NULL.

anObject
The object to pass as an argument to the method specified by aSelector.

Discussion
The message specified by aSelector is sent, with anObject as the argument, once to each member
of the receiver. This method raises an NSInvalidArgumentException if aSelector is NULL.

Availability
Available in iPhone OS 2.0 and later.

See Also
– makeObjectsPerformSelector: (page 930)

Declared In
NSSet.h

member:
Determines whether the receiver contains an object equal to a given object, and returns that object if
it is present.

- (id)member:(id)anObject

Parameters

anObject
The object for which to test for membership of the receiver.

Return Value
If the receiver contains an object equal to anObject (as determined by isEqual: (page 1306)) then that
object (typically this will be anObject), otherwise nil.

Discussion
If you override isEqual:, you must also override the hash method for the member: method to work
on a set of objects of your class.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSet.h

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

- (NSEnumerator *)objectEnumerator

Return Value
An enumerator object that lets you access each object in the receiver.

Instance Methods 931
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Discussion
The following code fragment illustrates how you can use this method.

NSEnumerator *enumerator = [mySet objectEnumerator];
id value;

while ((value = [enumerator nextObject])) {
/* code that acts on the set’s values */

}

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the receiver
during enumeration. If you intend to modify the receiver, use the allObjects (page 923) method to
create a “snapshot” of the set’s members. Enumerate the snapshot, but make your modifications to
the original set.

Availability
Available in iPhone OS 2.0 and later.

See Also
– nextObject (page 341) (NSEnumerator)

Declared In
NSSet.h

removeObserver:forKeyPath:
Raises an exception.

- (void)removeObserver:(NSObject *)observer forKeyPath:(NSString *)keyPath

Parameters

observer
The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which observer is registered to receive KVO change
notifications. This value must not be nil.

Special Considerations

NSSet objects are not observable, so this method raises an exception when invoked on an NSSet object.
Instead of observing a set, observe the unordered to-many relationship for which the set is the collection
of related objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObserver:forKeyPath:options:context: (page 923)

Declared In
NSKeyValueObserving.h

932 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

setByAddingObject:
Returns a new set formed by adding a given object to the collection defined by the receiver.

- (NSSet *)setByAddingObject:(id)anObject

Parameters

anObject
The object to add to the collection defined by the receiver.

Return Value
A new set formed by adding anObject to the collection defined by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithArray: (page 920)
+ setWithObject: (page 920)
+ setWithObjects: (page 921)
– setByAddingObjectsFromSet: (page 934)
– setByAddingObjectsFromArray: (page 933)

Declared In
NSSet.h

setByAddingObjectsFromArray:
Returns a new set formed by adding the objects in a given array to the collection defined by the
receiver.

- (NSSet *)setByAddingObjectsFromArray:(NSArray *)other

Parameters

other
The array of objects to add to the collection defined by the receiver.

Return Value
A new set formed by adding the objects in other to the collection defined by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithArray: (page 920)
+ setWithObject: (page 920)
+ setWithObjects: (page 921)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)

Declared In
NSSet.h

Instance Methods 933
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

setByAddingObjectsFromSet:
Returns a new set formed by adding the objects in a given set to the collection defined by the receiver.

- (NSSet *)setByAddingObjectsFromSet:(NSSet *)other

Parameters

other
The set of objects to add to the collection defined by the receiver.

Return Value
A new set formed by adding the objects in other to the collection defined by the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ set (page 919)
+ setWithArray: (page 920)
+ setWithObject: (page 920)
+ setWithObjects: (page 921)
– setByAddingObject: (page 933)
– setByAddingObjectsFromSet: (page 934)

Declared In
NSSet.h

setValue:forKey:
Invokes setValue:forKey: on each of the receiver’s members.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters

value
The value for the property identified by key.

key
The name of one of the properties of the receiver's members.

Availability
Available in iPhone OS 2.0 and later.

See Also
– valueForKey: (page 934)

Declared In
NSKeyValueCoding.h

valueForKey:
Return a set containing the results of invoking valueForKey: on each of the receiver's members.

- (id)valueForKey:(NSString *)key

934 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Parameters

key
The name of one of the properties of the receiver's members.

Return Value
A set containing the results of invoking valueForKey: (with the argument key) on each of the receiver's
members.

Discussion
The returned set might not have the same number of members as the receiver. The returned set will
not contain any elements corresponding to instances of valueForKey: returning nil (note that this
is in contrast with NSArray’s implementation, which may put NSNull values in the arrays it returns).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:forKey: (page 934)

Declared In
NSKeyValueCoding.h

Instance Methods 935
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

936 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 0

NSSet Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSSortDescriptor.h

Companion guide: Sort Descriptor Programming Topics

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An instance of NSSortDescriptor describes a basis for ordering objects by specifying the property
to use to compare the objects, the method to use to compare the properties, and whether the comparison
should be ascending or descending. Instances of NSSortDescriptor are immutable.

You construct an instance of NSSortDescriptor by specifying the key path of the property to be
compared, the order of the sort (ascending or descending), and (optionally) a selector to use to perform
the comparison. The three-argument constructor allows you to specify other comparison selectors
such as caseInsensitiveCompare: and localizedCompare:. Sorting raises an exception if the objects
to be sorted do not respond to the sort descriptor’s comparison selector.

Overview 937
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

NSSortDescriptor Class Reference

Note: Many of the descriptions of NSSortDescriptor methods refer to "property key". This, briefly,
is a string (key) that identifies a property (an attribute or relationship) of an object. You can find a
discussion of this terminology in "Object Modeling" in Cocoa Fundamentals Guide and in Key-Value
Coding Programming Guide.

There are a number of situations in which you can use sort descriptors, for example:

 ■ To sort an array (an instance of NSArray or NSMutableArray—see
sortedArrayUsingDescriptors: and sortUsingDescriptors:)

 ■ To directly compare two objects (see compareObject:toObject: (page 939))

 ■ To specify how the elements in a table view should be arranged (see sortDescriptors)

 ■ To specify how the elements managed by an array controller should be arranged (see
sortDescriptors)

 ■ If you are using Core Data, to specify the ordering of objects returned from a fetch request (see
sortDescriptors)

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Initializing a Sort Descriptor

– initWithKey:ascending: (page 940)
Returns an NSSortDescriptor object initialized with a given property key path and sort order,
and with the default comparison selector.

– initWithKey:ascending:selector: (page 940)
Returns an NSSortDescriptor object initialized with a given property key path, sort order,
and comparison selector.

Getting Information About a Sort Descriptor

– ascending (page 939)
Returns a Boolean value that indicates whether the receiver specifies sorting in ascending
order.

938 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

NSSortDescriptor Class Reference

– key (page 941)
Returns the receiver’s property key path.

– selector (page 942)
Returns the selector the receiver specifies to use when comparing objects.

Using Sort Descriptors

– compareObject:toObject: (page 939)
Returns an NSComparisonResult value that indicates the ordering of two given objects.

– reversedSortDescriptor (page 941)
Returns a copy of the receiver with the sort order reversed.

Instance Methods

ascending
Returns a Boolean value that indicates whether the receiver specifies sorting in ascending order.

- (BOOL)ascending

Return Value
YES if the receiver specifies sorting in ascending order, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSortDescriptor.h

compareObject:toObject:
Returns an NSComparisonResult value that indicates the ordering of two given objects.

- (NSComparisonResult)compareObject:(id)object1 toObject:(id)object2

Parameters

object1
The object to compare with object2. This object must have a property accessible using the
key-path specified by key (page 941).

This value must not be nil. If the value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

object2
The object to compare with object1. This object must have a property accessible using the
key-path specified by key (page 941).

This value must not be nil. If the value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Instance Methods 939
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

NSSortDescriptor Class Reference

Return Value
NSOrderedAscending if object1 is less than object2, NSOrderedDescending if object1 is greater
than object2, or NSOrderedSame if object1 is equal to object2.

Discussion
The ordering is determined by comparing, using the selector specified selector (page 942), the values
of the properties specified by key (page 941) of object1 and object2.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSortDescriptor.h

initWithKey:ascending:
Returns an NSSortDescriptor object initialized with a given property key path and sort order, and
with the default comparison selector.

- (id)initWithKey:(NSString *)keyPath ascending:(BOOL)ascending

Parameters

keyPath
The property key to use when performing a comparison. In the comparison, the property is
accessed using key-value coding (see Key-Value Coding Programming Guide).

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

Return Value
An NSSortDescriptor object initialized with the property key path specified by keyPath, sort order
specified by ascending, and the default comparison selector (compare:).

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithKey:ascending:selector: (page 940)

Declared In
NSSortDescriptor.h

initWithKey:ascending:selector:
Returns an NSSortDescriptor object initialized with a given property key path, sort order, and
comparison selector.

- (id)initWithKey:(NSString *)keyPath ascending:(BOOL)ascending
selector:(SEL)selector

Parameters

keyPath
The property key to use when performing a comparison. In the comparison, the property is
accessed using key-value coding (see Key-Value Coding Programming Guide).

940 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

NSSortDescriptor Class Reference

ascending
YES if the receiver specifies sorting in ascending order, otherwise NO.

selector
The method to use when comparing the properties of objects, for example
caseInsensitiveCompare: or localizedCompare:. The selector must specify a method
implemented by the value of the property identified by keyPath. The selector used for the
comparison is passed a single parameter, the object to compare against self, and must return
the appropriate NSComparisonResult constant. The selector must have the same method
signature as:

- (NSComparisonResult)localizedCompare:(NSString *)aString

Return Value
An NSSortDescriptor object initialized with the property key path specified by keyPath, sort order
specified by ascending, and the selector specified by selector.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithKey:ascending: (page 940)

Declared In
NSSortDescriptor.h

key
Returns the receiver’s property key path.

- (NSString *)key

Return Value
The receiver’s property key path.

Discussion
This key path specifies the property that is compared during sorting.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSortDescriptor.h

reversedSortDescriptor
Returns a copy of the receiver with the sort order reversed.

- (id)reversedSortDescriptor

Return Value
A copy of the receiver with the sort order reversed

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 941
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

NSSortDescriptor Class Reference

Declared In
NSSortDescriptor.h

selector
Returns the selector the receiver specifies to use when comparing objects.

- (SEL)selector

Return Value
The selector the receiver specifies to use when comparing objects.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSSortDescriptor.h

942 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 1

NSSortDescriptor Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSStream.h

Companion guide: Stream Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSStream is an abstract class for objects representing streams. Its interface is common to all Cocoa
stream classes, including its concrete subclasses NSInputStream and NSOutputStream.

NSStream objects provide an easy way to read and write data to and from a variety of media in a
device-independent way. You can create stream objects for data located in memory, in a file, or on a
network (using sockets), and you can use stream objects without loading all of the data into memory
at once.

By default, NSStream instances that are not file-based are non-seekable, one-way streams (although
custom seekable subclasses are possible). Once the data has been provided or consumed, the data
cannot be retrieved from the stream.

Overview 943
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Subclassing Notes

NSStream is an abstract class, incapable of instantiation and intended to be subclassed. It publishes
a programmatic interface that all subclasses must adopt and provide implementations for. The two
Apple-provided concrete subclasses of NSStream, NSInputStream and NSOutputStream, are suitable
for most purposes. However, there might be situations when you want a peer subclass to
NSInputStream and NSOutputStream. For example, you might want a class that implements a
full-duplex (two-way) stream, or a class whose instances are capable of seeking through a stream.

Methods to Override

All subclasses must fully implement the following methods, which are presented in functional pairs:

 ■ open (page 946) and close (page 946)

Implement open to open the stream for reading or writing and make the stream available to the
client directly or, if the stream object is scheduled on a run loop, to the delegate. Implement close
to close the stream and remove the stream object from the run loop, if necessary. A closed stream
should still be able to accept new properties and report its current properties. Once a stream is
closed, it cannot be reopened.

 ■ delegate (page 946) and setDelegate: (page 948)

Return and set the delegate. By a default, a stream object must be its own delegate; so a
setDelegate: message with an argument of nil should restore this delegate. Do not retain the
delegate to prevent retain cycles.

To learn about delegates and delegation, read "Delegates and Data Sources" in Cocoa Fundamentals
Guide.

 ■ scheduleInRunLoop:forMode: (page 948) and removeFromRunLoop:forMode: (page 947)

Implement scheduleInRunLoop:forMode: to schedule the stream object on the specified run
loop for the specified mode. Implement removeFromRunLoop:forMode: to remove the object
from the run loop. See the documentation of the NSRunLoop class for details. Once the stream
object for an open stream is scheduled on a run loop, it is the responsibility of the subclass as it
processes stream data to send stream:handleEvent: (page 950) messages to its delegate.

 ■ propertyForKey: (page 947) and setProperty:forKey: (page 949)

Implement these methods to return and set, respectively, the property value for the specified key.
You may add custom properties, but be sure to handle all properties defined by NSStream as
well.

 ■ streamStatus (page 949) and streamError (page 949)

Implement streamStatus to return the current status of the stream as a NSStreamStatus constant;
you may define new NSStreamStatus constants, but be sure to handle the NSStream-defined
constants properly. ImplementstreamError to return an NSError object representing the current
error. You might decide to return a custom NSError object that can provide complete and localized
information about the error.

944 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Tasks

Configuring Streams

– propertyForKey: (page 947)
Returns the receiver’s property for a given key.

– setProperty:forKey: (page 949)
Attempts to set the value of a given property of the receiver and returns a Boolean value that
indicates whether the value is accepted by the receiver.

– delegate (page 946)
Returns the receiver’s delegate.

– setDelegate: (page 948)
Sets the receiver’s delegate.

Using Streams

– open (page 946)
Opens the receiving stream.

– close (page 946)
Closes the receiver.

– stream:handleEvent: (page 950) delegate method
The delegate receives this message when a given event has occurred on a given stream.

Managing Run Loops

– scheduleInRunLoop:forMode: (page 948)
Schedules the receiver on a given run loop in a given mode.

– removeFromRunLoop:forMode: (page 947)
Removes the receiver from a given run loop running in a given mode.

Getting Stream Information

– streamStatus (page 949)
Returns the receiver’s status.

– streamError (page 949)
Returns an NSError object representing the stream error.

Tasks 945
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Instance Methods

close
Closes the receiver.

- (void)close

Discussion
Closing the stream terminates the flow of bytes and releases system resources that were reserved for
the stream when it was opened. If the stream has been scheduled on a run loop, closing the stream
implicitly removes the stream from the run loop. A stream that is closed can still be queried for its
properties.

Availability
Available in iPhone OS 2.0 and later.

See Also
– open (page 946)

Declared In
NSStream.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Discussion
By default, a stream is its own delegate, and subclasses of NSInputStream and NSOutputStreammust
maintain this contract.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDelegate: (page 948)

Declared In
NSStream.h

open
Opens the receiving stream.

- (void)open

946 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Discussion
A stream must be created before it can be opened. Once opened, a stream cannot be closed and
reopened.

Availability
Available in iPhone OS 2.0 and later.

See Also
– close (page 946)

Declared In
NSStream.h

propertyForKey:
Returns the receiver’s property for a given key.

- (id)propertyForKey:(NSString *)key

Parameters

key
The key for one of the receiver's properties. See “Constants” (page 950) for a description of the
available property-key constants and associated values.

Return Value
The receiver’s property for the key key.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setProperty:forKey: (page 949)

Declared In
NSStream.h

removeFromRunLoop:forMode:
Removes the receiver from a given run loop running in a given mode.

- (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters

aRunLoop
The run loop on which the receiver was scheduled.

mode
The mode for the run loop.

Availability
Available in iPhone OS 2.0 and later.

See Also
– scheduleInRunLoop:forMode: (page 948)

Instance Methods 947
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Declared In
NSStream.h

scheduleInRunLoop:forMode:
Schedules the receiver on a given run loop in a given mode.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters

aRunLoop
The run loop on which to schedule the receiver.

mode
The mode for the run loop.

Discussion
Unless the client is polling the stream, it is responsible for ensuring that the stream is scheduled on
at least one run loop and that at least one of the run loops on which the stream is scheduled is being
run.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeFromRunLoop:forMode: (page 947)

Declared In
NSStream.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters

delegate
The delegate for the receiver.

Discussion
By default, a stream is its own delegate, and subclasses of NSInputStream and NSOutputStreammust
maintain this contract. If you override this method in a subclass, passing nilmust restore the receiver
as its own delegate. Delegates are not retained.

To learn about delegates and delegation, read "Delegates and Data Sources" in Cocoa Fundamentals
Guide.

Availability
Available in iPhone OS 2.0 and later.

See Also
– delegate (page 946)

948 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Declared In
NSStream.h

setProperty:forKey:
Attempts to set the value of a given property of the receiver and returns a Boolean value that indicates
whether the value is accepted by the receiver.

- (BOOL)setProperty:(id)property forKey:(NSString *)key

Parameters

property
The value for key.

key
The key for one of the receiver's properties. See “Constants” (page 950) for a description of the
available property-key constants and expected values.

Return Value
YES if the value is accepted by the receiver, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– propertyForKey: (page 947)

Declared In
NSStream.h

streamError
Returns an NSError object representing the stream error.

- (NSError *)streamError

Return Value
An NSError object representing the stream error, or nil if no error has been encountered.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

streamStatus
Returns the receiver’s status.

- (NSStreamStatus)streamStatus

Return Value
The receiver’s status.

Instance Methods 949
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Discussion
See “Constants” (page 950) for a description of the available NSStreamStatus constants.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

Delegate Methods

stream:handleEvent:
The delegate receives this message when a given event has occurred on a given stream.

- (void)stream:(NSStream *)theStream handleEvent:(NSStreamEvent)streamEvent

Parameters

theStream
The stream on which streamEvent occurred.

streamEvent
The stream event that occurred,

Discussion
The delegate receives this message only if theStream is scheduled on a run loop. The message is sent
on the stream object’s thread. The delegate should examine streamEvent to determine the appropriate
action it should take.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

Constants

NSStreamStatus
The type declared for the constants listed in “Stream Status Constants” (page 951).

typedef NSUInteger NSStreamStatus;

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

950 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Stream Status Constants
These constants are returned by streamStatus (page 949).

typedef enum {
NSStreamStatusNotOpen = 0,
NSStreamStatusOpening = 1,
NSStreamStatusOpen = 2,
NSStreamStatusReading = 3,
NSStreamStatusWriting = 4,
NSStreamStatusAtEnd = 5,
NSStreamStatusClosed = 6,
NSStreamStatusError = 7

};

Constants
NSStreamStatusNotOpen

The stream is not open for reading or writing.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamStatusOpening
The stream is being opened for reading or for writing.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamStatusOpen
The stream is open.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamStatusReading
Data is being read from the stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamStatusWriting
Data is being written to the stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamStatusAtEnd
There is no more data to read, or no more data can be written to the stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamStatusClosed
The stream is closed.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Constants 951
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

NSStreamStatusError
An error has occurred on the stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Declared In
NSStream.h

NSStreamEvent
The type declared for the constants listed in “Stream Event Constants” (page 952).

typedef NSUInteger NSStreamEvent;

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSStream.h

Stream Event Constants
These constants are sent to the delegate in the second parameter of stream:handleEvent: (page 950).

typedef enum {
NSStreamEventNone = 0,
NSStreamEventOpenCompleted = 1 << 0,
NSStreamEventHasBytesAvailable = 1 << 1,
NSStreamEventHasSpaceAvailable = 1 << 2,
NSStreamEventErrorOccurred = 1 << 3,
NSStreamEventEndEncountered = 1 << 4

};

Constants
NSStreamEventNone

No event has occurred.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamEventOpenCompleted
The open has completed successfully.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamEventHasBytesAvailable
The stream has bytes to be read.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

952 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

NSStreamEventHasSpaceAvailable
The stream can accept bytes for writing.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamEventErrorOccurred
An error has occurred on the stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamEventEndEncountered
The end of the stream has been reached.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Declared In
NSStream.h

NSStream Property Keys
NSStream defines these string constants as keys for accessing stream properties using
propertyForKey: (page 947) and setting properties with setProperty:forKey: (page 949):

extern NSString * const NSStreamSocketSecurityLevelKey ;
extern NSString * const NSStreamSocketSecurityLevelNone ;
extern NSString * const NSStreamSocketSecurityLevelSSLv2 ;
extern NSString * const NSStreamSocketSecurityLevelSSLv3 ;
extern NSString * const NSStreamSocketSecurityLevelTLSv1 ;
extern NSString * const NSStreamSocketSecurityLevelNegotiatedSSL;
extern NSString * const NSStreamSOCKSProxyConfigurationKey ;
extern NSString * const NSStreamSOCKSProxyHostKey ;
extern NSString * const NSStreamSOCKSProxyPortKey ;
extern NSString * const NSStreamSOCKSProxyVersionKey ;
extern NSString * const NSStreamSOCKSProxyUserKey ;
extern NSString * const NSStreamSOCKSProxyPasswordKey ;
extern NSString * const NSStreamSOCKSProxyVersion4 ;
extern NSString * const NSStreamSOCKSProxyVersion5 ;
extern NSString * const NSStreamDataWrittenToMemoryStreamKey ;
extern NSString * const NSStreamFileCurrentOffsetKey ;

Constants
NSStreamSocketSecurityLevelKey

The security level of the target stream. May be one of the following values:
NSStreamSocketSecurityLevelNone, NSStreamSocketSecurityLevelSSLv2,
NSStreamSocketSecurityLevelSSLv3, NSStreamSocketSecurityLevelTLSv1, or
NSStreamSocketSecurityLevelNegotiatedSSL.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Constants 953
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

NSStreamSOCKSProxyConfigurationKey
Value is an NSDictionary object containing SOCKS proxy configuration information.

The dictionary returned from the System Configuration framework for SOCKS proxies usually
suffices.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamDataWrittenToMemoryStreamKey
Value is an NSData instance containing the data written to a memory stream.

Use this property when you have an output-stream object instantiated to collect written data
in memory. The value of this property is read-only.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamFileCurrentOffsetKey
Value is an NSNumber object containing the current absolute offset of the stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Declared In
NSStream.h

NSStream Error Domains
NSStream defines these string constants to represent error domains that can be returned by
streamError (page 949):

extern NSString * const NSStreamSocketSSLErrorDomain ;
extern NSString * const NSStreamSOCKSErrorDomain ;

Constants
NSStreamSocketSSLErrorDomain

The error domain used by NSError when reporting SSL errors.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSOCKSErrorDomain
The error domain used by NSError when reporting SOCKS errors.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Declared In
NSStream.h

Secure-Socket Layer (SSL) Security Level
NSStream defines these string constants for specifying the secure-socket layer (SSL) security level.

954 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

NSString * const NSStreamSocketSecurityLevelNone;
NSString * const NSStreamSocketSecurityLevelSSLv2;
NSString * const NSStreamSocketSecurityLevelSSLv3;
NSString * const NSStreamSocketSecurityLevelTLSv1;
NSString * const NSStreamSocketSecurityLevelNegotiatedSSL

Constants
NSStreamSocketSecurityLevelNone

Specifies that no security level be set for a socket stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSocketSecurityLevelSSLv2
Specifies that SSL version 2 be set as the security protocol for a socket stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSocketSecurityLevelSSLv3
Specifies that SSL version 3 be set as the security protocol for a socket stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSocketSecurityLevelTLSv1
Specifies that TLS version 1 be set as the security protocol for a socket stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSocketSecurityLevelNegotiatedSSL
Specifies that the highest level security protocol that can be negotiated be set as the security
protocol for a socket stream.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Discussion
You access and set these values using the NSStreamSocketSecurityLevelKey property key.

Declared In
NSStream.h

SOCKS Proxy Configuration Values
NSStream defines these string constants for use as keys to specify SOCKS proxy configuration values
in an NSDictionary object.

Constants 955
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

NSString * const NSStreamSOCKSProxyHostKey;
NSString * const NSStreamSOCKSProxyPortKey;
NSString * const NSStreamSOCKSProxyVersionKey;
NSString * const NSStreamSOCKSProxyUserKey;
NSString * const NSStreamSOCKSProxyPasswordKey;
NSString * const NSStreamSOCKSProxyVersion4;
NSString * const NSStreamSOCKSProxyVersion5

Constants
NSStreamSOCKSProxyHostKey

Value is an NSString object that represents the SOCKS proxy host.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSOCKSProxyPortKey
Value is an NSNumber object containing an integer that represents the port on which the proxy
listens.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSOCKSProxyVersionKey
Value is either NSStreamSOCKSProxyVersion4 or NSStreamSOCKSProxyVersion5.

If this key is not present, NSStreamSOCKSProxyVersion5 is used by default.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSOCKSProxyUserKey
Value is an NSString object containing the user’s name.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSOCKSProxyPasswordKey
Value is an NSString object containing the user’s password.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSOCKSProxyVersion4
Possible value for NSStreamSOCKSProxyVersionKey.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

NSStreamSOCKSProxyVersion5
Possible value for NSStreamSOCKSProxyVersionKey.

Available in iPhone OS 2.0 and later.

Declared in NSStream.h

Discussion
You set the dictionary object as the current SOCKS proxy configuration using the
NSStreamSOCKSProxyConfigurationKey key

Declared In
NSStream.h

956 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 2

NSStream Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSString.h
Foundation/NSPathUtilities.h
Foundation/NSURL.h

Companion guides: String Programming Guide for Cocoa
Property List Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSString class declares the programmatic interface for an object that manages immutable strings.
(An immutable string is a text string that is defined when it is created and subsequently cannot be
changed. NSString is implemented to represent an array of Unicode characters (in other words, a
text string).

Overview 957
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

The mutable subclass of NSString is NSMutableString.

The NSString class has two primitive methods—length (page 1011) and characterAtIndex: (page
980)—that provide the basis for all other methods in its interface. The length (page 1011) method returns
the total number of Unicode characters in the string. characterAtIndex: (page 980) gives access to
each character in the string by index, with index values starting at 0.

NSString declares methods for finding and comparing strings. It also declares methods for reading
numeric values from strings, for combining strings in various ways, and for converting a string to
different forms (such as encoding and case changes).

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to
encapsulate the paragraph or ruler attributes used by the NSAttributedString classes. Additionally,
methods to support string drawing are described in NSString Additions, found in the Application
Kit.

NSString is “toll-free bridged” with its Core Foundation counterpart, CFString (see CFStringRef).
This means that the Core Foundation type is interchangeable in function or method calls with the
bridged Foundation object. Therefore, in a method where you see an NSString * parameter, you can
pass a CFStringRef, and in a function where you see a CFStringRef parameter, you can pass an
NSString instance (you cast one type to the other to suppress compiler warnings). This also applies
to your concrete subclasses of NSString. See Interchangeable Data Types for more information on
toll-free bridging.

String Objects

NSString objects represent character strings in frameworks. Representing strings as objects allows
you to use strings wherever you use other objects. It also provides the benefits of encapsulation, so
that string objects can use whatever encoding and storage are needed for efficiency while simply
appearing as arrays of characters. The cluster’s two public classes, NSString and NSMutableString,
declare the programmatic interface for non-editable and editable strings, respectively.

Note: An immutable string is a text string that is defined when it is created and subsequently cannot
be changed. An immutable string is implemented as an array of Unicode characters (in other words,
a text string). To create and manage an immutable string, use the NSString class. To construct and
manage a string that can be changed after it has been created, use NSMutableString.

The objects you create using NSString and NSMutableString are referred to as string objects (or,
when no confusion will result, merely as strings). The term C string refers to the standard char *
type. Because of the nature of class clusters, string objects aren’t actual instances of the NSString or
NSMutableString classes but of one of their private subclasses. Although a string object’s class is
private, its interface is public, as declared by these abstract superclasses, NSString and
NSMutableString. The string classes adopt the NSCopying and NSMutableCopying protocols, making
it convenient to convert a string of one type to the other.

A string object presents itself as an array of Unicode characters (Unicode is a registered trademark
of Unicode, Inc.). You can determine how many characters a string object contains with the
length (page 1011) method and can retrieve a specific character with the characterAtIndex: (page
980) method. These two “primitive” methods provide basic access to a string object. Most use of strings,
however, is at a higher level, with the strings being treated as single entities: You compare strings
against one another, search them for substrings, combine them into new strings, and so on. If you

958 Overview
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

need to access string objects character by character, you must understand the Unicode character
encoding, specifically issues related to composed character sequences. For details see The Unicode
Standard, Version 4.0 (The Unicode Consortium, Boston: Addison-Wesley, 2003, ISBN 0-321-18578-1)
and the Unicode Consortium web site: http://www.unicode.org/.

When creating an NSString object from a UTF-16-encoded string (or a byte stream interpreted as
UTF-16), if the byte order is not otherwise specified, NSString assumes that the UTF-16 characters
are big-endian, unless there is a BOM (byte-order mark), in which case the BOM dictates the byte
order. When creating an NSString object from an array of Unicode characters, the returned string is
always native-endian, since the array always contains Unicode characters in native byte order.

Over distributed-object connections, mutable string objects are passed by-reference and immutable
string objects are passed by-copy.

Subclassing Notes

It is possible to subclass NSString (and NSMutableString), but doing so requires providing storage
facilities for the string (which is not inherited by subclasses) and implementing two primitive methods.
The abstract NSString and NSMutableString classes are the public interface of a class cluster consisting
mostly of private, concrete classes that create and return a string object appropriate for a given
situation. Making your own concrete subclass of this cluster imposes certain requirements (discussed
in “Methods to Override” (page 959)).

Make sure your reasons for subclassing NSString so are valid. Instances of your subclass should
represent a string and not something else. Thus the only attributes the subclass should have are the
length of the character buffer it’s managing and access to individual characters in the buffer. Valid
reasons for making a subclass of NSString include providing a different backing store (perhaps for
better performance) or implementing some aspect of object behavior differently, such as memory
management. If your purpose is to add non-essential attributes or metadata to your subclass of
NSString, a better alternative would be object composition (see “Alternatives to Subclassing” (page
960)). Cocoa already provides an example of this with the NSAttributedString class.

Methods to Override

Any subclass of NSString must override the primitive instance methods length (page 1011) and
characterAtIndex: (page 980). These methods must operate on the backing store that you provide
for the characters of the string. For this backing store you can use a static array, a dynamically allocated
buffer, a standard NSString object, or some other data type or mechanism. You may also choose to
override, partially or fully, any other NSString method for which you want to provide an alternative
implementation. For example, for better performance it is recommended that you override
getCharacters:range: (page 992) and give it a faster implementation.

You might want to implement an initializer for your subclass that is suited to the backing store that
the subclass is managing. The NSString class does not have a designated initializer, so your initializer
need only invoke the init (page 803) method of super. The NSString class adopts the NSCopying,
NSMutableCopying, and NSCoding protocols; if you want instances of your own custom subclass
created from copying or coding, override the methods in these protocols.

Note that you shouldn’t override the hash (page 996) method.

Overview 959
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

http://www.unicode.org/

Alternatives to Subclassing

Often a better and easier alternative to making a subclass of NSString—or of any other abstract,
public class of a class cluster, for that matter—is object composition. This is especially the case when
your intent is to add to the subclass metadata or some other attribute that is not essential to a string
object. In object composition, you would have an NSString object as one instance variable of your
custom class (typically a subclass of NSObject) and one or more instance variables that store the
metadata that you want for the custom object. Then just design your subclass interface to include
accessor methods for the embedded string object and the metadata.

If the behavior you want to add supplements that of the existing class, you could write a category on
NSString. Keep in mind, however, that this category will be in effect for all instances of NSString
that you use, and this might have unintended consequences.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
copyWithZone: (page 1250)

NSMutableCopying
mutableCopyWithZone: (page 1300)

Tasks

Creating and Initializing Strings

+ string (page 972)
Returns an empty string.

– init (page 998)
Returns an initialized NSString object that contains no characters.

– initWithBytes:length:encoding: (page 998)
Returns an initialized NSString object containing a given number of bytes from a given C
array of bytes in a given encoding.

– initWithBytesNoCopy:length:encoding:freeWhenDone: (page 999)
Returns an initialized NSString object that contains a given number of bytes from a given C
array of bytes in a given encoding, and optionally frees the array on deallocation.

– initWithCharacters:length: (page 999)
Returns an initialized NSString object that contains a given number of characters from a given
C array of Unicode characters.

960 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

– initWithCharactersNoCopy:length:freeWhenDone: (page 1000)
Returns an initialized NSString object that contains a given number of characters from a given
C array of Unicode characters.

– initWithString: (page 1007)
Returns an NSString object initialized by copying the characters from another given string.

– initWithCString:encoding: (page 1003)
Returns an NSString object initialized using the characters in a given C array, interpreted
according to a given encoding.

– initWithUTF8String: (page 1008)
Returns an NSString object initialized by copying the characters a given C array of
UTF8-encoded bytes.

– initWithFormat: (page 1004)
Returns an NSString object initialized by using a given format string as a template into which
the remaining argument values are substituted.

– initWithFormat:arguments: (page 1005)
Returns an NSString object initialized by using a given format string as a template into which
the remaining argument values are substituted according to the user’s default locale.

– initWithFormat:locale: (page 1006)
Returns an NSString object initialized by using a given format string as a template into which
the remaining argument values are substituted according to given locale information.

– initWithFormat:locale:arguments: (page 1006)
Returns an NSString object initialized by using a given format string as a template into which
the remaining argument values are substituted according to given locale information.

– initWithData:encoding: (page 1004)
Returns an NSString object initialized by converting given data into Unicode characters using
a given encoding.

+ stringWithFormat: (page 976)
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted.

+ localizedStringWithFormat: (page 970)
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted according to the user's default locale.

+ stringWithCharacters:length: (page 972)
Returns a string containing a given number of characters taken from a given C array of Unicode
characters.

+ stringWithString: (page 976)
Returns a string created by copying the characters from another given string.

+ stringWithCString:encoding: (page 975)
Returns a string containing the bytes in a given C array, interpreted according to a given
encoding.

+ stringWithUTF8String: (page 977)
Returns a string created by copying the data from a given C array of UTF8-encoded bytes.

Tasks 961
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Creating and Initializing a String from a File

+ stringWithContentsOfFile:encoding:error: (page 973)
Returns a string created by reading data from the file at a given path interpreted using a given
encoding.

– initWithContentsOfFile:encoding:error: (page 1001)
Returns an NSString object initialized by reading data from the file at a given path using a
given encoding.

+ stringWithContentsOfFile:usedEncoding:error: (page 973)
Returns a string created by reading data from the file at a given path and returns by reference
the encoding used to interpret the file.

– initWithContentsOfFile:usedEncoding:error: (page 1001)
Returns an NSString object initialized by reading data from the file at a given path and returns
by reference the encoding used to interpret the characters.

Creating and Initializing a String from an URL

+ stringWithContentsOfURL:encoding:error: (page 974)
Returns a string created by reading data from a given URL interpreted using a given encoding.

– initWithContentsOfURL:encoding:error: (page 1002)
Returns an NSString object initialized by reading data from a given URL interpreted using a
given encoding.

+ stringWithContentsOfURL:usedEncoding:error: (page 975)
Returns a string created by reading data from a given URL and returns by reference the encoding
used to interpret the data.

– initWithContentsOfURL:usedEncoding:error: (page 1002)
Returns an NSString object initialized by reading data from a given URL and returns by
reference the encoding used to interpret the data.

Writing to a File or URL

– writeToFile:atomically:encoding:error: (page 1040)
Writes the contents of the receiver to a file at a given path using a given encoding.

– writeToURL:atomically:encoding:error: (page 1041)
Writes the contents of the receiver to the URL specified by url using the specified encoding.

Getting a String’s Length

– length (page 1011)
Returns the number of Unicode characters in the receiver.

– lengthOfBytesUsingEncoding: (page 1012)
Returns the number of bytes required to store the receiver in a given encoding.

– maximumLengthOfBytesUsingEncoding: (page 1015)
Returns the maximum number of bytes needed to store the receiver in a given encoding.

962 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Getting Characters and Bytes

– characterAtIndex: (page 980)
Returns the character at a given array position.

– getCharacters: (page 992)
Returns by reference the characters from the receiver.

– getCharacters:range: (page 992)
Copies characters from a given range in the receiver into a given buffer.

– getBytes:maxLength:usedLength:encoding:options:range:remainingRange: (page 991)
Gets a given range of characters as bytes in a specified encoding.

Getting C Strings

– cStringUsingEncoding: (page 986)
Returns a representation of the receiver as a C string using a given encoding.

– getCString:maxLength:encoding: (page 993)
Converts the receiver’s content to a given encoding and stores them in a buffer.

– UTF8String (page 1040)
Returns a null-terminated UTF8 representation of the receiver.

Combining Strings

– stringByAppendingFormat: (page 1027)
Returns a string made by appending to the receiver a string constructed from a given format
string and the following arguments.

– stringByAppendingString: (page 1029)
Returns a new string made by appending a given string to the receiver.

– stringByPaddingToLength:withString:startingAtIndex: (page 1032)
Returns a new string formed from the receiver by either removing characters from the end, or
by appending as many occurrences as necessary of a given pad string.

Dividing Strings

– componentsSeparatedByString: (page 985)
Returns an array containing substrings from the receiver that have been divided by a given
separator.

– componentsSeparatedByCharactersInSet: (page 985)
Returns an array containing substrings from the receiver that have been divided by characters
in a given set.

– stringByTrimmingCharactersInSet: (page 1037)
Returns a new string made by removing from both ends of the receiver characters contained
in a given character set.

– substringFromIndex: (page 1038)
Returns a new string containing the characters of the receiver from the one at a given index to
the end.

Tasks 963
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

– substringWithRange: (page 1039)
Returns a string object containing the characters of the receiver that lie within a given range.

– substringToIndex: (page 1038)
Returns a new string containing the characters of the receiver up to, but not including, the one
at a given index.

Finding Characters and Substrings

– rangeOfCharacterFromSet: (page 1019)
Returns the range in the receiver of the first character found from a given character set.

– rangeOfCharacterFromSet:options: (page 1020)
Returns the range in the receiver of the first character found, using given options, from a given
character set.

– rangeOfCharacterFromSet:options:range: (page 1020)
Returns the range in the receiver of the first character found from a given character set found
in a given range with given options.

– rangeOfString: (page 1023)
Returns the range of the first occurrence within the receiver of a given string.

– rangeOfString:options: (page 1023)
Returns the range of the first occurrence within the receiver of a given string, subject to given
options

– rangeOfString:options:range: (page 1024)
Returns the range of the first occurrence within a given range of the receiver of a given string,
subject to given options.

– rangeOfString:options:range:locale: (page 1025)
Returns the range of the first occurrence within a given range of the receiver of a given string,
subject to given options.

Replacing Substrings

– stringByReplacingOccurrencesOfString:withString: (page 1033)
Returns a new string in which all occurrences of a target string in the receiver are replaced by
another given string.

– stringByReplacingOccurrencesOfString:withString:options:range: (page 1034)
Returns a new string in which all occurrences of a target string in a specified range of the
receiver are replaced by another given string.

– stringByReplacingCharactersInRange:withString: (page 1033)
Returns a new string in which the characters in a specified range of the receiver are replaced
by a given string.

Determining Line and Paragraph Ranges

– getLineStart:end:contentsEnd:forRange: (page 994)
Returns by reference the beginning of the first line and the end of the last line touched by the
given range.

964 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

– lineRangeForRange: (page 1012)
Returns the range of characters representing the line or lines containing a given range.

– getParagraphStart:end:contentsEnd:forRange: (page 995)
Returns by reference the beginning of the first paragraph and the end of the last paragraph
touched by the given range.

– paragraphRangeForRange: (page 1015)
Returns the range of characters representing the paragraph or paragraphs containing a given
range.

Determining Composed Character Sequences

– rangeOfComposedCharacterSequenceAtIndex: (page 1021)
Returns the range in the receiver of the composed character sequence located at a given index.

– rangeOfComposedCharacterSequencesForRange: (page 1022)
Returns the range in the receiver of the composed character sequence in a given range.

Converting String Contents Into a Property List

– propertyList (page 1018)
Parses the receiver as a text representation of a property list, returning an NSString, NSData,
NSArray, or NSDictionary object, according to the topmost element.

– propertyListFromStringsFileFormat (page 1019)
Returns a dictionary object initialized with the keys and values found in the receiver.

Identifying and Comparing Strings

– caseInsensitiveCompare: (page 979)
Returns the result of invoking compare:options: (page 981) with NSCaseInsensitiveSearch
as the only option.

– localizedCaseInsensitiveCompare: (page 1013)
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and
a given string using a case-insensitive, localized, comparison.

– compare: (page 981)
Returns the result of invoking compare:options:range: (page 982) with no options and the
receiver’s full extent as the range.

– localizedCompare: (page 1013)
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and
another given string using a localized comparison.

– compare:options: (page 981)
Returns the result of invoking compare:options:range: (page 982) with a given mask as the
options and the receiver’s full extent as the range.

– compare:options:range: (page 982)
Returns the result of invoking compare:options:range:locale: (page 983) with a nil locale.

Tasks 965
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

– compare:options:range:locale: (page 983)
Returns an NSComparisonResult value that indicates the lexical ordering of a specified range
within the receiver and a given string.

– hasPrefix: (page 997)
Returns a Boolean value that indicates whether a given string matches the beginning characters
of the receiver.

– hasSuffix: (page 997)
Returns a Boolean value that indicates whether a given string matches the ending characters
of the receiver.

– isEqualToString: (page 1010)
Returns a Boolean value that indicates whether a given string is equal to the receiver using an
literal Unicode-based comparison.

– hash (page 996)
Returns an unsigned integer that can be used as a hash table address.

Folding Strings

– stringByFoldingWithOptions:locale: (page 1032)
Returns a string with the given character folding options applied.

Getting a Shared Prefix

– commonPrefixWithString:options: (page 980)
Returns a string containing prefix the receiver and a given string have in common.

Changing Case

– capitalizedString (page 978)
Returns a capitalized representation of the receiver.

– lowercaseString (page 1014)
Returns lowercased representation of the receiver.

– uppercaseString (page 1039)
Returns an uppercased representation of the receiver.

Getting Strings with Mapping

– decomposedStringWithCanonicalMapping (page 988)
Returns a string made by normalizing the receiver’s contents using Form D.

– decomposedStringWithCompatibilityMapping (page 988)
Returns a string made by normalizing the receiver’s contents using Form KD.

– precomposedStringWithCanonicalMapping (page 1017)
Returns a string made by normalizing the receiver’s contents using Form C.

– precomposedStringWithCompatibilityMapping (page 1018)
Returns a string made by normalizing the receiver’s contents using Form KC.

966 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Getting Numeric Values

– doubleValue (page 989)
Returns the floating-point value of the receiver’s text as a double.

– floatValue (page 990)
Returns the floating-point value of the receiver’s text as a float.

– intValue (page 1009)
Returns the integer value of the receiver’s text.

– integerValue (page 1008)
Returns the NSInteger value of the receiver’s text.

– longLongValue (page 1014)
Returns the long long value of the receiver’s text.

– boolValue (page 977)
Returns the Boolean value of the receiver’s text.

Working with Encodings

+ availableStringEncodings (page 969)
Returns a zero-terminated list of the encodings string objects support in the application’s
environment.

+ defaultCStringEncoding (page 969)
Returns the C-string encoding assumed for any method accepting a C string as an argument.

+ localizedNameOfStringEncoding: (page 970)
Returns a human-readable string giving the name of a given encoding.

– canBeConvertedToEncoding: (page 978)
Returns a Boolean value that indicates whether the receiver can be converted to a given encoding
without loss of information.

– dataUsingEncoding: (page 987)
Returns an NSData object containing a representation of the receiver encoded using a given
encoding.

– dataUsingEncoding:allowLossyConversion: (page 987)
Returns an NSData object containing a representation of the receiver encoded using a given
encoding.

– description (page 989)
Returns the receiver.

– fastestEncoding (page 989)
Returns the fastest encoding to which the receiver may be converted without loss of information.

– smallestEncoding (page 1025)
Returns the smallest encoding to which the receiver can be converted without loss of
information.

Tasks 967
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Working with Paths

+ pathWithComponents: (page 971)
Returns a string built from the strings in a given array by concatenating them with a path
separator between each pair.

– pathComponents (page 1016)
Returns an array of NSString objects containing, in order, each path component of the receiver.

– completePathIntoString:caseSensitive:matchesIntoArray:filterTypes: (page 984)
Interprets the receiver as a path in the file system and attempts to perform filename completion,
returning a numeric value that indicates whether a match was possible, and by reference the
longest path that matches the receiver.

– fileSystemRepresentation (page 990)
Returns a file system-specific representation of the receiver.

– getFileSystemRepresentation:maxLength: (page 993)
Interprets the receiver as a system-independent path and fills a buffer with a C-string in a
format and encoding suitable for use with file-system calls.

– isAbsolutePath (page 1010)
Returning a Boolean value that indicates whether the receiver represents an absolute path.

– lastPathComponent (page 1011)
Returns the last path component of the receiver.

– pathExtension (page 1017)
Interprets the receiver as a path and returns the receiver’s extension, if any.

– stringByAbbreviatingWithTildeInPath (page 1026)
Returns a new string representing the receiver as a path with a tilde (~) substituted for the full
path to the current user’s home directory.

– stringByAppendingPathComponent: (page 1027)
Returns a new string made by appending to the receiver a given string.

– stringByAppendingPathExtension: (page 1028)
Returns a new string made by appending to the receiver an extension separator followed by
a given extension.

– stringByDeletingLastPathComponent (page 1030)
Returns a new string made by deleting the last path component from the receiver, along with
any final path separator.

– stringByDeletingPathExtension (page 1030)
Returns a new string made by deleting the extension (if any, and only the last) from the receiver.

– stringByExpandingTildeInPath (page 1031)
Returns a new string made by expanding the initial component of the receiver to its full path
value.

– stringByResolvingSymlinksInPath (page 1035)
Returns a new string made from the receiver by resolving all symbolic links and standardizing
path.

– stringByStandardizingPath (page 1036)
Returns a new string made by removing extraneous path components from the receiver.

– stringsByAppendingPaths: (page 1037)
Returns an array of strings made by separately appending to the receiver each string in in a
given array.

968 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Working with URLs

– stringByAddingPercentEscapesUsingEncoding: (page 1026)
Returns a representation of the receiver using a given encoding to determine the percent escapes
necessary to convert the receiver into a legal URL string.

– stringByReplacingPercentEscapesUsingEncoding: (page 1035)
Returns a new string made by replacing in the receiver all percent escapes with the matching
characters as determined by a given encoding.

Class Methods

availableStringEncodings
Returns a zero-terminated list of the encodings string objects support in the application’s environment.

+ (const NSStringEncoding *)availableStringEncodings

Return Value
A zero-terminated list of the encodings string objects support in the application’s environment.

Discussion
Among the more commonly used encodings are:

NSASCIIStringEncoding

NSUnicodeStringEncoding

NSISOLatin1StringEncoding

NSISOLatin2StringEncoding

NSSymbolStringEncoding

See the “Constants” (page 1041) section for a larger list and descriptions of many supported encodings.
In addition to those encodings listed here, you can also use the encodings defined for CFString in
Core Foundation; you just need to call the CFStringConvertEncodingToNSStringEncoding function
to convert them to a usable format.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ localizedNameOfStringEncoding: (page 970)

Declared In
NSString.h

defaultCStringEncoding
Returns the C-string encoding assumed for any method accepting a C string as an argument.

+ (NSStringEncoding)defaultCStringEncoding

Class Methods 969
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
The C-string encoding assumed for any method accepting a C string as an argument.

Discussion
This method returns a user-dependent encoding who value is derived from user's default language
and potentially other factors. You might sometimes need to use this encoding when interpreting user
documents with unknown encodings, in the absence of other hints, but in general this encoding should
be used rarely, if at all. Note that some potential values might result in unexpected encoding
conversions of even fairly straightforward NSString content—for example, punctuation characters
with a bidirectional encoding.

Methods that accept a C string as an argument use ...CString... in the keywords for such arguments:
for example, stringWithCString:—note, though, that these are deprecated. The default C-string
encoding is determined from system information and can’t be changed programmatically for an
individual process. See “String Encodings” (page 1045) for a full list of supported encodings.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

localizedNameOfStringEncoding:
Returns a human-readable string giving the name of a given encoding.

+ (NSString *)localizedNameOfStringEncoding:(NSStringEncoding)encoding

Parameters

encoding
A string encoding.

Return Value
A human-readable string giving the name of encoding in the current locale’s language.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

localizedStringWithFormat:
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted according to the user's default locale.

+ (id)localizedStringWithFormat:(NSString *)format ...

970 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

format
A format string. See Formatting String Objects for examples of how to use this method, and
String Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string created by using format as a template into which the following argument values are
substituted according to the formatting information to the user's default locale.

Discussion
This method is equivalent to using initWithFormat:locale: (page 1006) and passing
[[NSUserDefaults standardUserDefaults] dictionaryRepresentation] as the locale argument.

As an example of formatting, this method replaces the decimal according to the locale in %f and %d
substitutions, and calls descriptionWithLocale: instead of description where necessary.

This code excerpt creates a string from another string and a float:

NSString *myString = [NSString localizedStringWithFormat:@"%@: %f\n", @"Cost",
1234.56];

The resulting string has the value “Cost: 1234.560000\n” if the locale is en_US, and “Cost:
1234,560000\n” if the locale is fr_FR.

See Formatting String Objects for more information.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithFormat: (page 976)
– initWithFormat:locale: (page 1006)

Declared In
NSString.h

pathWithComponents:
Returns a string built from the strings in a given array by concatenating them with a path separator
between each pair.

+ (NSString *)pathWithComponents:(NSArray *)components

Parameters

components
An array of NSString objects representing a file path. To create an absolute path, use a slash
mark (“/”) as the first component. To include a trailing path divider, use an empty string as
the last component.

Class Methods 971
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
A string built from the strings in components by concatenating them (in the order they appear in the
array) with a path separator between each pair.

Discussion
This method doesn’t clean up the path created; use stringByStandardizingPath (page 1036) to resolve
empty components, references to the parent directory, and so on.

Availability
Available in iPhone OS 2.0 and later.

See Also
– pathComponents (page 1016)

Declared In
NSPathUtilities.h

string
Returns an empty string.

+ (id)string

Return Value
An empty string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– init (page 998)

Declared In
NSString.h

stringWithCharacters:length:
Returns a string containing a given number of characters taken from a given C array of Unicode
characters.

+ (id)stringWithCharacters:(const unichar *)chars length:(NSUInteger)length

Parameters

chars
A C array of Unicode characters; the value must not be NULL.

Important: Raises an exception if chars is NULL, even if length is 0.

length
The number of characters to use from chars.

Return Value
A string containing length Unicode characters taken (starting with the first) from chars.

972 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithCharacters:length: (page 999)

Declared In
NSString.h

stringWithContentsOfFile:encoding:error:
Returns a string created by reading data from the file at a given path interpreted using a given
encoding.

+ (id)stringWithContentsOfFile:(NSString *)path encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters

path
A path to a file.

enc
The encoding of the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you
are not interested in possible errors, pass in NULL.

Return Value
A string created by reading data from the file named by path using the encoding, enc. If the file can’t
be opened or there is an encoding error, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithContentsOfFile:encoding:error: (page 1001)

Declared In
NSString.h

stringWithContentsOfFile:usedEncoding:error:
Returns a string created by reading data from the file at a given path and returns by reference the
encoding used to interpret the file.

+ (id)stringWithContentsOfFile:(NSString *)path usedEncoding:(NSStringEncoding
*)enc error:(NSError **)error

Parameters

path
A path to a file.

Class Methods 973
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

enc
Upon return, if the file is read successfully, contains the encoding used to interpret the file at
path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you
are not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from the file named by path. If the file can’t be opened or there is
an encoding error, returns nil.

Discussion
This method attempts to determine the encoding of the file at path.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithContentsOfFile:encoding:error: (page 1001)

Declared In
NSString.h

stringWithContentsOfURL:encoding:error:
Returns a string created by reading data from a given URL interpreted using a given encoding.

+ (id)stringWithContentsOfURL:(NSURL *)url encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters

url
The URL to read.

enc
The encoding of the data at url.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you
are not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from URL using the encoding, enc. If the URL can’t be opened or
there is an encoding error, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithContentsOfURL:usedEncoding:error: (page 975)
– initWithContentsOfURL:encoding:error: (page 1002)

Declared In
NSString.h

974 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

stringWithContentsOfURL:usedEncoding:error:
Returns a string created by reading data from a given URL and returns by reference the encoding
used to interpret the data.

+ (id)stringWithContentsOfURL:(NSURL *)url usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters

url
The URL from which to read data.

enc
Upon return, if url is read successfully, contains the encoding used to interpret the data.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you
are not interested in possible errors, you may pass in NULL.

Return Value
A string created by reading data from url. If the URL can’t be opened or there is an encoding error,
returns nil.

Discussion
This method attempts to determine the encoding at url.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithContentsOfURL:encoding:error: (page 974)
– initWithContentsOfURL:usedEncoding:error: (page 1002)

Declared In
NSString.h

stringWithCString:encoding:
Returns a string containing the bytes in a given C array, interpreted according to a given encoding.

+ (id)stringWithCString:(const char *)cString encoding:(NSStringEncoding)enc

Parameters

cString
A C array of bytes. The array must end with a NULL character; intermediate NULL characters
are not allowed.

enc
The encoding of cString.

Return Value
A string containing the characters described in cString.

Discussion
If cString is not a NULL-terminated C string, or encoding does not match the actual encoding, the
results are undefined.

Class Methods 975
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithCString:encoding: (page 1003)

Declared In
NSString.h

stringWithFormat:
Returns a string created by using a given format string as a template into which the remaining
argument values are substituted.

+ (id)stringWithFormat:(NSString *)format, ...

Parameters

format
A format string. See Formatting String Objects for examples of how to use this method, and
String Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string created by using format as a template into which the remaining argument values are
substituted according to the canonical locale.

Discussion
This method is similar to localizedStringWithFormat: (page 970), but using the canonical locale
to format numbers. This is useful, for example, if you want to produce “non-localized” formatting
which needs to be written out to files and parsed back later.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithFormat: (page 1004)
+ localizedStringWithFormat: (page 970)

Declared In
NSString.h

stringWithString:
Returns a string created by copying the characters from another given string.

+ (id)stringWithString:(NSString *)aString

976 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

aString
The string from which to copy characters. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
A string created by copying the characters from aString.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithString: (page 1007)

Declared In
NSString.h

stringWithUTF8String:
Returns a string created by copying the data from a given C array of UTF8-encoded bytes.

+ (id)stringWithUTF8String:(const char *)bytes

Parameters

bytes
A NULL-terminated C array of bytes in UTF8 encoding.

Important: Raises an exception if bytes is NULL.

Return Value
A string created by copying the data from bytes.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithString: (page 1007)

Declared In
NSString.h

Instance Methods

boolValue
Returns the Boolean value of the receiver’s text.

- (BOOL)boolValue

Instance Methods 977
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
The Boolean value of the receiver’s text. Returns YES on encountering one of "Y", "y", "T", "t", or a digit
1-9—the method ignores any trailing characters. Returns NO if the receiver doesn’t begin with a valid
decimal text representation of a number.

Discussion
The method assumes a decimal representation and skips whitespace at the beginning of the string.
It also skips initial whitespace characters, or optional -/+ sign followed by zeroes.

Availability
Available in iPhone OS 2.0 and later.

See Also
– integerValue (page 1008)
– scanInt: (page 907) (NSScanner)

Declared In
NSString.h

canBeConvertedToEncoding:
Returns a Boolean value that indicates whether the receiver can be converted to a given encoding
without loss of information.

- (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding

Parameters

encoding
A string encoding.

Return Value
YES if the receiver can be converted to encoding without loss of information. Returns NO if characters
would have to be changed or deleted in the process of changing encodings.

Discussion
If you plan to actually convert a string, the dataUsingEncoding:... methods return nil on failure,
so you can avoid the overhead of invoking this method yourself by simply trying to convert the string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dataUsingEncoding:allowLossyConversion: (page 987)

Declared In
NSString.h

capitalizedString
Returns a capitalized representation of the receiver.

- (NSString *)capitalizedString

978 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
A string with the first character from each word in the receiver changed to its corresponding uppercase
value, and all remaining characters set to their corresponding lowercase values.

Discussion
A “word” here is any sequence of characters delimited by spaces, tabs, or line terminators (listed
under getLineStart:end:contentsEnd:forRange: (page 994)). Other common word delimiters
such as hyphens and other punctuation aren’t considered, so this method may not generally produce
the desired results for multiword strings.

Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths
as the originals. See lowercaseString (page 1014) for an example.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lowercaseString (page 1014)
– uppercaseString (page 1039)

Declared In
NSString.h

caseInsensitiveCompare:
Returns the result of invoking compare:options: (page 981) with NSCaseInsensitiveSearch as the
only option.

- (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString

Parameters

aString
The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
The result of invoking compare:options: (page 981) with NSCaseInsensitiveSearch as the only
option.

Discussion
If you are comparing strings to present to the end-user, you should typically use
localizedCaseInsensitiveCompare: (page 1013) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedCaseInsensitiveCompare: (page 1013)
– compare:options: (page 981)

Declared In
NSString.h

Instance Methods 979
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

characterAtIndex:
Returns the character at a given array position.

- (unichar)characterAtIndex:(NSUInteger)index

Parameters

index
The index of the character to retrieve. The index value must not lie outside the bounds of the
receiver.

Return Value
The character at the array position given by index.

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– getCharacters: (page 992)
– getCharacters:range: (page 992)

Declared In
NSString.h

commonPrefixWithString:options:
Returns a string containing prefix the receiver and a given string have in common.

- (NSString *)commonPrefixWithString:(NSString *)aString
options:(NSStringCompareOptions)mask

Parameters

aString
The string with which to compare the receiver.

mask
Options for the comparison. The following search options may be specified by combining them
with the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch. See String
Programming Guide for Cocoa for details on these options.

Return Value
A string containing characters the receiver and aString have in common, starting from the beginning
of each up to the first characters that aren’t equivalent.

Discussion
The returned string is based on the characters of the receiver. For example, if the receiver is “Ma¨dchen”
and aString is “Mädchenschule”, the string returned is “Ma¨dchen”, not “Mädchen”.

Availability
Available in iPhone OS 2.0 and later.

See Also
– hasPrefix: (page 997)

980 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

compare:
Returns the result of invoking compare:options:range: (page 982) with no options and the receiver’s
full extent as the range.

- (NSComparisonResult)compare:(NSString *)aString

Parameters

aString
The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
The result of invoking compare:options:range: (page 982) with no options and the receiver’s full
extent as the range.

Discussion
If you are comparing strings to present to the end-user, you should typically use
localizedCompare: (page 1013) or localizedCaseInsensitiveCompare: (page 1013) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedCompare: (page 1013)
– localizedCaseInsensitiveCompare: (page 1013)
– compare:options: (page 981)
– caseInsensitiveCompare: (page 979)
– isEqualToString: (page 1010)

Declared In
NSString.h

compare:options:
Returns the result of invoking compare:options:range: (page 982) with a given mask as the options
and the receiver’s full extent as the range.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask

Parameters

aString
The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Instance Methods 981
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch. See String Programming
Guide for Cocoa for details on these options.

Return Value
The result of invoking compare:options:range: (page 982) with a given mask as the options and
the receiver’s full extent as the range.

Discussion
If you are comparing strings to present to the end-user, you should typically use
localizedCompare: (page 1013) or localizedCaseInsensitiveCompare: (page 1013) instead, or use
compare:options:range:locale: (page 983) and pass the user’s locale.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedCompare: (page 1013)
– localizedCaseInsensitiveCompare: (page 1013)
– compare:options:range:locale: (page 983)
– caseInsensitiveCompare: (page 979)
– isEqualToString: (page 1010)

Declared In
NSString.h

compare:options:range:
Returns the result of invoking compare:options:range:locale: (page 983) with a nil locale.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask range:(NSRange)range

Parameters

aString
The string with which to compare the range of the receiver specified by range.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch.

See String Programming Guide for Cocoa for details on these options.

range
The range of the receiver over which to perform the comparison. The range must not exceed
the bounds of the receiver.

Important: Raises an NSRangeException if range exceeds the bounds of the receiver.

Return Value
The result of invoking compare:options:range:locale: (page 983) with a nil locale.

982 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Discussion
If you are comparing strings to present to the end-user, you should typically use
compare:options:range:locale: (page 983) instead and pass the user’s locale (currentLocale (page
537) [NSLocale]).

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedCompare: (page 1013)
– localizedCaseInsensitiveCompare: (page 1013)
– compare:options: (page 981)
– caseInsensitiveCompare: (page 979)
– isEqualToString: (page 1010)

Declared In
NSString.h

compare:options:range:locale:
Returns an NSComparisonResult value that indicates the lexical ordering of a specified range within
the receiver and a given string.

- (NSComparisonResult)compare:(NSString *)aString
options:(NSStringCompareOptions)mask range:(NSRange)range locale:(id)locale

Parameters

aString
The string with which to compare the range of the receiver specified by range.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

mask
Options for the search—you can combine any of the following using a C bitwise OR operator:
NSCaseInsensitiveSearch, NSLiteralSearch, NSNumericSearch.

See String Programming Guide for Cocoa for details on these options.

range
The range of the receiver over which to perform the comparison. The range must not exceed
the bounds of the receiver.

Important: Raises an NSRangeException if range exceeds the bounds of the receiver.

locale
An instance of NSLocale. If this value not nil and is not an instance of NSLocale, uses the
current locale instead.

If you are comparing strings to present to the end-user, you should typically pass the user’s
locale (currentLocale (page 537) [NSLocale]).

Instance Methods 983
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
NSOrderedAscending if the substring of the receiver given by range precedes aString in lexical
ordering for the locale given in dict, NSOrderedSame if the substring of the receiver and aString are
equivalent in lexical value, and NSOrderedDescending if the substring of the receiver follows aString.

Special Considerations

Prior to Mac OS X v10.5, the locale argument was an instance of NSDictionary. On Mac OS X v10.5
and later, if you pass an instance of NSDictionary the current locale is used instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– localizedCompare: (page 1013)
– localizedCaseInsensitiveCompare: (page 1013)
– caseInsensitiveCompare: (page 979)
– compare: (page 981)
– compare:options: (page 981)
– compare:options:range: (page 982)
– isEqualToString: (page 1010)

Declared In
NSString.h

completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
Interprets the receiver as a path in the file system and attempts to perform filename completion,
returning a numeric value that indicates whether a match was possible, and by reference the longest
path that matches the receiver.

- (NSUInteger)completePathIntoString:(NSString **)outputName caseSensitive:(BOOL)flag
matchesIntoArray:(NSArray **)outputArray filterTypes:(NSArray *)filterTypes

Parameters

outputName
Upon return, contains the longest path that matches the receiver.

flag
If YES, the methods considers case for possible completions.

outputArray
Upon return, contains all matching filenames.

filterTypes
An array of NSString objects specifying path extensions to consider for completion. only paths
whose extensions (not including the extension separator) match one of those strings.

Return Value
0 if no matches are found and 1 if exactly one match is found. In the case of multiple matches, returns
the actual number of matching paths if outputArray is provided, or simply a positive value if
outputArray is NULL.

Discussion
You can check for the existence of matches without retrieving by passing NULL as outputArray.

984 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

componentsSeparatedByCharactersInSet:
Returns an array containing substrings from the receiver that have been divided by characters in a
given set.

- (NSArray *)componentsSeparatedByCharactersInSet:(NSCharacterSet *)separator

Parameters

separator
A character set containing the characters to to use to split the receiver. Must not be nil.

Return Value
An NSArray object containing substrings from the receiver that have been divided by characters in
separator.

Discussion
The substrings in the array appear in the order they did in the receiver. Adjacent occurrences of the
separator characters produce empty strings in the result. Similarly, if the string begins or ends with
separator characters, the first or last substring, respectively, is empty.

Availability
Available in iPhone OS 2.0 and later.

See Also
– componentsSeparatedByString: (page 985)
– stringByTrimmingCharactersInSet: (page 1037)

Declared In
NSString.h

componentsSeparatedByString:
Returns an array containing substrings from the receiver that have been divided by a given separator.

- (NSArray *)componentsSeparatedByString:(NSString *)separator

Parameters

separator
The separator string.

Return Value
An NSArray object containing substrings from the receiver that have been divided by separator.

Instance Methods 985
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Discussion
The substrings in the array appear in the order they did in the receiver. Adjacent occurrences of the
separator string produce empty strings in the result. Similarly, if the string begins or ends with the
separator, the first or last substring, respectively, is empty. For example, this code fragment:

NSString *list = @"Norman, Stanley, Fletcher";
NSArray *listItems = [list componentsSeparatedByString:@", "];

produces an array { @"Norman", @"Stanley", @"Fletcher" }.

If list begins with a comma and space—for example, ", Norman, Stanley, Fletcher"—the array
has these contents: { @"", @"Norman", @"Stanley", @"Fletcher" }

If list has no separators—for example, "Norman"—the array contains the string itself, in this case {
@"Norman" }.

Availability
Available in iPhone OS 2.0 and later.

See Also
componentsJoinedByString: (page 46) (NSArray)
– pathComponents (page 1016)

Declared In
NSString.h

cStringUsingEncoding:
Returns a representation of the receiver as a C string using a given encoding.

- (const char *)cStringUsingEncoding:(NSStringEncoding)encoding

Parameters

encoding
The encoding for the returned C string.

Return Value
A C string representation of the receiver using the encoding specified by encoding. Returns NULL if
the receiver cannot be losslessly converted to encoding.

Discussion
The returned C string is guaranteed to be valid only until either the receiver is freed, or until the
current autorelease pool is emptied, whichever occurs first. You should copy the C string or use
getCString:maxLength:encoding: (page 993) if it needs to store the C string beyond this time.

You can use canBeConvertedToEncoding: (page 978) to check whether a string can be losslessly
converted to encoding. If it can’t, you can use dataUsingEncoding:allowLossyConversion: (page
987) to get a C-string representation using encoding, allowing some loss of information (note that the
data returned by dataUsingEncoding:allowLossyConversion: is not a strict C-string since it does
not have a NULL terminator).

Availability
Available in iPhone OS 2.0 and later.

986 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
– canBeConvertedToEncoding: (page 978)
+ defaultCStringEncoding (page 969)
– getCharacters: (page 992)
– UTF8String (page 1040)

Declared In
NSString.h

dataUsingEncoding:
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Parameters

encoding
A string encoding.

Return Value
The result of invoking dataUsingEncoding:allowLossyConversion: (page 987) with NO as the second
argument (that is, requiring lossless conversion).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

dataUsingEncoding:allowLossyConversion:
Returns an NSData object containing a representation of the receiver encoded using a given encoding.

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
allowLossyConversion:(BOOL)flag

Parameters

encoding
A string encoding.

flag
If YES, then allows characters to be removed or altered in conversion.

Return Value
An NSData object containing a representation of the receiver encoded using encoding. Returns nil
if flag is NO and the receiver can’t be converted without losing some information (such as accents or
case).

Discussion
If flag is YES and the receiver can’t be converted without losing some information, some characters
may be removed or altered in conversion. For example, in converting a character from
NSUnicodeStringEncoding to NSASCIIStringEncoding, the character ‘Á’ becomes ‘A’, losing the
accent.

Instance Methods 987
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

This method creates an external representation (with a byte order marker, if necessary, to indicate
endianness) to ensure that the resulting NSData object can be written out to a file safely. The result
of this method, when lossless conversion is made, is the default “plain text” format for encoding and
is the recommended way to save or transmit a string object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ availableStringEncodings (page 969)
– canBeConvertedToEncoding: (page 978)

Declared In
NSString.h

decomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents using Form D.

- (NSString *)decomposedStringWithCanonicalMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form D.

Availability
Available in iPhone OS 2.0 and later.

See Also
– precomposedStringWithCanonicalMapping (page 1017)
– decomposedStringWithCompatibilityMapping (page 988)

Declared In
NSString.h

decomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents using Form KD.

- (NSString *)decomposedStringWithCompatibilityMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form KD.

Availability
Available in iPhone OS 2.0 and later.

See Also
– precomposedStringWithCompatibilityMapping (page 1018)
– decomposedStringWithCanonicalMapping (page 988)

Declared In
NSString.h

988 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

description
Returns the receiver.

- (NSString *)description

Return Value
The receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

doubleValue
Returns the floating-point value of the receiver’s text as a double.

- (double)doubleValue

Return Value
The floating-point value of the receiver’s text as a double. Returns HUGE_VAL or –HUGE_VAL on overflow,
0.0 on underflow. Returns 0.0 if the receiver doesn’t begin with a valid text representation of a
floating-point number.

Discussion
This method skips any whitespace at the beginning of the string. This method uses formatting
information stored in the non-localized value; use an NSScanner object for localized scanning of
numeric values from a string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– floatValue (page 990)
– longLongValue (page 1014)
– integerValue (page 1008)
– scanDouble: (page 906) (NSScanner)

Declared In
NSString.h

fastestEncoding
Returns the fastest encoding to which the receiver may be converted without loss of information.

- (NSStringEncoding)fastestEncoding

Return Value
The fastest encoding to which the receiver may be converted without loss of information.

Discussion
“Fastest” applies to retrieval of characters from the string. This encoding may not be space efficient.

Instance Methods 989
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– smallestEncoding (page 1025)
– getCharacters:range: (page 992)

Declared In
NSString.h

fileSystemRepresentation
Returns a file system-specific representation of the receiver.

- (const char *)fileSystemRepresentation

Return Value
A file system-specific representation of the receiver, as described for
getFileSystemRepresentation:maxLength: (page 993).

Discussion
The returned C string will be automatically freed just as a returned object would be released; your
code should copy the representation or use getFileSystemRepresentation:maxLength: (page 993)
if it needs to store the representation outside of the autorelease context in which the representation
is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the file system’s
encoding.

Note that this method only works with file paths (not, for example, string representations of URLs).

To convert a char * path (such as you might get from a C library routine) to an NSString object, use
NSFileManager‘s stringWithFileSystemRepresentation:length: (page 411) method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

floatValue
Returns the floating-point value of the receiver’s text as a float.

- (float)floatValue

Return Value
The floating-point value of the receiver’s text as a float, skipping whitespace at the beginning of the
string. Returns HUGE_VAL or –HUGE_VAL on overflow, 0.0 on underflow. Also returns 0.0 if the receiver
doesn’t begin with a valid text representation of a floating-point number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object
for localized scanning of numeric values from a string.

990 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– doubleValue (page 989)
– longLongValue (page 1014)
– integerValue (page 1008)
– scanFloat: (page 906) (NSScanner)

Declared In
NSString.h

getBytes:maxLength:usedLength:encoding:options:range:remainingRange:
Gets a given range of characters as bytes in a specified encoding.

- (BOOL)getBytes:(void *)buffer maxLength:(NSUInteger)maxBufferCount
usedLength:(NSUInteger *)usedBufferCount encoding:(NSStringEncoding)encoding
options:(NSStringEncodingConversionOptions)options range:(NSRange)range
remainingRange:(NSRangePointer)leftover

Parameters

buffer
A buffer into which to store the bytes from the receiver. The returned bytes are not
NULL-terminated.

maxBufferCount
The maximum number of bytes to write to buffer.

usedBufferCount
The number of bytes used from buffer. Pass NULL if you do not need this value.

encoding
The encoding to use for the returned bytes.

options
A mask to specify options to use for converting the receiver’s contents to encoding (if conversion
is necessary).

range
The range of characters in the receiver to get.

leftover
The remaining range. Pass NULL If you do not need this value.

Return Value
YES if some characters were converted, otherwise NO.

Discussion
Conversion might stop when the buffer fills, but it might also stop when the conversion isn't possible
due to the chosen encoding.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

Instance Methods 991
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

getCharacters:
Returns by reference the characters from the receiver.

- (void)getCharacters:(unichar *)buffer

Parameters

buffer
Upon return, contains the characters from the receiver. buffermust be large enough to contain
all characters in the string ([string length]*sizeof(unichar)).

Discussion
Invokes getCharacters:range: (page 992) with buffer and the entire extent of the receiver as the
range.

Availability
Available in iPhone OS 2.0 and later.

See Also
– length (page 1011)

Declared In
NSString.h

getCharacters:range:
Copies characters from a given range in the receiver into a given buffer.

- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

Parameters

buffer
Upon return, contains the characters from the receiver. buffermust be large enough to contain
the characters in the range aRange (aRange.length*sizeof(unichar)).

aRange
The range of characters to retrieve. The range must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the bounds of the receiver.

Discussion
This method does not add a NULL character.

The abstract implementation of this method uses characterAtIndex: (page 980) repeatedly, correctly
extracting the characters, though very inefficiently. Subclasses should override it to provide a fast
implementation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

992 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

getCString:maxLength:encoding:
Converts the receiver’s content to a given encoding and stores them in a buffer.

- (BOOL)getCString:(char *)buffer maxLength:(NSUInteger)maxBufferCount
encoding:(NSStringEncoding)encoding

Parameters

buffer
Upon return, contains the converted C-string plus the NULL termination byte. The buffer must
include room for maxBufferCount bytes.

maxBufferCount
The maximum number of bytes in the string to return in buffer (including the NULL termination
byte).

encoding
The encoding for the returned C string.

Return Value
YES if the operation was successful, otherwise NO. Returns NO if conversion is not possible due to
encoding errors or if buffer is too small.

Discussion
Note that in the treatment of the maxBufferCount argument, this method differs from the deprecated
getCString:maxLength: method which it replaces. (The buffer should include room for maxBufferCount
bytes; this number should accomodate the expected size of the return value plus the NULL termination
byte, which this method adds.)

You can use canBeConvertedToEncoding: (page 978) to check whether a string can be losslessly
converted to encoding. If it can’t, you can use dataUsingEncoding:allowLossyConversion: (page
987) to get a C-string representation using encoding, allowing some loss of information (note that the
data returned by dataUsingEncoding:allowLossyConversion: is not a strict C-string since it does
not have a NULL terminator).

Availability
Available in iPhone OS 2.0 and later.

See Also
– cStringUsingEncoding: (page 986)
– canBeConvertedToEncoding: (page 978)
– getCharacters: (page 992)
– UTF8String (page 1040)

Declared In
NSString.h

getFileSystemRepresentation:maxLength:
Interprets the receiver as a system-independent path and fills a buffer with a C-string in a format and
encoding suitable for use with file-system calls.

- (BOOL)getFileSystemRepresentation:(char *)buffer maxLength:(NSUInteger)maxLength

Instance Methods 993
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

buffer
Upon return, contains a C-string that represent the receiver as as a system-independent path,
plus the NULL termination byte. The size of buffermust be large enough to contain maxLength
bytes.

maxLength
The maximum number of bytes in the string to return in buffer (including a terminating NULL
character, which this method adds).

Return Value
YES if buffer is successfully filled with a file-system representation, otherwise NO (for example, if
maxLength would be exceeded or if the receiver can’t be represented in the file system’s encoding).

Discussion
This method operates by replacing the abstract path and extension separator characters (‘/’ and ‘.’
respectively) with their equivalents for the operating system. If the system-specific path or extension
separator appears in the abstract representation, the characters it is converted to depend on the system
(unless they’re identical to the abstract separators).

Note that this method only works with file paths (not, for example, string representations of URLs).

The following example illustrates the use of the maxLength argument. The first method invocation
returns failure as the file representation of the string (@"/mach_kernel") is 12 bytes long and the
value passed as the maxLength argument (12) does not allow for the addition of a NULL termination
byte.

char filenameBuffer[13];
BOOL success;
success = [@"/mach_kernel" getFileSystemRepresentation:filenameBuffer
maxLength:12];
// success == NO
// Changing the length to include the NULL character does work
success = [@"/mach_kernel" getFileSystemRepresentation:filenameBuffer
maxLength:13];
// success == YES

Availability
Available in iPhone OS 2.0 and later.

See Also
– fileSystemRepresentation (page 990)

Declared In
NSPathUtilities.h

getLineStart:end:contentsEnd:forRange:
Returns by reference the beginning of the first line and the end of the last line touched by the given
range.

- (void)getLineStart:(NSUInteger *)startIndex end:(NSUInteger *)lineEndIndex
contentsEnd:(NSUInteger *)contentsEndIndex forRange:(NSRange)aRange

994 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

startIndex
Upon return, contains the index of the first character of the line containing the beginning of
aRange. Pass NULL if you do not need this value (in which case the work to compute the value
isn’t performed).

lineEndIndex
Upon return, contains the index of the first character past the terminator of the line containing
the end of aRange. Pass NULL if you do not need this value (in which case the work to compute
the value isn’t performed).

contentsEndIndex
Upon return, contains the index of the first character of the terminator of the line containing
the end of aRange. Pass NULL if you do not need this value (in which case the work to compute
the value isn’t performed).

aRange
A range within the receiver. The value must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Discussion
A line is delimited by any of these characters, the longest possible sequence being preferred to any
shorter:

 ■ U+000D (\r or CR)

 ■ U+2028 (Unicode line separator)

 ■ U+000A (\n or LF)

 ■ U+2029 (Unicode paragraph separator)

 ■ \r\n, in that order (also known as CRLF)

If aRange is contained with a single line, of course, the returned indexes all belong to that line. You
can use the results of this method to construct ranges for lines by using the start index as the range’s
location and the difference between the end index and the start index as the range’s length.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lineRangeForRange: (page 1012)
– substringWithRange: (page 1039)

Declared In
NSString.h

getParagraphStart:end:contentsEnd:forRange:
Returns by reference the beginning of the first paragraph and the end of the last paragraph touched
by the given range.

Instance Methods 995
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

- (void)getParagraphStart:(NSUInteger *)startIndex end:(NSUInteger *)endIndex
contentsEnd:(NSUInteger *)contentsEndIndex forRange:(NSRange)aRange

Parameters

startIndex
Upon return, contains the index of the first character of the paragraph containing the beginning
of aRange. Pass NULL if you do not need this value (in which case the work to compute the
value isn’t performed).

endIndex
Upon return, contains the index of the first character past the terminator of the paragraph
containing the end of aRange. Pass NULL if you do not need this value (in which case the work
to compute the value isn’t performed).

contentsEndIndex
Upon return, contains the index of the first character of the terminator of the paragraph
containing the end of aRange. Pass NULL if you do not need this value (in which case the work
to compute the value isn’t performed).

aRange
A range within the receiver. The value must not exceed the bounds of the receiver.

Discussion
If aRange is contained with a single paragraph, of course, the returned indexes all belong to that
paragraph. Similar to getLineStart:end:contentsEnd:forRange: (page 994), you can use the results
of this method to construct the ranges for paragraphs.

Availability
Available in iPhone OS 2.0 and later.

See Also
– paragraphRangeForRange: (page 1015)

Declared In
NSString.h

hash
Returns an unsigned integer that can be used as a hash table address.

- (NSUInteger)hash

Return Value
An unsigned integer that can be used as a hash table address.

Discussion
If two string objects are equal (as determined by the isEqualToString: (page 1010) method), they
must have the same hash value. The abstract implementation of this method fulfills this requirement,
so subclasses of NSString shouldn’t override it.

You should not rely on this method returning the same hash value across releases of Mac OS X.

Availability
Available in iPhone OS 2.0 and later.

996 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

hasPrefix:
Returns a Boolean value that indicates whether a given string matches the beginning characters of
the receiver.

- (BOOL)hasPrefix:(NSString *)aString

Parameters

aString
A string.

Return Value
YES if aString matches the beginning characters of the receiver, otherwise NO. Returns NO if aString
is empty.

Discussion
This method is a convenience for comparing strings using the NSAnchoredSearch option. See String
Programming Guide for Cocoa for more information.

Availability
Available in iPhone OS 2.0 and later.

See Also
– hasSuffix: (page 997)
– compare:options:range: (page 982)

Declared In
NSString.h

hasSuffix:
Returns a Boolean value that indicates whether a given string matches the ending characters of the
receiver.

- (BOOL)hasSuffix:(NSString *)aString

Parameters

aString
A string.

Return Value
YES if aString matches the ending characters of the receiver, otherwise NO. Returns NO if aString is
empty.

Discussion
This method is a convenience for comparing strings using the NSAnchoredSearch and
NSBackwardsSearch options. See String Programming Guide for Cocoa for more information.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 997
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
– hasPrefix: (page 997)
– compare:options:range: (page 982)

Declared In
NSString.h

init
Returns an initialized NSString object that contains no characters.

- (id)init

Return Value
An initialized NSString object that contains no characters. The returned object may be different from
the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ string (page 972)

Declared In
NSString.h

initWithBytes:length:encoding:
Returns an initialized NSString object containing a given number of bytes from a given C array of
bytes in a given encoding.

- (id)initWithBytes:(const void *)bytes length:(NSUInteger)length
encoding:(NSStringEncoding)encoding

Parameters

bytes
A C array of bytes in the encoding specified by encoding. The array must not contain NULL.

length
The number of bytes to use from bytes.

encoding
The character encoding of bytes.

Return Value
An initialized NSString object containing length bytes from bytes interpreted using the encoding
encoding. The returned object may be different from the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithBytesNoCopy:length:encoding:freeWhenDone: (page 999)

998 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

initWithBytesNoCopy:length:encoding:freeWhenDone:
Returns an initialized NSString object that contains a given number of bytes from a given C array of
bytes in a given encoding, and optionally frees the array on deallocation.

- (id)initWithBytesNoCopy:(void *)bytes length:(NSUInteger)length
encoding:(NSStringEncoding)encoding freeWhenDone:(BOOL)flag

Parameters

bytes
A C array of bytes in the encoding specified by encoding. The array must not contain NULL.

length
The number of bytes to use from bytes.

encoding
The character encoding of bytes.

flag
If YES, the receiver will free the memory when it no longer needs the data; if NO it won’t.

Return Value
An initialized NSString object containing length bytes from bytes interpreted using the encoding
encoding. The returned object may be different from the original receiver.

Special Considerations

If an error occurs during the creation of the string, then bytes is not freed even if flag is YES. In this
case, the caller is responsible for freeing the buffer. This allows the caller to continue trying to create
a string with the buffer, without having the buffer deallocated.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithBytes:length:encoding: (page 998)

Declared In
NSString.h

initWithCharacters:length:
Returns an initialized NSString object that contains a given number of characters from a given C
array of Unicode characters.

- (id)initWithCharacters:(const unichar *)characters length:(NSUInteger)length

Instance Methods 999
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

characters
A C array of Unicode characters; the value must not be NULL.

Important: Raises an exception if characters is NULL, even if length is 0.

length
The number of characters to use from characters.

Return Value
An initialized NSString object containing length characters taken from characters. The returned
object may be different from the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithCharacters:length: (page 972)

Declared In
NSString.h

initWithCharactersNoCopy:length:freeWhenDone:
Returns an initialized NSString object that contains a given number of characters from a given C
array of Unicode characters.

- (id)initWithCharactersNoCopy:(unichar *)characters length:(NSUInteger)length
freeWhenDone:(BOOL)flag

Parameters

characters
A C array of Unicode characters.

length
The number of characters to use from characters.

flag
If YES, the receiver will free the memory when it no longer needs the characters; if NO it won’t.

Return Value
An initialized NSString object that contains length characters from characters. The returned object
may be different from the original receiver.

Special Considerations

If an error occurs during the creation of the string, then bytes is not freed even if flag is YES. In this
case, the caller is responsible for freeing the buffer. This allows the caller to continue trying to create
a string with the buffer, without having the buffer deallocated.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithCharacters:length: (page 972)

1000 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

initWithContentsOfFile:encoding:error:
Returns an NSString object initialized by reading data from the file at a given path using a given
encoding.

- (id)initWithContentsOfFile:(NSString *)path encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters

path
A path to a file.

enc
The encoding of the file at path.

error
If an error occurs, upon return contains an NSError object that describes the problem. If you
are not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from the file named by path using the encoding, enc.
The returned object may be different from the original receiver. If the file can’t be opened or there is
an encoding error, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithContentsOfFile:encoding:error: (page 973)
– initWithContentsOfFile:usedEncoding:error: (page 1001)

Declared In
NSString.h

initWithContentsOfFile:usedEncoding:error:
Returns an NSString object initialized by reading data from the file at a given path and returns by
reference the encoding used to interpret the characters.

- (id)initWithContentsOfFile:(NSString *)path usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters

path
A path to a file.

enc
Upon return, if the file is read successfully, contains the encoding used to interpret the file at
path.

Instance Methods 1001
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you
are not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from the file named by path. The returned object may
be different from the original receiver. If the file can’t be opened or there is an encoding error, returns
nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithContentsOfFile:encoding:error: (page 973)
– initWithContentsOfFile:encoding:error: (page 1001)

Declared In
NSString.h

initWithContentsOfURL:encoding:error:
Returns an NSString object initialized by reading data from a given URL interpreted using a given
encoding.

- (id)initWithContentsOfURL:(NSURL *)url encoding:(NSStringEncoding)enc
error:(NSError **)error

Parameters

url
The URL to read.

enc
The encoding of the file at path.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you
are not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from url. The returned object may be different from
the original receiver. If the URL can’t be opened or there is an encoding error, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithContentsOfURL:encoding:error: (page 974)

Declared In
NSString.h

initWithContentsOfURL:usedEncoding:error:
Returns an NSString object initialized by reading data from a given URL and returns by reference
the encoding used to interpret the data.

1002 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

- (id)initWithContentsOfURL:(NSURL *)url usedEncoding:(NSStringEncoding *)enc
error:(NSError **)error

Parameters

url
The URL from which to read data.

enc
Upon return, if url is read successfully, contains the encoding used to interpret the data.

error
If an error occurs, upon returns contains an NSError object that describes the problem. If you
are not interested in possible errors, pass in NULL.

Return Value
An NSString object initialized by reading data from url. If url can’t be opened or the encoding
cannot be determined, returns nil. The returned initialized object might be different from the original
receiver

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithContentsOfURL:usedEncoding:error: (page 975)

Declared In
NSString.h

initWithCString:encoding:
Returns an NSString object initialized using the characters in a given C array, interpreted according
to a given encoding.

- (id)initWithCString:(const char *)nullTerminatedCString
encoding:(NSStringEncoding)encoding

Parameters

nullTerminatedCString
A C array of characters. The array must end with a NULL character; intermediate NULL characters
are not allowed.

encoding
The encoding of nullTerminatedCString.

Return Value
An NSString object initialized using the characters from nullTerminatedCString. The returned
object may be different from the original receiver

Discussion
If nullTerminatedCString is not a NULL-terminated C string, or encoding does not match the actual
encoding, the results are undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ defaultCStringEncoding (page 969)

Instance Methods 1003
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

initWithData:encoding:
Returns an NSString object initialized by converting given data into Unicode characters using a given
encoding.

- (id)initWithData:(NSData *)data encoding:(NSStringEncoding)encoding

Parameters

data
An NSData object containing bytes in encoding and the default plain text format (that is, pure
content with no attributes or other markups) for that encoding.

encoding
The encoding used by data.

Return Value
An NSString object initialized by converting the bytes in data into Unicode characters using encoding.
The returned object may be different from the original receiver. Returns nil if the initialization fails
for some reason (for example if data does not represent valid data for encoding).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

initWithFormat:
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted.

- (id)initWithFormat:(NSString *)format ...

Parameters

format
A format string. See Formatting String Objects for examples of how to use this method, and
String Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which the remaining argument
values are substituted according to the canonical locale. The returned object may be different from
the original receiver.

1004 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Discussion
Invokes initWithFormat:locale:arguments: (page 1006) with nil as the locale, hence using the
canonical locale to format numbers. This is useful, for example, if you want to produce "non-localized"
formatting which needs to be written out to files and parsed back later.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithFormat: (page 976)
– initWithFormat:locale:arguments: (page 1006)

Declared In
NSString.h

initWithFormat:arguments:
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to the user’s default locale.

- (id)initWithFormat:(NSString *)format arguments:(va_list)argList

Parameters

format
A format string. See Formatting String Objects for examples of how to use this method, and
String Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

argList
A list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which the values in argList are
substituted according to the user’s default locale. The returned object may be different from the
original receiver.

Discussion
Invokes initWithFormat:locale:arguments: (page 1006) with nil as the locale.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithFormat: (page 976)

Declared In
NSString.h

Instance Methods 1005
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

initWithFormat:locale:
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to given locale information.

- (id)initWithFormat:(NSString *)format locale:(id)locale ...

Parameters

format
A format string. See Formatting String Objects for examples of how to use this method, and
String Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

locale
This may be an instance of NSDictionary containing locale information or an instance of
NSLocale. If this value is nil, uses the canonical locale.

To use a dictionary containing the current user's locale, you can use [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation].

...
A comma-separated list of arguments to substitute into format.

Discussion
Invokes initWithFormat:locale:arguments: (page 1006) with locale as the locale.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ localizedStringWithFormat: (page 970)

Declared In
NSString.h

initWithFormat:locale:arguments:
Returns an NSString object initialized by using a given format string as a template into which the
remaining argument values are substituted according to given locale information.

- (id)initWithFormat:(NSString *)format locale:(id)locale arguments:(va_list)argList

1006 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

format
A format string. See Formatting String Objects for examples of how to use this method, and
String Format Specifiers for a list of format specifiers. This value must not be nil.

Important: Raises an NSInvalidArgumentException if format is nil.

locale
This may be an instance of NSDictionary containing locale information or an instance of
NSLocale. If this value is nil, uses the canonical locale.

To use a dictionary containing the current user's locale, you can use [[NSUserDefaults
standardUserDefaults] dictionaryRepresentation].

argList
A list of arguments to substitute into format.

Return Value
An NSString object initialized by using format as a template into which values in argList are
substituted according the locale information in locale. The returned object may be different from
the original receiver.

Discussion
The following code fragment illustrates how to create a string from myArgs, which is derived from a
string object with the value “Cost:” and an int with the value 32:

va_list myArgs;

NSString *myString = [[NSString alloc] initWithFormat:@"%@: %d\n"
locale:[[NSUserDefaults standardUserDefaults] dictionaryRepresentation]
arguments:myArgs];

The resulting string has the value “Cost: 32\n”.

See String Programming Guide for Cocoa for more information.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithFormat:arguments: (page 1005)

Declared In
NSString.h

initWithString:
Returns an NSString object initialized by copying the characters from another given string.

- (id)initWithString:(NSString *)aString

Instance Methods 1007
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

aString
The string from which to copy characters. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
An NSString object initialized by copying the characters from aString. The returned object may be
different from the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithString: (page 976)

Declared In
NSString.h

initWithUTF8String:
Returns an NSString object initialized by copying the characters a given C array of UTF8-encoded
bytes.

- (id)initWithUTF8String:(const char *)bytes

Parameters

bytes
A NULL-terminated C array of bytes in UTF-8 encoding. This value must not be NULL.

Important: Raises an exception if bytes is NULL.

Return Value
An NSString object initialized by copying the bytes from bytes. The returned object may be different
from the original receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ stringWithUTF8String: (page 977)

Declared In
NSString.h

integerValue
Returns the NSInteger value of the receiver’s text.

- (NSInteger)integerValue

1008 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
The NSInteger value of the receiver’s text, assuming a decimal representation and skipping whitespace
at the beginning of the string. Returns 0 if the receiver doesn’t begin with a valid decimal text
representation of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object
for localized scanning of numeric values from a string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– doubleValue (page 989)
– floatValue (page 990)
– scanInt: (page 907) (NSScanner)

Declared In
NSString.h

intValue
Returns the integer value of the receiver’s text.

- (int)intValue

Return Value
The integer value of the receiver’s text, assuming a decimal representation and skipping whitespace
at the beginning of the string. Returns INT_MAX or INT_MIN on overflow. Returns 0 if the receiver
doesn’t begin with a valid decimal text representation of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object
for localized scanning of numeric values from a string.

Special Considerations

On Mac OS X v10.5 and later, use integerValue (page 1008) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– integerValue (page 1008)
– doubleValue (page 989)
– floatValue (page 990)
– scanInt: (page 907) (NSScanner)

Declared In
NSString.h

Instance Methods 1009
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

isAbsolutePath
Returning a Boolean value that indicates whether the receiver represents an absolute path.

- (BOOL)isAbsolutePath

Return Value
YES if the receiver (if interpreted as a path) represents an absolute path, otherwise NO (if the receiver
represents a relative path).

Discussion
See String Programming Guide for Cocoa for more information on paths.

Note that this method only works with file paths (not, for example, string representations of URLs).
The method does not check the filesystem for the existence of the path (use fileExistsAtPath: (page
402) or similar methods in NSFileManager for that task).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

isEqualToString:
Returns a Boolean value that indicates whether a given string is equal to the receiver using an literal
Unicode-based comparison.

- (BOOL)isEqualToString:(NSString *)aString

Parameters

aString
The string with which to compare the receiver.

Return Value
YES if aString is equivalent to the receiver (if they have the same id or if they are NSOrderedSame
in a literal comparison), otherwise NO.

Discussion
The comparison uses the canonical representation of strings, which for a particular string is the length
of the string plus the Unicode characters that make up the string. When this method compares two
strings, if the individual Unicodes are the same, then the strings are equal, regardless of the backing
store. “Literal” when applied to string comparison means that various Unicode decomposition rules
are not applied and Unicode characters are individually compared. So, for instance, “Ö” represented
as the composed character sequence “O” and umlaut would not compare equal to “Ö” represented
as one Unicode character.

Special Considerations

When you know both objects are strings, this method is a faster way to check equality than
isEqual: (page 1306).

Availability
Available in iPhone OS 2.0 and later.

1010 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
– compare:options:range: (page 982)

Declared In
NSString.h

lastPathComponent
Returns the last path component of the receiver.

- (NSString *)lastPathComponent

Return Value
The last path component of the receiver.

Discussion
The following table illustrates the effect of lastPathComponent on a variety of different paths:

String ReturnedReceiver’s String Value

“scratch.tiff”“/tmp/scratch.tiff”

“scratch”“/tmp/scratch”

“tmp”“/tmp/”

“scratch”“scratch”

“/”“/”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

length
Returns the number of Unicode characters in the receiver.

- (NSUInteger)length

Return Value
The number of Unicode characters in the receiver.

Discussion
The number returned includes the individual characters of composed character sequences, so you
cannot use this method to determine if a string will be visible when printed or how long it will appear.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1011
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
– lengthOfBytesUsingEncoding: (page 1012)
sizeWithAttributes: (NSString Additions)

Declared In
NSString.h

lengthOfBytesUsingEncoding:
Returns the number of bytes required to store the receiver in a given encoding.

- (NSUInteger)lengthOfBytesUsingEncoding:(NSStringEncoding)enc

Parameters

enc
The encoding for which to determine the receiver's length.

Return Value
The number of bytes required to store the receiver in the encoding enc in a non-external representation.
The length does not include space for a terminating NULL character.

Discussion
The result is exact and is returned in O(n) time.

Availability
Available in iPhone OS 2.0 and later.

See Also
– maximumLengthOfBytesUsingEncoding: (page 1015)
– length (page 1011)

Declared In
NSString.h

lineRangeForRange:
Returns the range of characters representing the line or lines containing a given range.

- (NSRange)lineRangeForRange:(NSRange)aRange

Parameters

aRange
A range within the receiver.

Return Value
The range of characters representing the line or lines containing aRange, including the line termination
characters.

Availability
Available in iPhone OS 2.0 and later.

See Also
– paragraphRangeForRange: (page 1015)
– getLineStart:end:contentsEnd:forRange: (page 994)

1012 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

– substringWithRange: (page 1039)

Declared In
NSString.h

localizedCaseInsensitiveCompare:
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and a given
string using a case-insensitive, localized, comparison.

- (NSComparisonResult)localizedCaseInsensitiveCompare:(NSString *)aString

Parameters

aString
The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
NSOrderedAscending the receiver precedes aString in lexical ordering, NSOrderedSame the receiver
and aString are equivalent in lexical value, and NSOrderedDescending if the receiver follows aString.

Availability
Available in iPhone OS 2.0 and later.

See Also
– compare:options:range:locale: (page 983)

Declared In
NSString.h

localizedCompare:
Returns an NSComparisonResult value that indicates the lexical ordering of the receiver and another
given string using a localized comparison.

- (NSComparisonResult)localizedCompare:(NSString *)aString

Parameters

aString
The string with which to compare the receiver.

This value must not be nil. If this value is nil, the behavior is undefined and may change in
future versions of Mac OS X.

Return Value
NSOrderedAscending the receiver precedes string in lexical ordering, NSOrderedSame the receiver
and string are equivalent in lexical value, and NSOrderedDescending if the receiver follows string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– compare:options:range:locale: (page 983)

Instance Methods 1013
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

longLongValue
Returns the long long value of the receiver’s text.

- (long long)longLongValue

Return Value
The long long value of the receiver’s text, assuming a decimal representation and skipping whitespace
at the beginning of the string. Returns INT_MAX or INT_MIN on overflow. Returns 0 if the receiver
doesn’t begin with a valid decimal text representation of a number.

Discussion
This method uses formatting information stored in the non-localized value; use an NSScanner object
for localized scanning of numeric values from a string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– doubleValue (page 989)
– floatValue (page 990)
– scanInt: (page 907) (NSScanner)

Declared In
NSString.h

lowercaseString
Returns lowercased representation of the receiver.

- (NSString *)lowercaseString

Return Value
A string with each character from the receiver changed to its corresponding lowercase value.

Discussion
Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths
as the originals. The result of this statement:

lcString = [myString lowercaseString];

might not be equal to this statement:

lcString = [[myString uppercaseString] lowercaseString];

For example, the uppercase form of “ß” in German is “SS”, so converting “Straße” to uppercase, then
lowercase, produces this sequence of strings:

“Straße”
“STRASSE”

1014 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

“strasse”

Availability
Available in iPhone OS 2.0 and later.

See Also
– capitalizedString (page 978)
– uppercaseString (page 1039)

Declared In
NSString.h

maximumLengthOfBytesUsingEncoding:
Returns the maximum number of bytes needed to store the receiver in a given encoding.

- (NSUInteger)maximumLengthOfBytesUsingEncoding:(NSStringEncoding)enc

Parameters

enc
The encoding for which to determine the receiver's length.

Return Value
The maximum number of bytes needed to store the receiver in encoding in a non-external
representation. The length does not include space for a terminating NULL character.

Discussion
The result is an estimate and is returned in O(1) time; the estimate may be considerably greater than
the actual length needed.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lengthOfBytesUsingEncoding: (page 1012)
– length (page 1011)

Declared In
NSString.h

paragraphRangeForRange:
Returns the range of characters representing the paragraph or paragraphs containing a given range.

- (NSRange)paragraphRangeForRange:(NSRange)aRange

Parameters

aRange
A range within the receiver. The range must not exceed the bounds of the receiver.

Return Value
The range of characters representing the paragraph or paragraphs containing aRange, including the
paragraph termination characters.

Instance Methods 1015
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– getParagraphStart:end:contentsEnd:forRange: (page 995)
– lineRangeForRange: (page 1012)

Declared In
NSString.h

pathComponents
Returns an array of NSString objects containing, in order, each path component of the receiver.

- (NSArray *)pathComponents

Return Value
An array of NSString objects containing, in order, each path component of the receiver.

Discussion
The strings in the array appear in the order they did in the receiver. If the string begins or ends with
the path separator, then the first or last component, respectively, will contain the separator. Empty
components (caused by consecutive path separators) are deleted. For example, this code excerpt:

NSString *path = @"tmp/scratch";
NSArray *pathComponents = [path pathComponents];

produces an array with these contents:

Path ComponentIndex

“tmp”0

“scratch”1

If the receiver begins with a slash—for example, “/tmp/scratch”—the array has these contents:

Path ComponentIndex

“/”0

“tmp”1

“scratch”2

If the receiver has no separators—for example, “scratch”—the array contains the string itself, in this
case “scratch”.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

1016 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
+ pathWithComponents: (page 971)
– stringByStandardizingPath (page 1036)
– componentsSeparatedByString: (page 985)

Declared In
NSPathUtilities.h

pathExtension
Interprets the receiver as a path and returns the receiver’s extension, if any.

- (NSString *)pathExtension

Return Value
The receiver’s extension, if any (not including the extension divider).

Discussion
The following table illustrates the effect of pathExtension on a variety of different paths:

String ReturnedReceiver’s String Value

“tiff”“/tmp/scratch.tiff”

“” (an empty string)“/tmp/scratch”

“” (an empty string)“/tmp/”

“tiff”“/tmp/scratch..tiff”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

precomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents using Form C.

- (NSString *)precomposedStringWithCanonicalMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form C.

Availability
Available in iPhone OS 2.0 and later.

See Also
– precomposedStringWithCompatibilityMapping (page 1018)

Instance Methods 1017
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

– decomposedStringWithCanonicalMapping (page 988)

Declared In
NSString.h

precomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents using Form KC.

- (NSString *)precomposedStringWithCompatibilityMapping

Return Value
A string made by normalizing the receiver’s contents using the Unicode Normalization Form KC.

Availability
Available in iPhone OS 2.0 and later.

See Also
– precomposedStringWithCanonicalMapping (page 1017)
– decomposedStringWithCompatibilityMapping (page 988)

Declared In
NSString.h

propertyList
Parses the receiver as a text representation of a property list, returning an NSString, NSData, NSArray,
or NSDictionary object, according to the topmost element.

- (id)propertyList

Return Value
A property list representation of returning an NSString, NSData, NSArray, or NSDictionary object,
according to the topmost element.

Discussion
The receiver must contain a string in a property list format. For a discussion of property list formats,
see Property List Programming Guide for Cocoa.

Important: Raises an NSParseErrorException if the receiver cannot be parsed as a property list.

Availability
Available in iPhone OS 2.0 and later.

See Also
– propertyListFromStringsFileFormat (page 1019)

Declared In
NSString.h

1018 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

propertyListFromStringsFileFormat
Returns a dictionary object initialized with the keys and values found in the receiver.

- (NSDictionary *)propertyListFromStringsFileFormat

Return Value
A dictionary object initialized with the keys and values found in the receiver

Discussion
The receiver must contain text in the format used for .strings files. In this format, keys and values
are separated by an equal sign, and each key-value pair is terminated with a semicolon. The value is
optional—if not present, the equal sign is also omitted. The keys and values themselves are always
strings enclosed in straight quotation marks. Comments may be included, delimited by /* and */ as
for ANSI C comments. Here’s a short example of a strings file:

/* Question in confirmation panel for quitting. */
"Confirm Quit" = "Are you sure you want to quit?";

/* Message when user tries to close unsaved document */
"Close or Save" = "Save changes before closing?";

/* Word for Cancel */
"Cancel";

Availability
Available in iPhone OS 2.0 and later.

See Also
– propertyList (page 1018)

Declared In
NSString.h

rangeOfCharacterFromSet:
Returns the range in the receiver of the first character found from a given character set.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

Parameters

aSet
A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

Return Value
The range in the receiver of the first character found from aSet. Returns a range of {NSNotFound,
0}if none of the characters in aSet are found.

Discussion
Invokes rangeOfCharacterFromSet:options: (page 1020) with no options.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1019
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

rangeOfCharacterFromSet:options:
Returns the range in the receiver of the first character found, using given options, from a given
character set.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(NSStringCompareOptions)mask

Parameters

aSet
A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

mask
A mask specifying search options. The following options may be specified by combining them
with the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch. See String Programming Guide for Cocoa for details on these options.

Return Value
The range in the receiver of the first character found from aSet. Returns a range of {NSNotFound,
0} if none of the characters in aSet are found.

Discussion
Invokes rangeOfCharacterFromSet:options:range: (page 1020) with mask for the options and the
entire extent of the receiver for the range.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

rangeOfCharacterFromSet:options:range:
Returns the range in the receiver of the first character found from a given character set found in a
given range with given options.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(NSStringCompareOptions)mask range:(NSRange)aRange

1020 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Parameters

aSet
A character set. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aSet is nil.

mask
A mask specifying search options. The following options may be specified by combining them
with the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch. See String Programming Guide for Cocoa for details on these options.

aRange
The range in which to search. aRange must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Return Value
The range in the receiver of the first character found from aSet within aRange. Returns a range of
{NSNotFound, 0} if none of the characters in aSet are found.

Discussion
Because pre-composed characters in aSet can match composed character sequences in the receiver,
the length of the returned range can be greater than 1. For example, if you search for “ü” in the string
“stru¨del”, the returned range is {3,2}.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

rangeOfComposedCharacterSequenceAtIndex:
Returns the range in the receiver of the composed character sequence located at a given index.

- (NSRange)rangeOfComposedCharacterSequenceAtIndex:(NSUInteger)anIndex

Parameters

anIndex
The index of a character in the receiver. The value must not exceed the bounds of the receiver.

Return Value
The range in the receiver of the composed character sequence located at anIndex.

Discussion
The composed character sequence includes the first base character found at or before anIndex, and
its length includes the base character and all non-base characters following the base character.

If you want to write a method to adjust an arbitrary range so it includes the composed character
sequences on its boundaries, you can create a method such as the following:

- (NSRange)adjustRange:(NSRange)aRange
{

Instance Methods 1021
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

NSUInteger index, endIndex;
NSRange newRange, endRange;

// Check for validity of range
if (aRange.location >= [self length] ||

aRange.location + aRange.length > [self length])
{

[NSException raise:NSRangeException format:@"Invalid range %@.",
NSStringFromRange(aRange)];

}

index = aRange.location;
newRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

index = aRange.location + aRange.length - 1;
endRange = [self rangeOfComposedCharacterSequenceAtIndex:index];
endIndex = endRange.location + endRange.length;

newRange.length = endIndex - newRange.location;

return newRange;
}

First, adjustRange: corrects the location for the beginning of aRange, storing it in newRange. It then
works at the end of aRange, correcting the location and storing it in endIndex. Finally, it sets the
length of newRange to the difference between endIndex and the new range’s location.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rangeOfComposedCharacterSequencesForRange: (page 1022)

Declared In
NSString.h

rangeOfComposedCharacterSequencesForRange:
Returns the range in the receiver of the composed character sequence in a given range.

- (NSRange)rangeOfComposedCharacterSequencesForRange:(NSRange)range

Parameters

range
A range in the receiver. The range must not exceed the bounds of the receiver.

Return Value
The range in the receiver of the composed character sequence in range.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rangeOfComposedCharacterSequenceAtIndex: (page 1021)

1022 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

rangeOfString:
Returns the range of the first occurrence within the receiver of a given string.

- (NSRange)rangeOfString:(NSString *)aString

Parameters

aString
The string to search for. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
An NSRange structure giving the location and length in the receiver of the first occurrence of aString.
Returns {NSNotFound, 0} if subString is not found or is empty (@"").

Discussion
Invokes rangeOfString:options: (page 1023) with no options.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

rangeOfString:options:
Returns the range of the first occurrence within the receiver of a given string, subject to given options

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask

Parameters

aString
The string to search for. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them
with the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch, NSAnchoredSearch. See String Programming Guide for Cocoa for details
on these options.

Return Value
An NSRange structure giving the location and length in the receiver of the first occurrence of subString,
modulo the options in mask. Returns {NSNotFound, 0} if subString is not found or is empty (@"").

Instance Methods 1023
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Discussion
Invokes rangeOfString:options:range: (page 1024) with the options specified by mask and the entire
extent of the receiver as the range.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

rangeOfString:options:range:
Returns the range of the first occurrence within a given range of the receiver of a given string, subject
to given options.

- (NSRange)rangeOfString:(NSString *)subString options:(NSStringCompareOptions)mask
range:(NSRange)aRange

Parameters

subString
The string for which to search. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them
with the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch, and NSAnchoredSearch. See String Programming Guide for Cocoa for details
on these options.

aRange
The range within the receiver for which to search for subString.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

Return Value
An NSRange structure giving the location and length in the receiver of subString within aRange in
the receiver, modulo the options in mask. The range returned is relative to the start of the string, not
to the passed-in range. Returns {NSNotFound, 0} if subString is not found or is empty (@"").

Discussion
The length of the returned range and that of subString may differ if equivalent composed character
sequences are matched.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

1024 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

rangeOfString:options:range:locale:
Returns the range of the first occurrence within a given range of the receiver of a given string, subject
to given options.

- (NSRange)rangeOfString:(NSString *)aString options:(NSStringCompareOptions)mask
range:(NSRange)searchRange locale:(NSLocale *)locale

Parameters

subString
The string for which to search. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

mask
A mask specifying search options. The following options may be specified by combining them
with the C bitwise OR operator: NSCaseInsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch, and NSAnchoredSearch. See String Programming Guide for Cocoa for details
on these options.

aRange
The range within the receiver for which to search for subString.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the string.

locale
The locale to use when comparing the receiver with subString. If this value is nil, uses the
current locale.

Return Value
An NSRange structure giving the location and length in the receiver of subString within aRange in
the receiver, modulo the options in mask. The range returned is relative to the start of the string, not
to the passed-in range. Returns {NSNotFound, 0} if subString is not found or is empty (@"").

Discussion
The length of the returned range and that of subString may differ if equivalent composed character
sequences are matched.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

smallestEncoding
Returns the smallest encoding to which the receiver can be converted without loss of information.

- (NSStringEncoding)smallestEncoding

Return Value
The smallest encoding to which the receiver can be converted without loss of information.

Instance Methods 1025
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Discussion
The returned encoding may not be the fastest for accessing characters, but is space-efficient. This
method may take some time to execute.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fastestEncoding (page 989)
– getCharacters:range: (page 992)

Declared In
NSString.h

stringByAbbreviatingWithTildeInPath
Returns a new string representing the receiver as a path with a tilde (~) substituted for the full path
to the current user’s home directory.

- (NSString *)stringByAbbreviatingWithTildeInPath

Return Value
A new string representing the receiver as a path with a tilde (~) substituted for the full path to the
current user’s home directory. Returns a new string matching the receiver if the receiver doesn’t begin
with a user’s home directory.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByExpandingTildeInPath (page 1031)

Declared In
NSPathUtilities.h

stringByAddingPercentEscapesUsingEncoding:
Returns a representation of the receiver using a given encoding to determine the percent escapes
necessary to convert the receiver into a legal URL string.

- (NSString *)stringByAddingPercentEscapesUsingEncoding:(NSStringEncoding)encoding

Parameters

encoding
The encoding to use for the returned string.

Return Value
A representation of the receiver using encoding to determine the percent escapes necessary to convert
the receiver into a legal URL string. Returns nil if encoding cannot encode a particular character

1026 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Discussion
See CFURLCreateStringByAddingPercentEscapes for more complex transformations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByReplacingPercentEscapesUsingEncoding: (page 1035)

Declared In
NSURL.h

stringByAppendingFormat:
Returns a string made by appending to the receiver a string constructed from a given format string
and the following arguments.

- (NSString *)stringByAppendingFormat:(NSString *)format ...

Parameters

format
A format string. See Formatting String Objects for more information. This value must not be
nil.

Important: Raises an NSInvalidArgumentException if format is nil.

...
A comma-separated list of arguments to substitute into format.

Return Value
A string made by appending to the receiver a string constructed from format and the following
arguments, in the manner of stringWithFormat: (page 976).

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByAppendingString: (page 1029)

Declared In
NSString.h

stringByAppendingPathComponent:
Returns a new string made by appending to the receiver a given string.

- (NSString *)stringByAppendingPathComponent:(NSString *)aString

Parameters

aString
The path component to append to the receiver.

Instance Methods 1027
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
A new string made by appending aString to the receiver, preceded if necessary by a path separator.

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that
aString is supplied as “scratch.tiff”:

Resulting StringReceiver’s String Value

“/tmp/scratch.tiff”“/tmp”

“/tmp/scratch.tiff”“/tmp/”

“/scratch.tiff”“/”

“scratch.tiff”“” (an empty string)

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringsByAppendingPaths: (page 1037)
– stringByAppendingPathExtension: (page 1028)
– stringByDeletingLastPathComponent (page 1030)

Declared In
NSPathUtilities.h

stringByAppendingPathExtension:
Returns a new string made by appending to the receiver an extension separator followed by a given
extension.

- (NSString *)stringByAppendingPathExtension:(NSString *)ext

Parameters

ext
The extension to append to the receiver.

Return Value
A new string made by appending to the receiver an extension separator followed by ext.

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that
ext is supplied as @"tiff":

Resulting StringReceiver’s String Value

“/tmp/scratch.old.tiff”“/tmp/scratch.old”

“/tmp/scratch..tiff”“/tmp/scratch.”

1028 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Resulting StringReceiver’s String Value

“/tmp.tiff”“/tmp/”

“scratch.tiff”“scratch”

Note that adding an extension to @"/tmp/" causes the result to be @"/tmp.tiff" instead of
@"/tmp/.tiff". This difference is because a file named @".tiff" is not considered to have an
extension, so the string is appended to the last nonempty path component.

This method does not allow you to append file extensions to filenames starting with the tilde character
(~).

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByAppendingPathComponent: (page 1027)
– stringByDeletingPathExtension (page 1030)

Declared In
NSPathUtilities.h

stringByAppendingString:
Returns a new string made by appending a given string to the receiver.

- (NSString *)stringByAppendingString:(NSString *)aString

Parameters

aString
The string to append to the receiver. This value must not be nil.

Important: Raises an NSInvalidArgumentException if aString is nil.

Return Value
A new string made by appending aString to the receiver.

Discussion
This code excerpt, for example:

NSString *errorTag = @"Error: ";
NSString *errorString = @"premature end of file.";
NSString *errorMessage = [errorTag stringByAppendingString:errorString];

produces the string “Error: premature end of file.”.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1029
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
– stringByAppendingFormat: (page 1027)

Declared In
NSString.h

stringByDeletingLastPathComponent
Returns a new string made by deleting the last path component from the receiver, along with any
final path separator.

- (NSString *)stringByDeletingLastPathComponent

Return Value
A new string made by deleting the last path component from the receiver, along with any final path
separator. If the receiver represents the root path it is returned unaltered.

Discussion
The following table illustrates the effect of this method on a variety of different paths:

Resulting StringReceiver’s String Value

“/tmp”“/tmp/scratch.tiff”

“/tmp”“/tmp/lock/”

“/”“/tmp/”

“/”“/tmp”

“/”“/”

“” (an empty string)“scratch.tiff”

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByDeletingPathExtension (page 1030)
– stringByAppendingPathComponent: (page 1027)

Declared In
NSPathUtilities.h

stringByDeletingPathExtension
Returns a new string made by deleting the extension (if any, and only the last) from the receiver.

- (NSString *)stringByDeletingPathExtension

1030 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Return Value
a new string made by deleting the extension (if any, and only the last) from the receiver. Strips any
trailing path separator before checking for an extension. If the receiver represents the root path, it is
returned unaltered.

Discussion
The following table illustrates the effect of this method on a variety of different paths:

Resulting StringReceiver’s String Value

“/tmp/scratch”“/tmp/scratch.tiff”

“/tmp”“/tmp/”

“scratch”“scratch.bundle/”

“scratch.”“scratch..tiff”

“.tiff”“.tiff”

“/”“/”

Note that attempting to delete an extension from @".tiff" causes the result to be @".tiff" instead
of an empty string. This difference is because a file named @".tiff" is not considered to have an
extension, so nothing is deleted. Note also that this method only works with file paths (not, for
example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

See Also
– pathExtension (page 1017)
– stringByDeletingLastPathComponent (page 1030)

Declared In
NSPathUtilities.h

stringByExpandingTildeInPath
Returns a new string made by expanding the initial component of the receiver to its full path value.

- (NSString *)stringByExpandingTildeInPath

Return Value
A new string made by expanding the initial component of the receiver, if it begins with “~” or “~user”,
to its full path value. Returns a new string matching the receiver if the receiver’s initial component
can’t be expanded.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1031
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
– stringByAbbreviatingWithTildeInPath (page 1026)

Declared In
NSPathUtilities.h

stringByFoldingWithOptions:locale:
Returns a string with the given character folding options applied.

- (NSString *)stringByFoldingWithOptions:(NSStringCompareOptions)options
locale:(NSLocale *)locale

Parameters

options
A mask of compare flags with a suffix InsensitiveSearch.

locale
The locale to use for the folding.

Return Value
A string with the character folding options applied.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

stringByPaddingToLength:withString:startingAtIndex:
Returns a new string formed from the receiver by either removing characters from the end, or by
appending as many occurrences as necessary of a given pad string.

- (NSString *)stringByPaddingToLength:(NSUInteger)newLength withString:(NSString
*)padString startingAtIndex:(NSUInteger)padIndex

Parameters

newLength
The new length for the receiver.

padString
The string with which to extend the receiver.

padIndex
The index in padString from which to start padding.

Return Value
A new string formed from the receiver by either removing characters from the end, or by appending
as many occurrences of padString as necessary.

Discussion
Here are some examples of usage:

[@"abc" stringByPaddingToLength: 9 withString: @"." startingAtIndex:0];
// Results in "abc......"

1032 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

[@"abc" stringByPaddingToLength: 2 withString: @"." startingAtIndex:0];
// Results in "ab"

[@"abc" stringByPaddingToLength: 9 withString: @". " startingAtIndex:1];
// Results in "abc . . ."
// Notice that the first character in the padding is " "

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

stringByReplacingCharactersInRange:withString:
Returns a new string in which the characters in a specified range of the receiver are replaced by a
given string.

- (NSString *)stringByReplacingCharactersInRange:(NSRange)range withString:(NSString
*)replacement

Parameters

range
A range of characters in the receiver.

replacement
The string with which to replace the characters in range.

Return Value
A new string in which the characters in range of the receiver are replaced by replacement.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByReplacingOccurrencesOfString:withString: (page 1033)
– stringByReplacingOccurrencesOfString:withString:options:range: (page 1034)
– stringByReplacingPercentEscapesUsingEncoding: (page 1035)

Declared In
NSString.h

stringByReplacingOccurrencesOfString:withString:
Returns a new string in which all occurrences of a target string in the receiver are replaced by another
given string.

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
withString:(NSString *)replacement

Parameters

target
The string to replace.

Instance Methods 1033
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

replacement
The string with which to replace target.

Return Value
A new string in which all occurrences of target in the receiver are replaced by replacement.

Discussion
Invokes stringByReplacingOccurrencesOfString:withString:options:range: (page 1034)with
0 options and range of the whole string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByReplacingOccurrencesOfString:withString:options:range: (page 1034)
– stringByReplacingCharactersInRange:withString: (page 1033)
– stringByReplacingPercentEscapesUsingEncoding: (page 1035)

Declared In
NSString.h

stringByReplacingOccurrencesOfString:withString:options:range:
Returns a new string in which all occurrences of a target string in a specified range of the receiver are
replaced by another given string.

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
withString:(NSString *)replacement options:(NSStringCompareOptions)options
range:(NSRange)searchRange

Parameters

target
The string to replace.

replacement
The string with which to replace target.

options
A mask of options to use when comparing target with the receiver. Pass 0 to specify no
options.

searchRange
The range in the receiver in which to search for target.

Return Value
A new string in which all occurrences of target, matched using options, in searchRange of the
receiver are replaced by replacement.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByReplacingOccurrencesOfString:withString: (page 1033)
– stringByReplacingCharactersInRange:withString: (page 1033)
– stringByReplacingPercentEscapesUsingEncoding: (page 1035)

1034 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

stringByReplacingPercentEscapesUsingEncoding:
Returns a new string made by replacing in the receiver all percent escapes with the matching characters
as determined by a given encoding.

- (NSString *)stringByReplacingPercentEscapesUsingEncoding:(NSStringEncoding)encoding

Parameters

encoding
The encoding to use for the returned string.

Return Value
A new string made by replacing in the receiver all percent escapes with the matching characters as
determined by the given encoding encoding. Returns nil if the transformation is not possible, for
example, the percent escapes give a byte sequence not legal in encoding.

Discussion
See CFURLCreateStringByReplacingPercentEscapes for more complex transformations.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByAddingPercentEscapesUsingEncoding: (page 1026)

Declared In
NSURL.h

stringByResolvingSymlinksInPath
Returns a new string made from the receiver by resolving all symbolic links and standardizing path.

- (NSString *)stringByResolvingSymlinksInPath

Return Value
A new string made by expanding an initial tilde expression in the receiver, then resolving all symbolic
links and references to current or parent directories if possible, to generate a standardized path. If
the original path is absolute, all symbolic links are guaranteed to be removed; if it’s a relative path,
symbolic links that can’t be resolved are left unresolved in the returned string. Returns self if an
error occurs.

Discussion
If the name of the receiving path begins with /private, the stringByResolvingSymlinksInPath
method strips off the /private designator, provided the result is the name of an existing file.

Note that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1035
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

See Also
– stringByStandardizingPath (page 1036)
– stringByExpandingTildeInPath (page 1031)

Declared In
NSPathUtilities.h

stringByStandardizingPath
Returns a new string made by removing extraneous path components from the receiver.

- (NSString *)stringByStandardizingPath

Return Value
A new string made by removing extraneous path components from the receiver.

Discussion
If stringByStandardizingPath detects symbolic links in a pathname, the
stringByResolvingSymlinksInPath (page 1035) method is called to resolve them. If an invalid
pathname is provided, stringByStandardizingPath may attempt to resolve it by calling
stringByResolvingSymlinksInPath, and the results are undefined. If any other kind of error is
encountered (such as a path component not existing), self is returned.

This method can make the following changes in the provided string:

 ■ Expand an initial tilde expression using stringByExpandingTildeInPath (page 1031).

 ■ Reduce empty components and references to the current directory (that is, the sequences “//”
and “/./”) to single path separators.

 ■ In absolute paths only, resolve references to the parent directory (that is, the component “..”) to
the real parent directory if possible using stringByResolvingSymlinksInPath (page 1035), which
consults the file system to resolve each potential symbolic link.

In relative paths, because symbolic links can’t be resolved, references to the parent directory are
left in place.

 ■ Remove an initial component of “/private” from the path if the result still indicates an existing
file or directory (checked by consulting the file system).

Note that the path returned by this method may still have symbolic link components in it. Note also
that this method only works with file paths (not, for example, string representations of URLs).

Availability
Available in iPhone OS 2.0 and later.

See Also
– stringByExpandingTildeInPath (page 1031)
– stringByResolvingSymlinksInPath (page 1035)

Declared In
NSPathUtilities.h

1036 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

stringByTrimmingCharactersInSet:
Returns a new string made by removing from both ends of the receiver characters contained in a
given character set.

- (NSString *)stringByTrimmingCharactersInSet:(NSCharacterSet *)set

Parameters

set
A character set containing the characters to remove from the receiver. set must not be nil.

Return Value
A new string made by removing from both ends of the receiver characters contained in set. If the
receiver is composed entirely of characters from set, the empty string is returned.

Discussion
Use whitespaceCharacterSet (page 142) or whitespaceAndNewlineCharacterSet (page 142) to
remove whitespace around strings.

Availability
Available in iPhone OS 2.0 and later.

See Also
– componentsSeparatedByCharactersInSet: (page 985)

Declared In
NSString.h

stringsByAppendingPaths:
Returns an array of strings made by separately appending to the receiver each string in in a given
array.

- (NSArray *)stringsByAppendingPaths:(NSArray *)paths

Parameters

paths
An array of NSString objects specifying paths to add to the receiver.

Return Value
An array of NSString objects made by separately appending each string in paths to the receiver,
preceded if necessary by a path separator.

Discussion
Note that this method only works with file paths (not, for example, string representations of URLs).
See stringByAppendingPathComponent: (page 1027) for an individual example.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

Instance Methods 1037
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

substringFromIndex:
Returns a new string containing the characters of the receiver from the one at a given index to the
end.

- (NSString *)substringFromIndex:(NSUInteger)anIndex

Parameters

anIndex
An index. The value must lie within the bounds of the receiver, or be equal to the length of the
receiver.

Important: Raises an NSRangeException if anIndex lies beyond the end of the receiver.

Return Value
A new string containing the characters of the receiver from the one at anIndex to the end. If anIndex
is equal to the length of the string, returns an empty string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– substringWithRange: (page 1039)
– substringToIndex: (page 1038)

Declared In
NSString.h

substringToIndex:
Returns a new string containing the characters of the receiver up to, but not including, the one at a
given index.

- (NSString *)substringToIndex:(NSUInteger)anIndex

Parameters

anIndex
An index. The value must lie within the bounds of the receiver, or be equal to the length of the
receiver.

Important: Raises an NSRangeException if (anIndex - 1) lies beyond the end of the receiver.

Return Value
A new string containing the characters of the receiver up to, but not including, the one at anIndex.
If anIndex is equal to the length of the string, returns a copy of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– substringFromIndex: (page 1038)
– substringWithRange: (page 1039)

1038 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

substringWithRange:
Returns a string object containing the characters of the receiver that lie within a given range.

- (NSString *)substringWithRange:(NSRange)aRange

Parameters

aRange
A range. The range must not exceed the bounds of the receiver.

Important: Raises an NSRangeException if any part of aRange lies beyond the end of the receiver.

Return Value
A string object containing the characters of the receiver that lie within aRange.

Discussion
This method treats the length of the string as a valid range value that returns an empty string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– substringFromIndex: (page 1038)
– substringToIndex: (page 1038)

Declared In
NSString.h

uppercaseString
Returns an uppercased representation of the receiver.

- (NSString *)uppercaseString

Return Value
A string with each character from the receiver changed to its corresponding uppercase value.

Discussion
Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths
as the originals. See lowercaseString (page 1014) for an example.

Availability
Available in iPhone OS 2.0 and later.

See Also
– capitalizedString (page 978)
– lowercaseString (page 1014)

Instance Methods 1039
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

UTF8String
Returns a null-terminated UTF8 representation of the receiver.

- (const char *)UTF8String

Return Value
A null-terminated UTF8 representation of the receiver.

Discussion
The returned C string is automatically freed just as a returned object would be released; you should
copy the C string if it needs to store it outside of the autorelease context in which the C string is
created.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

writeToFile:atomically:encoding:error:
Writes the contents of the receiver to a file at a given path using a given encoding.

- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile
encoding:(NSStringEncoding)enc error:(NSError **)error

Parameters

path
The file to which to write the receiver. If path contains a tilde (~) character, you must expand
it with stringByExpandingTildeInPath (page 1031) before invoking this method.

useAuxiliaryFile
If YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to path.
If NO, the receiver is written directly to path. The YES option guarantees that path, if it exists
at all, won’t be corrupted even if the system should crash during writing.

enc
The encoding to use for the output.

error
If there is an error, upon return contains an NSError object that describes the problem. If you
are not interested in details of errors, you may pass in NULL.

Return Value
YES if the file is written successfully, otherwise NO (if there was a problem writing to the file or with
the encoding).

Discussion
This method overwrites any existing file at path.

Availability
Available in iPhone OS 2.0 and later.

1040 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Declared In
NSString.h

writeToURL:atomically:encoding:error:
Writes the contents of the receiver to the URL specified by url using the specified encoding.

- (BOOL)writeToURL:(NSURL *)url atomically:(BOOL)useAuxiliaryFile
encoding:(NSStringEncoding)enc error:(NSError **)error

Parameters

url
The URL to which to write the receiver.

useAuxiliaryFile
If YES, the receiver is written to an auxiliary file, and then the auxiliary file is renamed to url.
If NO, the receiver is written directly to url. The YES option guarantees that url, if it exists at
all, won’t be corrupted even if the system should crash during writing.

The useAuxiliaryFile parameter is ignored if url is not of a type that can be accessed
atomically.

enc
The encoding to use for the output.

error
If there is an error, upon return contains an NSError object that describes the problem. If you
are not interested in details of errors, you may pass in NULL.

Return Value
YES if the URL is written successfully, otherwise NO (if there was a problem writing to the URL or
with the encoding).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

Constants

unichar
Type for Unicode characters.

typedef unsigned short unichar;

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

Constants 1041
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

NSStringCompareOptions
Type for string comparison options.

typedef NSUInteger NSStringCompareOptions;

Discussion
See “Search and Comparison Options” (page 1042) for possible values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

Search and Comparison Options
These values represent the options available to many of the string classes’ search and comparison
methods.

enum {
NSCaseInsensitiveSearch = 1,
NSLiteralSearch = 2,
NSBackwardsSearch = 4,
NSAnchoredSearch = 8,
NSNumericSearch = 64,
NSDiacriticInsensitiveSearch = 128,
NSWidthInsensitiveSearch = 256,
NSForcedOrderingSearch = 512

};

Constants
NSCaseInsensitiveSearch

A case-insensitive search.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSLiteralSearch
Exact character-by-character equivalence.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSBackwardsSearch
Search from end of source string.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSAnchoredSearch
Search is limited to start (or end, if NSBackwardsSearch) of source string.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

1042 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

NSNumericSearch
Numbers within strings are compared using numeric value, that is, Foo2.txt < Foo7.txt <
Foo25.txt.

This option only applies to compare methods, not find.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSDiacriticInsensitiveSearch
Search ignores diacritic marks.

For example, ‘ö’ is equal to ‘o’.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSWidthInsensitiveSearch
Search is ignores width differences ().

For example, ‘a’ is equal to UFF41.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSForcedOrderingSearch
Comparisons are forced to return either NSOrderedAscending or NSOrderedDescending if
the strings are equivalent but not strictly equal.

This option gives stability when sorting. For example, “aaa” is greater than "AAA” if
NSCaseInsensitiveSearch is specified.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

Discussion
See Searching and Comparing Strings for details on the effects of these options.

Declared In
NSString.h

NSStringEncodingConversionOptions
Type for encoding conversion options.

typedef NSUInteger NSStringEncodingConversionOptions;

Discussion
See longLongValue (page 1014) for possible values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

Encoding Conversion Options
Options for converting string encodings.

Constants 1043
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

enum {
NSStringEncodingConversionAllowLossy = 1,
NSStringEncodingConversionExternalRepresentation = 2

};

Constants
NSStringEncodingConversionAllowLossy

Allows lossy conversion.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSStringEncodingConversionExternalRepresentation

Available in iPhone OS 2.0 and later.

Declared in NSString.h

Special Considerations

These constants are available in Mac OS X v10.4; they are, however, differently named:

typedef enum {
NSAllowLossyEncodingConversion = 1,
NSExternalRepresentationEncodingConversion = 2

} NSStringEncodingConversionOptions;

You can use them on Mac OS X v10.4 if you define the symbols as extern constants.

Declared In
NSString.h

NSString Handling Exception Names
These constants define the names of exceptions raised if NSString cannot represent a string in a given
encoding, or parse a string as a property list.

extern NSString *NSParseErrorException;
extern NSString *NSCharacterConversionException;

Constants
NSCharacterConversionException

NSString raises an NSCharacterConversionException if a string cannot be represented in a
file-system or string encoding.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSParseErrorException
NSString raises an NSParseErrorException if a string cannot be parsed as a property list.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

Declared In
NSString.h

1044 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

NSStringEncoding
Type for string encoding.

typedef NSUInteger NSStringEncoding;

Discussion
See “String Encodings” (page 1045) for possible values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

String Encodings
The following constants are provided by NSString as possible string encodings.

enum {
NSASCIIStringEncoding = 1,
NSNEXTSTEPStringEncoding = 2,
NSJapaneseEUCStringEncoding = 3,
NSUTF8StringEncoding = 4,
NSISOLatin1StringEncoding = 5,
NSSymbolStringEncoding = 6,
NSNonLossyASCIIStringEncoding = 7,
NSShiftJISStringEncoding = 8,
NSISOLatin2StringEncoding = 9,
NSUnicodeStringEncoding = 10,
NSWindowsCP1251StringEncoding = 11,
NSWindowsCP1252StringEncoding = 12,
NSWindowsCP1253StringEncoding = 13,
NSWindowsCP1254StringEncoding = 14,
NSWindowsCP1250StringEncoding = 15,
NSISO2022JPStringEncoding = 21,
NSMacOSRomanStringEncoding = 30,
NSUTF16BigEndianStringEncoding = 0x90000100,
NSUTF16LittleEndianStringEncoding = 0x94000100,
NSUTF32StringEncoding = 0x8c000100,
NSUTF32BigEndianStringEncoding = 0x98000100,
NSUTF32LittleEndianStringEncoding = 0x9c000100,

};

Constants
NSASCIIStringEncoding

Strict 7-bit ASCII encoding within 8-bit chars; ASCII values 0…127 only.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSISO2022JPStringEncoding
ISO 2022 Japanese encoding for email.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

Constants 1045
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

NSISOLatin1StringEncoding
8-bit ISO Latin 1 encoding.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSISOLatin2StringEncoding
8-bit ISO Latin 2 encoding.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSJapaneseEUCStringEncoding
8-bit EUC encoding for Japanese text.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSMacOSRomanStringEncoding
Classic Macintosh Roman encoding.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSNEXTSTEPStringEncoding
8-bit ASCII encoding with NEXTSTEP extensions.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSNonLossyASCIIStringEncoding
7-bit verbose ASCII to represent all Unicode characters.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSShiftJISStringEncoding
8-bit Shift-JIS encoding for Japanese text.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSSymbolStringEncoding
8-bit Adobe Symbol encoding vector.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSUTF8StringEncoding
An 8-bit representation of Unicode characters, suitable for transmission or storage by
ASCII-based systems.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSUnicodeStringEncoding
The canonical Unicode encoding for string objects.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

1046 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

NSWindowsCP1250StringEncoding
Microsoft Windows codepage 1250; equivalent to WinLatin2.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSWindowsCP1251StringEncoding
Microsoft Windows codepage 1251, encoding Cyrillic characters; equivalent to
AdobeStandardCyrillic font encoding.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSWindowsCP1252StringEncoding
Microsoft Windows codepage 1252; equivalent to WinLatin1.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSWindowsCP1253StringEncoding
Microsoft Windows codepage 1253, encoding Greek characters.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSWindowsCP1254StringEncoding
Microsoft Windows codepage 1254, encoding Turkish characters.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSUTF16BigEndianStringEncoding
NSUTF16StringEncoding encoding with explicit endianness specified.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSUTF16LittleEndianStringEncoding
NSUTF16StringEncoding encoding with explicit endianness specified.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSUTF32StringEncoding
32-bit UTF encoding.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSUTF32BigEndianStringEncoding
NSUTF32StringEncoding encoding with explicit endianness specified.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

NSUTF32LittleEndianStringEncoding
NSUTF32StringEncoding encoding with explicit endianness specified.

Available in iPhone OS 2.0 and later.

Declared in NSString.h

Constants 1047
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Discussion
These values represent the various character encodings supported by the NSString classes. This is
an incomplete list. Additional encodings are defined in Strings Programming Guide for Core Foundation
(see CFStringEncodingExt.h); these encodings can be used with NSString by first passing the Core
Foundation encoding to the CFStringConvertEncodingToNSStringEncoding function.

Declared In
NSString.h

1048 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 3

NSString Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSThread.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSThread object controls a thread of execution. Use this class when you want to have an Objective-C
method run in its own thread of execution. Threads are especially useful when you need to perform
a lengthy task, but don’t want it to block the execution of the rest of the application. In particular,
you can use threads to avoid blocking the main thread of the application, which handles user interface
and event-related actions. Threads can also be used to divide a large job into several smaller jobs,
which can lead to performance increases on multi-core computers.

Prior to Mac OS X v10.5, the only way to start a new thread is to use the
detachNewThreadSelector:toTarget:withObject: (page 1052) method. In Mac OS X v10.5 and later,
you can create instances of NSThread and start them at a later time using the start (page 1062) method.

Overview 1049
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

In Mac OS Xv10.5, the NSThread class supports semantics similar to those of NSOperation for
monitoring the runtime condition of a thread. You can use these semantics to cancel the execution of
a thread or determine if the thread is still executing or has finished its task. Canceling a thread requires
support from your thread code; see the description for cancel (page 1057) for more information.

Subclassing Notes

In Mac OS X v10.5 and later, you can subclass NSThread and override the main method to implement
your thread’s main entry point. If you override main, you do not need to invoke the inherited behavior
by calling super.

Tasks

Initializing an NSThread Object

– init (page 1057)
Returns an initialized NSThread object.

– initWithTarget:selector:object: (page 1057)
Returns an NSThread object initialized with the given arguments.

Starting a Thread

+ detachNewThreadSelector:toTarget:withObject: (page 1052)
Detaches a new thread and uses the specified selector as the thread entry point.

– start (page 1062)
Starts the receiver.

– main (page 1060)
The main entry point routine for the thread.

Stopping a Thread

+ sleepUntilDate: (page 1056)
Blocks the current thread until the time specified.

+ sleepForTimeInterval: (page 1055)
Sleeps the process for a given time interval.

+ exit (page 1053)
Terminates the current thread.

– cancel (page 1057)
Changes the cancelled state of the receiver to indicate that it should exit.

1050 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Determining the Thread’s Execution State

– isExecuting (page 1059)
Returns a Boolean value that indicates whether the receiver is executing.

– isFinished (page 1059)
Returns a Boolean value that indicates whether the receiver has finished execution.

– isCancelled (page 1058)
Returns a Boolean value that indicates whether the receiver is cancelled.

Working with the Main Thread

+ isMainThread (page 1054)
Returns a Boolean value that indicates whether the current thread is the main thread.

– isMainThread (page 1059)
Returns a Boolean value that indicates whether the receiver is the main thread.

+ mainThread (page 1054)
Returns the NSThread object representing the main thread.

Querying the Environment

+ isMultiThreaded (page 1054)
Returns whether the application is multithreaded.

+ currentThread (page 1052)
Returns the thread object representing the current thread of execution.

+ callStackReturnAddresses (page 1052)
Returns an array containing the call stack return addresses.

Working with Thread Properties

– threadDictionary (page 1062)
Returns the thread object's dictionary.

– name (page 1060)
Returns the name of the receiver.

– setName: (page 1060)
Sets the name of the receiver.

– stackSize (page 1061)
Returns the stack size of the receiver.

– setStackSize: (page 1061)
Sets the stack size of the receiver.

Tasks 1051
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Working with Thread Priorities

+ threadPriority (page 1056)
Returns the current thread’s priority.

+ setThreadPriority: (page 1055)
Sets the current thread’s priority.

Class Methods

callStackReturnAddresses
Returns an array containing the call stack return addresses.

+ (NSArray *)callStackReturnAddresses

Return Value
An array containing the call stack return addresses. This value is nil by default.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSThread.h

currentThread
Returns the thread object representing the current thread of execution.

+ (NSThread *)currentThread

Return Value
A thread object representing the current thread of execution.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ detachNewThreadSelector:toTarget:withObject: (page 1052)

Declared In
NSThread.h

detachNewThreadSelector:toTarget:withObject:
Detaches a new thread and uses the specified selector as the thread entry point.

+ (void)detachNewThreadSelector:(SEL)aSelector toTarget:(id)aTarget
withObject:(id)anArgument

1052 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Parameters

aSelector
The selector for the message to send to the target. This selector must take only one argument
and must not have a return value.

aTarget
The object that will receive the message aSelector on the new thread.

anArgument
The single argument passed to the target. May be nil.

Discussion
For non garbage-collected applications, the method aSelector is responsible for setting up an
autorelease pool for the newly detached thread and freeing that pool before it exits. Garbage-collected
applications do not need to create an autorelease pool.

The objects aTarget and anArgument are retained during the execution of the detached thread, then
released. The detached thread is exited (using the exit (page 1053) class method) as soon as aTarget
has completed executing the aSelector method.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 1063) with object nil to the default notification
center.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ currentThread (page 1052)
+ isMultiThreaded (page 1054)
– start (page 1062)

Declared In
NSThread.h

exit
Terminates the current thread.

+ (void)exit

Discussion
This method uses the currentThread (page 1052) class method to access the current thread. Before
exiting the thread, this method posts the NSThreadWillExitNotification (page 1063) with the thread
being exited to the default notification center. Because notifications are delivered synchronously, all
observers of NSThreadWillExitNotification (page 1063) are guaranteed to receive the notification
before the thread exits.

Invoking this method should be avoided as it does not give your thread a chance to clean up any
resources it allocated during its execution.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 1053
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

See Also
+ currentThread (page 1052)
+ sleepUntilDate: (page 1056)

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the current thread is the main thread.

+ (BOOL)isMainThread

Return Value
YES if the current thread is the main thread, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ mainThread (page 1054)

Declared In
NSThread.h

isMultiThreaded
Returns whether the application is multithreaded.

+ (BOOL)isMultiThreaded

Return Value
YES if the application is multithreaded, NO otherwise.

Discussion
An application is considered multithreaded if a thread was ever detached from the main thread using
either detachNewThreadSelector:toTarget:withObject: (page 1052) or start (page 1062). If you
detached a thread in your application using a non-Cocoa API, such as the POSIX or Multiprocessing
Services APIs, this method could still return NO. The detached thread does not have to be currently
running for the application to be considered multithreaded—this method only indicates whether a
single thread has been spawned.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSThread.h

mainThread
Returns the NSThread object representing the main thread.

1054 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

+ (NSThread *)mainThread

Return Value
The NSThread object representing the main thread.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isMainThread (page 1059)

Declared In
NSThread.h

setThreadPriority:
Sets the current thread’s priority.

+ (BOOL)setThreadPriority:(double)priority

Parameters

priority
The new priority, specified with a floating point number from 0.0 to 1.0, where 1.0 is highest
priority.

Return Value
YES if the priority assignment succeeded, NO otherwise.

Discussion
The priorities in this range are mapped to the operating system's priority values.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ threadPriority (page 1056)

Declared In
NSThread.h

sleepForTimeInterval:
Sleeps the process for a given time interval.

+ (void)sleepForTimeInterval:(NSTimeInterval)ti

Parameters

ti
The duration of the sleep.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in iPhone OS 2.0 and later.

Class Methods 1055
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Declared In
NSThread.h

sleepUntilDate:
Blocks the current thread until the time specified.

+ (void)sleepUntilDate:(NSDate *)aDate

Parameters

aDate
The time at which to resume processing.

Discussion
No run loop processing occurs while the thread is blocked.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ currentThread (page 1052)
+ exit (page 1053)

Declared In
NSThread.h

threadPriority
Returns the current thread’s priority.

+ (double)threadPriority

Return Value
The current thread’s priority, which is specified by a floating point number from 0.0 to 1.0, where 1.0
is highest priority.

Discussion
The priorities in this range are mapped to the operating system's priority values. A “typical” thread
priority might be 0.5, but because the priority is determined by the kernel, there is no guarantee what
this value actually will be.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setThreadPriority: (page 1055)

Declared In
NSThread.h

1056 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Instance Methods

cancel
Changes the cancelled state of the receiver to indicate that it should exit.

- (void)cancel

Discussion
The semantics of this method are the same as those used for the NSOperation object. This method
sets state information in the receiver that is then reflected by the isCancelled method. Threads that
support cancellation should periodically call the isCancelled method to determine if the thread has
in fact been cancelled, and exit if it has been.

For more information about cancellation and operation objects, see NSOperation Class Reference.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isCancelled (page 1058)

Declared In
NSThread.h

init
Returns an initialized NSThread object.

- (id)init

Return Value
An initialized NSThread object.

Discussion
This is the designated initializer for NSThread.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithTarget:selector:object: (page 1057)
– start (page 1062)

Declared In
NSThread.h

initWithTarget:selector:object:
Returns an NSThread object initialized with the given arguments.

Instance Methods 1057
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

- (id)initWithTarget:(id)target
selector:(SEL)selector
object:(id)argument

Parameters

target
The object to which the message specified by selector is sent.

selector
The selector for the message to send to target. This selector must take only one argument and
must not have a return value.

argument
The single argument passed to the target. May be nil.

Return Value
An NSThread object initialized with the given arguments.

Discussion
For non garbage-collected applications, the method selector is responsible for setting up an
autorelease pool for the newly detached thread and freeing that pool before it exits. Garbage-collected
applications do not need to create an autorelease pool.

The objects target and argument are retained during the execution of the detached thread. They are
released when the thread finally exits.

Availability
Available in iPhone OS 2.0 and later.

See Also
– init (page 1057)
– start (page 1062)

Declared In
NSThread.h

isCancelled
Returns a Boolean value that indicates whether the receiver is cancelled.

- (BOOL)isCancelled

Return Value
YES if the receiver has been cancelled, otherwise NO.

Discussion
If your thread supports cancellation, it should call this method periodically and exit if it ever returns
YES.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cancel (page 1057)
– isExecuting (page 1059)
– isFinished (page 1059)

1058 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Declared In
NSThread.h

isExecuting
Returns a Boolean value that indicates whether the receiver is executing.

- (BOOL)isExecuting

Return Value
YES if the receiver is executing, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isCancelled (page 1058)
– isFinished (page 1059)

Declared In
NSThread.h

isFinished
Returns a Boolean value that indicates whether the receiver has finished execution.

- (BOOL)isFinished

Return Value
YES if the receiver has finished execution, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isCancelled (page 1058)
– isExecuting (page 1059)

Declared In
NSThread.h

isMainThread
Returns a Boolean value that indicates whether the receiver is the main thread.

- (BOOL)isMainThread

Return Value
YES if the receiver is the main thread, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1059
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Declared In
NSThread.h

main
The main entry point routine for the thread.

- (void)main

Discussion
The default implementation of this method takes the target and selector used to initialize the receiver
and invokes the selector on the specified target. If you subclass NSThread, you can override this
method and use it to implement the main body of your thread instead. If you do so, you do not need
to invoke super.

You should never invoke this method directly. You should always start your thread by invoking the
start method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– start (page 1062)

Declared In
NSThread.h

name
Returns the name of the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setName: (page 1060)

Declared In
NSThread.h

setName:
Sets the name of the receiver.

- (void)setName:(NSString *)n

1060 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Parameters

n
The name for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– name (page 1060)

Declared In
NSThread.h

setStackSize:
Sets the stack size of the receiver.

- (void)setStackSize:(NSUInteger)s

Parameters

s
The stack size for the receiver. This value must be a multiple of 4KB.

Discussion
You must call this method before starting your thread. Setting the stack size after the thread has
started changes the attribute size (which is reflected by the stackSize (page 1061) method), but it does
not affect the actual number of pages set aside for the thread.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stackSize (page 1061)

Declared In
NSThread.h

stackSize
Returns the stack size of the receiver.

- (NSUInteger)stackSize

Return Value
The stack size of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setStackSize: (page 1061)

Declared In
NSThread.h

Instance Methods 1061
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

start
Starts the receiver.

- (void)start

Discussion
This method spawns the new thread and invokes the receiver’s main method on the new thread. If
you initialized the receiver with a target and selector, the default main method invokes that selector
automatically.

If this thread is the first thread detached in the application, this method posts the
NSWillBecomeMultiThreadedNotification (page 1063) with object nil to the default notification
center.

Availability
Available in iPhone OS 2.0 and later.

See Also
– init (page 1057)
– initWithTarget:selector:object: (page 1057)
– main (page 1060)

Declared In
NSThread.h

threadDictionary
Returns the thread object's dictionary.

- (NSMutableDictionary *)threadDictionary

Return Value
The thread object's dictionary.

Discussion
You can use the returned dictionary to store thread-specific data. The thread dictionary is not used
during any manipulations of the NSThread object—it is simply a place where you can store any
interesting data. For example, Foundation uses it to store the thread’s default NSConnection and
NSAssertionHandler instances. You may define your own keys for the dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSThread.h

Notifications

NSDidBecomeSingleThreadedNotification
Not implemented.

1062 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSThread.h

NSThreadWillExitNotification
An NSThread object posts this notification when it receives the exit (page 1053) message, before the
thread exits. Observer methods invoked to receive this notification execute in the exiting thread,
before it exits.

The notification object is the exiting NSThread object. This notification does not contain a userInfo
dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSThread.h

NSWillBecomeMultiThreadedNotification
Posted when the first thread is detached from the current thread. The NSThread class posts this
notification at most once—the first time a thread is detached using
detachNewThreadSelector:toTarget:withObject: (page 1052) or the start (page 1062) method.
Subsequent invocations of those methods do not post this notification. Observers of this notification
have their notification method invoked in the main thread, not the new thread. The observer notification
methods always execute before the new thread begins executing.

This notification does not contain a notification object or a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSThread.h

Notifications 1063
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

1064 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 4

NSThread Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSTimer.h

Companion guides: Timers
Run Loops

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSTimer creates timer objects or, more simply, timers. A timer waits until a certain time interval has
elapsed and then fires, sending a specified message to a specified object. For example, you could
create an NSTimer object that sends a message to a window, telling it to update itself after a certain
time interval.

Timers work in conjunction with run loops. To use a timer effectively, you should be aware of how
run loops operate—see NSRunLoop and Run Loops. Note in particular that run loops retain their timers,
so you can release a timer after you have added it to a run loop. Moreover, timers may not fire exactly
when scheduled.

Overview 1065
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

There are three ways to create a timer. The
scheduledTimerWithTimeInterval:invocation:repeats: (page 1067) and
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1067) class methods
automatically add the new timer to the current NSRunLoop object in the default mode
(NSDefaultRunLoopMode). The timerWithTimeInterval:invocation:repeats: (page 1068) and
timerWithTimeInterval:target:selector:userInfo:repeats: (page 1068) class methods create
timers that you may add to a run loop at a later time by sending the message addTimer:forMode: (page
891) to the NSRunLoop object. Finally, you can allocate the timer directly and initialize it with
initWithFireDate:interval:target:selector:userInfo:repeats: (page 1070), which allows you
to specify both an initial fire date and a repeating interval. If you specify that the timer should repeat,
it automatically reschedules itself after it fires. If you specify that the timer should not repeat, it is
automatically invalidated after it fires.

To request the removal of a timer from an NSRunLoop object, send the timer the invalidate (page
1070) message from the same thread on which the timer was installed. This message immediately
disables the timer, so it no longer affects the NSRunLoop object. The run loop removes and releases
the timer, either just before the invalidate (page 1070) method returns or at some later point.

NSTimer is “toll-free bridged” with its Core Foundation counterpart, CFRunLoopTimer. This means
that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSTimer * parameter, you can pass a
CFRunLoopTimerRef, and in a function where you see a CFRunLoopTimerRef parameter, you can
pass an NSTimer instance (you cast one type to the other to suppress compiler warnings). See
Interchangeable Data Types for more information on toll-free bridging.

Tasks

Creating a Timer

+ scheduledTimerWithTimeInterval:invocation:repeats: (page 1067)
Returns a new NSTimer object and adds it to the current NSRunLoop object in the default mode.

+ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1067)
Returns a new NSTimer object and adds it to the current NSRunLoop object in the default mode.

+ timerWithTimeInterval:invocation:repeats: (page 1068)
Returns a new NSTimer that, when added to a run loop, will fire after seconds.

+ timerWithTimeInterval:target:selector:userInfo:repeats: (page 1068)
Returns a new NSTimer that, when added to a run loop, will fire after seconds.

– initWithFireDate:interval:target:selector:userInfo:repeats: (page 1070)
Initializes a new NSTimer that, when added to a run loop, will fire at date and then, if repeats
is YES, every seconds after that.

Firing a Timer

– fire (page 1069)
Causes the receiver’s message to be sent to its target.

1066 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

Stopping a Timer

– invalidate (page 1070)
Stops the receiver from ever firing again and requests its removal from its NSRunLoop object.

Information About a Timer

– isValid (page 1071)
Returns a Boolean value that indicates whether the receiver is currently valid.

– fireDate (page 1069)
Returns the date at which the receiver will fire.

– setFireDate: (page 1071)
Resets the receiver to fire next at a given date.

– timeInterval (page 1071)
Returns the receiver’s time interval.

– userInfo (page 1071)
Returns the receiver's userInfo object.

Class Methods

scheduledTimerWithTimeInterval:invocation:repeats:
Returns a new NSTimer object and adds it to the current NSRunLoop object in the default mode.

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
invocation:(NSInvocation *)invocation repeats:(BOOL)repeats

Discussion
After seconds have elapsed, the timer fires, sending the message in invocation to its target. If
seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is YES,
the timer will repeatedly reschedule itself until invalidated. If repeats is NO, the timer will be
invalidated after it fires.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimer.h

scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
Returns a new NSTimer object and adds it to the current NSRunLoop object in the default mode.

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)seconds target:(id)target
selector:(SEL)aSelector userInfo:(id)userInfo repeats:(BOOL)repeats

Class Methods 1067
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

Discussion
After seconds have elapsed, the timer fires, sending the message aSelector to target. The aSelector
method has the following syntax:

- (void)myTimerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to aSelector. To pass more information to the target, use
userInfo. The target gets userInfo by sending userInfo (page 1071) to the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is YES,
the timer will repeatedly reschedule itself until invalidated. If repeats is NO, the timer will be
invalidated after it fires.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimer.h

timerWithTimeInterval:invocation:repeats:
Returns a new NSTimer that, when added to a run loop, will fire after seconds.

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds invocation:(NSInvocation
*)invocation repeats:(BOOL)repeats

Discussion
If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. Upon firing, the
timer sends the message in invocation to its target. If repeats is YES, the timer will repeatedly
reschedule itself until invalidated. If repeats is NO, the timer will be invalidated after it fires.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimer.h

timerWithTimeInterval:target:selector:userInfo:repeats:
Returns a new NSTimer that, when added to a run loop, will fire after seconds.

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)seconds target:(id)target
selector:(SEL)aSelector userInfo:(id)userInfo repeats:(BOOL)repeats

Discussion
Upon firing, the timer sends aSelector to target. The aSelector method has the following syntax:

- (void)myTimerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to aSelector. To pass more information to the target, use
userInfo. The target gets userInfo by sending userInfo (page 1071) to the timer.

1068 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is YES,
the timer will repeatedly reschedule itself until invalidated. If repeats is NO, the timer will be
invalidated after it fires.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimer.h

Instance Methods

fire
Causes the receiver’s message to be sent to its target.

- (void)fire

Discussion
If the timer is non-repeating, it is automatically invalidated after firing, even if its scheduled fire date
has not arrived. A repeating timer can be fired with this method without interrupting its regular firing
schedule.

Availability
Available in iPhone OS 2.0 and later.

See Also
– invalidate (page 1070)

Declared In
NSTimer.h

fireDate
Returns the date at which the receiver will fire.

- (NSDate *)fireDate

Return Value
The date at which the receiver will fire. If the timer is no longer valid, this method returns the last
date at which the timer fired.

Discussion
Use isValid (page 1071) to verify that the timer is valid.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setFireDate: (page 1071)

Instance Methods 1069
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

Declared In
NSTimer.h

initWithFireDate:interval:target:selector:userInfo:repeats:
Initializes a new NSTimer that, when added to a run loop, will fire at date and then, if repeats is
YES, every seconds after that.

- (id)initWithFireDate:(NSDate *)date interval:(NSTimeInterval)seconds
target:(id)target selector:(SEL)aSelector userInfo:(id)userInfo
repeats:(BOOL)repeats

Discussion
Upon firing, the timer sends aSelector to target. The aSelector method has the following syntax:

- (void)myTimerFireMethod:(NSTimer*)theTimer

The timer passes itself as the argument to aSelector. To pass more information to the target, use
userInfo. The target gets userInfo by sending userInfo (page 1071) to the timer.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimer.h

invalidate
Stops the receiver from ever firing again and requests its removal from its NSRunLoop object.

- (void)invalidate

Discussion
This is the only way to remove a timer from an NSRunLoop object. The NSRunLoop object removes and
releases the timer, either just before the invalidate (page 1070) method returns or at some later point.

You must send this message from the thread on which the timer was installed. If you send this message
from another thread, the input source associated with the timer may not be removed from its run
loop, which could prevent the thread from exiting properly.

The receiver releases its references to the target and userInfo objects at the point of invalidation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fire (page 1069)

Declared In
NSTimer.h

1070 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

isValid
Returns a Boolean value that indicates whether the receiver is currently valid.

- (BOOL)isValid

Return Value
YES if the receiver is currently valid, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimer.h

setFireDate:
Resets the receiver to fire next at a given date.

- (void)setFireDate:(NSDate *)date

Parameters

date
The date at which to fire the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– fireDate (page 1069)

Declared In
NSTimer.h

timeInterval
Returns the receiver’s time interval.

- (NSTimeInterval)timeInterval

Return Value
The receiver’s time interval. If the receiver is a non-repeating timer, returns 0 (even if a time interval
was set).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimer.h

userInfo
Returns the receiver's userInfo object.

Instance Methods 1071
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

- (id)userInfo

Return Value
The receiver's userInfo object, containing additional data the target may use when the receiver is
fired.

Discussion
Do not invoke this method after the timer is invalidated. Use isValid (page 1071) to test whether the
timer is valid.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: (page 1067)
+ timerWithTimeInterval:target:selector:userInfo:repeats: (page 1068)
– invalidate (page 1070)

Declared In
NSTimer.h

1072 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 5

NSTimer Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSTimeZone.h

Companion guide: Date and Time Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSTimeZone is an abstract class that defines the behavior of time zone objects. Time zone objects
represent geopolitical regions. Consequently, these objects have names for these regions. Time zone
objects also represent a temporal offset, either plus or minus, from Greenwich Mean Time (GMT) and
an abbreviation (such as PST for Pacific Standard Time).

NSTimeZone provides several class methods to get time zone objects: timeZoneWithName: (page 1080),
timeZoneWithName:data: (page 1081), timeZoneWithAbbreviation: (page 1080), and
timeZoneForSecondsFromGMT: (page 1079). The class also permits you to set the default time zone
within your application (setDefaultTimeZone: (page 1078)). You can access this default time zone at

Overview 1073
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

any time with the defaultTimeZone (page 1077) class method, and with the localTimeZone (page 1078)
class method, you can get a relative time zone object that decodes itself to become the default time
zone for any locale in which it finds itself.

Cocoa does not provide any API to change the time zone of the computer, or of other applications.

Some NSCalendarDatemethods return date objects that are automatically bound to time zone objects.
These date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless
you specify otherwise, objects returned from NSCalendarDate are bound to the default time zone for
the current locale.

Note that, strictly, time zone database entries such as “America/Los_Angeles” are IDs not names.
An example of a time zone name is “Pacific Daylight Time”. Although many NSTimeZone method
names include the word “name”, they refer to IDs.

NSTimeZone is “toll-free bridged” with its Core Foundation counterpart, CFTimeZone Reference. This
means that the Core Foundation type is interchangeable in function or method calls with the bridged
Foundation object. Therefore, in a method where you see an NSTimeZone * parameter, you can pass
a CFTimeZoneRef, and in a function where you see a CFTimeZoneRef parameter, you can pass an
NSTimeZone instance (you cast one type to the other to suppress compiler warnings). See
Interchangeable Data Types for more information on toll-free bridging.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Creating and Initializing Time Zone Objects

+ timeZoneWithAbbreviation: (page 1080)
Returns the time zone object identified by a given abbreviation.

+ timeZoneWithName: (page 1080)
Returns the time zone object identified by a given ID.

+ timeZoneWithName:data: (page 1081)
Returns the time zone with a given ID whose data has been initialized using given data,

+ timeZoneForSecondsFromGMT: (page 1079)
Returns a time zone object offset from Greenwich Mean Time by a given number of seconds.

– initWithName: (page 1084)
Returns a time zone initialized with a given ID.

1074 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

– initWithName:data: (page 1084)
Initializes a time zone with a given ID and time zone data.

Working with System Time Zones

+ localTimeZone (page 1078)
Returns an object that forwards all messages to the default time zone for the current application.

+ defaultTimeZone (page 1077)
Returns the default time zone for the current application.

+ setDefaultTimeZone: (page 1078)
Sets the default time zone for the current application to a given time zone.

+ resetSystemTimeZone (page 1078)
Resets the system time zone object cached by the application, if any.

+ systemTimeZone (page 1079)
Returns the time zone currently used by the system.

Getting Time Zone Information

+ abbreviationDictionary (page 1076)
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

+ knownTimeZoneNames (page 1077)
Returns an array of strings listing the IDs of all the time zones known to the system.

Getting Information About a Specific Time Zone

– abbreviation (page 1082)
Returns the abbreviation for the receiver.

– abbreviationForDate: (page 1082)
Returns the abbreviation for the receiver at a given date.

– name (page 1086)
Returns the geopolitical region ID that identifies the receiver.

– secondsFromGMT (page 1088)
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

– secondsFromGMTForDate: (page 1088)
Returns the difference in seconds between the receiver and Greenwich Mean Time at a given
date.

– data (page 1082)
Returns the data that stores the information used by the receiver.

Tasks 1075
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Comparing Time Zones

– isEqualToTimeZone: (page 1086)
Returns a Boolean value that indicates whether the receiver has the same name and data as
another given time zone.

Describing a Time Zone

– description (page 1084)
Returns the description of the receiver.

– localizedName:locale: (page 1086)
Returns the name of the receiver localized for a given locale.

Getting Information About Daylight Saving

– isDaylightSavingTime (page 1085)
Returns a Boolean value that indicates whether the receiver is currently using daylight saving
time.

– daylightSavingTimeOffset (page 1083)
Returns the current daylight saving time offset of the receiver.

– isDaylightSavingTimeForDate: (page 1085)
Returns a Boolean value that indicates whether the receiver uses daylight savings time at a
given date.

– daylightSavingTimeOffsetForDate: (page 1083)
Returns the daylight saving time offset for a given date.

– nextDaylightSavingTimeTransition (page 1087)
Returns the date of the next daylight saving time transition for the receiver.

– nextDaylightSavingTimeTransitionAfterDate: (page 1087)
Returns the next daylight saving time transition after a given date.

Class Methods

abbreviationDictionary
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

+ (NSDictionary *)abbreviationDictionary

Return Value
A dictionary holding the mappings of time zone abbreviations to time zone names.

Discussion
Note that more than one time zone may have the same abbreviation—for example, US/Pacific and
Canada/Pacific both use the abbreviation “PST.” In these cases, abbreviationDictionary chooses
a single name to map the abbreviation to.

1076 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

defaultTimeZone
Returns the default time zone for the current application.

+ (NSTimeZone *)defaultTimeZone

Return Value
The default time zone for the current application. If no default time zone has been set, this method
invokes systemTimeZone (page 1079) and returns the system time zone.

Discussion
The default time zone is the one that the application is running with, which you can change (so you
can make the application run as if it were in a different time zone).

If you get the default time zone and hold onto the returned object, it does not change if a subsequent
invocation of setDefaultTimeZone: (page 1078) changes the default time zone—you still have the
specific time zone you originally got. Contrast this behavior with the object returned by
localTimeZone (page 1078).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ localTimeZone (page 1078)
+ setDefaultTimeZone: (page 1078)
+ systemTimeZone (page 1079)

Declared In
NSTimeZone.h

knownTimeZoneNames
Returns an array of strings listing the IDs of all the time zones known to the system.

+ (NSArray *)knownTimeZoneNames

Return Value
An array of strings listing the IDs of all the time zones known to the system.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

Class Methods 1077
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

localTimeZone
Returns an object that forwards all messages to the default time zone for the current application.

+ (NSTimeZone *)localTimeZone

Return Value
An object that forwards all messages to the default time zone for the current application.

Discussion
The local time zone represents the current state of the default time zone at all times. If you get the
default time zone (using defaultTimeZone (page 1077)) and hold onto the returned object, it does not
change if a subsequent invocation of setDefaultTimeZone: (page 1078) changes the default time
zone—you still have the specific time zone you originally got. The local time zone adds a level of
indirection, it acts as if it were the current default time zone whenever you invoke a method on it.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ defaultTimeZone (page 1077)
+ setDefaultTimeZone: (page 1078)

Declared In
NSTimeZone.h

resetSystemTimeZone
Resets the system time zone object cached by the application, if any.

+ (void)resetSystemTimeZone

Discussion
If the application has cached the system time zone, this method clears that cached object. If you
subsequently invoke systemTimeZone (page 1079), NSTimeZonewill attempt to redetermine the system
time zone and a new object will be created and cached (see systemTimeZone (page 1079)).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ systemTimeZone (page 1079)

Declared In
NSTimeZone.h

setDefaultTimeZone:
Sets the default time zone for the current application to a given time zone.

+ (void)setDefaultTimeZone:(NSTimeZone *)aTimeZone

1078 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Parameters

aTimeZone
The new default time zone for the current application.

Discussion
There can be only one default time zone, so by setting a new default time zone, you lose the previous
one.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ defaultTimeZone (page 1077)
+ localTimeZone (page 1078)

Declared In
NSTimeZone.h

systemTimeZone
Returns the time zone currently used by the system.

+ (NSTimeZone *)systemTimeZone

Return Value
The time zone currently used by the system. If the current time zone cannot be determined, returns
the GMT time zone.

Special Considerations

If you get the system time zone, it is cached by the application and does not change if the user
subsequently changes the system time zone. The next time you invoke systemTimeZone, you get back
the same time zone you originally got. You have to invoke resetSystemTimeZone (page 1078) to clear
the cached object.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ resetSystemTimeZone (page 1078)

Declared In
NSTimeZone.h

timeZoneForSecondsFromGMT:
Returns a time zone object offset from Greenwich Mean Time by a given number of seconds.

+ (id)timeZoneForSecondsFromGMT:(NSInteger)seconds

Parameters

seconds
The number of seconds by which the new time zone is offset from GMT.

Class Methods 1079
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Return Value
A time zone object offset from Greenwich Mean Time by seconds.

Discussion
The name of the new time zone is GMT +/– the offset, in hours and minutes. Time zones created with
this method never have daylight savings, and the offset is constant no matter the date.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ timeZoneWithAbbreviation: (page 1080)
+ timeZoneWithName: (page 1080)

Declared In
NSTimeZone.h

timeZoneWithAbbreviation:
Returns the time zone object identified by a given abbreviation.

+ (id)timeZoneWithAbbreviation:(NSString *)abbreviation

Parameters

abbreviation
An abbreviation for a time zone.

Return Value
The time zone object identified by abbreviation determined by resolving the abbreviation to a name
using the abbreviation dictionary and then returning the time zone for that name. Returns nil if there
is no match for abbreviation.

Discussion
In general, you are discouraged from using abbreviations except for unique instances such as “UTC”
or “GMT”. Time Zone abbreviations are not standardized and so a given abbreviation may have
multiple meanings—for example, “EST” refers to Eastern Time in both the United States and Australia

Availability
Available in iPhone OS 2.0 and later.

See Also
+ abbreviationDictionary (page 1076)
+ timeZoneForSecondsFromGMT: (page 1079)
+ timeZoneWithName: (page 1080)

Declared In
NSTimeZone.h

timeZoneWithName:
Returns the time zone object identified by a given ID.

+ (id)timeZoneWithName:(NSString *)aTimeZoneName

1080 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Parameters

aName
The ID for the time zone.

Return Value
The time zone in the information directory with a name matching aName. Returns nil if there is no
match for the name.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ timeZoneForSecondsFromGMT: (page 1079)
+ timeZoneWithAbbreviation: (page 1080)
+ knownTimeZoneNames (page 1077)

Declared In
NSTimeZone.h

timeZoneWithName:data:
Returns the time zone with a given ID whose data has been initialized using given data,

+ (id)timeZoneWithName:(NSString *)aTimeZoneName data:(NSData *)data

Parameters

aTimeZoneName
The ID for the time zone.

data
The data from the time-zone files located at /usr/share/zoneinfo.

Return Value
The time zone with the ID aTimeZoneNamewhose data has been initialized using the contents of data.

Discussion
You should not call this method directly—use timeZoneWithName: (page 1080) to get the time zone
object for a given name.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ timeZoneWithName: (page 1080)

Declared In
NSTimeZone.h

Class Methods 1081
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Instance Methods

abbreviation
Returns the abbreviation for the receiver.

- (NSString *)abbreviation

Return Value
The abbreviation for the receiver, such as “EDT” (Eastern Daylight Time).

Discussion
Invokes abbreviationForDate: (page 1082) with the current date as the argument.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

abbreviationForDate:
Returns the abbreviation for the receiver at a given date.

- (NSString *)abbreviationForDate:(NSDate *)aDate

Parameters

aDate
The date for which to get the abbreviation for the receiver.

Return Value
The abbreviation for the receiver at aDate.

Discussion
Note that the abbreviation may be different at different dates. For example, during daylight savings
time the US/Eastern time zone has an abbreviation of “EDT.” At other times, its abbreviation is “EST.”

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

data
Returns the data that stores the information used by the receiver.

- (NSData *)data

Return Value
The data that stores the information used by the receiver.

1082 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Discussion
This data should be treated as an opaque object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

daylightSavingTimeOffset
Returns the current daylight saving time offset of the receiver.

- (NSTimeInterval)daylightSavingTimeOffset

Return Value
The daylight current saving time offset of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isDaylightSavingTime (page 1085)
– isDaylightSavingTimeForDate: (page 1085)
– daylightSavingTimeOffsetForDate: (page 1083)

Declared In
NSTimeZone.h

daylightSavingTimeOffsetForDate:
Returns the daylight saving time offset for a given date.

- (NSTimeInterval)daylightSavingTimeOffsetForDate:(NSDate *)aDate

Parameters

aDate
A date.

Return Value
The daylight saving time offset for aDate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isDaylightSavingTime (page 1085)
– daylightSavingTimeOffset (page 1083)
– isDaylightSavingTimeForDate: (page 1085)
– nextDaylightSavingTimeTransitionAfterDate: (page 1087)

Declared In
NSTimeZone.h

Instance Methods 1083
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

description
Returns the description of the receiver.

- (NSString *)description

Return Value
The description of the receiver, including the name, abbreviation, offset from GMT, and whether or
not daylight savings time is currently in effect.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

initWithName:
Returns a time zone initialized with a given ID.

- (id)initWithName:(NSString *)aName

Parameters

aName
The ID for the time zone.

Return Value
A time zone object initialized with the ID aName.

Discussion
If aName is a known ID, this method calls initWithName:data: (page 1084) with the appropriate data
object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

initWithName:data:
Initializes a time zone with a given ID and time zone data.

- (id)initWithName:(NSString *)aName data:(NSData *)data

Parameters

aName
The ID for the time zone.

data
The data from the time-zone files located at /usr/share/zoneinfo.

Discussion
You should not call this method directly—use initWithName: (page 1084) to get a time zone object.

1084 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

isDaylightSavingTime
Returns a Boolean value that indicates whether the receiver is currently using daylight saving time.

- (BOOL)isDaylightSavingTime

Return Value
YES if the receiver is currently using daylight savings time, otherwise NO.

Discussion
This method invokes isDaylightSavingTimeForDate: (page 1085) with the current date as the
argument.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isDaylightSavingTimeForDate: (page 1085)
– daylightSavingTimeOffset (page 1083)
– daylightSavingTimeOffsetForDate: (page 1083)
– nextDaylightSavingTimeTransition (page 1087)
– nextDaylightSavingTimeTransitionAfterDate: (page 1087)

Declared In
NSTimeZone.h

isDaylightSavingTimeForDate:
Returns a Boolean value that indicates whether the receiver uses daylight savings time at a given
date.

- (BOOL)isDaylightSavingTimeForDate:(NSDate *)aDate

Parameters

aDate
The date against which to test the receiver.

Return Value
YES if the receiver uses daylight savings time at aDate, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isDaylightSavingTime (page 1085)
– daylightSavingTimeOffset (page 1083)
– daylightSavingTimeOffsetForDate: (page 1083)

Instance Methods 1085
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

– nextDaylightSavingTimeTransitionAfterDate: (page 1087)

Declared In
NSTimeZone.h

isEqualToTimeZone:
Returns a Boolean value that indicates whether the receiver has the same name and data as another
given time zone.

- (BOOL)isEqualToTimeZone:(NSTimeZone *)aTimeZone

Parameters

aTimeZone
The time zone to compare with the receiver.

Return Value
YES if aTimeZone and the receiver have the same name and data, otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

localizedName:locale:
Returns the name of the receiver localized for a given locale.

- (NSString *)localizedName:(NSTimeZoneNameStyle)style locale:(NSLocale *)locale

Parameters

style
The format style for the returned string.

locale
The locale for which to format the name.

Return Value
The name of the receiver localized for locale using style.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

name
Returns the geopolitical region ID that identifies the receiver.

- (NSString *)name

1086 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Return Value
The geopolitical region ID that identifies the receiver.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

nextDaylightSavingTimeTransition
Returns the date of the next daylight saving time transition for the receiver.

- (NSDate *)nextDaylightSavingTimeTransition

Return Value
The date of the next (after the current instant) daylight saving time transition for the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isDaylightSavingTime (page 1085)
– isDaylightSavingTimeForDate: (page 1085)
– nextDaylightSavingTimeTransitionAfterDate: (page 1087)

Declared In
NSTimeZone.h

nextDaylightSavingTimeTransitionAfterDate:
Returns the next daylight saving time transition after a given date.

- (NSDate *)nextDaylightSavingTimeTransitionAfterDate:(NSDate *)aDate

Parameters

aDate
A date.

Return Value
The next daylight saving time transition after aDate.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isDaylightSavingTime (page 1085)
– isDaylightSavingTimeForDate: (page 1085)
– nextDaylightSavingTimeTransition (page 1087)

Declared In
NSTimeZone.h

Instance Methods 1087
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

secondsFromGMT
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

- (NSInteger)secondsFromGMT

Return Value
The current difference in seconds between the receiver and Greenwich Mean Time.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

secondsFromGMTForDate:
Returns the difference in seconds between the receiver and Greenwich Mean Time at a given date.

- (NSInteger)secondsFromGMTForDate:(NSDate *)aDate

Parameters

aDate
The date against which to test the receiver.

Return Value
The difference in seconds between the receiver and Greenwich Mean Time at aDate.

Discussion
The difference may be different from the current difference if the time zone changes its offset from
GMT at different points in the year—for example, the U.S. time zones change with daylight savings
time.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

Constants

NSTimeZoneNameStyle
Defines a type for time zone name styles.

typedef NSInteger NSTimeZoneNameStyle;

Discussion
See “Time Zone Name Styles” (page 1089) for possible values.

Availability
Available in iPhone OS 2.0 and later.

1088 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Declared In
NSTimeZone.h

Time Zone Name Styles
Specify styles for presenting time zone names.

enum {
NSTimeZoneNameStyleStandard,
NSTimeZoneNameStyleShortStandard,
NSTimeZoneNameStyleDaylightSaving,
NSTimeZoneNameStyleShortDaylightSaving

};

Constants
NSTimeZoneNameStyleStandard

Specifies a standard name style.

Available in iPhone OS 2.0 and later.

Declared in NSTimeZone.h

NSTimeZoneNameStyleShortStandard
Specifies a short name style.

Available in iPhone OS 2.0 and later.

Declared in NSTimeZone.h

NSTimeZoneNameStyleDaylightSaving
Specifies a daylight saving name style.

Available in iPhone OS 2.0 and later.

Declared in NSTimeZone.h

NSTimeZoneNameStyleShortDaylightSaving
Specifies a short daylight saving name style.

Available in iPhone OS 2.0 and later.

Declared in NSTimeZone.h

Declared In
NSTimeZone.h

Notifications

NSSystemTimeZoneDidChangeNotification
Sent when the time zone changed.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSTimeZone.h

Notifications 1089
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

1090 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 6

NSTimeZone Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSURLHandleClient
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURL.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSURL class provides a way to manipulate URLs and the resources they reference. NSURL
objects understand URLs as specified in RFCs 1808, 1738, and 2732. The litmus test for conformance
to RFC 1808 is as recommended in RFC 1808—whether the first two characters of
resourceSpecifier (page 1103) are @"//".

Overview 1091
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

NSURL objects can be used to refer to files, and are the preferred way to do so. ApplicationKit objects
that can read data from or write data to a file generally have methods that accept an NSURL object
instead of a pathname as the file reference. NSWorkspace provides openURL: to open a location
specified by a URL. To get the contents of a URL, NSString provides stringWithContentsOfURL:
and NSData provides dataWithContentsOfURL: (page 196).

An NSURL object is composed of two parts—a potentially nil base URL and a string that is resolved
relative to the base URL. An NSURL object whose string is fully resolved without a base is considered
absolute; all others are considered relative.

The NSURL class will fail to create a new NSURL object if the path being passed is not
well-formed—the path must comply with RFC 2396. Examples of cases that will not succeed are
strings containing space characters and high-bit characters. Should creating an NSURL object fail, the
creation methods will return nil, which you must be prepared to handle. If you are creating NSURL
objects using file system paths, you should use fileURLWithPath: (page 1094) or
initFileURLWithPath: (page 1098), which handle the subtle differences between URL paths and file
system paths. If you wish to be tolerant of malformed path strings, you’ll need to use functions
provided by the Core Foundation framework to clean up the strings.

The informal protocol NSURLClient defines a set of methods useful for managing the loading of a
URL resource in the background.

See also NSURL Additions in the Application Kit framework, which add methods supporting
pasteboards.

NSURL is “toll-free bridged” with its Core Foundation counterpart, CFURL. This means that the Core
Foundation type is interchangeable in function or method calls with the bridged Foundation object,
providing you cast one type to the other. In an API where you see an NSURL * parameter, you can
pass in a CFURLRef, and in an API where you see a CFURLRef parameter, you can pass in a pointer to
an NSURL instance. This approach also applies to your concrete subclasses of NSURL. See
Interchangeable Data Types for more information on toll-free bridging.

Adopted Protocols

NSCoding
– encodeWithCoder: (page 1246)
– initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

NSURLHandleClient
– URLHandleResourceDidBeginLoading:

– URLHandleResourceDidCancelLoading:

– URLHandleResourceDidFinishLoading:

– URLHandle:resourceDataDidBecomeAvailable:

– URLHandle:resourceDidFailLoadingWithReason:

1092 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

Tasks

Creating an NSURL

– initWithScheme:host:path: (page 1099)
Initializes a newly created NSURL with a specified scheme, host, and path.

+ URLWithString: (page 1095)
Creates and returns an NSURL object initialized with a provided string.

– initWithString: (page 1099)
Initializes an NSURL object with a provided string.

+ URLWithString:relativeToURL: (page 1096)
Creates and returns an NSURL object initialized with a base URL and a relative string.

– initWithString:relativeToURL: (page 1100)
Initializes an NSURL object with a base URL and a relative string.

+ fileURLWithPath:isDirectory: (page 1095)
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ fileURLWithPath: (page 1094)
Initializes and returns a newly created NSURL object as a file URL with a specified path.

– initFileURLWithPath:isDirectory: (page 1098)
Initializes a newly created NSURL referencing the local file or directory at path.

– initFileURLWithPath: (page 1098)
Initializes a newly created NSURL referencing the local file or directory at path.

Querying an NSURL

– isFileURL (page 1101)
Returns whether the receiver uses the file scheme.

Accessing the Parts of the URL

– absoluteString (page 1096)
Returns the string for the receiver as if it were an absolute URL.

– absoluteURL (page 1097)
Returns an absolute URL that refers to the same resource as the receiver.

– baseURL (page 1097)
Returns the base URL of the receiver.

– fragment (page 1097)
Returns the fragment of a URL conforming to RFC 1808.

– host (page 1097)
Returns the host of a URL conforming to RFC 1808.

– parameterString (page 1101)
Returns the parameter string of a URL conforming to RFC 1808.

Tasks 1093
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

– password (page 1101)
Returns the password of a URL conforming to RFC 1808.

– path (page 1101)
Returns the path of a URL conforming to RFC 1808.

– port (page 1102)
Returns the port number of a URL conforming to RFC 1808.

– query (page 1102)
Returns the query of a URL conforming to RFC 1808.

– relativePath (page 1102)
Returns the path of a URL conforming to RFC 1808, without resolving against the receiver’s
base URL.

– relativeString (page 1103)
Returns a string representation of the relative portion of the URL.

– resourceSpecifier (page 1103)
Returns the resource specifier of the URL.

– scheme (page 1103)
Returns the scheme of the URL.

– standardizedURL (page 1104)
Returns a new NSURL object with any instances of ".." or "." removed from its path.

– user (page 1104)
Returns the user portion of a URL conforming to RFC 1808.

Class Methods

fileURLWithPath:
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ (id)fileURLWithPath:(NSString *)path

Parameters

path
The path that the NSURL object will represent. path should be a valid system path. If path
begins with a tilde, it must first be expanded with stringByExpandingTildeInPath (page
1031).

Return Value
An NSURL object initialized with path.

Discussion
This method examines path in the file system to determine if it is a directory. If path is a directory,
then a trailing slash is appended. If the file does not exist, it is assumed that path represents a directory
and a trailing slash is appended. As an alternative, consider using
fileURLWithPath:isDirectory: (page 1095) which allows you to explicitly specify whether the
returned NSURL object represents a file or directory.

Availability
Available in iPhone OS 2.0 and later.

1094 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

See Also
initFileURLWithPath: (page 1098)

Declared In
NSURL.h

fileURLWithPath:isDirectory:
Initializes and returns a newly created NSURL object as a file URL with a specified path.

+ (id)fileURLWithPath:(NSString *)path
isDirectory:(BOOL)isDir

Parameters

path
The path that the NSURL object will represent. path should be a valid system path. If path
begins with a tilde, it must first be expanded with stringByExpandingTildeInPath (page
1031).

isDir
A Boolean value that specifies whether path is treated as a directory path when resolving
against relative path components. Pass YES if the path indicates a directory, NO otherwise.

Return Value
An NSURL object initialized with path.

Availability
Available in iPhone OS 2.0 and later.

See Also
initFileURLWithPath: (page 1098)

Declared In
NSURL.h

URLWithString:
Creates and returns an NSURL object initialized with a provided string.

+ (id)URLWithString:(NSString *)URLString

Parameters

URLString
The string with which to initialize the NSURL object. Must conform to RFC 2396. This method
parses URLString according to RFCs 1738 and 1808.

Return Value
An NSURL object initialized with URLString. If the string was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes, which are ‘:’, ‘/’, ‘%’,
‘#’, ‘;’, and ‘@’. Note that ‘%’ escapes are translated via UTF-8.

Class Methods 1095
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

URLWithString:relativeToURL:
Creates and returns an NSURL object initialized with a base URL and a relative string.

+ (id)URLWithString:(NSString *)URLString
relativeToURL:(NSURL *)baseURL

Parameters

URLString
The string with which to initialize the NSURL object. May not be nil. Must conform to RFC
2396. URLString is interpreted relative to baseURL.

baseURL
The base URL for the NSURL object.

Return Value
An NSURL object initialized with URLString and baseURL. If URLString was malformed, returns
nil.

Discussion
This method expects URLString to contain any necessary percent escape codes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

Instance Methods

absoluteString
Returns the string for the receiver as if it were an absolute URL.

- (NSString *)absoluteString

Return Value
An absolute string for the URL. Creating by resolving the receiver's string against its base according
to the algorithm given in RFC 1808.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

1096 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

absoluteURL
Returns an absolute URL that refers to the same resource as the receiver.

- (NSURL *)absoluteURL

Return Value
An absolute URL that refers to the same resource as the receiver. If the receiver is already absolute,
returns self. Resolution is performed per RFC 1808.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

baseURL
Returns the base URL of the receiver.

- (NSURL *)baseURL

Return Value
The base URL of the receiver. If the receiver is an absolute URL, returns nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

fragment
Returns the fragment of a URL conforming to RFC 1808.

- (NSString *)fragment

Return Value
The fragment of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

host
Returns the host of a URL conforming to RFC 1808.

- (NSString *)host

Return Value
The host of the URL. If the receiver does not conform to RFC 1808, returns nil.

Instance Methods 1097
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

initFileURLWithPath:
Initializes a newly created NSURL referencing the local file or directory at path.

- (id)initFileURLWithPath:(NSString *)path

Parameters

path
The path that the NSURL object will represent. path should be a valid system path. If path
begins with a tilde, it must first be expanded with stringByExpandingTildeInPath (page
1031).

Return Value
An NSURL object initialized with path.

Discussion
Invoking this method is equivalent to invoking initWithScheme:host:path: (page 1099) with scheme
NSFileScheme, a nil host, and path.

This method examines path in the file system to determine if it is a directory. If path is a directory,
then a trailing slash is appended. If the file does not exist, it is assumed that path represents a directory
and a trailing slash is appended. As an alternative, consider using
initFileURLWithPath:isDirectory: (page 1098) which allows you to explicitly specify whether the
returned NSURL represents a file or directory.

Availability
Available in iPhone OS 2.0 and later.

See Also
fileURLWithPath: (page 1094)

Declared In
NSURL.h

initFileURLWithPath:isDirectory:
Initializes a newly created NSURL referencing the local file or directory at path.

- (id)initFileURLWithPath:(NSString *)path
isDirectory:(BOOL)isDir

Parameters

path
The path that the NSURL object will represent. path should be a valid system path. If path
begins with a tilde, it must first be expanded with stringByExpandingTildeInPath (page
1031).

1098 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

isDir
A Boolean value that specifies whether path is treated as a directory path when resolving
against relative path components. Pass YES if the path indicates a directory, NO otherwise

Return Value
An NSURL object initialized with path.

Discussion
Invoking this method is equivalent to invoking initWithScheme:host:path: (page 1099) with scheme
NSFileScheme, a nil host, and path.

Availability
Available in iPhone OS 2.0 and later.

See Also
fileURLWithPath: (page 1094)

Declared In
NSURL.h

initWithScheme:host:path:
Initializes a newly created NSURL with a specified scheme, host, and path.

- (id)initWithScheme:(NSString *)scheme
host:(NSString *)host
path:(NSString *)path

Parameters

scheme
The scheme for the NSURL object.

host
The host for the NSURL object. May be nil.

path
The path for the NSURL object. If path begins with a tilde, it must first be expanded with
stringByExpandingTildeInPath (page 1031).

Return Value
The newly initialized NSURL object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

initWithString:
Initializes an NSURL object with a provided string.

- (id)initWithString:(NSString *)URLString

Instance Methods 1099
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

Parameters

URLString
The string with which to initialize the NSURL object. Must conform to RFC 2396. This method
parses URLString according to RFCs 1738 and 1808.

Return Value
An NSURL object initialized with URLString. If the string was malformed, returns nil.

Discussion
This method expects URLString to contain any necessary percent escape codes, which are ‘:’, ‘/’, ‘%’,
‘#’, ‘;’, and ‘@’. Note that ‘%’ escapes are translated via UTF-8.

Availability
Available in iPhone OS 2.0 and later.

See Also
URLWithString: (page 1095)

Declared In
NSURL.h

initWithString:relativeToURL:
Initializes an NSURL object with a base URL and a relative string.

- (id)initWithString:(NSString *)URLString
relativeToURL:(NSURL *)baseURL

Parameters

URLString
The string with which to initialize the NSURL object. Must conform to RFC 2396. URLString
is interpreted relative to baseURL.

baseURL
The base URL for the NSURL object.

Return Value
An NSURL object initialized with URLString and baseURL. If URLString was malformed, returns
nil.

Discussion
This method expects URLString to contain any necessary percent escape codes.

initWithString:relativeToURL: is the designated initializer for NSURL.

Availability
Available in iPhone OS 2.0 and later.

See Also
– baseURL (page 1097)
– relativeString (page 1103)
URLWithString:relativeToURL: (page 1096)

Declared In
NSURL.h

1100 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

isFileURL
Returns whether the receiver uses the file scheme.

- (BOOL)isFileURL

Return Value
Returns YES if the receiver uses the file scheme, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

parameterString
Returns the parameter string of a URL conforming to RFC 1808.

- (NSString *)parameterString

Return Value
The parameter string of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

password
Returns the password of a URL conforming to RFC 1808.

- (NSString *)password

Return Value
The password of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

path
Returns the path of a URL conforming to RFC 1808.

- (NSString *)path

Instance Methods 1101
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

Return Value
The path of the URL. If the receiver does not conform to RFC 1808, returns nil. If isFileURL (page
1101) returnsYES, the return value is suitable for input into NSFileManager or NSPathUtilities. If the
path has a trailing slash it is stripped.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

port
Returns the port number of a URL conforming to RFC 1808.

- (NSNumber *)port

Return Value
The port number of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

query
Returns the query of a URL conforming to RFC 1808.

- (NSString *)query

Return Value
The query of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

relativePath
Returns the path of a URL conforming to RFC 1808, without resolving against the receiver’s base
URL.

- (NSString *)relativePath

Return Value
The relative path of the URL without resolving against the base URL. If the receiver is an absolute
URL, this method returns the same value as path (page 1101). If the receiver does not conform to RFC
1808, returns nil.

1102 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

relativeString
Returns a string representation of the relative portion of the URL.

- (NSString *)relativeString

Return Value
A string representation of the relative portion of the URL. If the receiver is an absolute URL this
method returns the same value as absoluteString (page 1096).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

resourceSpecifier
Returns the resource specifier of the URL.

- (NSString *)resourceSpecifier

Return Value
The resource specifier of the URL.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

scheme
Returns the scheme of the URL.

- (NSString *)scheme

Return Value
The scheme of the URL.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

Instance Methods 1103
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

standardizedURL
Returns a new NSURL object with any instances of ".." or "." removed from its path.

- (NSURL *)standardizedURL

Return Value
A new NSURL object initialized with a version of the receiver’s URL that has had any instances of ".."
or "." removed from its path.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

user
Returns the user portion of a URL conforming to RFC 1808.

- (NSString *)user

Return Value
The user portion of the URL. If the receiver does not conform to RFC 1808, returns nil.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURL.h

Constants

NSURL Schemes
These schemes are the ones that NSURL can parse.

extern NSString *NSURLFileScheme;

Constants
NSURLFileScheme

Identifies a URL that points to a file on a mounted volume.

Available in iPhone OS 2.0 and later.

Declared in NSURL.h

Discussion
For more information, see initWithScheme:host:path: (page 1099).

Declared In
NSURL.h

1104 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 7

NSURL Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLAuthenticationChallenge.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLAuthenticationChallenge encapsulates a challenge from a server requiring authentication
from the client.

Overview 1105
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 8

NSURLAuthenticationChallenge Class
Reference

Tasks

Creating an Authentication Challenge Instance

– initWithAuthenticationChallenge:sender: (page 1107)
Returns an initialized NSURLAuthenticationChallenge object copying the properties from
challenge, and setting the authentication sender to sender.

– initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:error:sender:(page
1107)

Returns an initialized NSURLAuthenticationChallenge object for the specified space using
the credential, or nil if there is no proposed credential.

Getting Authentication Challenge Properties

– error (page 1106)
Returns the NSError object representing the last authentication failure.

– failureResponse (page 1107)
Returns the NSURLResponse object representing the last authentication failure.

– previousFailureCount (page 1108)
Returns the receiver’s count of failed authentication attempts.

– proposedCredential (page 1108)
Returns the proposed credential for this challenge.

– protectionSpace (page 1108)
Returns the receiver’s protection space.

– sender (page 1109)
Returns the receiver’s sender.

Instance Methods

error
Returns the NSError object representing the last authentication failure.

- (NSError *)error

Discussion
This method returns nil if the protocol doesn’t use errors to indicate an authentication failure.

Availability
Available in iPhone OS 2.0 and later.

See Also
– failureResponse (page 1107)

1106 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 8

NSURLAuthenticationChallenge Class Reference

Declared In
NSURLAuthenticationChallenge.h

failureResponse
Returns the NSURLResponse object representing the last authentication failure.

- (NSURLResponse *)failureResponse

Discussion
This method will return nil if the protocol doesn’t use responses to indicate an authentication failure.

Availability
Available in iPhone OS 2.0 and later.

See Also
– error (page 1106)

Declared In
NSURLAuthenticationChallenge.h

initWithAuthenticationChallenge:sender:
Returns an initialized NSURLAuthenticationChallenge object copying the properties from challenge,
and setting the authentication sender to sender.

- (id)initWithAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
sender:(id < NSURLAuthenticationChallengeSender >)sender

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:error:sender:(page
1107)

Declared In
NSURLAuthenticationChallenge.h

initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse:
error:sender:
Returns an initialized NSURLAuthenticationChallenge object for the specified space using the
credential, or nil if there is no proposed credential.

- (id)initWithProtectionSpace:(NSURLProtectionSpace *)space
proposedCredential:(NSURLCredential *)credential
previousFailureCount:(NSInteger)count failureResponse:(NSURLResponse *)response
error:(NSError *)error sender:(id < NSURLAuthenticationChallengeSender >)sender

Instance Methods 1107
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 8

NSURLAuthenticationChallenge Class Reference

Discussion
The previous failure count is set to count. The response should contain the NSURLResponse for the
authentication failure, or nil if it is not applicable to the challenge. The error should contain the
NSError for the authentication failure, or nil if it is not applicable to the challenge. The object that
initiated the authentication challenge is set to sender.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithAuthenticationChallenge:sender: (page 1107)

Declared In
NSURLAuthenticationChallenge.h

previousFailureCount
Returns the receiver’s count of failed authentication attempts.

- (NSInteger)previousFailureCount

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLAuthenticationChallenge.h

proposedCredential
Returns the proposed credential for this challenge.

- (NSURLCredential *)proposedCredential

Discussion
This method will return nil if there is no default credential for this challenge.

If the proposed credential is not nil and returns YESwhen sent the message hasPassword (page 1135),
then the credential is ready to use as-is. If the proposed credential returns NO for hasPassword, then
the credential provides a default user name and the client must prompt the user for a corresponding
password.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLAuthenticationChallenge.h

protectionSpace
Returns the receiver’s protection space.

- (NSURLProtectionSpace *)protectionSpace

1108 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 8

NSURLAuthenticationChallenge Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLAuthenticationChallenge.h

sender
Returns the receiver’s sender.

- (id < NSURLAuthenticationChallengeSender >)sender

Discussion
The sender should be sent a useCredential:forAuthenticationChallenge: (page 1317),
continueWithoutCredentialForAuthenticationChallenge: (page 1316) or
cancelAuthenticationChallenge: (page 1316) when the client is finished processing the authentication
challenge.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLAuthenticationChallenge.h

Instance Methods 1109
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 8

NSURLAuthenticationChallenge Class Reference

1110 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 8

NSURLAuthenticationChallenge Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLCache.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLCache implements the caching of responses to URL load requests by mapping NSURLRequest
objects to NSCachedURLResponse objects. It is a composite of an in-memory and an on-disk cache.

Methods are provided to manipulate the sizes of each of these caches as well as to control the path
on disk to use for persistent storage of cache data.

Overview 1111
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

Tasks

Getting and Setting Shared Cache

+ sharedURLCache (page 1113)
Returns the shared NSURLCache instance.

+ setSharedURLCache: (page 1113)
Sets the shared NSURLCache instance to a specified cache object.

Creating a New Cache Object

– initWithMemoryCapacity:diskCapacity:diskPath: (page 1115)
Initializes an NSURLCache object with the specified values.

Getting and Storing Cached Objects

– cachedResponseForRequest: (page 1114)
Returns the cached URL response in the cache for the specified URL request.

– storeCachedResponse:forRequest: (page 1118)
Stores a cached URL response for a specified request

Removing Cached Objects

– removeAllCachedResponses (page 1116)
Clears the receiver’s cache, removing all stored cached URL responses.

– removeCachedResponseForRequest: (page 1117)
Removes the cached URL response for a specified URL request.

Getting and Setting On-disk Cache Properties

– currentDiskUsage (page 1114)
Returns the current size of the receiver’s on-disk cache, in bytes.

– diskCapacity (page 1115)
Returns the capacity of the receiver’s on-disk cache, in bytes.

– setDiskCapacity: (page 1117)
Sets the receiver’s on-disk cache capacity

Getting and Setting In-memory Cache Properties

– currentMemoryUsage (page 1115)
Returns the current size of the receiver’s in-memory cache, in bytes.

1112 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

– memoryCapacity (page 1116)
Returns the capacity of the receiver’s in-memory cache, in bytes.

– setMemoryCapacity: (page 1117)
Sets the receiver’s in-memory cache capacity.

Class Methods

setSharedURLCache:
Sets the shared NSURLCache instance to a specified cache object.

+ (void)setSharedURLCache:(NSURLCache *)cache

Parameters

cache
The cache object to use as the shared cache object.

Discussion
Applications that have special caching requirements or constraints should use this method to specify
an NSURLCache instance with customized cache settings.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ sharedURLCache (page 1113)

Declared In
NSURLCache.h

sharedURLCache
Returns the shared NSURLCache instance.

+ (NSURLCache *)sharedURLCache

Return Value
The shared NSURLCache instance.

Discussion
The disk path is set to: <user_home_directory>/Library/Caches/<current_process_name>. The
user’s home directory is determined by calling NSHomeDirectory (page 1360) and the current process
name is determined using [[NSProcessInfo processInfo] processName].

Applications that do not have special caching requirements or constraints should find the default
shared cache instance acceptable. Applications with more specific needs can create a custom
NSURLCache object and set it as the shared cache instance using setSharedURLCache: (page 1113).

Availability
Available in iPhone OS 2.0 and later.

Class Methods 1113
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

See Also
+ setSharedURLCache: (page 1113)

Declared In
NSURLCache.h

Instance Methods

cachedResponseForRequest:
Returns the cached URL response in the cache for the specified URL request.

- (NSCachedURLResponse *)cachedResponseForRequest:(NSURLRequest *)request

Parameters

request
The URL request whose cached response is desired.

Return Value
The cached URL response for request, or nil if no response has been cached.

Availability
Available in iPhone OS 2.0 and later.

See Also
– storeCachedResponse:forRequest: (page 1118)

Declared In
NSURLCache.h

currentDiskUsage
Returns the current size of the receiver’s on-disk cache, in bytes.

- (NSUInteger)currentDiskUsage

Return Value
The current size of the receiver’s on-disk cache, in bytes.

Availability
Available in iPhone OS 2.0 and later.

See Also
– diskCapacity (page 1115)
– setDiskCapacity: (page 1117)

Declared In
NSURLCache.h

1114 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

currentMemoryUsage
Returns the current size of the receiver’s in-memory cache, in bytes.

- (NSUInteger)currentMemoryUsage

Return Value
The current size of the receiver’s in-memory cache, in bytes.

Availability
Available in iPhone OS 2.0 and later.

See Also
– memoryCapacity (page 1116)
– setMemoryCapacity: (page 1117)

Declared In
NSURLCache.h

diskCapacity
Returns the capacity of the receiver’s on-disk cache, in bytes.

- (NSUInteger)diskCapacity

Return Value
The capacity of the receiver’s on-disk cache, in bytes.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currentDiskUsage (page 1114)
– setDiskCapacity: (page 1117)

Declared In
NSURLCache.h

initWithMemoryCapacity:diskCapacity:diskPath:
Initializes an NSURLCache object with the specified values.

- (id)initWithMemoryCapacity:(NSUInteger)memoryCapacity
diskCapacity:(NSUInteger)diskCapacity diskPath:(NSString *)path

Parameters

memoryCapacity
The memory capacity of the cache, in bytes.

diskCapacity
The disk capacity of the cache, in bytes.

path
The location at which to store the on-disk cache.

Instance Methods 1115
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

Return Value
The initialized NSURLCache object.

Discussion
The returned NSURLCache is backed by disk, so developers can be more liberal with space when
choosing the capacity for this kind of cache. A disk cache measured in the tens of megabytes should
be acceptable in most cases.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ sharedURLCache (page 1113)

Declared In
NSURLCache.h

memoryCapacity
Returns the capacity of the receiver’s in-memory cache, in bytes.

- (NSUInteger)memoryCapacity

Return Value
The capacity of the receiver’s in-memory cache, in bytes.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currentMemoryUsage (page 1115)
– setMemoryCapacity: (page 1117)

Declared In
NSURLCache.h

removeAllCachedResponses
Clears the receiver’s cache, removing all stored cached URL responses.

- (void)removeAllCachedResponses

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeCachedResponseForRequest: (page 1117)

Declared In
NSURLCache.h

1116 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

removeCachedResponseForRequest:
Removes the cached URL response for a specified URL request.

- (void)removeCachedResponseForRequest:(NSURLRequest *)request

Parameters

request
The URL request whose cached URL response should be removed. If there is no corresponding
cached URL response, no action is taken.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeAllCachedResponses (page 1116)

Declared In
NSURLCache.h

setDiskCapacity:
Sets the receiver’s on-disk cache capacity

- (void)setDiskCapacity:(NSUInteger)diskCapacity

Parameters

diskCapacity
The new on-disk cache capacity, in bytes. The on-disk cache will truncate its contents to
diskCapacity, if necessary.

Availability
Available in iPhone OS 2.0 and later.

See Also
– currentDiskUsage (page 1114)
– diskCapacity (page 1115)

Declared In
NSURLCache.h

setMemoryCapacity:
Sets the receiver’s in-memory cache capacity.

- (void)setMemoryCapacity:(NSUInteger)memoryCapacity

Parameters

memoryCapacity
The new in-memory cache capacity, in bytes. The in-memory cache will truncate its contents
to memoryCapacity, if necessary.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1117
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

See Also
– currentMemoryUsage (page 1115)
– memoryCapacity (page 1116)

Declared In
NSURLCache.h

storeCachedResponse:forRequest:
Stores a cached URL response for a specified request

- (void)storeCachedResponse:(NSCachedURLResponse *)cachedResponse
forRequest:(NSURLRequest *)request

Parameters

cachedResponse
The cached URL response to store.

request
The request for which the cached URL response is being stored.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cachedResponseForRequest: (page 1114)

Declared In
NSURLCache.h

1118 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7 9

NSURLCache Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLConnection.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSURLConnection object provides support to perform the loading of a URL request. The interface
for NSURLConnection is sparse, providing only the controls to start and cancel asynchronous loads
of a URL request.

NSURLConnection’s delegate methods allow an object to receive informational callbacks about the
asynchronous load of a URL request. Other delegate methods provide facilities that allow the delegate
to customize the process of performing an asynchronous URL load.

Note that these delegate methods will be called on the thread that started the asynchronous load
operation for the associated NSURLConnection object.

The following contract governs the delegate methods defined in this interface:

Overview 1119
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

 ■ Zero or more connection:willSendRequest:redirectResponse: (page 1130) messages will be
sent to the delegate before any further messages are sent if it is determined that the download
must redirect to a new location. The delegate can allow the redirect, modify the destination or
deny the redirect.

 ■ Zero or more connection:didReceiveAuthenticationChallenge: (page 1128) messages will be
sent to the delegate if it is necessary to authenticate in order to download the request and
NSURLConnection does not already have authenticated credentials.

 ■ Zero or more connection:didCancelAuthenticationChallenge: (page 1127) messages will be
sent to the delegate if the connection cancels the authentication challenge due to the protocol
implementation encountering an error.

 ■ Zero or more connection:didReceiveResponse: (page 1129) messages will be sent to the delegate
before receiving a connection:didReceiveData: (page 1129) message. The only case where
connection:didReceiveResponse: is not sent to a delegate is when the protocol implementation
encounters an error before a response could be created.

 ■ Zero or more connection:didReceiveData: (page 1129) messages will be sent before any of the
following messages are sent to the delegate: connection:willCacheResponse: (page 1130),
connectionDidFinishLoading: (page 1131), connection:didFailWithError: (page 1127).

 ■ Zero or one connection:willCacheResponse: (page 1130) messages will be sent to the delegate
after connection:didReceiveData: (page 1129) is sent but before a
connectionDidFinishLoading: (page 1131) message is sent.

 ■ Unless a NSURLConnection receives a cancel (page 1124) message, the delegate will receive one
and only one of connectionDidFinishLoading: (page 1131), or
connection:didFailWithError: (page 1127) message, but never both. In addition, once either of
messages are sent, the delegate will receive no further messages for the given NSURLConnection.

NSURLConnection also has a convenience class method,
sendSynchronousRequest:returningResponse:error: (page 1123), to load a URL request
synchronously.

NSHTTPURLResponse is a subclass of NSURLResponse that provides methods for accessing information
specific to HTTP protocol responses. An NSHTTPURLResponse object represents a response to an HTTP
URL load request.

Tasks

Preflighting a Request

+ canHandleRequest: (page 1122)
Returns whether a request can be handled based on a "preflight" evaluation.

Loading Data Synchronously

+ sendSynchronousRequest:returningResponse:error: (page 1123)
Performs a synchronous load of the specified URL request.

1120 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

Loading Data Asynchronously

+ connectionWithRequest:delegate: (page 1122)
Creates and returns an initialized URL connection and begins to load the data for the URL
request.

– initWithRequest:delegate: (page 1124)
Returns an initialized URL connection and begins to load the data for the URL request.

– initWithRequest:delegate:startImmediately: (page 1125)
Returns an initialized URL connection and begins to load the data for the URL request, if
specified.

– start (page 1126)
Causes the receiver to begin loading data, if it has not already.

Stopping a Connection

– cancel (page 1124)
Cancels an asynchronous load of a request.

Runloop Scheduling

– scheduleInRunLoop:forMode: (page 1125)
Determines the runloop and mode that the receiver uses to send delegate messages to the
receiver.

– unscheduleFromRunLoop:forMode: (page 1126)
Causes the receiver to stop sending delegate messages using the specified runloop and mode.

Connection Authentication

– connection:didCancelAuthenticationChallenge: (page 1127) delegate method
Sent when a connection cancels an authentication challenge.

– connection:didReceiveAuthenticationChallenge: (page 1128) delegate method
Sent when a connection must authenticate a challenge in order to download its request.

Connection Data and Responses

– connection:willCacheResponse: (page 1130) delegate method
Sent before the connection stores a cached response in the cache, to give the delegate an
opportunity to alter it.

– connection:didReceiveResponse: (page 1129) delegate method
Sent when the connection has received sufficient data to construct the URL response for its
request.

– connection:didReceiveData: (page 1129) delegate method
Sent as a connection loads data incrementally.

Tasks 1121
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

– connection:willSendRequest:redirectResponse: (page 1130) delegate method
Sent when the connection determines that it must change URLs in order to continue loading
a request.

Connection Completion

– connection:didFailWithError: (page 1127) delegate method
Sent when a connection fails to load its request successfully.

– connectionDidFinishLoading: (page 1131) delegate method
Sent when a connection has finished loading successfully.

Class Methods

canHandleRequest:
Returns whether a request can be handled based on a "preflight" evaluation.

+ (BOOL)canHandleRequest:(NSURLRequest *)request

Parameters

request
The request to evaluate.

Return Value
YES if a “preflight” operation determines that a connection with request can be created and the
associated I/O can be started, NO otherwise.

Discussion
The result of this method is valid as long as no NSURLProtocol classes are registered or unregistered,
and the specified request remains unchanged. Applications should be prepared to handle failures
even if they have performed request preflighting by calling this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ registerClass: (page 1157)
+ unregisterClass: (page 1159)

Declared In
NSURLConnection.h

connectionWithRequest:delegate:
Creates and returns an initialized URL connection and begins to load the data for the URL request.

+ (NSURLConnection *)connectionWithRequest:(NSURLRequest *)request
delegate:(id)delegate

1122 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

Parameters

request
The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for
the loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. For the
connection to work correctly the calling thread’s run loop must be operating in the default run
loop mode.]

Return Value
The URL connection for the URL request. Returns nil if a connection can't be created.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithRequest:delegate: (page 1124)

Declared In
NSURLConnection.h

sendSynchronousRequest:returningResponse:error:
Performs a synchronous load of the specified URL request.

+ (NSData *)sendSynchronousRequest:(NSURLRequest *)request
returningResponse:(NSURLResponse **)response error:(NSError **)error

Parameters

request
The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for
the loading process.

response
Out parameter for the URL response returned by the server.

error
Out parameter used if an error occurs while processing the request. May be NULL.

Return Value
The downloaded data for the URL request. Returns nil if a connection could not be created or if the
download fails.

Discussion
A synchronous load is built on top of the asynchronous loading code made available by the class.
The calling thread is blocked while the asynchronous loading system performs the URL load on a
thread spawned specifically for this load request. No special threading or run loop configuration is
necessary in the calling thread in order to perform a synchronous load.

If authentication is required in order to download the request, the required credentials must be
specified as part of the URL. If authentication fails, or credentials are missing, the connection will
attempt to continue without credentials.

Class Methods 1123
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

Instance Methods

cancel
Cancels an asynchronous load of a request.

- (void)cancel

Discussion
Once this method is called, the receiver’s delegate will no longer receive any messages for this
NSURLConnection.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ connectionWithRequest:delegate: (page 1122)
– initWithRequest:delegate: (page 1124)

Declared In
NSURLConnection.h

initWithRequest:delegate:
Returns an initialized URL connection and begins to load the data for the URL request.

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate

Parameters

request
The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for
the loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. By default,
for the connection to work correctly the calling thread’s run loop must be operating in the
default run loop mode. See scheduleInRunLoop:forMode: (page 1125) to change the runloop
and mode.

Return Value
The URL connection for the URL request. Returns nil if a connection can't be initialized.

Availability
Available in iPhone OS 2.0 and later.

1124 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

See Also
+ connectionWithRequest:delegate: (page 1122)
– initWithRequest:delegate:startImmediately: (page 1125)

Declared In
NSURLConnection.h

initWithRequest:delegate:startImmediately:
Returns an initialized URL connection and begins to load the data for the URL request, if specified.

- (id)initWithRequest:(NSURLRequest *)request delegate:(id)delegate
startImmediately:(BOOL)startImmediately

Parameters

request
The URL request to load. The request object is deep-copied as part of the initialization process.
Changes made to request after this method returns do not affect the request that is used for
the loading process.

delegate
The delegate object for the connection. The delegate will receive delegate messages as the load
progresses. Messages to the delegate will be sent on the thread that calls this method. By default,
for the connection to work correctly the calling thread’s run loop must be operating in the
default run loop mode. See scheduleInRunLoop:forMode: (page 1125) to change the runloop
and mode.]

startImmediately
YES if the connection should being loading data immediately, otherwise NO.

Return Value
The URL connection for the URL request. Returns nil if a connection can't be initialized.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

scheduleInRunLoop:forMode:
Determines the runloop and mode that the receiver uses to send delegate messages to the receiver.

- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters

aRunLoop
The NSRunloop instance to use for delegate messages.

mode
The mode in which to supply delegate messages.

Instance Methods 1125
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

Discussion
At creation, a connection is scheduled on the current thread (the one where the creation takes place)
in the default mode. That can be changed to add or remove runloop + mode pairs using the following
methods. It is permissible to be scheduled on multiple run loops and modes, or on the same run loop
in multiple modes, so scheduling in one place does not cause unscheduling in another.

You may call these methods after the connection has started. However, if the connection is scheduled
on multiple threads or if you are not calling these methods from the thread where the connection is
scheduled, there is a race between these methods and the delivery of delegate methods on the other
threads. The caller must either be prepared for additional delegation messages on the other threads,
or must halt the run loops on the other threads before calling these methods to guarantee that no
further callbacks will occur.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

start
Causes the receiver to begin loading data, if it has not already.

- (void)start

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

unscheduleFromRunLoop:forMode:
Causes the receiver to stop sending delegate messages using the specified runloop and mode.

- (void)unscheduleFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode

Parameters

aRunLoop
The runloop instance to unschedule.

mode
The mode to unschedule.

Discussion
At creation, a connection is scheduled on the current thread (the one where the creation takes place)
in the default mode. That can be changed to add or remove runloop + mode pairs using the following
methods. It is permissible to be scheduled on multiple run loops and modes, or on the same run loop
in multiple modes, so scheduling in one place does not cause unscheduling in another.

You may call these methods after the connection has started. However, if the connection is scheduled
on multiple threads or if you are not calling these methods from the thread where the connection is
scheduled, there is a race between these methods and the delivery of delegate methods on the other

1126 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

threads. The caller must either be prepared for additional delegation messages on the other threads,
or must halt the run loops on the other threads before calling these methods to guarantee that no
further callbacks will occur.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

Delegate Methods

connection:didCancelAuthenticationChallenge:
Sent when a connection cancels an authentication challenge.

- (void)connection:(NSURLConnection *)connection
didCancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters

connection
The connection sending the message.

challenge
The challenge that was canceled.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

connection:didFailWithError:
Sent when a connection fails to load its request successfully.

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error

Parameters

connection
The connection sending the message.

error
An error object containing details of why the connection failed to load the request successfully.

Discussion
Once the delegate receives this message, it will receive no further messages for connection.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

Delegate Methods 1127
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

connection:didReceiveAuthenticationChallenge:
Sent when a connection must authenticate a challenge in order to download its request.

- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters

connection
The connection sending the message.

challenge
The challenge that connection must authenticate in order to download its request.

Discussion
This method gives the delegate the opportunity to determine the course of action taken for the
challenge: provide credentials, continue without providing credentials, or cancel the authentication
challenge and the download.

The delegate can determine the number of previous authentication challenges by sending the message
previousFailureCount (page 1108) to challenge.

If the previous failure count is 0 and the value returned by proposedCredential (page 1108) is nil,
the delegate can create a new NSURLCredential object, providing a user name and password, and
send auseCredential:forAuthenticationChallenge: (page 1317) message to[challenge sender],
passing the credential and challenge as parameters. If proposedCredential is not nil, the value is
a credential from the URL or the shared credential storage that can be provided to the user as feedback.

The delegate may decide to abandon further attempts at authentication at any time by sending
[challenge sender] a continueWithoutCredentialForAuthenticationChallenge: (page 1316)
or acancelAuthenticationChallenge: (page 1316) message. The specific action will be implementation
dependent.

If the delegate implements this method, the download will suspend until [challenge sender] is
sent one of the following messages: useCredential:forAuthenticationChallenge: (page 1317),
continueWithoutCredentialForAuthenticationChallenge: (page 1316) or
cancelAuthenticationChallenge: (page 1316).

If the delegate does not implement this method the default implementation is used. If a valid credential
for the request is provided as part of the URL, or is available from the NSURLCredentialStorage the
[challenge sender] is sent a useCredential:forAuthenticationChallenge: (page 1317) with the
credential. If the challenge has no credential or the credentials fail to authorize access, then
continueWithoutCredentialForAuthenticationChallenge: (page 1316) is sent to [challenge
sender] instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
– cancelAuthenticationChallenge: (page 1316)
– continueWithoutCredentialForAuthenticationChallenge: (page 1316)
– useCredential:forAuthenticationChallenge: (page 1317)

Declared In
NSURLConnection.h

1128 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

connection:didReceiveData:
Sent as a connection loads data incrementally.

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data

Parameters

connection
The connection sending the message.

data
The newly available data. The delegate should concatenate the contents of each data object
delivered to build up the complete data for a URL load.

Discussion
This method provides the only way for an asynchronous delegate to retrieve the loaded data. It is the
responsibility of the delegate to retain or copy this data as it is delivered.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

connection:didReceiveResponse:
Sent when the connection has received sufficient data to construct the URL response for its request.

- (void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse
*)response

Parameters

connection
The connection sending the message.

response
The URL response for the connection's request. This object is immutable and will not be modified
by the URL loading system once it is presented to the delegate.

Discussion
In rare cases, for example in the case of an HTTP load where the content type of the load data is
multipart/x-mixed-replace, the delegate will receive more than one
connection:didReceiveResponse: message. In the event this occurs, delegates should discard all
data previously delivered by connection:didReceiveData:, and should be prepared to handle the,
potentially different, MIME type reported by the newly reported URL response.

The only case where this message is not sent to the delegate is when the protocol implementation
encounters an error before a response could be created.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

Delegate Methods 1129
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

connection:willCacheResponse:
Sent before the connection stores a cached response in the cache, to give the delegate an opportunity
to alter it.

- (NSCachedURLResponse *)connection:(NSURLConnection *)connection
willCacheResponse:(NSCachedURLResponse *)cachedResponse

Parameters

connection
The connection sending the message.

cachedResponse
The proposed cached response to store in the cache.

Return Value
The actual cached response to store in the cache. The delegate may return cachedResponseunmodified,
return a modified cached response, or return nil if no cached response should be stored for the
connection.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

connection:willSendRequest:redirectResponse:
Sent when the connection determines that it must change URLs in order to continue loading a request.

- (NSURLRequest *)connection:(NSURLConnection *)connection
willSendRequest:(NSURLRequest *)request redirectResponse:(NSURLResponse
*)redirectResponse

Parameters

connection
The connection sending the message.

request
The proposed redirected request. The delegate should inspect the redirected request to verify
that it meets its needs, and create a copy with new attributes to return to the connection if
necessary.

redirectResponse
The URL response that caused the redirect. May be nil in cases where this method is not being
sent as a result of involving the delegate in redirect processing.

Return Value
The actual URL request to use in light of the redirection response. The delegate may copy and modify
request as necessary to change its attributes, return request unmodified, or return nil.

Discussion
If the delegate wishes to cancel the redirect, it should call the connection object’s cancel method.
Alternatively, the delegate method can return nil to cancel the redirect, and the connection will
continue to process. This has special relevance in the case where redirectResponse is not nil. In

1130 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

this case, any data that is loaded for the connection will be sent to the delegate, and the delegate will
receive a connectionDidFinishLoading or connection:didFailLoadingWithError: message, as
appropriate.

Special Considerations

The delegate can receive this message as a result of transforming a request’s URL to its canonical
form, or for protocol-specific reasons, such as an HTTP redirect. The delegate implementation should
be prepared to receive this message multiple times.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

connectionDidFinishLoading:
Sent when a connection has finished loading successfully.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

Parameters

connection
The connection sending the message.

Discussion
The delegate will receive no further messages for connection.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLConnection.h

Delegate Methods 1131
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

1132 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 0

NSURLConnection Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLCredential.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLCredential is an immutable object representing an authentication credential consisting of the
user name, a password and the type of persistent storage to use, if any.

Adopted Protocols

NSCopying
copyWithZone: (page 1250)

Overview 1133
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 1

NSURLCredential Class Reference

Tasks

Creating a Credential

+ credentialWithUser:password:persistence: (page 1134)
Creates and returns an NSURLCredential object with a given user name and password using
a given persistence setting.

– initWithUser:password:persistence: (page 1135)
Returns an NSURLCredential object initialized with a given user name and password using
a given persistence setting.

Getting Credential Properties

– hasPassword (page 1135)
Returns a Boolean value that indicates whether the receiver has a password.

– password (page 1136)
Returns the receiver’s password.

– persistence (page 1136)
Returns the receiver’s persistence setting.

– user (page 1137)
Returns the receiver’s user name.

Class Methods

credentialWithUser:password:persistence:
Creates and returns an NSURLCredential object with a given user name and password using a given
persistence setting.

+ (NSURLCredential *)credentialWithUser:(NSString *)user password:(NSString
*)password persistence:(NSURLCredentialPersistence)persistence

Parameters

user
The user for the credential.

password
The password for user.

persistence
The persistence setting for the credential.

Return Value
An NSURLCredential object with user name user, password password, and using persistence setting
persistence.

1134 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 1

NSURLCredential Class Reference

Discussion
If persistence is NSURLCredentialPersistencePermanent the credential is stored in the keychain.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithUser:password:persistence: (page 1135)

Declared In
NSURLCredential.h

Instance Methods

hasPassword
Returns a Boolean value that indicates whether the receiver has a password.

- (BOOL)hasPassword

Return Value
YES if the receiver has a password, NO otherwise.

Discussion
This method does not attempt to retrieve the password.

If this credential's password is stored in the user’s keychain, password (page 1136) may return NO even
if this method returns YES, since getting the password may fail, or the user may refuse access.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCredential.h

initWithUser:password:persistence:
Returns an NSURLCredential object initialized with a given user name and password using a given
persistence setting.

- (id)initWithUser:(NSString *)user password:(NSString *)password
persistence:(NSURLCredentialPersistence)persistence

Parameters

user
The user for the credential.

password
The password for user.

persistence
The persistence setting for the credential.

Instance Methods 1135
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 1

NSURLCredential Class Reference

Return Value
An NSURLCredential object initialized with user name user, password password, and using
persistence setting persistence.

Discussion
If persistence is NSURLCredentialPersistencePermanent the credential is stored in the keychain.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ credentialWithUser:password:persistence: (page 1134)

Declared In
NSURLCredential.h

password
Returns the receiver’s password.

- (NSString *)password

Return Value
The receiver’s password.

Discussion
If the password is stored in the user’s keychain, this method may result in prompting the user for
access.

Availability
Available in iPhone OS 2.0 and later.

See Also
– hasPassword (page 1135)

Declared In
NSURLCredential.h

persistence
Returns the receiver’s persistence setting.

- (NSURLCredentialPersistence)persistence

Return Value
The receiver’s persistence setting.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCredential.h

1136 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 1

NSURLCredential Class Reference

user
Returns the receiver’s user name.

- (NSString *)user

Return Value
The receiver’s user name.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCredential.h

Constants

NSURLCredentialPersistence
These constants specify how long the credential will be kept.

typedef enum {
NSURLCredentialPersistenceNone,
NSURLCredentialPersistenceForSession,
NSURLCredentialPersistencePermanent

} NSURLCredentialPersistence;

Constants
NSURLCredentialPersistenceNone

Credential won't be stored.

Available in iPhone OS 2.0 and later.

Declared in NSURLCredential.h

NSURLCredentialPersistenceForSession
Credential will be stored only for this session.

Available in iPhone OS 2.0 and later.

Declared in NSURLCredential.h

NSURLCredentialPersistencePermanent
Credential will be stored in the user’s keychain and shared with other applications.

Available in iPhone OS 2.0 and later.

Declared in NSURLCredential.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCredential.h

Constants 1137
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 1

NSURLCredential Class Reference

1138 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 1

NSURLCredential Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLCredentialStorage.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLCredentialStorage implements a singleton (shared object) that manages the credential storage.

Tasks

Getting the Credential Storage

+ sharedCredentialStorage (page 1140)
Returns the shared URL credential storage object.

Overview 1139
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 2

NSURLCredentialStorage Class Reference

Getting and Setting Default Credentials

– defaultCredentialForProtectionSpace: (page 1141)
Returns the default credential for the specified protectionSpace.

– setDefaultCredential:forProtectionSpace: (page 1143)
Sets the default credential for a specified protection space.

Adding and Removing Credentials

– removeCredential:forProtectionSpace: (page 1142)
Removes a specified credential from the credential storage for the specified protection space.

– setCredential:forProtectionSpace: (page 1142)
Adds credential to the credential storage for the specified protectionSpace.

Retrieving Credentials

– allCredentials (page 1140)
Returns a dictionary containing the credentials for all available protection spaces.

– credentialsForProtectionSpace: (page 1141)
Returns a dictionary containing the credentials for the specified protection space.

Class Methods

sharedCredentialStorage
Returns the shared URL credential storage object.

+ (NSURLCredentialStorage *)sharedCredentialStorage

Return Value
The shared NSURLCredentialStorage object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCredentialStorage.h

Instance Methods

allCredentials
Returns a dictionary containing the credentials for all available protection spaces.

1140 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 2

NSURLCredentialStorage Class Reference

- (NSDictionary *)allCredentials

Return Value
A dictionary containing the credentials for all available protection spaces. The dictionary has keys
corresponding to the NSURLProtectionSpace objects. The values for the NSURLProtectionSpace
keys consist of dictionaries where the keys are user name strings, and the value is the corresponding
NSURLCredential object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– credentialsForProtectionSpace: (page 1141)

Declared In
NSURLCredentialStorage.h

credentialsForProtectionSpace:
Returns a dictionary containing the credentials for the specified protection space.

- (NSDictionary *)credentialsForProtectionSpace:(NSURLProtectionSpace
*)protectionSpace

Parameters

protectionSpace
The protection space whose credentials you want to retrieve.

Return Value
A dictionary containing the credentials for protectionSpace. The dictionary’s keys are user name
strings, and the value is the corresponding NSURLCredential.

Availability
Available in iPhone OS 2.0 and later.

See Also
– allCredentials (page 1140)

Declared In
NSURLCredentialStorage.h

defaultCredentialForProtectionSpace:
Returns the default credential for the specified protectionSpace.

- (NSURLCredential *)defaultCredentialForProtectionSpace:(NSURLProtectionSpace
*)protectionSpace

Parameters

protectionSpace
The URL protection space of interest.

Return Value
The default credential for protectionSpace or nil if no default has been set.

Instance Methods 1141
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 2

NSURLCredentialStorage Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDefaultCredential:forProtectionSpace: (page 1143)

Declared In
NSURLCredentialStorage.h

removeCredential:forProtectionSpace:
Removes a specified credential from the credential storage for the specified protection space.

- (void)removeCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters

credential
The credential to remove.

protectionSpace
The protection space from which to remove the credential.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setCredential:forProtectionSpace: (page 1142)

Declared In
NSURLCredentialStorage.h

setCredential:forProtectionSpace:
Adds credential to the credential storage for the specified protectionSpace.

- (void)setCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters

credential
The credential to add. If a credential with the same user name already exists in
protectionSpace, then credential replaces the existing object.

protectionSpace
The protection space to which to add the credential.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeCredential:forProtectionSpace: (page 1142)

Declared In
NSURLCredentialStorage.h

1142 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 2

NSURLCredentialStorage Class Reference

setDefaultCredential:forProtectionSpace:
Sets the default credential for a specified protection space.

- (void)setDefaultCredential:(NSURLCredential *)credential
forProtectionSpace:(NSURLProtectionSpace *)protectionSpace

Parameters

credential
The URL credential to set as the default for protectionSpace. If the receiver does not contain
credential in the specified protectionSpace it will be added.

protectionSpace
The protection space whose default credential is being set.

Availability
Available in iPhone OS 2.0 and later.

See Also
– defaultCredentialForProtectionSpace: (page 1141)

Declared In
NSURLCredentialStorage.h

Notifications

NSURLCredentialStorageChangedNotification
This notification is posted when the set of stored credentials changes.

The notification object is the NSURLCredentialStorage instance. This notification does not contain
a userInfo dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLCredentialStorage.h

Notifications 1143
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 2

NSURLCredentialStorage Class Reference

1144 Notifications
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 2

NSURLCredentialStorage Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLProtectionSpace.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLProtectionSpace represents a server or an area on a server, commonly referred to as a realm,
that requires authentication. An NSURLProtectionSpace’s credentials apply to any requests within
that protection space.

Adopted Protocols

NSCopying

Overview 1145
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

– copyWithZone: (page 1250)

Tasks

Creating a Protection Space

– initWithHost:port:protocol:realm:authenticationMethod: (page 1147)
Initializes a protection space object.

– initWithProxyHost:port:type:realm:authenticationMethod: (page 1148)
Initializes a protection space object representing a proxy server.

Getting Protection Space Properties

– authenticationMethod (page 1146)
Returns the authentication method used by the receiver.

– host (page 1147)
Returns the receiver’s host.

– isProxy (page 1148)
Returns whether the receiver represents a proxy server.

– port (page 1149)
Returns the receiver’s port.

– protocol (page 1149)
Returns the receiver’s protocol.

– proxyType (page 1149)
Returns the receiver's proxy type.

– realm (page 1149)
Returns the receiver’s authentication realm

– receivesCredentialSecurely (page 1150)
Returns whether the credentials for the protection space can be sent securely.

Instance Methods

authenticationMethod
Returns the authentication method used by the receiver.

- (NSString *)authenticationMethod

Return Value
The authentication method used by the receiver. The supported authentication methods are listed in
“Constants” (page 1150).

1146 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

host
Returns the receiver’s host.

- (NSString *)host

Return Value
The receiver's host.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

initWithHost:port:protocol:realm:authenticationMethod:
Initializes a protection space object.

- (id)initWithHost:(NSString *)host port:(NSInteger)port protocol:(NSString
*)protocol realm:(NSString *)realm authenticationMethod:(NSString
*)authenticationMethod

Parameters

host
The host name for the protection space object.

port
The port for the protection space object. If port is 0 the default port for the specified protocol
is used, for example, port 80 for HTTP. Note that servers can, and do, treat these values
differently.

protocol
The protocol for the protection space object. The value of protocol is equivalent to the scheme
for a URL in the protection space, for example, “http”, “https”, “ftp”, etc.

realm
A string indicating a protocol specific subdivision of the host. realm may be nil if there is no
specified realm or if the protocol doesn’t support realms.

authenticationMethod
The type of authentication to use. authenticationMethod should be set to one of the values
in “Constants” (page 1150) or nil to use the default, NSURLAuthenticationMethodDefault.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithProxyHost:port:type:realm:authenticationMethod: (page 1148)

Instance Methods 1147
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

Declared In
NSURLProtectionSpace.h

initWithProxyHost:port:type:realm:authenticationMethod:
Initializes a protection space object representing a proxy server.

- (id)initWithProxyHost:(NSString *)host port:(NSInteger)port type:(NSString
*)proxyType realm:(NSString *)realm authenticationMethod:(NSString
*)authenticationMethod

Parameters

host
The host of the proxy server for the protection space object.

port
The port for the protection space object. If port is 0 the default port for the specified proxy
type is used, for example, port 80 for HTTP. Note that servers can, and do, treat these values
differently.

proxyType
The type of proxy server. The value of proxyType should be set to one of the values specified
in “Constants” (page 1150).

realm
A string indicating a protocol specific subdivision of the host. realm may be nil if there is no
specified realm or if the protocol doesn’t support realms.

authenticationMethod
The type of authentication to use. authenticationMethod should be set to one of the values
in “Constants” (page 1150) or nil to use the default, NSURLAuthenticationMethodDefault.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithHost:port:protocol:realm:authenticationMethod: (page 1147)

Declared In
NSURLProtectionSpace.h

isProxy
Returns whether the receiver represents a proxy server.

- (BOOL)isProxy

Return Value
YES if the receiver represents a proxy server, NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

1148 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

port
Returns the receiver’s port.

- (NSInteger)port

Return Value
The receiver's port.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

protocol
Returns the receiver’s protocol.

- (NSString *)protocol

Return Value
The receiver's protocol, or nil if the receiver represents a proxy protection space.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

proxyType
Returns the receiver's proxy type.

- (NSString *)proxyType

Return Value
The receiver's proxy type, or nil if the receiver does not represent a proxy protection space. The
supported proxy types are listed in “Constants” (page 1150).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

realm
Returns the receiver’s authentication realm

- (NSString *)realm

Return Value
The receiver’s authentication realm, or nil if no realm has been set.

Instance Methods 1149
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

Discussion
A realm is generally only specified for HTTP and HTTPS authentication.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

receivesCredentialSecurely
Returns whether the credentials for the protection space can be sent securely.

- (BOOL)receivesCredentialSecurely

Return Value
YES if the credentials for the protection space represented by the receiver can be sent securely, NO
otherwise.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtectionSpace.h

Constants

NSURLProtectionSpace Proxy Types
These constants describe the supported proxy types used in
initWithProxyHost:port:type:realm:authenticationMethod: (page 1148) and returned by
proxyType (page 1149).

extern NSString *NSURLProtectionSpaceHTTPProxy;
extern NSString *NSURLProtectionSpaceHTTPSProxy;
extern NSString *NSURLProtectionSpaceFTPProxy;
extern NSString *NSURLProtectionSpaceSOCKSProxy;

Constants
NSURLProtectionSpaceHTTPProxy

The proxy type for HTTP proxies.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

NSURLProtectionSpaceHTTPSProxy
The proxy type for HTTPS proxies.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

1150 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

NSURLProtectionSpaceFTPProxy
The proxy type for FTP proxies.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

NSURLProtectionSpaceSOCKSProxy
The proxy type for SOCKS proxies.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

NSURLProtectionSpace Authentication Methods
These constants describe the available authentication methods used in
initWithHost:port:protocol:realm:authenticationMethod: (page 1147),
initWithProxyHost:port:type:realm:authenticationMethod: (page 1148) and returned by
authenticationMethod (page 1146).

extern NSString *NSURLAuthenticationMethodDefault;
extern NSString *NSURLAuthenticationMethodHTTPBasic;
extern NSString *NSURLAuthenticationMethodHTTPDigest;
extern NSString *NSURLAuthenticationMethodHTMLForm;

Constants
NSURLAuthenticationMethodDefault

Use the default authentication method for a protocol.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

NSURLAuthenticationMethodHTTPBasic
Use HTTP basic authentication for this protection space.

This is equivalent to NSURLAuthenticationMethodDefault for HTTP.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

NSURLAuthenticationMethodHTTPDigest
Use HTTP digest authentication for this protection space.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

NSURLAuthenticationMethodHTMLForm
Use HTML form authentication for this protection space.

This authentication method can apply to any protocol.

Available in iPhone OS 2.0 and later.

Declared in NSURLProtectionSpace.h

Constants 1151
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLProtectionSpace.h

1152 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 3

NSURLProtectionSpace Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLProtocol.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLProtocol is an abstract class that provides the basic structure for performing protocol-specific
loading of URL data. Concrete subclasses handle the specifics associated with one or more protocols
or URL schemes.

An application should never need to directly instantiate an NSURLProtocol subclass. The instance of
the appropriate NSURLProtocol subclass for an NSURLRequest is created by NSURLConnection when
a download is started.

The NSURLProtocolClient protocol describes the methods an implementation uses to drive the URL
loading system from a NSURLProtocol subclass.

Overview 1153
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

To support customization of protocol-specific requests, protocol implementors are encouraged to
provide categories on NSURLRequest and NSMutableURLRequest. Protocol implementors who need
to extend the capabilities of NSURLRequest and NSMutableURLRequest in this way can store and
retrieve protocol-specific request data by using NSURLProtocol’s class methods
propertyForKey:inRequest: (page 1156) and setProperty:forKey:inRequest: (page 1158).

An essential responsibility for a protocol implementor is creating a NSURLResponse for each request
it processes successfully. A protocol implementor may wish to create a custom, mutable NSURLResponse
class to provide protocol specific information.

Tasks

Creating Protocol Objects

– initWithRequest:cachedResponse:client: (page 1160)
Initializes an NSURLProtocol object.

Registering and Unregistering Protocol Classes

+ registerClass: (page 1157)
Attempts to register a subclass of NSURLProtocol, making it visible to the URL loading system.

+ unregisterClass: (page 1159)
Unregisters the specified subclass of NSURLProtocol.

Getting and Setting Request Properties

+ propertyForKey:inRequest: (page 1156)
Returns the property associated with the specified key in the specified request.

+ setProperty:forKey:inRequest: (page 1158)
Sets the property associated with the specified key in the specified request.

+ removePropertyForKey:inRequest: (page 1157)
Removes the property associated with the specified key in the specified request.

Determining If a Subclass Can Handle a Request

+ canInitWithRequest: (page 1155)
Returns whether the protocol subclass can handle the specified request.

Providing a Canonical Version of a Request

+ canonicalRequestForRequest: (page 1156)
Returns a canonical version of the specified request.

1154 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

Determining If Requests Are Cache Equivalent

+ requestIsCacheEquivalent:toRequest: (page 1158)
Returns whether two requests are equivalent for cache purposes.

Starting and Stopping Downloads

– startLoading (page 1161)
Starts protocol-specific loading of the request.

– stopLoading (page 1161)
Stops protocol-specific loading of the request.

Getting Protocol Attributes

– cachedResponse (page 1159)
Returns the receiver’s cached response.

– client (page 1159)
Returns the object the receiver uses to communicate with the URL loading system.

– request (page 1160)
Returns the receiver’s request.

Class Methods

canInitWithRequest:
Returns whether the protocol subclass can handle the specified request.

+ (BOOL)canInitWithRequest:(NSURLRequest *)request

Parameters

request
The request to be handled.

Return Value
YES if the protocol subclass can handle request, otherwise NO.

Discussion
A subclass should inspect request and determine whether or not the implementation can perform
a load with that request.

This is an abstract method and subclasses must provide an implementation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

Class Methods 1155
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

canonicalRequestForRequest:
Returns a canonical version of the specified request.

+ (NSURLRequest *)canonicalRequestForRequest:(NSURLRequest *)request

Parameters

request
The request whose canonical version is desired.

Return Value
The canonical form of request.

Discussion
It is up to each concrete protocol implementation to define what “canonical” means. A protocol should
guarantee that the same input request always yields the same canonical form.

Special consideration should be given when implementing this method, because the canonical form
of a request is used to lookup objects in the URL cache, a process which performs equality checks
between NSURLRequest objects.

This is an abstract method and subclasses must provide an implementation.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

propertyForKey:inRequest:
Returns the property associated with the specified key in the specified request.

+ (id)propertyForKey:(NSString *)key inRequest:(NSURLRequest *)request

Parameters

key
The key of the desired property.

request
The request whose properties are to be queried.

Return Value
The property associated with key, or nil if no property has been stored for key.

Discussion
This method provides an interface for protocol implementors to access protocol-specific information
associated with NSURLRequest objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ setProperty:forKey:inRequest: (page 1158)

Declared In
NSURLProtocol.h

1156 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

registerClass:
Attempts to register a subclass of NSURLProtocol, making it visible to the URL loading system.

+ (BOOL)registerClass:(Class)protocolClass

Parameters

protocolClass
The subclass of NSURLProtocol to register.

Return Value
YES if the registration is successful, NO otherwise. The only failure condition is if protocolClass is
not a subclass of NSURLProtocol.

Discussion
When the URL loading system begins to load a request, each registered protocol class is consulted in
turn to see if it can be initialized with the specified request. The first NSURLProtocol subclass to return
YES when sent a canInitWithRequest: (page 1155) message is used to perform the URL load. There
is no guarantee that all registered protocol classes will be consulted.

Classes are consulted in the reverse order of their registration. A similar design governs the process
to create the canonical form of a request with canonicalRequestForRequest: (page 1156).

Availability
Available in iPhone OS 2.0 and later.

See Also
+ unregisterClass: (page 1159)

Declared In
NSURLProtocol.h

removePropertyForKey:inRequest:
Removes the property associated with the specified key in the specified request.

+ (void)removePropertyForKey:((NSString *)key inRequest:(NSMutableURLRequest
*)request

Parameters

key
The key whose value should be removed.

request
The request from which to remove the property value.

Discussion
This method is used to provide an interface for protocol implementors to customize protocol-specific
information associated with NSMutableURLRequest objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ propertyForKey:inRequest: (page 1156)

Class Methods 1157
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

Declared In
NSURLProtocol.h

requestIsCacheEquivalent:toRequest:
Returns whether two requests are equivalent for cache purposes.

+ (BOOL)requestIsCacheEquivalent:(NSURLRequest *)aRequest toRequest:(NSURLRequest
*)bRequest

Parameters

aRequest
The request to compare with bRequest.

bRequest
The request to compare with aRequest.

Return Value
YES if aRequest and bRequest are equivalent for cache purposes, NO otherwise. Requests are considered
equivalent for cache purposes if and only if they would be handled by the same protocol and that
protocol declares them equivalent after performing implementation-specific checks.

Discussion
The NSURLProtocol implementation of this method compares the URLs of the requests to determine
if the requests should be considered equivalent. Subclasses can override this method to provide
protocol-specific comparisons.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

setProperty:forKey:inRequest:
Sets the property associated with the specified key in the specified request.

+ (void)setProperty:(id)value forKey:(NSString *)key inRequest:(NSMutableURLRequest
*)request

Parameters

value
The value to set for the specified property.

key
The key for the specified property.

request
The request for which to create the property.

Discussion
This method is used to provide an interface for protocol implementors to customize protocol-specific
information associated with NSMutableURLRequest objects.

Availability
Available in iPhone OS 2.0 and later.

1158 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

See Also
+ propertyForKey:inRequest: (page 1156)

Declared In
NSURLProtocol.h

unregisterClass:
Unregisters the specified subclass of NSURLProtocol.

+ (void)unregisterClass:(Class)protocolClass

Parameters

protocolClass
The subclass of NSURLProtocol to unregister.

Discussion
After this method is invoked, protocolClass is no longer consulted by the URL loading system.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ registerClass: (page 1157)

Declared In
NSURLProtocol.h

Instance Methods

cachedResponse
Returns the receiver’s cached response.

- (NSCachedURLResponse *)cachedResponse

Return Value
The receiver's cached response.

Discussion
Subclasses must implement this method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

client
Returns the object the receiver uses to communicate with the URL loading system.

Instance Methods 1159
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

- (id < NSURLProtocolClient >)client

Return Value
The object the receiver uses to communicate with the URL loading system.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

initWithRequest:cachedResponse:client:
Initializes an NSURLProtocol object.

- (id)initWithRequest:(NSURLRequest *)request cachedResponse:(NSCachedURLResponse
*)cachedResponse client:(id < NSURLProtocolClient >)client

Parameters

request
The URL request for the URL protocol object.

cachedResponse
A cached response for the request; may be nil if there is no existing cached response for the
request.

client
An object that provides an implementation of the NSURLProtocolClient protocol that the
receiver uses to communicate with the URL loading system.

Discussion
Subclasses should override this method to do any custom initialization. An application should never
explicitly call this method.

This is the designated intializer for NSURLProtocol.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

request
Returns the receiver’s request.

- (NSURLRequest *)request

Return Value
The receiver's request.

Availability
Available in iPhone OS 2.0 and later.

1160 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

Declared In
NSURLProtocol.h

startLoading
Starts protocol-specific loading of the request.

- (void)startLoading

Discussion
When this method is called, the subclass implementation should start loading the request, providing
feedback to the URL loading system via the NSURLProtocolClient protocol.

Subclasses must implement this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– stopLoading (page 1161)

Declared In
NSURLProtocol.h

stopLoading
Stops protocol-specific loading of the request.

- (void)stopLoading

Discussion
When this method is called, the subclass implementation should stop loading a request. This could
be in response to a cancel operation, so protocol implementations must be able to handle this call
while a load is in progress.

Subclasses must implement this method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– startLoading (page 1161)

Declared In
NSURLProtocol.h

Instance Methods 1161
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

1162 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 4

NSURLProtocol Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLRequest.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLRequest objects represent a URL load request in a manner independent of protocol and URL
scheme.

NSURLRequest encapsulates two basic data elements of a load request: the URL to load, and the
policy to use when consulting the URL content cache made available by the implementation.

NSURLRequest is designed to be extended to support additional protocols by adding categories that
access protocol specific values from a property object using NSURLProtocol’s
propertyForKey:inRequest: (page 1156) andsetProperty:forKey:inRequest: (page 1158) methods.

Overview 1163
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

The mutable subclass of NSURLRequest is NSMutableURLRequest.

Adopted Protocols

NSCopying
– copyWithZone: (page 1250)

NSMutableCopying
– mutableCopyWithZone: (page 1300)

Tasks

Creating Requests

+ requestWithURL: (page 1165)
Creates and returns a URL request for a specified URL with default cache policy and timeout
value.

– initWithURL: (page 1168)
Returns a URL request for a specified URL with default cache policy and timeout value.

+ requestWithURL:cachePolicy:timeoutInterval: (page 1165)
Creates and returns an initialized URL request with specified values.

– initWithURL:cachePolicy:timeoutInterval: (page 1168)
Returns an initialized URL request with specified values.

Getting Request Properties

– cachePolicy (page 1166)
Returns the receiver’s cache policy.

– mainDocumentURL (page 1169)
Returns the main document URL associated with the request.

– timeoutInterval (page 1169)
Returns the receiver’s timeout interval, in seconds.

– URL (page 1170)
Returns the request's URL.

Getting HTTP Request Properties

– allHTTPHeaderFields (page 1166)
Returns a dictionary containing all the receiver’s HTTP header fields.

– HTTPBody (page 1167)
Returns the receiver’s HTTP body data.

1164 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

– HTTPBodyStream (page 1167)
Returns the receiver’s HTTP body stream.

– HTTPMethod (page 1167)
Returns the receiver’s HTTP request method.

– HTTPShouldHandleCookies (page 1168)
Returns whether the default cookie handling will be used for this request.

– valueForHTTPHeaderField: (page 1170)
Returns the value of the specified HTTP header field.

Class Methods

requestWithURL:
Creates and returns a URL request for a specified URL with default cache policy and timeout value.

+ (id)requestWithURL:(NSURL *)theURL

Parameters

theURL
The URL for the new request.

Return Value
The newly created URL request.

Discussion
The default cache policy is NSURLRequestUseProtocolCachePolicy and the default timeout interval
is 60 seconds.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ requestWithURL:cachePolicy:timeoutInterval: (page 1165)

Declared In
NSURLRequest.h

requestWithURL:cachePolicy:timeoutInterval:
Creates and returns an initialized URL request with specified values.

+ (id)requestWithURL:(NSURL *)theURL cachePolicy:(NSURLRequestCachePolicy)cachePolicy
timeoutInterval:(NSTimeInterval)timeoutInterval

Parameters

theURL
The URL for the new request.

cachePolicy
The cache policy for the new request.

Class Methods 1165
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

timeoutInterval
The timeout interval for the new request, in seconds.

Return Value
The newly created URL request.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithURL:cachePolicy:timeoutInterval: (page 1168)

Declared In
NSURLRequest.h

Instance Methods

allHTTPHeaderFields
Returns a dictionary containing all the receiver’s HTTP header fields.

- (NSDictionary *)allHTTPHeaderFields

Return Value
A dictionary containing all the receiver’s HTTP header fields.

Availability
Available in iPhone OS 2.0 and later.

See Also
– valueForHTTPHeaderField: (page 1170)

Declared In
NSURLRequest.h

cachePolicy
Returns the receiver’s cache policy.

- (NSURLRequestCachePolicy)cachePolicy

Return Value
The receiver’s cache policy.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

1166 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

HTTPBody
Returns the receiver’s HTTP body data.

- (NSData *)HTTPBody

Return Value
The receiver's HTTP body data.

Discussion
This data is sent as the message body of a request, as in an HTTP POST request.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

HTTPBodyStream
Returns the receiver’s HTTP body stream.

- (NSInputStream *)HTTPBodyStream

Return Value
The receiver’s HTTP body stream, or nil if it has not been set. The returned stream is for examination
only, it is not safe to manipulate the stream in any way.

Discussion
The receiver will have either an HTTP body or an HTTP body stream, only one may be set for a
request. A HTTP body stream is preserved when copying an NSURLRequest object, but is lost when
a request is archived using the NSCoding protocol.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

HTTPMethod
Returns the receiver’s HTTP request method.

- (NSString *)HTTPMethod

Return Value
The receiver’s HTTP request method.

Discussion
The default HTTP method is “GET”.

Availability
Available in iPhone OS 2.0 and later.

Instance Methods 1167
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

Declared In
NSURLRequest.h

HTTPShouldHandleCookies
Returns whether the default cookie handling will be used for this request.

- (BOOL)HTTPShouldHandleCookies

Return Value
YES if the default cookie handling will be used for this request, NO otherwise.

Discussion
The default is YES.

Special Considerations

In Mac OS X v10.2 with Safari 1.0 the value set by this method is not respected by the framework.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

initWithURL:
Returns a URL request for a specified URL with default cache policy and timeout value.

- (id)initWithURL:(NSURL *)theURL

Parameters

theURL
The URL for the request.

Return Value
The initialized URL request.

Discussion
The default cache policy is NSURLRequestUseProtocolCachePolicy and the default timeout interval
is 60 seconds.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithURL:cachePolicy:timeoutInterval: (page 1168)

Declared In
NSURLRequest.h

initWithURL:cachePolicy:timeoutInterval:
Returns an initialized URL request with specified values.

1168 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

- (id)initWithURL:(NSURL *)theURL cachePolicy:(NSURLRequestCachePolicy)cachePolicy
timeoutInterval:(NSTimeInterval)timeoutInterval

Parameters

theURL
The URL for the request.

cachePolicy
The cache policy for the request.

timeoutInterval
The timeout interval for the request, in seconds.

Return Value
The initialized URL request.

Discussion
This is the designated initializer for NSURLRequest.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithURL: (page 1168)

Declared In
NSURLRequest.h

mainDocumentURL
Returns the main document URL associated with the request.

- (NSURL *)mainDocumentURL

Return Value
The main document URL associated with the request.

Discussion
This URL is used for the cookie “same domain as main document” policy.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

timeoutInterval
Returns the receiver’s timeout interval, in seconds.

- (NSTimeInterval)timeoutInterval

Return Value
The receiver's timeout interval, in seconds.

Instance Methods 1169
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

Discussion
If during a connection attempt the request remains idle for longer than the timeout interval, the
request is considered to have timed out.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

URL
Returns the request's URL.

- (NSURL *)URL

Return Value
The request's URL.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

valueForHTTPHeaderField:
Returns the value of the specified HTTP header field.

- (NSString *)valueForHTTPHeaderField:(NSString *)field

Parameters

field
The name of the header field whose value is to be returned. In keeping with the HTTP RFC,
HTTP header field names are case-insensitive.

Return Value
The value associated with the header field field, or nil if there is no corresponding header field.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

Constants

NSURLRequestCachePolicy
These constants are used to specify interaction with the cached responses.

1170 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

enum
{

NSURLRequestUseProtocolCachePolicy = 0,
NSURLRequestReloadIgnoringLocalCacheData = 1,
NSURLRequestReloadIgnoringLocalAndRemoteCacheData =4,
NSURLRequestReloadIgnoringCacheData = NSURLRequestReloadIgnoringLocalCacheData,
NSURLRequestReturnCacheDataElseLoad = 2,
NSURLRequestReturnCacheDataDontLoad = 3,
NSURLRequestReloadRevalidatingCacheData = 5

};
typedef NSUInteger NSURLRequestCachePolicy;

Constants
NSURLRequestUseProtocolCachePolicy

Specifies that the caching logic defined in the protocol implementation, if any, is used for a
particular URL load request. This is the default policy for URL load requests.

Available in iPhone OS 2.0 and later.

Declared in NSURLRequest.h

NSURLRequestReloadIgnoringLocalCacheData
Specifies that the data for the URL load should be loaded from the originating source. No
existing cache data should be used to satisfy a URL load request.

Available in iPhone OS 2.0 and later.

Declared in NSURLRequest.h

NSURLRequestReloadIgnoringLocalAndRemoteCacheData
Specifies that not only should the local cache data be ignored, but that proxies and other
intermediates should be instructed to disregard their caches so far as the protocol allows.

Available in iPhone OS 2.0 and later.

Declared in NSURLRequest.h

NSURLRequestReloadIgnoringCacheData
Replaced by NSURLRequestReloadIgnoringLocalCacheData (page 1171).

Available in iPhone OS 2.0 and later.

Declared in NSURLRequest.h

NSURLRequestReturnCacheDataElseLoad
Specifies that the existing cached data should be used to satisfy the request, regardless of its
age or expiration date. If there is no existing data in the cache corresponding the request, the
data is loaded from the originating source.

Available in iPhone OS 2.0 and later.

Declared in NSURLRequest.h

NSURLRequestReturnCacheDataDontLoad
Specifies that the existing cache data should be used to satisfy a request, regardless of its age
or expiration date. If there is no existing data in the cache corresponding to a URL load request,
no attempt is made to load the data from the originating source, and the load is considered to
have failed. This constant specifies a behavior that is similar to an “offline” mode.

Available in iPhone OS 2.0 and later.

Declared in NSURLRequest.h

Constants 1171
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

NSURLRequestReloadRevalidatingCacheData
Specifies that the existing cache data may be used provided the origin source confirms its
validity, otherwise the URL is loaded from the origin source.

Available in iPhone OS 2.0 and later.

Declared in NSURLRequest.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLRequest.h

1172 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 5

NSURLRequest Class Reference

Inherits from: NSObject

Conforms to: NSCopying
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLResponse.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

NSURLResponse declares the programmatic interface for an object that accesses the response returned
by an NSURLRequest instance.

NSURLResponse encapsulates the metadata associated with a URL load in a manner independent of
protocol and URL scheme.

NSHTTPURLResponse is a subclass of NSURLResponse that provides methods for accessing information
specific to HTTP protocol responses. An NSHTTPURLResponse object represents a response to an HTTP
URL load request.

Overview 1173
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 6

NSURLResponse Class Reference

Note: NSURLResponse objects do not contain the actual bytes representing the content of a URL. See
NSURLConnection for more information about receiving the content data for a URL load.

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
copyWithZone: (page 1250)

Tasks

Creating a Response

– initWithURL:MIMEType:expectedContentLength:textEncodingName: (page 1175)
Returns an initialized NSURLResponse object with the URL, MIME type, length, and text
encoding set to given values.

Getting the Response Properties

– expectedContentLength (page 1174)
Returns the receiver’s expected content length

– suggestedFilename (page 1176)
Returns a suggested filename for the response data.

– MIMEType (page 1175)
Returns the receiver’s MIME type.

– textEncodingName (page 1176)
Returns the name of the receiver’s text encoding provided by the response’s originating source.

– URL (page 1177)
Returns the receiver’s URL.

Instance Methods

expectedContentLength
Returns the receiver’s expected content length

- (long long)expectedContentLength

1174 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 6

NSURLResponse Class Reference

Return Value
The receiver’s expected content length, or NSURLResponseUnknownLength if the length can’t be
determined.

Discussion
Some protocol implementations report the content length as part of the response, but not all protocols
guarantee to deliver that amount of data. Clients should be prepared to deal with more or less data.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLResponse.h

initWithURL:MIMEType:expectedContentLength:textEncodingName:
Returns an initialized NSURLResponse object with the URL, MIME type, length, and text encoding
set to given values.

- (id)initWithURL:(NSURL *)URL MIMEType:(NSString *)MIMEType
expectedContentLength:(NSInteger)length textEncodingName:(NSString *)name

Parameters

URL
The URL for the new object.

MIMEType
The MIME type.

length
The expected content length.This value should be –1 if the expected length is undetermined

name
The text encoding name. This value may be nil.

Return Value
An initialized NSURLResponse object with the URL set to URL, the MIME type set to MIMEType, length
set to length, and text encoding name set to name.

Discussion
This is the designated initializer for NSURLResponse.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLResponse.h

MIMEType
Returns the receiver’s MIME type.

- (NSString *)MIMEType

Return Value
The receiver’s MIME type.

Instance Methods 1175
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 6

NSURLResponse Class Reference

Discussion
The MIME type is often provided by the response’s originating source. However, that value may be
changed or corrected by a protocol implementation if it can be determined that the response’s source
reported the information incorrectly.

If the response’s originating source does not provide a MIME type, an attempt to guess the MIME
type may be made.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLResponse.h

suggestedFilename
Returns a suggested filename for the response data.

- (NSString *)suggestedFilename

Return Value
A suggested filename for the response data.

Discussion
The method tries to create a filename using the following, in order:

1. A filename specified using the content disposition header.

2. The last path component of the URL.

3. The host of the URL.

If the host of URL can't be converted to a valid filename, the filename “unknown” is used.

In most cases, this method appends the proper file extension based on the MIME type. This method
will always return a valid filename regardless of whether or not the resource is saved to disk.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLResponse.h

textEncodingName
Returns the name of the receiver’s text encoding provided by the response’s originating source.

- (NSString *)textEncodingName

Return Value
The name of the receiver’s text encoding provided by the response’s originating source, or nil if no
text encoding was provided by the protocol

1176 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 6

NSURLResponse Class Reference

Discussion
Clients can convert this string to an NSStringEncoding or a CFStringEncoding using the methods
and functions available in the appropriate framework.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLResponse.h

URL
Returns the receiver’s URL.

- (NSURL *)URL

Return Value
The receiver’s URL.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLResponse.h

Constants

Response Length Unknown Error
The following error code is returned by expectedContentLength (page 1174).

#define NSURLResponseUnknownLength ((long long)-1)

Constants
NSURLResponseUnknownLength

Returned when the response length cannot be determined in advance of receiving the data
from the server. For example, NSURLResponseUnknownLength is returned when the server
HTTP response does not include a Content-Length header.

Available in iPhone OS 2.0 and later.

Declared in NSURLResponse.h

Constants 1177
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 6

NSURLResponse Class Reference

1178 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 6

NSURLResponse Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSUserDefaults.h

Companion guide: User Defaults Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSUserDefaults class provides a programmatic interface for interacting with the defaults system.
The defaults system allows an application to customize its behavior to match a user’s preferences.
For example, you can allow users to determine what units of measurement your application displays
or how often documents are automatically saved. Applications record such preferences by assigning
values to a set of parameters in a user’s defaults database. The parameters are referred to as defaults
since they’re commonly used to determine an application’s default state at startup or the way it acts
by default.

Overview 1179
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

At runtime, you use an NSUserDefaults object to read the defaults that your application uses from
a user’s defaults database. NSUserDefaults caches the information to avoid having to open the user’s
defaults database each time you need a default value. The synchronize (page 1198) method, which is
automatically invoked at periodic intervals, keeps the in-memory cache in sync with a user’s defaults
database.

A default’s value must be a property list, that is, an instance of (or for collections a combination of
instances of): NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary. If you want to store
any other type of object, you should typically archive it to create an instance of NSData. For more
details, see User Defaults Programming Topics for Cocoa.

Values returned from NSUserDefaults are immutable, even if you set a mutable object as the value.
For example, if you set a mutable string as the value for "MyStringDefault", the string you later
retrieve using stringForKey: (page 1197) will be immutable.

A defaults database is created automatically for each user. The NSUserDefaults class does not
currently support per-host preferences. To do this, you must use the CFPreferences API (see Preferences
Utilities Reference). However, NSUserDefaults correctly reads per-host preferences, so you can safely
mix CFPreferences code with NSUserDefaults code.

If your application supports managed environments, you can use an NSUserDefaults object to
determine which preferences are managed by an administrator for the benefit of the user. Managed
environments correspond to computer labs or classrooms where an administrator or teacher may
want to configure the systems in a particular way. In these situations, the teacher can establish a set
of default preferences and force those preferences on users. If a preference is managed in this manner,
applications should prevent users from editing that preference by disabling any appropriate controls.

The NSUserDefaults class is thread-safe.

Tasks

Getting the Shared NSUserDefaults Instance

+ standardUserDefaults (page 1183)
Returns the shared defaults object.

+ resetStandardUserDefaults (page 1183)
Synchronizes any changes made to the shared user defaults object and releases it from memory.

Initializing an NSUserDefaults Object

– init (page 1188)
Returns an NSUserDefaults object initialized with the defaults for the current user account.

– initWithUser: (page 1188)
Returns an NSUserDefaults object initialized with the defaults for the specified user account.

1180 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Getting a Default Value

– arrayForKey: (page 1184)
Returns the array associated with the specified key.

– boolForKey: (page 1185)
Returns the Boolean value associated with the specified key.

– dataForKey: (page 1185)
Returns the data object associated with the specified key.

– dictionaryForKey: (page 1186)
Returns the dictionary object associated with the specified key.

– floatForKey: (page 1187)
Returns the floating-point value associated with the specified key.

– integerForKey: (page 1189)
Returns the integer value associated with the specified key..

– objectForKey: (page 1189)
Returns the object associated with the first occurrence of the specified default.

– stringArrayForKey: (page 1197)
Returns the array of strings associated with the specified key.

– stringForKey: (page 1197)
Returns the string associated with the specified key.

Setting and Removing Defaults

– removeObjectForKey: (page 1192)
Removes the value of the specified default key in the standard application domain.

– setBool:forKey: (page 1194)
Sets the value of the specified default key to a string containing a Boolean value.

– setFloat:forKey: (page 1194)
Sets the value of the specified default key to a string containing a floating-point value.

– setInteger:forKey: (page 1195)
Sets the value of the specified default key to a string containing an integer value.

– setObject:forKey: (page 1195)
Sets the value of the specified default key in the standard application domain.

Registering Defaults

– registerDefaults: (page 1192)
Adds the contents the specified dictionary to the registration domain.

Maintaining Persistent Domains

– synchronize (page 1198)
Writes any modifications to the persistent domains to disk and updates all unmodified persistent
domains to what is on disk.

Tasks 1181
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

– persistentDomainForName: (page 1191)
Returns a dictionary containing the keys and values in the specified persistent domain.

– persistentDomainNames (page 1191)
Returns an array of the current persistent domain names.

– removePersistentDomainForName: (page 1193)
Removes the contents of the specified persistent domain from the user’s defaults.

– setPersistentDomain:forName: (page 1196)
Sets the dictionary for the specified persistent domain.

Accessing Managed Environment Keys

– objectIsForcedForKey: (page 1190)
Returns a Boolean value indicating whether the specified key is managed by an administrator.

– objectIsForcedForKey:inDomain: (page 1190)
Returns a Boolean value indicating whether the key in the specified domain is managed by an
administrator.

Managing the Search List

– dictionaryRepresentation (page 1187)
Returns a dictionary that contains a union of all key-value pairs in the domains in the search
list.

Maintaining Volatile Domains

– removeVolatileDomainForName: (page 1193)
Removes the specified volatile domain from the user’s defaults.

– setVolatileDomain:forName: (page 1196)
Sets the dictionary for the specified volatile domain.

– volatileDomainForName: (page 1199)
Returns the dictionary for the specified volatile domain.

– volatileDomainNames (page 1199)
Returns an array of the current volatile domain names.

Maintaining Suites

– addSuiteNamed: (page 1184)
Inserts the specified domain name into the receiver’s search list.

– removeSuiteNamed: (page 1193)
Removes the specified domain name from the receiver’s search list.

1182 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Class Methods

resetStandardUserDefaults
Synchronizes any changes made to the shared user defaults object and releases it from memory.

+ (void)resetStandardUserDefaults

Discussion
A subsequent invocation of standardUserDefaults (page 1183) creates a new shared user defaults
object with the standard search list.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSUserDefaults.h

standardUserDefaults
Returns the shared defaults object.

+ (NSUserDefaults *)standardUserDefaults

Return Value
The shared defaults object.

Discussion
If the shared defaults object does not exist yet, it is created with a search list containing the names of
the following domains, in this order:

 ■ NSArgumentDomain, consisting of defaults parsed from the application’s arguments

 ■ A domain identified by the application’s bundle identifier

 ■ NSGlobalDomain, consisting of defaults meant to be seen by all applications

 ■ Separate domains for each of the user’s preferred languages

 ■ NSRegistrationDomain, a set of temporary defaults whose values can be set by the application
to ensure that searches will always be successful

The defaults are initialized for the current user. Subsequent modifications to the standard search list
remain in effect even when this method is invoked again—the search list is guaranteed to be standard
only the first time this method is invoked. The shared instance is provided as a convenience—you
can create custom instances using alloc along with initWithUser: (page 1188) or init (page 1188).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSUserDefaults.h

Class Methods 1183
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Instance Methods

addSuiteNamed:
Inserts the specified domain name into the receiver’s search list.

- (void)addSuiteNamed:(NSString *)suiteName

Parameters

suiteName
The domain name to insert. This domain is inserted after the application domain.

Discussion
The suiteName domain is similar to a bundle identifier string, but is not tied to a particular application
or bundle. A suite can be used to hold preferences that are shared between multiple applications.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ standardUserDefaults (page 1183)
– removeSuiteNamed: (page 1193)

Declared In
NSUserDefaults.h

arrayForKey:
Returns the array associated with the specified key.

- (NSArray *)arrayForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The array associated with the specified key, or nil if the key does not exist or its value is not an
NSArray object.

Special Considerations

The returned array and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in iPhone OS 2.0 and later.

See Also
– boolForKey: (page 1185)
– dataForKey: (page 1185)
– dictionaryForKey: (page 1186)
– floatForKey: (page 1187)
– integerForKey: (page 1189)

1184 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

– objectForKey: (page 1189)
– stringArrayForKey: (page 1197)
– stringForKey: (page 1197)

Declared In
NSUserDefaults.h

boolForKey:
Returns the Boolean value associated with the specified key.

- (BOOL)boolForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
YES if the value associated with defaultName is an NSString containing the word “yes” in uppercase
or lowercase or responds to the intValue message by returning a nonzero value; otherwise NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– dataForKey: (page 1185)
– dictionaryForKey: (page 1186)
– floatForKey: (page 1187)
– integerForKey: (page 1189)
– objectForKey: (page 1189)
– stringArrayForKey: (page 1197)
– stringForKey: (page 1197)

Declared In
NSUserDefaults.h

dataForKey:
Returns the data object associated with the specified key.

- (NSData *)dataForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The data object associated with the specified key, or nil if the key does not exist or its value is not
an NSData object.

Instance Methods 1185
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Special Considerations

The returned data object is immutable, even if the value you originally set was a mutable data object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– boolForKey: (page 1185)
– dictionaryForKey: (page 1186)
– floatForKey: (page 1187)
– integerForKey: (page 1189)
– objectForKey: (page 1189)
– stringArrayForKey: (page 1197)
– stringForKey: (page 1197)

Declared In
NSUserDefaults.h

dictionaryForKey:
Returns the dictionary object associated with the specified key.

- (NSDictionary *)dictionaryForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The dictionary object associated with the specified key, or nil if the key does not exist or its value is
not an NSDictionary object.

Special Considerations

The returned dictionary and its contents are immutable, even if the values you originally set were
mutable.

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– boolForKey: (page 1185)
– dataForKey: (page 1185)
– floatForKey: (page 1187)
– integerForKey: (page 1189)
– objectForKey: (page 1189)
– stringArrayForKey: (page 1197)
– stringForKey: (page 1197)

1186 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Declared In
NSUserDefaults.h

dictionaryRepresentation
Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.

- (NSDictionary *)dictionaryRepresentation

Return Value
A dictionary containing the keys. The keys are names of defaults and the value corresponding to each
key is a property list object (NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary).

Discussion
As with objectForKey: (page 1189), key-value pairs in domains that are earlier in the search list take
precedence. The combined result does not preserve information about which domain each entry came
from.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSUserDefaults.h

floatForKey:
Returns the floating-point value associated with the specified key.

- (float)floatForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The floating-point value associated with the specified key. If the string storing the value does not
exist, this method returns 0; otherwise, the string object is sent a floatValuemessage and the resulting
value is returned.

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– boolForKey: (page 1185)
– dataForKey: (page 1185)
– dictionaryForKey: (page 1186)
– integerForKey: (page 1189)
– objectForKey: (page 1189)
– stringArrayForKey: (page 1197)
– stringForKey: (page 1197)

Instance Methods 1187
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Declared In
NSUserDefaults.h

init
Returns an NSUserDefaults object initialized with the defaults for the current user account.

- (id)init

Return Value
An initialized NSUserDefaults object whose argument and registration domains are already set up.

Discussion
This method does not put anything in the search list. Invoke it only if you’ve allocated your own
NSUserDefaults instance instead of using the shared one.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ standardUserDefaults (page 1183)

Declared In
NSUserDefaults.h

initWithUser:
Returns an NSUserDefaults object initialized with the defaults for the specified user account.

- (id)initWithUser:(NSString *)username

Parameters

username
The name of the user account.

Return Value
An initialized NSUserDefaults object whose argument and registration domains are already set up.
If the current user does not have access to the specified user account, this method returns nil.

Discussion
This method does not put anything in the search list. Invoke it only if you’ve allocated your own
NSUserDefaults instance instead of using the shared one.

You do not normally use this method to initialize an instance of NSUserDefaults. Applications used
by a superuser might use this method to update the defaults databases for a number of users. The
user who started the application must have appropriate access (read, write, or both) to the defaults
database of the new user, or this method returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ standardUserDefaults (page 1183)

1188 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Declared In
NSUserDefaults.h

integerForKey:
Returns the integer value associated with the specified key..

- (NSInteger)integerForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The integer value associated with the specified key. If the string storing the value does not exist, this
method returns 0; otherwise, the string object is sent an intValue message and the resulting value
is returned.

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– boolForKey: (page 1185)
– dataForKey: (page 1185)
– dictionaryForKey: (page 1186)
– floatForKey: (page 1187)
– objectForKey: (page 1189)
– stringArrayForKey: (page 1197)
– stringForKey: (page 1197)

Declared In
NSUserDefaults.h

objectForKey:
Returns the object associated with the first occurrence of the specified default.

- (id)objectForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The object associated with the specified key, or nil if the key was not found.

Discussion
This method searches the domains included in the search list in the order they are listed.

Special Considerations

The returned object is immutable, even if the value you originally set was mutable.

Instance Methods 1189
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– boolForKey: (page 1185)
– dataForKey: (page 1185)
– dictionaryForKey: (page 1186)
– floatForKey: (page 1187)
– stringArrayForKey: (page 1197)
– stringForKey: (page 1197)

Declared In
NSUserDefaults.h

objectIsForcedForKey:
Returns a Boolean value indicating whether the specified key is managed by an administrator.

- (BOOL)objectIsForcedForKey:(NSString *)key

Parameters

key
The key whose status you want to check.

Return Value
YES if the value of the specified key is managed by an administrator, otherwise NO.

Discussion
This method assumes that the key is a preference associated with the current user and application.
For managed keys, the application should disable any user interface that allows the user to modify
the value of key.

Availability
Available in iPhone OS 2.0 and later.

See Also
– objectIsForcedForKey:inDomain: (page 1190)

Declared In
NSUserDefaults.h

objectIsForcedForKey:inDomain:
Returns a Boolean value indicating whether the key in the specified domain is managed by an
administrator.

- (BOOL)objectIsForcedForKey:(NSString *)key inDomain:(NSString *)domain

Parameters

key
The key whose status you want to check.

1190 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

domain
The domain of the key.

Return Value
YES if the key is managed by an administrator in the specified domain, otherwise NO.

Discussion
This method assumes that the key is a preference associated with the current user. For managed keys,
the application should disable any user interface that allows the user to modify the value of key.

Availability
Available in iPhone OS 2.0 and later.

See Also
– objectIsForcedForKey: (page 1190)

Declared In
NSUserDefaults.h

persistentDomainForName:
Returns a dictionary containing the keys and values in the specified persistent domain.

- (NSDictionary *)persistentDomainForName:(NSString *)domainName

Parameters

domainName
The domain whose keys and values you want. This value should be equal to your application's
bundle identifier.

Return Value
A dictionary containing the keys. The keys are names of defaults and the value corresponding to each
key is a property list object (NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary).

Availability
Available in iPhone OS 2.0 and later.

See Also
– removePersistentDomainForName: (page 1193)
– setPersistentDomain:forName: (page 1196)

Declared In
NSUserDefaults.h

persistentDomainNames
Returns an array of the current persistent domain names.

- (NSArray *)persistentDomainNames

Return Value
An array of NSString objects containing the domain names.

Instance Methods 1191
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Discussion
You can get the keys and values for each domain by passing the returned domain names to the
persistentDomainForName: (page 1191) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removePersistentDomainForName: (page 1193)
– setPersistentDomain:forName: (page 1196)

Declared In
NSUserDefaults.h

registerDefaults:
Adds the contents the specified dictionary to the registration domain.

- (void)registerDefaults:(NSDictionary *)dictionary

Parameters

dictionary
The dictionary of keys and values you want to register.

Discussion
If there is no registration domain, one is created using the specified dictionary, and
NSRegistrationDomain is added to the end of the search list.

The contents of the registration domain are not written to disk; you need to call this method each
time your application starts. You can place a plist file in the application's Resources directory and
call registerDefaults: with the contents that you read in from that file.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSUserDefaults.h

removeObjectForKey:
Removes the value of the specified default key in the standard application domain.

- (void)removeObjectForKey:(NSString *)defaultName

Parameters

defaultName
The key whose value you want to remove.

Discussion
Removing a default has no effect on the value returned by the objectForKey: (page 1189) method if
the same key exists in a domain that precedes the standard application domain in the search list.

Availability
Available in iPhone OS 2.0 and later.

1192 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

See Also
– setObject:forKey: (page 1195)

Declared In
NSUserDefaults.h

removePersistentDomainForName:
Removes the contents of the specified persistent domain from the user’s defaults.

- (void)removePersistentDomainForName:(NSString *)domainName

Parameters

domainName
The domain whose keys and values you want. This value should be equal to your application's
bundle identifier.

Discussion
When a persistent domain is changed, an NSUserDefaultsDidChangeNotification (page 1200) is
posted.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setPersistentDomain:forName: (page 1196)

Declared In
NSUserDefaults.h

removeSuiteNamed:
Removes the specified domain name from the receiver’s search list.

- (void)removeSuiteNamed:(NSString *)suiteName

Parameters

suiteName
The domain name to remove.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addSuiteNamed: (page 1184)

Declared In
NSUserDefaults.h

removeVolatileDomainForName:
Removes the specified volatile domain from the user’s defaults.

Instance Methods 1193
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

- (void)removeVolatileDomainForName:(NSString *)domainName

Parameters

domainName
The volatile domain you want to remove.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setVolatileDomain:forName: (page 1196)

Declared In
NSUserDefaults.h

setBool:forKey:
Sets the value of the specified default key to a string containing a Boolean value.

- (void)setBool:(BOOL)value forKey:(NSString *)defaultName

Parameters

value
The Boolean value to store in the defaults database. This value is converted to an NSString
object before being stored in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1195) as part of its implementation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– boolForKey: (page 1185)

Declared In
NSUserDefaults.h

setFloat:forKey:
Sets the value of the specified default key to a string containing a floating-point value.

- (void)setFloat:(float)value forKey:(NSString *)defaultName

Parameters

value
The floating-point value to store in the defaults database. This value is converted to an NSString
object before being stored in the defaults database.

defaultName
The key with which to associate with the value.

1194 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Discussion
Invokes setObject:forKey: (page 1195) as part of its implementation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– floatForKey: (page 1187)

Declared In
NSUserDefaults.h

setInteger:forKey:
Sets the value of the specified default key to a string containing an integer value.

- (void)setInteger:(NSInteger)value forKey:(NSString *)defaultName

Parameters

value
The integer value to store in the defaults database. This value is converted to an NSString
object before being stored in the defaults database.

defaultName
The key with which to associate with the value.

Discussion
Invokes setObject:forKey: (page 1195) as part of its implementation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– integerForKey: (page 1189)

Declared In
NSUserDefaults.h

setObject:forKey:
Sets the value of the specified default key in the standard application domain.

- (void)setObject:(id)value forKey:(NSString *)defaultName

Parameters

value
The object to store in the defaults database. A default’s value can be only property list objects:
NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary.

defaultName
The key with which to associate with the value.

Discussion
Setting a default has no effect on the value returned by the objectForKey: (page 1189) method if the
same key exists in a domain that precedes the application domain in the search list.

Instance Methods 1195
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObjectForKey: (page 1192)

Declared In
NSUserDefaults.h

setPersistentDomain:forName:
Sets the dictionary for the specified persistent domain.

- (void)setPersistentDomain:(NSDictionary *)domain forName:(NSString *)domainName

Parameters

domain
The dictionary of keys and values you want to assign to the domain.

domainName
The domain whose keys and values you want to set. This value should be equal to your
application's bundle identifier.

Discussion
When a persistent domain is changed, an NSUserDefaultsDidChangeNotification (page 1200) is
posted.

Availability
Available in iPhone OS 2.0 and later.

See Also
– persistentDomainForName: (page 1191)
– persistentDomainNames (page 1191)

Declared In
NSUserDefaults.h

setVolatileDomain:forName:
Sets the dictionary for the specified volatile domain.

- (void)setVolatileDomain:(NSDictionary *)domain forName:(NSString *)domainName

Parameters

domain
The dictionary of keys and values you want to assign to the domain.

domainName
The domain whose keys and values you want to set.

Discussion
This method raises an NSInvalidArgumentException if a volatile domain with the specified name
already exists.

1196 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– volatileDomainForName: (page 1199)
– volatileDomainNames (page 1199)

Declared In
NSUserDefaults.h

stringArrayForKey:
Returns the array of strings associated with the specified key.

- (NSArray *)stringArrayForKey:(NSString *)defaultName

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The array of NSString objects, or nil if the specified default does not exist, the default does not
contain an array, or the array does not contain NSString objects.

Special Considerations

The returned array and its contents are immutable, even if the values you originally set were mutable.

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– boolForKey: (page 1185)
– dataForKey: (page 1185)
– dictionaryForKey: (page 1186)
– floatForKey: (page 1187)
– integerForKey: (page 1189)
– objectForKey: (page 1189)
– stringForKey: (page 1197)

Declared In
NSUserDefaults.h

stringForKey:
Returns the string associated with the specified key.

- (NSString *)stringForKey:(NSString *)defaultName

Instance Methods 1197
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Parameters

defaultName
A key in the current user's defaults database.

Return Value
The string associated with the specified key, or nil if the default does not exist or does not contain a
string.

Special Considerations

The returned string is immutable, even if the value you originally set was a mutable string.

Availability
Available in iPhone OS 2.0 and later.

See Also
– arrayForKey: (page 1184)
– boolForKey: (page 1185)
– dataForKey: (page 1185)
– dictionaryForKey: (page 1186)
– floatForKey: (page 1187)
– integerForKey: (page 1189)
– objectForKey: (page 1189)
– stringArrayForKey: (page 1197)

Declared In
NSUserDefaults.h

synchronize
Writes any modifications to the persistent domains to disk and updates all unmodified persistent
domains to what is on disk.

- (BOOL)synchronize

Return Value
YES if the data was saved successfully to disk, otherwise NO.

Discussion
Because this method is automatically invoked at periodic intervals, use this method only if you cannot
wait for the automatic synchronization (for example, if your application is about to exit) or if you
want to update the user defaults to what is on disk even though you have not made any changes.

Availability
Available in iPhone OS 2.0 and later.

See Also
– persistentDomainForName: (page 1191)
– persistentDomainNames (page 1191)
– removePersistentDomainForName: (page 1193)
– setPersistentDomain:forName: (page 1196)

1198 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Declared In
NSUserDefaults.h

volatileDomainForName:
Returns the dictionary for the specified volatile domain.

- (NSDictionary *)volatileDomainForName:(NSString *)domainName

Parameters

domainName
The domain whose keys and values you want.

Return Value
The dictionary of keys and values belonging to the domain. The keys in the dictionary are names of
defaults, and the value corresponding to each key is a property list object (NSData, NSString, NSNumber,
NSDate, NSArray, or NSDictionary).

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeVolatileDomainForName: (page 1193)
– setVolatileDomain:forName: (page 1196)

Declared In
NSUserDefaults.h

volatileDomainNames
Returns an array of the current volatile domain names.

- (NSArray *)volatileDomainNames

Return Value
An array of NSString objects with the volatile domain names.

Discussion
You can get the contents of each domain by passing the returned domain names to the
volatileDomainForName: (page 1199) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeVolatileDomainForName: (page 1193)
– setVolatileDomain:forName: (page 1196)

Declared In
NSUserDefaults.h

Instance Methods 1199
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Constants

NSUserDefaults Domains
These constants specify various user defaults domains.

extern NSString *NSGlobalDomain;
extern NSString *NSArgumentDomain;
extern NSString *NSRegistrationDomain;

Constants
NSGlobalDomain

The domain consisting of defaults meant to be seen by all applications.

Available in iPhone OS 2.0 and later.

Declared in NSUserDefaults.h

NSArgumentDomain
The domain consisting of defaults parsed from the application’s arguments. These are one or
more pairs of the form -default value included in the command-line invocation of the application.

Available in iPhone OS 2.0 and later.

Declared in NSUserDefaults.h

NSRegistrationDomain
The domain consisting of a set of temporary defaults whose values can be set by the application
to ensure that searches will always be successful.

Available in iPhone OS 2.0 and later.

Declared in NSUserDefaults.h

Declared In
NSUserDefaults.h

Notifications

NSUserDefaultsDidChangeNotification
This notification is posted when a change is made to defaults in a persistent domain.

The notification object is the NSUserDefaults object. This notification does not contain a userInfo
dictionary.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSUserDefaults.h

1200 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 7

NSUserDefaults Class Reference

Inherits from: NSObject

Conforms to: NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSValue.h
Foundation/NSGeometry.h
Foundation/NSRange.h

Companion guide: Number and Value Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

An NSValue object is a simple container for a single C or Objective-C data item. It can hold any of the
scalar types such as int, float, and char, as well as pointers, structures, and object ids. The purpose
of this class is to allow items of such data types to be added to collections such as instances of NSArray
and NSSet, which require their elements to be objects. NSValue objects are always immutable.

Overview 1201
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

Adopted Protocols

NSCoding
encodeWithCoder: (page 1246)
initWithCoder: (page 1246)

NSCopying
– copyWithZone: (page 1250)

Tasks

Creating an NSValue

– initWithBytes:objCType: (page 1206)
Initializes and returns an NSValue object that contains a given value, which is interpreted as
being of a given Objective-C type.

+ valueWithBytes:objCType: (page 1203)
Creates and returns an NSValue object that contains a given value, which is interpreted as
being of a given Objective-C type.

+ value:withObjCType: (page 1203)
Creates and returns an NSValue object that contains a given value which is interpreted as being
of a given Objective-C type.

+ valueWithNonretainedObject: (page 1204)
Creates and returns an NSValue object that contains a given object.

+ valueWithPointer: (page 1204)
Creates and returns an NSValue object that contains a given pointer.

+ valueWithRange: (page 1205)
Creates and returns an NSValue object that contains a given NSRange structure.

Accessing Data

– getValue: (page 1205)
Copies the receiver’s value into a given buffer.

– nonretainedObjectValue (page 1207)
Returns the receiver's value as an id.

– objCType (page 1207)
Returns a C string containing the Objective-C type of the data contained in the receiver.

– pointerValue (page 1207)
Returns the receiver's value as a pointer to void.

– rangeValue (page 1208)
Returns an NSRange structure representation of the receiver.

1202 Adopted Protocols
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

Comparing Objects

– isEqualToValue: (page 1206)
Returns a Boolean value that indicates whether the receiver and another value are equal.

Class Methods

value:withObjCType:
Creates and returns an NSValue object that contains a given value which is interpreted as being of a
given Objective-C type.

+ (NSValue *)value:(const void *)value withObjCType:(const char *)type

Parameters

value
The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
A new NSValue object that contains value, which is interpreted as being of the Objective-C type type.

Discussion
This method has the same effect as valueWithBytes:objCType: (page 1203) and may be deprecated
in a future release. You should use valueWithBytes:objCType: (page 1203) instead.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ valueWithBytes:objCType: (page 1203)

Declared In
NSValue.h

valueWithBytes:objCType:
Creates and returns an NSValue object that contains a given value, which is interpreted as being of a
given Objective-C type.

+ (NSValue *)valueWithBytes:(const void *)value objCType:(const char *)type

Parameters

value
The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Class Methods 1203
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

Return Value
A new NSValue object that contains value, which is interpreted as being of the Objective-C type type.

Discussion
See Number and Value Programming Topics for Cocoa for other considerations in creating an NSValue
object and code examples.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithBytes:objCType: (page 1206)

Declared In
NSValue.h

valueWithNonretainedObject:
Creates and returns an NSValue object that contains a given object.

+ (NSValue *)valueWithNonretainedObject:(id)anObject

Parameters

anObject
The value for the new object.

Return Value
A new NSValue object that contains anObject.

Discussion
This method is equivalent to invoking value:withObjCType: (page 1203) in this manner:

NSValue *theValue = [NSValue value:&anObject withObjCType:@encode(void *)];

This method is useful for preventing an object from being retained when it’s added to a collection
object (such as an instance of NSArray or NSDictionary).

Availability
Available in iPhone OS 2.0 and later.

See Also
– nonretainedObjectValue (page 1207)

Declared In
NSValue.h

valueWithPointer:
Creates and returns an NSValue object that contains a given pointer.

+ (NSValue *)valueWithPointer:(const void *)aPointer

1204 Class Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

Parameters

aPointer
The value for the new object.

Return Value
A new NSValue object that contains aPointer.

Discussion
This method is equivalent to invoking value:withObjCType: (page 1203) in this manner:

NSValue *theValue = [NSValue value:&aPointer withObjCType:@encode(void *)];

This method does not copy the contents of aPointer, so you must not to deallocate the memory at
the pointer destination while the NSValue object exists. NSData objects may be more suited for arbitrary
pointers than NSValue objects.

Availability
Available in iPhone OS 2.0 and later.

See Also
– pointerValue (page 1207)

Declared In
NSValue.h

valueWithRange:
Creates and returns an NSValue object that contains a given NSRange structure.

+ (NSValue *)valueWithRange:(NSRange)range

Parameters

range
The value for the new object.

Return Value
A new NSValue object that contains the value of range.

Availability
Available in iPhone OS 2.0 and later.

See Also
– rangeValue (page 1208)

Declared In
NSRange.h

Instance Methods

getValue:
Copies the receiver’s value into a given buffer.

Instance Methods 1205
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

- (void)getValue:(void *)buffer

Parameters

buffer
A buffer into which to copy the receiver's value. buffer must be large enough to hold the
value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

initWithBytes:objCType:
Initializes and returns an NSValue object that contains a given value, which is interpreted as being of
a given Objective-C type.

- (id)initWithBytes:(const void *)value objCType:(const char *)type

Parameters

value
The value for the new NSValue object.

type
The Objective-C type of value. type should be created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

Return Value
An initialized NSValue object that contains value, which is interpreted as being of the Objective-C
type type. The returned object might be different than the original receiver.

Discussion
See Number and Value Programming Topics for Cocoa for other considerations in creating an NSValue
object.

This is the designated initializer for the NSValue class.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

isEqualToValue:
Returns a Boolean value that indicates whether the receiver and another value are equal.

- (BOOL)isEqualToValue:(NSValue *)value

Parameters

aValue
The value with which to compare the receiver.

1206 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

Return Value
YES if the receiver and aValue are equal, otherwise NO. For NSValue objects, the class, type, and
contents are compared to determine equality.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

nonretainedObjectValue
Returns the receiver's value as an id.

- (id)nonretainedObjectValue

Return Value
The receiver's value as an id. If the receiver was not created to hold a pointer-sized data item, the
result is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– getValue: (page 1205)

Declared In
NSValue.h

objCType
Returns a C string containing the Objective-C type of the data contained in the receiver.

- (const char *)objCType

Return Value
A C string containing the Objective-C type of the data contained in the receiver, as encoded by the
@encode() compiler directive.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSValue.h

pointerValue
Returns the receiver's value as a pointer to void.

- (void *)pointerValue

Instance Methods 1207
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

Return Value
The receiver's value as a pointer to void. If the receiver was not created to hold a pointer-sized data
item, the result is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– getValue: (page 1205)

Declared In
NSValue.h

rangeValue
Returns an NSRange structure representation of the receiver.

- (NSRange)rangeValue

Return Value
An NSRange structure representation of the receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ valueWithRange: (page 1205)

Declared In
NSRange.h

1208 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 8

NSValue Class Reference

Inherits from: NSObject

Conforms to: NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSXMLParser.h

Companion guide: Event-Driven XML Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

Instances of this class parse XML documents (including DTD declarations) in an event-driven manner.
An NSXMLParser notifies its delegate about the items (elements, attributes, CDATA blocks, comments,
and so on) that it encounters as it processes an XML document. It does not itself do anything with
those parsed items except report them. It also reports parsing errors. For convenience, an NSXMLParser
object in the following descriptions is sometimes referred to as a parser object.

Overview 1209
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Note: Namespace support was implemented in NSXMLParser for Mac OS X v10.4. Namespace-related
methods of NSXMLParser prior to this version have no effect.

Tasks

Initializing a Parser Object

– initWithContentsOfURL: (page 1213)
Initializes the receiver with the XML content referenced by the given URL.

– initWithData: (page 1214)
Initializes the receiver with the XML contents encapsulated in a given data object.

Managing Delegates

– setDelegate: (page 1216)
Sets the receiver’s delegate.

– delegate (page 1213)
Returns the receiver’s delegate.

Managing Parser Behavior

– setShouldProcessNamespaces: (page 1216)
Specifies whether the receiver reports the namespace and the qualified name of an element in
related delegation methods .

– shouldProcessNamespaces (page 1217)
Indicates whether the receiver reports the namespace and the qualified name of an element in
related delegation methods.

– setShouldReportNamespacePrefixes: (page 1216)
Specifies whether the receiver reports the scope of namespace declarations using related
delegation methods.

– shouldReportNamespacePrefixes (page 1218)
Indicates whether the receiver reports the prefixes indicating the scope of namespace
declarations using related delegation methods.

– setShouldResolveExternalEntities: (page 1217)
Specifies whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1224).

– shouldResolveExternalEntities (page 1218)
Indicates whether the receiver reports declarations of external entities using the delegate
method parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page
1224).

1210 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Parsing

– parse (page 1215)
Starts the event-driven parsing operation.

– abortParsing (page 1212)
Stops the parser object.

– parserError (page 1215)
Returns an NSError object from which you can obtain information about a parsing error.

Handling XML

– parserDidStartDocument: (page 1229) delegate method
Sent by the parser object to the delegate when it begins parsing a document.

– parserDidEndDocument: (page 1229) delegate method
Sent by the parser object to the delegate when it has successfully completed parsing.

– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1220) delegate method
Sent by a parser object to its delegate when it encounters a start tag for a given element.

– parser:didEndElement:namespaceURI:qualifiedName: (page 1219) delegate method
Sent by a parser object to its delegate when it encounters an end tag for a specific element.

– parser:didStartMappingPrefix:toURI: (page 1221) delegate method
Sent by a parser object to its delegate the first time it encounters a given namespace prefix,
which is mapped to a URI.

– parser:didEndMappingPrefix: (page 1220) delegate method
Sent by a parser object to its delegate when a given namespace prefix goes out of scope.

– parser:resolveExternalEntityName:systemID: (page 1227) delegate method
Sent by a parser object to its delegate when it encounters a given external entity with a specific
system ID.

– parser:parseErrorOccurred: (page 1227) delegate method
Sent by a parser object to its delegate when it encounters a fatal error.

– parser:validationErrorOccurred: (page 1228) delegate method
Sent by a parser object to its delegate when it encounters a fatal validation error. NSXMLParser
currently does not invoke this method and does not perform validation.

– parser:foundCharacters: (page 1222) delegate method
Sent by a parser object to provide its delegate with a string representing all or part of the
characters of the current element.

– parser:foundIgnorableWhitespace: (page 1224) delegate method
Reported by a parser object to provide its delegate with a string representing all or part of the
ignorable whitespace characters of the current element.

– parser:foundProcessingInstructionWithTarget:data: (page 1226) delegate method
Sent by a parser object to its delegate when it encounters a processing instruction.

– parser:foundComment: (page 1223) delegate method
Sent by a parser object to its delegate when it encounters a comment in the XML.

– parser:foundCDATA: (page 1222) delegate method
Sent by a parser object to its delegate when it encounters a CDATA block.

Tasks 1211
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Handling the DTD

– parser:foundAttributeDeclarationWithName:forElement:type:defaultValue: (page
1221) delegate method

Sent by a parser object to its delegate when it encounters a declaration of an attribute that is
associated with a specific element.

– parser:foundElementDeclarationWithName:model: (page 1223) delegate method
Sent by a parser object to its delegate when it encounters a declaration of an element with a
given model.

– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1224) delegate
method

Sent by a parser object to its delegate when it encounters an external entity declaration.

– parser:foundInternalEntityDeclarationWithName:value: (page 1225) delegate method
Sent by a parser object to the delegate when it encounters an internal entity declaration.

– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1226) delegate method

Sent by a parser object to its delegate when it encounters an unparsed entity declaration.

– parser:foundNotationDeclarationWithName:publicID:systemID: (page 1225) delegate method
Sent by a parser object to its delegate when it encounters a notation declaration.

Obtaining Parser State

– columnNumber (page 1213)
Returns the column number of the XML document being processed by the receiver.

– lineNumber (page 1214)
Returns the line number of the XML document being processed by the receiver.

– publicID (page 1215)
Returns the public identifier of the external entity referenced in the XML document.

– systemID (page 1219)
Returns the system identifier of the external entity referenced in the XML document.

Instance Methods

abortParsing
Stops the parser object.

- (void)abortParsing

Discussion
If you invoke this method, the delegate, if it implements parser:parseErrorOccurred: (page 1227),
is informed of the cancelled parsing operation.

Availability
Available in iPhone OS 2.0 and later.

1212 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

See Also
– parse (page 1215)
– parserError (page 1215)

Declared In
NSXMLParser.h

columnNumber
Returns the column number of the XML document being processed by the receiver.

- (NSInteger)columnNumber

Discussion
The column refers to the nesting level of the XML elements in the document. You may invoke this
method once a parsing operation has begun or after an error occurs.

Availability
Available in iPhone OS 2.0 and later.

See Also
– lineNumber (page 1214)

Declared In
NSXMLParser.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
Available in iPhone OS 2.0 and later.

See Also
– setDelegate: (page 1216)

Declared In
NSXMLParser.h

initWithContentsOfURL:
Initializes the receiver with the XML content referenced by the given URL.

- (id)initWithContentsOfURL:(NSURL *)url

Parameters

url
An NSURL object specifying a URL. The URL must be fully qualified and refer to a scheme that
is supported by the NSURL class.

Instance Methods 1213
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Return Value
An initialized NSXMLParser object or nil if an error occurs.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithData: (page 1214)

Declared In
NSXMLParser.h

initWithData:
Initializes the receiver with the XML contents encapsulated in a given data object.

- (id)initWithData:(NSData *)data

Parameters

data
An NSData object containing XML markup.

Return Value
An initialized NSXMLParser object or nil if an error occurs.

Discussion
This method is the designated initializer.

Availability
Available in iPhone OS 2.0 and later.

See Also
– initWithContentsOfURL: (page 1213)

Declared In
NSXMLParser.h

lineNumber
Returns the line number of the XML document being processed by the receiver.

- (NSInteger)lineNumber

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in iPhone OS 2.0 and later.

See Also
– columnNumber (page 1213)

Declared In
NSXMLParser.h

1214 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

parse
Starts the event-driven parsing operation.

- (BOOL)parse

Return Value
YES if parsing is successful and NO in there is an error or if the parsing operation is aborted.

Availability
Available in iPhone OS 2.0 and later.

See Also
– abortParsing (page 1212)
– parserError (page 1215)

Declared In
NSXMLParser.h

parserError
Returns an NSError object from which you can obtain information about a parsing error.

- (NSError *)parserError

Discussion
You may invoke this method after a parsing operation abnormally terminates to determine the cause
of error.

Availability
Available in iPhone OS 2.0 and later.

See Also
– abortParsing (page 1212)
– parse (page 1215)

Declared In
NSXMLParser.h

publicID
Returns the public identifier of the external entity referenced in the XML document.

- (NSString *)publicID

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in iPhone OS 2.0 and later.

See Also
– systemID (page 1219)

Instance Methods 1215
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Declared In
NSXMLParser.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters

delegate
An object that is the new delegate. It is not retained.

Availability
Available in iPhone OS 2.0 and later.

See Also
– delegate (page 1213)

Declared In
NSXMLParser.h

setShouldProcessNamespaces:
Specifies whether the receiver reports the namespace and the qualified name of an element in related
delegation methods .

- (void)setShouldProcessNamespaces:(BOOL)shouldProcessNamespaces

Parameters

shouldProcessNamespaces
YES if the receiver should report the namespace and qualified name of each element, NO
otherwise. The default value is NO.

Discussion
The invoked delegation methods are
parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1220) and
parser:didEndElement:namespaceURI:qualifiedName: (page 1219).

Availability
Available in iPhone OS 2.0 and later.

See Also
– shouldProcessNamespaces (page 1217)

Declared In
NSXMLParser.h

setShouldReportNamespacePrefixes:
Specifies whether the receiver reports the scope of namespace declarations using related delegation
methods.

1216 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

- (void)setShouldReportNamespacePrefixes:(BOOL)shouldReportNamespacePrefixes

Parameters

shouldReportNamespacePrefixes
YES if the receiver should report the scope of namespace declarations, NO otherwise. The default
value is NO.

Discussion
The invoked delegation methods are parser:didStartMappingPrefix:toURI: (page 1221) and
parser:didEndMappingPrefix: (page 1220).

Availability
Available in iPhone OS 2.0 and later.

See Also
– shouldReportNamespacePrefixes (page 1218)

Declared In
NSXMLParser.h

setShouldResolveExternalEntities:
Specifies whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1224).

- (void)setShouldResolveExternalEntities:(BOOL)shouldResolveExternalEntities

Parameters

shouldResolveExternalEntities
YES if the receiver should report declarations of external entities, NO otherwise. The default
value is NO.

Discussion
If you pass in YES, you may cause other I/O operations, either network-based or disk-based, to load
the external DTD.

Availability
Available in iPhone OS 2.0 and later.

See Also
– shouldResolveExternalEntities (page 1218)

Declared In
NSXMLParser.h

shouldProcessNamespaces
Indicates whether the receiver reports the namespace and the qualified name of an element in related
delegation methods.

- (BOOL)shouldProcessNamespaces

Return Value
YES if the receiver reports namespace and qualified name, NO otherwise.

Instance Methods 1217
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Discussion
The invoked delegation methods are
parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1220) and
parser:didEndElement:namespaceURI:qualifiedName: (page 1219).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShouldProcessNamespaces: (page 1216)

Declared In
NSXMLParser.h

shouldReportNamespacePrefixes
Indicates whether the receiver reports the prefixes indicating the scope of namespace declarations
using related delegation methods.

- (BOOL)shouldReportNamespacePrefixes

Return Value
YES if the receiver reports the scope of namespace declarations, NO otherwise. The default value is NO.

Discussion
The invoked delegation methods are parser:didStartMappingPrefix:toURI: (page 1221) and
parser:didEndMappingPrefix: (page 1220).

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShouldReportNamespacePrefixes: (page 1216)

Declared In
NSXMLParser.h

shouldResolveExternalEntities
Indicates whether the receiver reports declarations of external entities using the delegate method
parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1224).

- (BOOL)shouldResolveExternalEntities

Return Value
YES if the receiver reports declarations of external entities, NO otherwise. The default value is NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setShouldResolveExternalEntities: (page 1217)

1218 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Declared In
NSXMLParser.h

systemID
Returns the system identifier of the external entity referenced in the XML document.

- (NSString *)systemID

Discussion
You may invoke this method once a parsing operation has begun or after an error occurs.

Availability
Available in iPhone OS 2.0 and later.

See Also
– publicID (page 1215)

Declared In
NSXMLParser.h

Delegate Methods

parser:didEndElement:namespaceURI:qualifiedName:
Sent by a parser object to its delegate when it encounters an end tag for a specific element.

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName

Parameters

parser
A parser object.

elementName
A string that is the name of an element (in its end tag).

namespaceURI
If namespace processing is turned on, contains the URI for the current namespace as a string
object.

qName
If namespace processing is turned on, contains the qualified name for the current namespace
as a string object..

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1220)
– setShouldProcessNamespaces: (page 1216)

Delegate Methods 1219
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Declared In
NSXMLParser.h

parser:didEndMappingPrefix:
Sent by a parser object to its delegate when a given namespace prefix goes out of scope.

- (void)parser:(NSXMLParser *)parser didEndMappingPrefix:(NSString *)prefix

Parameters

parser
A parser object.

prefix
A string that is a namespace prefix.

Discussion
The parser sends this message only when namespace-prefix reporting is turned on through the
setShouldReportNamespacePrefixes: (page 1216) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:didStartMappingPrefix:toURI: (page 1221)

Declared In
NSXMLParser.h

parser:didStartElement:namespaceURI:qualifiedName:attributes:
Sent by a parser object to its delegate when it encounters a start tag for a given element.

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qualifiedName
attributes:(NSDictionary *)attributeDict

Parameters

parser
A parser object.

elementName
A string that is the name of an element (in its start tag).

namespaceURI
If namespace processing is turned on, contains the URI for the current namespace as a string
object.

qualifiedName
If namespace processing is turned on, contains the qualified name for the current namespace
as a string object..

attributeDict
A dictionary that contains any attributes associated with the element. Keys are the names of
attributes, and values are attribute values.

1220 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:didEndElement:namespaceURI:qualifiedName: (page 1219)
– setShouldProcessNamespaces: (page 1216)

Declared In
NSXMLParser.h

parser:didStartMappingPrefix:toURI:
Sent by a parser object to its delegate the first time it encounters a given namespace prefix, which is
mapped to a URI.

- (void)parser:(NSXMLParser *)parser didStartMappingPrefix:(NSString *)prefix
toURI:(NSString *)namespaceURI

Parameters

parser
A parser object.

prefix
A string that is a namespace prefix.

namespaceURI
A string that specifies a namespace URI.

Discussion
The parser object sends this message only when namespace-prefix reporting is turned on through
the setShouldReportNamespacePrefixes: (page 1216) method.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:didEndMappingPrefix: (page 1220)

Declared In
NSXMLParser.h

parser:foundAttributeDeclarationWithName:forElement:type:defaultValue:
Sent by a parser object to its delegate when it encounters a declaration of an attribute that is associated
with a specific element.

- (void)parser:(NSXMLParser *)parser foundAttributeDeclarationWithName:(NSString
*)attributeName forElement:(NSString *)elementName type:(NSString *)type
defaultValue:(NSString *)defaultValue

Parameters

parser
An NSXMLParser object parsing XML.

Delegate Methods 1221
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

attributeName
A string that is the name of an attribute.

elementName
A string that is the name of an element that has the attribute attributeName.

type
A string, such as "ENTITY", "NOTATION", or "ID", that indicates the type of the attribute.

defaultValue
A string that specifies the default value of the attribute.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1220)

Declared In
NSXMLParser.h

parser:foundCDATA:
Sent by a parser object to its delegate when it encounters a CDATA block.

- (void)parser:(NSXMLParser *)parser foundCDATA:(NSData *)CDATABlock

Parameters

parser
An NSXMLParser object parsing XML.

CDATABlock
A data object containing a block of CDATA.

Discussion
Through this method the parser object passes the contents of the block to its delegate in an NSData
object. The CDATA block is character data that is ignored by the parser. The encoding of the character
data is UTF-8. To convert the data object to a string object, use the NSString method
initWithData:encoding: (page 1004).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSXMLParser.h

parser:foundCharacters:
Sent by a parser object to provide its delegate with a string representing all or part of the characters
of the current element.

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string

Parameters

parser
A parser object.

1222 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

string
A string representing the complete or partial textual content of the current element.

Discussion
The parser object may send the delegate several parser:foundCharacters: messages to report the
characters of an element. Because stringmay be only part of the total character content for the current
element, you should append it to the current accumulation of characters until the element changes.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSXMLParser.h

parser:foundComment:
Sent by a parser object to its delegate when it encounters a comment in the XML.

- (void)parser:(NSXMLParser *)parser foundComment:(NSString *)comment

Parameters

parser
An NSXMLParser object parsing XML.

comment
A string that is a the content of a comment in the XML.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSXMLParser.h

parser:foundElementDeclarationWithName:model:
Sent by a parser object to its delegate when it encounters a declaration of an element with a given
model.

- (void)parser:(NSXMLParser *)parser foundElementDeclarationWithName:(NSString
*)elementName model:(NSString *)model

Parameters

parser
An NSXMLParser object parsing XML.

elementName
A string that is the name of an element.

model
A string that specifies a model for elementName.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:didStartElement:namespaceURI:qualifiedName:attributes: (page 1220)

Delegate Methods 1223
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Declared In
NSXMLParser.h

parser:foundExternalEntityDeclarationWithName:publicID:systemID:
Sent by a parser object to its delegate when it encounters an external entity declaration.

- (void)parser:(NSXMLParser *)parser foundExternalEntityDeclarationWithName:(NSString
*)entityName publicID:(NSString *)publicID systemID:(NSString *)systemID

Parameters

parser
An NSXMLParser object parsing XML.

entityName
A string that is the name of an entity.

publicID
A string that specifies the public ID associated with entityName.

systemID
A string that specifies the system ID associated with entityName.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:foundInternalEntityDeclarationWithName:value: (page 1225)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1226)
– parser:resolveExternalEntityName:systemID: (page 1227)

Declared In
NSXMLParser.h

parser:foundIgnorableWhitespace:
Reported by a parser object to provide its delegate with a string representing all or part of the ignorable
whitespace characters of the current element.

- (void)parser:(NSXMLParser *)parser foundIgnorableWhitespace:(NSString
*)whitespaceString

Parameters

parser
A parser object.

whitespaceString
A string representing all or part of the ignorable whitespace characters of the current element.

1224 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Discussion
All the whitespace characters of the element (including carriage returns, tabs, and new-line characters)
may not be provided through an individual invocation of this method. The parser may send the
delegate several parser:foundIgnorableWhitespace:messages to report the whitespace characters
of an element. You should append the characters in each invocation to the current accumulation of
characters.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:foundCharacters: (page 1222)

Declared In
NSXMLParser.h

parser:foundInternalEntityDeclarationWithName:value:
Sent by a parser object to the delegate when it encounters an internal entity declaration.

- (void)parser:(NSXMLParser *)parser foundInternalEntityDeclarationWithName:(NSString
*)name value:(NSString *)value

Parameters

parser
An NSXMLParser object parsing XML.

name
A string that is the declared name of an internal entity.

value
A string that is the value of entity name.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1224)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1226)

Declared In
NSXMLParser.h

parser:foundNotationDeclarationWithName:publicID:systemID:
Sent by a parser object to its delegate when it encounters a notation declaration.

- (void)parser:(NSXMLParser *)parser foundNotationDeclarationWithName:(NSString
*)name publicID:(NSString *)publicID systemID:(NSString *)systemID

Parameters

parser
An NSXMLParser object parsing XML.

Delegate Methods 1225
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

name
A string that is the name of the notation.

publicID
A string specifying the public ID associated with the notation name.

systemID
A string specifying the system ID associated with the notation name.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSXMLParser.h

parser:foundProcessingInstructionWithTarget:data:
Sent by a parser object to its delegate when it encounters a processing instruction.

- (void)parser:(NSXMLParser *)parser foundProcessingInstructionWithTarget:(NSString
*)target data:(NSString *)data

Parameters

parser
A parser object.

target
A string representing the target of a processing instruction.

data
A string representing the data for a processing instruction.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSXMLParser.h

parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName:
Sent by a parser object to its delegate when it encounters an unparsed entity declaration.

- (void)parser:(NSXMLParser *)parser foundUnparsedEntityDeclarationWithName:(NSString
*)name publicID:(NSString *)publicID systemID:(NSString *)systemID
notationName:(NSString *)notationName

Parameters

parser
An NSXMLParser object parsing XML.

name
A string that is the name of the unparsed entity in the declaration.

publicID
A string specifying the public ID associated with the entity name.

1226 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

systemID
A string specifying the system ID associated with the entity name.

notationName
A string specifying a notation of the declaration of entity name.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1224)
– parser:foundInternalEntityDeclarationWithName:value: (page 1225)
– parser:resolveExternalEntityName:systemID: (page 1227)

Declared In
NSXMLParser.h

parser:parseErrorOccurred:
Sent by a parser object to its delegate when it encounters a fatal error.

- (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError

Parameters

parser
A parser object.

parseError
An NSError object describing the parsing error that occurred.

Discussion
When this method is invoked, parsing is stopped. For further information about the error, you can
query parseError or you can send the receiver a parserError (page 1215) message. You can also send
the parser lineNumber (page 1214) and columnNumber (page 1213) messages to further isolate where the
error occurred. Typically you implement this method to display information about the error to the
user.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:validationErrorOccurred: (page 1228)

Declared In
NSXMLParser.h

parser:resolveExternalEntityName:systemID:
Sent by a parser object to its delegate when it encounters a given external entity with a specific system
ID.

- (NSData *)parser:(NSXMLParser *)parser resolveExternalEntityName:(NSString
*)entityName systemID:(NSString *)systemID

Delegate Methods 1227
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

Parameters

parser
A parser object.

entityName
A string that specifies the external name of an entity.

systemID
A string that specifies the system ID for the external entity.

Return Value
An NSData object that contains the resolution of the given external entity.

Discussion
The delegate can resolve the external entity (for example, locating and reading an externally declared
DTD) and provide the result to the parser object as an NSData object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:foundExternalEntityDeclarationWithName:publicID:systemID: (page 1224)
– parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName: (page
1226)

Declared In
NSXMLParser.h

parser:validationErrorOccurred:
Sent by a parser object to its delegate when it encounters a fatal validation error. NSXMLParser currently
does not invoke this method and does not perform validation.

- (void)parser:(NSXMLParser *)parser validationErrorOccurred:(NSError *)validError

Parameters

parser
A parser object.

validError
An NSError object describing the validation error that occurred.

Discussion
If you want to validate an XML document, use the validation features of the NSXMLDocument class.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parser:parseErrorOccurred: (page 1227)

Declared In
NSXMLParser.h

1228 Delegate Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

parserDidEndDocument:
Sent by the parser object to the delegate when it has successfully completed parsing.

- (void)parserDidEndDocument:(NSXMLParser *)parser

Parameters

parser
A parser object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parserDidStartDocument: (page 1229)

Declared In
NSXMLParser.h

parserDidStartDocument:
Sent by the parser object to the delegate when it begins parsing a document.

- (void)parserDidStartDocument:(NSXMLParser *)parser

Parameters

parser
A parser object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– parserDidEndDocument: (page 1229)

Declared In
NSXMLParser.h

Constants

NSXMLParserErrorDomain
This constant defines the NSXMLParser error domain.

Constants 1229
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSString * const NSXMLParserErrorDomain

Constants
NSXMLParserErrorDomain

Indicates an error in XML parsing.

Used by NSError.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

Declared In
NSXMLParser.h

NSXMLParserError
A type defined for the contants listed in “Parser Error Constants” (page 1230).

typedef NSInteger NSXMLParserError;

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSXMLParser.h

Parser Error Constants
The following error types are defined by NSXMLParser.

1230 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

typedef enum {
NSXMLParserInternalError = 1,
NSXMLParserOutOfMemoryError = 2,
NSXMLParserDocumentStartError = 3,
NSXMLParserEmptyDocumentError = 4,
NSXMLParserPrematureDocumentEndError = 5,
NSXMLParserInvalidHexCharacterRefError = 6,
NSXMLParserInvalidDecimalCharacterRefError = 7,
NSXMLParserInvalidCharacterRefError = 8,
NSXMLParserInvalidCharacterError = 9,
NSXMLParserCharacterRefAtEOFError = 10,
NSXMLParserCharacterRefInPrologError = 11,
NSXMLParserCharacterRefInEpilogError = 12,
NSXMLParserCharacterRefInDTDError = 13,
NSXMLParserEntityRefAtEOFError = 14,
NSXMLParserEntityRefInPrologError = 15,
NSXMLParserEntityRefInEpilogError = 16,
NSXMLParserEntityRefInDTDError = 17,
NSXMLParserParsedEntityRefAtEOFError = 18,
NSXMLParserParsedEntityRefInPrologError = 19,
NSXMLParserParsedEntityRefInEpilogError = 20,
NSXMLParserParsedEntityRefInInternalSubsetError = 21,
NSXMLParserEntityReferenceWithoutNameError = 22,
NSXMLParserEntityReferenceMissingSemiError = 23,
NSXMLParserParsedEntityRefNoNameError = 24,
NSXMLParserParsedEntityRefMissingSemiError = 25,
NSXMLParserUndeclaredEntityError = 26,
NSXMLParserUnparsedEntityError = 28,
NSXMLParserEntityIsExternalError = 29,
NSXMLParserEntityIsParameterError = 30,
NSXMLParserUnknownEncodingError = 31,
NSXMLParserEncodingNotSupportedError = 32,
NSXMLParserStringNotStartedError = 33,
NSXMLParserStringNotClosedError = 34,
NSXMLParserNamespaceDeclarationError = 35,
NSXMLParserEntityNotStartedError = 36,
NSXMLParserEntityNotFinishedError = 37,
NSXMLParserLessThanSymbolInAttributeError = 38,
NSXMLParserAttributeNotStartedError = 39,
NSXMLParserAttributeNotFinishedError = 40,
NSXMLParserAttributeHasNoValueError = 41,
NSXMLParserAttributeRedefinedError = 42,
NSXMLParserLiteralNotStartedError = 43,
NSXMLParserLiteralNotFinishedError = 44,
NSXMLParserCommentNotFinishedError = 45,
NSXMLParserProcessingInstructionNotStartedError = 46,
NSXMLParserProcessingInstructionNotFinishedError = 47,
NSXMLParserNotationNotStartedError = 48,
NSXMLParserNotationNotFinishedError = 49,
NSXMLParserAttributeListNotStartedError = 50,
NSXMLParserAttributeListNotFinishedError = 51,
NSXMLParserMixedContentDeclNotStartedError = 52,
NSXMLParserMixedContentDeclNotFinishedError = 53,
NSXMLParserElementContentDeclNotStartedError = 54,
NSXMLParserElementContentDeclNotFinishedError = 55,
NSXMLParserXMLDeclNotStartedError = 56,
NSXMLParserXMLDeclNotFinishedError = 57,
NSXMLParserConditionalSectionNotStartedError = 58,

Constants 1231
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserConditionalSectionNotFinishedError = 59,
NSXMLParserExternalSubsetNotFinishedError = 60,
NSXMLParserDOCTYPEDeclNotFinishedError = 61,
NSXMLParserMisplacedCDATAEndStringError = 62,
NSXMLParserCDATANotFinishedError = 63,
NSXMLParserMisplacedXMLDeclarationError = 64,
NSXMLParserSpaceRequiredError = 65,
NSXMLParserSeparatorRequiredError = 66,
NSXMLParserNMTOKENRequiredError = 67,
NSXMLParserNAMERequiredError = 68,
NSXMLParserPCDATARequiredError = 69,
NSXMLParserURIRequiredError = 70,
NSXMLParserPublicIdentifierRequiredError = 71,
NSXMLParserLTRequiredError = 72,
NSXMLParserGTRequiredError = 73,
NSXMLParserLTSlashRequiredError = 74,
NSXMLParserEqualExpectedError = 75,
NSXMLParserTagNameMismatchError = 76,
NSXMLParserUnfinishedTagError = 77,
NSXMLParserStandaloneValueError = 78,
NSXMLParserInvalidEncodingNameError = 79,
NSXMLParserCommentContainsDoubleHyphenError = 80,
NSXMLParserInvalidEncodingError = 81,
NSXMLParserExternalStandaloneEntityError = 82,
NSXMLParserInvalidConditionalSectionError = 83,
NSXMLParserEntityValueRequiredError = 84,
NSXMLParserNotWellBalancedError = 85,
NSXMLParserExtraContentError = 86,
NSXMLParserInvalidCharacterInEntityError = 87,
NSXMLParserParsedEntityRefInInternalError = 88,
NSXMLParserEntityRefLoopError = 89,
NSXMLParserEntityBoundaryError = 90,
NSXMLParserInvalidURIError = 91,
NSXMLParserURIFragmentError = 92,
NSXMLParserNoDTDError = 94,
NSXMLParserDelegateAbortedParseError = 512

} NSXMLParserError;

Constants
NSXMLParserInternalError

The parser object encountered an internal error.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserOutOfMemoryError
The parser object ran out of memory.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserDocumentStartError
The parser object is unable to start parsing.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

1232 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserEmptyDocumentError
The document is empty.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserPrematureDocumentEndError
The document ended unexpectedly.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidHexCharacterRefError
Invalid hexadecimal character reference encountered.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidDecimalCharacterRefError
Invalid decimal character reference encountered.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidCharacterRefError
Invalid character reference encountered.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidCharacterError
Invalid character encountered.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserCharacterRefAtEOFError
Target of character reference cannot be found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserCharacterRefInPrologError
Invalid character found in the prolog.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserCharacterRefInEpilogError
Invalid character found in the epilog.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserCharacterRefInDTDError
Invalid character encountered in the DTD.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

Constants 1233
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserEntityRefAtEOFError
Target of entity reference is not found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityRefInPrologError
Invalid entity reference found in the prolog.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityRefInEpilogError
Invalid entity reference found in the epilog.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityRefInDTDError
Invalid entity reference found in the DTD.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserParsedEntityRefAtEOFError
Target of parsed entity reference is not found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserParsedEntityRefInPrologError
Target of parsed entity reference is not found in prolog.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserParsedEntityRefInEpilogError
Target of parsed entity reference is not found in epilog.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserParsedEntityRefInInternalSubsetError
Target of parsed entity reference is not found in internal subset.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityReferenceWithoutNameError
Entity reference is without name.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityReferenceMissingSemiError
Entity reference is missing semicolon.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

1234 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserParsedEntityRefNoNameError
Parsed entity reference is without an entity name.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserParsedEntityRefMissingSemiError
Parsed entity reference is missing semicolon.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserUndeclaredEntityError
Entity is not declared.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserUnparsedEntityError
Cannot parse entity.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityIsExternalError
Cannot parse external entity.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityIsParameterError
Entity is a parameter.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserUnknownEncodingError
Document encoding is unknown.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEncodingNotSupportedError
Document encoding is not supported.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserStringNotStartedError
String is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserStringNotClosedError
String is not closed.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

Constants 1235
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserNamespaceDeclarationError
Invalid namespace declaration encountered.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityNotStartedError
Entity is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityNotFinishedError
Entity is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserLessThanSymbolInAttributeError
Angle bracket is used in attribute.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserAttributeNotStartedError
Attribute is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserAttributeNotFinishedError
Attribute is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserAttributeHasNoValueError
Attribute doesn’t contain a value.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserAttributeRedefinedError
Attribute is redefined.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserLiteralNotStartedError
Literal is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserLiteralNotFinishedError
Literal is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

1236 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserCommentNotFinishedError
Comment is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserProcessingInstructionNotStartedError
Processing instruction is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserProcessingInstructionNotFinishedError
Processing instruction is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserNotationNotStartedError
Notation is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserNotationNotFinishedError
Notation is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserAttributeListNotStartedError
Attribute list is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserAttributeListNotFinishedError
Attribute list is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserMixedContentDeclNotStartedError
Mixed content declaration is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserMixedContentDeclNotFinishedError
Mixed content declaration is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserElementContentDeclNotStartedError
Element content declaration is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

Constants 1237
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserElementContentDeclNotFinishedError
Element content declaration is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserXMLDeclNotStartedError
XML declaration is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserXMLDeclNotFinishedError
XML declaration is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserConditionalSectionNotStartedError
Conditional section is not started.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserConditionalSectionNotFinishedError
Conditional section is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserExternalSubsetNotFinishedError
External subset is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserDOCTYPEDeclNotFinishedError
Document type declaration is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserMisplacedCDATAEndStringError
Misplaced CDATA end string.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserCDATANotFinishedError
CDATA block is not finished.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserMisplacedXMLDeclarationError
Misplaced XML declaration.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

1238 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserSpaceRequiredError
Space is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserSeparatorRequiredError
Separator is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserNMTOKENRequiredError
Name token is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserNAMERequiredError
Name is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserPCDATARequiredError
CDATA is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserURIRequiredError
URI is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserPublicIdentifierRequiredError
Public identifier is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserLTRequiredError
Left angle bracket is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserGTRequiredError
Right angle bracket is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserLTSlashRequiredError
Left angle bracket slash is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

Constants 1239
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserEqualExpectedError
Equal sign expected.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserTagNameMismatchError
Tag name mismatch.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserUnfinishedTagError
Unfinished tag found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserStandaloneValueError
Standalone value found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidEncodingNameError
Invalid encoding name found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserCommentContainsDoubleHyphenError
Comment contains double hyphen.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidEncodingError
Invalid encoding.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserExternalStandaloneEntityError
External standalone entity.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidConditionalSectionError
Invalid conditional section.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityValueRequiredError
Entity value is required.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

1240 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

NSXMLParserNotWellBalancedError
Document is not well balanced.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserExtraContentError
Error in content found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidCharacterInEntityError
Invalid character in entity found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserParsedEntityRefInInternalError
Internal error in parsed entity reference found.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityRefLoopError
Entity reference loop encountered.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserEntityBoundaryError
Entity boundary error.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserInvalidURIError
Invalid URI specified.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserURIFragmentError
URI fragment.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserNoDTDError
Missing DTD.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

NSXMLParserDelegateAbortedParseError
Delegate aborted parse.

Available in iPhone OS 2.0 and later.

Declared in NSXMLParser.h

Declared In
NSXMLParser.h

Constants 1241
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

1242 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8 9

NSXMLParser Class Reference

1243
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I I

Protocols

1244
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I I

Protocols

Adopted by: Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSObject.h

Companion guide: Archives and Serializations Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSCoding protocol declares the two methods that a class must implement so that instances of
that class can be encoded and decoded. This capability provides the basis for archiving (where objects
and other structures are stored on disk) and distribution (where objects are copied to different address
spaces).

In keeping with object-oriented design principles, an object being encoded or decoded is responsible
for encoding and decoding its instance variables. A coder instructs the object to do so by invoking
encodeWithCoder: (page 1246) orinitWithCoder: (page 1246).encodeWithCoder: (page 1246) instructs
the object to encode its instance variables to the coder provided; an object can receive this method
any number of times. initWithCoder: (page 1246) instructs the object to initialize itself from data in
the coder provided; as such, it replaces any other initialization method and is sent only once per
object. Any object class that should be codable must adopt the NSCoding protocol and implement its
methods.

Overview 1245
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 0

NSCoding Protocol Reference

It is important to consider the possible types of archiving that a coder supports. On Mac OS X version
10.2 and later, keyed archiving is preferred. You may, however, need to support classic archiving.
For details, see Archives and Serializations Programming Guide for Cocoa.

Tasks

Initializing with a Coder

– initWithCoder: (page 1246)
Returns an object initialized from data in a given unarchiver.

Encoding with a Coder

– encodeWithCoder: (page 1246)
Encodes the receiver using a given archiver.

Instance Methods

encodeWithCoder:
Encodes the receiver using a given archiver.

- (void)encodeWithCoder:(NSCoder *)encoder

Parameters

encoder
An archiver object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

initWithCoder:
Returns an object initialized from data in a given unarchiver.

- (id)initWithCoder:(NSCoder *)decoder

Parameters

decoder
An unarchiver object.

Return Value
self, initialized using the data in decoder.

1246 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 0

NSCoding Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

Instance Methods 1247
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 0

NSCoding Protocol Reference

1248 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 0

NSCoding Protocol Reference

Adopted by: Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSObject.h

Companion guide: Memory Management Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSCopying protocol declares a method for providing functional copies of an object. The exact
meaning of “copy” can vary from class to class, but a copy must be a functionally independent object
with values identical to the original at the time the copy was made. A copy produced with NSCopying
is implicitly retained by the sender, who is responsible for releasing it.

NSCopyingdeclares one method, copyWithZone: (page 1250), but copying is commonly invoked with
the convenience method copy. The copy method is defined for all objects inheriting from NSObject
and simply invokes copyWithZone: (page 1250) with the default zone.

Your options for implementing this protocol are as follows:

 ■ Implement NSCopying using alloc (page 783) and init... in classes that don’t inherit
copyWithZone: (page 1250).

Overview 1249
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 1

NSCopying Protocol Reference

 ■ Implement NSCopying by invoking the superclass’s copyWithZone: (page 1250) when NSCopying
behavior is inherited. If the superclass implementation might use the NSCopyObject (page 1347)
function, make explicit assignments to pointer instance variables for retained objects.

 ■ Implement NSCopying by retaining the original instead of creating a new copy when the class
and its contents are immutable.

If a subclass inherits NSCopying from its superclass and declares additional instance variables, the
subclass has to override copyWithZone: (page 1250) to properly handle its own instance variables,
invoking the superclass’s implementation first.

Tasks

Copying

– copyWithZone: (page 1250)
Returns a new instance that’s a copy of the receiver.

Instance Methods

copyWithZone:
Returns a new instance that’s a copy of the receiver.

- (id)copyWithZone:(NSZone *)zone

Parameters

zone
The zone identifies an area of memory from which to allocate for the new instance. If zone is
NULL, the new instance is allocated from the default zone, which is returned from the function
NSDefaultMallocZone.

Discussion
The returned object is implicitly retained by the sender, who is responsible for releasing it. The copy
returned is immutable if the consideration “immutable vs. mutable” applies to the receiving object;
otherwise the exact nature of the copy is determined by the class.

Availability
Available in iPhone OS 2.0 and later.

See Also
– mutableCopyWithZone: (page 1300) (NSMutableCopying protocol)
– copy (page 798) (NSObject class)

Declared In
NSObject.h

1250 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 1

NSCopying Protocol Reference

Adopted by: NSDecimalNumberHandler

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSDecimalNumber.h

Companion guide: Number and Value Programming Topics for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of
working with NSDecimalNumber objects.

The scale (page 1253) and roundingMode (page 1253) methods determine the precision of
NSDecimalNumber’s return values and the way in which those values should be rounded to fit that
precision. TheexceptionDuringOperation:error:leftOperand:rightOperand: (page 1252) method
determines the way in which an NSDecimalNumber object should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for
NSDecimalNumberHandler.

Overview 1251
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 2

NSDecimalNumberBehaviors Protocol
Reference

Tasks

Rounding

– roundingMode (page 1253)
Returns the way that NSDecimalNumber's decimalNumberBy... methods round their return
values.

– scale (page 1253)
Returns the number of digits allowed after the decimal separator.

Handling Errors

– exceptionDuringOperation:error:leftOperand:rightOperand: (page 1252)
Specifies what an NSDecimalNumber object will do when it encounters an error.

Instance Methods

exceptionDuringOperation:error:leftOperand:rightOperand:
Specifies what an NSDecimalNumber object will do when it encounters an error.

- (NSDecimalNumber *)exceptionDuringOperation:(SEL)method
error:(NSCalculationError)error leftOperand:(NSDecimalNumber *)leftOperand
rightOperand:(NSDecimalNumber *)rightOperand

Parameters

method
The method that was being executed when the error occurred.

error
The type of error that was generated.

leftOperand
The left operand.

rightOperand
The right operand.

Discussion
There are four possible values for error, described in NSCalculationError (page 1255). The first three
have to do with limits on the ability of NSDecimalNumber to represent decimal numbers. An
NSDecimalNumber object can represent any number that can be expressed as mantissa x 10^exponent,
where mantissa is a decimal integer up to 38 digits long, and exponent is between –256 and 256. The
fourth results from the caller trying to divide by 0.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand:, you can handle
each of these errors in several ways:

 ■ Raise an exception. For an explanation of exceptions, see Exception Programming Topics for Cocoa.

1252 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 2

NSDecimalNumberBehaviors Protocol Reference

 ■ Return nil. The calling method will return its value as though no error had occurred. If error
is NSCalculationLossOfPrecision, method will return an imprecise value—that is, one
constrained to 38 significant digits. If error is NSCalculationUnderflow or
NSCalculationOverflow, method will return NSDecimalNumber's notANumber. You shouldn’t
return nil if error is NSDivideByZero.

 ■ Correct the error and return a valid NSDecimalNumber object. The calling method will use this as
its own return value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

roundingMode
Returns the way that NSDecimalNumber's decimalNumberBy... methods round their return values.

- (NSRoundingMode)roundingMode

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

scale
Returns the number of digits allowed after the decimal separator.

- (short)scale

Return Value
The number of digits allowed after the decimal separator.

Discussion
This method limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy...
methods. If scale returns a negative value, it affects the digits before the decimal separator as well.
If scale returns NSDecimalNoScale, the number of digits is unlimited.

Assuming that roundingMode (page 1253) returns NSRoundPlain, different values of scale have the
following effects on the number 123.456:

Return ValueScale

123.456NSDecimalNoScale

123.452

1230

100–2

Instance Methods 1253
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 2

NSDecimalNumberBehaviors Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimalNumber.h

Constants

NSRoundingMode
These constants specify rounding behaviors.

typedef enum {
NSRoundPlain,
NSRoundDown,
NSRoundUp,
NSRoundBankers

} NSRoundingMode;

Constants
NSRoundPlain

Round to the closest possible return value; when caught halfway between two positive numbers,
round up; when caught between two negative numbers, round down.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

NSRoundDown
Round return values down.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

NSRoundUp
Round return values up.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

NSRoundBankers
Round to the closest possible return value; when halfway between two possibilities, return the
possibility whose last digit is even.

In practice, this means that, over the long run, numbers will be rounded up as often as they
are rounded down; there will be no systematic bias.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

Discussion
The rounding mode matters only if the scale (page 1253) method sets a limit on the precision of
NSDecimalNumber return values. It has no effect if scale returns NSDecimalNoScale. Assuming that
scale (page 1253) returns 1, the rounding mode has the following effects on various original values:

1254 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 2

NSDecimalNumberBehaviors Protocol Reference

NSRoundBankersNSRoundUpNSRoundDownNSRoundPlainOriginal Value

1.21.31.21.21.24

1.31.31.21.31.26

1.21.31.21.31.25

1.41.41.31.41.35

–1.4–1.3–1.4–1.4–1.35

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSCalculationError
Calculation error constants used to describe an error in
exceptionDuringOperation:error:leftOperand:rightOperand: (page 1252).

typedef enum {
NSCalculationNoError = 0,
NSCalculationLossOfPrecision,
NSCalculationUnderflow,
NSCalculationOverflow,
NSCalculationDivideByZero

} NSCalculationError;

Constants
NSCalculationNoError

No error occurred.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

NSCalculationLossOfPrecision
The number can’t be represented in 38 significant digits.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

NSCalculationOverflow
The number is too large to represent.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

NSCalculationUnderflow
The number is too small to represent.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

Constants 1255
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 2

NSDecimalNumberBehaviors Protocol Reference

NSCalculationDivideByZero
The caller tried to divide by 0.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

1256 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 2

NSDecimalNumberBehaviors Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in: Foundation/NSErrorRecoveryAttempting.h

Availability: Available in Mac OS X v10.4 and later.

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSErrorRecoveryAttempting informal protocol provides methods that allow your application
to attempt to recover from an error. These methods are invoked when an NSError object is returned
that specifies the implementing object as the error recoveryAttempter and the user has selected one
of the error’s localized recovery options.

Which method is invoked is dependent on how the error is presented to the user. If the error is
presented in a document-modal sheet,
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: (page
1258) is invoked. If the error is presented in an application-modal dialog,
attemptRecoveryFromError:optionIndex: (page 1258) is invoked.

Overview 1257
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 3

NSErrorRecoveryAttempting Protocol
Reference
(informal protocol)

Tasks

Attempting Recovery From Errors

– attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: (page
1258)

Implemented to attempt a recovery from an error noted in an document-modal sheet.

– attemptRecoveryFromError:optionIndex: (page 1258)
Implemented to attempt a recovery from an error noted in an application-modal dialog.

Instance Methods

attemptRecoveryFromError:optionIndex:
Implemented to attempt a recovery from an error noted in an application-modal dialog.

- (BOOL)attemptRecoveryFromError:(NSError *)error
optionIndex:(NSUInteger)recoveryOptionIndex

Parameters

error
An NSError object that describes the error, including error recovery options.

recoveryOptionIndex
The index of the user selected recovery option in error's localized recovery array.

Return Value
YES if the error recovery was completed successfully, NO otherwise.

Discussion
Invoked when an error alert is been presented to the user in an application-modal dialog, and the
user has selected an error recovery option specified by error.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSError.h

attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:
Implemented to attempt a recovery from an error noted in an document-modal sheet.

- (void)attemptRecoveryFromError:(NSError *)error
optionIndex:(NSUInteger)recoveryOptionIndex delegate:(id)delegate
didRecoverSelector:(SEL)didRecoverSelector contextInfo:(void *)contextInfo

1258 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 3

NSErrorRecoveryAttempting Protocol Reference

Parameters

error
An NSError object that describes the error, including error recovery options.

recoveryOptionIndex
The index of the user selected recovery option in error’s localized recovery array.

delegate
An object that is the modal delegate.

didRecoverSelector
A selector identifying the method implemented by the modal delegate.

contextInfo
Arbitrary data associated with the attempt at error recovery, to be passed to delegate in
didRecoverSelector.

Discussion
Invoked when an error alert is presented to the user in a document-modal sheet, and the user has
selected an error recovery option specified by error. After recovery is attempted, your implementation
should send delegate the message specified in didRecoverSelector, passing the provided
contextInfo.

The didRecoverSelector should have the following signature:

- (void)didPresentErrorWithRecovery:(BOOL)didRecover contextInfo:(void
*)contextInfo;

where didRecover is YES if the error recovery attempt was successful; otherwise it is NO.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSError.h

Instance Methods 1259
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 3

NSErrorRecoveryAttempting Protocol Reference

1260 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 3

NSErrorRecoveryAttempting Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSEnumerator.h

Companion guide: The Objective-C 2.0 Programming Language

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The fast enumeration protocol NSFastEnumeration must be adopted and implemented by objects
used in conjunction with the for language construct used in conjunction with Cocoa objects.

The abstract class NSEnumeratorprovides a convenience implementation that uses nextObject (page
341) to return items one at a time. For more details, see Fast Enumeration.

Overview 1261
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 4

NSFastEnumeration Protocol Reference

Tasks

Enumeration

– countByEnumeratingWithState:objects:count: (page 1262)
Returns by reference a C array of objects over which the sender should iterate, and as the return
value the number of objects in the array.

Instance Methods

countByEnumeratingWithState:objects:count:
Returns by reference a C array of objects over which the sender should iterate, and as the return value
the number of objects in the array.

- (NSUInteger)countByEnumeratingWithState:(NSFastEnumerationState *)state
objects:(id *)stackbuf
count:(NSUInteger)len

Parameters

state
Context information that is used in the enumeration to, in addition to other possibilities, ensure
that the collection has not been mutated.

stackbuf
A C array of objects over which the sender is to iterate.

len
The maximum number of objects to return in stackbuf.

Return Value
The number of objects returned in stackbuf. Returns 0 when the iteration is finished.

Discussion
The state structure is assumed to be of stack local memory and, from a garbage collection perspective,
does not require write-barriers on stores, so you can recast the passed in state structure to one more
suitable for your iteration.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSEnumerator.h

1262 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 4

NSFastEnumeration Protocol Reference

Constants

NSFastEnumerationState
This defines the structure used as contextual information in the NSFastEnumeration protocol.

typedef struct {
unsigned long state;
id *itemsPtr;
unsigned long *mutationsPtr;
unsigned long extra[5];

} NSFastEnumerationState;

Fields
state

Arbitrary state information used by the iterator. Typically this is set to 0 at the beginning of
the iteration.

itemsPtr
A C array of objects.

mutationsPtr
Arbitrary state information used to detect whether the collection has been mutated.

extra
A C array that you can use to hold returned values.

Discussion
For more information, see countByEnumeratingWithState:objects:count: (page 1262).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSEnumerator.h

Constants 1263
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 4

NSFastEnumeration Protocol Reference

1264 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 4

NSFastEnumeration Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in: Foundation/NSKeyValueCoding.h

Companion guide: Key-Value Coding Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSKeyValueCoding informal protocol defines a mechanism by which you can access the properties
of an object indirectly by name (or key), rather than directly through invocation of an accessor method
or as instance variables. Thus, all of an object’s properties can be accessed in a consistent manner.

The basic methods for accessing an object’s values are setValue:forKey: (page 1272), which sets the
value for the property identified by the specified key, and valueForKey: (page 1276), which returns
the value for the property identified by the specified key. The default implementation uses the accessor
methods normally implemented by objects (or to access instance variables directly if need be).

Overview 1265
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference
(informal protocol)

Tasks

Getting Values

– valueForKey: (page 1276)
Returns the value for the property identified by a given key.

– valueForKeyPath: (page 1277)
Returns the value for the derived property identified by a given key path.

– dictionaryWithValuesForKeys: (page 1267)
Returns a dictionary containing the property values identified by each of the keys in a given
array.

– valueForUndefinedKey: (page 1277)
Invoked by valueForKey: (page 1276) when it finds no property corresponding to a given key.

– mutableArrayValueForKey: (page 1268)
Returns a mutable array that provides read-write access to an ordered to-many relationship
specified by a given key.

– mutableArrayValueForKeyPath: (page 1269)
Returns a mutable array that provides read-write access to the ordered to-many relationship
specified by a given key path.

– mutableSetValueForKey: (page 1270)
Returns a mutable set that provides read-write access to the unordered to-many relationship
specified by a given key.

– mutableSetValueForKeyPath: (page 1271)
Returns a mutable set that provides read-write access to the unordered to-many relationship
specified by a given key path.

Setting Values

– setValue:forKeyPath: (page 1273)
Sets the value for the property identified by a given key path to a given value.

– setValuesForKeysWithDictionary: (page 1274)
Sets properties of the receiver with values from a given dictionary, using its keys to identify
the properties.

– setNilValueForKey: (page 1271)
Invoked by setValue:forKey: (page 1272) when it’s given a nil value for a scalar value (such
as an int or float).

– setValue:forKey: (page 1272)
Sets the property of the receiver specified by a given key to a given value.

– setValue:forUndefinedKey: (page 1274)
Invoked by setValue:forKey: (page 1272) when it finds no property for a given key.

1266 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

Changing Default Behavior

+ accessInstanceVariablesDirectly (page 1267)
Returns a Boolean value that indicates whether the key-value coding methods should access
the corresponding instance variable directly on finding no accessor method for a property.

Validation

– validateValue:forKey:error: (page 1274)
Returns a Boolean value that indicates whether the value specified by a given pointer is valid
for the property identified by a given key.

– validateValue:forKeyPath:error: (page 1275)
Returns a Boolean value that indicates whether the value specified by a given pointer is valid
for a given key path relative to the receiver.

Class Methods

accessInstanceVariablesDirectly
Returns a Boolean value that indicates whether the key-value coding methods should access the
corresponding instance variable directly on finding no accessor method for a property.

+ (BOOL)accessInstanceVariablesDirectly

Return Value
YES if the key-value coding methods should access the corresponding instance variable directly on
finding no accessor method for a property, otherwise NO.

Discussion
The default returns YES. Subclasses can override it to return NO, in which case the key-value coding
methods won’t access instance variables.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyValueCoding.h

Instance Methods

dictionaryWithValuesForKeys:
Returns a dictionary containing the property values identified by each of the keys in a given array.

- (NSDictionary *)dictionaryWithValuesForKeys:(NSArray *)keys

Class Methods 1267
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

Parameters

keys
An array containing NSString objects that identify properties of the receiver.

Return Value
A dictionary containing as keys the property names in keys, with corresponding values being the
corresponding property values.

Discussion
The default implementation invokes valueForKey: (page 1276) for each key in keys and substitutes
NSNull values in the dictionary for returned nil values.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValuesForKeysWithDictionary: (page 1274)

Declared In
NSKeyValueCoding.h

mutableArrayValueForKey:
Returns a mutable array that provides read-write access to an ordered to-many relationship specified
by a given key.

- (NSMutableArray *)mutableArrayValueForKey:(NSString *)key

Parameters

key
The name of an ordered to-many relationship.

Return Value
A mutable array that provides read-write access to the ordered to-many relationship specified by
key.

Discussion
Objects added to the mutable array become related to the receiver, and objects removed from the
mutable array become unrelated. The default implementation recognizes the same simple accessor
methods and array accessor methods as valueForKey: (page 1276), and follows the same direct instance
variable access policies, but always returns a mutable collection proxy object instead of the immutable
collection that valueForKey: would return.

This method also:

1. Searches the class of the receiver for a pair of methods whose names match the patterns
insertObject:in<Key>AtIndex: and removeObjectFrom<Key>AtIndex: (and therefore
correspond to the two most primitive methods defined by the NSMutableArray class). If both
methods are found, each NSMutableArray message sent to the collection proxy object results in
some combination of insertObject:in<Key>AtIndex: and removeObjectFrom<Key>AtIndex:
messages being sent to the original receiver of mutableArrayValueForKey:, unless the class of
the receiver also implements an optional method whose name matches the pattern
replaceObjectIn<Key>AtIndex:withObject:, in which case that replacement method will be
used when appropriate for best performance.

1268 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

2. Otherwise (no set of mutable array primitive methods is found), searches the class of the receiver
for an accessor method whose name matches the pattern set<Key>:. If such a method is found,
each NSMutableArraymessage sent to the collection proxy object results in a set<Key>:message
being sent to the original receiver of mutableArrayValueForKey:.

3. Otherwise (no set of mutable array primitive methods or simple accessor method is found), if the
receiver's accessInstanceVariablesDirectly class method returns YES, searches the class of
the receiver for an instance variable whose name matches the pattern _<key> or <key>, in that
order. If such an instance variable is found, each NSMutableArray message sent to the collection
proxy object will be forwarded to the instance variable's value, which therefore must typically
be an instance of NSMutableArray or a subclass of NSMutableArray.

4. Otherwise (no set of mutable array primitives, simple accessor method, or instance variable is
found), raises an NSUndefinedKeyException.

Availability
Available in iPhone OS 2.0 and later.

See Also
– mutableArrayValueForKeyPath: (page 1269)

Declared In
NSKeyValueCoding.h

mutableArrayValueForKeyPath:
Returns a mutable array that provides read-write access to the ordered to-many relationship specified
by a given key path.

- (NSMutableArray *)mutableArrayValueForKeyPath:(NSString *)keyPath

Parameters

keyPath
A key path, relative to the receiver, to an ordered to-many relationship.

Return Value
A mutable array that provides read-write access to the ordered to-many relationship specified by
keyPath.

Discussion
See mutableArrayValueForKey: (page 1268) for additional details.

Availability
Available in iPhone OS 2.0 and later.

See Also
– mutableArrayValueForKey: (page 1268)

Declared In
NSKeyValueCoding.h

Instance Methods 1269
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

mutableSetValueForKey:
Returns a mutable set that provides read-write access to the unordered to-many relationship specified
by a given key.

- (NSMutableSet *)mutableSetValueForKey:(NSString *)key

Parameters

key
The name of an unordered to-many relationship.

Return Value
A mutable set that provides read-write access to the unordered to-many relationship specified by
key.

Discussion
Objects added to the mutable set become related to the receiver, and objects removed from the mutable
set become unrelated. The default implementation recognizes the same simple accessor methods and
set accessor methods as valueForKey: (page 1276), and follows the same direct instance variable access
policies, but always returns a mutable collection proxy object instead of the immutable collection that
valueForKey: would return.

This method also:

1. Searches the class of the receiver for a pair of methods whose names match the patterns
add<Key>Object: and remove<Key>Object: (and therefore correspond to the two most primitive
methods defined by the NSMutableSet class) and also add<Key>: and remove<Key>: (and therefore
corresponding NSMutableSet’s unionSet: and minusSet:). If at least one addition method and
at least one removal method are found each NSMutableSet message sent to the collection proxy
object will result in some combination of add<Key>Object:, remove<Key>Object:, add<Key>:,
and remove<Key>: messages being sent to the original receiver of mutableSetValueForKey:. If
the receiver also implements an optional method whose name matches the pattern
intersect<Key>: or set<Key>: that method will be used when appropriate for best performance.

2. Otherwise (no set of set mutation methods is found), searches the class of the receiver for an
accessor method whose name matches the pattern set<Key>:. If such a method is found, each
NSMutableSet message sent to the collection proxy object results in a set<Key>: message being
sent to the original receiver of mutableSetValueForKey:.

3. Otherwise (no set of set mutation methods or simple accessor method is found), if the receiver's
accessInstanceVariablesDirectly class method returns YES, searches the class of the receiver
for an instance variable whose name matches the pattern _<key> or <key>, in that order. If such
an instance variable is found, each NSMutableSet message sent to the collection proxy object will
be forwarded to the instance variable's value, which therefore must typically be an instance of
NSMutableSet or a subclass of NSMutableSet.

4. Otherwise (no set of mutable array primitives, simple accessor method, or instance variable is
found), raises an NSUndefinedKeyException.

1270 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

Note: The repetitive set<Key>: messages implied by Step 2's description are a potential performance
problem. For better performance implement methods that fulfill the requirements for Step 1 in your
KVC-compliant class.

Availability
Available in iPhone OS 2.0 and later.

See Also
– mutableArrayValueForKeyPath: (page 1269)

Declared In
NSKeyValueCoding.h

mutableSetValueForKeyPath:
Returns a mutable set that provides read-write access to the unordered to-many relationship specified
by a given key path.

- (NSMutableSet *)mutableSetValueForKeyPath:(NSString *)keyPath

Parameters

keyPath
A key path, relative to the receiver, to an unordered to-many relationship.

Return Value
A mutable set that provides read-write access to the unordered to-many relationship specified by
keyPath.

Discussion
See mutableSetValueForKey: (page 1270) for additional details.

Availability
Available in iPhone OS 2.0 and later.

See Also
– mutableArrayValueForKey: (page 1268)

Declared In
NSKeyValueCoding.h

setNilValueForKey:
Invoked by setValue:forKey: (page 1272) when it’s given a nil value for a scalar value (such as an
int or float).

- (void)setNilValueForKey:(NSString *)key

Parameters

key
The name of one of the receiver's properties.

Instance Methods 1271
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

Discussion
Subclasses can override this method to handle the request in some other way, such as by substituting
0 or a sentinel value for nil and invoking setValue:forKey: again or setting the variable directly.
The default implementation raises an NSInvalidArgumentException.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyValueCoding.h

setValue:forKey:
Sets the property of the receiver specified by a given key to a given value.

- (void)setValue:(id)value forKey:(NSString *)key

Parameters

value
The value for the property identified by key.

key
The name of one of the receiver's properties.

Discussion
If key identifies a to-one relationship, relate the object specified by value to the receiver, unrelating
the previously related object if there was one. Given a collection object and a key that identifies a
to-many relationship, relate the objects contained in the collection to the receiver, unrelating previously
related objects if there were any.

The default implementation of this method does the following:

1. Searches the class of the receiver for an accessor method whose name matches the pattern
-set<Key>:. If such a method is found the type of its parameter is checked. If the parameter type
is one of the data types supported by NSNumber or NSValue but the value is nil,
setNilValueForKey: (page 1271) is invoked. If the value is not nil the appropriate -<type>Value:
message is sent to the value and the result is used as the argument of an invocation of the accessor
method. If the type of the accessor method's parameter is not an NSNumber or NSValue data type
the accessor method is invoked with value as the argument.

2. Otherwise (no accessor method is found), if the receiver's accessInstanceVariablesDirectly
class method returns YES, searches the class of the receiver for an instance variable whose name
matches the pattern _<key>, _is<Key>, <key>, or is<Key>, in that order. If such an instance
variable is found and its type is an NSNumber or NSValue data type, the value of the instance
variable in the receiver is set using the same conversion as in step 1. If such an instance variable
is found but its type is not an NSNumber or NSValue data type, the value is retained and the result
is set in the instance variable, after first autoreleasing the instance variable's old value.

3. Otherwise (no accessor method or instance variable is found), invokes
setValue:forUndefinedKey: (page 1274).

Compatibility notes:

1272 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

 ■ For backward binary compatibility with takeValue:forKey:'s behavior, a method whose name
matches the pattern -_set<Key>: is also recognized in step 1.

Note that KVC accessor methods whose names start with underscores are deprecated as of
Mac OS X v10.3.

 ■ For backward binary compatibility, unableToSetNilForKey: will be invoked instead of
setNilValueForKey: in step 1, if the implementation of unableToSetNilForKey: in the receiver's
class is not NSObject's.

 ■ The behavior described in step 2 is different from takeValue:forKey:'s, in which the instance
variable search order is <key>, _<key>.

 ■ For backward binary compatibility with the behavior of takeValue:forKey:,
handleTakeValue:forUnboundKey: will be invoked instead of valueForUndefinedKey: in step
3 if the implementation of handleTakeValue:forUnboundKey: in the receiver's class is not
NSObject's.

Note: When the receiver is an instance of a Java class, member functions whose names match the
pattern set<Key>() will be recognized in step 1.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyValueCoding.h

setValue:forKeyPath:
Sets the value for the property identified by a given key path to a given value.

- (void)setValue:(id)value forKeyPath:(NSString *)keyPath

Parameters

value
The value for the property identified by keyPath.

keyPath
A key path of the form relationship.property (with one or more relationships): for example
“department.name” or “department.manager.lastName.”

Discussion
The default implementation of this method gets the destination object for each relationship using
valueForKey: (page 1276), and sends the final object a setValue:forKey: message.

Availability
Available in iPhone OS 2.0 and later.

See Also
– valueForKeyPath: (page 1277)

Declared In
NSKeyValueCoding.h

Instance Methods 1273
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

setValue:forUndefinedKey:
Invoked by setValue:forKey: (page 1272) when it finds no property for a given key.

- (void)setValue:(id)value forUndefinedKey:(NSString *)key

Parameters

value
The value for the key identified by key.

key
A string that is not equal to the name of any of the receiver's properties.

Discussion
Subclasses can override this method to handle the request in some other way. The default
implementation raises an NSUndefinedKeyException.

Availability
Available in iPhone OS 2.0 and later.

See Also
– valueForUndefinedKey: (page 1277)

Declared In
NSKeyValueCoding.h

setValuesForKeysWithDictionary:
Sets properties of the receiver with values from a given dictionary, using its keys to identify the
properties.

- (void)setValuesForKeysWithDictionary:(NSDictionary *)keyedValues

Parameters

keyedValues
A dictionary whose keys identify properties in the receiver. The values of the properties in the
receiver are set to the corresponding values in the dictionary.

Discussion
The default implementation invokes setValue:forKey: (page 1272) for each key-value pair, substituting
nil for NSNull values in keyedValues.

Availability
Available in iPhone OS 2.0 and later.

See Also
– dictionaryWithValuesForKeys: (page 1267)

Declared In
NSKeyValueCoding.h

validateValue:forKey:error:
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for the
property identified by a given key.

1274 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

- (BOOL)validateValue:(id *)ioValue forKey:(NSString *)key error:(NSError **)outError

Parameters

ioValue
A pointer to a new value for the property identified by key. This method may modify or replace
the value in order to make it valid.

key
The name of one of the receiver's properties. The key must specify an attribute or a to-one
relationship.

outError
If validation is necessary and ioValue is not transformed into a valid value, upon return
contains an NSError object that describes the reason that ioValue is not a valid value.

Return Value
YES if *ioValue is a valid value for the property identified by key, or of the method is able to modify
the value to *ioValue to make it valid; otherwise NO.

Discussion
The default implementation of this method searches the class of the receiver for a validation method
whose name matches the pattern validate<Key>:error:. If such a method is found it is invoked
and the result is returned. If no such method is found, YES is returned.

The sender of the message is never given responsibility for releasing ioValue or outError.

See “Key-Value Validation” for more information.

Availability
Available in iPhone OS 2.0 and later.

See Also
– validateValue:forKeyPath:error: (page 1275)

Declared In
NSKeyValueCoding.h

validateValue:forKeyPath:error:
Returns a Boolean value that indicates whether the value specified by a given pointer is valid for a
given key path relative to the receiver.

- (BOOL)validateValue:(id *)ioValue forKeyPath:(NSString *)inKeyPath error:(NSError
**)outError

Parameters

ioValue
A pointer to a new value for the property identified by keyPath. This method may modify or
replace the value in order to make it valid.

key
The name of one of the receiver's properties. The key path must specify an attribute or a to-one
relationship. The key path has the form relationship.property (with one or more relationships);
for example “department.name” or “department.manager.lastName”.

Instance Methods 1275
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

outError
If validation is necessary and ioValue is not transformed into a valid value, upon return
contains an NSError object that describes the reason that ioValue is not a valid value.

Discussion
The default implementation gets the destination object for each relationship using valueForKey: (page
1276) and returns the result of a validateValue:forKey:error: message to the final object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– validateValue:forKey:error: (page 1274)

Declared In
NSKeyValueCoding.h

valueForKey:
Returns the value for the property identified by a given key.

- (id)valueForKey:(NSString *)key

Parameters

key
The name of one of the receiver's properties.

Return Value
The value for the property identified by key.

Discussion
The default implementation works as follows:

1. Searches for a public accessor method based on key. For example, with a key of “lastName”,
valueForKey: looks for a method named getLastName or lastName.

2. If a public accessor method is not found and the class method
accessInstanceVariablesDirectly (page 1267) returns YES, searches for a private accessor
method based on key (a method preceded by an underbar). For example, with a key of “lastName”,
valueForKey: looks for a method named _getLastName or _lastName.

3. If an accessor method is not found valueForKey: searches for an instance variable based on key
and returns its value directly. For the key “lastName”, this would be _lastName or lastName.

4. If neither an accessor method nor an instance variable is found, the default implementation
invokes valueForUndefinedKey: (page 1277).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyValueCoding.h

1276 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

valueForKeyPath:
Returns the value for the derived property identified by a given key path.

- (id)valueForKeyPath:(NSString *)keyPath

Parameters

keyPath
A key path of the form relationship.property (with one or more relationships); for example
“department.name” or “department.manager.lastName”.

Return Value
The value for the derived property identified by keyPath.

Discussion
The default implementation gets the destination object for each relationship using valueForKey: (page
1276) and returns the result of a valueForKey: message to the final object.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:forKeyPath: (page 1273)

Declared In
NSKeyValueCoding.h

valueForUndefinedKey:
Invoked by valueForKey: (page 1276) when it finds no property corresponding to a given key.

- (id)valueForUndefinedKey:(NSString *)key

Parameters

key
A string that is not equal to the name of any of the receiver's properties.

Discussion
Subclasses can override this method to return an alternate value for undefined keys. The default
implementation raises an NSUndefinedKeyException.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setValue:forUndefinedKey: (page 1274)

Declared In
NSKeyValueCoding.h

Instance Methods 1277
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

Constants

Key Value Coding Exception Names
This constant defines the name of an exception raised when a key value coding operation fails.

extern NSString *NSUndefinedKeyException;

Constants
NSUndefinedKeyException

Raised when a key value coding operation fails. userInfo keys are described in
“NSUndefinedKeyException userInfo Keys” (page 1278)

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

Declared In
NSKeyValueCoding.h

NSUndefinedKeyException userInfo Keys
These constants are keys into an NSUndefinedKeyException userInfo dictionary

extern NSString *NSTargetObjectUserInfoKey;
extern NSString *NSUnknownUserInfoKey;

Constants
NSTargetObjectUserInfoKey

The object on which the key value coding operation failed.

NSUnknownUserInfoKey
The key for which the key value coding operation failed.

Discussion
For additional information see “Key Value Coding Exception Names” (page 1278).

Declared In
NSKeyValueCoding.h

Array operators
These constants define the available array operators. See Set and Array Operators for more information.

1278 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

NSString *const NSAverageKeyValueOperator;
NSString *const NSCountKeyValueOperator;
NSString *const NSDistinctUnionOfArraysKeyValueOperator;
NSString *const NSDistinctUnionOfObjectsKeyValueOperator;
NSString *const NSDistinctUnionOfSetsKeyValueOperator;
NSString *const NSMaximumKeyValueOperator;
NSString *const NSMinimumKeyValueOperator;
NSString *const NSSumKeyValueOperator;
NSString *const NSUnionOfArraysKeyValueOperator;
NSString *const NSUnionOfObjectsKeyValueOperator;
NSString *const NSUnionOfSetsKeyValueOperator;

Constants
NSAverageKeyValueOperator

The @avg array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSCountKeyValueOperator
The @count array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSDistinctUnionOfArraysKeyValueOperator
The @distinctUnionOfArrays array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSDistinctUnionOfObjectsKeyValueOperator
The @distinctUnionOfObjects array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSDistinctUnionOfSetsKeyValueOperator
The @distinctUnionOfSets array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSMaximumKeyValueOperator
The @max array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

Constants 1279
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

NSMinimumKeyValueOperator
The @min array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSSumKeyValueOperator
The @sum array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSUnionOfArraysKeyValueOperator
The @unionOfArrays array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSUnionOfObjectsKeyValueOperator
The @unionOfObjects array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

NSUnionOfSetsKeyValueOperator
The @unionOfSets array operator.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueCoding.h

Availability
Available in Mac OS X version 10.4 and later.

Declared In
NSKeyValueCoding.h

1280 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 5

NSKeyValueCoding Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Declared in: Foundation/NSKeyValueObserving.h

Availability: Available in Mac OS X v10.3 and later.

Companion guide: Key-Value Observing Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSKeyValueObserving (KVO) informal protocol defines a mechanism that allows objects to be
notified of changes to the specified properties of other objects.

You can observe any object properties including simple attributes, to-one relationships, and to-many
relationships. Observers of to-many relationships are informed of the type of change made — as well
as which objects are involved in the change.

NSObject provides an implementation of the NSKeyValueObserving protocol that provides an
automatic observing capability for all objects. You can further refine notifications by disabling automatic
observer notifications and implementing manual notifications using the methods in this protocol.

Overview 1281
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference
(informal protocol)

Note: Key-value observing is not available for Java applications.

Tasks

Change Notification

– observeValueForKeyPath:ofObject:change:context: (page 1287)
This message is sent to the receiver when the value at the specified key path relative to the
given object has changed.

Registering for Observation

– addObserver:forKeyPath:options:context: (page 1284)
Registers anObserver to receive KVO notifications for the specified key-path relative to the
receiver.

– removeObserver:forKeyPath: (page 1288)
Stops a given object from receiving change notifications for the property specified by a given
key-path relative to the receiver.

Notifying Observers of Changes

– willChangeValueForKey: (page 1289)
Invoked to inform the receiver that the value of a given property is about to change.

– didChangeValueForKey: (page 1285)
Invoked to inform the receiver that the value of a given property has changed.

– willChange:valuesAtIndexes:forKey: (page 1289)
Invoked to inform the receiver that the specified change is about to be executed at given indexes
for a specified ordered to-many relationship.

– didChange:valuesAtIndexes:forKey: (page 1285)
Invoked to inform the receiver that the specified change has occurred on the indexes for a
specified ordered to-many relationship.

– willChangeValueForKey:withSetMutation:usingObjects: (page 1290)
Invoked to inform the receiver that the specified change is about to be made to a specified
unordered to-many relationship.

– didChangeValueForKey:withSetMutation:usingObjects: (page 1286)
Invoked to inform the receiver that the specified change was made to a specified unordered
to-many relationship.

1282 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Observing Customization

+ automaticallyNotifiesObserversForKey: (page 1283)
Returns a Boolean value that indicates whether the receiver supports automatic key-value
observation for the given key.

+ keyPathsForValuesAffectingValueForKey: (page 1283)
Returns a set of key paths for properties whose values affect the value of the specified key.

– setObservationInfo: (page 1288)
Sets the observation info for the receiver.

– observationInfo (page 1286)
Returns a pointer that identifies information about all of the observers that are registered with
the receiver.

Class Methods

automaticallyNotifiesObserversForKey:
Returns a Boolean value that indicates whether the receiver supports automatic key-value observation
for the given key.

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)key

Return Value
YES if the key-value observing machinery should automatically invoke willChangeValueForKey: (page
1289)/didChangeValueForKey: (page 1285) and willChange:valuesAtIndexes:forKey: (page
1289)/didChange:valuesAtIndexes:forKey: (page 1285) whenever instances of the class receive
key-value coding messages for the key, or mutating key-value-coding-compliant methods for the key
are invoked; otherwise NO.

Discussion
The default implementation returns YES.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyValueObserving.h

keyPathsForValuesAffectingValueForKey:
Returns a set of key paths for properties whose values affect the value of the specified key.

+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key

Parameters

key
The key whose value is affected by the key paths.

Class Methods 1283
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Return Value

Discussion
When an observer for the key is registered with an instance of the receiving class, key-value observing
itself automatically observes all of the key paths for the same instance, and sends change notifications
for the key to the observer when the value for any of those key paths changes.

The default implementation of this method searches the receiving class for a method whose name
matches the pattern +keyPathsForValuesAffecting<Key>, and returns the result of invoking that
method if it is found. Any such method must return an NSSet. If no such method is found, an NSSet
that is computed from information provided by previous invocations of the now-deprecated
setKeys:triggerChangeNotificationsForDependentKey:method is returned, for backward binary
compatibility.

You can override this method when the getter method of one of your properties computes a value to
return using the values of other properties, including those that are located by key paths. Your override
should typically invoke super and return a set that includes any members in the set that result from
doing that (so as not to interfere with overrides of this method in superclasses).

Note: You must not override this method when you add a computed property to an existing class
using a category, overriding methods in categories is unsupported. In that case, implement a matching
+keyPathsForValuesAffecting<Key> to take advantage of this mechanism.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyValueObserving.h

Instance Methods

addObserver:forKeyPath:options:context:
Registers anObserver to receive KVO notifications for the specified key-path relative to the receiver.

- (void)addObserver:(NSObject *)anObserver
forKeyPath:(NSString *)keyPath
options:(NSKeyValueObservingOptions)options
context:(void *)context

Parameters

anObserver
The object to register for KVO notifications. The observer must implement the key-value
observing method observeValueForKeyPath:ofObject:change:context: (page 1287).

keyPath
The key path, relative to the receiver, of the property to observe. This value must not be nil.

options
A combination of the NSKeyValueObservingOptions values that specifies what is included
in observation notifications. For possible values, see NSKeyValueObservingOptions (page 1291).

1284 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

context
Arbitrary data that is passed to anObserver in
observeValueForKeyPath:ofObject:change:context: (page 1287).

Discussion
Neither the receiver, nor anObserver, are retained.

Availability
Available in iPhone OS 2.0 and later.

See Also
– removeObserver:forKeyPath: (page 1288)

Declared In
NSKeyValueObserving.h

didChange:valuesAtIndexes:forKey:
Invoked to inform the receiver that the specified change has occurred on the indexes for a specified
ordered to-many relationship.

- (void)didChange:(NSKeyValueChange)change
valuesAtIndexes:(NSIndexSet *)indexes
forKey:(NSString *)key

Parameters

change
The type of change that was made.

indexes
The indexes of the to-many relationship that were affected by the change.

key
The name of a property that is an ordered to-many relationship.

Discussion
You should invoke this method when implementing key-value-observing compliance manually.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willChange:valuesAtIndexes:forKey: (page 1289)
– didChangeValueForKey: (page 1285)

Declared In
NSKeyValueObserving.h

didChangeValueForKey:
Invoked to inform the receiver that the value of a given property has changed.

- (void)didChangeValueForKey:(NSString *)key

Instance Methods 1285
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Parameters

key
The name of the property that changed.

Discussion
You should invoke this method when implementing key-value observer compliance manually.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willChangeValueForKey: (page 1289)
– didChange:valuesAtIndexes:forKey: (page 1285)

Declared In
NSKeyValueObserving.h

didChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change was made to a specified unordered to-many
relationship.

- (void)didChangeValueForKey:(NSString *)key
withSetMutation:(NSKeyValueSetMutationKind)mutationKind
usingObjects:(NSSet *)objects

Parameters

key
The name of a property that is an unordered to-many relationship

mutationKind
The type of change that was made.

objects
The objects that were involved in the change (see NSKeyValueSetMutationKind (page 1294)).

Discussion
You invoke this method when implementing key-value observer compliance manually.

Availability
Available in iPhone OS 2.0 and later.

See Also
– willChangeValueForKey:withSetMutation:usingObjects: (page 1290)

Declared In
NSKeyValueObserving.h

observationInfo
Returns a pointer that identifies information about all of the observers that are registered with the
receiver.

- (void *)observationInfo

1286 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Return Value
A pointer that identifies information about all of the observers that are registered with the receiver,
the options that were used at registration-time, and so on.

Discussion
The default implementation of this method retrieves the information from a global dictionary keyed
by the receiver’s pointers.

For improved performance, this method and setObservationInfo: can be overridden to store the
opaque data pointer in an instance variable. Overrides of this method must not attempt to send
Objective-C messages to the stored data, including retain and release.

Availability
Available in iPhone OS 2.0 and later.

See Also
– setObservationInfo: (page 1288)

Declared In
NSKeyValueObserving.h

observeValueForKeyPath:ofObject:change:context:
This message is sent to the receiver when the value at the specified key path relative to the given
object has changed.

- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context

Parameters

keyPath
The key path, relative to object, to the value that has changed.

object
The source object of the key path keyPath.

change
A dictionary that describes the changes that have been made to the value of the property at
the key path keyPath relative to object. Entries are described in “Keys used by the change
dictionary” (page 1293).

context
The value that was provided when the receiver was registered to receive key-value observation
notifications.

Discussion
The receiver must be registered as an observer for the specified keyPath and object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSKeyValueObserving.h

Instance Methods 1287
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

removeObserver:forKeyPath:
Stops a given object from receiving change notifications for the property specified by a given key-path
relative to the receiver.

- (void)removeObserver:(NSObject *)anObserver
forKeyPath:(NSString *)keyPath

Parameters

anObserver
The object to remove as an observer.

keyPath
A key-path, relative to the receiver, for which anObserver is registered to receive KVO change
notifications.

Availability
Available in iPhone OS 2.0 and later.

See Also
– addObserver:forKeyPath:options:context: (page 1284)

Declared In
NSKeyValueObserving.h

setObservationInfo:
Sets the observation info for the receiver.

- (void)setObservationInfo:(void *)observationInfo

Parameters

observationInfo
The observation info for the receiver.

Discussion
The observationInfo is a pointer that identifies information about all of the observers that are
registered with the receiver. The default implementation of this method stores observationInfo in
a global dictionary keyed by the receiver’s pointers.

For improved performance, this method and observationInfo can be overridden to store the opaque
data pointer in an instance variable. Classes that override this method must not attempt to send
Objective-C messages to observationInfo, including retain and release.

Availability
Available in iPhone OS 2.0 and later.

See Also
– observationInfo (page 1286)

Declared In
NSKeyValueObserving.h

1288 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

willChange:valuesAtIndexes:forKey:
Invoked to inform the receiver that the specified change is about to be executed at given indexes for
a specified ordered to-many relationship.

- (void)willChange:(NSKeyValueChange)change
valuesAtIndexes:(NSIndexSet *)indexes
forKey:(NSString *)key

Parameters

change
The type of change that is about to be made.

indexes
The indexes of the to-many relationship that will be affected by the change.

key
The name of a property that is an ordered to-many relationship.

Discussion
You should invoke this method when implementing key-value-observing compliance manually.

Important: After the values have been changed, a corresponding
didChange:valuesAtIndexes:forKey: (page 1285) must be invoked with the same parameters.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didChange:valuesAtIndexes:forKey: (page 1285)
– willChangeValueForKey: (page 1289)

Declared In
NSKeyValueObserving.h

willChangeValueForKey:
Invoked to inform the receiver that the value of a given property is about to change.

- (void)willChangeValueForKey:(NSString *)key

Parameters

key
The name of the property that will change.

Discussion
You should invoke this method when implementing key-value observer compliance manually.

The change type of this method is NSKeyValueChangeSetting.

Instance Methods 1289
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Important: After the values have been changed, a corresponding didChangeValueForKey: (page 1285)
must be invoked with the same parameter.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didChangeValueForKey: (page 1285)
– willChange:valuesAtIndexes:forKey: (page 1289)

Declared In
NSKeyValueObserving.h

willChangeValueForKey:withSetMutation:usingObjects:
Invoked to inform the receiver that the specified change is about to be made to a specified unordered
to-many relationship.

- (void)willChangeValueForKey:(NSString *)key
withSetMutation:(NSKeyValueSetMutationKind)mutationKind
usingObjects:(NSSet *)objects

Parameters

key
The name of a property that is an unordered to-many relationship

mutationKind
The type of change that will be made.

objects
The objects that are involved in the change (see NSKeyValueSetMutationKind (page 1294)).

Discussion
You invoke this method when implementing key-value observer compliance manually.

Important: After the values have been changed, a corresponding
didChangeValueForKey:withSetMutation:usingObjects: (page 1286) must be invoked with the
same parameters.

Availability
Available in iPhone OS 2.0 and later.

See Also
– didChangeValueForKey:withSetMutation:usingObjects: (page 1286)

Declared In
NSKeyValueObserving.h

1290 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Constants

NSKeyValueChange
These constants are returned as the value for a NSKeyValueChangeKindKey key in the change dictionary
passed to observeValueForKeyPath:ofObject:change:context: (page 1287) indicating the type of
change made:

enum {
NSKeyValueChangeSetting = 1,
NSKeyValueChangeInsertion = 2,
NSKeyValueChangeRemoval = 3,
NSKeyValueChangeReplacement = 4

};
typedef NSUInteger NSKeyValueChange;

Constants
NSKeyValueChangeSetting

Indicates that the value of the observed key path was set to a new value. This change can occur
when observing an attribute of an object, as well as properties that specify to-one and to-many
relationships.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueChangeInsertion
Indicates that an object has been inserted into the to-many relationship that is being observed.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueChangeRemoval
Indicates that an object has been removed from the to-many relationship that is being observed.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueChangeReplacement
Indicates that an object has been replaced in the to-many relationship that is being observed.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

Declared In
NSKeyValueObserving.h

NSKeyValueObservingOptions
These constants are passed toaddObserver:forKeyPath:options:context: (page 1284) and determine
the values that are returned as part of the change dictionary passed to an
observeValueForKeyPath:ofObject:change:context: (page 1287). You can pass 0 if you require
no change dictionary values.

Constants 1291
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

enum {
NSKeyValueObservingOptionNew = 0x01,
NSKeyValueObservingOptionOld = 0x02,
NSKeyValueObservingOptionInitial = 0x04,
NSKeyValueObservingOptionPrior = 0x08

};
typedef NSUInteger NSKeyValueObservingOptions;

Constants
NSKeyValueObservingOptionNew

Indicates that the change dictionary should provide the new attribute value, if applicable.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueObservingOptionOld
Indicates that the change dictionary should contain the old attribute value, if applicable.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueObservingOptionInitial
If specified, a notification should be sent to the observer immediately, before the observer
registration method even returns. The change dictionary in the notification will always contain
an NSKeyValueChangeNewKey entry if NSKeyValueObservingOptionNew is also specified but
will never contain an NSKeyValueChangeOldKey entry. (In an initial notification the current
value of the observed property may be old, but it's new to the observer.) You can use this
option instead of explicitly invoking, at the same time, code that is also invoked by the observer's
observeValueForKeyPath:ofObject:change:context: method. When this option is used
withaddObserver:forKeyPath:options:context: a notification will be sent for each indexed
object to which the observer is being added.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueObservingOptionPrior
Whether separate notifications should be sent to the observer before and after each change,
instead of a single notification after the change. The change dictionary in a notification sent
before a change always contains an NSKeyValueChangeNotificationIsPriorKey entry whose
value is [NSNumber numberWithBool:YES], but never contains an NSKeyValueChangeNewKey
entry. When this option is specified the change dictionary in a notification sent after a change
contains the same entries that it would contain if this option were not specified. You can use
this option when the observer's own key-value observing-compliance requires it to invoke one
of the -willChange... methods for one of its own properties, and the value of that property
depends on the value of the observed object's property. (In that situation it's too late to easily
invoke -willChange... properly in response to receiving an
observeValueForKeyPath:ofObject:change:context: message after the change.)

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

Declared In
NSKeyValueObserving.h

1292 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Keys used by the change dictionary
These constants are used as keys in the change dictionary passed to
observeValueForKeyPath:ofObject:change:context: (page 1287).

NSString *const NSKeyValueChangeKindKey;
NSString *const NSKeyValueChangeNewKey;
NSString *const NSKeyValueChangeOldKey;
NSString *const NSKeyValueChangeIndexesKey;

Constants
NSKeyValueChangeKindKey

An NSNumber object that contains a value corresponding to one of the
NSKeyValueChangeKindKey enumerations, indicating what sort of change has occurred.

A value of NSKeyValueChangeSetting indicates that the observed object has received a
setValue:forKey: message, or that the key-value-coding-compliant set method for the key
has been invoked, or thatwillChangeValueForKey: (page 1289)/didChangeValueForKey: (page
1285) has otherwise been invoked.

A value of NSKeyValueChangeInsertion, NSKeyValueChangeRemoval, or
NSKeyValueChangeReplacement indicates that mutating messages have been sent to the array
returned by a mutableArrayValueForKey: message sent to the object, or that one of the
key-value-coding-compliant array mutation methods for the key has been invoked, or that
willChange:valuesAtIndexes:forKey: (page
1289)/didChange:valuesAtIndexes:forKey: (page 1285) has otherwise been invoked.

You can use NSNumber's intValue (page 713) method to retrieve the integer value of the change
kind.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueChangeNewKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeSetting, and
NSKeyValueObservingOptionNew was specified when the observer was registered, the value
of this key is the new value for the attribute.

For NSKeyValueChangeInsertion or NSKeyValueChangeReplacement, if
NSKeyValueObservingOptionNew was specified when the observer was registered, the value
for this key is an NSArray instance that contains the objects that have been inserted or replaced
other objects, respectively.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueChangeOldKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeSetting, and
NSKeyValueObservingOptionOld was specified when the observer was registered, the value
of this key is the value before the attribute was changed.

For NSKeyValueChangeRemoval or NSKeyValueChangeReplacement, if
NSKeyValueObservingOptionOld was specified when the observer was registered, the value
is an NSArray instance that contains the objects that have been removed or have been replaced
by other objects, respectively.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

Constants 1293
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

NSKeyValueChangeIndexesKey
If the value of the NSKeyValueChangeKindKey entry is NSKeyValueChangeInsertion,
NSKeyValueChangeRemoval, or NSKeyValueChangeReplacement, the value of this key is an
NSIndexSet object that contains the indexes of the inserted, removed, or replaced objects.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

Declared In
NSKeyValueObserving.h

NSKeyValueSetMutationKind
These constants are specified as the parameter to the methods
willChangeValueForKey:withSetMutation:usingObjects: (page 1290) and
didChangeValueForKey:withSetMutation:usingObjects: (page 1286).

enum {
NSKeyValueUnionSetMutation = 1,
NSKeyValueMinusSetMutation = 2,
NSKeyValueIntersectSetMutation = 3,
NSKeyValueSetSetMutation = 4

};
typedef NSUInteger NSKeyValueSetMutationKind;

Constants
NSKeyValueUnionSetMutation

Indicates that objects in the specified set are being added to the receiver. This mutation kind
results in a NSkeyValueChangeKindKey value of NSKeyValueChangeInsertion.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueMinusSetMutation
Indicates that the objects in the specified set are being removed from the receiver. This mutation
kind results in a NSkeyValueChangeKindKey value of NSKeyValueChangeRemoval.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

NSKeyValueIntersectSetMutation
Indicates that the objects not in the specified set are being removed from the receiver. This
mutation kind results in a NSkeyValueChangeKindKey value of NSKeyValueChangeRemoval.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

1294 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

NSKeyValueSetSetMutation
Indicates that set of objects are replacing the existing objects in the receiver. This mutation kind
results in a NSkeyValueChangeKindKey value of NSKeyValueChangeReplacement.

Available in Mac OS X v10.4 and later.

Available in iPhone OS 2.0 and later.

Declared in NSKeyValueObserving.h

Declared In
NSKeyValueObserving.h

Constants 1295
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

1296 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 6

NSKeyValueObserving Protocol Reference

Adopted by: NSConditionLock
NSLock
NSRecursiveLock

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSLock.h

Companion guide: Threading Programming Guide

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSLocking protocol declares the elementary methods adopted by classes that define lock objects.
A lock object is used to coordinate the actions of multiple threads of execution within a single
application. By using a lock object, an application can protect critical sections of code from being
executed simultaneously by separate threads, thus protecting shared data and other shared resources
from corruption.

Overview 1297
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 7

NSLocking Protocol Reference

Tasks

Working with Locks

– lock (page 1298)
Attempts to acquire a lock, blocking a thread’s execution until the lock can be acquired.

– unlock (page 1298)
Relinquishes a previously acquired lock.

Instance Methods

lock
Attempts to acquire a lock, blocking a thread’s execution until the lock can be acquired.

- (void)lock

Discussion
An application protects a critical section of code by requiring a thread to acquire a lock before executing
the code. Once the critical section is past, the thread relinquishes the lock by invoking unlock (page
1298).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

unlock
Relinquishes a previously acquired lock.

- (void)unlock

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSLock.h

1298 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 7

NSLocking Protocol Reference

Adopted by: Various Cocoa classes

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSObject.h

Companion guide: Memory Management Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSMutableCopying protocol declares a method for providing mutable copies of an object. Only
classes that define an “immutable vs. mutable” distinction should adopt this protocol. Classes that
don’t define such a distinction should adopt NSCopying instead.

NSMutableCopying declares one method, mutableCopyWithZone: (page 1300), but mutable copying
is commonly invoked with the convenience method mutableCopy. The mutableCopy method is
defined for all NSObjects and simply invokes mutableCopyWithZone: (page 1300) with the default
zone.

If a subclass inherits NSMutableCopying from its superclass and declares additional instance variables,
the subclass has to override mutableCopyWithZone: (page 1300) to properly handle its own instance
variables, invoking the superclass’s implementation first.

Overview 1299
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 8

NSMutableCopying Protocol Reference

Tasks

Copying

– mutableCopyWithZone: (page 1300)
Returns a new instance that’s a mutable copy of the receiver.

Instance Methods

mutableCopyWithZone:
Returns a new instance that’s a mutable copy of the receiver.

- (id)mutableCopyWithZone:(NSZone *)zone

Parameters

zone
The zone from which memory is allocated for the new instance. If zone is NULL, the new instance
is allocated from the default zone, which is returned by NSDefaultMallocZone (page 1357).

Discussion
The returned object is implicitly retained by the sender, which is responsible for releasing it. The copy
returned is mutable whether the original is mutable or not.

Availability
Available in iPhone OS 2.0 and later.

See Also
– copyWithZone: (page 1250) (NSCopying protocol)
– mutableCopy (page 806) (NSObject class)

Declared In
NSObject.h

1300 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 8

NSMutableCopying Protocol Reference

Adopted by: NSObject

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSObject.h

Companion guides: Cocoa Fundamentals Guide
Memory Management Programming Guide for Cocoa

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSObject protocol groups methods that are fundamental to all Objective-C objects.

If an object conforms to this protocol, it can be considered a first-class object. Such an object can be
asked about its:

 ■ Class, and the place of its class in the inheritance hierarchy

 ■ Conformance to protocols

 ■ Ability to respond to a particular message

Overview 1301
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

In addition, objects that conform to this protocol—with its retain (page 1312), release (page 1310), and
autorelease (page 1303) methods—can also integrate with the object management and deallocation
scheme defined in Foundation (for more information see, for example, Memory Management
Programming Guide for Cocoa). Thus, an object that conforms to the NSObject protocol can be managed
by container objects like those defined by NSArray and NSDictionary.

The Cocoa root class, NSObject, adopts this protocol, so all objects inheriting from NSObject have
the features described by this protocol.

Tasks

Identifying Classes

– class (page 1304)
Returns the class object for the receiver’s class.

– superclass (page 1313)
Returns the class object for the receiver’s superclass.

Identifying and Comparing Objects

– isEqual: (page 1306)
Returns a Boolean value that indicates whether the receiver and a given object are equal.

– hash (page 1305)
Returns an integer that can be used as a table address in a hash table structure.

– self (page 1313)
Returns the receiver.

Managing Reference Counts

– retain (page 1312)
Increments the receiver’s reference count.

– release (page 1310)
Decrements the receiver’s reference count.

– autorelease (page 1303)
Adds the receiver to the current autorelease pool.

– retainCount (page 1312)
Returns the receiver’s reference count.

Testing Object Inheritance, Behavior, and Conformance

– isKindOfClass: (page 1306)
Returns a Boolean value that indicates whether the receiver is an instance of given class or an
instance of any class that inherits from that class.

1302 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

– isMemberOfClass: (page 1307)
Returns a Boolean value that indicates whether the receiver is an instance of a given class.

– respondsToSelector: (page 1311)
Returns a Boolean value that indicates whether the receiver implements or inherits a method
that can respond to a specified message.

– conformsToProtocol: (page 1304)
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

Describing Objects

– description (page 1305)
Returns a string that describes the contents of the receiver.

Sending Messages

– performSelector: (page 1308)
Sends a specified message to the receiver and returns the result of the message.

– performSelector:withObject: (page 1309)
Sends a message to the receiver with an object as the argument.

– performSelector:withObject:withObject: (page 1309)
Sends a message to the receiver with two objects as as arguments.

Determining Allocation Zones

– zone (page 1314)
Returns a pointer to the zone from which the receiver was allocated.

Identifying Proxies

– isProxy (page 1308)
Returns a Boolean value that indicates whether the receiver does not descend from NSObject.

Instance Methods

autorelease
Adds the receiver to the current autorelease pool.

- (id)autorelease

Return Value
self.

Instance Methods 1303
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

Discussion
You add an object to an autorelease pool so it will receive a release message—and thus might be
deallocated—when the pool is destroyed. For more information on the autorelease mechanism, see
Memory Management Programming Guide for Cocoa.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in iPhone OS 2.0 and later.

See Also
– retain (page 1312)
– retainCount (page 1312)

Declared In
NSObject.h

class
Returns the class object for the receiver’s class.

- (Class)class

Return Value
The class object for the receiver’s class.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ class (page 785) (NSObject class)

Declared In
NSObject.h

conformsToProtocol:
Returns a Boolean value that indicates whether the receiver conforms to a given protocol.

- (BOOL)conformsToProtocol:(Protocol *)aProtocol

Parameters

aProtocol
A protocol object that represents a particular protocol.

Return Value
YES if the receiver conforms to aProtocol, otherwise NO.

Discussion
This method works identically to the conformsToProtocol: (page 787) class method declared in
NSObject. It’s provided as a convenience so that you don’t need to get the class object to find out
whether an instance can respond to a given set of messages.

1304 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

description
Returns a string that describes the contents of the receiver.

- (NSString *)description

Return Value
A string that describes the contents of the receiver.

Discussion
The debugger’s print-object command indirectly invokes this method to produce a textual description
of an object.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

hash
Returns an integer that can be used as a table address in a hash table structure.

- (NSUInteger)hash

Return Value
An integer that can be used as a table address in a hash table structure.

Discussion
If two objects are equal (as determined by the isEqual: (page 1306) method), they must have the same
hash value. This last point is particularly important if you define hash in a subclass and intend to put
instances of that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in
the collection, the value returned by the hash method of the object must not change while the object
is in the collection. Therefore, either the hash method must not rely on any of the object’s internal
state information or you must make sure the object’s internal state information does not change while
the object is in the collection. Thus, for example, a mutable dictionary can be put in a hash table but
you must not change it while it is in there. (Note that it can be difficult to know whether or not a given
object is in a collection.)

Availability
Available in iPhone OS 2.0 and later.

See Also
– isEqual: (page 1306)

Instance Methods 1305
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

Declared In
NSObject.h

isEqual:
Returns a Boolean value that indicates whether the receiver and a given object are equal.

- (BOOL)isEqual:(id)anObject

Parameters

anObject
The object to be compared to the receiver.

Return Value
YES if the receiver and anObject are equal, otherwise NO.

Discussion
This method defines what it means for instances to be equal. For example, a container object might
define two containers as equal if their corresponding objects all respond YES to an isEqual: request.
See the NSData, NSDictionary, NSArray, and NSString class specifications for examples of the use
of this method.

If two objects are equal, they must have the same hash value. This last point is particularly important
if you define isEqual: in a subclass and intend to put instances of that subclass into a collection.
Make sure you also define hash (page 1305) in your subclass.

Availability
Available in iPhone OS 2.0 and later.

See Also
– hash (page 1305)

Declared In
NSObject.h

isKindOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of given class or an instance
of any class that inherits from that class.

- (BOOL)isKindOfClass:(Class)aClass

Parameters

aClass
A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass,
otherwise NO.

Discussion
For example, in this code, isKindOfClass:would return YES because, in Foundation, the NSArchiver
class inherits from NSCoder:

1306 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isKindOfClass:[NSCoder class]])

...

Be careful when using this method on objects represented by a class cluster. Because of the nature of
class clusters, the object you get back may not always be the type you expected. If you call a method
that returns a class cluster, the exact type returned by the method is the best indicator of what you
can do with that object. For example, if a method returns a pointer to an NSArray object, you should
not use this method to see if the array is mutable, as shown in the following code:

// DO NOT DO THIS!
if ([myArray isKindOfClass:[NSMutableArray class]])
{

// Modify the object
}

If you use such constructs in your code, you might think it is alright to modify an object that in reality
should not be modified. Doing so might then create problems for other code that expected the object
to remain unchanged.

If the receiver is a class object, this method returns YES if aClass is a Class object of the same type,
NO otherwise.

Availability
Available in iPhone OS 2.0 and later.

See Also
– isMemberOfClass: (page 1307)

Declared In
NSObject.h

isMemberOfClass:
Returns a Boolean value that indicates whether the receiver is an instance of a given class.

- (BOOL)isMemberOfClass:(Class)aClass

Parameters

aClass
A class object representing the Objective-C class to be tested.

Return Value
YES if the receiver is an instance of aClass, otherwise NO.

Discussion
For example, in this code, isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];
id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];
if ([anArchiver isMemberOfClass:[NSCoder class]])

...

Class objects may be compiler-created objects but they still support the concept of membership. Thus,
you can use this method to verify that the receiver is a specific Class object.

Instance Methods 1307
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– isKindOfClass: (page 1306)

Declared In
NSObject.h

isProxy
Returns a Boolean value that indicates whether the receiver does not descend from NSObject.

- (BOOL)isProxy

Return Value
NO if the receiver really descends from NSObject, otherwise YES.

Discussion
This method is necessary because sending isKindOfClass: (page 1306) or isMemberOfClass: (page
1307) to an NSProxy object will test the object the proxy stands in for, not the proxy itself. Use this
method to test if the receiver is a proxy (or a member of some other root class).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

performSelector:
Sends a specified message to the receiver and returns the result of the message.

- (id)performSelector:(SEL)aSelector

Parameters

aSelector
A selector identifying the message to send. If aSelector is NULL, an
NSInvalidArgumentException is raised.

Return Value
An object that is the result of the message.

Discussion
The performSelector: method is equivalent to sending an aSelector message directly to the
receiver. For example, all three of the following messages do the same thing:

id myClone = [anObject copy];
id myClone = [anObject performSelector:@selector(copy)];
id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector: method allows you to send messages that aren’t determined until
runtime. A variable selector can be passed as the argument:

1308 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();
[anObject performSelector:myMethod];

The aSelector argument should identify a method that takes no arguments. For methods that return
anything other than an object, use NSInvocation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:withObject: (page 1309)
– performSelector:withObject:withObject: (page 1309)

Declared In
NSObject.h

performSelector:withObject:
Sends a message to the receiver with an object as the argument.

- (id)performSelector:(SEL)aSelector withObject:(id)anObject

Parameters

aSelector
A selector identifying the message to send. If aSelector is NULL, an
NSInvalidArgumentException is raised.

anObject
An object that is the sole argument of the message.

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 1308) except that you can supply an argument
for aSelector. aSelector should identify a method that takes a single argument of type id. For
methods with other argument types and return values, use NSInvocation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:withObject:withObject: (page 1309)
– methodForSelector: (page 805) (NSObject class)

Declared In
NSObject.h

performSelector:withObject:withObject:
Sends a message to the receiver with two objects as as arguments.

- (id)performSelector:(SEL)aSelector withObject:(id)anObject
withObject:(id)anotherObject

Instance Methods 1309
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

Parameters

aSelector
A selector identifying the message to send. If aSelector is NULL, an
NSInvalidArgumentException is raised.

anObject
An object that is the first argument of the message.

anotherObject
An object that is the second argument of the message

Return Value
An object that is the result of the message.

Discussion
This method is the same as performSelector: (page 1308) except that you can supply two arguments
for aSelector. aSelector should identify a method that can take two arguments of type id. For
methods with other argument types and return values, use NSInvocation.

Availability
Available in iPhone OS 2.0 and later.

See Also
– performSelector:withObject: (page 1309)
– methodForSelector: (page 805) (NSObject class)

Declared In
NSObject.h

release
Decrements the receiver’s reference count.

- (oneway void)release

Discussion
The receiver is sent a dealloc (page 799) message when its reference count reaches 0.

You would only implement this method to define your own reference-counting scheme. Such
implementations should not invoke the inherited method; that is, they should not include a release
message to super.

For more information on the reference counting mechanism, see Memory Management Programming
Guide for Cocoa.

Special Considerations

If garbage collection is enabled, this method is a no-op.

You must complete the object initialization (using an init method) before invoking release. For
example, the following code shows an error:

id anObject = [MyObject alloc];
[anObject release];

You may call release from within an init method if initialization fails for some reason provided that
you have at least called superclass's designated initializer.

1310 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
– retainCount (page 1312)

Declared In
NSObject.h

respondsToSelector:
Returns a Boolean value that indicates whether the receiver implements or inherits a method that can
respond to a specified message.

- (BOOL)respondsToSelector:(SEL)aSelector

Parameters

aSelector
A selector that identifies a message.

Return Value
YES if the receiver implements or inherits a method that can respond to aSelector, otherwise NO.

Discussion
The application is responsible for determining whether a NO response should be considered an error.

You cannot test whether an object inherits a method from its superclass by sending
respondsToSelector: to the object using the super keyword. This method will still be testing the
object as a whole, not just the superclass’s implementation. Therefore, sending respondsToSelector:
to super is equivalent to sending it to self. Instead, you must invoke the NSObject class method
instancesRespondToSelector: (page 791) directly on the object’s superclass, as illustrated in the
following code fragment.

if([MySuperclass instancesRespondToSelector:@selector(aMethod)]) {
// invoke the inherited method
[super aMethod];

}

You cannot simply use [[self superclass] instancesRespondToSelector:@selector(aMethod)]
since this may cause the method to fail if it is invoked by a subclass.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to
respond to the message, albeit indirectly, even though this method returns NO.

Availability
Available in iPhone OS 2.0 and later.

See Also
– forwardInvocation: (page 801) (NSObject class)
+ instancesRespondToSelector: (page 791) (NSObject class)

Declared In
NSObject.h

Instance Methods 1311
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

retain
Increments the receiver’s reference count.

- (id)retain

Return Value
self.

Discussion
You send an object a retain message when you want to prevent it from being deallocated without
your express permission.

An object is deallocated automatically when its reference count reaches 0. retainmessages increment
the reference count, and release (page 1310) messages decrement it. For more information on this
mechanism, see Memory Management Programming Guide for Cocoa.

As a convenience, retain returns self because it is often used in nested expressions:

NSString *systemApps = [[NSString
stringWithCString:"/Applications"] retain];

You would implement this method only if you were defining your own reference-counting scheme.
Such implementations must return self and should not invoke the inherited method by sending a
retain message to super.

Special Considerations

If garbage collection is enabled, this method is a no-op.

Availability
Available in iPhone OS 2.0 and later.

See Also
– autorelease (page 1303)
– release (page 1310)
– retainCount (page 1312)

Declared In
NSObject.h

retainCount
Returns the receiver’s reference count.

- (NSUInteger)retainCount

Return Value
The receiver’s reference count.

Discussion
You rarely send a retainCount message; however, you might implement this method in a class to
implement your own reference-counting scheme. For objects that never get released (that is, their
release (page 1310) method does nothing), this method should return UINT_MAX, as defined in
<limits.h>.

1312 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

The retainCount method does not account for any pending autorelease (page 1303) messages sent
to the receiver.

This method is typically of limited value in debugging memory management issues.

Special Considerations

If garbage collection is enabled, the return value is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
– autorelease (page 1303)
– retain (page 1312)

Declared In
NSObject.h

self
Returns the receiver.

- (id)self

Return Value
The receiver.

Availability
Available in iPhone OS 2.0 and later.

See Also
– class (page 1304)

Declared In
NSObject.h

superclass
Returns the class object for the receiver’s superclass.

- (Class)superclass

Return Value
The class object for the receiver’s superclass.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ superclass (page 796) (NSObject class)

Declared In
NSObject.h

Instance Methods 1313
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

zone
Returns a pointer to the zone from which the receiver was allocated.

- (NSZone *)zone

Return Value
A pointer to the zone from which the receiver was allocated.

Discussion
Objects created without specifying a zone are allocated from the default zone.

Availability
Available in iPhone OS 2.0 and later.

See Also
+ allocWithZone: (page 783) (NSObject class)

Declared In
NSObject.h

1314 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9 9

NSObject Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLAuthenticationChallenge.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSURLAuthenticationChallengeSender protocol represents the interface that the sender of an
authentication challenge must implement.

The methods in the protocol are generally sent by a delegate in response to receiving a
connection:didReceiveAuthenticationChallenge: (page 1128) or
download:didReceiveAuthenticationChallenge:. The different methods provide different ways
of responding to authentication challenges.

Overview 1315
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 0

NSURLAuthenticationChallengeSender
Protocol Reference

Tasks

Protocol Methods

– cancelAuthenticationChallenge: (page 1316)
Cancels a given authentication challenge.

– continueWithoutCredentialForAuthenticationChallenge: (page 1316)
Attempt to continue downloading a request without providing a credential for a given challenge.

– useCredential:forAuthenticationChallenge: (page 1317)
Attempt to use a given credential for a given authentication challenge.

Instance Methods

cancelAuthenticationChallenge:
Cancels a given authentication challenge.

- (void)cancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters

challenge
The authentication challenge to cancel.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLAuthenticationChallenge.h

continueWithoutCredentialForAuthenticationChallenge:
Attempt to continue downloading a request without providing a credential for a given challenge.

-
(void)continueWithoutCredentialForAuthenticationChallenge:(NSURLAuthenticationChallenge
*)challenge

Parameters

challenge
A challenge without authentication credentials.

Discussion
This method has no effect if it is called with an authentication challenge that has already been handled.

Availability
Available in iPhone OS 2.0 and later.

1316 Tasks
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 0

NSURLAuthenticationChallengeSender Protocol Reference

Declared In
NSURLAuthenticationChallenge.h

useCredential:forAuthenticationChallenge:
Attempt to use a given credential for a given authentication challenge.

- (void)useCredential:(NSURLCredential *)credential
forAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Parameters

credential
The credential to use for authentication.

challenge
The challenge for which to use credential.

Discussion
This method has no effect if it is called with an authentication challenge that has already been handled.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLAuthenticationChallenge.h

Instance Methods 1317
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 0

NSURLAuthenticationChallengeSender Protocol Reference

1318 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 0

NSURLAuthenticationChallengeSender Protocol Reference

Framework /System/Library/Frameworks/Foundation.framework

Availability: Available in iPhone OS 2.0 and later.

Declared in: Foundation/NSURLProtocol.h

Companion guide: URL Loading System

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

The NSURLProtocolClient protocol provides the interface used by NSURLProtocol subclasses to
communicate with the URL loading system. An application should never have the need to implement
this protocol.

Tasks

Protocol Methods

– URLProtocol:cachedResponseIsValid: (page 1320)
Sent to indicate to the URL loading system that a cached response is valid.

Overview 1319
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 1

NSURLProtocolClient Protocol Reference

– URLProtocol:didCancelAuthenticationChallenge: (page 1320)
Sent to indicate to the URL loading system that an authentication challenge has been canceled.

– URLProtocol:didFailWithError: (page 1321)
Sent when the load request fails due to an error.

– URLProtocol:didLoadData: (page 1321)
An NSURLProtocol subclass instance, protocol, sends this message to [protocol client]
as it loads data.

– URLProtocol:didReceiveAuthenticationChallenge: (page 1321)
Sent to indicate to the URL loading system that an authentication challenge has been received.

– URLProtocol:didReceiveResponse:cacheStoragePolicy: (page 1322)
Sent to indicate to the URL loading system that the protocol implementation has created a
response object for the request.

– URLProtocol:wasRedirectedToRequest:redirectResponse: (page 1322)
Sent to indicate to the URL loading system that the protocol implementation has been redirected.

– URLProtocolDidFinishLoading: (page 1323)
Sent to indicate to the URL loading system that the protocol implementation has finished
loading.

Instance Methods

URLProtocol:cachedResponseIsValid:
Sent to indicate to the URL loading system that a cached response is valid.

- (void)URLProtocol:(NSURLProtocol *)protocol
cachedResponseIsValid:(NSCachedURLResponse *)cachedResponse

Parameters

protocol
The URL protocol object sending the message.

cachedResponse
The cached response whose validity is being communicated.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

URLProtocol:didCancelAuthenticationChallenge:
Sent to indicate to the URL loading system that an authentication challenge has been canceled.

- (void)URLProtocol:(NSURLProtocol *)protocol
didCancelAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

1320 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 1

NSURLProtocolClient Protocol Reference

Parameters

protocol
The URL protocol object sending the message.

challenge
The authentication challenge that was canceled.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

URLProtocol:didFailWithError:
Sent when the load request fails due to an error.

- (void)URLProtocol:(NSURLProtocol *)protocol didFailWithError:(NSError *)error

Parameters

protocol
The URL protocol object sending the message.

error
The error that caused the failure of the load request.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

URLProtocol:didLoadData:
An NSURLProtocol subclass instance, protocol, sends this message to [protocol client] as it
loads data.

- (void)URLProtocol:(NSURLProtocol *)protocol didLoadData:(NSData *)data

Discussion
The data object must contain only new data loaded since the previous invocation of this method.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

URLProtocol:didReceiveAuthenticationChallenge:
Sent to indicate to the URL loading system that an authentication challenge has been received.

- (void)URLProtocol:(NSURLProtocol *)protocol
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge

Instance Methods 1321
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 1

NSURLProtocolClient Protocol Reference

Parameters

protocol
The URL protocol object sending the message.

challenge
The authentication challenge that has been received.

Discussion
The protocol client guarantees that it will answer the request on the same thread that called this
method. The client may add a default credential to the challenge it issues to the connection delegate,
if protocol did not provide one.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

URLProtocol:didReceiveResponse:cacheStoragePolicy:
Sent to indicate to the URL loading system that the protocol implementation has created a response
object for the request.

- (void)URLProtocol:(NSURLProtocol *)protocol didReceiveResponse:(NSURLResponse
*)response cacheStoragePolicy:(NSURLCacheStoragePolicy)policy

Parameters

protocol
The URL protocol object sending the message.

response
The newly available response object.

policy
The cache storage policy for the response.

Discussion
The implementation should provide the NSURLCacheStoragePolicy that should be used if the response
is to be stored in a cache as the policy value.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

URLProtocol:wasRedirectedToRequest:redirectResponse:
Sent to indicate to the URL loading system that the protocol implementation has been redirected.

- (void)URLProtocol:(NSURLProtocol *)protocol wasRedirectedToRequest:(NSURLRequest
*)request redirectResponse:(NSURLResponse *)redirectResponse

1322 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 1

NSURLProtocolClient Protocol Reference

Parameters

protocol
The URL protocol object sending the message.

request
The new request that the original request was redirected to.

redirectResponse
The response from the original request that caused the redirect.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

URLProtocolDidFinishLoading:
Sent to indicate to the URL loading system that the protocol implementation has finished loading.

- (void)URLProtocolDidFinishLoading:(NSURLProtocol *)protocol

Parameters

protocol
The URL protocol object sending the message.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSURLProtocol.h

Instance Methods 1323
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 1

NSURLProtocolClient Protocol Reference

1324 Instance Methods
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 1

NSURLProtocolClient Protocol Reference

1325
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I I I

Functions

1326
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I I I

Functions

Framework: Foundation/Foundation.h

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

This chapter describes the functions and function-like macros defined in the Foundation Framework.

Functions by Task

Assertions
For additional information about Assertions, see Assertions and Logging.

NSAssert (page 1336)
Generates an assertion if a given condition is false.

NSAssert1 (page 1336)
Generates an assertion if a given condition is false.

NSAssert2 (page 1337)
Generates an assertion if a given condition is false.

NSAssert3 (page 1338)
Generates an assertion if a given condition is false.

Overview 1327
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSAssert4 (page 1339)
Generates an assertion if a given condition is false.

NSAssert5 (page 1340)
Generates an assertion if a given condition is false.

NSCAssert (page 1341)
Generates an assertion if the given condition is false.

NSCAssert1 (page 1342)
NSCAssert1 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert2 (page 1342)
NSCAssert2 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert3 (page 1343)
NSCAssert3 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert4 (page 1344)
NSCAssert4 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert5 (page 1344)
NSCAssert5 is one of a series of macros that generate assertions if the given condition is false.

NSCParameterAssert (page 1348)
Evaluates the specified parameter.

NSParameterAssert (page 1368)
Validates the specified parameter.

Bundles
For additional information on generating strings files see “Generating Strings Files”.

NSLocalizedString (page 1362)
Returns a localized version of a string.

NSLocalizedStringFromTable (page 1362)
Returns a localized version of a string.

NSLocalizedStringFromTableInBundle (page 1363)
Returns a localized version of a string.

NSLocalizedStringWithDefaultValue (page 1363)
Returns a localized version of a string.

Byte Ordering

NSConvertHostDoubleToSwapped (page 1345)
Performs a type conversion.

NSConvertHostFloatToSwapped (page 1346)
Performs a type conversion.

NSConvertSwappedDoubleToHost (page 1346)
Performs a type conversion.

NSConvertSwappedFloatToHost (page 1347)
Performs a type conversion.

1328 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSHostByteOrder (page 1361)
Returns the endian format.

NSSwapBigDoubleToHost (page 1377)
A utility for swapping the bytes of a number.

NSSwapBigFloatToHost (page 1378)
A utility for swapping the bytes of a number.

NSSwapBigIntToHost (page 1378)
A utility for swapping the bytes of a number.

NSSwapBigLongLongToHost (page 1379)
A utility for swapping the bytes of a number.

NSSwapBigLongToHost (page 1379)
A utility for swapping the bytes of a number.

NSSwapBigShortToHost (page 1380)
A utility for swapping the bytes of a number.

NSSwapDouble (page 1380)
A utility for swapping the bytes of a number.

NSSwapFloat (page 1380)
A utility for swapping the bytes of a number.

NSSwapHostDoubleToBig (page 1381)
A utility for swapping the bytes of a number.

NSSwapHostDoubleToLittle (page 1381)
A utility for swapping the bytes of a number.

NSSwapHostFloatToBig (page 1382)
A utility for swapping the bytes of a number.

NSSwapHostFloatToLittle (page 1382)
A utility for swapping the bytes of a number.

NSSwapHostIntToBig (page 1383)
A utility for swapping the bytes of a number.

NSSwapHostIntToLittle (page 1383)
A utility for swapping the bytes of a number.

NSSwapHostLongLongToBig (page 1384)
A utility for swapping the bytes of a number.

NSSwapHostLongLongToLittle (page 1384)
A utility for swapping the bytes of a number.

NSSwapHostLongToBig (page 1385)
A utility for swapping the bytes of a number.

NSSwapHostLongToLittle (page 1385)
A utility for swapping the bytes of a number.

NSSwapHostShortToBig (page 1386)
A utility for swapping the bytes of a number.

NSSwapHostShortToLittle (page 1386)
A utility for swapping the bytes of a number.

NSSwapInt (page 1387)
A utility for swapping the bytes of a number.

Functions by Task 1329
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSSwapLittleDoubleToHost (page 1387)
A utility for swapping the bytes of a number.

NSSwapLittleFloatToHost (page 1388)
A utility for swapping the bytes of a number.

NSSwapLittleIntToHost (page 1388)
A utility for swapping the bytes of a number.

NSSwapLittleLongLongToHost (page 1389)
A utility for swapping the bytes of a number.

NSSwapLittleLongToHost (page 1389)
A utility for swapping the bytes of a number.

NSSwapLittleShortToHost (page 1390)
A utility for swapping the bytes of a number.

NSSwapLong (page 1390)
A utility for swapping the bytes of a number.

NSSwapLongLong (page 1391)
A utility for swapping the bytes of a number.

NSSwapShort (page 1391)
A utility for swapping the bytes of a number.

Decimals
The class "NSDecimalNumber" (page 275) may also be used for decimal arithmetic.

NSDecimalAdd (page 1350)
Adds two decimal values.

NSDecimalCompact (page 1351)
Compacts the decimal structure for efficiency.

NSDecimalCompare (page 1351)
Compares two decimal values.

NSDecimalCopy (page 1352)
Copies the value of a decimal number.

NSDecimalDivide (page 1352)
Divides one decimal value by another.

NSDecimalIsNotANumber (page 1353)
Returns a Boolean that indicates whether a given decimal contains a valid number.

NSDecimalMultiply (page 1353)
Multiplies two decimal numbers together.

NSDecimalMultiplyByPowerOf10 (page 1353)
Multiplies a decimal by the specified power of 10.

NSDecimalNormalize (page 1354)
Normalizes the internal format of two decimal numbers to simplify later operations.

NSDecimalPower (page 1355)
Raises the decimal value to the specified power.

NSDecimalRound (page 1355)
Rounds off the decimal value.

1330 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSDecimalString (page 1356)
Returns a string representation of the decimal value.

NSDecimalSubtract (page 1356)
Subtracts one decimal value from another.

Exception Handling
You can find the following macros implemented in NSException.h. Exception Programming Topics for
Cocoa discusses these macros and gives examples of their usage. These macros are useful for code
that needs to run on versions of the system prior to Mac OS X v10.3 For later versions of the operating
system, you should use the Objective-C compiler directives @try, @catch, @throw, and @finally; for
information about these directives, see “Exception Handling and Thread Synchronization” in The
Objective-C 2.0 Programming Language.

NS_DURING (page 1396)
Marks the start of the exception-handling domain.

NS_ENDHANDLER (page 1396)
Marks the end of the local event handler.

NS_HANDLER (page 1397)
Marks the end of the exception-handling domain and the start of the local exception handler.

NS_VALUERETURN (page 1397)
Permits program control to exit from an exception-handling domain with a value of a specified
type.

NS_VOIDRETURN (page 1397)
Permits program control to exit from an exception-handling domain.

Managing Object Allocation and Deallocation

NSAllocateObject (page 1335)
Creates and returns a new instance of a given class.

NSCopyObject (page 1347)
Creates an exact copy of an object.

NSDeallocateObject (page 1350)
Destroys an existing object.

NSDecrementExtraRefCountWasZero (page 1356)
Decrements the specified object’s reference count.

NSExtraRefCount (page 1358)
Returns the specified object’s reference count.

NSIncrementExtraRefCount (page 1361)
Increments the specified object’s reference count.

NSShouldRetainWithZone (page 1374)
Indicates whether an object should be retained.

Functions by Task 1331
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Interacting with the Objective-C Runtime

NSGetSizeAndAlignment (page 1359)
Obtains the actual size and the aligned size of an encoded type.

NSClassFromString (page 1345)
Obtains a class by name.

NSStringFromClass (page 1376)
Returns the name of a class as a string.

NSSelectorFromString (page 1373)
Returns the selector with a given name.

NSStringFromSelector (page 1377)
Returns a string representation of a given selector.

NSStringFromProtocol (page 1376)
Returns the name of a protocol as a string.

NSProtocolFromString (page 1369)
Returns a the protocol with a given name.

Logging Output

NSLog (page 1364)
Logs error an message to stderr.

NSLogv (page 1365)
Logs an error message to stderr.

Managing File Paths

NSFullUserName (page 1358)
Returns a string containing the full name of the current user.

NSHomeDirectory (page 1360)
Returns the path to the current user’s home directory.

NSHomeDirectoryForUser (page 1360)
Returns the path to a given user’s home directory.

NSOpenStepRootDirectory (page 1367)
Returns the root directory of the user’s system.

NSSearchPathForDirectoriesInDomains (page 1372)
Creates a list of directory search paths.

NSTemporaryDirectory (page 1392)
Returns the path of the temporary directory for the current user.

NSUserName (page 1393)
Returns the logon name of the current user.

1332 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Managing Points

NSPointFromCGPoint (page 1368)
Returns an NSPoint typecast from a CGPoint.

NSPointToCGPoint (page 1369)
Returns a CGPoint typecast from an NSPoint.

Manipulating Ranges

NSEqualRanges (page 1358)
Returns a Boolean value that indicates whether two given ranges are equal.

NSIntersectionRange (page 1361)
Returns the intersection of the specified ranges.

NSLocationInRange (page 1364)
Returns a Boolean value that indicates whether a specified position is in a given range.

NSMakeRange (page 1366)
Creates a new NSRange from the specified values.

NSMaxRange (page 1367)
Returns the number 1 greater than the maximum value within the range.

NSRangeFromString (page 1370)
Returns a range from a text-based representation.

NSStringFromRange (page 1377)
Returns a string representation of a range.

NSUnionRange (page 1392)
Returns the intersection of the specified ranges.

Manipulating Rectangles

NSRectFromCGRect (page 1370)
Returns an NSRect typecast from a CGRect.

NSRectToCGRect (page 1371)
Returns a CGRect typecast from an NSRect.

Sizes

NSSizeFromCGSize (page 1375)
Returns an NSSize typecast from a CGSize.

NSSizeToCGSize (page 1375)
Returns a CGSize typecast from an NSSize.

Uncaught Exception Handlers
Whether there’s an uncaught exception handler function, any uncaught exceptions cause the program
to terminate, unless the exception is raised during the posting of a notification.

Functions by Task 1333
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSGetUncaughtExceptionHandler (page 1359)
Returns the top-level error handler.

NSSetUncaughtExceptionHandler (page 1374)
Changes the top-level error handler.

Managing Memory

NSDefaultMallocZone (page 1357)
Returns the default zone.

NSMakeCollectable (page 1366)
Makes a newly allocated Core Foundation object eligible for collection.

NSAllocateMemoryPages (page 1335)
Allocates a new block of memory.

NSCopyMemoryPages (page 1347)
Copies a block of memory.

NSDeallocateMemoryPages (page 1349)
Deallocates the specified block of memory.

NSLogPageSize (page 1365)
Returns the binary log of the page size.

NSPageSize (page 1367)
Returns the number of bytes in a page.

NSRealMemoryAvailable (page 1370)
Returns information about the user’s system.

NSRoundDownToMultipleOfPageSize (page 1372)
Returns the specified number of bytes rounded down to a multiple of the page size.

NSRoundUpToMultipleOfPageSize (page 1372)
Returns the specified number of bytes rounded up to a multiple of the page size.

Managing Zones

NSCreateZone (page 1349)
Creates a new zone.

NSRecycleZone (page 1371)
Frees memory in a zone.

NSSetZoneName (page 1374)
Sets the name of the specified zone.

NSZoneCalloc (page 1393)
Allocates memory in a zone.

NSZoneFree (page 1394)
Deallocates a block of memory in the specified zone.

NSZoneFromPointer (page 1394)
Gets the zone for a given block of memory.

NSZoneMalloc (page 1395)
Allocates memory in a zone.

1334 Functions by Task
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSZoneName (page 1395)
Returns the name of the specified zone.

NSZoneRealloc (page 1396)
Allocates memory in a zone.

Functions

NSAllocateMemoryPages
Allocates a new block of memory.

void * NSAllocateMemoryPages (
NSUInteger bytes

);

Discussion
Allocates the integral number of pages whose total size is closest to, but not less than, byteCount.
The allocated pages are guaranteed to be filled with zeros. If the allocation fails, raises
NSInvalidArgumentException.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSCopyMemoryPages (page 1347)
NSDeallocateMemoryPages (page 1349)

Declared In
NSZone.h

NSAllocateObject
Creates and returns a new instance of a given class.

id NSAllocateObject (
Class aClass,
NSUInteger extraBytes,
NSZone *zone

);

Parameters

aClass
The class of which to create an instance.

extraBytes
The number of extra bytes required for indexed instance variables (this value is typically 0).

zone
The zone in which to create the new instance (pass NULL to specify the default zone).

Return Value
A new instance of aClass) or nil if an instance could not be created.

Functions 1335
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
NSCopyObject (page 1347)
NSDeallocateObject (page 1350)

Declared In
NSObject.h

NSAssert
Generates an assertion if a given condition is false.

#define NSAssert(condition, desc)

Parameters

condition
An expression that evaluates to YES or NO.

desc
An NSString object that contains an error message describing the failure condition.

Discussion
The NSAssert macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When
invoked, an assertion handler prints an error message that includes the method and class names (or
the function name). It then raises an NSInternalInconsistencyException exception. If condition
evaluates to NO, the macro invokes
handleFailureInMethod:object:file:lineNumber:description: (page 71) on the assertion
handler for the current thread, passing desc as the description string.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert1 (page 1336)
NSCAssert (page 1341)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSAssert1
Generates an assertion if a given condition is false.

1336 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

#define NSAssert1(condition, desc, arg1)

Parameters

condition
An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing
the failure condition and a placeholder for a single argument.

arg1
An argument to be inserted, in place, into desc.

Discussion
The NSAssert1 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When
invoked, an assertion handler prints an error message that includes the method and class names (or
the function name). It then raises an NSInternalInconsistencyException exception. If condition
evaluates to NO, the macro invokes
handleFailureInMethod:object:file:lineNumber:description: (page 71) on the assertion
handler for the current thread, passing desc as the description string and arg1 as a substitution
variable.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSAssert2 (page 1337)
NSAssert3 (page 1338)
NSAssert4 (page 1339)
NSAssert5 (page 1340)
NSCAssert (page 1341)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSAssert2
Generates an assertion if a given condition is false.

#define NSAssert2(condition, desc, arg1, arg2)

Parameters

condition
An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing
the failure condition and placeholders for two arguments.

Functions 1337
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

Discussion
The NSAssert2 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When
invoked, an assertion handler prints an error message that includes the method and class names (or
the function name). It then raises an NSInternalInconsistencyException exception. If condition
evaluates to NO, the macro invokes
handleFailureInMethod:object:file:lineNumber:description: (page 71) on the assertion
handler for the current thread, passing desc as the description string and arg1 and arg2 as substitution
variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSAssert1 (page 1336)
NSAssert3 (page 1338)
NSAssert4 (page 1339)
NSAssert5 (page 1340)
NSCAssert (page 1341)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSAssert3
Generates an assertion if a given condition is false.

#define NSAssert3(condition, desc, arg1, arg2, arg3)

Parameters

condition
An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing
the failure condition and placeholders for three arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

1338 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Discussion
The NSAssert3 macro evaluates the condition and serves as a front end to the assertion handler.

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When
invoked, an assertion handler prints an error message that includes the method and class names (or
the function name). It then raises an NSInternalInconsistencyException exception. If condition
evaluates to NO, the macro invokes
handleFailureInMethod:object:file:lineNumber:description: (page 71) on the assertion
handler for the current thread, passing desc as the description string and arg1, arg2, and arg3 as
substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSAssert1 (page 1336)
NSAssert2 (page 1337)
NSAssert4 (page 1339)
NSAssert5 (page 1340)
NSCAssert (page 1341)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSAssert4
Generates an assertion if a given condition is false.

#define NSAssert4(condition, desc, arg1, arg2, arg3, arg4)

Parameters

condition
An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing
the failure condition and placeholders for four arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

arg4
An argument to be inserted, in place, into desc.

Discussion
The NSAssert4 macro evaluates the condition and serves as a front end to the assertion handler.

Functions 1339
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When
invoked, an assertion handler prints an error message that includes the method and class names (or
the function name). It then raises an NSInternalInconsistencyException exception. If condition
evaluates to NO, the macro invokes
handleFailureInMethod:object:file:lineNumber:description: (page 71) on the assertion
handler for the current thread, passing desc as the description string and arg1, arg2, arg3, and arg4
as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSAssert1 (page 1336)
NSAssert2 (page 1337)
NSAssert3 (page 1338)
NSAssert5 (page 1340)
NSCAssert (page 1341)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSAssert5
Generates an assertion if a given condition is false.

#define NSAssert5(condition, desc, arg1, arg2, arg3, arg4, arg5)

Parameters

condition
An expression that evaluates to YES or NO.

desc
An NSString object that contains a printf-style string containing an error message describing
the failure condition and placeholders for five arguments.

arg1
An argument to be inserted, in place, into desc.

arg2
An argument to be inserted, in place, into desc.

arg3
An argument to be inserted, in place, into desc.

arg4
An argument to be inserted, in place, into desc.

arg5
An argument to be inserted, in place, into desc.

Discussion
The NSAssert5 macro evaluates the condition and serves as a front end to the assertion handler.

1340 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Each thread has its own assertion handler, which is an object of class NSAssertionHandler. When
invoked, an assertion handler prints an error message that includes the method and class names (or
the function name). It then raises an NSInternalInconsistencyException exception. If condition
evaluates to NO, the macro invokes
handleFailureInMethod:object:file:lineNumber:description: (page 71) on the assertion
handler for the current thread, passing desc as the description string and arg1, arg2, arg3, arg4,
and arg5 as substitution variables.

This macro should be used only within Objective-C methods.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSAssert1 (page 1336)
NSAssert2 (page 1337)
NSAssert3 (page 1338)
NSAssert4 (page 1339)
NSCAssert (page 1341)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSCAssert
Generates an assertion if the given condition is false.

NSCAssert(condition, NSString *description)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

The NSCAssert macro evaluates the condition and serves as a front end to the assertion handler. This
macro should be used only within C functions. NSCAssert takes no arguments other than the condition
and format string.

The condition must be an expression that evaluates to true or false. description is a printf-style
format string that describes the failure condition.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return
void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSCAssert1 (page 1342)

Functions 1341
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSCAssert1
NSCAssert1 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert1(condition, NSString *description, arg1)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

The NSCAssert1 macro evaluates the condition and serves as a front end to the assertion handler.
This macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string
that describes the failure condition. arg1 is an argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return
void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSCAssert (page 1341)
NSCAssert2 (page 1342)
NSCAssert3 (page 1343)
NSCAssert4 (page 1344)
NSCAssert5 (page 1344)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSCAssert2
NSCAssert2 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert2(condition, NSString *description, arg1, arg2)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

The NSCAssert2 macro evaluates the condition and serves as a front end to the assertion handler.
This macro should be used only within C functions.

1342 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

The condition expression must evaluate to true or false. description is a printf-style format string
that describes the failure condition. Each argn is an argument to be inserted, in place, into the
description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return
void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSCAssert (page 1341)
NSCAssert1 (page 1342)
NSCAssert3 (page 1343)
NSCAssert4 (page 1344)
NSCAssert5 (page 1344)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSCAssert3
NSCAssert3 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert3(condition, NSString *description, arg1, arg2, arg3)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

The NSCAssert3 macro evaluates the condition and serves as a front end to the assertion handler.
This macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string
that describes the failure condition. Each argn is an argument to be inserted, in place, into the
description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return
void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSCAssert (page 1341)
NSCAssert1 (page 1342)
NSCAssert2 (page 1342)
NSCAssert4 (page 1344)
NSCAssert5 (page 1344)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

Functions 1343
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSCAssert4
NSCAssert4 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

The NSCAssert4 macro evaluates the condition and serves as a front end to the assertion handler.
This macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string
that describes the failure condition. Each argn is an argument to be inserted, in place, into the
description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return
void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSCAssert (page 1341)
NSCAssert1 (page 1342)
NSCAssert2 (page 1342)
NSCAssert3 (page 1343)
NSCAssert5 (page 1344)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSCAssert5
NSCAssert5 is one of a series of macros that generate assertions if the given condition is false.

NSCAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

The NSCAssert5 macro evaluates the condition and serves as a front end to the assertion handler.
This macro should be used only within C functions.

The condition expression must evaluate to true or false. description is a printf-style format string
that describes the failure condition. Each argn is an argument to be inserted, in place, into the
description.

1344 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return
void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSCAssert (page 1341)
NSCAssert1 (page 1342)
NSCAssert2 (page 1342)
NSCAssert3 (page 1343)
NSCAssert4 (page 1344)
NSCParameterAssert (page 1348)
NSParameterAssert (page 1368)

NSClassFromString
Obtains a class by name.

Class NSClassFromString (
NSString *aClassName

);

Parameters

aClassName
The name of a class.

Return Value
The class object named by aClassName, or nil if no class by that name is currently loaded. If
aClassName is nil, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromClass (page 1376)
NSProtocolFromString (page 1369)
NSSelectorFromString (page 1373)

Declared In
NSObjCRuntime.h

NSConvertHostDoubleToSwapped
Performs a type conversion.

NSSwappedDouble NSConvertHostDoubleToSwapped (
double x

);

Discussion
Converts the double value in x to a value whose bytes can be swapped. This function does not actually
swap the bytes of x. You should not need to call this function directly.

Functions 1345
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostDoubleToBig (page 1381)
NSSwapHostDoubleToLittle (page 1381)

Declared In
NSByteOrder.h

NSConvertHostFloatToSwapped
Performs a type conversion.

NSSwappedFloat NSConvertHostFloatToSwapped (
float x

);

Discussion
Converts the float value in x to a value whose bytes can be swapped. This function does not actually
swap the bytes of x. You should not need to call this function directly.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostFloatToBig (page 1382)
NSSwapHostFloatToLittle (page 1382)

Declared In
NSByteOrder.h

NSConvertSwappedDoubleToHost
Performs a type conversion.

double NSConvertSwappedDoubleToHost (
NSSwappedDouble x

);

Discussion
Converts the value in x to a double value. This function does not actually swap the bytes of x. You
should not need to call this function directly.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigDoubleToHost (page 1377)
NSSwapLittleDoubleToHost (page 1387)

Declared In
NSByteOrder.h

1346 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSConvertSwappedFloatToHost
Performs a type conversion.

float NSConvertSwappedFloatToHost (
NSSwappedFloat x

);

Discussion
Converts the value in x to a float value. This function does not actually swap the bytes of x. You
should not need to call this function directly.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigFloatToHost (page 1378)
NSSwapLittleFloatToHost (page 1388)

Declared In
NSByteOrder.h

NSCopyMemoryPages
Copies a block of memory.

void NSCopyMemoryPages (
const void *source,
void *dest,
NSUInteger bytes

);

Discussion
Copies (or copies on write) byteCount bytes from source to destination.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSAllocateMemoryPages (page 1335)
NSDeallocateMemoryPages (page 1349)

Declared In
NSZone.h

NSCopyObject
Creates an exact copy of an object.

Functions 1347
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

id NSCopyObject (
id object,
NSUInteger extraBytes,
NSZone *zone

);

Parameters

object
The object to copy.

extraBytes
The number of extra bytes required for indexed instance variables (this value is typically 0).

zone
The zone in which to create the new instance (pass NULL to specify the default zone).

Return Value
A new object that’s an exact copy of anObject, or nil if object is nil or if object could not be
copied.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSAllocateObject (page 1335)
NSDeallocateObject (page 1350)

Declared In
NSObject.h

NSCParameterAssert
Evaluates the specified parameter.

NSCParameterAssert(condition)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

This macro validates a parameter for a C function. Simply provide the parameter as the condition
argument. The macro evaluates the parameter and, if the parameter evaluates to false, logs an error
message that includes the parameter and then raises an exception.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All macros return
void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSCAssert (page 1341)

1348 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSParameterAssert (page 1368)

NSCreateZone
Creates a new zone.

NSZone * NSCreateZone (
NSUInteger startSize,
NSUInteger granularity,
BOOL canFree

);

Return Value
A pointer to a new zone of startSize bytes, which will grow and shrink by granularity bytes. If
canFree is 0, the allocator will never free memory, and malloc will be fast. Returns NULL if a new
zone could not be created.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSDefaultMallocZone (page 1357)
NSRecycleZone (page 1371)
NSSetZoneName (page 1374)

Declared In
NSZone.h

NSDeallocateMemoryPages
Deallocates the specified block of memory.

void NSDeallocateMemoryPages (
void *ptr,
NSUInteger bytes

);

Discussion
This function deallocates memory that was allocated with NSAllocateMemoryPages.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSCopyMemoryPages (page 1347)
NSAllocateMemoryPages (page 1335)

Declared In
NSZone.h

Functions 1349
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSDeallocateObject
Destroys an existing object.

void NSDeallocateObject (
id object

);

Parameters

object
An object.

Discussion
This function deallocates object, which must have been allocated using NSAllocateObject.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSCopyObject (page 1347)
NSAllocateObject (page 1335)

Declared In
NSObject.h

NSDecimalAdd
Adds two decimal values.

NSCalculationError NSDecimalAdd (
NSDecimal *result,
const NSDecimal *leftOperand,
const NSDecimal *rightOperand,
NSRoundingMode roundingMode

);

Discussion
Adds leftOperand to rightOperand and stores the sum in result.

An NSDecimal can represent a number with up to 38 significant digits. If a number is more precise
than that, it must be rounded off. roundingMode determines how to round it off. There are four
possible rounding modes:

Round return values down.NSRoundDown

Round return values up.NSRoundUp

Round to the closest possible return value; when caught halfway between
two positive numbers, round up; when caught between two negative
numbers, round down.

NSRoundPlain

Round to the closest possible return value; when halfway between two
possibilities, return the possibility whose last digit is even.

NSRoundBankers

1350 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

The return value indicates whether any machine limitations were encountered in the addition. If none
were encountered, the function returns NSCalculationNoError. Otherwise it may return one of the
following values: NSCalculationLossOfPrecision, NSCalculationOverflow or
NSCalculationUnderflow. For descriptions of all these error conditions, see
exceptionDuringOperation:error:leftOperand:rightOperand: (page 1252) in
NSDecimalNumberBehaviors.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalCompact
Compacts the decimal structure for efficiency.

void NSDecimalCompact (
NSDecimal *number

);

Discussion
Formats number so that calculations using it will take up as little memory as possible. All the
NSDecimal... arithmetic functions expect compact NSDecimal arguments.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalCompare
Compares two decimal values.

NSComparisonResult NSDecimalCompare (
const NSDecimal *leftOperand,
const NSDecimal *rightOperand

);

Return Value
NSOrderedDescending if leftOperand is bigger than rightOperand; NSOrderedAscending if
rightOperand is bigger than leftOperand; or NSOrderedSame if the two operands are equal.

Discussion
For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Functions 1351
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Declared In
NSDecimal.h

NSDecimalCopy
Copies the value of a decimal number.

void NSDecimalCopy (
NSDecimal *destination,
const NSDecimal *source

);

Discussion
Copies the value in source to destination.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalDivide
Divides one decimal value by another.

NSCalculationError NSDecimalDivide (
NSDecimal *result,
const NSDecimal *leftOperand,
const NSDecimal *rightOperand,
NSRoundingMode roundingMode

);

Discussion
Divides leftOperand by rightOperand and stores the quotient, possibly rounded off according to
roundingMode, in result. If rightOperand is 0, returns NSDivideByZero.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1350).

Note that repeating decimals or numbers with a mantissa larger than 38 digits cannot be represented
precisely.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

1352 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSDecimalIsNotANumber
Returns a Boolean that indicates whether a given decimal contains a valid number.

BOOL NSDecimalIsNotANumber (
const NSDecimal *dcm

);

Return Value
YES if the value in decimal represents a valid number, otherwise NO.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalMultiply
Multiplies two decimal numbers together.

NSCalculationError NSDecimalMultiply (
NSDecimal *result,
const NSDecimal *leftOperand,
const NSDecimal *rightOperand,
NSRoundingMode roundingMode

);

Discussion
Multiplies rightOperand by leftOperand and stores the product, possibly rounded off according
to roundingMode, in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1350).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalMultiplyByPowerOf10
Multiplies a decimal by the specified power of 10.

Functions 1353
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSCalculationError NSDecimalMultiplyByPowerOf10 (
NSDecimal *result,
const NSDecimal *number,
short power,
NSRoundingMode roundingMode

);

Discussion
Multiplies number by power of 10 and stores the product, possibly rounded off according to
roundingMode, in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1350).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalNormalize
Normalizes the internal format of two decimal numbers to simplify later operations.

NSCalculationError NSDecimalNormalize (
NSDecimal *number1,
NSDecimal *number2,
NSRoundingMode roundingMode

);

Discussion
An NSDecimal is represented in memory as a mantissa and an exponent, expressing the value mantissa
x 10exponent. A number can have many NSDecimal representations; for example, the following table
lists several valid NSDecimal representations for the number 100:

ExponentMantissa

0100

110

21

Format number1 and number2 so that they have equal exponents. This format makes addition and
subtraction very convenient. Both NSDecimalAdd (page 1350) and NSDecimalSubtract (page 1356) call
NSDecimalNormalize. You may want to use it if you write more complicated addition or subtraction
routines.

For explanations of the possible return values, see NSDecimalAdd (page 1350).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

1354 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Declared In
NSDecimal.h

NSDecimalPower
Raises the decimal value to the specified power.

NSCalculationError NSDecimalPower (
NSDecimal *result,
const NSDecimal *number,
NSUInteger power,
NSRoundingMode roundingMode

);

Discussion
Raises number to power, possibly rounding off according to roundingMode, and stores the resulting
value in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1350).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalRound
Rounds off the decimal value.

void NSDecimalRound (
NSDecimal *result,
const NSDecimal *number,
NSInteger scale,
NSRoundingMode roundingMode

);

Discussion
Rounds number off according to the parameters scale and roundingMode and stores the result in
result.

The scale value specifies the number of digits result can have after its decimal point. roundingMode
specifies the way that number is rounded off. There are four possible values for roundingMode:
NSRoundDown, NSRoundUp, NSRoundPlain, and NSRoundBankers. For thorough discussions of scale
and roundingMode, see NSDecimalNumberBehaviors.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Functions 1355
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Declared In
NSDecimal.h

NSDecimalString
Returns a string representation of the decimal value.

NSString * NSDecimalString (
const NSDecimal *dcm,
id locale

);

Discussion
Returns a string representation of decimal. locale determines the format of the decimal separator.

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecimalSubtract
Subtracts one decimal value from another.

NSCalculationError NSDecimalSubtract (
NSDecimal *result,
const NSDecimal *leftOperand,
const NSDecimal *rightOperand,
NSRoundingMode roundingMode

);

Discussion
Subtracts rightOperand from leftOperand and stores the difference, possibly rounded off according
to roundingMode, in result.

For explanations of the possible return values and rounding modes, see NSDecimalAdd (page 1350).

For more information, see Number and Value Programming Topics for Cocoa.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSDecrementExtraRefCountWasZero
Decrements the specified object’s reference count.

1356 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

BOOL NSDecrementExtraRefCountWasZero (
id object

);

Parameters

object
An object.

Return Value
NO if anObject had an extra reference count, or YES if anObject didn’t have an extra reference
count—indicating that the object should be deallocated (with dealloc).

Discussion
Decrements the “extra reference” count of anObject. Newly created objects have only one actual
reference, so that a single release message results in the object being deallocated. Extra references are
those beyond the single original reference and are usually created by sending the object a retain
message. Your code should generally not use these functions unless it is overriding the retain (page
1312) or release (page 1310) methods.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSExtraRefCount (page 1358)
NSIncrementExtraRefCount (page 1361)

Declared In
NSObject.h

NSDefaultMallocZone
Returns the default zone.

NSZone * NSDefaultMallocZone (
void

);

Return Value
The default zone, which is created automatically at startup.

Discussion
This zone is used by the standard C function malloc.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSCreateZone (page 1349)

Declared In
NSZone.h

Functions 1357
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSEqualRanges
Returns a Boolean value that indicates whether two given ranges are equal.

BOOL NSEqualRanges (
NSRange range1,
NSRange range2

);

Return Value
YES if range1 and range2 have the same locations and lengths.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRange.h

NSExtraRefCount
Returns the specified object’s reference count.

NSUInteger NSExtraRefCount (
id object

);

Parameters

object
An object.

Return Value
The current reference count of object.

Discussion
This function is used in conjunction with NSIncrementExtraRefCount (page 1361) and
NSDecrementExtraRefCountWasZero (page 1356) in situations where you need to override an object’s
retain (page 1312) and release (page 1310) methods.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

NSFullUserName
Returns a string containing the full name of the current user.

NSString * NSFullUserName (
void

);

Return Value
A string containing the full name of the current user.

1358 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
NSUserName (page 1393)

Declared In
NSPathUtilities.h

NSGetSizeAndAlignment
Obtains the actual size and the aligned size of an encoded type.

const char * NSGetSizeAndAlignment (
const char *typePtr,
NSUInteger *sizep,
NSUInteger *alignp

);

Discussion
Obtains the actual size and the aligned size of the first data type represented by typePtr and returns
a pointer to the position of the next data type in typePtr. You can specify NULL for either sizep or
alignp to ignore the corresponding information.

The value returned in alignp is the aligned size of the data type; for example, on some platforms,
the aligned size of a char might be 2 bytes while the actual physical size is 1 byte.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObjCRuntime.h

NSGetUncaughtExceptionHandler
Returns the top-level error handler.

NSUncaughtExceptionHandler * NSGetUncaughtExceptionHandler (
void

);

Return Value
A pointer to the top-level error-handling function where you can perform last-minute logging before
the program terminates.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSetUncaughtExceptionHandler (page 1374)

Declared In
NSException.h

Functions 1359
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSHomeDirectory
Returns the path to the current user’s home directory.

NSString * NSHomeDirectory (
void

);

Return Value
The path to the current user’s home directory.

Discussion
For more information on file-system utilities, see Low-Level File Management Programming Topics.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSFullUserName (page 1358)
NSUserName (page 1393)
NSHomeDirectoryForUser (page 1360)

Declared In
NSPathUtilities.h

NSHomeDirectoryForUser
Returns the path to a given user’s home directory.

NSString * NSHomeDirectoryForUser (
NSString *userName

);

Parameters

userName
The name of a user.

Return Value
The path to the home directory for the user specified by userName.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSFullUserName (page 1358)
NSUserName (page 1393)
NSHomeDirectory (page 1360)

Declared In
NSPathUtilities.h

1360 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSHostByteOrder
Returns the endian format.

long NSHostByteOrder (
void

);

Return Value
The endian format, either NS_LittleEndian or NS_BigEndian.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSByteOrder.h

NSIncrementExtraRefCount
Increments the specified object’s reference count.

void NSIncrementExtraRefCount (
id object

);

Parameters

object
An object.

Discussion
This function increments the “extra reference” count of object. Newly created objects have only one
actual reference, so that a single release message results in the object being deallocated. Extra references
are those beyond the single original reference and are usually created by sending the object a retain
message. Your code should generally not use these functions unless it is overriding the retain or
release methods.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSExtraRefCount (page 1358)
NSDecrementExtraRefCountWasZero (page 1356)

Declared In
NSObject.h

NSIntersectionRange
Returns the intersection of the specified ranges.

Functions 1361
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSRange NSIntersectionRange (
NSRange range1,
NSRange range2

);

Return Value
A range describing the intersection of range1 and range2—that is, a range containing the indices
that exist in both ranges.

Discussion
If the returned range’s length field is 0, then the two ranges don’t intersect, and the value of the
location field is undefined.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSUnionRange (page 1392)

Declared In
NSRange.h

NSLocalizedString
Returns a localized version of a string.

NSString *NSLocalizedString(NSString *key, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 95) on the main bundle and
a nil table.

Discussion
In order to be parsed correctly by genstrings, key should not contain any high-ASCII characters.
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings
utility.

For more information, see NSBundle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

NSLocalizedStringFromTable
Returns a localized version of a string.

1362 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSString *NSLocalizedStringFromTable(NSString *key, NSString *tableName, NSString
*comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 95) on the main bundle, passing
it the specified key and tableName.

Discussion
In order to be parsed correctly by genstrings, key must not contain any high-ASCII characters. You
can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

NSLocalizedStringFromTableInBundle
Returns a localized version of a string.

NSString *NSLocalizedStringFromTableInBundle(NSString *key, NSString *tableName,
NSBundle *bundle, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 95) on bundle, passing it the
specified key and tableName.

Discussion
In order to be parsed correctly by genstrings, key must not contain any high-ASCII characters. You
can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings utility.

For more information, see NSBundle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

NSLocalizedStringWithDefaultValue
Returns a localized version of a string.

NSString NSLocalizedStringWithDefaultValue(NSString *key, NSString *tableName,
NSBundle *bundle, NSString *value, NSString *comment)

Return Value
The result of invoking localizedStringForKey:value:table: (page 95) on bundle, passing it the
specified key, value, and tableName.

Functions 1363
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Discussion
You can specify Unicode characters in key using \\Uxxxx—see the -u option for for the genstrings
utility.

If you use genstrings to parse your code for localizable strings, you can use this method to specify
an initial value that is different from key.

For more information, see NSBundle.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSBundle.h

NSLocationInRange
Returns a Boolean value that indicates whether a specified position is in a given range.

BOOL NSLocationInRange (
NSUInteger loc,
NSRange range

);

Return Value
YES if index lies within aRange—that is, if it’s greater than or equal to aRange.location and less
than aRange.location plus aRange.length.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRange.h

NSLog
Logs error an message to stderr.

void NSLog (
NSString *format,
...

);

Discussion
Simply calls NSLogv (page 1365), passing it a variable number of arguments.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSLogv (page 1365)

Declared In
NSObjCRuntime.h

1364 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSLogPageSize
Returns the binary log of the page size.

NSUInteger NSLogPageSize (
void

);

Return Value
The binary log of the page size.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSRoundDownToMultipleOfPageSize (page 1372)
NSRoundUpToMultipleOfPageSize (page 1372)
NSPageSize (page 1367)

Declared In
NSZone.h

NSLogv
Logs an error message to stderr.

void NSLogv (
NSString *format,
va_list args

);

Discussion
Logs an error message. The message consists of a timestamp and the process ID prefixed to the string
you pass in. You compose this string with a format string, format, and one or more arguments to be
inserted into the string. The format specification allowed by these functions is that which is understood
by NSString’s formatting capabilities (which is not necessarily the set of format escapes and flags
understood by printf). The supported format specifiers are described in String Format Specifiers.
A final hard return is added to the error message if one is not present in the format.

In general, you should use the NSLog (page 1364) function instead of calling this function directly. If
you do use this function directly, you must have prepared the variable argument list in the args
argument by calling the standard C macro va_start. Upon completion, you must similarly call the
standard C macro va_end for this list.

NSLogv writes the log to STDERR_FILENO if the file descriptor is open. If that write attempt fails, the
message is sent to the syslog subsystem, if it exists on a platform, with the LOG_USER facility (or default
facility if LOG_USER does not exist), with priority LOG_ERR (or similar). If both of these attempts to
write the message fail, the message is discarded.

Output from NSLogv is serialized, in that only one thread in a process can be doing the writing/logging
described above at a time. All attempts at writing/logging a message complete before the next thread
can begin its attempts.

Functions 1365
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

The effects of NSLogv are not serialized with subsystems other than those discussed above (such as
the standard I/O package) and do not produce side effects on those subsystems (such as causing
buffered output to be flushed, which may be undesirable).

Availability
Available in iPhone OS 2.0 and later.

See Also
NSLog (page 1364)

Declared In
NSObjCRuntime.h

NSMakeCollectable
Makes a newly allocated Core Foundation object eligible for collection.

NS_INLINE id NSMakeCollectable(CFTypeRef cf) {
return cf ? (id)CFMakeCollectable(cf) : nil;

}

Discussion
This function is a wrapper for CFMakeCollectable, but its return type is id—avoiding the need for
casting when using Cocoa objects.

This function may be useful when returning Core Foundation objects in code that must support both
garbage-collected and non-garbage-collected environments, as illustrated in the following example.

- (CFDateRef)foo {
CFDateRef aCFDate;
// ...
return [NSMakeCollectable(aCFDate) autorelease];

}

CFTypeRef style objects are garbage collected, yet only sometime after the last CFRelease is performed.
Particularly for fully-bridged CFTypeRef objects such as CFStrings and collections (such as
CFDictionary), you must call either CFMakeCollectable or the more type safe NSMakeCollectable,
preferably right upon allocation.

Declared In
NSZone.h

NSMakeRange
Creates a new NSRange from the specified values.

NSRange NSMakeRange (
NSUInteger loc,
NSUInteger len

);

Return Value
An NSRange with location location and length length.

1366 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRange.h

NSMaxRange
Returns the number 1 greater than the maximum value within the range.

NSUInteger NSMaxRange (
NSRange range

);

Return Value
range.location + range.length—in other words, the number 1 greater than the maximum value
within the range.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRange.h

NSOpenStepRootDirectory
Returns the root directory of the user’s system.

NSString * NSOpenStepRootDirectory (
void

);

Return Value
A string identifying the root directory of the user’s system.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSHomeDirectory (page 1360)
NSHomeDirectoryForUser (page 1360)

Declared In
NSPathUtilities.h

NSPageSize
Returns the number of bytes in a page.

Functions 1367
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSUInteger NSPageSize (
void

);

Return Value
The number of bytes in a page.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSRoundDownToMultipleOfPageSize (page 1372)
NSRoundUpToMultipleOfPageSize (page 1372)
NSLogPageSize (page 1365)

Declared In
NSZone.h

NSParameterAssert
Validates the specified parameter.

NSParameterAssert(condition)

Discussion
Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler for
the current thread, passing it a format string and a variable number of arguments. Each thread has
its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an assertion
handler prints an error message that includes method and class names (or the function name). It then
raises an NSInternalInconsistencyException exception.

This macro validates a parameter for an Objective-C method. Simply provide the parameter as the
condition argument. The macro evaluates the parameter and, if it is false, it logs an error message
that includes the parameter and then raises an exception.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All assertion
macros return void.

See Also
NSLog (page 1364)
NSLogv (page 1365)
NSAssert (page 1336)
NSCAssert (page 1341)
NSCParameterAssert (page 1348)

NSPointFromCGPoint
Returns an NSPoint typecast from a CGPoint.

1368 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSPoint NSPointFromCGPoint(CGPoint cgpoint) {
return (*(NSPoint *)&(cgpoint));

}

Return Value
An NSPoint typecast from a CGPoint.

Declared In
NSGeometry.h

See Also
NSPointToCGPoint (page 1369)
NSRectFromCGRect (page 1370)
NSSizeFromCGSize (page 1375)

NSPointToCGPoint
Returns a CGPoint typecast from an NSPoint.

CGPoint NSPointToCGPoint(NSPoint nspoint) {
return (*(CGPoint *)&(nspoint));

}

Return Value
A CGPoint typecast from an NSPoint.

Declared In
NSGeometry.h

See Also
NSPointFromCGPoint (page 1368)
NSRectToCGRect (page 1371)
NSSizeToCGSize (page 1375)

NSProtocolFromString
Returns a the protocol with a given name.

Protocol *NSProtocolFromString (
NSString *namestr

);

Parameters

namestr
The name of a protocol.

Return Value
The protocol object named by namestr, or nil if no protocol by that name is currently loaded. If
namestr is nil, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromProtocol (page 1376)

Functions 1369
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSClassFromString (page 1345)
NSSelectorFromString (page 1373)

Declared In
NSObjCRuntime.h

NSRangeFromString
Returns a range from a text-based representation.

NSRange NSRangeFromString (
NSString *aString

);

Discussion
Scans aString for two integers which are used as the location and length values, in that order, to
create an NSRange struct. If aString only contains a single integer, it is used as the location value. If
aString does not contain any integers, this function returns an NSRange struct whose location and
length values are both 0.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromRange (page 1377)

Declared In
NSRange.h

NSRealMemoryAvailable
Returns information about the user’s system.

NSUInteger NSRealMemoryAvailable (
void

);

Return Value
The number of bytes available in RAM.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSZone.h

NSRectFromCGRect
Returns an NSRect typecast from a CGRect.

1370 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSRect NSRectFromCGRect(CGRect cgrect) {
return (*(NSRect *)&(cgrect));

}

Return Value
An NSRect typecast from a CGRect.

Declared In
NSGeometry.h

See Also
NSRectToCGRect (page 1371)
NSPointFromCGPoint (page 1368)
NSSizeFromCGSize (page 1375)

NSRectToCGRect
Returns a CGRect typecast from an NSRect.

CGRect NSRectToCGRect(NSRect nsrect) {
return (*(CGRect *)&(nsrect));

}

Return Value
A CGRect typecast from an NSRect.

Declared In
NSGeometry.h

See Also
NSRectFromCGRect (page 1370)
NSPointToCGPoint (page 1369)
NSSizeToCGSize (page 1375)

NSRecycleZone
Frees memory in a zone.

void NSRecycleZone (
NSZone *zone

);

Discussion
Frees zone after adding any of its pointers still in use to the default zone. (This strategy prevents
retained objects from being inadvertently destroyed.)

Returns void.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSCreateZone (page 1349)
NSZoneMalloc (page 1395)

Functions 1371
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Declared In
NSZone.h

NSRoundDownToMultipleOfPageSize
Returns the specified number of bytes rounded down to a multiple of the page size.

NSUInteger NSRoundDownToMultipleOfPageSize (
NSUInteger bytes

);

Return Value
In bytes, the multiple of the page size that is closest to, but not greater than, byteCount (that is, the
number of bytes rounded down to a multiple of the page size).

Availability
Available in iPhone OS 2.0 and later.

See Also
NSPageSize (page 1367)
NSLogPageSize (page 1365)
NSRoundUpToMultipleOfPageSize (page 1372)

Declared In
NSZone.h

NSRoundUpToMultipleOfPageSize
Returns the specified number of bytes rounded up to a multiple of the page size.

NSUInteger NSRoundUpToMultipleOfPageSize (
NSUInteger bytes

);

Return Value
In bytes, the multiple of the page size that is closest to, but not less than, byteCount (that is, the
number of bytes rounded up to a multiple of the page size).

Availability
Available in iPhone OS 2.0 and later.

See Also
NSPageSize (page 1367)
NSLogPageSize (page 1365)
NSRoundDownToMultipleOfPageSize (page 1372)

Declared In
NSZone.h

NSSearchPathForDirectoriesInDomains
Creates a list of directory search paths.

1372 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSArray * NSSearchPathForDirectoriesInDomains (
NSSearchPathDirectory directory,
NSSearchPathDomainMask domainMask,
BOOL expandTilde

);

Discussion
Creates a list of path strings for the specified directories in the specified domains. The list is in the
order in which you should search the directories. If expandTilde is YES, tildes are expanded as
described in stringByExpandingTildeInPath (page 1031).

For more information on file system utilities, see Locating Directories on the System.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

NSSelectorFromString
Returns the selector with a given name.

SEL NSSelectorFromString (
NSString *aSelectorName

);

Parameters

aSelectorName
A string of any length, with any characters, that represents the name of a selector.

Return Value
The selector named by aSelectorName. If aSelectorName is nil, or cannot be converted to UTF-8
(this should be only due to insufficient memory), returns (SEL)0.

Discussion
To make a selector, NSSelectorFromString passes a UTF-8 encoded character representation of
aSelectorName to sel_registerName and returns the value returned by that function. Note, therefore,
that if the selector does not exist it is registered and the newly-registered selector is returned.

Recall that a colon (“:”) is part of a method name; setHeight is not the same as setHeight:. For more
about methods names, see The Language in The Objective-C 2.0 Programming Language.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSStringFromSelector (page 1377)
NSProtocolFromString (page 1369)
NSClassFromString (page 1345)

Declared In
NSObjCRuntime.h

Functions 1373
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSSetUncaughtExceptionHandler
Changes the top-level error handler.

void NSSetUncaughtExceptionHandler (
NSUncaughtExceptionHandler *

);

Discussion
Sets the top-level error-handling function where you can perform last-minute logging before the
program terminates.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSGetUncaughtExceptionHandler (page 1359)
reportException: (NSApplication)

Declared In
NSException.h

NSSetZoneName
Sets the name of the specified zone.

void NSSetZoneName (
NSZone *zone,
NSString *name

);

Discussion
Sets the name of zone to name, which can aid in debugging.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSZoneName (page 1395)

Declared In
NSZone.h

NSShouldRetainWithZone
Indicates whether an object should be retained.

1374 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

BOOL NSShouldRetainWithZone (
id anObject,
NSZone *requestedZone

);

Parameters

anObject
An object.

requestedZone
A memory zone.

Return Value
Returns YES if requestedZone is NULL, the default zone, or the zone in which anObjectwas allocated;
otherwise NO.

Discussion
This function is typically called from inside an NSObject’s copyWithZone: (page 787), when deciding
whether to retain anObject as opposed to making a copy of it.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObject.h

NSSizeFromCGSize
Returns an NSSize typecast from a CGSize.

NSSize NSSizeFromCGSize(CGSize cgsize) {
return (*(NSSize *)&(cgsize));

}

Return Value
An NSSize typecast from a CGSize.

Declared In
NSGeometry.h

See Also
NSSizeToCGSize (page 1375)
NSPointFromCGPoint (page 1368)
NSRectFromCGRect (page 1370)

NSSizeToCGSize
Returns a CGSize typecast from an NSSize.

CGSize NSSizeToCGSize(NSSize nssize) {
return (*(CGSize *)&(nssize));

}

Return Value
A CGSize typecast from an NSSize.

Functions 1375
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Declared In
NSGeometry.h

See Also
NSSizeFromCGSize (page 1375)
NSPointToCGPoint (page 1369)
NSRectToCGRect (page 1371)

NSStringFromClass
Returns the name of a class as a string.

NSString * NSStringFromClass (
Class aClass

);

Parameters

aClass
A class.

Return Value
A string containing the name of aClass. If aClass is nil, returns nil.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSClassFromString (page 1345)
NSStringFromProtocol (page 1376)
NSStringFromSelector (page 1377)

Declared In
NSObjCRuntime.h

NSStringFromProtocol
Returns the name of a protocol as a string.

NSString * NSStringFromProtocol (
Protocol *proto

);

Parameters

proto
A protocol.

Return Value
A string containing the name of proto.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSProtocolFromString (page 1369)

1376 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSStringFromClass (page 1376)
NSStringFromSelector (page 1377)

Declared In
NSObjCRuntime.h

NSStringFromRange
Returns a string representation of a range.

NSString * NSStringFromRange (
NSRange range

);

Return Value
A string of the form “{a, b}”, where a and b are non-negative integers representing aRange.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRange.h

NSStringFromSelector
Returns a string representation of a given selector.

NSString *NSStringFromSelector (
SEL *aSelector

);

Parameters

aSelector
A selector.

Return Value
A string representation of aSelector.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSelectorFromString (page 1373)
NSStringFromProtocol (page 1376)
NSStringFromClass (page 1376)

Declared In
NSObjCRuntime.h

NSSwapBigDoubleToHost
A utility for swapping the bytes of a number.

Functions 1377
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

double NSSwapBigDoubleToHost (
NSSwappedDouble x

);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it
is necessary to swap the bytes of x, this function calls NSSwapDouble (page 1380) to perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostDoubleToBig (page 1381)
NSSwapLittleDoubleToHost (page 1387)

Declared In
NSByteOrder.h

NSSwapBigFloatToHost
A utility for swapping the bytes of a number.

float NSSwapBigFloatToHost (
NSSwappedFloat x

);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it
is necessary to swap the bytes of x, this function calls NSSwapFloat (page 1380) to perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostFloatToBig (page 1382)
NSSwapLittleFloatToHost (page 1388)

Declared In
NSByteOrder.h

NSSwapBigIntToHost
A utility for swapping the bytes of a number.

unsigned int NSSwapBigIntToHost (
unsigned int x

);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it
is necessary to swap the bytes of x, this function calls NSSwapInt (page 1387) to perform the swap.

Availability
Available in iPhone OS 2.0 and later.

1378 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

See Also
NSSwapHostIntToBig (page 1383)
NSSwapLittleIntToHost (page 1388)

Declared In
NSByteOrder.h

NSSwapBigLongLongToHost
A utility for swapping the bytes of a number.

unsigned long long NSSwapBigLongLongToHost (
unsigned long long x

);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it
is necessary to swap the bytes of x, this function calls NSSwapLongLong (page 1391) to perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostLongLongToBig (page 1384)
NSSwapLittleLongLongToHost (page 1389)

Declared In
NSByteOrder.h

NSSwapBigLongToHost
A utility for swapping the bytes of a number.

unsigned long NSSwapBigLongToHost (
unsigned long x

);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it
is necessary to swap the bytes of x, this function calls NSSwapLong (page 1390) to perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostLongToBig (page 1385)
NSSwapLittleLongToHost (page 1389)

Declared In
NSByteOrder.h

Functions 1379
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSSwapBigShortToHost
A utility for swapping the bytes of a number.

unsigned short NSSwapBigShortToHost (
unsigned short x

);

Discussion
Converts the big-endian value in x to the current endian format and returns the resulting value. If it
is necessary to swap the bytes of x, this function calls NSSwapShort (page 1391) to perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostShortToBig (page 1386)
NSSwapLittleShortToHost (page 1390)

Declared In
NSByteOrder.h

NSSwapDouble
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapDouble (
NSSwappedDouble x

);

Discussion
Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order position
to the corresponding high-order position and vice versa. For example, if the bytes of x are numbered
from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 4 and 5.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLongLong (page 1391)
NSSwapFloat (page 1380)

Declared In
NSByteOrder.h

NSSwapFloat
A utility for swapping the bytes of a number.

1380 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSSwappedFloat NSSwapFloat (
NSSwappedFloat x

);

Discussion
Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order position
to the corresponding high-order position and vice versa. For example, if the bytes of x are numbered
from 1 to 4, this function swaps bytes 1 and 4, and bytes 2 and 3.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLong (page 1390)
NSSwapDouble (page 1380)

Declared In
NSByteOrder.h

NSSwapHostDoubleToBig
A utility for swapping the bytes of a number.

NSSwappedDouble NSSwapHostDoubleToBig (
double x

);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the
resulting value. If it is necessary to swap the bytes, this function calls NSSwapDouble (page 1380) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigDoubleToHost (page 1377)
NSSwapHostDoubleToLittle (page 1381)

Declared In
NSByteOrder.h

NSSwapHostDoubleToLittle
A utility for swapping the bytes of a number.

Functions 1381
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSSwappedDouble NSSwapHostDoubleToLittle (
double x

);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns
the resulting value. If it is necessary to swap the bytes, this function calls NSSwapDouble (page 1380) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLittleDoubleToHost (page 1387)
NSSwapHostDoubleToBig (page 1381)

Declared In
NSByteOrder.h

NSSwapHostFloatToBig
A utility for swapping the bytes of a number.

NSSwappedFloat NSSwapHostFloatToBig (
float x

);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the
resulting value. If it is necessary to swap the bytes, this function calls NSSwapFloat (page 1380) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigFloatToHost (page 1378)
NSSwapHostFloatToLittle (page 1382)

Declared In
NSByteOrder.h

NSSwapHostFloatToLittle
A utility for swapping the bytes of a number.

1382 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSSwappedFloat NSSwapHostFloatToLittle (
float x

);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns
the resulting value. If it is necessary to swap the bytes, this function calls NSSwapFloat (page 1380) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLittleFloatToHost (page 1388)
NSSwapHostFloatToBig (page 1382)

Declared In
NSByteOrder.h

NSSwapHostIntToBig
A utility for swapping the bytes of a number.

unsigned int NSSwapHostIntToBig (
unsigned int x

);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the
resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt (page 1387) to perform
the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigIntToHost (page 1378)
NSSwapHostIntToLittle (page 1383)

Declared In
NSByteOrder.h

NSSwapHostIntToLittle
A utility for swapping the bytes of a number.

Functions 1383
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned int NSSwapHostIntToLittle (
unsigned int x

);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns
the resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt (page 1387) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLittleIntToHost (page 1388)
NSSwapHostIntToBig (page 1383)

Declared In
NSByteOrder.h

NSSwapHostLongLongToBig
A utility for swapping the bytes of a number.

unsigned long long NSSwapHostLongLongToBig (
unsigned long long x

);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the
resulting value. If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 1391) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigLongLongToHost (page 1379)
NSSwapHostLongLongToLittle (page 1384)

Declared In
NSByteOrder.h

NSSwapHostLongLongToLittle
A utility for swapping the bytes of a number.

1384 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned long long NSSwapHostLongLongToLittle (
unsigned long long x

);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns
the resulting value. If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 1391)
to perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLittleLongLongToHost (page 1389)
NSSwapHostLongLongToBig (page 1384)

Declared In
NSByteOrder.h

NSSwapHostLongToBig
A utility for swapping the bytes of a number.

unsigned long NSSwapHostLongToBig (
unsigned long x

);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the
resulting value. If it is necessary to swap the bytes, this function calls NSSwapLong (page 1390) to perform
the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigLongToHost (page 1379)
NSSwapHostLongToLittle (page 1385)

Declared In
NSByteOrder.h

NSSwapHostLongToLittle
A utility for swapping the bytes of a number.

Functions 1385
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned long NSSwapHostLongToLittle (
unsigned long x

);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns
the resulting value. If it is necessary to swap the bytes, this function calls NSSwapLong (page 1390) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLittleLongToHost (page 1389)
NSSwapHostLongToBig (page 1385)

Declared In
NSByteOrder.h

NSSwapHostShortToBig
A utility for swapping the bytes of a number.

unsigned short NSSwapHostShortToBig (
unsigned short x

);

Discussion
Converts the value in x, specified in the current endian format, to big-endian format and returns the
resulting value. If it is necessary to swap the bytes, this function calls NSSwapShort (page 1391) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapBigShortToHost (page 1380)
NSSwapHostShortToLittle (page 1386)

Declared In
NSByteOrder.h

NSSwapHostShortToLittle
A utility for swapping the bytes of a number.

1386 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned short NSSwapHostShortToLittle (
unsigned short x

);

Discussion
Converts the value in x, specified in the current endian format, to little-endian format and returns
the resulting value. If it is necessary to swap the bytes, this function calls NSSwapShort (page 1391) to
perform the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLittleShortToHost (page 1390)
NSSwapHostShortToBig (page 1386)

Declared In
NSByteOrder.h

NSSwapInt
A utility for swapping the bytes of a number.

unsigned int NSSwapInt (
unsigned int inv

);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order
position to the corresponding high-order position and vice versa. For example, if the bytes of inv are
numbered from 1 to 4, this function swaps bytes 1 and 4, and bytes 2 and 3.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapShort (page 1391)
NSSwapLong (page 1390)
NSSwapLongLong (page 1391)

Declared In
NSByteOrder.h

NSSwapLittleDoubleToHost
A utility for swapping the bytes of a number.

Functions 1387
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

double NSSwapLittleDoubleToHost (
NSSwappedDouble x

);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting
value. If it is necessary to swap the bytes of x, this function calls NSSwapDouble (page 1380) to perform
the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostDoubleToLittle (page 1381)
NSSwapBigDoubleToHost (page 1377)
NSConvertSwappedDoubleToHost (page 1346)

Declared In
NSByteOrder.h

NSSwapLittleFloatToHost
A utility for swapping the bytes of a number.

float NSSwapLittleFloatToHost (
NSSwappedFloat x

);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting
value. If it is necessary to swap the bytes of x, this function calls NSSwapFloat (page 1380) to perform
the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostFloatToLittle (page 1382)
NSSwapBigFloatToHost (page 1378)
NSConvertSwappedFloatToHost (page 1347)

Declared In
NSByteOrder.h

NSSwapLittleIntToHost
A utility for swapping the bytes of a number.

1388 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned int NSSwapLittleIntToHost (
unsigned int x

);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapInt (page 1387) to perform the
swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostIntToLittle (page 1383)
NSSwapBigIntToHost (page 1378)

Declared In
NSByteOrder.h

NSSwapLittleLongLongToHost
A utility for swapping the bytes of a number.

unsigned long long NSSwapLittleLongLongToHost (
unsigned long long x

);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting
value. If it is necessary to swap the bytes, this function calls NSSwapLongLong (page 1391) to perform
the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostLongLongToLittle (page 1384)
NSSwapBigLongLongToHost (page 1379)

Declared In
NSByteOrder.h

NSSwapLittleLongToHost
A utility for swapping the bytes of a number.

Functions 1389
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned long NSSwapLittleLongToHost (
unsigned long x

);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting
value. If it is necessary to swap the bytes of x, this function calls NSSwapLong (page 1390) to perform
the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostLongToLittle (page 1385)
NSSwapBigLongToHost (page 1379)
NSSwapLong (page 1390)

Declared In
NSByteOrder.h

NSSwapLittleShortToHost
A utility for swapping the bytes of a number.

unsigned short NSSwapLittleShortToHost (
unsigned short x

);

Discussion
Converts the little-endian formatted value in x to the current endian format and returns the resulting
value. If it is necessary to swap the bytes of x, this function calls NSSwapShort (page 1391) to perform
the swap.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapHostShortToLittle (page 1386)
NSSwapBigShortToHost (page 1380)

Declared In
NSByteOrder.h

NSSwapLong
A utility for swapping the bytes of a number.

1390 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned long NSSwapLong (
unsigned long inv

);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order
position to the corresponding high-order position and vice versa. For example, if the bytes of inv are
numbered from 1 to 4, this function swaps bytes 1 and 4, and bytes 2 and 3.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLongLong (page 1391)
NSSwapInt (page 1387)
NSSwapFloat (page 1380)

Declared In
NSByteOrder.h

NSSwapLongLong
A utility for swapping the bytes of a number.

unsigned long long NSSwapLongLong (
unsigned long long inv

);

Discussion
Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order
position to the corresponding high-order position and vice versa. For example, if the bytes of inv are
numbered from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 4 and
5.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapLong (page 1390)
NSSwapDouble (page 1380)

Declared In
NSByteOrder.h

NSSwapShort
A utility for swapping the bytes of a number.

Functions 1391
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

unsigned short NSSwapShort (
unsigned short inv

);

Discussion
Swaps the low-order and high-order bytes of inv and returns the resulting value.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSwapInt (page 1387)
NSSwapLong (page 1390)

Declared In
NSByteOrder.h

NSTemporaryDirectory
Returns the path of the temporary directory for the current user.

NSString * NSTemporaryDirectory (
void

);

Return Value
A string containing the path of the temporary directory for the current user. If no such directory is
currently available, returns nil.

Discussion
For more information on file system utilities, see Low-Level File Management Programming Topics.

Files put in the temporary directory may be moved to the Trash in a “Recovered Files” directory when
the user’s system is restarted. You should therefore ensure that you delete temporary files before
your application terminates.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSSearchPathForDirectoriesInDomains (page 1372)
NSHomeDirectory (page 1360)

Declared In
NSPathUtilities.h

NSUnionRange
Returns the intersection of the specified ranges.

1392 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NSRange NSUnionRange (
NSRange range1,
NSRange range2

);

Return Value
A range covering all indices in and between range1 and range2. If one range is completely contained
in the other, the returned range is equal to the larger range.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSIntersectionRange (page 1361)

Declared In
NSRange.h

NSUserName
Returns the logon name of the current user.

NSString * NSUserName (
void

);

Return Value
The logon name of the current user.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSFullUserName (page 1358)
NSHomeDirectory (page 1360)
NSHomeDirectoryForUser (page 1360)

Declared In
NSPathUtilities.h

NSZoneCalloc
Allocates memory in a zone.

void * NSZoneCalloc (
NSZone *zone,
NSUInteger numElems,
NSUInteger byteSize

);

Discussion
Allocates enough memory from zone for numElems elements, each with a size numBytes bytes, and
returns a pointer to the allocated memory. The memory is initialized with zeros. This function returns
NULL if it was unable to allocate the requested memory.

Functions 1393
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
NSDefaultMallocZone (page 1357)
NSRecycleZone (page 1371)
NSZoneFree (page 1394)
NSZoneMalloc (page 1395)
NSZoneRealloc (page 1396)

Declared In
NSZone.h

NSZoneFree
Deallocates a block of memory in the specified zone.

void NSZoneFree (
NSZone *zone,
void *ptr

);

Discussion
Returns memory to the zone from which it was allocated. The standard C function free does the
same, but spends time finding which zone the memory belongs to.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSRecycleZone (page 1371)
NSZoneMalloc (page 1395)
NSZoneCalloc (page 1393)
NSZoneRealloc (page 1396)

Declared In
NSZone.h

NSZoneFromPointer
Gets the zone for a given block of memory.

NSZone * NSZoneFromPointer (
void *ptr

);

Return Value
The zone for the block of memory indicated by pointer, or NULL if the block was not allocated from
a zone.

Discussion
pointer must be one that was returned by a prior call to an allocation function.

1394 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

Availability
Available in iPhone OS 2.0 and later.

See Also
NSZoneCalloc (page 1393)
NSZoneMalloc (page 1395)
NSZoneRealloc (page 1396)

Declared In
NSZone.h

NSZoneMalloc
Allocates memory in a zone.

void * NSZoneMalloc (
NSZone *zone,
NSUInteger size

);

Discussion
Allocates size bytes in zone and returns a pointer to the allocated memory. This function returns
NULL if it was unable to allocate the requested memory.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSDefaultMallocZone (page 1357)
NSRecycleZone (page 1371)
NSZoneFree (page 1394)
NSZoneCalloc (page 1393)
NSZoneRealloc (page 1396)

Declared In
NSZone.h

NSZoneName
Returns the name of the specified zone.

NSString * NSZoneName (
NSZone *zone

);

Return Value
A string containing the name associated with zone. If zone is nil, the default zone is used. If no name
is associated with zone, the returned string is empty.

Availability
Available in iPhone OS 2.0 and later.

Functions 1395
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

See Also
NSSetZoneName (page 1374)

Declared In
NSZone.h

NSZoneRealloc
Allocates memory in a zone.

void * NSZoneRealloc (
NSZone *zone,
void *ptr,
NSUInteger size

);

Discussion
Changes the size of the block of memory pointed to by ptr to size bytes. It may allocate new memory
to replace the old, in which case it moves the contents of the old memory block to the new block, up
to a maximum of size bytes. ptr may be NULL. This function returns NULL if it was unable to allocate
the requested memory.

Availability
Available in iPhone OS 2.0 and later.

See Also
NSDefaultMallocZone (page 1357)
NSRecycleZone (page 1371)
NSZoneFree (page 1394)
NSZoneCalloc (page 1393)
NSZoneMalloc (page 1395)

Declared In
NSZone.h

NS_DURING
Marks the start of the exception-handling domain.

NS_DURING

Discussion
The NS_DURING macro marks the start of the exception-handling domain for a section of code. (The
NS_HANDLER (page 1397)macro marks the end of the domain.) Within the exception-handling domain
you can raise an exception, giving the local exception handler (or lower exception handlers) a chance
to handle it.

NS_ENDHANDLER
Marks the end of the local event handler.

1396 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

NS_ENDHANDLER

Discussion
The NS_ENDHANDLER marks the end of a section of code that is a local exception handler. (The
NS_HANDLER (page 1397)macros marks the beginning of this section.) If an exception is raised in the
exception handling domain marked off by the NS_DURING (page 1396) and NS_HANDLER (page 1397), the
local exception handler (if specified) is given a chance to handle the exception.

NS_HANDLER
Marks the end of the exception-handling domain and the start of the local exception handler.

NS_HANDLER

Discussion
The NS_HANDLER macro marks end of a section of code that is an exception-handling domain while
at the same time marking the beginning of a section of code that is a local exception handler for that
domain. (The NS_DURING (page 1396) macro marks the beginning of the exception-handling domain;
the NS_ENDHANDLER (page 1396) marks the end of the local exception handler.) If an exception is raised
in the exception-handling domain, the local exception handler is first given the chance to handle the
exception before lower-level handlers are given a chance.

NS_VALUERETURN
Permits program control to exit from an exception-handling domain with a value of a specified type.

NS_VALUERETURN(val, type)

Parameters

val
A value to preserve beyond the exception-handling domain.

type
The type of the value specified in val.

Discussion
The NS_VALUERETURN macro returns program control to the caller out of the exception-handling
domain—that is, a section of code between the NS_DURING (page 1396) and NS_HANDLER (page 1397)
macros that might raise an exception. The specified value (of the specified type) is returned to the
caller. The standard return statement does not work as expected in the exception-handling domain.

NS_VOIDRETURN
Permits program control to exit from an exception-handling domain.

NS_VOIDRETURN

Discussion
The NS_VOIDRETURN macro returns program control to the caller out of the exception-handling
domain—that is, a section of code between the NS_DURING (page 1396) and NS_HANDLER (page 1397)
macros that might raise an exception. The standard return statement does not work as expected in
the exception-handling domain.

Functions 1397
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

1398 Functions
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 2

Foundation Functions Reference

1399
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I V

Data Types

1400
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T I V

Data Types

Framework: Foundation/Foundation.h

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

This document describes the data types and constants found in the Foundation framework.

Data Types

NSByteOrder
These constants specify an endian format.

Overview 1401
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

enum _NSByteOrder {
NS_UnknownByteOrder = CFByteOrderUnknown,
NS_LittleEndian = CFByteOrderLittleEndian,
NS_BigEndian = CFByteOrderBigEndian

};

Constants
NS_UnknownByteOrder

The byte order is unknown.

Available in iPhone OS 2.0 and later.

Declared in NSByteOrder.h

NS_LittleEndian
The byte order is little endian.

Available in iPhone OS 2.0 and later.

Declared in NSByteOrder.h

NS_BigEndian
The byte order is big endian.

Available in iPhone OS 2.0 and later.

Declared in NSByteOrder.h

Discussion
These constants are returned by NSHostByteOrder (page 1361).

Declared In
NSByteOrder.h

NSComparisonResult
These constants are used to indicate how items in a request are ordered.

typedef enum _NSComparisonResult {
NSOrderedAscending = -1,
NSOrderedSame,
NSOrderedDescending

} NSComparisonResult;

Constants
NSOrderedAscending

The left operand is smaller than the right operand.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSOrderedSame
The two operands are equal.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSOrderedDescending
The left operand is greater than the right operand.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

1402 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

Discussion
These constants are used to indicate how items in a request are ordered, from the first one given in
a method invocation or function call to the last (that is, left to right in code).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSObjCRuntime.h

NSDecimal
Used to describe a decimal number.

typedef struct {
signed int _exponent:8;
unsigned int _length:4;
unsigned int _isNegative:1;
unsigned int _isCompact:1;
unsigned int _reserved:18;
unsigned short _mantissa[NSDecimalMaxSize];

} NSDecimal;

Discussion
The fields of NSDecimal are private.

Used by the functions described in "Decimals" (page 1330).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDecimal.h

NSHashTableOptions
Specifies a bitfield used to configure the behavior of elements in an instance of NSHashTable.

typedef NSUInteger NSHashTableOptions

Declared In
NSHashTable.h

NSMapTableOptions
Specifies a bitfield used to configure the behavior of elements in an instance of NSMapTable.

typedef NSUInteger NSMapTableOptions

Declared In
NSMapTable.h

Data Types 1403
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

NSRange
A structure used to describe a portion of a series—such as characters in a string or objects in an
NSArray object.

typedef struct _NSRange {
NSUInteger location;
NSUInteger length;

} NSRange;

Fields
location

The start index (0 is the first, as in C arrays).

length
The number of items in the range (can be 0).

Discussion
Foundation functions that operate on ranges include the following:

NSEqualRanges (page 1358)
NSIntersectionRange (page 1361)
NSLocationInRange (page 1364)
NSMakeRange (page 1366)
NSMaxRange (page 1367)
NSRangeFromString (page 1370)
NSStringFromRange (page 1377)
NSUnionRange (page 1392)

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRange.h

NSRangePointer
Type indicating a parameter is a pointer to an NSRange structure.

typedef NSRange *NSRangePointer;

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSRange.h

NSSearchPathDirectory
These constants specify the location of a variety of directories.

1404 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

typedef enum {
NSApplicationDirectory = 1,
NSDemoApplicationDirectory,
NSDeveloperApplicationDirectory,
NSAdminApplicationDirectory,
NSLibraryDirectory,
NSDeveloperDirectory,
NSUserDirectory,
NSDocumentationDirectory,
NSDocumentDirectory,
NSCoreServiceDirectory,
NSDesktopDirectory = 12,
NSCachesDirectory = 13,
NSApplicationSupportDirectory = 14,
NSDownloadsDirectory = 15,
NSAllApplicationsDirectory = 100,
NSAllLibrariesDirectory = 101

} NSSearchPathDirectory;

Constants
NSApplicationDirectory

Supported applications (/Applications).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSDemoApplicationDirectory
Unsupported applications and demonstration versions.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSDeveloperApplicationDirectory
Developer applications (/Developer/Applications).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSAdminApplicationDirectory
System and network administration applications.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSLibraryDirectory
Various user-visible documentation, support, and configuration files (/Library).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSDeveloperDirectory
Developer resources (/Developer).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSUserDirectory
User home directories (/Users).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

Data Types 1405
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

NSDocumentationDirectory
Documentation.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSDocumentDirectory
Document directory.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSCoreServiceDirectory
Location of core services (System/Library/CoreServices).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSDesktopDirectory
Location of user’s desktop directory.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSCachesDirectory
Location of discardable cache files (Library/Caches).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSApplicationSupportDirectory
Location of application support files (Library/Application Support).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSDownloadsDirectory
Location of the user’s downloads directory.

The NSDownloadsDirectory flag will only produce a path only when the NSUserDomainMask
is provided.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSAllApplicationsDirectory
All directories where applications can occur.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSAllLibrariesDirectory
All directories where resources can occur.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

1406 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

NSSearchPathDomainMask
Search path domain constants specifying base locations for the NSSearchPathDirectory (page 1404)
type.

typedef enum {
NSUserDomainMask = 1,
NSLocalDomainMask = 2,
NSNetworkDomainMask = 4,
NSSystemDomainMask = 8,
NSAllDomainsMask = 0x0ffff,

} NSSearchPathDomainMask;

Constants
NSUserDomainMask

The user’s home directory—the place to install user’s personal items (~).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSLocalDomainMask
Local to the current machine—the place to install items available to everyone on this machine.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSNetworkDomainMask
Publicly available location in the local area network—the place to install items available on
the network (/Network).

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSSystemDomainMask
Provided by Apple — can’t be modified (/System) .

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

NSAllDomainsMask
All domains.

Includes all of the above and future items.

Available in iPhone OS 2.0 and later.

Declared in NSPathUtilities.h

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSPathUtilities.h

NSStringEncoding
Type representing string-encoding values.

Data Types 1407
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

typedef NSUInteger NSStringEncoding;

Discussion
See String Encodings (page 1045) for a list of values.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSString.h

NSSwappedDouble
Opaque structure containing endian-independent double value.

typedef struct {
unsigned long long v;

} NSSwappedDouble;

Discussion
The fields of an NSSwappedDouble are private.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSByteOrder.h

NSSwappedFloat
Opaque type containing an endian-independent float value.

typedef struct {
unsigned long v;

} NSSwappedFloat;

Discussion
The fields of an NSSwappedFloat are private.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSByteOrder.h

NSTimeInterval
Used to specify a time interval, in seconds.

1408 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

typedef double NSTimeInterval;

Discussion
NSTimeInterval is always specified in seconds; it yields sub-millisecond precision over a range of
10,000 years.

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSDate.h

NSUncaughtExceptionHandler
Used for the function handling exceptions outside of an exception-handling domain.

typedef volatile void NSUncaughtExceptionHandler(NSException *exception);

Discussion
You can set exception handlers using NSSetUncaughtExceptionHandler (page 1374).

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSException.h

NSZone
Used to identify and manage memory zones.

typedef struct _NSZone NSZone;

Availability
Available in iPhone OS 2.0 and later.

Declared In
NSZone.h

Data Types 1409
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

1410 Data Types
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 3

Foundation Data Types Reference

1411
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T V

Constants

1412
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

P A R T V

Constants

Framework: Foundation/Foundation.h

Overview

Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X
and iPhone OS. Although this document has been reviewed for technical accuracy on Mac OS X, it
has not been reviewed for accuracy on iPhone OS and may contain errors or omissions. Apple is
supplying this information to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and software implemented according
to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future seeds of the API or technology. For
information about updates to this and other developer documentation, view the New & Updated
sidebars in subsequent documentation seeds.

This document defines constants in the Foundation framework that are not associated with a particular
class.

Constants

Enumerations

NSError Codes
NSError codes in the Cocoa error domain.

Overview 1413
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

enum {
NSFileNoSuchFileError = 4,
NSFileLockingError = 255,
NSFileReadUnknownError = 256,
NSFileReadNoPermissionError = 257,
NSFileReadInvalidFileNameError = 258,
NSFileReadCorruptFileError = 259,
NSFileReadNoSuchFileError = 260,
NSFileReadInapplicableStringEncodingError = 261,
NSFileReadUnsupportedSchemeError = 262,
NSFileWriteUnknownError = 512,
NSFileWriteNoPermissionError = 513,
NSFileWriteInvalidFileNameError = 514,
NSFileWriteInapplicableStringEncodingError = 517,
NSFileWriteUnsupportedSchemeError = 518,
NSFileWriteOutOfSpaceError = 640,
NSKeyValueValidationError = 1024,
NSFormattingError = 2048,
NSUserCancelledError = 3072,

NSFileErrorMinimum = 0,
NSFileErrorMaximum = 1023,
NSValidationErrorMinimum = 1024,
NSValidationErrorMaximum = 2047,
NSFormattingErrorMinimum = 2048,
NSFormattingErrorMaximum = 2559,

NSExecutableErrorMinimum = 3584,
NSExecutableNotLoadableError = 3584,
NSExecutableArchitectureMismatchError = 3585,
NSExecutableRuntimeMismatchError = 3586,
NSExecutableLoadError = 3587,
NSExecutableLinkError = 3588,
NSExecutableErrorMaximum = 3839

}

Constants
NSFileNoSuchFileError

File-system operation attempted on non-existent file

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileLockingError
Failure to get a lock on file

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileReadUnknownError
Read error, reason unknown

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileReadNoPermissionError
Read error because of a permission problem

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

1414 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSFileReadInvalidFileNameError
Read error because of an invalid file name

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileReadCorruptFileError
Read error because of a corrupted file, bad format, or similar reason

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileReadNoSuchFileError
Read error because no such file was found

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileReadInapplicableStringEncodingError
Read error because the string encoding was not applicable.

Access the bad encoding from the userInfo dictionary using the NSStringEncodingErrorKey
key.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileReadUnsupportedSchemeError
Read error because the specified URL scheme is unsupported

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileWriteUnknownError
Write error, reason unknown

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileWriteNoPermissionError
Write error because of a permission problem

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileWriteInvalidFileNameError
Write error because of an invalid file name

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileWriteInapplicableStringEncodingError
Write error because the string encoding was not applicable.

Access the bad encoding from the userInfo dictionary using the NSStringEncodingErrorKey
key.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

Constants 1415
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSFileWriteUnsupportedSchemeError
Write error because the specified URL scheme is unsupported

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileWriteOutOfSpaceError
Write error because of a lack of disk space

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSKeyValueValidationError
Key-value coding validation error

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFormattingError
Formatting error (related to display of data)

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSUserCancelledError
The user cancelled the operation (for example, by pressing Command-period).

This code is for errors that do not require a dialog displayed and might be candidates for
special-casing.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileErrorMinimum
Marks the start of the range of error codes reserved for file errors

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFileErrorMaximum
Marks the end of the range of error codes reserved for file errors

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSValidationErrorMinimum
Marks the start of the range of error codes reserved for validation errors.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSValidationErrorMaximum
Marks the start and end of the range of error codes reserved for validation errors.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSFormattingErrorMinimum
Marks the start of the range of error codes reserved for formatting errors.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

1416 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSFormattingErrorMaximum
Marks end of the range of error codes reserved for formatting errors.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSExecutableErrorMinimum
Marks beginning of the range of error codes reserved for errors related to executable files.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSExecutableNotLoadableError
Executable is of a type that is not loadable in the current process.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSExecutableArchitectureMismatchError
Executable does not provide an architecture compatible with the current process.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSExecutableRuntimeMismatchError
Executable has Objective C runtime information incompatible with the current process.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSExecutableLoadError
Executable cannot be loaded for some other reason, such as a problem with a library it depends
on.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSExecutableLinkError
Executable fails due to linking issues.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

NSExecutableErrorMaximum
Marks end of the range of error codes reserved for errors related to executable files.

Available in iPhone OS 2.0 and later.

Declared in FoundationErrors.h

Discussion
The constants in this enumeration are NSError code numbers in the Cocoa error domain
(NSCocoaErrorDomain). Other frameworks, most notably the Application Kit, provide their own
NSCocoaErrorDomain error codes.

The enumeration constants beginning with NSFile indicate file-system errors or errors related to file
I/O operations. Use the key NSFilePathErrorKey or the NSURLErrorKey (whichever is appropriate)
to access the file-system path or URL in the userInfo dictionary of the NSError object.

Declared In
FoundationErrors.h

Constants 1417
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSNotFound
Defines a value that indicates that an item requested couldn’t be found or doesn’t exist.

enum {
NSNotFound = 0x7fffffff

};

Constants
NSNotFound

A value that indicates that an item requested couldn’t be found or doesn’t exist.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

Discussion
NSNotFound is typically used by various methods and functions that search for items in serial data
and return indices, such as characters in a string object or ids in an NSArray object.

Declared In
NSObjCRuntime.h

URL Loading System Error Codes
These values are returned as the error code property of an NSError object with the domain
“NSURLErrorDomain”.

1418 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

typedef enum
{

NSURLErrorUnknown = -1,
NSURLErrorCancelled = -999,
NSURLErrorBadURL = -1000,
NSURLErrorTimedOut = -1001,
NSURLErrorUnsupportedURL = -1002,
NSURLErrorCannotFindHost = -1003,
NSURLErrorCannotConnectToHost = -1004,
NSURLErrorDataLengthExceedsMaximum = -1103,
NSURLErrorNetworkConnectionLost = -1005,
NSURLErrorDNSLookupFailed = -1006,
NSURLErrorHTTPTooManyRedirects = -1007,
NSURLErrorResourceUnavailable = -1008,
NSURLErrorNotConnectedToInternet = -1009,
NSURLErrorRedirectToNonExistentLocation = -1010,
NSURLErrorBadServerResponse = -1011,
NSURLErrorUserCancelledAuthentication = -1012,
NSURLErrorUserAuthenticationRequired = -1013,
NSURLErrorZeroByteResource = -1014,
NSURLErrorFileDoesNotExist = -1100,
NSURLErrorFileIsDirectory = -1101,
NSURLErrorNoPermissionsToReadFile = -1102,
NSURLErrorSecureConnectionFailed = -1200,
NSURLErrorServerCertificateHasBadDate = -1201,
NSURLErrorServerCertificateUntrusted = -1202,
NSURLErrorServerCertificateHasUnknownRoot = -1203,
NSURLErrorServerCertificateNotYetValid = -1204,
NSURLErrorClientCertificateRejected = -1205,
NSURLErrorCannotLoadFromNetwork = -2000,
NSURLErrorCannotCreateFile = -3000,
NSURLErrorCannotOpenFile = -3001,
NSURLErrorCannotCloseFile = -3002,
NSURLErrorCannotWriteToFile = -3003,
NSURLErrorCannotRemoveFile = -3004,
NSURLErrorCannotMoveFile = -3005,
NSURLErrorDownloadDecodingFailedMidStream = -3006,
NSURLErrorDownloadDecodingFailedToComplete = -3007

}

Constants
NSURLErrorUnknown

Returned when the URL Loading system encounters an error that it cannot interpret.

This can occur when an error originates from a lower level framework or library. Whenever
this error code is received, it is a bug, and should be reported to Apple.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCancelled
Returned when an asynchronous load is canceled.

A Web Kit framework delegate will receive this error when it performs a cancel operation on
a loading resource. Note that an NSURLConnection or NSURLDownloaddelegate will not receive
this error if the download is canceled.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

Constants 1419
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSURLErrorBadURL
Returned when a URL is sufficiently malformed that a URL request cannot be initiated

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorTimedOut
Returned when an asynchronous operation times out.

NSURLConnectionwill send this error to its delegate when the timeoutInterval in NSURLRequest
expires before a load can complete.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorUnsupportedURL
Returned when a properly formed URL cannot be handled by the framework.

The most likely cause is that there is no available protocol handler for the URL.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotFindHost
Returned when the host name for a URL cannot be resolved.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotConnectToHost
Returned when an attempt to connect to a host has failed.

This can occur when a host name resolves, but the host is down or may not be accepting
connections on a certain port.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorDataLengthExceedsMaximum
Returned when the length of the resource data is too exceeds the maximum allowed.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorNetworkConnectionLost
Returned when a client or server connection is severed in the middle of an in-progress load.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorDNSLookupFailed
See NSURLErrorCannotFindHost

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorHTTPTooManyRedirects
Returned when a redirect loop is detected or when the threshold for number of allowable
redirects has been exceeded (currently 16).

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

1420 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSURLErrorResourceUnavailable
Returned when a requested resource cannot be retrieved.

Examples are “file not found”, and data decoding problems that prevent data from being
processed correctly.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorNotConnectedToInternet
Returned when a network resource was requested, but an internet connection is not established
and cannot be established automatically, either through a lack of connectivity, or by the user's
choice not to make a network connection automatically.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorRedirectToNonExistentLocation
Returned when a redirect is specified by way of server response code, but the server does not
accompany this code with a redirect URL.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorBadServerResponse
Returned when the URL Loading system receives bad data from the server.

This is equivalent to the “500 Server Error” message sent by HTTP servers.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorUserCancelledAuthentication
Returned when an asynchronous request for authentication is cancelled by the user.

This is typically incurred by clicking a “Cancel” button in a username/password dialog, rather
than the user making an attempt to authenticate.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorUserAuthenticationRequired
Returned when authentication is required to access a resource.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorZeroByteResource
Returned when a server reports that a URL has a non-zero content length, but terminates the
network connection “gracefully” without sending any data.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorFileDoesNotExist
Returned when a file does not exist.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

Constants 1421
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSURLErrorFileIsDirectory
Returned when a request for an FTP file results in the server responding that the file is not a
plain file, but a directory.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorNoPermissionsToReadFile
Returned when a resource cannot be read due to insufficient permissions.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorSecureConnectionFailed
Returned when an attempt to establish a secure connection fails for reasons which cannot be
expressed more specifically.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorServerCertificateHasBadDate
Returned when a server certificate has a date which indicates it has expired, or is not yet valid.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorServerCertificateUntrusted
Returned when a server certificate is signed by a root server which is not trusted.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorServerCertificateHasUnknownRoot
Returned when a server certificate is not signed by any root server.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorServerCertificateNotYetValid
Returned when a server certificate is not yet valid.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorClientCertificateRejected
Returned when a server certificate is rejected.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotLoadFromNetwork
Returned when a specific request to load an item only from the cache cannot be satisfied.

This error is sent at the point when the library would go to the network accept for the fact that
is has been blocked from doing so by the “load only from cache” directive.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

1422 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSURLErrorCannotCreateFile
Returned when NSURLDownload object was unable to create the downloaded file on disk due
to a I/O failure.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotOpenFile
Returned when NSURLDownload was unable to open the downloaded file on disk.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotCloseFile
Returned when NSURLDownload was unable to close the downloaded file on disk.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotWriteToFile
Returned when NSURLDownload was unable to write to the downloaded file on disk.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotRemoveFile
Returned when NSURLDownload was unable to remove a downloaded file from disk.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorCannotMoveFile
Returned when NSURLDownload was unable to move a downloaded file on disk.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorDownloadDecodingFailedMidStream
Returned when NSURLDownload failed to decode an encoded file during the download.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

NSURLErrorDownloadDecodingFailedToComplete
Returned when NSURLDownload failed to decode an encoded file after downloading.

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

Availability
Available in Mac OS X v10.2 with Safari 1.0 installed.
Available in Mac OS X v10.2.7 and later.

Declared In
NSURLError.h

Constants 1423
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

Global Variables

Cocoa Error Domain
This constant defines the Cocoa error domain.

NSString *const NSCocoaErrorDomain;

Constants
NSCocoaErrorDomain

Application Kit and Foundation Kit errors.

Available in iPhone OS 2.0 and later.

Declared in NSError.h

Declared In
FoundationErrors.h

NSURL Domain
This error domain is defined for NSURL.

extern NSString * const NSURLErrorDomain;

Constants
NSURLErrorDomain

URL loading system errors

Available in iPhone OS 2.0 and later.

Declared in NSURLError.h

Declared In
NSURLError.h

Numeric Constants

NSDecimal Constants
Constants used by NSDecimal.

#define NSDecimalMaxSize (8)
#define NSDecimalNoScale SHRT_MAX

Constants
NSDecimalMaxSize

The maximum size of NSDecimal (page 1403).

Gives a precision of at least 38 decimal digits, 128 binary positions.

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

1424 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSDecimalNoScale
Number of shorts in an NSDecimal (page 1403).

Available in iPhone OS 2.0 and later.

Declared in NSDecimal.h

Declared In
NSDecimal.h

NSInteger and NSUInteger Maximum and Minimum Values
Constants representing the maximum and minimum values of NSInteger and NSUInteger.

#define NSIntegerMax LONG_MAX
#define NSIntegerMin LONG_MIN
#define NSUIntegerMax ULONG_MAX

Constants
NSIntegerMax

The maximum value for an NSInteger.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSIntegerMin
The minimum value for an NSInteger.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSUIntegerMax
The maximum value for an NSUInteger.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

Declared In
NSObjCRuntime.h

Exceptions

General Exception Names
Exceptions defined by NSException.

Constants 1425
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;
extern NSString *NSInternalInconsistencyException;
extern NSString *NSMallocException;
extern NSString *NSObjectInaccessibleException;
extern NSString *NSObjectNotAvailableException;
extern NSString *NSDestinationInvalidException;
extern NSString *NSPortTimeoutException;
extern NSString *NSInvalidSendPortException;
extern NSString *NSInvalidReceivePortException;
extern NSString *NSPortSendException;
extern NSString *NSPortReceiveException;
extern NSString *NSOldStyleException;

Constants
NSGenericException

A generic name for an exception.

You should typically use a more specific exception name.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSRangeException
Name of an exception that occurs when attempting to access outside the bounds of some data,
such as beyond the end of a string.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSInvalidArgumentException
Name of an exception that occurs when you pass an invalid argument to a method, such as a
nil pointer where a non-nil object is required.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSInternalInconsistencyException
Name of an exception that occurs when an internal assertion fails and implies an unexpected
condition within the called code.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSMallocException
Obsolete; not currently used.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSObjectInaccessibleException
Name of an exception that occurs when a remote object is accessed from a thread that should
not access it.

See NSConnection’s enableMultipleThreads.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

1426 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSObjectNotAvailableException
Name of an exception that occurs when the remote side of the NSConnection refused to send
the message to the object because the object has never been vended.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSDestinationInvalidException
Name of an exception that occurs when an internal assertion fails and implies an unexpected
condition within the distributed objects.

This is a distributed objects–specific exception.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSPortTimeoutException
Name of an exception that occurs when a timeout set on a port expires during a send or receive
operation.

This is a distributed objects–specific exception.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSInvalidSendPortException
Name of an exception that occurs when the send port of an NSConnection has become invalid.

This is a distributed objects–specific exception.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSInvalidReceivePortException
Name of an exception that occurs when the receive port of an NSConnection has become
invalid.

This is a distributed objects–specific exception.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSPortSendException
Generic error occurred on send.

This is an NSPort-specific exception.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSPortReceiveException
Generic error occurred on receive.

This is an NSPort-specific exception.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

NSOldStyleException
No longer used.

Available in iPhone OS 2.0 and later.

Declared in NSException.h

Constants 1427
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

Declared In
NSException.h

Version Numbers

Foundation Version Number
Version of the Foundation framework in the current environment.

double NSFoundationVersionNumber;

Constants
NSFoundationVersionNumber

The version of the Foundation framework in the current environment.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

Declared In
NSObjCRuntime.h

Foundation Framework Version Numbers
Constants to define Foundation Framework version numbers.

1428 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

#define NSFoundationVersionNumber10_0 397.40
#define NSFoundationVersionNumber10_1 425.00
#define NSFoundationVersionNumber10_1_1 425.00
#define NSFoundationVersionNumber10_1_2 425.00
#define NSFoundationVersionNumber10_1_3 425.00
#define NSFoundationVersionNumber10_1_4 425.00
#define NSFoundationVersionNumber10_2 462.00
#define NSFoundationVersionNumber10_2_1 462.00
#define NSFoundationVersionNumber10_2_2 462.00
#define NSFoundationVersionNumber10_2_3 462.00
#define NSFoundationVersionNumber10_2_4 462.00
#define NSFoundationVersionNumber10_2_5 462.00
#define NSFoundationVersionNumber10_2_6 462.00
#define NSFoundationVersionNumber10_2_7 462.70
#define NSFoundationVersionNumber10_2_8 462.70
#define NSFoundationVersionNumber10_3 500.00
#define NSFoundationVersionNumber10_3_1 500.00
#define NSFoundationVersionNumber10_3_2 500.30
#define NSFoundationVersionNumber10_3_3 500.54
#define NSFoundationVersionNumber10_3_4 500.56
#define NSFoundationVersionNumber10_3_5 500.56
#define NSFoundationVersionNumber10_3_6 500.56
#define NSFoundationVersionNumber10_3_7 500.56
#define NSFoundationVersionNumber10_3_8 500.56
#define NSFoundationVersionNumber10_3_9 500.58
#define NSFoundationVersionNumber10_4 567.00
#define NSFoundationVersionNumber10_4_1 567.00
#define NSFoundationVersionNumber10_4_2 567.12
#define NSFoundationVersionNumber10_4_3 567.21
#define NSFoundationVersionNumber10_4_4_Intel 567.23
#define NSFoundationVersionNumber10_4_4_PowerPC 567.21
#define NSFoundationVersionNumber10_4_5 567.25
#define NSFoundationVersionNumber10_4_6 567.26
#define NSFoundationVersionNumber10_4_7 567.27

Constants
NSFoundationVersionNumber10_0

Foundation version released in Mac OS X version 10.0.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_1
Foundation version released in Mac OS X version 10.1.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_1_1
Foundation version released in Mac OS X version 10.1.1.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_1_2
Foundation version released in Mac OS X version 10.1.2.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

Constants 1429
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSFoundationVersionNumber10_1_3
Foundation version released in Mac OS X version 10.1.3.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_1_4
Foundation version released in Mac OS X version 10.1.4.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2
Foundation version released in Mac OS X version 10.2.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2_1
Foundation version released in Mac OS X version 10.2.1.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2_2
Foundation version released in Mac OS X version 10.2.2.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2_3
Foundation version released in Mac OS X version 10.2.3.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2_4
Foundation version released in Mac OS X version 10.2.4.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2_5
Foundation version released in Mac OS X version 10.2.5.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2_6
Foundation version released in Mac OS X version 10.2.6.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_2_7
Foundation version released in Mac OS X version 10.2.7.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

1430 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSFoundationVersionNumber10_2_8
Foundation version released in Mac OS X version 10.2.8.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3
Foundation version released in Mac OS X version 10.3.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_1
Foundation version released in Mac OS X version 10.3.1.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_2
Foundation version released in Mac OS X version 10.3.2.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_3
Foundation version released in Mac OS X version 10.3.3.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_4
Foundation version released in Mac OS X version 10.3.4.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_5
Foundation version released in Mac OS X version 10.3.5.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_6
Foundation version released in Mac OS X version 10.3.6.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_7
Foundation version released in Mac OS X version 10.3.7.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_3_8
Foundation version released in Mac OS X version 10.3.8.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

Constants 1431
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

NSFoundationVersionNumber10_3_9
Foundation version released in Mac OS X version 10.3.9.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4
Foundation version released in Mac OS X version 10.4.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_1
Foundation version released in Mac OS X version 10.4.1.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_2
Foundation version released in Mac OS X version 10.4.2.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_3
Foundation version released in Mac OS X version 10.4.3.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_4_Intel
Foundation version released in Mac OS X version 10.4.4 for Intel.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_4_PowerPC
Foundation version released in Mac OS X version 10.4.4 for PowerPC.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_5
Foundation version released in Mac OS X version 10.4.5.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_6
Foundation version released in Mac OS X version 10.4.6.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

NSFoundationVersionNumber10_4_7
Foundation version released in Mac OS X version 10.4.7.

Available in iPhone OS 2.0 and later.

Declared in NSObjCRuntime.h

Declared In
NSObjCRuntime.h

1432 Constants
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0 4

Foundation Constants Reference

This table describes the changes to Foundation Framework Reference.

NotesDate

Updated for iPhone OS.2008-06-27

Updated for Mac OS X v10.5. Updated framework illustrations.2007-10-31

Updated for Mac OS X v10.5.2007-04-16

First publication of this content as a collection of separate documents.2006-05-23

1433
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

1434
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

A

abbreviation instance method 1082
abbreviationDictionary class method 1076
abbreviationForDate: instance method 1082
abortParsing instance method 1212
absoluteString instance method 1096
absoluteURL instance method 1097
acceptConnectionInBackgroundAndNotify instance

method 367
acceptConnectionInBackgroundAndNotifyForModes:

instance method 368
acceptInputForMode:beforeDate: instance method

890
accessInstanceVariablesDirectly <NSObject>

class method 1267
activeProcessorCount instance method 861
addCharactersInRange: instance method 588
addCharactersInString: instance method 589
addDependency: instance method 819
addEntriesFromDictionary: instance method 606
addIndex: instance method 612
addIndexes: instance method 613
addIndexesInRange: instance method 613
addObject: class method 75
addObject: instance method 76, 185, 571, 619
addObjectsFromArray: instance method 571, 620
addObserver:forKeyPath:options:context:

<NSObject> instance method 1284
addObserver:forKeyPath:options:context:

instance method 44, 923
addObserver:selector:name:object: instance

method 683
addObserver:toObjectsAtIndexes:forKeyPath:options:

context: instance method 44
addOperation: instance method 831
addPort:forMode: instance method 890
addresses instance method 645
addSuiteNamed: instance method 1184
addTimeInterval: instance method 216
addTimer:forMode: instance method 891

addValue:forHTTPHeaderField: instance method
634

allBundles class method 83
allCredentials instance method 1140
allFrameworks class method 83
allHeaderFields instance method 457
allHTTPHeaderFields instance method 1166
allKeys instance method 309
allKeysForObject: instance method 310
allObjects instance method 340, 923
alloc class method 783, 877
allocWithZone: class method 783, 852, 878
allowsFloats instance method 728
allowsKeyedCoding instance method 151
allValues instance method 310
alphanumericCharacterSet class method 134
alwaysShowsDecimalSeparator instance method

728
AMSymbol instance method 243
anyObject instance method 924
appendBytes:length: instance method 596
appendData: instance method 596
appendFormat: instance method 627
appendString: instance method 627
archivedDataWithRootObject: class method 504
archiver:didEncodeObject: <NSObject> delegate

method 513
archiver:willEncodeObject:<NSObject> delegate

method 513
archiver:willReplaceObject:withObject:

<NSObject> delegate method 514
archiverDidFinish: <NSObject> delegate method

514
archiveRootObject:toFile: class method 504
archiverWillFinish:<NSObject> delegate method

514
arguments instance method 862
argumentsRetained instance method 490
array class method 40
Array operators 1278
arrayByAddingObject: instance method 45

1435
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

Index

arrayByAddingObjectsFromArray: instance method
45

arrayForKey: instance method 1184
arrayWithArray: class method 40
arrayWithCapacity: class method 570
arrayWithContentsOfFile: class method 41
arrayWithContentsOfURL: class method 41
arrayWithObject: class method 42
arrayWithObjects: class method 42
arrayWithObjects:count: class method 43
ascending instance method 939
attemptRecoveryFromError:optionIndex:

<NSObject> instance method 1258
attemptRecoveryFromError:optionIndex:delegate:

didRecoverSelector:contextInfo:
<NSObject> instance method 1258

attributedStringForObjectValue:
withDefaultAttributes: instance method 429

attributesOfFileSystemForPath:error: instance
method 388

attributesOfItemAtPath:error: instance method
389

authenticationMethod instance method 1146
automaticallyNotifiesObserversForKey:

<NSObject> class method 1283
autorelease instance method 76
autorelease protocol instance method 1303
autoupdatingCurrentCalendar class method 116
autoupdatingCurrentLocale class method 535
availableData instance method 368
availableLocaleIdentifiers class method 536
availableStringEncodings class method 969
awakeAfterUsingCoder: instance method 797

B

baseURL instance method 1097
bitmapRepresentation instance method 143
boolForKey: instance method 1185
boolValue instance method 704, 977
broadcast instance method 171
builtInPlugInsPath instance method 88
bundleForClass: class method 83
bundleIdentifier instance method 89
bundlePath instance method 89
bundleWithIdentifier: class method 84
bundleWithPath: class method 84
bytes instance method 197

C

cachedResponse instance method 1159
cachedResponseForRequest: instance method 1114
cachePolicy instance method 1166
calendar instance method 244
Calendar Units 127
calendarIdentifier instance method 117
callStackReturnAddresses class method 1052
callStackReturnAddresses instance method 357
canBeConvertedToEncoding: instance method 978
cancel instance method 820, 1057, 1124
cancelAllOperations instance method 831
cancelAuthenticationChallenge:protocol instance

method 1316
cancelPerformSelector:target:argument:

instance method 891
cancelPerformSelectorsWithTarget: instance

method 892
cancelPreviousPerformRequestsWithTarget: class

method 784
cancelPreviousPerformRequestsWithTarget:selector:

object: class method 785
canHandleRequest: class method 1122
canInitWithRequest: class method 1155
canonicalLocaleIdentifierFromString: class

method 536
canonicalRequestForRequest: class method 1156
capitalizedLetterCharacterSet class method 135
capitalizedString instance method 978
caseInsensitiveCompare: instance method 979
caseSensitive instance method 903
changeCurrentDirectoryPath: instance method

389
changeFileAttributes:atPath: instance method

390
characterAtIndex: instance method 980
characterIsMember: instance method 143
characterSetWithBitmapRepresentation: class

method 135
characterSetWithCharactersInString: class

method 136
characterSetWithContentsOfFile: class method

136
characterSetWithRange: class method 137
charactersToBeSkipped instance method 903
charValue instance method 705
class class method 785, 878
class protocol instance method 1304
classFallbacksForKeyedArchiver class method

786
classForClassName: class method 520
classForClassName: instance method 522

1436
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

classForCoder instance method 797
classForKeyedArchiver instance method 798
classForKeyedUnarchiver class method 786
classNamed: instance method 89
classNameForClass: class method 504
classNameForClass: instance method 506
client instance method 1159
close instance method 946
closeFile instance method 369
Cocoa Error Domain 1424
code instance method 346
columnNumber instance method 1213
comment instance method 438
commentURL instance method 439
commonISOCurrencyCodes class method 536
commonPrefixWithString:options: instance

method 980
compare: instance method 217, 283, 462, 705, 981
compare:options: instance method 981
compare:options:range: instance method 982
compare:options:range:locale: instance method

983
compareObject:toObject: instance method 939
completePathIntoString:caseSensitive:

matchesIntoArray:filterTypes: instance
method 984

components:fromDate: instance method 117
components:fromDate:toDate:options: instance

method 118
componentsFromLocaleIdentifier: class method

537
componentsJoinedByString: instance method 46
componentsSeparatedByCharactersInSet: instance

method 985
componentsSeparatedByString: instance method

985
componentsToDisplayForPath: instance method

391
Concurrent Operation Constants 834
condition instance method 177
conformsToProtocol: class method 787
conformsToProtocol:protocol instance method 1304
connection:didCancelAuthenticationChallenge:

<NSObject> delegate method 1127
connection:didFailWithError: <NSObject>

delegate method 1127
connection:didReceiveAuthenticationChallenge:

<NSObject> delegate method 1128
connection:didReceiveData:<NSObject> delegate

method 1129
connection:didReceiveResponse: <NSObject>

delegate method 1129

connection:willCacheResponse: <NSObject>
delegate method 1130

connection:willSendRequest:redirectResponse:
<NSObject> delegate method 1130

connectionDidFinishLoading:<NSObject> delegate
method 1131

connectionWithRequest:delegate: class method
1122

containsIndex: instance method 471
containsIndexes: instance method 471
containsIndexesInRange: instance method 472
containsObject: instance method 46, 924
containsValueForKey: instance method 151, 522
contentsAtPath: instance method 391
contentsEqualAtPath:andPath: instance method

392
contentsOfDirectoryAtPath:error: instance

method 392
continueWithoutCredentialForAuthentication-

Challenge: protocol instance method 1316
controlCharacterSet class method 137
cookieAcceptPolicy instance method 449
cookies instance method 449
cookiesForURL: instance method 449
cookiesWithResponseHeaderFields:forURL: class

method 437
cookieWithProperties: class method 437
copy instance method 798
copyItemAtPath:toPath:error: instance method

393
copyWithZone: class method 787
copyWithZone: protocol instance method 1250
count instance method 47, 311, 472, 925
countByEnumeratingWithState:objects:count:

protocol instance method 1262
countForObject: instance method 185
countOfIndexesInRange: instance method 473
createDirectoryAtPath:attributes: instance

method 394
createDirectoryAtPath:withIntermediateDirectories:

attributes:error: instance method 394
createFileAtPath:contents:attributes: instance

method 395
createSymbolicLinkAtPath:pathContent: instance

method 396
createSymbolicLinkAtPath:withDestinationPath:

error: instance method 396
credentialsForProtectionSpace: instance method

1141
credentialWithUser:password:persistence: class

method 1134
cStringUsingEncoding: instance method 986
currencyCode instance method 728

1437
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

currencyDecimalSeparator instance method 729
currencyGroupingSeparator instance method 729
currencySymbol instance method 729
currentCalendar class method 116
currentDirectoryPath instance method 397
currentDiskUsage instance method 1114
currentHandler class method 70
currentLocale class method 537
currentMemoryUsage instance method 1115
currentMode instance method 892
currentRunLoop class method 889
currentThread class method 1052

D

data class method 192
data instance method 108, 1082
dataForKey: instance method 1185
dataFromPropertyList:format:errorDescription:

class method 870
dataFromTXTRecordDictionary: class method 644
dataUsingEncoding: instance method 987
dataUsingEncoding:allowLossyConversion:

instance method 987
dataWithBytes:length: class method 192
dataWithBytesNoCopy:length: class method 193
dataWithBytesNoCopy:length:freeWhenDone: class

method 194
dataWithCapacity: class method 595
dataWithContentsOfFile: class method 194
dataWithContentsOfFile:options:error: class

method 195
dataWithContentsOfMappedFile: class method 195
dataWithContentsOfURL: class method 196
dataWithContentsOfURL:options:error: class

method 196
dataWithData: class method 197
dataWithLength: class method 595
date class method 213
dateByAddingComponents:toDate:options:

instance method 119
dateFormat instance method 244
dateFromComponents: instance method 120
dateFromString: instance method 244
dateStyle instance method 245
dateWithTimeIntervalSince1970: class method

213
dateWithTimeIntervalSinceNow: class method 214
dateWithTimeIntervalSinceReferenceDate: class

method 214
day instance method 227
daylightSavingTimeOffset instance method 1083

daylightSavingTimeOffsetForDate: instance
method 1083

dealloc instance method 799, 879
decimalDigitCharacterSet class method 138
decimalNumberByAdding: instance method 284
decimalNumberByAdding:withBehavior: instance

method 284
decimalNumberByDividingBy: instance method 285
decimalNumberByDividingBy:withBehavior:

instance method 285
decimalNumberByMultiplyingBy: instance method

286
decimalNumberByMultiplyingBy:withBehavior:

instance method 286
decimalNumberByMultiplyingByPowerOf10:

instance method 286
decimalNumberByMultiplyingByPowerOf10:

withBehavior: instance method 287
decimalNumberByRaisingToPower: instance method

287
decimalNumberByRaisingToPower:withBehavior:

instance method 288
decimalNumberByRoundingAccordingToBehavior:

instance method 288
decimalNumberBySubtracting: instance method

288
decimalNumberBySubtracting:withBehavior:

instance method 289
decimalNumberHandlerWithRoundingMode:scale:

raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero: class method 296

decimalNumberWithDecimal: class method 278
decimalNumberWithMantissa:exponent:isNegative:

class method 279
decimalNumberWithString: class method 279
decimalNumberWithString:locale: class method

280
decimalSeparator instance method 730
decimalValue instance method 289, 706
decodeArrayOfObjCType:count:at: instance

method 151
decodeBoolForKey: instance method 152, 522
decodeBytesForKey:returnedLength: instance

method 152, 523
decodeBytesWithReturnedLength: instance method

153
decodeDataObject instance method 153
decodeDoubleForKey: instance method 153, 523
decodeFloatForKey: instance method 154, 524
decodeInt32ForKey: instance method 154, 524
decodeInt64ForKey: instance method 154, 525
decodeIntegerForKey: instance method 155
decodeIntForKey: instance method 155, 525

1438
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

decodeObject instance method 155
decodeObjectForKey: instance method 156, 526
decodeValueOfObjCType:at: instance method 156
decodeValuesOfObjCTypes: instance method 157
decomposableCharacterSet class method 138
decomposedStringWithCanonicalMapping instance

method 988
decomposedStringWithCompatibilityMapping

instance method 988
defaultBehavior class method 281
defaultCenter class method 682
defaultCredentialForProtectionSpace: instance

method 1141
defaultCStringEncoding class method 969
defaultDate instance method 245
defaultDecimalNumberHandler class method 297
defaultFormatterBehavior class method 242, 727
defaultManager class method 388
defaultQueue class method 688
defaultTimeZone class method 1077
delegate instance method 398, 506, 526, 646, 663,

853, 946, 1213
deleteCharactersInRange: instance method 628
deleteCookie: instance method 450
dependencies instance method 820
dequeueNotificationsMatching:coalesceMask:

instance method 689
description class method 788
description instance method 47, 198, 217, 311, 879,

925, 989, 1084
description protocol instance method 1305
descriptionInStringsFileFormat instance method

312
descriptionWithLocale: instance method 48, 289,

312, 706, 925
descriptionWithLocale:indent: instance method

48, 312
destinationOfSymbolicLinkAtPath:error:

instance method 398
detachNewThreadSelector:toTarget:withObject:

class method 1052
developmentLocalization instance method 90
dictionary class method 305
dictionaryForKey: instance method 1186
dictionaryFromTXTRecordData: class method 645
dictionaryRepresentation instance method 1187
dictionaryWithCapacity: class method 605
dictionaryWithContentsOfFile: class method 305
dictionaryWithContentsOfURL: class method 306
dictionaryWithDictionary: class method 306
dictionaryWithObject:forKey: class method 307
dictionaryWithObjectsAndKeys: class method 309

dictionaryWithObjects:forKeys: class method
307

dictionaryWithObjects:forKeys:count: class
method 308

dictionaryWithValuesForKeys: <NSObject>
instance method 1267

didChange:valuesAtIndexes:forKey:<NSObject>
instance method 1285

didChangeValueForKey: <NSObject> instance
method 1285

didChangeValueForKey:withSetMutation:usingObjects:
<NSObject> instance method 1286

directoryAttributes instance method 332
directoryContentsAtPath: instance method 398
diskCapacity instance method 1115
displayNameAtPath: instance method 399
displayNameForKey:value: instance method 541
distantFuture class method 215
distantPast class method 215
doesNotRecognizeSelector: instance method 799
domain instance method 346, 439, 646
doubleValue instance method 290, 707, 989
drain instance method 76

E

earlierDate: instance method 218
editingStringForObjectValue: instance method

429
encodeArrayOfObjCType:count:at: instance

method 157
encodeBool:forKey: instance method 158, 506
encodeBycopyObject: instance method 158
encodeByrefObject: instance method 159
encodeBytes:length: instance method 159
encodeBytes:length:forKey: instance method 160,

507
encodeConditionalObject: instance method 160
encodeConditionalObject:forKey: instance

method 161, 507
encodeDataObject: instance method 161
encodeDouble:forKey: instance method 161, 508
encodeFloat:forKey: instance method 162, 508
encodeInt32:forKey: instance method 162, 509
encodeInt64:forKey: instance method 162, 509
encodeInt:forKey: instance method 163, 509
encodeInteger:forKey: instance method 163
encodeObject: instance method 164
encodeObject:forKey: instance method 164, 510
encodeRootObject: instance method 164
encodeValueOfObjCType:at: instance method 165
encodeValuesOfObjCTypes: instance method 165

1439
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

encodeWithCoder: protocol instance method 1246
Encoding Conversion Options 1043
enqueueNotification:postingStyle: instance

method 689
enqueueNotification:postingStyle:coalesceMask:

forModes: instance method 690
enumeratorAtPath: instance method 400
environment instance method 862
era instance method 228
eraSymbols instance method 245
Error Domains 352
error instance method 1106
errorWithDomain:code:userInfo: class method

345
Exception Names 378
exceptionDuringOperation:error:leftOperand:

rightOperand: protocol instance method 1252
exceptionWithName:reason:userInfo: class

method 355
exchangeObjectAtIndex:withObjectAtIndex:

instance method 571
executableArchitectures instance method 90
executablePath instance method 91
exit class method 1053
expectedContentLength instance method 1174
expiresDate instance method 439
exponentSymbol instance method 730

F

failureResponse instance method 1107
fastestEncoding instance method 989
File Attribute Keys 419
File Type Attribute Keys 423
File-System Attribute Keys 424
fileAttributes instance method 332
fileAttributesAtPath:traverseLink: instance

method 401
fileCreationDate instance method 313
fileDescriptor instance method 369
fileExistsAtPath: instance method 402
fileExistsAtPath:isDirectory: instance method

403
fileExtensionHidden instance method 314
fileGroupOwnerAccountID instance method 314
fileGroupOwnerAccountName instance method 314
fileHandleForReading instance method 846
fileHandleForReadingAtPath: class method 364
fileHandleForUpdatingAtPath: class method 364
fileHandleForWriting instance method 847
fileHandleForWritingAtPath: class method 365
fileHandleWithNullDevice class method 365

fileHandleWithStandardError class method 366
fileHandleWithStandardInput class method 366
fileHandleWithStandardOutput class method 367
fileHFSCreatorCode instance method 315
fileHFSTypeCode instance method 315
fileIsAppendOnly instance method 315
fileIsImmutable instance method 316
fileManager:shouldCopyItemAtPath:toPath:

<NSObject> delegate method 413
fileManager:shouldLinkItemAtPath:toPath:

<NSObject> delegate method 413
fileManager:shouldMoveItemAtPath:toPath:

<NSObject> delegate method 414
fileManager:shouldProceedAfterError:

<NSObject> delegate method 414
fileManager:shouldProceedAfterError:

copyingItemAtPath:toPath: <NSObject>
delegate method 416

fileManager:shouldProceedAfterError:
linkingItemAtPath:toPath: <NSObject>
delegate method 416

fileManager:shouldProceedAfterError:
movingItemAtPath:toPath: <NSObject>
delegate method 417

fileManager:shouldProceedAfterError:
removingItemAtPath: <NSObject> delegate
method 417

fileManager:shouldRemoveItemAtPath:
<NSObject> delegate method 418

fileManager:willProcessPath: <NSObject>
delegate method 419

fileModificationDate instance method 316
fileOwnerAccountID instance method 316
fileOwnerAccountName instance method 317
filePosixPermissions instance method 317
fileSize instance method 318
fileSystemAttributesAtPath: instance method

403
fileSystemFileNumber instance method 318
fileSystemNumber instance method 319
fileSystemRepresentation instance method 990
fileSystemRepresentationWithPath: instance

method 404
fileType instance method 319
fileURLWithPath: class method 1094
fileURLWithPath:isDirectory: class method 1095
finalize instance method 800, 879
finishDecoding instance method 527
finishEncoding instance method 510
fire instance method 1069
fireDate instance method 1069
firstIndex instance method 473
firstObjectCommonWithArray: instance method 49

1440
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

firstWeekday instance method 121
floatForKey: instance method 1187
floatValue instance method 707, 990
formatterBehavior instance method 246, 731
formatWidth instance method 731
formIntersectionWithCharacterSet: instance

method 589
formUnionWithCharacterSet: instance method 590
forwardInvocation: instance method 801, 880
Foundation Framework Version Numbers 1428
Foundation Version Number 1428
fragment instance method 1097
frameLength instance method 562

G

General Exception Names 1425
generatesCalendarDates instance method 246
generatesDecimalNumbers instance method 731
getArgument:atIndex: instance method 490
getArgumentTypeAtIndex: instance method 563
getBuffer:length: instance method 484
getBytes: instance method 198
getBytes:length: instance method 199
getBytes:maxLength:usedLength:encoding:options:

range:remainingRange: instance method 991
getBytes:range: instance method 199
getCFRunLoop instance method 893
getCharacters: instance method 992
getCharacters:range: instance method 992
getCString:maxLength:encoding: instance method

993
getFileSystemRepresentation:maxLength:

instance method 993
getIndexes: instance method 463
getIndexes:maxCount:inIndexRange: instance

method 473
getInputStream:outputStream: instance method

646
getLineStart:end:contentsEnd:forRange:

instance method 994
getObjects: instance method 49
getObjects:andKeys: instance method 320
getObjects:range: instance method 50
getObjectValue:forString:errorDescription:

instance method 430
getObjectValue:forString:range:error: instance

method 247, 732
getParagraphStart:end:contentsEnd:forRange:

instance method 995
getReturnValue: instance method 491
getValue: instance method 1205

globallyUniqueString instance method 862
gregorianStartDate instance method 247
groupingSeparator instance method 732
groupingSize instance method 733

H

handleFailureInFunction:file:lineNumber:
description: instance method 71

handleFailureInMethod:object:file:lineNumber:
description: instance method 71

handleMachMessage: <NSObject> delegate method
556

handlePortMessage: <NSObject> delegate method
857

hasBytesAvailable instance method 484
hash instance method 996
hash protocol instance method 1305
hasMemberInPlane: instance method 144
hasPassword instance method 1135
hasPrefix: instance method 997
hasSpaceAvailable instance method 840
hasSuffix: instance method 997
host instance method 1097, 1147
hostName instance method 647, 863
hour instance method 228
HTTP Cookie Property Keys 443
HTTPBody instance method 1167
HTTPBodyStream instance method 1167
HTTPMethod instance method 1167
HTTPShouldHandleCookies instance method 1168

I

illegalCharacterSet class method 138
increaseLengthBy: instance method 597
indexAtPosition: instance method 463
indexGreaterThanIndex: instance method 474
indexGreaterThanOrEqualToIndex: instance

method 475
indexLessThanIndex: instance method 475
indexLessThanOrEqualToIndex: instance method

476
indexOfObject: instance method 50
indexOfObject:inRange: instance method 50
indexOfObjectIdenticalTo: instance method 51
indexOfObjectIdenticalTo:inRange: instance

method 52
indexPathByAddingIndex: instance method 463

1441
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

indexPathByRemovingLastIndex instance method
464

indexPathWithIndex: class method 461
indexPathWithIndexes:length: class method 462
indexSet class method 470
indexSetWithIndex: class method 470
indexSetWithIndexesInRange: class method 470
infoDictionary instance method 91
init instance method 218, 248, 476, 663, 803, 821, 847,

998, 1057, 1188
initFileURLWithPath: instance method 1098
initFileURLWithPath:isDirectory: instance

method 1098
initForReadingWithData: instance method 527
initForWritingWithMutableData: instance method

510
initialize class method 788
initToBuffer:capacity: instance method 841
initToFileAtPath:append: instance method 841
initToMemory instance method 842
initWithArray: instance method 52, 185, 926
initWithArray:copyItems: instance method 53
initWithAuthenticationChallenge:sender:

instance method 1107
initWithBool: instance method 707
initWithBytes:length: instance method 200
initWithBytes:length:encoding: instance method

998
initWithBytes:objCType: instance method 1206
initWithBytesNoCopy:length: instance method

200
initWithBytesNoCopy:length:encoding:freeWhenDone:

instance method 999
initWithBytesNoCopy:length:freeWhenDone:

instance method 201
initWithCalendarIdentifier: instance method

121
initWithCapacity: instance method 186, 572, 597,

607, 620, 628
initWithCharacters:length: instance method 999
initWithCharactersNoCopy:length:freeWhenDone:

instance method 1000
initWithChar: instance method 708
initWithCoder: protocol instance method 1246
initWithCondition: instance method 177
initWithContentsOfFile: instance method 53, 201,

320
initWithContentsOfFile:encoding:error:

instance method 1001
initWithContentsOfFile:options:error: instance

method 202
initWithContentsOfFile:usedEncoding:error:

instance method 1001

initWithContentsOfMappedFile: instance method
202

initWithContentsOfURL: instance method 54, 203,
321, 1213

initWithContentsOfURL:encoding:error: instance
method 1002

initWithContentsOfURL:options:error: instance
method 203

initWithContentsOfURL:usedEncoding:error:
instance method 1002

initWithCString:encoding: instance method 1003
initWithData: instance method 204, 485, 1214
initWithData:encoding: instance method 1004
initWithDecimal: instance method 290
initWithDictionary: instance method 321
initWithDictionary:copyItems: instance method

322
initWithDomain:code:userInfo: instance method

346
initWithDomain:type:name: instance method 647
initWithDomain:type:name:port: instance method

648
initWithDouble: instance method 708
initWithFileAtPath: instance method 485
initWithFileDescriptor: instance method 370
initWithFileDescriptor:closeOnDealloc:

instance method 370
initWithFireDate:interval:target:selector:

userInfo:repeats: instance method 1070
initWithFloat: instance method 709
initWithFormat: instance method 1004
initWithFormat:arguments: instance method 1005
initWithFormat:locale: instance method 1006
initWithFormat:locale:arguments: instance

method 1006
initWithHost:port:protocol:realm:

authenticationMethod: instance method 1147
initWithIndex: instance method 464, 476
initWithIndexes:length: instance method 464
initWithIndexesInRange: instance method 477
initWithIndexSet: instance method 477
initWithInt: instance method 709
initWithInteger: instance method 709
initWithInvocation: instance method 498
initWithKey:ascending: instance method 940
initWithKey:ascending:selector: instance

method 940
initWithLength: instance method 598
initWithLocaleIdentifier: instance method 542
initWithLong: instance method 710
initWithLongLong: instance method 710
initWithMachPort: instance method 553
initWithMachPort:options: instance method 554

1442
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

initWithMantissa:exponent:isNegative: instance
method 290

initWithMemoryCapacity:diskCapacity:diskPath:
instance method 1115

initWithName: instance method 1084
initWithName:data: instance method 1084
initWithName:reason:userInfo: instance method

357
initWithNotificationCenter: instance method

690
initWithObjectsAndKeys: instance method 324
initWithObjects: instance method 54, 926
initWithObjects:count: instance method 55, 927
initWithObjects:forKeys: instance method 322
initWithObjects:forKeys:count: instance method

323
initWithPath: instance method 92
initWithProperties: instance method 440
initWithProtectionSpace:proposedCredential:

previousFailureCount:failureResponse:error:sender:
instance method 1107

initWithProxyHost:port:type:realm:
authenticationMethod: instance method 1148

initWithRequest:cachedResponse:client:
instance method 1160

initWithRequest:delegate: instance method 1124
initWithRequest:delegate:startImmediately:

instance method 1125
initWithResponse:data: instance method 108
initWithResponse:data:userInfo:storagePolicy:

instance method 109
initWithRoundingMode:scale:raiseOnExactness:

raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero: instance method 298

initWithScheme:host:path: instance method 1099
initWithSet: instance method 186, 927
initWithSet:copyItems: instance method 928
initWithShort: instance method 710
initWithString: instance method 291, 904, 1007,

1099
initWithString:locale: instance method 291
initWithString:relativeToURL: instance method

1100
initWithTarget:selector:object: instance

method 498, 1057
initWithTimeInterval:sinceDate: instance

method 219
initWithTimeIntervalSinceNow: instance method

219
initWithTimeIntervalSinceReferenceDate:

instance method 220
initWithUnsignedChar: instance method 711
initWithUnsignedInt: instance method 711

initWithUnsignedInteger: instance method 711
initWithUnsignedLong: instance method 712
initWithUnsignedLongLong: instance method 712
initWithUnsignedShort: instance method 712
initWithURL: instance method 1168
initWithURL:cachePolicy:timeoutInterval:

instance method 1168
initWithURL:MIMEType:expectedContentLength:

textEncodingName: instance method 1175
initWithUser: instance method 1188
initWithUser:password:persistence: instance

method 1135
initWithUTF8String: instance method 1008
inputStreamWithData: class method 483
inputStreamWithFileAtPath: class method 483
insertObject:atIndex: instance method 572
insertObjects:atIndexes: instance method 573
insertString:atIndex: instance method 629
instanceMethodForSelector: class method 790
instanceMethodSignatureForSelector: class

method 790
instancesRespondToSelector: class method 791
integerForKey: instance method 1189
integerValue instance method 713, 1008
internationalCurrencySymbol instance method

733
intersectSet: instance method 621
intersectsIndexesInRange: instance method 478
intersectsSet: instance method 929
intValue instance method 713, 1009
invalidate instance method 853, 1070
invert instance method 590
invertedSet instance method 144
invocation instance method 499
invocationWithMethodSignature: class method

489
invoke instance method 491
invokeWithTarget: instance method 492
isAbsolutePath instance method 1010
isAtEnd instance method 904
isCancelled instance method 821, 1058
isConcurrent instance method 822
isDaylightSavingTime instance method 1085
isDaylightSavingTimeForDate: instance method

1085
isDeletableFileAtPath: instance method 405
isEqual: protocol instance method 1306
isEqualToArray: instance method 56
isEqualToData: instance method 204
isEqualToDate: instance method 220
isEqualToDictionary: instance method 324
isEqualToIndexSet: instance method 478
isEqualToNumber: instance method 713

1443
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

isEqualToSet: instance method 929
isEqualToString: instance method 1010
isEqualToTimeZone: instance method 1086
isEqualToValue: instance method 1206
isExecutableFileAtPath: instance method 405
isExecuting instance method 822, 1059
isFileURL instance method 1101
isFinished instance method 822, 1059
isKindOfClass: protocol instance method 1306
isLenient instance method 248, 734
isLoaded instance method 92
isMainThread class method 1054
isMainThread instance method 1059
isMemberOfClass: protocol instance method 1307
isMultiThreaded class method 1054
ISOCountryCodes class method 538
ISOCurrencyCodes class method 538
ISOLanguageCodes class method 539
isOneway instance method 563
isPartialStringValidationEnabled instance

method 734
isPartialStringValid:newEditingString:

errorDescription: instance method 431
isPartialStringValid:proposedSelectedRange:

originalString:originalSelectedRange:
errorDescription: instance method 432

isProxy instance method 1148
isProxy protocol instance method 1308
isReadableFileAtPath: instance method 406
isReady instance method 823
isSecure instance method 440
isSessionOnly instance method 440
isSubclassOfClass: class method 791
isSubsetOfSet: instance method 930
isSupersetOfSet: instance method 144
isSuspended instance method 832
isValid instance method 853, 1071
isWritableFileAtPath: instance method 406

K

key instance method 941
Key Value Coding Exception Names 1278
Keyed Archiving Exception Names 515
Keyed Unarchiving Exception Names 531
keyEnumerator instance method 325
keyPathsForValuesAffectingValueForKey:

protocol class method 1283
Keys for Notification UserInfo Dictionary 378
Keys used by the change dictionary 1293
keysSortedByValueUsingSelector: instance

method 325

knownTimeZoneNames class method 1077

L

lastIndex instance method 479
lastObject instance method 56
lastPathComponent instance method 1011
laterDate: instance method 221
length instance method 205, 465, 1011
lengthOfBytesUsingEncoding: instance method

1012
letterCharacterSet class method 139
limitDateForMode: instance method 893
lineNumber instance method 1214
lineRangeForRange: instance method 1012
linkItemAtPath:toPath:error: instance method

407
load class method 792
load instance method 93
loadAndReturnError: instance method 93
locale instance method 121, 249, 734, 904
localeIdentifier instance method 542
localeIdentifierFromComponents: class method

539
localizations instance method 94
localizedCaseInsensitiveCompare: instance

method 1013
localizedCompare: instance method 1013
localizedDescription instance method 347
localizedFailureReason instance method 348
localizedInfoDictionary instance method 94
localizedName:locale: instance method 1086
localizedNameOfStringEncoding: class method

970
localizedRecoveryOptions instance method 348
localizedRecoverySuggestion instance method

348
localizedScannerWithString: class method 902
localizedStringForKey:value:table: instance

method 95
localizedStringForStatusCode: class method 456
localizedStringWithFormat: class method 970
localTimeZone class method 1078
lock protocol instance method 1298
lockBeforeDate: instance method 177, 548, 884
lockWhenCondition: instance method 178
lockWhenCondition:beforeDate: instance method

178
longCharacterIsMember: instance method 145
longEraSymbols instance method 249
longLongValue instance method 714, 1014
longValue instance method 714

1444
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

lowercaseLetterCharacterSet class method 139
lowercaseString instance method 1014

M

Mach Port Rights 556
Mach-O Architecture 105
machPort instance method 554
main instance method 823, 1060
mainBundle class method 85
mainDocumentURL instance method 1169
mainRunLoop class method 889
mainThread class method 1054
makeObjectsPerformSelector: instance method

56, 930
makeObjectsPerformSelector:withObject:

instance method 57, 930
maxConcurrentOperationCount instance method

832
maximum instance method 735
maximumDecimalNumber class method 281
maximumFractionDigits instance method 735
maximumIntegerDigits instance method 736
maximumLengthOfBytesUsingEncoding: instance

method 1015
maximumRangeOfUnit: instance method 122
maximumSignificantDigits instance method 736
member: instance method 931
memoryCapacity instance method 1116
methodForSelector: instance method 805
methodReturnLength instance method 564
methodReturnType instance method 564
methodSignature instance method 492
methodSignatureForSelector: instance method

805, 880
MIMEType instance method 1175
minimum instance method 736
minimumDaysInFirstWeek instance method 122
minimumDecimalNumber class method 282
minimumFractionDigits instance method 737
minimumIntegerDigits instance method 737
minimumRangeOfUnit: instance method 123
minimumSignificantDigits instance method 737
minusSet: instance method 621
minusSign instance method 738
minute instance method 228
month instance method 229
monthSymbols instance method 249
moveItemAtPath:toPath:error: instance method

408
multiplier instance method 738

mutableArrayValueForKey: <NSObject> instance
method 1268

mutableArrayValueForKeyPath: <NSObject>
instance method 1269

mutableBytes instance method 598
mutableCopy instance method 806
mutableCopyWithZone: class method 792
mutableCopyWithZone: protocol instance method

1300
mutableSetValueForKey: <NSObject> instance

method 1270
mutableSetValueForKeyPath:<NSObject> instance

method 1271

N

name instance method 171, 179, 358, 441, 549, 649, 676,
885, 1060, 1086

negativeFormat instance method 739
negativeInfinitySymbol instance method 739
negativePrefix instance method 739
negativeSuffix instance method 740
netServiceBrowser:didFindDomain:moreComing:

<NSObject> delegate method 667
netServiceBrowser:didFindService:moreComing:

<NSObject> delegate method 668
netServiceBrowser:didNotSearch: <NSObject>

delegate method 668
netServiceBrowser:didRemoveDomain:moreComing:

<NSObject> delegate method 669
netServiceBrowser:didRemoveService:moreComing:

<NSObject> delegate method 669
netServiceBrowserDidStopSearch: <NSObject>

delegate method 670
netServiceBrowserWillSearch: <NSObject>

delegate method 670
netService:didNotPublish: <NSObject> delegate

method 654
netService:didNotResolve: <NSObject> delegate

method 655
netService:didUpdateTXTRecordData:<NSObject>

delegate method 655
netServiceDidPublish: <NSObject> delegate

method 656
netServiceDidResolveAddress: <NSObject>

delegate method 656
netServiceDidStop: <NSObject> delegate method

656
netServiceWillPublish: <NSObject> delegate

method 657
netServiceWillResolve: <NSObject> delegate

method 657

1445
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

new class method 793
newlineCharacterSet class method 140
nextDaylightSavingTimeTransition instance

method 1087
nextDaylightSavingTimeTransitionAfterDate:

instance method 1087
nextObject instance method 341
nilSymbol instance method 740
nonBaseCharacterSet class method 140
nonretainedObjectValue instance method 1207
notANumber class method 282
notANumberSymbol instance method 740
Notification Posting Behavior 337
notificationWithName:object: class method 675
notificationWithName:object:userInfo: class

method 675
NSAdminApplicationDirectory constant 1405
NSAllApplicationsDirectory constant 1406
NSAllDomainsMask constant 1407
NSAllLibrariesDirectory constant 1406
NSAllocateMemoryPages function 1335
NSAllocateObject function 1335
NSAnchoredSearch constant 1042
NSApplicationDirectory constant 1405
NSApplicationSupportDirectory constant 1406
NSArgumentDomain constant 1200
NSASCIIStringEncoding constant 1045
NSAssert function 1336
NSAssert1 function 1336
NSAssert2 function 1337
NSAssert3 function 1338
NSAssert4 function 1339
NSAssert5 function 1340
NSAtomicWrite constant 208
NSAverageKeyValueOperator constant 1279
NSBackwardsSearch constant 1042
NSBuddhistCalendar constant 546
NSBundleDidLoadNotification notification 106
NSBundleExecutableArchitectureI386 constant

105
NSBundleExecutableArchitecturePPC constant 106
NSBundleExecutableArchitecturePPC64 constant

106
NSBundleExecutableArchitectureX86_64 constant

106
NSByteOrder data type 1401
NSCachesDirectory constant 1406
NSCalculationDivideByZero constant 1256
NSCalculationError data type 1255
NSCalculationLossOfPrecision constant 1255
NSCalculationNoError constant 1255
NSCalculationOverflow constant 1255
NSCalculationUnderflow constant 1255

NSCalendarUnit data type 127
NSCaseInsensitiveSearch constant 1042
NSCAssert function 1341
NSCAssert1 function 1342
NSCAssert2 function 1342
NSCAssert3 function 1343
NSCAssert4 function 1344
NSCAssert5 function 1344
NSCharacterConversionException constant 1044
NSChineseCalendar constant 546
NSClassFromString function 1345
NSCocoaErrorDomain constant 1424
NSComparisonResult data type 1402
NSConvertHostDoubleToSwapped function 1345
NSConvertHostFloatToSwapped function 1346
NSConvertSwappedDoubleToHost function 1346
NSConvertSwappedFloatToHost function 1347
NSCopyMemoryPages function 1347
NSCopyObject function 1347
NSCoreServiceDirectory constant 1406
NSCountKeyValueOperator constant 1279
NSCParameterAssert function 1348
NSCreateZone function 1349
NSCurrentLocaleDidChangeNotification

notification 546
NSDateComponents undefined component identifier

236
NSDateComponents wrapping behavior 129
NSDateFormatterBehavior data type 273
NSDateFormatterBehavior10_0 constant 273
NSDateFormatterBehavior10_4 constant 273
NSDateFormatterBehaviorDefault constant 273
NSDateFormatterFullStyle constant 272
NSDateFormatterLongStyle constant 272
NSDateFormatterMediumStyle constant 272
NSDateFormatterNoStyle constant 272
NSDateFormatterShortStyle constant 272
NSDateFormatterStyle data type 272
NSDayCalendarUnit constant 128
NSDeallocateMemoryPages function 1349
NSDeallocateObject function 1350
NSDecimal Constants 1424
NSDecimal data type 1403
NSDecimalAdd function 1350
NSDecimalCompact function 1351
NSDecimalCompare function 1351
NSDecimalCopy function 1352
NSDecimalDivide function 1352
NSDecimalIsNotANumber function 1353
NSDecimalMaxSize constant 1424
NSDecimalMultiply function 1353
NSDecimalMultiplyByPowerOf10 function 1353
NSDecimalNormalize function 1354

1446
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSDecimalNoScale constant 1425
NSDecimalNumber Exception Names 292
NSDecimalNumberDivideByZeroException constant

293
NSDecimalNumberExactnessException constant 293
NSDecimalNumberOverflowException constant 293
NSDecimalNumberUnderflowException constant 293
NSDecimalPower function 1355
NSDecimalRound function 1355
NSDecimalString function 1356
NSDecimalSubtract function 1356
NSDecrementExtraRefCountWasZero function 1356
NSDefaultMallocZone function 1357
NSDefaultRunLoopMode constant 897
NSDemoApplicationDirectory constant 1405
NSDesktopDirectory constant 1406
NSDestinationInvalidException constant 1427
NSDeveloperApplicationDirectory constant 1405
NSDeveloperDirectory constant 1405
NSDiacriticInsensitiveSearch constant 1043
NSDidBecomeSingleThreadedNotification

notification 1062
NSDistinctUnionOfArraysKeyValueOperator

constant 1279
NSDistinctUnionOfObjectsKeyValueOperator

constant 1279
NSDistinctUnionOfSetsKeyValueOperator constant

1279
NSDocumentationDirectory constant 1406
NSDocumentDirectory constant 1406
NSDownloadsDirectory constant 1406
NSEqualRanges function 1358
NSEraCalendarUnit constant 128
NSError Codes 1413
NSErrorFailingURLStringKey constant 350
NSExecutableArchitectureMismatchError constant

1417
NSExecutableErrorMaximum constant 1417
NSExecutableErrorMinimum constant 1417
NSExecutableLinkError constant 1417
NSExecutableLoadError constant 1417
NSExecutableNotLoadableError constant 1417
NSExecutableRuntimeMismatchError constant 1417
NSExtraRefCount function 1358
NSFastEnumerationState data type 1263
NSFileAppendOnly constant 420
NSFileBusy constant 420
NSFileCreationDate constant 420
NSFileDeviceIdentifier constant 421
NSFileErrorMaximum constant 1416
NSFileErrorMinimum constant 1416
NSFileExtensionHidden constant 421
NSFileGroupOwnerAccountID constant 421

NSFileGroupOwnerAccountName constant 421
NSFileHandleConnectionAcceptedNotification

notification 379
NSFileHandleDataAvailableNotification

notification 379
NSFileHandleNotificationDataItem constant 378
NSFileHandleNotificationFileHandleItem

constant 378
NSFileHandleNotificationMonitorModes constant

379
NSFileHandleOperationException constant 378
NSFileHandleReadCompletionNotification

notification 380
NSFileHandleReadToEndOfFileCompletionNotification

notification 380
NSFileHFSCreatorCode constant 421
NSFileHFSTypeCode constant 421
NSFileImmutable constant 421
NSFileLockingError constant 1414
NSFileModificationDate constant 422
NSFileNoSuchFileError constant 1414
NSFileOwnerAccountID constant 422
NSFileOwnerAccountName constant 420
NSFilePathErrorKey constant 350
NSFilePosixPermissions constant 422
NSFileReadCorruptFileError constant 1415
NSFileReadInapplicableStringEncodingError

constant 1415
NSFileReadInvalidFileNameError constant 1415
NSFileReadNoPermissionError constant 1414
NSFileReadNoSuchFileError constant 1415
NSFileReadUnknownError constant 1414
NSFileReadUnsupportedSchemeError constant 1415
NSFileReferenceCount constant 422
NSFileSize constant 422
NSFileSystemFileNumber constant 422
NSFileSystemFreeNodes constant 424
NSFileSystemFreeSize constant 424
NSFileSystemNodes constant 424
NSFileSystemNumber constant 425
NSFileSystemSize constant 424
NSFileType constant 422
NSFileTypeBlockSpecial constant 423
NSFileTypeCharacterSpecial constant 423
NSFileTypeDirectory constant 423
NSFileTypeRegular constant 423
NSFileTypeSocket constant 423
NSFileTypeSymbolicLink constant 423
NSFileTypeUnknown constant 423
NSFileWriteInapplicableStringEncodingError

constant 1415
NSFileWriteInvalidFileNameError constant 1415
NSFileWriteNoPermissionError constant 1415

1447
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSFileWriteOutOfSpaceError constant 1416
NSFileWriteUnknownError constant 1415
NSFileWriteUnsupportedSchemeError constant 1416
NSForcedOrderingSearch constant 1043
NSFormattingError constant 1416
NSFormattingErrorMaximum constant 1417
NSFormattingErrorMinimum constant 1416
NSFoundationVersionNumber constant 1428
NSFoundationVersionNumber10_0 constant 1429
NSFoundationVersionNumber10_1 constant 1429
NSFoundationVersionNumber10_1_1 constant 1429
NSFoundationVersionNumber10_1_2 constant 1429
NSFoundationVersionNumber10_1_3 constant 1430
NSFoundationVersionNumber10_1_4 constant 1430
NSFoundationVersionNumber10_2 constant 1430
NSFoundationVersionNumber10_2_1 constant 1430
NSFoundationVersionNumber10_2_2 constant 1430
NSFoundationVersionNumber10_2_3 constant 1430
NSFoundationVersionNumber10_2_4 constant 1430
NSFoundationVersionNumber10_2_5 constant 1430
NSFoundationVersionNumber10_2_6 constant 1430
NSFoundationVersionNumber10_2_7 constant 1430
NSFoundationVersionNumber10_2_8 constant 1431
NSFoundationVersionNumber10_3 constant 1431
NSFoundationVersionNumber10_3_1 constant 1431
NSFoundationVersionNumber10_3_2 constant 1431
NSFoundationVersionNumber10_3_3 constant 1431
NSFoundationVersionNumber10_3_4 constant 1431
NSFoundationVersionNumber10_3_5 constant 1431
NSFoundationVersionNumber10_3_6 constant 1431
NSFoundationVersionNumber10_3_7 constant 1431
NSFoundationVersionNumber10_3_8 constant 1431
NSFoundationVersionNumber10_3_9 constant 1432
NSFoundationVersionNumber10_4 constant 1432
NSFoundationVersionNumber10_4_1 constant 1432
NSFoundationVersionNumber10_4_2 constant 1432
NSFoundationVersionNumber10_4_3 constant 1432
NSFoundationVersionNumber10_4_4_Intel constant

1432
NSFoundationVersionNumber10_4_4_PowerPC

constant 1432
NSFoundationVersionNumber10_4_5 constant 1432
NSFoundationVersionNumber10_4_6 constant 1432
NSFoundationVersionNumber10_4_7 constant 1432
NSFoundationVersionWithFileManagerResourceFork-

Support constant 425
NSFullUserName function 1358
NSGenericException constant 1426
NSGetSizeAndAlignment function 1359
NSGetUncaughtExceptionHandler function 1359
NSGlobalDomain constant 1200
NSGregorianCalendar constant 545
NSHashTableOptions data type 1403

NSHebrewCalendar constant 546
NSHomeDirectory function 1360
NSHomeDirectoryForUser function 1360
NSHostByteOrder function 1361
NSHourCalendarUnit constant 128
NSHPUXOperatingSystem constant 866
NSHTTPCookieAcceptPolicy data type 452
NSHTTPCookieAcceptPolicyAlways constant 452
NSHTTPCookieAcceptPolicyNever constant 452
NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain

constant 452
NSHTTPCookieComment constant 443
NSHTTPCookieCommentURL constant 443
NSHTTPCookieDiscard constant 443
NSHTTPCookieDomain constant 444
NSHTTPCookieExpires constant 444
NSHTTPCookieManagerAcceptPolicyChangedNotification

notification 453
NSHTTPCookieManagerCookiesChangedNotification

notification 452
NSHTTPCookieMaximumAge constant 444
NSHTTPCookieName constant 444
NSHTTPCookieOriginURL constant 444
NSHTTPCookiePath constant 444
NSHTTPCookiePort constant 444
NSHTTPCookieSecure constant 445
NSHTTPCookieValue constant 445
NSHTTPCookieVersion constant 445
NSIncrementExtraRefCount function 1361
NSInteger and NSUInteger Maximum and Minimum

Values 1425
NSIntegerMax constant 1425
NSIntegerMin constant 1425
NSInternalInconsistencyException constant 1426
NSIntersectionRange function 1361
NSInvalidArchiveOperationException constant

515
NSInvalidArgumentException constant 1426
NSInvalidReceivePortException constant 1427
NSInvalidSendPortException constant 1427
NSInvalidUnarchiveOperationException constant

531
NSInvocationOperationCancelledException

constant 500
NSInvocationOperationVoidResultException

constant 500
NSIslamicCalendar constant 546
NSIslamicCivilCalendar constant 546
NSISO2022JPStringEncoding constant 1045
NSISOLatin1StringEncoding constant 1046
NSISOLatin2StringEncoding constant 1046
NSJapaneseCalendar constant 546
NSJapaneseEUCStringEncoding constant 1046

1448
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSKeyValueChange 1291
NSKeyValueChangeIndexesKey constant 1294
NSKeyValueChangeInsertion constant 1291
NSKeyValueChangeKindKey constant 1293
NSKeyValueChangeNewKey constant 1293
NSKeyValueChangeOldKey constant 1293
NSKeyValueChangeRemoval constant 1291
NSKeyValueChangeReplacement constant 1291
NSKeyValueChangeSetting constant 1291
NSKeyValueIntersectSetMutation constant 1294
NSKeyValueMinusSetMutation constant 1294
NSKeyValueObservingOptionInitial constant 1292
NSKeyValueObservingOptionNew constant 1292
NSKeyValueObservingOptionOld constant 1292
NSKeyValueObservingOptionPrior constant 1292
NSKeyValueObservingOptions 1291
NSKeyValueSetMutationKind 1294
NSKeyValueSetSetMutation constant 1295
NSKeyValueUnionSetMutation constant 1294
NSKeyValueValidationError constant 1416
NSLibraryDirectory constant 1405
NSLiteralSearch constant 1042
NSLocalDomainMask constant 1407
NSLocale Calendar Keys 545
NSLocale Component Keys 543
NSLocaleCalendar constant 544
NSLocaleCollationIdentifier constant 544
NSLocaleCountryCode constant 544
NSLocaleCurrencyCode constant 545
NSLocaleCurrencySymbol constant 545
NSLocaleDecimalSeparator constant 545
NSLocaleExemplarCharacterSet constant 544
NSLocaleGroupingSeparator constant 545
NSLocaleIdentifier constant 543
NSLocaleLanguageCode constant 544
NSLocaleMeasurementSystem constant 545
NSLocaleScriptCode constant 544
NSLocaleUsesMetricSystem constant 544
NSLocaleVariantCode constant 544
NSLocalizedDescriptionKey constant 350
NSLocalizedFailureReasonErrorKey constant 351
NSLocalizedRecoveryOptionsErrorKey constant

351
NSLocalizedRecoverySuggestionErrorKey constant

351
NSLocalizedString macro 1362
NSLocalizedStringFromTable macro 1362
NSLocalizedStringFromTableInBundlemacro 1363
NSLocalizedStringWithDefaultValue macro 1363
NSLocationInRange function 1364
NSLog function 1364
NSLogPageSize function 1365
NSLogv function 1365

NSMachErrorDomain constant 352
NSMACHOperatingSystem constant 866
NSMachPortDeallocateNone constant 556
NSMachPortDeallocateReceiveRight constant 557
NSMachPortDeallocateSendRight constant 557
NSMacOSRomanStringEncoding constant 1046
NSMakeCollectable macro 1366
NSMakeRange function 1366
NSMallocException constant 1426
NSMappedRead constant 208
NSMapTableOptions data type 1403
NSMaximumKeyValueOperator constant 1279
NSMaxRange function 1367
NSMinimumKeyValueOperator constant 1280
NSMinuteCalendarUnit constant 128
NSMonthCalendarUnit constant 128
NSNetServiceNoAutoRename constant 659
NSNetServiceOptions data type 659
NSNetServices Errors 658
NSNetServicesActivityInProgress constant 659
NSNetServicesBadArgumentError constant 659
NSNetServicesCancelledError constant 659
NSNetServicesCollisionError constant 658
NSNetServicesError 658
NSNetServicesErrorCode constant 658
NSNetServicesErrorDomain constant 658
NSNetServicesInvalidError constant 659
NSNetServicesNotFoundError constant 659
NSNetServicesTimeoutError constant 659
NSNetServicesUnknownError constant 658
NSNetworkDomainMask constant 1407
NSNEXTSTEPStringEncoding constant 1046
NSNonLossyASCIIStringEncoding constant 1046
NSNotFound 1418
NSNotFound constant 1418
NSNotificationCoalescing data type 691
NSNotificationCoalescingOnName constant 691
NSNotificationCoalescingOnSender constant 691
NSNotificationDeliverImmediately constant 337
NSNotificationNoCoalescing constant 691
NSNotificationPostToAllSessions constant 337
NSNumberFormatterBehavior 772
NSNumberFormatterBehavior10_0 constant 773
NSNumberFormatterBehavior10_4 constant 773
NSNumberFormatterBehaviorDefault constant 773
NSNumberFormatterCurrencyStyle constant 772
NSNumberFormatterDecimalStyle constant 772
NSNumberFormatterNoStyle constant 772
NSNumberFormatterPadAfterPrefix constant 773
NSNumberFormatterPadAfterSuffix constant 774
NSNumberFormatterPadBeforePrefix constant 773
NSNumberFormatterPadBeforeSuffix constant 774
NSNumberFormatterPadPosition 773

1449
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSNumberFormatterPercentStyle constant 772
NSNumberFormatterRoundCeiling constant 774
NSNumberFormatterRoundDown constant 774
NSNumberFormatterRoundFloor constant 774
NSNumberFormatterRoundHalfDown constant 775
NSNumberFormatterRoundHalfEven constant 774
NSNumberFormatterRoundHalfUp constant 775
NSNumberFormatterRoundingMode 774
NSNumberFormatterRoundUp constant 775
NSNumberFormatterScientificStyle constant 772
NSNumberFormatterSpellOutStyle constant 772
NSNumberFormatterStyle 771
NSNumericSearch constant 1043
NSObjectInaccessibleException constant 1426
NSObjectNotAvailableException constant 1427
NSOldStyleException constant 1427
NSOpenStepRootDirectory function 1367
NSOpenStepUnicodeReservedBase 145
NSOpenStepUnicodeReservedBase constant 146
NSOperationQueueDefaultMaxConcurrentOperationCount

constant 835
NSOperationQueuePriority data type 826
NSOperationQueuePriorityHigh constant 827
NSOperationQueuePriorityLow constant 827
NSOperationQueuePriorityNormal constant 827
NSOperationQueuePriorityVeryHigh constant 827
NSOperationQueuePriorityVeryLow constant 827
NSOrderedAscending constant 1402
NSOrderedDescending constant 1402
NSOrderedSame constant 1402
NSOSF1OperatingSystem constant 866
NSOSStatusErrorDomain constant 352
NSPageSize function 1367
NSParameterAssert function 1368
NSParseErrorException constant 1044
NSPointFromCGPoint macro 1368
NSPointToCGPoint macro 1369
NSPortDidBecomeInvalidNotificationnotification

857
NSPortReceiveException constant 1427
NSPortSendException constant 1427
NSPortTimeoutException constant 1427
NSPOSIXErrorDomain constant 352
NSPostASAP constant 692
NSPostingStyle data type 691
NSPostNow constant 692
NSPostWhenIdle constant 692
NSProcessInfo—Operating Systems 866
NSPropertyListBinaryFormat_v1_0 constant 873
NSPropertyListFormat data type 873
NSPropertyListImmutable constant 872
NSPropertyListMutabilityOptions data type 872
NSPropertyListMutableContainers constant 872

NSPropertyListMutableContainersAndLeaves
constant 872

NSPropertyListOpenStepFormat constant 873
NSPropertyListXMLFormat_v1_0 constant 873
NSProtocolFromString function 1369
NSRange data type 1404
NSRangeException constant 1426
NSRangeFromString function 1370
NSRangePointer data type 1404
NSRealMemoryAvailable function 1370
NSRecoveryAttempterErrorKey constant 352
NSRectFromCGRect macro 1370
NSRectToCGRect macro 1371
NSRecycleZone function 1371
NSRegistrationDomain constant 1200
NSRoundBankers constant 1254
NSRoundDown constant 1254
NSRoundDownToMultipleOfPageSize function 1372
NSRoundingMode data type 1254
NSRoundPlain constant 1254
NSRoundUp constant 1254
NSRoundUpToMultipleOfPageSize function 1372
NSRunLoopCommonModes constant 897
NSSearchPathDirectory data type 1404
NSSearchPathDomainMask data type 1407
NSSearchPathForDirectoriesInDomains function

1372
NSSecondCalendarUnit constant 129
NSSelectorFromString function 1373
NSSetUncaughtExceptionHandler function 1374
NSSetZoneName function 1374
NSShiftJISStringEncoding constant 1046
NSShouldRetainWithZone function 1374
NSSizeFromCGSize macro 1375
NSSizeToCGSize macro 1375
NSSolarisOperatingSystem constant 866
NSStream Error Domains 954
NSStream Property Keys 953
NSStreamDataWrittenToMemoryStreamKey constant

954
NSStreamEvent data type 952
NSStreamEventEndEncountered constant 953
NSStreamEventErrorOccurred constant 953
NSStreamEventHasBytesAvailable constant 952
NSStreamEventHasSpaceAvailable constant 953
NSStreamEventNone constant 952
NSStreamEventOpenCompleted constant 952
NSStreamFileCurrentOffsetKey constant 954
NSStreamSocketSecurityLevelKey constant 953
NSStreamSocketSecurityLevelNegotiatedSSL

constant 955
NSStreamSocketSecurityLevelNone constant 955
NSStreamSocketSecurityLevelSSLv2 constant 955

1450
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSStreamSocketSecurityLevelSSLv3 constant 955
NSStreamSocketSecurityLevelTLSv1 constant 955
NSStreamSocketSSLErrorDomain constant 954
NSStreamSOCKSErrorDomain constant 954
NSStreamSOCKSProxyConfigurationKey constant

954
NSStreamSOCKSProxyHostKey constant 956
NSStreamSOCKSProxyPasswordKey constant 956
NSStreamSOCKSProxyPortKey constant 956
NSStreamSOCKSProxyUserKey constant 956
NSStreamSOCKSProxyVersion4 constant 956
NSStreamSOCKSProxyVersion5 constant 956
NSStreamSOCKSProxyVersionKey constant 956
NSStreamStatus data type 950
NSStreamStatusAtEnd constant 951
NSStreamStatusClosed constant 951
NSStreamStatusError constant 952
NSStreamStatusNotOpen constant 951
NSStreamStatusOpen constant 951
NSStreamStatusOpening constant 951
NSStreamStatusReading constant 951
NSStreamStatusWriting constant 951
NSString Handling Exception Names 1044
NSStringCompareOptions data type 1042
NSStringEncoding data type 1045, 1407
NSStringEncodingConversionAllowLossy constant

1044
NSStringEncodingConversionExternalRepresentation

constant 1044
NSStringEncodingConversionOptions data type

1043
NSStringEncodingErrorKey constant 351
NSStringFromClass function 1376
NSStringFromProtocol function 1376
NSStringFromRange function 1377
NSStringFromSelector function 1377
NSSumKeyValueOperator constant 1280
NSSunOSOperatingSystem constant 866
NSSwapBigDoubleToHost function 1377
NSSwapBigFloatToHost function 1378
NSSwapBigIntToHost function 1378
NSSwapBigLongLongToHost function 1379
NSSwapBigLongToHost function 1379
NSSwapBigShortToHost function 1380
NSSwapDouble function 1380
NSSwapFloat function 1380
NSSwapHostDoubleToBig function 1381
NSSwapHostDoubleToLittle function 1381
NSSwapHostFloatToBig function 1382
NSSwapHostFloatToLittle function 1382
NSSwapHostIntToBig function 1383
NSSwapHostIntToLittle function 1383
NSSwapHostLongLongToBig function 1384

NSSwapHostLongLongToLittle function 1384
NSSwapHostLongToBig function 1385
NSSwapHostLongToLittle function 1385
NSSwapHostShortToBig function 1386
NSSwapHostShortToLittle function 1386
NSSwapInt function 1387
NSSwapLittleDoubleToHost function 1387
NSSwapLittleFloatToHost function 1388
NSSwapLittleIntToHost function 1388
NSSwapLittleLongLongToHost function 1389
NSSwapLittleLongToHost function 1389
NSSwapLittleShortToHost function 1390
NSSwapLong function 1390
NSSwapLongLong function 1391
NSSwappedDouble data type 1408
NSSwappedFloat data type 1408
NSSwapShort function 1391
NSSymbolStringEncoding constant 1046
NSSystemDomainMask constant 1407
NSSystemTimeZoneDidChangeNotification

notification 1089
NSTargetObjectUserInfoKey constant 1278
NSTemporaryDirectory function 1392
NSThreadWillExitNotification notification 1063
NSTimeInterval data type 1408
NSTimeIntervalSince1970 223
NSTimeIntervalSince1970 constant 223
NSTimeZoneNameStyle data type 1088
NSTimeZoneNameStyleDaylightSaving constant 1089
NSTimeZoneNameStyleShortDaylightSaving

constant 1089
NSTimeZoneNameStyleShortStandard constant 1089
NSTimeZoneNameStyleStandard constant 1089
NSUIntegerMax constant 1425
NSUncachedRead constant 208
NSUncaughtExceptionHandler data type 1409
NSUndefinedDateComponent constant 236
NSUndefinedKeyException constant 1278
NSUndefinedKeyException userInfo Keys 1278
NSUnderlyingErrorKey constant 351
NSUnicodeStringEncoding constant 1046
NSUnionOfArraysKeyValueOperator constant 1280
NSUnionOfObjectsKeyValueOperator constant 1280
NSUnionOfSetsKeyValueOperator constant 1280
NSUnionRange function 1392
NSUnknownUserInfoKey constant 1278
NSURL Domain 1424
NSURL Schemes 1104
NSURLAuthenticationMethodDefault constant 1151
NSURLAuthenticationMethodHTMLForm constant 1151
NSURLAuthenticationMethodHTTPBasic constant

1151

1451
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSURLAuthenticationMethodHTTPDigest constant
1151

NSURLCacheStorageAllowed constant 111
NSURLCacheStorageAllowedInMemoryOnly constant

111
NSURLCacheStorageNotAllowed constant 111
NSURLCacheStoragePolicy data type 110
NSURLCredentialPersistence data type 1137
NSURLCredentialPersistenceForSession constant

1137
NSURLCredentialPersistenceNone constant 1137
NSURLCredentialPersistencePermanent constant

1137
NSURLCredentialStorageChangedNotification

notification 1143
NSURLErrorBadServerResponse constant 1421
NSURLErrorBadURL constant 1420
NSURLErrorCancelled constant 1419
NSURLErrorCannotCloseFile constant 1423
NSURLErrorCannotConnectToHost constant 1420
NSURLErrorCannotCreateFile constant 1423
NSURLErrorCannotFindHost constant 1420
NSURLErrorCannotLoadFromNetwork constant 1422
NSURLErrorCannotMoveFile constant 1423
NSURLErrorCannotOpenFile constant 1423
NSURLErrorCannotRemoveFile constant 1423
NSURLErrorCannotWriteToFile constant 1423
NSURLErrorClientCertificateRejected constant

1422
NSURLErrorDataLengthExceedsMaximum constant

1420
NSURLErrorDNSLookupFailed constant 1420
NSURLErrorDomain constant 1424
NSURLErrorDownloadDecodingFailedMidStream

constant 1423
NSURLErrorDownloadDecodingFailedToComplete

constant 1423
NSURLErrorFileDoesNotExist constant 1421
NSURLErrorFileIsDirectory constant 1422
NSURLErrorHTTPTooManyRedirects constant 1420
NSURLErrorKey constant 351
NSURLErrorNetworkConnectionLost constant 1420
NSURLErrorNoPermissionsToReadFile constant 1422
NSURLErrorNotConnectedToInternet constant 1421
NSURLErrorRedirectToNonExistentLocation

constant 1421
NSURLErrorResourceUnavailable constant 1421
NSURLErrorSecureConnectionFailed constant 1422
NSURLErrorServerCertificateHasBadDate constant

1422
NSURLErrorServerCertificateHasUnknownRoot

constant 1422

NSURLErrorServerCertificateNotYetValid
constant 1422

NSURLErrorServerCertificateUntrusted constant
1422

NSURLErrorTimedOut constant 1420
NSURLErrorUnknown constant 1419
NSURLErrorUnsupportedURL constant 1420
NSURLErrorUserAuthenticationRequired constant

1421
NSURLErrorUserCancelledAuthentication constant

1421
NSURLErrorZeroByteResource constant 1421
NSURLFileScheme constant 1104
NSURLProtectionSpace Authentication Methods 1151
NSURLProtectionSpace Proxy Types 1150
NSURLProtectionSpaceFTPProxy constant 1151
NSURLProtectionSpaceHTTPProxy constant 1150
NSURLProtectionSpaceHTTPSProxy constant 1150
NSURLProtectionSpaceSOCKSProxy constant 1151
NSURLRequestCachePolicy data type 1170
NSURLRequestReloadIgnoringCacheData constant

1171
NSURLRequestReloadIgnoringLocalAndRemoteCacheData

constant 1171
NSURLRequestReloadIgnoringLocalCacheData

constant 1171
NSURLRequestReloadRevalidatingCacheData

constant 1172
NSURLRequestReturnCacheDataDontLoad constant

1171
NSURLRequestReturnCacheDataElseLoad constant

1171
NSURLRequestUseProtocolCachePolicy constant

1171
NSURLResponseUnknownLength constant 1177
NSUserCancelledError constant 1416
NSUserDefaults Domains 1200
NSUserDefaultsDidChangeNotificationnotification

1200
NSUserDirectory constant 1405
NSUserDomainMask constant 1407
NSUserName function 1393
NSUTF16BigEndianStringEncoding constant 1047
NSUTF16LittleEndianStringEncoding constant 1047
NSUTF32BigEndianStringEncoding constant 1047
NSUTF32LittleEndianStringEncoding constant 1047
NSUTF32StringEncoding constant 1047
NSUTF8StringEncoding constant 1046
NSValidationErrorMaximum constant 1416
NSValidationErrorMinimum constant 1416
NSWeekCalendarUnit constant 129
NSWeekdayCalendarUnit constant 129
NSWeekdayOrdinalCalendarUnit constant 129

1452
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSWidthInsensitiveSearch constant 1043
NSWillBecomeMultiThreadedNotification

notification 1063
NSWindows95OperatingSystem constant 866
NSWindowsCP1250StringEncoding constant 1047
NSWindowsCP1251StringEncoding constant 1047
NSWindowsCP1252StringEncoding constant 1047
NSWindowsCP1253StringEncoding constant 1047
NSWindowsCP1254StringEncoding constant 1047
NSWindowsNTOperatingSystem constant 867
NSWrapCalendarComponents constant 129
NSXMLParserAttributeHasNoValueError constant

1236
NSXMLParserAttributeListNotFinishedError

constant 1237
NSXMLParserAttributeListNotStartedError

constant 1237
NSXMLParserAttributeNotFinishedError constant

1236
NSXMLParserAttributeNotStartedError constant

1236
NSXMLParserAttributeRedefinedError constant

1236
NSXMLParserCDATANotFinishedError constant 1238
NSXMLParserCharacterRefAtEOFError constant 1233
NSXMLParserCharacterRefInDTDError constant 1233
NSXMLParserCharacterRefInEpilogError constant

1233
NSXMLParserCharacterRefInPrologError constant

1233
NSXMLParserCommentContainsDoubleHyphenError

constant 1240
NSXMLParserCommentNotFinishedError constant

1237
NSXMLParserConditionalSectionNotFinishedError

constant 1238
NSXMLParserConditionalSectionNotStartedError

constant 1238
NSXMLParserDelegateAbortedParseError constant

1241
NSXMLParserDOCTYPEDeclNotFinishedError

constant 1238
NSXMLParserDocumentStartError constant 1232
NSXMLParserElementContentDeclNotFinishedError

constant 1238
NSXMLParserElementContentDeclNotStartedError

constant 1237
NSXMLParserEmptyDocumentError constant 1233
NSXMLParserEncodingNotSupportedError constant

1235
NSXMLParserEntityBoundaryError constant 1241
NSXMLParserEntityIsExternalError constant 1235
NSXMLParserEntityIsParameterError constant 1235

NSXMLParserEntityNotFinishedError constant 1236
NSXMLParserEntityNotStartedError constant 1236
NSXMLParserEntityRefAtEOFError constant 1234
NSXMLParserEntityReferenceMissingSemiError

constant 1234
NSXMLParserEntityReferenceWithoutNameError

constant 1234
NSXMLParserEntityRefInDTDError constant 1234
NSXMLParserEntityRefInEpilogError constant 1234
NSXMLParserEntityRefInPrologError constant 1234
NSXMLParserEntityRefLoopError constant 1241
NSXMLParserEntityValueRequiredError constant

1240
NSXMLParserEqualExpectedError constant 1240
NSXMLParserError data type 1230
NSXMLParserErrorDomain 1229
NSXMLParserErrorDomain constant 1230
NSXMLParserExternalStandaloneEntityError

constant 1240
NSXMLParserExternalSubsetNotFinishedError

constant 1238
NSXMLParserExtraContentError constant 1241
NSXMLParserGTRequiredError constant 1239
NSXMLParserInternalError constant 1232
NSXMLParserInvalidCharacterError constant 1233
NSXMLParserInvalidCharacterInEntityError

constant 1241
NSXMLParserInvalidCharacterRefError constant

1233
NSXMLParserInvalidConditionalSectionError

constant 1240
NSXMLParserInvalidDecimalCharacterRefError

constant 1233
NSXMLParserInvalidEncodingError constant 1240
NSXMLParserInvalidEncodingNameError constant

1240
NSXMLParserInvalidHexCharacterRefError

constant 1233
NSXMLParserInvalidURIError constant 1241
NSXMLParserLessThanSymbolInAttributeError

constant 1236
NSXMLParserLiteralNotFinishedError constant

1236
NSXMLParserLiteralNotStartedError constant 1236
NSXMLParserLTRequiredError constant 1239
NSXMLParserLTSlashRequiredError constant 1239
NSXMLParserMisplacedCDATAEndStringError

constant 1238
NSXMLParserMisplacedXMLDeclarationError

constant 1238
NSXMLParserMixedContentDeclNotFinishedError

constant 1237

1453
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

NSXMLParserMixedContentDeclNotStartedError
constant 1237

NSXMLParserNAMERequiredError constant 1239
NSXMLParserNamespaceDeclarationError constant

1236
NSXMLParserNMTOKENRequiredError constant 1239
NSXMLParserNoDTDError constant 1241
NSXMLParserNotationNotFinishedError constant

1237
NSXMLParserNotationNotStartedError constant

1237
NSXMLParserNotWellBalancedError constant 1241
NSXMLParserOutOfMemoryError constant 1232
NSXMLParserParsedEntityRefAtEOFError constant

1234
NSXMLParserParsedEntityRefInEpilogError

constant 1234
NSXMLParserParsedEntityRefInInternalError

constant 1241
NSXMLParserParsedEntityRefInInternalSubsetError

constant 1234
NSXMLParserParsedEntityRefInPrologError

constant 1234
NSXMLParserParsedEntityRefMissingSemiError

constant 1235
NSXMLParserParsedEntityRefNoNameError constant

1235
NSXMLParserPCDATARequiredError constant 1239
NSXMLParserPrematureDocumentEndError constant

1233
NSXMLParserProcessingInstructionNotFinishedError

constant 1237
NSXMLParserProcessingInstructionNotStartedError

constant 1237
NSXMLParserPublicIdentifierRequiredError

constant 1239
NSXMLParserSeparatorRequiredError constant 1239
NSXMLParserSpaceRequiredError constant 1239
NSXMLParserStandaloneValueError constant 1240
NSXMLParserStringNotClosedError constant 1235
NSXMLParserStringNotStartedError constant 1235
NSXMLParserTagNameMismatchError constant 1240
NSXMLParserUndeclaredEntityError constant 1235
NSXMLParserUnfinishedTagError constant 1240
NSXMLParserUnknownEncodingError constant 1235
NSXMLParserUnparsedEntityError constant 1235
NSXMLParserURIFragmentError constant 1241
NSXMLParserURIRequiredError constant 1239
NSXMLParserXMLDeclNotFinishedError constant

1238
NSXMLParserXMLDeclNotStartedError constant 1238
NSYearCalendarUnit constant 128
NSZone data type 1409

NSZoneCalloc function 1393
NSZoneFree function 1394
NSZoneFromPointer function 1394
NSZoneMalloc function 1395
NSZoneName function 1395
NSZoneRealloc function 1396
NS_BigEndian constant 1402
NS_DURING function 1396
NS_ENDHANDLER function 1396
NS_HANDLER function 1397
NS_LittleEndian constant 1402
NS_UnknownByteOrder constant 1402
NS_VALUERETURN function 1397
NS_VOIDRETURN function 1397
null class method 694
numberFromString: instance method 741
numberOfArguments instance method 564
numberStyle instance method 741
numberWithBool: class method 699
numberWithChar: class method 699
numberWithDouble: class method 700
numberWithFloat: class method 700
numberWithInt: class method 700
numberWithInteger: class method 701
numberWithLong: class method 701
numberWithLongLong: class method 701
numberWithShort: class method 702
numberWithUnsignedChar: class method 702
numberWithUnsignedInt: class method 702
numberWithUnsignedInteger: class method 703
numberWithUnsignedLong: class method 703
numberWithUnsignedLongLong: class method 704
numberWithUnsignedShort: class method 704

O

objCType instance method 292, 714, 1207
object instance method 676
objectAtIndex: instance method 57
objectEnumerator instance method 58, 187, 326, 931
objectForInfoDictionaryKey: instance method 96
objectForKey: instance method 327, 543, 1189
objectIsForcedForKey: instance method 1190
objectIsForcedForKey:inDomain: instance method

1190
objectsAtIndexes: instance method 58
objectsForKeys:notFoundMarker: instance method

327
objectZone instance method 166
observationInfo<NSObject> instance method 1286
observeValueForKeyPath:ofObject:change:context:

<NSObject> instance method 1287

1454
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

offsetInFile instance method 371
one class method 282
open instance method 946
operatingSystem instance method 863
operatingSystemName instance method 863
operatingSystemVersionString instance method

863
Operation Priorities 826
operations instance method 833
Options for NSData Reading Methods 208
Options for NSData Writing Methods 208
ordinalityOfUnit:inUnit:forDate: instance

method 123
outputFormat instance method 511
outputStreamToBuffer:capacity: class method

839
outputStreamToFileAtPath:append: class method

839
outputStreamToMemory class method 840

P

paddingCharacter instance method 741
paddingPosition instance method 742
paragraphRangeForRange: instance method 1015
parameterString instance method 1101
parse instance method 1215
Parser Error Constants 1230
parser:didEndElement:namespaceURI:qualifiedName:

<NSObject> delegate method 1219
parser:didEndMappingPrefix:<NSObject> delegate

method 1220
parser:didStartElement:namespaceURI:qualifiedName:

attributes: <NSObject> delegate method 1220
parser:didStartMappingPrefix:toURI:

<NSObject> delegate method 1221
parser:foundAttributeDeclarationWithName:

forElement:type:defaultValue: <NSObject>
delegate method 1221

parser:foundCDATA: <NSObject> delegate method
1222

parser:foundCharacters: <NSObject> delegate
method 1222

parser:foundComment:<NSObject> delegate method
1223

parser:foundElementDeclarationWithName:model:
<NSObject> delegate method 1223

parser:foundExternalEntityDeclarationWithName:
publicID:systemID: <NSObject> delegate
method 1224

parser:foundIgnorableWhitespace: <NSObject>
delegate method 1224

parser:foundInternalEntityDeclarationWithName:
value: <NSObject> delegate method 1225

parser:foundNotationDeclarationWithName:publicID:
systemID: <NSObject> delegate method 1225

parser:foundProcessingInstructionWithTarget:data:
<NSObject> delegate method 1226

parser:foundUnparsedEntityDeclarationWithName:
publicID:systemID:notationName:
<NSObject> delegate method 1226

parser:parseErrorOccurred:<NSObject> delegate
method 1227

parser:resolveExternalEntityName:systemID:
<NSObject> delegate method 1227

parser:validationErrorOccurred: <NSObject>
delegate method 1228

parserDidEndDocument: <NSObject> delegate
method 1229

parserDidStartDocument: <NSObject> delegate
method 1229

parserError instance method 1215
password instance method 1101, 1136
path instance method 441, 1101
pathComponents instance method 1016
pathContentOfSymbolicLinkAtPath: instance

method 408
pathExtension instance method 1017
pathForAuxiliaryExecutable: instance method 96
pathForResource:ofType: instance method 97
pathForResource:ofType:inDirectory: class

method 85
pathForResource:ofType:inDirectory: instance

method 98
pathForResource:ofType:inDirectory:

forLocalization: instance method 99
pathsForResourcesOfType:inDirectory: class

method 86
pathsForResourcesOfType:inDirectory: instance

method 99
pathsForResourcesOfType:inDirectory:

forLocalization: instance method 100
pathsMatchingExtensions: instance method 59
pathWithComponents: class method 971
percentSymbol instance method 742
performSelector: protocol instance method 1308
performSelector:onThread:withObject:waitUntilDone:

instance method 806
performSelector:onThread:withObject:waitUntilDone:

modes: instance method 807
performSelector:target:argument:order:modes:

instance method 894
performSelector:withObject: protocol instance

method 1309

1455
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

performSelector:withObject:afterDelay:
instance method 808

performSelector:withObject:afterDelay:inModes:
instance method 809

performSelector:withObject:withObject:
protocol instance method 1309

performSelectorInBackground:withObject:
instance method 810

performSelectorOnMainThread:withObject:
waitUntilDone: instance method 811

performSelectorOnMainThread:withObject:
waitUntilDone:modes: instance method 812

perMillSymbol instance method 742
persistence instance method 1136
persistentDomainForName: instance method 1191
persistentDomainNames instance method 1191
physicalMemory instance method 864
pipe class method 846
plusSign instance method 743
PMSymbol instance method 250
pointerValue instance method 1207
port class method 852
port instance method 649, 1102, 1149
portList instance method 441
portWithMachPort: class method 552
portWithMachPort:options: class method 553
positiveFormat instance method 743
positiveInfinitySymbol instance method 743
positivePrefix instance method 744
positiveSuffix instance method 744
postNotification: instance method 683
postNotificationName:object: instance method

684
postNotificationName:object:userInfo: instance

method 684
precomposedStringWithCanonicalMapping instance

method 1017
precomposedStringWithCompatibilityMapping

instance method 1018
preferredLanguages class method 540
preferredLocalizations instance method 101
preferredLocalizationsFromArray: class method

87
preferredLocalizationsFromArray:forPreferences:

class method 88
preflightAndReturnError: instance method 101
previousFailureCount instance method 1108
principalClass instance method 102
privateFrameworksPath instance method 103
processIdentifier instance method 864
processInfo class method 861
processName instance method 864
processorCount instance method 865

properties instance method 442
propertyForKey: instance method 947
propertyForKey:inRequest: class method 1156
propertyList instance method 1018
propertyList:isValidForFormat: class method

871
propertyListFromData:mutabilityOption:format:

errorDescription: class method 871
propertyListFromStringsFileFormat instance

method 1019
proposedCredential instance method 1108
protectionSpace instance method 1108
protocol instance method 1149
proxyType instance method 1149
publicID instance method 1215
publish instance method 649
publishWithOptions: instance method 650
punctuationCharacterSet class method 140

Q

quarterSymbols instance method 250
query instance method 1102
queuePriority instance method 824

R

raise instance method 358
raise:format: class method 355
raise:format:arguments: class method 356
rangeOfCharacterFromSet: instance method 1019
rangeOfCharacterFromSet:options: instance

method 1020
rangeOfCharacterFromSet:options:range:

instance method 1020
rangeOfComposedCharacterSequenceAtIndex:

instance method 1021
rangeOfComposedCharacterSequencesForRange:

instance method 1022
rangeOfString: instance method 1023
rangeOfString:options: instance method 1023
rangeOfString:options:range: instance method

1024
rangeOfString:options:range:locale: instance

method 1025
rangeOfUnit:inUnit:forDate: instance method

124
rangeOfUnit:startDate:interval:forDate:

instance method 124
rangeValue instance method 1208

1456
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

read:maxLength: instance method 485
readDataOfLength: instance method 371
readDataToEndOfFile instance method 372
readInBackgroundAndNotify instance method 372
readInBackgroundAndNotifyForModes: instance

method 373
readToEndOfFileInBackgroundAndNotify instance

method 373
readToEndOfFileInBackgroundAndNotifyForModes:

instance method 374
realm instance method 1149
reason instance method 358
receivesCredentialSecurely instance method 1150
recoveryAttempter instance method 349
registerClass: class method 1157
registerDefaults: instance method 1192
relativePath instance method 1102
relativeString instance method 1103
release instance method 77
release protocol instance method 1310
removeAllCachedResponses instance method 1116
removeAllIndexes instance method 613
removeAllObjects instance method 575, 607, 622
removeCachedResponseForRequest: instance

method 1117
removeCharactersInRange: instance method 590
removeCharactersInString: instance method 591
removeCredential:forProtectionSpace: instance

method 1142
removeDependency: instance method 824
removeFromRunLoop:forMode: instance method 555,

650, 664, 854, 947
removeIndex: instance method 614
removeIndexes: instance method 614
removeIndexesInRange: instance method 615
removeItemAtPath:error: instance method 409
removeLastObject instance method 575
removeObjectAtIndex: instance method 577
removeObject: instance method 187, 575, 622
removeObject:inRange: instance method 576
removeObjectForKey: instance method 607, 1192
removeObjectIdenticalTo: instance method 577
removeObjectIdenticalTo:inRange: instance

method 578
removeObjectsAtIndexes: instance method 578
removeObjectsForKeys: instance method 608
removeObjectsFromIndices:numIndices: instance

method 579
removeObjectsInArray: instance method 580
removeObjectsInRange: instance method 580
removeObserver: instance method 685
removeObserver:forKeyPath:<NSObject> instance

method 1288

removeObserver:forKeyPath: instance method 59,
932

removeObserver:fromObjectsAtIndexes:forKeyPath:
instance method 60

removeObserver:name:object: instance method
685

removePersistentDomainForName: instance method
1193

removePort:forMode: instance method 895
removePropertyForKey:inRequest: class method

1157
removeSuiteNamed: instance method 1193
removeVolatileDomainForName: instance method

1193
replaceBytesInRange:withBytes: instance method

599
replaceBytesInRange:withBytes:length: instance

method 599
replaceCharactersInRange:withString: instance

method 629
replacementObjectForCoder: instance method 813
replacementObjectForKeyedArchiver: instance

method 814
replaceObjectAtIndex:withObject: instance

method 581
replaceObjectsAtIndexes:withObjects: instance

method 581
replaceObjectsInRange:withObjectsFromArray:

instance method 582
replaceObjectsInRange:withObjectsFromArray:range:

instance method 582
replaceOccurrencesOfString:withString:options:

range: instance method 630
request instance method 1160
requestHeaderFieldsWithCookies: class method

438
requestIsCacheEquivalent:toRequest: class

method 1158
requestWithURL: class method 1165
requestWithURL:cachePolicy:timeoutInterval:

class method 1165
reservedSpaceLength instance method 854
resetBytesInRange: instance method 600
resetStandardUserDefaults class method 1183
resetSystemTimeZone class method 1078
resolve instance method 651
resolveClassMethod: class method 794
resolveInstanceMethod: class method 794
resolveWithTimeout: instance method 651
Resource Fork Support 425
resourcePath instance method 103
resourceSpecifier instance method 1103
respondsToSelector: class method 878

1457
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

respondsToSelector:protocol instance method 1311
response instance method 110
Response Length Unknown Error 1177
Result Exceptions 500
result instance method 499
retain instance method 77
retain protocol instance method 1312
retainArguments instance method 493
retainCount protocol instance method 1312
reversedSortDescriptor instance method 941
reverseObjectEnumerator instance method 60
roundingIncrement instance method 744
roundingMode instance method 745
roundingMode protocol instance method 1253
run instance method 895
Run Loop Modes 897
runMode:beforeDate: instance method 896
runUntilDate: instance method 896

S

scale protocol instance method 1253
scanCharactersFromSet:intoString: instance

method 905
scanDecimal: instance method 905
scanDouble: instance method 906
scanFloat: instance method 906
scanHexInt: instance method 907
scanInt: instance method 907
scanInteger: instance method 908
scanLocation instance method 909
scanLongLong: instance method 909
scannerWithString: class method 902
scanString:intoString: instance method 909
scanUpToCharactersFromSet:intoString: instance

method 910
scanUpToString:intoString: instance method 911
scheduledTimerWithTimeInterval:invocation:repeats:

class method 1067
scheduledTimerWithTimeInterval:target:selector:

userInfo:repeats: class method 1067
scheduleInRunLoop:forMode: instance method 555,

652, 664, 855, 948, 1125
scheme instance method 1103
Search and Comparison Options 1042
searchForBrowsableDomains instance method 665
searchForRegistrationDomains instance method

665
searchForServicesOfType:inDomain: instance

method 666
second instance method 229
secondaryGroupingSize instance method 745

secondsFromGMT instance method 1088
secondsFromGMTForDate: instance method 1088
Secure-Socket Layer (SSL) Security Level 954
seekToEndOfFile instance method 375
seekToFileOffset: instance method 375
selector instance method 493, 942
self protocol instance method 1313
sendBeforeDate:components:from:reserved:

instance method 855
sendBeforeDate:msgid:components:from:reserved:

instance method 856
sender instance method 1109
sendSynchronousRequest:returningResponse:error:

class method 1123
set class method 919
setAllHTTPHeaderFields: instance method 635
setAllowsFloats: instance method 745
setAlwaysShowsDecimalSeparator: instance

method 746
setAMSymbol: instance method 250
setArgument:atIndex: instance method 493
setArray: instance method 583
setAttributes:ofItemAtPath:error: instance

method 409
setBool:forKey: instance method 1194
setByAddingObject: instance method 933
setByAddingObjectsFromArray: instance method

933
setByAddingObjectsFromSet: instance method 934
setCachePolicy: instance method 635
setCalendar: instance method 251
setCaseSensitive: instance method 911
setCharactersToBeSkipped: instance method 912
setClass:forClassName: class method 520
setClass:forClassName: instance method 527
setClassName:forClass: class method 505
setClassName:forClass: instance method 511
setCookieAcceptPolicy: instance method 451
setCookie: instance method 450
setCookies:forURL:mainDocumentURL: instance

method 451
setCredential:forProtectionSpace: instance

method 1142
setCurrencyCode: instance method 746
setCurrencyDecimalSeparator: instance method

747
setCurrencyGroupingSeparator: instance method

747
setCurrencySymbol: instance method 747
setData: instance method 600
setDateFormat: instance method 251
setDateStyle: instance method 252
setDay: instance method 230

1458
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

setDecimalSeparator: instance method 748
setDefaultBehavior: class method 283
setDefaultCredential:forProtectionSpace:

instance method 1143
setDefaultDate: instance method 252
setDefaultFormatterBehavior: class method 243,

727
setDefaultTimeZone: class method 1078
setDelegate: instance method 410, 512, 528, 652,

666, 856, 948, 1216
setDictionary: instance method 608
setDiskCapacity: instance method 1117
setEra: instance method 230
setEraSymbols: instance method 252
setExponentSymbol: instance method 748
setFireDate: instance method 1071
setFirstWeekday: instance method 125
setFloat:forKey: instance method 1194
setFormatterBehavior: instance method 253, 749
setFormatWidth: instance method 749
setGeneratesCalendarDates: instance method 253
setGeneratesDecimalNumbers: instance method

749
setGregorianStartDate: instance method 254
setGroupingSeparator: instance method 750
setGroupingSize: instance method 750
setHour: instance method 231
setHTTPBody: instance method 636
setHTTPBodyStream: instance method 636
setHTTPMethod: instance method 636
setHTTPShouldHandleCookies: instance method

637
setInteger:forKey: instance method 1195
setInternationalCurrencySymbol: instance

method 750
setLength: instance method 601
setLenient: instance method 254, 751
setLocale: instance method 125, 254, 751, 912
setLongEraSymbols: instance method 255
setMainDocumentURL: instance method 637
setMaxConcurrentOperationCount: instance

method 833
setMaximum: instance method 752
setMaximumFractionDigits: instance method 752
setMaximumIntegerDigits: instance method 753
setMaximumSignificantDigits: instance method

753
setMemoryCapacity: instance method 1117
setMinimum: instance method 753
setMinimumDaysInFirstWeek: instance method 126
setMinimumFractionDigits: instance method 754
setMinimumIntegerDigits: instance method 754

setMinimumSignificantDigits: instance method
755

setMinusSign: instance method 755
setMinute: instance method 231
setMonth: instance method 231
setMonthSymbols: instance method 255
setMultiplier: instance method 755
setName: instance method 172, 179, 549, 885, 1060
setNegativeFormat: instance method 756
setNegativeInfinitySymbol: instance method 756
setNegativePrefix: instance method 757
setNegativeSuffix: instance method 757
setNilSymbol: instance method 757
setNilValueForKey: <NSObject> instance method

1271
setNotANumberSymbol: instance method 758
setNumberStyle: instance method 758
setObject:forKey: instance method 609, 1195
setObjectZone: instance method 166
setObservationInfo:<NSObject> instance method

1288
setOutputFormat: instance method 512
setPaddingCharacter: instance method 758
setPaddingPosition: instance method 759
setPartialStringValidationEnabled: instance

method 759
setPercentSymbol: instance method 760
setPerMillSymbol: instance method 760
setPersistentDomain:forName: instance method

1196
setPlusSign: instance method 760
setPMSymbol: instance method 256
setPositiveFormat: instance method 761
setPositiveInfinitySymbol: instance method 761
setPositivePrefix: instance method 761
setPositiveSuffix: instance method 762
setProcessName: instance method 865
setProperty:forKey: instance method 949
setProperty:forKey:inRequest: class method 1158
setQuarterSymbols: instance method 256
setQueuePriority: instance method 825
setReturnValue: instance method 494
setRoundingIncrement: instance method 762
setRoundingMode: instance method 762
setScanLocation: instance method 913
setSecondaryGroupingSize: instance method 763
setSecond: instance method 232
setSelector: instance method 494
setSet: instance method 622
setSharedURLCache: class method 1113
setShortMonthSymbols: instance method 256
setShortQuarterSymbols: instance method 257

1459
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

setShortStandaloneMonthSymbols: instance
method 257

setShortStandaloneQuarterSymbols: instance
method 258

setShortStandaloneWeekdaySymbols: instance
method 258

setShortWeekdaySymbols: instance method 259
setShouldProcessNamespaces: instance method

1216
setShouldReportNamespacePrefixes: instance

method 1216
setShouldResolveExternalEntities: instance

method 1217
setStackSize: instance method 1061
setStandaloneMonthSymbols: instance method 259
setStandaloneQuarterSymbols: instance method

260
setStandaloneWeekdaySymbols: instance method

260
setString: instance method 631
setSuspended: instance method 833
setTarget: instance method 495
setTextAttributesForNegativeInfinity: instance

method 763
setTextAttributesForNegativeValues: instance

method 764
setTextAttributesForNil: instance method 764
setTextAttributesForNotANumber: instance

method 765
setTextAttributesForPositiveInfinity: instance

method 765
setTextAttributesForPositiveValues: instance

method 765
setTextAttributesForZero: instance method 766
setThreadPriority: class method 1055
setTimeoutInterval: instance method 638
setTimeStyle: instance method 261
setTimeZone: instance method 126, 261
setTwoDigitStartDate: instance method 261
setTXTRecordData: instance method 652
setURL: instance method 638
setUsesGroupingSeparator: instance method 766
setUsesSignificantDigits: instance method 767
setValue:forHTTPHeaderField: instance method

638
setValue:forKey:<NSObject> instance method 1272
setValue:forKey: instance method 61, 609, 934
setValue:forKeyPath:<NSObject> instance method

1273
setValue:forUndefinedKey: <NSObject> instance

method 1274
setValuesForKeysWithDictionary: <NSObject>

instance method 1274

setVersion: class method 795
setVeryShortMonthSymbols: instance method 262
setVeryShortStandaloneMonthSymbols: instance

method 262
setVeryShortStandaloneWeekdaySymbols: instance

method 263
setVeryShortWeekdaySymbols: instance method

263
setVolatileDomain:forName: instance method 1196
setWeek: instance method 232
setWeekday: instance method 233
setWeekdayOrdinal: instance method 233
setWeekdaySymbols: instance method 263
setWithArray: class method 920
setWithCapacity: class method 619
setWithObject: class method 920
setWithObjects: class method 921
setWithObjects:count: class method 921
setWithSet: class method 922
setYear: instance method 234
setZeroSymbol: instance method 767
sharedCredentialStorage class method 1140
sharedFrameworksPath instance method 104
sharedHTTPCookieStorage class method 448
sharedSupportPath instance method 104
sharedURLCache class method 1113
shiftIndexesStartingAtIndex:by: instance

method 615
shortMonthSymbols instance method 264
shortQuarterSymbols instance method 264
shortStandaloneMonthSymbols instance method

265
shortStandaloneQuarterSymbols instance method

265
shortStandaloneWeekdaySymbols instance method

266
shortValue instance method 715
shortWeekdaySymbols instance method 266
shouldProcessNamespaces instance method 1217
shouldReportNamespacePrefixes instance method

1218
shouldResolveExternalEntities instance method

1218
signal instance method 172
skipDescendents instance method 333
sleepForTimeInterval: class method 1055
sleepUntilDate: class method 1056
smallestEncoding instance method 1025
SOCKS Proxy Configuration Values 955
sortedArrayHint instance method 61
sortedArrayUsingDescriptors: instance method

61

1460
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

sortedArrayUsingFunction:context: instance
method 62

sortedArrayUsingFunction:context:hint:
instance method 63

sortedArrayUsingSelector: instance method 64
sortUsingDescriptors: instance method 583
sortUsingFunction:context: instance method 584
sortUsingSelector: instance method 584
stackSize instance method 1061
standaloneMonthSymbols instance method 267
standaloneQuarterSymbols instance method 267
standaloneWeekdaySymbols instance method 267
standardizedURL instance method 1104
standardUserDefaults class method 1183
start instance method 825, 1062, 1126
startLoading instance method 1161
startMonitoring instance method 653
statusCode instance method 457
stop instance method 653, 667
stopLoading instance method 1161
stopMonitoring instance method 653
storagePolicy instance method 110
storeCachedResponse:forRequest: instance

method 1118
Stream Event Constants 952
Stream Status Constants 951
stream:handleEvent:<NSObject> delegate method

950
streamError instance method 949
streamStatus instance method 949
string class method 972
String Encodings 1045
string instance method 913
stringArrayForKey: instance method 1197
stringByAbbreviatingWithTildeInPath instance

method 1026
stringByAddingPercentEscapesUsingEncoding:

instance method 1026
stringByAppendingFormat: instance method 1027
stringByAppendingPathComponent: instance

method 1027
stringByAppendingPathExtension: instance

method 1028
stringByAppendingString: instance method 1029
stringByDeletingLastPathComponent instance

method 1030
stringByDeletingPathExtension instance method

1030
stringByExpandingTildeInPath instance method

1031
stringByFoldingWithOptions:locale: instance

method 1032

stringByPaddingToLength:withString:
startingAtIndex: instance method 1032

stringByReplacingCharactersInRange:withString:
instance method 1033

stringByReplacingOccurrencesOfString:withString:
instance method 1033

stringByReplacingOccurrencesOfString:withString:
options:range: instance method 1034

stringByReplacingPercentEscapesUsingEncoding:
instance method 1035

stringByResolvingSymlinksInPath instance
method 1035

stringByStandardizingPath instance method 1036
stringByTrimmingCharactersInSet: instance

method 1037
stringForKey: instance method 1197
stringForObjectValue: instance method 433
stringFromDate: instance method 268
stringFromNumber: instance method 767
stringsByAppendingPaths: instance method 1037
stringValue instance method 715
stringWithCapacity: class method 626
stringWithCharacters:length: class method 972
stringWithContentsOfFile:encoding:error: class

method 973
stringWithContentsOfFile:usedEncoding:error:

class method 973
stringWithContentsOfURL:encoding:error: class

method 974
stringWithContentsOfURL:usedEncoding:error:

class method 975
stringWithCString:encoding: class method 975
stringWithFileSystemRepresentation:length:

instance method 411
stringWithFormat: class method 976
stringWithString: class method 976
stringWithUTF8String: class method 977
subarrayWithRange: instance method 64
subdataWithRange: instance method 205
subpathsAtPath: instance method 411
subpathsOfDirectoryAtPath:error: instance

method 412
substringFromIndex: instance method 1038
substringToIndex: instance method 1038
substringWithRange: instance method 1039
suggestedFilename instance method 1176
superclass class method 796
superclass protocol instance method 1313
symbolCharacterSet class method 141
synchronize instance method 1198
synchronizeFile instance method 375
systemID instance method 1219
systemLocale class method 540

1461
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

systemTimeZone class method 1079
systemVersion instance method 167

T

target instance method 495
textAttributesForNegativeInfinity instance

method 768
textAttributesForNegativeValues instance

method 768
textAttributesForNil instance method 769
textAttributesForNotANumber instance method

769
textAttributesForPositiveInfinity instance

method 769
textAttributesForPositiveValues instance

method 770
textAttributesForZero instance method 770
textEncodingName instance method 1176
threadDictionary instance method 1062
threadPriority class method 1056
Time Zone Name Styles 1089
timeInterval instance method 1071
timeIntervalSince1970 instance method 221
timeIntervalSinceDate: instance method 222
timeIntervalSinceNow instance method 222
timeIntervalSinceReferenceDate class method

215
timeIntervalSinceReferenceDate instance method

223
timeoutInterval instance method 1169
timerWithTimeInterval:invocation:repeats:

class method 1068
timerWithTimeInterval:target:selector:userInfo:

repeats: class method 1068
timeStyle instance method 268
timeZone instance method 127, 269
timeZoneForSecondsFromGMT: class method 1079
timeZoneWithAbbreviation: class method 1080
timeZoneWithName: class method 1080
timeZoneWithName:data: class method 1081
truncateFileAtOffset: instance method 376
tryLock instance method 180, 550, 885
tryLockWhenCondition: instance method 180
twoDigitStartDate instance method 269
TXTRecordData instance method 654
type instance method 654

U

unarchiveObjectWithData: class method 521
unarchiveObjectWithFile: class method 521
unarchiver:cannotDecodeObjectOfClassName:

originalClasses:<NSObject> delegate method
528

unarchiver:didDecodeObject:<NSObject> delegate
method 529

unarchiver:willReplaceObject:withObject:
<NSObject> delegate method 529

unarchiverDidFinish:<NSObject> delegate method
530

unarchiverWillFinish: <NSObject> delegate
method 530

unichar data type 1041
unionSet: instance method 623
unload instance method 104
unlock protocol instance method 1298
unlockWithCondition: instance method 180
unregisterClass: class method 1159
unscheduleFromRunLoop:forMode: instance method

1126
unsignedCharValue instance method 715
unsignedIntegerValue instance method 716
unsignedIntValue instance method 716
unsignedLongLongValue instance method 716
unsignedLongValue instance method 716
unsignedShortValue instance method 717
Unused Constant 378
uppercaseLetterCharacterSet class method 141
uppercaseString instance method 1039
URL instance method 1170, 1177
URL Loading System Error Codes 1418
URLProtocol:cachedResponseIsValid: protocol

instance method 1320
URLProtocol:didCancelAuthenticationChallenge:

protocol instance method 1320
URLProtocol:didFailWithError:protocol instance

method 1321
URLProtocol:didLoadData: protocol instance

method 1321
URLProtocol:didReceiveAuthenticationChallenge:

protocol instance method 1321
URLProtocol:didReceiveResponse:cacheStoragePolicy:

protocol instance method 1322
URLProtocol:wasRedirectedToRequest:

redirectResponse: protocol instance method
1322

URLProtocolDidFinishLoading: protocol instance
method 1323

URLWithString: class method 1095
URLWithString:relativeToURL: class method 1096

1462
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

useCredential:forAuthenticationChallenge:
protocol instance method 1317

User info dictionary keys 350
user instance method 1104, 1137
userInfo instance method 110, 349, 359, 677, 1071
usesGroupingSeparator instance method 770
usesSignificantDigits instance method 771
UTF8String instance method 1040

V

validateValue:forKey:error:<NSObject> instance
method 1274

validateValue:forKeyPath:error: <NSObject>
instance method 1275

value instance method 442
value:withObjCType: class method 1203
valueForHTTPHeaderField: instance method 1170
valueForKey: <NSObject> instance method 1276
valueForKey: instance method 65, 328, 934
valueForKeyPath:<NSObject> instance method 1277
valueForUndefinedKey: <NSObject> instance

method 1277
valueWithBytes:objCType: class method 1203
valueWithNonretainedObject: class method 1204
valueWithPointer: class method 1204
valueWithRange: class method 1205
version class method 796
version instance method 442
versionForClassName: instance method 167
veryShortMonthSymbols instance method 269
veryShortStandaloneMonthSymbols instance

method 270
veryShortStandaloneWeekdaySymbols instance

method 270
veryShortWeekdaySymbols instance method 271
volatileDomainForName: instance method 1199
volatileDomainNames instance method 1199

W

wait instance method 172
waitForDataInBackgroundAndNotify instance

method 376
waitForDataInBackgroundAndNotifyForModes:

instance method 376
waitUntilAllOperationsAreFinished instance

method 834
waitUntilDate: instance method 173
week instance method 234

weekday instance method 234
weekdayOrdinal instance method 235
weekdaySymbols instance method 271
whitespaceAndNewlineCharacterSet class method

142
whitespaceCharacterSet class method 142
willChange:valuesAtIndexes:forKey:<NSObject>

instance method 1289
willChangeValueForKey: <NSObject> instance

method 1289
willChangeValueForKey:withSetMutation:

usingObjects: <NSObject> instance method
1290

write:maxLength: instance method 842
writeData: instance method 377
writeToFile:atomically: instance method 65, 205,

328
writeToFile:atomically:encoding:error:

instance method 1040
writeToFile:options:error: instance method 206
writeToURL:atomically: instance method 66, 206,

329
writeToURL:atomically:encoding:error: instance

method 1041
writeToURL:options:error: instance method 207

Y

year instance method 235

Z

zero class method 283
zeroSymbol instance method 771
zone protocol instance method 1314

1463
2008-06-27 | © 1997, 2008 Apple Inc. All Rights Reserved.

I N D E X

	Foundation Framework Reference
	Contents
	Figures and Tables
	Introduction
	Part I: Classes
	NSArray Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations
	Alternatives to Subclassing

	Adopted Protocols
	Tasks
	Creating an Array
	Initializing an Array
	Querying an Array
	Sending Messages to Elements
	Comparing Arrays
	Deriving New Arrays
	Sorting
	Working with String Elements
	Creating a Description
	Collecting Paths
	Key-Value Observing
	Key-Value Coding

	Class Methods
	array
	arrayWithArray:
	arrayWithContentsOfFile:
	arrayWithContentsOfURL:
	arrayWithObject:
	arrayWithObjects:
	arrayWithObjects:count:

	Instance Methods
	addObserver:forKeyPath:options:context:
	addObserver:toObjectsAtIndexes:forKeyPath:options:context:
	arrayByAddingObject:
	arrayByAddingObjectsFromArray:
	componentsJoinedByString:
	containsObject:
	count
	description
	descriptionWithLocale:
	descriptionWithLocale:indent:
	firstObjectCommonWithArray:
	getObjects:
	getObjects:range:
	indexOfObject:
	indexOfObject:inRange:
	indexOfObjectIdenticalTo:
	indexOfObjectIdenticalTo:inRange:
	initWithArray:
	initWithArray:copyItems:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithObjects:
	initWithObjects:count:
	isEqualToArray:
	lastObject
	makeObjectsPerformSelector:
	makeObjectsPerformSelector:withObject:
	objectAtIndex:
	objectEnumerator
	objectsAtIndexes:
	pathsMatchingExtensions:
	removeObserver:forKeyPath:
	removeObserver:fromObjectsAtIndexes:forKeyPath:
	reverseObjectEnumerator
	setValue:forKey:
	sortedArrayHint
	sortedArrayUsingDescriptors:
	sortedArrayUsingFunction:context:
	sortedArrayUsingFunction:context:hint:
	sortedArrayUsingSelector:
	subarrayWithRange:
	valueForKey:
	writeToFile:atomically:
	writeToURL:atomically:

	NSAssertionHandler Class Reference
	Overview
	Tasks
	Handling Assertion Failures

	Class Methods
	currentHandler

	Instance Methods
	handleFailureInFunction:file:lineNumber:description:
	handleFailureInMethod:object:file:lineNumber:description:

	NSAutoreleasePool Class Reference
	Overview
	Threads
	Garbage Collection

	Tasks
	Managing a Pool
	Adding an Object to a Pool

	Class Methods
	addObject:

	Instance Methods
	addObject:
	autorelease
	drain
	release
	retain

	NSBundle Class Reference
	Overview
	Tasks
	Initializing an NSBundle
	Getting an NSBundle
	Getting a Bundled Class
	Finding a Resource
	Getting the Bundle Directory
	Getting Bundle Information
	Managing Localized Resources
	Loading a Bundle’s Code
	Managing Localizations

	Class Methods
	allBundles
	allFrameworks
	bundleForClass:
	bundleWithIdentifier:
	bundleWithPath:
	mainBundle
	pathForResource:ofType:inDirectory:
	pathsForResourcesOfType:inDirectory:
	preferredLocalizationsFromArray:
	preferredLocalizationsFromArray:forPreferences:

	Instance Methods
	builtInPlugInsPath
	bundleIdentifier
	bundlePath
	classNamed:
	developmentLocalization
	executableArchitectures
	executablePath
	infoDictionary
	initWithPath:
	isLoaded
	load
	loadAndReturnError:
	localizations
	localizedInfoDictionary
	localizedStringForKey:value:table:
	objectForInfoDictionaryKey:
	pathForAuxiliaryExecutable:
	pathForResource:ofType:
	pathForResource:ofType:inDirectory:
	pathForResource:ofType:inDirectory:forLocalization:
	pathsForResourcesOfType:inDirectory:
	pathsForResourcesOfType:inDirectory:forLocalization:
	preferredLocalizations
	preflightAndReturnError:
	principalClass
	privateFrameworksPath
	resourcePath
	sharedFrameworksPath
	sharedSupportPath
	unload

	Constants
	Mach-O Architecture

	Notifications
	NSBundleDidLoadNotification

	NSCachedURLResponse Class Reference
	Overview
	Tasks
	Creating a Cached URL Response
	Getting Cached URL Response Properties

	Instance Methods
	data
	initWithResponse:data:
	initWithResponse:data:userInfo:storagePolicy:
	response
	storagePolicy
	userInfo

	Constants
	NSURLCacheStoragePolicy

	NSCalendar Class Reference
	Overview
	Tasks
	System Locale Information
	Initializing a Calendar
	Getting Information About a Calendar
	Calendrical Calculations

	Class Methods
	autoupdatingCurrentCalendar
	currentCalendar

	Instance Methods
	calendarIdentifier
	components:fromDate:
	components:fromDate:toDate:options:
	dateByAddingComponents:toDate:options:
	dateFromComponents:
	firstWeekday
	initWithCalendarIdentifier:
	locale
	maximumRangeOfUnit:
	minimumDaysInFirstWeek
	minimumRangeOfUnit:
	ordinalityOfUnit:inUnit:forDate:
	rangeOfUnit:inUnit:forDate:
	rangeOfUnit:startDate:interval:forDate:
	setFirstWeekday:
	setLocale:
	setMinimumDaysInFirstWeek:
	setTimeZone:
	timeZone

	Constants
	NSCalendarUnit
	Calendar Units
	NSDateComponents wrapping behavior

	NSCharacterSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Standard Character Set
	Creating a Custom Character Set
	Creating and Managing Character Sets as Bitmap Representations
	Testing Set Membership

	Class Methods
	alphanumericCharacterSet
	capitalizedLetterCharacterSet
	characterSetWithBitmapRepresentation:
	characterSetWithCharactersInString:
	characterSetWithContentsOfFile:
	characterSetWithRange:
	controlCharacterSet
	decimalDigitCharacterSet
	decomposableCharacterSet
	illegalCharacterSet
	letterCharacterSet
	lowercaseLetterCharacterSet
	newlineCharacterSet
	nonBaseCharacterSet
	punctuationCharacterSet
	symbolCharacterSet
	uppercaseLetterCharacterSet
	whitespaceAndNewlineCharacterSet
	whitespaceCharacterSet

	Instance Methods
	bitmapRepresentation
	characterIsMember:
	hasMemberInPlane:
	invertedSet
	isSupersetOfSet:
	longCharacterIsMember:

	Constants
	NSOpenStepUnicodeReservedBase

	NSCoder Class Reference
	Overview
	Tasks
	Testing Coder
	Encoding Data
	Decoding Data
	Managing Zones
	Getting Version Information

	Instance Methods
	allowsKeyedCoding
	containsValueForKey:
	decodeArrayOfObjCType:count:at:
	decodeBoolForKey:
	decodeBytesForKey:returnedLength:
	decodeBytesWithReturnedLength:
	decodeDataObject
	decodeDoubleForKey:
	decodeFloatForKey:
	decodeInt32ForKey:
	decodeInt64ForKey:
	decodeIntegerForKey:
	decodeIntForKey:
	decodeObject
	decodeObjectForKey:
	decodeValueOfObjCType:at:
	decodeValuesOfObjCTypes:
	encodeArrayOfObjCType:count:at:
	encodeBool:forKey:
	encodeBycopyObject:
	encodeByrefObject:
	encodeBytes:length:
	encodeBytes:length:forKey:
	encodeConditionalObject:
	encodeConditionalObject:forKey:
	encodeDataObject:
	encodeDouble:forKey:
	encodeFloat:forKey:
	encodeInt32:forKey:
	encodeInt64:forKey:
	encodeInt:forKey:
	encodeInteger:forKey:
	encodeObject:
	encodeObject:forKey:
	encodeRootObject:
	encodeValueOfObjCType:at:
	encodeValuesOfObjCTypes:
	objectZone
	setObjectZone:
	systemVersion
	versionForClassName:

	NSCondition Class Reference
	Overview
	Tasks
	Waiting for the Lock
	Signaling Waiting Threads
	Accessor Methods

	Instance Methods
	broadcast
	name
	setName:
	signal
	wait
	waitUntilDate:

	NSConditionLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing an NSConditionLock Object
	Returning the Condition
	Acquiring and Releasing a Lock
	Accessor Methods

	Instance Methods
	condition
	initWithCondition:
	lockBeforeDate:
	lockWhenCondition:
	lockWhenCondition:beforeDate:
	name
	setName:
	tryLock
	tryLockWhenCondition:
	unlockWithCondition:

	NSCountedSet Class Reference
	Overview
	Tasks
	Initializing a Counted Set
	Adding and Removing Entries
	Examining a Counted Set

	Instance Methods
	addObject:
	countForObject:
	initWithArray:
	initWithCapacity:
	initWithSet:
	objectEnumerator
	removeObject:

	NSData Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Data Objects
	Accessing Data
	Testing Data
	Storing Data

	Class Methods
	data
	dataWithBytes:length:
	dataWithBytesNoCopy:length:
	dataWithBytesNoCopy:length:freeWhenDone:
	dataWithContentsOfFile:
	dataWithContentsOfFile:options:error:
	dataWithContentsOfMappedFile:
	dataWithContentsOfURL:
	dataWithContentsOfURL:options:error:
	dataWithData:

	Instance Methods
	bytes
	description
	getBytes:
	getBytes:length:
	getBytes:range:
	initWithBytes:length:
	initWithBytesNoCopy:length:
	initWithBytesNoCopy:length:freeWhenDone:
	initWithContentsOfFile:
	initWithContentsOfFile:options:error:
	initWithContentsOfMappedFile:
	initWithContentsOfURL:
	initWithContentsOfURL:options:error:
	initWithData:
	isEqualToData:
	length
	subdataWithRange:
	writeToFile:atomically:
	writeToFile:options:error:
	writeToURL:atomically:
	writeToURL:options:error:

	Constants
	Options for NSData Reading Methods
	Options for NSData Writing Methods

	NSDate Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Adopted Protocols
	Tasks
	Creating and Initializing Date Objects
	Getting Temporal Boundaries
	Comparing Dates
	Getting Time Intervals
	Adding a Time Interval
	Representing Dates as Strings

	Class Methods
	date
	dateWithTimeIntervalSince1970:
	dateWithTimeIntervalSinceNow:
	dateWithTimeIntervalSinceReferenceDate:
	distantFuture
	distantPast
	timeIntervalSinceReferenceDate

	Instance Methods
	addTimeInterval:
	compare:
	description
	earlierDate:
	init
	initWithTimeInterval:sinceDate:
	initWithTimeIntervalSinceNow:
	initWithTimeIntervalSinceReferenceDate:
	isEqualToDate:
	laterDate:
	timeIntervalSince1970
	timeIntervalSinceDate:
	timeIntervalSinceNow
	timeIntervalSinceReferenceDate

	Constants
	NSTimeIntervalSince1970

	NSDateComponents Class Reference
	Overview
	Tasks
	Getting Information About an NSDateComponents Object
	Setting Information for an NSDateComponents Object

	Instance Methods
	day
	era
	hour
	minute
	month
	second
	setDay:
	setEra:
	setHour:
	setMinute:
	setMonth:
	setSecond:
	setWeek:
	setWeekday:
	setWeekdayOrdinal:
	setYear:
	week
	weekday
	weekdayOrdinal
	year

	Constants
	NSDateComponents undefined component identifier

	NSDateFormatter Class Reference
	Overview
	Tasks
	Initializing a Date Formatter
	Managing Behavior
	Converting Objects
	Managing Formats and Styles
	Managing Attributes
	Managing AM and PM Symbols
	Managing Weekday Symbols
	Managing Month Symbols
	Managing Quarter Symbols
	Managing Era Symbols

	Class Methods
	defaultFormatterBehavior
	setDefaultFormatterBehavior:

	Instance Methods
	AMSymbol
	calendar
	dateFormat
	dateFromString:
	dateStyle
	defaultDate
	eraSymbols
	formatterBehavior
	generatesCalendarDates
	getObjectValue:forString:range:error:
	gregorianStartDate
	init
	isLenient
	locale
	longEraSymbols
	monthSymbols
	PMSymbol
	quarterSymbols
	setAMSymbol:
	setCalendar:
	setDateFormat:
	setDateStyle:
	setDefaultDate:
	setEraSymbols:
	setFormatterBehavior:
	setGeneratesCalendarDates:
	setGregorianStartDate:
	setLenient:
	setLocale:
	setLongEraSymbols:
	setMonthSymbols:
	setPMSymbol:
	setQuarterSymbols:
	setShortMonthSymbols:
	setShortQuarterSymbols:
	setShortStandaloneMonthSymbols:
	setShortStandaloneQuarterSymbols:
	setShortStandaloneWeekdaySymbols:
	setShortWeekdaySymbols:
	setStandaloneMonthSymbols:
	setStandaloneQuarterSymbols:
	setStandaloneWeekdaySymbols:
	setTimeStyle:
	setTimeZone:
	setTwoDigitStartDate:
	setVeryShortMonthSymbols:
	setVeryShortStandaloneMonthSymbols:
	setVeryShortStandaloneWeekdaySymbols:
	setVeryShortWeekdaySymbols:
	setWeekdaySymbols:
	shortMonthSymbols
	shortQuarterSymbols
	shortStandaloneMonthSymbols
	shortStandaloneQuarterSymbols
	shortStandaloneWeekdaySymbols
	shortWeekdaySymbols
	standaloneMonthSymbols
	standaloneQuarterSymbols
	standaloneWeekdaySymbols
	stringFromDate:
	timeStyle
	timeZone
	twoDigitStartDate
	veryShortMonthSymbols
	veryShortStandaloneMonthSymbols
	veryShortStandaloneWeekdaySymbols
	veryShortWeekdaySymbols
	weekdaySymbols

	Constants
	NSDateFormatterStyle
	NSDateFormatterBehavior

	NSDecimalNumber Class Reference
	Overview
	Tasks
	Creating a Decimal Number
	Initializing a Decimal Number
	Performing Arithmetic
	Rounding Off
	Accessing the Value
	Managing Behavior
	Comparing Decimal Numbers
	Getting Maximum and Minimum Possible Values

	Class Methods
	decimalNumberWithDecimal:
	decimalNumberWithMantissa:exponent:isNegative:
	decimalNumberWithString:
	decimalNumberWithString:locale:
	defaultBehavior
	maximumDecimalNumber
	minimumDecimalNumber
	notANumber
	one
	setDefaultBehavior:
	zero

	Instance Methods
	compare:
	decimalNumberByAdding:
	decimalNumberByAdding:withBehavior:
	decimalNumberByDividingBy:
	decimalNumberByDividingBy:withBehavior:
	decimalNumberByMultiplyingBy:
	decimalNumberByMultiplyingBy:withBehavior:
	decimalNumberByMultiplyingByPowerOf10:
	decimalNumberByMultiplyingByPowerOf10:withBehavior:
	decimalNumberByRaisingToPower:
	decimalNumberByRaisingToPower:withBehavior:
	decimalNumberByRoundingAccordingToBehavior:
	decimalNumberBySubtracting:
	decimalNumberBySubtracting:withBehavior:
	decimalValue
	descriptionWithLocale:
	doubleValue
	initWithDecimal:
	initWithMantissa:exponent:isNegative:
	initWithString:
	initWithString:locale:
	objCType

	Constants
	NSDecimalNumber Exception Names

	NSDecimalNumberHandler Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Decimal Number Handler
	Initializing a Decimal Number Handler

	Class Methods
	decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow: raiseOnUnderflow:raiseOnDivideByZero:
	defaultDecimalNumberHandler

	Instance Methods
	initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow: raiseOnDivideByZero:

	NSDictionary Class Reference
	Overview
	Enumeration
	Primitive Methods
	Descriptions and Persistence
	Toll-Free Bridging

	Adopted Protocols
	Tasks
	Creating a Dictionary
	Initializing an NSDictionary Instance
	Counting Entries
	Comparing Dictionaries
	Accessing Keys and Values
	Storing Dictionaries
	Accessing File Attributes
	Creating a Description

	Class Methods
	dictionary
	dictionaryWithContentsOfFile:
	dictionaryWithContentsOfURL:
	dictionaryWithDictionary:
	dictionaryWithObject:forKey:
	dictionaryWithObjects:forKeys:
	dictionaryWithObjects:forKeys:count:
	dictionaryWithObjectsAndKeys:

	Instance Methods
	allKeys
	allKeysForObject:
	allValues
	count
	description
	descriptionInStringsFileFormat
	descriptionWithLocale:
	descriptionWithLocale:indent:
	fileCreationDate
	fileExtensionHidden
	fileGroupOwnerAccountID
	fileGroupOwnerAccountName
	fileHFSCreatorCode
	fileHFSTypeCode
	fileIsAppendOnly
	fileIsImmutable
	fileModificationDate
	fileOwnerAccountID
	fileOwnerAccountName
	filePosixPermissions
	fileSize
	fileSystemFileNumber
	fileSystemNumber
	fileType
	getObjects:andKeys:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithDictionary:
	initWithDictionary:copyItems:
	initWithObjects:forKeys:
	initWithObjects:forKeys:count:
	initWithObjectsAndKeys:
	isEqualToDictionary:
	keyEnumerator
	keysSortedByValueUsingSelector:
	objectEnumerator
	objectForKey:
	objectsForKeys:notFoundMarker:
	valueForKey:
	writeToFile:atomically:
	writeToURL:atomically:

	NSDirectoryEnumerator Class Reference
	Overview
	Tasks
	Getting File and Directory Attributes
	Skipping Subdirectories

	Instance Methods
	directoryAttributes
	fileAttributes
	skipDescendents

	NSDistributedNotificationCenter Class Reference
	Class at a Glance
	Overview
	Constants
	Notification Posting Behavior

	NSEnumerator Class Reference
	Overview
	Tasks
	Getting the Enumerated Objects

	Instance Methods
	allObjects
	nextObject

	NSError Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Error Objects
	Getting Error Properties
	Getting a Localized Error Description
	Getting the Error Recovery Attempter

	Class Methods
	errorWithDomain:code:userInfo:

	Instance Methods
	code
	domain
	initWithDomain:code:userInfo:
	localizedDescription
	localizedFailureReason
	localizedRecoveryOptions
	localizedRecoverySuggestion
	recoveryAttempter
	userInfo

	Constants
	User info dictionary keys
	Error Domains

	NSException Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating and Raising an NSException Object
	Querying an NSException Object
	Getting Exception Stack Frames

	Class Methods
	exceptionWithName:reason:userInfo:
	raise:format:
	raise:format:arguments:

	Instance Methods
	callStackReturnAddresses
	initWithName:reason:userInfo:
	name
	raise
	reason
	userInfo

	Constants

	NSFileHandle Class Reference
	Overview
	Tasks
	Getting a File Handle
	Creating a File Handle
	Getting a File Descriptor
	Reading from a File Handle
	Writing to a File Handle
	Communicating Asynchronously
	Seeking Within a File
	Operating on a File

	Class Methods
	fileHandleForReadingAtPath:
	fileHandleForUpdatingAtPath:
	fileHandleForWritingAtPath:
	fileHandleWithNullDevice
	fileHandleWithStandardError
	fileHandleWithStandardInput
	fileHandleWithStandardOutput

	Instance Methods
	acceptConnectionInBackgroundAndNotify
	acceptConnectionInBackgroundAndNotifyForModes:
	availableData
	closeFile
	fileDescriptor
	initWithFileDescriptor:
	initWithFileDescriptor:closeOnDealloc:
	offsetInFile
	readDataOfLength:
	readDataToEndOfFile
	readInBackgroundAndNotify
	readInBackgroundAndNotifyForModes:
	readToEndOfFileInBackgroundAndNotify
	readToEndOfFileInBackgroundAndNotifyForModes:
	seekToEndOfFile
	seekToFileOffset:
	synchronizeFile
	truncateFileAtOffset:
	waitForDataInBackgroundAndNotify
	waitForDataInBackgroundAndNotifyForModes:
	writeData:

	Constants
	Keys for Notification UserInfo Dictionary
	Exception Names
	Unused Constant

	Notifications
	NSFileHandleConnectionAcceptedNotification
	NSFileHandleDataAvailableNotification
	NSFileHandleReadCompletionNotification
	NSFileHandleReadToEndOfFileCompletionNotification

	NSFileManager Class Reference
	Overview
	Tasks
	Getting the Default Manager
	Moving an Item
	Copying an Item
	Removing an Item
	Creating an Item
	Linking an Item
	Symbolic-Link Operations
	Handling File Operations
	Getting and Comparing File Contents
	Discovering Directory Contents
	Determining Access to Files
	Getting and Setting Attributes
	Getting Representations of File Paths
	Managing the Delegate
	Managing the Current Directory

	Class Methods
	defaultManager

	Instance Methods
	attributesOfFileSystemForPath:error:
	attributesOfItemAtPath:error:
	changeCurrentDirectoryPath:
	changeFileAttributes:atPath:
	componentsToDisplayForPath:
	contentsAtPath:
	contentsEqualAtPath:andPath:
	contentsOfDirectoryAtPath:error:
	copyItemAtPath:toPath:error:
	createDirectoryAtPath:attributes:
	createDirectoryAtPath:withIntermediateDirectories:attributes:error:
	createFileAtPath:contents:attributes:
	createSymbolicLinkAtPath:pathContent:
	createSymbolicLinkAtPath:withDestinationPath:error:
	currentDirectoryPath
	delegate
	destinationOfSymbolicLinkAtPath:error:
	directoryContentsAtPath:
	displayNameAtPath:
	enumeratorAtPath:
	fileAttributesAtPath:traverseLink:
	fileExistsAtPath:
	fileExistsAtPath:isDirectory:
	fileSystemAttributesAtPath:
	fileSystemRepresentationWithPath:
	isDeletableFileAtPath:
	isExecutableFileAtPath:
	isReadableFileAtPath:
	isWritableFileAtPath:
	linkItemAtPath:toPath:error:
	moveItemAtPath:toPath:error:
	pathContentOfSymbolicLinkAtPath:
	removeItemAtPath:error:
	setAttributes:ofItemAtPath:error:
	setDelegate:
	stringWithFileSystemRepresentation:length:
	subpathsAtPath:
	subpathsOfDirectoryAtPath:error:

	Delegate Methods
	fileManager:shouldCopyItemAtPath:toPath:
	fileManager:shouldLinkItemAtPath:toPath:
	fileManager:shouldMoveItemAtPath:toPath:
	fileManager:shouldProceedAfterError:
	fileManager:shouldProceedAfterError:copyingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:linkingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:movingItemAtPath:toPath:
	fileManager:shouldProceedAfterError:removingItemAtPath:
	fileManager:shouldRemoveItemAtPath:
	fileManager:willProcessPath:

	Constants
	File Attribute Keys
	File Type Attribute Keys
	File-System Attribute Keys
	Resource Fork Support

	NSFormatter Class Reference
	Overview
	Subclassing Notes

	Tasks
	Textual Representation of Cell Content
	Object Equivalent to Textual Representation
	Dynamic Cell Editing

	Instance Methods
	attributedStringForObjectValue:withDefaultAttributes:
	editingStringForObjectValue:
	getObjectValue:forString:errorDescription:
	isPartialStringValid:newEditingString:errorDescription:
	isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange: errorDescription:
	stringForObjectValue:

	NSHTTPCookie Class Reference
	Overview
	Adopted Protocols
	Tasks
	Create Cookie Instances
	Convert Cookies to Request Headers
	Getting Cookie Properties

	Class Methods
	cookiesWithResponseHeaderFields:forURL:
	cookieWithProperties:
	requestHeaderFieldsWithCookies:

	Instance Methods
	comment
	commentURL
	domain
	expiresDate
	initWithProperties:
	isSecure
	isSessionOnly
	name
	path
	portList
	properties
	value
	version

	Constants
	HTTP Cookie Property Keys

	NSHTTPCookieStorage Class Reference
	Overview
	Tasks
	Getting the Shared Cookie Storage Object
	Getting and Setting the Cookie Accept Policy
	Adding and Removing Cookies

	Class Methods
	sharedHTTPCookieStorage

	Instance Methods
	cookieAcceptPolicy
	cookies
	cookiesForURL:
	deleteCookie:
	setCookie:
	setCookieAcceptPolicy:
	setCookies:forURL:mainDocumentURL:

	Constants
	NSHTTPCookieAcceptPolicy

	Notifications
	NSHTTPCookieManagerCookiesChangedNotification
	NSHTTPCookieManagerAcceptPolicyChangedNotification

	NSHTTPURLResponse Class Reference
	Overview
	Adopted Protocols
	Tasks
	Getting HTTP Response Headers
	Getting Response Status Code

	Class Methods
	localizedStringForStatusCode:

	Instance Methods
	allHeaderFields
	statusCode

	NSIndexPath Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Index Paths
	Querying Index Paths
	Comparing Index Paths

	Class Methods
	indexPathWithIndex:
	indexPathWithIndexes:length:

	Instance Methods
	compare:
	getIndexes:
	indexAtPosition:
	indexPathByAddingIndex:
	indexPathByRemovingLastIndex
	initWithIndex:
	initWithIndexes:length:
	length

	NSIndexSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Index Sets
	Querying Index Sets
	Comparing Index Sets
	Getting Indexes

	Class Methods
	indexSet
	indexSetWithIndex:
	indexSetWithIndexesInRange:

	Instance Methods
	containsIndex:
	containsIndexes:
	containsIndexesInRange:
	count
	countOfIndexesInRange:
	firstIndex
	getIndexes:maxCount:inIndexRange:
	indexGreaterThanIndex:
	indexGreaterThanOrEqualToIndex:
	indexLessThanIndex:
	indexLessThanOrEqualToIndex:
	init
	initWithIndex:
	initWithIndexesInRange:
	initWithIndexSet:
	intersectsIndexesInRange:
	isEqualToIndexSet:
	lastIndex

	NSInputStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Streams
	Using Streams

	Class Methods
	inputStreamWithData:
	inputStreamWithFileAtPath:

	Instance Methods
	getBuffer:length:
	hasBytesAvailable
	initWithData:
	initWithFileAtPath:
	read:maxLength:

	NSInvocation Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating NSInvocation Objects
	Configuring an Invocation Object
	Dispatching an Invocation
	Getting the Method Signature

	Class Methods
	invocationWithMethodSignature:

	Instance Methods
	argumentsRetained
	getArgument:atIndex:
	getReturnValue:
	invoke
	invokeWithTarget:
	methodSignature
	retainArguments
	selector
	setArgument:atIndex:
	setReturnValue:
	setSelector:
	setTarget:
	target

	NSInvocationOperation Class Reference
	Overview
	Tasks
	Initialization
	Getting Attributes

	Instance Methods
	initWithInvocation:
	initWithTarget:selector:object:
	invocation
	result

	Constants
	Result Exceptions

	NSKeyedArchiver Class Reference
	Overview
	Tasks
	Initializing an NSKeyedArchiver Object
	Archiving Data
	Encoding Data and Objects
	Managing Delegates
	Managing Classes and Class Names

	Class Methods
	archivedDataWithRootObject:
	archiveRootObject:toFile:
	classNameForClass:
	setClassName:forClass:

	Instance Methods
	classNameForClass:
	delegate
	encodeBool:forKey:
	encodeBytes:length:forKey:
	encodeConditionalObject:forKey:
	encodeDouble:forKey:
	encodeFloat:forKey:
	encodeInt32:forKey:
	encodeInt64:forKey:
	encodeInt:forKey:
	encodeObject:forKey:
	finishEncoding
	initForWritingWithMutableData:
	outputFormat
	setClassName:forClass:
	setDelegate:
	setOutputFormat:

	Delegate Methods
	archiver:didEncodeObject:
	archiver:willEncodeObject:
	archiver:willReplaceObject:withObject:
	archiverDidFinish:
	archiverWillFinish:

	Constants
	Keyed Archiving Exception Names

	NSKeyedUnarchiver Class Reference
	Overview
	Tasks
	Initializing a Keyed Unarchiver
	Unarchiving Data
	Decoding Data
	Managing the Delegate
	Managing Class Names
	Decoding Objects
	Finishing Decoding

	Class Methods
	classForClassName:
	setClass:forClassName:
	unarchiveObjectWithData:
	unarchiveObjectWithFile:

	Instance Methods
	classForClassName:
	containsValueForKey:
	decodeBoolForKey:
	decodeBytesForKey:returnedLength:
	decodeDoubleForKey:
	decodeFloatForKey:
	decodeInt32ForKey:
	decodeInt64ForKey:
	decodeIntForKey:
	decodeObjectForKey:
	delegate
	finishDecoding
	initForReadingWithData:
	setClass:forClassName:
	setDelegate:

	Delegate Methods
	unarchiver:cannotDecodeObjectOfClassName:originalClasses:
	unarchiver:didDecodeObject:
	unarchiver:willReplaceObject:withObject:
	unarchiverDidFinish:
	unarchiverWillFinish:

	Constants
	Keyed Unarchiving Exception Names

	NSLocale Class Reference
	Overview
	Tasks
	Getting and Initializing Locales
	Getting Information About a Locale
	Getting System Locale Information
	Converting Between Identifiers
	Getting Preferred Languages

	Class Methods
	autoupdatingCurrentLocale
	availableLocaleIdentifiers
	canonicalLocaleIdentifierFromString:
	commonISOCurrencyCodes
	componentsFromLocaleIdentifier:
	currentLocale
	ISOCountryCodes
	ISOCurrencyCodes
	ISOLanguageCodes
	localeIdentifierFromComponents:
	preferredLanguages
	systemLocale

	Instance Methods
	displayNameForKey:value:
	initWithLocaleIdentifier:
	localeIdentifier
	objectForKey:

	Constants
	NSLocale Component Keys
	NSLocale Calendar Keys

	Notifications
	NSCurrentLocaleDidChangeNotification

	NSLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Acquiring a Lock
	Naming the Lock

	Instance Methods
	lockBeforeDate:
	name
	setName:
	tryLock

	NSMachPort Class Reference
	Overview
	Tasks
	Creating and Initializing
	Getting the Mach Port
	Scheduling the Port on a Run Loop
	Handling Mach Messages

	Class Methods
	portWithMachPort:
	portWithMachPort:options:

	Instance Methods
	initWithMachPort:
	initWithMachPort:options:
	machPort
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:

	Delegate Methods
	handleMachMessage:

	Constants
	Mach Port Rights

	NSMessagePort Class Reference
	Overview

	NSMethodSignature Class Reference
	Overview
	Tasks
	Getting Information on Argument Types
	Getting Information on Return Types
	Determining Synchronous Status

	Instance Methods
	frameLength
	getArgumentTypeAtIndex:
	isOneway
	methodReturnLength
	methodReturnType
	numberOfArguments

	NSMutableArray Class Reference
	Overview
	Tasks
	Creating and Initializing a Mutable Array
	Adding Objects
	Removing Objects
	Replacing Objects
	Rearranging Content

	Class Methods
	arrayWithCapacity:

	Instance Methods
	addObject:
	addObjectsFromArray:
	exchangeObjectAtIndex:withObjectAtIndex:
	initWithCapacity:
	insertObject:atIndex:
	insertObjects:atIndexes:
	removeAllObjects
	removeLastObject
	removeObject:
	removeObject:inRange:
	removeObjectAtIndex:
	removeObjectIdenticalTo:
	removeObjectIdenticalTo:inRange:
	removeObjectsAtIndexes:
	removeObjectsFromIndices:numIndices:
	removeObjectsInArray:
	removeObjectsInRange:
	replaceObjectAtIndex:withObject:
	replaceObjectsAtIndexes:withObjects:
	replaceObjectsInRange:withObjectsFromArray:
	replaceObjectsInRange:withObjectsFromArray:range:
	setArray:
	sortUsingDescriptors:
	sortUsingFunction:context:
	sortUsingSelector:

	NSMutableCharacterSet Class Reference
	Overview
	Tasks
	Adding and Removing Characters
	Combining Character Sets
	Inverting a Character Set

	Instance Methods
	addCharactersInRange:
	addCharactersInString:
	formIntersectionWithCharacterSet:
	formUnionWithCharacterSet:
	invert
	removeCharactersInRange:
	removeCharactersInString:

	NSMutableData Class Reference
	Overview
	Tasks
	Creating and Initializing an NSMutableData Object
	Adjusting Capacity
	Accessing Data
	Adding Data
	Modifying Data

	Class Methods
	dataWithCapacity:
	dataWithLength:

	Instance Methods
	appendBytes:length:
	appendData:
	increaseLengthBy:
	initWithCapacity:
	initWithLength:
	mutableBytes
	replaceBytesInRange:withBytes:
	replaceBytesInRange:withBytes:length:
	resetBytesInRange:
	setData:
	setLength:

	NSMutableDictionary Class Reference
	Class at a Glance
	Overview
	Tasks
	Creating and Initializing a Mutable Dictionary
	Adding Entries to a Mutable Dictionary
	Removing Entries From a Mutable Dictionary

	Class Methods
	dictionaryWithCapacity:

	Instance Methods
	addEntriesFromDictionary:
	initWithCapacity:
	removeAllObjects
	removeObjectForKey:
	removeObjectsForKeys:
	setDictionary:
	setObject:forKey:
	setValue:forKey:

	NSMutableIndexSet Class Reference
	Overview
	Tasks
	Adding Indexes
	Removing Indexes
	Shifting Index Groups

	Instance Methods
	addIndex:
	addIndexes:
	addIndexesInRange:
	removeAllIndexes
	removeIndex:
	removeIndexes:
	removeIndexesInRange:
	shiftIndexesStartingAtIndex:by:

	NSMutableSet Class Reference
	Overview
	Tasks
	Creating a Mutable Set
	Adding and Removing Entries
	Combining and Recombining Sets

	Class Methods
	setWithCapacity:

	Instance Methods
	addObject:
	addObjectsFromArray:
	initWithCapacity:
	intersectSet:
	minusSet:
	removeAllObjects
	removeObject:
	setSet:
	unionSet:

	NSMutableString Class Reference
	Overview
	Tasks
	Creating and Initializing a Mutable String
	Modifying a String

	Class Methods
	stringWithCapacity:

	Instance Methods
	appendFormat:
	appendString:
	deleteCharactersInRange:
	initWithCapacity:
	insertString:atIndex:
	replaceCharactersInRange:withString:
	replaceOccurrencesOfString:withString:options:range:
	setString:

	NSMutableURLRequest Class Reference
	Overview
	Tasks
	Setting Request Properties
	Setting HTTP Specific Properties

	Instance Methods
	addValue:forHTTPHeaderField:
	setAllHTTPHeaderFields:
	setCachePolicy:
	setHTTPBody:
	setHTTPBodyStream:
	setHTTPMethod:
	setHTTPShouldHandleCookies:
	setMainDocumentURL:
	setTimeoutInterval:
	setURL:
	setValue:forHTTPHeaderField:

	NSNetService Class Reference
	Overview
	Tasks
	Creating Network Services
	Configuring Network Services
	Managing Run Loops
	Using Network Services
	Deprecated

	Class Methods
	dataFromTXTRecordDictionary:
	dictionaryFromTXTRecordData:

	Instance Methods
	addresses
	delegate
	domain
	getInputStream:outputStream:
	hostName
	initWithDomain:type:name:
	initWithDomain:type:name:port:
	name
	port
	publish
	publishWithOptions:
	removeFromRunLoop:forMode:
	resolve
	resolveWithTimeout:
	scheduleInRunLoop:forMode:
	setDelegate:
	setTXTRecordData:
	startMonitoring
	stop
	stopMonitoring
	TXTRecordData
	type

	Delegate Methods
	netService:didNotPublish:
	netService:didNotResolve:
	netService:didUpdateTXTRecordData:
	netServiceDidPublish:
	netServiceDidResolveAddress:
	netServiceDidStop:
	netServiceWillPublish:
	netServiceWillResolve:

	Constants
	NSNetServices Errors
	NSNetServicesError
	NSNetServiceOptions

	NSNetServiceBrowser Class Reference
	Overview
	Tasks
	Creating Network Service Browsers
	Configuring Network Service Browsers
	Using Network Service Browsers
	Managing Run Loops

	Instance Methods
	delegate
	init
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:
	searchForBrowsableDomains
	searchForRegistrationDomains
	searchForServicesOfType:inDomain:
	setDelegate:
	stop

	Delegate Methods
	netServiceBrowser:didFindDomain:moreComing:
	netServiceBrowser:didFindService:moreComing:
	netServiceBrowser:didNotSearch:
	netServiceBrowser:didRemoveDomain:moreComing:
	netServiceBrowser:didRemoveService:moreComing:
	netServiceBrowserDidStopSearch:
	netServiceBrowserWillSearch:

	NSNotification Class Reference
	Overview
	NSCopying Protocol
	Creating Subclasses

	Adopted Protocols
	Tasks
	Creating Notifications
	Getting Notification Information

	Class Methods
	notificationWithName:object:
	notificationWithName:object:userInfo:

	Instance Methods
	name
	object
	userInfo

	NSNotificationCenter Class Reference
	Class at a Glance
	Overview
	Tasks
	Getting the Notification Center
	Managing Notification Observers
	Posting Notifications

	Class Methods
	defaultCenter

	Instance Methods
	addObserver:selector:name:object:
	postNotification:
	postNotificationName:object:
	postNotificationName:object:userInfo:
	removeObserver:
	removeObserver:name:object:

	NSNotificationQueue Class Reference
	Overview
	Tasks
	Creating Notification Queues
	Getting the Default Queue
	Managing Notifications

	Class Methods
	defaultQueue

	Instance Methods
	dequeueNotificationsMatching:coalesceMask:
	enqueueNotification:postingStyle:
	enqueueNotification:postingStyle:coalesceMask:forModes:
	initWithNotificationCenter:

	Constants
	NSNotificationCoalescing
	NSPostingStyle

	NSNull Class Reference
	Overview
	Adopted Protocols
	Tasks
	Obtaining an Instance

	Class Methods
	null

	NSNumber Class Reference
	Overview
	Creating a Subclass of NSNumber

	Tasks
	Creating an NSNumber Object
	Initializing an NSNumber Object
	Accessing Numeric Values
	Retrieving String Representations
	Comparing NSNumber Objects
	Accessing Type Information

	Class Methods
	numberWithBool:
	numberWithChar:
	numberWithDouble:
	numberWithFloat:
	numberWithInt:
	numberWithInteger:
	numberWithLong:
	numberWithLongLong:
	numberWithShort:
	numberWithUnsignedChar:
	numberWithUnsignedInt:
	numberWithUnsignedInteger:
	numberWithUnsignedLong:
	numberWithUnsignedLongLong:
	numberWithUnsignedShort:

	Instance Methods
	boolValue
	charValue
	compare:
	decimalValue
	descriptionWithLocale:
	doubleValue
	floatValue
	initWithBool:
	initWithChar:
	initWithDouble:
	initWithFloat:
	initWithInt:
	initWithInteger:
	initWithLong:
	initWithLongLong:
	initWithShort:
	initWithUnsignedChar:
	initWithUnsignedInt:
	initWithUnsignedInteger:
	initWithUnsignedLong:
	initWithUnsignedLongLong:
	initWithUnsignedShort:
	integerValue
	intValue
	isEqualToNumber:
	longLongValue
	longValue
	objCType
	shortValue
	stringValue
	unsignedCharValue
	unsignedIntegerValue
	unsignedIntValue
	unsignedLongLongValue
	unsignedLongValue
	unsignedShortValue

	NSNumberFormatter Class Reference
	Overview
	Tasks
	Configuring Formatter Behavior and Style
	Converting Between Numbers and Strings
	Managing Localization of Numbers
	Configuring Rounding Behavior
	Configuring Numeric Formats
	Configuring Numeric Symbols
	Configuring the Format of Currency
	Configuring Numeric Prefixes and Suffixes
	Configuring the Display of Numeric Values
	Configuring Separators and Grouping Size
	Managing the Padding of Numbers
	Managing Input Attributes
	Configuring Significant Digits
	Managing Leniency Behavior
	Managing the Validation of Partial Numeric Strings

	Class Methods
	defaultFormatterBehavior
	setDefaultFormatterBehavior:

	Instance Methods
	allowsFloats
	alwaysShowsDecimalSeparator
	currencyCode
	currencyDecimalSeparator
	currencyGroupingSeparator
	currencySymbol
	decimalSeparator
	exponentSymbol
	formatterBehavior
	formatWidth
	generatesDecimalNumbers
	getObjectValue:forString:range:error:
	groupingSeparator
	groupingSize
	internationalCurrencySymbol
	isLenient
	isPartialStringValidationEnabled
	locale
	maximum
	maximumFractionDigits
	maximumIntegerDigits
	maximumSignificantDigits
	minimum
	minimumFractionDigits
	minimumIntegerDigits
	minimumSignificantDigits
	minusSign
	multiplier
	negativeFormat
	negativeInfinitySymbol
	negativePrefix
	negativeSuffix
	nilSymbol
	notANumberSymbol
	numberFromString:
	numberStyle
	paddingCharacter
	paddingPosition
	percentSymbol
	perMillSymbol
	plusSign
	positiveFormat
	positiveInfinitySymbol
	positivePrefix
	positiveSuffix
	roundingIncrement
	roundingMode
	secondaryGroupingSize
	setAllowsFloats:
	setAlwaysShowsDecimalSeparator:
	setCurrencyCode:
	setCurrencyDecimalSeparator:
	setCurrencyGroupingSeparator:
	setCurrencySymbol:
	setDecimalSeparator:
	setExponentSymbol:
	setFormatterBehavior:
	setFormatWidth:
	setGeneratesDecimalNumbers:
	setGroupingSeparator:
	setGroupingSize:
	setInternationalCurrencySymbol:
	setLenient:
	setLocale:
	setMaximum:
	setMaximumFractionDigits:
	setMaximumIntegerDigits:
	setMaximumSignificantDigits:
	setMinimum:
	setMinimumFractionDigits:
	setMinimumIntegerDigits:
	setMinimumSignificantDigits:
	setMinusSign:
	setMultiplier:
	setNegativeFormat:
	setNegativeInfinitySymbol:
	setNegativePrefix:
	setNegativeSuffix:
	setNilSymbol:
	setNotANumberSymbol:
	setNumberStyle:
	setPaddingCharacter:
	setPaddingPosition:
	setPartialStringValidationEnabled:
	setPercentSymbol:
	setPerMillSymbol:
	setPlusSign:
	setPositiveFormat:
	setPositiveInfinitySymbol:
	setPositivePrefix:
	setPositiveSuffix:
	setRoundingIncrement:
	setRoundingMode:
	setSecondaryGroupingSize:
	setTextAttributesForNegativeInfinity:
	setTextAttributesForNegativeValues:
	setTextAttributesForNil:
	setTextAttributesForNotANumber:
	setTextAttributesForPositiveInfinity:
	setTextAttributesForPositiveValues:
	setTextAttributesForZero:
	setUsesGroupingSeparator:
	setUsesSignificantDigits:
	setZeroSymbol:
	stringFromNumber:
	textAttributesForNegativeInfinity
	textAttributesForNegativeValues
	textAttributesForNil
	textAttributesForNotANumber
	textAttributesForPositiveInfinity
	textAttributesForPositiveValues
	textAttributesForZero
	usesGroupingSeparator
	usesSignificantDigits
	zeroSymbol

	Constants
	NSNumberFormatterStyle
	NSNumberFormatterBehavior
	NSNumberFormatterPadPosition
	NSNumberFormatterRoundingMode

	NSObject Class Reference
	Overview
	Selectors

	Adopted Protocols
	Tasks
	Initializing a Class
	Creating, Copying, and Deallocating Objects
	Identifying Classes
	Testing Class Functionality
	Testing Protocol Conformance
	Obtaining Information About Methods
	Describing Objects
	Sending Messages
	Forwarding Messages
	Dynamically Resolving Methods
	Error Handling
	Archiving

	Class Methods
	alloc
	allocWithZone:
	cancelPreviousPerformRequestsWithTarget:
	cancelPreviousPerformRequestsWithTarget:selector:object:
	class
	classFallbacksForKeyedArchiver
	classForKeyedUnarchiver
	conformsToProtocol:
	copyWithZone:
	description
	initialize
	instanceMethodForSelector:
	instanceMethodSignatureForSelector:
	instancesRespondToSelector:
	isSubclassOfClass:
	load
	mutableCopyWithZone:
	new
	resolveClassMethod:
	resolveInstanceMethod:
	setVersion:
	superclass
	version

	Instance Methods
	awakeAfterUsingCoder:
	classForCoder
	classForKeyedArchiver
	copy
	dealloc
	doesNotRecognizeSelector:
	finalize
	forwardInvocation:
	init
	methodForSelector:
	methodSignatureForSelector:
	mutableCopy
	performSelector:onThread:withObject:waitUntilDone:
	performSelector:onThread:withObject:waitUntilDone:modes:
	performSelector:withObject:afterDelay:
	performSelector:withObject:afterDelay:inModes:
	performSelectorInBackground:withObject:
	performSelectorOnMainThread:withObject:waitUntilDone:
	performSelectorOnMainThread:withObject:waitUntilDone:modes:
	replacementObjectForCoder:
	replacementObjectForKeyedArchiver:

	NSOperation Class Reference
	Overview
	Concurrent Versus Non-Concurrent Operations
	Operation Dependencies
	Bindable Properties
	Threading Considerations
	Subclassing Notes
	Methods to Override
	Responding to the Cancel Command

	Tasks
	Initialization
	Executing the Operation
	Canceling Operations
	Getting the Operation Status
	Managing Dependencies
	Prioritizing Operations in an Operation Queue

	Instance Methods
	addDependency:
	cancel
	dependencies
	init
	isCancelled
	isConcurrent
	isExecuting
	isFinished
	isReady
	main
	queuePriority
	removeDependency:
	setQueuePriority:
	start

	Constants
	NSOperationQueuePriority
	Operation Priorities

	NSOperationQueue Class Reference
	Overview
	Bindable Properties
	Threading Considerations

	Tasks
	Managing Operations in the Queue
	Managing the Number of Running Operations
	Suspending Operations

	Instance Methods
	addOperation:
	cancelAllOperations
	isSuspended
	maxConcurrentOperationCount
	operations
	setMaxConcurrentOperationCount:
	setSuspended:
	waitUntilAllOperationsAreFinished

	Constants
	Concurrent Operation Constants

	NSOutputStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Creating Streams
	Using Streams

	Class Methods
	outputStreamToBuffer:capacity:
	outputStreamToFileAtPath:append:
	outputStreamToMemory

	Instance Methods
	hasSpaceAvailable
	initToBuffer:capacity:
	initToFileAtPath:append:
	initToMemory
	write:maxLength:

	NSPipe Class Reference
	Overview
	Tasks
	Creating an NSPipe Object
	Getting the File Handles for a Pipe

	Class Methods
	pipe

	Instance Methods
	fileHandleForReading
	fileHandleForWriting
	init

	NSPort Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Instances
	Validation
	Setting the Delegate
	Setting Information
	Port Monitoring
	Handling Port Messages

	Class Methods
	allocWithZone:
	port

	Instance Methods
	delegate
	invalidate
	isValid
	removeFromRunLoop:forMode:
	reservedSpaceLength
	scheduleInRunLoop:forMode:
	sendBeforeDate:components:from:reserved:
	sendBeforeDate:msgid:components:from:reserved:
	setDelegate:

	Delegate Methods
	handlePortMessage:

	Notifications
	NSPortDidBecomeInvalidNotification

	NSProcessInfo Class Reference
	Overview
	Tasks
	Getting the Process Information Agent
	Accessing Process Information
	Getting Host Information
	Getting Computer Information

	Class Methods
	processInfo

	Instance Methods
	activeProcessorCount
	arguments
	environment
	globallyUniqueString
	hostName
	operatingSystem
	operatingSystemName
	operatingSystemVersionString
	physicalMemory
	processIdentifier
	processName
	processorCount
	setProcessName:

	Constants
	NSProcessInfo—Operating Systems

	NSPropertyListSerialization Class Reference
	Overview
	Tasks
	Serializing a Property List
	Deserializing a Property List
	Validating a Property List

	Class Methods
	dataFromPropertyList:format:errorDescription:
	propertyList:isValidForFormat:
	propertyListFromData:mutabilityOption:format:errorDescription:

	Constants
	NSPropertyListMutabilityOptions
	NSPropertyListFormat

	NSProxy Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Instances
	Deallocating Instances
	Finalizing an Object
	Handling Unimplemented Methods
	Introspecting a Proxy Class
	Describing a Proxy Class or Object

	Class Methods
	alloc
	allocWithZone:
	class
	respondsToSelector:

	Instance Methods
	dealloc
	description
	finalize
	forwardInvocation:
	methodSignatureForSelector:

	NSRecursiveLock Class Reference
	Overview
	Adopted Protocols
	Tasks
	Acquiring a Lock
	Naming the Lock

	Instance Methods
	lockBeforeDate:
	name
	setName:
	tryLock

	NSRunLoop Class Reference
	Overview
	Tasks
	Accessing Run Loops and Modes
	Managing Timers
	Managing Ports
	Running a Loop
	Scheduling and Canceling Messages

	Class Methods
	currentRunLoop
	mainRunLoop

	Instance Methods
	acceptInputForMode:beforeDate:
	addPort:forMode:
	addTimer:forMode:
	cancelPerformSelector:target:argument:
	cancelPerformSelectorsWithTarget:
	currentMode
	getCFRunLoop
	limitDateForMode:
	performSelector:target:argument:order:modes:
	removePort:forMode:
	run
	runMode:beforeDate:
	runUntilDate:

	Constants
	Run Loop Modes

	NSScanner Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an Scanner
	Getting a Scanner’s String
	Configuring a Scanner
	Scanning a String

	Class Methods
	localizedScannerWithString:
	scannerWithString:

	Instance Methods
	caseSensitive
	charactersToBeSkipped
	initWithString:
	isAtEnd
	locale
	scanCharactersFromSet:intoString:
	scanDecimal:
	scanDouble:
	scanFloat:
	scanHexInt:
	scanInt:
	scanInteger:
	scanLocation
	scanLongLong:
	scanString:intoString:
	scanUpToCharactersFromSet:intoString:
	scanUpToString:intoString:
	setCaseSensitive:
	setCharactersToBeSkipped:
	setLocale:
	setScanLocation:
	string

	NSSet Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Set
	Initializing a Set
	Counting Entries
	Accessing Set Members
	Comparing Sets
	Key-Value Observing
	Describing a Set

	Class Methods
	set
	setWithArray:
	setWithObject:
	setWithObjects:
	setWithObjects:count:
	setWithSet:

	Instance Methods
	addObserver:forKeyPath:options:context:
	allObjects
	anyObject
	containsObject:
	count
	description
	descriptionWithLocale:
	initWithArray:
	initWithObjects:
	initWithObjects:count:
	initWithSet:
	initWithSet:copyItems:
	intersectsSet:
	isEqualToSet:
	isSubsetOfSet:
	makeObjectsPerformSelector:
	makeObjectsPerformSelector:withObject:
	member:
	objectEnumerator
	removeObserver:forKeyPath:
	setByAddingObject:
	setByAddingObjectsFromArray:
	setByAddingObjectsFromSet:
	setValue:forKey:
	valueForKey:

	NSSortDescriptor Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing a Sort Descriptor
	Getting Information About a Sort Descriptor
	Using Sort Descriptors

	Instance Methods
	ascending
	compareObject:toObject:
	initWithKey:ascending:
	initWithKey:ascending:selector:
	key
	reversedSortDescriptor
	selector

	NSStream Class Reference
	Overview
	Subclassing Notes
	Methods to Override

	Tasks
	Configuring Streams
	Using Streams
	Managing Run Loops
	Getting Stream Information

	Instance Methods
	close
	delegate
	open
	propertyForKey:
	removeFromRunLoop:forMode:
	scheduleInRunLoop:forMode:
	setDelegate:
	setProperty:forKey:
	streamError
	streamStatus

	Delegate Methods
	stream:handleEvent:

	Constants
	NSStreamStatus
	Stream Status Constants
	NSStreamEvent
	Stream Event Constants
	NSStream Property Keys
	NSStream Error Domains
	Secure-Socket Layer (SSL) Security Level
	SOCKS Proxy Configuration Values

	NSString Class Reference
	Overview
	String Objects
	Subclassing Notes
	Methods to Override
	Alternatives to Subclassing

	Adopted Protocols
	Tasks
	Creating and Initializing Strings
	Creating and Initializing a String from a File
	Creating and Initializing a String from an URL
	Writing to a File or URL
	Getting a String’s Length
	Getting Characters and Bytes
	Getting C Strings
	Combining Strings
	Dividing Strings
	Finding Characters and Substrings
	Replacing Substrings
	Determining Line and Paragraph Ranges
	Determining Composed Character Sequences
	Converting String Contents Into a Property List
	Identifying and Comparing Strings
	Folding Strings
	Getting a Shared Prefix
	Changing Case
	Getting Strings with Mapping
	Getting Numeric Values
	Working with Encodings
	Working with Paths
	Working with URLs

	Class Methods
	availableStringEncodings
	defaultCStringEncoding
	localizedNameOfStringEncoding:
	localizedStringWithFormat:
	pathWithComponents:
	string
	stringWithCharacters:length:
	stringWithContentsOfFile:encoding:error:
	stringWithContentsOfFile:usedEncoding:error:
	stringWithContentsOfURL:encoding:error:
	stringWithContentsOfURL:usedEncoding:error:
	stringWithCString:encoding:
	stringWithFormat:
	stringWithString:
	stringWithUTF8String:

	Instance Methods
	boolValue
	canBeConvertedToEncoding:
	capitalizedString
	caseInsensitiveCompare:
	characterAtIndex:
	commonPrefixWithString:options:
	compare:
	compare:options:
	compare:options:range:
	compare:options:range:locale:
	completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
	componentsSeparatedByCharactersInSet:
	componentsSeparatedByString:
	cStringUsingEncoding:
	dataUsingEncoding:
	dataUsingEncoding:allowLossyConversion:
	decomposedStringWithCanonicalMapping
	decomposedStringWithCompatibilityMapping
	description
	doubleValue
	fastestEncoding
	fileSystemRepresentation
	floatValue
	getBytes:maxLength:usedLength:encoding:options:range:remainingRange:
	getCharacters:
	getCharacters:range:
	getCString:maxLength:encoding:
	getFileSystemRepresentation:maxLength:
	getLineStart:end:contentsEnd:forRange:
	getParagraphStart:end:contentsEnd:forRange:
	hash
	hasPrefix:
	hasSuffix:
	init
	initWithBytes:length:encoding:
	initWithBytesNoCopy:length:encoding:freeWhenDone:
	initWithCharacters:length:
	initWithCharactersNoCopy:length:freeWhenDone:
	initWithContentsOfFile:encoding:error:
	initWithContentsOfFile:usedEncoding:error:
	initWithContentsOfURL:encoding:error:
	initWithContentsOfURL:usedEncoding:error:
	initWithCString:encoding:
	initWithData:encoding:
	initWithFormat:
	initWithFormat:arguments:
	initWithFormat:locale:
	initWithFormat:locale:arguments:
	initWithString:
	initWithUTF8String:
	integerValue
	intValue
	isAbsolutePath
	isEqualToString:
	lastPathComponent
	length
	lengthOfBytesUsingEncoding:
	lineRangeForRange:
	localizedCaseInsensitiveCompare:
	localizedCompare:
	longLongValue
	lowercaseString
	maximumLengthOfBytesUsingEncoding:
	paragraphRangeForRange:
	pathComponents
	pathExtension
	precomposedStringWithCanonicalMapping
	precomposedStringWithCompatibilityMapping
	propertyList
	propertyListFromStringsFileFormat
	rangeOfCharacterFromSet:
	rangeOfCharacterFromSet:options:
	rangeOfCharacterFromSet:options:range:
	rangeOfComposedCharacterSequenceAtIndex:
	rangeOfComposedCharacterSequencesForRange:
	rangeOfString:
	rangeOfString:options:
	rangeOfString:options:range:
	rangeOfString:options:range:locale:
	smallestEncoding
	stringByAbbreviatingWithTildeInPath
	stringByAddingPercentEscapesUsingEncoding:
	stringByAppendingFormat:
	stringByAppendingPathComponent:
	stringByAppendingPathExtension:
	stringByAppendingString:
	stringByDeletingLastPathComponent
	stringByDeletingPathExtension
	stringByExpandingTildeInPath
	stringByFoldingWithOptions:locale:
	stringByPaddingToLength:withString:startingAtIndex:
	stringByReplacingCharactersInRange:withString:
	stringByReplacingOccurrencesOfString:withString:
	stringByReplacingOccurrencesOfString:withString:options:range:
	stringByReplacingPercentEscapesUsingEncoding:
	stringByResolvingSymlinksInPath
	stringByStandardizingPath
	stringByTrimmingCharactersInSet:
	stringsByAppendingPaths:
	substringFromIndex:
	substringToIndex:
	substringWithRange:
	uppercaseString
	UTF8String
	writeToFile:atomically:encoding:error:
	writeToURL:atomically:encoding:error:

	Constants
	unichar
	NSStringCompareOptions
	Search and Comparison Options
	NSStringEncodingConversionOptions
	Encoding Conversion Options
	NSString Handling Exception Names
	NSStringEncoding
	String Encodings

	NSThread Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing an NSThread Object
	Starting a Thread
	Stopping a Thread
	Determining the Thread’s Execution State
	Working with the Main Thread
	Querying the Environment
	Working with Thread Properties
	Working with Thread Priorities

	Class Methods
	callStackReturnAddresses
	currentThread
	detachNewThreadSelector:toTarget:withObject:
	exit
	isMainThread
	isMultiThreaded
	mainThread
	setThreadPriority:
	sleepForTimeInterval:
	sleepUntilDate:
	threadPriority

	Instance Methods
	cancel
	init
	initWithTarget:selector:object:
	isCancelled
	isExecuting
	isFinished
	isMainThread
	main
	name
	setName:
	setStackSize:
	stackSize
	start
	threadDictionary

	Notifications
	NSDidBecomeSingleThreadedNotification
	NSThreadWillExitNotification
	NSWillBecomeMultiThreadedNotification

	NSTimer Class Reference
	Overview
	Tasks
	Creating a Timer
	Firing a Timer
	Stopping a Timer
	Information About a Timer

	Class Methods
	scheduledTimerWithTimeInterval:invocation:repeats:
	scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
	timerWithTimeInterval:invocation:repeats:
	timerWithTimeInterval:target:selector:userInfo:repeats:

	Instance Methods
	fire
	fireDate
	initWithFireDate:interval:target:selector:userInfo:repeats:
	invalidate
	isValid
	setFireDate:
	timeInterval
	userInfo

	NSTimeZone Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating and Initializing Time Zone Objects
	Working with System Time Zones
	Getting Time Zone Information
	Getting Information About a Specific Time Zone
	Comparing Time Zones
	Describing a Time Zone
	Getting Information About Daylight Saving

	Class Methods
	abbreviationDictionary
	defaultTimeZone
	knownTimeZoneNames
	localTimeZone
	resetSystemTimeZone
	setDefaultTimeZone:
	systemTimeZone
	timeZoneForSecondsFromGMT:
	timeZoneWithAbbreviation:
	timeZoneWithName:
	timeZoneWithName:data:

	Instance Methods
	abbreviation
	abbreviationForDate:
	data
	daylightSavingTimeOffset
	daylightSavingTimeOffsetForDate:
	description
	initWithName:
	initWithName:data:
	isDaylightSavingTime
	isDaylightSavingTimeForDate:
	isEqualToTimeZone:
	localizedName:locale:
	name
	nextDaylightSavingTimeTransition
	nextDaylightSavingTimeTransitionAfterDate:
	secondsFromGMT
	secondsFromGMTForDate:

	Constants
	NSTimeZoneNameStyle
	Time Zone Name Styles

	Notifications
	NSSystemTimeZoneDidChangeNotification

	NSURL Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSURL
	Querying an NSURL
	Accessing the Parts of the URL

	Class Methods
	fileURLWithPath:
	fileURLWithPath:isDirectory:
	URLWithString:
	URLWithString:relativeToURL:

	Instance Methods
	absoluteString
	absoluteURL
	baseURL
	fragment
	host
	initFileURLWithPath:
	initFileURLWithPath:isDirectory:
	initWithScheme:host:path:
	initWithString:
	initWithString:relativeToURL:
	isFileURL
	parameterString
	password
	path
	port
	query
	relativePath
	relativeString
	resourceSpecifier
	scheme
	standardizedURL
	user

	Constants
	NSURL Schemes

	NSURLAuthenticationChallenge Class Reference
	Overview
	Tasks
	Creating an Authentication Challenge Instance
	Getting Authentication Challenge Properties

	Instance Methods
	error
	failureResponse
	initWithAuthenticationChallenge:sender:
	initWithProtectionSpace:proposedCredential:previousFailureCount:failureResponse: error:sender:
	previousFailureCount
	proposedCredential
	protectionSpace
	sender

	NSURLCache Class Reference
	Overview
	Tasks
	Getting and Setting Shared Cache
	Creating a New Cache Object
	Getting and Storing Cached Objects
	Removing Cached Objects
	Getting and Setting On-disk Cache Properties
	Getting and Setting In-memory Cache Properties

	Class Methods
	setSharedURLCache:
	sharedURLCache

	Instance Methods
	cachedResponseForRequest:
	currentDiskUsage
	currentMemoryUsage
	diskCapacity
	initWithMemoryCapacity:diskCapacity:diskPath:
	memoryCapacity
	removeAllCachedResponses
	removeCachedResponseForRequest:
	setDiskCapacity:
	setMemoryCapacity:
	storeCachedResponse:forRequest:

	NSURLConnection Class Reference
	Overview
	Tasks
	Preflighting a Request
	Loading Data Synchronously
	Loading Data Asynchronously
	Stopping a Connection
	Runloop Scheduling
	Connection Authentication
	Connection Data and Responses
	Connection Completion

	Class Methods
	canHandleRequest:
	connectionWithRequest:delegate:
	sendSynchronousRequest:returningResponse:error:

	Instance Methods
	cancel
	initWithRequest:delegate:
	initWithRequest:delegate:startImmediately:
	scheduleInRunLoop:forMode:
	start
	unscheduleFromRunLoop:forMode:

	Delegate Methods
	connection:didCancelAuthenticationChallenge:
	connection:didFailWithError:
	connection:didReceiveAuthenticationChallenge:
	connection:didReceiveData:
	connection:didReceiveResponse:
	connection:willCacheResponse:
	connection:willSendRequest:redirectResponse:
	connectionDidFinishLoading:

	NSURLCredential Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Credential
	Getting Credential Properties

	Class Methods
	credentialWithUser:password:persistence:

	Instance Methods
	hasPassword
	initWithUser:password:persistence:
	password
	persistence
	user

	Constants
	NSURLCredentialPersistence

	NSURLCredentialStorage Class Reference
	Overview
	Tasks
	Getting the Credential Storage
	Getting and Setting Default Credentials
	Adding and Removing Credentials
	Retrieving Credentials

	Class Methods
	sharedCredentialStorage

	Instance Methods
	allCredentials
	credentialsForProtectionSpace:
	defaultCredentialForProtectionSpace:
	removeCredential:forProtectionSpace:
	setCredential:forProtectionSpace:
	setDefaultCredential:forProtectionSpace:

	Notifications
	NSURLCredentialStorageChangedNotification

	NSURLProtectionSpace Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Protection Space
	Getting Protection Space Properties

	Instance Methods
	authenticationMethod
	host
	initWithHost:port:protocol:realm:authenticationMethod:
	initWithProxyHost:port:type:realm:authenticationMethod:
	isProxy
	port
	protocol
	proxyType
	realm
	receivesCredentialSecurely

	Constants
	NSURLProtectionSpace Proxy Types
	NSURLProtectionSpace Authentication Methods

	NSURLProtocol Class Reference
	Overview
	Tasks
	Creating Protocol Objects
	Registering and Unregistering Protocol Classes
	Getting and Setting Request Properties
	Determining If a Subclass Can Handle a Request
	Providing a Canonical Version of a Request
	Determining If Requests Are Cache Equivalent
	Starting and Stopping Downloads
	Getting Protocol Attributes

	Class Methods
	canInitWithRequest:
	canonicalRequestForRequest:
	propertyForKey:inRequest:
	registerClass:
	removePropertyForKey:inRequest:
	requestIsCacheEquivalent:toRequest:
	setProperty:forKey:inRequest:
	unregisterClass:

	Instance Methods
	cachedResponse
	client
	initWithRequest:cachedResponse:client:
	request
	startLoading
	stopLoading

	NSURLRequest Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Requests
	Getting Request Properties
	Getting HTTP Request Properties

	Class Methods
	requestWithURL:
	requestWithURL:cachePolicy:timeoutInterval:

	Instance Methods
	allHTTPHeaderFields
	cachePolicy
	HTTPBody
	HTTPBodyStream
	HTTPMethod
	HTTPShouldHandleCookies
	initWithURL:
	initWithURL:cachePolicy:timeoutInterval:
	mainDocumentURL
	timeoutInterval
	URL
	valueForHTTPHeaderField:

	Constants
	NSURLRequestCachePolicy

	NSURLResponse Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Response
	Getting the Response Properties

	Instance Methods
	expectedContentLength
	initWithURL:MIMEType:expectedContentLength:textEncodingName:
	MIMEType
	suggestedFilename
	textEncodingName
	URL

	Constants
	Response Length Unknown Error

	NSUserDefaults Class Reference
	Overview
	Tasks
	Getting the Shared NSUserDefaults Instance
	Initializing an NSUserDefaults Object
	Getting a Default Value
	Setting and Removing Defaults
	Registering Defaults
	Maintaining Persistent Domains
	Accessing Managed Environment Keys
	Managing the Search List
	Maintaining Volatile Domains
	Maintaining Suites

	Class Methods
	resetStandardUserDefaults
	standardUserDefaults

	Instance Methods
	addSuiteNamed:
	arrayForKey:
	boolForKey:
	dataForKey:
	dictionaryForKey:
	dictionaryRepresentation
	floatForKey:
	init
	initWithUser:
	integerForKey:
	objectForKey:
	objectIsForcedForKey:
	objectIsForcedForKey:inDomain:
	persistentDomainForName:
	persistentDomainNames
	registerDefaults:
	removeObjectForKey:
	removePersistentDomainForName:
	removeSuiteNamed:
	removeVolatileDomainForName:
	setBool:forKey:
	setFloat:forKey:
	setInteger:forKey:
	setObject:forKey:
	setPersistentDomain:forName:
	setVolatileDomain:forName:
	stringArrayForKey:
	stringForKey:
	synchronize
	volatileDomainForName:
	volatileDomainNames

	Constants
	NSUserDefaults Domains

	Notifications
	NSUserDefaultsDidChangeNotification

	NSValue Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSValue
	Accessing Data
	Comparing Objects

	Class Methods
	value:withObjCType:
	valueWithBytes:objCType:
	valueWithNonretainedObject:
	valueWithPointer:
	valueWithRange:

	Instance Methods
	getValue:
	initWithBytes:objCType:
	isEqualToValue:
	nonretainedObjectValue
	objCType
	pointerValue
	rangeValue

	NSXMLParser Class Reference
	Overview
	Tasks
	Initializing a Parser Object
	Managing Delegates
	Managing Parser Behavior
	Parsing
	Handling XML
	Handling the DTD
	Obtaining Parser State

	Instance Methods
	abortParsing
	columnNumber
	delegate
	initWithContentsOfURL:
	initWithData:
	lineNumber
	parse
	parserError
	publicID
	setDelegate:
	setShouldProcessNamespaces:
	setShouldReportNamespacePrefixes:
	setShouldResolveExternalEntities:
	shouldProcessNamespaces
	shouldReportNamespacePrefixes
	shouldResolveExternalEntities
	systemID

	Delegate Methods
	parser:didEndElement:namespaceURI:qualifiedName:
	parser:didEndMappingPrefix:
	parser:didStartElement:namespaceURI:qualifiedName:attributes:
	parser:didStartMappingPrefix:toURI:
	parser:foundAttributeDeclarationWithName:forElement:type:defaultValue:
	parser:foundCDATA:
	parser:foundCharacters:
	parser:foundComment:
	parser:foundElementDeclarationWithName:model:
	parser:foundExternalEntityDeclarationWithName:publicID:systemID:
	parser:foundIgnorableWhitespace:
	parser:foundInternalEntityDeclarationWithName:value:
	parser:foundNotationDeclarationWithName:publicID:systemID:
	parser:foundProcessingInstructionWithTarget:data:
	parser:foundUnparsedEntityDeclarationWithName:publicID:systemID:notationName:
	parser:parseErrorOccurred:
	parser:resolveExternalEntityName:systemID:
	parser:validationErrorOccurred:
	parserDidEndDocument:
	parserDidStartDocument:

	Constants
	NSXMLParserErrorDomain
	NSXMLParserError
	Parser Error Constants

	Part II: Protocols
	NSCoding Protocol Reference
	Overview
	Tasks
	Initializing with a Coder
	Encoding with a Coder

	Instance Methods
	encodeWithCoder:
	initWithCoder:

	NSCopying Protocol Reference
	Overview
	Tasks
	Copying

	Instance Methods
	copyWithZone:

	NSDecimalNumberBehaviors Protocol Reference
	Overview
	Tasks
	Rounding
	Handling Errors

	Instance Methods
	exceptionDuringOperation:error:leftOperand:rightOperand:
	roundingMode
	scale

	Constants
	NSRoundingMode
	NSCalculationError

	NSErrorRecoveryAttempting Protocol Reference
	Overview
	Tasks
	Attempting Recovery From Errors

	Instance Methods
	attemptRecoveryFromError:optionIndex:
	attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:

	NSFastEnumeration Protocol Reference
	Overview
	Tasks
	Enumeration

	Instance Methods
	countByEnumeratingWithState:objects:count:

	Constants
	NSFastEnumerationState

	NSKeyValueCoding Protocol Reference
	Overview
	Tasks
	Getting Values
	Setting Values
	Changing Default Behavior
	Validation

	Class Methods
	accessInstanceVariablesDirectly

	Instance Methods
	dictionaryWithValuesForKeys:
	mutableArrayValueForKey:
	mutableArrayValueForKeyPath:
	mutableSetValueForKey:
	mutableSetValueForKeyPath:
	setNilValueForKey:
	setValue:forKey:
	setValue:forKeyPath:
	setValue:forUndefinedKey:
	setValuesForKeysWithDictionary:
	validateValue:forKey:error:
	validateValue:forKeyPath:error:
	valueForKey:
	valueForKeyPath:
	valueForUndefinedKey:

	Constants
	Key Value Coding Exception Names
	NSUndefinedKeyException userInfo Keys
	Array operators

	NSKeyValueObserving Protocol Reference
	Overview
	Tasks
	Change Notification
	Registering for Observation
	Notifying Observers of Changes
	Observing Customization

	Class Methods
	automaticallyNotifiesObserversForKey:
	keyPathsForValuesAffectingValueForKey:

	Instance Methods
	addObserver:forKeyPath:options:context:
	didChange:valuesAtIndexes:forKey:
	didChangeValueForKey:
	didChangeValueForKey:withSetMutation:usingObjects:
	observationInfo
	observeValueForKeyPath:ofObject:change:context:
	removeObserver:forKeyPath:
	setObservationInfo:
	willChange:valuesAtIndexes:forKey:
	willChangeValueForKey:
	willChangeValueForKey:withSetMutation:usingObjects:

	Constants
	NSKeyValueChange
	NSKeyValueObservingOptions
	Keys used by the change dictionary
	NSKeyValueSetMutationKind

	NSLocking Protocol Reference
	Overview
	Tasks
	Working with Locks

	Instance Methods
	lock
	unlock

	NSMutableCopying Protocol Reference
	Overview
	Tasks
	Copying

	Instance Methods
	mutableCopyWithZone:

	NSObject Protocol Reference
	Overview
	Tasks
	Identifying Classes
	Identifying and Comparing Objects
	Managing Reference Counts
	Testing Object Inheritance, Behavior, and Conformance
	Describing Objects
	Sending Messages
	Determining Allocation Zones
	Identifying Proxies

	Instance Methods
	autorelease
	class
	conformsToProtocol:
	description
	hash
	isEqual:
	isKindOfClass:
	isMemberOfClass:
	isProxy
	performSelector:
	performSelector:withObject:
	performSelector:withObject:withObject:
	release
	respondsToSelector:
	retain
	retainCount
	self
	superclass
	zone

	NSURLAuthenticationChallengeSender Protocol Reference
	Overview
	Tasks
	Protocol Methods

	Instance Methods
	cancelAuthenticationChallenge:
	continueWithoutCredentialForAuthenticationChallenge:
	useCredential:forAuthenticationChallenge:

	NSURLProtocolClient Protocol Reference
	Overview
	Tasks
	Protocol Methods

	Instance Methods
	URLProtocol:cachedResponseIsValid:
	URLProtocol:didCancelAuthenticationChallenge:
	URLProtocol:didFailWithError:
	URLProtocol:didLoadData:
	URLProtocol:didReceiveAuthenticationChallenge:
	URLProtocol:didReceiveResponse:cacheStoragePolicy:
	URLProtocol:wasRedirectedToRequest:redirectResponse:
	URLProtocolDidFinishLoading:

	Part III: Functions
	Foundation Functions Reference
	Overview
	Functions by Task
	Assertions
	Bundles
	Byte Ordering
	Decimals
	Exception Handling
	Managing Object Allocation and Deallocation
	Interacting with the Objective-C Runtime
	Logging Output
	Managing File Paths
	Managing Points
	Manipulating Ranges
	Manipulating Rectangles
	Sizes
	Uncaught Exception Handlers
	Managing Memory
	Managing Zones

	Functions
	NSAllocateMemoryPages
	NSAllocateObject
	NSAssert
	NSAssert1
	NSAssert2
	NSAssert3
	NSAssert4
	NSAssert5
	NSCAssert
	NSCAssert1
	NSCAssert2
	NSCAssert3
	NSCAssert4
	NSCAssert5
	NSClassFromString
	NSConvertHostDoubleToSwapped
	NSConvertHostFloatToSwapped
	NSConvertSwappedDoubleToHost
	NSConvertSwappedFloatToHost
	NSCopyMemoryPages
	NSCopyObject
	NSCParameterAssert
	NSCreateZone
	NSDeallocateMemoryPages
	NSDeallocateObject
	NSDecimalAdd
	NSDecimalCompact
	NSDecimalCompare
	NSDecimalCopy
	NSDecimalDivide
	NSDecimalIsNotANumber
	NSDecimalMultiply
	NSDecimalMultiplyByPowerOf10
	NSDecimalNormalize
	NSDecimalPower
	NSDecimalRound
	NSDecimalString
	NSDecimalSubtract
	NSDecrementExtraRefCountWasZero
	NSDefaultMallocZone
	NSEqualRanges
	NSExtraRefCount
	NSFullUserName
	NSGetSizeAndAlignment
	NSGetUncaughtExceptionHandler
	NSHomeDirectory
	NSHomeDirectoryForUser
	NSHostByteOrder
	NSIncrementExtraRefCount
	NSIntersectionRange
	NSLocalizedString
	NSLocalizedStringFromTable
	NSLocalizedStringFromTableInBundle
	NSLocalizedStringWithDefaultValue
	NSLocationInRange
	NSLog
	NSLogPageSize
	NSLogv
	NSMakeCollectable
	NSMakeRange
	NSMaxRange
	NSOpenStepRootDirectory
	NSPageSize
	NSParameterAssert
	NSPointFromCGPoint
	NSPointToCGPoint
	NSProtocolFromString
	NSRangeFromString
	NSRealMemoryAvailable
	NSRectFromCGRect
	NSRectToCGRect
	NSRecycleZone
	NSRoundDownToMultipleOfPageSize
	NSRoundUpToMultipleOfPageSize
	NSSearchPathForDirectoriesInDomains
	NSSelectorFromString
	NSSetUncaughtExceptionHandler
	NSSetZoneName
	NSShouldRetainWithZone
	NSSizeFromCGSize
	NSSizeToCGSize
	NSStringFromClass
	NSStringFromProtocol
	NSStringFromRange
	NSStringFromSelector
	NSSwapBigDoubleToHost
	NSSwapBigFloatToHost
	NSSwapBigIntToHost
	NSSwapBigLongLongToHost
	NSSwapBigLongToHost
	NSSwapBigShortToHost
	NSSwapDouble
	NSSwapFloat
	NSSwapHostDoubleToBig
	NSSwapHostDoubleToLittle
	NSSwapHostFloatToBig
	NSSwapHostFloatToLittle
	NSSwapHostIntToBig
	NSSwapHostIntToLittle
	NSSwapHostLongLongToBig
	NSSwapHostLongLongToLittle
	NSSwapHostLongToBig
	NSSwapHostLongToLittle
	NSSwapHostShortToBig
	NSSwapHostShortToLittle
	NSSwapInt
	NSSwapLittleDoubleToHost
	NSSwapLittleFloatToHost
	NSSwapLittleIntToHost
	NSSwapLittleLongLongToHost
	NSSwapLittleLongToHost
	NSSwapLittleShortToHost
	NSSwapLong
	NSSwapLongLong
	NSSwapShort
	NSTemporaryDirectory
	NSUnionRange
	NSUserName
	NSZoneCalloc
	NSZoneFree
	NSZoneFromPointer
	NSZoneMalloc
	NSZoneName
	NSZoneRealloc
	NS_DURING
	NS_ENDHANDLER
	NS_HANDLER
	NS_VALUERETURN
	NS_VOIDRETURN

	Part IV: Data Types
	Foundation Data Types Reference
	Overview
	Data Types
	NSByteOrder
	NSComparisonResult
	NSDecimal
	NSHashTableOptions
	NSMapTableOptions
	NSRange
	NSRangePointer
	NSSearchPathDirectory
	NSSearchPathDomainMask
	NSStringEncoding
	NSSwappedDouble
	NSSwappedFloat
	NSTimeInterval
	NSUncaughtExceptionHandler
	NSZone

	Part V: Constants
	Foundation Constants Reference
	Overview
	Constants
	Enumerations
	NSError Codes
	NSNotFound
	URL Loading System Error Codes

	Global Variables
	Cocoa Error Domain
	NSURL Domain

	Numeric Constants
	NSDecimal Constants
	NSInteger and NSUInteger Maximum and Minimum Values

	Exceptions
	General Exception Names

	Version Numbers
	Foundation Version Number
	Foundation Framework Version Numbers

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

