

Microsoft® XNA™

Game Studio
Creator’s Guide

An Introduction to XNA
Game Programming

http://dx.doi.org/10.1036/007149071X

This page intentionally left blank

Microsoft® XNA™

Game Studio
Creator’s Guide

An Introduction to XNA
Game Programming

Stephen Cawood
Pat McGee

New York Chicago San Francisco Lisbon London Madrid Mexico City
Milan New Delhi San Juan Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/007149071X

Copyright © 2007 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permitted under
the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

0-07-151091-5

The material in this eBook also appears in the print version of this title: 0-07-149071-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to com-
ply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable
to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill
and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or
inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any
claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007149071X

http://dx.doi.org/10.1036/007149071X

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/007149071X

ABOUT THE AUTHORS...

Stephen Cawood is a former Program Manager at Microsoft Corporation. Since
leaving Microsoft, Stephen has been writing full-time. He has worked on a number of
gaming titles including Halo 2 Hacks, Black Art of Halo Mods, and The Unautho-
rized Halo 2 Battle Guide. Stephen currently lives in Halifax, Canada, with his
stunning wife, Christa, and two friendly kittens.

Pat McGee is a former game programmer and currently is a faculty member, in-
structor, and course developer at the British Columbia Institute of Technology. Pat
also works as a Technical Engineer at Business Objects. Pat is the author of Games
Programming in C++ and DirectX: 3D Graphics, Animation, Modeling, and Audio.
Pat and his wife, Yumi, live in Vancouver, Canada, with their son, Owen.

ABOUT THE TECHNICAL EDITOR...

Patrick Chin has been dabbling in game programming ever since he got his hands on
a VIC-20, but has been making his bread in programming web applications. His
claim to graphics fame is as the author of the PowerPanels ActiveX control, which
was used briefly on Bill Gates’ personal website.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

I dedicate this book to my father.
Dad, thanks for letting me play with

your 1K, ZX-81—my first glimpse
of game programming.

—Stephen Cawood

I dedicate this book to my wife, Yumi,
who spent many long days and nights

looking after our newborn son, Owen,
while I finished this book.

Thank you for helping us get through this, Yumi.

—Pat McGee

This page intentionally left blank

ix

Contents at a Glance

1 Set Up an XNA Development Environment 1

2 Developer Basics 7

3 Introduction to XNA Graphics Programming 23

4 Shaders 43

5 Animation Introduction 63

6 Character Movement 75

7 Texturing Your Game World 91

8 Adding Skies and Horizons to Your Levels 109

9 Index Buffers 121

10 Combining Images for Better Visual Effects 131

11 Score Tracking and Game Statistics 153

12 3D Models 163

13 Vectors 193

14 Matrices 207

15 Building a Graphics Engine Camera 227

16 Collision Detection 245

17 Ballistics 263

ix

18 Particle Effects 279

19 Keyframe Animations 299

20 Lighting 309

21 Input Devices 333

22 Content Pipeline Processors 353

23 Animated Models 365

24 Adding Audio to Your Game 385

25 Terrain with Height Detection 411

26 Multiplayer Gaming 425

Index 439

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D Ex

xi

Contents

ACKNOWLEDGMENTS, XXI

INTRODUCTION, XXIII

1 Set Up an XNA Development Environment 1

Set Up an XNA Development Environment, 2

Install the Software, 2

Join the Xbox 360 Creator’s Club, 3

Using the XNA Game Launcher, 3

Connect Your PC to Your Xbox 360, 3

Download the Examples for This Book, 5

XNA and Your PC Video Card, 5

2 Developer Basics 7

Managing the Code Project, 8

Opening Microsoft XNA Game Studio Express, 8

Creating a Game Studio Project, 8

Editing Your Code, 12

Adding and Removing Code Files to and from the Project, 12

Compiling and Running Game Studio Projects, 12

Saving the Game Studio Project, 13

Deploying an Xbox 360 Game Project, 14

Opening an Existing Game Studio Project, 16

Debugging, 16

Error List, 17

Pausing the Program to View Logic and Variable
Values at Run Time, 17

Chapter 2 Review Exercises, 21

xi

For more information about this title, click here

http://dx.doi.org/10.1036/007149071X

3 Introduction to XNA Graphics Programming 23

Creating the XNA Game Window, 24

Initializing the Game Application, 25

Drawing and Updating the Game Application, 27

Closing the Game Application, 28

Basic XNA Game Window Example, 28

Drawing Graphics in the XNA Game Window, 30

Drawing Shapes, 30

Primitive Objects, 31

Drawing Syntax, 32

Drawing Primitive Objects Example, 34

Chapter 3 Review Exercises, 42

4 Shaders 43

Graphics Pipeline, 44

Shaders, 45

Shader Structure, 45

High Level Shader Language, 47

Referencing the Shader in Your XNA Project, 49

XNA’s BasicEffect Class, 59

Setting Properties Within the BasicEffect Class, 59

Techniques and Passes Within the BasicEffect Class, 60

BasicEffect Class Example, 60

Chapter 4 Review Exercises, 62

5 Animation Introduction 63

Right Hand Rule, 64

Matrix Logic, 65

Transformation Order, 66

XNA Matrix Syntax, 66

Steps for Drawing a Primitive Object or a 3D Model, 67

Declaring and Initializing Individual Matrices, 68

Building the Cumulative World Matrix, 68

Setting the Shader Values, 68

Drawing the Object, 68

Applying Transformations: Earth and Moon Example, 68

Chapter 5 Review Exercises, 73

6 Character Movement 75

Direction, 76

Calculating Direction Using Trigonometry, 76

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D Exii

xiii

Calculating Direction Using Speed, 77

Calculating Direction Using Vectors, 79

Scaling Animations with Time Lapse Between Frames, 80

Character Movement Example, 81

Chapter 6 Review Exercises, 89

7 Texturing Your Game World 91

Texture Introduction, 92

UV Coordinates, 92

Texture C# Syntax, 92

Shader Implementation for Textures, 94

Transparent Textures, 98

Alpha Channel, 98

Texture Example, 98

Billboarding Example, 104

Texture Coloring, 106

Texture Tiling, 107

Chapter 7 Review Exercises, 108

8 Adding Skies and Horizons to Your Levels 109

The Skybox, 110

Terragen Photorealistic Scenery-Rendering Software, 111

Using Terragen to Create a Skybox, 112

Setting Up the Terragen Project, 112

Creating Each Image: Assigning Head, Pitch, and Bank
Properties, 114

Chapter 8 Review Exercises, 119

9 Index Buffers 121

Index Buffers, 122

Dynamically Updating Data with Index Buffers
and Vertex Buffers, 124

Rendering Vertex Buffers with
an Index Buffer Reference, 125

Grid Using Index Buffer Example, 125

Chapter 9 Review Exercises, 130

10 Combining Images for Better Visual Effects 131

Sprites, 132

2D Sprites, 132

SpriteBatch on the Heads-Up-Display Example, 134

Sprite Texture Example, 139

C O N T E N T S

Multitexturing, 143

Multipass Rendering from the Shader’s Technique, 144

Calling the Pass from the Draw() Method, 144

Water Using Multitexturing Example, 145

Water Using Multitexturing Example,
Continued: Adding Waves, 149

Chapter 10 Review Exercises, 152

11 Score Tracking and Game Statistics 153

Creating a Custom Image Font, 154

Custom Font Class, 155

Font Example: Displaying Text in the Game Window, 157

Font Example: Displaying a Frames-per-Second Count, 160

Chapter 11 Review Exercises, 162

12 3D Models 163

3D Modeling Tools, 164

MilkShape 3D Intro Example: Creating a Windmill, 165

Creating a New Project, 165

Adding a Box, 166

Adding a Sphere, 167

Adding a Cylinder, 167

Applying a Texture, 168

Assigning the Material to the Blade, 169

Assigning the Material to the Box and Sphere, 170

Duplicating the Blade, 170

Rotating the Duplicate Blade about the Z Axis, 171

Merging the Groups, 172

Positioning the Model at the Point of Origin, 173

Adding a Joint, 173

Saving the Project, 174

Exporting the Model from the Project to the .fbx Format, 174

Exporting the Windmill Base, 175

Exporting the Fan, 175

Concluding the MilkShape Demonstration, 175

Loading the Model in XNA, 175

Drawing the Model in XNA, 177

Loading and Animating the Windmill in Code, 178

Adding a Car as a Third-person Object, 181

Chapter 12 Review Exercises, 192

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D Exiv

xv

13 Vectors 193

Vector Class, 194

Vector Addition, 194

Vector Subtraction, 196

Vector Scaling, 196

Vector Scaling, Example 1, 196

Vector Scaling, Example 2, 197

Normals, 197

Cross Product, 198

Cross Product Example, 198

Normalization, 200

Pythagorean Theorem, 201

Using the Pythagorean Theorem to Calculate
the Vector Length, 201

Using Normalization to Compute the Unit Vector, 202

Using the Normalize() Method to Compute
the Unit Vector, 202

Dot Product, 203

Dot Product Method, 204

Dot Product Example, 204

Chapter 13 Review Exercises, 205

14 Matrices 207

Matrix Multiplication, 208

Matrix Class, 208

Matrix Multiplication Example:
1×4 Matrix * 4×4 Matrix, 208

Matrix Multiplication Example:
4×4 Matrix * 4×4 Matrix, 211

Transformation Matrices, 213

Translation Matrix, 213

Scaling Matrix, 216

Rotation Matrix X Axis, 218

Rotation Matrix Y Axis, 220

Rotation Matrix Z Axis, 222

Identity Matrix, 223

Chapter 14 Review Exercises, 224

15 Building a Graphics Engine Camera 227

Camera Vectors, 228

C O N T E N T S

Camera Matrices, 229

World Matrix, 229

View Matrix, 229

Perspective Matrix, 229

Camera Example, 230

Creating the Camera Class Shell, 230

Referencing the Camera from Your Game Class, 231

Moving and Strafing, 232

Rotating the View, 236

Updating the View in the Camera Class, 238

Triggering Changes to the View from the Game Class, 241

Chapter 15 Review Exercises, 244

16 Collision Detection 245

Bounding Spheres, 246

Collision Detection Between a Sphere and a Plane, 253

Implementing the Sphere and Plane
Collision-Detection Routine, 254

Collision Detection Using Lines and Spheres, 256

Chapter 16 Review Exercises, 261

17 Ballistics 263

Linear Projectiles, 264

Arcing Projectile, 265

Linear Projectiles Example, 266

Arcing Projectiles Example, 276

Chapter 17 Review Exercises, 278

18 Particle Effects 279

Point Sprites, 280

Custom Vertex Declarations, 285

Fire Example Using Point Sprites, 286

Chapter 18 Review Exercises, 297

19 Keyframe Animations 299

Interpolation, 300

Curves, 300

Keyframe Animation Example, 301

Chapter 19 Review Exercises, 307

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D Exvi

xvii

20 Lighting 309

Lighting Methods, 310

Source Lights, 310

Reflective Lighting Properties of Materials, 310

Reflective Normals, 311

Implementing Directional Lighting Using XNA’s
BasicEffect Class, 312

BasicEffect Default Lighting, 312

Directional Lighting Example, 313

Implementing Point Light Using the Phong Reflection Model, 318

Calculating Point Light, 320

Point Light in the Pixel Shader Example, 320

Point Light in the Vertex Shader Example, 329

Chapter 20 Review Exercises, 330

21 Input Devices 333

Handling Keyboard Input, 334

Handling Mouse Input, 335

Handling Controller Input, 335

Game Pad States, 335

Handling Pressed and Released States, 336

Thumbsticks, 337

Triggers, 337

Adjusting the Input Device Responsiveness, 337

Adding a Rumble, 338

Input Example, 338

Chapter 21 Review Exercises, 352

22 Content Pipeline Processors 353

Content Processors, 354

ContentImporter, 355

ContentTypeWriter, 355

ContentTypeReader, 355

Custom Content Processor Example, 356

Building a Custom Content Processor in Windows, 356

Implementing Your Custom Content Processor
on the Xbox 360, 363

Chapter 22 Review Exercises, 364

C O N T E N T S

23 Animated Models 365

The Quake II Format, 366

A Closer Look at the .md2 Data, 367

Textures with .md2 Format, 368

Animating Models in MilkShape, 368

Creating the Quake II Model, 369

Loading Your Quake II Model in Code, 374

Loading and Controlling Quake II Models in Code, 379

Loading the Quake II Weapon, 382

Chapter 23 Review Exercises, 384

24 Adding Audio to Your Game 385

About XACT, 386

Programming XNA Audio, 386

XACT Audio Project File, 386

Audio Engine, 387

Global Settings, 387

Wave Banks, 388

Sound Banks, 388

Playback Methods, 388

Programming 3D Audio, 389

XACT Authoring Tool, 389

XACT Authoring Tool Example, 389

Launching the XACT Authoring Tool, 390

Creating a Wave Bank, 390

Adding a Sound Bank, 391

Repeating the Steps for the Drum, Crow, and Bell, 391

Setting the Category Property for the Drum, 392

Creating an Infinite Loop, 392

Adding a Finite Loop, 394

Testing Your Audio, 394

Enabling Volume Attenuation, 394

Saving Your Audio Project, 396

Music and Crows Audio Example, 396

Adding a Flying Crow, 396

Adding Audio to Your Game Class, 400

Adding 3D Audio, 405

Chapter 24 Review Exercises, 409

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D Exviii

xix

25 Terrain with Height Detection 411

Height Maps, 412

Creating a Height Map Using Terragen, 413

Creating the Height Map, 413

Creating the Terrain Texture to Match the Height Map, 414

Height Map Code Example, 417

Chapter 25 Review Exercises, 424

26 Multiplayer Gaming 425

Viewport, 426

Creating Separate Cameras for Each Player, 427

Adjusting the View, 427

Adjusting the Projection, 427

Handling the User Input, 428

Split-screen Code Example, 428

Chapter 26 Review Exercises, 438

Index 439

C O N T E N T S

This page intentionally left blank

xxi

Acknowledgments

Stephen Thanks again to Patrick Chin, who has helped me with many book projects
and has also taught me a few lessons in humility while playing Halo 2 no-scope sniper
games. I’d also like to thank Christa for helping me keep my priorities straight.

Pat Thank you to the people who have taken time out to help me get here and com-
plete this project. For very generous contributions of time and assistance, thank you
to my mother-in-law, Masa Ohashi, and to my parents, Jack and Donna McGee. I
also want to thank my guides and mentors: the late Brian Anderson, John Blackwell,
Kevin Cudihee, Medhat Elmasry, Jason Harrison, Bill Howorth, and Dr. Benjamin
Yu, PhD. From the game industry, thank you to Cathy Marshall and Wes Gale from
Magellan Interactive for helping to set me on this path, and thanks to Tybon Wu
from Electronic Arts for the technical consulting.

Together we would like to acknowledge the following people, whose contributions
can be found in the examples in this book.

Thank you to the artists Eric Bancroft, Sheila Nash, and Phillip T. Wheeler for
bringing the media of this text to life.

Eric Bancroft, freelance artist and instructor, contributed the CF-18 Hornet
fighter jet model. Eric can be found on the web at www.abandonedrebel.com and
eric@abandonedrebel.com.

Sheila Nash (http://sheilanash.com) has been a video game artist for 15 years on a
variety of game platforms. She spends most of her time as a senior technical artist, op-
timizing the art process of game production. Sheila provided the hot rod model; brick
wall and stone floor; back wall, side wall, and ground; tiled grass; tree; danger sign;
and warning light.

xxi

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

www.abandonedrebel.com
http://sheilanash.com

Thank you to Phillip T. Wheeler, 3D modeler/animator, for the Zarlag Quake II
model.

We are grateful for industry support from Mete Ciragan of chUmbaLum sOft,
Todd Hollenshead of id Software, John McLusky of Planetside, and Microsoft.

Thank you, Mete, for providing the game world with a powerful 3D modeling and
animation program to create models for our games. Visit Mete’s site at
www.milkshape3d.com to obtain a 30-day trial edition of MilkShape. We use
MilkShape because it creates great models and animations, is intuitive, and is afford-
able for the average developer on a budget. Watch the website for the latest updates.

The Quake II loader code is based in id Software’s design and is available under
the terms of the GNU public license as stated by id Software. We are grateful to id
Software for innovative products and for their positive community spirit.

Planetside provides a great utility, Terragen, for generating photorealistic scenery,
which we use in our game world. Planetside provides a noncommercial edition and
also a commercial edition with support and access to even larger image sizes. Watch
their site (www.planetside.co.uk) for the latest updates.

Thank you, Microsoft, for the XNA game development platform. Thank you for
amazing freeware XNA development tools and for opening up the Xbox 360, a
world-class game console, to everyday and independent developers.

For game community support, thank you to Dennis Medema and Jorrit Rouwe for
helping us locate resources for this project.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D Exxii

www.milkshape3d.com
www.planetside.co.uk

xxiii

Introduction

This book shows you how to write complete 3D games from scratch. It
will teach you the math, graphics, audio effects, and algorithms for

all the features you would expect in a quality 3D game. This text explains how to set
up your environment to write your XNA and shader code. It also explains how to
create 3D models on a budget and how to use commercial standard models that are
created by professional game artists. When you finish reading this book, you will
have the ability to write a graphics engine and a full game that contains realistic scen-
ery, fiery effects, 3D models, terrain, animations, collision detection, 3D audio, score
tracking, and more.

This material is intended for beginning to intermediate programmers. You may be
a beginning programmer who knows how to write an if-else statement and for loop
using C, C++, C#, Java, JavaScript, PHP, or other C-style languages—or you may
even be a computer-science student or graduate who wants to learn game program-
ming and needs a book with substance. Whatever your level of experience, this book
rapidly delivers the material you need in an easy-to-learn format:

� Step-by-step examples get to the point without any unwanted clutter.

� We avoid deeply nested structures and bloated game projects that would
complicate the learning process.

� Examples in each chapter of the book can be built independently of each
other and thus easily mixed and matched in your own projects.

� All examples are compatible with each other.

� Every chapter is designed so you can learn the topics quickly and
thoroughly.

xxiii

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

This book is written by authors who are experienced in game programming and
know how to teach it to a wide audience. The material in this book and the methods
of delivery have been successfully tested in the classroom with students of varying
levels of experience. Pat has been developing courses in game programming and has
taught game programming at one of Western Canada’s largest post-secondary insti-
tutions, the British Columbia Institute of Technology, since 2001. He quickly discov-
ered that about half of the people in his classes were very new to programming and
the other half were computer science students or college and university computer sci-
ence graduates. Right away, Pat developed a formula for fast learning that was sim-
ple enough for anyone with basic programming experience to understand, but
substantial enough to satisfy the seasoned programmer. Term after term, Pat receives
rave reviews from students of all levels of experience for showing them how to build
complete games from scratch.

Stephen also brings relevant experience, having recently coauthored a book on
applying 3D graphics for augmented reality. Stephen and Pat package their experi-
ence to deliver you the Microsoft XNA Game Studio Creator’s Guide.

ABOUT THE DOWNLOAD

The base code, media files, and solutions for all examples presented in this book
are available in the downloads section of this book’s catalog page at
www.mhprofessional.com/product.php?isbn=007149071X. Links to utilities used
for model creation and scenery generation can also be found at this location.

Additional information and discussion relevant for this text can be found at
www.GameDeveloperOnline.com.

All code examples explained in the pages of this book can be built using either the
Windows base code project or Xbox 360 base code project. All code examples can run
on either platform, so you can use the same base code project for every example in the
book. You can check your work by examining the complete solution, or you can start
with the solution if you need to modify it or use it as a basis for another project.

Each chapter ends with a set of optional exercises. We recommend you try them to
practice and actively focus on the most relevant points discussed in each chapter.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D Exxiv

www.GameDeveloperOnline.com
www.mhprofessional.com/product.php?isbn=007149071X

CHAPTERCHAPTER11
Set UpSet Up
an XNAan XNA
DevelopmentDevelopment
EnvironmentEnvironment

1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

2

THE release of the XNA platform—and specifically the ability for any-
one to write Xbox 360 console games—is truly a major progres-

sion in the game-programming world. Before XNA, it was simply too complicated
and costly for a student, software hobbyist, or independent game developer to gain
access to a decent development kit for a major console platform. With the release of
XNA Game Studio Express, the ground rules have changed. Now anyone with a PC
that has a decent graphics card can use the XNA platform to develop games not only
for Windows, but also for the Xbox 360.

It will be fun to watch as a new strain of games springs forth from the labs of stu-
dents, hobbyist game developers, small game shops—and you. Of course, commer-
cial developers will always have larger budgets, teams of paid artists, and abundant
resources on their side—however, commercial game developers are going to be tak-
ing notes and learning from the independent XNA developers who find new and in-
teresting ways to warp the virtual world. There is a niche for you to fill.

XNA Game Studio Express is the integrated development environment (IDE) for
XNA. It is an add-on for Visual C# Express Edition. Although some people would
like to see the full version of Visual Studio supported, Visual C# Express is free. Based
on this, it is possible to develop Windows XNA games without any cost above the
price of your PC.

However, if you want to write games for the Xbox 360, this is obviously not the
case. Aside from the cost of the Xbox 360, you have an additional subscription
charge for the Xbox 360 Creator’s Club. The Creator’s Club subscription allows you
to deploy games from your Windows PC to the Xbox 360.

SET UP AN XNA DEVELOPMENT
ENVIRONMENT

Follow these instructions to prepare your system for XNA development on the PC
and the Xbox 360.

Install the Software

Before you can develop any games with XNA, you will need to download some free
software from Microsoft.com. First, install Visual C# Express Edition, and then in-
stall XNA Game Studio Express Edition.

After you have installed the software, you will be able to develop XNA games for
Windows. However, if you want to develop for the Xbox 360, you will need to com-
plete the rest of the instructions in this section.

3C H A P T E R 1

Se
tU

p
an

X
N

A
D

ev
el

op
m

en
tE

nv
iro

nm
en

t

Join the Xbox 360 Creator’s Club

Before you are able to do any Xbox 360 game development, you will have to pay for a
subscription to the Xbox 360 Creator’s Club. Fortunately, this is the only fee you will
have to pay; everything else is free. To join the club, simply sign into Xbox Live and
pay for a membership in the Xbox 360 Creator’s Club.

Using the XNA Game Launcher

After you have purchased a subscription to the Creator’s Club, you will be able to
sign into Xbox Live and download the free XNA Game Launcher application.

To use the XNA Game Launcher utility, navigate to the Games blade on your
Xbox 360 and then to the Demos and More section. Once there, select XNA Game
Launcher and press A to launch the application. Next, press A to start the XNA Game
Launcher.

When you have the launcher running, you will see three options: My XNA Games,
Connect to Computer, and Settings. The My XNA Games option shows a list of
games. Selecting a game gives you the options Play Game and Delete Game. Connect
to Computer (which requires an active Xbox Live connection to verify your subscrip-
tion) puts the Xbox 360 in the correct mode for deploying or debugging Xbox 360
Game projects in GSE. The last option, Settings, allows you to generate a connection
key. Select this option and you will receive instructions for how to add the connection
key inside GSE (under Tools | Options | XNA Game Studio Express and Xbox 360
Console).

Connect Your PC to Your Xbox 360

Before you can develop Xbox 360 games, you must set up a connection between
your GSE development PC and your Xbox 360. Follow these steps to establish the
connection:

1. Make sure that your Xbox 360 is connected to Xbox Live, you have a
membership to the Xbox 360 Creator’s Club, and you have downloaded
the XNA Game Launcher application.

2. Ensure that you have Visual C# Express Edition and GSE installed on your
development PC.

3. The Connect to Computer option is disabled the first time you run XNA
Game Launcher. To enable it, you must go to Settings and select Generate
Connection Key. At this point, you will see a connection key displayed. After

you have added the connection key to GSE (under Tools | Options | XNA
Game Studio Express and Xbox 360 Console), your PC can deploy
XNA projects to your Xbox 360.

4. From the XNA Game Launcher options, choose Connect to Computer.
You must have the Xbox waiting in this mode before you try to debug or
deploy from GSE (see Figure 1-1).

5. Test your connection. An easy way to test whether you have a working
connection between your dev PC and your Xbox 360 is to open the Spacewar
sample solution and try to debug it. If you don’t have a Spacewar solution,
you can create one by choosing the Spacewar template under New | Project.
Debugging an Xbox 360 game requires that you deploy the solution to the
Xbox. If your connection is not working, the deploy operation will fail and
you will see an error message in the GSE status bar.

That’s it, now you will be able to develop XNA games for the Windows platform
or the Xbox 360.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E4

F I G U R E 1 - 1

The XNA Game Launcher ready to connect to a PC

5C H A P T E R 1

Se
tU

p
an

X
N

A
D

ev
el

op
m

en
tE

nv
iro

nm
en

t

DOWNLOAD THE EXAMPLES
FOR THIS BOOK

You will find all of the resources for the examples in this book available for download
from the book’s catalog page at www.mhprofessional.com (see the Introduction for
more details).

XNA AND YOUR PC VIDEO CARD

Before you start installing the software required for XNA development, you should
ensure that your PC meets the basic requirements for GSE. The tricky consideration
is your video card; if your card does not meet the requirements, you will not be able to
run GSE projects on your PC.

Of course, this is all academic if you plan on developing solely for the Xbox 360; if
that’s the case, you don’t need to worry about your video card. If you have encoun-
tered the following GSE error, you may have already discovered that your card has
an issue:

“Could not find a Direct3D device that has a Direct3D9-level driver and supports
pixel shader 1.1 or greater.”

If you see this error, you should go to the GSE documentation FAQ (Microsoft
XNA Game Studio Express | XNA Game Studio Express Documentation) and find
the following topic:

“What do I do to fix the error message ‘NoSuitableGraphicsDeviceException was
unhandled’?”

This page provides instructions for determining the version of DirectX installed
on the computer, gives instructions for how to set hardware acceleration to full, and
explains how to determine which shader models are supported by your video card.

GSE requires your PC’s video card to support shader model 1.1 or greater. How-
ever, Microsoft recommends that you have a graphics card that supports shader
model 2.0 or greater. If you would like to programmatically check which version
your card supports, refer to Microsoft XNA Game Studio Express | XNA Game Stu-
dio Express Documentation | How to: Check for Shader Model 2.0 Support. This
page (found at http://msdn2.microsoft.com/en-us/library/bb195248.aspx) provides
the following code, which uses the static property GraphicsAdapter.Adapters to
query the adapters on the system to display their capabilities (in this case, checking
for pixel shader 2.0 support):

// check all available adapters on the system

foreach (GraphicsAdapter adapter in GraphicsAdapter.Adapters)

{

www.mhprofessional.com
http://msdn2.microsoft.com/en-us/library/bb195248.aspx

// get the capabilities of the hardware device

GraphicsDeviceCapabilities caps =

adapter.GetCapabilities(DeviceType.Hardware);

if (caps.MaxPixelShaderProfile < ShaderProfile.PS_2_0)

{

// this adapter does not support Shader Model 2.0

System.Diagnostics.Debug.WriteLine

("This adapter does not support Shader Model 2.0.");

}

}

Now that you have your development environment ready to go, the next chapter
will walk you through some of the most important features of the GSE IDE.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E6

CHAPTERCHAPTER22
DeveloperDeveloper
BasicsBasics

7

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

8

IF you are itching to get coding, but are not familiar with Microsoft’s inte-
grated development environments, this chapter will help you use Microsoft

XNA Game Studio Express (GSE) to program, debug, and deploy your game pro-
jects. Once your PC and Xbox 360 have been prepared as outlined in Chapter 1, “Set
Up an XNA Development Environment,” you are ready to code with GSE.

MANAGING THE CODE PROJECT

GSE is a first-class integrated development environment (IDE) that leverages
Microsoft Visual C# Express. This free coding studio is very similar to Microsoft Vi-
sual C# .NET; it enables you to program, edit, debug, and deploy your C# applica-
tions. Compared to other freeware developer tools, GSE is a Rolls Royce. Using this
software, you can code in comfort and allow the IDE to improve your efficiency.

Opening Microsoft XNA Game Studio Express

To launch GSE, from the Start menu select Programs and choose Microsoft XNA
Game Studio Express | XNA Game Studio Express. GSE will open the Start Page,
which presents your recent projects, links to tutorials, and links to online articles, dis-
cussions, and events related to C# development (see Figure 2-1).

Creating a Game Studio Project

A GSE project will store references to all of your code files and resources that are used
by your game application. There are currently two types of XNA game projects: the
Windows Game project and the Xbox 360 Game project.

Each type of project references a slightly different instruction set. The Windows
Game project can be run on a PC, but the Xbox 360 Game project cannot because it
uses a reduced instruction set that is required by the Xbox 360 console.

Coding Differences Between Windows
and the Xbox 360

The base code that is automatically generated by GSE for the Xbox 360 Game pro-
ject is identical to the code generated for a Windows Game project. Some slight dif-
ferences exist between the two instruction sets available, such as mouse support,
which is only available in Windows. However, in the majority of cases, you can write
your code in one project type and then copy your source files and resources to the
other project type and you will still be able to run your project. The Xbox 360 is
slightly stricter in enforcing variable default declarations, but even if you forget the
differences, GSE provides excellent debug information to inform you of any issues
and how to resolve them when testing your code in one environment or the other.

9

You can have confidence that almost all the code you write for a Windows Game
project is going to work in an Xbox 360 Game project, and vice versa. In most cases,
platform compatibility will not be an issue because XNA is designed to work in both
environments. Of course, you still need to test in both environments, but plan for an
excellent level of compatibility between platforms.

Creating a Windows Game Project

You can create a project by selecting File and then New Project. At this point, several
options are available to you. If you want your project to run on Windows, then
choose the Windows Game icon that appears in the New Project dialog (see Figure
2-2). To proceed, you need to fill in each of the text boxes at the bottom of the New

C H A P T E R 2

D
ev

el
op

er
Ba

sic
s

F I G U R E 2 - 1

Microsoft Visual C# Express Start Page

Project dialog. These values include the name of the project and the file path for the
directory where you would like your project to be created.

When you first create a project, a code-editing window will open on the left (see
Figure 2-3). The Solution Explorer in the right panel shows a listing of code files and
may display resources such as a project icon and other items you have selected. The
Error List at the bottom of the page displays error messages for lines of code that will
not compile, warning messages such as information about variables that are not
used, and instructions that are deprecated but have been allowed to compile.

If the code editor, Solution Explorer, or Error List do not appear, these options
can be enabled from the View menu.

Creating an Xbox 360 Game Project

The creation of an Xbox 360 Game project is similar to creating a Windows Game
project. But before you can actually run an Xbox 360 game project, you will need to
sign into Xbox Live and download the XNA Game Launcher, as outlined in Chapter 1,

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E10

F I G U R E 2 - 2

Entering the file path and project name

11

“Set Up an XNA Development Environment.” Once you have this installed, you will
have to connect your PC to your Xbox 360. Connecting your PC to your Xbox 360
will be explained later in this chapter.

Once you have a connection from your PC to your Xbox 360, you will be able to
compile an Xbox 360 Game project. Creating an Xbox 360 Game project is similar
to creating a Windows Game project. The only difference is that you select the Xbox
360 Game icon in the New Project dialog. When you create the project, GSE will gen-
erate the base code needed to build a game that runs on the Xbox 360. The develop-
ment environment will look like the Windows Game project shown in Figure 2-3.

C H A P T E R 2

D
ev

el
op

er
Ba

sic
sF I G U R E 2 - 3

GSE project with code window, Error List, and Solution Explorer

Editing Your Code

The GSE code window offers a friendly environment for writing and editing your
code. The latest IDE editing features enable you to write code quickly and accurately.
For example, code coloring allows for easy readability by distinguishing comments
in green, C# structures and functions in blue, and user-defined code in black. Also,
incomplete lines of code are marked with red lines. Furthermore, AutoComplete is
readily available to assist you in completing your instructions with methods and vari-
ables for your classes. ToolTips, which display descriptive summaries, appear when
you hover the mouse over variables and instructions that are referenced from
Microsoft’s code libraries.

The other windows also provide features that will make your programming expe-
rience more enjoyable. For example, the Solution Explorer enables you to quickly
navigate from page to page. In short, GSE is rich with editing features that are wait-
ing for you to discover them.

Adding and Removing Code Files to and from the Project

By default, when you create a new game project, GSE will generate a Game1.cs file, a
Program.cs file, and a Game.ico file (for a Windows Game project). You’ll see these
files listed in the Solution Explorer. Options are available to add files to (or remove
them from) the project by right-clicking the project name in the Solution Explorer
(see Figure 2-4).

To add new source files to the project, right-click the project name in the Solution
Explorer, choose Add, and then select New Item. In the New Item dialog that ap-
pears, a C# file can be created by selecting Code File. You must specify a name for the
C# file in the Name box before the file can be added. Once you have provided a file-
name, click the Add button to have the file added to the project.

To add existing source files to the project, right-click the project name in the Solu-
tion Explorer, choose Add, and then select Existing Item; an Add Existing Item dia-
log will appear. By default, the Add Existing Item dialog displays all files listed in the
source folder of the current project. When you left-click the source files to be added
and click Add, GSE will load the files into the project; after they have been added,
they will be listed in the Solution Explorer.

Compiling and Running Game Studio Projects

You can use the Start Debugging action to compile your code, generate debugging in-
formation, and run the project in one step. In the case of an Xbox 360 Game project,
this will also deploy the project to your Xbox 360. You can access the Start De-
bugging action from the Debug menu or by pressing the F5 key.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E12

13

By default, both newly created Windows Game projects and Xbox 360 Game pro-
jects are generated with the source code needed to build a basic window. The output
from compiling a brand-new project will be a game window as shown in Figure 2-5.

Saving the Game Studio Project

When compiling, GSE will automatically save all edits to the game project. Between
builds, you can manually save changes to the *.cs file that is currently showing in
the code editor, or you can save changes to the entire project. Under the File menu,

C H A P T E R 2

D
ev

el
op

er
Ba

sic
s

F I G U R E 2 - 4

Project file Add options available in the Solution Explorer

three different options are available for saving the project: Save *.cs, Save *.cs As,
and Save All.

Deploying an Xbox 360 Game Project

When you have a project that is ready to run on your Xbox 360, you can use GSE to
deploy it to your Xbox. The first step of deployment requires that you go to your
Xbox 360 and configure it to connect it to your PC. On the Games blade of the Xbox
360 Dashboard (under Demos and More), launching XNA Game Launcher will dis-
play the XNA Game Launcher main page (see Figure 2-6).

The Connect to Computer option is disabled the first time you run XNA Game
Launcher. To enable it, you must go to Settings and select Generate Connection Key.
After you generate the key, but before you accept it, you must enter the key number
into GSE on your PC. From GSE, under Options | Tools, select XNA Game Studio
Xbox 360 and click Add to launch the Add Xbox 360 Name and Connection Key di-
alog. In this dialog, you must enter a computer name so you can identify your PC con-

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E14

F I G U R E 2 - 5

Newly built game window

15

nection and the connection key that was just generated. Once you complete this task,
select Accept New Key from the Connection Key dialog on your Xbox 360 to finalize
the process. After you have accepted the key, you will be brought back to the Settings
dialog, which will now report [key set] to notify you that you were successful in ap-
plying the key on your Xbox 360. You can now select the Back button to return to
the XNA Game Launcher page.

On the XNA Game Launcher page, select the Connect to Computer option and
press the A controller button to make the connection.

If you want to test your Xbox 360 Game project, select Start Debugging under the
Debug menu (or press F5) to deploy and run your game on the Xbox 360.

Alternatively, if you just want to deploy your game to the Xbox 360, from GSE,
right-click the project name in the Solution Explorer and choose Deploy. This will
enable you to play the game on your Xbox 360. The progress of your deployment
will be displayed in the Output window of GSE. The Connect to Computer screen
will also show the progress of deployment along with a listing of files that have been

C H A P T E R 2

D
ev

el
op

er
Ba

sic
s

F I G U R E 2 - 6

XNA Game Launcher main page

transferred to your Xbox 360. When the deployment is complete, select the B button
to back out of the Connect to Computer page. When the project has been loaded onto
the Xbox 360, select My XNA Games and press the A controller button from the
XNA Game Launcher page to display your XNA projects (see Figure 2-7). You can
select and run any that are listed.

Opening an Existing Game Studio Project

A GSE project can be opened by double-clicking the solution file. Solution files
have an .sln extension. The project will launch the game studio and show the
code editor, Solution Explorer, and Error List. If any of these items do not ap-
pear when the game studio is open, they can be opened individually from the
View menu.

DEBUGGING

There is no silver bullet when it comes to debugging techniques. However, having
many techniques in your arsenal will aid your ability to examine (or trace) code, and
it will help you write robust code quickly and efficiently.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E16

F I G U R E 2 - 7

My XNA Games page showing a listing of games

17

Microsoft’s development suites have earned a reputation for delivering excep-
tional debugging tools. In short, the debugging tools rock. It is no wonder that big
game companies such as Electronic Arts use Microsoft’s Visual Studio .NET for their
coding environment. Most of the common debug features available in Visual Studio
.NET can be also found in GSE.

Error List

The Error List at the bottom of the project page is probably the first debugging tool
you will encounter, and it will quickly become your best friend. If your code fails to
compile, the Error List will show error messages alerting you to reasons why. Also, if
the compiler finds an issue that isn’t serious enough to cause a build error, the Error
List will show a warning message.

Errors

When your project does not compile, the Error List will show all lines of code that
failed—with an explanation of why each did not compile. Figure 2-8 shows the Error
List reporting a missing semicolon. You can double-click the error message in the Er-
ror List to automatically move your cursor to the line that failed to compile; this fea-
ture is a huge timesaver.

Warnings

Warnings highlight code that compiles but should either be modified or removed.
The warning in Figure 2-9 shows a variable that has been declared but is unused.

Keep in mind that expert developers pay attention to the warnings and aim to ship
their code with zero warnings. Paying heed to warnings can also improve the read-
ability and scalability of your code projects. Warnings will also help you identify dep-
recated methods and blocks of code that are unused. Finding replacements for
deprecated methods will ensure your code is current with the latest code libraries,
and it will also ensure that you’re using the most secure code available. Removing un-
used variables will reduce the clutter in your project.

Pausing the Program to View Logic
and Variable Values at Run Time

Microsoft’s development environments, including GSE, offer excellent tools for
stopping your program in midstream so that you can check variable values and logic.
If you are not already aware of these features, you should add them to your debug-
ging procedures.

C H A P T E R 2

D
ev

el
op

er
Ba

sic
s

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E18

F I G U R E 2 - 8

Error message in the Error List

F I G U R E 2 - 9

The Error List showing a warning about a variable that is
declared but not used

19

Breakpoints

Breakpoints allow you to pause on a specific line of code while your program is run-
ning. The program will run until it encounters the instruction where your breakpoint
is set. Once the breakpoint is hit, you will be able to examine variable values and pro-
gram logic at that point in your application.

A breakpoint can be quickly set by left-clicking on the gray margin beside the in-
struction where the break should occur. When the breakpoint is added, a red dot will
appear in the margin to flag the location of the break. Figure 2-10 shows a break-
point in action—the program has been paused at the breakpoint. At this point, you
can hover your mouse over variable values to examine their them. ToolTips will ap-
pear as you hover over each variable.

Stepping

When the breakpoint is reached, you can step through the code, line by line, and
watch your code execute in run time. There are two ways to step:

� Step Over (F10)

� Step Into (F11)

C H A P T E R 2

D
ev

el
op

er
Ba

sic
s

F I G U R E 2 - 1 0

Pausing at a breakpoint to examine logic and
variable values

These step functions can be selected from the Debug menu. However, you will
need to step through code frequently, so you will probably find the shortcut keys, F10

and F11, to be more convenient.

Step Over The Step Over feature enables you to follow each instruction sequen-
tially, line by line; this way, you can move through your code from one method to the
next. Step Over will not enter a new method from a call statement. Being able to skip
by a call statement to a method is useful when the method is known to work and there
is no need for it to be examined.

Step Into The Step Into feature also allows you to follow each instruction sequen-
tially. However, unlike Step Over, Step Into will follow call statements into the meth-
ods that are being called. Step Into is helpful when you want to follow the code into
every method and examine every branch of code.

Here is a simple way to remember the shortcut keys for Step Into and Step Over:
F10ver and F11nto.

Resuming the Program

If the program has been paused by a breakpoint, and your examination of logic and
variable values is complete, you can resume execution of the program by selecting
Continue from the Debug menu or by pressing the shortcut key F5.

Watch Lists

A watch list tracks variables that are declared within your program. When you are
debugging variables, and the logic behind setting their values, having a watch list for
key variables in your program will help you to simultaneously track multiple vari-
ables that may exist in different sections of your code.

The watch list can be customized to your choice of specific variable values. Also, a
watch can be added when you are running the program to a breakpoint. When the
program pauses at the breakpoint, right-clicking the variable that needs to be tracked
and selecting Add Watch will add it to the list. Figure 2-11 displays a watch list.

XNA Game Studio Express is a first-class integrated development environment
for programming, editing, and deploying your applications. It is designed for ease of
deployment on both your Windows PC and Xbox 360. XNA GSE offers an excel-
lent suite of debugging tools to help you write solid code faster. In addition to using
the built-in debugging features, you may also consider using an instance of the
System.IO.StreamWriter to write and append debug text to your own log files.

XNA Game Studio Express is an amazing piece of freeware. Having this suite as a
download from Microsoft is definitely going to change the game world as we know it.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E20

21

CHAPTER 2 REVIEW EXERCISES

To get the most from this chapter, try out these chapter review exercises.

1. Create a Windows Game project using the template that is available in the
New Project dialog. Inside the Update() method, add this code:

int x = 5;

System.IO.StreamWriter sw

= new System.IO.StreamWriter(@"..\..\..\DebugLog.txt", true);

sw.Write("X = ");

sw.WriteLine(x);

sw.Close();

Create a breakpoint by clicking the left margin next to the instruction
sw.Close(). A red dot should appear beside it when the breakpoint is set.
Then, compile and run your program. When the program halts at the
instruction beside the breakpoint, move the cursor over the variable x and
note the ToolTip displays the value stored in this variable. While the

C H A P T E R 2

D
ev

el
op

er
Ba

sic
sF I G U R E 2 - 1 1

Adding a variable to a watch list

program is running, right-click x and choose Add Watch to monitor the
variable in the Watch window.

Next, press F5 to resume the program. It will run and halt again at the
breakpoint. You can then click the breakpoint in the left margin to remove
it. Pressing F5 will resume the program until you stop the debugger by
pressing SHIFT+F5.

When you have finished running the program, you can view text output
in the DebugLog.txt file that is located in your source folder.

2. Create an Xbox 360 Game project using the template that is available in
the New Project dialog. Using the Xbox 360 project, repeat the steps
requested in Exercise 1.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E22
D

ev
el

op
in

g
G

am
es

fo
rt

he
X

N
A

Pl
at

fo
rm

CHAPTERCHAPTER33
IntroductionIntroduction
to XNAto XNA
GraphicsGraphics
ProgrammingProgramming

23

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

24

THIS chapter discusses the most basic elements for all game graphics by
introducing the structures needed to begin graphics program-

ming. Namely, it shows how to create a game window and explains the methods be-
hind it. Then, the methods and objects for drawing points, lines, and triangles are
introduced and applied. By the end of this chapter, you could use this logic to build a
basic village in a 3D world. Learning how to draw basic shapes in a game window
might not grab you at first, but all great graphics effects and even 3D models are ren-
dered with the same logic presented in this chapter.

The XNA platform offers a simple process for creating, drawing, and updating a
game window. The flowchart shown here summarizes the steps required to build, up-
date, and draw graphics within a game window.

CREATING THE XNA GAME WINDOW

Hardly any C# code is needed to generate and display a basic XNA game window
like the one shown in Figure 3-1.

Chapter 2, “Developer Basics,” explained how to create a game studio project for
either a Windows PC or the Xbox 360 platform. These projects can be created using
the Xbox 360 and Windows Game project templates—they generate practically
identical code. The only difference in code is the namespace for the game class. The
Windows template assigns the name WindowsGame1 by default and the Xbox 360
assigns the namespace Xbox360Game1 by default—that’s it. These templates

25

provide the basic foundation you need to create an XNA game window. The XNA
code in these templates is basically the same, but the XNA framework references for
the Windows and Xbox 360 projects are different. You can write all of your code in
one environment and then reference it in either an Xbox 360 or a Windows project to
run it. Microsoft has intentionally made window creation and portability between
projects simple so you can run with it. Obviously, Microsoft wants you to take the
platform beyond the outer limits.

Initializing the Game Application

When you want to create a new XNA game project, the easiest method is to use the
project templates that come with GSE. To begin a new project, follow these steps:

1. Open GSE by choosing Start | Programs | Microsoft XNA Game Studio
Express | XNA Game Studio Express.

2. From the main GSE window, choose File | New Project.

3. Choose either the Windows Game or Xbox 360 Game template.

You may want to create your own XNA application from scratch, or you may be
curious to know what’s happening under the hood when you choose one of these

C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

gF I G U R E 3 - 1

Basic XNA game window

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E26

templates. Like any other C# application, an XNA application begins by referencing
the assemblies and the namespaces required by the program. To plug into the XNA
platform you will need references to the XNA framework along with namespaces for
the XNA framework’s Audio, Content, Graphics, Input, and Storage components.
When you use an Xbox 360 or Windows Game project template, these namespaces
are automatically added for you in the default Game1.cs file that is generated.

To avoid potential naming conflicts for this class (with any identically named classes),
a namespace is needed for the game class. The Xbox 360 Game project template gener-
ates the namespace Xbox360Game1. The Windows Game project template gen-
erates the namespace WindowsGame1. The namespace is followed by a class decla-
ration for the game application class, which both project templates declare as
Game1. The templates also add the required assembly references for you.

GraphicsDeviceManager

Every XNA application requires a GraphicsDeviceManager object to handle the con-
figuration and management of the graphics device. The GraphicsDevice class is used
for drawing primitive-based objects. The GraphicsDeviceManager object is declared
at the module level:

GraphicsDeviceManager graphics;

The GraphicsDeviceManager object is initialized in the game class constructor,
Game1():

graphics = new GraphicsDeviceManager(this);

ContentManager

The ContentManager is used to load, manage, and dispose of binary media content
through the content pipeline. Graphics and media content can be loaded with this ob-
ject when it is referenced in the game project. The ContentManager object is declared
at the top of the game class:

ContentManager content;

The ContentManager object is initialized in the constructor Game1():

content = new ContentManager(Services);

Initialize()

After the GraphicsDeviceManager and ContentManager objects have been created,
you can use the Initialize() override method to trap the one-time game startup event.
Initialize() is a natural place to trigger basic setup activities such as the following:

27C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

g

� Setting window properties such as the title or full screen options

� Setting the perspective and view to define how a user sees the 3D game

� Initializing image objects for displaying textures

� Initializing vertices for storing color, and image coordinates to be used
throughout the program

� Initializing vertex shaders to convert your primitive objects to pixel output

� Initializing audio objects

� Setting up other game objects

LoadGraphicsContent()

The LoadGraphicsContent() override method is generated by the Xbox 360 and
Windows Game project templates for loading binary image and model content
through the graphics pipeline. You could actually load your binary graphics content
from the Initialize() method or from your own methods. Chapter 7, “Texturing Your
Game World,” will explain how to do this. However, loading your binary graphics
content from LoadGraphicsContent() ensures that your managed graphics content is
always loaded in the same place.

Drawing and Updating the Game Application

Once an XNA application is initialized, it enters a continuous loop that alternates be-
tween drawing and updating the application. The sequence is generally consistent
but sometimes the Draw() method will be called twice, or more, before the Update()
method is called, and vice versa. Consequently, your routines for updating and draw-
ing your objects must account for this variation in timing. All code for drawing
graphics objects in the window is triggered from the Draw() method. The Update()
method handles code for updating objects, handling events within the application,
and your own defined events—such as checking for game object collisions, handling
keyboard or game pad events, tracking the score, and tending to other game features
that require maintenance every frame. Both of these functions are performed for ev-
ery frame that is displayed to the player.

Draw()

The Draw() method is an override that handles the drawing (also known as render-
ing) for the game program. Throughout this book, the Draw() routine is basically the
same in every example. Draw() starts by clearing the screen background, setting the
screen color, and then drawing the graphics onto the screen.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E28

Update()

The Update() method is where you check and handle game-time events. The Xbox
360 and Windows Game project templates automatically add this override method.
Events typically handled here include mouse clicks, keyboard presses, game-pad con-
trol events, and timers. Update() is also a place for many other activities that require
continuous checks or updates. Update() activities might include advancing anima-
tions, detecting collisions, and tracking and modifying game scores.

Closing the Game Application

The Xbox 360 and Windows Game project templates automatically add an override
for the UnloadGraphicsContent() method. This method will dispose of your managed
graphics media when the game program shuts down. The UnloadGraphicsContent()
method also conveniently frees your memory resources even when the game applica-
tion is closed unintentionally.

Basic XNA Game Window Example

This example shows all of the C# code that is generated by the Xbox 360 and Win-
dows Game project templates. When the GSE wizard is used to create a game project,
two source files are generated for your project. One of these is the Program1.cs file,
which begins and launches the game application:

using System;

namespace WindowsGame1 // namespace is Xbox360Game1 for Xbox 360 game

{

static class Program

{

static void Main(string[] args)

{ // application entry point

using (Game1 game = new Game1())

{

game.Run();

}

}

}

}

The second default file is the Game1.cs file. This file is generated to house the game
class that initializes, updates, and closes the game application:

// framework references

#region Using Statements

29C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

gusing System;

using System.Collections.Generic;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Audio;

using Microsoft.Xna.Framework.Content;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework.Input;

using Microsoft.Xna.Framework.Storage;

#endregion

namespace WindowsGame1

{

public class Game1 : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics; // handles drawing

ContentManager content; // loads, manages, & disposes gfx media

public Game1()

{ // initialize graphics and content objects

graphics = new GraphicsDeviceManager(this);

content = new ContentManager(Services);

}

protected override void Initialize()

{

// initialize window, application, starting setup

base.Initialize();

}

// load graphics content

protected override void LoadGraphicsContent(bool loadAllContent)

{

if (loadAllContent)

{ } // managed graphics content from graphics pipeline

else

{ } // unmanaged graphics content

}

protected override void UnloadGraphicsContent(bool unloadAllContent)

{ // dispose of graphics content

if (unloadAllContent == true)

{

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E30

content.Unload();

}

}

protected override void Update(GameTime gameTime)

{ // animations, collision checking, event handling

// allows the default game to exit on Xbox 360 and Windows

if(GamePad.GetState(PlayerIndex.One).Buttons.Back

==ButtonState.Pressed)

this.Exit();

base.Update(gameTime);

}

protected override void Draw(GameTime gameTime)

{ // draw to window

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

// call shader code here

base.Draw(gameTime);

}

}

}

That’s all of the C# code needed to draw an XNA game window, as shown previ-
ously in Figure 3-1. As you can see, creating and displaying a window is fairly simple.
This code is generated by the GSE project template and will run on either the Xbox
360 or on your Window PC.

Drawing Graphics in the XNA Game Window

At this point, your XNA game window will only display 2D graphics—you will need
a shader to draw 3D graphics. Shaders are explained in more detail in Chapter 4,
“Shaders.” In a nutshell, shaders receive vertex data from the C# application, apply
filters, and then perform other user-defined operations such as texturing, coloring,
and lighting. The output from the shader is pixel output in your game window.

DRAWING SHAPES
Graphics start with basic shapes that are created from points, lines, or triangles.
These basic elements are referred to as primitive objects. Primitive objects are drawn

31

in 3D space using a Cartesian coordinate system where position is mapped in the X,
Y, and Z planes (see Figure 3-2).

Even complex shapes are built with a series of points, lines, or triangles. A static 3D
model is basically made from a file containing vertex information that includes X, Y, Z
position, color, image coordinates, and possibly other data. The vertices can be rendered
by outputting points for each vertex, with a grid of lines that connects the vertices, or as a
solid object that is built with a series of triangles—which are linked by the vertices.

Primitive Objects

Complex shapes are created with primitive objects that regulate how the vertices are
displayed. The vertex data could be rendered as points, linear grids, or solid triangles.

C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

gF I G U R E 3 - 2

Cartesian coordinate system for drawing in 3D

Drawing Syntax

XNA delivers simple syntax for drawing shapes from primitive objects.

Primitive Object Types

Table 3-1 details the five common primitive object types. You will notice that trian-
gles and lines can be drawn in strips or in lists. Lists are required for drawing separate
points, lines, or triangles. Strips, on the other hand, are more efficient where the lines
or triangles are combined to create one complex shape like a 3D model.

Strips are also more efficient than lists for saving memory and, as a result, enable
faster drawing. When you’re drawing a triangle strip, adding one more vertex to the
strip generates one more triangle. A strip practically cuts the memory requirements
for vertex data in half when compared to a list:

Total triangle list vertices = Ntriangles * 3 vertices
Total triangle strip vertices = Ntriangles + 2 vertices

The same logic applies for drawing lines. The line strip is more efficient for com-
plex grids:

Total line list vertices = Nlines * 2 vertices
Total line strip vertices = Nlines + 1 vertex

Vertex Types

A vertex object stores vertex information, which could include X, Y, and Z positions,
image coordinates, a normal vector, and color. The XNA platform offers four prede-
fined vertex formats that are fairly self-explanatory (see Table 3-2).

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E32

Primitive Type Function

TriangleStrip Enables linking of triangles to create complex solid shapes

TriangleList Enables groups of separate triangles

LineStrip Enables linking of lines to create wire grids

LineList Enables groups of separate lines

PointList Enables groups of separate points

Common Primitive Types

T A B L E 3 - 1

33C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

g

VertexDeclaration

A VertexDeclaration object stores the vertex format for the data contained in each
vertex of the shape or model. Before drawing the object, the graphics device must be
set to use the correct format to allow for proper retrieval of vertex data from each
vertex array. Here is the syntax required to declare and initialize the
VertexDeclaration object:

VertexDeclaration vertexDeclaration

= new VertexDeclaration(GraphicsDevice gfx.GraphicsDevice,

VertexElement[] elements);

Before an object is drawn, the graphics device’s VertexDeclaration property is as-
signed so that it can retrieve the vertex data and render it properly:

gfx.GraphicsDevice.VertexDeclaration = vertexDeclaration;

DrawUserPrimitives

When an object is drawn using primitive types, five items are set just before it is
rendered:

1. The vertex type is declared.

2. The primitive type is set so drawings can be rendered using points, lines, or
triangles.

3. The vertex array that stores the X, Y, Z, color, texture, and normal data
used for drawing is assigned.

4. The starting element in the vertex array is set.

5. The total count for the primitives to be drawn is assigned.

Vertex Storage Format Function

VertexPositionColor Stores X, Y, Z and color coordinates

VertexPositionTexture Stores X, Y, Z and image coordinates

VertexPositionNormal Stores X, Y, Z and a normal vector

VertexPositionNormalTexture Stores X, Y, Z, a normal vector, and image coordinates

Storage Formats for Vertex Buffers

T A B L E 3 - 2

This information is passed to the DrawUserPrimitives() method:

gfx.GraphicsDevice.DrawUserPrimitives<struct customVertex>(

enum PrimitiveType,

struct customVertex vertices,

int startingVertex,

int primitiveCount);

Drawing Primitive Objects Example

This demonstration shows how to draw the five common primitive shapes with vertex
data. When the steps are complete, the game window will show two triangles in a strip,
two triangles in a list, two lines in a strip, two lines in a list, and two points in a list (see
Figure 3-3). At first glance, the output from this demonstration might seem dull, but
keep in mind this is the foundation of any 3D world, so understanding it is worthwhile.

This example begins with either the WinMGHBook project or the
Xbox360MGHBook project in the BaseCode directory in the download from the
website. The basic code for these projects is identical. The framework differences be-
tween the two allow the WinMGHBook project to run on your PC and the
Xbox360MGHBook project to run on the Xbox 360.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E34

F I G U R E 3 - 3

Final output for the drawing primitive objects example

35

With this base code, you can move through the 3D world either by moving the left
thumbstick on the game controller up or down or by pressing the UP or DOWN AR-

ROW on the keyboard. Moving the left thumbstick to the left or right allows you to
strafe—as do the LEFT and RIGHT ARROW keys on the keyboard. Moving the right
thumbstick, or the mouse, allows you to adjust the view. Before you start this exam-
ple, you may want to run the project and experiment in the basic 3D world.

For this example, the first required addition to the base code is setting up a
VertexDeclaration. The VertexDeclaration will later be used to set the vertex format
for your GraphicsDevice. The GraphicsDevice must be assigned so it can retrieve
data from the vertex array in the correct format and draw primitive shapes with it. In
the module level of your game class (in Game1.cs) add this VertexDeclaration:

private VertexDeclaration mVertexDeclaration;

This vertex type object, mVertexDeclaration, defines the data for each vertex.
You should choose the VertexPositionColor format so that you can store the posi-
tion and color of all the objects that will be drawn in the example. At the end of Ini-
tialize(), add this code to define the vertex type:

mVertexDeclaration = new VertexDeclaration(gfx.GraphicsDevice,

VertexPositionColor.VertexElements);

Triangle Strip

When you work through the next portion of this example, and you run your project,
two triangles will appear together in the right side of the game window.

You must declare a vertex array in your game class to store four vertices contain-
ing position and color information for the two triangles that will be drawn in the
strip. To do so, add this code:

private VertexPositionColor[] mVtTriStrip = new VertexPositionColor[4];

Next, a method containing code to initialize the positions and colors for each ver-
tex in the triangle strip can be added to the game class:

private void init_tri_strip()

{

mVtTriStrip[0]=new VertexPositionColor(new Vector3(-1.5f, 0.0f, 3.0f),

Color.Orange);

mVtTriStrip[1]=new VertexPositionColor(new Vector3(-1.0f, 0.5f, 3.0f),

Color.Orange);

mVtTriStrip[2]=new VertexPositionColor(new Vector3(-0.5f, 0.0f, 3.0f),

Color.Orange);

C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

g

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E36

mVtTriStrip[3]=new VertexPositionColor(new Vector3(0.0f, 0.5f, 3.0f),

Color.Orange);

}

The method init_tri_strip() should be called at the end of Initialize() to set up the
array of vertices for the triangle strip when the program begins:

init_tri_strip();

Next, you need a method in the game class for drawing the primitive object from
the vertex array. For most examples throughout this book, the drawing of primitive
shapes is done in five simple steps:

1. Declare transformation matrices for scaling, moving, and rotating your graphics.

2. Initialize the transformation matrices.

3. Build the cumulative transformation by multiplying the matrices.

4. Pass the cumulative transformation to the shader.

5. Select the vertex type, primitive type, and number of vertices, and then
draw the object.

The first three steps involve setting up a cumulative matrix to transform the object
through scaling, translations, and rotations. Transformations are covered in Chapter
5, “Animation Introduction.” More detail is presented in Chapter 4, “Shaders,” to
explain step 4 (where the shader variables are set). For the purpose of introducing
vertices and primitive shapes in this chapter, we’ll focus on step 5.

You are going to draw the triangle at the position where the vertices were defined
earlier. To do this, you add the draw_objects() method to the game class. draw_ob-
jects() uses the vertex data declared earlier to draw two triangles together in a strip.

void draw_objects()

{

// 1: declare matrices

Matrix matIdentity;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity;

37

// 4: pass wvp matrix to shader

worldViewProjParam.SetValue(mMatWorld * mMatView * mMatProj);

mfx.CommitChanges();

// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertexDeclaration;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>(

PrimitiveType.TriangleStrip, mVtTriStrip, 0, 2);

}

Note the two last instructions in the draw_objects() method. The GraphicsDevice
is assigned the same VertexDeclaration format defined earlier for each vertex. This
property allows the GraphicsDevice to retrieve the data in the correct format, which
in this case contains color and position data. The DrawUserPrimitives() method is as-
signed the <VertexPositionColor> format, the primitive type TriangleStrip is selected
for output, and the vertex array mVtTriStrip is selected as the source of vertices with
color and position data. The last two parameters of the DrawUserPrimitives()
method select the offset of the vertex array and the total primitives to be drawn.

draw_objects() must be called while the BasicShader.fx file is referenced in the
Draw() method. Inside the Draw() method, the call to draw_objects() must be nested
between the Begin() and End() methods for the pass to the BasicShader.fx shader. (As
mentioned earlier, more explanation will be provided for this section in Chapter 4,
“Shaders.”) To help show where draw_objects() needs to be called, some extra code
that already exists in the project is included here in italics:

// begin shader - BasicShader.fx

// draws objects with color and position

mfx.Begin();

mfx.Techniques[0].Passes[0].Begin();

draw_objects();

mfx.Techniques[0].Passes[0].End();

mfx.End();

Try running this version of the program, and you’ll find that the graphics output is
displayed in the game window. More specifically, two triangles in a strip will appear
in the right side of the window.

Triangle List

When you need to draw separate triangles, the triangle list is handy. To continue with
this example, you will display two triangles in a list in the left side of the window.

C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

g

A vertex array with room for six vertices for two triangles is needed to store the
position and color data that will be used to draw the triangles. To set up this array,
add the following declaration to the top of the game class:

private VertexPositionColor[] mVtTriList = new VertexPositionColor[6];

A method for initializing each vertex in the triangle list, init_tri_list(), is needed in
the game class:

private void init_tri_list()

{

mVtTriList[0] = new VertexPositionColor(new Vector3(0.5f, 0.0f, 3.0f),

Color.LightGray);

mVtTriList[1] = new VertexPositionColor(new Vector3(0.7f, 0.5f, 3.0f),

Color.LightGray);

mVtTriList[2] = new VertexPositionColor(new Vector3(0.9f, 0.0f, 3.0f),

Color.LightGray);

mVtTriList[3] = new VertexPositionColor(new Vector3(1.1f, 0.0f, 3.0f),

Color.LightGray);

mVtTriList[4] = new VertexPositionColor(new Vector3(1.3f, 0.5f, 3.0f),

Color.LightGray);

mVtTriList[5] = new VertexPositionColor(new Vector3(1.5f, 0.0f, 3.0f),

Color.LightGray);

}

Call init_tri_list() from Initialize() to fill the vertex array with data that can be used
to draw the two triangles in the list:

init_tri_list();

At the end of draw_objects(), after the triangle strip is drawn, the triangle list can be
rendered with an additional DrawUserPrimitives instruction. Drawing more than one
primitive object from the same method is possible because both primitive objects use
the same vertex format, VertexPositionColor. Notice that the PrimitiveType specified
for this new addition is TriangleList. The total number of primitives rendered in the list
is two. The data in our vertex array for the triangle list, mVtTriList, is being referenced
when drawing the triangle list. The default vertex array offset of 0 is set:

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>(

PrimitiveType.TriangleList, mVtTriList, 0, 2);

When you run the new version of the program, it will show the two triangles in the
strip and the two triangles in the list.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E38

39C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

gDrawing a Line Strip

You have seen how triangles can be created and drawn using strips and lists. The
same logic applies for drawing lines. For this next portion of the example, a line strip
will be used to draw two joined lines on the right. The line strip might be useful for
you if you ever want to show a wire grid between the vertices that make the 3D ob-
ject. You undoubtedly have seen this effect used when rendering 3D models or ter-
rain with line strips instead of triangle strips.

A vertex array must be declared with the position and color data that build the line
strip. For this example, enough room will be given to store two lines in the strip. In
other words, three vertices are required. To declare the vertex array, add this code to
the module declarations section:

private VertexPositionColor[] mVtLineStrip = new VertexPositionColor[3];

Next, add a method to store the vertex information for each of the vertices in the line
strip. For each vertex, the X, Y, and Z position is specified and the color is assigned.

private void init_line_strip()

{

mVtLineStrip[0]=new VertexPositionColor(new Vector3(1.3f, 0.8f, 3.0f),

Color.Gray);

mVtLineStrip[1]=new VertexPositionColor(new Vector3(1.0f, 0.13f, 3.0f),

Color.Gray);

mVtLineStrip[2]=new VertexPositionColor(new Vector3(0.7f, 0.8f, 3.0f),

Color.Gray);

}

To initialize the line strip when the program begins, add the call statement for
init_line_strip() to the end of the Initialize() method:

init_line_strip();

Finally, code for drawing our line strip is added as the last line in the draw_ob-
jects() method after the setup for the rendering has been completed. This instruction
tells the GraphicsDevice to draw two lines in a strip using position and color data and
to extract the vertex data from the mVtLineStrip array.

gfx.GraphicsDevice.DrawUserPrimitives

<VertexPositionColor>(PrimitiveType.LineStrip, mVtLineStrip, 0, 2);

When you run the game application, the output will show the line strip in the left
side of the window.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E40

Adding a Line List

Now that drawing lines using strips has been demonstrated, this next section of code
will show how to add two lines that are drawn using a list.

Each line in the list requires two separate vertices. This part of the demonstration
begins by showing how to draw one line in a list.

The vertex array needed to store each vertex in the line list is declared in the mod-
ule declarations section of the game class.

private VertexPositionColor[] mVtLineList = new VertexPositionColor[4];

A method, init_line_list(), for initializing each vertex in the line list with X, Y, Z,
and color data is added to the methods section:

private void init_line_list()

{

mVtLineList[0]=new VertexPositionColor(new Vector3(0.0f, 0.7f, 3.0f),

Color.Black);

mVtLineList[1]=new VertexPositionColor(new Vector3(-1.0f, 0.7f, 3.0f),

Color.Black);

mVtLineList[2]=new VertexPositionColor(new Vector3(0.0f, 0.8f, 3.0f),

Color.Black);

mVtLineList[3]=new VertexPositionColor(new Vector3(-1.0f, 0.8f, 3.0f),

Color.Black);

}

init_line_list() is called from Initialize() to set up the line list when the program
begins:

init_line_list();

Finally, a new instruction should be added to the very end of the draw_objects()
method to render the line list. The first parameter of the DrawUserPrimitives()
method sets the LineList type, the second parameter selects the mVtLineList array as
the source of vertex data for the primitive object being drawn, the third parameter
sets the default array offset of 0, and the last parameter sets the total number of lines
that are rendered.

gfx.GraphicsDevice.DrawUserPrimitives

<VertexPositionColor>(PrimitiveType.LineList, mVtLineList, 0 , 2);

41

When you run the program, two separate lines will appear in the right side of the
window.

Adding a Point List

Now for our final primitive object—the point list. In this portion of the demonstra-
tion, two points from a list will be added to the window.

First, a class declaration for a vertex array is used to store each point in the list us-
ing the position and color format:

private VertexPositionColor[] mVtPointList = new VertexPositionColor[2];

Next, a method is required to initialize each vertex in the point list with X, Y, Z
position data and color information. To do this, add the following method to the
game class:

private void init_pointList()

{

mVtPointList[0]=new VertexPositionColor(new Vector3(0.25f, 0.8f, 3.0f),

Color.Black);

mVtPointList[1]=new VertexPositionColor(new Vector3(0.25f, 0.0f, 3.0f),

Color.Black);

}

The point list should be initialized when the program starts. A call to
init_pointList() from the Initialize() method will do this:

init_pointList();

Now the point list can be drawn. Add the following DrawUserPrimitives() instruc-
tion to the draw_objects() method. The parameters indicate that a PointList is being
rendered, two points are being drawn, and the vertex data should be read from the
mVtPointList vertex array.

gfx.GraphicsDevice.DrawUserPrimitives

<VertexPositionColor>(PrimitiveType.PointList, mVtPointList, 0, 2);

When you run the program, two points will appear in the middle of the window.
This chapter has shown how a typical XNA game window is generated, displayed,

and updated with graphics. The vertices and primitive surfaces drawn with them are
the foundation for all XNA game graphics. Even fiery effects and 3D models begin
with vertices and primitive surfaces.

C H A P T E R 3

In
tro

du
ct

io
n

to
X

N
A

G
ra

ph
ics

Pr
og

ra
m

m
in

g

CHAPTER 3 REVIEW EXERCISES

To get the most from this chapter, try out these chapter review exercises:

1. Implement the step-by-step examples presented in this chapter.

2. After obtaining the completed solution for Exercise 1, which modifications
must be made to make the output appear as shown here?

3. Use line and triangle primitives to create a small house with a roof and
fence around it. You can use triangle strips, triangle lists, line strips, and
line lists.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E42

CHAPTERCHAPTER44
ShadersShaders

43

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

44

XNA uses shader-based rendering to convert vertex data into pixel out-
put. This method achieves higher performance because shaders

offload graphics processing onto the graphics card. Whether you use your own
shader or XNA’s BasicEffect shader, you have to use a shader to draw 3D graphics
from your XNA code. The shader also gives you the power to customize the way your
vertices are displayed. Shaders can be used to manipulate all vertex properties (e.g.,
color, position, and texture). The ability to provide additional vertex processing
through the shader makes it possible to use shaders for implementing lighting, blend-
ing effects such as transparency, and multitexturing. For some effects—such as point
sprites for fire, multitexturing, and custom lighting—you will need to write your own
shader to implement the effect.

GRAPHICS PIPELINE

In discussions about shaders, you will often hear references to the graphics pipeline.
The graphics pipeline describes the process of converting vertex and primitive inputs
into pixel output. Vertex and pixel shaders, of course, play a key role in this process-
ing. The vertex shader applies transformations to the vertex inputs. When the trans-
formed vertices are passed to the shader, the output that will not be visible to the
viewer is clipped and the back faces are removed (this is called culling). Rasterization
is performed to convert the vector data to an output image. Interpolation is per-
formed between vertices to uniformly distribute vertex data between coordinates. In
the pixel shader, coloration and texturing are applied before outputting pixels to the
screen. Figure 4-1 provides a high-level summary of graphics pipeline operations.

F I G U R E 4 - 1

Graphics pipeline summary

45C H A P T E R 4

Sh
ad

er
s

SHADERS

Shaders offer you some control over how the processing is done in the graphics pipe-
line. In most cases, you will want to write your own shader code. This section ex-
plains why and shows you how to do it.

Shader Structure

The shader shown here does nothing more than receive vertices that contain color
and position data. The vertex shader receives this data, and then outputs the position
data to the graphics pipeline. The vertex shader output (that can be modified by the
pixel shader) is interpolated before it reaches the pixel shader. The pixel shader re-
ceives the color data and outputs it one pixel at a time:

float4x4 fx_matWorldViewProj : WORLDVIEWPROJ;

struct VS_INPUT{

float4 f4Position : POSITION0;

float4 f4Color : COLOR0;

};

struct VS_OUTPUT{

float4 f4Position : POSITION0;

float4 f4Color : COLOR0;

};

struct PS_OUTPUT{

float4 f4Color : COLOR0;

};

// alter vertex inputs

void vertex_shader(in VS_INPUT IN, out VS_OUTPUT OUT){

OUT.f4Position = mul(IN.f4Position, fx_matWorldViewProj);

OUT.f4Color = IN.f4Color;

}

// alter vs output and send to hardware one pixel at a time

void pixel_shader(in VS_OUTPUT IN, out PS_OUTPUT OUT){

float4 fColor = IN.f4Color;

OUT.f4Color = clamp(fColor, 0, 1);

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E46

// define vertex shader and pixel shader for each pass

technique simple{

pass p0{

// define vertex shader and pixel shader

vertexshader = compile vs_1_1 vertex_shader();

pixelshader = compile ps_2_0 pixel_shader();

}

}

Vertex Shaders

A vertex shader is the portion of the shader that performs operations on each vertex
received from your XNA code. You can use the vertex shader to alter and draw any
vertex property. It can be used for per-vertex lighting, modifying the position, chang-
ing the color, or adjusting image coordinates. For example, the vertex shader may al-
ter this information using other inputs such as transformations and filtering. When
alterations to each vertex are complete, the color and texture output is sent to a pixel
shader for further processing (if desired). Position and normal data may also be
passed to the pixel shader if any calculations require this information. However, the
position and normal data cannot be altered once it leaves the vertex shader.

At the very least, the vertex shader must output position data. Elements that are
passed to the pixel shader are interpolated across the polygon before they are sent to
the pixel shader.

Pixel Shaders

Pixel shaders convert vertex data from the vertex shader into colored pixel data. The
pixel shader cannot manipulate the position or normal vector information but it can
perform per-pixel operations to implement lighting, coloration, texture sampling,
and blending. In terms of volume, per-pixel operations are more expensive than
per-vertex operations. However, effects such as lighting are noticeably richer when
you do them in the pixel shader—sometimes the performance hit is worth it. When
processing in the pixel shader is complete, the pixel shader outputs colored pixels to
the graphics card one pixel at a time.

Technique and Passes

A technique defines the vertex shaders and pixel shaders used during each pass
through the pixel-rendering process. In most cases, drawing is done in one pass.
However, you might want to specify more than one pass if you have to implement
blended textures (through multitexturing). Chapter 10, “Combining Images for
Better Visual Effects,” shows an example of a multipass technique used to create run-
ning water.

47

High Level Shader Language

For XNA games, most shaders are written in Microsoft’s High Level Shader Lan-
guage (HLSL). HLSL resembles C syntax, and because C# is also a member of the C
family, the data types, conditional structures, loops, functions, and other syntax used
in HLSL code are an easy transition for an XNA coder. You could write your shaders
in assembly language, but assembly syntax is more difficult to read and is more prone
to incompatibilities between graphics cards. Also, because HLSL and XNA were de-
signed for implementation on the Xbox 360, and they were both created by
Microsoft, you are certainly going to want to write most (if not all) of your shader
code in HLSL.

Initially, game programmers only wrote shaders in assembly language, but assem-
bly code is specific to video card hardware and this caused issues. Graphics card man-
ufacturers such as NVIDIA, AMD (formerly ATI), and others have similar assembly
code instruction sets, but differences between video cards sometimes cause shader in-
compatibilities. Because of this, games that use cutting-edge shader code, or shader
code that is unique to a graphics card vendor, may not port well to machines that use
other types of graphics cards. If you are only developing for the Xbox 360, you could
use the latest HLSL features as long as they run on your Xbox 360. If you are writing
code to run on PCs, you should consider potential differences in graphics cards when
writing your shaders.

For the XNA platform, Microsoft requires that your PC graphics card support at
least shader model 2.0. However, shaders that are written using shader model 1.1
will also run on the Xbox 360.

Shader Inputs and Outputs

Parameters that are received and returned from the vertex and pixel shaders can be
passed either through parameter lists in the shader headers or through structs. Either
way, the data fields are denoted with semantics to bind the inputs and outputs passed
between shaders and to bind the data from the shader to the graphics pipeline.

Shader Semantics

A shader semantic binds shader inputs to vertex data that is output from your XNA
code. Shader semantics are also used to bind inputs and outputs together for passing
data between shaders. In other words, a semantic is a syntactical element that de-
notes a piece of data that is passed between your XNA code, shaders, and the graph-
ics pipeline. You can specify shader semantics for color, texture coordinates, normal
vectors, position data, and more. Because it is possible to input more than one in-
stance of a specific data type, you must use a numeric suffix to define the data type in-
stance when referencing it more than once.

C H A P T E R 4

Sh
ad

er
s

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E48

Common Vertex Shader Input Semantics Here are some common vertex shader in-
puts that allow you to pass vertex properties from your XNA code to the vertex
shader:

COLOR[n] // color

NORMAL[n] // normal vector

POSITION[n] // vertex position

PSIZE[n] // point size for point sprites

TEXCOORD[n] // texture coordinates

The number, denoted by [n], specifies the instance of the data type since you can
have more than one field storing data of the same type.

Common Vertex Shader Output Semantics Vertex shader output semantics denote
the data that is passed from a vertex shader to the pixel shader, where more process-
ing can be performed on the vertex inputs, or to the graphics pipeline, where the ver-
tex data is channeled for display in the window. You use semantics to bind the data
that is passed between the vertex shader and the pixel shader. The outputs from the
vertex shader use these semantics:

COLOR[n] // color

POSITION[n] // position

PSIZE // size for point sprites

TEXCOORD[n] // texture coordinates

Common Pixel Shader Input Semantics The pixel shader can modify the color and
texture data; it receives this information through the semantics shown here. You will
notice that the position semantic is absent. The pixel shader can receive position in-
formation to implement calculations for effects such as lighting. However, the pixel
shader cannot alter the position information because it is sent to the graphics pipeline
from the vertex shader.

COLOR[n] // color

TEXCOORD[n] // texture coordinates

Common Pixel Shader Output Semantics In most cases, and throughout this book,
the only output returned from the pixel shader is the color of a pixel. Fittingly, the
main output semantic for the pixel shader is the COLOR semantic:

COLOR[n] // output color.

Shader Data Types

When looking at HLSL code, you will notice the shader data types are very similar in
syntax to XNA data types. Table 4-1 compares the XNA data types with the HLSL
data types used in this book.

49C H A P T E R 4

Sh
ad

er
s

HLSL Intrinsic Functions

HLSL provides several functions, and they are fully documented on Microsoft’s
MSDN site. Table 4-2 is a reference for the intrinsic functions used in this book. They
are explained in more detail as they are used in each chapter.

Flow Control Syntax

Shaders implement C-like syntax for loops and conditional structures. Loop struc-
tures include for-loops, do-while loops, and while-loops. HLSL if-else syntax is the
same used for any C-style language.

Referencing the Shader in Your XNA Project

To use shaders, your XNA application needs to load and reference them. The XNA
platform makes this task easy by providing an Effect class with methods for loading
and compiling the shader. Your XNA code can modify global shader variables
through the EffectParameter class.

Referencing the Shader File in Your XNA Project

To create a new shader in your project, right-click the Shaders folder in the Solution
Explorer. Then, select Add | New Item. In the Add New Item dialog that appears, you
can enter the shader name. Note that the *.fx extension is the required extension for
your shader file. Once the name is entered, click Add to add this file to your project.

XNA Data Type HLSL Data Type

Matrix float4x4

Texture2D Texture

struct MyStruct
{ public MyStruct(int i) { } };

Struct

Int int

Float float

Vector2 float2 // array with two elements

Vector3 float3 // array with three elements

Vector4 float4 // array with four elements

Color float3 (with no alpha blending) or float4 (with alpha blending)

Comparison of XNA Data Types with Shader Data Types

T A B L E 4 - 1

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E50

GSE will add code to generate a class shell, so you will need to manually delete this
code before entering the code for your shader.

Alternatively, you can add a prewritten shader to your project from the Solution Ex-
plorer by right-clicking your project or shaders folder and selecting Add | Existing Item.
From there, you can select the *.fx file from the Add Existing Item dialog that appears.

Effect

An Effect object allows you to load and compile the shader code, to finalize any vari-
able changes that you made to the shader, and, of course, to send vertex data from
your XNA code to the shader. The Effect class is used for declaring the Effect object:

private Effect effect;

When the shader is referenced in your project from the Solution Explorer, it can be
read using the Load() method. HLSL shader files traditionally are named with an .fx
extension. However, when the shader is referenced in the Solution Explorer, the .fx
extension is dropped from the filename in the load statement from the code:

HLSL Intrinsic
Functions

Inputs Component Type Outputs

abs(a) a is a scalar, vector, or matrix. float, int Absolute value of a

clamp(a, min, max) clamp(a, min, max) float, int Clamped value for a

cos(a) a is a scalar, vector, or matrix. float Same dimension as a

dot(a, b) a and b are vectors. float A scalar vector (dot product)

mul(a, b) a and b can be vectors or matrices,
but the a columns must match the
b rows.

float Matrix or vector, depending
on the inputs

normalize(a) a is a vector. float Unit vector

pow(a, b) a is a scalar, vector, or matrix. b is
the specified power.

a is a float. b
is an integer.

ab

Saturate(a) a is a scalar, vector, or matrix. a is a float. a clamped between 0 and 1

sin(a) a is a scalar, vector, or matrix. float Same dimension as a

tan(a) a is a scalar, vector, or matrix. float Same dimension as a

tex2D(a,b) a is a sampler2D. b is a vector. a is a sampler2D.
b is a two-dimensional
float.

Vector

HLSL Intrinsic Functions

T A B L E 4 - 2

51

effect = content.Load<Effect>(@"DirectoryPath\ShaderName");

EffectParameter

EffectParameter objects allow you to set global variables in the shader from your
XNA code. The EffectParameter class is used when declaring this object:

private EffectParameter effectParameter;

When you have defined the EffectParameter object in your XNA code, you can
then use it to reference global shader variables. An Effect object’s Parameters collec-
tion stores references to all the global shader variables. The collection is indexed by
the global variable name. Thus, the following stores a reference to a global shader
variable:

effectParameter = effect.Parameters["globalVariableName"];

Once the EffectParameter objects have been declared and initialized, setting the
variable in the shader is a two-step process. First, you assign the value using the
SetValue() method:

effectParameter.SetValue(DataValue);

The parameter used in SetValue() must match the data type of the variable being
set. Once the value has been set, you must finalize the change in the shader’s state us-
ing the CommitChanges() method:

effect.CommitChanges();

Basic XNA Shader Example

This example demonstrates one of the most basic shaders, which does nothing more
than output a primitive surface that uses a set of vertices for storing color and posi-
tion. You will make adjustments to the shader so you can use your XNA code to
change the color and position of the vertices that are drawn from the shader. In this
case, the blue component of the rectangular surface will be set to automatically incre-
ment and decrement between 0 (for no blue) and 1 (for full blue) to create a flashing
effect. The rectangular surface’s position on the X axis will also be automatically in-
cremented and decremented from the shader using a timescale to make it slide back
and forth.

In Chapter 3, “Introduction to XNA Graphics Programming,” we covered graph-
ics basics for drawing primitive surfaces that use vertices that store position and
color. The example in this chapter takes the material discussed in Chapter 3 a little
further by showing how to control the vertex data output from the shader. On the

C H A P T E R 4

Sh
ad

er
s

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E52

surface, this example may not appear to offer anything remotely useful for a video
game implementation. It has been kept simple to introduce the topic. Shaders will be
discussed again in this book, and you will definitely find your efforts to understand
this example worthy of your time. Chapter 7, “Texturing Your Game World,”
shows how to use the shader to texture your primitive surface with images; Chapter
10, “Combining Images for Better Visual Effects,” shows how to create
multitexturing effects using shaders; Chapter 18, “Particle Effects,” explains how
shaders can be implemented for fiery effects; and Chapter 20, “Lighting,” demon-
strates how to create advanced lighting using shaders.

This example begins with either the WinMGHBook base code or the
Xbox360MGHBook base code—both can be found in the BaseCode folder in the
download from the book’s website.

First, a new shader, IntroShader.fx, must be referenced in your project from the
Solution Explorer. The code for this shader is identical to the code discussed earlier in
this chapter. It does nothing more than receive color and position data from your
XNA code and display it. You can find this code under the Shaders directory in
IntroShader.fx:

float4x4 fx_WVP : WORLDVIEWPROJ;

// vertex shader input

struct VS_INPUT{ // vertex data received from XNA code

float4 f4Position : POSITION0;

float4 f4Color : COLOR0;

};

struct VS_OUTPUT{ // output from vertex shader to pixel shader

float4 f4Position : POSITION0; // also goes to gfx pipeline

float4 f4Color : COLOR0; // processed further in pixel shader

};

struct PS_OUTPUT{ // output to window is a colored pixel

float4 f4Color : COLOR0;

};

// alter vertex inputs

void vertex_shader(in VS_INPUT IN, out VS_OUTPUT OUT){

float4 f4Pos = IN.f4Position;

OUT.f4Position = mul(f4Pos, fx_WVP);

OUT.f4Color = IN.f4Color;

}

53C H A P T E R 4

Sh
ad

er
s// alter vs output and send to hardware one pixel at a time

void pixel_shader(in VS_OUTPUT IN, out PS_OUTPUT OUT){

OUT.f4Color = IN.f4Color;

}

// the shaders are defined here

technique simple{

pass p0{

vertexshader = compile vs_1_1 vertex_shader();

pixelshader = compile ps_1_1 pixel_shader();

}

}

Basic XNA Shader Example Continued:
Referencing the Shader from XNA

To reference your shader in code, you need an Effect object. Also, when drawing
your object with this shader, you need an EffectParameter object to set the WVP ma-
trix (to position your object), so it can be viewed properly in your window. The WVP
matrix is explained in Chapter 15, “Building a Graphics Engine Camera.” The Effect
and EffectParameter objects should be added at the top of the game class so they can
be used in your project:

private Effect mfxEffect; // shader object

private EffectParameter mfxEffectWVP; // cumulative matrix w*v*p

After your shader has been referenced in the Solution Explorer, you need to add
code to load and initialize it from the Initialize() method. This allows you to compile
and reference your shader when the program begins. Also, the EffectParameter ob-
ject, mfxEffectWVP (declared earlier), is initialized to reference the fx_WVP global
variable in the shader. Note that the file path is hard-coded to the IntroShader.fx file
in the Shaders folder:

mfxEffect = content.Load<Effect>(@"shaders\IntroShader");

mfxEffectWVP = mfxEffect.Parameters["fx_WVP"];

The shader is now referenced and defined in your code. Next, you need to declare
a set of vertices that can use this shader. Because the shader is designed to modify only
position and color, it makes sense that the vertex definition is also set to store
only color and position. This declaration in the game class at the module level will
enable its use throughout the class:

private VertexPositionColor[] mVertices = new VertexPositionColor[4];

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E54

A method is required to initialize the vertices that you will use to build the rectan-
gular surface. Therefore, you’ll add the initVertices() method to the game class to de-
fine each corner vertex of this rectangle:

private void initVertices(){

Vector3 pos = new Vector3(0.0f, 0.0f, 0.0f);

Color color = Color.White;

// set for vertices of surface with pos and color data

pos.X = -3.0f; pos.Y = 3.0f; pos.Z = 15.0f;

mVertices[0] = new VertexPositionColor(pos, color); // top right

pos.X = -3.0f; pos.Y = -3.0f; pos.Z = 15.0f;

mVertices[1] = new VertexPositionColor(pos, color); // bottom right

pos.X = 3.0f; pos.Y = 3.0f; pos.Z = 15.0f;

mVertices[2] = new VertexPositionColor(pos, color); // top left

pos.X = 3.0f; pos.Y = -3.0f; pos.Z = 15.0f;

mVertices[3] = new VertexPositionColor(pos, color); // bottom left

}

To initialize the vertices that will be used to build the rectangle when the program
starts, initVertices() is called from the Initialize() method:

initVertices();

The code used to draw the rectangle from the vertices that have been declared fol-
lows the same five steps described in the preceding chapter. Step 4 of this method
makes use of the new EffectParameter by setting the matrix in the new shader for po-
sitioning the rectangle properly relative to the camera. The new Effect object,
mfxEffect, is then used to commit the changes to the shader:

private void drawRectangle(){

// 1: declare matrices

Matrix matIdentity, matTransl;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(0.0f, -0.9f, 0.0f);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matTransl;

// 4: pass wvp matrix to shader

55C H A P T E R 4

Sh
ad

er
smfxEffectWVP.SetValue(mMatWorld * mMatView * mMatProj);

mfxEffect.CommitChanges();

// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColor;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>(

PrimitiveType.TriangleStrip, mVertices, 0, 2);

}

When drawing the rectangle, you will use a new version of the Draw() method to
reference the new shader. All drawing that uses this new shader must be triggered be-
tween the Begin() and End() statements for the Effect object mfxEffect. The vertex
shaders and pixel shaders that you will use are set inside each pass. But, in this case,
only one pass is used in the shader. All drawing is done from within the Begin() and
End() methods for the pass. To draw the new rectangular surface, replace the existing
Draw() method with this revision:

protected override void Draw(GameTime gameTime){

// clear screen, set background, start drawing

gfx.GraphicsDevice.Clear(Color.Black);

// begin shader - IntroShader.fx

mfxEffect.Begin();

mfxEffect.Techniques[0].Passes[0].Begin();

// draw objects

drawRectangle();

// end shader - IntroShader.fx

mfxEffect.Techniques[0].Passes[0].End();

mfxEffect.End();

// stop drawing and present offscreen buffer

base.Draw(gameTime);

}

If you ran the project with the current modifications, it would show a white sta-
tionary rectangle with a black background.

One of the first modifications you will make is to modify the blue component of
the RGB colors that are rendered. In the shader, you can do this by creating a global
variable at the top of the IntroShader.fx file:

float fx_Blue;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E56

Next, you need a function inside the IntroShader.fx file to change the blue component
of the RGB color that is drawn from the shader. Note that you use the color vector’s b
component to adjust the blue intensity by assigning to it the global value fx_Blue:

float4 changeBlueValue(){

float4 f4col;

f4col.r=0.0f; f4col.g=0.0f; f4col.b=fx_Blue; f4col.a=1.0f;

return f4col;

}

Shader functions must be declared before they are used in the shader;
otherwise, the shader file will not compile. This requirement, of course,

applies when placing changeBlueValue() in the shader, and the same logic applies for the
changePosition() function that follows.

The code that outputs the color from the vertex shader to the pixel shader must
now change to handle the modifications to the blue component. Note that when you
are multiplying vectors in HLSL, the product becomes (a1*b1, a2*b2, a3*b3, a4*b4). Re-
place the existing color assignment in the vertex shader with this version to alter the
blue component:

OUT.f4Color = IN.f4Color * changeBlueValue();

To reference the fx_Blue shader variable used to adjust the blue component from
your XNA code, you declare the EffectParameter mfxEffectBlue. In the Game1.cs
file, add a module declaration for it:

private EffectParameter mfxEffectBlue; // blue color (range is 0 to 1)

Next, to initialize this object, add the following line to the Initialize() method of
your game class after the code where the Effect object, mfxEffect, has been loaded
and initialized:

mfxEffectBlue = mfxEffect.Parameters["fx_Blue"];

Class-level variables are used to adjust the blue component of the color that is out-
put every frame. A Boolean value is used to track whether the floating point is in-
creasing or decreasing, and a float is used to track the actual value:

private float mfBlue = 0.0f;

private bool mbBlueIncrease = true;

A method is used to increase or decrease the value of the blue component each
frame. The blue portion of the RGB color ranges between 0 and 1, where 0 is no color

57C H A P T E R 4

Sh
ad

er
s

and 1 is full blue. Each frame, this value is incremented or decremented by a scaled
amount based on the time difference between frames. This time scalar ensures the
color change is at the same rate regardless of the system that shows the animation.
Add the setBlueColor() method to your game class to implement this routine:

void setBlueColor(GameTime gameTime){

// use elapsed time between frames to increment

// this ensures a smooth animation which takes the same time to

// complete on any system

if(mbBlueIncrease)

mfBlue += (float)gameTime.ElapsedGameTime.Milliseconds/1000.0f;

else

mfBlue -= (float)gameTime.ElapsedGameTime.Milliseconds/1000.0f;

if (mfBlue <= 0.0f) // decrement as long as greater than 0

mbBlueIncrease = true;

else if (mfBlue >= 1.0f) // increment as long as less than 1

mbBlueIncrease = false;

mfxEffectBlue.SetValue(mfBlue); // set new blue value in shader

mfxEffect.CommitChanges(); // commit new state to shader

}

To update the blue color each frame, you call setBlueColor() from the Update()
method:

setBlueColor(gameTime);

If you run the code now, you will notice that the blue color component changes,
ranging from between 0 and 1. Because the red and green colors are set at 0, the color
range for the rectangle is between black and dark blue.

Next, you will make another change to automatically adjust the position of the
rectangle—to move it side to side on the X axis. To enable this, in the global variable
section of the shader, you declare a variable to store the value of the position on the X
plane:

float fx_PosX;

This function, added to the shader, changes the value of the X position:

float4 changePosition(float4 f4Position){

float4 f4Pos = f4Position;

f4Pos.x += fx_PosX;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E58

return f4Pos;

}

To implement the change in the vertex shader, replace the definition for f4Pos
with the definition that follows. This takes the current position and shifts it on the X
axis by the amount stored in the fx_PosX global variable:

float4 f4Pos = changePosition(IN.f4Position);

Back in your XNA code, an EffectParameter is required to reference the fx_PosX
global variable in the shader:

private EffectParameter mfxEffectPosX; // position

To initialize this effect parameter inside Initialize(), after the Effect object is set up,
add the following instruction to reference the fx_PosX shader variable from the Ef-
fect’s collection:

mfxEffectPosX = mfxEffect.Parameters["fx_PosX"];

With a reference to a shader variable that is used to modify the position of the rect-
angle, some XNA code can be added to actually track the X value and reset it. Add
the float mfXpos declaration to store the current X increment for the rectangle. Also,
add the mbXIncrease Boolean variable to track whether the variable is to be incre-
mented or decremented:

private float mfXpos = 0.0f;

private bool mbXIncrease = true;

The code for updating the X increment is added to the game class:

void setPositionX(GameTime gameTime){

// use elapsed time between frames to increment

// this ensures a smooth animation which takes the same time to

// complete on any system

if (mbXIncrease)

mfXpos += (float)gameTime.ElapsedGameTime.Milliseconds/1000.0f;

else

mfXpos -= (float)gameTime.ElapsedGameTime.Milliseconds/1000.0f;

if (mfXpos <= -1.0f) // decrement as long as greater than -1

mbXIncrease = true;

else if (mfXpos >= 1.0f) // increment as long as less than 1

mbXIncrease = false;

59

mfxEffectPosX.SetValue(mfXpos); // set new X value in shader

mfxEffect.CommitChanges(); // commit new state to shader

}

Updates to the X increment for the rectangle are triggered from the Update()
method every frame:

setPositionX(gameTime);

When you run this version of the code, you will see a flashing blue rectangle that
moves from side to side.

XNA’S BASICEFFECT CLASS

XNA offers the BasicEffect class, which actually is a built-in shader that you can use
to render your 3D graphics. On one hand, compared to writing your own HLSL, the
BasicEffect class does not offer you as much flexibility to customize the way your ver-
tex data is filtered, blended, and displayed as pixel output. However, you can rely on
the BasicEffect class to quickly and simply implement lighting, and it is especially
useful for rendering 3D models. Chapter 12, “3D Models,” demonstrates the use of
the BasicEffect shader to render and light 3D models. The BasicEffect class lighting
properties are explained and implemented in Chapter 20, “Lighting.”

A BasicEffect object is instantiated with the BasicEffect class:

BasicEffect basicEffect

= new BasicEffect(GraphicsDevice device, EffectPool effectPool);

Setting Properties Within the BasicEffect Class

When drawing objects using the BasicEffect class, you will need to set the World,
View, and Projection matrices to implement object movement, scaling, and rotations
and to position your objects in the window so they can be seen properly as you view
the 3D world. These matrices are explained in more detail in Chapter 15, “Building a
Graphics Engine Camera.” When implementing a custom shader (as demonstrated
earlier in the chapter), an EffectParameter is used to set these matrix values. With the
BasicEffect class, you don’t have to create an EffectParameter object for each vari-
able you want to set. Instead, you can assign these values to the BasicEffect’s World,
View, and Projection properties:

Matrix basicEffect.World = Matrix worldMatrix;

Matrix basicEffect.View = Matrix viewMatrix;

Matrix basicEffect.Projection = Matrix projectionMatrix;

C H A P T E R 4

Sh
ad

er
s

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E60

Similar to the custom shader, whenever you change the state of the BasicEffect
shader—by assigning a value to one of the BasicEffect’s attributes—you have to fi-
nalize the change by calling the CommitChanges() method:

basicEffect.CommitChanges();

Techniques and Passes Within the BasicEffect Class

Similar to a custom shader that you would write on your own, the BasicEffect class
uses a technique to define the vertex and pixel shaders and to set the total number of
passes used to render an object each frame. To use the BasicEffect shader when draw-
ing your objects, you use the following construct to select the technique and pass(es)
within it. All drawing is performed between the Begin() and End() methods for the
BasicEffect object:

basicEffect.Begin();

foreach (EffectPass pass in basicEffect.CurrentTechnique.Passes){

pass.Begin();

// rendering is done here

pass.End();

}

basicEffect.End();

BasicEffect Class Example

This demonstration shows how to convert the existing base code to use the
BasicEffect class to draw the ground with a grass texture. Currently, the base code
uses the shader TextureShader.fx. Note that this demonstration uses texturing to ap-
ply images to the surfaces you draw before a proper explanation is given. Chapter 7,
“Texturing Your Game World,” provides a more detailed explanation of how the
texturing works.

This example begins with either the WinMGHBook or the Xbox360MGHBook
base code from the BaseCode folder in this book’s download. Converting it to use the
BasicEffect class to draw the textured ground can be done in two steps.

First, you will need to declare an instance of the BasicEffect at the top of the game
class so it you can use it throughout the class:

BasicEffect basicEffect;

The BasicEffect instance should be initialized when the program begins in Initial-
ize(). Regenerating this BasicEffect instance locally anywhere else on a continuous
basis will slow down your program considerably, so you should only do it when the
program starts:

basicEffect = new BasicEffect(gfx.GraphicsDevice, null);

61C H A P T E R 4

Sh
ad

er
s

Next, replace the existing draw_ground() method in the game class with this new
version, which uses a BasicEffect object to do the rendering. Most of the routine re-
mains the same. However, in step 4, the World, View, and Projection properties for
the BasicEffect class are set to provide it with information about the camera. This
way, it can render the ground and be seen properly by the camera. Also in step 4, the
texture is set to the grass texture. These changes are then committed to the shader. In
step 5, the BasicEffect technique is selected and the rendering is done in the passes
that have been automatically selected by the technique.

Replace the existing version of draw_ground() with this routine to draw the
ground with the BasicEffect shader:

private void draw_ground(){

// 1: declare matrices

Matrix matIdentity, matTransl;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(0.0f, -0.9f, 0.0f);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matTransl;

// 4: pass matrix values to shader and commit them

basicEffect.World = mMatWorld;

basicEffect.View = mMatView;

basicEffect.Projection = mMatProj;

basicEffect.TextureEnabled = true;

basicEffect.Texture = mTexGrass;

basicEffect.CommitChanges();

// 5: draw object - select vertex type, primitive type, # of primitives

basicEffect.Begin();

foreach (EffectPass pass in basicEffect.CurrentTechnique.Passes){

pass.Begin();

gfx.GraphicsDevice.VertexDeclaration = mVertPosColorTex;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColorTexture>(

PrimitiveType.TriangleStrip, mVertGround, 0, 2);

pass.End();

}

basicEffect.End();

}

Because no external shader is referenced, draw_ground() would already use the
BasicEffect shader to draw the ground, so you do not need to reference any other
shaders in the draw method. If you wanted, you could replace the existing Draw()
routine with this version to draw the ground without referencing any other shaders:

protected override void Draw(GameTime gameTime){

// clear screen, set background, start drawing

gfx.GraphicsDevice.Clear(Color.CornflowerBlue);

draw_ground();

base.Draw(gameTime);

}

When you run the code now, the textured ground will appear as before, but this
time it will be rendered using the BasicEffect class.

If you have ever seen the NVIDIA or AMD shader demos, you would agree that
shaders can be used for some incredibly slick and even crazy graphics effects. The ex-
amples in this chapter have intentionally been kept simple by comparison but will
gradually become more complex as the chapters progress.

CHAPTER 4 REVIEW EXERCISES

1. Implement the step-by-step examples in this chapter.

2. In the first example, try adding a field with a POSITION semantic to the
pixel shader output and notice that it can’t be done. Why is this the case?

3. In the first example, replace the instruction in the vertex shader that defines
the color output with the following:

OUT.f4Color = IN.f4Color;

In the pixel shader, replace the instruction that defines the color output
with this:

OUT.f4Color = IN.f4Color * changeBlueValue();

When you run the code after this change, the output will be the same as
before, but the color transformation will be performed on a per-pixel basis
rather than a per-vertex basis.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E62

CHAPTERCHAPTER55
AnimationAnimation
IntroductionIntroduction

63

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

64

AFTER working through Chapter 3, “Introduction to XNA Graph-
ics Programming,” you should now be comfortable building

structures with lines and triangles. If you create a butterfly, a bird, a car, an airplane, or
even a monster out of lines and triangles, you will surely want to animate your 3D ob-
ject. Animation is the vital ingredient that brings life to your creation when you flick
the switch.

Animating an object requires that you have the ability to rotate, move, or even
resize the object. The process of scaling and moving objects is referred to as a trans-
formation. Transformations include:

� Setting the identity as a default for the World matrix if no transformations
are specified.

� Scaling to resize the object.

� Using translations for horizontal, vertical, up, down, and diagonal
movements on the X, Y, and Z planes.

� Rotating an object about its own axis. This is referred to as a revolution.

� Rotating an object about an external fixed point. This is referred to as the
object’s orbit.

XNA offers several methods for performing transformations. Familiarity with
these methods is crucial since they greatly reduce the amount of code you have to
write to bring movement to your 3D environment.

While this chapter may seem to be somewhat trivial, the topic of transformations
is extremely important. For new graphics programmers, understanding this chapter
and Chapter 6, “Character Movement,” is essential to harness XNA and take con-
trol of your 3D animations.

RIGHT HAND RULE
Like all 3D graphics libraries, XNA allows you to create 3D worlds on a Cartesian
graph with X, Y, and Z axes. The orientation of each axis on the graph, with respect
to the other axes, defines the direction for positive and negative translations and ro-
tations. With an upright Y axis, it is possible to have an X axis that runs either out-
ward to the left or to the right, and a Z axis that increases either in a forwards or
backward direction. The XNA developer team has implemented the Cartesian coor-
dinate system from a Right Hand Rule perspective. Figure 5-1 shows two possible
scenarios under the Right Hand Rule where positive movement in the X, Y, and Z
planes depends on the direction along the Z plane from the viewer (known as the
camera) to the target being looked at (known as the view). The graphics engine used
in this book implements a camera where the direction along Z from the camera to the

65C H A P T E R 5

An
im

at
io

n
In

tro
du

ct
io

n

view is positive. See Chapter 15, “Building a Graphics Engine Camera,” for more detail
on this camera implementation. This scenario is illustrated on the left side of Figure 5-1.

When you use the graphics engine for this book, which is summarized in the sce-
nario on the left of Figure 5-1, keep the following points in mind:

� Positive translations on the X axis are toward the left.

� Positive translations on the Y axis are upward.

� Positive translations on the Z axis are away from the viewer.

In any case, there is a common mnemonic device to remember how the Right Hand
Rule affects the direction of rotation in the X, Y, and Z planes. To determine the posi-
tive direction for a rotation about X, Y, and Z, with your right hand imagine gripping
the axis with your thumb extended in the direction of the arrow. When you curl your
fingers about the axis in a counter-clockwise direction, this is the positive rotation.

MATRIX LOGIC

3D transformations are performed using matrix algebra. With this in mind, XNA
provides several methods to automate the process of building and applying matrices
to resize, rotate, and translate objects in 3D space. More detail about the underlying
linear algebra is provided in Chapter 14, “Matrices.” However, even after the math
behind the matrices is explained, the XNA methods for applying matrix transforma-
tions will remain crucial as a fast and efficient way to perform transformations.

Each type of transformation is implemented with a separate matrix. Scaling an ob-
ject, rotating an object about X, Y, and Z, and translating an object all require sepa-
rate transformation matrices. Once each individual transformation matrix has been

F I G U R E 5 - 1

Applying the Right Hand Rule

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E66

defined, they are combined using multiplication to build one cumulative transforma-
tion matrix. This cumulative matrix is referred to as the World matrix.

Transformation Order

The order that the matrices for scaling, rotating, and translating are combined is sig-
nificant. For successful transformations, it is essential that you combine individual
transformations in the following order:

1. Set the Identity.

2. Scale the object.

3. Revolve the object about its axis.

4. Orbit the object about an external point. (This involves a translation
followed by a rotation.)

5. Translate the object.

To remember the order of transformations for the Right Hand Rule, use the
I.S.R.O.T. sequence. I.S.R.O.T. stands for Identity, Scale, Revolve, Orbit, Translate.

XNA MATRIX SYNTAX

XNA stores matrices in the Matrix object. The Matrix object stores data used to cal-
culate transformations. Most of the time, XNA will automate your use of matrices,
so you do not have to fuss about the data or structure of your matrices. Occasionally,
you will want to work with matrices more closely to perform complex transforma-
tions. Chapter 14, “Matrices,” explains their structure in more detail.

Identity Matrix

You cannot actually transform an object with the identity matrix. The identity ma-
trix is only used as a default matrix to initialize the cumulative transformation ma-
trix, known as the World matrix, in the shader when no other transformations are
assigned. If the identity matrix is the only matrix used in the World transformation,
the primitive surface or 3D model will be drawn wherever the X, Y, and Z coordi-
nates for this object are defined.

Multiplying a data matrix by the identity matrix gives the data matrix as a prod-
uct. Whenever there are transformations, you can omit the identity matrix from your
calculation and still end up with the same transformation. XNA provides an instance
for you that can be obtained with the reference Matrix.Identity:

Matrix matrix = Matrix.Identity;

67

Scaling Matrix

The scaling matrix is used to resize objects drawn using primitives or 3D models. The
Matrix.Scale() method can be used to generate a scaling matrix based on the amount
of resizing needed on X, Y, and Z. The Matrix.Scale() method accepts three float pa-
rameters to set the amount of sizing on the X, Y, and Z planes.

Matrix matrix = Matrix.Scale(float X, float Y, float Z);

Here are some examples of scaling:

// half size on X, Y, and Z

Matrix matrix = Matrix.CreateScale(0.5f, 0.5f, 0.5f);

// double size on X, Y, and Z

Matrix matrix = Matrix.CreateScale(2.0f, 2.0f, 2.0f);

// double Y. X and Z stay same

Matrix matrix = Matrix.CreateScale(1.0f, 2.0f, 1.0f);

Rotation Matrices

Rotations about each of the X, Y, and Z axes are implemented with another matrix.
XNA provides a separate method for generating each of these rotation matrices. The
input parameter for each method requires an angle in radians. Remember that 2π ra-
dians = 360 degrees.

Matrix matrix = Matrix.CreateRotationX(float radians);

Matrix matrix = Matrix.CreateRotationY(float radians);

Matrix matrix = Matrix.CreateRotationZ(float radians);

Translation Matrices

XNA provides a one-step, user-friendly method to build a simultaneous translation
along the X, Y, and Z planes. Here is the syntax:

Matrix matrix = Matrix.CreateTranslation(float X, float Y, float Z);

STEPS FOR DRAWING A PRIMITIVE OBJECT
OR A 3D MODEL

The routine used to draw an object using primitives or a 3D model can be imple-
mented in many ways. For consistency and clarity, most examples in this book follow
this routine for drawing objects that use primitives:

1. Declare the transformation matrices.

C H A P T E R 5

An
im

at
io

n
In

tro
du

ct
io

n

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E68

2. Initialize the transformation matrices.

3. Build the total cumulative transformation matrix, known as the World
matrix, using the I.S.R.O.T. sequence.

4. Set the shader variables.

5. Draw the object.

For effective transformations, center the vertices that define
your objects at the origin. Failing to do this can create unwanted

translations that are difficult to handle and debug.

Declaring and Initializing Individual Matrices

Steps 1 and 2 of this recommended drawing routine require the declaration and initial-
ization of each individual transformation matrix. As a minimum, the identity matrix is
created to initialize the World matrix in the shader if no transformations are set.

Building the Cumulative World Matrix

In step 3 of this drawing routine, the cumulative World matrix is built by multiplying
the individual matrices together. The I.S.R.O.T. sequence must be used to build this
matrix. However, if a scale, rotation, orbit, or translation is performed, you can omit
the identity matrix.

Setting the Shader Values

In step 4 of the drawing routine, the product of the transformation matrices, also
known as the World matrix, is set in the shader. You may also set other variables in the
shader, such as textures or colors, if you need to modify these values when rendering.
Once the variable states in the shader have been changed from your XNA code, the
CommitChanges() method is called to finalize the changes in the shader.

Drawing the Object

Step 5 of this recommended routine involves drawing the output. In the preceding
chapter, steps for selecting the vertex type and drawing surfaces using primitive ob-
jects were explained in detail. However, this last step could be modified to draw 3D
models. Either way, the steps taken to apply the transformations remain the same.

APPLYING TRANSFORMATIONS: EARTH
AND MOON EXAMPLE

This example demonstrates transformations by drawing simple Earth and Moon ob-
jects. Both the Earth and Moon objects are actually just triangles. The Earth is shown

68

69

revolving about its own axis. The Moon is shown with its own revolution as it also
orbits around the Earth (see Figure 5-2).

This example begins with either the WinMGHBook project or the
Xbox360MGHBook project found in the BaseCode folder in the download.

A vertex array to store the position and color elements for each of the three verti-
ces in the triangle is required. To create an array that can store this vertex informa-
tion (which can be used throughout the game class) in your Game1.cs file, add the
following class-level declaration:

private VertexPositionColor[] mVertTriangle = new

VertexPositionColor[3];

To implement a continuous rotation for both the Earth and Moon, module-level
variables are used in the game class. These variables store the current rotation about
the Y axis.

float mfEarthY, mfMoonY;

Adding the init_triangle() method to your game class initializes the vertices used
by both the Earth and Moon. To ensure a smooth animation, the vertices are cen-
tered about the origin when they are initialized:

private void init_triangle()

{

Vector3 pos = new Vector3(0.0f, 0.0f, 0.0f);

pos.X = 0.5f; pos.Y = 0.0f; pos.Z = 0.0f;

mVertTriangle[0] = new VertexPositionColor(pos, Color.Orange);

pos.X = 0.0f; pos.Y = 0.5f; pos.Z = 0.0f;

mVertTriangle[1] = new VertexPositionColor(pos, Color.OrangeRed);

pos.X =-0.5f; pos.Y = 0.0f; pos.Z = 0.0f;

mVertTriangle[2] = new VertexPositionColor(pos, Color.OrangeRed);

}

C H A P T E R 5

An
im

at
io

n
In

tro
du

ct
io

n

F I G U R E 5 - 2

Earth and Moon example

The vertices for the Earth and Moon are set when the program begins, so init_tri-
angle() is called from the Initialize() method:

init_triangle();

Here are the five recommended steps for drawing the revolving Earth object:

1. Declare the matrices.

2. Initialize the matrices. The identity matrix is initialized as a default matrix
in the event of no transformations. (Try leaving it out of the transformation,
and notice you still get the same result.) A matrix that generates the Earth’s
revolution on the Y axis is computed based on a constantly changing angle
in radians. Every frame, the angle is incremented with a value based on the
time lapse between frames. This time-scaled increment to the rotation angle
ensures that the animation appears smoothly while maintaining a constant
rate of change. Scaling the increment based on time is necessary because
durations between frames can vary depending on other tasks being performed
by the operating system. Finally, a translation is created to move the Earth
0.5 units upward on the Y axis and 3.0 units inward on the Z axis.

3. The World matrix is built by multiplying each of the matrices in the
transformation using the I.S.R.O.T. sequence.

4. The World matrix used to transform the Earth is passed to the shader as
part of the World*View*Projection matrix.

5. The triangle is rendered by drawing vertices with a triangle strip.

Adding draw_earth() to the game class provides the code needed for transforming
and drawing the Earth:

private void draw_earth()

{

// 1: declare matrices

Matrix matIdentity, matTransl, matRotationY;

// 2: initialize matrices

matIdentity = Matrix.Identity;

// calculate rotation about the Y axis

matRotationY = Matrix.CreateRotationY(mfEarthY);

mfEarthY += (float)TargetElapsedTime.Milliseconds / 1000.0f;

mfEarthY = mfEarthY % (float)(2 * Math.PI); // prevent overflow

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E70

71

// translation

matTransl = Matrix.CreateTranslation(0.0f, 0.5f, 3.0f);

// 3: build cumulative World matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matRotationY * matTransl;

// 4: pass World matrix to shader

worldViewProjParam.SetValue(mMatWorld * mMatView * mMatProj);

mfx.CommitChanges();

// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColor;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>

(PrimitiveType.TriangleStrip,

mVertTriangle, 0, 1);

}

Next, the draw_moon() method implements the same five-step drawing routine to
transform and render the same vertices as a Moon object. The Moon has its own rev-
olution about the Y axis, and it also orbits around the Earth. In addition, the Moon is
scaled to one fifth the size of the Earth.

The draw_moon() method performs all of the same transformations as the
draw_earth() method. Plus, draw_moon() implements scaling and an orbit. All of the
matrices declared in the draw_earth() method are declared in draw_moon() to per-
form the same transformations. Also, additional matrices are declared and set in this
method to handle the scaling and orbit. The scale is set to draw the object at one fifth
the size of the Earth by assigning the scale matrix the following value:

Matrix.CreateScale(0.2f, 0.2f, 0.2f);

Remember that the orbit is a two-step process that involves a translation followed
by a rotation. When the World matrix is built, the crucial I.S.R.O.T. sequence is used
to ensure that the matrices are multiplied in the proper order:

mMatWorld = matIdentity * matScale * matRotationY
* matOrbTranslation * matOrbRotation * matTransl;

Since the same vertices are used for drawing the Moon and the Earth, steps 4 and 5
of draw_moon() are identical to those in draw_earth().

private void draw_moon()

{

C H A P T E R 5

An
im

at
io

n
In

tro
du

ct
io

n

// 1: declare matrices

Matrix matIdentity, matScale, matRotationY, matTransl;

Matrix matOrbTranslation, matOrbRotation;

// 2: initialize matrices

matIdentity = Matrix.Identity; // default

matScale = Matrix.CreateScale(0.2f, 0.2f, 0.2f);

mfMoonY = mfMoonY % (float)(2 * Math.PI);

mfMoonY +=1.5f*(float)TargetElapsedTime.Milliseconds/1000.0f;

matRotationY = Matrix.CreateRotationY(mfMoonY);

matOrbTranslation = Matrix.CreateTranslation(0.0f, 0.5f, 1.0f);

matOrbRotation = Matrix.CreateRotationY(mfMoonY);

matTransl = Matrix.CreateTranslation(0.0f, 0.5f, 3.0f);

// 3: build cumulative World matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matScale * matRotationY * matOrbTranslation

* matOrbRotation * matTransl;

// 4: pass World matrix to shader

worldViewProjParam.SetValue(mMatWorld * mMatView * mMatProj);

mfx.CommitChanges();

// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColor;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>

(PrimitiveType.TriangleStrip, mVertTriangle, 0, 1);

}

Both the draw_earth() and draw_moon() methods are called from the Draw()
method in the game class. Since the triangle stores vertices that are compatible with
those defined in the BasicShader.fx file, you should call these draw methods between
the Begin() and End() statements for the mfx object:

draw_earth();

draw_moon();

When you compile and run this code, it will show the Earth as a revolving triangle
being orbited by a revolving Moon (refer to Figure 5-2).

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E72

73

Spend the time you need to ensure that you understand transformations. It is not an
overly complex topic, but it can be challenging for beginner graphics programmers
who do not give transformations the learning time the topic deserves. You will enjoy
the rest of the book more when you have mastered this introduction to animation.

Be fearless when experimenting with your transformations. When you test and
run your projects, you will probably know right away if your transformations are
working properly. Of course, use the documentation presented in this section as a
guide to understanding the topic. The real learning will happen when you try to cre-
ate your own transformations.

CHAPTER 5 REVIEW EXERCISES

1. Implement the step-by-step example presented in this chapter.

2. Using primitives, create a stationary airplane with a rotating propeller that
is made from triangles, as in the following illustration. When initializing the
vertices that store the propeller, be sure to center the X, Y, and Z coordinates
around the origin. Failure to center the X, Y, and Z coordinates of your
surface about the origin will offset your rotations and will lead to strange
results when unbalanced objects are transformed.

3. When you finish Exercise 2, transform your propeller so it serves as a rotor
for a helicopter. Using the same set of vertices, write another procedure to
transform and render the same rectangle used for the main rotor as a back
rotor, as shown here.

C H A P T E R 5

An
im

at
io

n
In

tro
du

ct
io

n

This page intentionally left blank

CHAPTERCHAPTER66
CharacterCharacter
MovementMovement

75

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

76

AFTER reading and applying the material covered in Chapter 5,
“Animation Introduction,” you should be comfortable

performing simple animations with translations and rotations. For most gamers, it is
not enough just to make a bird flap its wings or make the propeller of an airplane
spin; anybody with half an ounce of curiosity wants to see these objects actually fly.
This chapter introduces a simple animation method that allows moving objects to
travel independently within your 3D world.

Additional methods for enabling the movement of objects are covered in
Chapter 19, “Keyframe Animations.”

Regardless of the method used to move objects and characters, basic movement is
generated by updating the X, Y, and Z position coordinates, as well as the rotation
angles of the moving object rendered at every frame.

DIRECTION

When you animate vehicles that fly, drive, sail, or glide, you would most likely expect
them to point in the direction they are traveling. Calculating the angle of direction
can be done using several methods. Without this calculation, your vehicles could
look like they are flying backward or even sideways. Trigonometry offers a simple in-
tuitive approach to calculate the angle of direction that is used often throughout this
book. However, vectors can also be used to compute direction. Using vectors to cal-
culate direction is actually a more powerful method for implementing rotations of di-
rection because they offer a simpler means to implement complex transformations.

Calculating Direction Using Trigonometry

The trigonometry applied in this chapter is actually very simple and only involves us-
ing the arctangent function. The arctangent function enables calculations of direc-
tion about the Y axis when the X and Z coordinates of the object are known.

When the Right Hand Rule is used, all positive rotations are counterclockwise. To
calculate an object’s angle about the Y axis, draw a line from the object’s position to
the preceding axis in the rotation to create a right-angle triangle. The tangent of the an-
gle between the hypotenuse and the axis can be calculated with the following equation:

tan θ = opposite side length / adjacent side length (where θ is the angle)

This equation can be rearranged to isolate the angle:

θ = tan –1 (opposite / adjacent)
θ = atan (opposite / adjacent)

77

Figure 6-1 shows the angle about the Y axis in relation to the hypotenuse, oppo-
site, and adjacent sides of the right-angle triangle.

Calculating Direction Using Speed

When Y is constant, the change in X and Z during each frame measures speed. On a
three-dimensional graph, the X and Z speed combination will always fall in one of four
quadrants, depending on whether each of the X and Z speeds is positive or negative.

Calculating Direction Using the Math.Atan() Function To calculate the angle of direc-
tion about the Y axis, create an imaginary right-angle triangle by drawing a line from
the X, Z coordinate to the preceding X or Z axis. This line must be perpendicular to
the X or Z axis. You can use XNA’s Math.Atan() function to compute the angle of
rotation about the Y axis using the corresponding X and Z values as opposite and ad-
jacent parameters:

double radians = Math.Atan((double) opposite / (double) adjacent);

The Math.Atan() function then returns the angle of rotation about Y for the im-
mediate quadrant. An offset that equals the total rotation for the preceding quad-
rants is added to this angle to give the total rotation in radians. Figure 6-2 illustrates
the relationship between the X and Z speeds for each quadrant and their offsets.

Ch
ar

ac
te

rM
ov

em
en

t

77C H A P T E R 6

Ch
ar

ac
te

rM
ov

em
en

t

F I G U R E 6 - 1

Hypotenuse, opposite, and adjacent sides of a right-angle triangle

When the Math.Atan() function is used, each quadrant uses a slightly different
equation to generate the rotation about the Y axis. These individual quadrant equa-
tions are summarized in Table 6-1.

Understanding this basic trigonometry can help you develop algorithms to gener-
ate your own direction angles.

Calculating Direction Using the Math.Atan2() Function Thankfully, there is an easier
way to employ trigonometry to calculate the angle of direction about the Y axis. The
Math.Atan2() function eliminates the need to factor quadrant differences into the

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E78

F I G U R E 6 - 2

Calculating angle of direction about the Y axis using speed quadrants

Quadrant Offset Equation

1 0 Math.Atan (z/–x)

2 /2 Math.Atan (x/z) + /2

3 Math.Atan (–z/x) +

4 3 /2 Math.Atan (–x/–z) + 3 /2

Quadrant Equations to Calculate the Angle of Direction About the Y Axis

T A B L E 6 - 1

79

calculations. To compute the angle of rotation about the Y axis with the
Math.Atan2() function, the calculation becomes this:

double radians = Math.Atan2((double) X / (double) Z)

This equation can be used to calculate the angle of direction about the Y axis for
all quadrants.

Both the Math.Atan() and Math.Atan2() functions will be demonstrated in the ex-
ample presented in this chapter.

Calculating Direction Using Vectors

Calculating direction using vectors is the more powerful method. The math behind
implementing vectors of direction is explained in more detail later in Chapter 13,
“Vectors,” Chapter 14, “Matrices,” and Chapter 15, “Building a Graphics Engine
Camera,” so you may choose to read these chapters first for a better understanding of
how the vectors work. The vector logic for calculating direction is being presented
ahead of these chapters to ensure you have a better way to move your vehicles, ves-
sels, and aircraft through your 3D world.

The vectors that describe the orientation of a moving object can be summarized
using the Look, Up, and Right vectors. These vectors describe the moving object’s di-
rection and uprightness (see Figure 6-3).

The Look vector is calculated from the difference in the view position and the posi-
tion of the object. When you are animating objects, the Look vector could also be the
same as the object’s speed vector. The Up vector describes the upright direction. For
most objects that are animated in this book, the starting upright direction is 0, 1, 0.
When we stand on our own two feet we have an Up vector of 0, 1, 0. The Right vector
describes the perpendicular from the surface created by the Up and Look vectors. The
Right vector can be used for a strafe in addition to assisting with the computation of
angles of direction.

If the Up vector is known, the Right vector can be calculated using the cross prod-
uct of the Look and Up vectors. The Right vector equals the cross product of the Up
and Look vectors.

C H A P T E R 6

Ch
ar

ac
te

rM
ov

em
en

t
F I G U R E 6 - 3

Direction vectors

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E80

When these vectors are normalized, or scaled so their length is 1, they can be used
in a matrix that calculates the angle of direction. The cells of the matrix are defined
with the data from the three direction vectors:

mat.M11 = v3R.X; mat.M12 = v3R.Y; mat.M13 = v3R.Z; mat.M14 =0.0f;//Right

mat.M21 = v3U.X; mat.M22 = v3U.Y; mat.M23 = v3U.Z; mat.M24 =0.0f;//Up

mat.M31 = v3L.X; mat.M32 = v3L.Y; mat.M33 = v3L.Z; mat.M34 =0.0f;//Look

mat.M41 = 0.0f; mat.M42 = 0.0f; mat.M43 = 0.0f; mat.M44 =1.0f;

An example showing how to implement this structure is presented later in the
chapter.

Scaling Animations with Time Lapse Between Frames

When animating objects, it is essential you ensure your animations run at the same
speed regardless of the processing power of the system that runs them. If you are a
starving student, you might only be able to afford a slow PC—maybe with an older
graphics card—but the computers in the labs at your college or university might be
faster, or vice versa. If you develop your games on a slow PC, and you don’t regulate
the timing of your animations, they will look like they are playing in fast forward
when you run them on a faster PC. The reverse is true if you develop your games on a
super-charged PC and then run them on a slower machine. Also, when you port your
games over to the Xbox 360, you are almost certain to experience a difference in pro-
cessing power compared to your development PC. To compound this issue, every
frame of your game will exert different demands on the processor, and you might be
running other programs in the background that are stealing valuable processor cy-
cles. With all of these varying system and performance factors to consider, a mecha-
nism to control the speed of your animations is a must-have item.

The trick to controlling animation speed is simple. The equation used to control
the translation speed looks like this:

Vector3 Position += Increment.XYZ * TimeBetweenFrames / ConstantScale;

Controlling rotation speed is similar:

float radians += Increment * TimeBetweenFrames / ConstantScale;

These equations offer a self-adjusting mechanism to account for varying frame
rates. For example, a faster machine will produce more frames, but the animation
won’t run faster because the time scale will reduce the increment for each frame. In
the end, you will have more frames and a smoother animation, but the animation
speed will be the same as an animation that runs on a slower machine. If you do not

81C H A P T E R 6

Ch
ar

ac
te

rM
ov

em
en

t

factor in the time difference between frames, your animations will run at uncontrol-
lable speeds.

Character Movement Example

In this example, you animate a single prop aircraft so that it flies within the boundaries
of your virtual world. Of course, you will also ensure that the plane is pointing in the
direction it’s supposed to fly; first with methods
that use trigonometry and then with methods
that use direction vectors. This example demon-
strates how to use animations that involve
translations and rotations, how to animate an
object at a constant speed, and how to calculate
the angle of direction using a constant speed.

To keep this example simple, the airplane is
built with nothing more than a triangle for the
body and a spinning rectangle for the propeller
(see Figure 6-4).

If you want, you can easily swap these primi-
tive objects with 3D models; the sequence of in-
structions to create the transformation for the animation would remain identical.

This example begins with either the files in the WinMGHBook project or the
Xbox360MGHBook project from the BaseCode folder in the book’s download.

A Stationary Airplane with a Spinning Propeller

This first part of the demonstration explains how to create an airplane using a station-
ary triangle and a rotating rectangle that is perpendicular to the front tip of the triangle.
Two separate objects for storing vertices are needed: the body of the airplane and the
propeller. Their declarations are required in the module-level area of the game class:

private VertexPositionColor[] mVertAirplane = new VertexPositionColor[3];

private VertexPositionColor[] mVertProp = new VertexPositionColor[4];

Code to initialize each vertex—in both the airplane and the propeller—sets the po-
sition and color values for each coordinate. Note that the joining point for both ob-
jects is centered at the origin (see Figure 6-5).

Centering the joining points for separate objects that are animated
together about the origin will prevent unwanted translations. These

can be difficult to debug.

F I G U R E 6 - 4

Airplane animation

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E82

The methods init_airplane_body() and init_prop() are added to the game class to
initialize each array of vertices:

private void init_airplane_body(){

Vector3 pos = new Vector3();

pos.X = 0.0f; pos.Y = 0.0f; pos.Z = 0.0f; // front bottom

mVertAirplane[0] = new VertexPositionColor(pos, Color.Orange);

pos.X = 0.0f; pos.Y = 0.5f; pos.Z =-1.0f; // back top

mVertAirplane[1] = new VertexPositionColor(pos, Color.OrangeRed);

pos.X = 0.0f; pos.Y = 0.0f; pos.Z =-1.0f; // back

mVertAirplane[2] = new VertexPositionColor(pos, Color.OrangeRed);

}

private void init_prop(){

Vector3 pos = new Vector3();

pos.X = -0.5f; pos.Y = 0.05f; pos.Z = 0.0f; // top right

mVertProp[0] = new VertexPositionColor(pos, Color.LightBlue);

pos.X = -0.5f; pos.Y = -0.05f; pos.Z = 0.0f; // bottom right

mVertProp[1] = new VertexPositionColor(pos, Color.LightBlue);

pos.X = 0.5f; pos.Y = 0.05f; pos.Z = 0.0f; // top left

mVertProp[2] = new VertexPositionColor(pos, Color.LightBlue);

pos.X = 0.5f; pos.Y = -0.05f; pos.Z = 0.0f; // bottom left

mVertProp[3] = new VertexPositionColor(pos, Color.LightBlue);

}

To initialize the propeller and airplane body when the program begins, call
init_airplane_body() and init_prop() from Initialize():

F I G U R E 6 - 5

Connection points centered at the origin

83C H A P T E R 6

Ch
ar

ac
te

rM
ov

em
en

t

init_airplane_body();

init_prop();

In the beginning of this demonstration, the airplane is drawn as a stationary ob-
ject. A translation matrix generated by the instruction

Matrix.CreateTranslation(0.0f, 0.5f, 2.0f)

moves the plane in a one-time translation 0.5 units up the Y axis and 2.0 units inward
along the Z axis. A slight rotation is generated with this instruction:

Matrix.CreateRotationY((float)Math.PI / 8.0f)

This makes it easier to view the airplane from the camera’s starting position. When
the identity, rotation, and translation are combined, the I.S.R.O.T. (Identity, Scale,
Revolve, Orbit, Translate) sequence is used to build the cumulative transformation:

mMatWorld = matIdentity * matRotY * matTransl;

draw_airplane_body() declares and initializes the transformation matrices in the
first two steps. Then, the cumulative World matrix is built in the third step. In the
fourth step, the cumulative transformation stored in the World matrix is sent to the
shader. Finally, in the fifth step, the triangle is drawn from the transformed vertices.
draw_airplane_body() is added to the game class to transform and render the vertices
for the triangle.

private void draw_airplane_body(){

// 1: declare matrices

Matrix matIdentity, matTransl, matRotY;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(0.0f, 0.5f, 2.0f);

// need to rotate slightly about Y so you can see it

matRotY = Matrix.CreateRotationY((float)Math.PI/8.0f);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matRotY * matTransl;

// 4: pass world matrix to shader

worldViewProjParam.SetValue(mMatWorld * mMatView * mMatProj);

mfx.CommitChanges();

// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColor;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>(

PrimitiveType.TriangleStrip, mVertAirplane, 0, 1);

}

Instructions for rendering the propeller are similar to steps taken to position and
draw the airplane. The main difference in draw_propeller() is the inclusion of a con-
tinuous rotation about the Z axis. Adding a variable to store rotation on the Z axis
will permit updates to this variable with each frame. This data can be used to gener-
ate the continuous rotation.

float mfRotZ;

In this example, the propeller is assumed to be rotating counterclockwise, so the
calculation that generates the value for mfRotZ is always greater than or equal to 0.
If you need to reverse the rotation so it is negative, negating mfRotZ will generate
clockwise rotation. The draw_propeller() method is added to the game class to trans-
form and draw the vertices; this creates a spinning rectangle. A time lapse between
frames is obtained with the TargetElapsedTime.Milliseconds attribute.

private void draw_propeller(){

// 1: declare matrices

Matrix matIdentity, matTransl, matRotY, matRotZ;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matRotY = Matrix.CreateRotationY((float)Math.PI / 8.0f);

matTransl = Matrix.CreateTranslation(0.0f, 0.5f, 2.0f);

// create continuous rotation based on time between frames

mfRotZ += (float)TargetElapsedTime.Milliseconds / 50.0f;

mfRotZ = mfRotZ % ((float)Math.PI * 2.0f); // stop variable overflow

matRotZ = Matrix.CreateRotationZ(mfRotZ); // create Z rotation

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matRotZ * matRotY * matTransl;

// 4: pass world matrix to shader

worldViewProjParam.SetValue(mMatWorld * mMatView * mMatProj);

mfx.CommitChanges();

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E84

85C H A P T E R 6

Ch
ar

ac
te

rM
ov

em
en

t// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColor;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>(

PrimitiveType.TriangleStrip, mVertProp, 0, 2);

}

To draw these objects with a shader that renders color and vertices, both
draw_airplane_body() and draw_propeller() are called from the Draw() method be-
tween the Begin() and End() statements for the BasicShader.fx shader object:

draw_airplane_body();

draw_propeller();

When you run this code, a stationary airplane body and a propeller that rotates on
the Z axis will appear (refer to Figure 6-4).

A Flying Airplane with a Spinning Propeller

To move your airplane, it needs speed. And to calculate the speed, the current posi-
tion must be tracked at every frame. Add the Vector3 variables, mv3Speed and
mv3AirplanePos, to the game class to enable speed and position tracking for the air-
plane:

Vector3 mv3Speed;

Vector3 mv3AirplanePos;

When the speeds are initialized, they can be randomized. Using the init_speed()
method in your game class randomizes the airplane’s speed when the program starts.
This helps to ensure that the airplane’s route varies each time the game is run:

void init_speed(){

Random randomNumber = new Random(); // randomize speed

mv3Speed.X = 1.0f + randomNumber.Next(3);

mv3Speed.Z = 1.0f + randomNumber.Next(3);

}

The speed can be randomized at the beginning of the game by calling init_speed()
from the Initialize() method:

init_speed();

If updates to the airplane’s position are not monitored and adjusted, the airplane is
going to fly off into outer space. A check is needed to determine if the X and Z world
boundaries are exceeded—in which case the corresponding speed on X or Z is re-
versed. To allow the airplane to travel, the update_position() method is added to the
game class. This method updates the airplane’s position for every frame. A time scale

is obtained by dividing the total milliseconds between frames by 1000. Multiplying
this scaled time value by the speed ensures that the animation will run at the same rate
regardless of the system. For this example, the outcome ensures that the airplane will
take the same time to travel from point A to point B regardless of the computer’s pro-
cessing power, the varying demands of your game each frame, and the background
processing on your system outside your game.

void update_position(){

// change corresponding speed if beyond world's X and Z boundaries

if (mv3AirplanePos.X > BOUNDARY || mv3AirplanePos.X < -BOUNDARY)

mv3Speed.X *= -1.0f;

if (mv3AirplanePos.Z > BOUNDARY || mv3AirplanePos.Z < -BOUNDARY)

mv3Speed.Z *= -1.0f;

// increment position by speed * time scale between frames

float fTimeScale = (float)TargetElapsedTime.Milliseconds / 1000.0f;

mv3AirplanePos.X += mv3Speed.X * fTimeScale;

mv3AirplanePos.Z += mv3Speed.Z * fTimeScale;

}

The update_position() method is called from the Update() method to ensure the
airplane’s position variable is adjusted for each frame:

update_position();

When this updated vector variable is applied—in a translation matrix against the
airplane’s body—it moves the airplane to the current position. Replacing the existing
CreateTranslation() instruction inside draw_airplane_body() will include the up-
dated translation in the transformation:

matTransl = Matrix.CreateTranslation(mv3AirplanePos);

This same translation needs to be implemented inside draw_propeller() to move
the propeller with the airplane:

matTransl = Matrix.CreateTranslation(mv3AirplanePos);

When you run this program, the airplane will fly around the world and remain
within the boundaries. However, there is still one problem with this version of the ex-
ample. The airplane has no sense of direction and therefore appears to fly sideways.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E86

87

Setting the Angle of Direction with Math.Atan()

This portion of the example adds in the ability to point the airplane in the direction it
is traveling. The rotation implemented in this get_rotation_angle() method uses
quadrants to calculate the angle of rotation about the Y axis:

float get_rotation_angle(){

float fPI = (float)Math.PI;

float fRotY;

// 1st quadrant

if (mv3Speed.X <= 0.0f && mv3Speed.Z >= 0.0f)

fRotY = (float)Math.Atan(mv3Speed.Z /-mv3Speed.X);

// 2nd quadrant

else if (mv3Speed.X >= 0.0f && mv3Speed.Z >= 0.0f)

fRotY = fPI / 2.0f + (float)Math.Atan(mv3Speed.X / mv3Speed.Z);

// 3rd quadrant

else if (mv3Speed.X >= 0.0f && mv3Speed.Z <= 0.0f)

fRotY = fPI + (float)Math.Atan(-mv3Speed.Z / mv3Speed.X);

// 4th quadrant

else

fRotY = 3.0f*fPI/2.0f + (float)Math.Atan(-mv3Speed.X /-mv3Speed.Z);

return fRotY - fPI / 2.0f;

}

Replacing the instruction for the creation of the Y rotation matrix—inside
draw_airplane_body()—creates a rotation about Y that matches the direction of the
aircraft:

matRotY = Matrix.CreateRotationY(get_rotation_angle());

This same replacement must be applied in the draw_propeller() method to rotate
the propeller properly about the Y axis:

matRotY = Matrix.CreateRotationY(get_rotation_angle());

When you compile and run this code, the airplane will fly through the world and
will point in the direction it is traveling.

Setting the Angle of Direction with Math.Atan2()

You could actually replace the existing get_rotation_angle() method with this sim-
pler version to get the same result. The longer version was shown first to demonstrate
how this simpler version actually works:

C H A P T E R 6

Ch
ar

ac
te

rM
ov

em
en

t

float get_rotation_angle(){

float fAngle =(float)Math.Atan2((double)mv3Speed.X,(double)mv3Speed.Z);

return fAngle;

}

This finished example shows an airplane that flies within the boundaries of the 3D
world and points in the direction it is traveling. The only difference with this last
change is the simplified instruction.

Setting the Angle of Direction Using Vectors

As explained earlier, the direction vectors can be used to generate a rotation matrix.
To use the Look (speed), Up, and Right vectors to calculate the angle of direction,
add this method to your game class:

Matrix get_rotation_Matrix(){

Vector3 v3L = mv3Speed;

v3L.Normalize();

// Default Up in this case is (0, 1, 0)

Vector3 v3U = new Vector3(0.0f, 1.0f, 0.0f);

v3U.Normalize();

// Right = Up x Look

Vector3 v3R = Vector3.Cross(v3U, v3L); // right = up x look

v3R.Normalize();

Matrix mat = new Matrix(); // compute direction rotation matrix

mat.M11= v3R.X; mat.M12= v3R.Y; mat.M13= v3R.Z; mat.M14=0.0f;//Right

mat.M21= v3U.X; mat.M22= v3U.Y; mat.M23= v3U.Z; mat.M24=0.0f;//Up

mat.M31= v3L.X; mat.M32= v3L.Y; mat.M33= v3L.Z; mat.M34=0.0f;//Look

mat.M41= 0.0f; mat.M42= 0.0f; mat.M43= 0.0f; mat.M44=1.0f;

return mat;

}

Then, to replace the trigonometry reference in calculating the Y rotation angle, in
both draw_propeller() and draw_airplane_body(), replace the instruction that cre-
ates the Y rotation matrix with the following instruction:

matRotY = get_rotation_Matrix();

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E88

89

When you run your code now, the airplane exhibits the same behavior flying
through the world pointing in the direction it is traveling.

Once you become comfortable with the code in this chapter and the previous one
for animation, you will have more control over the look and feel of your game. Being
able to control the movement of your vehicles, objects, and other beings will lead to
many interesting avenues for creating great graphics effects and game play.

CHAPTER 6 REVIEW EXERCISES

1. Implement the step-by-step exercises presented in this chapter.

2. Create a helicopter with a spinning top and side rotor, like the one shown
in the following illustration. Make the helicopter fly continuously within
the boundaries of your world and ensure that it points in the direction it is
traveling. Use the Look, Up, and Right vectors to calculate the helicopter’s
angle of direction.

C H A P T E R 6

Ch
ar

ac
te

rM
ov

em
en

t

This page intentionally left blank

CHAPTERCHAPTER77
TexturingTexturing
Your GameYour Game
WorldWorld

91

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

92

ANYTHING that appears in a video game should be tex-
tured; this includes everything from plants

to people. If things aren’t textured well, your game just won’t look right. But don’t
worry because we’ve got you covered. After completing this chapter, you will be able
to cover your virtual surfaces with images, create tiling patterns, shade images with
color, add transparency to images, and make 2D images appear as 3D objects.

TEXTURE INTRODUCTION

Textures are images applied to the surfaces of primitive objects. The wide variety of
texture attributes within the XNA platform gives developers the power to blend and
manipulate textures to create an infinite number of exciting visual effects. For exam-
ple, textures can be colored, filtered, blended, and transformed at run time. Con-
sidering the importance of quality texturing, it’s no surprise that XNA offers
impressive support for presenting and manipulating texture data. XNA supports
.bmp, .dds, .dib, .hdr, .jpg, .pfm, .png, .ppm, and .tga image formats for textures.

UV Coordinates

UV coordinates specify a point in the texture; they are commonly referred to as texture
coordinates. Texture coordinates are different from X, Y, and Z position coordinates
because a texture is a two-dimensional object that is mapped onto a three-dimensional
polygon. The texture’s two-dimensional coordinate data is stored inside the vertex
along with each X, Y, and Z position coordinate. When a texture is mapped on a
one-to-one basis to a rectangular object, both U and V coordinates take a minimum
value of 0 and a maximum value of 1. Figure 7-1 shows the UV coordinate settings of
textures that are mapped on a one-to-one basis in three different planes.

Texture C# Syntax

Textures are loaded and manipulated in C# using a Texture2D object. The object is
declared with the following syntax:

private Texture2D TextureObject;

Using the ContentManager Class to Load Textures

The ContentManager class is an XNA component used for loading binary content
such as images. The ContentManager’s Load() method can load image files into
Texture2D objects once the images have been added to your project. The Load()
method only requires the directory path and image name. The image file extension
(*.bmp for example) is not required. In this example, the image folder is located in

93C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

ld

the same directory as the C# source files. The syntax shown here is used to load an
image from the game project’s Images folder:

Texture2D texture = content.Load<Texture2D>(".\\Images\\imageName");

VertexPositionColorTexture, VertexPositionNormalTexture,
and VertexPositionTexture

Previous examples used a VertexPositionColor variable for storing vertex data. This
variable type lacked the ability to store image information, so the graphics until now
have been limited to basic shapes and colors. Three vertex formats allow for storage
of image coordinates; they will literally add another dimension to your graphics:

� VertexPositionColorTexture
This format allows you to apply image textures to your primitive shapes,
and you can even shade your images with color. For example, with this
vertex type you could draw a rectangle with an image texture and then
you could show it again with a different shade of color. The vertex variable
declaration syntax is:

VertexPositionColorTexture vertex = new

VertexPositionColorTexture(Vector3 pos, Color Color.color, Vector2 uv);

� VertexPositionNormalTexture
This format allows you to add textures to your primitive objects. The normal data
enables lighting for this textured format. The vertex variable declaration syntax is:

VertexPositionNormalTexture vertex = new

VertexPositionNormalTexture(Vector3 pos, Vector3 normal, Vector2 uv);

F I G U R E 7 - 1

UV coordinates when mapping textures on the X, Y, and Z axes

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E94

� VertexPositionTexture
This format only permits storage of position and texture data. It may be
useful if you didn’t need lighting and were concerned about saving space or
performance for large amounts of vertices. The vertex variable declaration
syntax is:

VertexPositionTexture vertex = new

VertexPositionTexture(Vector3 pos, Vector2 uv);

Shader Implementation for Textures

Texturing is applied in the shader. The shader code needed to texture objects is simi-
lar to the shader explained in Chapter 4, “Shaders.” However, some changes to the
code are required to enable textures. The additions required are:

� A global Texture variable

� A Sampler object for filtering the texture

� Vertex shader input and output data types that include UV coordinates

� Pixel shader code that applies the texture data to the pixels that are output

High Level Shader Language Texture Variable

The Texture data type is used to store and apply the image within the shader. The
declaration for a texture is usually made in the global section of the shader:

uniform extern Texture ShaderVariableName;

High Level Shader Language Sampler Object

A Sampler object defines properties or filters in the shader for drawing. The Sampler
is like a brush type that can be used to apply the texture to the primitive surface. Here
is the Sampler used in the texture shaders throughout this book:

Sampler TextureSampler = sampler_state{

Texture = < ShaderVariableName >;

magfilter = LINEAR;

minfilter = LINEAR;

mipfilter = LINEAR;

};

In this code, you can see that the filter properties are declared. A minfilter tells the
shader how to draw the texture on the object if the object is smaller than the actual
texture. A magfilter tells the program how to draw the texture if the object is larger
than the texture. A mipfilter assists in resizing the image up close and far away so

95C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

ldyour surfaces will not be as jagged around the edges. This method of sampling is actu-
ally very common and applies the image clearly against a primitive surface, as you
would expect to see in a standard photo that can be printed in both small and large
sizes. In this case, the filter properties for the shader are LINEAR. A linear Sampler
state tells the shader to take the portion of the texture defined by the UV coordinates
and spread it evenly over the area defined by the corresponding X, Y, and Z values
for each vertex. This process of projecting image data between vertices is known as
linear interpolation.

UV Coordinates Within the Shader Until now, the input and output data declara-
tions in the vertex shader only enabled vertices for color and position. For textures,
the vertex shader input and output must be declared to handle not only position and
color but also UV coordinate data. The following struct defines the structure of each
vertex that is passed to the vertex shader:

struct VS_INPUT{

float4 f4Position : POSITION0; // position semantic x,y,z,w

float2 textureCoordinate : TEXCOORD0; // texture semantic u,v

float4 f4Color : COLOR0; // color semantic r,g,b,a

};

The following struct defines the output from the vertex shader. The output data
type will also serve as the pixel shader’s input data type.

struct VS_OUTPUT{

float4 f4Position : POSITION0;

float4 f4Color : COLOR;

float2 textureCoordinate : TEXCOORD0;

};

The texture output for the vertex shader is defined in the vertex shader with the in-
struction:

OUT.textureCoordinate = IN.textureCoordinate;

tex2D If a pixel shader is used when texturing is applied, the tex2D() function is of-
ten used to return output that combines the texture information with the filter. The
syntax for the conversion would appear as:

OUT.f4Color = tex2D(TextureSampler, IN.textureCoordinate);

Shader Code for Applying Textures

This complete listing of shader code applies textures to vertices and renders objects
built from vertices that store X, Y, and Z positions, as well as UV texture coordinates

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E96

and color. This shader is very similar to the initial shader used in the preceding exam-
ples. However, the shader used previously could only render objects constructed
from position and color data. The new shader also applies image textures to your ob-
jects, making them more visually appealing. You can find this shader code in the
TextureShader.fx file in the Shaders folder in the download from this book’s website.

float4x4 fx_WVP : WORLDVIEWPROJ; // world view projection matrix

uniform extern texture fx_Texture; // stores texture for shader

// filter texture

sampler textureSampler = sampler_state{

Texture = <fx_Texture>;

magfilter = LINEAR; // magfilter when image bigger than actual size

minfilter = LINEAR; // minfilter when image smaller than actual size

};

struct VS_INPUT{ // input to vertex shader

float4 f4Position : POSITION0; // position semantic x,y,z,w

float4 f4Color : COLOR0; // color semantic r,g,b,a

float2 textureCoordinate : TEXCOORD0; // texture semantic u,v

};

struct VS_OUTPUT{ // vertex shader output

float4 f4Position : POSITION0; // position semantic x,y,z,w

float4 f4Color : COLOR; // color semantic r,g,b,a

float2 textureCoordinate : TEXCOORD0; // texture semantic u,v

};

struct PS_OUTPUT{ // pixel shader output

float4 f4Color : COLOR0; // colored pixel is output

};

void vertex_shader(in VS_INPUT IN, out VS_OUTPUT OUT){

OUT.f4Position = mul(IN.f4Position, fx_WVP);// transform object

OUT.f4Color = IN.f4Color; // send color as is to p.s.

OUT.textureCoordinate= IN.textureCoordinate;// send uv coords to p.s.

}

// alter vs output and send to hardware one pixel at a time

void pixel_shader(in VS_OUTPUT IN, out PS_OUTPUT OUT){

// use texture for coloring object

OUT.f4Color = tex2D(textureSampler, IN.textureCoordinate);

97C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

ld// this next line is optional – you can shade the texturized pixel

// with color to give your textures a tint. Do this by multiplying

// output by the input color vector.

OUT.f4Color *= IN.f4Color;

}

// the shader starts here

technique mytechnique{

pass p0{

// texture sampler initialized

sampler[0] = (textureSampler);

// declare and initialize vs and ps

vertexshader = compile vs_1_1 vertex_shader();

pixelshader = compile ps_1_1 pixel_shader();

}

}

That’s all of the shader code needed to receive vertices with position, color, and
texture coordinates to transform this data into textured objects.

C# EffectParameter for Setting the Shader’s
Texture Value

An EffectParameter object for the texture is required in the C# code to tell the shader
what image to use when rendering a textured polygon. As discussed in Chapter 4,
“Shaders,” the EffectParameter object is declared in the C# application with the fol-
lowing syntax:

private Effect effect;

private EffectParameter texture;

When the program begins, the EffectParameter object is assigned the name of the
Texture variable in the shader:

texture = effect.Parameters["ShaderVariableName"];

Later, when an image needs to be selected for rendering, the EffectParameter ob-
ject is assigned a texture using the SetValue() method. Immediately after the assign-
ment takes place, the Texture value is set in the shader with the CommitChanges()
method. Remember to always use CommitChanges() immediately after assigning a
shader variable, or it will not be set in the shader.

texture.SetValue(Texture2D texture2D);

effect.CommitChanges();

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E98

An image texture is not applied to an object until the object is drawn from the
shader. You might consider keeping your texture objects organized by assigning and
committing them from the same methods where their corresponding primitive ob-
jects are rendered.

TRANSPARENT TEXTURES

You may at some point want to create a transparency effect. For example, to make
the background pixels of an image invisible while all other pixels in the texture are
rendered in their original color. You likely have seen this transparency effect applied
with tree images, a heads-up display, or a stylish custom dashboard that always faces
the viewer. It is possible to create this effect when using a mask that is stored in the
*.dds format. It is also possible to create *.png or *.tga images with transparent pix-
els in your favorite photo editor, such as Adobe Photoshop, and then draw them us-
ing XNA code so that the transparent pixels do not appear.

Alpha Channel

An alpha channel can be used to “mask” all pixels of a specific color in an image. Al-
pha data is stored in the last color byte of a pixel—after the red, green, and blue bytes.
When alpha blending is enabled in your XNA code and the alpha channel is active,
transparency is achieved for the pixels where the alpha setting is set to 0.

Texture Example

This example begins with either the WinMGHBookBaseCode project or the
Xbox360MGHBookBaseCode project, which can be found in the BaseCode folder
of the book’s download from the website. This project already has textured ground
and uses the TextureShader.fx file described earlier in this chapter. Aside from the
shader already being present, this demonstration adds in new textured objects from
scratch to show the texturing process from start to finish. Each surface will be trans-
formed into place, and the accompanying textures will be applied to each. By the time
Part A of this example is complete, a textured side wall, a textured back wall, and
matching ground will be visible.

In Part B of this example, a tree texture with transparency will be added. This tree
will use a “billboarding” technique so that it always faces the viewer regardless of the
camera’s angle. Figure 7-2 shows the billboard tree from different camera angles.

Texture Example, Part A: Opaque Textures

When you are applying textures, a shader that can handle the texture data is re-
quired. The TextureShader.fx code presented earlier in this chapter can do the job.
This shader has already been added to the base code project. In addition, an Effect

99C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

ld

object and Effect parameters are included in the base code to reference the shader
from your XNA code.

When drawing objects that have textures, the GraphicsDevice needs to retrieve
data from the vertex variable in the proper format. A new VertexDeclaration object
is declared in the module declarations section so that the graphics device can later re-
trieve the correct position, color, and UV data.

private VertexDeclaration mVertPosTexColor1;

Later, in the Initialize() method, add code to set the VertexDeclaration object to a
VertexPositionColorTexture format:

mVertPosTexColor1 = new VertexDeclaration(gfx.GraphicsDevice,

VertexPositionColorTexture.VertexElements);

Identifiers are used to identify the Texture2D objects and the set of transforma-
tions required when drawing the textured surface. Add these identifiers to the top of
the game class:

const int BACKWALL = 0; const int GROUND = 1;

const int SIDEWALL = 2;

F I G U R E 7 - 2

Texturing, transparency, and billboarding

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E100

To store each image, Texture2D objects are required. To do this, add declarations
for the texture objects in the module declarations area:

private Texture2D mTexGround;

private Texture2D mTexBackwall;

private Texture2D mTexSidewall;

The ground.tga, backwall.tga, and sidewall.tga images will be used to texture
the ground and two walls. They can be found in the Images folder in the download
from the website. They are loaded in your project using the Load() method when
the program begins. The code here works under the assumption that the three im-
age files have been copied to the Images folder of your project and have been added
to your project from the Solution Explorer. To reference the image files from your
project, right-click the Images folder, select Add, and then navigate and select each
of the image files. Add these instructions to load each texture inside the
LoadGraphicsContent() method:

mTexGround = content.Load<Texture2D>(".\\Images\\ground");

mTexBackwall = content.Load<Texture2D>(".\\Images\\backwall");

mTexSidewall = content.Load<Texture2D>(".\\Images\\sidewall");

The vertex data is stored in the vertex variable mVert. The type declaration of
mVert needs to be set to store image data with each vertex. In the module declara-
tions section, add the declaration for mVert to make the vertex variable available
throughout the game class:

private VertexPositionColorTexture[] mVert = new

VertexPositionColorTexture[4];

The method init_surface() initializes the vertices with the position, color, and UV
coordinates that will be used to create a rectangular surface for each wall. The UV co-
ordinates will be mapped with U along the X axis and with V along the Z axis.

Add init_surface() to the game class to create these vertices with position, color,
and UV coordinates:

private void init_surface(){

Vector2 uv = new Vector2(0.0f, 0.0f);

Vector3 pos = new Vector3(0.0f, 0.0f, 0.0f);

Color color = Color.White;

// set for vertices of surface with uv, pos, and color data

uv.X=1.0f; uv.Y=1.0f; pos.X =-BOUNDARY; pos.Y = 0.0f; pos.Z =-BOUNDARY;

mVert[0] = new VertexPositionColorTexture(pos, color, uv);//front right

101C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

lduv.X=1.0f; uv.Y=0.0f; pos.X =-BOUNDARY; pos.Y = 0.0f; pos.Z = BOUNDARY;

mVert[1] = new VertexPositionColorTexture(pos, color, uv);//back right

uv.X=0.0f; uv.Y=1.0f; pos.X = BOUNDARY; pos.Y = 0.0f; pos.Z =-BOUNDARY;

mVert[2] = new VertexPositionColorTexture(pos, color, uv);//front left

uv.X=0.0f; uv.Y=0.0f; pos.X = BOUNDARY; pos.Y = 0.0f; pos.Z = BOUNDARY;

mVert[3] = new VertexPositionColorTexture(pos, color, uv);//back left

}

The data for the surface should be assigned at the beginning of the program. To do
this, call init_surface() from the Initialize() method:

init_surface();

You will need to add draw_surface() to the game class to transform each surface
into position, to apply a texture, and to render each textured surface using the same set
of vertices. Each time the method is called, an identifier parameter is passed to this
method to indicate which surface is being rendered. The draw_surface() method uses a
switch to select the specific transformations and texture for each surface based on the
identifier that it receives. When the texture is selected, it is set in the shader using the
EffectParameter object’s SetData() method. Then, after the cumulative transformation
has been set, the WorldViewProjection matrix is set in the TextureShader using an-
other EffectParameter object, mfxTex_WVP. The WorldViewProjection matrix is
used in the shader to position each surface so that it can be seen properly by the camera.
Once the shader variables have been set, the CommitChanges() method must be called
to finalize the state change in the shader. Before the surface is rendered, an assignment
of the VertexDeclaration format to the GraphicsDevice allows for retrieval of X, Y,
and Z positions, as well as UV texture data and color information. When the primitive
is drawn, a <VertexPositionColorTexture> reference in the DrawUserPrimitives()
method ensures that a texture is applied to the primitive object.

private void draw_surface(int iSurface){

// 1: declare matrices

Matrix matIdentity, matScale, matTransl, matYrot, matXrot;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(0.0f, -0.9f, 10.0f);

matScale = Matrix.CreateScale(0.1f, 0.1f, 0.1f);

matXrot = Matrix.CreateRotationX(-(float)Math.PI / 2.0f);

matYrot = Matrix.CreateRotationY(0.0f);

// create transformations and set texture for each object

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E102

switch (iSurface){

case GROUND: // ground centered at origin

matXrot = Matrix.CreateRotationX(0.0f);

mfxTexture.SetValue(mTexGround); // set texture

break;

case BACKWALL: // rotate -90 Deg on X and move back & up.

matTransl = Matrix.CreateTranslation(0.0f, 0.70f , 11.6f);

mfxTexture.SetValue(mTexBackwall); // set texture

break;

case SIDEWALL: // rotate -90 Deg on X and +90 on Y.move left & up.

matYrot = Matrix.CreateRotationY((float)Math.PI / 2.0f);

matTransl = Matrix.CreateTranslation(1.6f, 0.70f, 10.0f);

mfxTexture.SetValue(mTexSidewall); // set texture

break;

}

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matScale * matXrot * matYrot * matTransl;

// 4: pass wvp matrix to shader

mfxTex_WVP.SetValue(mMatWorld * mMatView * mMatProj);

mfxTex.CommitChanges(); // commit changes to set wvp and texture vars

// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosTexColor1;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColorTexture>

(PrimitiveType.TriangleStrip, mVert, 0, 2); // use texture type

}

Inside the Draw() method, delete the call to draw_ground() to remove the existing
surface. If you do not remove this line, the old ground will cover the new ground surface.

When rendering the new textured surfaces, you need to select the correct shader, but
it is possible to use more than one shader for drawing. Just be certain of two things:

� When an effect is selected, all code for rendering is triggered between the
shader effect’s Begin() and End() methods.

� The shader effect’s End() method must be executed before another shader
effect begins.

This new code belongs in the Draw() method to select and apply the new effect ob-
ject when calling draw_surface() to render each new textured surface. draw_sur-
face() is called each time with the identifier of the textured surface to be rendered. A

103C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

ldnew textured ground surface will be drawn along with the two textured walls, so re-
place the existing draw_ground() instruction with these instructions:

// draw objects

draw_surface(GROUND);

draw_surface(BACKWALL);

draw_surface(SIDEWALL);

When you compile and run the program, the output will show the two walls and
ground texture.

Texture Example, Part B: Transparent Textures

This example shows how to draw a tree without the background pixels. This exam-
ple continues with the code created for Part A. Some extra setup is required to load
the tree texture. A Texture2D object declaration at the top of the game class is re-
quired to store the tree texture so that it can be referenced throughout the class:

private Texture2D mTexTree;

An identifier definition at the module level is used to allow the draw_surface()
method to select the tree texture and to apply the appropriate transformations:

const int TREE = 3;

The tree.png file used to create the tree texture must be loaded when the program
begins. Once your tree.png file has been added to the Images folder of your project
and is referenced in the Solution Explorer, this file can be loaded in your XNA code
using the LoadGraphicsContent() method:

mTexTree = content.Load<Texture2D>(".\\Images\\tree");

The draw_surface() method can be used to draw the tree using the same vertices
that were used to create the wall and ground textures. An additional case is required
inside the switch to handle the texture selection and transformations that move the
tree into place:

case TREE:

matTransl = Matrix.CreateTranslation(0.0f, 0.5f, 10.0f);

matScale = Matrix.CreateScale(0.09f, 0.09f, 0.09f);

mfxTexture.SetValue(mTexTree); // set texture

break;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E104

To draw the tree, alpha blending is applied so that the transparent pixels will not
be rendered. The SourceBlend property selects the image pixel and masks it with the
DestinationBlend layer. Pixels with an active alpha channel will be made transparent
after the masking operation. Once the tree is drawn, the alpha blending property,
AlphaBlendEnable, is turned off. You must add this code inside the Begin() and End()
methods for the mfxTex effect since draw_surface() references this effect. Also, you
must add the code to draw the tree after the code that draws the opaque surfaces; this
allows the transparent object to overlay the opaque objects.

gfx.GraphicsDevice.RenderState.AlphaBlendEnable = true;

gfx.GraphicsDevice.RenderState.SourceBlend = Blend.SourceAlpha;

gfx.GraphicsDevice.RenderState.DestinationBlend = Blend.InverseSourceAlpha;

draw_surface(TREE);

gfx.GraphicsDevice.RenderState.AlphaBlendEnable = false;

With the right adjustments to your game application, you will now be able to look
through the branches of the tree and see what’s on the other side. However, if you ran
the code now, you would notice that while the tree appears with a transparent back-
ground, it only looks real when the camera is facing the texture directly. When the
camera faces another direction, the illusion is spoiled because the viewer can easily
see that a two-dimensional image is being used. At some angles, the surface will ap-
pear to be paper thin to the viewer. In Halo 2, you can see an example of how this can
happen. On the Delta Halo level, it is possible to climb onto a cliff that overlooks the
level; the cliff was not intended to be accessible, but once you climb up, you can
clearly see that the bushes on the cliff are 2D. In fact, you can walk right through
them to see that they are 2D.

Billboarding can help solve the two-dimensional problem. Billboarding is a com-
mon technique that makes two-dimensional images appear as though they are
three-dimensional objects; this works regardless of the camera position or angle. The
algorithm for billboarding involves rotating the texture about the Y axis by the angle
of the camera’s look direction. (Refer to Chapter 15, “Building a Graphics Engine
Camera,” for an explanation on how the look vector is obtained.) For the
billboarding effect to work, the vertices that create the textured face must be centered
at the origin. Also, the tree must be centered in the image (see Figure 7-3).

Billboarding Example

This example begins with the solution from the transparency code example. Chapter
6, “Character Movement,” explained the logic used to animate a game object about
the Y axis so it points in the direction it travels. This same logic can be used to rotate
the tree about the Y axis so it always faces the viewer and will consequently always
looks like a robust bushy tree at any camera angle. As in Chapter 6, “Character
Movement,” the Atan2() function uses the changes in direction on X and Z as param-

105C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

ldeters to calculate the angle of direc-
tion about the Y axis. However,
for this case, the camera’s Look
vector is used to obtain the direc-
tion parameters. The Look direc-
tion equals the View position
minus the camera position. (Refer
to Chapter 15, “Building a Graph-
ics Engine Camera,” for more de-
tail on the Look vector that stores
the direction of the camera.)

Adding get_billboard_angle()
to the game class provides a
method that returns the rotation
angle about the Y axis. This angle
matches the camera’s angle about
the Y axis. When the tree is rotated
about the Y axis, by the amount re-
turned by this function, the tree
will always face the viewer.

float get_billboard_angle(){

// make third person so it always faces user

float f_rads;

float f_change_x = cam.m_vView.X - cam.m_vPos.X;

float f_change_z = cam.m_vView.Z - cam.m_vPos.Z;

f_rads = -(float)Math.Atan2(f_change_z , f_change_x)

+ (float)Math.PI / 2.0f;

return f_rads;

}

Inside draw_surface(), in the case that handles the TREE identifier, you need to
add code to reset the Y rotation matrix based on the camera’s rotation about the Y
axis. This creates the billboard effect that makes the tree look real from a dis-
tance.

matYrot = Matrix.CreateRotationY(get_billboard_angle());

After you have made these changes, try running the program. The tree will appear
like a nice, full bushy tree, regardless of the angle of the camera.

F I G U R E 7 - 3

Objects within billboarded images must be
centered on the X axis.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E106

TEXTURE COLORING

It is possible to color your image textures at run time. This technique might be handy
for a number of instances—maybe you need your texture to be darker and you can’t
wait for the artist to fix it, so you shade it yourself in code. Maybe you want to create
a stone pattern; you could use the same image to draw all stones but alternate the
shade of the stones to create more contrast on your surface.

The TextureShader.fx shader is already able to apply colors that are stored in the
vertices to any textured item. If a non-white color is stored in the vertices, the image
in the texture will be shaded by this color.

To see how this works, it helps to examine the vertex shader and pixel shader. The
vertex shader input receives the color stored in the vertices. The user-defined struct
that stores the vertex shader output stores this color information. The vertex shader
output, by design, serves as the input for the pixel shader. This vertex shader code re-
ceives the color from the vertices that are set in your C# code and passes it to the pixel
shader:

void vertex_shader(in VS_INPUT IN, out VS_OUTPUT OUT){

OUT.f4Position = mul(IN.f4Position, fx_WVP);

OUT.f4Color = IN.f4Color; // send color from vertex to p.s.

OUT.textureCoordinate = IN.textureCoordinate;

}

The pixel shader can only return colored pixels as output. On the first line within
the shader, the texture is applied to each vertex using the tex2D() function, which
uses the textureSampler filter and UV coordinates as input parameters. The pixel
shader uses linear interpolation to shade and texture the area between the vertices.
On the second line, this optional instruction is added, which multiplies the colored
pixel by the color that is stored in the vertices. This modification, in effect, applies a
color to the image texture:

void pixel_shader(in VS_OUTPUT IN, out PS_OUTPUT OUT){

// apply texture to vertices using textureSampler filter

OUT.f4Color = tex2D(textureSampler, IN.textureCoordinate);

// apply color from v.s. to output – p.s. interpolates between verts

OUT.f4Color *= IN.f4Color;

}

This example shows how to colorize your image textures. It begins with the solu-
tion from the previous example. You can also find this solution in the Solutions

107

folder in the download from the website. The discussion in this section shows how to
change the color of the texture for the back wall.

In the init_surface() method, replace the line that sets the color for the vertices
from white to red:

Color color = Color.Red;

When you run the program, the surfaces will be shaded red.

TEXTURE TILING

Tiling is a very simple effect that creates a repeating pattern of an image on the primi-
tive object surface. Tiling is a performance-friendly effect that looks great on brick or
stone surfaces, such as walls and streets. However, tiling can even be implemented
for grass and soil as long as the image is created so that the edges of the image match
the neighboring edges of the same image. In fact, the grass texture in the
WinMGHBookBaseCode and Xbox360MGHBookBaseCode projects is tiled ten
times horizontally and vertically to make the grass look more dense and lush. If you
look at the UV coordinates inside draw_ground(), you will notice they range between
0 and 10 instead of between 0 and 1:

// set for vertices of surface with uv, pos, and color data

uv.X=10.0f; uv.Y=10.0f; pos.X = -BOUNDARY; pos.Y = 0.0f; pos.Z = -BOUNDARY;

mVertGround[0] = new VertexPositionColorTexture(pos, color, uv);//front R

uv.X=10.0f; uv.Y= 0.0f; pos.X = -BOUNDARY; pos.Y = 0.0f; pos.Z = BOUNDARY;

mVertGround[1] = new VertexPositionColorTexture(pos, color, uv);//back R

uv.X= 0.0f; uv.Y=10.0f; pos.X = BOUNDARY; pos.Y = 0.0f; pos.Z = -BOUNDARY;

mVertGround[2] = new VertexPositionColorTexture(pos, color, uv);//front L

uv.X= 0.0f; uv.Y= 0.0f; pos.X = BOUNDARY; pos.Y = 0.0f; pos.Z = BOUNDARY;

mVertGround[3] = new VertexPositionColorTexture(pos, color, uv);//back L

Figure 7-4 shows an example of tiling where the image is repeated ten times
along both the rows and columns. The original texture is on the left, and the tiled
surface is on the right. Using a small image to cover a large surface makes tiling a
useful way to increase the performance of your textures and decrease the size of
your image files.

By now, you should see that applying images makes the 3D world a lot more inter-
esting. Simple effects such as tiling, color, transparency, and billboarding can be ap-
plied with little effort.

C H A P T E R 7

Te
xt

ur
in

g
Yo

ur
G

am
e

W
or

ld

CHAPTER 7 REVIEW EXERCISES

Try these exercises to focus on some of the key points for applying texture effects:

1. Try the step-by-step examples presented in this chapter.

2. State four differences between a shader that enables texturing and a shader
that only handles position and color.

3. List the objects that need to be added to the C# code to add in a second
shader that allows textures.

4. List the states that must be set to enable transparency.

5. Create a building and apply textures to the sides. Add a billboarded tree,
cactus, or flower that you create with transparency.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E108

F I G U R E 7 - 4

Tiling effect

CHAPTERCHAPTER88
Adding SkiesAdding Skies
and Horizonsand Horizons
to Yourto Your
LevelsLevels

109

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

110

THIS chapter explains how to create a realistic sky effect with an infi-
nite horizon. By the time you finish working through this chap-

ter, the sunny blue atmosphere you create will look so tranquil and inviting, you may
want to crawl inside your 3D world and never leave.

THE SKYBOX

The structure that houses the images that create the sky and horizon is often referred
to as a skybox. When the skybox is built properly, it is seamless—you can’t tell where
it begins or ends. Figure 8-1 shows three different camera views of a 3D world from
within a skybox.

A skybox is built using six images to create the sides, sky, and ground for the hori-
zon. Each individual image is shown in Figure 8-2.

To create the effect of an infinite horizon, each of the four wall images and the sky
image translate with the camera, but the ground image remains stationary. The result
allows you to see the ground move underneath you as you travel, but you will never
reach the horizon.

The walls of your virtual world are draped so that they fall slightly below the
ground, so the bottom edges of the walls are hidden. Figure 8-3 illustrates the station-
ary ground and its position relative to the moving ceiling and draped walls.

F I G U R E 8 - 1

Viewing a skybox from different camera angles

111

TERRAGEN PHOTOREALISTIC
SCENERY-RENDERING SOFTWARE

Excellent tools are available to create your skybox. Terragen (http://www
.planetside.co.uk/) from Planetside is a popular utility for generating photorealistic
scenery for creating spectacular landscapes, seascapes, and skyscapes. The beauty of
Terragen is also evident in its ease of use.

Thanks to Planetside, a link to the download for the noncommercial edition of
Terragen is included at the website for this book. The noncommercial version is free
for personal use. However, the registered commercial version offers access to sup-
port, the ability to render larger and higher quality images, enhanced anti-aliasing
modes, and, of course, permission to deploy works created using Terragen for com-
mercial purposes. Refer to the Planetside website for licensing details.

C H A P T E R 8

Ad
di

ng
Sk

ie
s

an
d

H
or

iz
on

s
to

Yo
ur

Le
ve

lsF I G U R E 8 - 2

Six images used to make the skybox

F I G U R E 8 - 3

Moving ceiling and draped walls with a stationary ground of skybox

http://www.planetside.co.uk/
http://www.planetside.co.uk/

USING TERRAGEN TO CREATE A SKYBOX

This demonstration explains the steps needed to create the six images used to make a
skybox.

When you open Terragen, the application launches the main window, presented
in Figure 8-4.

Setting Up the Terragen Project

When you are setting up a Terragen project, you should assign several properties be-
fore you create your images. This ensures consistency among the images you gener-
ate. The properties you need to set govern image size, magnification, quality, camera
position, and target position for generating land and sky scenery.

Sizing the Image

To ensure consistent sizing for all images, you should give each image in the skybox
the same pixel width and height dimensions. To set the dimensions, click the Image
Size button to open the Render Settings dialog. On the Image tab of the Render Set-
tings dialog, you can enter numeric values for Width and Height (both values are in
pixels). For this demonstration, a size of 512 pixels by 512 pixels is recommended.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E112

F I G U R E 8 - 4

Terragen main window

113

A higher pixel count enables better quality images, but higher pixel counts also re-
duce the memory available for processing. This may lower the frame rate in your
game because it takes more processing power for the game engine to render the sky.

Setting the Zoom Magnification

The camera’s zoom magnification must be set to 1 to ensure the images are scaled
properly when you create each snapshot for the sides of the skybox. This setting can be
adjusted using the Zoom Magnification slider in the Camera Settings dialog, which is
launched by clicking the Camera Settings button on Terragen’s main window.

Setting the Image Quality

You can specify additional filter settings to improve image quality. For example, you
can adjust values for atmosphere and cloud effects. To do this from Terragen’s main
window, click the Render Settings button. This opens the Render Settings dialog. In
this dialog, you can increase the Accuracy settings for Atmosphere and Cloud Shad-
ing from the Quality tab. If you want to avoid pixilation, it is strongly recommended
that you select high levels of accuracy for Atmosphere and Cloud Shading.

Setting the Detail Level

If you want to ensure that your images are rendered with minimal pixilation, you
must set the Detail slider on Terragen’s main window to full strength. Leaving the
slider at a lower setting reduces the image-generation time, but the pixilation is no-
ticeably worse; this problem will be magnified when used for the skybox. Figure 8-4
shows Terragen’s main window with the Detail setting at full strength.

Setting the Camera and Target Positions

While working in the main window of your Terragen project, it is possible to specify
the position of the camera and target position viewed by the camera. You can experi-
ment with these settings if you choose. The settings used while creating the skybox
images for this chapter are summarized in Table 8-1. If you are new to Terragen, we
recommend that you try these settings; they will allow you to create a skybox similar
to the one shown in Figure 8-1. These settings are also visible in Terragen’s main win-
dow (see Figure 8-4).

Checking the Land and Sky Options

Select the Land and Sky options in Terragen’s main window to generate ground and
cloudscapes for your scenery.

Ad
di

ng
Sk

ie
s

an
d

H
or

iz
on

s
to

Yo
ur

Le
ve

ls

113C H A P T E R 8

Ad
di

ng
Sk

ie
s

an
d

H
or

iz
on

s
to

Yo
ur

Le
ve

ls

Creating Each Image: Assigning Head, Pitch, and Bank
Properties

If you followed the instructions in the previous section, your global settings for the
Terragen project will be set. Each individual image, in the skybox, will have specific set-
tings that generate a unique picture that fits with the other images that make the skybox.

Setting Up Each Snapshot

When all of your images are assembled together in the box, the edges of each picture
must match up with the edges of the neighboring picture. To achieve a perfect set of
matching images, you must give the camera a carefully planned and unique angle for
each snapshot. Terragen refers to these camera direction settings as Head, Pitch, and
Bank attributes. These attributes set direction on the X, Y, and Z planes. Later in this
chapter, a code example shows you how to load and display Terragen images in your
game project. For the code example to work properly, you must generate the named
image files and their corresponding Head, Pitch, and Bank properties with the set-
tings summarized in Table 8-2.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E114

X Y Z

Camera Position 4200.m 4400.m 65.4m

Fixed Height Above Surface Yes 65.4m

Target Position 4200.m 7935.7m 65.4m

Fixed Height Above Surface Yes 0.0m

Camera Position and Target Position Settings

T A B L E 8 - 1

Image Name Camera Orientation

Head Pitch Bank

front.bmp 0 0 0

left.bmp 90 0 0

back.bmp 180 0 0

right.bmp –90 0 0

sky.bmp –90 90 0

ground2.bmp –90 –90 0

Camera Direction Settings for Each Image of the Skybox

T A B L E 8 - 2

115C H A P T E R 8

Ad
di

ng
Sk

ie
s

an
d

H
or

iz
on

s
to

Yo
ur

Le
ve

lsRendering and Saving Each Image

To create each image from Terragen’s main window, enter the Head, Pitch, and
Bank settings and then click Render Image. A bitmap appears in the resulting Image
dialog. You can then save the image by clicking the Save button in the top-left corner
of the Image dialog.

After completing the steps for creating each image, you should have a directory
that contains your brand-new front.bmp, back.bmp, left.bmp, right.bmp, sky.bmp,
and ground2.bmp images. You can now load these into your game project and create
the skybox.

Skybox Code Example

This example takes your new images and renders them to create a seamless sky with
an endless horizon. For this example, you can use either the WinMGHBook project
or the Xbox360MGHBook project at the BaseCode link.

Once the base project is ready, you will need to load the images you created with
Terragen. To add the images to your project, copy them into the Images directory
that already exists in your project. Next, click the Show All Files button in the Solu-
tion Explorer, select the new images that appear under the Images folder, and then
right-click and choose Include in Project. When you are done, you will see all of your
skybox images referenced under the Images folder in the Solution Explorer.

Now that your images are referenced in your game project; the next step is to de-
clare variables for storing them. These must be declared at the top of your game class.

Texture2D mTexFront, mTexBack, mTexGround, mTexLeft, mTexRight, mTexSky;

To assign these images at startup, place the image-loading code inside the
LoadGraphicsContent() method:

mTexFront = content.Load<Texture2D>(".\\Images\\front");

mTexBack = content.Load<Texture2D>(".\\Images\\back");

mTexLeft = content.Load<Texture2D>(".\\Images\\left");

mTexRight = content.Load<Texture2D>(".\\Images\\right");

mTexGround = content.Load<Texture2D>(".\\Images\\ground2");

mTexSky = content.Load<Texture2D>(".\\Images\\sky");

Textured ground already exists in the base project. It is currently tiled ten times, but
the skybox ground texture is not designed for tiling. Inside init_ground(), all uv.X or
uv.Y values set to 10.0f must be replaced with code that sets them to 1.0f to ensure the
texture is mapped to the ground surface on a one-to-one basis. Also, to replace the ex-
isting image with the ground2.bmp image from Terragen, in step 4 of draw_ground(),

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E116

marked by the comments in the code, replace the instruction that sets the texture using
mTexGrass with an instruction to use the mTexGround texture:

mfxTexture.SetValue(mTexGround);

If you try the program now, you will see the same 3D world, but this time the
ground will be covered with the texture you created in Terragen.

Once the ground is properly rendered with the texture, the surrounding walls and
ceiling of the skybox can be added. By design, the edges of the skybox surround the
outer perimeter of the world, so the skybox walls must be bigger than the world
walls. A class-level definition for the skybox panel size must be proportionately
larger than the world boundary size:

private const float EDGE = BOUNDARY * 2.0f;

A set of vertices is required to store the vertex position, texture, and color informa-
tion for a rectangle that can be used to make each surface of the skybox. This same sur-
face can be redrawn using a different set of rotations and translations to create each
panel of the skybox as long as the appropriate texture is used each time it is drawn. Be-
cause only one rectangular surface is required to draw all sides of the skybox, the ver-
tex array only needs to be declared with room for four sets of coordinates:

private VertexPositionColorTexture[] mVertSkybox = new

VertexPositionColorTexture[4];

The init_skybox() method contains the necessary code to set up the vertices that
can be used to render a skybox panel. As mentioned earlier, the same four vertices are
used to draw each panel. Remember that the length of the panels must be greater than
the length of the world size. The module-level definition, EDGE, is used to set the X
and Z values of each vertex to ensure that the panels are large enough to surround the
perimeter of the 3D world.

Each time these coordinates are used to draw a panel, they must be rotated and
translated into position. Notice how the rectangle’s X, Y, and Z coordinates are cen-
tered about the origin where X=0, Y=0, and Z=0. This enables easier rendering.

Note that the UV coordinates that enable texture mapping are between 0.003f and
0.997f. This shortened range from the usual 0.0f to 1.0f setting removes the white seam
that outlines each bitmap. The UV offset of 0.003f preserves the illusion of the skybox.

private void init_skybox()

{

Vector3 pos = new Vector3(0.0f, 0.0f, 0.0f);

Vector2 uv = new Vector2(0.0f, 0.0f);

const float max = 0.997f; // offset to remove white seam at top edge

117C H A P T E R 8

Ad
di

ng
Sk

ie
s

an
d

H
or

iz
on

s
to

Yo
ur

Le
ve

lsconst float min = 0.003f; // offset to remove white seam at bottom edge

// set position, image, and color data for each vertex in rectangle

pos.X = +EDGE; pos.Y = -EDGE; uv.X = min; uv.Y = max; //Bottom L

mVertSkybox[0] = new VertexPositionColorTexture(pos, Color.White, uv);

pos.X = +EDGE; pos.Y = +EDGE; uv.X = min; uv.Y = min; //Top L

mVertSkybox[1] = new VertexPositionColorTexture(pos, Color.White, uv);

pos.X = -EDGE; pos.Y = -EDGE; uv.X = max; uv.Y = max; //Bottom R

mVertSkybox[2] = new VertexPositionColorTexture(pos, Color.White, uv);

pos.X = -EDGE; pos.Y = +EDGE; uv.X = max; uv.Y = min; //Top R

mVertSkybox[3] = new VertexPositionColorTexture(pos, Color.White, uv);

}

To be sure the skybox is initialized only once, add the call statement to the Initial-
ize() method:

init_skybox();

To draw each panel of the skybox, you must add the draw_skybox() method to the
game class. This method is designed to iterate through all five moving panels of the
skybox, transform each panel into place, and render it with the correct texture. Step 1
declares a set of matrices and initializes each matrix with a default value. In step 2,
the transformations are assigned so that the sides and the ceiling of the skybox are
drawn where they belong. Also in step 2, the corresponding texture for each panel is
set. In step 3, the I.S.R.O.T. sequence is used to calculate the cumulative transforma-
tion. Of course, this order of transformations is crucial and cannot change. The last
extra translation, matCam, translates the skybox panels so that they move with the
camera and give the illusion of an unreachable horizon.

private void draw_skybox()

{

const float kfDrop = -1.2f;

// 1: declare matrices and set defaults

Matrix matIdentity = Matrix.Identity;

Matrix matRotY = Matrix.CreateRotationY(0.0f);

Matrix matRotX = Matrix.CreateRotationX(0.0f);

Matrix matTransl = Matrix.CreateTranslation(0.0f, 0.0f, 0.0f);

Matrix matScale = Matrix.CreateScale(1.0f, 1.0f, 1.0f);

Matrix matCam //move box with camera to make horizon unreachable.

= Matrix.CreateTranslation(cam.m_vPos.X,0.0f, cam.m_vPos.Z);

// 2: set transformations and also texture for each wall

for (int i = 0; i < 5; i++){ // front, right, left, right, & sky

switch (i){

case 0: // back wall

matTransl = Matrix.CreateTranslation(0.0f, kfDrop, EDGE);

mfxTexture.SetValue(mTexBack); break;

case 1: // right wall

matTransl = Matrix.CreateTranslation(-EDGE, kfDrop, 0.0f);

matRotY = Matrix.CreateRotationY(-(float)Math.PI / 2.0f);

mfxTexture.SetValue(mTexRight); break;

case 2: // front wall

matTransl = Matrix.CreateTranslation(0.0f, kfDrop, -EDGE);

matRotY = Matrix.CreateRotationY((float)Math.PI);

mfxTexture.SetValue(mTexFront); break;

case 3: // left wall

matTransl = Matrix.CreateTranslation(EDGE, kfDrop, 0.0f);

matRotY = Matrix.CreateRotationY((float)Math.PI / 2.0f);

mfxTexture.SetValue(mTexLeft); break;

case 4: // sky

matTransl = Matrix.CreateTranslation(0.0f,EDGE+kfDrop,0.0f);

matRotX = Matrix.CreateRotationX(-(float)Math.PI / 2.0f);

matRotY =

Matrix.CreateRotationY(3.0f*(float)Math.PI / 2.0f);

matScale = Matrix.CreateScale(1.0f, 1.0f, 1.0f);

mfxTexture.SetValue(mTexSky); break;

}

// 3: build cumulative world matrix using I.S.R.O.T. sequence

mMatWorld = matIdentity*matScale*matRotX*matRotY*matTransl*matCam;

// 4: pass wvp matrix to shader

mfxTex_WVP.SetValue(mMatWorld * mMatView * mMatProj);

mfxTex.CommitChanges();

// 5: draw object - select vert type, primitive type, # primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColorTex;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColorTexture>(

PrimitiveType.TriangleStrip, mVertSkybox, 0, 2);

}

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E118

119

To trigger the code to draw the skybox from the Draw() method, you must place
the call statement between the Begin() and End() statements for the mfxTex object,
which references the TextureShader.fx file:

draw_skybox();

When you run this project, your majestic skybox will surround your world. As
you move, you discover that you can never reach the horizon.

This example is not yet complete, however. You may have discovered that you can
travel over the edge of the ground and see the bottom of the skybox—this spoils the
illusion. To fix this problem, Chapter 16, “Collision Detection,” shows how to add
collision detection just inside the outer edges of your world to prevent players from
reaching the world’s edge where they can see the bottom of your skybox.

There is another common method for building a skybox, which involves creating a
model of the top half of a sphere and mapping a sky texture to it. However, there are
some advantages to using Terragen. Terragen generates the images for you and also
has the ability to create terrain to match your sky and horizon. The creation of terrain
with height detection will be explained in Chapter 25.

Whether you use Terragen or a 3D model, coding a skybox is easy, and the skybox
will make your world look much more real.

CHAPTER 8 REVIEW EXERCISES

1. Create your own skybox by following the steps outlined in this chapter.

2. In your code solution from Exercise 1, change the min and max declarations
so that the range falls between 0.0f and 1.0f. Then run the project and look
at the seams around the bitmaps. Notice how the original offset prevents
the white seam from appearing.

C H A P T E R 8

Ad
di

ng
Sk

ie
s

an
d

H
or

iz
on

s
to

Yo
ur

Le
ve

ls

This page intentionally left blank

CHAPTERCHAPTER99
Index BuffersIndex Buffers

121

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

122

ON the surface, a chapter dedicated to building an indexed grid of vertices
might not seem very exciting, but once you see what’s underneath,

you’ll change your mind. The index buffer is a powerful and efficient structure for
referencing large amounts of vertex data. The index buffers in conjunction with ver-
tex buffers also enable dynamic updates to position, texture, color, and surface nor-
mal data. Together, these two functions enable great effects such as water and hilly
terrain. Remember what water looked like in Frogger? Now, think of what water
looks like in Halo 2. Which do you prefer? If water ripples do not interest you, how
about terrain that isn’t flat or beautifully lit surfaces that use per-vertex lighting?
These are the sort of effects you can create with index buffers.

INDEX BUFFERS

If you rendered a surface or polygon with a large set of data to construct a series of
line or triangle strips, you would run into a problem. Using the methods you have ap-
plied until now, you would find that much of the vertex data needs to be stored twice.
The diagram on the left in Figure 9-1 shows how non-indexed vertices are duplicated
when drawing a line strip where multiple rows of data are used to create a rectangu-
lar surface. The diagram on the right in Figure 9-1 shows how indexing reduces stor-
age requirements because each vertex used only needs to be stored once.

All indexed vertices in the vertex buffer must be stored in a sequence that enables
proper rendering of the 3D object being drawn. The sequence must be arranged so

F I G U R E 9 - 1

Total vertices stored for non-indexed data (left) versus indexed data (right)

123

several subsets of vertices can be used for drawing in succession to render the com-
plete surface. When the index buffer is declared, it is sized to store one subset of verti-
ces. The vertices are referenced using a short array:

short[] indexArray = new short[int subsetVertexCount];

In Figure 9-2, indices for a subset of six vertices are stored in a short array. Later,
while the surface is being rendered, the index reference will be applied four times to
reference four subsets of six vertices to build the rectangle.

The index buffer is declared using the IndexBuffer class. Here is the syntax:

IndexBuffer indexBuffer = new IndexBuffer

(GraphicsDevice graphicsDevice,

Type indexType,

int subsetLength,

ResourceUsage resourceUsage,

ResourceManagementMode resourceManagementMode);

The first three parameters of the index buffer are self-explanatory. The last two
parameters allow you to customize how the index buffer is stored in memory to opti-
mize efficiency. For the material in this book, WriteOnly usage is required and a
ResourceManagementMode setting of Automatic is applied to allow the index
buffer to be copied to memory as needed.

C H A P T E R 9

In
de

x
Bu

ffe
rs

F I G U R E 9 - 2

The index buffer references two rows of data in the grid at a time.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E124

Once the indices have been defined, the SetData() method stores the index refer-
ences in the index buffer:

IndexBuffer indexBuffer.SetData< VertexType >

(short indexArray,

int startElement,

int elementCount,

SetDataOptions options);

The SetDataOptions parameter allows you to specify whether existing buffer data
may be overwritten during the SetData() operation. For the demonstrations in this book,
a setting of None is suitable, which allows portions of the buffer to be overwritten.

DYNAMICALLY UPDATING DATA WITH INDEX
BUFFERS AND VERTEX BUFFERS

By themselves, the VertexPositionColor, VertexPositionColorTexture,
VertexPositionTexture, and VertexPositionNormalTexture objects that you have
used until now will not permit live updates to the position, color, texture, and normal
data after they are initially set. Dynamic vertex buffers in combination with index
buffers, on the other hand, will permit updates to large amounts of vertex data. You
are going to want a structure like this when creating an effect such as water.

When initialized, the constructor for the vertex buffer takes parameters for the
current graphics device, vertex type, element count, resource properties, and re-
source management:

VertexBuffer vb = new VertexBuffer(

GraphicsDevice graphicsDevice,

Type vertexType,

int elementCount,

ResourceUsage usage,

ResourceManagementMode resourceManagementMode

);

The ResourceUsage parameter provides the option ResourceUsage.Dynamic |
ResourceUsage.WriteOnly to create a vertex buffer that can be written to and up-
dated at run time. Dynamic vertex buffers require a ResourceManagementMode set-
ting of Manual so they can be updated after they are initialized.

After the vertex data is loaded into an array, the vertex data is moved into the ver-
tex buffer with the SetData() method. Here is the syntax:

VertexBufferObject.SetData<VertexType>(

VertexType[] vertexArray,

int startIndex,

125

int elementCount,

SetDataOptions options);

Rendering Vertex Buffers with an Index Buffer Reference

The draw method you use for dynamic vertex buffers—using index buffers—differs
in three ways from the draw methods you have used until now:

� The SetSource() method is used to set the vertex buffer that stores the grid,
the starting element, and the size of the vertex type in bytes:

gfx.GraphicsDevice.Vertices[0].SetSource

(VertexBuffer vb,

int startingElement,

int sizeOfVertex (in bytes));

� The GraphicsDevice’s Indices object is set with the corresponding
IndexBuffer object you defined during the program setup:

gfx.GraphicsDevice.Indices = indexBuffer;

� The DrawIndexedPrimitives() method is used to reference a series of vertex
subsets that are rendered in succession to draw the entire polygon or surface.
DrawIndexedPrimitives() is called for each vertex subset.

gfx.GraphicsDevice.DrawIndexedPrimitives(

PrimitiveType primitiveType,

int startingPointInVertexBuffer,

int minimumVerticesInBuffer,

int totalVerticesInBuffer,

int indexBufferStartingPoint,

int indexBufferEndPoint);

Grid Using Index Buffer Example

This code will implement an index buffer and dynamic vertex buffer to draw a rect-
angle from a set of vertices that is three vertices wide and five vertices long (see Figure
9-3). Drawing a rectangle with a set of vertices that uses index buffers might seem like
a lackluster chore, but don’t be fooled. Index buffers have grit. This little example
serves as the foundation for creating water waves in Chapter 10, “Combining Images
for Better Visual Effects”; creating terrain with height detection in Chapter 25, “Ter-
rain with Height Detection”; and enabling better lighting across primitive surfaces in
Chapter 20, “Lighting.”

C H A P T E R 9

In
de

x
Bu

ffe
rs

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E126

This example begins with ei-
ther the WinMGHBook or
Xbox360MGHBook project in
the BaseCode directory in the
download from this book’s
website.

To make this vertex reference
system work, an index buffer to
reference a grid of vertices is re-
quired. Also, a vertex buffer ob-
ject is needed to store the
vertices. A vertex declaration
type is used to set up the buffer when it is being initialized. Add these object declara-
tions to the module area of your game class:

private IndexBuffer mIB; // reference vertices

private VertexBuffer mVB; // dynamic vertex storage

private VertexPositionColorTexture[] mVertGrid; // store vertices

The rows and columns used to draw the rectangle will be referenced with identifi-
ers to help explain how the vertices are arranged. Add these identifiers to the module
level of the game class.

const int NUM_COLS = 3;

const int NUM_ROWS = 5;

Indices for referencing the vertex buffer are initialized when the program begins.
The index buffer array is sized to store the total number of vertices contained in one
subset of the vertex buffer. The code that you need to set up the index reference is con-
tained in the init_indices() method. Add this method to set up your index reference:

private void init_indices(){

short[] shrtIndexArray; // stores indices for 1 subset

shrtIndexArray = new short[2*NUM_COLS]; // sized to store 1 subset

mIB = new IndexBuffer(gfx.GraphicsDevice, // our gfx device

typeof(short), // set type to short

shrtIndexArray.Length, // int size in bytes

ResourceUsage.WriteOnly, // memory use options

ResourceManagementMode.Automatic);

int i = 0;

F I G U R E 9 - 3

Grid rendered from an index buffer

127C H A P T E R 9

In
de

x
Bu

ffe
rs// store indices for one subset of vertices

// see Figure 9-2 for the first subset of indices

for (int col = 0; col < NUM_COLS; col++){

shrtIndexArray[i++] = (short)col;

shrtIndexArray[i++] = (short)(col + NUM_COLS);

}

mIB.SetData<short>(shrtIndexArray,

0, // element start

shrtIndexArray.Length, // element count

SetDataOptions.None); // options

}

To initialize the short array and index buffer when the program begins, add the
call statement to the Initialize() method:

init_indices();

A dynamic VertexBuffer object is declared to store the vertices used to build the
rectangle. The properties ResourceUsage.Dynamic | ResourceUsage.WriteOnly, in
the buffer’s declaration, allow the buffer’s data to be changed for each frame. This
dynamic property won’t actually be used for this demonstration, but it is being set
here for use later. A vertex type array, mVertGrid, assists with the setup of the vertex
data, which is then transferred into the vertex buffer. mVertGrid stores all position,
texture, and color data for the grid. When the vertex buffer is initialized or updated,
the mVertGrid array is referenced to obtain the data for each vertex in the grid. To set
up your vertices in this efficient and dynamic buffer, add init_dynamic_vb() to your
game class:

private void init_dynamic_vb(){

// initialize dynamic vertex buffer that can be updated at run time

mVB = new VertexBuffer(

gfx.GraphicsDevice, // gfx device

typeof(VertexPositionColorTexture), // vertex type

NUM_COLS * NUM_ROWS, // element count

ResourceUsage.Dynamic | ResourceUsage.WriteOnly,

ResourceManagementMode.Manual); // memory use

// size to store all verts in rectangle

mVertGrid = new VertexPositionColorTexture[NUM_ROWS * NUM_COLS];

float f_x = (float)2 * BOUNDARY / (NUM_COLS - 1); // column width

float f_z = (float)2 * BOUNDARY / (NUM_ROWS - 1); // row height

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E128

// store x, y, and z for each point in rectangle

for (int iRow = 0; iRow < NUM_ROWS; iRow++){

for (int iCol = 0; iCol < NUM_COLS; iCol++){

// generate x, y, z in rectangle

float fx, fy, fz;

fx = -BOUNDARY + iCol * (f_x);

fy = 0.0f;

fz = -BOUNDARY + iRow * (f_z);

// set X, Y, Z

mVertGrid[iCol + iRow*NUM_COLS].Position =new Vector3(fx,fy,fz);

// set color

mVertGrid[iCol + iRow * NUM_COLS].Color = Color.White;

// set uv coordinates to map texture 1:1

float u, v;

u = 1.0f - ((float)iCol / ((float)NUM_COLS - 1));

v = 1.0f - ((float)iRow / ((float)NUM_ROWS - 1));

mVertGrid[iCol+iRow*NUM_COLS].TextureCoordinate

= new Vector2(u,v);

}

}

// commit data to vertex buffer

mVB.SetData<VertexPositionColorTexture>

(mVertGrid, 0, mVertGrid.Length, SetDataOptions.None);

}

The vertices must be set when the program begins, so add a call to initialize the
grid vertices in the Initialize() method:

init_dynamic_vb();

When a dynamic vertex buffer is being rendered, the SetSource() method reads
data from the vertex buffer mVB, which was initialized earlier. The vertex format is
passed into the SetSource() method, so the GraphicsDevice knows how to extract the
data, and the GraphicsDevice’s Indices property is assigned the index buffer mIB.
Finally, DrawIndexedPrimtives() is executed once for each subset of strips in the grid.
Add draw_grid() to the games class:

private void draw_grid(){

// 1: declare matrices

Matrix matIdentity, matTransl;

129

matTransl = Matrix.CreateTranslation(0.0f, -0.5f, 0.0f);

// 2: initialize matrices

matIdentity = Matrix.Identity;

// 3: build cumulative world matrix using I.S.R.O.T. sequence

mMatWorld = matIdentity * matTransl;

// 4: pass wvp matrix to shader

mfxTex_WVP.SetValue(mMatWorld * mMatView * mMatProj);

mfxTex.CommitChanges();

// 5: draw object - select vertex type, primitive type, index, and draw

gfx.GraphicsDevice.VertexDeclaration = mVertPosColorTex;

gfx.GraphicsDevice.Vertices[0].SetSource(mVB, 0,

VertexPositionColorTexture.SizeInBytes);

gfx.GraphicsDevice.Indices = mIB;

// draw grid one row at a time

for (int z = 0; z < NUM_ROWS - 1; z++){

gfx.GraphicsDevice.DrawIndexedPrimitives(

PrimitiveType.LineStrip,// primitive

z * NUM_COLS, // start point in buffer for drawing

0, // minimum vertices in vertex buffer

NUM_COLS * NUM_ROWS, // total vertices in buffer

0, // start point in index buffer

2 * (NUM_COLS - 1)); // end point in index buffer

}

}

To draw the grid using the texture shader, call draw_grid() from between the Be-
gin() and End() statements for the TextureShader.fx object inside the Draw() method:

draw_grid();

Also, you will need to comment out the instruction to draw the ground,
draw_ground(), to see the grid when it renders.

When you run the program, the grid appears as shown back in Figure 9-3. How-
ever, if the grid is drawn with triangle strips, by changing LineStrip to TriangleStrip
in draw_grid(), the output will fill in the area between the vertices and display a
rectangle.

C H A P T E R 9

In
de

x
Bu

ffe
rs

Bystanders might not be impressed that you just created a rectangular surface, but
don’t be bothered. Let’s put this demo on the backburner for now. We’ll return to it
in later chapters to let it rip.

CHAPTER 9 REVIEW EXERCISES

1. Try the step-by-step example in this chapter. Change the number of rows
to 125 and the number of columns to 55. View the project using line strips
and triangle strips.

2. How many vertices can be stored in a vertex buffer that houses a grid 60
rows high and 35 rows wide?

3. Name the property that is set in the vertex buffer to allow its data to be
updated at run time.

4. List three ways that the DrawIndexedPrimitives() method is different from
the DrawUserPrimitives() method.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E130

CHAPTERCHAPTER1010
CombiningCombining
Images forImages for
Better VisualBetter Visual
EffectsEffects

131

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

132

THIS chapter demonstrates various ways of combining images to generate
compelling visual effects; more specifically, sprites and

multitexturing will be discussed. By the end of the chapter, you will be able to use image
files that store more than one image frame to create cool heads-up display (HUD) anima-
tions. You will also be able to blend two textures together to generate intricate detail for
effects such as terrain or a water simulation. Although games are not defined solely by
their aesthetics, no one has ever complained that a game’s graphics looked too good.
Your players will appreciate any effort you put into maximizing your visual effects.

SPRITES

A sprite is a series of images stored in one image file for the purpose of creating an ani-
mation. You can think of a sprite animation as being akin to old-style page-flipping
animations used to create simple cartoons. The sprite is animated at run time by ad-
justing the texture’s UV coordinates at fixed time intervals.

Sprites store multiple image frames because adjusting UV coordinates at run
time—to switch image frames—is faster than switching to a different image file.

2D Sprites

The 2D sprite, by design, is drawn flat against the window regardless of the viewer’s
position in the world. For 3D games, a 2D sprite offers a very simple way to custom-
ize and animate the heads-up display, or a game dashboard. This type of sprite could
be used to create an animated radar scope on the console of a flight simulation game.
A 2D sprite can even be used to create an animated third person. For example, in a
driving game, a series of images showing various views of a jeep’s windshield and ro-
tating monster tires would make the player feel like they are king of the off-road.

SpriteBatch

For the 2D effect, a sprite object is created with the SpriteBatch class:

SpriteBatch spriteObject = new SpriteBatch(this.gfx.GraphicsDevice);

Primitive objects are not needed to display the image when using SpriteBatch
methods. As a result, setting up the sprite is easier than setting up textured primitives;
the SpriteBatch object draws the image on its own. For the 2D object, all drawing is
done between the SpriteBatch object’s Begin() and End() methods.

The syntax for the Draw() method is designed for drawing on a 2D window. The
first parameter references the Texture2D object that stores the image file, the second
parameter references the position, height, and width of a rectangle in the 2D win-
dow, and the third parameter references the starting pixel’s X and Y position in the
image and the height and width—in pixels—to be drawn. The fourth parameter sets

133C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

s

the color of the sprite in case you want to shade it differently from the colors already
in the image.

mSpriteBatch.Draw(

// Texture2D object

mTex2DSprite,

// window

new Rectangle(

int TopLeftXWindowCoord,

int TopLeftYWindowCoord,

int DisplayWidthInPixels,

int DisplayHeightInPixels),

// image source

new Rectangle(

int startingXPixel,

int startingYPixel,

int PixelWidthDrawn,

int PixelHeightDrawn),

// color

Color.ColorType);

The rendering for a sprite batch object is still triggered from the Draw() method.

Sprites Implemented with Textures

The SpriteBatch class is limited to drawing images that are flat. You must use tex-
tured primitives without the SpriteBatch class to draw your sprite inside the 3D envi-
ronment. When a sprite is drawn in a 3D environment, the image frames are swapped
at regular intervals by adjusting the UV coordinates.

Resetting 3D Drawing Settings after
Drawing with a SpriteBatch

The 2D SpriteBatch automatically resets the GraphicsDevice’s render states to draw
2D graphics in the window. While this is helpful, if the settings are not restored to en-
able 3D rendering, you may not see your 3D graphics—and if you do, they may not
display properly. Ideally, when rendering your SpriteBatch objects, you should draw
them last in the Draw() method so they layer on top of the 3D graphics. Also, the fol-
lowing states should be reset to enable 3D graphics after drawing the SpriteBatch:

GraphicsDevice.RenderState.CullMode = CullMode.None; // see both sides

GraphicsDevice.RenderState.DepthBufferEnable = true; // enable 3D on Z

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E134

GraphicsDevice.RenderState.AlphaBlendEnable = false;// disable transparent

GraphicsDevice.RenderState.AlphaTestEnable = false;// per pixel test

// re-enable tiling

GraphicsDevice.SamplerStates[0].AddressU = TextureAddressMode.Wrap;

GraphicsDevice.SamplerStates[0].AddressV = TextureAddressMode.Wrap;

Instead of manually resetting the render states, you can add the
SaveStateMode.SaveState as a parameter for the SpriteBatch object’s Begin() instruc-
tion when drawing it. This will restore the render states back to their original settings
before the sprite is drawn:

spriteBatch.Begin(SpriteBlendMode.AlphaBlend,

SpriteSortMode.Immediate,SaveStateMode.SaveState);

Rendering Sprites within the Title
Safe Region of the Window

When running games on the Xbox 360, some televisions only show 80% of the game
window. The PC shows 100% of the window, so some adjustments may be needed to
account for this difference between the platforms. Here is a routine that returns the
bottom-left pixel in the window for drawing a SpriteBatch object so it is positioned
properly in the visible region of the window:

Vector2 get_titleSafe_bottomLeft_pixel()

{

const int MARGIN = 20; // bottom and left margin for PC

int ipcYpx = gfx.GraphicsDevice.Viewport.Height

- MARGIN - (IMAGEFRAME_H);

Vector2 v2px = new Vector2(MARGIN, ipcYpx);

#if XBOX // adjust since tv may only show 80% of window

const float kPercent = 0.2f;

v2px.X = gfx.GraphicsDevice.Viewport.Width * kPercent / 2.0f;

v2px.Y = gfx.GraphicsDevice.Viewport.Height * (1 - kPercent / 2.0f);

v2px.Y -= IMAGEFRAME_H;

#endif

return v2px;

}

SpriteBatch on the Heads-Up-Display Example

This example animates a two-frame sprite. In this example, the SpriteBatch class is
used to swap frames within the image so that it appears in the 2D game window as a
blinking light. Figure 10-1 shows the sprite image on the right and the warning light

135C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

s

animation on the left at each interval. To the gamer, the image of the light appears to
blink on and off every 0.5 seconds.

This example begins with either the WinMGHBook project or the
Xbox360MGHBook project found in the BaseCode download from this book’s
website. This example uses a SpriteBatch object to access methods for drawing a 2D
sprite on the 2D game window. The Texture2D object is used to load and reference
the image. To try this example, first add these two declarations to the modules level
of the game class:

private SpriteBatch mSpriteBatch; // SpriteBatch object

private Texture2D mTex2DSprite; // load and set image that is rendered

A timer is used to trigger the frame change for the sprite which creates the blink-
ing light animation. To implement the timer, module-level declarations are re-
quired to store the frame number (mIFrameNum), the time spent in the current timer
interval (mDblCurrentFrame), and the time lapse since the last interval
(mDblPreviousFrame):

int mIFrameNum = 1;

private double mDblCurrentFrame = 0; // time in current interval

private double mDblPreviousFrame = 0; // interval saved as of last frame

Next, the Timer() method is added to the methods section to check for the comple-
tion of each 0.5 second interval. The Timer() method calculates the remainder of the
amount of time since the interval started, divided by 500 milliseconds. When the re-
mainder has increased compared to the remainder calculated for the previous frame,

F I G U R E 1 0 - 1

An animated sprite in the game window

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E136

the interval is incomplete. When the remainder has decreased since the previous
frame, a new interval has been entered, and the Timer() method returns a positive re-
sult. The positive result triggers a frame swap for the sprite. Checking the remainders
in this manner prevents the variable from growing beyond the variable’s storage ca-
pacity because it is reset every interval. Even though the remainder is usually positive
when a new interval is detected, the overshot from the interval start is miniscule, and
tracking the remainder makes this algorithm self-correcting. In this manner, the
Timer() implements animations that appear to be synchronized with real time:

bool Timer(GameTime gameTime){

bool bNewInterval;

double dblMS = (double)gameTime.ElapsedRealTime.Milliseconds;

// increment by time lapse between frames and stop var overflow

mDblCurrentFrame += dblMS;

mDblCurrentFrame = mDblCurrentFrame % 500;

// used up time increasing so interval is incomplete

if (mDblCurrentFrame >= mDblPreviousFrame)

bNewInterval = false;

// current time was reset to zero so interval complete

else

bNewInterval = true;

mDblPreviousFrame = mDblCurrentFrame;

return bNewInterval;

}

The SpriteBatch object is initialized when the program begins in Initialize():

mSpriteBatch = new SpriteBatch(this.gfx.GraphicsDevice);

The warninglight.png file is also loaded by code into the Texture2D object in the
LoadGraphicsContent() method. The warninglight.png file can be downloaded from
this book’s website. The image needs to be added to your project so it can be loaded
by the content pipeline. To reference this in your project, right-click the Images folder
in the Solution Explorer, choose Add, and then select Existing Item. A dialog will ap-
pear that allows you to navigate to the image and select it. Once the warninglight.png
file is selected, it will appear in your project within the Solution Explorer, and you
can then load it with the following instruction:

mTex2DSprite = content.Load<Texture2D>(".\\Images\\warninglight");

To ensure the sprite is positioned properly in the game window, add the routine
that was discussed earlier to retrieve the starting pixel for drawing in the window:

137C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

sVector2 get_titleSafe_bottomLeft_pixel(){

const int MARGIN = 20; // bottom and left margin for PC

const int IMAGEFRAME_H = 61;

int ipcYpx = gfx.GraphicsDevice.Viewport.Height

- MARGIN - (IMAGEFRAME_H);

Vector2 v2px = new Vector2(MARGIN, ipcYpx);

#if XBOX // adjust - tv may only show 80% of window

const float kPercent = 0.2f;

v2px.X = gfx.GraphicsDevice.Viewport.Width * kPercent/2.0f;

v2px.Y = gfx.GraphicsDevice.Viewport.Height*(1 - kPercent/2.0f);

v2px.Y -= IMAGEFRAME_H;

#endif

return v2px;

}

The next method to add is draw_2D_sprite(). This method is simple to imple-
ment, as is explained in the code comments. This current example shows a sprite
with only two frames, but this can easily be changed if needed. Also, the three con-
stant values—kTotalFrames, kFrameW, and kFrameH—can be modified to handle
a new image with a different frame count and pixel dimension size.

draw_2D_sprite() checks the timer to see if the set interval has completed. If the
timer returns a true value, indicating that it just ticked into a new interval, the frame
in the image is incremented or reset. The SpriteBatch() calls the Begin() method to start
the drawing. Begin() allows the developer to set the SpriteBlendMode option to spec-
ify the type of blending. This could include:

� AlphaBlend For removing masked pixels

� Additive For summing source and destination colors

� None For standard rendering

If you want to remove the transparent pixels , you wil l use
SpriteBlendMode.AlphaBlend as a parameter in the SpriteBatch’s Begin() method.
The picture in the warninglight.png file was created with a transparent background
so the pixels will not appear when the image is drawn with alpha blending.

The SpriteBatch’s Draw() method applies four parameters. The first parameter is
the Texture2D object. In this case, the mTex2DSprite object is used to store the
warninglight.png file. The drawing position and pixel area covered in the window
are set in the second parameter. Then, the starting pixel and corresponding height
and width for the image frame are set in the third parameter. Finally, you could set a
color in the fourth parameter to shade the sprite, but in this case white is used to draw

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E138

the sprite with the original image color. To make all of this happen, add
draw_2D_sprite() to your project:

void draw_2D_sprite(GameTime gameTime, Vector2 v2pixel){

// change pixel h&w and frame count if different sprite used

const int kFrameW = 61; const int kFrameH = 61;

const int kTotalFrames = 2;

if (Timer(gameTime)){ // adjust frame every 500ms

mIFrameNum += 1;

if (mIFrameNum >= kTotalFrames)

mIFrameNum = 0; // restart if last frame

}

int iWinX = (int)v2pixel.X; int iWinY = (int)v2pixel.Y;

mSpriteBatch.Begin(SpriteBlendMode.AlphaBlend);

mSpriteBatch.Draw(

mTex2DSprite, // sprite image

new Rectangle(iWinX, iWinY, // X, Y window position

kFrameW, kFrameH), // pixel W&H area used on window

new Rectangle(0,mIFrameNum*kFrameH,// starting X&Y pixels in image

kFrameW, kFrameH), // pixel W&H used in image

Color.White); // color

mSpriteBatch.End();

}

draw_2D_sprite() needs to be called in the Draw() method after methods for
drawing the 3D objects are called so that the 2D sprite can overlay the 3D graphics:

draw_2D_sprite(gameTime, get_titleSafe_bottomLeft_pixel());

As mentioned earlier, the SpriteBatch object automatically adjusts the render state
of the GraphicsDevice object to draw in 2D but does not change it back. To draw in
3D, the original settings must be reset in the Draw() method after the SpriteBatch ob-
ject is drawn:

gfx.GraphicsDevice.RenderState.CullMode= CullMode.None;//see both sides

gfx.GraphicsDevice.RenderState.DepthBufferEnable= true;//re-enable 3D on Z

gfx.GraphicsDevice.RenderState.AlphaBlendEnable=false;//disable transparent

gfx.GraphicsDevice.RenderState.AlphaTestEnable =false;//per pixel testing

// re-enable tiling

gfx.GraphicsDevice.SamplerStates[0].AddressU =TextureAddressMode.Wrap;

gfx.GraphicsDevice.SamplerStates[0].AddressV =TextureAddressMode.Wrap;

139

When you run the program, the light will appear as shown back in Figure 10-1.

Sprite Texture Example

The previous example is useful for im-
plementing 2D sprites in the game
window. This example shows how to
create a sprite inside your 3D world.
When the example is complete, a flash-
ing “danger” sign will appear in your
game. Maybe you don’t need a flash-
ing danger sign, but you need a flash-
ing billboard on your speedway, or
maybe you want to display scrolling
text on one of the objects in your 3D
world. A sprite texture can do this.
You could even use a similar effect to
create a cartoon in your game.

To get these effects off the window
and inside your game world, you will
need to use textured primitive objects.
The frames in the sprite are swapped
by modifying the UV coordinates at
the start of each interval. The fraction
of the image displayed in each frame is
based on the total frames stored in the
image. The sprite used for this exam-
ple has just two frames. Figure 10-2
shows the two frames of the image on
the left and the animation on the right
at different intervals.

This example begins with either the WinMGHBook project or the
Xbox360MGHBook project in the BaseCode folder of this book’s download. Also,
the dangersign.png must be downloaded from this book’s website and referenced in
your project from the Solution Explorer.

An array of four vertices, mVertSprite, will be used to render a triangle strip with a
danger sign sprite texture. This vertex object declaration is needed at the module
level of the game class so the vertices can be stored, updated, and used for drawing
while the game runs:

private VertexPositionColorTexture[] mVertSprite = new

VertexPositionColorTexture[4];

C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

s

F I G U R E 1 0 - 2

Two frames of an image (left) and
animation (right)

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E140

The position, texture, and color data are set when the program begins. Add
init_3DSprite_surface() to the game class to set up these vertices for the rectangle
used to display the danger sign:

private void init_3DSprite_surface(){

// initialize when program starts

mVertSprite = new VertexPositionColorTexture[4];

// bottom right

Vector2 uv = new Vector2(1.0f, 1.0f);

Vector3 pos = new Vector3(-0.5f, 0.0f, 0.0f);

mVertSprite[0] = new VertexPositionColorTexture(pos, Color.White, uv);

// bottom left

pos.X = 0.5f; pos.Y = 0.0f; pos.Z = 0.0f; uv.X = 0.0f; uv.Y = 1.0f;

mVertSprite[1] = new VertexPositionColorTexture(pos, Color.White, uv);

// top right

pos.X = -0.5f; pos.Y = 1.0f; pos.Z = 0.0f; uv.X = 1.0f; uv.Y = 0.0f;

mVertSprite[2] = new VertexPositionColorTexture(pos, Color.White, uv);

// top left

pos.X = 0.5f; pos.Y = 1.0f; pos.Z = 0.0f; uv.X = 0.0f; uv.Y = 0.0f;

mVertSprite[3] = new VertexPositionColorTexture(pos, Color.White, uv);

}

The four vertices that are used to draw the rectangle with the danger sign texture
must be initialized when the program launches. To do this, inside Initialize(), add the
following call to init_3DSprite_surface():

init_3DSprite_surface();

Also, a Texture2D object is required to store the texture, so a declaration for
mTexDanger needs to be in the module declarations area of the game class:

private Texture2D mTexDanger;

The sprite contained in the dangersign.png file (shown in Figure 10-2) must be
read into memory when the program begins. To do this, add a statement to load the
image in the LoadGraphicsContent() method:

mTexDanger = content.Load<Texture2D>(".\\Images\\dangersign");

The texture’s frame must alternate every 500 milliseconds, so a timer is used to
track when these intervals are completed. To assist with setting up the timer and
swapping texture frames, module-level declarations are used to store the current
frame number as well as times of the current and previous frame:

141C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

sprivate int mICurrentFrame = 0;

private double mDblPreviousFrame = 0; // interval saved as of last frame

private double mDblCurrentFrame = 0;

The timer code used for this example follows the same algorithm used in the previ-
ous example. This time, it will set the interval for the textured sprite. Add Timer() to
enable frame swapping every 500 milliseconds:

bool Timer(GameTime gameTime) {

bool bNewInterval;

double dblMS = (double)gameTime.ElapsedRealTime.Milliseconds;

// increment by time lapse between frames and stop var overflow

mDblCurrentFrame += dblMS;

mDblCurrentFrame = mDblCurrentFrame % 500;

// used up time increasing so interval is incomplete

if (mDblCurrentFrame >= mDblPreviousFrame)

bNewInterval = false;

// current time was reset to zero so interval complete

else

bNewInterval = true;

mDblPreviousFrame = mDblCurrentFrame;

return bNewInterval;

}

When animating sprites, you must update the UV coordinates to switch frames.
Since the texture frames are arranged vertically in this example, when the timer sig-
nals the completion of an interval, the V coordinate for each vertex is adjusted to
switch frames. If you need to use a different sprite, with a different number of frames
or dimensions, this method could easily be employed by adjusting the constants
kIFrameHeight and kITotalFrames. Add update_sprite_uv() to your game class:

void update_sprite_uv(GameTime gameTime){

const int kIFrameHeight = 512; // image frame height

const int kITotalFrames = 2; // total frames in image

if (Timer(gameTime)){

mICurrentFrame += 1;

if (mICurrentFrame >= kITotalFrames)

mICurrentFrame = 0;

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E142

float u, v;

// bottom right

u = mVertSprite[0].TextureCoordinate.X;

v = ((mICurrentFrame + 1.0f) * kIFrameHeight) / (2.0f * kIFrameHeight);

mVertSprite[0].TextureCoordinate = new Vector2(u, v);

// bottom left

u = mVertSprite[1].TextureCoordinate.X;

v = ((mICurrentFrame + 1.0f) * kIFrameHeight) / (2.0f * kIFrameHeight);

mVertSprite[1].TextureCoordinate = new Vector2(u, v);

// top right

u = mVertSprite[2].TextureCoordinate.X;

v = (kIFrameHeight * mICurrentFrame * 0.5f) / kIFrameHeight;

mVertSprite[2].TextureCoordinate = new Vector2(u, v);

// top left

u = mVertSprite[3].TextureCoordinate.X;

v = (kIFrameHeight * mICurrentFrame * 0.5f) / kIFrameHeight;

mVertSprite[3].TextureCoordinate = new Vector2(u, v);

}

update_sprite_uv() is called from Update() to ensure the texture frames are
swapped at the completion of each interval:

update_sprite_uv(gameTime);

The draw_3D_sprite() routine is identical to the routines used for drawing any
textured object that you have used until now. Check the comments in this code for
details:

private void draw_3D_sprite(){

// 1: declare matrices

Matrix matIdentity, matTransl;

matTransl = Matrix.CreateTranslation(0.0f, -0.9f, 2.0f);

// 2: initialize matrices

matIdentity = Matrix.Identity;

// 3: build cumulative world matrix using I.S.R.O.T. sequence

mMatWorld = matIdentity * matTransl;

// 4: pass wvp matrix to shader

143C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

smfxTex_WVP.SetValue(mMatWorld * mMatView * mMatProj);

mfxTex.CommitChanges();

// 5: draw object - select vertex type, primitive type, index, and draw

gfx.GraphicsDevice.VertexDeclaration = mVertPosColorTex;

mfxTexture.SetValue(mTexDanger); // set texture

mfxTex.CommitChanges(); // commit texture

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColorTexture>

(PrimitiveType.TriangleStrip, // triangle strips

mVertSprite, // use sprite vertex

0, // vertex offset

2); // two primitive objects

}

Inside the Draw() method, just before the EndScene() method for the texture shader,
the texture sprite needs to be drawn. When transparency is involved, these transparent
objects must be rendered last after the opaque 3D objects have been drawn. To enable
transparency, several RenderStates for the GraphicsDevice must be adjusted. Alpha
blending must be enabled by setting AlphaBlendEnable = true. The opaque pixels are
drawn by setting SourceBlend = Blend.SourceAlpha, and the masked portion of the im-
age is filtered out by setting DestinationBlend = Blend.InverseSourceAlpha. Alpha
blending is disabled when the drawing is complete.

Add this code to set up transparency for your textured sprite and to render it as the
last item in your list of 3D objects that are drawn:

gfx.GraphicsDevice.RenderState.AlphaBlendEnable = true;

gfx.GraphicsDevice.RenderState.SourceBlend = Blend.SourceAlpha;

gfx.GraphicsDevice.RenderState.DestinationBlend = Blend.InverseSourceAlpha;

draw_3D_sprite();

gfx.GraphicsDevice.RenderState.AlphaBlendEnable = false;

When you run the program, it will show a flashing danger sign in the 3D world, as
shown earlier in Figure 10-2. Unlike the sprite example, this sign can be viewed from
different angles as a player travels through the world.

MULTITEXTURING

Multitexturing is a technique that blends two or more images into one texture.
Multitexturing offers interesting possibilities for creating graphics effects, such as
adding detail texturing to terrain, simulating moving currents of water, and changing
the appearance of existing textures at run time.

Multitexturing uses multipass rendering to draw the same object more than once
for each frame. Each render of the object is triggered during one pass in the shader.
(There are several references to shaders in this example, so you may find a review of
Chapter 4, “Shaders,” to be helpful.) The developer can set each pass to specify how
the object is filtered, textured, and drawn.

Multipass Rendering from the Shader’s Technique

A shader that implements multitexturing is almost identical to the shader used for ap-
plying textures in Chapter 7, “Texturing Your Game World.” The only difference
with a multipass shader is that the technique implements more than one pass. In each
pass, different blending and filtering can be triggered and different functions within
the shader can be executed. This technique demonstrates typical syntax for a
multitexturing shader:

technique MultiTexture

{

pass p0 // first routine

{

// filtering

vertexshader = compile vs_1_1 vs();

pixelshader = compile ps_1_1 ps();

}

pass p1 // second routine

{

// filtering

// call same or different vs

vertexshader = compile vs_1_1 vs2();

// call same or different ps

pixelshader = compile ps_1_1 ps2();

}

}

Calling the Pass from the Draw() Method

Each pass is called from the XNA application’s Draw() method between the
BeginScene() and EndScene() methods for the shader.

You must select the shader’s passes between the effect’s Begin() and End() methods.
The code syntax presented here is similar to code that would be used to select and exe-
cute two passes within the shader. Note that the same draw_object() method is called,
but a different texture is assigned and is committed to the shader in each pass.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E144

145C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

seffect.Begin();

// 1st pass – begin, set 1st texture, commit, draw, end

effect.Techniques[0].Passes[0].Begin();

mEffectParam.SetValue(mTexture0); // set 1st texture

effect.CommitChanges(); // commit texture

draw_object();

effect.Techniques[0].Passes[0].End();

// 2nd pass – begin, set 2nd texture, commit, draw, end

effect.Techniques[0].Passes[1].Begin();

mEffectParam.SetValue(mTexture2); // set 2nd texture

effect.CommitChanges(); // commit texture

draw_object();

effect.Techniques[0].Passes[1].End();

effect.End();

Water Using Multitexturing Example

In this example, a multitexturing technique simulates a flowing river. To create
the water, this example uses two images of rocks that resemble what you might find
near a riverbed (see Figure 10-3). The first image (on the left) serves as the blurred
river bottom. The second image (on the right) is used for the water surface. The
second image is a picture of
similar stones that uses a lighter
shade for easier blending. The
second image’s texture coordi-
nates are adjusted at every
frame so that it appears to slide
over the first texture.

The image on the right is ac-
tually created from three iden-
tical images. The middle image
is inverted to ensure a seamless
wraparound when the maxi-
mum V texture coordinate is
reached and reset back to the
start. Only one third of the sec-
ond texture is shown at a time.
In each frame, the visible por-
tion of the texture is shifted by
a scaled increment, based on
the time lapse between frames.

F I G U R E 1 0 - 3

Stationary texture (left) and moving texture (right)

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E146

The images are combined using a shiny blend to give the illusion of light bouncing off
the water.

This example shows how to create a clear dynamic water effect by blending the
two images. This code begins with the solution from the “Grid Using Index Buffer
Example” section in Chapter 9, “Index Buffers.”

One of the first items that must be modified is the shader. Replace the technique in
the TextureShader.fx file with this version to enable multipass rendering. This revision
calls the same vertex shader and pixel shader twice. Before each pass is called, the ap-
plication sets the texture so that two images are applied to the same rendered object.

// the shader starts here

technique multiTexture

{

pass p0 // first pass

{

vertexshader = compile vs_1_1 vertex_shader(); // declare & init vs

pixelshader = compile ps_1_1 pixel_shader(); // declare & init ps

}

pass p1 // second pass

{

vertexshader = compile vs_1_1 vertex_shader(); // declare & init vs

pixelshader = compile ps_1_1 pixel_shader(); // declare & init ps

}

}

Two Texture2D objects are required to store each layer of water images. During
each pass in the shader, only one of the textures is applied, depending on whether the
riverbed or moving water is being rendered. To make both textures available
throughout the game class, a module declaration is required:

private Texture2D mTexWater0; // 1st image - stationary

private Texture2D mTexWater1; // 2nd image – moving

The two images of rocks—water0.bmp and water1.bmp—will need to be in the
Images folder so they can be loaded with Load() in the LoadGraphicsContent()
method. You can download the images from this book’s website. Place this code in
the LoadGraphicsContent() method so that the images will be loaded when the pro-
gram begins:

mTexWater0 = content.Load<Texture2D>(@".\\Images\\water0");

mTexWater1 = content.Load<Texture2D>(@".\\Images\\water1");

The top layer of water appears to move through adjustments to the vertical texture
coordinate. This requires that you add a class-level declaration for the V coordinate:

147C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

sprivate float mfVIncrement;

The method update_moving_waterUV() is added to shift the vertical texture coordi-
nate, V, each frame. This procedure updates the V coordinate for all vertices in the grid.

void update_moving_waterUV(){

// only 1/3rd of image shows at a time

const float k3rd = 1.0f / 3.0f;

// time between frames (Milliseconds)

double dblMS = (double)this.TargetElapsedTime.Milliseconds;

// increment V coordinate by a scale based on time between frames

mfVIncrement -= (float)dblMS/20000.0f;

// if bottom edge of image reaches the 0 mark AND

// the top edge of the image reaches 1/3 THEN

// reset top edge to 1

if (mfVIncrement < 0.0f)

mfVIncrement = k3rd * 2.0f;

// adjust V coordinate for each point in the grid

float u, v;

for (int iRow = 0; iRow < NUM_ROWS; iRow++){

for (int iCol = 0; iCol < NUM_COLS; iCol++){

// U doesn't change but V does

// only 1/3 of moving water image shows at a time

// this calculation allows for vertical wrap around

// front V: starts with 2/3 wraps and ends at 0

// back V: starts at 1 and ends with 1/3

u = mVertGrid[iCol + iRow * NUM_COLS].TextureCoordinate.X;

v = mfVIncrement + k3rd-k3rd*((float)iRow/((float)NUM_ROWS-1));

mVertGrid[iCol+iRow*NUM_COLS].TextureCoordinate=new

Vector2(u,v);

}

}

mVB.SetData<VertexPositionColorTexture>(mVertGrid, // set data in

0, mVertGrid.Length, SetDataOptions.None); // vertex buffer

}

The same set of vertices is used to draw both the moving layer of water and the
stationary layer of water. Since the V coordinate in the moving layer is continu-
ously adjusted, the vertices’ V coordinate must be set back to the original state for
the stationary layer. Adding update_stationary_layer() to the game class provides the

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E148

method that will reset the vertices back to their original position just before the sta-
tionary layer is drawn:

void update_stationary_layer(GameTime gameTime) {

float u, v;

for (int iRow = 0; iRow < NUM_ROWS; iRow++){

for (int iCol = 0; iCol < NUM_COLS; iCol++){

// restore original UV coordinates for stationary image

u = 1.0f - ((float)iCol / ((float)NUM_COLS - 1));

v = 1.0f - ((float)iRow / ((float)NUM_ROWS - 1));

mVertGrid[iCol + iRow * NUM_COLS].TextureCoordinate

= new Vector2(u,v);

}

}

mVB.SetData<VertexPositionColorTexture>

(mVertGrid, 0, mVertGrid.Length, SetDataOptions.None);

}

This code selects two passes in the shader. Before each pass is executed, a different
texture is set in the shader. Alpha blending is enabled during the second pass to create
a transparent surface when the vertices are rendered again during the second pass. A
SourceBlend and DestinationBlend setting of Blend.One creates a shiny blend to
make a bright surface. Replacing all of the code that references the TextureShader.fx
file in Draw() with this code will implement two passes using the modified
TextureShader.fx file:

// begin multiTexture using modified TextureShader.fx shader

mfxTex.Begin(); // use texture shader

update_stationary_layer(gameTime); // update UV coordinates

mfxTex.Techniques[0].Passes[0].Begin(); // *START 1ST PASS

mfxTexture.SetValue(mTexWater0); // set 1st texture

mfxTex.CommitChanges(); // set change in shader

draw_grid(); // draw stationary texture

mfxTex.Techniques[0].Passes[0].End(); // *END 1ST PASS

// enable shiny blending (dest and source are both one)

gfx.GraphicsDevice.RenderState.AlphaBlendEnable = true;

gfx.GraphicsDevice.RenderState.SourceBlend = Blend.One;

gfx.GraphicsDevice.RenderState.DestinationBlend = Blend.One;

update_moving_waterUV(); // update UV coordinates

149

mfxTex.Techniques[0].Passes[1].Begin(); // *START 2ND PASS

mfxTexture.SetValue(mTexWater1); // set 2nd texture

mfxTex.CommitChanges(); // set change in shader

draw_grid();

mfxTex.Techniques[0].Passes[1].End(); // *END 2ND PASS

// disable image blending

gfx.GraphicsDevice.RenderState.AlphaBlendEnable = false;

mfxTex.End();

Finally, in draw_grid(), replace the primitive type in the DrawIndexedPrimitives()
method with TriangleStrip. Compile and run the program. The output will show a
clear, bright moving surface that appears to be water (see Figure 10-4).

Water Using Multitexturing Example, Continued:
Adding Waves

This next portion of the example adds
waves to the water. The algorithm uses a
sine function, shown here, to update the Y
value of each vertex in the grid at every
frame.

The sine wave equation offers proper-
ties to control the wave frequency, num-
ber of waves, and height (amplitude).

Start with the code from the last solution, “Water Using Multitexturing Example.”

C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

s

F I G U R E 1 0 - 4

Clear water, no waves

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E150

To generate the effect of more naturally rounded waves, more vertices are re-
quired. At the top of the game class, replace the existing definitions for the total num-
ber of columns and rows, in the vertex grid, with these revised declarations:

private const int NUM_COLS = 30;

private const int NUM_ROWS = 30;

Also, add a float to store the sine wave cycle increment:

private float mfCycleIncrement;

get_point_in_cycle() traces a floating-point value through a sine wave’s cycle over
time. The function is only executed once per frame but is used to update each Y value
for all vertices in the grid. Add this function to your game class:

float get_point_in_cycle(GameTime gameTime) {

// retrieves between 0 and 1. Full cycle for sine wave is 2*PI

double dblMS = gameTime.ElapsedGameTime.Milliseconds;

// less than full cycle of sine wave

if (mfCycleIncrement < 1)

mfCycleIncrement += 0.0000005f * (float)dblMS;

// adjust when sine wave cycle complete

else

mfCycleIncrement = mfCycleIncrement - 1;

return mfCycleIncrement;

}

As discussed, get_point_in_cycle() is called only once per frame to trace a value on
the sine wave over time. The point on the sine wave that is returned is added to the V
coordinate for each point in the grid. This sum is used for setting the Y value of each
point in the grid. The result is a set of oscillating Y values that follow the sine wave as
it rises and falls over time.

set_water_height() receives the sum of the texture’s V coordinate plus the point in
the sine wave over time. This sine wave equation returns a Y value for the coordinate
that corresponds with the V coordinate:

Height = Amplitude = sin(WaveCountPerCycle * PointInCycle * 2π)

Add the set_water_height() method to the game class:

float set_water_height(float fCycleTime){

const float kFrequency = 6.0f; // wave count per cycle

151

const float kAmplitude = 1.0f / 15.0f; // wave height

// by definition each cycle is 2PI

const float k2PI = (float)2.0f * (float)Math.PI ;

// generates height based on V coord and sine equation

return (kAmplitude*(float)Math.Sin(kFrequency*fCycleTime*k2PI)-0.4f);

}

The X, Y, Z, information is the same for both the stationary image layer and the
moving image layer. Since the stationary layer is drawn first, the Y value that changes
with the sine wave over time can be set for this layer and the changes will apply to
both image layers. Adding this code to reset the X, Y, and Z coordinates inside a
nested for-loop for update_stationary_layer() will create a dynamically changing Y
value that simulates the wave for both layers over time:

float X, Y, Z;

Y = set_water_height(v + get_point_in_cycle(gameTime));

X = mVertGrid[iCol + iRow * NUM_COLS].Position.X;

Z = mVertGrid[iCol + iRow * NUM_COLS].Position.Z;

mVertGrid[iCol + iRow * NUM_COLS].Position =

new Vector3(X, Y, Z);

When you run this program, it shows the moving dynamic texture and the waves
rippling through the object. The effect is actually quite beautiful (see Figure 10-5).
You can try building this example, or you can download the completed example
from the Solutions folder in the download from this book’s website.

C H A P T E R 1 0

Co
m

bi
ni

ng
Im

ag
es

fo
rB

et
te

rV
isu

al
Ef

fe
ct

s

F I G U R E 1 0 - 5

Surf’s up!

There are various ways to combine images for creating exciting graphics effects.
Sprites are used to animate a series of image frames that are stored in an image file.
Multitexturing can be used to blend two images together and provide more detail or
dynamic movement for the texture.

CHAPTER 10 REVIEW EXERCISES

1. Try the step-by-step examples presented in this chapter.

2. For your solution to the SpriteBatch example, remove the code that
manually resets the RenderState properties for the GraphicsDevice in the
Draw() method. Then add code to automatically restore the render states
after the SpriteBatch object is drawn. Automatically restoring the render
states can be done in draw_2D_sprite() by replacing the SpriteBatch
object’s Begin() instruction with code similar to this:

spriteBatch.Begin(SpriteBlendMode.AlphaBlend,

SpriteSortMode.Immediate,SaveStateMode.SaveState);

Try running your code and notice that the output appears to be the same as
before.

3. Replace your Begin() statement in Exercise 2 with an instruction similar to
the following statement and then run your project:

spriteBatch.Begin();

Notice how the ground and all other 3D objects disappear when the render
states are not restored.

4. With the solution for the 2D sprite and the original 2D sprite settings, call
draw_2D_sprite() before draw_ground(). Notice you cannot see the sprite
unless the view is changed so the ground is not covering it.

5. Create your own sprite with three or more frames. In the same project,
show the sprite as a 2D SpriteBatch object. Display your sprite in the 3D
world using a textured sprite.

6. Use multitexturing to make it appear as if moving shadows cast from the
clouds are traveling across the ground.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E152

CHAPTERCHAPTER1111
ScoreScore
TrackingTracking
and Gameand Game
StatisticsStatistics

153

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

154

BEING able to display status information about players and their
scores is fundamental to any game dashboard. For exam-

ple, you might need to show statistics such as health, fuel level, the current map
name, or maybe even the opponents’ names. In the end, your ability to present this in-
formation boils down to having access to a font library that can overlay 2D text on
your game’s 3D environment.

When this book was written (just after the first full release of Microsoft’s Game
Studio Express), fonts were not included in the XNA library. Understandably, the
Microsoft XNA team was focused on getting XNA to market for their promised re-
lease date of December 11, 2006. Microsoft delivered on their promise, and the prod-
uct release was excellent. However, to get GSE to market on time, fonts were
dropped from the features list. By the time you read this book, the XNA team will
have already added a font library in their latest build of GSE.

If Microsoft’s library is anything like XNA’s predecessor, Managed DirectX, you
can expect that the XNA font class will be easy to use and require the addition of only
a few lines of code to your game class. However, even if you have a GSE version that
implements fonts, you still may want to build a custom font to match the theme of
your game. For example, if your game has a haunted house theme, you may want to
construct a set of alphanumeric characters using images of human bones. Or maybe
your game has a jungle theme and you want to create a character set made from im-
ages of bamboo. This chapter shows you how to create a custom font class that en-
ables 2D text on your game dashboard.

CREATING A CUSTOM IMAGE FONT
A custom image font is a set of characters stored in an image file. The custom image
font presented in this chapter is based on the image shown in Figure 11-1.

This image was actually converted to a mask so each character in the font set is
opaque and the background is transparent. The opaque characters must be colored
white if you want the ability to assign different text foreground colors at run time.

To create your own font with a transparent background, you could use a photo
editor such as Adobe Photoshop to create a character set using the *.png or *.tga for-
mat. You could also achieve the same result by creating a mask with a *.dds format.

F I G U R E 1 1 - 1

Custom character set stored in the fonts.dds image file

155C H A P T E R 1 1

Sc
or

e
Tr

ac
ki

ng
an

d
G

am
e

St
at

ist
icsThe fonts.dds image was created with the Courier New font. This is an even-spaced

font, which means each character in the font set is designed to take up the same column
width. Unlike a Times New Roman font or an Arial font, an even-spaced character set
such as Courier New makes it easy to right-align words and numbers. The process of
storing and retrieving an even-spaced character set is simplified since every character in
the font set has the same height and width. For the font class presented in this chapter,
an area of 10 pixels wide by 13 pixels high is used for all characters in the set.

CUSTOM FONT CLASS

The font class contains a fair amount of code, but it is easy to understand. The con-
structor receives the total pixel height and width for each character. Then, all of the
work is handled by two methods: getStartingXPixel() and getStartingYPixel(). Both
of these methods are called once for each character in the display string. Each time a
character is passed in, these methods work together to return the top-left pixel for the
corresponding character in the font image.

using System;

using System.Collections.Generic;

using System.Text;

namespace NS_Font

{

class Font

{

private int miWidth, miHeight;

// constructor (receives width and height of each character)

public Font(int w, int h)

{

miWidth = w; miHeight = h;

}

// return starting X pixel in font.dds

public int get_pixel_startingX(char ch)

{

switch (ch)

{

case 'a': case 'A': return 0;

case 'b': case 'B': return 1 * miWidth;

case 'c': case 'C': return 2 * miWidth;

case 'd': case 'D': return 3 * miWidth;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E156

case 'e': case 'E': return 4 * miWidth;

case 'f': case 'F': return 5 * miWidth;

case 'g': case 'G': return 6 * miWidth;

case 'h': case 'H': return 7 * miWidth;

case 'i': case 'I': return 8 * miWidth;

case 'j': case 'J': return 9 * miWidth;

case 'k': case 'K': return 10 * miWidth;

case 'l': case 'L': return 11 * miWidth;

case 'm': case 'M': return 12 * miWidth;

case 'n': case 'N': return 13 * miWidth;

case 'o': case 'O': return 14 * miWidth;

case 'p': case 'P': return 15 * miWidth;

case 'q': case 'Q': return 16 * miWidth;

case 'r': case 'R': return 17 * miWidth;

case 's': case 'S': return 18 * miWidth;

case 't': case 'T': return 19 * miWidth;

case 'u': case 'U': return 20 * miWidth;

case 'v': case 'V': return 21 * miWidth;

case 'w': case 'W': return 22 * miWidth;

case 'x': case 'X': return 23 * miWidth;

case 'y': case 'Y': return 24 * miWidth;

case 'z': case 'Z': return 25 * miWidth;

case '0': case '+': return 26 * miWidth;

case '1': case '-': return 27 * miWidth;

case '2': case '*': return 28 * miWidth;

case '3': case '/': return 29 * miWidth;

case '4': case '|': return 30 * miWidth;

case '5': case ',': return 31 * miWidth;

case '6': case '=': return 32 * miWidth;

case '7': case '^': return 33 * miWidth;

case '8': return 34 * miWidth;

case '9': return 35 * miWidth;

case ' ': return 36 * miWidth;

case '.': return 37 * miWidth;

case ':': return 38 * miWidth;

}

return 0;

}

// return starting Y pixel in font.dds

public int get_pixel_startingY(char ch)

{

157C H A P T E R 1 1

Sc
or

e
Tr

ac
ki

ng
an

d
G

am
e

St
at

ist
icsswitch (ch)

{

case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':

case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':

case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':

case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':

case 'Y': case 'Z': case '+': case '-': case '*': case '/':

case '|': case ',': case '=': case '^':

return miHeight;

default:

return 0;

}

}

}

}

Notice how simple the code is—most of it is repetitious. Of course, this routine
can be streamlined, and it could easily be tailored to fit your needs if you chose to cre-
ate a different font. All of this font class code can be found in the Fonts.cs file in the
BaseCode folder in the download from the book’s website.

Font Example: Displaying Text in the Game Window

Implementing the font class to draw text in your game window is also easy. This ex-
ample explains the steps to display the string “Score Tracking and Game Stats” in the
game window.

This example begins by using either the WinMGHBook or Xbox360MGHBook
project in the BaseCode folder in the download from the book’s website. You will use
the font class that has just been described, so the Font.cs source file must be refer-
enced in your project. You can find it in the BaseCode folder in the download.

The code inside Font.cs is designed to work with the fonts.dds image, so the
fonts.dds image must also be copied to the Images folder for your project. The
fonts.dds file can be found in the Images folder in the download.

Now that the Font.cs and fonts.dds files are referenced from the project, you can
make modifications inside Game1.cs to draw some text. You will need a reference to
access the font class, so the namespace must be included at the top of the file:

using NS_Font;

To declare an object that can use the font class methods, a module-level declaration
for the font class object is required in the game class. As explained, the font created for
this chapter is 10 pixels wide by 13 pixels high. When creating an instance of the font
class, you pass in the width and height of each character area in the font mask to ensure
that the font class returns the correct pixel values for each character. The font size of 10
by 13 is quite small, so you will magnify it by 1.3 to make it a bit more prominent:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E158

const int FONT_W = 10; // character pixel width

const int FONT_H = 13; // character pixel height

const float MAGNIFY = 1.3f; // increase the font size

private Font mFont = new Font(FONT_W, FONT_H);

Class-level declarations are needed to store the font mask as a texture to load and
display it as a SpriteBatch object:

private Texture2D mtexFont;

private SpriteBatch mspriteFont;

The instruction to load the mask either from a Windows or Xbox 360 Games project
with all of the other graphics files is made from the LoadGraphicsContent() method:

mtexFont = content.Load<Texture2D>(".\\Images\\fonts");

The sprite object must be set up at the beginning of the program, so you will need
to add the following code to the Initialize() method:

mspriteFont = new SpriteBatch(this.gfx.GraphicsDevice);

Next, you will add the draw_string() method to the game class. This method receives
a string and draws each character as text in the window. Inside the method, a for-loop it-
erates through each character in the string and draws it. The upper bound of the loop is
obtained using the String.Length attribute. For each character that is rendered in the
window, the SpriteBatch’s Draw() method selects the font object, assigns the area of the
window where the drawing takes place, selects the area of the font mask to be rendered,
and assigns a color to the character that is output. When the loop is finished, the entire
string is displayed as a perfect 2D text overlay on top of the game window.

void draw_string(string str, int iStartingX, int iStartingY, Color color)

{

mspriteFont.Begin(SpriteBlendMode.AlphaBlend); // enable transparency

for (int i = 0; i < str.Length; i++)

{

mspriteFont.Draw(

mtexFont,

// x window pos, y window pos, window w in px, window h in px

new Rectangle(iStartingX + i * (int)(MAGNIFY * FONT_W),

iStartingY, (int)(MAGNIFY * FONT_W), (int)(MAGNIFY * FONT_H)),

// start x image px, start y image px, image w, image h

new Rectangle(mFont.get_pixel_startingX(str[i]),

mFont.get_pixel_startingY(str[i]), FONT_W,FONT_H),

159C H A P T E R 1 1

Sc
or

e
Tr

ac
ki

ng
an

d
G

am
e

St
at

ist
icscolor);

}

mspriteFont.End();

}

As explained in Chapter 10, “Combining Images for Better Visual Effects,” when
rendering SpriteBatch objects to the window, you position these items using pixel ref-
erences. Since most CRT televisions only show 80% to 90% of the game window, an
additional adjustment is needed to ensure the text appears in the visible region of the
window. To be sure the text displays on all televisions, this algorithm assumes that
only 80% of the CRT screen is visible. Adding the get_titleSafe_topLeft_pixel()
method to your game class provides a routine to return the top-left X, Y pixel coordi-
nate that falls within the title safe region. This X, Y coordinate is obtained by multi-
plying the GraphicsDevice.Viewport’s Height and Width attributes by 20%, which
is the total portion of the game window that could potentially be truncated by the
television screen. The resulting product is then divided by 2 to create equal spacing
for each margin. This adjustment is not required for PCs since the PC window will
display all the pixels. An #ifdef structure selects the appropriate routine depending
on whether the code implementation is for the PC or the Xbox 360.

Vector2 get_titleSafe_topLeft_pixel()

{

const float kPercent = 0.2f; // non visible 20%

Vector2 v2px = new Vector2(20, 20); // PC shows all pixels

#if XBOX // automatically predefined by 360 project

float fMargin = kPercent / 2; // adjust 360 visibility

v2px.X = (float)(fMargin * gfx.GraphicsDevice.Viewport.Width);

v2px.Y = (float)(fMargin * gfx.GraphicsDevice.Viewport.Height);

#endif

return v2px;

}

Before the text is drawn, the get_titleSafe_topLeft_pixel() method is called to ob-
tain the starting X and Y pixel for the text in the game window. The instruction to
trigger the rendering of the 2D sprite must be placed at the end of the Draw() method,
but before the base.Draw() instruction. This rendering order ensures the 2D text will
not be covered by any 3D objects that are drawn.

Vector2 v2px0 = get_titleSafe_topLeft_pixel();

draw_string("Score Tracking and Game Stats", (int)v2px0.X, (int)v2px0.Y,

Color.Red);

When the font is drawn, the 2D SpriteBatch automatically resets the
GraphicsDevice’s render states to draw 2D graphics in the window (see Chapter 10,

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E160

“Combining Images for Better Visual Effects”). If these settings are not restored,
your 3D graphics may not display properly. After the font is drawn, the following
states need to be reset to enable 3D graphics after drawing the SpriteBatch:

gfx.GraphicsDevice.RenderState.CullMode= CullMode.None;//see both sides

gfx.GraphicsDevice.RenderState.DepthBufferEnable= true;//re-enable 3D on Z

gfx.GraphicsDevice.RenderState.AlphaBlendEnable= false;//stop transparency

gfx.GraphicsDevice.RenderState.AlphaTestEnable = false;//per pixel testing

// re-enable tiling

gfx.GraphicsDevice.SamplerStates[0].AddressU = TextureAddressMode.Wrap;

gfx.GraphicsDevice.SamplerStates[0].AddressV = TextureAddressMode.Wrap;

When you compile and run this code, the words “Score Tracking and Game Stats”
appear in the window.

Font Example: Displaying a Frames-per-Second Count

This next example takes fonts a little further by demonstrating how to display nu-
meric data in the window. For this case, a frame count per second will be shown at
the bottom of the window.

To create the frames-per-second count, you will use a timer like the one presented
in Chapter 10, “Combining Images for Better Visual Effects.” The total frames ren-
dered during one-second intervals are counted. When each one-second interval is
complete, the total frame count generated is displayed on the screen for the second
that follows—until a new count is tallied and displayed.

Some setup is required to store the count and interval times, so you will need to
add the following module-level variable declarations (for storing the counter and
time values) to the game class:

private int miFPS, miFPScounter;

private double mdblTimeLapsed, mdblTimeLapsedPreviousFrame;

The timer method discussed in Chapter 10, “Combining Images for Better Visual
Effects,” must also be added to measure the frame count in one-second intervals. A
value of 1000 milliseconds is assigned for the interval to ensure the timer returns a
true value for every one second.

bool Timer(GameTime gameTime)

{

bool bIntervalIsFinished;

// get total milliseconds since the last frame

double dblMS = gameTime.ElapsedGameTime.Milliseconds;

161C H A P T E R 1 1

Sc
or

e
Tr

ac
ki

ng
an

d
G

am
e

St
at

ist
ics// increment time within interval

mdblTimeLapsed += dblMS;

// take remainder of the time lapse divided by the fixed interval to

// prevent variable overflow

mdblTimeLapsed = mdblTimeLapsed % 1000; // fixed interval =1000 ms =1s

// if time in the interval is increasing the interval is incomplete

if (mdblTimeLapsed >= mdblTimeLapsedPreviousFrame)

bIntervalIsFinished = false;

// current time was reset to zero so the interval was completed

else

bIntervalIsFinished = true;

// store the time lapse for comparison with the next frame

mdblTimeLapsedPreviousFrame = mdblTimeLapsed;

return bIntervalIsFinished;

}

The Update() method is not necessarily called the same number of times as the
Draw() method. As a result, when displaying the frame count, you must add code
within the Draw() method to check the timer and increment the frame count:

if (Timer(gameTime)) // check if 1 second is up

{

miFPS = miFPScounter; // 1 second complete so assign new FPS to display

miFPScounter = 0; // reset counter to 0 to start new interval

}

else

miFPScounter += 1; // increment counter when interval incomplete

Since the frame count string is displayed at the bottom of the window, a
get_titleSafe_bottomLeft_pixel() method is needed in the game class to ensure the
text appears in an area that is visible to the user. This method returns a Vector2 ob-
ject that stores an X and Y value for the lower-left starting pixel coordinate of the text
string. If you run this code on the PC, the left margin is set to be 20 pixels wide and the
bottom margin is set to be 20 pixels high. If you run the code on the Xbox 360, the
Viewport’s Height and Width attributes are used to ensure the text is positioned 10%
from the left of the window and 10% above the bottom of the window.

Vector2 get_titleSafe_bottomLeft_pixel()

{

const float kPercent = 0.2f; // non visible area

int ipcYpx = gfx.GraphicsDevice.Viewport.Height

- 20 - (int) (FONT_H * MAGNIFY); // 20 px & font height

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E162

Vector2 v2px = new Vector2(20, ipcYpx); // bottom left px on PC

#if XBOX // adjust if on Xbox 360

v2px.X = gfx.GraphicsDevice.Viewport.Width * kPercent / 2.0f;

v2px.Y = gfx.GraphicsDevice.Viewport.Height

* (1 - kPercent / 2.0f);

v2px.Y -= (int)(FONT_H * MAGNIFY);

#endif

return v2px;

}

Before the text is drawn, the pixel coordinate at the bottom-left margin is ob-
tained. Then, the frame count total is converted to a String object using the
ToString() method. Next, the frame count string is appended to the "FPS: " label.
This combined string is rendered using the draw_string() method—which imple-
ments the font class to output the string as 2D text.

The frames-per-second string is rendered at the end of the Draw() method but be-
fore the RenderStates and SamplerStates are restored for 3D graphics. This logic in
effect sets an appropriate rendering order that allows the 2D layer to appear on top
after the 3D layer is drawn.

Vector2 v2px1 = get_titleSafe_bottomLeft_pixel();

draw_string("FPS: " + miFPS.ToString(), (int)v2px1.X, (int)v2px1.Y,

Color.Yellow);

When you run this example, the frame count appears at the bottom of the window.
Building a custom font is an easy way to customize the look and feel of your game.

You will definitely want a dynamic method like this to display game scores and other
game data. You may find the frames-per-second routine useful when testing your
code’s performance.

CHAPTER 11 REVIEW EXERCISES

1. Try the step-by-step examples presented in this chapter.

2. Try creating your own custom font using different graphic resources.

3. Create a custom score board. Increment the score every time the space bar
is pressed.

4. Replace the code that restores the GraphicsDevice’s RenderState properties
with code that resets the RenderState properties after the SpriteBatch object
is drawn. This restore can be automated by replacing the Begin() statement
inside draw_string() with the following code:

mspriteFont.Begin(SpriteBlendMode.AlphaBlend,

SpriteSortMode.Immediate,SaveStateMode.SaveState);

163

CHAPTERCHAPTER1212
3D Models3D Models

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

164

BY now, you may be thinking that you’d like to add some more realistic
models to your game world—maybe an airplane, a rocket, or a castle.

You could add them by hand-coding a bunch of textured primitive objects, but that
would be way too much work. The obvious way to efficiently develop a complex 3D
object is with a 3D modeling application. Learning to work with 3D models is a giant
step in understanding game development. It allows you to add realistic and excit-
ing-looking objects to your game world. By the end of this chapter—after you have
created your own models and animated them in code—you will certainly choose the
use of 3D models over hand-coded primitive objects when possible.

Once you have developed a 3D model, you can import it into your game and con-
trol it with your code. The two supported model formats currently for XNA are .x
and .fbx. Microsoft has provided a library of code to load these models into XNA for
you. If you really wanted, you could use other model file formats in your game, but
you’d have to write a model loader.

3D MODELING TOOLS

Autodesk’s Maya, Autodesk’s 3D Studio Max, and Softimage’s XSI are three of
the most popular modeling tools for professional game artists, but these pack-
ages are expensive. That’s not to say they aren’t worth their cost; these packages
are definitely worth it if you can afford them. If you are a student, you may be
able to purchase an educational license for a fraction of the cost of a commercial
license.

Most high-end modeling tools, such as Maya or 3ds Max, have the ability to ex-
port to Microsoft’s .x format or Alias’s .fbx format if you install the right combina-
tion of plug-ins. However, converting other model formats to .x or .fbx can be a
finicky process. If you plan to use a modeling tool, then experiment with it first so
that you are sure about the tool’s requirements for successful conversions.

An inexpensive, but popular, lightweight 3D modeling program is MilkShape,
by chUmbaLum sOft. MilkShape is used for the examples in this book because it is
one of the easiest modeling tools to learn. In addition, MilkShape’s support for the
.fbx format is excellent. MilkShape also imports from and exports to over 70 rele-
vant model file types for games. Even if you decide later that you prefer a different
modeling tool, MilkShape is a great application to use when you are learning how
to create 3D models. chUmbaLum sOft offers a free 30-day trial version. The pur-
chase price is surprisingly inexpensive—$25 (U.S.) at the time this book was writ-
ten. A link to their 30-day trial version is available in the download from this
book’s website.

165C H A P T E R 1 2

3D
M

od
el

s

MILKSHAPE 3D INTRO EXAMPLE: CREATING
A WINDMILL
This first example shows you how to create a
windmill using MilkShape. Later, a code
demo will show you how to load and ani-
mate the windmill in your game application.

When you finish creating the model and
program the animation in code, it will look
similar to the one in Figure 12-1.

The process of creating a 3D model helps
to demonstrate how models can be loaded
and manipulated in your code. But, if you de-
cide that you are not interested in 3D model-
ing, or if you use other modeling tools, you
can skip this section. All of the models pre-
sented in this chapter can be found in the
Models folder in the download from this
book’s website. On the other hand, you
might find you actually enjoy the break from
programming. MilkShape is such a great utility, even if you use other modeling tools,
you might discover a feature that can assist you in your model creation, such as con-
verting one model format to another or performing quick edits to your model.

Creating a New Project

Starting MilkShape automatically opens the designer studio environment. Most of
the controls can be found in the gray panel on the right. Four different viewports are
located on the left, as shown in Figure 12-2.

Each viewport offers a view of the model from a different angle. As with similar
applications, the viewport serves to guide you when you’re working with your
model. Different views can also offer easier access to specific sets of vertices when
you’re adding, modifying, or deleting parts of the model. You can change the view in
each of the four ports by right-clicking the port and choosing between Front, Back,
Left, Right, Top, Bottom, and 3D (from the Projection drop-down menu). The first
six views are self-explanatory. The 3D view offers you the ability to see a solid model
as it would appear in a game. When in 3D view, right-clicking the viewport and
choosing Textured will show the model with the texture applied.

In the Window menu is the Show Viewport Caption option, which is useful be-
cause it labels each view as Front, Left, Right, and so on. You can easily lose your
bearings after switching between views, so this option can help you keep track of
your model from different angles.

F I G U R E 1 2 - 1

A windmill model animated in code

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E166

Adding a Box

Now it’s time to start designing. First, you need to create a base for the windmill. To
do this, find the Model tab, click the Box button, and click and drag in one of the
viewports. A box will emerge as you drag your mouse with the left mouse button
pressed down. After you have added the box and resized it, the box shape will resem-
ble the one in Figure 12-3.

If the box is incorrectly sized, you can always scale it into shape. In order to scale
it, the box must be selected. To select the box, on the Model tab, click the Select but-
ton and choose Group under the Select Options area. Then click inside one of the
viewports and drag the mouse over the box. When the box is selected, it will be high-
lighted in red.

You can scale the box using either the Scale button or the mouse. The Scale button is
used for intricate scaling and it is located on the right gray panel of the Model tab.
When the Scale button under the Tools group is clicked, a Scale Options group will ap-
pear further down on the right panel. You can enter scale amounts here for the X, Y,

F I G U R E 1 2 - 2

MilkShape 3D designer studio

167C H A P T E R 1 2

3D
M

od
el

s

and Z planes. Repeatedly clicking
the Scale button under the Scale
Options group will resize the se-
lected group(s) according to the
values that are set for the X, Y,
and Z planes. You may find it eas-
ier to manually scale the box using
the mouse. To use the mouse for
scaling, choose Scale on the
Model tab and then resize the ob-
ject by dragging the cursor in the
viewport to compress or stretch
the box as needed.

Adding a Sphere

The next step is to add a pin to
your windmill. The windmill
needs a pin to fasten the windmill fan to the base. Once the pin has been added, scaled,
and moved into place, it will appear similar to the one in Figure 12-4.

Your pin will be a sphere added to the top face of the windmill base. To add your
pin, select the Model tab and click the Sphere button—it’s under the Tools group in the
right panel. Then, click into one of the viewports and drag with your left mouse button
down. The sphere will grow as the cursor is dragged outward from the center. You
may need to resize the sphere. If you do, when you finish scaling, the pin size should be
proportionate to the windmill
base. The next step is to move the
sphere into the correct position.
On the Groups tab in the right
panel, select the sphere group.
Click the Move button. Then,
click in a viewport and use the
mouse to drag the sphere to the
place where it belongs.

Adding a Cylinder

Next, you will add a cylinder to
serve as one of the blades for the
windmill’s fan. You will use scal-
ing to flatten and shape the blade
in a proportion similar to what is
shown in Figure 12-5.

F I G U R E 1 2 - 3

Scaled box positioned at origin

F I G U R E 1 2 - 4

Sphere sized and positioned relative to the box

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E168

On the Models tab in the right
panel, click the Cylinder button.
Then click in one of the viewports
and drag the mouse. In one continu-
ous movement, with the left mouse
button pressed, size the cylinder so it
is proportionate to the windmill base
created by the box and pin.

You’ll notice that the cylinder
looks too round to be a windmill
blade. You definitely need to flatten
it. It is also possible that your cylin-
der is too short or too long, so you
may need to scale it up or down ac-
cordingly. You could scale it using
Scale Options or manually adjust it
by dragging your mouse in the
viewport. You may scale the entire cylinder or only a select group of vertices. On the
Model tab, after clicking Select, you may choose Vertex, Face, Group, or Joint to iso-
late your vertices for scaling or transforming your cylinder in a manner that is most ef-
ficient. When the scaling is done, you should have a relatively flat blade with a point at
the end.

Applying a Texture

Now that the pieces of the windmill appear to be in good form, you may be tempted
to duplicate the blades and finish creating the fan. However, first you should apply a
texture to your windmill. It is easier to texture your model at this point because the
pieces of the model are separate. Applying the texture piece by piece is easier than try-
ing to get the texture right with one large piece. After one blade is textured the way
you want, it can be duplicated two more times and rotated into place to complete the
windmill fan. Having a windmill with three identical well-textured fans will look
very impressive. To texture the fan, you will apply a windmill.bmp file. A copy can be
found in the Images folder in the download from the book’s website.

It is common for one image to contain the textures for an entire 3D model. Having
all of the textures in one file greatly simplifies the code required to load and apply the
textures to a model. With this in mind, 3D modelers often combine a cross-section of
different textures in one image file. The windmill.bmp contains a cross-section of im-
ages to map the texture on different parts of the model.

In MilkShape, textures can be set up on the Materials tab in the right panel. On the
Materials tab, click New. A gray ball will appear when the material has been generated.

F I G U R E 1 2 - 5

Modified cylinder to create a fan blade

169C H A P T E R 1 2

3D
M

od
el

s

Two-thirds of the way down the right panel on the Materials tab, you will find two
buttons labeled <none>. Click on the top one to launch the Open dialog, which will
prompt you to select an image. In this case, a bitmap (.bmp file) is being used, but any
image format that is supported by XNA will work. These image formats include
.bmp, .dds, .dib, .jpg, .png, and .tga. Navigate to the windmill.bmp file. Select the im-
age and click Open in the Open dialog. The name of the loaded image will appear on
the Materials tab.

To reduce any difficulties during model format conversions and exporting to
*.fbx, it is recommended that you use only one texture for your model. After you ex-
port to .fbx from MilkShape, XNA will demand that you use images that have height
and width pixel dimensions that are a power of 2. Before creating the model, it is fur-
ther recommended that you first test your texture by exporting a simple model that
uses this image to *.fbx and then load and display it from your XNA code. When the
program loads your model and tries to draw it, GSE will inform you if there are any
issues with the image. Test your model by loading it in your game on a regular basis
to ensure it continues to load and display properly from your code. You may experi-
ence issues with compressed image formats such as .jpg, so consider sticking with the
.bmp, .tga, or .png format where possible.

Assigning the Material to the Blade

Now that an image has been loaded, you can start texturing your model with it. You
could start by giving the cylinder a texture to make it appear as if it has been painted
with a decal. To do this, on the Groups tab, click on the cylinder group in the group
listing and then click Select. The cylinder should be the only object that is selected;
this is indicated by a red highlight in the viewports.

Now that the cylinder is the only object selected, return to the Materials tab and
click Assign. Then, from the Window menu select Texture Coordinate Editor. The
Texture Coordinate Editor dialog will open.

Choose Front in the lower drop-down menu. Make sure that the cylinder is se-
lected in the top drop-down menu. If the model and image do not appear, select the
cylinder from the drop-down and click Remap. After you select the cylinder group
and do the remapping, if the image and cylinder group do not appear in the Texture
Coordinate Editor, the group wasn’t assigned properly. To correct this, exit from the
Texture Coordinate Editor and reselect the cylinder group only. Then on the Mate-
rials tab, click Assign and return to the Texture Coordinate Editor.

Once the cylinder appears in the Texture Coordinate Editor, the cylinder wireframe
can be moved, scaled, and rotated into place over the section of the image that contains
the decal for the windmill blade. (This section of the image is the rectangular strip that
runs along the left side of the image.) The section of image underneath the cylinder’s
vertex group automatically wraps around the entire group of vertices. Figuring out

how to wrap textures around your models may require some trial and error. But with a
little practice, you will be able to plan your model components so that they’re easier to
texture. You may find that your model groups need to be split apart or revised so that
you can map textures on them as you had originally intended. The buttons in the right
panel of the Texture Coordinate Editor allow you to select your group or individual
vertices to move, rotate, and scale them to find the best possible fit over the image sec-
tion that is needed for the texture. In this case, the windmill fan blade fits nicely on top
of the image section. Figure 12-6 shows the windmill blade before and after it is posi-
tioned over the corresponding section of image used to texture it.

Once the best fit has been achieved for the selected group, close the Texture Coor-
dinate Editor. When you close the Texture Coordinate Editor, texture coordinates
are assigned to the model where the model was last placed. The 3D viewport on the
bottom right will show how the texture wrapped on the model component.
Right-click the 3D viewport and choose Textured. The windmill fan blade will ap-
pear with the texture on it as in Figure 12-7.

Assigning the Material to the Box and Sphere

Repeat the process described previously to map the box and sphere groups individu-
ally to other sections in the texture.

Duplicating the Blade

Now that everything has been textured properly, you can complete the fan. The first
blade is already textured. When this blade is duplicated, the copy will also be textured
in an identical manner. Because of this, the matching blades will look sharp in the final
product. To do this, on the Model tab, click the Select button. Then, under Select Op-

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E170

F I G U R E 1 2 - 6

Texture Coordinate Editor while texturing the fan blade

171C H A P T E R 1 2

3D
M

od
el

s

tions choose Group. Once there, click into the viewport and drag over the group of ver-
tices in the blade. The entire blade is now highlighted. Finally, under the Edit menu
choose Duplicate Selection. A new blade will appear on top of the original one.

Rotating the Duplicate Blade about the Z Axis

At this point, the duplicate blade is selected. Before doing anything else, choose the
Rotate button on the Model tab. In the Rotate Options area that appears midway
down the right panel, enter 120 in the Z plane, set X and Y to 0, and then click the
Rotate button. This will rotate the new blade by 120 degrees on the Z axis. The result
will be two duplicate blades that appear at different angles around the Z axis.

Next, you will create the third blade. While the new blade is still selected, under the
Edit menu choose Duplicate Selection again. A new blade will appear on top of the
original one. Next, choose the Rotate button on the right panel. In the Rotate Options
area enter 120 in the Z plane and then click Rotate. This will rotate the new blade.

The three blades have now been forged. It is time to move them into position. Se-
lect one of the blades, and choose the Move button on the Model tab. Click into the
top-right viewport. Make sure you have a front view by right-clicking the viewport
and selecting Front. While holding down the left mouse button, drag the selected
blade so the base matches up with the base of one of the other blades. Repeat these
steps to join the remaining blade with the other two. The three blades should now be
positioned together as shown in Figure 12-8.

F I G U R E 1 2 - 7

Properly textured windmill fan blade viewed in 3D viewport

Merging the Groups

Now that the blades are all textured with identical markings and are placed together,
you should merge them into one group. Having the blades in one group will help later
when you write code to animate the fan. It will be a lot easier to transform one fan
rather than three separate blades. On the
Groups tab, select each of the cylinders
in the groups list. Click the Regroup but-
ton on the Groups tab. When you do
this, the three blades will be merged into
one. Select the new merged group and
enter the name, fan, beside the Rename
button and then click Rename.

Deselect the fan and select the box
and sphere. Repeat the regroup process
for the box and sphere to weld them to-
gether. When the merged box and sphere
are selected on the Groups tab, enter the
name, base, beside the Rename button.
Click the Rename button to assign the
name to the newly merged group, as
shown in Figure 12-9.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E172

F I G U R E 1 2 - 8

Original blade with two duplicate blades

F I G U R E 1 2 - 9

Group listing after merging and renaming

173

Positioning the Model at the Point of Origin

Before exporting your model pieces, make sure they are centered at the origin (X = 0, Y
= 0, Z = 0). If you do not center your models at the origin, complex animations will be
very difficult to implement. Any extra distance away from the origin will create a trans-
lation that may cause trouble if you rotate the
object in code. As explained in Chapter 6,
“Character Movement,” a translation fol-
lowed by a rotation creates an orbit. When you
create objects that are animated programmati-
cally, the unwanted orbit will be very hard to
fix in code. If you don’t move the model to the
origin in the designer, you might waste a lot of
time trying to debug this issue when the prob-
lem isn’t actually in your code. To avoid these
pitfalls, professional game developers will usu-
ally ask the modeler to position the model so it
rests at the point of origin. Both the fan and
windmill base should be moved to the origin,
as shown in Figure 12-10.

Adding a Joint

A joint is the root of the model hierarchy. It is used to identify the center of the mesh.
The XNA model loader currently does not require that a joint exist when export-

ing to *.fbx. However, adding a joint to your MilkShape model in your project is still
strongly recommended in case it is required for a future export or by a different for-
mat. When MilkShape was used for creating models for XNA’s predecessor,
DirectX, most DirectX Software Developers Kit releases required a joint for the .x
format, but a few releases did not. This made it confusing for MilkShape designers
who discovered their models would not load in certain releases of DirectX. To ensure
your model exports can load in your XNA code for future releases, take the extra 30
seconds to add the joint.

The joint can be added from the Model tab. To do this, click on the Joint button
and then left-click once over the origin in one of the viewports. If you don’t quite get
your joint in the exact center of origin, click the Select button. In the Select Options
area that appears, choose Joint. Left-click into a viewport and drag around the joint
to select it so the joint is highlighted in red. Next, click the Move button on the Model
tab. Once in Move mode, you can left-click on the selected joint with your mouse and
drag it into place. The joint should appear where the two model pieces are centered at
the point of origin, as shown in Figure 12-11.

C H A P T E R 1 2

3D
M

od
el

s

F I G U R E 1 2 - 1 0

Windmill fan and base positioned
so their connection point meets at
the origin

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E174

Saving the Project

Your MilkShape project is now complete. You should save the project and keep it ar-
chived in case you decide that you want to modify it. MilkShape projects save as
*.ms3d files. Using the ms3d project file type is strongly recommended in case you
want to reopen your project later for editing. It is possible to import other file formats
into MilkShape, but you may discover unwanted alterations, such as lost group in-
formation. Save the project with the name Windmill.ms3d to the same directory
where the windmill.bmp file is located. Make sure you store the Windmill.ms3d and
windmill.bmp files in a safe place.

Exporting the Model from the Project to the .fbx Format

Next, you are going to export your model to the .fbx format. To keep things simple,
you are going to export the fan and windmill base separately. Exporting each piece
separately to its own .fbx file allows you to load the pieces separately and animate
them individually in your code. After you export the model, you will be able to load
and display the windmill base as a stationary object. To create a rotation animation,
you will load the fan separately and give it a constant rotation around the Z axis.
When the windmill base and the rotating fan are positioned properly, the model will
look like an animating windmill in your 3D game.

F I G U R E 1 2 - 1 1

Joint placed at origin where windmill fan and base connect

175C H A P T E R 1 2

3D
M

od
el

sExporting the Windmill Base

To prevent the loss of any valuable models, create a copy of your archived project.
Open the copy and delete the fan. Next, click on File then Export. Choose Alias FBX
File format in the lengthy list of available model formats that appears. Enter base.fbx
in the Filename text area of the Export dialog. Export the base.fbx file to the same di-
rectory where the windmill.bmp file is located using the default options. Close the
project and do not save it. You have now exported the base of the windmill. The next
step is to export the fan.

Exporting the Fan

Reopen your copy of the MilkShape project. This time, delete the windmill base from
your project. Next, click on File then Export. Choose the Alias FBX format from the
export list that appears. Enter fan.fbx in the Filename area of the Export dialog. Ex-
port the fan.fbx file to the same directory where the windmill.bmp file is located.
Close the project, but do not save it.

Concluding the MilkShape Demonstration

After working through this chapter, you will have created four files: fan.fbx,
base.fbx, windmill.bmp, and windmill.ms3d. The *.fbx and *.bmp files will be
loaded in the game project in the next example.

Naturally, you encounter a learning curve when you first create models with
MilkShape, but at this point, you probably agree that the job of creating a simple
model was not too challenging. If your first few models turn out lousy, do not be
alarmed. Most model design newbies do not produce stellar models on their first few
tries. But with a little bit of practice, it will not take long for you to ramp up on
MilkShape. You can create incredible models in MilkShape once you experiment,
learn its limitations, and then learn to push its limits. The simplicity of MilkShape,
and its flexibility, makes this a product well worth the low price requested after the
free 30-day trial ends.

The windmill you created using the modeling tool is certainly more interesting and
easier to build than coding it with a series of textures and primitive objects. With only
a little bit of practice, you could probably build the same windmill presented in this
demo in 5 minutes or less.

LOADING THE MODEL IN XNA

Now that your windmill is built and exported, you can load and animate your mas-
terpiece in code.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E176

The Model class was introduced in version 1.0 of GSE. It provides a simple and ef-
fective way to quickly load models, transform them, and of course draw them. Cur-
rently the .x and .fbx formats are supported.

The Model class uses a skeletal hierarchy to store and draw the vertices of a model.
The skeleton is made of bones, and each bone has a transformation associated with
it. Mesh data containing vertices with position, normals, and texturing information
are attached to each bone in the model and move with the bone when it is trans-
formed.

Loading the Models

Models are loaded through the content pipeline with the Load() method:

Model model = content.Load<Model>(".\\model directory\\modelName");

To successfully load each model, you must reference each one in the Solution Ex-
plorer in your project.

Skeletal Hierarchy

A matrix array stores the transformation matrices for positioning each bone in the
model skeleton. For nonanimated models, usually the bone count is 1, so only one
transformation is applied to the entire model.

Matrix BoneTransformations = new Matrix[int model.Bones.Count];

The skeletal hierarchy is designed for bone animation. But, as mentioned, cur-
rently there is no official animated model loader code for the XNA release. Even so,
when drawing static models, it is possible to have more than one bone in your model
that has a separate mesh attached to each bone. Each bone has a transformation, and
the transformations are cumulative as you travel down the hierarchy from the skele-
ton’s root. As an example, you could think of the spine as the root. The upper leg
takes on the transformation of the spine and adds a transformation of its own. The
lower leg takes on the cumulative transformation of the spine and upper leg in addi-
tion to adding its own transformation. The foot takes on the cumulative transforma-
tions of all these bones, plus it adds its own transformation to the series. The foot is a
child of the lower leg, and the lower leg is a child of the upper leg, and so on. Con-
versely, the spine is the parent of the upper leg, which in turn is the parent of the lower
leg. This hierarchy of bones is ideal for transforming and animating multiple meshes.

When the model is created, the bone transformation matrices associated with the
model are stored in the Model class using the CopyAbsoluteBoneTransformsTo()
method exposed by the Model object:

Model model.CopyAbsoluteBoneTransformsTo(Matrix boneTransformations);

177

DRAWING THE MODEL IN XNA

It is possible to have more than one mesh in a model where each mesh is considered a
separate unit of vertex position, texture, and normal data. While rendering the
model, the routine searches the Model object for each ModelMesh object, trans-
forms it according to the World matrix, sets lighting (if desired), and draws it. To it-
erate through each mesh of the Model object, a foreach loop searches through each
ModelMesh object:

foreach (ModelMesh mesh in model.Meshes);

Another loop nested inside the ModelMesh loop is required to properly show your
model in the game world and to add lighting (if desired):

foreach (BasicEffect effect in mesh.Effects);

Before drawing the model, you can apply lighting to the model using XNA’s
BasicEffect class, which was introduced in Chapter 4, “Shaders.” Once inside the ef-
fect loop, to show all objects in your game properly relative to the camera, you must
store the game class’s View and Projection matrices in the BasicEffect shader through
the effect parameters:

BasicEffect effect.View = Matrix world;

BasicEffect effect.Projection = Matrix world;

To apply transformations to all meshes within the model, you must multiply each
mesh’s bone transformation matrix by the cumulative transformation matrix, or
World matrix. The product is stored in the BasicEffect shader, which applies the final
transformation to the mesh drawn.

effect.World = mMatCarTransforms[mesh.ParentBone.Index] * WorldMatrix;

You can use XNA’s BasicEffect class to also add lighting to the model. More infor-
mation will be provided in Chapter 20, “Lighting,” to explain how to customize your
lighting. For this chapter, the default lighting is applied to the model:

effect.EnableDefaultLighting();

When you are ready to draw the model, call the ModelMesh’s Draw() method to
render it:

ModelMesh mesh.Draw();

C H A P T E R 1 2

3D
M

od
el

s

Loading and Animating the Windmill in Code

This example takes the windmill you made in MilkShape and animates it in code.
When you are finished working through this example, your windmill will look like
the one presented earlier in Figure 12-1.

This code example begins with either the WinMGHBook or Xbox360MGHBook
project found in the BaseCode folder in the download from this book’s website. Also,
your fan.fbx and base.fbx files, along with the windmill texture (windmill.bmp)
models, must be added to your project so they can be loaded in the content pipeline.
Or, if you don’t want to build these models, you can find the fan.fbx, base.fbx, and
windmill.bmp files in the Models folder. These three files need to be placed in a
Models folder in your project so they can be loaded properly.

To store the fan and base models separately, two separate Model objects are de-
clared at the module level of the game class. Matrices for transforming the meshes in
each model are also included with this declaration so they can be set later when the
models are loaded.

Model mModBase; Model mModFan;

Matrix[] matFan; Matrix[] matBase;

The same code will be reused to draw each model, so identifiers are needed to dis-
tinguish between the windmill base and fan model. These definitions are used
throughout the game class, so they need to be added at the top of the game class.

const int WINDMILL_BASE = 0; const int WINDMILL_FAN = 1;

The two models are loaded separately with the ContentManager’s Load()
method using a <model> identifier. When each model is loaded, the bone matrices
are stored in a Matrix object for that model. These examples have only one bone,
so any transformations applied to them will apply to the entire model. The
CopyAbsoluteBoneTransformsTo() method copies the transformations for all
bones in the model into an array that the model object can use.

void initialize_windmill_model(){

mModBase = content.Load<Model>(".\\Models\\base");

matBase = new Matrix[mModBase.Bones.Count];

mModBase.CopyAbsoluteBoneTransformsTo(matBase);

mModFan = content.Load<Model>(".\\Models\\fan");

matFan = new Matrix[mModFan.Bones.Count];

mModFan.CopyAbsoluteBoneTransformsTo(matFan);

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E178

179C H A P T E R 1 2

3D
M

od
el

s

To set the model up when the program begins, call initialize_windmill_model()
from the Initialize() method:

initialize_windmill_model();

To create a continuous rotation for the windmill fan, a module-level variable,
mfFanRotation, is used. The module-level variable stores the total rotation in radi-
ans and is incremented each frame. Adding it at the module level allows you to store
the variable and read its updated value each frame:

private float mfFanRotation = 0.0f; // stores rotation of windmill fan

Drawing the windmill base is actually very simple. The first three steps for render-
ing a model are identical to the steps used to draw a primitive object using vertex
types. The transformation matrices are declared and initialized just as you have done
before when you rendered primitive objects from vertex types. As described in Chap-
ter 5, “Animation Introduction,” the same I.S.R.O.T. sequence of transformations
applies here to transform each Model object. In this case, scaling and a translation
will be performed for both models. Every time you load a model, you have to resize it
so it is proportionate to your game world. The fan is rotated about the Z axis too, so
an additional transformation on the Z axis is required. A time-scaled value is used to
perform the rotation to keep the rotation speed constant regardless of the system
used. The scaled time lapse is added to mfFanRotation, which stores total radians for
the rotation. mfFanRotation is reset to equal the remainder of mfFanRotation di-
vided by 2π. This extra step to store the remainder rather than the true value main-
tains the same rotation about the Z axis while preventing variable overflow.

In step 4 of draw_windmill(), once the cumulative transformation matrix has been
built, it is multiplied against the transformation matrix for each mesh in the model. If
you are working with a model that is centered at the origin and only has one mesh,
the mesh’s matrix would be equivalent to the identity matrix. If your model is not
centered at the origin, your transformations are going to take on an additional trans-
lation, so you may need to check this if your models are not animating properly. The
product of the bone matrix and the World matrix is passed to the World matrix vari-
able in XNA’s BasicEffect shader. At the same time, you also need to store the View
and Projection matrices from your game class in the BasicEffect’s variables. The
shader needs this information to position your models so they can be seen properly
by the camera.

Lighting is also enabled in step 4 using the EnableDefaultLighting() method. Refer
to Chapter 20, “Lighting,” for more information on how to use the different lighting
options that come with the BasicEffect class.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E180

Finally, the model can be drawn using the ModelMesh object’s Draw() method. Add
draw_windmill() to your game class to transform and render your fan and windmill:

void draw_windmill(Model model, int iModel, GameTime gameTime){

foreach (ModelMesh mesh in model.Meshes){

// 1: declare matrices

Matrix matWorld,matIdent,matScale,matRotY,matRotZ,matTransl;

// 2: initialize matrices

matIdent = Matrix.Identity;

matScale = Matrix.CreateScale(0.1f, 0.1f, 0.1f);

matTransl = Matrix.CreateTranslation(0.0f, 0.0f, 1.5f);

matRotY = Matrix.CreateRotationY((float)Math.PI);

matRotZ = Matrix.CreateRotationZ(0.0f);

if (iModel == WINDMILL_FAN){

// calculate t between frames for system independent speed

mfFanRotation += gameTime.ElapsedRealTime.Ticks/6000000.0f;

// prevent var overflow – store remainder

mfFanRotation=mfFanRotation%(2.0f*(float)Math.PI);

matRotZ = Matrix.CreateRotationZ(mfFanRotation);

}

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate&rotate), translate

matWorld = matIdent*matScale*matRotZ*matRotY * matTransl;

foreach (BasicEffect effect in mesh.Effects){

// 4: pass wvp to shader

if(iModel == WINDMILL_BASE)

effect.World = matBase[mesh.ParentBone.Index]* matWorld;

if(iModel == WINDMILL_FAN)

effect.World = matFan[mesh.ParentBone.Index] * matWorld;

effect.View = mMatView;

effect.Projection = mMatProj;

// 4b. set lighting

effect.EnableDefaultLighting();

effect.CommitChanges();

}

// 5: draw object

181C H A P T E R 1 2

3D
M

od
el

smesh.Draw();

}

}

To draw both models, call them from the Draw() method:

draw_windmill(mModBase, WINDMILL_BASE, gameTime);

draw_windmill(mModFan, WINDMILL_FAN, gameTime);

When you run this program, you will see how great the windmill looks in your
game. The output shows your windmill with the fan rotating about the Z axis (refer
to Figure 12-1). You may find that additional scaling, rotations, or translations are
needed to move your own models into place depending on how your windmill was
built. In the end, you will find you can create, load, and render 3D models with very
little effort.

Adding a Car as a Third-person Object

This example shows how to draw a model car as a third-person object. When you use
the third-person view, your camera is behind the object wherever you travel in the 3D
world. When this example is complete, not only will the car drive in front of you as
you move the camera through the 3D world, but the wheels of the car will spin when
you move and the front wheels will pivot about the Y axis as you turn.

One car model and one tire model will be used for this example. They can be found
in the Models folder in the download from this book’s website. Note that these mod-
els are intentionally positioned at the origin with the joint, as shown in Figure 12-12.
Having everything centered at the origin ensures that the transformations done in
code generate the expected behavior.

Figure 12-13 shows the car after the wheel has been transformed and drawn once
in each wheel well.

When this demonstration is complete, the model car and wheel will be drawn as
the third person, so your camera will always be positioned behind it.

The code example begins with the WinMGHBook project or the
Xbox360MGHBook project found in the BaseCode folder.

You can find the hotrod.fbx, wheel.fbx, and car.tga files in the Models folder in
the download from this book’s website. To reference them in your project, add a
Models folder and place these files there. You will need to add a reference to the two
*.fbx files from the Models folder inside the Solution Explorer. To do this, right-click
the project name in the Solution Explorer. Then choose Add and then New Folder.
This will create a Models folder. Next, right-click the Models folder and choose Add
an Existing Item. Finally, navigate to the hotrod.fbx and wheel.fbx files and select
them. When you do this, they will be added to the Models folder. You will also need
to add the car.tga file to this Models directory in your project.

In code, two separate model objects are used to draw the model car. One object
stores the car, and the other stores a wheel. Also, a matrix array for each model is
needed to store the bone transformations for their meshes when the two models are
loaded. These bone transformations will be implemented later when the models are

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E182

F I G U R E 1 2 - 1 2

Models centered at the origin with a joint in the middle

F I G U R E 1 2 - 1 3

One model car and one model wheel redrawn four times

183C H A P T E R 1 2

3D
M

od
el

s

drawn to position them so they can be seen properly by the camera. Add these decla-
rations for the model objects and their matrix arrays at the top of the game class so
the two models can later be loaded, transformed, and drawn:

Model mModCar; Model mModWheel;

Matrix[] mMatCarTransforms; Matrix[] mMatWheelTransforms;

Adding the initializeModels() method to your game class will load the models using
the ContentManager object. The transformation matrices for each mesh in both mod-
els will be stored in a mesh array with the CopyAbsoluteBoneTransformsTo() method.
The code loads your models from the Models folder referenced from your project. The
wheel.fbx, hotrod.fbx, and car.tga files need to be there for a successful load.

void initializeModels(){

mModCar = content.Load<Model>(".\\Models\\hotrod");

mMatCarTransforms = new Matrix[mModCar.Bones.Count];

mModCar.CopyAbsoluteBoneTransformsTo(mMatCarTransforms);

mModWheel = content.Load<Model>(".\\Models\\wheel");

mMatWheelTransforms = new Matrix[mModWheel.Bones.Count];

mModWheel.CopyAbsoluteBoneTransformsTo(mMatWheelTransforms);

}

The two models must be loaded when the program begins, so this method is called
from Initialize():

initializeModels();

To obtain a better look at the car from behind so you can see the front wheels
pivot, an adjustment to the camera is made so it looks slightly downward toward the
ground. In the constructor for the camera class, replace the view direction on the Y
plane with this instruction to angle the camera downward:

m_vView.Y = -0.07f;

To further enable a better view of the car from behind, the ground is lowered
slightly on the Y axis. Replacing the translation in draw_ground() with this revision
will lower the ground by 0.099f units:

matTransl = Matrix.CreateTranslation(0.0f, -0.99f, 0.0f);

The look and feel of the camera needs to change when a car is used as a third per-
son so that the movement through the world feels more like you are driving rather
than just panning the view. To prevent the view from shifting up and down when the
user shifts the right thumbstick or moves the mouse, change the call to modify the

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E184

view in set_view_matrix() with this instruction (the 0.0f parameter prevents any
changes to the camera’s view on Y):

cam.changeView(v2View.X, 0.0f);

Still on the topic of adapting the camera’s look and feel for a car, obviously you
cannot strafe with a car, so in the Update() method comment out the instruction that
triggers strafing:

// cam.strafe(strafe());.

To position the car and wheels ahead of the camera, a translation on the Z axis is
needed. A variable declared at the class level to store this translation is required so
that the methods that draw the tires and wheels can use the same variable. Using the
same translation amount variable in both methods makes it easy to adjust the car’s
distance from the camera.

private float mfTransl = 2.10f;

To understand the logic behind turning the wheels and the response of the con-
trols, consider the process behind parallel parking a car. You have to consider the
car’s direction when turning the steering wheel while moving backward and forward
as you position the car beside the roadside curb. You have to look where you’re going
too, so you don’t hit the cars around you. The logic is similar when programming a
third-person car.

For this routine, if the game pad is in use, the left thumbstick’s Y property is ob-
tained to determine if the car is moving forward or backward. The left thumbstick’s
Y value ranges from –1 for reverse to +1 for forwards. If the left thumbstick is resting
at the center, where Y = 0.0f, the car is not moving so the view is not changed. If the
game pad is not connected, the up and down arrow keys are used to move the car and
the right and left arrow keys are used to turn it. If the up or down arrow key is
pressed, the view will not change because the car is not moving. To coordinate the
changes in view with the game controls, the following code is added to the end of
the changeView() method immediately before the return statement:

// use game pad

if (mGamePadState[0].IsConnected == true){

// no forwards or backwards so don't change view

if (mGamePadState[0].ThumbSticks.Left.Y == 0.0f)

v2Change.X = 0.0f;

// driving in reverse - the view must match the wheel pivot

185

else if (mGamePadState[0].ThumbSticks.Left.Y < 0.0f)

v2Change.X *= -1.0f;

}

// no game pad so using keyboard

else{

// RIGHT

if (kbState.IsKeyDown(Keys.Right)){

v2Change.Y = 0.0f; v2Change.X = SENSITIVITY; // camera change

}

// LEFT

else if (kbState.IsKeyDown(Keys.Left)){

v2Change.Y = 0.0f; v2Change.X = -SENSITIVITY;

}

// no forwards or backwards

if (!kbState.IsKeyDown(Keys.Down) && !kbState.IsKeyDown(Keys.Up))

v2Change.X = 0.0f;

// driving in reverse - the view must match the wheel pivot

else if (kbState.IsKeyDown(Keys.Down))

v2Change.X *= -1.0f;

}

When you turn your car, you are changing the view with a rotation on the Y axis.
The rotation for the default camera is a little too fast for turning a car, so an adjust-
ment is required to slow down the change in view. To slow the change in view, a re-
placement of the SENSITIVITY definition is made inside changeView():

const float SENSITIVITY = 200.0f;

The code used to draw the car is similar to the code used to draw the windmill base
and fan. The transformations are a little more complex, but they still follow the
I.S.R.O.T. sequence. The references used to create the car in the modeling tool were
different from the XNA environment. The car needs to be scale down to 0.2% of its
original size so it is proportionate to the 3D world generated in the base code. Also, to
make the car bottom horizontal with the ground, it must be rotated on the X axis.
Once these initial transformations have been performed, some additional transla-
tions and a rotation are needed to move the car out ahead of the camera so you can
see it at all times as a third person wherever you go. Figure 12-14 explains the trans-
formations to make viewing the car as a third person possible.

As explained in the windmill model example, when the model is drawn, the
BasicEffect shader is used, so the World, View, and Projection matrices must be set to
transform it. Also, when the car is drawn, default lighting is enabled since the

C H A P T E R 1 2

3D
M

od
el

s

BasicEffect shader makes this easy to do. Add drawCar() to transform, light, and draw
your car so it appears as a third person you can always see in front of your camera:

void drawCar(Model model){

foreach (ModelMesh mesh in model.Meshes){

// 1: declare matrices

Matrix matWorld, matIdent, matScale, matRotX, matTransl;

Matrix matTransOrb, matRotYorb;

// 2: initialize matrices

matIdent = Matrix.Identity;

matScale = Matrix.CreateScale(0.002f, 0.002f, 0.002f);

matRotX = Matrix.CreateRotationX(-(float)Math.PI / 2.0f);

float fYrot = (float)Math.Atan2(cam.m_vView.X - cam.m_vPos.X,

cam.m_vView.Z - cam.m_vPos.Z);

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E186

F I G U R E 1 2 - 1 4

Transformations for positioning the car in front of the camera

187C H A P T E R 1 2

3D
M

od
el

smatRotYorb = Matrix.CreateRotationY(fYrot);

matTransl = Matrix.CreateTranslation(cam.m_vPos.X, -0.81f,

cam.m_vPos.Z);

matTransOrb = Matrix.CreateTranslation(0.0f, 0.0f, mfTransl);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

matWorld = matIdent * matScale * matRotX

* matTransOrb * matRotYorb * matTransl;

foreach (BasicEffect effect in mesh.Effects){

// 4: pass wvp to shader

effect.World=mMatCarTransforms[mesh.ParentBone.Index]*matWorld;

effect.View =mMatView;

effect.Projection = mMatProj;

// set lighting

effect.EnableDefaultLighting();

effect.CommitChanges();

}

// 5: draw object

mesh.Draw();

}

}

The car is ready for rendering. To draw it, add the call statement to the end of
Draw():

drawCar(mModCar);

When you run the program now, you will see the car but without the wheels. The
code for adding the wheels is not much different from the code used to load and draw
the car model. However, the wheels must also spin when the car moves and they must
pivot when the car turns.

A variable mfTireRotation is declared at the top of the game class to store and up-
date the current spin value in radians:

private float mfTireRotation;

The wheels are spun forward as long as you shift the left thumbstick up or press
the up arrow key. The wheels spin backward if you shift the left thumbstick down or
press the down arrow key. Add spinWheel() to spin your wheels as your car moves
forward or backward:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E188

private float spinWheel(GameTime t){

KeyboardState kbState = Keyboard.GetState();

GamePadState gpState = getNewState(mGamePadState[0]);

// generate time scaled increment for tire rotation

float fTimeScale = t.ElapsedGameTime.Milliseconds / 170.0f;

// game pad connected - car not moving forward or reverse

if (mGamePadState[0].ThumbSticks.Left.Y == 0.0f

&& mGamePadState[0].IsConnected)

return 0.0f; // don't spin wheels

// game pad not connected - car not moving forward or reverse

else if (!mGamePadState[0].IsConnected && !kbState.IsKeyDown(Keys.Up)

&& !kbState.IsKeyDown(Keys.Down))

return 0.0f; // don't spin wheels

// down key or left stick down so reverse tires

if (kbState.IsKeyDown(Keys.Down)

|| mGamePadState[0].ThumbSticks.Left.Y < 0.0f)

fTimeScale *= -1.0f;

// increment tire and prevent variable overflow with modulus

mfTireRotation += fTimeScale;

mfTireRotation = mfTireRotation % (2.0f * (float)Math.PI);

// return increment to X rotation for tire

return mfTireRotation;

}

Next, some extra code is needed to pivot the front wheels when you turn the car.
While the car is moving forward or backward, an adjustment to the view either from
shifting the right thumbstick left or right or from pressing the left or right arrow key
will cause the wheels to pivot. You can also pivot the wheels when the car is station-
ary and there is no change to the view.

If the game pad is in use, the right thumbstick’s X property is obtained to adjust
the rotation angle about the Y axis for both wheels. The right thumbstick’s X prop-
erty ranges from –1 to 1. This X value is scaled to provide a suitable pivot angle in ra-
dians for the front wheels.

If you are using the keyboard only, the change in view from pressing the right or
left arrow key is used to set the rotation angle. When you’re using the keyboard, the

189

change in view is used to obtain the rotation angle. Since the change in view is deter-
mined before the pivot angle is calculated, matching the wheel pivot to the change in
view avoids conflicts in direction if you are pressing the up and down arrow keys at
the same time. The pivot angle in radians is negated if the car is driving in reverse, so
the front wheels pivot properly while you back up.

Add pivotWheel() to the game class to rotate your front tires about the Y axis
when you want to turn your wheels:

private float pivotWheel(GameTime t){

float fYRotation = 0.0f;

KeyboardState kbState = Keyboard.GetState();

GamePadState gpState = getNewState(mGamePadState[0]);

// turn wheel about Y axis if right stick shifted on X

if (mGamePadState[0].IsConnected == true)

fYRotation = mGamePadState[0].ThumbSticks.Right.X / 2.7f;

// turn wheel about Y axis if LEFT or RIGHT keys pressed

else{

Vector2 v2 = changeView(t);

fYRotation = v2.X / 470.0f;

if (move() < 0.0f) // driving in reverse

fYRotation *= -1.0f;

else if (move() == 0.0f){ // car stopped but pivot tires

if (kbState.IsKeyDown(Keys.Right))

fYRotation = 0.41f;

else if (kbState.IsKeyDown(Keys.Left))

fYRotation = -0.41f;

}

}

return fYRotation;

}

The code for drawing the wheel is structurally identical to all other draw routines
presented in this chapter. Only one wheel model is actually being used, but it is being
drawn four times. The transformations to rotate, spin, and position each wheel into
place may look hefty, but they are actually simple when you realize they, too, follow
the I.S.R.O.T. sequence. Figure 12-15 summarizes the transformations applied to
each wheel.

C H A P T E R 1 2

3D
M

od
el

s

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E190

Add drawWheels() to transform, light, and draw the wheel model four times so
that each wheel is positioned properly around the car:

void drawWheels(Model model, GameTime t){

const int FRONTL = 0; const int FRONTR = 1;

const int BACKL = 2; const int BACKR = 3;

for (int i = 0; i < 4; i++) // draw each tire

{

foreach (ModelMesh mesh in model.Meshes){

// 1: declare matrices

Matrix matWorld, matIdent, matScale, matRotX, matRotY,

matTransOrb, matRotYOrb, matTransl;

// 2: initialize matrices

matIdent = Matrix.Identity;

// model is huge when loaded - scale it down

matScale = Matrix.CreateScale(0.002f, 0.002f, 0.002f);

F I G U R E 1 2 - 1 5

Transformations for each wheel

191

// look direction of camera about the Y axis

// so car always faces in direction it moves

float fYrot = (float)Math.Atan2(cam.m_vView.X - cam.m_vPos.X,

cam.m_vView.Z - cam.m_vPos.Z);

// move wheels with camera

matTransl = Matrix.CreateTranslation(cam.m_vPos.X,-0.8f, cam.m_vPos.Z);

// defaults

matRotY = Matrix.CreateRotationY(0.0f);

matRotX = Matrix.CreateRotationX(0.0f);

// same wheel is drawn four times

// translate and rotate wheels into position from car center

// spin wheels on X axis

// pivot front tires on Y when user selects left and right

matTransOrb = Matrix.CreateTranslation(0.0f, 0.0f, 0.3f);

matRotYOrb = Matrix.CreateRotationY(fYrot);

switch (i)

{

case FRONTL:

matTransOrb = Matrix.CreateTranslation(0.23f,-0.08f, mfTransl+0.26f);

matRotY = Matrix.CreateRotationY(+(float)Math.PI-pivotWheel(t));

matRotX = Matrix.CreateRotationX(-spinWheel(t));

break;

case FRONTR:

matTransOrb = Matrix.CreateTranslation(-0.23f,-0.08f, mfTransl+ 0.26f);

matRotY = Matrix.CreateRotationY(-pivotWheel(t));

matRotX = Matrix.CreateRotationX(spinWheel(t));

break;

case BACKL:

matTransOrb = Matrix.CreateTranslation(0.24f,-0.08f, mfTransl-0.29f);

matRotY = Matrix.CreateRotationY(+(float)Math.PI);

matRotX = Matrix.CreateRotationX(-spinWheel(t));

break;

case BACKR:

matTransOrb = Matrix.CreateTranslation(-0.24f,-0.08f,mfTransl-0.29f);

matRotX = Matrix.CreateRotationX(spinWheel(t));

break;

}

C H A P T E R 1 2

3D
M

od
el

s

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

matWorld = matIdent * matScale * matRotX * matRotY

* matTransOrb * matRotYOrb * matTransl;

foreach (BasicEffect effect in mesh.Effects){

// 4: pass world view and projection to default model shader

effect.World = mMatWheelTransforms[mesh.ParentBone.Index]*matWorld;

effect.View = mMatView;

effect.Projection = mMatProj;

effect.EnableDefaultLighting();

effect.CommitChanges();

}

// 5: draw object

mesh.Draw();

}

}

}

Now the wheels are ready to be drawn. Inside Draw(), add the call statement to
draw the wheels to view them with your car:

drawWheels(mModWheel, gameTime);

After compiling and running your project, you will be able to drive through the 3D
world in comfort. Driving around in this model hot rod is definitely a lot more interest-
ing than driving around in a hand-coded primitive object. Point your wheels and go.

CHAPTER 12 REVIEW EXERCISES

1. Follow the step-by-step examples presented in this chapter.

2. Explain how models that are not saved at the origin cause unbalanced
transformations.

3. Replace the primitive objects in the airplane example shown in Chapter 6,
“Character Movement,” with an airplane model and propeller model that
you create in MilkShape. When you create the airplane model, be sure to
use only one image for the texture as explained in the guidelines in this
chapter.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E192

CHAPTERCHAPTER1313
VectorsVectors

193

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

194

A vector is a multidimensional object that stores data such as position, distance,
and speed. Vectors are a key pillar in the structure of any 3D graphics engine be-

cause they are used to create animations, implement collision detection, set lighting,
launch ballistics, and more. Understanding vector math is essential if you want to invent
impressive special effects for your games. The good news is that vector math is simple.

VECTOR CLASS
A three-dimensional vector stores X, Y, and Z coordinates, which are often used for
describing position and direction. However, a vector could be two dimensional, in
which case it would only store X and Y coordinates. A two-dimensional vector is of-
ten used for setting position coordinates for 2D sprites or UV coordinates for tex-
tures. A vector could even have four dimensions (that is, it would store X, Y, Z, and
W coordinates). The W coordinate might be used to specify the alpha color for set-
ting transparency along with red, green, and blue parameters in the X, Y, and Z val-
ues of the same vector. Alternatively, the W coordinate might be added on to the end
of a three-dimensional vector to ensure the total vector columns match the total rows
of a 4×4 matrix so the objects are compatible for multiplication.

The Microsoft.Xna.Framework library provides three vector class types:
Vector2, Vector3, Vector4. Each vector class contains a similar set of methods to per-
form mathematical operations on the vectors, but each set of operators is tailored for
total dimensions in the class. You will see these vector operations in various graphics
and game algorithms, so it is worth understanding them—and it’s even better when
you can use them to customize your own graphics algorithms. The logic behind vec-
tor math operations is the same for each of the three vector classes, and each vector
class makes it easy to perform addition, subtraction, and scaling. The vector classes
also provide methods for performing more complex operations. This includes calcu-
lating a vector’s length, calculating a perpendicular vector from a surface, and find-
ing the angle between two vectors.

VECTOR ADDITION
Vector addition is essential for many game algorithms. You have already been using
vector addition to move an object by updating its coordinates. This technique was
first covered in Chapter 6, “Character Movement.” Here is the formula for summing
two 3D vectors (A and B):

A + B = {Ax + Bx, Ay + By, Az + Bz}

Here’s an example of vector addition. If vector A stores a direction of X=5, Y=3,
Z=0, and vector B stores a direction of X=4, Y=–2, Z=0, then the sum equals X=9,
Y=1, Z=0. This is the manual calculation:

195C H A P T E R 1 3

Ve
ct

or
s|5| + | 4| = |9|

|3| |-2| |1|

|0| | 0| |0|

To perform this calculation in code, start with the “Font Example: Displaying
Text in the Game Window” solution in Chapter 11, “Score Tracking and Game Sta-
tistics,” and add the calculate_to_string() method to the game class. This new
method adds vectors A and B and then displays their sum as text in the game window:

String calculate_to_string()

{

Vector3 vA = new Vector3(5.0f, 3.0f, 0.0f); // A

Vector3 vB = new Vector3(4.0f,-2.0f, 0.0f); // B

Vector3 vC;

vC.X = vA.X + vB.X; vC.Y = vA.Y + vB.Y; vC.Z = vA.Z + vB.Z;

return "X = " + vC.X.ToString()

+ " Y = " + vC.Y.ToString()

+ " Z = " + vC.Z.ToString();

}

To trigger the calculation and show the result in the top of the game window, in-
side the Draw() method, replace the line

draw_string("Score Tracking and Game Stats", (int)v2px0.X, (int)v2px0.Y,

Color.Red);

with this revised version that calls the calculate_to_string() method:

draw_string(calculate_to_string(), (int)v2px0.X, (int)v2px0.Y, Color.Red);

When you run this code, the output will show the same sum for X, Y, and Z that
was demonstrated earlier in the manual addition.

You could actually replace the three lines that separately assign values to vC.X,
vC.Y, and vC.Z to perform the sum in calculate_to_string() with this revision:

vC = vA + vB;

When you run this program, you will see the same output as before, but there is
considerably less code behind the addition.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E196

VECTOR SUBTRACTION

Vector subtraction is essential any time you wish to calculate the distance between
two vectors. If vector A (5, 3, 0) is decremented by B (4, –2, 0), the resulting vector
would be defined by X=1, Y=5, Z=0:

|5| - | 4| = |1|

|3| |-2| |5|

|0| | 0| |0|

To implement vector subtraction in your code, start with the solution from the
previous example and make the following changes. To calculate the difference be-
tween vector A and vector B, replace the instruction that performs the addition for
vC inside calculate_to_string() with the following:

vC = vA - vB;

When you run this code, the vector that results from the subtraction is displayed in
the game window as X = 1, Y=5, Z = 0. Notice that these totals for X, Y, and Z match
the difference you calculated manually.

VECTOR SCALING
Scaling a vector’s magnitude up or down involves multiplying a vector by a scalar
value. When you’re working with the Vector2, Vector3, and Vector4 objects, the sca-
lar must be a floating-point number. Of course, there are endless possibilities for us-
ing vector scaling in your game and graphics routines. In Chapter 5, “Animation
Introduction,” vector scaling was used to maintain an animation at a constant rate.
To regulate the animation speed so that it runs at the same rate on both fast and slow
machines, the direction vector is multiplied by the time lapse between frames.

Vector Scaling, Example 1

To demonstrate vector scaling, consider a vector where X=9, Y=1, and Z=0. Then
multiply the vector by 2. The product equals

X = 9*2 Y = 1*2 Z = 0*2

The new vector is X = 18, Y = 2, Z = 0.
To perform this scaling in code, replace the calculate_to_string() method from the

previous example with this new version:

String calculate_to_string()

{

197C H A P T E R 1 3

Ve
ct

or
sVector3 v = new Vector3(9.0f, 1.0f, 0.0f);

float fScale = 2.0f;

v *= fScale; // multiply float and vector

return "X = " + v.X.ToString()

+ " Y = " + v.Y.ToString()

+ " Z = " + v.Z.ToString();

}

When you compile and run this code, the text output will show the same product
that you calculated manually: X = 18 Y = 2 Z = 0.

You may also use a divisor to scale a vector by a fraction. One common example of
this operation is in the creation of unit vectors to scale the range so each vector com-
ponent is between –1 and 1. Unit vectors are essential for ensuring consistency when
working with direction vectors and even when using vectors for graphics effects such
as lighting.

Vector Scaling, Example 2

To demonstrate vector scaling with a divisor, consider vector A (9, 1, 0) divided by 2;
you would end up with the following calculation:

X = 9/2 Y = 1/2 Z = 0/2

The new vector is defined with the coordinates X = 4.500, Y = 0.500, and Z = 0.000.
The direction information is the same, but the magnitude is reduced to half the origi-
nal amount.

To implement this vector operation in code, begin with the solution for the preced-
ing scaling example. Then, replace the instruction to multiply the vector with a float
to apply the divisor:

v /= fScale; // multiply float and vector

The output of this code reads “X=4.5 Y = 0.5 Z = 0,” which is equivalent to the
quotient from your manual calculation.

NORMALS

A normal is a special type of vector that is perpendicular to a flat surface. In other
words, a normal is a vector that points outward from a face at an angle of 90 degrees.
The normal represents direction, so the position is irrelevant. Figure 13-1 shows a
normal vector pointing outward from a face. In game programming, normal vectors
have uses that range from implementing lighting to building a camera.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E198

When you’re computing normal vectors from a flat surface, the simplest flat sur-
face possible is built by two vectors joined at the tail end.

Cross Product

The cross product formula is used to calculate a normal vector for a surface that is
created by two vectors. It uses the two surface vectors as inputs. The cross product
between vectors A and B equals the following:

A × B = (Ay*Bz – Az*By,Az*Bx – Ax*Bz,Ax*By – Ay*Bx)

The set of coordinates generated from the cross product represents the normal direc-
tion vector. The order of the surface vectors used in the cross product will affect the di-
rection of the normal vector. When applying the cross product using the Right Hand
Rule, you can use a mnemonic device to determine the direction of the normal vector.
You can determine the direction of the normal by positioning your right thumb so it runs
in the direction of vector A. Then position your hand so your right index finger points in
the direction of vector B. The palm of your right hand will point in the direction of the
normal vector that results from the cross product between vector A and vector B.

XNA’s Cross() method automates the process of calculating the cross product to
generate the normal. The syntax is

Vector3 crossproduct = Vector3.Cross(Vector3 vectorA, Vector3 vectorB);

Cross Product Example

This example shows you how to calculate a normal in both directions. The surface is
defined by vector A (9, 1, 0) and vector B (9, 0, 0). Here is the manual cross product
calculation to generate the normal direction vector:

F I G U R E 1 3 - 1

Normal vector

199

A × B
= (Ay*Bz – Az*By, Az*Bx – Ax*Bz, Ax*By – Ay*Bx)
= (1*0 – 0*0, 0*9 – 9*0, 9*0 – 1*9)
= (0, 0, –9)

The manual calculation verifies the prediction that X and Y equal 0. Also, the nor-
mal vector is traveling in a negative direction (on the Z axis) from the surface created
by vectors A and B. The image on the left in Figure 13-2 shows the two surface vec-
tors together with the negative normal vector that was just calculated.

To show this cross product calculation in code, use the solution from the previous
code example and replace the calculate_to_string() method with this version:

String calculate_to_string()

{

Vector3 vA = new Vector3(9.0f, 1.0f, 0.0f); // A

Vector3 vB = new Vector3(9.0f, 0.0f, 0.0f); // B

Vector3 vC = new Vector3(vA.Y * vB.Z - vA.Z * vB.Y, // compute normal

vA.Z * vB.X - vA.X * vB.Z,

vA.X * vB.Y - vA.Y * vB.X);

return "X = " + vC.X.ToString() // string output

+ " Y = " + vC.Y.ToString()

+ " Z = " + vC.Z.ToString();

}

C H A P T E R 1 3

Ve
ct

or
s

F I G U R E 1 3 - 2

Cross product A × B (left) and cross product B × A (right)

The output of this code will show the values “X = 0 Y = 0 Z = –9.”
This cross product calculation code can be simplified further. The definition for

vector C, vC, can be replaced with a definition that uses the Cross() method:

Vector3 vC = Vector3.Cross(vA, vB);

Once again, after you insert and run this code, the resulting vector is computed as
X = 0 Y = 0 Z = – 9.

So far, in this example, you have generated a normal vector with a negative direc-
tion. You can reverse the normal vector’s direction by swapping the vector parame-
ters in the Cross() method. Swapping vector A and vector B parameters in the Cross()
method reverses the order in which the surface vectors are used in the cross product.
To try this, replace the existing definition for vector C, vC, with this revision in the
calculate_to_string() method:

Vector3 vC = Vector3.Cross(vB, vA);

The result of swapping vector parameters in the Cross() method will output a nor-
mal vector that points in a positive direction on Z with the coordinates X = 0 Y = 0 Z
= 9. The image on the right in Figure 13-2 shows how the normal vector points out-
wards from the face in a positive direction.

NORMALIZATION

The process of scaling vectors to unit vectors is known as normalization. A unit vec-
tor is a set of numbers that have been expressed in the same ratio as the original vec-
tor, but the vector components are scaled to a fraction that ranges between –1 and
+1. The vector length is scaled to 1. Often, when you’re comparing properties such as
direction or speed, magnitude is not important, but relative change on the X, Y, and
Z planes is important. A normalized vector allows such comparisons on a uniform
scale while the individual vector components (X, Y, Z) retain the same relative size to
each other as the original vector.

The normal vector is calculated by dividing the X, Y, and Z coordinates of a vector
by the total vector length:

UnitVector.X = Vector.X / VectorLength
UnitVector.Y = Vector.Y / VectorLength
UnitVector.Z = Vector.Z / VectorLength

The vector length is calculated using the Pythagorean Theorem.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E200

201

Pythagorean Theorem

As you’ll remember from math class, the Pythagorean Theorem states that for a
right-angle triangle, A2+ B2 = C2 (where C is the length of the hypotenuse, and A and B
represent the lengths of the other two sides). In the context of three-dimensional vec-
tors, the vector length can be calculated with the equation

Vector length = X Y Z2 2 2+ +

To apply the Pythagorean Theorem for vectors, you create a right-angle triangle
by dropping a line from the head of the vector so that it intersects the nearest axis at
90 degrees. Together, the original vector, the right-angle line, and the axis create a
right-angle triangle.

Using the Pythagorean Theorem to Calculate
the Vector Length

This example shows how you can use the Pythagorean Theorem to calculate the vec-
tor length. It starts with a vector having values of X = 9, Y=1, and Z=0. Calculating
the length of the hypotenuse, in effect, returns the vector length.

Implementing the Pythagorean Theorem gives you the following:

VectorLength = 9 1 02 2 2+ + = 9.055

To compute and display vector length in code, replace the existing calculate_to_string()
method (in the code solution from the last example) with this new version:

String calculate_to_string()

{

Vector3 v = new Vector3(9.0f, 1.0f, 0.0f);

float fLength = (float)Math.Sqrt(v.X * v.X + v.Y * v.Y + v.Z * v.Z);

return "Vector length = " + fLength.ToString("N3"); // 3 decimals

}

When you run this code, the vector length 9.055 is generated and displayed in the
game window.

XNA provides the Length() method to automate the vector’s length calculation. If
you replace the declaration for fLength in calculate_to_string() with this instruction,
the same result will be generated:

float fLength = (float)v.Length();

When you run the code now, the vector length that appears in the game window
will remain the same. The length of 9.055 is still computed and shown in the window.

C H A P T E R 1 3

Ve
ct

or
s

Using Normalization to Compute the Unit Vector

After the length has been calculated, you can scale the original vector to a unit vector
by dividing the X, Y, and Z values in the original vector by the vector length. Here is
the manual calculation:

UnitVector.X = Vector.X / VectorLength = 9 / 9.055 = 0.99

UnitVector.Y = Vector.Y / VectorLength = 1 / 9.055 = 0.11

UnitVector.Z = Vector.Z / VectorLength = 0 / 9.055 = 0.00

In this case, the calculated unit vector is much smaller than the original vector, but the
unit vector contains the same proportion of direction or speed information. The angle of
the vector remains the same as the original vector (9, 1, 0), but the vector is shorter.

To calculate the unit vector in code, and show it in the window, replace the current
calculate_to_string() method from the previous example’s solution with this version:

String calculate_to_string()

{

Vector3 v = new Vector3(9.0f, 1.0f, 0.0f);

float fLength = (float)v.Length();

Vector3 vUnit = v / fLength;

return "X = " + vUnit.X.ToString("N3")

+ " Y = " + vUnit.Y.ToString("N3")

+ " Z = " + vUnit.Z.ToString("N3"); // 3 decimals

}

When you run this version of the code, the text in the window reads “X = 0.994 Y=
0.110 Z = 0.000.”

Using the Normalize() Method to Compute the Unit Vector

XNA provides the Normalize() method to automate the generation of the unit vector
so that you no longer need to divide the original vector by the length. The syntax for
the Normalize() method is

Vector3 unitVector = Vector3.Normalize(Vector3 vector);

A Normalize() method also exists for objects derived from the Vector2 and
Vector4 classes. The syntax is identical to that for the Vector3 class:

Vector2 unitVector = Vector2.Normalize(Vector2 vector);

Vector4 unitVector = Vector4.Normalize(Vector4 vector);

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E202

203

The solution from the previous example can be reimplemented using the Normal-
ize() method. To use this method, replace the declaration for vUnit in calcu-
late_to_string() with this version:

Vector3 vUnit = Vector3.Normalize(v);

Also, in calculate_to_string(), delete the vector-length calculation because it is no
longer required. The output from this revised method generates the same unit vector
as before, but with less code.

DOT PRODUCT

The dot product is used to find the angle between vectors and is essential for many 3D
graphics routines. The dot product can be used for calculating trajectory angles, an-
gles of reflection, or even light intensity. If you have two vectors, as in Figure 13-3,
the dot product can be computed with the following equation:

cos θ
= UnitVectorA . UnitVectorB
= UnitVectorA.x * UnitVectorB.x + UnitVectorA.y * UnitVectorB.y

+ UnitVectorA.z * UnitVectorB.z

The dot product formula can be rearranged to give the angle:

θ = cos–1(UnitVectorA . UnitVectorB)

For the material in this book, the dot product is used in Chapter 16, “Collision De-
tection,” and in Chapter 20, “Lighting.”

C H A P T E R 1 3

Ve
ct

or
s

F I G U R E 1 3 - 3

Calculating the angle between vectors using the dot product

Dot Product Method

XNA provides the Dot() method to help automate the calculation of the dot product:

float dotproduct = Vector3.Dot(Vector3 unitVectorA, Vector3 unitVectorB);

Dot Product Example

This example shows how to use the dot product to calculate the angle between vector
A where X = 0, Y = 5, Z = 0 and vector B where X = 5, Y = 5, and Z = 0, as shown back
in Figure 13-3.

To perform this calculation manually, first calculate the unit vector for A:

UnitVectorA = A / LengthA
LengthA = 0 5 0 52 2 2+ + =
Ax / LengthA = 0.000, Ay / LengthA = 1.000, Az / LengthA = 0.000

Then, calculate the unit vector for B:

UnitVectorB = B / LengthB
LengthB = 5 5 0 7 0722 2 2+ + = .
Bx / LengthB = 0.707, By / LengthB = 0.707, Bz / LengthB = 0.000

Next, using the dot product definition, you can calculate the value for cos θ:

cos θ.
= UnitVectorA . UnitVectorB
= UnitVectorA.x * UnitVectorB.x + UnitVectorA.y * UnitVectorB.y

+ UnitVectorA.z * UnitVectorB.z
= 0.000 * 0.707 + 1.000 * 0.707 + 0.0000 * 0.000
= 0.707

The result can be rearranged to isolate the value for θ, which is the angle being
sought:

θ. = cos–1(0.707) = 0.785 radians
2π radians = 360 degrees
θ. = 0.785 radians * (360 degrees / 2π radians) = 45 degrees

To perform this calculation for the angle between the two vectors in code, replace
the old calculate_to_string() method with this revision:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E204

205

String calculate_to_string(){

Vector3 vA = new Vector3(0.0f, 5.0f, 0.0f);

Vector3 vB = new Vector3(5.0f, 5.0f, 0.0f);

Vector3 vUnitA = Vector3.Normalize(vA);

Vector3 vUnitB = Vector3.Normalize(vB);

float vDot = Vector3.Dot(vUnitA, vUnitB);

float fRadians = (float)Math.Acos((double)vDot);

float fDegrees = fRadians * 360.0f / (float)(Math.PI * 2.0);

return "Angle in Degrees = " + fDegrees.ToString("N3");

}

When you run the code, the text in the window will read “Angle in Degrees =
45.000.”

Vector lingo is daunting if you haven’t used it before or studied it for many years.
If you studied vectors in high school, chances are you never associated them with cool
graphics and game code, so they may not have stuck with you. As far as game code
goes, you can get a lot of mileage from the formulas presented in this chapter. The
formulas covered here appear in all types of game algorithms and effects in the wide
world of games programming.

CHAPTER 13 REVIEW EXERCISES

1. Implement the step-by-step examples shown in this chapter.

2. Create a pyramid, composed of line lists, that is centered at the origin.
Generate normals for each of the five faces and render them as line lists.
Draw each of the five normal vectors as line lists as well.

3. Normalize the normal vectors in Exercise 2. Run and view your project
after the normals have been converted to unit vectors.

C H A P T E R 1 3

Ve
ct

or
s

This page intentionally left blank

CHAPTERCHAPTER1414
MatricesMatrices

207

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

208

MATRIX math is a branch of linear algebra, and all 3D graphics
programmers can benefit from understanding it. In

video game development, matrices are used to store data, vertices, and information
about how to transform an object. Matrices are simply grids of rows and columns, but
they are essential for scaling, rotating, and translating objects in 3D space. You will have
noticed by now that matrix calculations are used throughout your XNA and shader
code for performing transformations, controlling your camera, and even for drawing 3D
models. Understanding how these matrix methods work will provide you with better
comprehension of how 3D game engines work. Most of the time, you can get away with
just using XNA matrix methods to automatically create matrices and to implement your
transformations. However, for complex vector transformations, you will sometimes
need to be able to build your own matrices to implement the calculations.

In Chapter 6, “Character Movement,” a matrix is manually created to compute
an airplane’s angle of direction. In Chapter 17, “Ballistics,” a matrix is manually
built to implement a vector transformation to determine the starting position and di-
rection of a rocket. In cases like these, understanding the matrix math can definitely
help to simplify your transformations.

MATRIX MULTIPLICATION
This section introduces matrix multiplication and prepares you for performing man-
ual transformations later in the chapter. The product of two matrices is obtained by
multiplying the rows of matrix A against the columns of matrix B, where matrix A is
located on the left side of the operator. For the multiplication to be possible, the total
number of columns in matrix A must equal the total number of rows in matrix B.

Matrix Class

XNA’s Matrix class enables storage of a 4x4 matrix (4 rows by 4 columns). Each cell
in the matrix grid can be accessed by referencing the matrix and suffixing it with the
cell’s row and column, where the top-left cell begins at row 1, column 1. Each cell
stores a float:

float cellvalue = Matrix matrix.MRC

For example, matrix.M11 represents the value in row 1, column 1. Matrix.M13
represents the value in row 1, column 3.

Matrix Multiplication Example: 1×4 Matrix * 4×4 Matrix

This example shows how to multiply a 1×4 matrix by a 4×4 matrix. We’ll first show
the multiplication done by hand so that you can see each step of the calculation.
Later, the same operation will be shown in code. For this example, a vector with X=2,
Y=1, Z=0, and W=0 will be multiplied by a 4×4 matrix.

209C H A P T E R 1 4

M
at

ric
esManual Calculation

To set up the equation, the vector is placed on the left side of the multiplication oper-
ator, and the 4×4 matrix is placed on the right, as shown here:

| 2 1 0 0 | X | 2 1 3 1 |

| 1 2 4 1 |

| 0 3 5 1 |

| 2 1 2 1 |

The row on the left is multiplied by each column on the right. The following for-
mula is used for each of the four columns of vector C, where A represents the matrix
on the left and B represents the matrix on the right:

for(int c=1; c<=4; c++)

C1c =A11*B1c + A12*B2c + A13*B3c + A14*B4c

Implementing the formula gives you the following:

|(2*2 + 1*1 (2*1 + 1*2 (2*3 + 1*4 (2*1 + 1*1

|+ 0*0 + 0*2) + 0*3 + 0*1) + 0*5 + 0*2) + 0*1 + 0*1)

=

| 5 4 10 3 |

The product of A*B, therefore, is a new vector with X=5, Y=4, Z=10, and W=3.

Calculation in Code

The previous computation will now be performed in code. To be able to print the cal-
culation results in the game window, use the solution from the “Font Example: Dis-
playing Text in the Game Window” section of Chapter 11, “Score Tracking and
Game Statistics.” This solution can be found in the Solutions folder in the download
available from this book’s website.

When you open the solution, you must add the multiply_matrix() method to the game
class so it can initialize two matrices and calculate their product. For this example, the
code declares matrix A and initializes it to store the vector in the first row. Initially, when
the constructor for the Matrix class is referenced, all cells in matrix A are initialized to 0.
The vector’s X, Y, Z, and W components are assigned to the four cells of the first row of
matrix A. The cell data for the matrix on the right side of the operator is assigned to
matrix B; then A and B are multiplied together to generate the product matrix.

public void multiply_matrix(){

Matrix A = new Matrix();

Matrix B = new Matrix();

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E210

Matrix C = new Matrix();

// store vector in first row - all other cells equal 0

A.M11 = 2.0f; A.M12 = 1.0f; A.M13 = 0.0f; A.M14 = 0.0f;

// init matrix B

B.M11 = 2.0f; B.M12 = 1.0f; B.M13 = 3.0f; B.M14 = 1.0f;

B.M21 = 1.0f; B.M22 = 2.0f; B.M23 = 4.0f; B.M24 = 1.0f;

B.M31 = 0.0f; B.M32 = 3.0f; B.M33 = 5.0f; B.M34 = 1.0f;

B.M41 = 2.0f; B.M42 = 1.0f; B.M43 = 2.0f; B.M44 = 1.0f;

C = A * B;

draw_matrix(C);

}

To display the cell data (for the product matrix) as text in the game window, you
require the draw_matrix() method. Add it to your game class so that you can convert
each cell of the product matrix to a string, combine cells to form each row of the ma-
trix, and then draw each row of the matrix in the window.

public void draw_matrix(Matrix C){

String[] sOut = new String[4];

sOut[0] = sCell(C.M11)+sCell(C.M12)+sCell(C.M13)+sCell(C.M14); // row 1

sOut[1] = sCell(C.M21)+sCell(C.M22)+sCell(C.M23)+sCell(C.M24); // row 2

sOut[2] = sCell(C.M31)+sCell(C.M32)+sCell(C.M33)+sCell(C.M34); // row 3

sOut[3] = sCell(C.M41)+sCell(C.M42)+sCell(C.M43)+sCell(C.M44); // row 4

Vector2 v2px0 = get_titleSafe_topLeft_pixel(); // starting left pixel

for (int i = 0; i < 4; i++) // draw 4 matrix rows

draw_string(sOut[i], (int)v2px0.X,

(int)v2px0.Y + i * (FONT_H + 2), Color.Black);

}

To improve readability, add sCell() so that you can create a string for each cell.
This will right-align the columns when they are displayed in a matrix grid. sCell()
first formats the data in each cell so it appears as a floating-point number with two
decimal places, then sCell() compares the length of the data string with the amount
allotted for each cell. sCell() does this by adding extra spaces until the total character
count for the string matches the amount allotted for each cell. When the string has
been created, it is returned to the calling function.

211C H A P T E R 1 4

M
at

ric
espublic string sCell(float fCell){

string strCell = fCell.ToString("N2"); // 2 decimal places

const int CELL_W = 8; // each cell takes 8 chars

int iLen = strCell.Length; // original cell length

// right align text based on string length. Add padding on left

for (int i = 0; i < CELL_W - iLen; i++)

strCell = " " + strCell;

return strCell;

}

To trigger the methods that calculate the matrix product and display the output,
replace the line

draw_string("Score Tracking and Game Stats",

(int)v2px0.X, (int)v2px0.Y, Color.Red);

inside Draw() with the following:

multiply_matrix();

When you run this code, the product matrix will appear in the window:

5.00 4.00 10.00 3.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

This result verifies that the code, C = A * B (where A, B, and C are Matrix objects),
generates the same product as shown in the lengthy manual calculation.

Matrix Multiplication Example: 4×4 Matrix * 4×4 Matrix

This next example shows how to multiply a 4×4 matrix by a 4×4 matrix. Knowing
how to do this by hand is very useful because all of the transformations you have been
implementing in your XNA code involve multiplying 4×4 matrices by 4×4 matrices.
You will first see how the multiplication can be performed manually, and then how
you can do it in code.

Manual Calculation

For this case, the following two matrices, A and B, are to be multiplied:

A X B =

| 2 1 0 0 | X | 2 1 3 1 |

|-1 -2 0 0 | | 1 2 4 1 |

| 3 1 0 0 | | 0 3 5 1 |

|-3 2 2 0 | | 2 1 2 1 |

When you’re calculating the product of a 4x4 matrix by a 4x4 matrix, the formula
to multiply the rows of matrix A by the columns of matrix B is

for(r=1; r<=4; r++)

for(c=1; c<=4;c++)

Crc =A1*B1c + A2*B2c + A3*B3c + A4*B4c

When the formula is implemented by hand, the calculation looks like this:

|(2*2 + 1*1 (2*1 + 1*2 (2*3 + 1*4 (2*1 + 1*1

|+ 0*0 + 0*2) + 0*3 + 0*1) + 0*5 + 0*2) + 0*1 + 0*1)

|(-1*2 - 2*1 (-1*1 - 2*2 (-1*3 - 2*4 (-1*1 - 2*1

|+ 0*0 + 0*2) + 0*3 + 0*1) + 0*5 + 0*2) + 0*1 + 0*1)

|(3*2 + 1*1 (3*1 + 1*2 (3*3 + 1*4 (3*1 + 1*1

|+ 0*0 + 0*2) + 0*3 + 0*1) + 0*5 + 0*2) + 0*1 + 0*1)

|(-3*2 + 2*1 (-3*1 + 2*2 (-3*3 + 2*4 (-3*1 + 2*1

|+ 2*0 + 0*2) + 2*3 + 0*1) + 2*5 + 0*2) + 2*1 + 0*1)

=

| 5 4 10 3 |

|-4 -5 -11 -3 |

| 7 5 13 4 |

|-4 7 9 1 |

Calculation in Code

After performing the long-winded manual calculation, you can appreciate the sim-
plicity of being able to compute the same result with the instruction C = A * B.

Using the code solution from the previous example, in multiply_matrix() replace
the instructions that initialize matrix A with the following version (matrix B remains
the same as the previous example, so no changes are required to it):

A.M11 = 2.0f; A.M12 = 1.0f; A.M13 = 0.0f; A.M14 = 0.0f;

A.M21 =-1.0f; A.M22 =-2.0f; A.M23 = 0.0f; A.M24 = 0.0f;

A.M31 = 3.0f; A.M32 = 1.0f; A.M33 = 0.0f; A.M34 = 0.0f;

A.M41 =-3.0f; A.M42 = 2.0f; A.M43 = 2.0f; A.M44 = 0.0f;

When you run the code, you will see the result does indeed match the manual
calculation:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E212

213

| 5.00 4.00 10.00 3.00 |

|-4.00 -5.00 -11.00 -3.00 |

| 7.00 5.00 13.00 4.00 |

|-4.00 7.00 9.00 1.00 |

At this point, we can say when multiplying a 4×4 matrix by a 4×4 matrix that the
manual calculation can be executed in one line with the following instruction:

Matrix C = A * B

TRANSFORMATION MATRICES

When drawing primitive shapes and 3D models, you use matrices to transform sets of
vertices. Through the study of linear algebra, specific matrices have been defined to
scale, rotate, and translate sets of vertices. In Chapter 5, “Animation Introduction,”
the I.S.R.O.T. (Identity, Scale, Revolve, Orbit [translation and rotation], Translate)
sequence of matrices was introduced as the way to ensure balanced transformations.
The same logic applies when you are using transformation matrices that have been
created manually. If the matrices are multiplied in an incorrect order, the transforma-
tions will also be incorrect.

When matrix calculations are performed in XNA, they are applied using the Right
Hand Rule perspective, which was explained in Chapter 5, “Animation Introduc-
tion.” This chapter applies the transformation matrices from a Right Hand Rule per-
spective to suit the XNA framework.

When you perform transformations on an object, the data matrix containing the
X, Y, Z, and W coordinates is located on the left of the multiplication operator. The
transformation matrix is located on the right.

Translation Matrix

Translation matrices store lateral transformations along the X, Y, and Z planes.
Here is the format for the translation matrix:

| 1 0 0 0 |

| 0 1 0 0 |

| 0 0 1 0 |

| X Y Z 1 |

Without even performing any calculations, when you are presented with a 4×4
matrix with 1s along the diagonal, values for X, Y, Z at the bottom, and 0s elsewhere,
you can conclude the matrix will perform a translation of X units along the X plane,
Y units along the Y plane, and Z units along the Z plane.

C H A P T E R 1 4

M
at

ric
es

Handling the W Component

When a vector representing the X, Y, and Z coordinates of an object is transformed
using a translation matrix, the W component in the fourth column of the data matrix
must be set to 1.

Failing to set all values in the fourth column of the data matrix to 1 will lead
to inaccurate translations.

Translation Matrix Example

Imagine the vertex (X=2, Y=1, Z=0) is transformed by the matrix on the right. The
vector data matrix is located on the left. Note that the fourth column representing the
W component is set to 1. The translation matrix for the format described here must
be located on the right side of the operator for the calculation to work properly.

| 2 1 0 1 | X | 1 0 0 0 |

| 0 1 0 0 |

| 0 0 1 0 |

| 3 5 0 1 |

Viewing this vertex and translation matrix gives you enough information to deter-
mine that the vertex with the coordinates X=2, Y=1, and Z=0 will be transformed three
units in the positive X direction and five units in the positive Y direction. If this is cor-
rect, the product of the vertex and translation matrix should move the vertex to X=5,
Y=6, and Z=0. Figure 14-1 shows the coordinate in its original position before the pre-
dicted translation (on the left) and after the predicted translation (on the right).

To verify the prediction, this calculation will be performed in code. To set up the
data matrix, replace the code that initializes matrix A with this revision to initialize
the vector data. The remaining rows will take on the default of 0 in each cell.

// store vector in first row - all other cells equal 0 by default

A.M11 = 2.0f; A.M12 = 1.0f; A.M13 = 0.0f; A.M14 = 1.0f;

Next, to set up the translation matrix, replace the code that assigns matrix B with
this revision:

B.M11 = 1.0f; B.M12 = 0.0f; B.M13 = 0.0f; B.M14 = 0.0f;

B.M21 = 0.0f; B.M22 = 1.0f; B.M23 = 0.0f; B.M24 = 0.0f;

B.M31 = 0.0f; B.M32 = 0.0f; B.M33 = 1.0f; B.M34 = 0.0f;

B.M41 = 3.0f; B.M42 = 5.0f; B.M43 = 0.0f; B.M44 = 1.0f;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E214

215

If you run this code, the output that appears in the window matches the prediction
that the new coordinates are X=5, Y=6, and Z=0:

5.00 6.00 0.00 1.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

The translation moved the original vertex three units in the positive X direction
and five units in the positive Y direction.

Translation Matrix Example Using the
CreateTranslation() Method

Since Chapter 5, “Animation Introduction,” we have used the method
CreateTranslation(float x, float y, float z) to automatically generate the translation
matrix. This method actually generates a translation matrix that is identical to the
translation matrix we just created manually. If you replace the code inside multi-
ply_matrix() that assigns cell values to matrix B with the following instruction, you
will generate an identical matrix:

B = Matrix.CreateTranslation(3.0f, 5.0f, 0.0f);

C H A P T E R 1 4

M
at

ric
esF I G U R E 1 4 - 1

Translating an object with the translation matrix

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E216

Therefore, when you compile and run the code, the product matrix will also be
identical.

Scaling Matrix

Scaling matrices are used any time an object needs to be resized. You will almost al-
ways need to scale your 3D models because modeling tools usually generate them in a
size that is different from the size needed for your game project. The following matrix
represents a standard matrix for performing scaling operations. At a glance, this scal-
ing matrix contains information to expand or shrink an object in the X plane by a fac-
tor of A units, in the Y plane by a factor of B units, and in the Z plane by a factor of C
units. The A, B, and C scaling factors on the diagonal down to the right, a 1 in the bot-
tom-right corner, and 0s elsewhere mark this matrix as a scaling matrix.

A 0 0 0

0 B 0 0

0 0 C 0

0 0 0 1

Scaling Matrix Example

In this example, you will use a scaling matrix to double the size of a triangle. A trian-
gle is represented with the matrix containing the triangle vertices on the left. The ver-
tex coordinates used to build the triangle are ((0, 0, 0), (1, 4, 0), (4, 2, 0)). The scaling
matrix that doubles the size of the triangle is on the right. In the first three rows of the
data matrix on the left, the X, Y, and Z coordinates for the three triangle vertices are
stored. One triangle vertex is stored in each of the first three rows. When multiplying
the triangle vertices by the scaling matrix (to double the size), you can use the follow-
ing matrix equation:

| 0 0 0 0 | X | 2 0 0 0 |

| 1 4 0 0 | | 0 2 0 0 |

| 4 2 0 0 | | 0 0 2 0 |

| 0 0 0 0 | | 0 0 0 1 |

By looking at the scaling matrix—and without performing any calculations—it is
apparent that the size of the existing triangle is going to be doubled. In Figure 14-2,
you can see the size of the triangle has doubled when a vector set was transformed
with the scaling matrix.

217

Inside matrix_multiply(), replace the code that assigns values to the cells of matrix
A with the following revision to initialize the data matrix for the triangle:

A.M11 = 0.0f; A.M12 = 0.0f; A.M13 = 0.0f; A.M14 = 0.0f;

A.M21 = 1.0f; A.M22 = 4.0f; A.M23 = 0.0f; A.M24 = 0.0f;

A.M31 = 4.0f; A.M32 = 2.0f; A.M33 = 0.0f; A.M34 = 0.0f;

A.M41 = 0.0f; A.M42 = 0.0f; A.M43 = 0.0f; A.M44 = 0.0f;

Next, replace the code that initializes matrix B with this version to initialize a scal-
ing matrix:

B.M11 = 2.0f; B.M12 = 0.0f; B.M13 = 0.0f; B.M14 = 0.0f;

B.M21 = 0.0f; B.M22 = 2.0f; B.M23 = 0.0f; B.M24 = 0.0f;

B.M31 = 0.0f; B.M32 = 0.0f; B.M33 = 2.0f; B.M34 = 0.0f;

B.M41 = 0.0f; B.M42 = 0.0f; B.M43 = 0.0f; B.M44 = 1.0f;

When the program is run, the output displays coordinates for the triangle that has
been doubled:

0.00 0.00 0.00 0.00

2.00 8.00 0.00 0.00

8.00 4.00 0.00 0.00

0.00 0.00 0.00 0.00

C H A P T E R 1 4

M
at

ric
esF I G U R E 1 4 - 2

Before scaling and after scaling

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E218218

The triangle coordinates in the output matrix are graphed on the right side of
Figure 14-2.

Translation Matrix Example Using the
CreateScale() Method

In Chapter 5, “Animation Introduction,” the CreateScale(float x, float y, float z)
method was introduced as a way to automatically generate the scaling matrix. Re-
place the instructions that manually assign the scaling matrix with this simpler revi-
sion to generate an identical matrix:

B = Matrix.CreateScale(2.0f, 2.0f, 2.0f);

When you run the code, the output will be the same as before.

Rotation Matrix X Axis

The X rotation matrix is used to transform sets of vertices by an angle of θ radians
about the X axis:

| 1 0 0 0 |

| 0 cosθ sinθ 0 |

| 0 -sinθ cosθ 0 |

| 0 0 0 1 |

Rotation Matrix X Axis Example

This example applies the X rotation matrix to rotate a triangle by 45 degrees (π/4).
The original set of coordinates (before the rotation) is in the left matrix, and the X ro-
tation matrix is located on the right:

| 0 0 0 0 | X | 1 0 0 0 |

| 1 4 0 0 | | 0 cos(π/4) sin(π/4) 0 |

| 4 2 0 0 | | 0 -sin(π/4) cos(π/4) 0 |

| 0 0 0 0 | | 0 0 0 1 |

If you were to multiply this out by hand, the result would be

0.00 0.00 0.00 0.00

1.00 2.83 2.83 0.00

4.00 1.41 1.41 0.00

0.00 0.00 0.00 0.00

Figure 14-3 shows how the triangle would be positioned before and after the rotation.

219

Now we will show this implementation of the rotation matrix in code by using the
solution from the previous example. To create a rotation matrix of π/4 radians about
the X axis, replace the instructions that initialize matrix B with the following version
inside matrix_multiply():

float sin = (float)Math.Sin(Math.PI / 4.0);

float cos = (float)Math.Cos(Math.PI / 4.0);

B.M11 = 1.0f; B.M12 = 0.0f; B.M13 = 0.0f; B.M14 = 0.0f;

B.M21 = 0.0f; B.M22 = cos; B.M23 = sin; B.M24 = 0.0f;

B.M31 = 0.0f; B.M32 = -sin; B.M33 = cos; B.M34 = 0.0f;

B.M41 = 0.0f; B.M42 = 0.0f; B.M43 = 0.0f; B.M44 = 1.0f;

When you compile and run this code, the product matrix equals the result that is
computed by hand:

0.00 0.00 0.00 0.00

1.00 2.83 2.83 0.00

4.00 1.41 1.41 0.00

0.00 0.00 0.00 0.00

This matrix stores the coordinates of the triangle after it has been rotated about
the X axis, as shown in Figure 14-3.

C H A P T E R 1 4

M
at

ric
esF I G U R E 1 4 - 3

Rotation of a triangle using the X rotation matrix

X Axis Rotation Example Using the
CreateRotationX() Method

Prior to this chapter, the CreateRotationX(float radians) method has been used to
generate the same X rotation matrix as the manually created matrix. To calculate the
same transformation for the triangle, replace the initial declaration for the X rotation
matrix with a matrix that is generated using the CreateRotationX() method:

B = Matrix.CreateRotationX((float)(Math.PI / 4.0));

The resulting product is obviously the same, but the calculation requires less code.

Rotation Matrix Y Axis

The matrix shown here is a predefined matrix that rotates a set of vertices around the
Y axis by θ radians:

| cosθ 0 -sinθ 0 |

| 0 1 0 0 |

| sinθ 0 cosθ 0 |

| 0 0 0 1 |

Rotation Matrix Y Axis Example

This example demonstrates the use of the Y rotation matrix to rotate a set of triangle
coordinates by π/4 radians about the Y axis. The data matrix is on the left, and the Y
rotation matrix is on the right:

| 0 0 0 0 | X | cos(π/4) 0 -sin(π/4) 0 |

| 1 4 0 0 | | 0 1 0 0 |

| 4 2 0 0 | | sin(π/4) 0 cos(π/4) 0 |

| 0 0 0 0 | | 0 0 0 1 |

If you multiplied this out by hand, the result would be

| 0 0 0 0 |

| 0.71 4 -0.71 0 |

| 2.83 2 -2.83 0 |

| 0 0 0 0 |

Figure 14-4 shows the triangle coordinates before and after the multiplication that
performs the rotation.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E220

221

To implement the Y rotation in code, replace the code that initializes matrix B
with a rotation matrix to rotate the vertices by π/4 radians:

float sin = (float)Math.Sin(Math.PI / 4.0);

float cos = (float)Math.Cos(Math.PI / 4.0);

B.M11 = cos; B.M12 = 0.0f; B.M13 = -sin; B.M14 = 0.0f;

B.M21 = 0.0f; B.M22 = 1.0f; B.M23 = 0.0f; B.M24 = 0.0f;

B.M31 = sin; B.M32 = 0.0f; B.M33 = cos; B.M34 = 0.0f;

B.M41 = 0.0f; B.M42 = 0.0f; B.M43 = 0.0f; B.M44 = 0.0f;

When you run this program, the product matrix stores the triangle’s new coordi-
nates after they are rotated by π/4 units around the Y axis (see Figure 14-4).

Y Axis Rotation Example Using the
CreateRotationY() Method

Before this chapter, the CreateRotationY(float radians) method has been used to
generate an identical Y rotation matrix as the one presented in this chapter. You can
replace the code that initializes matrix B with the following instruction and it will
produce the same result:

B = Matrix.CreateRotationY((float)(Math.PI / 4.0));

When you run this code, the product matrix will be the same as before, but this
version requires less code.

C H A P T E R 1 4

M
at

ric
esF I G U R E 1 4 - 4

Y axis rotation before and after the transformation matrix is applied

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E222

Rotation Matrix Z Axis

The following matrix is the classic matrix for rotations of θ radians on the Z axis:

| cosθ sinθ 0 0 |

| -sinθ cosθ 0 0 |

| 0 0 1 0 |

| 0 0 0 1 |

Rotation Matrix Z Axis Example

In this example, the triangle coordinates on the left are transformed with the Z rota-
tion matrix by π/4 radians (45 degrees) about the Z axis:

| 0 0 0 0 | X | cos(π/4) sin(π/4) 0 0 |

| 1 4 0 0 | | -sin(π/4) cos(π/4) 0 0 |

| 4 2 0 0 | | 0 0 1 0 |

| 0 0 0 0 | | 0 0 0 1 |

When you calculate the multiplication by hand, the new triangle coordinates—af-
ter the rotation—will appear in the product matrix:

0.00 0.00 0.00 0.00

-2.12 3.54 0.00 0.00

1.41 4.24 0.00 0.00

0.00 0.00 0.00 0.00

Figure 14-5 shows the triangle before and after the rotation.
To try this in code, replace the assignment of matrix B with the following code to

create a rotation about the Z axis of π/4 radians:

float sin = (float)Math.Sin(Math.PI / 4.0);

float cos = (float)Math.Cos(Math.PI / 4.0);

B.M11 = cos; B.M12 = sin; B.M13 = 0.0f; B.M14 = 0.0f;

B.M21 = -sin; B.M22 = cos; B.M23 = 0.0f; B.M24 = 0.0f;

B.M31 = 0.0f; B.M32 = 0.0f; B.M33 = 1.0f; B.M34 = 0.0f;

B.M41 = 0.0f; B.M42 = 0.0f; B.M43 = 0.0f; B.M44 = 1.0f;

Z Axis Rotation Example Using the
CreateRotationZ() Method

The CreateRotationZ(float radians) matrix will generate a matrix identical to the
one just declared for matrix B. Replacing the existing matrix assignment with this in-
struction will generate the same result:

B = Matrix.CreateRotationZ((float)(Math.PI / 4.0));

223C H A P T E R 1 4

M
at

ric
es

IDENTITY MATRIX
When a set of vertices is multiplied by the identity matrix, the product equals the
original vertex matrix. In other words, nothing changes in the original data matrix. It
may seem pointless to use the identity matrix since it does not actually perform a
transformation. However, the identity matrix is included in the recommended
I.S.R.O.T. sequence of transformations to ensure that the World matrix is initialized
properly when no other transformation matrix is applied. By default, an identity ma-
trix is used in the World matrix to initialize it. The World matrix is explained in more
detail in Chapter 15, “Building a Graphics Engine Camera.”

The identity matrix is defined for a matrix that has 1s on the diagonal from the top
left to the bottom right, and 0s elsewhere, as shown here:

| 1 0 0 0 |

| 0 1 0 0 |

| 0 0 1 0 |

| 0 0 0 1 |

Identity Matrix Example

This example shows that when a data matrix is multiplied by an identity matrix, the
result equals the data matrix. In other words, A * B = A, where B is an identity matrix.
In this case, the vertices for a triangle are multiplied by the identity matrix. The prod-
uct equals the original set of vertices for the triangle:

| 0 0 0 0 | X | 1 0 0 0 | = | 0 0 0 0 |

| 1 4 0 0 | | 0 1 0 0 | = | 1 4 0 0 |

F I G U R E 1 4 - 5

Z axis rotation before and after the transformation matrix is applied

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E224

| 4 2 0 0 | | 0 0 1 0 | = | 4 2 0 0 |

| 0 0 0 0 | | 0 0 0 1 | = | 0 0 0 0 |

To perform this calculation in code, replace the assignment for matrix B with this
revision:

B.M11 = 1.0f; B.M12 = 0.0f; B.M13 = 0.0f; B.M14 = 0.0f;

B.M21 = 0.0f; B.M22 = 1.0f; B.M23 = 0.0f; B.M24 = 0.0f;

B.M31 = 0.0f; B.M32 = 0.0f; B.M33 = 1.0f; B.M34 = 0.0f;

B.M41 = 0.0f; B.M42 = 0.0f; B.M43 = 0.0f; B.M44 = 1.0f;

When you run this code, the product matrix displayed in the game window equals
matrix A, which defines the triangle.

Identity Matrix Example Using Matrix.Identity

Until now, the predefined matrix, Matrix.Identity, has been used for the identity ma-
trix. This matrix is equivalent to the one you just created manually. If you replace the
assignment for matrix B with

B = Matrix.Identity;

the outcome will be the same.
Matrices enable transformations in 3D space. Understanding linear algebra and

the defined transformation matrices will allow you to develop better graphics algo-
rithms and have deeper control of your graphics engine. This will be especially help-
ful when you need to build your own matrices to perform transformations for
vectors. See Chapter 6, “Character Movement,” and Chapter 17, “Ballistics,” for ex-
amples of when this technique is necessary.

CHAPTER 14 REVIEW EXERCISES

1. Try the step-by-step examples discussed in this chapter.

2. Starting with a triangle with the coordinates

A{-0.23f, -0.2f, -0.1f)

B{ 0.23f, -0.2f, -0.1f)

C{ 0.0f, 0.2ff, 0.1f)

manually compute the unit normal. Then manually translate the triangle,
together with its unit normal, 2 units on Z and –0.35 units on X. Scale the
triangle and normal by 3.5 on X, Y, and Z. Rotate the triangle and normal

225

by π/3 radians on X and π/4 radians on Z. When performing this
transformation, do not use any variations of the following methods:

CreateScale(float X, float Y, float Z);

CreateRotationX(float radians);

CreateRotationY(float radians);

CreateRotationZ(float radians);

CreateTranslation(float X, float Y, float Z);

Cross();

Normalize();

When the program is run, the final result shows both the triangle and the
triangle’s unit normal pointing out from it. Both the triangle and normal
vector are

� Translated 2 units on Z and –0.35 units on X.

� Scaled by 3.5 on X, Y, and Z.

� Rotated π/3 radians on X.

� Rotated π/4 radians on Z.

C H A P T E R 1 4

M
at

ric
es

This page intentionally left blank

CHAPTERCHAPTER1515
Building aBuilding a
GraphicsGraphics
EngineEngine
CameraCamera

227

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

228

A great number of elements contribute to the “feel” of a video game. The phys-
ics, sounds, music, graphics, 3D models, and many other factors influence

the gamer’s experience. All of these things are important, but possibly none is as im-
portant as the camera you create for your game. The camera is the heart of the graph-
ics engine. This book shows how to add and customize all the components you need
for decent graphics, but it’s the camera that allows your players to see your world.

A camera lets your viewer travel through a virtual world; it can be thought of as
the player’s lens. The camera includes logic for responding to the game’s controls so
the user can adjust their view and position within the 3D world. How you code your
camera will determine much of how the controls “feel” to the player.

The 3D camera code is so fundamental that it is included in the base code for all of
this book’s examples. This chapter explains how the base code camera was created.
You can use this step-by-step explanation to add this camera to any of your own
game projects.

CAMERA VECTORS
Most cameras are constructed with logic that applies a common set of camera vectors
and camera matrices. The camera structure is often described and manipulated with
a set of five vectors:

View -- Stores the target position focused on by the camera.

Position -- Stores the camera's position.

Up -- Stores the camera's upright direction.

Look -- Stores the direction of the camera lens (View – Position).

Right -- Stores the normal vector from the Look and Up vectors.

Figure 15-1 shows the position and directional vectors that describe a camera’s
position and orientation.

F I G U R E 1 5 - 1

Position and directional vectors that make a camera

229

CAMERA MATRICES

For a camera to function properly (so all objects in the world are seen correctly),
three matrices are used. Together, they transform the objects seen by the camera, the
angle at which these objects appear, and the range of visibility, respectively. These
three matrices are known as the World matrix, the View matrix, and the Perspective
matrix. The WVP matrix you have been sending to your shader in this book’s exam-
ples thus far is a product of these three matrices.

World Matrix

You have already been working with the World matrix to transform vertices and 3D
models. The World matrix converts model and vertex coordinates to world coordi-
nates, so they properly map to the 3D world space. You have used both XNA trans-
formation functions for creating the rotations, translations, and scaling, and you
have also seen how to perform these calculations manually.

View Matrix

The View matrix defines what the camera sees by setting the camera’s direction.

Perspective Matrix

The Perspective matrix sets the visibility for the camera. A large perspective creates a
wide-angle lens. Another way to say this is that the Perspective matrix describes the
frustum, which is the cone-shaped view seen by the camera. The frustum has front
and back boundaries on the Z axis known as the near clip plane and the far clip plane,
respectively.

The Perspective matrix builds the frustum using the function Matrix
.CreatePerspectiveFieldOfView(), which takes five parameters:

mMatProj = Matrix.CreatePerspectiveFieldOfView(

float fieldOfView,// angle of visibility

float aspectRatio,// width / height

float nearClip, // first visible point from camera on Z

float farClip) // last visible point from camera on Z

Figure 15-2 shows a diagram of the frustum created with the Perspective
matrix.

C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
a

CAMERA EXAMPLE

The camera code presented in this example shows everything you need to implement
a camera that can be used for a first-person shooter game, a racing game, and more.
In fact, the code explained here is the same code used in the WinMGHBook and
Xbox360MGHBook base code projects. You can begin with either the Windows
Game project or Xbox 360 Game project template to generate your game application
shell. The camera you add will move and strafe with arrow keypress events or left
stick shift events. The camera’s view will change with either mouse movements or
right thumbstick shift events.

Creating the Camera Class Shell

You will first need to add an empty CCamera.cs file to your project. It needs the fol-
lowing class structure:

using System;

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace NS_Camera{

public class CCamera{}

}

When you have created your bare CCamera class, it will need some module-level
variables for storing the camera vectors and a time variable for moving the camera at
a regulated speed:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E230

F I G U R E 1 5 - 2

Perspective described by field of view, aspect ratio, and clip space

231

public Vector3 m_vPos, m_vUp, m_vView;

private float mfTimeLapse;

Obviously, the CCamera() constructor initializes the class. It starts by creating a
camera that uses the vectors m_vView, m_vPos, and m_vUp; these vectors store the
direction, position, and orientation of the camera, respectively:

public CCamera(){

m_vPos.X = 0.0f; m_vPos.Y = 0.0f; m_vPos.Z = 0.0f;

m_vView.X = 0.0f; m_vView.Y = 0.0f; m_vView.Z = 0.5f;

m_vUp.X = 0.0f; m_vUp.Y = 1.0f; m_vUp.Z = 0.0f;

}

In the camera class, set_frame_interval() provides an interface for setting a scaled
measure based on the time difference between the current frame and the previous
frame. This scaled time measure is then used to increment or decrement the position
of the camera when it is moved. The time scale enables smooth lateral and diagonal
camera translations along the X axis and the Z axis. Because you’re measuring the
time between frames, the translations are performed at the same speed regardless of
the system running the application.

public void set_frame_interval(GameTime gameTime){

mfTimeLapse = (float)gameTime.ElapsedGameTime.Milliseconds;

}

Referencing the Camera from Your Game Class

To reference the camera in your game class, include the camera’s namespace in your
Game1.cs file:

using NS_Camera;

The camera is instantiated from the game class with the following line:

private CCamera cam = new CCamera();

Every frame, a call to set_frame_interval() from the Update() method sets the time
lapse between frames so the camera will move at uniform speed on any system:

cam.set_frame_interval(gameTime);

Matrices used for storing the camera’s World, View, and Projection matrices are
declared at the class level so they can be referenced throughout the class:

private Matrix mMatWorld, mMatView, mMatProj;

C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
a

After initializing your camera class, you must create a Perspective matrix to define
what the camera lens sees. This method sets the frustum:

void set_proj_matrix(){

// parameters are field of view, aspect ratio, near clip, far clip

mMatProj = Matrix.CreatePerspectiveFieldOfView((float)Math.PI / 4.0f,

(float)Window.ClientBounds.Width/(float)Window.ClientBounds.Height,

0.005f, 1000.0f);

}

set_proj_matrix () is called from Initialize(). This is necessary because the frustum
for most single-player games normally only needs to be defined once:

set_proj_matrix(); // only need to set at beginning of program

set_view_matrix() is added to define what the camera sees according to the cam-
era’s direction or orientation:

void set_view_matrix(GameTime gameTime){

mMatView = Matrix.CreateLookAt(cam.m_vPos, cam.m_vView, cam.m_vUp);

}

set_view_matrix() is called from the Update() method in the game class to account
for any changes to the camera’s Look direction at each frame:

set_view_matrix(gameTime);

Moving and Strafing

Once you have defined the basic camera structure, you can add methods to enable the
viewer to move forward, backward, or sideways (strafing) in the 3D world. Updating
the camera’s position while moving also requires an update to change the scenery
that is visible.

Enabling Forward, Backward, and Sideways
Movement in CCamera.cs

update_cam_pos_and_view() is added to the camera class to increment the camera po-
sition along X and Z. This increment is taken from the direction vector, which is scaled
by the time between frames. The camera’s view is also incremented by the same
amount to ensure updates to the scenery match the changes to the camera’s position:

public void update_cam_pos_and_view(Vector3 vCam, float f_speed){

f_speed *= (float)mfTimeLapse;

vCam *= f_speed;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E232

233C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
am_vPos.X += vCam.X; m_vPos.Z += vCam.Z;

m_vView.X += vCam.X; m_vView.Z += vCam.Z;

}

The camera’s move() method allows the viewer to move forward and backward
whenever the user presses the up or down arrow key or when shifting the left thumbstick
on the game controller. The actual “move” is implemented by incrementing the camera’s
View and Position vectors by the camera’s Look direction. The Look direction is nor-
malized to ensure a uniform comparison of elements in the direction vector:

public void move(float fCamSpeed){

Vector3 v3Look = Vector3.Zero;

Vector3 v3UnitLook = Vector3.Zero;

const float SPEEDSCALE = 0.005f;

fCamSpeed *= SPEEDSCALE;

v3Look.Y = m_vView.Y;

v3Look.X = m_vView.X - m_vPos.X;

v3Look.Z = m_vView.Z - m_vPos.Z;

v3UnitLook = Vector3.Normalize(v3Look);

update_cam_pos_and_view(v3UnitLook, fCamSpeed);

}

A similar feature to add to your camera is the ability to strafe. A strafe is a
side-to-side camera movement. If you’re a fan of first-person shooter games, you
know how fundamental strafing can be to a game. Whether you’re playing Quake,
Doom, Halo, or Call of Duty, moving side to side is often your only defense against
taking enemy fire.

The code needed to perform this action is almost identical to the code used for
creating forward and backward movement. Only one extra instruction is needed to
convert the forward direction vector into a strafe direction vector:

Vector3 v3Strafe = Vector3.Cross(v3UnitLook, m_vUp);

The strafe vector is perpendicular to the surface created by the Look and Up vec-
tors. This new vector is referred to as the Right vector. A time-scaled increment based
on the Right vector is then used to update the camera’s position and view from the
strafe() method. Adding the strafe() method to the camera class provides the code
needed to generate sideways camera movement:

public void strafe(float fCamSpeed){

Vector3 v3Look = new Vector3(0.0f, 0.0f, 0.0f);

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E234

Vector3 v3UnitLook;

const float SPEEDSCALE = 0.005f; // time scale

fCamSpeed *= SPEEDSCALE;

v3Look.Y = m_vView.Y; // camera direction

v3Look.X = m_vView.X - m_vPos.X;

v3Look.Z = m_vView.Z - m_vPos.Z;

// update cam and view with time-scaled Right vector

v3UnitLook = Vector3.Normalize(v3Look); // unit Look

Vector3 v3Strafe = Vector3.Cross(v3UnitLook, m_vUp); // unit Right

update_cam_pos_and_view(v3Strafe, fCamSpeed); // update

}

Triggering Forward, Backward, and Sideways
Movement from the Game Class

Before you add code to trigger changes to the view and position, some references are
needed to enable the keyboard, mouse, and game pad. A class-level declaration is re-
quired to store the states for each game pad:

private GamePadState[] mGamePadState = new GamePadState[4];

The code that retrieves the states is also added to this game class:

GamePadState getNewState(GamePadState state){

return state;

}

With the getNewState() method in place, the UpdateGamePad() method can be
added to retrieve the states of each of the controls on the game pad:

private void UpdateGamePad(){

mGamePadState[0] = GamePad.GetState(PlayerIndex.One);

mGamePadState[1] = GamePad.GetState(PlayerIndex.Two);

mGamePadState[2] = GamePad.GetState(PlayerIndex.Three);

mGamePadState[3] = GamePad.GetState(PlayerIndex.Four);

}

By placing the following code at the top of the Update() method, you can now re-
trieve both the keyboard and the game pad events:

KeyboardState kbState = Keyboard.GetState(); // update controls

UpdateGamePad();

235

With the code for handling the keyboard and game pad in place, you should add
some code to the Update() method to allow the game player to exit the game grace-
fully when pressing the X button on the controller or the ESC key on the keyboard:

if (GamePad.GetState(PlayerIndex.One).Buttons.X == ButtonState.Pressed

|| kbState.IsKeyDown(Keys.Escape))

this.Exit();

Forward and backward movement is triggered by shifting the game pad’s left
thumbstick up and down, or by pressing the up and down arrow keys on the key-
board. This move() method handles user input from the game class:

float move(){

KeyboardState kbState = Keyboard.GetState();

GamePadState gpState = getNewState(mGamePadState[0]);

float fMove = 0.0f;

const float kScale = 1.50f;

if (mGamePadState[0].IsConnected){ // left stick shifted left / right

if (gpState.ThumbSticks.Left.Y != 0.0f)

fMove = (kScale * gpState.ThumbSticks.Left.Y);

}

else // no gamepad

if (kbState.IsKeyDown(Keys.Up)) // UP - move ahead

fMove = (1.0f);

else if (kbState.IsKeyDown(Keys.Down)) // DOWN - move back

fMove = (-1.0f);

return fMove;

}

The code that gets the strafe amount in the game class is executed when the user
shifts the left thumbstick on the controller from side to side, or when the user presses
the left or right arrow key. This code returns an amount between –1.0f and +1.0f
when the user shifts the left thumbstick. If the game controller is not connected, ei-
ther –1 is returned when the left arrow key is pressed or +1 is returned when the right
arrow key is pressed:

float strafe(){

KeyboardState kbState = Keyboard.GetState();

GamePadState gpState = getNewState(mGamePadState[0]);

// using gamepad. left stick shifted left / right for strafe

if (mGamePadState[0].IsConnected){

C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
a

if(gpState.ThumbSticks.Left.X != 0.0f)

return gpState.ThumbSticks.Left.X;

}

// using keyboard - strafe with X and Z keys

else if (kbState.IsKeyDown(Keys.Left)) // strafe left

return -1.0f;

else if (kbState.IsKeyDown(Keys.Right)) // strafe right

return 1.0f;

return 0.0f;

}

The camera’s move() and strafe() methods are triggered from Update() to enable
continuous checks for these events:

cam.move(move());

cam.strafe(strafe());

If you have implemented all of the code shown so far in your project, you have a
camera that moves forward, backward, and sideways.

Rotating the View

This next portion of the example explains how to rotate the camera’s View vector
about the X and Y axes—based on the position of the mouse or right thumbstick. Be
aware that the camera Position vector and camera Up vector are not changed by the
mouse movements or shifts of the right thumbstick; only the View vector is modified
by this section of code. This enables the ability to rotate the view around the camera
without actually moving the camera.

But before you dive into the code, here’s a description of quaternion theory that
enables changes to the view.

Quaternion Theory

The section of code, which updates the camera view for the mouse movement, is
based on quaternion theory. By definition, a quaternion is a special type of vector
that stores a rotation around an axis. Quaternion math is used to calculate an incre-
ment to update the camera’s Look vector.

Because

Look = View – Position.

we can say the following:

View = Look + Position.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E236

237

If the quaternion represents the updated Look vector, then

Updated View = Updated Look Vector + Position

Updated Look Vector

The formula for calculating the updated Look vector is:

qRotation * qLook * qRotation' (qRotation' is the conjugate of qRotation)

Each of the three operands will be discussed next.

Local Rotation Quaternion

The first quaternion that is used to calculate the updated Look vector, qRotation, is a
local rotation. Quaternion theory provides a formula for computing the local rota-
tion. In this case, the local rotation is generated using a direction vector for X, Y, and
Z. Rotations about the X axis are applied using the Look vector. Rotations about the
Y axis are applied using the Right direction vector. The rotation angle stored in the W
component is obtained from the deviation of the mouse (or thumbstick) from the
center of the window. With this information, we can generate the local rotation by
saying the following:

qRotation.W = cos(MouseDeviationFromCenter/2)

qRotation.X = UnitDirection.X * sin(MouseDeviationFromCenter/2)

qRotation.Y = UnitDirection.Y * sin(MouseDeviationFromCenter/2)

qRotation.Z = UnitDirection.Z * sin(MouseDeviationFromCenter/2)

Using the Look Vector as a Quaternion

The next quaternion used in the formula for the updated Look vector is based on the
Look direction:

qLook.X = Look.X qLook.Y = Look.Y qLook.Z = Look.Z qLook.W = 0

Conjugate Quaternion

A conjugate quaternion is used to calculate the updated Look vector. The conjugate
is created by negating a quaternion vector’s X, Y, and Z components:

Quaternion conjugate

= (-Quaternion.X, -Quaternion.Y, -Quaternion.Z, Quaternion.W)

C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
a

Quaternion Product

The equation for multiplying two quaternion is as follows:

(Quaternion1*Quaternion2).W = W1w2 – x1x2 – y1y2 – z1z2

(Quaternion1*Quaternion2).X = w1x2 + x1w2 + y1z2 – z1y2

(Quaternion1*Quaternion2).Y = w1y2 – x1z2 + y1w2 + z1x2

(Quaternion1*Quaternion2).Z = w1z2 + x1y2 – y1x2 + z1w2

Updating the View

The updated Look vector is obtained using the product of local rotation, look, and
conjugate quaternions.

Updated Look Vector = qRotation * qLook * qRotation'

With the result from this product, the View can be updated:

Updated View = Updated Look Vector + Position

Now you will apply this logic to the graphics engine to update your view.

Updating the View in the Camera Class

get_rotation_quaternion() can be added to the camera class to generate the local ro-
tation quaternion based on the direction vector. The first parameter of this method
represents the shift of the mouse or thumbstick from the resting position. The second
parameter is a direction vector that can be either the Look or Right vector:

private Vector4 get_rotation_quaternion(float f_deg, Vector3 vAxisA){

Vector4 vAxisUnit;

Vector4 vAxis = new Vector4(vAxisA.X, vAxisA.Y, vAxisA.Z, 0.0f);

// only normalize if necessary

if ((vAxis.X != 0 && vAxis.X != 1) ||

(vAxis.Y != 0 && vAxis.Y != 1) || (vAxis.Z != 0 && vAxis.Z != 1))

vAxisUnit = Vector4.Normalize(vAxis);

float f_angle = f_deg * (float)Math.PI/180.0f;

float f_sin = (float)Math.Sin(f_angle/2.0f);

// create the quaternion

Vector4 vQT = new Vector4(0.0f, 0.0f, 0.0f, 0.0f);

vQT.X = vAxis.X * f_sin;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E238

239

vQT.Y = vAxis.Y * f_sin;

vQT.Z = vAxis.Z * f_sin;

vQT.W = (float)Math.Cos(f_angle/2.0f);

Vector4 vQTUnit = Vector4.Normalize(vQT);

return vQTUnit;

}

Next, you’ll add the update_camera_view() method. update_camera_view() com-
putes the product of these three quaternions and uses it to update the player’s view:

private void update_camera_view(float f_angle, Vector3 vDirection){

Vector4 vLookQT;

Vector4 vQT;

// create rotation quaternion for axis being rotated

vQT = get_rotation_quaternion(f_angle, vDirection);

// the look quaternion

vLookQT.X = m_vView.X - m_vPos.X;

vLookQT.Y = m_vView.Y - m_vPos.Y;

vLookQT.Z = m_vView.Z - m_vPos.Z;

vLookQT.W = 0;

// conjugate is made by negating quaternion x, y, and z

Vector4 vConj = new Vector4(-vQT.X, -vQT.Y, -vQT.Z, vQT.W);

// quaternion product

Vector4 vQuat;

vQuat.X = vQT.W * vLookQT.X + vQT.X * vLookQT.W + vQT.Y * vLookQT.Z -

vQT.Z * vLookQT.Y;

vQuat.Y = vQT.W * vLookQT.Y - vQT.X * vLookQT.Z + vQT.Y * vLookQT.W +

vQT.Z * vLookQT.X;

vQuat.Z = vQT.W * vLookQT.Z + vQT.X * vLookQT.Y - vQT.Y * vLookQT.X +

vQT.Z * vLookQT.W;

vQuat.W = vQT.W * vLookQT.W - vQT.X * vLookQT.X - vQT.Y * vLookQT.Y -

vQT.Z * vLookQT.Z;

// complete the quaternion

Vector4 qNewView;

qNewView.X = vQuat.W * vConj.X + vQuat.X * vConj.W + vQuat.Y * vConj.Z

- vQuat.Z * vConj.Y;

C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
a

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E240

qNewView.Y = vQuat.W * vConj.Y - vQuat.X * vConj.Z + vQuat.Y * vConj.W

+ vQuat.Z * vConj.X;

qNewView.Z = vQuat.W * vConj.Z + vQuat.X * vConj.Y - vQuat.Y * vConj.X

+ vQuat.Z * vConj.W;

qNewView.W = vQuat.W * vConj.W - vQuat.X * vConj.X - vQuat.Y * vConj.Y

- vQuat.Z * vConj.Z;

// cap view at ground and sky

if (qNewView.Y > -0.49f && qNewView.Y < 0.49f){

// update the view. add position to the quaternion

m_vView.X = m_vPos.X + qNewView.X;

m_vView.Y = m_vPos.Y + qNewView.Y;

m_vView.Z = m_vPos.Z + qNewView.Z;

}

}

The camera class uses the changeView() method to receive changes in View direc-
tion from the game class and apply them to the camera orientation. changeView()
checks if the mouse or right stick has been shifted. If no movement is detected, the
method exits and no changes to the view are performed. Otherwise, a relative mea-
sure for the X and Y rotations are generated based on the deviation of the mouse
from the center of the window. Rotations about the X axis are applied using the
Right vector. Rotations about the Y axis are applied using the Up vector:

public void changeView(float fXcontrol, float fYControl){

float fYRotation = 0.0f;

float fXRotation = 0.0f;

Vector3 vLook, vRight, vRightUnit;

vLook = m_vView - m_vPos;

// don't rotate view if no change in thumbstick or mouse

if ((fXcontrol == 0) && (fYControl == 0))

return;

// rotate around Y axis using a time scale for smooth rotation

fYRotation = (float)(fXcontrol) * (mfTimeLapse/2000.0f);

// response is immediate for tilting camera up and down

fXRotation = (float)(fYControl)/50.0f;

241C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
a// view about X calculated with Right vector

vRight = Vector3.Cross(vLook, m_vUp);

vRightUnit = Vector3.Normalize(vRight);

update_camera_view(fXRotation, vRightUnit);

// view about the Y axis calculated with Up vector

Vector3 vYrotation = new Vector3(0.0f, 1.0f, 0.0f);

update_camera_view(-fYRotation, vYrotation);

}

Triggering Changes to the View from the Game Class

Back inside the game class, the camera needs to be enabled for manipulation from the
game controller, keyboard, and mouse. The camera will function on the PC like a
first-person shooter, where a typical configuration uses the mouse to change the
view. XNA does not include code to handle the mouse, so to enable it in C#, you need
to import some Windows DLLs, but obviously only if the game is running on a PC.

The mouse has to be enabled in the game class when run on the PC. The mouse will
adjust the view by checking the distance from the center of the window to the mouse.
At the top of the game class, GetCursorPos() retrieves the X and Y coordinates of the
mouse position over the window:

#if !XBOX

MouseState mMouse; // store Mouse X and Y

// dll ref to use API for setting and getting cursor pos

[DllImport("user32.dll")]

static extern bool SetCursorPos(int X, int Y);

[DllImport("user32.dll")]

static extern int GetCursorPos(ref tPoint lpPoint);

// stores cursor X and Y as integer

struct tPoint { public int X, Y; }

// converts cursor coordinates to integers

// this is used to adjust the view with the mouse on the PC

public static Point GetCursorPoint(){

tPoint point;

point.X = 0; point.Y = 0;

GetCursorPos(ref point);

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E242

return new Point(point.X, point.Y);

}

#endif

To enable the DLL import on the PC, the following reference to the system
InteropServices is required:

using System.Runtime.InteropServices;

The game class’s changeView() method receives changes in view on X and Y that
are triggered from the game class by mouse movements, or by shifts to the right
thumbstick. After the relative changes in view have been captured and processed on
the PC, SetCursorPos() moves the cursor back to the center of the window so the
mouse’s relative change from the center of the window can be calculated in the next
frame. Otherwise, the camera will use the right stick’s deviation from the center to
calculate the change in view:

Vector2 changeView(GameTime gameTime){

const float SENSITIVITY = 250.0f;

// handle change in view using right and left keys

KeyboardState kbState = Keyboard.GetState();

int iWidthMiddle = Window.ClientBounds.Width / 2;

int iHeightMiddle = Window.ClientBounds.Height / 2;

Vector2 v2Change = new Vector2(0.0f, 0.0f);

if (mGamePadState[0].IsConnected == true){ // gamepad on PC / Xbox

float kScaleY = (float)gameTime.ElapsedGameTime.Milliseconds/50.0f;

v2Change.Y = kScaleY*mGamePadState[0].ThumbSticks.Right.Y

* SENSITIVITY;

v2Change.X = mGamePadState[0].ThumbSticks.Right.X * SENSITIVITY;

}

else{ // mouse only (on PC)

#if !XBOX // PC has mouse which isn't recognized on Xbox

float kScaleY =(float)gameTime.ElapsedGameTime.Milliseconds/100.0f;

float kScaleX =(float)gameTime.ElapsedGameTime.Milliseconds/400.0f;

// get cursor position

243C H A P T E R 1 5

Bu
ild

in
g

a
G

ra
ph

ics
En

gi
ne

Ca
m

er
aPoint point = GetCursorPoint();

int iY = point.Y;

int iX = point.X;

// change X is cursor not at center of X

if (iX != iWidthMiddle){

v2Change.X = iX - iWidthMiddle;

v2Change.X /= kScaleX;

}

// change Y is cursor not at center of Y

if (iY != iHeightMiddle){

v2Change.Y = iY - iHeightMiddle;

v2Change.Y /= kScaleY;

}

// reset cursor back to center

SetCursorPos(iWidthMiddle, iHeightMiddle);

#endif

}

return v2Change;

}

The mouse coordinates are maintained in the game class each frame from Update:

#if !XBOX

mMouse = Mouse.GetState();

#endif

To update your camera’s view from the game class each frame, add this code to the
start of set_view_matrix():

// define how objects are placed in our world relative to camera

Vector2 v2View = changeView(gameTime);

cam.changeView(v2View.X, v2View.Y);

If you run your code now, your project will have a fully functional camera en-
abled. To actually see it moving, you need to add some kind of reference, such as
ground, a triangle, or a 3D model. Of course, you will also need to reference a shader
in your project to render this object. The camera moves and strafes with the left
thumbstick or arrow keys. It changes view with the right thumbstick or the mouse.

With this camera, your game players now have full access to journey into the
world hosted by your graphics engine.

CHAPTER 15 REVIEW EXERCISES

1. Follow the step-by-step example presented in this chapter.

2. Add an option to “invert” the camera. This is a common first-person
shooter game feature that allows players to reverse the direction of the
Up and Down view control.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E244

CHAPTERCHAPTER1616
CollisionCollision
DetectionDetection

245

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

246

COLLISION detection determines whether two objects
overlap and therefore are colliding in your

virtual world. Having accurate collision detection is fundamental to a solid game en-
gine. Without collision detection, your cars would drive off the road, your people
would walk through buildings, and your camera would travel through cement walls.
Collision detection is also fundamental when dealing with any sort of missiles. For
example, if you had faulty detection in a first-person shooter (FPS), you might suc-
cessfully hit your target and not receive credit—or possibly even worse, your enemies
might miss a shot at you and still be credited with a hit. These sorts of problems are
still evident in commercial games, but to avoid player frustration, you should strive
to have excellent collision detection. This chapter shows you how to use collision de-
tection to add boundaries around your game objects.

BOUNDING SPHERES

The use of bounding spheres is one of the most common methods for collision detec-
tion. It isn’t a perfect solution, but it is suitable for many cases and doesn’t require as
much processing power as more advanced solutions.

The bounding sphere method involves
creating an invisible sphere around each ob-
ject that requires collision detection. If the
distance between the centers of the two
spheres is less than the sum of their radii, a
collision is detected (see Figure 16-1).

This example implements collision detec-
tion for two flying birds and a stationary
gray wall. Each of these items will be as-
signed a radius that is large enough so the
sphere around it surrounds the object. The
actual collision code for this example is very
compact, and most of it is spent setting up
and implementing the animations.

This example can start with either the base code for the WinMGHBook example
or the Xbox360MGHBook example.

To store vertex data for the birds and wall, these module-level vertex declarations
are required at the top of the game class:

private VertexPositionColor[] mVertBird0 = new VertexPositionColor[3];

private VertexPositionColor[] mVertBird1 = new VertexPositionColor[3];

private VertexPositionColor[] mVertWall = new VertexPositionColor[4];

F I G U R E 1 6 - 1

Collision detected when the distance
between sphere centers is less than
the sum of their radii

247

These next three methods initialize the vertices for the two birds and the wall. Each
method initializes the X, Y, and Z coordinates and the color. To set up each vertex set,
you will need to add init_bird0(), init_bird1(), and init_wall() to your game class:

private void init_bird0(){

mVertBird0[0] = new VertexPositionColor(

new Vector3(0.0f, 0.0f, -0.02f), Color.Red);

mVertBird0[1] = new VertexPositionColor(

new Vector3(0.1f, 0.0f, 0.00f), Color.Red);

mVertBird0[2] = new VertexPositionColor(

new Vector3(0.0f, 0.0f, 0.02f), Color.Red);

}

private void init_bird1(){

mVertBird1[0] = new VertexPositionColor(

new Vector3(0.0f, 0.0f, -0.02f), Color.Blue);

mVertBird1[1] = new VertexPositionColor(

new Vector3(0.1f, 0.0f, 0.00f), Color.Blue);

mVertBird1[2] = new VertexPositionColor(

new Vector3(0.0f, 0.0f, 0.02f), Color.Blue);

}

private void init_wall(){

mVertWall[0] = new VertexPositionColor(// bottom R

new Vector3(-BOUNDARY / 2.0f, 0.0f, 0.0f), Color.LightGray);

mVertWall[1] = new VertexPositionColor(// top R

new Vector3(-BOUNDARY / 2.0f, 2.0f, 0.0f), Color.LightGray);

mVertWall[2] = new VertexPositionColor(// bottom L

new Vector3(BOUNDARY / 2.0f, 0.0f, 0.0f), Color.LightGray);

mVertWall[3] = new VertexPositionColor(// top L

new Vector3(BOUNDARY / 2.0f, 2.0f, 0.0f), Color.LightGray);

}

To load the vertex data for each bird and the wall when the program begins, call
init_bird0(), init_bird1(), and init_wall() from the Initialize() method.

init_bird0();

init_bird1();

init_wall();

A collision class will be used to track the position, speed, radius, and angle about
the Y axis for each bird and the wall. You can add the class by right-clicking the pro-
ject name in the Solution Explorer and choosing Add, then New Item. Next, select

C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

n

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E248

the Class icon and type Collision.cs in the Name textbox. When you click the Add
button, GSE will generate the Collision class file with a class shell.

In this example, you will use vectors for storage in the Collision class, so the
Microsoft.Xna.Framework code namespace must be included at the top of Colli-
sion.cs:

using Microsoft.Xna.Framework;

To ensure that your collision detection is realistic, it is necessary for you to track
the radius and position of all collision objects in every frame. This allows you to de-
termine whether any two radii make contact with each other. You will also add speed
and rotation properties so that you can translate the objects, reverse their direction
when a collision is detected, and make them point in that direction when they move.
Adding this code inside the new Collision class enables storage of the position, speed,
sphere radius, and the rotation angle for each collision object:

public Vector3 pos;

public Vector3 speed;

public float radius;

public float yrotation;

// constructor

public Collision(){

// defaults – set the speed to 0 for stationary objects

speed = new Vector3(0.0f, 0.0f, 0.0f);

yrotation = 0.0f;

}

Creating collision-tracking objects, in the game class, requires a reference to the
Collision class, so the namespace must be added at the top of the game class with the
other namespace references:

using MGHBook;

In this example, an array is used to track all of the collision-tracking objects—a
collision object will be created for each bird and the wall. Definitions are also re-
quired to identify each individual collision object in the array, and to track the total
number of objects. Adding these declarations to the module level of the game class
will make the collision objects and identifiers available to the entire class.

const int BIRD0 = 0; const int BIRD1 = 1; const int WALL = 2;

const int NUMCOLLIDER = 3;

const int NUMBIRDS = 2;

private Collision[] collider = new Collision[NUMCOLLIDER];

249C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

nEach object is given a position, speed, and radius when they are created. A default
speed of X=0, Y=0, and Z=0 is assigned in the constructor. Stationary objects, such
as the wall, have zero speed, so they are assigned the 0 default. Add the init_colli-
sion_objects() method to your game class to set up collision-tracking objects for the
two birds and the wall:

public void init_collision_objects(){

collider[BIRD0] = new Collision();

collider[BIRD0].radius = 0.1f;

collider[BIRD0].speed = new Vector3(0.7f, 0.0f, -0.9f);

collider[BIRD0].pos = new Vector3(-2.0f, 0.2f, 3.0f);

collider[BIRD1] = new Collision();

collider[BIRD1].radius = 0.1f;

collider[BIRD1].speed = new Vector3(-0.8f, 0.0f, -0.8f);

collider[BIRD1].pos = new Vector3(0.0f, 0.2f, 3.0f);

collider[WALL] = new Collision();

collider[WALL].radius = BOUNDARY / 2.0f;

collider[WALL].pos = new Vector3(BOUNDARY/2.0f,0.0f,BOUNDARY/3.0f);

}

Ensure the collision objects are initialized when the program begins by calling
init_collision_objects() from the Initialize() method:

init_collision_objects();

Next, the draw_wall() method is required in the game class to render the wall from
the vertices that were created earlier:

private void draw_wall(int i){

// 1: declare matrices

Matrix matIdentity, matTransl;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(

collider[i].pos.X, -0.9f, collider[i].pos.Z);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matTransl;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E250

// 4: pass wvp matrix to shader

worldViewProjParam.SetValue(mMatWorld * mMatView * mMatProj);

mfx.CommitChanges();

// 5: draw object - select vertex type, primitive type, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColor;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>(

PrimitiveType.TriangleStrip, mVertWall, 0, 2);

}

When drawing the birds, you use the same triangle to draw both wings. To make
the wings flap, variables that track the wing tip’s rotation angle on the Z axis and the
wing’s up or down direction are required in the module area of the game class:

private float mfWingTip = 0.0f; // flap angle about Z axis

private bool mbWingUp = true; // up or down direction

The routine loops twice to draw both wings. A rotation of π radians about the Y
axis is applied during the second loop to draw the second wing on the side that is op-
posite to the first. Add the draw_bird() method to render both wings and to create
their flying and flapping animation:

private void draw_bird(VertexPositionColor[] vertBird, int j){

// 1: declare matrices

Matrix matIdentity, matTransl, matRotZ, matRotY, matYDir;

// 2: initialize matrices

matIdentity = Matrix.Identity; // initialize with identity matrix

matTransl = Matrix.CreateTranslation(

collider[j].pos.X, collider[j].pos.Y, collider[j].pos.Z);

matYDir = Matrix.CreateRotationY(collider[j].yrotation);

matRotZ = Matrix.CreateRotationZ(mfWingTip);

for (int i = 0; i < 2; i++){ // draw both wings

if(i==0) // draw first wing

matRotY = Matrix.CreateRotationY(0.0f);

else // draw second wing (rotated 180 Degrees about Y)

matRotY = Matrix.CreateRotationY((float)Math.PI);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity*matRotZ*matRotY*matYDir*matTransl;

251

// 4: pass wvp matrix to shader

worldViewProjParam.SetValue(mMatWorld * mMatView * mMatProj);

mfx.CommitChanges();

// 5: draw object-select vertex type, primitive type, # primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosColor;

gfx.GraphicsDevice.DrawUserPrimitives<VertexPositionColor>(

PrimitiveType.TriangleStrip, vertBird, 0, 1);

}

}

The code to draw the wall and birds is triggered from Draw() between the Begin()
and End() methods for the BasicShader.fx file. Add these call statements to render
each object:

draw_wall(WALL);

draw_bird(mVertBird0, BIRD0);

draw_bird(mVertBird1, BIRD1);

If you run this code, the birds and wall will appear, but nothing will move. Some
extra code is required to animate the birds and to implement the collision detection.

To animate the birds, you need code to translate them, keep them within the
boundaries of the world, flap their wings, and ensure they point in the right direction.
Add the animate_birds() method to your game class to perform these tasks:

void animate_birds(GameTime gameTime){

float fTimeLapse= (float)gameTime.ElapsedGameTime.Milliseconds/1000.0f;

// increment position to create animation

for (int i = 0; i < NUMBIRDS; i++){

// scale increment by time between frames to keep speed constant

// and system independent

collider[i].pos += collider[i].speed * fTimeLapse;

// if boundaries of world exceeded reverse the direction

if (collider[i].pos.Z > BOUNDARY || collider[i].pos.Z < -BOUNDARY)

collider[i].speed.Z = -collider[i].speed.Z;

if (collider[i].pos.X > BOUNDARY || collider[i].pos.X < -BOUNDARY)

collider[i].speed.X = -collider[i].speed.X;

// point bird in direction that it moves

// use change in X and Z to get rotation about the Y axis

C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

n

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E252

if(collider[i].speed.Z != 0) // prevent divide by zero

collider[i].yrotation = (float)Math.Atan(collider[i].speed.X

/ collider[i].speed.Z);

update_wingtip(gameTime);

}

}

Remember that when you are checking for collisions between two bounding
spheres, a collision is detected when the distance between the two collision objects is
less than the sum of their radii. The collision checking is performed in a nested loop
that checks each collision-tracking object with all other collision-tracking objects.
Add check_collisions() to implement this routine:

void check_collisions(){

// compare object with all others and reverse direction if collision

for (int i = 0; i < NUMCOLLIDER - 1; i++)

for (int j = i + 1; j < NUMCOLLIDER; j++){

Vector3 v3Distance = collider[i].pos - collider[j].pos;

if (v3Distance.Length()

< collider[i].radius + collider[j].radius)

reverse_direction(i, j);

}

}

When collisions are detected for the birds, their directions will be reversed. Of
course, reversing the wall’s speed has no effect because the speed of a stationary ob-
ject is zero anyway. Add the reverse_direction() method to your game class to pro-
vide code that negates the speed of the collision objects when collisions are detected:

void reverse_direction(int i, int j){

collider[i].speed.X *= -1.0f; collider[i].speed.Z *= -1.0f;

collider[j].speed.X *= -1.0f; collider[j].speed.Z *= -1.0f;

}

To create a wing-flapping animation, add the update_wingtip() method to your
game class to increment or decrement the rotation angle of each wing about the Z
axis. A time-scaled increment or decrement is applied based on whether the wing is
moving upward or downward. When the upper maximum or lower minimum rota-
tion angle about Z is reached, the direction is reversed.

void update_wingtip(GameTime gameTime){

const float WINGSPEED = 2.5f;

const float WINGLIMIT = 0.5f;

253C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

nfloat fTimeLapse= (float)gameTime.ElapsedGameTime.Milliseconds/1000.0f;

if (mbWingUp && mfWingTip > WINGLIMIT)

mbWingUp = false; // reverse if upper max

else if (mbWingUp == false && mfWingTip < -WINGLIMIT)

mbWingUp = true; // reverse if lower min

// position wing tip by incrementing it each frame

// scale the increment by a time lapse between frames to keep

// speed constant regardless of system running this program

if (mbWingUp)

mfWingTip += WINGSPEED * fTimeLapse;

else

mfWingTip -= WINGSPEED * fTimeLapse;

}

To animate the collision objects and to check for their collisions each frame, call
animate_birds() and check_collisions() from the Update() method:

animate_birds(gameTime);

check_collisions();

When you run this version of the example, you will see two birds flying. When the
birds are close to each other, they reverse their directions to avoid a collision. When
the birds are near the gray wall, they also reverse their direction to avoid flying into
the wall.

As you can see, with a small amount of code, implementing collision detection us-
ing bounding spheres is simple.

COLLISION DETECTION BETWEEN A SPHERE
AND A PLANE

A bounding sphere algorithm may provide accurate enough collision detection for
round objects, or for small, fast-moving objects—such as a bullet—but it is not effec-
tive for larger rectangular objects. Maybe you have an 18-wheeler truck driving
through your world; this truck is not going to fit nicely inside a sphere. Or maybe you
have buildings with large stone walls. You want to stop your camera from traveling
through these walls, and you don’t want your birds to fly through them either. A
bounding sphere around your brick walls leaves too much wasted space. From a
gamer’s perspective, a poorly applied bounding sphere will result in false collisions. It
could mean that a missed shot counts as a hit, or an object might seem to be sur-
rounded by an invisible force field.

To remedy this problem, you can implement collision detection between a sphere
and a plane. For large rectangular objects, and even more complex shapes that do not
fit nicely in a sphere, this next type of collision detection is more suitable—a series of
lines to establish the bounding planes can be set around the object to enable collision
detection. This algorithm calculates the point on the collision plane that is closest to
the sphere center. The distance between the sphere and the closest point on the line is
then compared to the sphere radius to determine whether a collision has occurred.

Implementing the Sphere and Plane
Collision-Detection Routine

When implementing the bounding sphere and plane algorithm, you first need to set
up planes by defining collision lines around the objects that need detection. Then you
add bounding spheres around the objects that you don’t want to cross these
lines—such as the camera. Each frame, every line is checked to determine whether a
sphere overlaps it.

The point of intersection, t, on the collision vector, Vcl1, represents the closest
point between the sphere and the collision line. A line drawn from the closest point
on the collision line to the sphere by definition is a normal. Two instances when this
definition is not true are when the sphere is closest to the starting point of the colli-
sion line or when the sphere is closest to the ending point of the collision line. Figure
16-2 shows the location of the intersect, t, between the perpendicular from the colli-
sion line to the sphere.

To obtain this value for t, the sphere vector, Vsp1, is scaled by the length of the line
vector. The result from this scaling calculation expresses the sphere vector, also
known as a ray, as a fraction of the line vector length. When the X and Z components
of the scaled sphere vector are multiplied by the unit direction of the line vector, you
end up with the point of intersection on the line vector. To simplify these calcula-

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E254

F I G U R E 1 6 - 2

Intersect t of perpendicular from collision line to sphere

255

tions, the sphere vector and the line vector have been expressed as rays that start at
the origin:

VspScaled = Vsp1 / VclLength

VCollisionUnit = Normalize(Vcl)

t = VspScaled.X * VCollisionUnit.X + VspScaled.Z * VCollisionUnit.Z

The intersection, t, indicates the percentage of the collision line where the intersec-
tion is made.

Checking for Collisions When 0 < t <1

When 0 < t <1, the distance between the collision line and the sphere center is at a
minimum. In this case, this distance is compared with the sphere radius to check for
collisions. Figure 16-3 demonstrates collision detection when the intersection falls
between the beginning and ending of the collision line vector.

Checking for Collisions When t < 0

When the sphere’s center precedes the start of the line vector, the intersect, t, is less than
zero. When t < 0, the distance between the sphere center and the origin is compared
with the sphere radius. If the distance is less than the radius, a collision is detected. Fig-
ure 16-4 shows this case where the sphere’s relative position is before the origin.

C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

n

F I G U R E 1 6 - 3

Collision detection when 0 < t < 1

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E256

Checking for Collisions When t > 1

When the sphere is positioned after the line, the closest point of intersection is calcu-
lated by taking the difference between the sphere center and the end of the collision
line vector. In this case, t will be greater than 1 because the vector to the sphere is pro-
jected to a point that falls after the line vector. Figure 16-5 shows how collisions are
detected when t > 1.

Collision Detection Using Lines and Spheres

This example modifies the solution from the previous example to implement a sphere
and plane collision-detection algorithm. This sphere and plane routine will imple-
ment better collision detection to check if the bird, or camera, collides with the four
outer world boundaries or the left middle wall. The bounding spheres algorithm al-
ready effectively handles collision detection when the two birds collide with each
other, so you can leave that code untouched.

A line array is needed to store the starting and ending points for each of the four
world boundaries and for the middle left wall. Then, at each frame, the bounding
spheres around the camera and around each bird are checked to ensure there is no

F I G U R E 1 6 - 4

Collision detection when t < 0

257C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

n

overlap with any collision lines in the array. If the sphere around the camera touches
one of the five lines, it will be pushed back to prevent it from going through the object.
Also, if one of the birds hits one of these five lines, the bird’s direction will be reversed.

Identifiers are needed at the top of the game class to reference the arrays storing
the collision line coordinates:

const int NUMLINES = 5;

private Vector3[] mv3LineBeg = new Vector3[NUMLINES];

private Vector3[] mv3LineEnd = new Vector3[NUMLINES];

The arrays that store the collision line coordinates are initialized in the init_colli-
sion_lines() method. Note that the starting and ending points for each line must be
arranged so that the difference between the ending coordinate and the starting coor-
dinate yields a positive result.

Add init_collision_lines() to store the end points for each of the five lines:

public void init_collision_lines(){

// keep user from going over edge of world

const float kfLine = 1.0f * BOUNDARY;

mv3LineBeg[0].X = -kfLine; mv3LineBeg[0].Z = -kfLine; //R front

F I G U R E 1 6 - 5

Collision detection when t > 1

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E258

mv3LineEnd[0].X = -kfLine; mv3LineEnd[0].Z = kfLine; //R back

mv3LineBeg[1].X = kfLine; mv3LineBeg[1].Z = -kfLine; //L front

mv3LineEnd[1].X = kfLine; mv3LineEnd[1].Z = kfLine; //L back

mv3LineBeg[2].X = -kfLine; mv3LineBeg[2].Z = -kfLine; //F right

mv3LineEnd[2].X = kfLine; mv3LineEnd[2].Z = -kfLine; //F left

mv3LineBeg[3].X = -kfLine; mv3LineBeg[3].Z = kfLine; //B right

mv3LineEnd[3].X = kfLine; mv3LineEnd[3].Z = kfLine; //B left

// set up line where gray wall is located

mv3LineBeg[4].X = 0.0f; mv3LineBeg[4].Z = BOUNDARY / 3.0f;

mv3LineEnd[4].X = BOUNDARY; mv3LineEnd[4].Z = BOUNDARY / 3.0f;

}

To ensure the line arrays are loaded when the program begins, call init_colli-
sion_lines() from the Initialize() method:

init_collision_lines();

This next block of code implements the algorithm explained earlier in the “Imple-
menting the Sphere and Plane Collision-Detection Routine” section of this chapter.
The code scales the vector to the sphere by the length of the collision line. Then, the X
and Z components of the scaled vector are each multiplied by the unit X and Z direc-
tions stored in the normalized line collision vector. The X and Z products are summed
to give the point of intersection of the perpendicular on the collision line that runs to
the sphere center. Three cases are considered. If t < 0, a collision is detected when the
sphere radius is greater than the distance between the sphere and the origin. If 0 < t < 1,
a collision is detected if the sphere radius is greater than the distance between the
sphere center and t. If t > 1, a collision is detected if the radius is greater than the dis-
tance between the sphere center and the end of the collision line. Add the is_line_colli-
sion() method to check if any bounding spheres collide with any of the collision lines:

bool is_line_collision(int i, float x, float z, float radius){

float t; // line intersect (%)

Vector3 v3Line, v3UnitLine; // line vector from origin

v3Line = v3UnitLine = mv3LineEnd[i] - mv3LineBeg[i];

Vector3 v3SphereAbs = new Vector3(x, 0, z); //original position

Vector3 v3SphereRel = v3SphereAbs - mv3LineBeg[i]; //rel to line at 000

// vector to sphere / line len (remember len = sqrt(x^2 + y^2 + z^2))

Vector3 v3SphereScaled = v3SphereRel / v3Line.Length();

v3UnitLine.Normalize(); // line unit vector

259C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

n// intersect on line (in %) between line perpendicular and sphere ctr

t = v3SphereScaled.X * v3UnitLine.X + v3SphereScaled.Z * v3UnitLine.Z;

Vector3 v3Distance; // distance to line

if (t < 0) // sphere precedes line vector

v3Distance = v3SphereAbs - mv3LineBeg[i];

else if (t > 1) // sphere follows line vector

v3Distance = v3SphereAbs - mv3LineEnd[i];

else{ // intersect falls somewhere on the line vector

Vector3 v3intersect = mv3LineBeg[i] + t * v3Line;// abs intersect

v3Distance = v3SphereAbs - v3intersect; // distance

}

if (v3Distance.Length() < radius) // if distance < r

return true; // collision

return false; // no collision

}

To add code that checks whether the birds collide with the collision lines, replace
the check_collisions() method with this new version. The bounding spheres algo-
rithm is left to check whether the birds collide because the algorithm is efficient for
that case.

void check_collisions(){

// compare birds and reverse direction if collision

for (int i = 0; i < NUMBIRDS; i++)

for (int j = i + 1; j < NUMBIRDS; j++){

Vector3 v3Distance = collider[i].pos - collider[j].pos;

if (v3Distance.Length()

< collider[i].radius + collider[j].radius)

reverse_direction(i, j);

}

// compare birds with lines at wall and outer boundaries

for (int i = 0; i < NUMBIRDS; i++)

for (int j = 0; j < NUMLINES; j++){

if (is_line_collision(j, collider[i].pos.X, collider[i].pos.Z,

collider[i].radius))

reverse_direction(i); // reverse direction if hit

}

}

Because the birds are being checked individually for collisions between each of the
outer boundaries and the left wall, an overloaded reverse_direction() method is re-
quired in the game class to prevent them from flying through the line:

void reverse_direction(int i){

collider[i].speed.X *= -1.0f; collider[i].speed.Z *= -1.0f;

}

The code that checks for collisions between the camera and each of the lines is trig-
gered whenever the game player moves forward, backward, or strafes to the side. If a
collision is detected, the user is forced to move back by the same amount in the oppo-
site direction. Adding the handle_camera_collision() method to the game class al-
lows you to prevent the camera from moving through a line:

void handle_camera_collision(float fMoveAmount, bool bStrafe){

for (int i = 0; i < NUMLINES; i++){

// if border hit move the user back

if (is_line_collision(i, cam.m_vPos.X, cam.m_vPos.Z, 0.2f)){

if(!bStrafe)

cam.move(-fMoveAmount);

else

cam.strafe(-fMoveAmount);

break;

}

}

}

Collisions are triggered when the player moves forward or backward using the up
or down arrow key on the keyboard, or when strafing sideways with the right or
left arrow key. When the game pad is used, shifting the left thumbstick up and down
will trigger forward and backward movement. Shifting the thumbstick to the
side will trigger a strafe sideways. The code to detect a collision between the camera
and the line must be called from the Update () method. If a collision is detected, the
camera will be forced back in the opposite direction. Replace the existing instruc-
tions to move the camera and strafe the camera in Update() with this revision to force
the user back if the camera collides with the wall or boundary of the world:

float fMove; // store amount of movement back & forth or side

bool bStrafe = false; // indicate if strafe is being checked

// handle forwards and backwards movement

fMove = move();

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E260

261

cam.move(fMove);

handle_camera_collision(fMove, bStrafe);

// handle sideways movement

bStrafe = true;

fMove = strafe();

cam.strafe(fMove);

handle_camera_collision(fMove, bStrafe);

When you run this version of the code, your camera will no longer travel past the
wall or the boundaries of the world. Also, the birds will not fly into each other and
they will not fly into the wall or past the outer boundaries of the world. Using lines to
detect collisions with spheres offers a better fit for rectangular and irregular shapes.

As discussed in this chapter, collision detection can be implemented in many dif-
ferent ways. Algorithms for implementing collision detection can range from simple
to complex. For advanced collision detection, the algorithm may start with a simple
check to see whether two objects are close to each other. Advanced algorithms can be
called once a close proximity between objects has been established. If the objects are
not in close proximity, the advanced algorithms can be skipped to save on processing
time. The algorithms presented in this chapter are simple, but they offer a solid first
line of collision checking and in most cases will provide all you need for detection.

CHAPTER 16 REVIEW EXERCISES

1. Try the step-by-step examples discussed in this chapter.

2. After completing the example of collision detection using lines and a
sphere, add a black bird that is larger than the first two. Be sure to adjust
the size of the radius about the bird and ensure collision detection is
implemented so that it does not fly through the other birds. Also, be sure
to adjust the code so the bird does not fly though the wall or the outer
boundaries of the world.

3. Add a diagonal wall across one of the corners of the world and create a
collision line to prevent the birds and camera from traveling past this wall.

C H A P T E R 1 6

Co
llis

io
n

D
et

ec
tio

n

This page intentionally left blank

CHAPTERCHAPTER1717
BallisticsBallistics

263

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

264

BALLISTICS describes the flight of projectiles. When con-
sidering ballistics in the context of a game,

you might think of obvious choices such as grenades, bullets, cannon balls, or rockets.
Ballistics could even include throwing bananas, shooting squirt guns, or throwing base-
balls. Regardless of the implementation, ballistics certainly will liven up your game.

This chapter explains two common ballistics algorithms. The first algorithm, re-
ferred to as the Linear Projectile algorithm, provides a routine for launching a
fast-moving projectile where its speed on the X, Y, and Z planes remains constant.
This first algorithm is suitable for projecting a laser beam, a bullet, or an extremely
fast-moving missile that only needs to be shown over a short range. The second algo-
rithm, referred to in this book as the Arcing Projectile algorithm, builds on the first
algorithm. The difference is that the second algorithm considers the gravitational
pull that acts on the projectile until it hits the ground.

LINEAR PROJECTILES

The Linear Projectile algorithm works under
the assumption that the projectile will maintain
a constant speed on the X, Y, and Z planes until
the object is out of sight. For example, Figure
17-1 shows rockets flying in a linear path from
the camera.

When the projectile is launched, the linear
projectile travels in a path that follows the cam-
era’s Look direction. The Look vector gives us
constant speeds for X, Y, and Z. Remember
from Chapter 15, “Building a Graphics Engine
Camera,” the Look direction vector equals the
difference between the View position vector
and the camera position vector.

The initial rate of change (in distance over
time on the X, Y, and Z planes) when a projec-
tile takes flight is known as the launch speed.
Launch speed is based on the Look direction to
ensure the object projects outward from the
camera toward the target. The total launch
speed is scaled by each Look vector component
in each of the corresponding X, Y, and Z
planes. Figure 17-2 illustrates how the individ-
ual velocity components are derived.

F I G U R E 1 7 - 1

Rockets following a linear
path with a constant speed
and direction

265C H A P T E R 1 7

Ba
llis

tic
s

At every frame during the projectile’s flight, the position of the projectile is up-
dated by summing the projectile’s current position with the projectile velocity multi-
plied by time, as shown here:

Projectile Positionxyz = Launch Positionxyz + Velocityxyz * Time

ARCING PROJECTILE

The Linear Projectile routine only works for
bullets or other objects that appear to fly in a
straight line. For events where the effects of
gravity are apparent—such as a catapult launch
or a grenade toss—the Arcing Projectile algo-
rithm is needed to make the ballistic look real
and to give the player control over the trajec-
tory, height, and distance traveled. Higher
launch speeds and trajectories help to over-
come gravity, and ensure that the ballistic has a
longer flight before hitting the ground.

Figure 17-3 shows several rockets at various
elevations (on the Y axis) and at different stages
of flight. Over time, the projectiles lose momen-
tum and gravity pulls them to the ground. The
overall effect creates a nice arcing projectile path.

F I G U R E 1 7 - 2

Deriving X, Y, and Z velocities using the Look direction

F I G U R E 1 7 - 3

Considering the effect of gravity
over time

Game developers will often use real-world physics to create more realistic graph-
ics effects. The physical properties that they consider may include gravity, friction,
force, velocity, acceleration, viscosity, and much more. In case you’re wondering,
game development companies will often implement pseudo-physics in their algo-
rithms. As long as the effect looks correct and is efficient, an approximation of the
laws of physics is usually the faster and more effective alternative. After all, as a simu-
lation approaches reality, it can become so complex that it loses its value. However,
even when the code deviates from the laws of physics, realistic algorithms usually
consider some portion of the real physical model.

Once the launch velocity and direction have been obtained, the effect of gravity
can be computed and the X, Y, and Z positions of the projectile can be calculated
over time. The X and Z positions are calculated using the same equations as the Lin-
ear Projectile algorithm to obtain the projectile’s position over time:

Xt = Xstart + Vx* t
Zt = Zstart + Vz * t

The Arcing Projectile algorithm treats the calculation of the Y position over time
as a special case that also considers gravity. Initially, the projectile’s velocity is pow-
erful enough to defy gravity—otherwise, there would insufficient energy to launch
the projectile into the air. However, over time, the projectile loses its momentum and
gravity becomes the strongest force on the object. This gravitational pull is defined by
a constant value of acceleration, g, which represents the Earth’s gravity. The ac-
cepted value for g equals 9.8 meters / second 2 (32 ft/s2). After the Earth’s gravity is
factored in, the equation used for calculating the Y position over time becomes:

Yt = Ystart + Vy * t – 0.5 * g * t2

Implementing these projectile algorithms in code is simple. The first example in this
chapter implements the Linear Projectile algorithm. Then, in the example that follows,
the Linear Projectile algorithm is converted into an Arcing Projectile algorithm.

LINEAR PROJECTILES EXAMPLE

This example demonstrates how to add in projectiles that can be launched on a linear
path from a rocket launcher, as shown back in Figure 17-1.

In this example, you will shoot ten rockets into the air at a time. When a trigger or
spacebar event occurs, the first available rocket (that is not already in flight) is
launched. At the time of launch, the rocket is given a position, speed, and direction to
start it on an outward journey from the tip of the rocket launcher. The rocket
launcher’s position and direction are based on the camera’s current position and
Look direction. Also, during the launch, the activation state for the projectile is set to

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E266

267C H A P T E R 1 7

Ba
llis

tic
s

true, and remains set to true until the projectile reaches the end of the path. The acti-
vation state prevents the projectile from being reused while it is in flight. The projec-
tile properties are reset every time the projectile is launched.

This example begins with either the WinMGHBook or Xbox360MGHBook pro-
ject located in the BaseCode folder of the book’s download available from the website.

You will create a Projectile class to assist with the implementation of your projec-
tiles. You will use Projectile to keep track of each rocket and to update its position.
The Projectile class can be created from scratch in the Solution Explorer. To generate
it, right-click the project and choose Add New Item. Then, choose the Class icon and
enter Projectile.cs as the Name in the Add New Item dialog. When you click Add,
GSE will generate a shell for your Projectile class.

The Projectile class needs to perform vector calculations that determine direction
and speed, so a reference to Microsoft.Xna.Framework is required at the top of the
Projectile.cs file:

using Microsoft.Xna.Framework;

Module-level declarations are also required for storing the position, direction, an-
gle, and activation state of each projectile. An additional variable, for storing the size of
the world, enables a check to determine whether the projectile has flown out of sight.
This tells you when to deactivate the projectile. To allow access to these variables
throughout the class, we place their declarations at the top of the Projectile class:

public Vector3 mv3Pos, mv3PosPrev;// position of projectile

public Vector3 mv3Dir; // direction of projectile on x,y,z

public bool mbActive; // active or inactive state

public float mfRotation; // rotation about X axis

private float mfBoundary; // + & - edge of world on x and z

public Matrix mmatDir; // direction matrix

When the program begins, each projectile needs to be created only once. After they
are created, the projectiles remain inactive until the user launches them. Later, you
will add a method to deactivate a projectile when it flies past the boundaries of the
world. To set the projectile flight range and activation state when the projectile is ini-
tialized, add this constructor to the Projectile class:

public Projectile(float fBoundary){

mfBoundary = fBoundary;

mbActive = false;

}

The projectile’s position, direction, and activation state are set according to the
camera’s position and Look direction at the time of the launch. The rocket is angled

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E268

about the X axis according to the angle used by the rocket launcher. Including the
stage_projectile() method in the Projectile class will enable proper initialization of
these attributes during the launch.

public void stage_projectile(Vector3 v3Look,Vector3 v3Start,float fRotX){

mv3Pos = v3Start; // starting xyz = camera xyz

mv3Dir = Vector3.Normalize(v3Look);// unitize it

mfRotation = fRotX;

mbActive = true;

}

As discussed in Chapter 6, “Character Movement,” an object’s direction can be
calculated from the object’s speed vector. Adding setDirectionMatrix() to your Pro-
jectile class will provide the method you need to make your rocket point in the direc-
tion it is traveling. This routine applies to both the Linear Projectile algorithm and the
Arcing Projectile algorithm. For the Linear Projectile algorithm, the rocket direction re-
mains constant as the rocket travels outwards. For the Arcing Projectile algorithm,
setDirectionMatrix() will launch the rocket with the original launcher direction and
then it will gradually drop the rocket, nose downwards, as the gravitational pull
takes over:

public void setDirectionMatrix(){

// speed = difference between current and past position

Vector3 v3Speed = mv3Pos - mv3PosPrev;

Vector3 v3L = v3Speed; // look vector

v3L.Normalize();

Vector3 v3U = new Vector3(0.0f, 1.0f, 0.0f);// up vector

v3U.Normalize();

Vector3 v3R = Vector3.Cross(v3U, v3L); // right vector

v3R.Normalize();

Matrix mat = new Matrix(); // compute direction matrix

mat.M11=v3R.X; mat.M12=v3R.Y; mat.M13=v3R.Z; mat.M14=0.0f; //Right

mat.M21=v3U.X; mat.M22=v3U.Y; mat.M23=v3U.Z; mat.M24=0.0f; //Up

mat.M31=v3L.X; mat.M32=v3L.Y; mat.M33=v3L.Z; mat.M34=0.0f; //Look

mat.M41=0.0f; mat.M42=0.0f; mat.M43=0.0f; mat.M44=1.0f;

mmatDir = mat;

}

The projectile’s position is updated before being drawn each frame. Also, in every
frame, the projectile’s position is incremented by a time-scaled direction vector,

269C H A P T E R 1 7

Ba
llis

tic
s

which ensures the rocket flies in the path set by the camera when the rocket is
launched. When the projectile location exceeds one of the outer boundaries, it is de-
activated so that it can be hidden and made available for the next launch. The up-
date_projectile() method implements this routine. Adding update_projectile() to the
game class ensures your projectile positions are updated while they are active. The
method also deactivates the projectiles after they reach the outer limits of your world.

public void update_projectile(GameTime gameTime){

mv3PosPrev = mv3Pos; // store position at last frame

// update position based on velocity * time scale between frames

mv3Pos += mv3Dir * (float)gameTime.ElapsedGameTime.Milliseconds/90.0f;

setDirectionMatrix();

// deactivate if outer border exceeded on X or Z

if (mv3Pos.Z > 2.0f * mfBoundary || mv3Pos.X > 2.0f * mfBoundary ||

mv3Pos.Z < -2.0f * mfBoundary || mv3Pos.X < -2.0f * mfBoundary)

mbActive = false;

}

The Projectile class for a Linear Projectile algorithm is now complete, so you
can reference it from Game1.cs. Adding the namespace reference to the top of the
Game1.cs file enables your use of this new class:

using MGHBook;

To make this example more interesting, a model of a rocket will be used for the
projectiles. To reference this model in the game class, add a class-level declaration for
the model and the matrix to the game class:

Model mModRocket;

Matrix[] matRocket;

Model mModLauncher;

Matrix[] matLauncher;

The rocket and rocket launcher models are loaded from the rocket.fbx and
launcher.fbx files. Adding the init_artillery() method to your game class provides the
code to load these models using the ContentManager object. The directory path in
this code assumes you have copied the rocket.fbx, rocket.bmp, launcher.fbx, and
launcher.bmp files from the Models folder from the website. Once the rocket.fbx
and launcher.fbx models are referenced from the Solution Explorer, init_artillery()
can initialize the model objects and their transformation matrices:

void init_artillery(){

mModRocket = content.Load<Model>(".\\Models\\rocket");

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E270

matRocket = new Matrix[mModRocket.Bones.Count];

mModRocket.CopyAbsoluteBoneTransformsTo(matRocket);

mModLauncher = content.Load<Model>(".\\Models\\launcher");

matLauncher = new Matrix[mModLauncher.Bones.Count];

mModLauncher.CopyAbsoluteBoneTransformsTo(matLauncher);

}

To initialize the rocket, when the program begins, call init_artillery() from Initialize():

init_artillery();

Now that the models have been loaded, projectile objects can be created to track
each rocket’s angle, direction, and whereabouts. Declaring ten projectile objects in
the game class in the module declarations area will make them available for your use
throughout the game class.

const int NUM_ROCKETS = 10;

private Projectile[] mProj = new Projectile[NUM_ROCKETS];

You should set up each of these ten projectiles from the Initialize() method when
the program begins. Passing the size of the world to the constructor will allow us to
deactivate the rocket later when it flies out beyond the outer boundaries of the world.

for(int i=0; i<NUM_ROCKETS; i++)

mProj[i] = new Projectile(BOUNDARY);

Next, we’ll draw the rocket launcher. The rocket launcher travels with the camera
and rotates about the X axis—with changes to the view position on Y whenever the
user moves the mouse or right thumbstick up or down. The model rocket launcher was
designed to simplify the transformations for this movement. The rocket launcher’s
base is positioned at the origin, and the barrel is centered around the Z axis and is posi-
tioned further out on Z. By design of the camera, the launcher’s rotation range about
the X axis is half a circle (or π radians). If the rocket launcher is pointed directly up-
ward, the view position on Y would equal 0.5, and if the the rocket launcher is pointed
directly downward, the view position would be –0.5 (see Figure 17-4).

As discussed in Chapter 5, “Animation Introduction,” because XNA uses the
Right Hand Rule, a negative rotation around the X axis will point the launcher up-
ward. Using the same logic, a positive rotation about the X axis will point the
launcher downward. With this information, you can calculate the rocket launcher’s
rotation angle about the X axis with the following equation:

π * cam.m_vView.Y

271C H A P T E R 1 7

Ba
llis

tic
s

The launcher must also be rotated about the Y axis to match the camera’s Look di-
rection about the Y axis. And finally, to finish the transformation using the
I.S.R.O.T. sequence, the launcher must be translated by an amount that is equivalent
to the distance from the origin to the camera. An extra shift downward on the Y axis
is added to this translation to move the launcher downward slightly so it does not
block your view.

Add draw_launcher() to your game class to move and rotate the rocket launcher
with your camera:

private void draw_launcher(Model model){

// 1: declare matrices

Matrix matIdent, matTransl, matScale, matRotX, matRotY;

// 2: initialize matrices

matIdent = Matrix.Identity; // always start with identity matrix

matScale = Matrix.CreateScale(0.20f, 0.20f, 0.20f);

matTransl = Matrix.CreateTranslation(cam.m_vPos.X, -0.3f,cam.m_vPos.Z);

matRotX = Matrix.CreateRotationX(-(float)Math.PI * cam.m_vView.Y);

Vector3 v3Look = cam.m_vView - cam.m_vPos;

matRotY = Matrix.CreateRotationY((float)Math.Atan2(v3Look.X,v3Look.Z));

foreach (ModelMesh mesh in model.Meshes){

// 3: build cumulative matrix using I.S.R.O.T. sequence

// identity,scale,rotate,orbit(translate & rotate),translate

mMatWorld = matIdent * matScale * matRotX * matRotY * matTransl;

F I G U R E 1 7 - 4

Rocket launcher rotation range around the X axis

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E272

foreach (BasicEffect effect in mesh.Effects){

effect.World =matLauncher[mesh.ParentBone.Index]*mMatWorld;

effect.View =mMatView;

effect.Projection=mMatProj;

// 4b. set lighting

effect.EnableDefaultLighting();

effect.SpecularPower = 0.01f;

effect.CommitChanges();

}

// 5: draw object

mesh.Draw();

}

}

To actually see the rocket launcher, you obviously need to call the method to draw
it. Adding draw_launcher() to the end of the Draw() method will draw the rocket
when other objects are rendered:

draw_launcher(mModLauncher);

Because the rocket launcher’s rotation angle about the X axis changes with the
view position on Y, if the right thumbstick or mouse shifts the view all the way up or
all the way down, you can actually see the base of the launcher, which spoils the ef-
fect. Inside the camera class in the update_camera_view() method, you’ll replace the
code that caps the Y view position so it can no longer exceed 0.20 or fall below –0.10,
which prevents you from pointing the launcher into the ground. The end result is
whatever angle you point, it looks as though you are always holding the rocket
launcher:

if (qNewView.Y > -0.10f && qNewView.Y < 0.20f)

At this point, the projectile objects are initialized and your launcher is in place.
Your rockets are ready, but a mechanism is required to trigger their launch. In this
case, you will add code to initiate their launch when the left mouse button is pressed,
or when the right trigger on the controller is pressed. To ensure that all ten rockets are
not launched during this press event—which lasts over several frames—a time delay
between launches is added. The time delay allows the user enough time to press and
release the trigger so that only one projectile is launched at a time. To enable the time
delay, you must add a declaration for a GameTime variable and a double variable at
the top of the game class to store the time of the last press event:

private GameTime mgameTime;

private double mdblLastPress;

273

The projectile trigger events can now be handled at the end of the Update()
method. In this block of code, you will add a delay of 250 milliseconds to the user’s
input. This delay allows the user time to press and release the trigger or left-click the
mouse to launch one projectile during this period.

if ((GamePad.GetState(PlayerIndex.One).Triggers.Right > 0

#if !XBOX

|| // check left-click mouse event only on PC - won't work on xbox

mMouse.LeftButton == ButtonState.Pressed

#endif // provide 250 ms delay before next launch

)&& mgameTime.TotalGameTime.TotalMilliseconds - mdblLastPress > 250){

mdblLastPress = mgameTime.TotalGameTime.TotalMilliseconds;

launch_rocket();

}

The code that you use to launch the rocket (from the game class) is contained in the
launch_rocket() method. This routine searches through the array of projectiles and
finds the first inactive projectile available. When an inactive projectile is found,
launch_rocket() sets the starting position and direction to equal the camera position
and Look direction.

The transformations use the I.S.R.O.T. sequence. Their implementation to angle
and position the rocket at the tip of the launcher is summarized in Figure 17-5.

The starting position is needed to help track the location of each rocket. To create
the required transformation, and record the initial starting position of the rocket, we
can use the Matrix math discussed in Chapter 14, “Matrices.” Once the starting po-
sition is computed using matrices, the first row of the matrix that contains the posi-
tion information is stored in a vector. This position vector can be used later to update

C H A P T E R 1 7

Ba
llis

tic
s

F I G U R E 1 7 - 5

Calculating the launch direction and angle of the rocket

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E274

the position of the rocket by incrementing the position by a time-scaled direction vec-
tor. As you can see, it really does pay to understand how to employ linear algebra be-
yond just using the Matrix objects and methods that are shipped with XNA.

Add launch_rocket() to your game class to find the first available rocket when a
launch is triggered and to calculate and store the starting position and direction of the
rocket:

private void launch_rocket(){

for (int i = 0; i < NUM_ROCKETS; i++){

if (mProj[i].mbActive == false){

Matrix matTransOrb, matTransl, matRotX, matRotY, matPos;

matPos = new Matrix(); // must be initialized for Xbox

Vector3 v3Look = cam.m_vView - cam.m_vPos; // look direction

// translate on Z by length of rocket

matTransOrb = Matrix.CreateTranslation(0.0f, 0.0f, 1.25f);

matTransl = Matrix.CreateTranslation(cam.m_vPos.X, -0.34f,

cam.m_vPos.Z); // translate rocket to cam position

matRotX = Matrix.CreateRotationX(-(float)Math.PI *

cam.m_vView.Y);// match rotation of launcher about X

matRotY = Matrix.CreateRotationY((float)Math.Atan2(v3Look.X,

v3Look.Z)); // rotate about Y to match direction

// rocket's starting position must be at the tip of the launcher

// first use matrix to store origin vector in first row

matPos.M11=0.0f; matPos.M12=0.0f; matPos.M13=0.0f; matPos.M14=1.0f;

matPos.M21 = matPos.M22 = matPos.M23 = matPos.M24

= matPos.M31 = matPos.M32 = matPos.M33 = matPos.M34

= matPos.M41 = matPos.M42 = matPos.M43 = matPos.M44 = 0.0f;

// this uses the I.S.R.O.T. sequence to get rocket start position

matPos = matPos * matTransOrb * matRotX * matRotY * matTransl ;

// convert from matrix back to vector so it can be used for updates

Vector3 v3start = new Vector3(matPos.M11, matPos.M12, matPos.M13);

float fRotX = -(float)Math.PI * cam.m_vView.Y +(float)Math.PI/2.0f;

mProj[i].stage_projectile(v3Look, v3start , fRotX);

break;

}

}

}

275C H A P T E R 1 7

Ba
llis

tic
s

In each frame, the locations of all projectiles must be updated so each can be ani-
mated properly along its trajectory path. The code used to trigger the update for each
projectile position belongs at the end of the Update() method in the game class:

mgameTime = gameTime;

for(int i=0; i<NUM_ROCKETS; i++){

if (mProj[i].mbActive)

mProj[i].update_projectile(gameTime);

}

Only one method is used to draw each projectile. draw_rockets() loops through all
projectile objects and translates the active ones to their current position. The details
are explained in the comments:

private void draw_rockets(Model model){

// 1: declare matrices

Matrix matIdent, matScale, matRotX, matTransl;

// 2: initialize matrices

matIdent = Matrix.Identity; // default matrix

matScale = Matrix.CreateScale(0.33f, 0.33f, 0.33f); // reduce size

matRotX = Matrix.CreateRotationX((float)Math.PI / 2.0f);// rotate on X

for (int i = 0; i < NUM_ROCKETS; i++){

if (mProj[i].mbActive){

foreach (ModelMesh mesh in model.Meshes){

matTransl = Matrix.CreateTranslation(mProj[i].mv3Pos);

// 3: build cumulative matrix using I.S.R.O.T. sequence

// identity,scale,rotate,orbit(translate & rotate),translate

mMatWorld = matScale * matRotX * mProj[i].mmatDir * matTransl;

foreach (BasicEffect effect in mesh.Effects){

// store matrices for transformation in BasicEffect shader

effect.World = matRocket[mesh.ParentBone.Index]*mMatWorld;

effect.View = mMatView;

effect.Projection= mMatProj;

// apply lighting using XNA's BasicEffect shader

effect.EnableDefaultLighting();

effect.SpecularPower = 16.5f; // add highlights

effect.CommitChanges();

}

// 5: draw object

mesh.Draw();

}

}

}

}

To ensure projectiles are actually drawn, draw_rockets() needs to be called from
the Draw() method:

draw_rockets(mModRocket);

When you compile and run this program, it shows the Linear Projectile algorithm
in action. Whenever the left mouse button is pressed, or a game controller trigger is
pulled, a rocket is launched. Each projectile shoots outward until it reaches an arbi-
trary boundary located at the outer limits of the world.

ARCING PROJECTILES EXAMPLE
This Arcing Projectiles example picks up where the Linear Projectile algorithm ends.
When this example is complete, and the effect of gravity is factored in, the flight of
each projectile will rise to a peak and then follow a descending path to the ground.
Most of the code in this revised routine remains the same. However, the method that
updates the rocket position will be replaced so that the gravitational pull over time is
taken into consideration. To enable this revised method, we need an additional vari-
able declaration for tracking time at the module level for the projectile class:

private float mfTime; // time since launch

One extra line of code is needed in stage_projectile() to reset the time to zero when
each projectile is launched.

mfTime = 0.0f;

Another significant change to the update_projectile() method involves placing
code to factor in gravitational pull on the Y position over time. The equations used to
change the X and Z positions remain the same as in the Linear Projectile algorithm:

mv3Pos.X += v3LookVel.X * mfTime;
mv3Pos.Z += v3LookVel.Z * mfTime;
mv3Pos.Y += v3LookVel.Y * mfTime

– 0.5f * kfGravity * mfTime* mfTime;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E276

277C H A P T E R 1 7

Ba
llis

tic
s

The setDirectionMatrix() adjusts the rocket’s direction on the X and Y axes. The
transformation matrix returned when calling this method from update_projectile() en-
ables the rocket to shoot outward from the launcher at a suitable angle on the Y axis. In
addition, the rocket is tilted on the X axis, so it points upward as it climbs and then
lowers as the rocket descends to the ground.

Replace the existing update_projectile() method with this one to implement the
change:

public void update_projectile(GameTime gameTime){

const float kfGravity = 9.8f; // 9.8 m/s^2

float fvel = 7.0f; // 7.0 m/s

// cumulative seconds - scaled to slow projectile down

const float kfTimeScale = 4.0f;

mfTime = mfTime + (float)(gameTime.ElapsedGameTime.Milliseconds)

/ (kfTimeScale * 1000);

// velocity on x, y, and z

Vector3 v3LookVel = mv3Dir * fvel;

mv3PosPrev= mv3Pos; // store position at last frame

// current position updated over time

mv3Pos.X += v3LookVel.X * mfTime;

mv3Pos.Z += v3LookVel.Z * mfTime;

// increment on Y also affected by gravity

float fY = v3LookVel.Y * mfTime

- 0.5f * kfGravity * mfTime * mfTime;

mv3Pos.Y += fY;

setDirectionMatrix(); // generate matrix for direction angle

// de-activate if projectile falls below ground level

if (mv3Pos.Y < -1.0f)

mbActive = false;

}

Running the program now shows the projectiles rising in an arc. When the peak is
reached, they rotate gradually so they point downward and fall back to the ground.
On reaching the ground, they are deactivated and made ready for the next launch.

Whether you are allowing your players to throw a ball or deploy weaponry, your
ballistics are ready for launch.

CHAPTER 17 REVIEW EXERCISES

1. Follow the step-by-step examples shown in this chapter to implement the
Linear Projectile algorithm and Arcing Projectile algorithm.

2. State how the projectile update routine for linear projectiles differs from
that for arcing projectiles.

3. Replace the model rocket with your own 3D object and make it point in
the direction that it travels. Add bounding sphere collision detection to an
object in your world so something happens when you hit it.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E278

CHAPTERCHAPTER1818
ParticleParticle
EffectsEffects

279

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

280

PARTICLE algorithms enable effects such as rain, explo-
sions, fire, smoke, sparkles, and much more.

The effects created by the particle algorithm are only limited by your imagination.
Compare the non-particle-based explosions in Space Invaders with an explosion that
uses a particle algorithm—like a rocket explosion in id Software’s Quake. Quake’s
rocket effect is substantially more interesting.

A particle is a user-defined object that sets, stores, and updates properties for a
group of related items. Each group or class of particles shares a similar but slightly ran-
domized set of properties (for example, a group of rain particles, snow particles, fire
particles, or smoke particles). Particles are usually assigned properties for life, size,
color, position, and speed. As an example, a snowflake would have a starting position
somewhere up in the sky, so the X and Z positions would be random but the starting
position for Y would definitely be positive. The snow particle’s life starts at the begin-
ning of the particle’s descent and ends when the snowflake reaches the ground. The
snowflakes are small, but each one varies slightly in size. The snowflake’s color prop-
erty would be set to a shade of white. The snowflake’s speed would definitely be nega-
tive on the Y axis, but the X and Z speeds are random. The Y speed of the snowflake
particle is varied and slow enough to allow for the snow to drift to the ground.

There is no set syntax or rule for defining particles—they have different properties
based on their implementation. Particles are usually regenerated on a continuous ba-
sis, but some randomization is normally present for creating a dynamic and
ever-changing special effect.

When drawing particles, you often need transparency to remove background pix-
els. This generates the image you need for your effect—such as rain, fire, or an explo-
sion. You could use billboarded triangle strips for this task, or you might consider
using point sprites.

Because particle algorithms can be expensive in terms of system bandwidth, you
should be careful not to create too many particles. Game developers use particle algo-
rithms when they want to show off brilliant special effects, but when performance is
an issue, they may choose a textured sprite instead of a particle algorithm.

POINT SPRITES
To improve performance, point sprites are often used for particle algorithms. A point
sprite is a resizable textured vertex that always faces the camera. There are three
good reasons for choosing a point sprite surface to render your particles:

� A point sprite only uses one vertex, so it saves space and boosts performance.

� When point sprites are enabled, textures are automatically mapped to them,
so there is no need to store or set UV coordinates in your XNA code. Once
again, this saves memory and boosts performance.

� Point sprites always face the camera, so there is no need to implement code
to adjust their angle to view them from various directions.

281C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

The behavior of point sprites is slightly different from other textured primitive ob-
jects. Up close, point sprites appear to be more sparse and scattered. Also, scaling point
sprites to a size that is proportionate to your other primitive objects and 3D models can
be tricky. Even so, with careful planning around these differences, point sprites can be
very effective. When they are set up properly, point sprites work like magic.

Point sprites can only be enabled through a shader. Much of the shader code is
similar to code you have used before in this book to draw a textured primitive sur-
face. As discussed in Chapter 4, “Shaders,” the shader begins with global variables
that can be set from your XNA application:

float4x4 fx_WVP : WORLDVIEWPROJ; // world view projection matrix

texture fx_Texture; // stores texture

float fx_DistanceScale; // scale by distance from camera

float fx_Fade; // fade as particle nears end of life

The same texture sampler used throughout this book, and explained in Chapter 7,
“Texturing Your Game World,” will also work for this point sprite shader:

// filter (like a brush) for showing texture

sampler textureSampler = sampler_state{

Texture = <fx_Texture>;

magfilter = LINEAR; // magfilter when bigger than actual size

minfilter = LINEAR; // minfilter when smaller than actual size

mipfilter = LINEAR; // to resize images close and far away

};

Until now, your XNA code has been using XNA’s preset VertexDeclarations to
define the type of vertex data for drawing primitive-based surfaces using data such as
texture coordinates, position, color, or normal information. These preset definitions
are convenient, but sometimes you will want to customize your vertex definitions. To
be able to access features such as setting the point sprite size, you need to create your
own custom vertex definition in your XNA code. This ensures the data sent from
your XNA project is compatible with your vertex shader inputs. This will allow you
to size your point sprite from your XNA code.

The vertex shader input for a point sprite still receives color and position informa-
tion from your XNA application—as has been done in previous shader examples.
However, the texture coordinate mapping is automatic, so you don’t need to set UV
coordinates in your XNA code or send them to the vertex shader. For you to pass the
point sprite size to your vertex shader from your XNA code, the size variable defined
for your vertex shader input must be tagged with the PSIZE semantic:

struct VS_INPUT{

float4 f4Position : POSITION0;

float4 f4Color : COLOR0;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E282

float1 Size : PSIZE0;

};

The output from the vertex shader is also different from the shader code that is
used for texturing objects. When texturing primitive surfaces, the output from our
vertex shader includes elements for color, position, and texture data. When imple-
menting point sprites, the vertex shader also outputs the size element, and this must
be denoted by the PSIZE semantic. You actually have to invent some data for the tex-
ture coordinate, which might seem weird, but some graphics cards require UV coor-
dinates to exist when they leave the vertex shader.

// vertex shader output

struct VS_OUTPUT{

float4 f4Position : POSITION0;

float1 Size : PSIZE;

float4 f4Color : COLOR0;

float4 UV : TEXCOORD0;

};

Because of differences in point sprite handling on the Xbox 360 and on the PC, we
need to create a separate set of output specifically for the pixel shader. This allows
you to use your shader on either platform. The Xbox 360 requires that UV coordi-
nates be handled with a four-float vector denoted by a SPRITETEXCOORD seman-
tic, and Windows requires the UV coordinates to be handled with a two-float vector
denoted by a TEXCOORD0 semantic. You may think having the extra output from
the vertex shader is odd—and it is odd. However, being able to channel the VS_OUT-
PUT data to the graphics pipeline and the PS_INPUT data to the pixel shader is neces-
sary to run the same shader code on both your PC and Xbox 360.

struct PS_INPUT{

#ifdef XBOX

float4 UV : SPRITETEXCOORD;

#else

float2 UV : TEXCOORD0;

#endif

float4 Color : COLOR0;

};

The vertex shader is similar to ones you’ve used before. Some extra values are
added in here to set up the point sprite for creating 3D fire in the next demonstration.
The extras in this case include two coefficients used to scale the point sprite. The first
scale value, fx_DistanceScale, sizes the point sprite by the relative distance from the
camera. The second scale value, fx_Fade, reduces the size of each fire particle as it
rises in the air and diminishes before being regenerated. fx_Fade is also used to
darken the color of the particle as it rises away from the core of the fire.

283C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

Handling the texture data output for a point sprite from the vertex shader is nota-
bly different from a shader that just applies the usual texturing. The point sprite tex-
ture is automatically applied to the point sprite when it is sent to the pixel shader, so it
doesn’t matter what UV coordinates you set in the vertex shader. The data structure
for the texture coordinate output from the vertex shader just needs to be in place. A
vector with four floats is assigned to the texture output variable. This works both on
the PC and on the Xbox. In the case of the PC, the vector will be truncated to a
two-float vector.

The pixel shader actually performs the final processing on the color and texture
data. However, to appease graphics card differences, and to allow this code to run on
the PC and Xbox, two separate output streams have been created. Depending on
your graphics card, if you leave this code out, your point sprites may not appear on
your PC. The VS_OUTPUT data is sent into the graphics pipeline, and the PS_INPUT
data is sent to the pixel shader for further processing of color and UV data:

void vertex_shader(in VS_INPUT IN, out VS_OUTPUT OUT){

OUT.f4Position = mul(IN.f4Position, fx_WVP);

OUT.Size = IN.Size*fx_DistanceScale*fx_Fade;

OUT.f4Color = (1.0f, 1.0f, 1.0f, 1.0f);

OUT.UV = (1.0f, 1.0f);

// pass these values to the pixel shader

PS_INPUT ps;

ps.Color = IN.f4Color * fx_Fade;

ps.UV = (1.0f, 1.0f, 0.0f, 0.0f);

}

In the pixel shader, the texture coordinate values are extracted from the XY coor-
dinates of the texture input. On the Xbox 360, these values are extracted from the
ZW coordinates, and they may be negative. This tip is attributed to Shawn
Hargreaves, an XNA project developer at Microsoft and very knowledgeable
blogger on XNA. (Awesome work, Shawn.) Shawn sums up this strangeness with a
simple “Crazy, huh?” We agree it is crazy, but it works. Microsoft is working on doc-
umentation to provide more detail on the HLSL extensions on the Xbox 360, but for
now have confidence that if you try this on your Xbox 360, it will function properly:

float4 pixel_shader(PS_INPUT IN) : COLOR0{

float2 f2UV;

#ifdef XBOX

f2UV = abs(IN.UV.zw);

#else

f2UV = IN.UV.xy;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E284

#endif

return tex2D(textureSampler, f2UV) * IN.Color;

}

Finally, in the technique, some rendering states need to be set to create a shiny par-
ticle with a transparent background. Point sprites can be enabled in the shader by set-
ting the PointSpriteEnable state to true. AlphaBlendEnable must be set to true to
enable transparency. An SrcBlend setting of SrcAlpha and a DestBlend property of 1
will make the point sprite very shiny. If you just need a transparent point sprite tex-
ture but without the shiny filter, you could set the destination blend to InvSrcAlpha.
When the DestBlend state is 1, the shiny particle will only appear against dark back-
grounds because the brightness does not offer enough contrast to make it visible
against lighter backgrounds. An additional PointSize_Min render state property has
been added to enable scaling the point sprite to 0. You may not need this on your PC,
but you will need it on the Xbox 360. Add this technique to set up your shader to run
on both platforms:

technique mytechnique{

pass p0{

// texture sampler initialized

sampler[0] = (textureSampler);

PointSpriteEnable = true; // needed for point sprite

PointSize_Min = 0; // enable scaling to 0 on xbox

AlphaBlendEnable = true; // enable transparency

SrcBlend = SrcAlpha; // turn off transparent pixels

DestBlend = One; // shiny blending

ZWriteEnable = false; // disable 3D rendering

// declare and initialize vs

vertexshader = compile vs_1_1 vertex_shader();

// declare and initialize ps

pixelshader = compile ps_1_1 pixel_shader();

}

}

For this case, the default state of ZWriteEnable is set to false; this disables the Z
plane for 2D rendering and blends the sprites together. Without blending, the trans-
parency effect for the point sprites may be spoiled for larger particles because the
transparent edges will appear layered on top of each other when rendered with other
sprites. Figure 18-1 shows how this layering appearance can backfire. Note how the
top of the flame is distorted by poor layering.

285C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

If you set ZWriteEnable to false (to blend the
point sprites), you will also need to ensure that
you draw your point sprites after your other
models and primitive surfaces are rendered. Oth-
erwise, any 3D objects that you draw later will
appear to be on top of the point sprites. This
drawing order issue is demonstrated later in the
chapter.

This shader can now be used to create great
flashy effects.

CUSTOM VERTEX
DECLARATIONS

As mentioned earlier, XNA’s preset VertexDeclarations are convenient but limited.
For example, these preset vertex formats do not include an element for storing point
sprite size. To set the point size from your XNA code, you will need to create a cus-
tom vertex to include this element. You may actually want to customize your vertex
format to include other information—such as additional texture data, blend weights,
fog, and much more. In other words, you create a vertex format to store the elements
you need. Each data field in your vertex declaration is referred to as a VertexElement.
An example of how to add VertexElement objects to your custom vertex definition
appears later in this chapter. To set this up, you need to create a struct that stores data
for each VertexElement. When declaring each VertexElement in your custom format
definition, you use the following parameters:

VertexElement(

short stream, // stream read from – 0 if only 1 stream

short offset, // offset in bytes for current element

VertexElementFormat elementFormat,// data type

VertexElementMethod elementMethod,// which data to calculate during render

VertexElementUsage elementUsage, // Color, PointSize, TextureCoordinate,

// Normal, Depth, Fog, BlendWeight, etc

byte usageIndex); // semantic instance of elementUsage

To initialize your data, you use your struct type to declare a vertex variable. Data
is then stored in the fields of this vertex variable. Once your data is set, a VertexBuffer
object is then initialized to store your custom vertex format. The contents of your
vertex variable array are then assigned to this vertex buffer for use when rendering.

A VertexDeclaration object is also declared to store your custom definition:

VertexDeclaration vertexDeclaration = new VertexDeclaration(

GraphicsDevice device, VertexElement[] customVertex.VertexElements);

F I G U R E 1 8 - 1

Unwanted layering of point
sprites when ZWriteEnable
is true

This VertexDeclaration object is used later to set this property for the
GraphicsDevice object, so it can read the data and render graphics using the newly
defined vertex format. When you are drawing with the new vertex format, the vertex
data is read from the VertexBuffer object and is rendered using the DrawPrimitives()
method. The point sprite uses the PointList primitive type because only one vertex is
needed for each point sprite.

gfx.GraphicsDevice.DrawPrimitives

(PrimitiveType.PointList, int startVertex, int primitiveCount);

FIRE EXAMPLE USING POINT SPRITES

This example takes the PointSprite.fx shader described earlier, creates a compatible
custom vertex format in your XNA code, and shows you how to create a fire effect. It
begins with either the WinMGHBook or Xbox360MGHBook base code project.
This example is kept simple for easy learning, but the intent is to also inspire you with
new ideas about how to create great effects. This example takes one image of a fire
particle with a transparent background and turns it into fire. Figure 18-2 shows the
fire from a torch at different frames.

In the Solution Explorer, reference the PointSprite.fx shader just described in this
chapter. You can find this shader file in the Shaders folder in the download from
this book’s website.

In your XNA code, this shader is referenced with the Effect object, mfxPtSpt. This
Effect object needs to be declared at the class level of your game class so it can be used
throughout the class. Along with this declaration, some EffectParameters are also

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E286

F I G U R E 1 8 - 2

Fire from a torch during different frames

287C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

needed so you can set the WVP matrix, texture value, point sprite size, and scaling
values in this shader from your XNA code:

private Effect mfxPtSpt; // shader object

private EffectParameter mfxPtSptWVP; // cumulative matrix w*v*p

private EffectParameter mfxPtSptTex; // texture param

private EffectParameter mfxPtSptSize; // ptsprite size relative to cam

private EffectParameter mfxPtSptFade; // fade size & color as fire rises

With these objects in place, your shader can be loaded and compiled, and your
XNA code can be given access to its global variables. This setup needs to be done
when the program begins. Therefore, in Initialize(), add the instructions to load your
shader and to reference the shader’s global variables:

mfxPtSpt = content.Load<Effect>(@"shaders\PointSprite");

mfxPtSptWVP = mfxPtSpt.Parameters["fx_WVP"];

mfxPtSptTex = mfxPtSpt.Parameters["fx_Texture"];

mfxPtSptSize = mfxPtSpt.Parameters["fx_DistanceScale"];

mfxPtSptFade = mfxPtSpt.Parameters["fx_Fade"];

The shader is now in place and ready for use, but a custom vertex format that is
compatible with the shader inputs is required. Here is the class-level struct that stores
the VertexElements (color, position, and point sprite size, as described earlier):

private struct tCustomVertex{

// struct fields

private Vector3 pos;

private Vector4 color;

private float size;

// create a new format with pos, color, and size elements

public static readonly VertexElement[] VertexElements

= new VertexElement[]{

new VertexElement(0,0,VertexElementFormat.Vector3, // pos

VertexElementMethod.Default,VertexElementUsage.Position,0),

new VertexElement(0,sizeof(float)*3,VertexElementFormat.Vector4,// col

VertexElementMethod.Default,VertexElementUsage.Color,0),

new VertexElement(0,sizeof(float)*7,VertexElementFormat.Single ,// size

VertexElementMethod.Default,VertexElementUsage.PointSize,0),

};

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E288

// constructor for custom vertex element

public tCustomVertex(Vector3 v3pos, Vector4 v4color, float fSize){

this.pos = v3pos;

this.color = v4color;

this.size = fSize;

}

}

With the new vertex type in place, we can create an array that stores vertices using
this new format. We’ll also need to create a VertexBuffer object to serve as a data
source while rendering our vertices. A VertexDeclaration object is also required to
set the GraphicsDevice object, so it can read and draw using your new vertex format.
Adding their declaration to the game class will make them available later:

tCustomVertex[] mvtPtSprite = new tCustomVertex[1]; // store data

VertexBuffer mVB; // data stream

VertexDeclaration mCustomVtDeclaration; // format description

Now you can initialize the particle vertex. You actually only need one vertex to do
this. Once the data is set, it is then stored in a vertex buffer that serves as the data
source during rendering. The vertex declaration is also initialized here, so the custom
definition can be referenced by the GraphicsDevice when reading and drawing primi-
tive surfaces with this new vertex format:

void initParticleVertex(){

Vector3 pos= new Vector3(0.0f, 0.0f, 0.0f); // origin

Vector4 col= new Vector4(0.7f, 0.8f, 0.0f, 1.0f); // yellow color

float fSize= 10.0f; // point sprite size

mvtPtSprite[0]= new tCustomVertex(pos, col, fSize);// set the data

// initialize and set the vertex buffer with data

mVB = new VertexBuffer(gfx.GraphicsDevice, mvtPtSprite.Length * 32,

ResourceUsage.WriteOnly, ResourceManagementMode.Automatic);

mVB.SetData(mvtPtSprite);

// define format for data retrieval & drawing

mCustomVtDeclaration = new VertexDeclaration(gfx.GraphicsDevice,

tCustomVertex.VertexElements);

}

To initialize your custom vertex data, vertex buffer stream, and VertexDeclaration
object when the program begins, call initParticleVertex() from Initialize():

initParticleVertex();

289C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

Next, the texture used for the point sprite needs to be loaded. Only one image is
needed to create a flashy fire effect, but you could add more to make the effect even
flashier and varied. The image shown here is the one used for the particle texture.

To load your image using the ContentManager, you must reference the image file,
particle.png, in your project’s Images folder as well as in the Solution Explorer. The
particle.png file can be obtained from the Images folder in the download from this
book’s website. The image is stored in a Texture2D object called mTexParticle. Add
this declaration to the modules area of your game class:

private Texture2D mTexParticle;

To load your texture with other textures when the program starts, add the load
statement to the LoadGraphicsContent() method:

mTexParticle = content.Load<Texture2D>(".\\Images\\particle");

To store and update the fire particles, you use a particle class. To store this class,
add a Particle.cs source file to your project. Here is the class shell:

using System;

using System.Collections.Generic;

using System.Text;

namespace MGHBook{

class Particle

{ }

}

To access vital XNA functions from your new class, you need to include the XNA
graphics framework declarations at the top of the Particle.cs file:

using Microsoft.Xna.Framework;

Declarations for the classic particle properties described at the beginning of the
chapter belong in the module level of your particle class. Position, speed, life, and a
fade rate in your particles are essential to build a fire.

public Vector3 position; // X, Y, Z

public Vector3 speed; // rate of movement on X, Y, Z plane

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E290

public float fLife; // die when life=0.0f. reborn with life = 1.0f

private float fadeRate; // every particle dies at a different rate

You are also going to need to add a constructor; otherwise, your class will not
compile when you reference it from another class:

// constructor

public Particle(){}

It would not make sense to continuously create a new particle each time an old
particle has run its course. Instead, processing time is saved by forcing the particles to
be effectively “reborn” after they die. In the case of a fire algorithm, the fire particles
start at the base and rise upward. As each particle leaves the furnace core, it cools
down and grows faint until it finally burns out and dies. The function reset_particle()
then rejuvenates the particle and it begins a new life. Every time the particle is regen-
erated, it is given a randomized position, fade rate, and speed. This randomization
makes the fire more interesting.

Also note that these particle properties will often need a minimum or a maximum
value to ensure they fall within an acceptable range. For example, if the fade rate is
not set to a minimum of 60, you discover very quickly that the longer-living particles
will take over. These longer-living particles are like mutants that won’t die off as na-
ture intended. If your fire is overtaken by longer-living particles, eventually the core
of your fire will become so dispersed, the flames will burn out and you will be left
with a scattering of particles floating off into the atmosphere.

When you’re customizing your own particle algorithms, these properties won’t
just jump into your head. Give yourself time for trial and error when setting up your
particle properties and then see what looks best during your test phase. For this ex-
ample, the properties have been provided for you. Here is the reset_particle() proce-
dure to add to your particle class:

public void reset_particle(Random rand){

// set life to 1 for new full life

fLife = 1;

// set positions back to x=0, y=0, z=0

position.X = 0; position.Y = 0; position.Z = 0;

// set fade rate

int iFadeFactor = 60 + rand.Next(0, 70); // between 60 and 129

fadeRate = (1 + (float)iFadeFactor) / 50.0f;

// calculate X speed

int iXspeedRand = rand.Next(-40, 40); // min -40 and max 39

291C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

sspeed.X = (float)(iXspeedRand + 1) / 300.0f;

// calculate Y speed

int iYspeedRand = rand.Next(0, 15); // min 0 and max 14

speed.Y = (float)(iYspeedRand + 1) / 23.0f;

// set Z speed

speed.Z = 0.0f;

}

A method is required to update the particles. The particle position property is in-
cremented by the speed scaled by the time between frames. The scale regulates the
speed so that the animation appears at the same rate regardless of the processing
power of the machine that runs the algorithm.

Particle life is reduced by the fade rate at each frame. If the life value falls below
zero, then the particle is reincarnated. In this case, the fire particle is born at the bot-
tom by the fire source, and it then rises upward on a randomized path. Eventually,
the particle gets too far away from the fire, grows smaller, and dims until it is invisi-
ble. At this point, the particle is regenerated again. To achieve this effect, add the up-
date() procedure to your particle class. This code ensures that the particles live
according to their destiny.

public void update(int iTimeBetweenFrames, Random rand){

float fTimeBetweenFrames = (float)iTimeBetweenFrames/1000.0f;

position += speed * fTimeBetweenFrames; // update position

fLife -= fadeRate * fTimeBetweenFrames; // update speed

// regenerate particle if life falls below zero

if (fLife < 0)

reset_particle(rand);

}

Back in Game1.cs, a reference to this new particle class is required. The particle
class’s namespace must be added at the top of Game1.cs so the game class can find it:

using MGHBook;

Several particles are needed to collectively build the fire. Through trial and error
while experimenting with different numbers of particles when writing this algorithm,
we found that 100 particles appeared to simulate a decent fire, both up close and
from a distance. You may find as you customize your own particle algorithms that
you don’t need as many particles, especially if the effect is only viewed from a dis-
tance. Sometimes you may need more to create a fuller bodied particle effect. For this

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E292

routine, 100 particles look good from different distances. Declaring 100 particle ob-
jects in your game class will allow you to track and update each particle’s size, loca-
tion, and color while drawing one point sprite in each particle’s place.

private const int NUM_PARTICLES = 100;

private Particle[] cParticle;

A Random object is declared and initialized at the class level to seed the random
generation of properties for each particle:

Random mRand = new Random();

All particles are born when the game application begins. An array of particle ob-
jects makes it easy to generate fire particles when your program kicks into gear. By
the time your window opens, you will likely catch the tail end of the particles spring-
ing to life in a full-fledged fire. The fire is started from the game application’s Initial-
ize() method:

// initialize particles

cParticle = new Particle[NUM_PARTICLES];

for (int i = 0; i < NUM_PARTICLES; i++){

cParticle[i] = new Particle();

cParticle[i].reset_particle(mRand);

}

For every frame, the position for each fire particle must be adjusted so that the par-
ticle rises at the object’s own random rate. Of course, after each frame, the particle is
one step closer to its own death as its life is gradually reduced by its fade rate. The
particle object’s update method will check whether the life is reduced to zero—in
which case a new life and entirely different set of properties will be generated to start
the particle on a new path from the core of the fire. This ensures that your particles
don’t stand still. Add this routine to update your particle objects inside the Update()
method of your game class:

// update particles

int iTimeLapseBetweenFrames = this.TargetElapsedTime.Milliseconds;

for(int i=0; i<NUM_PARTICLES; i++)

// pass in time between frames to regulate speed & random seed

cParticle[i].update(iTimeLapseBetweenFrames, mRand);

Scaling point sprites is different from scaling other primitive surfaces. In this
setup, with a custom vertex format, you cannot use the usual matrix methods to scale

293C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

them as part of the cumulative World transformation. Here is one alternative for
scaling the point sprite size that considers the length between the camera and the
point sprite:

private void scale_particles(Vector3 v3TranslateGroup){

Vector3 v3Len = cam.m_vPos - v3TranslateGroup;

float fLen = (float)v3Len.Length();

float fSize;

const float MAX_DISTANCE = 40.0f;

if (fLen >= MAX_DISTANCE) // don't show it after max distance

fSize = 0.0f;

else // shrink sprite as camera moves away

fSize = (MAX_DISTANCE - fLen) /MAX_DISTANCE;

mfxPtSptSize.SetValue(fSize);

}

The code required to draw the particle using point sprites is very similar to code
that draws any textured primitive surface. Scaling for the entire group of particles is
triggered once—based on the distance between the camera and the group of particles.
Each fire particle is rendered individually. The group of particles is moved into posi-
tion and then each individual particle is translated from the fire base to its own posi-
tion in the roaring fire. The particle’s life level, which ranges between 0 for dead and
1 for full life, is passed to the shader so it can be used to fade the color of the flame and
shrink the size as each particle rises away from the core of the fire.

Before the fire is drawn, the GraphicsDevice object is set to retrieve vertex buffer
data from and render data using the new vertex format. The data is then read from
the vertex buffer, and the vertex is drawn using a point list. These steps are repeated
for each fire particle:

private void draw_particles(){

// 1: declare matrices

Matrix matIdentity, matTranslParticle, matTranslateGroup;

// scale the point sprite by cam distance to the group of particles

Vector3 v3TranslateGroup = new Vector3(0.0f, -0.53f, 5.0f);

scale_particles(v3TranslateGroup);

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity

matTranslateGroup = Matrix.CreateTranslation(v3TranslateGroup);

for (int i = 0; i < NUM_PARTICLES; i++){

// translate each individual particle

matTranslParticle =

Matrix.CreateTranslation(cParticle[i].position);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matTranslateGroup * matTranslParticle;

// 4: pass wvp matrix and texture to shader

mfxPtSptWVP.SetValue(mMatWorld * mMatView * mMatProj);

mfxPtSptTex.SetValue(mTexParticle);

mfxPtSptFade.SetValue(cParticle[i].fLife);

mfxPtSpt.CommitChanges();

// 5: draw object-select vertex type, primitive type, # primitives

gfx.GraphicsDevice.VertexDeclaration = mCustomVtDeclaration;

gfx.GraphicsDevice.Vertices[0].SetSource(mVB, 0, 32);

gfx.GraphicsDevice.DrawPrimitives(PrimitiveType.PointList, 0, 1);

}

}

Inside the Draw() method, a call can be made to draw the fire. A
SaveStateMode.SaveState parameter is needed in the Begin() method to restore the
GraphicsDevice settings after the point sprites have been rendered. Performing this
restore is necessary; otherwise, the GraphicsDevice object’s depth setting is disabled.
Your other non–point sprite objects will look strange if the original GraphicsDevice
states are not restored. Try running the code with SaveStateMode enabled to see the
code work correctly. Then run your code without including this parameter to see
how the background is off color and 3D models have no depth when the
GraphicsDevice settings have been thrown out after the point sprite is drawn:

// SaveState needed to restore GraphicsDevice properties

// so other non-point sprite objects can be rendered properly

mfxPtSpt.Begin(SaveStateMode.SaveState);

mfxPtSpt.Techniques[0].Passes[0].Begin();

draw_particles();

// end shader - PointSprite.fx

mfxPtSpt.Techniques[0].Passes[0].End();

mfxPtSpt.End();

Finally, as one last touch to make the example a little more interesting, we’ll add a
model torch. For this to work, the torch.fbx file must be referenced from the Models

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E294

295C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

folder in the Solution Explorer. The torch.bmp texture will also need to be placed in
the Models folder in your project but not referenced. If the torch.bmp texture is refer-
enced from the Solution Explorer, it will be confused with the torch.fbx model be-
cause they both use the same name. The torch.fbx and torch.bmp files can be found
in the Models folder in the download from the website.

The logic and methods used to load and draw the models are the same as explained
in Chapter 12, “3D Models,” so the details behind these next steps will be minimal.
First, declarations in the game class are required to store the torch model object and
the array for the torch’s bone transformations:

Model mModTorch;

Matrix[] matTorch;

This init_torch() method includes the code to load the torch and set the transfor-
mation matrix for the meshes in it. Placing this in the game class allows you to load
the model:

void init_torch(){

mModTorch = content.Load<Model>(".\\Models\\torch");

matTorch = new Matrix[mModTorch.Bones.Count];

mModTorch.CopyAbsoluteBoneTransformsTo(matTorch);

}

init_torch() can be called from the Initialize() method to read in the torch.fbx file
when the program begins:

init_torch();

You can add this next method to your game class to draw the torch:

private void draw_torch(Model model){

// 1: declare matrices

Matrix matIdent, matTransl, matScale;

// 2: initialize matrices

matIdent = Matrix.Identity; // always start with identity matrix

matScale = Matrix.CreateScale(0.50f, 0.50f, 0.50f);

matTransl = Matrix.CreateTranslation(0.0f, -0.60f, 5.0f);

foreach (ModelMesh mesh in model.Meshes){

// 3: build cumulative matrix using I.S.R.O.T. sequence

// identity,scale,rotate,orbit(translate & rotate),translate

mMatWorld = matIdent * matScale * matTransl;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E296

foreach (BasicEffect effect in mesh.Effects){

effect.World = matTorch[mesh.ParentBone.Index]*mMatWorld;

effect.View = mMatView;

effect.Projection = mMatProj;

// 4b. set lighting

effect.EnableDefaultLighting();

effect.SpecularPower= 0.01f;

effect.CommitChanges();

}

// 5: draw object

mesh.Draw();

}

}

The method to draw the torch model is triggered from Draw() along with the other
draw routines that are called. draw_torch() must be called before the point sprites are
rendered to ensure that the point sprites are layered properly over the 3D model:

draw_torch(mModTorch);

To observe deviant layering when
ZWriteEnable is false, try calling
draw_torch() after drawing the point sprites.
You will notice the flame no longer appears to
come fromthe torch, as shown inFigure18-3.

Setting ZWriteEnable in the shader to
false ensures the point sprites will be
blended together. However, sometimes set-
ting ZWriteEnable to true looks good
when the background is colored the same
as the pixels that are supposed to be trans-
parent, or when the particles are small or
disperse. You can always experiment to see
what looks good, but remember that a PC
game may be played in several different en-
vironments—on different-sized windows.
You should consider this in your decision as to whether or not to use ZWriteEnable.

With the DestBlend state set to 1 in the shader, shiny blending is applied. As a re-
sult, the point sprite can only be seen against darker backgrounds. To ensure you can
see the fire against the background, replace the instruction that clears the back-
ground and resets the color inside the Draw() method with this new instruction:

gfx.GraphicsDevice.Clear(Color.CornflowerBlue);

F I G U R E 1 8 - 3

Draw order issues for point sprites
when ZWriteEnable is false

297

When you run your program, it will show a steady, ever-changing body of fire. As
you back away from the fire, the size of the particles will scale properly to match the
size of the primitive ground surface and model torch. At any angle the fire particles
will face the camera, so you don’t need to have any billboarding code.

Up close, the particles will appear to be scattered and disperse. This is normal be-
havior for a particle algorithm based on point sprites. To work around this limita-
tion, you may consider limiting access to areas around the particles or only showing
them from a distance, or you might increase the number of particles drawn when the
viewer is nearby.

This is a cool effect, but it’s really only the beginning of what you can do with
point sprites and particle effects. This particle effect would be ideal for creating ex-
plosions, exhaust trails from missiles, star dust, and more. You could even increase
the number of textures used or the particle types to make the fire more interesting.

CHAPTER 18 REVIEW EXERCISES

1. Try the step-by-step examples provided in this chapter.

2. Starting with the existing algorithm, create an additional particle stream to
simulate smoke from your fire.

3. Modify your fire algorithm to create an explosion.

C H A P T E R 1 8

Pa
rti

cle
Ef

fe
ct

s

This page intentionally left blank

CHAPTERCHAPTER1919
KeyframeKeyframe
AnimationsAnimations

299

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

300

KEYFRAME animations combine a timer and inter-
polation to project the location of game

objects. The term keyframe comes from the world of hand-drawn animation. The se-
nior artists would draw the “key frames” and then other artists would create the
“in-betweens.” In computer games, the keyframes still define the most important
stages of the animation, but interpolation is used to fill in the frames in between. This
can mean interpolating the position or orientation of an object. For example, in a rac-
ing game, you might want to include a pace car when the cars are under a caution
flag. Using keyframes, you can control the course that the pace car follows as it leads
the pack and then eventually drives off into the pit. By the end of this chapter, you
will be able to use keyframes to map out a route and regulate the speed of this sort of
animation.

The proper technique is to use a timeline to control the speed of animations; this
allows the animation to be rendered at the same speed regardless of the system that
runs it. Until now, the examples in this book have generated translational animations
by incrementing X, Y, and Z coordinates by a product of the increment unit and the
difference in time between the current and previous frame. Interpolation is a similar
process, but it offers other possibilities for moving objects on linear and curved
paths. For translations or rotations, a path may be defined for the object and a spe-
cific duration of time may be assigned for completing the path.

INTERPOLATION

Interpolation can be used to project the location of a game object based on the ex-
pected time of arrival at the destination. For example, if the time between the starting
frame and ending frame of an object is 10 seconds, and the object is expected to travel
5 units on the X plane and 10 units on the Z plane, then interpolation can be used to
estimate the object’s location at any time between 0 and 10 seconds. At 4 seconds, in-
terpolation would project the object to be at X = 2 and Z = 4.

CURVES

When mapping out keyframes on your timeline, you probably won’t always want
your vehicles traveling in a straight line. You might want to use a curve to map out a
path for a keyframe animation. This chapter uses Bézier curves to fulfill this role, but
you could use other types of curves for the same task. Most splines are calculated by
similar methods as the Bézier curve, so the Bézier curve provides a good example of
how this family of curves can be implemented in your game algorithms.

The Bézier curves in this chapter use four points: a start point, an end point, and
two control points (see Figure 19-1). The control points provide the user with a way
to stretch or compress the curve. Stretching the control points will “push” or “pull”
the curve into different shapes.

301

The formula for finding a point on a Bézier curve is based on the relative position
between the start of the curve (0%) and the end of the curve (100%):

Point on Bezier Curve =

V start * (1 – fPercent)3

+ V control 1 * 3 * fPercent * (1 – fPercent)2

+ V control 2 * 3 * fPercent2 * (1 – fPercent)

+ V end * fPercent3

The following example puts this formula to use.

KEYFRAME ANIMATION EXAMPLE

This example demonstrates a timed animation that moves a model CF-18 Hornet
fighter jet on a fixed route. Two parts of the route are defined by straight lines and
two parts of the route are defined by Bézier curves. The CF-18 fighter jet and route
are shown in Figure 19-2.

C H A P T E R 1 9

Ke
yf

ra
m

e
An

im
at

io
nsF I G U R E 1 9 - 1

A Bézier curve

F I G U R E 1 9 - 2

CF-18 fighter jet animated on a timeline using keyframe animations

The code for this example starts with either the WinMGHBook or the
Xbox360MGHBook project available in the download from this book’s website.

A fixed period is specified for completing the combined sections. The total anima-
tion time needed to complete all combined routes is 11,200 milliseconds (11.2 sec-
onds). At each pass through Update(), the algorithm checks to determine how far
along the path the object should be at that specific time. The position of the CF-18 is
projected using the keyframes, which store the fixed end points of the lines and points
on the Bézier curves.

The first step is to store each route. Two Bézier curves are being used, and two
lines are being used. The Bézier curve stores four control points:

private Vector3[] mv3BezA = new Vector3[4]; // route 1

private Vector3[] mv3LineA = new Vector3[2]; // route 2

private Vector3[] mv3BezB = new Vector3[4]; // route 3

private Vector3[] mv3LineB = new Vector3[2]; // route 4

This first routine will initialize the jet’s route:

private void init_routes(){

// advanced collision / keyframes

const float BND = BOUNDARY;

// 1st Bezier curve control points (1st route)

mv3BezA[0] = new Vector3(BND + 5.0f, 0.4f, 5.0f); // start

mv3BezA[1] = new Vector3(BND + 5.0f, 2.4f, 3.0f * BND);// ctrl 1

mv3BezA[2] = new Vector3(-BND - 5.0f, 4.4f, 3.0f * BND);// ctrl 2

mv3BezA[3] = new Vector3(-BND - 5.0f, 5.4f, 5.0f); // end

// 1st line between Bezier curves (2nd route)

mv3LineA[0] = new Vector3(-BND - 5.0f, 5.4f, 5.0f); // start

mv3LineA[1] = new Vector3(-BND - 5.0f, 5.4f, -5.0f); // end

// 2nd Bezier curve control points (3rd route)

mv3BezB[0] = new Vector3(-BND - 5.0f, 5.4f, -5.0f); // start

mv3BezB[1] = new Vector3(-BND - 5.0f, 4.4f, -3.0f * BND);// ctrl 1

mv3BezB[2] = new Vector3(BND + 5.0f, 2.4f, -3.0f * BND);// ctrl 2

mv3BezB[3] = new Vector3(BND + 5.0f, 0.4f, -5.0f); // end

// 2nd line between Bezier curves (4th route)

mv3LineB[0] = new Vector3(BND + 5.0f, 0.4f, -5.0f); // start

mv3LineB[1] = new Vector3(BND + 5.0f, 0.4f, 5.0f); // end

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E302

303

You call the jet initialization routine from Initialize():

init_routes();

Next, you must add module declarations to initialize the time for the whole trip
and each individual section of the trip:

private float[] mfKeyFrameDuration = new float[4];

private float mfTripTime = 0.0f;

private float mfTotalTripTime = 0.0f;

private const int NUM_KEYFRAMES = 4;

To initialize the timeline, you will provide five values. Each of the total times be-
tween keyframes is stored. Also, the total trip time is stored.

private void init_timeLine(){

mfKeyFrameDuration[0] = 4.8f; // time to complete route 1

mfKeyFrameDuration[1] = 0.8f; // time to complete route 2

mfKeyFrameDuration[2] = 4.8f; // time to complete route 3

mfKeyFrameDuration[3] = 0.8f; // time to complete route 4

mfTotalTripTime =11.2f; // total time for all keyframes

}

Call the time-initialization routine from Initialize():

init_timeLine();

The next step is to add module declarations for storing the Y rotation of the jet
model. This will correct the jet so that it is always pointing in the correct direction:

Vector3 mv3CurrentPos, mv3PrevPos;

float mfRotateY;

After the jet is pointing in the proper direction, your next hurdle to jump is keeping
track of which route the jet is currently flying. Because we know how long each route
will take, it’s easy to check the time, and then figure out which route the jet is cur-
rently following. The get_route_number() function performs this check:

private int get_route_number(){

float fTimeLapsed = 0.0f;

// retrieve current leg of trip

for (int i = 0; i < NUM_KEYFRAMES; i++){

if (fTimeLapsed > mfTripTime)

C H A P T E R 1 9

Ke
yf

ra
m

e
An

im
at

io
ns

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E304

return i - 1;

else

fTimeLapsed += mfKeyFrameDuration[i];

}

return 3; // special case for last route

}

The next function uses the Bézier curve to figure out what part of the curve your
object is on. Unlike the last function, which checked the time, this one is checking the
physical location of the jet. For this example, we need two different ways of deter-
mining position; the first one checks the position on the Bézier curve:

private Vector3 get_position_on_curve(Vector3[] v3Bezier, float fPercent){

return // returns position on curve based on percent of curve

v3Bezier[0] * (1.0f - fPercent)*(1.0f-fPercent) * (1.0f-fPercent) +

v3Bezier[1] * 3.0f * fPercent * (1.0f-fPercent) * (1.0f-fPercent) +

v3Bezier[2] * 3.0f * fPercent * fPercent * (1.0f - fPercent) +

v3Bezier[3] * fPercent * fPercent * fPercent;

}

The second position-checking function uses linear interpolation to figure out
which part of a line the model jet is on:

private Vector3 get_position_on_line(Vector3[] v3Line, float fPercent){

// returns position on line based on percent of line

Vector3 v3Difference = v3Line[1] - v3Line[0];

return v3Line[0] + fPercent * v3Difference;

}

The next function to add, update_keyframe_animation(), is the workhorse of this
example. It uses all of the logic that you have added to update the animation. The
function determines which part of the route the fighter jet is on and then uses the ap-
propriate check to find out where it should be on that route:

private void update_keyframe_animation(GameTime gameTime){

// update total trip time, use modulus to prevent variable overflow

mfTripTime += (gameTime.ElapsedGameTime.Milliseconds / 1000.0f);

mfTripTime = mfTripTime % mfTotalTripTime;

// get the current route number from a total of four routes

int iRouteNum = get_route_number();

// find percentage of completion for current route

// sum times for preceding keyframes

305

float fKeyFrameStartTime = 0.0f;

for (int i = 0; i < iRouteNum; i++)

fKeyFrameStartTime += mfKeyFrameDuration[i];

// time spent during current route

float fTimeBetweenKeys = mfTripTime - fKeyFrameStartTime;

// percentage of current route completed

float fPercent = fTimeBetweenKeys / mfKeyFrameDuration[iRouteNum];

// get current X, Y, Z of object being animated

// find point on line or curve by passing in % completed

switch(iRouteNum){

case 0: // first curve

mv3CurrentPos = get_position_on_curve(mv3BezA, fPercent);

break;

case 1: // first line

mv3CurrentPos = get_position_on_line(mv3LineA, fPercent);

break;

case 2: // 2nd curve

mv3CurrentPos = get_position_on_curve(mv3BezB, fPercent);

break;

case 3: // 2nd line

mv3CurrentPos = get_position_on_line(mv3LineB, fPercent);

break;

}

// get rotation angle about Y based on change in X and Z speed

Vector3 v3Speed = mv3CurrentPos - mv3PrevPos;

mv3PrevPos = mv3CurrentPos;

mfRotateY =(float)Math.Atan2((float)v3Speed.X, (float)v3Speed.Z);

}

This update function obviously needs to be called from Update():

update_keyframe_animation(gameTime);

Next, you need to add the jet model to your program. To start the process of load-
ing the fighter jet model, add these module declarations:

Model mModJet;

Matrix[] matJetTransforms;

C H A P T E R 1 9

Ke
yf

ra
m

e
An

im
at

io
ns

When you initialize the CF-18 model, make sure the cf18.x file is referenced in the
Models folder within your project (with the matching cf18Color.jpg file). You can
find these files in the Models folder in the book’s download. Add this code to load
and initialize the jet (this code is explained in Chapter 12, “3D Models”):

void init_cf18(){

mModJet = content.Load<Model>(".\\Models\\cf18");

matJetTransforms = new Matrix[mModJet.Bones.Count];

mModJet.CopyAbsoluteBoneTransformsTo(matJetTransforms);

}

Next, add the jet initialization routine to Initialize():

init_cf18();

Now it’s time to actually draw the jet model. Most of this code should be familiar
to you—it has been used throughout this book. Lighting with the BasicEffect object is
explained in Chapter 20, “Lighting.”

private void draw_cf18(Model model){

// 1: declare matrices

Matrix matIdentity, matScale, matTransl, matRotX, matRotY;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(mv3CurrentPos);

matScale = Matrix.CreateScale(0.1f, 0.1f, 0.1f);

matRotX = Matrix.CreateRotationX(0.0f);

matRotY = Matrix.CreateRotationY(mfRotateY);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matScale * matRotX * matRotY * matTransl;

foreach (ModelMesh mesh in model.Meshes){

foreach (BasicEffect effect in mesh.Effects){

effect.World=matJetTransforms[mesh.ParentBone.Index]*mMatWorld;

effect.View = mMatView;

effect.Projection = mMatProj;

effect.EnableDefaultLighting();

effect.SpecularColor = new Vector3(0.0f, 0.0f, 0.0f);

effect.CommitChanges();

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E306

307

}

mesh.Draw();

}

}

The final step to set up this example is to call draw_cf18() from Draw():

draw_cf18(mModJet);

When the program is run, it shows the jet model being interpolated over an 11.2-sec-
ond interval. The first 0.8 seconds are spent on each straight line, and 4.8 seconds are
spent on each Bézier curve. Interpolation is used to estimate where the jet should be at
each frame. The CF-18 Hornet’s path used is outlined back in Figure 19-2.

The keyframe animation created in this chapter is actually similar to a timeline an-
imation you would create in Macromedia Flash or chUmbaLum sOft’s MilkShape.
As you can see, it’s easy to implement a keyframe animation in code.

CHAPTER 19 REVIEW EXERCISES

1. Implement the step-by-step example demonstrated in this chapter.

2. Begin with the completed airplane example from Chapter 6, “Character
Movement,” and convert this solution so it uses three Bézier curves to
move the airplane on a path in the X, Y, and Z planes.

C H A P T E R 1 9

Ke
yf

ra
m

e
An

im
at

io
ns

This page intentionally left blank

CHAPTERCHAPTER2020
LightingLighting

309

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

310

A good lighting system is often a key differentiator between a high-quality
game and an amateur game. Walk into any arcade and look at the games

around you. Most likely, you will be more impressed with the games that use ad-
vanced lighting techniques. By adding interesting lighting—even in small
amounts—you can excite your players’ eyes with the details of your game.

This chapter shows you how to program the lighting inside your virtual worlds. Once
you start using different lighting techniques, and adding multiple light sources to your
games, you might be surprised by how much detail becomes visible. Even with subtle
lighting, bumps, cracks, and depth that formerly went unnoticed will materialize.

When setting up your lights, it is strongly recommended that you add only one
light at a time. This ensures that you know exactly how each new light affects your
environment. Even when professional game artists light a scene, they will usually
start by working with one main light to establish the right mood and ambience before
adding other lights.

LIGHTING METHODS

There are many different ways to implement lighting. On the XNA platform, lighting
must be applied using a shader. You can use XNA’s BasicEffect shader, or you can
write your own shader to implement customized lighting.

Most light-simulation models break the light into different components so that you
can describe the source of the light and the reflective properties of the materials that are
being lit. Source lights can range from the sun, to a fire, or even a light bulb. Materials
being lit might be bright, shiny, or reflective—like a golden ore. In comparison, dull
materials, such as unfinished wood or dark cloth, will reflect very little light.

Source Lights

Source lights generate light. This chapter presents two types of source light:

� Directional light An example of directional light is the sun. This type of
light source has no position, does not fade, is infinite, and has a direction.

� Point light An example of point light is a light bulb. Point light has a
range, a position, and it shines in all directions.

Reflective Lighting Properties of Materials

Reflective lighting properties define how light radiates from and around the materials
being lit. Reflective lighting properties are just as important as source lights because

311C H A P T E R 2 0

Li
gh

tin
gthey define the shininess, color, and brightness of the materials being lit. The three

common types of reflective light properties are ambient, diffuse, and specular.

Ambient Light

Ambient light is a background light that has no source. The ambience is created by
light bouncing off surrounding objects in all directions. The ambient property de-
fines how background light colors and brightens materials in a scene. Here are some
points to keep in mind:

� Ambient light is scattered background light and is everywhere in a scene.

� Ambient light has no direction.

Diffuse Light

Diffuse light defines how a source light colors and brightens materials in its path. Dif-
fuse light increases as the angle between the light and surface normal decreases.

The specular property defines a material’s shininess, gloss, or highlights. Specular
light reflected from a surface depends on the viewer’s angle to the surface and the
light’s angle to the surface. Glass, water, metal, and some plastics have high specular
levels. Earth, concrete, and dull-colored materials have lower specular levels. Here
are some points to keep in mind:

� Specular light is like a highlight that makes an object shiny.

� Specular light is used for simulating shiny, plastic, glossy, or metallic objects.

Reflective Normals

As described in Chapter 13, “Vectors,” a normal is a directional vector that is per-
pendicular to a surface. When lighting is implemented, a normal vector is used to cal-
culate the intensity of the light reflected from the surface. Each normal is drawn at
right angles to the surface being rendered.

When rendering complex shapes using primitive objects, you will need to calculate
the normal and store it with each vertex. Refer to Chapter 13 for details on how to
calculate normals. Most models already store the normal data with each vertex used
to build the model. These normal vectors are used to reflect light when a light source

shines on them. When you are implementing lighting with a vertex shader, more nor-
mals will offer higher definition lighting. You will definitely want to use more verti-
ces for your vertex shader–based lighting; otherwise, the effect will fall flat. To
increase performance, when using large numbers of vertices, you should consider us-
ing an index buffer for rendering primitive objects with vertex shader–based lighting.

IMPLEMENTING DIRECTIONAL LIGHTING
USING XNA’S BASICEFFECT CLASS

As mentioned in Chapter 4, “Shaders,” XNA includes the BasicEffect class to access
and implement built-in shader effects. This class exposes methods for setting shader
properties to assist in implementing directional lighting. In Chapter 12, “3D
Models,” the BasicEffect class is used to implement default lighting for the models. It
is a fuss-free way of getting decent lighting quickly.

BasicEffect Default Lighting

The easiest way to implement lighting with the BasicEffect class is to use the
EnableDefaultLighting() method, which automatically sets directional lighting for you:

void EnableDefaultLighting();

When implementing either default lighting or custom lighting with the BasicEffect
class, you must set the LightingEnabled property to true:

public bool LightingEnabled { get; set; }

You can get and set global lighting properties with the following methods:

public Vector3 AmbientLightColor { get; set; }

public Vector3 DiffuseColor { get; set; }

public Vector3 SpecularColor { get; set; }

public float SpecularPower { get; set; }

Default lighting turns on three directional lights, which you can choose to disable
or alter as needed. You don’t actually need to use the default lighting. Instead, you
can enable each directional light and customize it as you choose. Each directional
light has an Enabled, Direction, DiffuseColor, and SpecularColor property that you
can get or set:

bool DirectionalLight0.Enabled

Vector3 DirectionalLight0.Direction

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E312

313

Vector3 DirectionalLight0.DiffuseColor

Vector3 DirectionalLight0.SpecularColor

bool DirectionalLight1.Enabled

Vector3 DirectionalLight1.Direction

Vector3 DirectionalLight1.DiffuseColor

Vector3 DirectionalLight1.SpecularColor

bool DirectionalLight2.Enabled

Vector3 DirectionalLight2.Direction

Vector3 DirectionalLight2.DiffuseColor

Vector3 DirectionalLight2.SpecularColor

XNA’s default lighting option is a great way to quickly generate decent-looking
directional light.

Directional lighting under the BasicEffect class is especially effective for lighting
3D models because it is easy to set up. For this case, the BasicEffect class implements
lighting through the vertex shader. When the vertex data is sent to the pixel shader, it
is interpolated between vertices. The definition of the light is enhanced with more
vertices, so you may want to consider reducing the storage requirements by using an
index buffer when drawing primitive objects.

Directional Lighting Example

This example implements directional lighting with XNA’s BasicEffect class. Because
the BasicEffect class implements vertex lighting, more vertices are needed for
smoother application of light across the object surface or higher definition of light.
Higher definition light is especially noticeable for specular lighting.

Because many vertices for storing surface normals are needed to enhance the light-
ing when the BasicEffect shader is used, this example uses our friend the index buffer.
This demonstration starts with the solution from Chapter 9, “Index Buffers,” which
already has an index buffer set up. Surface normals are needed in the example. Figure
20-1 shows a before (left) and after (right) look at how directional lighting from this
demonstration will change the look of the environment.

The subtle effect directional lighting has on detail makes it exciting to use. Most of
the time, directional lighting is implemented during a daytime setting, so there will al-
ready be a high level of ambience and diffuse lighting around to brighten the area.
With the BasicEffect class, the specular light increases the brightness of the primitive
surface face.

Once you have the original index buffer solution from Chapter 9 open, you may
notice that the PositionColorTexture type was used to store the vertex data. This
needs to change because normal data is also required to enable lighting. A few minor

C H A P T E R 2 0

Li
gh

tin
g

changes are needed. To implement lighting with a vertex that stores normal data, you
must add a new VertexDeclaration to the top of the game class:

private VertexDeclaration mVertNTex;

The vertex declaration must be initialized when the program begins. This can be
done by adding the statement to initialize it with a VertexPositionNormalTexture
vertex type in Initialize():

mVertNTex = new VertexDeclaration(gfx.GraphicsDevice,

VertexPositionNormalTexture.VertexElements);

We almost have what we need. To change the vertex type, inside init_dy-
namic_vb() replace the instruction that sets the color property with an instruction to
store the normal. The vertices stored in this method are used to draw a ground sur-
face, so a suitable normal vector is X = 0.0f, Y = 1.0f, and Z = 0.0f:

mVertGrid[iCol + iRow * NUM_COLS].Normal

= new Vector3(0.0f, 1.0f, 0.0f);

The vertex type declaration, mVertGrid, must also be replaced with a new defini-
tion that stores the normal:

private VertexPositionNormalTexture[] mVertGrid; // store vertices

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E314

F I G U R E 2 0 - 1

Before and after directional lighting

315

To complete the change to enable normal data storage, inside init_dynamic_vb()
replace each of the references to VertexPositionColorTexture with the following:

VertexPositionNormalTexture

A higher number of vertices will improve the definition of the lighting. You can
easily increase the total vertices by adjusting the definitions for the row and column
totals, which define the vertices used to build the indexed surface. To ensure you have
a suitable number of vertices to display the light for this demonstration, replace the
current row and column definitions with these modified declarations:

const int NUM_COLS = 20;

const int NUM_ROWS = 20;

Now that a set of vertices is in place to enable high-definition lighting, changes can
be made to implement the lighting using XNA’s built-in BasicEffect shader. A refer-
ence to it is needed in the game class:

BasicEffect mBE;

To set up the BasicEffect object to apply lighting to a textured primitive, you must
set the TextureEnabled and LightingEnabled properties to true. In this example, a
fairly high level of ambient lighting is set, and the specular power is set to a noticeable
level. Only one directional light is enabled, and the diffuse and specular color proper-
ties are set. The RGB color properties, for each type of light, range between 0 and 1.
The direction is normalized to ensure consistent direction on the X, Y, and Z planes.
Finally, the directional light is set to shine downward on the Y axis (–1) and inward
on the Z axis (+1).

private void init_basic_effect(){

mBE = new BasicEffect(gfx.GraphicsDevice, null);

mBE.TextureEnabled = true; // needed if objects are textured

mBE.LightingEnabled = true; // must be on for lighting effect

mBE.SpecularPower = 5.0f; // highlights

mBE.AmbientLightColor = new Vector3(0.6f,0.6f,0.5f);// background light

mBE.DirectionalLight0.Enabled = true; // turn on light 0

// set diffuse and specular colors – RGB parameters range from 0 to 1

mBE.DirectionalLight0.DiffuseColor = (new Vector3(0.2f, 0.2f, 0.2f));

mBE.DirectionalLight0.SpecularColor = (new Vector3(0.5f, 0.5f, 0.37f));

mBE.DirectionalLight0.Direction // set normalized

= Vector3.Normalize(new Vector3(0.0f,-1.0f, 1.0f));// direction

}

C H A P T E R 2 0

Li
gh

tin
g

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E316

To initialize the BasicEffect properties when the program begins, you call
init_basic_effect() from Initialize():

init_basic_effect();

The same indexed set of vertices is used to draw two surfaces. For convenience,
identifiers are added to the game class to distinguish between the two surfaces:

private const int FLOOR = 0;

private const int WALL0 = 1;

You need two Texture2D objects to store and apply the floor and wall images. To
do this, add these object declarations at the top of your game class:

private Texture2D mTexFloor;

private Texture2D mTexWall;

Of course, be sure to add the corresponding Stonefloor.tga and Brickwall.tga files
(available from the Images folder in the download from this book’s website) to your
source folder so they can be loaded when the program runs. When these images are
referenced in your project, you will be able to load them when the following load in-
structions are placed inside the LoadGraphicsContent() method:

mTexWall = content.Load<Texture2D>(".\\Images\\Brickwall");

mTexFloor = content.Load<Texture2D>(".\\Images\\Stonefloor");

Next is the code to draw the grid. Most of the code is used to set up the transforma-
tion to move each surface into place. The Texture property for the BasicEffect object
is set to the appropriate Texture2D object if either the floor or wall is being drawn.
The World, View, and Projection matrices are set to position the surfaces properly in
the camera’s view. The view also provides the BasicEffect class with information on
the viewer’s Look direction, which will help implement specular lighting. Once these
states have been set, the CommitChanges() method is used to finalize the change in
the shader. The GraphicsDevice’s VertexDeclaration property is set with the
mVertNTex variable to assign it the VertexPositionTextureNormal format for data
retrieval and rendering. All drawing performed by the BasicEffect shader is done be-
tween the Begin() and End() for each pass. Replace the existing version of
draw_grid() with this revision to render the stone wall and ground texture surfaces:

private void draw_grid(int iObject){

// 1: declare matrices

Matrix matIdentity, matTransl, matRotX, matScale, matRotY;

// 2: initialize matrices

317C H A P T E R 2 0

Li
gh

tin
gmatIdentity = Matrix.Identity; // always start with identity matrix

matScale = Matrix.CreateScale(0.8f, 0.8f, 0.8f);

matRotY = Matrix.CreateRotationY(0.0f);

matRotX = Matrix.CreateRotationX(0.0f);

matTransl = Matrix.CreateTranslation(0.0f, -3.6f, 0.0f);

// create two walls with normals that face the user

if (iObject == WALL0){

matRotX = Matrix.CreateRotationX(-(float)Math.PI / 2.0f);

matTransl = Matrix.CreateTranslation(0.0f, 9.20f, 12.8f);

mBE.Texture = mTexWall;

}

else

mBE.Texture = mTexFloor;// set ground image

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matScale * matRotX * matRotY * matTransl;

// 4: pass wvp matrices to shader and commit changes

mBE.World = mMatWorld;

mBE.Projection = mMatProj;

mBE.View = mMatView;

mBE.CommitChanges();

// 5: draw object - select vertex type, primitive type, index, and draw

gfx.GraphicsDevice.VertexDeclaration = mVertNTex;

gfx.GraphicsDevice.Vertices[0].SetSource(mVB, 0,

VertexPositionNormalTexture.SizeInBytes);

gfx.GraphicsDevice.Indices = mIB;

mBE.Begin();

foreach (EffectPass pass in mBE.CurrentTechnique.Passes){

pass.Begin();

gfx.GraphicsDevice.Vertices[0].SetSource(mVB, 0,

VertexPositionNormalTexture.SizeInBytes);

// draw grid one row at a time

for (int z = 0; z < NUM_ROWS - 1; z++){

gfx.GraphicsDevice.DrawIndexedPrimitives(

PrimitiveType.TriangleStrip,// primitive type

z * NUM_COLS, // start point in vertex buffer

0, // vertex buffer offset

NUM_COLS * NUM_ROWS, // total verts in vertex buffer

0, // index buffer offset

2 * (NUM_COLS - 1)); // index buffer end

}

pass.End();

}

mBE.End();

}

To draw the textured wall and floor surfaces using the same vertex and index
buffer, replace the existing draw_grid() instruction with these two:

draw_grid(WALL0);

draw_grid(FLOOR);

When you run this program, you will notice how the walls are brightened by the
light. Try experimenting with the normal values and direction values and notice their
effect on the brightness level. Also, try changing the ambient RGB color values to
1.0f. Notice that other lights no longer have an effect as long as ambience is at full
strength. Increase the specular value to 50.0f and notice how the highlights on the
ground and wall radiate.

IMPLEMENTING POINT LIGHT USING
THE PHONG REFLECTION MODEL

Once you have directional lighting working, you may want more lighting effects to
differentiate a constant source of sunlight from lighting that has a position and range.
Scenes that take place outside, during the day, may be fine with directional light.
Scenes that are located indoors, or that take place at night, are going to need a differ-
ent type of light. Point light offers a dramatic way to reveal the details of your 3D
world by creating a sphere of light that can brighten the surrounding area. Point light
is used to radiate light from a light bulb, fire, torch, or lantern.

When building point light, we use the Phong reflection model to describe the rela-
tionship between ambient, diffuse, and reflective light. The model is actually very
simple. It was authored by Bui Tuong Phong in 1973. The simplicity and effective-
ness of the Phong reflection model has made it a popular method for computer-gen-
erated lighting simulations even today. Phong’s reflection model states that the shade
value for each surface point equals

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E318

319

Ambient Color * Ambient Intensity

+ Diffuse Color * Diffuse Intensity * N.L

+ Specular Color * Specular Intensity * (R .V)α

where

L = Light direction
V = Viewpoint vector
N = Surface normal
R = Reflection vector = 2 * (N.L) * N – L
α = An exponential factor for specular light that varies according to the user

Figure 20-2 illustrates how the Phong reflection model implements light, normal,
view, and reflection vectors to predict values for ambient, diffuse, and reflective light.

The angle θ decreases as the view vector and reflection vector converge. As θ de-
creases, cos θ increases and the specular or shiny reflection increases. The specular
light is brightest when the view direction is exactly opposite to the reflection vector.

As α decreases, the diffuse light increases. In other words, the directional reflec-
tion is brightest when the light shines in a direction directly opposite to the normal
vector.

If you need to understand the math in more detail, or you need a refresher on dot
products and vector math, consider reviewing Chapter 13, “Vectors.”

C H A P T E R 2 0

Li
gh

tin
g

F I G U R E 2 0 - 2

Lighting vectors used in the Phong reflection model

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E320

Calculating Point Light

Because point light shines in all directions, when you are calculating the diffuse compo-
nent for each pixel, or vertex, the light direction vector can be calculated by subtracting
the surface position from the point light
position. The dot product of the light di-
rection and surface normal gives the cosine
of the angle between them. As the angle be-
comes smaller, in more direct light, the co-
sine approaches 1—which yields a light
with full intensity. Therefore, the brightest
light appears on the portion of the surface
that is closest to the light; from there the
light fades outward. The result is a
great-looking globe of light in the center,
with the light fading away from the center.
Figure 20-3 shows the relationship be-
tween the light position and normal vector.
The portion of the surface that is closest to
the point light is the brightest, and the light
fades outward as the angle between the
light vector and surface normal increases.

Point Light in the Pixel Shader Example

The next example demonstrates a point light implementation in the pixel shader. It
shows how to add a point light that moves with your camera as you travel through
the world. If you wanted, you could easily set the position of this light to a constant
value to simulate a stationary indoor light bulb. When you complete this example, a
constant directionless light will illuminate your way. You can imagine using this sort
of effect for a player’s torch. If you wanted, this code could be modified to add a
flicker to the light source to simulate a torch, a candle, a lantern, or a fire.

When the lighting calculations are performed in the pixel shader, the shading is
automatically interpolated between pixels to show a gorgeously smooth, shiny light
in the 3D world. Bear in mind that the processing demands of performing pixel-shad-
ing operations are expensive, so this effect needs to be used sparingly. However, it is
attractive, and you can use it to liven up the parts of your game that you want no-
ticed. After this demonstration of point light in the pixel shader, we’ll view another
example that shows how to perform the same calculations from the vertex shader
when you feel the need for speed. Vertex shader–based lighting is not as attractive as
lighting from the pixel shader, but it still delivers a punch.

The pixel shader–based point light does not actually need many vertices to pro-
duce high-definition light. This is because the pixel shader interpolates lighting be-

F I G U R E 2 0 - 3

The dot product L.N is strongest at the
center and fades as it moves away from
the center.

321C H A P T E R 2 0

Li
gh

tin
gtween pixels. Even so, this example begins with the solution from the previous

example, which uses an index buffer that offers potential for using large sets of verti-
ces. You could actually skip the index buffer for pixel shader–based light. However,
when this same example is converted to implement lighting from the vertex shader,
you will want a larger number of vertices to produce high-definition lighting, so the
index buffer is being used.

This example begins with the solution from the previous example. The shader code
is contained in the PointLighPS.fx file, which can be found in the Shaders folder at the
book’s website. To try this illuminating example, add the PointLightPS.fx file to the
Shaders folder in your project. All of the shader code in the PointLighPSt.fx file will be
presented here in sequential order so that you can see how the point light is generated.

Point Light Example: The Shader Code

The globals section of the shader declares values that are accessed by the effect pa-
rameters in the game application. The global values allow you to send in different
values for the camera and transformation matrices, textures, point light color, and
point light intensity:

float4x4 gfxWVP;

float4x4 gfxMatWorld;

float4 gf4LightPos;

float4 gf4Color;

float gfLightIntensity;

Texture gfxTexture;

Because the lighting is going to be applied to an image, the texture effect parameter
and sampler will also be included. A texture sampler, like the one used in Chapter 7,
“Texturing Your Game World,” defines how to filter your images:

sampler textureSampler = sampler_state

{

Texture = (gfxTexture);

Minfilter = LINEAR;

Magfilter = LINEAR;

Mipfilter = LINEAR;

};

The input struct for the vertex shader allows you to retrieve and manipulate the
position, normal, and texture data for each vertex:

struct VS_INPUT{

float4 f4Pos : POSITION0;

float3 f3Norm : NORMAL0;

float2 f2UV : TEXCOORD0;

};

The output struct from the vertex shader gives you control over the data that you
send to the pixel shader. The position, f4Pos, is computed by multiplying the vertex
by the WVP matrix so it can be viewed properly by the camera. However, the posi-
tion is also expressed as f3Pos, which is the normalized product of the vertex position
multiplied by the cumulative transformation matrix. f3Pos will be used in the pixel
shader to compute the light direction vector for the point light. The normal, f3Norm,
is also transformed and normalized, so it too can be used in the pixel shader to com-
pute the dot product between the light vector, L, and the normal vector, N. Addi-
tional texture semantics allow you to pass your calculated data to the pixel shader
from the vertex shader.

struct VS_OUTPUT{

float4 f4Pos : POSITION; // position for view & cam

float3 f3Pos : TEXCOORD0; // transformed position

float2 f2Tex : TEXCOORD1; // uv data

float3 f3Norm : TEXCOORD2; // normalized normal in world space

float4 f4amb : COLOR0;

};

In most cases, the pixel shader output is just a color for each pixel. By the time the
output has been generated for each pixel, the pixel shader will have blended a shade
of color against the texture. The color is altered by the light—hence the light is just a
shade of color. The struct used for the pixel shader output only returns an RGBA
color vector:

struct PS_OUTPUT{

float4 color : COLOR;

};

The effect of ambience can easily be simulated by multiplying an RGBA color vec-
tor by an intensity coefficient. In your shader code, you can decide how much ambi-
ence you want to add. For this example, the ambient light intensity has been turned
down to 0.1f to allow you to see the effect of the specular and diffuse point light:

// get background light

float4 get_ambient_light(){

// ambient is just a color vector * intensity

float4 f4Color = (1.0f, 1.0f, 1.0f, 1.0f);

float fIntensity = 0.1f;

return f4Color * fIntensity;

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E322

323C H A P T E R 2 0

Li
gh

tin
gA yellow specular light has been added to make the brick wall look as if it is covered

with a bright finish. You can notice the yellow shine as you move closer to the wall.
If your object should have a glossy sheen—like a brand new Corvette—you will

need a high level of specular light. Phong’s reflection model calculates specular high-
lights using the reflection vector and the view direction. The equation to generate the
specular light is

Specular Color * Specular Intensity * (R .V)α

where R = 2 * N.L * N – L.
get_specular_light() implements this calculation to return an RGBA vector with

color added to represent the specular light:

float4 get_specular_light(VS_OUTPUT IN){

float4 f4Spec;

// light and material properties for specular

float4 fIntensity = 0.2f;

float4 f4Color = { 1.0f, 1.0f, 0.0f, 1.0f };

// already converted to world unit norm in shader

float3 f3UnitNorm = IN.f3Norm; // N

float3 f3LightDir = normalize(gf4LightPos - IN.f3Pos);

float3 f3UnitLightDir = normalize(f3LightDir); // L

// (N.L) - dot product of surface normal and light direction

float fcosA = dot(f3UnitNorm, f3UnitLightDir);

// R = 2 * (N.L) * N – L

float3 v3Reflect = normalize(2 * fcosA * f3UnitNorm - f3UnitLightDir);

// (R.V)^n specular reflection.

float fSpec = pow(dot(v3Reflect, f3UnitLightDir), 2);

f4Spec = f4Color * fIntensity * fSpec;

return f4Spec;

}

The diffuse light is simply the dot product between the light direction vector and
the object being lit. The dot product approaches 1 for full intensity with the direct-
ness of the light to the surface. When this calculation is done in the pixel shader, the
result is interpolated between pixels to produce a nice, smooth-looking light. As you

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E324

move the camera closer to the wall, the light radiates brightly and fizzles outward
from the point that is directly in front of the camera. Diffuse light is modeled by the
following equation:

Diffuse Color * Diffuse Intensity * N.L

Because N.L = cos α, as the angle between the surface normal and light vector de-
creases, cos α approaches 1 and diffuse light increases. Shining a light directly at a
surface normal generates a brighter reflection than a light shone at an angle away
from the normal vector. get_ptLght_diffuse() calculates the color added by the dif-
fuse light:

float4 get_ptLght_diffuse(VS_OUTPUT IN){

// unit direction of light vector L

float3 LightDir = normalize(gf4LightPos - IN.f3Pos);

// brightest angle between L and N = 0

float fDiffuse = dot(LightDir, IN.f3Norm);

// point light diffuse * intensity and color

return fDiffuse * gfLightIntensity * gf4Color;

}

The point light vertex shader receives the vertex position, texture, and normal
data. The position, f4Pos, is generated by multiplying the position by the WVP ma-
trix so that each vertex can be seen properly by the camera. f3Pos is calculated by
normalizing the product of the position and World matrix, so this unit vector can be
used in the specular and diffuse lighting calculations. The normal vector is also trans-
formed with the World matrix and is then normalized for the specular and diffuse
calculations. Ambient light is uniform across the entire surface, so this calculation is
performed in the vertex shader to save a little processing time:

void vertex_shader(in VS_INPUT IN, out VS_OUTPUT OUT){

OUT.f4Pos = mul(IN.f4Pos, gfxWVP);

OUT.f3Pos = mul(IN.f4Pos, gfxMatWorld);

// unit normal in world coordinates

OUT.f3Norm = normalize(mul(IN.f3Norm, (float3x3)gfxMatWorld));

OUT.f2Tex = IN.f2UV;

OUT.f4amb = get_ambient_light();

}

The pixel shader combines the different lights together and blends them with the
texture for each pixel. The sum of the ambient, specular, and diffuse light component

325C H A P T E R 2 0

Li
gh

tin
gvectors is equivalent to the combination of different lighting components in Phong’s

reflection model.

void pixel_shader(in VS_OUTPUT IN, out PS_OUTPUT OUT){

float4 f4Diff= get_ptLght_diffuse(IN);

float4 f4Spec= get_specular_light(IN);

OUT.color = tex2D(textureSampler,IN.f2Tex)*(IN.f4amb+f4Spec+f4Diff);

}

The technique is identical to others used before this chapter for compiling the ver-
tex and pixel shaders and for calling them:

technique mytechnique{

pass p0{

// texture sampler initialized

sampler[0] = (textureSampler);

// declare and initialize vs

vertexshader = compile vs_2_0 vertex_shader();

// declare and initialize ps

pixelshader = compile ps_2_0 pixel_shader();

}

}

It is amazing that such a small amount of shader code can generate such a great
lighting effect.

Point Light Example: The XNA Code

All of the shader code just described can be found in the PointLightPS.fx file in the
Shaders folder in the download from this book’s website. Be sure to add this file to
your project in the Shaders folder.

To assist in setting the matrices for the shader, and to provide position data for the
lighting calculations, the effect parameters mfxPtLgt_World, mfxPtLgt_WVP, and
mfxPtLgt_LightPos are declared. A texture parameter, mfxPtLgt_Tex, allows you
to set the image applied in the shader from the C# code. The parameter mfxPtLgt_In-
tensity lets you set the intensity of the diffuse point light at run time from the applica-
tion, and mfxPtLgt_Color allows you to set the color of the light. Add these
declarations to the game class module level so you can set these shader variables from
your C# code:

private Effect mfxPtLgt; // point light shader

private EffectParameter mfxPtLgt_World; // world matrix

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E326

private EffectParameter mfxPtLgt_WVP; // wvp matrix

private EffectParameter mfxPtLgt_LightPos; // light position

private EffectParameter mfxPtLgt_Intensity; // pt light strength

private EffectParameter mfxPtLgt_Tex; // texture

private EffectParameter mfxPtLgt_Color; // color of pt light

To be able to use your shader, you must load and compile it when the program
starts. Add code to set up the shader in Initialize():

mfxPtLgt = content.Load<Effect>(@"shaders\PointLightPS");

To set the data in the shader variables at run time, you must initialize the effect pa-
rameters to reference the correct shader variables when the program begins. To make
this possible, assign the effect parameters to their corresponding shader variables
from Initialize():

// declare lighting effect parameters

mfxPtLgt_WVP = mfxPtLgt.Parameters["gfxWVP"];

mfxPtLgt_World = mfxPtLgt.Parameters["gfxMatWorld"];

mfxPtLgt_LightPos = mfxPtLgt.Parameters["gf4LightPos"];

mfxPtLgt_Intensity = mfxPtLgt.Parameters["gfLightIntensity"];

mfxPtLgt_Tex = mfxPtLgt.Parameters["gfxTexture"];

mfxPtLgt_Color = mfxPtLgt.Parameters["gf4Color"];

Most of the code used to draw the primitive surface has been explained in previous
chapters. This includes transforming the object and drawing the vertices using an in-
dex buffer reference. Also, the shader’s effect parameters are used here to move the
point light with the camera, to set the diffuse light intensity, and to set the texture
value. In step 4 of the code, the global variables in the shader are assigned values for
the WVP matrix and the World matrix. This combination allows you to generate
light in the view space and then to render the objects based on the World matrix. Re-
place the existing version of draw_grid() with the following code to draw the surfaces
with the point light shader:

private void draw_grid(int iObject){

// 1: declare matrices

Matrix matIdentity, matTransl, matRotX, matScale, matRotY;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(0.0f, -3.6f, 0.0f);

matScale = Matrix.CreateScale(0.8f, 0.8f, 0.8f);

matRotY = Matrix.CreateRotationY(0.0f);

matRotX = Matrix.CreateRotationX(0.0f);

327

// create two walls with normals that face the user

if (iObject == WALL0){

matRotX = Matrix.CreateRotationX(-(float)Math.PI / 2.0f);

matTransl = Matrix.CreateTranslation(0.0f, 9.20f, 12.8f);

mfxPtLgt_Tex.SetValue(mTexWall); // set wall image

}

else

mfxPtLgt_Tex.SetValue(mTexFloor);// set ground image

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

mMatWorld = matIdentity * matScale * matRotX * matRotY * matTransl;

// 4: pass world matrix to shader

mfxPtLgt_WVP.SetValue(mMatWorld * mMatView * mMatProj); //cam view

mfxPtLgt_World.SetValue(mMatWorld); //transform

mfxPtLgt_LightPos.SetValue(new Vector4(cam.m_vPos, 1.0f)); //move light

mfxPtLgt_Intensity.SetValue(2.0f); //power

mfxPtLgt_Color.SetValue(new Vector4(1.0f,1.0f,1.0f,1.0f)); //lt color

mfxPtLgt.CommitChanges();

// 5: draw object - select vertex type, primitive type, index, and draw

gfx.GraphicsDevice.VertexDeclaration = mVertNTex;

gfx.GraphicsDevice.Vertices[0].SetSource(mVB, 0,

VertexPositionNormalTexture.SizeInBytes);

gfx.GraphicsDevice.Indices = mIB;

gfx.GraphicsDevice.Vertices[0].SetSource(mVB, 0,

VertexPositionNormalTexture.SizeInBytes);

// draw grid one row at a time

for (int z = 0; z < NUM_ROWS - 1; z++){

gfx.GraphicsDevice.DrawIndexedPrimitives(

PrimitiveType.TriangleStrip,// primitive

z * NUM_COLS, // start point in vertex

0, // vertex buffer offset

NUM_COLS * NUM_ROWS, // total verts in vertex buffer

0, // start point in index buffer

2 * (NUM_COLS - 1)); // end point in index buffer

}

}

C H A P T E R 2 0

Li
gh

tin
g

The drawing routine needs to reference the PointLightPS.fx shader to apply the
point light to the textures. Adding this code to Draw() will reference the
PointLightPS.fx shader to apply point light to the objects you render with it. Be sure
to comment out the original lines of code from the previous example that call
draw_grid() so that only the new surfaces are drawn:

mfxPtLgt.Begin();

mfxPtLgt.Techniques[0].Passes[0].Begin();

// draw objects

draw_grid(FLOOR);

draw_grid(WALL0);

// end shader

mfxPtLgt.Techniques[0].Passes[0].End();

mfxPtLgt.End();

If you compile and run the project, you will see the point light traveling with the
camera. Move closer to the wall, and the light reflected back will become brighter be-
cause the point light is closer to the wall surface.

Figure 20-4 shows the point light positioned above the center of the ground. The
light is brightest directly beneath the light—hopefully this will help you see the point
of point light!

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E328

F I G U R E 2 0 - 4

Point light demo

329C H A P T E R 2 0

Li
gh

tin
gPoint Light in the Vertex Shader Example

You won’t always be able to afford pixel-based lighting because it is expensive for the
processor. Moving specular and diffuse lighting calculations into the vertex shader
will drastically reduce the number of times these calculations need to be made each
frame. The ambient, diffuse, and specular light can be combined in one color variable
in the vertex shader, which can then be sent to the pixel shader so that the pixel
shader doesn’t have to generate it. When this color data is sent to the pixel shader, it is
automatically interpolated between vertices. For this method to be effective, using
more vertices provides more definition and smoother shading, so an index buffer is
recommended for primitive surfaces.

This example begins with the solution from the previous example. You could fol-
low the steps here to modify the shader to implement vertex shader–based point
light, or you could just load and reference the PointLightVS.fx file in place of the
PointLightPS.fx file in your project to implement it.

Once you have changed your shader reference, you will need to load the new
shader from Initialize() when the program begins:

mfxPtLgt = content.Load<Effect>(@"shaders\PointLightVS");

With this change, less information needs to be passed to the pixel shader, so a new
struct for the vertex shader output is added:

// vertex shader output

struct VS_OUTPUT2

{

float4 f4Pos : POSITION0;

float4 f4Col : COLOR;

float2 textureCoordinate : TEXCOORD0;

};

The revised version of the vertex shader uses the new struct to define the output.
Note that the calculations for all lights are now performed in the vertex shader. The
color variable that is sent to the pixel shader stores the sum of the ambient, diffuse,
and specular lights. Replace the existing vertex shader with this revised version to
process the lighting calculations before sending the output to the pixel shader:

void vertex_shader(in VS_INPUT IN, out VS_OUTPUT2 OUT){

VS_OUTPUT tVS;

tVS.f3Pos = mul(IN.f4Pos, gfxMatWorld); // transform

tVS.f4Pos = mul(IN.f4Pos, gfxWVP); // relative to cam

// unit normal in world coordinates

tVS.f3Norm = normalize(mul(IN.f3Norm, (float3x3)gfxMatWorld));

tVS.f2Tex = IN.f2UV; // get text coords

OUT.f4Pos = tVS.f4Pos; // output position

OUT.textureCoordinate = tVS.f2Tex; // output texture

tVS.f4amb = get_ambient_light(); // get ambient light

float4 f4Diff = get_ptLght_diffuse(tVS); // get diffuse light

float4 f4Spec = get_specular_light(tVS); // get spec light

OUT.f4Col = (tVS.f4amb + f4Spec + f4Diff);// output color

}

A slight change is made in the pixel shader to receive the new vertex shader output,
which already includes the combined ambient, diffuse, and specular light:

void pixel_shader(in VS_OUTPUT2 IN, out PS_OUTPUT OUT){

OUT.color = tex2D(textureSampler, IN.textureCoordinate)*(IN.f4Col);

}

To view a stationary point light, in your XNA code, set the position of the light to
a constant value. (Or you could continue to move the light with your camera if you
prefer.) You can make the position of the point light stationary by replacing the in-
struction that moves the light with the camera in draw_grid():

mfxPtLgt_LightPos.SetValue(new Vector4(0.0f, 0.0f, 0.0f, 1.0f));

When you run this version of the code, you will still see the point light. It will not
be defined as much as the pixel shader point light, but you may notice a performance
boost when running it.

A simple lighting system, such as a lone directional light or the sun, can add depth
to your game and reveal the details in your environment. Point light can add intrigu-
ing details for nighttime or indoor settings. As you can see, the effect is quite brilliant.

CHAPTER 20 REVIEW EXERCISES

1. Complete the step-by-step examples presented in this chapter.

2. After completing the directional light demonstration using the BasicEffect
object, try reducing the number of vertices that are stored in the vertex
buffer by lowering the number of rows and columns to two each. Run the
demo again (after this change has been made) and notice how the specular

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E330

331

detail diminishes. Then, increase the total number of vertices for rows and
columns to 50 each. Notice how the specular lighting’s effect improves
with more vertices.

3. Using the directional light example, change the Y value of the normal in the
vertex buffer from +1 to –1. Notice how everything turns black. Explain why
this happens.

4. What is a useful intensity level for ambient light during daytime settings in
the directional light demo? What is a useful intensity level for ambient light
during evening settings in the directional light demo?

C H A P T E R 2 0

Li
gh

tin
g

This page intentionally left blank

CHAPTERCHAPTER2121
Input DevicesInput Devices

333

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

334

EFFECTIVELY handling input is fundamental to
every gamer’s experience. Nowa-

days, this means that you need to support the keyboard, mouse, and Xbox 360 game
controller, and possibly even a wireless racing wheel. The XNA Framework greatly sim-
plifies this task. Specifically, the Microsoft.Xna.Framework.Input namespace enables
the capture of button press and release events, mouse click events, and game controller
button, thumbstick, DPad, and trigger events. You can even use the Input library to send
rumbles to users’ controllers to let them know when they have exploded.

You reference the input device–handling library in a GSE project with this
namespace declaration:

using Microsoft.Xna.Framework.Input;

HANDLING KEYBOARD INPUT

The input library handles press and release events for all common keyboard keys. To
view a full listing of key identifiers, type Keys. in the GSE Code window. This will open
a drop-down menu that displays all identifiers available. These are the identifiers for
common keyboard keys:

A to Z Home PageUp
Add Insert PrintScreen
CapsLock Left Right
D0 to D9 LeftAlt RightAlt
Decimal LeftControl RightControl
Delete LeftShift RightShift
Divide LeftWindows RightWindows
Down Multiply Scroll
End NumLock Space
Enter NumPad0 to Subtract
Escape NumPad9 Tab
F1 to F12 PageDown Up
Help

D0 to D9 refer to the numbers at the top of the keyboard, whereas keys on
the number pad use NumPad0 to NumPad9.

You will capture Key events using a KeyboardState object. At each frame, this ob-
ject is updated by polling the keyboard with the GetState() method:

KeyboardState keyboardState = Keyboard.GetState();

335C H A P T E R 2 1

In
pu

tD
ev

ice
s

Individual key events are distinguished with the IsKeyDown() method using a
Keys identifier as a parameter:

bool KeyboardState.IsKeyDown(Keys Keys.Identifier);

HANDLING MOUSE INPUT
In many PC versions of major game titles, and even for the 3D graphics engine used
in this book, the mouse can be used to control the player’s direction. The Input
namespace enables handling of mouse-based events. Mouse movements and click
events are detected with a MouseState object. Every frame, the state of the mouse is
refreshed with the GetState() method, which retrieves information about the cur-
sor’s position and the press state of the mouse buttons:

MouseState mouseState = Mouse.GetState();

With these continuous updates, the MouseState object’s X and Y properties track
the cursor’s position in the game window:

int MouseState.X

int MouseState.Y

Press and release states of each mouse button are retrieved from the ButtonState
property of each button. Most mice have a MouseState.LeftButton and
MouseState.RightButton property, and some have a MouseState.MiddleButton
property. The ButtonState attribute stores either a Pressed value, if the button is
pressed, or a Released value, if it is not.

HANDLING CONTROLLER INPUT
In addition to the keyboard and mouse, the Input namespace also handles events for
the game controller. The game controller itself provides several options to obtain
user input through presses and shifts of the thumbstick, as well as presses to the
DPad, buttons, left and right bumpers, and triggers. Figure 21-1 shows the name of
each control.

Game Pad States

The GamePadState object for the controller allows you to check the state of each con-
trol on each game controller at every frame. Because it is possible to have up to four
game controllers connected to your Xbox 360, the GamePadState object is often de-
clared as an array with a size of four:

private GamePadState[] gamePadState = new GamePadState[4];

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E336

Although the array has room for up to four controllers, if only one
controller is connected, this controller will use the first object in the array;

it is referenced with zero as the index.

At every frame, the states for each game pad are retrieved with the GetState()
method and PlayerIndex attribute to identify the controller:

gamePadState[0] = GamePad.GetState(PlayerIndex.One);

gamePadState[1] = GamePad.GetState(PlayerIndex.Two);

gamePadState[2] = GamePad.GetState(PlayerIndex.Three);

gamePadState[3] = GamePad.GetState(PlayerIndex.Four);

Handling Pressed and Released States

Most of the controls on the game controller use a ButtonState.Pressed and a
ButtonState.Released attribute to indicate whether or not the control is pressed. Here
is a complete listing of controls that store either a Pressed or Released property.

F I G U R E 2 1 - 1

Names of individual controls on the controller

Left Shoulder

Back

Left Trigger

Y

Right Trigger

Right Shoulder

Left Stick

DPad

Start

Right Stick

X
A

B

337

In
pu

tD
ev

ice
s

Buttons.A Buttons.Right Shoulder DPad.Down
Buttons.B Buttons.RightStick DPad.Left
Buttons.Back Buttons.Start DPad.Right
Buttons.LeftShoulder Buttons.X DPad.Up
Buttons.LeftStick Buttons.Y

In Soul Calibur, certain button combinations allow Lizard Man to outwit the gi-
ant, Astaroth, with a powerful spring kick. In a more peaceful world, the right timing
and button combination can ensure a better launch when gliding over the ocean in
Monkey Ball.

Thumbsticks

Another way to enable user control is to use thumbsticks. They can be pushed up,
down, and sideways to help with tasks such as controlling the player’s view and guid-
ing the direction of game characters. Each thumbstick stores a float to measure the
deviation from its central resting position. The X and Y values range from –1 to +1,
where 0 is the center position. These are the four possible thumbstick properties:

� float ThumbSticks.Left.X

� float ThumbSticks.Left.Y

� float ThumbSticks.Right.X

� float ThumbSticks.Right.Y

Triggers

You can enable intuitive features such as acceleration and rapid firing with the Xbox
360 controller triggers. On every controller there is one left and one right trigger.
Each trigger returns a float that ranges from 0 (for released) to 1 (for fully pressed).

float GamePadState.Triggers.Right

float GamePadState.Triggers.Left

Adjusting the Input Device Responsiveness

The responsiveness needed for input controls can vary depending on the purpose of
the control. The IsKeyDown() method and ButtonState.Pressed property can be used
to check whether a key, mouse button, or controller’s DPad, button, or thumbstick is
pressed. Similarly, the Left and Right properties of a trigger and the X and Y proper-
ties of a thumbstick will return nonzero values when moved away from their default
positions. Most of the time, an immediate response at every frame is useful for events

C H A P T E R 2 1

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E338

such as rapid fire or speed control. In other situations, a delay may be needed to hold
a result after the frame when the control is first pressed. For example, when a player
is choosing a game character, selecting a map, changing weapons, or even entering a
name through an input device, tens or even hundreds of true IsKeyDown() events or
ButtonState.Pressed states are registered between the time that the user first presses
the control and releases it. For cases like these, a delay is required to treat each series
of IsKeyDown(), ButtonState.Pressed, thumbstick, or trigger results as one. The de-
lay should be long enough to allow users to comfortably press and release the control
when selecting or scrolling through a list of options.

The following code snippet shows one way to allow a player 0.2 seconds to press
and release a key before the keypress is considered a distinctly separate event:

if(GameTime.TotalGameTime.TotalMilliseconds - mdblLastTpress > 200)

// handle keypress as a new event

Adding a Rumble

The ability to make a controller rumble is a popular feature among gamers. Whether
the player has crashed into a wall, been body-checked into the boards, or knocked
unconscious by a rifle butt, sending a rumble through their controller will add to the
effect. A rumble can be sent to the left and right sides of the game controller with the
method SetVibration(). The vibration takes three parameters to identify the control
and to set the strength of the rumble. The rumble strength is measured with a float
that ranges from 0 to 1.

GamePad.SetVibration(int controllerNumber, float LRumble, float RRumble);

Input Example

This example demonstrates the handling of input from the keyboard, mouse, and
game pad by drawing current information on their press, release, shift, and move
states in the window. Figure 21-2 shows how the text in the PC window reports the
states of the keys, mouse, and game controller. Text output that shows states for
mouse, keyboard, and controller event handling will only be displayed on Windows.
On the Xbox 360, when you run this code, only the control states for the Xbox 360
controller will be shown.

To begin with a project that has fonts enabled, this example uses the “Font Exam-
ple: Displaying Text in the Game Window” solution from Chapter 11, “Score
Tracking and Game Statistics.” Some adjustments are required to prepare this solu-
tion to display the status of all input controls presented during this demonstration.
The call to draw_ground() from the Draw() method should be disabled to clear the
screen for drawing text only:

// draw_ground();

339C H A P T E R 2 1

In
pu

tD
ev

ice
s

Also, because more data is being presented on the window in this example, to view
all of the text output, you need to reduce the font size by replacing the class-level size
definition:

const float MAGNIFY = 1.0f;

Handling Keyboard Input

Sometimes you will not have your game controller with you, or your intended audi-
ence may only have a keyboard and mouse as input devices. For this reason, when
running your games on the PC, your code should always consider the keyboard as an
alternative for user input.

To handle the input events, a reference to the Microsoft.Xna.Framework.Input
namespace is required at the top of the Game1.cs file where the game class is located.
For this case, the reference is already present, so you don’t need to add it again.

using Microsoft.Xna.Framework.Input;

F I G U R E 2 1 - 2

Input device states display

This first portion of the demonstration shows whether or not the 0 on the key-
board, the 0 on the number pad, and the A key are pressed. To store a user-friendly
description of each key state, strings are declared for each key to later display the
key’s current press or release status in the game window:

private string mDpad0, m0key, mAkey;

To ensure accurate reporting of the input device status each frame, a function is re-
quired to poll the input device. In this routine, a KeyboardState object is refreshed
with the GetState() method. Once the entire keyboard state has been updated, it is
possible for you to check whether each key is pressed. If a key is pressed, the string
that was defined earlier to display the key state for each key is set to Pressed. If the key
is not pressed, the string retains a default value of Released. This value is set at the be-
ginning of the algorithm. To implement this routine, you will add the
UpdatePressEvents() method to your game class:

void UpdatePressEvents()

{

KeyboardState kbState = Keyboard.GetState();

mDpad0 = m0key = mAkey = "released"; // refresh status each frame

if (kbState.IsKeyDown(Keys.A)) // A pressed

mAkey = "pressed";

if (kbState.IsKeyDown(Keys.D0)) // 0 pressed

m0key = "pressed";

if (kbState.IsKeyDown(Keys.NumPad0)) // 0 on numberpad pressed

mDpad0 = "pressed";

}

To ensure continuous updates to the KeyboardState object, UpdatePressEvents()
is called from the Update() method at every frame:

UpdatePressEvents();

Now that you have implemented continuous tracking of the A, 0 (keyboard), and 0

(number pad) keys, their status can be reported in the game window. The display of
each key’s status is done in the Draw() method immediately before the base.Draw()
instruction. The Draw() method first initializes the X and Y values within the title-safe
region where new text is to be drawn. (The title-safe area has already been calculated
in the code solution used to start this example and is explained in Chapter 11, “Score
Tracking and Game Statistics.”) Then the draw_string() method is called to show the

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E340

341

text in the window. The draw_string() method accepts the string to be displayed and
the X,Y coordinates where that string is to be displayed, along with the color of the
text. To view the text output, you must place this code at the end of the Draw()
method before the base.Draw() instruction. The instructions to draw to the window
are encased in an #if…#endif series to prevent them from running on the Xbox,
where only the controller will be handled:

int iX = (int)v2px0.X; // starting X position (title safe) on window

int iY = (int)v2px0.Y; // starting Y position (title safe) on window

#if !XBOX // text display for mouse and keyboard will only be on PC

// keyboard

draw_string("Keyboard ", iX, iY += 20, Color.Black);

draw_string(" a: " + mAkey, iX, iY += 20, Color.Black);

draw_string(" 0: " + m0key, iX, iY += 20, Color.Black);

draw_string(" numberpad 0: " + mDpad0,iX, iY += 20, Color.Black);

Adding a Time Delay

The method you just implemented for displaying the press or release status of the A, 0

(keyboard), and 0 (number pad) keys treats each frame as a separate event. However,
sometimes a player may use a button, control, or key to select an option. When the
user presses a key, button, or control to select an option, several frames will pass be-
fore the user is able to release it. When handling a series of frames to process a com-
bined press and release event, you can use a delay to ensure that the total frames
needed to press and release the key are treated as one event.

To demonstrate the handling of a press and release event that occurs over several
frames, you will add a delay to allow the user to toggle between On and Off settings
whenever the T key is pressed. You will use a string to store the value of On or Off for
display purposes. In addition to a string declaration, you should add two other vari-
ables for storing the game time and the time of the last keypress to the module level of
the game class:

private string mTkey = "off";

GameTime mgameTime;

private double mdblLastTpress = 0;

Every frame, you need to refresh the total game time to enable accurate tracking of
time lapses between keypresses. An assignment to the mgameTime variable inside Up-
date() refreshes the total game time value for use throughout the class. The total game
time value can later be used to track the delay between key press and release events.

mgameTime = gameTime;

C H A P T E R 2 1

In
pu

tD
ev

ice
s

Once the total game time is tracked on a continuous basis and a variable for track-
ing time (since the last keypress) has been declared, it is possible for you to check and
store the time lapse since the last keypress event. The code first checks if the key was
pressed more than 0.2 seconds ago to ensure that the key was actually released before
this keypress event. You need to add the following code to the end of the
UpdatePressEvents() method where the KeyboardState is refreshed:

if (kbState.IsKeyDown(Keys.T) &&

mgameTime.TotalGameTime.TotalMilliseconds - mdblLastTpress > 200)

{

mdblLastTpress = mgameTime.TotalGameTime.TotalMilliseconds;

if (mTkey == "off")

mTkey = "on";

else

mTkey = "off";

}

You have already added the code required to enable a successful toggle, so the sta-
tus of the toggle state can now be displayed in the window. Code to display the status
of the On or Off setting belongs at the bottom of the Draw() method just before the
base.Draw() instruction. Placing the code at the end of the Draw() method will en-
sure the Y position for the text output updates properly each frame on the PC.

draw_string(" t for toggle: " + mTkey, iX, iY += 20, Color.Black);

draw_string(" ", iX, iY += 20, Color.Black);

If you were to run the program now (on the PC), you would be able to press and
release the T key to switch back and forth between On and Off display settings in
the window.

Handling Mouse Button and Move Events

At some point, you may want to handle mouse button events to enable features such
as rapid fire when running your game on a PC. Handling the mouse move and button
click events is even easier than handling keyboard events. To enable mouse event
handling, you need a declaration for the MouseState object in the module declaration
area of the game class. This has already been added to the base code, so you do not
need to add it again for this example. You will notice code that handles all mouse in-
put is enclosed using an #if…#endif condition to ensure that mouse-handling code is
only executed on the PC. This check is necessary because the Xbox 360 does not in-
clude instructions to handle the mouse, and your code will not compile for the Xbox
360 without this condition:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E342

343C H A P T E R 2 1

In
pu

tD
ev

ice
s#if !XBOX

MouseState mMouse;

#endif

To show the left and right mouse button press or release states, you will display
text output in the game window. A string declaration at the module level of the game
class enables storage of mouse button press states; later, you can use these states to
draw text to the window.

#if !XBOX

private string mMouseL, mMouseR;

#endif

Every frame, the mouse state must be updated to refresh the button click values
and the X and Y coordinates for the mouse. To ensure regular updates, check that the
assignment of the mouse state is maintained in the Update() method. This code is al-
ready included in the base code, so you do not need to add it in again.

#if !XBOX

mMouse = Mouse.GetState();

#endif

Now that the MouseState object is refreshed every frame, it is possible for you to
update the string values that store the state of the left and right mouse buttons. This
code checks if either button is pressed and updates the appropriate string accord-
ingly. To perform the check for the left and right mouse buttons and store their states
each frame, add this code to the UpdatePressEvents() method:

#if !XBOX

mMouseL = mMouseR = "released";

if (mMouse.LeftButton == ButtonState.Pressed)

mMouseL = "pressed";

if (mMouse.RightButton == ButtonState.Pressed)

mMouseR = "pressed";

#endif

To ensure the mouse information appears in the window on the PC at the proper
position, add this code block to the end of the Draw() method. This will output the
mouse button states on the PC window:

draw_string("Mouse " , iX, iY += 20, Color.Black);

draw_string(" right button: " + mMouseR, iX, iY += 20, Color.Black);

draw_string(" left button: " + mMouseL, iX, iY += 20, Color.Black);

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E344

Because the MouseState is already being updated each frame, you can add code to
extract the X and Y coordinates of the cursor and convert them to string values for
display in the game window:

draw_string(" x: " + mMouse.X.ToString(), iX, iY+= 20,

Color.Black);

draw_string(" y: " + mMouse.Y.ToString(), iX, iY+= 20,

Color.Black);

draw_string(" ", iX, iY += 20, Color.Black);

If you were to run the program now, the mouse coordinates would change as you
moved the mouse. Pressing the mouse buttons would trigger the display of a Pressed
listing on the game window.

Adding a Mouse Cursor

To further demonstrate mouse move events, you will add a cursor to show how
mouse movements can be used to position the cursor in the game window.

By default, the cursor will not appear in the game window mainly because XNA is
geared to run on the Xbox 360, where there is no cursor. To view the cursor on the
PC, you have to create your own.

In the base code project used in this book, code is already in place to use the cursor
and mouse to allow a player the ability to control direction. In the Initialize() method
and in the changeView() methods are instructions to set the cursor position back to
the middle of the window at each frame. Resetting the cursor position every frame al-
lows the camera to measure the mouse deviation from the center of the window,
which can then be used to adjust the view each frame. For this example, the
SetCursorPos() instruction must be disabled in the Initialize() and changeView()
methods; otherwise, you will not be able to move your mouse.

You will create the cursor using a sprite made from a mouse image. Declarations are
required in the module declaration area to load and draw the cursor image as a sprite:

private SpriteBatch mSpriteCsr;

private Texture2D mTex2DCsr;

You can now initialize the cursor and sprite objects when the program begins. To
ensure proper setup when the program starts, add instructions to set the sprite and
load the image in the Initialize() method:

mSpriteCsr = new SpriteBatch(this.gfx.GraphicsDevice);

To load the cursor image with the other images, place the cursor.dds file in the Images
folder for your project. You can find this cursor in the Images folder of the download
from this book’s website. Add the reference to the cursor file in the Solution Explorer so

345C H A P T E R 2 1

In
pu

tD
ev

ice
s

the ContentManager object can find it. Then, inside LoadGraphicsContent(), place your
code to load the image when the program begins:

mTex2DCsr = content.Load<Texture2D>(".\\Images\\cursor");

Once the cursor image and sprite object have been defined and loaded, drawing
the cursor as a sprite is easy. You will extract the X and Y coordinates of the mouse
from the MouseState object. Adding the draw_cursor() method to your game class
will display the cursor wherever the mouse is directed over the window:

void draw_cursor()

{

#if !XBOX

mSpriteCsr.Begin(SpriteBlendMode.AlphaBlend);

mSpriteCsr.Draw(

mTex2DCsr,

// X, Y position on window and pixel W&H area used on window

new Rectangle(mMouse.X, mMouse.Y, 9, 15),

// starting X&Y pixels in image and pixel W&H used in image

new Rectangle(0, 0, 9, 15),

Color.White);

mSpriteCsr.End();

#endif

}

The cursor display needs to be triggered from the Draw() method to show the cur-
sor on the window:

draw_cursor();

At this point, you have handled the keyboard and mouse. This portion of the ex-
ample concludes the instructions that are to be executed only on the PC, so you can
end them with an #endif statement so they will not execute on the Xbox 360:

#endif

To see the states for the keyboard and mouse and to see the cursor move as you
move the mouse, compile and run your project.

Handling the Controller

Now that keyboard and mouse handling have been demonstrated, we will shift focus
to the game controller. Many people find the game controller better suited to gaming

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E346

than a keyboard and mouse. Therefore, it’s important for Windows games to sup-
port both options in case the game player has a controller plugged into their PC.

It is possible to have up to four controllers attached to the machine, so the control-
ler object is usually declared as a four-element array. Adding this instruction to the
module declaration area allows access to the GamePadState object for each control-
ler throughout the program. This instruction is already included in the base code:

private GamePadState[] mGamePadState = new GamePadState[4];

Before handling game controller states, you first need to determine whether the
game controller is actually connected. String variables, declared in the module decla-
ration area, allow you to store and display the connected status of the controllers
within the game window:

private string mgp0connect, mgp1connect, mgp2connect, mgp3connect;

All controller states, including the IsConnected property, are retrieved by calling
the GetState() method for each controller. This code is already implemented in the
base code in the UpdateGamePad() method:

mGamePadState[0] = GamePad.GetState(PlayerIndex.One);

mGamePadState[1] = GamePad.GetState(PlayerIndex.Two);

mGamePadState[2] = GamePad.GetState(PlayerIndex.Three);

mGamePadState[3] = GamePad.GetState(PlayerIndex.Four);

After you check whether a controller is connected, the “connected” or “not con-
nected” status is stored in a string. The default value is “not connected,” but if the game
pad’s IsConnected property is true, a “connected” value is stored in this string variable.
Adding this code block, after the game controller’s states are retrieved in Update(), will
ensure that you accurately record the controller’s connection state for each frame:

mgp0connect = mgp1connect = mgp2connect = mgp3connect = "not connected";

if (mGamePadState[0].IsConnected == true)

mgp0connect = "connected";

if (mGamePadState[1].IsConnected == true)

mgp1connect = "connected";

if (mGamePadState[2].IsConnected == true)

mgp2connect = "connected";

if (mGamePadState[3].IsConnected == true)

mgp3connect = "connected";

Now that the controller’s connection status is updated every frame, this information
can be displayed in the game window. Adding the following lines of code to Draw() will
display the status that has been stored in the string variables in the game window:

347C H A P T E R 2 1

In
pu

tD
ev

ice
sdraw_string("Controller " , iX, iY +=20, Color.Black);

draw_string(" 0: " + mgp0connect, iX, iY +=20, Color.Black);

draw_string(" 1: " + mgp1connect, iX, iY +=20, Color.Black);

draw_string(" 2: " + mgp2connect, iX, iY +=20, Color.Black);

draw_string(" 3: " + mgp3connect, iX, iY +=20, Color.Black);

draw_string(" ", iX, iY +=20, Color.Black);

If you run the program at this point, the connection states for each of the four con-
trollers in the array will appear. The listing will show a “connected” or “not con-
nected” value in the game window.

Game Pad Buttons

The process of checking whether buttons on the game controller are pressed is similar
to checking whether the mouse buttons or keyboard keys are pressed. For this por-
tion of the example, during each update, checks will be made to determine whether
the A, Back, and Start buttons on the game controller are selected. Similar to the key-
board and mouse button examples, you will use string variables to store either a
Pressed or Released value. Adding string variable declarations at the module level
will enable more than one method in the class to access these values:

private string gpA, gpBack, gpStart;

After the game controller state has been updated, the status of the game controller
buttons is checked inside the Update() method. If a Pressed state is found for A, Back,
or Start, the value Pressed is stored in the corresponding string variable:

gpA = gpBack = gpStart = "released";

if (mGamePadState[0].Buttons.A == ButtonState.Pressed)

gpA = "pressed";

if (mGamePadState[0].Buttons.Back == ButtonState.Pressed)

gpBack = "pressed";

if (mGamePadState[0].Buttons.Start == ButtonState.Pressed)

gpStart = "pressed";

The results from the button state test can now be drawn to the window using the
values stored in the string variables. These instructions for displaying the text must
be called at the end of the Draw() method but before the base.Draw() instruction:

draw_string("Gamepad Button ", iX, iY += 20, Color.Black);

draw_string(" a: " + gpA, iX, iY += 20, Color.Black);

draw_string(" back: " + gpBack, iX, iY += 20, Color.Black);

draw_string(" start: " + gpStart,iX, iY += 20, Color.Black);

draw_string(" ", iX, iY += 20, Color.Black);

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E348

When you run this version of the code, it will show the Pressed or Released status
of the A, Back, and Start buttons on the game controller.

Left Shoulder and Right Shoulder (Bumpers)

Shoulders (or bumpers) are another form of button that return a Pressed or Released
state. Declaring these variables in the module declaration area allows you to store the
status of the shoulder buttons:

private string mLShoulder, mRShoulder;

Inside Update(), checks can be made to determine whether a shoulder button is
pressed. The status is assigned accordingly.

mLShoulder = mRShoulder = "released";

if (mGamePadState[0].Buttons.LeftShoulder == ButtonState.Pressed)

mLShoulder = "pressed";

if (mGamePadState[0].Buttons.RightShoulder== ButtonState.Pressed)

mRShoulder = "pressed";

Once the shoulder states have been evaluated and stored in a string, the results can
be shown in the game window. But first, you will use some extra code at the end of
the Draw() method to position the new text listings in a second column that follows:

iX = Window.ClientBounds.Width / 2 +100; iY = (int)v2px0.Y; // title safe

You should also add the shoulder state display instructions to the end of the
Draw() method so that the shoulder states appear in the window:

draw_string("Bumpers ", iX, iY += 20, Color.Black);

draw_string(" left shoulder: " + mLShoulder, iX, iY += 20, Color.Black);

draw_string(" right shoulder: " + mRShoulder, iX, iY += 20, Color.Black);

draw_string(" ", iX, iY += 20, Color.Black);

When the program is run, you will see the Pressed or Released status of your
bumpers.

DPad

The DPad control is somewhat unique in that it has Right, Left, Up, and Down attrib-
utes. Each attribute has its own Pressed or Released state; it is possible to have two of
the DPad’s attributes return a Pressed result if the game player presses a corner of the
DPad. A module-level string declaration enables the display of the status on the win-
dow each frame:

private string mDpadL, mDpadR, mDpadU, mDpadD;

349C H A P T E R 2 1

In
pu

tD
ev

ice
s

To ensure the DPad press states are checked every frame, the ButtonState.Pressed
property for the DPad is checked after the GamePadState is retrieved for the control-
ler in the Update() method:

mDpadL = mDpadR = mDpadU = mDpadD = "released";

if (mGamePadState[0].DPad.Right == ButtonState.Pressed)

mDpadR = "pressed";

if (mGamePadState[0].DPad.Left == ButtonState.Pressed)

mDpadL = "pressed";

if (mGamePadState[0].DPad.Up == ButtonState.Pressed)

mDpadU = "pressed";

if (mGamePadState[0].DPad.Down == ButtonState.Pressed)

mDpadD= "pressed";

Now the status of the Right, Left, Up, and Down buttons on the DPad can be dis-
played on the window by adding instructions to output the text:

draw_string("DPad " ,iX, iY +=20, Color.Black);

draw_string(" right: " + mDpadR,iX, iY +=20, Color.Black);

draw_string(" left: " + mDpadL,iX, iY +=20, Color.Black);

draw_string(" up: " + mDpadU,iX, iY +=20, Color.Black);

draw_string(" down: " + mDpadD,iX, iY +=20, Color.Black);

draw_string(" ", iX, iY +=20, Color.Black);

When you run this program, the output will show the Pressed or Released status
for the DPad’s Left, Right, Up, and Down attributes.

Left Stick and Right Stick

To track the left and right thumbsticks’ Pressed and Released states, you should fol-
lows steps similar to those used for tracking the DPad states. However, the
thumbsticks don’t just track their Pressed and Released states; each thumbstick also
tracks an X and Y value to gauge the distance from its center resting position. De-
claring string variables at the module level will enable the storage of press and shift
states in string format; this allows you to display the states in the game window:

private string mLstick, mRstick, mLstickX, mRstickX, mRstickY, mLstickY;

Inside the Update() method, after the status for each game controller has been up-
dated, the press status of each stick can be checked and stored:

mLstick = mRstick = "released";

if (mGamePadState[0].Buttons.LeftStick == ButtonState.Pressed)

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E350

mLstick = "pressed";

if (mGamePadState[0].Buttons.RightStick == ButtonState.Pressed)

mRstick = "pressed";

To track the positions of the left and right thumbsticks, you need to add some
more code in the Update() method. This code returns the floating-point attributes for
the X and Y values of each stick. The float values in this code are converted to strings
using the ToString() method so that they can be stored in a string value for display in
the window:

mRstickX = mGamePadState[0].ThumbSticks.Right.X.ToString();

mRstickY = mGamePadState[0].ThumbSticks.Right.Y.ToString();

mLstickX = mGamePadState[0].ThumbSticks.Left.X.ToString();

mLstickY = mGamePadState[0].ThumbSticks.Left.Y.ToString();

Once the results for the thumbstick press and shift states are stored as string val-
ues, they can be displayed as text output in the window. To enable the output, add
these statements to the end of the Draw() method:

// right stick

draw_string("Right stick " , iX, iY += 20, Color.Black);

draw_string(" button: " + mRstick , iX, iY += 20, Color.Black);

draw_string(" x: " + mRstickX, iX, iY += 20, Color.Black);

draw_string(" y: " + mRstickY, iX, iY += 20, Color.Black);

draw_string(" ", iX, iY += 20, Color.Black);

// left stick

draw_string("Left stick " , iX, iY += 20, Color.Black);

draw_string(" button: " + mLstick , iX, iY += 20, Color.Black);

draw_string(" x: " + mLstickX, iX, iY += 20, Color.Black);

draw_string(" y: " + mLstickY, iX, iY += 20, Color.Black);

draw_string(" ", iX, iY += 20, Color.Black);

When you run this version of the input example, you will see the press and shift
states for the left and right thumbsticks displayed in the game window. Each
thumbstick shows one Pressed or Released state. Also, each thumbstick lists float-
ing-point values for its X and Y positions. These positions are relative to the
thumbstick’s resting position at the center of the control.

Left Trigger and Right Trigger

Triggers provide yet another unique way of obtaining user input. Each left and right
trigger stores a float value that ranges between 0 and 1 to indicate how far the trigger

351

is pulled. When the trigger is released, the value returned is 0. When the trigger is fully
squeezed, the trigger returns a value of 1.

To show these floating-point values in the window, you will convert them to string
format. These string declarations belong at the module level to ensure they can be up-
dated and used throughout the game class:

private string mTriggerL, mTriggerR;

The status of triggers can be updated and stored in the strings just declared—after
the game pad status is retrieved in the Update() method:

mTriggerL = mGamePadState[0].Triggers.Left.ToString();

mTriggerR = mGamePadState[0].Triggers.Right.ToString();

Once the trigger states have been gathered and converted to string output, the out-
put can be shown as text in the game window. To do this, add the following code to
the end of the Draw() method:

draw_string("Trigger " , iX, iY += 20, Color.Black);

draw_string(" left - rumble: " + mTriggerL, iX, iY += 20, Color.Black);

draw_string(" right - rumble: " + mTriggerR, iX, iY += 20, Color.Black);

When you run the program now, it shows changing floating-point values for the
triggers as each is pulled and released. The floating-point values shown range be-
tween 0 (for fully released) and 1 (for fully pressed).

Setting the Rumble

A rumble can be added to this example with one instruction, SetVibration(). The vi-
bration takes three parameters: the controller identifier (which in this case is the zero
index), the strength of the rumble on the left side of the controller, and the strength of
the rumble on the right side of the controller. The strength of the rumble ranges be-
tween 0 and 1. Add this instruction to the end of the Update() method to send rum-
bles to the left and right sides of the controller whenever a trigger is squeezed:

GamePad.SetVibration(0, mGamePadState[0].Triggers.Left,

mGamePadState[0].Triggers.Right);

You will notice if you run this code on the PC that the cursor appears underneath
the text in the right column. This is because the cursor is drawn before the text is dis-
played, so it is layered underneath. If you move the call to draw_cursor() so that it is
the last instruction to draw an item in the Draw() method, the cursor will appear
properly over the text.

C H A P T E R 2 1

In
pu

tD
ev

ice
s

Finally, as explained in Chapter 11, “Score Tracking and Game Statistics,” when
you render SpriteBatch objects, the RenderState settings are reconfigured. These set-
tings must be manually restored. Here are instructions to restore the GraphicsDevice
after you finish drawing the cursor and fonts inside the Draw() method:

gfx.GraphicsDevice.SamplerStates[0].AddressU = TextureAddressMode.Wrap;

gfx.GraphicsDevice.SamplerStates[0].AddressV = TextureAddressMode.Wrap;

gfx.GraphicsDevice.RenderState.CullMode = CullMode.None;//see both sides

gfx.GraphicsDevice.RenderState.DepthBufferEnable = true;//re-enable 3D on Z

gfx.GraphicsDevice.RenderState.AlphaBlendEnable= false;//no transparency

gfx.GraphicsDevice.RenderState.AlphaTestEnable = false;//per pixel testing

// re-enable tiling

gfx.GraphicsDevice.SamplerStates[0].AddressU = TextureAddressMode.Wrap;

gfx.GraphicsDevice.SamplerStates[0].AddressV = TextureAddressMode.Wrap;

When you run the program now, your display shows the output shown back in
Figure 21-2. You can also run this code on the Xbox 360 for similar output; however,
the mouse event handling will be disabled.

After enabling keyboard, mouse, and game pad input you literally will have placed
control of your game engine in the hands of your players. Your world is now their oyster.

CHAPTER 21 REVIEW EXERCISES

1. Try the step-by-step examples provided in this chapter.

2. If you run the solution from Exercise 1, when you left-click the mouse, the
word “Pressed” appears in the window. Add a time delay so you can toggle
between displaying Pressed and Released states in the game window. (A
similar time delay exists that enables you to toggle between On and Off
states when pressing the letter T.)

3. In the “Collision Detection Using Lines and Spheres” solution from
Chapter 16, “Collision Detection,” make your game pad rumble every
time the camera collides with something.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E352

CHAPTERCHAPTER2222
ContentContent
PipelinePipeline
ProcessorsProcessors

353

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

354

UNTIL now, the media you have used for the examples in this book
has been in formats supported by the XNA content pipeline.

Using predefined content types in XNA allows for easy deployment on your PC or
Xbox 360. For example, the XNA framework offers built-in methods for loading
and accessing Texture2D, XACT (audio), XML, Effect (shaders), Autodesk FBX
(model), and X (model) objects. This chapter shows how to extend the content pipe-
line to load files not defined in the XNA framework.

Aside from allowing you to load any graphics or data file on the PC and Xbox 360,
custom content processors also enable faster game start-up times. A custom content
pipeline processor will read the bulk data from your media files, process it, and then store
it in intermediate form. This compiled binary intermediate data is stored in an .xnb file.

The content processor tracks changes to your media and to the content-processing
code itself. If any changes are detected, when you build your game, the content pro-
cessor reloads the bulk data from your media files and recompiles it. Otherwise, if no
changes are detected, the content processor reads in the compiled data from the .xnb
file that stores it. Being able to read preprocessed data can be a big timesaver when
large compressed media files are loaded at game launch.

For the Quake II model loader (used in Chapter 23, “Animated Models”), setting
up the model for XNA deployment requires loading the bulk data, organizing the
faces in the polygon from the indexed information stored in the file, and generating
the normal vectors to enable lighting. This processing time can add unwanted delays
to your game launch. However, if you use a custom content processor to decompress
and organize your .md2 data in an intermediate format during the first run, your
game will not read from the *.md2 file again. Instead, your game will read the inter-
mediate data from your compiled .xnb file during any consecutive run. The initial
data processing is only performed when either the original media file changes or the
processor code is modified. In short, you will notice an improvement to your load
times when using the content processor.

The content processor can only be built on the Windows system. However, when it is
built on Windows, GSE compiles it into a DLL. With this DLL referenced in your PC or
Xbox 360 projects, you can import your media through the custom content pipeline.

CONTENT PROCESSORS
The content processor loads your external media and locates existing processor com-
ponents. All custom processors must derive from the ContentProcessor base class in
a manner similar to the following:

public class MyCustomContentProcessor : ContentProcessor<Tinput,Toutput>

{}

Tinput and Toutput are the user-defined input and output classes you create to in-
put your bulk data and output your compiled data in the format you require.

355

Co
nt

en
tP

ip
el

in
e

Pr
oc

es
so

rs

355C H A P T E R 2 2

Co
nt

en
tP

ip
el

in
e

Pr
oc

es
so

rsContentImporter

The ContentImporter class is defined with an Import method to read unprocessed
data from your original media file. The class declaration is preceded with the
ContentImporter attribute to list the file extension(s) associated with this loader and
the processor used to convert it to a compiled format. Additional extensions, sepa-
rated by commas, can be added to the string.

[ContentImporter(string fileExt, DefaultProcessor = string processorName)]

public class MyContentImporter : ContentImporter<MyTerrain>{

public override MyCustomContent Import(String filename,

ContentImporterContext context){}

}

Inside the Import method, the file is opened and can be read with a System.IO.File
method or through the MemoryStream and BinaryReader objects. Using these ob-
jects, you can read text- and binary-based formats. After the reading, the data is
structured according to your own custom data-storage class. You define how you
want the data organized and how you want it exported to the .xnb file.

ContentTypeWriter

The ContentTypeWriter class assists in writing your intermediary data as binary out-
put to the .xnb file. Output is done from the Write() method override. The
GetRuntimeType() method retrieves the assembly for the data type you have defined.
The GetRuntimeReader() reader method retrieves the assembly and loader.

[ContentTypeWriter]

public class MyContentWriter : ContentTypeWriter<MyCustomContent>{

protected override void Write(ContentWriter wr,

MyCustomContent output){}

public override string GetRuntimeType(TargetPlatform targetPlatform)

{}

public override string GetRuntimeReader(TargetPlatform targetPlatform)

{}

}

ContentTypeReader

The ContentTypeReader loads the binary data you stored in the .xnb file. Most of the
methods available to load the data with the ContentTypeReader object are inherited
from the BinaryReader class. The ContentTypeReader loads your data and returns
an initialized instance of your custom data class.

public class TerrReader : ContentTypeReader<MyCustomContent>{

protected override MyCustomContent Read(ContentReader input,

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E356

MyCustomContent existingInstance){}

}

When the Read() method override is finished importing your managed data, it re-
turns this data in the format you defined in your storage class. This data is then made
available to your game project.

CUSTOM CONTENT PROCESSOR EXAMPLE

This example demonstrates how to create a custom content processor for loading a
height map from a .raw image. The solution from this example serves as the terrain
loader used in Chapter 25, “Terrain with Height Detection.” XNA does not provide
a code library for loading .raw images, so you need an alternate way to load them.
You can get away with BinaryReader methods to load them on Windows. On the
Xbox 360, the BinaryReader methods will find your .raw files if you place your me-
dia resources in the debug folder when deploying your solution. However, to handle
these files more gracefully, you should create a custom processor to load them
through the content pipeline.

The .raw image stores an array of bytes. When it is used as a height map, each pixel
stores height information between 0 and 255. For this example, not much processing
is required because the data is basically ready to use as is. However, to demonstrate
how the data can be modified when stored in intermediate form, a user-defined
“hello” message is added into the compiled .xnb file. The extra item shows how you
can use the processor to extend your data for more complex media formats. When
reading from more complex media files, you may encounter situations when you
need to modify your bulk data before storing it.

This example begins with the WinMGHBook project available in the BaseCode
folder of the download from this book’s website. For this example, you must use the
Windows project to build a Windows game library because you obviously cannot do
this on the Xbox 360.

Building a Custom Content Processor in Windows

In order to compile the content processor into a DLL that can be used either on Win-
dows or the Xbox 360, you must add a separate Windows Game Library project to
your solution from the Solution Explorer. To add it, right-click the solution name
and choose Add | New Project. When prompted in the Add New Project dialog, select
the Windows Game Library icon and enter the name. For this example, the name
TerrImporter will be used. This name will be automatically given to your library’s
namespace shell (that is, generated in code), and the name will also be given to the
DLL generated when compiling the library. Also, your importer class, which you will
create in this library, should use this name to ensure your game project can find it
through the content pipeline.

357C H A P T E R 2 2

Co
nt

en
tP

ip
el

in
e

Pr
oc

es
so

rsOnce your new library project has been added, you will be able to see it as a sepa-
rate project in the Solution Explorer. In the Class1.cs file that is generated for your
Windows Game Library project, the references to the following content pipeline and
system input/output namespaces are required to read, customize, compile, and write
your data:

using Microsoft.Xna.Framework.Content.Pipeline;

using Microsoft.Xna.Framework.Content.Pipeline.Serialization.Compiler;

using System.IO;

Both your MGHBook project and your TerrImporter projects must reference the
Microsoft.Xna.Framework.Content.Pipeline components. To do this, from the Solu-
tion Explorer right-click each project and choose Add Reference. In the Add Reference
dialog that appears, select Microsoft.Xna.Framework.Content.Pipeline to add it.

Your MGHBook project also needs to reference the TerrImporter project to build
the library. This can be added by right-clicking the MGHBook project in the Solution
Explorer and choosing Add Reference. In the Add Reference dialog, click the Pro-
jects tab, where you can select the TerrImporter project to add it.

Your custom data class is designed by you to modify and store your data as you re-
quire. For this example, the user-defined class MyTerrain is added to receive your
bulk data, process it, and store it in an intermediate format that is more accessible for
your program. You can add methods to perform operations on your data, you can
add constructor methods, and you can even add extra data that isn’t included in the
original media file. This class will be referenced throughout your content processor
to store and retrieve your data, so it must be made public:

public class MyTerrain // class to generate, store, and

{ // access compiled data

public int miLabelSize; // # of chars in label - this

public char[] mchLabel; // label isn't needed but shows

// you can add any data you want

public int miSize; // tells reader terrain byte size

public byte[] mByteHeightMap; // and stores height information

public MyTerrain(byte[] bytes){

// constructor for compiled data

mByteHeightMap = bytes; // used during bulk data import

miSize = mByteHeightMap.Length;

createLabel();

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E358

public MyTerrain(byte[] bytes, char[] label){

// alternate

mByteHeightMap = bytes; // constructor for

miSize = mByteHeightMap.Length;// reader of

mchLabel = label; // compiled data

miLabelSize = mchLabel.Length;

}

public void createLabel(){ // example of a method you might

// use to alter or add data that

mchLabel = new char[5];// differs from original media

mchLabel[0] = 'H'; mchLabel[1] = 'e'; mchLabel[2] = 'l';

mchLabel[3] = 'l'; mchLabel[4] = 'o';

miLabelSize = 5;

}

}

Next, add the content processor class to provide the foundation for the read and
write components:

// gets existing processor components

[ContentProcessor] // <tinput, toutput>

// ContentProcessor provides a base for developing custom processor

// components

// all processors must derive from this class

public class TerrProcessor : ContentProcessor<MyTerrain, MyTerrain>

{ // contentProcessorContext

// provides access to methods for converting

// member data and triggering nested builds

public override MyTerrain Process(MyTerrain input,

ContentProcessorContext context){

return new MyTerrain(input.mByteHeightMap);

}

}

Extending the ContentImporter class enables the overridden Import method to read
your data from the original media file. The ContentImporter attribute precedes the
ContentImporter class definition to list the file extensions that can use this importer.

For this example, the System.IO.File method ReadAllBytes() is used to read in the
bytes from the .raw image. However, if you were reading text input instead, this
could be read with the File method’s ReadAllText() method. You can also load your
data with MemoryStream and BinaryReader objects to read data in specific chunks

359C H A P T E R 2 2

Co
nt

en
tP

ip
el

in
e

Pr
oc

es
so

rsto handle integers, floats, and other data types. If you want to see how other data
types are read, the custom content processor used in Chapter 23, “Animated
Models,” has code that shows how to do this.

Once the data is read, it is passed to your custom data class. This data initializes a cus-
tom data object that organizes the data as you need it. The data object is then returned to
your processor so it can be written in a compiled binary format to an .xnb file:

// stores information about importer, file extension, and caching

[ContentImporter(".raw", DefaultProcessor = "TerrProcessor")]

// ContentImporter reads original data from original media file

public class TerrImporter : ContentImporter<MyTerrain>{

// reads original data from binary or text based files

public override MyTerrain Import(String filename,

ContentImporterContext context){

byte[] bytes = File.ReadAllBytes(filename);

MyTerrain terrain = new MyTerrain(bytes);

return terrain; // returns compiled data object

}

}

Adding the extended ContentTypeWriter class to your Windows game library al-
lows you to output your compiled binary custom data to an .xnb file. The Write()
method receives your integer, float, byte, char, string, and other data types and writes
them in binary format to the file. When you write your data, you have to write it in
the sequence you want to retrieve it. The writer/reader combination uses a “first in
first out” sequence for your data storage and access:

// identify the type writer

[ContentTypeWriter]

// ContentTypeWriter provides methods for converting to binary format

// provides methods for compilation, state tracking, header creation

public class TerrWriter : ContentTypeWriter<MyTerrain>{

protected override void Write(ContentWriter cw, MyTerrain value){

cw.Write(value.miLabelSize); // writes compiled data

cw.Write(value.mchLabel); // in binary format to *.xnb file

cw.Write(value.miSize);

cw.Write(value.mByteHeightMap);

}

public override string GetRuntimeType(TargetPlatform targetPlatform){

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E360

return typeof(MyTerrain).AssemblyQualifiedName;

}

// Version info. Reader qualifier uses namespace id.

public override string GetRuntimeReader(TargetPlatform targetPlatform){

return "TerrImporter.TerrReader, TerrImporter, Version=1.0,

Culture=neutral";

}

}

The content reader reads the compiled data from the .xnb file. The ContentReader
is derived from the BinaryReader class and exposes similar methods for retrieving
data in the chunks you need, such as integers, floats, chars, and so on. Once the data
is read, an object of your custom data class is initialized. This custom data object is
then made available to your XNA game project:

public class TerrReader : ContentTypeReader<MyTerrain>{

protected override MyTerrain Read(ContentReader cr,

MyTerrain existingInstance){

int labelSize = cr.ReadInt32(); // read label info

char[] mylabel = new char[labelSize];

mylabel = cr.ReadChars(labelSize);

int terrainSz = cr.ReadInt32(); // read terrain info

MyTerrain myTerrain = new MyTerrain(cr.ReadBytes(terrainSz),

mylabel);

return myTerrain;

}

}

Once you have added your Windows game library to your project, you must com-
pile your projects to build the content processor DLL. Building your project gener-
ates a TerrImporter.dll file. You can find it in the Debug directory (for example,
MGHBook\bin\x86\Debug).

Referencing the DLL assembly exposes the custom content importer and processor
to the game class. To reference this assembly, right-click the game project’s References
folder in the Solution Explorer and choose Add Reference. On the Browse tab on the
Add Reference dialog, navigate to this DLL to select it and click OK. You will now see
the TerrImporter reference listed with your other project references (see Figure 22-1).

You must also reference this new DLL in your Content Pipeline properties to make
it available to your ContentManager. To do this, right-click the project name,
MGHBook, and choose Properties. In the gray panel that appears, click Content
Pipeline on the left. Under the XNA Framework Content Pipeline Assemblies label,
click Add to browse to the TerrImporter.dll file and select it. Figure 22-2 shows the
Content Pipeline property reference in your game project.

361

Wherever you wish to use your custom data type, the new namespace for your
Windows game library must be referenced in your original game project:

using TerrImporter;

C H A P T E R 2 2

Co
nt

en
tP

ip
el

in
e

Pr
oc

es
so

rsF I G U R E 2 2 - 1

Game project reference to TerrImporter.dll

F I G U R E 2 2 - 2

Game project content pipeline reference to TerrImporter.dll

Next, your heightMap.raw file must be referenced in the Images folder for your game
project. You can get this file from the Images directory in the download for this book’s
website.

Once the heightMap.raw file is referenced, you can set its properties to use your
custom content processor to load it. To assign the custom content processor to read
the file, right-click heightMap in the Solution Explorer and select Properties. Under
the Build Action property drop-down, select Content. Under XNA Framework Con-
tent Attribute, select True. The ContentImporter attribute should be set to
TerrImporter, and the ContentProcessor attribute should be set to TerrProcessor.
Figure 22-3 shows the content pipeline property settings for the heightMap.raw file.

Finally, in your game code, you should add the instruction to load your .raw data
using the content pipeline. You can load this content when the program begins, so it
is called from the Initialize() method:

MyTerrain terrain = content.Load<MyTerrain>(".\\Images\\heightMap");

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E362

F I G U R E 2 2 - 3

This media file’s properties reference the content importer and processor.

363C H A P T E R 2 2

Co
nt

en
tP

ip
el

in
e

Pr
oc

es
so

rsTo prove the content processor is working, you can print some of the data re-
trieved by the MyTerrain object to the Output panel. The Output panel can be ac-
cessed on the tab beside the Error List in GSE when the program is running. Add the
following code to Initialize() after the call to content.Load():

for (int i = 0; i < terrain.miLabelSize; i++)

System.Diagnostics.Trace.Write(terrain.mchLabel[i]);

System.Diagnostics.Trace.WriteLine("");

System.Diagnostics.Trace.Write("Total terrain bytes: ");

System.Diagnostics.Trace.WriteLine(terrain.miSize);

System.Diagnostics.Trace.Write("heightMap element 26315 = ");

System.Diagnostics.Trace.WriteLine(terrain.mByteHeightMap[26315]);

If everything is successful, your data will appear in GSE’s output panel at the bot-
tom of your project as follows:

Hello

Total terrain bytes: 263169

heightMap element 26315 = 15

When you run your game project, the Windows game library is compiled before
your XNA game project. The implication from this is you will have limited ability to
use debugging tools such as stepping and tracing in your game library. Outside the
ContentTypeReader class, breakpoints and tracing are not available. However, you
can obtain useful debug information by checking the data object that is returned to
your game project by the custom content processor.

Implementing Your Custom Content Processor
on the Xbox 360

To implement your custom content processor on the Xbox 360, you cannot add a
Windows Game Library project to an Xbox 360 project. However, you can add this
custom processor component by referencing the TerrImporter.dll file built in your
Windows project. You can find the DLL in the MGHBook\bin\x86\Debug directory.
To reference it from your Xbox 360 project, copy this file over to your Xbox 360
project folder. Next, right-click the References folder in the Solution Explorer and se-
lect Add Reference. On the Browse tab, navigate to TerrImporter.dll and select it.
Refer back to Figure 22-1, which shows a similar reference to this DLL from the Win-
dows project. Then, right-click the Xbox 360 project name in the Solution Explorer
and select Properties. Choose Content Pipeline in the gray panel on the left and then
click the Add button to navigate to TerrImporter.dll and select it. The resulting Xbox
360 project content pipeline reference should be similar to the one shown back in
Figure 22-2 for the Windows project.

The namespace must be referenced in the file where your game class is located:

using TerrImporter;

When the heightMap.raw file is referenced in the Solution Explorer, right-click it
and select Properties to ensure that Build Action is set to Content. The XNA Frame-
work Content property must be set to True, and then you set the content importer
and processor to use TerrImporter and TerrProcessor, respectively. When this is
done, you will be able to use the content pipeline to load data from a .raw file to ini-
tialize your MyTerrain object. Figure 22-3 shows the same properties for the
heightMap.raw in the Windows project.

Try the step-by-step example in this chapter to create the custom content proces-
sor. Then test it and deploy it on the Xbox 360 to get a better understanding of how it
works. You’ll have many project references and component dependencies to learn
about and digest when studying custom content processors. To avoid the pitfalls of
incorrect naming and referencing—until you become more familiar with the content
processors—you may find it helpful to start with a working solution like the one
from this chapter. Then you can modify it incrementally to turn it into a processor
that suits your needs. After doing this a few times, you will be ready to create your
own from scratch.

CHAPTER 22 REVIEW EXERCISES

1. Follow the step-by-step exercise in this chapter to create the custom content
processor and run it on Windows and the Xbox 360.

2. After running the solution on Windows, navigate to the folder where the
heightMap.xnb file is located and look at the timestamp. This file is located
in the directory WinMGHBookBaseCode\MGHBook\bin\x86\Debug\Images.
You’ll notice that the file is not updated as long as you do not change the
media file or alter the content processor code. This shows that the content
processor tracks changes made to the media file and processor code and only
updates the compiled binary data when changes are detected.

3. Create your own custom content processor to read the string “ABC” from
a text file and store it in your user-defined class. You may start with the
solution from this chapter, but when you finish, rename all processor
components and call your namespace for the processor ABCimporter.
Make sure it works on both Windows and the Xbox 360.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E364

CHAPTERCHAPTER2323
AnimatedAnimated
ModelsModels

365

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

366

WE are sure you will agree that animated models are among the most excit-
ing features of any game. This chapter presents several options for cre-

ating and loading pre-animated 3D models in your code. Unfortunately, XNA does
not currently ship with a library that automatically animates 3D models, so you have
to find a loader that you can integrate into your code or you have to write your own
animated model loader. As an alternative, we provide a model loader that loads and
displays animated Quake II models, which are stored in the .md2 model format.

Of course, you can use MilkShape to create and export your animated models to
.md2 format. However, if you are using a different model loader for other 3D model
formats, you may still be able to create your model in MilkShape and then export it to
your desired format. Alternatively, if you developed your 3D model in another 3D
model tool, you may be able to import it into MilkShape, animate it, and then export
it to a Quake II model format or other format, as needed.

Whatever method you use to develop your models, make sure you test the load
and display of your 3D models from your XNA code. It is worth the time to ensure
your models load and animate properly in your loader before you invest heavily in
creating and animating them.

THE FORMAT

This chapter does not fully explain how the animated Quake II model source code
works. However, a brief overview of the .md2 format is presented, and if you need to
study it more, all of the Quake II model loader code is available with this book for
you to view and modify. This chapter explains how you can add this MD2 class to
play your animations, change animations, play sequences of animations, or pause
and resume your animations.

The MD2 format was developed by id Software, and it was first introduced as part
of id Software’s Quake II. id Software has since released the source code for their
Quake II game engine to the public under the GNU General Public License. Since
then, the Quake II model format has become popular with game coders because it is
reliable for animations, it is easy to implement, and decent low-cost tools are avail-
able to create models.

The Quake II format implements animation entirely through keyframe anima-
tions. The model’s vertices are positioned at each keyframe. During the animation,
the vertices are projected according to their relative position on the timeline between
the closest keyframes.

When creating Quake II models in a modeling tool such as MilkShape, you attach
the groups of vertices (known as meshes) to bones. These bones are connected by a
series of joints to create the skeleton. The bones can be moved and rotated at different
frames in the timeline to create keyframes. The attached meshes move with the bones
when you create the animation. The joints keep the bones together to ensure your
meshes move properly within the skeletal system for the model. When you export the

367C H A P T E R 2 3

An
im

at
ed

M
od

el
s

model and keyframes to the .md2 format, the bones are thrown out and you are left
with a header file that describes the model’s vertex data, the texture or skin informa-
tion, and the information about the keyframe animations.

Unlike other model formats, Quake II models do not use the skeletal hierarchy or
skin weights that are assigned during the model-creation process. This absence of in-
formation can lead to unrealistic crinkling of skin around model joints. However,
you can avoid this crinkling (or minimize it) with careful planning while designing
your model. Up close your Quake II model skins may appear to be a bit wobbly or
watery due to their keyframe animation, but this defect isn’t noticeable from most
distances.

Quake II models cannot use more than 4,096 triangles. However, this limitation
is reasonable because you can still generate decent-looking models with this poly-
gon count.

A Closer Look at the .md2 Data

This section provides a brief overview of how the .md2 file is loaded and how it en-
ables your animated models.

The Quake II data is stored in binary format in a manner that permits for some
compression of the vertex and frame data. To help you unravel this data, the start of
the file contains a header that describes the file type, the texture properties, the vertex
properties, the total number of vertices, the total number of frames, and binary off-
sets in the file (to access details about the vertices and animation frames). Here is the
standard .md2 header:

struct md2{ int fileFormatVersion; // file type which must equal 844121161

int version; // file format version which must be 8

int skinWidth; // texture width

int skinHeight; // texture height

int frameSize; // bytes per frame

int numSkins; // total skins used

int numVertices; // total vertices per frame

int numUVs; // total texture UV's

int numTris; // number of triangle coordinates

int numglCommands; // number of glCommands

int numFrames; // number of keyframes

int ofsSkins; // binary offset to skin data

int ofsUV; // offset to texture UV data

int ofsTriangle; // offset to triangle list data

int ofsFrames; // offset to frame data

int ofsglcmds; // offset to OpenGL command data

int ofsEnd; // offset to end of file

};

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E368

Each vertex in every frame is indexed. The indexes are ordered in a sequence of tri-
angle lists. When the file is loaded, the indices are used to generate a list of vertex co-
ordinates. The coordinates are then used to build a series of triangle lists. For
efficiency, you could use the glCommands data to rewrite your model-loading and
animation code to render your models using triangle strips or triangle fans.

As you would expect, it is possible to store more than one animation with the
Quake II format. For example, your model may have a running, jumping, taunting,
saluting, crouching, and idling animation. You will want to be able to switch be-
tween these animations on demand. To access this information, use the .md2 header,
which contains the offset to the frame descriptions. The frame descriptions can be
read in using a binary read at the offset. All frame descriptions are located together
sequentially from the starting frame to the very last frame. Each frame description in-
cludes an animation name and a frame number.

To determine the starting and ending frames for each individual animation, you
must parse each frame description so you can match the animation names. Once you
have a series of matching animation names, you can store the starting and ending
frame numbers in this series. When you want to play the animation on demand, you
can set the frame number to the starting frame in the animation series. When the ani-
mation reaches the last frame in this animation, you can start the animation over
again or you can switch to another animation.

During the animation sequence, the vertices are projected on the timeline between
the keyframes used in the animation. The normal vectors must also be interpolated in
this manner.

Textures with .md2 Format

For the actual Quake II game, Quake II models use .pcx files for textures. However,
the .pcx format is not supported in XNA’s content pipeline. A way to get around this
limitation is to use an image-editing program such as GIMP to load your *.pcx skins
and save them to *.tga format, which is supported in the content pipeline. You can
then use the *.tga files to texture your Quake II models. Although it is possible to
have more than one texture for a Quake II model, the Quake II model loader pro-
vided with this chapter only handles one texture or skin.

When you build your Quake II models, be sure to use only one skin. The
code used in this chapter can only handle one skin.

ANIMATING MODELS IN MILKSHAPE

To show you how to create an animated model using MilkShape, this example dem-
onstrates how to create an animated lamp that pivots left and right and also performs
a bowing animation (see Figure 23-1).

369

Creating the Model

Before you can create an animation, you first need to create a model. You can create your
own model, use the one that is provided with the book, or search online for one to use.

Creating the Meshes

Your first task is to create two separate meshes for the top and bottom portions of a
lamp, similar to the ones shown on the left side of Figure 23-2. For a refresher on how
to use MilkShape to create meshes like these, review Chapter 12, “3D Models.”

C H A P T E R 2 3

An
im

at
ed

M
od

el
s

F I G U R E 2 3 - 1

Separate pivoting and bowing animations

F I G U R E 2 3 - 2

Two model pieces on the left; three joints and two bones for animating on the right

To enable smooth animations, be sure to position your model at the origin.

Once you have created your meshes, you need to position them together so they
appear as one lamp. However, to enable the animation, you must ensure that the
meshes remain as two separate groups. If your model uses more than two mesh
groups, you will need to merge them so you end up with a top mesh group and a bot-
tom mesh group. Merging can be performed on the Groups tab using the Regroup
button. (Merging groups is also explained in Chapter 12.)

Creating the Skeleton

Once you have the top and bottom mesh groups in position, you must add three
joints to create pivot points for the animation. The end result is shown in the diagram
on the right in Figure 23-2.

Joints can be added in MilkShape from the Model tab. While the Joint button is se-
lected, click into the viewport to add a joint where the cursor is placed. To enable
proper mesh positioning with the bones (when animating your lamp model), you
must add each of the three joints in sequence from the bottom to the top. The first
joint is placed at the base of the lamp. After the first joint is set, whenever a new joint
is added, a bone is automatically generated between the new joint and the joint that
was previously added.

To enable use of the bones as guides for the mesh animations, you must attach the
meshes to the bones. The bottom mesh will be attached to the bottom bone. You can
select the bottom bone by clicking the joint listed at the top on the Joints tab,then se-
lect the bottom mesh. When doing this, choose the Select button on the Groups tab to
ensure the bottom mesh is the only mesh group highlighted in red. When the bottom
mesh group is highlighted in red and the bottom joint is also highlighted in red, click
the Assign button on the Joints tab to assign the bottom mesh to the bottom bone.
Figure 23-3 shows the viewport and Joints tab where the bottom mesh has been as-
signed to the lower bone.

Next, you must repeat this process to assign the top mesh to the top bone. To select
the top bone, click the middle joint, which is joint2, to highlight it in red. Then select
the top mesh in the viewport on the Groups tab and ensure that is the only one high-
lighted in red. Once both the top joint and top mesh are selected, click the Assign but-
ton on the Joints tab to attach the upper mesh to the upper bone.

To ensure you have the correct mesh attached to the correct bone, you can
select the joint on the Joints tab and click the SelAssigned button to highlight

the mesh that is attached.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E370

371

Creating the Pivoting Animation

Now that you have attached the meshes to the skeleton, you can create your anima-
tion. For this example, you will create two separate animations. The first animation is
a pivot animation where the lamp turns back and forth from left to right. This anima-
tion runs between frames 1 and 29. The second animation is a bowing animation
where the lamp bows downward and then returns to the original upright position. This
second animation runs from frames 30 to 50. Thankfully, to generate all 50 frames,
you don’t need to reposition the model each frame. You only need to set keyframes for
the animation, and MilkShape will project the model at all frames in between.

To create the animation, you must select the Anim button in the lower-right corner
of the MilkShape window. Note that if the Anim button is not selected, the meshes will
not move with the bones. The current frame number is entered in the bottom-left text
box just under the right panel. The last frame number for the entire animation series is
in the text box next to it on the right. You also need a viewport projection that shows
the model from a perspective that allows you to easily move or rotate the model when
creating your keyframe. Figure 23-4 shows the first keyframe at frame number 1. The
two numbers in the text boxes at the bottom indicate the current frame (on the left) and
the total combined frames for all animations (on the right).

C H A P T E R 2 3

An
im

at
ed

M
od

el
s

F I G U R E 2 3 - 3

Attaching the bottom mesh to the bottom bone

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E372

A top view is used for easy access to permit rotations for the top of the lamp. The
middle joint is selected so only the top bone and mesh will move or rotate when you
are positioning the model. The middle joint is selected from the Joints tab. Once the
joint is selected, on the Models tab you can rotate the bone and attached mesh when
the Rotate button is selected. You can also move the bone and attached mesh when
the Move button is selected. When the lamp is in position to start the animation, you
can set the keyframe from the Animate menu by selecting Set Keyframe.

To create the next keyframe, change the frame number in the left text box from 1
to 8. You can do this by clicking in the text box and entering 8 with your keyboard.
Then, while the middle joint is still selected, and while the Rotate button on the
Models tab is selected, rotate the lamp 90 degrees in a clockwise direction about the
Y axis. When you have done this, you can set a new keyframe by selecting Set
Keyframe from the Animate menu.

To create the next keyframe in this animation, change the keyframe number in the
text box to 15. While the middle joint is selected and while the Rotate button on the
Models tab is selected, rotate the upper portion of the lamp so it faces toward the
middle again. Once the lamp faces the middle, select Set Keyframe from the Animate
menu to set the keyframe. Next, enter 22 as the frame number in the left text box at
the lower left of the MilkShape window. Rotate the lamp 90 degrees about the Y axis
so it faces toward the right, and set a keyframe there.

To complete the animation, enter 29 in the frame text box and then rotate the up-
per portion of the lamp 90 degrees so it returns to the starting position where it faces
the middle. Set the keyframe at frame 29 to complete the first animation. Figure 23-5
shows how the lamp is positioned for each keyframe at frames 1, 8, 15, 22, and 29.

F I G U R E 2 3 - 4

Setup for the first frame

373

You can view your animation in MilkShape by setting the starting frame to 1 and
the ending frame at 29 in the text boxes at the bottom of the MilkShape window.
Then, while the Anim button is selected, click the > button (shown back in Figure
23-4). If your animation is set properly, you will see the upper portion of the lamp
pivoting back and forth from left to right.

Creating the Bowing Animation

The bowing animation runs from frame number 30 to frame number 50. You will
need to use a side view to create the keyframes for this animation. Figure 23-6 shows
how to position the lamp for frames 30, 35, 40, 45, and 50 when creating keyframes
for this animation.

Previewing Your Animation

When the keyframes have been set, you can preview your animation by clicking the >
button in MilkShape while the Anim button is pressed. When you are satisfied that
the animation looks the way it is intended, you can export your model.

C H A P T E R 2 3

An
im

at
ed

M
od

el
s

F I G U R E 2 3 - 5

Top view of keyframes set at frames 1, 8, 15, 22, and 29

F I G U R E 2 3 - 6

Side view of keyframes set at frames 30, 35, 40, 45, and 50

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E374

Exporting to .md2 Format

The XNA Quake II file loader included with this chapter requires that you export to
Quake II MD2 format if you want to animate your model with this code. However, you
can export to another model format from MilkShape in case you have a different type of
loader. When exporting to the Quake II MD2 format, you must place an md2.qc file in
the same directory where you export your model. The md2.qc file is used to help build
the .md2 file. It contains information about the model name, the skin name, and skin
pixel dimensions. It also contains the different animation names and their starting and
ending frames. The md2.qc file is actually just a text file that you can edit in Notepad.
You will have to edit this file or create one to list information about the image you use for
your lamp and to document the frames used for the pivoting and bowing animations. If
the md2.qc file is not present when you are exporting from MilkShape, you will receive
an error. For this example, here are the required contents for the md2.qc file:

// Sample MD2 config, copy into export directory

$modelname lamp.md2

$origin 0.0 0.0 0.0

// skins

$skinwidth 128

$skinheight 128

$skin lamp.bmp

// sequences

$sequence pivot 1 29

$sequence bowing 30 50

When your md2.qc file has been created, place it in the same folder where your
model’s texture is located. You can now export your MD2 model to that directory by
selecting File | Export | Quake 2 MD2. Save this file as lamp.md2.

Loading Your Model in Code

This code demonstration shows you how to load your Quake II model in code. It
loads the lamp you created and animates it with the pivoting and bowing animations.

The example begins with either the WinMGHBook project or the
Xbox360MGHBook project, which can be found in the BaseCode folder in the
download available from this book’s website. You will also need the MD2.cs source
file from this directory. Of course, the MD2.cs file must be referenced in your game
project from the Solution Explorer. Also, MD2.cs uses a content processor to load
the Quake II model. This content processor is implemented in MD2Importer.dll,
which you can obtain from the BaseCode folder as well.

375C H A P T E R 2 3

An
im

at
ed

M
od

el
s

For either the PC or the Xbox, the content processor must be included in your pro-
ject references. In Chapter 22, “Content Pipeline Processors,” you added a content
processor DLL to your references by right-clicking your game project and choosing
Add Reference. The steps to reference your Quake II loader are similar. From the
Add Reference dialog, you select the Browse tab, navigate to the MD2Importer.dll
file, and click OK to load it into your project references.

A reference to this library is also required in your project properties for content
processing. Right-click the project in the Solution Explorer and choose Properties to
add it. In the gray panel that appears, click Content Pipeline and then click Add. In
the Add XNA Framework Content Pipeline Assembly dialog that appears, navigate
to the MD2Importer.dll file and click Open to reference this library.

If you want to view or edit the code for this MD2Importer, the Windows solution
for this example includes the game library project. When you first run this project (or
if you modify the MD2Importer code), a new MD2Importer.dll file will be generated
in a path similar to MD2Importer\bin\x86\Debug.

When your base code is ready, you will have to reference your model and the accom-
panying texture in your project. Add your lamp.md2 model to the Models folder in the
Solution Explorer. The lamp.bmp texture
needs to be placed in the Images folder in
the Solution Explorer. With your Quake II
model files in your project, you need to en-
sure that your lamp.md2 model uses the
content pipeline. To be sure, click the .md2
file in the Solution Explorer to view this
file’s properties in the property browser.
The Build Action property must be set to
Content. The XNA Framework Content
property must be set to True. The Content
Importer property needs to be set to
MD2Importer, and the Content Processor
property must be set to md2Processor. If
you do not see these properties or you are
unable to set them, review your steps to en-
sure MD2Importer.dll has been referenced
properly in your project. Figure 23-7 shows
the properties for the lamp model when it
has been referenced properly in the Solution
Explorer (i.e., to use the content pipeline).

Next, your Game1.cs file has to reference the MD2 class to access it, so you must
include the namespace for this class:

using quakeMD2;

F I G U R E 2 3 - 7

Model properties

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E376

To create an object to use this class for loading and animating your Quake II mod-
els, a class-level object is required:

private MD2 md2;

The pivoting and bowing animations will be identified with a class-level enumera-
tion. Declaring the enumeration at the top of the game class permits the use of these
identifiers throughout the game class:

public enum meAnim

{ pivot, bow }

The model setup when the program starts is simple. The md2 object must be ini-
tialized. Then, the model can be loaded from the folder where the source is located.
The Quake II model’s texture, lamp.bmp, can be loaded with the ContentManager
object as long as the image is referenced in the Solution Explorer. Also, when the
model is initialized, the speed is set. The method setAnimSpeed(), with a parameter
equal to 5.0f, sets the animation rate to a similar playback speed that you experi-
enced when testing your animation in MilkShape. However, you can slow your ani-
mation down or speed it up with this method if you need to. To start animating the
model when the game begins, the instruction setAnimSequence() plays two anima-
tions in succession. The first parameter sets the animation to play once only. The sec-
ond parameter sets the second animation to play in a continuous loop when the first
animation ends. Add this code to Initialize() to set up your model, load it, and play
the bowing and pivoting animations:

md2 = new MD2();

md2.loadModel(gfx.GraphicsDevice, ".\\Models\\lamp",

".\\Images\\lamp", content);

md2.setAnimSpeed(5.0f); // 5.0f is the default speed

md2.setAnimSequence((int)meAnim.bow, (int)meAnim.pivot);

XNA’s BasicEffect class is used to render the model because it offers an easy imple-
mentation of lighting. To use it, declare an instance at the top of the game class:

BasicEffect mBE;

To prepare the mBE shader when the program launches, and to avoid costly cycles
used when initializing the BasicEffect object, this object should only be created once
when the program begins. With this in mind, the mBE object is set in Initialize():

mBE = new BasicEffect(gfx.GraphicsDevice, null);

Directional lighting only needs to be set once—unless your world has more than
one sun. The lighting settings used here are explained in more detail in Chapter 20,

377C H A P T E R 2 3

An
im

at
ed

M
od

el
s

“Lighting.” To provide a method that can be used by all objects that use BasicEffect’s
lighting and to enable the texturing when rendering objects with this shader, add the
setBasicEffect() method to the game class:

public void setBasicEffect(){

// set up lighting

mBE.LightingEnabled = true;

mBE.DirectionalLight0.Enabled = true;

mBE.AmbientLightColor = new Vector3(0.8f, 0.8f, 0.8f);

mBE.DirectionalLight0.DiffuseColor = new Vector3(1.0f, 1.0f, 1.0f);

mBE.DirectionalLight0.Direction = Vector3.Normalize(

new Vector3(0.0f, -0.3f, 1.0f));

mBE.DirectionalLight0.SpecularColor= new Vector3(0.2f, 0.2f, 0.2f);

mBE.SpecularPower = 0.01f;

mBE.TextureEnabled = true;

}

To initialize the BasicEffect shader’s properties when the program begins, call
setBasicEffect() from the Initialize() method:

setBasicEffect();

A suitable VertexDeclaration that permits lighting, with XNA’s BasicEffect class,
is required. This variable is needed throughout the game class, so a declaration is
needed at the top of it:

private VertexDeclaration mVertPosNormTex;

The VertexDeclaration object is initialized when the application starts, so it can be
used when drawing the first frame. To enable this setup, add the following code to
the Initialize() method:

mVertPosNormTex = new VertexDeclaration(gfx.GraphicsDevice,

VertexPositionNormalTexture.VertexElements);

Every frame, the .md2 model vertices must be updated with a time-scaled interpo-
lation between frames. Adding the updateModel() instruction to the Update()
method allows the MD2 class to take care of this interpolation to enable a smooth
animation:

md2.updateModel(gfx.GraphicsDevice, gameTime);

The code used to draw the model is similar to code you have used to draw your .x or
.fbx 3D models. A notable difference here is you must reference the model’s vertex
buffer when setting the data source. Also, this code is designed to use triangle lists when
drawing the Quake II model, so you must specify this primitive type while rendering it.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E378

The total number of triangles drawn is obtained from the model object while it is being
rendered. Add the drawMD2model() method to your game class to draw your model:

void drawMD2model(){

// 1: declare matrices

Matrix matScale, matTranslation, matRotateY, matWorld;

// 2: initialize matrices

matScale = Matrix.CreateScale(0.2f, 0.2f, 0.2f);

matTranslation = Matrix.CreateTranslation(0.0f, -0.9f, 4.0f);

matRotateY = Matrix.CreateRotationY((float)Math.PI);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

matWorld = Matrix.Identity * matScale * matRotateY * matTranslation;

// 4: set shader matrices, and texture

mBE.Begin();

mBE.World = matWorld;

mBE.View = mMatView;

mBE.Projection = mMatProj;

mBE.Texture = md2.getTexture();

mBE.CommitChanges();

// 5: draw object - select vertex type, data source, # of primitives

gfx.GraphicsDevice.VertexDeclaration = mVertPosNormTex;

foreach (EffectPass pass in mBE.CurrentTechnique.Passes){

pass.Begin();

// get the data and draw it

gfx.GraphicsDevice.Vertices[0].SetSource(

md2.vertexBuffer, 0, VertexPositionNormalTexture.SizeInBytes);

gfx.GraphicsDevice.DrawPrimitives(

PrimitiveType.TriangleList, 0, md2.getNumTriangles());

pass.End();

}

mBE.End();

}

As with all objects that are rendered, the instructions to draw the Quake II model
are triggered from the Draw() method:

drawMD2model();

379C H A P T E R 2 3

An
im

at
ed

M
od

el
s

When you run the code, you will see your lamp performing the bowing animation
followed by a continuous pivot back and forth from right to left. You may find that
you need to scale your model and rotate it, depending on the scale and orientation
used when creating the model.

Loading and Controlling Models in Code

The last demonstration showed you how to create your own Quake II model and an-
imate it in code. This is definitely a useful exercise; however, Quake II models have
the power to perform far more interesting animations than the one you just created.
This next demonstration shows a more interesting animated model to demonstrate
how to use the MD2 class to play animations on demand, switch animations, and
pause or resume animations. This demonstration loads a model called Zarlag, which
is stored in the tris.md2 file. The Zarlag.tga image is used for the skin. You can down-
load this model and skin from the Models folder in the book’s download.

The Zarlag model was created by Phillip T. Wheeler. Thank you very much,
Phillip, for a great model.

Zarlag has many interesting animations, and this example shows you how to use the
MD2 class to switch between them. Figure 23-8 shows Zarlag in the heat of battle.

This example begins with the solution code from the previous example. To be able to
handle all of Zarlag’s animations, replace the existing enumeration with the following
revision, which provides friendly identifiers for all of Zarlag’s animations. These enu-
merated values will be referenced later so you can play Zarlag’s animations on demand:

public enum meAnim{

stand, run, attack, pain1,

pain2, pain3, jump, flip,

salute, taunt, wave, point,

crstand, crwalk, crattack, crpain,

crdeath, death1, death2, death3

}

To load Zarlag instead of the lamp model, replace the loadModel() instruction in-
side Initialize() with this version. Also, make sure you place the tris.md2 file in the
Model’s folder and reference the Zarlag.tga image from the Solution Explorer.

md2.loadModel(gfx.GraphicsDevice, ".\\Models\\tris",

".\\Images\\Zarlag", content);

To begin with a standing animation, inside Initialize() replace the
SetAnimSequence() call to start the bowing and pivoting animations with the follow-
ing instruction, which sets a standing animation:

md2.setAnim((int)meAnim.stand);

When drawing the animation, you need to position, rotate, and scale Zarlag dif-
ferently from the lamp. Replace the scaling, translation, and rotation calculations in
drawMD2model() with these revisions so Zarlag faces the viewer and appears to be
standing on the ground when the program begins:

matScale = Matrix.CreateScale(0.02f, 0.02f, 0.02f);

matTranslation = Matrix.CreateTranslation(0.0f, -0.4f, 3.0f);

matRotateY = Matrix.CreateRotationY((float)Math.PI / 2.0f);

The MD2 class has a few different methods to allow you to play an animation on
demand, play an animation sequence for two animations, and to pause and resume
an animation. These commands will be triggered by press events. To ensure that mul-
tiple animations are triggered in one press event, which can last over several frames,
these variables are added to track the time of the last press event to ensure enough
time passes before triggering the animation again:

private double mdblAnimDelay, mdblRunDelay, mdblJumpDelay = 0;

The first animation handler allows you to advance through the list of the Quake II
model’s animations by pressing either the SPACEBAR or the left thumbstick on the
game pad. The MD2 class’s advanceAnimation() scrolls through the list of anima-
tions. Add this code block to the Update() method to allow your users to view all ani-
mations for the Quake II file:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E380

F I G U R E 2 3 - 8

Zarlag on the move

381C H A P T E R 2 3

An
im

at
ed

M
od

el
sif (gameTime.TotalGameTime.TotalMilliseconds - mdblAnimDelay > 200)

{

mdblAnimDelay = gameTime.TotalGameTime.TotalMilliseconds;

if (kbState.IsKeyDown(Keys.Space) ||

GamePad.GetState(PlayerIndex.One).Buttons.LeftStick

== ButtonState.Pressed){

md2.advanceAnimation();

}

}

This next animation handler triggers the running animation if either the A key is
pressed or the right trigger on the game pad is pulled. This code is added to the Up-
date() method to catch these press events and start Zarlag running:

if (gameTime.TotalGameTime.TotalMilliseconds - mdblRunDelay > 100)

{

mdblRunDelay = gameTime.TotalGameTime.TotalMilliseconds;

// start running animation if it isn't already playing

if ((kbState.IsKeyDown(Keys.A)

|| GamePad.GetState(PlayerIndex.One).Triggers.Right > 0.0f)

&& !md2.isPlaying((int)meAnim.run)){

md2.setAnim((int)meAnim.run);

}

}

This next code block triggers a one-time jump followed by a running loop when ei-
ther the J key or right thumbstick is pressed. Add this code to the Update() method to
enable this feature:

if (gameTime.TotalGameTime.TotalMilliseconds - mdblJumpDelay > 100)

{

mdblJumpDelay = gameTime.TotalGameTime.TotalMilliseconds;

// start jump animation if it isn't already playing

if ((kbState.IsKeyDown(Keys.J) ||

GamePad.GetState(PlayerIndex.One).Buttons.RightStick

== ButtonState.Pressed)

&& !md2.isPlaying((int)meAnim.jump)){

md2.setAnimSequence((int)meAnim.jump, (int)meAnim.run);

}

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E382

You may also pause your animation when the P key or B button is pressed. You
can resume it when the R key or the A button is pressed. Add the following code block
to Update() to handle these pause and resume events:

if (kbState.IsKeyDown(Keys.P) ||

GamePad.GetState(PlayerIndex.One).Buttons.B == ButtonState.Pressed){

md2.Pause();

}

else if (kbState.IsKeyDown(Keys.R) ||

GamePad.GetState(PlayerIndex.One).Buttons.A == ButtonState.Pressed){

md2.Resume();

}

Try running your program now. The model should first appear standing idle. You
can make it run by pulling the right trigger or by pressing the SPACEBAR. You can ad-
vance it through all animations by pressing the left thumbstick or the SPACEBAR.
Press the A key or pull the right trigger to start the running animation. A one-time
jump followed by a running animation can be called when either the J key or right
thumbstick is pressed. You can pause and resume animations with either the P and R

keys or the B and A buttons on the game pad.

Loading the Weapon

Quake II weapons are usually separate from the actual character model. Separate
weapons enable you to switch between holding a rifle, plasma gun, rocket launcher,
or other artillery to fit the occasion. These weapons are animated to match the char-
acter’s animation. As the model runs, jumps, crouches, or falls in pain, the weapon
moves with the model’s arms and hands. In the unfortunate event of death, the
weapon may fall from the character’s hands.

To add the weapon, the weapon.md2 file must be referenced from the Models
folder and the weaponSkin.tga file must be referenced from the Images folder. These
files can be found in the Models folder from the book’s download.

To enable use of the MD2 class for a weapon object in addition to the Quake II
character, some changes are needed. Identifiers at the top of the game class distin-
guish between the two separate models.

const int CHARACTER = 0;

const int WEAPON = 1;

Also in the game class, a new instance of the MD2 class is needed, so this object
must be declared at the module level:

private MD2 md2Weapon;

The weapon and texture are loaded when the game begins, so place the code to
load them inside Initialize():

383

md2Weapon = new MD2();

md2Weapon.loadModel(gfx.GraphicsDevice,

".\\Models\\weapon", ".\\Images\\weaponSkin", content);

md2Weapon.setAnimSpeed(5.0f);

md2Weapon.setAnim((int)meAnim.stand);

Note the animation speed, 5.0f, and the starting animation are set to match the
starting speed and starting animation for Zarlag. This ensures that the weapon will
animate properly with the character.

Each frame, the weapon animation must be updated. This can be done from the
Update() method with the instruction

md2Weapon.updateModel(gfx.GraphicsDevice, gameTime);

Inside the Update() method, five conditions were implemented above to handle user
input for changing the character’s animation to the next animation, setting a specific ani-
mation, setting an animation sequence, and pausing and resuming animations. To en-
sure the weapon also moves properly with these animation changes, the following five
instructions must be included with their respective conditions in the Update() method:

md2Weapon.advanceAnimation();

md2Weapon.setAnim((int)meAnim.run);

md2Weapon.setAnimSequence((int)meAnim.jump, (int)meAnim.run);

md2Weapon.Pause();

md2Weapon.Resume();

Some minor changes are also needed in the drawMD2model() method. It needs to
be able to handle an identifier for the model so it knows which one to draw. Replace
the header with this revision that includes a parameter to identify the model:

void drawMD2model(int iModel)

Next, inside the drawMD2model() method, some additional changes are required
to ensure Zarlag and the weapon are textured with the correct skin. A check is needed
to determine which model is being drawn before skinning it. Replace the code that
textures Zarlag with this code block:

if(iModel == WEAPON)

mBE.Texture = md2Weapon.getTexture();

else

mBE.Texture = md2.getTexture();

Then, inside the drawMD2Model() method, when setting the data source and
drawing primitive surfaces from it, a check is needed to make sure the correct set of

C H A P T E R 2 3

An
im

at
ed

M
od

el
s

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E384

vertices and the correct number of triangles are used. Replace the existing code that
selects the vertices and draws the primitive surface with this version:

if (iModel == WEAPON){

gfx.GraphicsDevice.Vertices[0].SetSource(

md2Weapon.vertexBuffer, 0, VertexPositionNormalTexture.SizeInBytes);

gfx.GraphicsDevice.DrawPrimitives(

PrimitiveType.TriangleList, 0, md2Weapon.getNumTriangles());

}

else{

gfx.GraphicsDevice.Vertices[0].SetSource(

md2.vertexBuffer, 0, VertexPositionNormalTexture.SizeInBytes);

gfx.GraphicsDevice.DrawPrimitives(

PrimitiveType.TriangleList, 0, md2.getNumTriangles());

}

Lastly, to draw your character model and weapon with the identifier parameter,
replace the existing instruction inside draw with this change:

drawMD2model(CHARACTER);

drawMD2model(WEAPON);

When you run the code now and change the animations, Zarlag and the weapon
will animate together.

This chapter has shown how easy it is to create your own animated models. You
may build your models in other modeling tools and then load them in MilkShape to
animate them and/or convert them to .md2 format. If you have a loader for a differ-
ent model format, you can still use MilkShape to create 3D models for it. Whatever
method you use to create and load your 3D models, just make sure they load and ani-
mate properly in code before investing a lot of time building them.

The demonstration for Zarlag shows how powerful and diverse the Quake II format is
for enabling animations. Combining pre-animated models with the techniques discussed
in Chapter 6, “Character Movement,” and Chapter 19, “Keyframe Animations,” opens
up all kinds of possibilities to unleash lifelike creatures in your 3D game play.

CHAPTER 23 REVIEW EXERCISES
1. Follow the step-by-step exercises in this chapter to create your own

animated model and load it in code.

2. Create a model that animates with four bones or more and has three or
more animations. Load this model and at least one other model in your
game project. Code it so you have the ability to view all animations for
each model loaded. Use the setAnimSequence() sequence at least once to
trigger an animation and follow it with another looping animation.

CHAPTERCHAPTER2424
Adding AudioAdding Audio
to Yourto Your
GameGame

385

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

386

AUDIO effects not only raise the appeal of a game, you can also use
them to challenge players to make judgments based on

sound. This chapter shows you how to add audio to your game and create audio depth.
With 3D audio enabled, you can actually tell where things are just by their sounds.

For example, if you heard distant footsteps in your right ear, but could not see any-
body walking, you would know that somebody is walking behind you off to the
right. If you were to turn 180 degrees, you would see the person walking and the
sound would be louder in your left ear. Your game will offer far more appeal and vi-
brancy with sounds throughout the environment—and with music to match.

ABOUT XACT

XNA audio is created using the Cross-Platform Audio Creation Tool (XACT). The
XACT audio studio is intended to simplify the process of managing your audio files
and sound cues. You can use it to organize wave files and to set their playback prop-
erties. XACT is installed as part of XNA Game Studio Express, so you don’t need to
worry about downloading or installing it.

Currently, WAV (wave) files are the only audio format supported in XNA. If you
want to play back other formats—such as MP3—you should search the Au-
dio/XACT forums to read up on the latest conversion utilities you can use to convert
other audio formats to WAV files.

PROGRAMMING XNA AUDIO

To implement XNA audio, you must (at least) use these five main objects:

� XACT audio project file

� Audio engine

� Global settings

� Wave banks

� Sound banks

XACT Audio Project File

The XACT audio project file is the file created from XACT—also known as the
XACT authoring tool. The XACT project file has an .xap extension. This file stores
the wave file references, sound cue instances, and their playback settings. The .xap
file extension is useful for deployment on both Windows and on the Xbox 360.

387C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
eYou don’t need to reference this file in the code you write. However, when the .xap

file is referenced in your XNA game project (from the Solution Explorer), your game
project will automatically generate a global settings file, a wave bank file, and a sound
bank file for you to regulate audio playback according to your audio project settings.

You could export the global settings, wave bank, and sound bank files separately
from the audio authoring tool and then reference them manually in your project.
However, to simplify referencing and loading your audio files in both your Windows
and Xbox 360 game projects, referencing the .xap file in your project is recom-
mended. When you reference the .xap file in your game project, it also provides a rel-
ative file path reference to the wave files used in your project.

Audio Engine

The AudioEngine object instantiates and manipulates core sound objects for playing
game audio. This object is initialized with a set of properties loaded from a global set-
tings file generated from the XACT authoring tool. As mentioned earlier, if you refer-
ence the .xap project file in the Solution Explorer, the global settings file will
automatically be generated in your project at run time. Even though you cannot
physically see the global settings file in the same folder as your .xap file, you can load
it in code as long as the directory path is the same as your project file, as shown here:

AudioEngine audioEngine = new

AudioEngine(".\\Audio Project File Folder\\GlobalSettings.xgs");

Once you have initialized the sound engine in your code, it is then used to initialize
the WaveBank and the SoundBank. As with the global settings file, these files will not
be physically present in the audio folder when you use the .xap project file to generate
them. However, they, too, can be loaded from the same directory in your project as
your *.xap project file:

WaveBank waveBank = new

WaveBank(audioEngine, "".\\Audio Project File Folder\\Wave Bank.xwb");

SoundBank soundBank = new

SoundBank(audioEngine, "".\\Audio Project File Folder\\Sound Bank.xsb");

When you are loading your audio project, engine, wave bank, and sound bank
files in this manner, your files will need to be in the same directory path (relative to
the location where your .xap project file is saved).

Global Settings

Global settings are the definitions for the audio controls created by the sound de-
signer. You use this file to initialize the sound engine.

Wave Banks

A wave bank is a collection of wave files loaded and packaged in an .xwb file.

Sound Banks

A sound bank is a collection of instructions and cues for the wave files to regulate
how the sounds are played in your program.

Cues

You can use cues to trigger audio playback from the sound bank. Cues may contain a
list of sounds to play in a specific sequence when an event is triggered, or they may
provide a list of sounds that can be selected randomly for playback.

Categories

Categories are used to group sound banks with similar properties. You might con-
sider categorizing sounds by how they are played back. For example, sounds with
volumes that need to be adjusted together or sounds that need to be paused and re-
sumed at the same time can be grouped in the same category.

Playback Methods

You have the option of using two methods for audio playback. The first involves us-
ing the SoundBank’s GetCue() method to retrieve the sound instance and then the
Play() method to play it:

cue = soundBank.GetCue(String cueName);

cue.Play();

This method is useful if you need to set the volume, or pause or resume the sound.
However, if you are constantly using the GetCue() method, playing your sound, and
disposing of the cue, you will hear the sound cutting out during playback. If you
know you will be using these cues later, you can avoid this problem by placing your
idle cues on a stack.

Another method that can be used to play your audio is the SoundBank’s PlayCue()
method. This method is useful for playing sounds in quick succession, such as the
sound of a rapid-firing machine gun:

PlayCue(String cueName);

With this method, there is no disposal of the cue. This helps to avoid disruptions to
the audio that can be caused by the garbage collection that happens when cues are
disposed.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E388

389

Programming 3D Audio

3D audio scales the volume of your sound sources and positions them in each speaker.
The volume and position properties for each sound are derived from the listener’s rela-
tive distance and orientation to the sound source. The listener object is defined by the
AudioListener class. This object governs what you hear and how you hear it.

Normally, there is only one listener in a game, and it moves and changes direction
with the camera. Moving this listener object with the camera allows you to update
the position and orientation of each sound as the viewer travels through the world.

The AudioEmitter class stores the sound source’s position, speed, and orientation.
An AudioEmitter object is required for each sound source.

Both the listener and emitter objects store the following four vectors:

Vector3 Forward; // direction

Vector3 Speed; // direction and magnitude

Vector3 Position;

Vector3 Up; // uprightness

The vectors are updated for the listener and all emitters every frame. Then the cal-
culations to position the sound and scale the volume for each are applied with the
method Apply3D():

void Cue.Apply3D(AudioListner listener, AudioEmitter emitter);

Because the cue is used to apply 3D audio, GetCue() must be used to retrieve the
cue for playback.

XACT Authoring Tool

The XACT audio authoring tool provides a sound designer studio that allows you to
create wave banks, add sound banks, and edit their properties for controlling how
they are played from within your code.

The authoring tool is feature rich, and you may be pleased to discover how much
you can customize your audio beyond the standard settings. You can use the audio
authoring tool to randomize how sounds are played back, add reverb, randomize the
sound volume, and implement great audio effects such as a Doppler effect.

XACT AUTHORING TOOL EXAMPLE

This demonstration shows how to use the audio authoring tool to generate an .xap
project file that stores references for your wave files and their playback properties.
Later on, you will reference this project file in your XNA project to regulate the play-
back of the wave files within your game.

C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
e

The project uses four wave files: an introduction, a drumbeat, a crow, and a bell.
The audio files for this project can be found in the Audio folder in the download from
the book’s website.

Later, in your code, you will reference these files so that the introduction plays
when the game starts, the drumbeat starts playing in a loop after the introduction, the
crow caws twice every two seconds, and the bell plays whenever you left-click the
mouse or pull the right trigger.

Launching the XACT Authoring Tool

Next, launch the XACT authoring tool, which can be found in the Start menu under Pro-
grams | Microsoft XNA Game Studio Express | Tools | Microsoft Cross-Platform Audio
Creation Tool (XACT). The authoring tool will appear as shown in Figure 24-1.

Creating a Wave Bank

To load a wave file, click the Wave Banks menu and then choose New Wave Bank.
You can now add wave files to your wave bank. Start by adding the intro.wav file.

Click the Wave Banks menu and choose Insert Wave File(s). When the Open dialog
launches, select the intro.wav file. Your wave file now appears in the Wave Bank
panel (see Figure 24-2).

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E390

F I G U R E 2 4 - 1

XACT authoring tool

391

Adding a Sound Bank

Next, you need a sound bank so you can customize properties that determine how
the wave file will be played. The sound bank consists of two parts—a sound bank
name and a cue name. To add a sound bank, select the Sound Banks menu and then
click New Sound Bank.

You then need to create a cue that your code will use to trigger playback. This can
be done by left-clicking the wave file in the Wave Bank panel and dragging it down,
with the left mouse button pressed, into the lower panel of the Sound Bank panel.
Your wave file instance should now appear in both the upper and lower sections of
the Sound Bank panel (see Figure 24-3).

Repeating the Steps for the Drum, Crow, and Bell

For this part of the example, you repeat the steps you just completed for the
intro.wav file for the drum.wav, crow.wav, and bell.wav files. When you are fin-
ished, these files will appear in wave bank, sound bank, and sound bank cue panels,
as shown in Figure 24-4.

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
e

391C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
eF I G U R E 2 4 - 2

Wave file appears in the Wave Bank panel

F I G U R E 2 4 - 3

Sound bank name and cue

Setting the Category Property for the Drum

Sometimes you will want to group your sound banks by category. Having sounds
that fulfill a similar role under the same category simplifies your ability to control
how the sounds are played back in your code. Some code instructions can be applied
once to an entire category rather than individually for each sound in the category.

For this example, you need a different category for the drum; this will enable the
drum to be paused and resumed separately in your code. The intro, bell, and crow
have been assigned to the Default category. When the volume is set in code for the
Default category, both the intro and bell sounds are affected. The drum will be as-
signed to the Music category. To do this, click on the drum instance in the top sound
bank panel and then select Music under the Category setting in the lower-left prop-
erty panel (see Figure 24-5).

Creating an Infinite Loop

The drum is meant to play in an infinite loop, so the playback repeats every time the
track finishes. To enable the loop, select the drum sound bank and highlight Play
Wave in the tree view in the top-right panel of the XACT authoring tool.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E392

F I G U R E 2 4 - 4

Wave bank, sound bank, and cues

393

Once you have highlighted Play Wave for the drum’s sound bank, you can set the
LoopEvent in the property view panel at the bottom left of the XACT authoring tool.
Selecting the Infinite property in the LoopEvent drop-down menu enables the infi-
nite loop for the drum sound (see Figure 24-6).

C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
eF I G U R E 2 4 - 5

Setting the Category property for the drum file

F I G U R E 2 4 - 6

Adding an infinite loop

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E394

Adding a Finite Loop

The crow wave file only plays one caw. This example requires the caw sound to play
twice every time it is played, so the sound is heard as “caw, caw.” Creating a loop
that repeats a specific number of times is called a finite loop. You can add the “caw,
caw” sound by creating a finite loop with one repeat. To set the finite loop, select the
crow wave file in the sound bank and then highlight Play Wave in the tree view.

Highlighting the Play Wave property button in the tree view at the top-right of the
XNA authoring tool will display the Play Wave Properties panel at the bottom left. In
the Play Wave Properties panel, expand the LoopEvent attribute. Select Finite in the
LoopEvent drop-down. You can then expand the LoopEvent drop-down where you
can enter 1 for the LoopCount property.

Testing Your Audio

Now that the sound banks have been created and properties have been assigned to
them, you can test their playback with the XACT Auditioning Utility. This tool al-
lows you to hear how they will sound when played from your game. Launch the
XACT Auditioning Utility by navigating from the Start menu to Programs |
Microsoft XNA Game Studio Express | Tools. A command prompt window will ap-
pear with the message “Waiting for the XACT authoring tool to connect....” When
you want to test a sound bank, select it, right-click Play Wave in the right panel, and
choose Play Sound.

Enabling Volume Attenuation

Audio attenuation refers to how the volume changes as the sound source travels to-
ward and away from the listener. First, you must adjust the maximum distance value
for the cue. To do this, in the left panel of the XACT project, expand Cue Instance
and click Distance to select it. While Distance is selected, in the Properties panel that
appears, change the MaximumValue property to 50.

Next, to enable volume attenuation, you have to attach the sound to a Runtime
Parameter Control (RPC) preset. To create an RPC preset, right-click RPC Presets in
the left panel and choose New RPC Preset. Under the Parameter column choose
Sound : Volume. Under the Variable column choose Distance. The line that appears
shows how the sound fades as it travels away from the listener. Two control points
define the graph. To add a control point to shape your graph, click the Runtime Pa-
rameter Control preset dialog and choose Add. You can then left-click these control
points and drag them into position while your left mouse button is pressed. When
you are finished, the graph should appear similar to the one in Figure 24-7. This vol-
ume level simulates how sound volume fades over distance.

To associate this attenuation with the crow, right-click your new RPC preset that
appears in the left panel and choose Attach/Detach Sounds. When prompted, choose
Sound Bank crow and click Attach. Click OK when you are finished.

395

The crow should now be listed as one of the attached sounds in the properties dis-
play for the AttachedSounds property under the RPC preset. The crow’s sound vol-
ume will now adjust according to the increase or decrease in distance between it and
the listener. Figure 24-8 shows the new RPC Preset with the crow’s sound attached.

C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
eF I G U R E 2 4 - 7

Runtime Parameter Control settings to adjust volume with distance

F I G U R E 2 4 - 8

RPC Preset with crow’s sound attached

Saving Your Audio Project

Now your wave banks and sound banks are prepared to play your sounds as required
for this example. The next step requires that you save your XACT project. The .xap
project file that is generated is used by your XNA game project to set the playback
properties for your wave files. To generate the .xap project file, under the XACT
authoring tool’s File menu, select Save Project As. In the Save Project As dialog,
browse to the directory where you want to export your project.

For the code portion of the example that follows, the .xap project file needs to be
saved to the folder where the wave files are located; this ensures the project file’s di-
rectory has the same relative path as the wave files. Enter the name audioProject in
the File Name text area and click the Save button. This action generates an
audioProject.xap file that stores your project and includes your wave bank, sound
bank, and sound bank cue settings. Also, be sure to keep this .xap file in case you
want to edit your XACT authoring tool project later.

MUSIC AND CROWS AUDIO EXAMPLE

The code portion of this demonstration takes the .xap project file you have created,
and the accompanying wave files, and loads them for playback in your game project.
After you add this code, you will be able to hear the introduction when the game be-
gins. When the introduction ends, a drumbeat will play in an infinite loop. Also, a
bell will ring whenever you pull the right game controller trigger or left-click the
mouse, and a crow will fly back and forth in your world, cawing twice every two sec-
onds. The crow’s volume will be adjusted according to the flying crow’s distance rel-
ative to the location of the camera. With this implementation, the crow will sound
louder when it is close to your camera, and the sound will fade as the crow flies away.

You can start this example with either the WinMGHBook project or the
Xbox360MGHBook project, found in the BaseCode folder in the download from the
book’s website. You can use the intro.wav, crow.wav, drum.wav, and bell.wav files in
the Audio folder in the book’s download. You may use the audioProject.xap file you
created, or you can find a copy in the Audio folder. To reference these files in your
project, add an Audio folder to your solution, add each of the .xap and wave files to
it, and then reference each file within the Audio folder from the Solution Explorer.

Adding a Flying Crow

For this first portion of code, you create a crow that flies back and forth in the 3D
world. You draw the crow using a model wing and a model crow. Altogether, the
model crow consists of the crow.fbx, wing.fbx, and crow.bmp files. The two .fbx
files must be referenced in your game project. You can find these files in the Models
folder in the book’s download.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E396

397

Two model objects and matrices for storing their meshes are needed in the game
class to store, transform, and draw the model:

Model mModCrow; Model mModWing;

Matrix[] matWing; Matrix[] matCrow;

You will use the same draw routine to draw the crow model’s body and wings. To
ensure the correct transformations are applied to each part of the crow, identifiers for
each item are defined in the game class:

const int CROWMODEL = 0; const int WING1 = 1; const int WING2 = 2;

You must initialize the crow and wing models and their bone transformation ma-
trices when the game begins. You can add this code to the game class to load and ini-
tialize them:

void initialize_crow_model(){

mModCrow = content.Load<Model>(".\\Models\\crow");

matCrow = new Matrix[mModCrow.Bones.Count];

mModCrow.CopyAbsoluteBoneTransformsTo(matCrow);

mModWing = content.Load<Model>(".\\Models\\wing");

matWing = new Matrix[mModWing.Bones.Count];

mModWing.CopyAbsoluteBoneTransformsTo(matWing);

}

To ensure the crow models are set up properly when the program begins, add the
call statement for init_crow_model() to the Initialize() method in your game class:

initialize_crow_model();

The crow is going to be animated, so it translates back and forth on the Z axis. To
perform this animation, you use variables to store the crow’s current position and
previous position, the crow’s direction on Z, and the speed of the crow. These corre-
sponding class-level declarations are needed at the top of your game class:

private Vector3 mv3CrowPos = new Vector3(0.0f, 0.6f, 3.0f);// curr pos

private bool mbCrowIncZ = true; // inc on Z

private float mfSpeedCrow = 0.001f; // speed on Z

To animate the crow’s wings, you need additional variables to track the wing rota-
tion angle about the Z axis, the speed of rotation, and the upward or downward

C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
e

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E398

direction. Adding these declarations to the module declarations area of your game
class will assist you with the wing animation:

private float mfWingRotation = 0.0f;

private float mfWingSpeed = 0.0035f;

private bool mbWingIncrease = true;

This next method, update_crow(), allows you to update the crow each frame so it
translates back and forth in your world along the Z axis while flapping both wings.

A check is made to determine if the crow has reached the front or back edge of the
world on the Z axis. If it reaches the edge of the world, the crow’s direction is re-
versed and its position is then incremented.

Another check is made to determine if the wing rotation has reached the upper
maximum or lower minimum to simulate a wing flapping animation. If the wing’s
angle about the X axis is reached, the flapping direction is reversed accordingly. The
wing’s rotation about the Z axis is incremented by an amount that is consistent with
the upward or downward motion of the wing.

Adding the update_crow_animation() method ensures that the position and angle
of the crow’s body and wings are updated each frame for a smooth animation:

private void update_crow_animation(){

// time between frames

float fTime = this.TargetElapsedTime.Milliseconds;

// check if crow flies past boundary and reverse direction

if (mv3CrowPos.Z > BOUNDARY && mbCrowIncZ == true ||

mv3CrowPos.Z < -BOUNDARY && mbCrowIncZ == false){

mbCrowIncZ = !mbCrowIncZ;

mfSpeedCrow = -mfSpeedCrow;

}

mv3CrowPos.Z += fTime * mfSpeedCrow; // move crow on Z

// check if wing tips rise above max or fall below min

if (mfWingRotation > (float)Math.PI/9.0f && mbWingIncrease == true ||

mfWingRotation < -(float)Math.PI/9.0f && mbWingIncrease == false){

mbWingIncrease = !mbWingIncrease;

mfWingSpeed = -mfWingSpeed;

}

mfWingRotation += fTime * mfWingSpeed; // rotate crow's wings

}

The code for updating the crow’s angle and position is triggered from the Update()
method with a call to the update_crow_animation() method:

399C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
eupdate_crow_animation();

You use the same method to draw the crow’s body and wings. For each case, ad-
justments are made to customize the rotations to ensure the pieces of the crow are
animated properly together. The routine for drawing the models is similar to other
drawing routines used previously in this book. Add draw_crow() to render each
separate piece of the crow:

void draw_crow(Model model, int iModel, GameTime gameTime)

{

foreach (ModelMesh mesh in model.Meshes){

// 1: declare matrices

Matrix matIdentity,matScale,matTransl,matYRot,matZRot,matWorld;

// 2: initialize matrices

matIdentity = Matrix.Identity; // always start with identity matrix

matTransl = Matrix.CreateTranslation(mv3CrowPos);

// set Y rotation based on crow's direction on Z

float rot = 0.0f;

if (mbCrowIncZ) // if crow's Z value is increasing

rot = ((float)Math.PI);

matYRot = Matrix.CreateRotationY(rot);

matScale = Matrix.CreateScale(0.09f, 0.09f, 0.09f);

matZRot = Matrix.CreateRotationZ(0.0f);

// create the wing flap rotation for both wings

switch (iModel){

case WING1:

matZRot = Matrix.CreateRotationZ(mfWingRotation); break;

case WING2:

matZRot = Matrix.CreateRotationZ((float)Math.PI -

mfWingRotation); break;

}

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

matWorld = matIdentity * matScale * matZRot * matYRot * matTransl;

foreach (BasicEffect effect in mesh.Effects){

// 4: pass wvp to shader

if (iModel == CROWMODEL)

effect.World = matCrow[mesh.ParentBone.Index] * matWorld;

else

effect.World = matWing[mesh.ParentBone.Index] * matWorld;

effect.View = mMatView;

effect.Projection = mMatProj;

// 4b: set lighting

effect.EnableDefaultLighting();

effect.CommitChanges();

}

// 5: draw object

mesh.Draw();

}

}

To draw the crow’s body and wings, you call draw_crow() separately with the cor-
rect model and identifier as parameters from the Draw() method:

draw_crow(mModCrow, CROWMODEL, gameTime);

draw_crow(mModWing, WING1, gameTime);

draw_crow(mModWing, WING2, gameTime);

When you compile and run the program, you will see the crow flying back and
forth in your 3D world.

Adding Audio to Your Game Class

At this point, the wave files are referenced in your project and are located in the Au-
dio folder with your .xap project file. Also, the crow model flies back and forth when
you run it. This next section discusses how to add the code to play the audio.

To enable audio in the code project, a reference is required at the top of your
Game1.cs file to include the XACT audio library. This reference has already been
added to the base code project:

using Microsoft.Xna.Framework.Audio;

Some additional preparation in code is needed to store the different components
of your audio system. As mentioned earlier, the project file will be referenced in the
project and will generate the global settings file, the wave bank, and the sound bank.
Module-level declarations for loading and storing the sound engine, wave bank, and
sound bank files will make these objects available for loading and playing your audio
files throughout your game class:

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E400

401

// set up sound objects

private static AudioEngine mSndEngine;

private static WaveBank mWaveBank;

private static SoundBank mSoundBank;

Your global settings, wave bank, and sound bank can now be loaded from the Ini-
tialize() method when the program begins. The file path specified leads to the same
directory where your audioProject.xap project file is located. Even though these files
are not physically present when your project is not running, the directory references
are needed:

mSndEngine = new AudioEngine(".\\Audio\\audioProject.xgs");

mWaveBank = new WaveBank(mSndEngine, ".\\Audio\\Wave Bank.xwb");

mSoundBank = new SoundBank(mSndEngine, ".\\Audio\\Sound Bank.xsb");

To ensure that your audio files unload when the program ends, add some code to
dispose of them when the user exits from the program. deleteAudio() will remove
your sound bank, wave bank, and engine from memory when the application is
shut down:

void deleteAudio(){

mSoundBank.Dispose();

mWaveBank.Dispose();

mSndEngine.Dispose();

}

To ensure deleteAudio() is called when the game ends, inside Update(), just before
this.Exit(), add a call statement to dispose of the audio:

{ deleteAudio();

this.Exit(); }

The introduction sound plays once at the start of the program. When the introduc-
tion finishes, a background drumbeat starts up and repeats for the rest of the game.
Before the drumbeat begins, the introduction Cue object’s IsPlaying attribute is used
to determine if the introduction is still playing. When the introduction ends, a
Boolean flag, mbIntroOver, is set to true. To assist in playing the drum sound only af-
ter the introduction has finished, these variable declarations are added to the module
declarations of the game class:

private static bool mbIntroOver = false; // play intro one time only

private static Cue mCueIntro, mCueDrum;

C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
e

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E402

Reader-friendly identifiers for the sounds will help you track which sounds are
playing from your game class. Defining them in the module-level declaration area of
your game class will enable their use throughout the class:

private const int NUM_SOUNDS = 4;

private const int INTRO = 0;

private const int DRUM = 1;

private const int CROWAUDIO = 2;

private const int BELL = 3;

When the game begins, after the audio files have been initialized, one of the first
tasks required is to set the volumes for the different categories and to start playing the
introduction.

You cannot set the volume for an individual sound bank. However, you can set the
volume for a group of sounds in the same category. For this case, the introduction
and bell are in the Default category, so their volumes are set with the same instruc-
tion. The drum’s volume also needs to be set. However, you have assigned the drum
to the Music category, so you must assign the drum’s volume separately.

Adding the setup_audio_playback() method to your game class will set the vol-
umes for the introduction, bell, and drum sounds. It also starts the playback of the in-
troduction sound:

void setup_audio_playback(){

mSndEngine.GetCategory("Default").SetVolume(1); // intro, bell

mSndEngine.GetCategory("Music").SetVolume(1); // drum

play_sound("intro", INTRO); // play intro at start

}

To ensure the playback for the introduction, drum, and bell are set up when the
program begins, setup_audio_playback() is called from Initialize():

setup_audio_playback();

At every frame, you must update the sound engine. If you omit this update, it may
seem for many frames that your audio is working. However, Microsoft warns that
without continuous updates, the sound engine will inevitably crash.

Before you actually update the sound engine, an additional check is made to en-
sure that the sound engine exists. You use the sound engine’s IsDisposed property for
this check. Trying to update the sound engine when it has been disposed will cause a
program crash. To implement the sound engine update, add the following code to the
Update() method:

if (!mSndEngine.IsDisposed)

mSndEngine.Update();

403

As mentioned earlier, there are two methods for playing sound. play_sound() uses
the GetCue() method to retrieve the sound and play it with the Play() method. This
playback routine is useful for the introduction and drum sounds because they are ei-
ther played once or played in a continuous loop during the game. The GetCue() /
Play() combination also offers the ability to pause and resume audio play. Adding the
play_sound() routine to the game class provides a mechanism for playing the intro-
duction and drum audio:

void play_sound(string strCueName, int iEmit){

if (!mSoundBank.IsDisposed){

Cue cue = mSoundBank.GetCue(strCueName);

// handle case where intro plays once at beginning

if (strCueName == "intro")

mCueIntro = cue;

// be able to pause and resume drum

else if (strCueName == "drum")

mCueDrum = cue;

cue.Play();

}

}

To enable proper timing for pausing and resuming the drum, and to enable better
timing for the playback of the bell, add module declarations for variables to store the
time lapse from the first press event that triggers each sound:

private double mdblDrumDelay;

private double mdblBellDelay;

This next method handles sound events for starting the drum after the introduc-
tion finishes, for pausing and resuming the drum, and for ringing the bell.

Before anything is done in this routine, a check is made to ensure the audio engine
and sound bank actually exist. Failing to check whether these objects exist will cause
the program to crash if the sound banks or cues are used after the audio engine or
sound banks have been disposed.

The drum is started only after the introduction finishes. When the program begins,
a check is made each frame to determine whether the introduction is playing. When
the introduction’s IsPlaying attribute is false, the drumbeat is started and a Boolean
flag is set so that this condition is never entered again during the game.

When you’re coding the routine for toggling between the drum’s paused and re-
sumed states, a check is made to ensure there is a time delay of 0.25 seconds before
the pause or resume state can be changed. This delay allows the user enough time to
release the P key or the A button before their state is toggled again.

C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
e

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E404

The code used to ring the bell implements a delay between rings to allow each bell
sound to play completely before it rings again. The PlayCue() method is used to play
the bell audio because it is a rapid-fire sound that is played during a right trigger event
or a left-mouse-click event. The PlayCue() method is not prone to disruptions to the
audio, which can be caused by garbage collection that occurs with the GetCue() and
Dispose() methods. The PlayCue() method requires that the cue be stored in memory
for as long as the audio is needed during the game.

void handleSoundEvents(GameTime gameTime)

{

KeyboardState kbState = Keyboard.GetState();

// ensure the engine and sound bank exist before using them

if(!mSndEngine.IsDisposed && !mSoundBank.IsDisposed){

// play drum loop as soon as intro is finished

if (mbIntroOver == false){

if (mCueIntro.IsPlaying == false){

mbIntroOver = true; // ensure that drum loop starts once only

play_sound("drum", DRUM);

}

}

// if P key or A button pressed toggle drum on and off

if ((kbState.IsKeyDown(Keys.P) |

GamePad.GetState(PlayerIndex.One).Buttons.A == ButtonState.Pressed)

// 1/4 s delay between press event allows sound to play till end

&& gameTime.TotalGameTime.TotalMilliseconds - mdblDrumDelay > 250){

// track time that drum is played

mdblDrumDelay = gameTime.TotalGameTime.TotalMilliseconds;

// toggle between pausing and playing drum

if (mCueDrum.IsPlaying && !mCueDrum.IsPaused)

mSndEngine.GetCategory("Music").Pause(); // pause drum

else if (mCueDrum.IsPaused)

mSndEngine.GetCategory("Music").Resume(); // play drum

}

// play bell when user left-clicks mouse or pulls right trigger

if (// 1.0 s delay between press event allows sound to play till end

((gameTime.TotalGameTime.TotalMilliseconds-mdblBellDelay)>1000.0f)

&& (

#if !XBOX // mouse events only apply on windows

mMouse.LeftButton == ButtonState.Pressed |

#endif

405C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
eGamePad.GetState(PlayerIndex.One).Triggers.Right != 0.0f)

){ // track game time that bell is played

mdblBellDelay = gameTime.TotalGameTime.TotalMilliseconds;

mSoundBank.PlayCue("bell");

}

}

}

handleSoundEvents() is called from Update() to ensure the bell and drum play-
back are handled every frame:

handleSoundEvents(gameTime);

Adding 3D Audio

The last sound played in this demonstration is the crow. This sound uses 3D audio to
give it depth. The 3D audio positions the sound in your speakers according to the dis-
tance and orientation between the camera and sound source.

Two game class–level objects are required for 3D audio to calculate the proper
volume for each speaker. The AudioListener stores the position, speed, and orienta-
tion of the viewer, which is usually defined at the camera. The AudioEmitter stores
the position and orientation of the object that makes the noise (which is the crow in
this case).

AudioListener mListener = new AudioListener();

AudioEmitter mEmitterCrow = new AudioEmitter();

As mentioned previously, GetCue() must be used to retrieve the cue before play-
back when you’re using 3D audio. However, after every queue is played, it is auto-
matically disposed and removed later through garbage collection. When cues are
frequently disposed and regenerated, this causes unwanted static in your audio dur-
ing playback. To avoid this problem, you will place a helper class just inside the game
class to store the cue for reuse and to track the sound emitter attached to it:

private class Audio3DCue{

public Cue cue;

public AudioEmitter emitter;

}

With this helper class in place, a module-level list and stack are declared to track
the active sound cues and to store inactive cues:

List<Audio3DCue> mActiveCueList= new List<Audio3DCue>();

Stack<Audio3DCue> mCueStack = new Stack<Audio3DCue>();

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E406

Because the camera speed and crow speeds are used to update the listener and help
it perform the 3D audio calculations, variables are needed at the module level to store
the previous position for determining the magnitude of change in distance:

private Vector3 mv3PrevCamPos, mv3CrowPosOld;

The previous camera and crow positions can be assigned at the start of the Up-
date() method before the current positions are reassigned. Later you can use these
values to calculate the speed of the camera and crow:

mv3PrevCamPos = cam.m_vPos; mv3CrowPosOld = mv3CrowPos;

updateAudioListener() is added to the game class to update the listener position
and orientation vectors:

void updateAudioListener(){

Vector3 v3Look = cam.m_vView - cam.m_vPos;

Vector3 v3speed = cam.m_vPos - mv3PrevCamPos;

v3Look.Normalize();

mListener.Position = cam.m_vPos;

mListener.Forward = v3Look;

mListener.Up = cam.m_vUp;

mListener.Velocity = v3speed;

}

You will use these listener vectors to later position the audio in the speaker.
For this demonstration, you will update the emitter vectors just before the calcula-

tion that positions the sound in the speaker. In the game class, the Apply3DAudio
method first updates the crow’s position, speed, and orientation vectors. Then it calls
the Cue object’s Apply3D() method. Apply3D() uses the listener and emitter data to
set the volume and position for the crow’s sound:

private void Apply3DAudio(Audio3DCue cue3D)

{

Vector3 v3Speed = mv3CrowPos - mv3CrowPosOld;

mEmitterCrow.Position = mv3CrowPos;

mEmitterCrow.Up = new Vector3(0.0f, 1.0f, 0.0f);

mEmitterCrow.Velocity = v3Speed;

v3Speed.Normalize();

mEmitterCrow.Forward = v3Speed;

407C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
eif (!cue3D.cue.IsDisposed && !mSoundBank.IsDisposed

&& !mSndEngine.IsDisposed)

cue3D.cue.Apply3D(mListener, mEmitterCrow);

}

The updateAudioEmitters() method calls the Apply3DAudio method after man-
aging the existing cues. If a cue has stopped playing, updateAudioEmitter() disposes
of it and pushes the cue instance on the stack for reuse later to prevent unwanted gar-
bage collection. The cue is no longer active, so it is removed from the active cue list.
Otherwise, if the cue is playing, it is retrieved from the active cue list and
Apply3DAudio() is called to perform the 3D audio calculations:

void updateAudioEmitters(){

for(int i = 0; i<mActiveCueList.Count; i++){

Audio3DCue audio3Dcue = mActiveCueList[i];

if (!audio3Dcue.cue.IsDisposed && audio3Dcue.cue.IsStopped){

audio3Dcue.cue.Dispose(); // dispose when stops playing

mCueStack.Push(audio3Dcue); // store Audio3DCue for reuse

mActiveCueList.RemoveAt(i); // remove inactive cue from list

}

else

Apply3DAudio(audio3Dcue); // cue playing so update 3D

}

}

The emitter and listener objects must be updated each frame so they are called
from the end of the Update() method:

updateAudioListener();

updateAudioEmitters();

play3DAudio() is placed in the game class either to retrieve an available cue from
the stack (if it exists) or to create one if it does not exist. Once the cue is ready,
Apply3DAudio() is called to calculate the volume and sound position in each
speaker. After these calculations have been performed, the cue is played and the ac-
tive cue is added to the active cue list. Add play3DAudio to your game class to imple-
ment this routine:

public Cue play3DAudio(string strCueName)

{

Audio3DCue audio3Dcue;

if (mCueStack.Count > 0) // reuse cue if any on stack

audio3Dcue = mCueStack.Pop();

else // otherwise create new one

audio3Dcue = new Audio3DCue();

// store current cue and emitter

audio3Dcue.cue = mSoundBank.GetCue(strCueName);

audio3Dcue.emitter = mEmitterCrow;

Apply3DAudio(audio3Dcue); // set pos and orientation

audio3Dcue.cue.Play(); // play it

mActiveCueList.Add(audio3Dcue); // store in active audio list

return audio3Dcue.cue;

}

The crow’s sound was set in the XACT authoring tool to repeat once every time it
is played. The result is you hear the sound twice in succession—“caw, caw.” You will
use a timer to play the crow’s cawing every two seconds. In the module declarations
section of your game class, a declaration for the time of the previous frame will assist
in tracking the time lapse between caws:

private double mDblPreviousCrowTime;

A timer like the one that was first used in Chapter 10, “Combining Images for
Better Visual Effects,” enables playback of the crow audio every two seconds:

bool crowTimer(GameTime gameTime)

{

bool bNewInterval;

double dblMS = (double)gameTime.TotalGameTime.TotalMilliseconds;

double dblCurrentFrame = dblMS % 2000;

if (dblCurrentFrame >= mDblPreviousCrowTime) // interval incomplete

bNewInterval = false;

else // interval complete

bNewInterval = true;

mDblPreviousCrowTime = dblCurrentFrame;

return bNewInterval;

}

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E408

409

As long as the sound engine has not been disposed, the timer triggers the crow’s
audio playback event every two seconds at the end of the Update() method. Add the
following code to verify the sound engine and to check for the timer event before
playing the crow audio:

if (!mSndEngine.IsDisposed && crowTimer(gameTime) == true)

play3DAudio("crow");

When you run the program, the game will begin with the introduction sound.
When the introduction is finished, the drumbeat starts. You have the option to pause
or resume the drumbeat by pressing P on the keyboard or the A button on the game
pad. A bell sound can be triggered by left-clicking the mouse or pulling the right trig-
ger of the game controller. The crow can still be heard in each speaker—according to
the listener’s position and angle relative to the crow.

This demonstration has shown how to create several different types of sound. You
can employ the same logic used in the demonstration to create most other types of au-
dio you would need in a game. Scenarios covered include rapid-fire sounds, back-
ground music, looping noises, and audio that must be updated based on the relative
distance between your camera and the sound emitter. We are sure you will notice
how much more enjoyable your games are when you add audio.

CHAPTER 24 REVIEW EXERCISES

1. Implement the step-by-step example in this chapter to create your own
XACT audio project file. Then load your audio and play it from code.

2. Using the solution for the arcing projectiles example from Chapter 17,
“Ballistics,” add in audio to handle a launch sound and a 3D audio–enabled
explosion sound when the rocket hits the ground.

3. Using the solution for “Adding a Car as a Third-person Object” from
Chapter 12, “3D Models,” add a looping noise that repeats to create a
continuous engine sound whenever the car moves forward or backward.

C H A P T E R 2 4

Ad
di

ng
Au

di
o

to
Yo

ur
G

am
e

This page intentionally left blank

CHAPTERCHAPTER2525
Terrain withTerrain with
HeightHeight
DetectionDetection

411

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

412

WHEN playing Halo, did you ever stop to appreciate the beautiful
scenery as you ran toward the Blood Gulch caves after

picking up the rocket launcher? It may be tough to take time to enjoy the moment
when you have to watch out for players who might suddenly appear from behind a
big grassy hill, but this does not mean that gamers will not appreciate the effort you
devote to the terrain in your games.

This chapter shows you how to create rolling fields, with height detection. This way,
you not only see this impressive terrain, but your camera will adjust to rise above the
ground as you travel up or down the hilly landscape. The same logic can be used to im-
plement height detection for other objects in your game. The terrain in this chapter is
generated using a type of topographical map called a height map. Figure 25-1 shows a
grassy landscape similar to the one that will be created in this chapter. As you travel
over the hills, the camera rises or falls according to the height of the ground.

HEIGHT MAPS

A height map is an image that stores information in each pixel about terrain eleva-
tion. Using a height map to create terrain is popular because it is easy for designers to
generate landscapes with an image-editing tool, and it is easy to convert this informa-
tion to implement height detection in a 3D environment. The demonstration used in
this chapter shows how to create and implement a height map using an 8-bit .raw
grayscale image. Each pixel in the .raw image stores information about the eleva-
tion—in a range between 0 and 255. This information is read into an array when the
program begins; the height data in each pixel can then be accessed with the pixel row
and column number. When this technique is applied in a 3D environment, the
ground is divided up into the same number of rows and columns as the image. When
positioning the camera or other objects, you calculate the elevation by determining
the row and column position of the object and then passing this information to the
height map array to retrieve the elevation for the corresponding cell on the landscape.

F I G U R E 2 5 - 1

Terrain drawn from elevation data that is contained in a height map

413C H A P T E R 2 5

Te
rra

in
w

ith
H

ei
gh

tD
et

ec
tio

n

CREATING A HEIGHT MAP USING TERRAGEN

This demonstration shows you how to create a height map using Planetside’s
Terragen. Terragen does an excellent job in creating realistic terrain. If you config-
ured the landscape before making your skybox (as shown in Chapter 8, “Adding
Skies and Horizons to Your Levels”), you can use it to create terrain that matches
your skybox.

Creating the Height Map

Terragen offers many different ways to create a height map. You can select a pat-
tern for creating the terrain randomly or you can sculpt it on your own. This
demonstration shows you how to sculpt it so you can have more control over the
hills and fields you generate. You can download a trial version of Terragen from
www.planetside.co.uk/terragen/. Once you have installed the application, you can
launch it by selecting Terragen from the Start menu. This will open the Terragen win-
dow. To create the terrain, select Landscape from the View menu.

Adjusting the Height Map Size

With the noncommercial edition of Terragen, you can choose from several preset
sizes for your height map. The size 513×513 will be used for this demonstration be-
cause it offers enough pixels to draw smooth hills. However, the size is not so large
that it will impact performance on your PC or Xbox 360. To adjust the size, click the
Size button in the Landscape dialog. Then select 513 in the Landscape Settings dialog
that appears. Note that later in this demonstration you will create a 512×512 texture,
which will be applied to the ground surface. Terragen’s 513×513 pixel dimensions
do not need to match the dimensions of the texture as long as the proportions of the
width compared to the height are the same.

Starting with Level Ground

To clear the terrain so you can start with a flat surface, in the Landscape dialog select the
Modify button. Then, in the Terrain Modification dialog that appears, click Clear / Flat-
ten. After returning to the Landscape dialog, you will notice the height map preview area
is black; this means the ground is level (that is, no area on it has been elevated).

Adding Hills to Your Terrain

To start adding hills to your terrain, from the Landscape dialog, select View / Sculpt.
Select the Basic Sculpting tool in the top-left corner of the View / Sculpt dialog and
then left-click the mouse and drag in the dialog to add terrain. Right-clicking the
mouse and dragging in the dialog lowers the terrain. Elevated areas will be

www.planetside.co.uk/terragen/

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E414

lighter—bright white indicates high elevation and
black indicates ground level. Figure 25-2 shows two
clusters of hills that have been created from
left-clicking the mouse and dragging in the View /
Sculpt dialog.

When you return to the Landscape dialog, the
changes you have made to the terrain will appear on
the left.

Adjusting the Color

You can also adjust the color of the landscape from
the Landscape dialog. This color has no effect on
your height map, but it will affect the texture you will
generate to cover it. In the Landscape dialog, high-
light Surface Map and then click Edit. In the Surface Layer dialog that appears, click
Color on the Base Surface tab. The Surface Color dialog will open and you can adjust
the red, green, and blue settings to establish a general color for your terrain. To look
more realistic, the color will not be uniform across the terrain but it will use the gen-
eral value you set. The color will also be affected by shadows from the sun, elevation,
and other factors—if you choose these in your project settings. When you are satis-
fied with the general colors, click OK to exit from the Surface Color dialog. Then
close the Surface Layer dialog to return back to the Landscape dialog.

Exporting Your Height Map

Your height map is now ready for export. You can export the height map from the
Landscape dialog by clicking the Export button. In the Terrain Export dialog, select
the Export Method drop-down and choose Raw 8 bits, which is the format needed
for the code demonstration. Then click Select a File and Save. When prompted, in the
Export Heightfield dialog, after navigating to the folder where you want to save your
height map, enter the name heightMap.raw and click Save. This action will export
your height map. Now you can create the texture to match the height map. Keep the
Landscape dialog open to have the height map settings available when you generate
the texture.

Creating the Terrain Texture to Match the Height Map

As you may have figured out already, the height map is separate from the texture.
You do not have to use Terragen to create your terrain texture. If you want, you can
use the tiled grass texture included with the base project for your terrain texture.
However, you might consider using Terragen to generate this texture for several rea-
sons. Terragen generates the terrain in a manner that considers many environmental
factors, including the following:

F I G U R E 2 5 - 2

Two clusters of hills
created in the View /
Sculpt dialog

415

� Blending of images

� Shadows based on cloud cover, sunlight, and change in elevation

� Snow, rock, and grass cover quantity, density, and color

� Elevation

When creating the texture for the terrain, you will use the same camera settings
from Chapter 8, “Adding Skies and Horizons to Your Levels.” This will ensure the
terrain can be viewed from the same perspective as your original skybox. Figure 25-3
shows the Rendering Control dialog settings used to generate the terrain image.
Terragen will automatically adjust some of the properties as others are set, so you
may not be able to replicate these properties exactly. However, you need to ensure
the Pitch (Y) value for the camera orientation is set to –90 so the camera points at the
ground when the texture is rendered.

The camera settings applied for the terrain are summarized in Table 25-1.

C H A P T E R 2 5

Te
rra

in
w

ith
H

ei
gh

tD
et

ec
tio

n

F I G U R E 2 5 - 3

Settings for generating the terrain texture

Also, as in Chapter 8, “Adding Skies and Horizons to Your Levels,” the Zoom /
Magnification property is set to 1 to ensure the image is scaled properly when it is ren-
dered by Terragen. This setting can be adjusted in the Camera Settings dialog. You
can navigate there by clicking the Camera Settings button in the Rendering Control di-
alog. Note that the Detail slider is at a maximum setting in the Rendering Control dia-
log; this ensures the highest quality. Lastly, the texture size is set to 512×512, which
matches the size used to create the skybox images you created earlier in the book.

At this point, you will make an additional adjustment to reduce the shadows
caused by the sun. Shadows look great in many situations, but they will look odd for
the current project because they create a large dark area over the ground, which
makes it difficult to see. Also, this effect would look odd in the absence of a surround-
ing series of mountains. To turn off the shadows, from the View menu select
Lighting. In the Lighting Conditions dialog that appears, deselect Terrain Casts
Shadows and Clouds Cast Shadows. Then close the Lighting Conditions dialog to re-
turn to the main window.

When these settings are in place, click Render Preview to check the color, random-
ness, and view of the image. If you are seeing sky, it is probably because the camera
orientation changed. Before you generate the image, you will have to change the cam-
era orientation’s Y value back to –90 to ensure the camera is looking at the ground
when generating the terrain texture. Figure 25-4 shows the Rendering Control and
Landscape dialogs with settings suitable for exporting the terrain. The height map
preview is in the Landscape dialog on the right as well as in the Rendering Control di-
alog in the lower left. The terrain preview is located in the top-left corner of the Ren-
dering Control dialog.

Once your texture setup looks right, you can export the texture by selecting Ren-
der Image. Next, in the Rendering dialog, choose Save. When prompted, you can en-
ter the name of the image and save it as a bitmap.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E416

X Y Z

Camera Position 4200m 4400m 65.4m

Target Position 4200m 4400m 65.4m

Camera Orientation –90 –90 0

Camera Settings for Terrain Creation

T A B L E 2 5 - 1

417C H A P T E R 2 5

Te
rra

in
w

ith
H

ei
gh

tD
et

ec
tio

n

HEIGHT MAP CODE EXAMPLE

Now that you have created a height map and accompanying texture, you can load
them in code. When you run your code, the height map appears and your camera
travels above it. Because many vertices are used to render the height map, an index
buffer is used to reference them to reduce the storage requirements. This code exam-
ple begins with the solution from the first example in Chapter 9, “Index Buffers.”
The solution already has code to render a set of vertices using an indexed buffer.

Once you have obtained the solution for Chapter 9 from the Solutions folder in
the download from the book’s website, you must also reference the custom content
processor you generated in Chapter 22, “Content Pipeline Processors.” To access
your custom content processor, copy the TerrImporter.dll library file you built for

F I G U R E 2 5 - 4

Texture preview on the left and height map preview on the right

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E418

your solution in Chapter 22 to your current project folder. You may obtain a copy
of the TerrImporter.dll file from the solution for Chapter 22 in the Solutions folder
from the download. The TerrImporter.dll file needs to be referenced in your project
in two different places. To add the first reference, right-click the project name in the
Solution Explorer and select Add Reference in the drop-down. In the Add Refer-
ence dialog that launches, select the Browse tab and navigate to TerrImporter.dll.
Selecting this file will add the first reference. Next, to add the content pipeline refer-
ence so you can load your .raw file using the ContentManager class, right-click
your project name in the Solution Explorer and choose Properties. In the gray panel
that appears, click Content Pipeline in the lower-left corner. Then click the Add
button and navigate to the TerrImporter.dll file. Selecting the file and choosing
Open will enable your custom content processor.

Next, you must include the TerrImporter’s namespace at the top of the Game1.cs
file so your game class can access the terrain importer’s load methods and objects:

using TerrImporter;

The NUM_ROWS declaration stores the number of “height” pixels for the image,
and the NUM_COLS declaration stores the number of “width” pixels for the image.
If the dimensions of the .raw file were to change, then the row and column declara-
tions must change accordingly. The terrain grid used will be split into a total number
of cells equivalent to NUM_ROWS * NUM_COLS. To ensure the dimensions fit the
height map, replace the existing row and column definitions with these:

const int NUM_COLS = 513;

const int NUM_ROWS = 513;

Module-level variables are required in the game class to store the height map and
texture:

MyTerrain myterrain;

Texture2D mTexTerrain;

Now that the reference to your custom terrain importer has been added, you can
use it to load your heightMap.raw file. The heightMap.raw file can be obtained from
the Images folder in the download available from the book’s website. Alternatively,
you can use the heightMap.raw file you just created in Terragen. Either way, the
heightMap.raw file must be referenced from the Images folder in the Solution Ex-
plorer. If your terrain importer is referenced in the project correctly, when you select
the heightMap.raw file in the Solution Explorer, you will see it can be loaded using
the ContentManager in the Properties panel that appears. If not, select Content for
the Build Action. Then in the XNA Framework content area of the Properties panel,
choose True. This will allow you to select TerrImporter as the content importer and
TerrProcessor as the content processor.

419C H A P T E R 2 5

Te
rra

in
w

ith
H

ei
gh

tD
et

ec
tio

nTo ensure the height map is loaded when the program begins, load it from the Ini-
tialize() method. Because the height map data is needed to initialize the vertex buffer,
load it before the call to init_dynamic_vb():

myterrain = content.Load<MyTerrain>(".\\Images\\heightMap");

The terrain texture you created in Terragen must be loaded and referenced from
the Images folder for your project so it can be loaded with the ContentManager. In-
side LoadGraphicsContent(), the terrain texture can then be loaded with the follow-
ing instruction:

mTexTerrain = content.Load<Texture2D>(".\\Images\\Terrain");

When the world is rendered in this example, it is divided into rows and columns
that match the width and height pixel dimensions of the .raw file. The row and col-
umn values for the world are passed to the get_height() method, which uses these co-
ordinates to retrieve the corresponding height from the height map array.

If the camera, or any other object that uses this height-detection routine, travels
beyond the outer limits of the world, the height value is taken from the closest cell in
the world that has height detection.

The height stored in the .raw file can range between 0 and 255. These values must
be scaled through division to be sized properly for your 3D world. You may adjust
the scaling to expand or shrink the size of your hills.

Add get_height() to your game class to initialize your terrain when the program
begins, and also to return height information to objects that use height detection at
run time:

float get_height(int iRow, int iCol){

// if camera not over terrain

// then use closest pixel on height map for height data

if (iRow >= NUM_ROWS)

iRow = NUM_ROWS - 1;

if (iCol >= NUM_COLS)

iCol = NUM_COLS - 1;

// image data is loaded starting with the bottom right pixel

// to retrieve the corresponding value in the array the equation is:

// row * NUM_COLS + (NUM_COLS - col - 1)

float f_height;

f_height = myterrain.mByteHeightMap[iRow * NUM_COLS

+ (NUM_COLS - iCol - 1)];

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E420

// scale hills. 0 to 255 is too big for our world

const float HEIGHT_SCALE = 0.0024f;

f_height *= HEIGHT_SCALE;

return f_height;

}

When the program begins, while the vertex buffer is initialized inside init_dy-
namic_vb(), the height information from the height map is used. Replace the existing
assignment for the Y coordinate inside init_dynamic_vb() with this revision:

fy = get_height(iRow, iCol);

getCellPosition() returns the camera’s X and Z cell positions relative to the terrain
grid. For example, if the camera is located in the middle of the cell at row 10 and col-
umn 12, a value of 10.5 is returned for Z and 12.5 is returned for X.

In the original base code, the ground boundary spans from –BOUNDARY to
+BOUNDARY. However, the terrain grid cells are all positive. To simplify the calcu-
lation when we express the camera’s position relative to the terrain grid, temporary
values for the ground are shifted on X and Z as if the ground starts at 0, 0 and in-
creases along X and Z. The calculation to generate the X and Z cell positions be-
comes the following:

X = (camera.x + BOUNDARY) / CellWidth;
Y = (camera.y + BOUNDARY) / CellHeight;

When the camera is no longer above the terrain, the closest row and column on the
terrain grid are returned.

Add getCellPosition() to your game class to return the height for each cell of the
terrain grid. This will assist with setting up the terrain and with implementing the
height detection:

Vector3 getCellPosition(){

// total grid row cells = total rows – 1

// same for column cells

float fNumRowCells = (float)NUM_ROWS - 1.0f;

float fNumColumnCells = (float)NUM_COLS - 1.0f;

float fCellWidth = 2.0f * BOUNDARY / fNumColumnCells;

float fCellHeight = 2.0f * BOUNDARY / fNumRowCells;

421C H A P T E R 2 5

Te
rra

in
w

ith
H

ei
gh

tD
et

ec
tio

n// calculate X and Z

float fPosX = (cam.m_vPos.X + BOUNDARY) / fCellWidth;

float fPosZ = (cam.m_vPos.Z + BOUNDARY) / fCellHeight;

// if camera off grid where there is no height map

// use the closest position on grid

if (cam.m_vPos.X > BOUNDARY)

fPosX = 2.0f * BOUNDARY / fCellWidth;

else if (cam.m_vPos.X < -BOUNDARY)

fPosX = 0.0f;

if (cam.m_vPos.Z > BOUNDARY)

fPosZ = 2.0f * BOUNDARY / fCellHeight;

else if (cam.m_vPos.Z < -BOUNDARY)

fPosZ = 0.0f;

return new Vector3(fPosX, 0.0f, fPosZ);

}

When a change in height is detected, the camera’s position and view are incre-
mented. To calculate this increment, the camera’s position over the terrain grid is de-
termined using getCellPosition(). Usually the camera’s position is somewhere inside
the cell rather than exactly at the start of a row and column. If the height of the camera
was only incremented every time the cell changed, the camera’s ride over the terrain
would be a rough one because it would be forced to jump from elevation to elevation
whenever entering another cell. To provide a smoother ride over the terrain, linear in-
terpolation is used to calculate height inside the cell; this is based on the heights of the
surrounding cell corners. The values used in the linear interpolation are based on the
three closest corners of the cell. To determine the three closest corners, the cell is di-
vided in half (i.e., into two triangles). If the offset between the cell rows is less than 1
minus the offset between cell columns, the corners of the bottom triangle are used.
Otherwise, the corners of the top triangle are used in the linear interpolation to esti-
mate the height within the cell. In pseudo-code, the condition looks like this:

if (dz < 1.0f - dx)

// lower right triangle

else

// upper left triangle

Figure 25-5 shows how each cell is divided to determine which corners should be
considered in the linear interpolation. It also gives the equations used to project the
height of the camera.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E422

Add set_camera_height() to adjust how the camera view and position are incre-
mented with this change in height:

void set_camera_height(){

Vector3 v3Pos = getCellPosition();

float fPosX = v3Pos.X;

float fPosZ = v3Pos.Z;

// cast values to get closest cell row and column

int iRow = (int)fPosZ;

int iCol = (int)fPosX;

// prevent variable overflow at edge of map

if (iRow >= (int)NUM_ROWS - 1.0f)

iRow = (int)(NUM_ROWS - 2.0f);

// create two triangles to make a rectangle based on grid cell points

float fLR, fLL, fUL, fUR; // lower L, lower R, upper R, upper L

fLR = mVertGrid[iRow * NUM_COLS + iCol].Position.Y;

fLL = mVertGrid[iRow * NUM_COLS + iCol + 1].Position.Y;

fUR = mVertGrid[(iRow + 1) * NUM_COLS + iCol].Position.Y;

fUL = mVertGrid[(iRow + 1) * NUM_COLS + iCol + 1].Position.Y;

F I G U R E 2 5 - 5

Height based on linear interpolation of the three closest cell corners

423

// get offset between cam position and row start and column start

float dx = fPosX - iCol;

float dz = fPosZ - iRow;

float fHeight;

// determine which half the camera is in and use three closest cell

// corners to project the height with linear interpolation

// lower right triangle

if (dz < 1.0f - dx)

fHeight = fLR + (fLL - fLR)*dx + (fUR - fLR)*dz;

// upper left triangle

else

fHeight = fUL + (fUR - fUL)*(1.0f - dx) + (fLL - fUL)*(1.0f - dz);

// get height difference and adjust view and position by change in Y

float f_HeightDiff;

f_HeightDiff = fHeight + 0.3f - cam.m_vPos.Y;

cam.m_vView.Y += f_HeightDiff;

cam.m_vPos.Y += f_HeightDiff;

}

The updates to the camera height belong at the end of the set_view_matrix()
method where the camera view and position are adjusted:

set_camera_height();

The method that draws the terrain, draw_grid(), must be modified to draw solid
terrain. The parameter for the primitive type in DrawIndexedPrimitives() must be
changed from a LineStrip to a TriangleStrip:

PrimitiveType.TriangleStrip

Also, the new texture created in Terragen should be referenced in draw_grid().
Add an instruction to apply the terrain texture before the changes are committed to
texture the terrain surface:

mfxTexture.SetValue(mTexTerrain);

When you run the program, your hills will appear, and as you move over them
the camera will rise and fall with their elevation. As you can see, this impressive
effect was created with very little effort. If you like the textures generated by the

C H A P T E R 2 5

Te
rra

in
w

ith
H

ei
gh

tD
et

ec
tio

n

noncommercial version of Terragen, you should consider purchasing a license so you
have the ability to create even larger image sizes and you can access more features.

CHAPTER 25 REVIEW EXERCISES

1. Implement the step-by-step demonstration discussed in this chapter.

2. Create your own height map. Load it into your application. To add detail,
apply multitexturing to the terrain.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E424

CHAPTERCHAPTER2626
MultiplayerMultiplayer
GamingGaming

425

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

426

WE’RE sure you can appreciate the difference between playing
video games against the computer and against your friends.

Whether you’re knocking baseballs over their heads, swerving in front of them to main-
tain a lead, or volleying rockets at them, it’s all good. Most people have a lot more fun
playing against an unpredictable human opponent who puts up a tough fight and trash
talks while doing it.

Until now, the examples in this book have been geared for single-player games.
You can easily change this by converting your base code to enable a multiplayer envi-
ronment—where up to four people at a time can take the controls in a split-screen
game. This type of environment is exactly what you would expect in a 3D first-per-
son shooter game or a racing game.

You could actually split the screen into more than four sections, but the controller
limit is four. You might want additional dimensions, though, if you were to show dif-
ferent views of the world. For example, maybe you want to create a radar screen with
an aerial view of your entire world in addition to the main viewer for navigation. The
split-screen technique offers many useful possibilities for dividing up the graphics
that are rendered in your window.

For XNA projects, the split-screen technique is currently the only supported
method for creating a multiplayer game. At the time of writing, XNA does not sup-
port networked games. You may be able to find a way to enable online networking
for your PC-based games. Even so, a networked solution for your PC-based XNA
games is not supported, and it may be potentially unsafe for your computer.

The code changes required to enable a split-screen game are surprisingly simple.
The Viewport class makes it easy to split your screen. And if your camera is carefully
designed, like it is in this book, you can easily create separate instances to give each
additional player control over her own viewport.

VIEWPORT
A viewport is a section of the window that you use to draw a scene from a specific
view. As you’ll see, using the Viewport class to split the screen is actually very simple.
The Viewport class is used to create a viewport object:

Viewport viewport = new Viewport();

Each viewport object has several properties to set the position and area covered in
the game window. Each section of the window is assigned values for the starting
top-left pixel, the width and height in pixels, and the depth for clipping:

int viewport.X // top left pixel X coordinate

int viewport.Y // top left pixel Y coordinate

int viewport.Width // width in pixels

427C H A P T E R 2 6

M
ul

tip
la

ye
rG

am
in

gint viewport.Height // height in pixels

float viewport.MinDepth // minimum depth of clip volume (usually 0)

float viewport.MaxDepth // maximum depth of clip volume (usually 1)

The bulk of the code changes needed to convert to a multiplayer game are in han-
dling a separate instance of the camera for each player. However, even this task is rel-
atively simple.

When your multiplayer games are rendered on the Xbox 360, your viewports may
be truncated on the televisions where they are played. It is possible that up to 20% of
the screen will be truncated. This issue can be addressed by implementing a routine to
create margins that equal 10% of the window height at the top and bottom and 10%
of the window width for the left and right. An example of how to do this is presented
in the demonstration later in this chapter.

CREATING SEPARATE CAMERAS
FOR EACH PLAYER

To give each user the ability to navigate through the world, a separate camera in-
stance is required for each player. The camera instance gives the players the ability to
change their position and view within the 3D world.

Adjusting the View

For the graphics engine used in this book, whenever a player moves the mouse or
shifts the right thumbstick, he changes his view. In other words, his position in the
world stays the same but his Look direction changes as his view target changes. A
separate view is needed for each player in the game. For example, in a racing game
you might need to focus your camera to watch the contours of a hairpin turn so you
don’t crash. Your friend might need to watch out for an oil slick to maintain control
of the car, and yet another player might be focused on the finish line.

When you assign a separate viewport for each player, every object that is drawn in
the viewport must be rendered according to that player’s view. Even the base code,
which draws nothing but ground, must draw the ground once for each viewport ac-
cording to the viewport owner’s Look direction.

To handle this need for separate views, you can store the View matrix in an array
with a separate instance for each viewport owner. The example presented later in this
chapter shows how to implement multiple views to accompany the separate viewports.

Adjusting the Projection

The Projection matrix transforms vector coordinates into clip space (a cone that the
viewer sees through). If the viewport size changes, you must also adjust the projec-
tion to match. If you do not resize the perspective’s aspect ratio properly, you could

end up with a camera that displays everything in a bloated manner—as if the scene
was either viewed through a fish-eye lens or in a house of mirrors. A properly defined
aspect ratio parameter (width/height) in the Projection matrix will correct this.

The Projection matrix is defined with the following syntax:

// parameters are field of view, aspect ratio w/h, near clip, far clip

Matrix proj = Matrix.CreatePerspectiveFieldOfView(

float fov, float aspect, float nearClip, float farClip)

If you divide the window into top and bottom viewports, the aspect ratio be-
comes this:

Window.ClientBounds.Width / (Window.ClientBounds.Height/2)

HANDLING THE USER INPUT
It is possible to have up to four game controllers, so you could write code to handle
up to four different players and split the screen accordingly at run time. For the PC,
you can even use the mouse and keyboard as one of these inputs. Handling the differ-
ent controllers is easy with the GamePadState class because each controller is refer-
enced by a separate instance of the class. The states for each control on the game pad
can be obtained using the getNewState() method for each player’s game pad.

SPLIT-SCREEN CODE EXAMPLE
This example demonstrates multiplayer 3D gaming in a split-screen environment.
Two aliens will be rendered and controlled in two separate viewports. Each player
has her own viewport and is given control of one alien’s spaceship, which moves with
her camera as she travels. Figure 26-1 shows a split-screen for two players. Each
player can control her view and position inside the viewport and ultimately travel
within the world independently of the other player.

A multiplayer racing game or first-person shooter game uses the same code foun-
dation, so converting the logic to suit a different type of 3D multiplayer game is a sim-
ple task. Converting this logic to handle more than two players is straightforward.

When you run this code on the Xbox 360, you will be able to handle two players,
each with her own controller. When the code is run on the PC, you can handle either
two controllers, or one controller and a mouse/keyboard combination. If you run this
code on the PC with only a mouse and keyboard, you will be able to control one of the
viewports, but the other viewport will be disabled until a controller is connected.

This example begins with either the WinMGHBook or Xbox360MGHBook pro-
ject, which can be found in the BaseCode folder in the download available from this
book’s website.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E428

429

To enable a two-player game, and to identify each player, you declare the
NUMPLAYERS, ALIEN1, and ALIEN2 definitions at the top of the game class:

const int NUMPLAYERS = 2;

const int ALIEN1 = 0; const int ALIEN2 = 1;

Also, to enable an independent view for each player, an array of view matrices is
used to replace the existing View matrix at the start of the game class:

private Matrix[] mMatView = new Matrix[NUMPLAYERS];

To give each player control to move through the 3D environment, and to allow
them to view it independently, you declare an array with two separate instances for
the camera. Use this revision to replace the existing camera object declaration:

private CCamera[] cam = new CCamera[NUMPLAYERS];

When you’re initializing each camera, the starting position and view position for
each person needs to be different. Otherwise, with just a default position and view,

C H A P T E R 2 6

M
ul

tip
la

ye
rG

am
in

gF I G U R E 2 6 - 1

Two viewports for a two-player game. Each player controls her view of the world and can travel
independently.

when the game begins, the players would all be positioned in the same place, one on
top of the other. To set the players up at opposite ends of the world, and to have them
looking at their opponent, each instance of the camera is initialized with parameters
to set the position and view.

An override to the camera constructor allows you to set the position and view of
the camera when it is initialized for each player:

public CCamera(Vector3 v3Pos, Vector3 v3View)

{

mfTimeLapse = 0;

// set up view and position for each player

m_vPos = v3Pos;

m_vView = v3View;

// each player is upright

m_vUp = new Vector3(0.0f, 1.0f, 0.0f);

}

To initialize the camera for the players, you pass their individual starting positions
and views to the camera constructor. This is done from the Initialize() method (in the
game class) at the program start:

Vector3 v3Pos, v3View;

v3Pos = new Vector3(0.5f, 0.0f, BOUNDARY - 0.5f);

v3View = new Vector3(0.5f, 0.0f, BOUNDARY - 1.0f);

cam[0] = new CCamera(v3Pos, v3View);

v3Pos = new Vector3(-0.5f, 0.0f, -BOUNDARY + 0.5f);

v3View = new Vector3(-0.5f, 0.0f, -BOUNDARY + 1.0f);

cam[1] = new CCamera(v3Pos, v3View);

As mentioned earlier in this chapter, because both viewport heights are half the ac-
tual window height, the aspect ratio parameter in the Projection matrix must be ad-
justed. The aspect ratio for the projection becomes (width/(height/2)). To apply this
to the Projection matrix, replace the code that initializes the Projection matrix in
set_proj_matrix() with this revision:

// define what our lens sees

// parameters are field of view, aspect ratio, near clip, far clip

mMatProj = Matrix.CreatePerspectiveFieldOfView(

(float)Math.PI / 4.0f,

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E430

431

(float)Window.ClientBounds.Width/((float)Window.ClientBounds.Height/2.0f),

0.005f, 1000.0f);

The changeView(), move(), strafe(), and draw_ground() methods inside the game
class need to be modified so they can be used for each player. As a result, their headers
must be adjusted to accept the player number, as follows:

Vector2 changeView(GameTime gameTime, int iPlayer)

float move(int iPlayer)

float strafe(int iPlayer)

void draw_ground(int iPlayer)

The game pad is currently hard-coded to default to the first player with an index of
0. For this example, you require a more dynamic way to handle controller input. To
fix this, in the changeView(), move(), and strafe() methods, replace each instance of
mGamePadState[0] with an array instance that uses the player number as the index:

mGamePadState[iPlayer]

Also, to ensure that code for the mouse is executed on the PC when only one or
zero controllers are connected, replace the else statement in changeView() with the
following:

else if(iPlayer != 0)

The code inside set_view_matrix() must also change to handle each player’s view.
Each player is assigned her own view, so she can look out at the world in any direc-
tion she chooses. Replace set_view_matrix() with this new version to update the view
for more than one player:

void set_view_matrix(GameTime gameTime)

{

Vector2 v2View = new Vector2();

for (int i = 0; i < NUMPLAYERS; i++){

v2View = changeView(gameTime, i);

cam[i].changeView(v2View.X, v2View.Y);

mMatView[i] = Matrix.CreateLookAt(

cam[i].m_vPos, cam[i].m_vView, cam[i].m_vUp);

}

}

C H A P T E R 2 6

M
ul

tip
la

ye
rG

am
in

g

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E432

The code that sets the WorldViewProjection matrix inside draw_ground() must also
be adjusted according to the player’s view. This adjustment sets the
WorldViewProjection matrix so it is drawn according to each viewport owner’s view:

mfxTex_WVP.SetValue(mMatWorld * mMatView[iPlayer] * mMatProj);

Because each player has a separate instance of the camera, each camera must be
updated separately; this gives the players the ability to travel independently in the
game world. To enable this, inside Update(), replace the code that handles the time
tracking, forward movement, backward movement, and strafing with this revision to
update these values for each player:

for (int i = 0; i < NUMPLAYERS; i++)

{

cam[i].set_frame_interval(gameTime);

cam[i].move(move(i));

cam[i].strafe(strafe(i));

}

When multiple viewports are used, each one is rendered separately. In effect, the
same scene is drawn more than once. With careful planning, the same methods can be
used for drawing your primitive objects and models. Add the drawScene() method to
draw all objects in each viewport according to the view and perspective of each player:

void drawScene(int iPlayer)

{

// clear screen, set background, start drawing

gfx.GraphicsDevice.Clear(Color.CornflowerBlue);

// begin shader - TexturedShader.fx

mfxTex.Begin(SaveStateMode.SaveState);

mfxTex.Techniques[0].Passes[0].Begin();

// draw objects

draw_ground(iPlayer);

// end shader - TexturedShader.fx

mfxTex.Techniques[0].Passes[0].End();

mfxTex.End();

}

When the viewports are being drawn (while your code is run on the Xbox 360), it is
possible that the full window may not be visible—it may fall outside the title-safe re-
gion. On some televisions, this nonvisible range may be as high as 20%. To adjust for

433C H A P T E R 2 6

M
ul

tip
la

ye
rG

am
in

gthis possibility, the starting top-left pixel that is used as the viewport should allow for
this potential difference. Add the getTopViewport() and getBottomViewport() meth-
ods to calculate the starting top-left pixel for each viewport in this demonstration:

Vector2 getTopViewport()

{

Vector2 v2px = new Vector2(0, 0); // PC shows all pixels

#if XBOX // if code run on Xbox 360

const float kPercent = 0.2f; // nonvisible region is 20%

float fMargin = kPercent / 2; // only draw inside margins

v2px.X = (float)(fMargin * Window.ClientBounds.Width);

v2px.Y = (float)(fMargin * Window.ClientBounds.Height);

#endif

return v2px;

}

Vector2 getBottomViewport(Vector2 v2TopLeft)

{

// adjust render target starting Y pixel for PC and Xbox 360

float fPercent = 0.5f;

v2TopLeft.Y += ((float)Window.ClientBounds.Height * fPercent);

return v2TopLeft;

}

In a multiplayer game, the Draw() method must trigger rendering of the entire
scene for each viewport. Before drawing each viewport, you must set the top-left
pixel where the viewport begins, the height and width properties for each viewport,
and the clip minimum and maximum. If the clip minimum and maximum values are
not set between 0 and 1, your 3D models may not appear with the proper depth.

Replace the existing Draw() method with this version to iterate through the ren-
dering routine for each player and draw all objects in each viewport:

protected override void Draw(GameTime gameTime)

{

Viewport viewport = new Viewport();

gfx.GraphicsDevice.RenderState.CullMode = CullMode.None;

Vector2 v2 = new Vector2(0.0f);

for (int i = 0; i < NUMPLAYERS; i++){

// get starting top left pixel for viewport

if(i==0) // player1 is top view

v2 = getTopViewport();

else // player2 is bottom view

v2 = getBottomViewport(v2);

// assign viewport properties

viewport.X = (int)v2.X; // top left pixel X

viewport.Y = (int)v2.Y; // top left pixel Y

viewport.Width = Window.ClientBounds.Width; // pixel width

viewport.Height = Window.ClientBounds.Height/2;// pixel height

viewport.MinDepth = 0.0f; // set depth between

viewport.MaxDepth = 1.0f; // 0 & 1 or 3D

// models won't

// look right

// set the viewport for the graphics device

gfx.GraphicsDevice.Viewport = viewport;

drawScene(i);

}

base.Draw(gameTime);

}

If you ran the project now, you would see two viewports. Remember that this code
can serve as a base for any multiplayer game.

To make this demonstration more interesting, two aliens will be added. Each
player will be given control of an alien, which will be used as a third-person charac-
ter. The alien will move with the camera. This not only allows each player to control
her own spaceship, but also enables her to view the movements of her opponent in
her own viewport.

For this example, you can use the alien models in the Models folder in the book’s
download. To do this, obtain the alien1.fbx, alien2.fbx, and spaceA.bmp files from
the Models folder. Create a Models folder in your project and reference the .fbx files
from the Solution Explorer.

To load these models and to control their transformations, declarations for the
model objects and their bone transformation matrices are required at the top of the
game class:

Model mModAlien1;

Model mModAlien2;

Matrix[] mMatAlien1;

Matrix[] mMatAlien2;

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E434

435

The code used to load these two models and their accompanying transformation
matrices is contained in the init_aliens() method. To initialize the models, add this
method to your game class:

void init_aliens()

{

mModAlien1 = content.Load<Model>(".\\Models\\alien1");

mMatAlien1 = new Matrix[mModAlien1.Bones.Count];

mModAlien1.CopyAbsoluteBoneTransformsTo(mMatAlien1);

mModAlien2 = content.Load<Model>(".\\Models\\alien2");

mMatAlien2 = new Matrix[mModAlien2.Bones.Count];

mModAlien2.CopyAbsoluteBoneTransformsTo(mMatAlien2);

}

To load the aliens when the program begins, add the call statement init_aliens() to
the Initialize() method:

init_aliens();

For this two-player game, one alien and its spaceship are controlled by each
player. Each alien’s spaceship moves with the player’s camera. To rotate the alien
about the Y axis, so it always points in the direction it is traveling, use the following
method to calculate the angle of direction based on the camera’s Look direction:

float getRotationAngle(Vector3 v3View, Vector3 v3Pos)

{

Vector3 v3Look = v3View - v3Pos;

return (float)Math.Atan2((double)v3Look.X, (double)v3Look.Z);

}

To save on code, the same method is used to draw both aliens. When these items
are rendered in a viewport, this method is called once for each model. This process is
repeated for each player. For this example, alien1’s position and angle of orientation
is based on player1’s camera. Alien2’s position and orientation is based on player2’s
camera. The view is adjusted for each player. The rest of the routine is identical to the
routines you have already used in this book for drawing models.

void drawAliens(Model model, int iModel, int iPlayer)

{

float fYrotation = 0.0f;

C H A P T E R 2 6

M
ul

tip
la

ye
rG

am
in

g

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E436

foreach (ModelMesh mesh in model.Meshes){

// 1: declare matrices

Matrix matWorld,matIdent,matScale,matRotY,matTransl,matTransOrb;

// 2: initialize matrices

matIdent = Matrix.Identity;

matScale = Matrix.CreateScale(0.5f, 0.5f, 0.5f);

matTransl = Matrix.CreateTranslation(Vector3.Zero);

matRotY = Matrix.CreateRotationY((float)Math.PI);

matTransOrb = Matrix.CreateTranslation(0.0f, 0.0f, 1.0f);

switch (iModel){

case ALIEN1:

matTransl = Matrix.CreateTranslation(

cam[ALIEN1].m_vPos.X,-0.7f,cam[ALIEN1].m_vPos.Z);

fYrotation = getRotationAngle(cam[ALIEN1].m_vView,

cam[ALIEN1].m_vPos);

break;

case ALIEN2:

matTransl = Matrix.CreateTranslation(

cam[ALIEN2].m_vPos.X, -0.7f,

cam[ALIEN2].m_vPos.Z);

fYrotation = getRotationAngle(cam[ALIEN2].m_vView,

cam[ALIEN2].m_vPos);

break;

}

matRotY = Matrix.CreateRotationY(fYrotation);

// 3: build cumulative world matrix using I.S.R.O.T. sequence

// identity, scale, rotate, orbit(translate & rotate), translate

matWorld = matIdent * matScale * matTransOrb * matRotY * matTransl;

foreach (BasicEffect effect in mesh.Effects){

// 4: pass wvp to shader

effect.View = mMatView[iPlayer];

switch (iModel){

case ALIEN1:

effect.World =

mMatAlien1[mesh.ParentBone.Index]*matWorld;

break;

case ALIEN2:

437

effect.World =

mMatAlien2[mesh.ParentBone.Index]*matWorld;

break;

}

effect.Projection = mMatProj;

// 4b: set lighting

effect.EnableDefaultLighting(); effect.CommitChanges();

}

// 5: draw object

mesh.Draw();

}

}

To draw each model, add these call statements to the end of the drawScene()
method:

// draw 3D models

drawAliens(mModAlien2, ALIEN2, iPlayer);

drawAliens(mModAlien1, ALIEN1, iPlayer);

When you run this version of the code, each of the two players can control the
movement of her alien separately. In addition, she can view her world and travel in-
dependently of the other player.

Being able to shift the view up and down might be useful for a first-person shooter
game, but it doesn’t look right for this setup. Inside set_view_matrix(), you can pre-
vent the camera from bobbing up and down by modifying the change to the Y view so
it is always zero:

cam[i].changeView(v2View.X, 0.0f);

Finally, to allow each player to see her spaceship out in front of the camera, you
can add a tilt to the Y view so the camera looks downward. Inside the new camera
constructor, add code to adjust the Y view:

m_vView.Y = -0.2f;

When you run the code now, each player will be able to control her view of the
world. This example was kept simple, but you can apply this logic for different
types of games, such as first-person shooter, racing, role-playing, or adventure
games.

C H A P T E R 2 6

M
ul

tip
la

ye
rG

am
in

g

CHAPTER 26 REVIEW EXERCISES

1. Implement the step-by-step demonstration presented in this chapter.

2. Create a three-person viewport window. The first two viewports should
split the top half of the window, and the third viewport should be located
in the bottom half of the window. The user input should be handled in a
way to permit up to three controllers. If the code is run on the PC, and
fewer than three controllers are detected, the mouse and keyboard should
be enabled for the third player. You will need to create a separate
Projection matrix to permit proper viewing from each viewport.

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E438

Index

3D models
introduction to, 164
See also animated models, 3D;

animation (various); car model, 3D;
windmill model, 3D

ACT. See XNA Cross-Platform Audio
Creation Tool (XACT)

animated models, 3D
introduction to, 366
.md2 data, overview of, 367–368
Quake II format, discussion of,

366–367
See also 3D models; lamp model,

animated; MilkShape; Quake II;
Zarlag model

animation, basics of
direction, calculating, 76–80
identity matrix (for transforming

objects), 66
Math.Atan function, 77–78, 87
Math.Atan2 function, 78–79, 87–88
matrix logic (and World matrix),

65–66
moving-object orientation (using

vectors), 79–80
Right Hand Rule, 64–65
rotation/translation matrices, 67
scaling matrix (size), 67
transformations, types of, 64
trigonometric equations for, 76, 77
See also animation examples, specific

topics (e.g., ballistics; matrices;
primitive objects; rotation/revolution;
vectors; etc.)

439

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

animation, airplane example
introduction to, 81
drawing airplane body, 83–84
drawing propeller, 84–85
initializing airplane and propeller,

81–82
initializing speed and position, 85–86
setting angle of direction (Math.Atan,

Math.Atan2), 753–88
setting angle of direction (with vectors),

88–89
spinning propeller, 81–83, 84–85, 87

animation, earth-moon example
introduction to, 68–69
class-level declarations in, 69
declaring/initializing matrices, 70–71
draw_moon/draw_earth method,

70–72
revolving objects, drawing (steps), 70
vertices, initializing, 69–70
See also animation, airplane example

animation, keyframe (CF-18 Hornet
example)

introduction to, 300
Bézier curves, 300–302, 304
interpolation, 300
jet route, initializing, 302–304
jet initializing routine, adding,

306–307
loading the fighter jet model, 305–306
updating the animation, 304–305
See also animated models, 3D

audio
introduction to, 386
automobile engine sounds, adding

(exercise), 409
directional, 386, 389, 397–398, 399
missile launch, impact sounds, adding

(exercise), 409
XNA audio (XACT), basics of, 386–387

See also bell sound; crow, cawing; drum
sound; XNA Cross-Platform Audio
Creation Tool (XACT)

ballistics
introduction to, 264
arcing projectiles, 265–266
arcing projectiles example,

276–278
gravity, effects of, 265–266,

268, 276
launch-rocket, adding, 273–275
linear projectiles, introduction to,

264–265
linear projectiles example, 267–276
missile launch, impact sounds, adding

(exercise), 409
object direction, setting

(setDirectionMatrix), 268, 277
projectile position update

(update_projectile), 269
projectile state, module-level

declarations for, 267–268
rocket and launcher models, loading,

269–270
rocket launch direction and angle,

273–274
rocket launcher, drawing, 270–272

BasicEffect class
3D car model, BasicEffect shader in,

185–187
BasicEffect object, setting up (in

lighting), 315–316
BasicEffect shader in 3D lamp

model, 377
class, drawing objects with,

59–62

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E440

in default lighting, 312–313
and HLSL (High Level Shader

Language), 59
bell sound, 390, 391–392, 396,

402–405, 409
Bézier curves

introduction to, 300–301
CF-18 Hornet example, 301–307

bone transformation matrices
3D car model, 182
3D windmill model, 176, 177
torch model (fire effect), 295

bones and joints (in Quake II), 366–367
breakpoints, 19, 20, 21
buffers. See dynamic vertex buffers;

index buffers

calculate_to_string() method
in calculating unit vector, 202–203
in vector addition, 195
for vector scaling (multiplication),

196–197
in vector subtraction, 196

camera/camera view
introduction to, 228
camera class shell, creating

(CCamera.cs), 230–231
camera look and feel, defining (3D

car model), 183–184
camera matrices, 229
camera/target positions, setting (skies

and horizons), 114
camera vectors, 228
CreatePerspectiveFieldOfView

function, 229
in crow audio animation, 389, 396, 405,

406, 409

distance from camera, adjusting (3D
car model), 184

game class shell, referencing camera
from, 231–232

game pad and camera movement
(GamePadState), 234–236

height maps, camera settings for,
415–416, 420–423

Look direction/Look vector, 228, 232,
233–234, 236–241

mouse, enabling, 241–243
moving and strafing, 232–234,

235–236
in multiplayer games (See multiplayer

games)
perspective matrix, 229–230
quaternions and camera rotation,

236–238
rotating the view, 236–241
triggering changes (from game

class), 241
updating the view, 238
view matrix, 229
in windmill model, 3D, 177, 179,

181–186, 191
See also game pads/game controllers;

keyboard input; mouse input;
quaternions

car model, 3D
introduction to, 181
BasicEffect shader, use of, 185–187
bone transformation matrices, 182
camera look and feel, defining,

183–184
car and wheel models,

declaring/initializing, 183
car and wheel models, separate,

181, 182
car distance from camera,

adjusting, 184

I N D E X 441

car model, 3D (continued)
car positioning, transformations for,

185–186
car rotation, changing speed of

(SENSITIVITY), 185
centering model at origin, 182
engine sounds, adding (exercise), 409
game pad, directional logic of, 184–185
wheel pivoting, 188–189
wheel rotation (mfTireRotation),

187–188
wheel transformations, 189–192

CF-18 Hornet (keyframe animation
example), 301–307

classes
BasicEffect class, drawing objects with,

59–62
BasicEffect class, implementing lighting

with, 312–313
camera class shell, creating

(CCamera.cs), 230–231
class declaration (earth-moon

example), 69
class declaration (game application), 26
collision class, creating, 247–248
ContentManager class, 92
custom font class, creating, 154–157
IndexBuffer class, 123, 126
Matrix class, 208
Model class, 176
MyTerrain (in pipeline processors),

357–360
naming conflicts in, 26
projectile class, 267
SpriteBatch class, 132, 133, 134–135
static class program, 28
vector classes, 194, 196,

202–203, 210
See also game class

collision detection
introduction to, 246

bird wings, drawing, 250–251
bird wings, flapping, 252–253
bounding spheres (bird-wall example),

246–253
collision, checking for, 252
collision object, initializing, 249
collision object module-level

declarations, 248–249
collision object radius/position,

tracking, 248
collisions, triggering, 260–261
sphere-line collision example, 256–261
sphere-plane collision example,

253–256
wall, drawing, 249–250

color
AmbientLightColor, 312
and animated lamp model, 345
and collisions, 246–247, 250–251
color property, setting (in vertex

type), 114
coloring (using TextureShader.fx),

106–107
and custom image fonts, 154,

158–159, 162
in custom vertex declarations (point

sprites), 285
DiffuseColor, 311, 313, 319, 324
in Draw() method, 27
in fighter aircraft animation, 306
in height maps, 414
in landscapes, 338, 414, 415
and lighting, 311
of line strip, 39–40
and matrices, 210, 211
and multiple viewports, 418
outputting (vertex shader to pixel

shader), 55–57
and pixel shaders, 106–107,

321–322
of point list, 41

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E442

of point sprites, 280, 281–284,
286–288, 292, 293, 296

RGB colors, 55–56, 315, 318, 322
in skybox example, 116–117, 118
SpecularColor, 312, 313, 315,

319, 323
of sprites, 132–133, 137–138, 139–140,

143, 147–148
of triangle strip, 35–36, 37–38
vertex shader, color outputs from,

56–57
and vertex storage format

(VertexPositionColor), 33
in XNA Game Window example, 27, 31
See also VertexPosition/

VertexPositionColor variables
content pipeline processors

introduction to, 354
compiling into a .dll, 354, 356,

360–361, 363
ContentImporter class, 355
ContentProcessor base classes (Tinput,

Toutput), 354
ContentTypeReader, 355–356
ContentTypeWriter, 355
custom content processors, introduction

to, 356
custom content processors, building (in

Windows), 356–363
custom content processors,

implementing in Xbox 360, 363–364
heightMap.raw file, 362, 364
media file properties (in Solution

Explorer), 362
MyTerrain class (user defined),

357–360
TerrImporter, setting ContentImporter

attribute to, 362
TerrImporter (library nameplace shell

name), 356, 357, 359–360
TerrImporter.dll, 356, 360–361, 363

ContentManager
function, declaring, initializing, 26
loading textures using, 92–93

CreatePerspectiveFieldOfView
function, 229

cross product formula for calculating
normal vector, 198–200

crow, cawing
introduction to, 390
3D audio, adding, 405–409
camera view in, 389, 396, 405,

406, 409
code example for, 396–409
crow-update-animation, adding,

398–399
ending, unloading audio files, 401
finite loop (for “caw-caw”),

adding, 394
flying crow, drawing/initializing,

396–398
RPC Preset, crow sound attached

to, 395
sound attenuation, enabling, 394–395
storing, loading audio components,

400–401
wave bank, sound bank, and cues,

391–392
wing animation (flap, rotation),

397–400
See also bell sound; drum sound; XNA

Cross-Platform Audio Creation Tool
(XACT)

custom pipeline processors. See content
pipeline processors

D

debugging
introduction to, 16–17
breakpoints, 19, 20, 21

I N D E X 443

debugging (continued)
errors, Error List, 17, 18
pausing the program, 17
resuming the program, 20
in review exercise, 22
Start Debugging command, 15
stepping (Step Over/Step Into),

19–20
warnings, 17, 18
watch lists, 20–21

direction, calculating
Math.Atan2() function, 78–79
using speed, 77–78
using trigonometry, 76–77
using vectors, 79–80
See also animation, basics of; ballistics;

collision detection
dot product (of vectors), 203–205
drawing and rendering

introduction to, 27
Draw method, function of, 27
Draw method and multipass shaders,

144–145
Draw method for dynamic index

buffers, 125
Draw method in vector addition, 195
draw_grid (in game class),

128–129
draw_ground method (in texturing),

102, 103, 107
DrawIndexPrimitives method (in

dynamic vertex buffers), 125
draw_matrix method (in game

class), 210
draw_string method (and input devices),

341, 342, 343–344, 345,
347–351

draw_surface method (in texturing),
101, 102, 103, 104, 105

DrawUserPrimitives method (in
texturing), 101, 102

draw_wall method (in game
class), 249

rocket launcher, drawing (ballistics),
270–272

shapes, drawing, introduction to,
30–31

SpriteBatchDraw method, 137–139
Update() method, 28
See also animation examples; color;

dynamic vertex buffers; primitive
objects; textures/texturing;
vertex/vertices

drum sound, 390, 391–393, 396,
401–403, 404

dynamic vertex buffers
DrawIndexPrimitives() method (in

rendering), 125
drawing rectangle with, 125–129
initializing, 124
rendering, techniques for, 125
SetSource method, 125,

128–129
See also index buffers

E

Effect objects
introduction to, 50–51
mfxEffect (and shader triggering in

Draw method), 55
mfxPtSpt (declaring, for point

sprites), 286
EffectParameter objects

introduction to, 51
EffectParameter mfxEffectPosX, 58
EffectParameter mfxEffectWVP, 53

Error List, 10, 11, 17, 18

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E444

F

fonts
introduction to, 154
custom font class, code for, 155–157
custom font class, module-level

declaration for, 157–158
custom image font, creating, 154–155
displaying frames-per-second count

(example), 160–162
displaying text in game window

(example), 157–160
font mask texture, storing (SpriteBatch

object), 158
titleSafe TV window region, adjusting

for, 159

G

game application
initializing, 25–26
launching/closing, 28–29

game class
adding audio to, 400–401
in airplane animation, 81–85
calculate_to_string method in, 195
game class shell, referencing camera

from, 231–232
and Game1.cs file, 28–30, 69
get_billboard_angle, adding, 105
init_dynamic_vb, adding, 127
multiply_matrix method in, 209
mVert vertex variable in, 100
mVertSprite object declaration in,

139–140, 142
reverse_direction method in, 252
in skybox example, 115–117
Texture2D object declaration in,

141, 146

update_sprite_uv, adding, 103,
140–141

update_stationary_layer, adding,
147–148

vertex declarations in (for bounding
spheres), 246–247

wave declarations in (water waves),
150–151

Windows PC vs. Xbox 360, 24
See also classes; drawing and rendering

game pads/game controllers
and camera movement, 234–236
controller configuration

(pictorial), 336
controller connection, establishing,

346–347
controller object, declaring (as

four-element array), 345–346
game pad buttons, 347–348
game pad states (GamePadState object),

335–336
left, right shoulder buttons (bumpers),

348–349
left stick, right stick, 349–350
left trigger, right trigger, 350–351
pressed/released status

(ButtonState.Pressed, .Released
attributes), 336–337

rumble, adding/setting, 338, 351–352
thumbsticks, 337
triggers, 337
See also keyboard input; mouse input;

multiplayer games
game statistics. See fonts
Game Studio Express, basics of

adding/removing code files, 12, 13
coding differences: Xbox 360 vs.

Windows Game, 8–9, 24–25
compiling/running projects (Start

Debugging), 12–13

I N D E X 445

Game Studio Express, basics of (continued)
entering/editing code, 12–13
graphics creation, flowchart for, 24
launching, 8
new game window, appearance

of, 14, 25
shader-based rendering in, 44
Visual C# Start Page, 9
See also game window; shaders/shading

game window
introduction to, 24–25
appearance of, 14, 25
basic game window, creating, 25
coded example, 28–30
See also drawing and rendering;

primitive objects; shaders/shading
Game1.cs file

basics of, 28–29
in Earth/Moon example, 69

GamePadState. See game pads/game
controllers

graphics, drawing. See color; drawing and
rendering; primitive objects;
shaders/shading

graphics pipeline, 44
GraphicsDeviceManager/GraphicsDevice

adding lines, points, 40
in airplane/propeller example, 84
drawing line strip, 39
drawing primitive objects

(DrawUserPrimitives), 33–34
in dynamic vertex buffers, 124, 125,

126, 127, 128, 129
in earth/moon example, 71, 72
GraphicsDevice render states,

SpriteBatch resetting, 133
GraphicsDevice.Indices object, 125
GraphicsDevice.Vertices object, 125
in index buffers, 123

in initializing game application, 26,
29–30

and textured objects, 99, 101,
102, 104

in vertex declaration, offset, 33,
35, 37, 38

GSE. See Game Studio Express, basics of

head, pitch, and bank attributes,
114–115

height maps/height detection, introduction
to, 412

height maps (Terragen software)
introduction and discussion, 412
camera cell position,

returning/incrementing, 420–422
camera height, setting, 422–423
camera settings for (Camera Settings

dialog), 415–416
code example, 417–424
color, adjusting, 414
exporting file (Terrain export), 414
height information, accessing/scaling

(get_height), 419–420
heightMap.raw file, 418
hills, adding (View/Sculpt),

413–414
level ground, initial

(Clear/Flatten), 413
previewing (Render Preview),

416–417
size, adjusting (Size button), 413
solid terrain, drawing, 423
TerrImporter.dll library file, accessing,

417–418
texture, creating, 414–415

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E446

heightMap.raw file (in content processors),
362, 364

HLSL (High Level Shader Language)
introduction to, 47
file name extensions, 50
intrinsic functions, 49–50
linear Sampler state, 95
multiplying vectors in, 56
sampler object, 94–95
and shader data types, 48–49
shader files, .fx extensions for, 50,

51–52
texture variable, 94
and XNA BasicEffect class, 59

horizons, creating. See skies and horizons
(Terragen software)

I

index buffers
introduction to, 122
declaring, 123
drawing rectangle with, 125–129
rendering dynamic vertex buffers

with, 125
storage sequence, sizing, 122–123
storing index references (SetData()

method), 124
vertex storage requirements in, 122
See also dynamic vertex buffers

Initialize() override method, 26–27
input devices, general

device responsiveness, adjusting,
337–338

input device states display (PC),
338–339

See also game pads/game controllers;
keyboard input; mouse input

InvSrcAlpha (point sprite transparent
particles), 284

I.S.R.O.T. (transformation mnemonic)
in 3D lamp example, 378
defined, 66, 213
in building cumulative World matrix

(examples), 71, 102, 117–118
in car animation example, 185
in establishing lighting wall/floor

grid, 317
and identity matrix, 223
in multiplayer games, 436
See also World matrix/World

transformation matrix

J

joints and bones (in Quake II),
366–367

K

keyboard input
capturing (using KeyboardState

object), 334
handling keyboard events (example),

339–341
key events, distinguishing (IsKeyDown

method), 335
keyboard keys, identifiers for, 334
time delay, adding, 341–342

keyframe animation
in Quake II format, 366
See also animation, keyframe (CF-18

Hornet example)

I N D E X 447

lamp model, animated
introduction to, 368–369
BasicEffect shader in, 377
bowing animation, creating,

371–373
cumulative world matrix,

building, 378
exporting to Quake II .md2

format, 374
loading Quake II model in code,

374–379
matrices in, 378
meshes, attaching to bone, 370–371
meshes, creating, 369–370
pivot animation, creating, 371–373
previewing animation (Anim

button), 373
skeleton, creating, 370–371
See also Quake II

lighting
the 3D windmill model, 177, 179, 180
introduction to, 310
ambience, simulating by RGBA color

vectors, 322
BasicEffect object, setting up, 315–316
combining different lights (with pixel

shaders), 325–326
default lighting, directional lights in,

312–313
default lighting, implementing

(BasicEffect class), 312–313
diffuse light, defined, 311
diffuse light, generating, 323–324
directional lighting, advantages/use

of, 313
directional lighting, implementing

(EnableDefaultLighting), 312

directional lighting (example), 313–318
drawing, texturing the wall/floor grid,

316–318
global lighting properties,

getting/setting, 312
lighting definition vs. number of

vertices, 315
lighting effect parameters, declaring, 326
lighting matrices, declaring, 326–327
Phong reflection model, 318–319,

323, 325
point light, calculating, 320
point light, discussion of, 320–321
point light (pixel shader code example),

320–325
point light vertex shader, 324,

329–330
point light (XNA code example),

325–328
reflective lighting, types of, 311
reflective normals, 311–312
source lights, 310
specular light, generating (shiny

surfaces), 323
specular light/specular

reflection, 311
textures, applying point light to

(PointLightPS.fx shader), 328
LoadGraphicsContent() override

method, 27

M

Math.Atan function
Math.Atan(), 77–78, 87
Math.Atan2(), 78–79, 87–88

matrices
in 3D lamp model, 378

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E448

CreateRotationX,Y,Z method, 67, 70,
72, 220–222, 225

CreateTranslation method, 67, 71, 72,
215, 225

identity matrix, 66, 223–224
matrix algebra, introduction to, 208
matrix class, 208
matrix multiplication, introduction

to, 208
matrix multiplication (manual, code),

208–213
matrix syntax, 65–66
multiplayer games, view matrix arrays

in, 429
rotation matrices (X,Y,Z), 67,

218–223
scaling matrices, 67, 216–218
setDirectionMatrix (in linear projectile

ballistics), 268, 277
skybox, declaring in, 117
transformation matrices, transformation

order, 65–66, 213
translation matrices, 67, 213–216
W component in, 214
See also World matrix/World

transformation matrix
mbXIncrease Boolean variable, 58
.md2 file

review of, 367–368
See also Quake II

mfXpos float variable, 58
Microsoft Visual C# Start Page, 9
MilkShape

introduction to, 164–165
creating/exporting animated models

with, 366
See also 3D animation; 3D models; lamp

model, animated; Quake II
modeling, 3D. See 3D models

mouse input
alien figures, adding, 434–437
button and move events, 342–344
camera updates, separate, 432
for camera view, 241–243
enabling (MouseState object), 335
mouse cursor, adding, 344–345
in multiplayer games, 431
refreshing (GetState method), 335
scene drawing, multiple, 432,

433–434
See also game pads/game controllers;

keyboard input
mTexParticle, 289
multiplayer games

introduction to, 426
aspect ratio, resizing, 427–428,

430–431
camera angle, initializing, 429–430
individual views, adjusting camera

angles for, 427
individual views, assigning,

431–432
projection matrix, adjusting, 427
split screen code example, introduction

to, 428–429
truncation (of viewports), 427,

432–433
view matrices, array of, 429
viewports in, 426–427

mVert (vertex data storage), 100

N

naming
namespaces (Xbox 360, Windows), 26
naming conflicts (in classes), 26

normal/normalization, vector. See vectors

I N D E X 449

O

orbit, defined, 64
origin, centering at

joining points for animations, 81
primitive object vertices, 68
transformations, 68
See also animation (various); primitive

objects; vertex/vertices

P

particles/particle effects. See point sprites;
sprites, 2D; textures/texturing

Phong reflection model, 318–319,
323, 325

pipeline processors. See content pipeline
processors; graphics pipeline

pixel shaders
colored pixels, returning, 106–107
input/output semantics for, 47–48
for point sprites, 283
See also color; textures/texturing

point sprites
introduction to, 280–281
blending (with ZWriteEnable), 284–285
custom vertex definitions for, 281–282,

285–286, 287–290
Effect object mfxPtSpt, declaring, 286
enabling through shader, 281
fire, building and tuning, 291–294
fire effect particles, creating, 286–294
particle rejuvenation (reset_particle),

290–291
particle updates (position, fade

rate), 291
particles, syntax rules for, 280
pixel shaders for, 283

scaling (with PointSizeMin), 284
shiny particles (SrcAlpha), 284
torch mode, adding, 294–296
transparent particles

(InvSrcAlpha), 284
vertex shader input for, 281–283
Xbox vs. Windows implementation

for, 282
final comment, description, 297
See also sprites, 2D; textures/texturing

PointSizeMin (scaling point sprites), 284
portability, code (Windows PC and Xbox

360), 24–25
primitive objects

introduction to, 30–31
colors and positions, line strip, 39–40
colors and positions, point list, 41
colors and positions, triangle strip,

35–36, 37–38
drawing, introduction to, 34–35
drawing, step-by-step procedure for,

67–68
DrawUserPrimitives, 33–34
line list, adding, 40–41
line strip, coding example, 39–40
point list, adding, 41
triangle strip, coding example,

35–38
types of, 32
vertex declaration, 33
vertex types, 32–33
vertices, centering at origin, 68
See also animation, airplane example;

animation, earth-moon example;
drawing and rendering;
shaders/shading

Program1.cs file, 28
projectiles. See ballistics

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E450

propeller, spinning
in airplane animation, 81–83, 84–85, 87
in exercises, 73, 90
See also animation, airplane example

Pythagorean Theorem, 201

Q

Quake II
introduction to, 366–367
joints and bones in, 366–367
loading MilkShape 3D lamp code in

(.md2 format), 374
.md2 file, review of, 367–368
skins in, 367, 368
textures in (.pcx files), 368
triangle limitations in, 367
weapons, loading (Zarlag model),

382–384
Zarlag model, 379–382
See also lamp model, animated;

MilkShape
quaternions

conjugate quaternions, 237
local rotation quaternion, 237
Look vector as a quaternion, 237
quaternion product, 238
quaternion theory, introduction to,

236–237
updated Look vector, calculating, 237
See also camera/camera view

R

RGB colors
and ambient lighting effects, 322
in directional lighting, 315, 318
and shader functions, 55–56

Right Hand Rule
and 3D animation, 64–65
for normal vectors, 198
and transformation matrices, 213

rotation/revolution
car model rotation speed, changing

(SENSITIVITY), 185
car model wheel rotation

(mfTireRotation), 187–188
of crow wings, 397–399
fan rotation, windmill model

(mfFanRotation), 179
local rotation quaternion, 237
matrices: CreateRotationX,Y,Z()

method, 67, 70, 72, 220–222, 225
Right Hand Rule for, 64–65
rotation matrices (X,Y,Z), 67, 218–223
See also propeller, spinning

rumble
adding/setting, 338, 351–352
See also game pads/game controllers

S

scaling, time lapse, 80–81
scaling, vector

with divisor, 197
with multiplier, 196–197
See also transformations

scaling matrix. See matrices
score tracking. See fonts
SetSource method (rendering dynamic vertex

buffers), 128–129
shaders/shading

introduction to, 44–45
BasicEffect shader, use of, 185–187
BasicShader.fx file, 37
data types, shader, 48–49

I N D E X 451

shaders/shading (continued)
declaring shader functions, 56
diffuse light, calculating, 323–324
Effect objects, 50
Effect parameter, 50
enabling points sprites through, 281
flow control syntax, 49
graphics pipeline, 44
HLSL (See HLSL (High Level Shader

Language))
input/output semantics, 47–48
IntroShader.fx, 52
multipass, in texturing sprites,

144–145
pixel shaders, introduction to, 46
pixel shaders, combining different lights

with, 325–326
point light (pixel shader discussion),

320–321
point light (shader code example),

320–325
referencing from XNA (example), 53–59
referencing shaders in XNA projects,

49–50
specular light, generating (Phong’s

reflection model), 323
structure of, 45–46
techniques and passes, 46
triggering draw() method with, 55
vertex declarations in, 30
vertex shaders, introduction to, 46
vertex shaders, color outputs from,

56–57
vertex shaders and point sprites,

282–283
XNA shader (example), 51–59
See also texturing, shader

implementation for

skies and horizons (Terragen software)
skybox, introduction to, 110–111
building the cumulative world matrix,

117–118
camera, target positions, setting, 114
drawing the skybox, 119
ground texture, 115–116
head, pitch, and bank attributes, setting,

114–115
image properties, setting (sizing, zoom,

etc.), 112–113
initializing the skybox, 116–117
loading the images, 115
matrices, declaring, 117
rendering, saving images, 115
sizing the image, 112
skybox code example, 115–119
Terragen main window, 112
Terragen software, downloading, 111
transformations and textures, setting,

117–118
vertices, required set of, 116–117

Solution Explorer, 10–11
sound. See bell sound; crow, cawing; drum

sound; XNA Cross-Platform Audio
Creation Tool (XACT)

sprites, 2D
introduction to, 132
heads-up-display example (blinking light

button), 134–139
masked, transparent pixels,

removing, 137
multipass shaders, syntax for,

144–145
multitexturing, water example,

145–149
multitexturing, wave example,

149–151

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E452

SpriteBatch class, introduction to,
132–133

SpriteBatch Draw() method, 137–139
SpriteBatch resetting 3D graphics,

133–134
SpriteBlendMode option, 137
texture example (flashing danger sign),

139–143
textures, implementing with, 133
titleSafe TV window region, adjusting

for, 134, 137, 138
See also textures/texturing

SrcBlend setting (point sprite shiny
particles), 284

Start Debugging action, 12
stepping (Step Over/Step Into), 19–20
strafing, camera, 232–234,

235–236

T

Terragen software. See height maps
(Terragen software); skies and horizons
(Terragen software)

TerrImporter. See content pipeline
processors

TerrImporter.dll library file, 417–418
textures/texturing

introduction to, 92
applying point light to (PointLightPS.fx

shader), 328
billboarding, example of, 104–105
blending

(SourceBlend/DestinationBlend), 104
coloring (using TextureShader.fx),

106–107
in height maps, 414–415, 419
loading stored graphics, 100

loading textures (using
ContentManager), 92–93

multitexturing, water, 145–151
opaque textures, coding example for,

98–103
pixel masking (alpha channel), 98, 104
in Quake II (.pcx files), 368
Texture2D object (C# syntax), 92, 97,

99, 100, 103
Texture2D object (particle effects,

mTexParticle), 289
tiling, 107–108
transparent textures, introduction to, 98
transparent textures, coding examples

for, 103–104
UV coordinates, 92, 93, 95
VertexDeclaration object, 99
See also sprites, 2D; shaders/shading;

texturing, shader implementation for;
VertexPosition/VertexPositionColor
variables

texturing, shader implementation for
pixel shader, 2D() function, 95, 106
shader code for applying textures, 95–97
shader code for textures

(TextureShader.fx file), 95–97, 106
shader input/output, declaring, 95
shader texture value, setting (C#

EffectParameter), 97–98
See also HLSL (High Level Shader

Language)
third-person car model. See car model, 3D
time lapse (scaling between frames), 68
titleSafe TV window region, adjusting for

in displaying game statistics, 159
with sprites, 134, 137, 138

transformations
3D, matrix algebra in (World matrix),

65–66

I N D E X 453

transformations (continued)
introduction to, 64
centering at origin, importance of, 68
transformation order, 66
See also animation, earth-moon

example; rotation/revolution; scaling,
vector; translation

translation
conventions for, 64–65, 66
translation matrices, 67

U

UnloadGraphicsContent() method, 28
Update() method, 28
UV coordinates

and textured sprites, 133
in texturing, 92, 93, 95

V

vectors
adding, 194–195
angle between (dot product), 203–205
classes of, 194
defined, 194
dimensionality of, 194
dividing, 197
listener position, orientation

vectors (audio), 389, 394–395,
405–407

look direction/look vector (and camera
view), 228, 232, 233–234,
236–241

multiplying in HLSL (High Level Shader
Language), 56

normal vector, cross product formula
for, 198–200

normal vector, defined, 197–198
normalization, defined, 200
Pythagorean Theorem, 201
Right Hand Rule for, 198
scaling, 196–197
in speed calculations, 79–80
subtracting, 196
unit vector, computing, 202–203
vector length, calculating, 201
W coordinate of, 194
See also quaternions

vertex shader
color outputs from, 56–57
input/output semantics, 47–48
shader texture value, setting, 95–97,

144, 146, 281–282
vertex/vertices

in 3D windmill example, 168,
169, 179

in bounding spheres (collision example),
246–247

centering at origin, importance of, 68
dynamic vertex buffers, 124–130
initializing (in airplane/propeller

example), 81–82, 84
initializing (in code example),

54–55
and lighting definition, 315
in .md2 files, 367–368
mVertSprite vertex object declaration

(for sprites), 139–140
and translation/scaling/identity matrices,

214–215, 216, 223
vertex data storage (and index buffers),

122–124
vertex data storage (for drawing

skybox), 116–117
vertex data storage (in mVert), 100
vertex declaration, introduction

to, 33

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E454

vertex declarations (in directional
lighting), 314–315

vertex definition, customizing (for point
sprites), 281

VertexDeclaration object (in
texturing), 99

See also index buffers; primitive objects;
textures/texturing; VertexPosition/
VertexPositionColor variables

VertexPosition/VertexPositionColor
variables

airplane animation, 81–82, 84
in basic texturing, 92–94, 100–101,

102, 107
bird/collision example, 250–251
in drawing primitives, 35–36
and dynamic buffers, 124, 126,

127–128, 129
earth/moon example, 69, 71, 72
in lighting, 315
in skies and horizons, 116–117, 118
with sprites, water, 139–140, 143,

147–148

W

W coordinate (of vectors)
functions of, 194
and translation matrices, 214

warnings, 17, 18
watch lists, 20–21
weapons, in Quake II Zarlag model,

382–384
windmill model, 3D

introduction to, 165
creating a box (the base), 166–167
adding a cylinder (the fan blade),

167–168
adding a joint (mesh center), 173–174
adding a sphere (the fan pin), 167

assigning material to box and
sphere, 170

assigning material to blade, 169–170
bone transformation matrices, 176, 177
camera view in, 177, 179, 181–186, 191
drawing in XNA (ModelMesh

loops), 177
duplicating the blade, 170–171
exporting the model elements (to .fbx

format), 174–175
lighting the model, 177, 179, 180
loading/animating the windmill in code,

178–181
loading the model in XNA (skeletal

hierarchy), 175–176
merging the windmill elements, 172
MilkShape, introduction to, 164–165
positioning the model at origin, 173
rotating the blade, 171–172
rotating the fan (mfFanRotation), 179
saving (as ms3d project file), 174
texturing the blades, 168–169,

170, 171
See also car model, 3D

Windows Game Studio Projects,
introduction to

coding differences vs. Xbox 360, 8–9
creating a project, basics of, 9–10
debugging (See debugging)
Error List, 10–11
opening existing project, 16
saving, 13–14
Solution Explorer, 10–11
Windows Game project template, 26
XNA game list, displaying, 16

World matrix/World transformation matrix
in airplane animation example, 83–84
cumulative, building (typical), 68, 71,

72, 83–84, 99–100
defined, 65–66
in directional lighting, 317

I N D E X 455

World matrix/World transformation matrix
(continued)

in multiplayer games, 436
in opaque texturing (code example), 102
passing to shader, 68, 71, 72
in skybox, 117, 118

WorldViewProjection matrix (in multiplayer
games), 432

X

Xbox 360 Creator’s Club, 2
Xbox 360 Game Projects

coding differences: Xbox vs. Windows,
8–9, 282

Connect to Computer option, enabling,
14–15

creating, basics of, 10–11
debugging, 15
deploying to Xbox, 12, 14–16

XNA Cross-Platform Audio Creation
Tool (XACT)

introduction to, 386
audio engine, 387
audio project file and .xap file extension,

386–387
Auditioning Utility, testing audio

playback with, 394
bell sound, 390, 391–392, 396,

402–405, 409
camera view (crow audio animation),

389, 396, 405, 406, 409
category property (drum example),

392, 393
crow sound (See crow, cawing)
cues, categories, defined, 388
drum sound, 390, 391–393, 396,

401–403, 404
ending, unloading audio files, 401
finite loop (crow example), 394
game class, adding audio to, 400–401
game introduction, sounds in

(discussion), 396

infinite loop (drum example), 392–393
listener position, orientation vectors,

389, 394–395, 405–407
playback methods (GetCue, PlayCue),

388–389
RPC Preset, crow sound attached

to, 395
saving the audio project, 396
sound bank, adding, 391
sound bank, defined, 388
sound bank, setting volume for, 402
storing, loading audio components,

400–401
volume, scaling, 389
volume attenuation, enabling, 394–395
.wav files for drum, crow, bell, 391–392
wave bank, creating, 390–391
wave bank, defined, 388
wave bank, sound bank, cue panels

(screen shot), 392
XACT authoring tool, launching, 390
See also audio

XNA development environment
introduction to, 2
downloading resources, URL for, 5
installing the software, 2
PC to Xbox 360, connecting, 3, 4
PC video card, requirements for, 5–6
Xbox 360 Creator’s Club, 3
XNA Game Launcher, 3
XNA Game Studio Express (See Game

Studio Express, basics of)
XNA game window (See game window)
XNA shaders, basics of, 51–59

Z

Zarlag model, 379–382
ZWriteEnable (blending point sprites),

284–285

M I C R O S O F T X N A G A M E S T U D I O C R E A T O R ’ S G U I D E456

	Copyright © 2007 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	1 Set Up an XNA Development Environment:
	Set Up an XNA Development Environment:
	Install the Software:
	Join the Xbox 360 Creator’s Club:
	Using the XNA Game Launcher:
	Connect Your PC to Your Xbox 360:
	Download the Examples for This Book:
	XNA and Your PC Video Card:
	2 Developer Basics:
	Managing the Code Project:
	Opening Microsoft XNA Game Studio Express:
	Creating a Game Studio Project:
	Editing Your Code:
	Adding and Removing Code Files to and from the Project:
	Compiling and Running Game Studio Projects:
	Saving the Game Studio Project:
	Deploying an Xbox 360 Game Project:
	Opening an Existing Game Studio Project:
	Debugging:
	Error List:
	Pausing the Program to View Logic and Variable Values at Run Time:
	Chapter 2 Review Exercises:
	3 Introduction to XNA Graphics Programming:
	Creating the XNA Game Window:
	Initializing the Game Application:
	Drawing and Updating the Game Application:
	Closing the Game Application:
	Basic XNA Game Window Example:
	Drawing Graphics in the XNA Game Window:
	Drawing Shapes:
	Primitive Objects:
	Drawing Syntax:
	Drawing Primitive Objects Example:
	Chapter 3 Review Exercises:
	4 Shaders:
	Graphics Pipeline:
	Shaders:
	Shader Structure:
	High Level Shader Language:
	Referencing the Shader in Your XNA Project:
	XNA’s BasicEffect Class:
	Setting Properties Within the BasicEffect Class:
	Techniques and Passes Within the BasicEffect Class:
	BasicEffect Class Example:
	Chapter 4 Review Exercises:
	5 Animation Introduction:
	Right Hand Rule:
	Matrix Logic:
	Transformation Order:
	XNA Matrix Syntax:
	Steps for Drawing a Primitive Object or a 3D Model:
	Declaring and Initializing Individual Matrices:
	Building the Cumulative World Matrix:
	Setting the Shader Values:
	Drawing the Object:
	Applying Transformations: Earth and Moon Example:
	Chapter 5 Review Exercises:
	6 Character Movement:
	Direction:
	Calculating Direction Using Trigonometry:
	Calculating Direction Using Speed:
	Calculating Direction Using Vectors:
	Scaling Animations with Time Lapse Between Frames:
	Character Movement Example:
	Chapter 6 Review Exercises:
	7 Texturing Your Game World:
	Texture Introduction:
	UV Coordinates:
	Texture C# Syntax:
	Shader Implementation for Textures:
	Transparent Textures:
	Alpha Channel:
	Texture Example:
	Billboarding Example:
	Texture Coloring:
	Texture Tiling:
	Chapter 7 Review Exercises:
	8 Adding Skies and Horizons to Your Levels:
	The Skybox:
	Terragen Photorealistic Scenery-Rendering Software:
	Using Terragen to Create a Skybox:
	Setting Up the Terragen Project:
	Creating Each Image: Assigning Head, Pitch, and Bank Properties:
	Chapter 8 Review Exercises:
	9 Index Buffers:
	Index Buffers:
	Dynamically Updating Data with Index Buffers and Vertex Buffers:
	Rendering Vertex Buffers with an Index Buffer Reference:
	Grid Using Index Buffer Example:
	Chapter 9 Review Exercises:
	10 Combining Images for Better Visual Effects:
	Sprites:
	2D Sprites:
	SpriteBatch on the Heads-Up-Display Example:
	Sprite Texture Example:
	Multitexturing:
	Multipass Rendering from the Shader’s Technique:
	Calling the Pass from the Draw() Method:
	Water Using Multitexturing Example:
	Water Using Multitexturing Example, Continued: Adding Waves:
	Chapter 10 Review Exercises:
	11 Score Tracking and Game Statistics:
	Creating a Custom Image Font:
	Custom Font Class:
	Font Example: Displaying Text in the Game Window:
	Font Example: Displaying a Frames-per-Second Count:
	Chapter 11 Review Exercises:
	12 3D Models:
	3D Modeling Tools:
	MilkShape 3D Intro Example: Creating a Windmill:
	Creating a New Project:
	Adding a Box:
	Adding a Sphere:
	Adding a Cylinder:
	Applying a Texture:
	Assigning the Material to the Blade:
	Assigning the Material to the Box and Sphere:
	Duplicating the Blade:
	Rotating the Duplicate Blade about the Z Axis:
	Merging the Groups:
	Positioning the Model at the Point of Origin:
	Adding a Joint:
	Saving the Project:
	Exporting the Model from the Project to the :
	fbx Format:

	Exporting the Windmill Base:
	Exporting the Fan:
	Concluding the MilkShape Demonstration:
	Loading the Model in XNA:
	Drawing the Model in XNA:
	Loading and Animating the Windmill in Code:
	Adding a Car as a Third-person Object:
	Chapter 12 Review Exercises:
	13 Vectors:
	Vector Class:
	Vector Addition:
	Vector Subtraction:
	Vector Scaling:
	Vector Scaling, Example 1:
	Vector Scaling, Example 2:
	Normals:
	Cross Product:
	Cross Product Example:
	Normalization:
	Pythagorean Theorem:
	Using the Pythagorean Theorem to Calculate the Vector Length:
	Using Normalization to Compute the Unit Vector:
	Using the Normalize() Method to Compute the Unit Vector:
	Dot Product:
	Dot Product Method:
	Dot Product Example:
	Chapter 13 Review Exercises:
	14 Matrices:
	Matrix Multiplication:
	Matrix Class:
	Matrix Multiplication Example: 1×4 Matrix * 4×4 Matrix:
	Matrix Multiplication Example: 4×4 Matrix * 4×4 Matrix:
	Transformation Matrices:
	Translation Matrix:
	Scaling Matrix:
	Rotation Matrix X Axis:
	Rotation Matrix Y Axis:
	Identity Matrix:
	Rotation Matrix Z Axis:
	Chapter 14 Review Exercises:
	15 Building a Graphics Engine Camera:
	Camera Vectors:
	Camera Matrices:
	World Matrix:
	View Matrix:
	Perspective Matrix:
	Camera Example:
	Creating the Camera Class Shell:
	Referencing the Camera from Your Game Class:
	Moving and Strafing:
	Rotating the View:
	Updating the View in the Camera Class:
	Triggering Changes to the View from the Game Class:
	Chapter 15 Review Exercises:
	16 Collision Detection:
	Bounding Spheres:
	Collision Detection Between a Sphere and a Plane:
	Implementing the Sphere and Plane Collision-Detection Routine:
	Collision Detection Using Lines and Spheres:
	Chapter 16 Review Exercises:
	17 Ballistics:
	Linear Projectiles:
	Arcing Projectile:
	Linear Projectiles Example:
	Arcing Projectiles Example:
	Chapter 17 Review Exercises:
	18 Particle Effects:
	Point Sprites:
	Custom Vertex Declarations:
	Fire Example Using Point Sprites:
	Chapter 18 Review Exercises:
	19 Keyframe Animations:
	Interpolation:
	Curves:
	Keyframe Animation Example:
	Chapter 19 Review Exercises:
	20 Lighting:
	Lighting Methods:
	Source Lights:
	Reflective Lighting Properties of Materials:
	Reflective Normals:
	Implementing Directional Lighting Using XNA’s BasicEffect Class:
	BasicEffect Default Lighting:
	Directional Lighting Example:
	Implementing Point Light Using the Phong Reflection Model:
	Calculating Point Light:
	Point Light in the Pixel Shader Example:
	Point Light in the Vertex Shader Example:
	Chapter 20 Review Exercises:
	21 Input Devices:
	Handling Keyboard Input:
	Handling Mouse Input:
	Handling Controller Input:
	Game Pad States:
	Handling Pressed and Released States:
	Thumbsticks:
	Triggers:
	Adjusting the Input Device Responsiveness:
	Adding a Rumble:
	Input Example:
	Chapter 21 Review Exercises:
	22 Content Pipeline Processors:
	Content Processors:
	ContentImporter:
	ContentTypeWriter:
	ContentTypeReader:
	Custom Content Processor Example:
	Building a Custom Content Processor in Windows:
	Implementing Your Custom Content Processor on the Xbox 360:
	Chapter 22 Review Exercises:
	23 Animated Models:
	The Quake II Format:
	A Closer Look at the :
	md2 Data:

	Textures with :
	md2 Format:

	Animating Models in MilkShape:
	Creating the Quake II Model:
	Loading and Controlling Quake II Models in Code:
	Loading the Quake II Weapon:
	Chapter 23 Review Exercises:
	24 Adding Audio to Your Game:
	About XACT:
	Programming XNA Audio:
	XACT Audio Project File:
	Audio Engine:
	Global Settings:
	Wave Banks:
	Sound Banks:
	Playback Methods:
	Programming 3D Audio:
	XACT Authoring Tool:
	XACT Authoring Tool Example:
	Launching the XACT Authoring Tool:
	Creating a Wave Bank:
	Adding a Sound Bank:
	Repeating the Steps for the Drum, Crow, and Bell:
	Setting the Category Property for the Drum:
	Creating an Infinite Loop:
	Adding a Finite Loop:
	Testing Your Audio:
	Enabling Volume Attenuation:
	Saving Your Audio Project:
	Music and Crows Audio Example:
	Adding a Flying Crow:
	Adding Audio to Your Game Class:
	Adding 3D Audio:
	Chapter 24 Review Exercises:
	Loading Your Quake II Model in Code:
	25 Terrain with Height Detection:
	Height Maps:
	Creating a Height Map Using Terragen:
	Creating the Height Map:
	Creating the Terrain Texture to Match the Height Map:
	Height Map Code Example:
	Chapter 25 Review Exercises:
	26 Multiplayer Gaming:
	Viewport:
	Creating Separate Cameras for Each Player:
	Adjusting the View:
	Adjusting the Projection:
	Handling the User Input:
	Split-screen Code Example:
	Chapter 26 Review Exercises:
	Index:

