Chad Carter

Microsoft™ XNA"™
Game Studio 3.0

UNLEASHED

Microsoft® XNA™ Game Studio 3.0 Unleashed
Copyright © 2009 by Chad Carter

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33022-3
ISBN-10: 0-672-33022-9

Library of Congress Cataloging-in-Publication Data:
Carter, Chad.

Microsoft XNA game studio 3.0 unleashed / Chad Carter.

p. cm.

ISBN 978-0-672-33022-3

1. Microsoft XNA (Computer file) 2. Computer games—Programming. 3. Video
games. |. Title.

QA76.76.C672C425 2009

794.8'1536—dc22

2008054527

Printed in the United States of America
Second Printing July 2009

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Technical Editor
Chris Williams

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Lisa Stumpf

Proofreader
Language Logistics

Publishing
Coordinator
Cindy Teeters

Multimedia Developer
Dan Scherf

Cover Designer
Gary Adair

Compositor
Jake McFarland

Contents at a Glance

Introduction 1

Part 1 Get Up and Running with XNA Game Studio on Your PC and Xbox 360

1 Introducing the XNA Framework and XNA Game Studio 7

2 XNA Game Studio and the Xbox 360 19

3 Performance Considerations 33
Part Il Understanding XNA Framework Basics

4 Creating 3D Obijects 55

5 Handling Input to Move Our Camera 83

Part Il Content Pipeline

6 Loading and Texturing 3D Obijects 113
7 Sound and Music 123
8 [Extending the Content Pipeline 151

Part IV 2D in XNA Game Studio

9 2D Basics 171
10 2D Effects 191
11 Creating a 2D Game 217

Part V. XNA Game Studio and the Zune
12 Programming for the Zune 255
13 Running the Game on the Zune 273

Part VI High Level Shader Language
14 HLSL Basics 291
15 Advanced HLSL 311

Part VII Physics and Artificial Intelligence
16 Physics Basics 325
17 Finite State Machines and Game State Management 343
18 Al Algorithms 375

Part VIII
19
20
21

Part IX
22
23
24

Part X
25
26
27
28
29

Part XI
30
31

3D Effects
Advanced Texturing Techniques
Special Effects

Particle System

Putting It into Practice
Creating a 3D Game
Improving the Game
Finishing Touches

XNA Framework Networking

Networking Basics

Creating Multiplayer Demos

Creating a Networking Game Skeleton
Creating a Turn-based Multiplayer Game

Creating a Real-time Multiplayer Game

Xbox LIVE Community Games
Best Practices for Creating an Xbox LIVE Community Game
Selling the Game on Xbox LIVE Marketplace

Index

391
417
435

471
501
525

549
565
583
631
671

719
727

739

Table of Contents

Part |

Introduction

Get Up and Running with XNA Game Studio on Your PC and Xbox 360

Introducing the XNA Framework and XNA Game Studio

What Is the XNA Framework?
The Foundation of the XNA Framework
XNA Today

Installing Visual C# 2008 Express

Installing the DirectX Runtime

Installing XNA Game Studio

Creating the Platformer Projects

Compiling and Running Platformer

XNA Game Studio and the Xbox 360

Creating an Xbox 360 Project

Buying the XNA Creators Club Subscription
Connecting the Xbox 360 to the PC

Deploying on the Xbox 360

Debugging on the Xbox 360

Creating a Test Demo for the Xbox 360
Programming for Dual Platforms

The .NET Compact Framework on the Xbox 360

Performance Considerations

Measure, Measure, Measure

The 80-20 Rule

Creating a Benchmark

Monitoring Performance on the Xbox 360
Managing Memory
Understanding the Garbage Collector

On the .NET Framework (Windows)

On the .NET Compact Framework (Xbox 360 and Zune)

Optimization Suggestions
Creating a Micro-Benchmark Framework
Sealing Virtual Methods
Collections

O 0 N N

10
15
15
17
18

19

19
20
21
23
25
25
28
31

33

33
34
35
37
38
39
39

41
41
51
51

vi Microsoft XNA Game Studio 3.0 Unleashed

Part Il

4

Part Il

6

Understanding XNA Framework Basics

Creating 3D Objects

Vertices
Vectors
Matrices
Transformations
Translation
Scaling
Rotation
Transformations Reloaded
Creating a Camera
Projection
View
World
Vertex Buffers
Effects
Textures
Index Buffers
XNA Game Components
Checking Performance
DrawUserIndexedPrimitives versus DrawIndexedPrimitives
Transformations Revolutions

Handling Input to Move Our Camera

Creating a Game Service
Starting a Library
Working with Input Devices

Keyboard

Game Pad

Mouse (Windows Only)
Creating a Stationary Camera
Creating a First-person Camera
Creating a Split Screen

Content Pipeline

Loading and Texturing 3D Objects

Understanding the Content Pipeline
Loading 3D Models
Texturing 3D Models

55

55
55
56
56
56
56
56
57
57
57
58
59
59
63
65
66
69
72
74
76

83

83
86
89
89
93
97
98
102
104

113

113
114
119

Part IV

9

10

Contents

Sound and Music

Direct Access to Sound Files

Microsoft Cross-Platform Audio Creation Tool (XACT)
Wave Banks

Sound Banks

Understanding Variations

Updating Our Input Handler

Plugging In Our Sound Manager

Creating a Sound Demo

Extending the Content Pipeline

Creating a Skybox
Creating the Skybox Content Object
Creating the Skybox Processor
Creating the Skybox Content Type Writer
Creating the Skybox Reader
Using the Skybox
Content Pipeline Processor Parameters
Debugging the Content Pipeline Extension

2D in XNA Game Studio

2D Basics

Sprite Batches
Sprite Blend Modes
Sprite Sort Modes
Save State Modes
Practical Sprite Batches
Splash or Loading Screen Demo
Drawing Multiple Sprites from One Texture Demo
Sprite Batch Blend and Sort Mode Demo
Progress Bar Demo
Using Sprite Fonts
Importing TrueType Fonts
Creating Bitmap Fonts
Drawing 2D Text

2D Effects

Cel Animation
Rotating and Scaling
Blending Mode Example

Vil

123

123
124
124
125
126
134
139
146

151

151
152
152
160
162
163
165
167

171

171
173
173
174
175
176
177
179
183
187
188
188
189

191

191
201
203

viii Microsoft XNA Game Studio 3.0 Unleashed

11

Part V

12

13

Part VI

14

Fade to Color
Making Fire, Old-School Style
Explosions

Creating a 2D Game

Setting Up the Game Skeleton
Creating Parallax Scrolling
Switching States

Drawing Our Hero

Drawing Our Enemies
Handling Collision Detection
Winning and Losing

Adding Transitions

Adding Explosions

Adding Sounds

XNA Game Studio and the Zune

Programming for the Zune

Display Album Art Demo
Deploying to the Zune
Updating the XELibrary

Fire Demo Zune Edition

Creating a Visualization Demo

Creating the Visualization

Running the Game on the Zune

Porting the Game to Run on the Zune
Running the Game in Landscape Mode
Optimizing the Game to Run on the Zune
Zune Limitations

High Level Shader Language

HLSL Basics

Understanding the Shader Process
HLSL Syntax

Variable Types

Semantics

Structs

Intrinsic Functions

204
206
214

217

217
220
229
230
235
240
243
243
246
251

255

255
258
258
260
262
268

273

273
280
283
286

291

293
294
294
296
296
298

15

Part VII

16

Contents

Loops and Conditions
Vertex Shaders
Pixel Shaders
Techniques
Passes
Passing Application Data to the GPU
HLSL Demo

Advanced HLSL

Vertex Displacement
Postprocessing
Setting Up Our Game Code
Setting Up Our Effect Code
More Postprocessing Examples
Negative Image
Switching RGB Values
Sharpening the Image
Blurring an Image
Embossing
Grayscale
Chalk
Wavy

Physics and Artificial Intelligence

Physics Basics

Kinematics
Velocity
Acceleration

Force

Collisions
Momentum
Impulse
Conservation of Momentum
Kinetic Energy
Coefficient of Restitution
Conservation of Kinetic Energy
Solving Our Final Velocities
Creating a Collision Response Demo

304
304
305
305
306
306
307

311

311
313
313
316
317
318
318
318
319
319
320
321
321

325

325
326
326
330
331
331
332
332
332
333
333
333
334

Microsoft XNA Game Studio 3.0 Unleashed

17 Finite State Machines and Game State Management 343
Finite State Machine 343
Object-Oriented Design 344
Managing Game States 345
Managing Game States Demo 348

18 Al Algorithms 375
Setting Up Our Demo 375
Chase Algorithm 380
A Better Chase Algorithm 381
Evading Algorithm 382
Random Movement 382
Creating a Finite State Machine 384

Part VIl 3D Effects

19 Advanced Texturing Techniques 391
3D Lighting 391
Creating a Custom Vertex Format 391

Creating the Demo 394

Ambient Lighting 397
Directional Lighting 399

Bump Mapping 403
Normal Mapping 403
Parallax Mapping 407
Relief Mapping 410
Texture Animation 414

20 Special Effects 417
Transitions 417
Cross-Fade (Dissolve) 422
Directional Wipes 423

Making Fire 428

21 Particle System 435
Particle System Defined 435
Point Sprite Defined 436
Creating the Particle Class 436

Creating the VertexPointSprite Struct 442

Part IX

22

23

24

Contents

Creating the Particle System Engine
Point Sprite Effect File
Particle System Demo
Creating Particle Effects
Rain
Bubbles
Laser Shield
Laser Scanner
Poisonous Gas
The Colorful Effect

Putting It into Practice

Creating a 3D Game

Creating the Tunnel Vision Game
Creating the Game States
Adding a Skybox to Our Game
Compiling the Game

Creating the Game Logic

Creating the Crosshair

Creating the Game-Specific Camera

Improving the Game

Creating the Radar

Creating the Tunnel
Creating the Level Timer
Creating the HUD

Adding Scoring

Keeping Track of High Scores

Finishing Touches

Updating the Title Screen
Updating the Start Menu
Creating the High Score Screen
Updating the Options Menu
Updating the Remaining States
Using the Particle System
Adding Sound

Suggested Improvements

Xi

443
452
455
458
458
461
462
464
465
467

471

471
471
472
472
473
494
495

501

501
504
508
510
511
512

525

525
528
532
536
539
541
542
544

Xii Microsoft XNA Game Studio 3.0 Unleashed

Part X

25

26

27

28

XNA Framework Networking

Networking Basics

Network Architecture
Client/Server
Peer to Peer
Hybrid
System Link Versus LIVE
XNA Requirements for Networked Games
Membership Requirements
Hardware Requirements
Latency Issues
Packet Loss
Bandwidth Constraints
Voice
Packet Headers
Compression
Do Not Send Unneeded Data
Prediction and Smoothing
Inviting Others to Join the Game

Creating Multiplayer Demos

Creating a Network Demo for Windows and the Xbox 360
Local Ad-Hoc Wi-Fi Gaming on the Zune

Creating a Networking Game Skeleton

Creating the Template

Understanding the New Menu Layout
Refactoring Our Menu States

Creating the Network-Specific Game States

Creating a Turn-based Multiplayer Game

Game Design

Starting with the Network Template

Adding in Game-Specific Functionality

Adding in Multiplayer Game Play

Handling Players Leaving and Joining the Game
Wrapping Up the Game

549

549
549
550
550
552
552
553
554
554
555
556
557
557
558
561
562
563

565

565
578

583

583
590
591
605

631

631
632
633
652
665
669

29

Part Xl

30

31

Contents

Creating a Real-time Multiplayer Game

Game Design

Using the Networking Template
Adding in Game-Specific Functionality
Making It Multiplayer

Prediction and Smoothing

Xbox LIVE Community Games

Best Practices for Creating an Xbox LIVE Community Game
Handling Any Display

Game Artwork

Consistent Controls

Handling Menus Appropriately

Trial Mode Experience

Handling Any Audio System

Using the Gamer Profile

Networking Games

Using Rich Presence

Handling the Storage Device Correctly
Marketing the Game

Selling the Game on Xbox LIVE Marketplace

Reviewing Other Creators’ Games
Submitting Our Games
Making Money by Making Games

Index

Xiii

671

671
672
672
689
709

719

719
720
720
721
721
722
723
723
724
724
725

727

727
732
736

739

About the Author

Chad Carter authored the previous edition of this book, Microsoft XNA Unleashed:
Graphics and Game Programming for Xbox 360 and Windows. He is the Chief Technology
Officer at Robertson Marketing Group. He has been creating DirectX applications since
1996 and has developed games using Managed DirectX. Chad wrote a 3D locomotive
simulator for Norfolk Southern that is used to teach children to obey railroad

crossing signals. Chad’s website devoted to the XNA Framework can be found online
at www.xnaessentials.com.

www.xnaessentials.com

Dedication

To the most beautiful woman in the world, my wife Christy.
To my precious daughter Caleigh and my second daughter,
whom I will meet very soon.

Acknowledgments

Just like the first book, a host of people were responsible for making this book a reality.
My wife was extremely supportive this time around as well. Writing this book took much
longer than the original book. Even though I spent much more time on the book than I
originally anticipated, she was patient with the hours I put in. There is absolutely no way
this book could have been completed if it were not for her support. Christy, I love you
more than ever! With Caleigh being older, it was a little more difficult for her this time
around. Caleigh, thank you for being patient with your daddy for the past few months! I
love you very much, and I'm very proud of how much you have learned over the last year.

Next, I want to give praise to my Lord, God Almighty, who sustained me during these
past few months while I completed this book. I also need to thank my pastor, Dr. Roy
Carter, and the prayer partners for their prayers for me as I took on this task.

Next, I'd like to thank Neil Rowe, an executive editor at Sams Publishing. He agreed to
work with me on this project and was my main point of contact at Sams. I'd also like to
thank the rest of the Sams team with whom I had direct contact on this project—Mark
Renfrow, Cindy Teeters, Anne Goebel, and Bart Reed. I'd also like to thank the rest of the
Sams team with whom I did not have any communication but were behind the scenes
making this book a reality. I'm looking forward to seeing those names on the first page.

Shawn Hargreaves, an XNA Framework developer at Microsoft, was the technical editor of
the first edition of this book. His blog can be found at http://blogs.msdn.com/shawnhar/.
His blog and his forum answers helped me tremendously in learning this technology. I'd
like to thank all the XNA Framework developers and Microsoft in general for making this
great technology. XNA Game Studio is truly awesome!

Chris Williams was the technical editor of this book. He was a huge help in making sure I
didn’t just gloss over a topic. He also made sure things flowed in a manner that would
help those just starting out. He was very quick to turn around completed chapters and
was a tremendous help in getting this book done. He also helped me test the networking
chapters over Xbox LIVE.

I'd also like to thank my parents, John and Sandra Carter, for providing many things for
me, including good education. Their support means the world to me. I'd also like to
thank my wife’s mom and dad, Wilson and Vicki Newsome, for helping our family with
many of the duties that I would normally handle but abandoned to write this book. They
also helped keep my family company while I was unavailable.

I'd also like to thank my Twitter Tribe. They have put up with my constant updates as to
which chapter I was working on, what I was stuck on, and how far behind I was. If you
are so inclined, you can follow me on Twitter at http://twitter.com/kewlniss.

Finally, I'd like to thank you for picking up this book. I hope that it serves its purpose and
brings insight into some of the mysteries of writing games. This book does no good if it is
not read, so thank you, and happy programming!

http://blogs.msdn.com/shawnhar/
http://twitter.com/kewlniss

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to pass
our way.

As an executive editor for Sams, I welcome your comments. You can fax, email, or write me
directly to let me know what you did or didn’t like about this book—as well as what we
can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@samspublishing.com
Fax: 317-428-3310

Mail: Neil Rowe, Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/title/9780672330223 for
convenient access to any updates, downloads, or errata that might be available for this
book.

www.informit.com/title/9780672330223

This page intentionally left blank

Introduction

Many developers became interested in programming because they saw a video game and
thought, “How did they do that?” This book helps demystify what is required to make video
games. Being able to write games on a next-generation console such as the Xbox 360 has never
been an option for the masses before. Now with the XNA Framework, games can be written for
the console.

By the end of this book, you will have created four complete games and many demos along the
way. This book takes a serious look at performance-related issues when writing games using XNA
for Windows and the Xbox 360. Two chapters are devoted to the High Level Shader Language
(HLSL), which is a necessity for writing great games. The book covers physics and artificial intelli-
gence (Al). It also covers special effects, including explosions, transitions, and how to create a 3D
particle system. It demonstrates how to create a sound project using the Microsoft Cross-Platform
Audio Creation Tool (XACT) and how to directly access sound files in a game. Two chapters are
devoted to programming games for the Zune. Saving and loading a high score list and creating a
full menu system are also taught in this book. Five chapters are devoted to creating multiplayer
games. Writing network games can be challenging, and this book covers networking in detail.
The final two chapters are on best practices and provide tips on how to sell games on the Xbox
LIVE Marketplace. In general, this book contains a great foundation for many topics that need to
be learned to create and sell a full-featured single-player or multiplayer game.

Who Should Read This Book?

This book was written for developers. You should have a good understanding of programming in
general. The book uses C#, but if you know any modern language, such as C++, Java, or VB.NET,
you will have no problem understanding the code in this book. The book assumes some under-
standing of the Microsoft .NET Framework, which is what the XNA Framework runs on. Without
prior experience writing code using the .NET Framework, you might have to do a little research
now and then, but should not have trouble getting through this book.

This book was written with a few different audiences in mind. Business application developers
who want to use their programming skill set to write computer games are one audience. Graphics
and game developers who have been around the OpenGL and DirectX block should also find
useful information in this book—especially in seeing how things are done “the XNA way.” The
book also targets readers who have some programming experience but have not done anything
formal. The book teaches by example. It is written in such a way that if you are not in front of
your computer, you can still get valuable information from the book because the code is
presented as it is being discussed.

2 Introduction

Hardware and Software Requirements

The code in this book is compiled with XNA Game Studio 3.0. In order to complete the
games and demos in this book, the requirements that follow must be met.

Supported Operating Systems
The following operating systems are supported:
» Windows XP Home Edition
» Windows XP Professional Edition
» Windows XP Media Center Edition
» Windows XP Tablet Edition
» Windows Vista Home Basic Edition
» Windows Vista Home Premium Edition
» Windows Vista Business Edition
» Windows Vista Enterprise Edition
» Windows Vista Ultimate Edition

Windows XP requires Service Pack 2 or later.

Hardware Requirements

When you run XNA Framework games on Windows, a graphics card that supports Shader
Model 1.1 is required. This book has samples that use Shader Model 2.0 and a couple that
use Shader Model 3.0. To get the most from this book, you need a graphics card that
supports Shader Model 3.0. The graphics card should have the most up-to-date drivers.
Updated drivers can be found on the graphics card’s hardware vendor website.

When you run XNA Framework games on the Xbox 360 console, a hard drive must be
connected to the console.

Software Requirements

All the software required to utilize the XNA Framework on Windows is free:
» Microsoft Visual C# 2005 Express Edition
» Microsoft XNA Game Studio Express
» DirectX 9.0c

Instructions on installing the software can be found in Chapter 1, “Introducing the XNA
Framework and XNA Game Studio.”

How This Book Is Organized 3

Code Examples

The source code for the examples in this book can be found on the accompanying CD.
Any updates to the code can be downloaded via www.samspublishing.com or
www.xnaessentials.com.

How This Book Is Organized

This book is organized into 11 main parts, representing the information you need to
understand to use XNA Game Studio effectively. Writing a book is an interesting chal-
lenge. There are basically two routes an author can go. One route is to create small bite-
sized pieces that can be used as a reference. The other route is to take the reader on a
journey from start to finish, covering important topics along the way but doing it in such
a manner that the reader is gradually learning concepts. Then, once the entire book has
been enjoyed, the reader can go back and reread certain sections for mastery.

I have tried to take the second approach in writing this book. The book is best read in
order. The Internet has a wealth of information. Learning about a particular topic is not
difficult. You can easily find information from many different sources on a particular
topic. The problem is there is usually no place to see how a lot of different topics work
together. With a book that is designed to be read from front to back, the main drawback is
a larger time commitment. However, there is usually deeper understanding by the time
the task is complete versus the same amount of time spent looking at particular topics on
the subject from online tutorials and blog posts. Both are very important, but because a
wealth of reference information is available online already, there was no need to make this
a reference book.

There was some criticism concerning the order of the first book. This book is not orga-
nized in a manner similar to many other books. However, a lot of thought was put into
the order of this book. I do believe this book’s order is important, and I did not change it
from the first edition. I start with a very basic chapter explaining the history of XNA and
very detailed instructions on how to install XNA Game Studio. Most people will not need
this, but it is there for those who do. The next chapter jumps right in to talking about the
Xbox 360. Even though there are people who do not have an Xbox 360, it is important to
put this chapter up front so you can be aware of certain things when creating games using
XNA. It is always important to know what you are up against before you start. It is for this
same reason that the very next chapter is on performance. Most books simply give a nod
to performance in a later chapter or maybe an appendix, if at all. I personally believe that
thinking about performance early on is crucial to making a good game. This does not
mean we need to do micro-optimizations early in the process; instead, it is all about
measurement. This is why performance is discussed so early in the book.

www.samspublishing.com
www.xnaessentials.com

4 Introduction

The first real game code that is presented in this book is written for 3D. Many people are
shocked that 2D is not discussed until Chapter 9, “2D Basics.” The reason for putting 3D
before 2D in this book is because picking up 3D is not any harder than learning 2D. The
early chapters are there to introduce you to the XNA Framework as well as the concepts
behind a camera. It is my hope to tear down the mental block many people have that 3D
is much harder than 2D. Granted, there are some complex topics surrounding 3D, and
those are covered later in the book. However, by getting started by drawing models and
responding to input, you'll see there is not a huge difference in the knowledge needed to
write 3D games versus 2D games.

After discussing 3D and the Content Pipeline, the book discusses 2D and then moves into
two chapters devoted to programming for the Zune. The next part of the book discusses the
High Level Shader Language. Physics and artificial intelligence are discussed next. The code
for those chapters uses the basic 3D information you will learn in earlier parts the book.

This is followed up by talking about more advanced 3D topics. A single-player 3D game is
then built, thus allowing us to put into practice all you will learn in this book.

The next part of the book provides an intensive look at developing multiplayer games.
Then the final part of the book discusses some best practices, most of which are done
while creating the demos and games throughout the book. The last chapter explains the
review process and getting your game into a condition to be sold on the Xbox LIVE
Marketplace.

PART |

Get Up and Running with
XNA Game Studio on
Your PC and Xbox 360

IN THIS PART

CHAPTER 1 Introducing the XNA Framework and XNA
Game Studio

CHAPTER 2 XNA Game Studio and the Xbox 360

CHAPTER 3 Performance Considerations

This page intentionally left blank

CHAPTER 1 | IN THIS CHAPTER
Intl‘oducing the XNA » What Is the XNA Framework?

» Installing Visual C# 2008

Framework and XNA =

» Installing the DirectX Runtime

Game StUle > Installing XNA Game Studio

» Creating the Platformer

M Projects
ost developers I know decided to enter the computer

field and specifically programming because of computer
games. Game development can be one of the most chal-
lenging disciplines of software engineering—it can also be
the most rewarding!

» Compiling and Running
Platformer

Never before has it been possible for the masses to create
games for a game console, much less a next-generation
game console. As a relatively new technology, XNA is going
to experience tremendous growth. The sooner we get to
know this technology, the better we will be able to under-
stand the changes that will come in the future.

Microsoft is leading the way in how content will be created
for game consoles. Soon other game console manufacturers
will be jumping at a way to allow the public to create
content for their machines. The great news for the Xbox
360 is that Microsoft has spent a lot time over the years
creating productive and stable development environments
for developers. We will be installing one of Microsoft’s latest
integrated development environments (IDEs) in this
chapter. Before we get to that, though, let’s take a look at
the technology we discuss in this book—XNA.

What Is the XNA Framework?

You have probably heard the statement, “To know where
you are going, you need to know where you have been.” I
am uncertain if that is entirely true, but I do believe it
applies here. Before we dig into exactly what XNA is and
what it can do for us, let’s take a moment to look at DirectX
because that is what the XNA Framework is built on.

8 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

The Foundation of the XNA Framework

Let’s take a journey back to the days of DOS on the PC. When programming games,
graphic demos, and the like in DOS, programmers typically had to write low-level code to
talk directly to the sound card, graphics cards, and input devices. This was tedious, and
the resulting code was error prone because different manufacturers would handle different
BIOS interrupts, I/O ports, and memory banks differently. Therefore, the code would work
on one system and not another.

Later, Microsoft released the Windows 95 operating system. Many game programmers
were skeptical at writing games for Windows—and rightly so—because there was no way
to get down to the hardware level to do things that required a lot of speed. Windows 95
had a protected memory model that kept developers from directly accessing the low-level
interrupts of the hardware.

To solve this problem, Microsoft created a technology called DirectX. It was actually called
Windows Game SDK to begin with, but the name was quickly switched after a reporter
poked fun at the API names DirectDraw, DirectSound, and DirectPlay, calling the SDK
“Direct ‘X.”” Microsoft ran with the name, and DirectX 1.0 was born a few months after
Windows 95 was released. I remember working with DirectDraw for a couple of demos
back when this technology first came out.

Because of DirectX, developers had a way to write games with one source that would work
on all PCs, regardless of their hardware. Hardware vendors were eager to work with
Microsoft on standardizing an interface to access their hardware. They created device
drivers to which DirectX would map its API, so all of the work that previously had to be
done by game programmers was taken care of, and programmers could then spend their
time doing what they wanted to—write games! Vendors called this a hardware abstraction
layer (HAL). They also developed a hardware emulation layer (HEL), which emulates hard-
ware through software in case hardware isn’t present. Of course, this was slower but it
allowed certain games to be run on machines with no special hardware.

After a couple of years, Microsoft released DirectX 3.0, which ran on Windows NT 4 as well
as Windows 95. As part of those upgrades, Microsoft introduced Direct3D. This allowed
developers to create 3D objects inside of 3D worlds. DirectX 4 was never released, but
DirectX 5 was released in 1997 and later had some upgrades to work under Windows 98.

When DirectX 8 came on the scene in 2000, some of the newly available graphics hard-
ware had vertex and pixel shaders. As a result, Microsoft added in a way to pass custom
program code to the hardware. Through assembly code, the game developer could manip-
ulate the data the main game passed to the graphics card. This assembly code was
consumed directly by the graphics hardware.

When there was no graphics hardware, games were slow, but they were very flexible. Later,
as hardware rendering became prominent, the games were faster, but they were not very
flexible in that all of the games really started to look the same. Now with shaders, the
speed of the hardware is combined with the flexibility for each game to render and light
its 3D content differently.

What Is the XNA Framework? 9

This brings us to present-day DirectX: We are up to DirectX 9 and 10. Before I talk about
DirectX 9, I'll spend some time talking about DirectX 10. DirectX 10 was released at the
same time as Microsoft Windows Vista. In fact, DirectX 10 only works on Vista. This is
largely due to the fact that Microsoft has made major changes in the driver model for this
operating system. DirectX 10 also requires a Shader Model 4.0 graphics card.

The Xbox 360 runs on DirectX 9 plus some additional partial support for Shader Model 3.0
functionality. DirectX 9 is the foundation for Managed DirectX, an API that exposed the
core DirectX functionality to .NET Framework developers. There was a lot of concern about
whether this “wrapper” could be as fast as the C++ counterparts. Fortunately, it was almost
as fast—about 98% was the benchmark touted. I experienced these benchmark speeds first-
hand while on the beta team for this technology. I fell in love with Managed DirectX.

The XNA Framework took the lessons learned from Managed DirectX and used that foun-
dation as a launching pad. To be clear, XNA was built from the ground up and was not
built on top of Managed DirectX. It doesn’t use the same namespaces as Managed DirectX
and is not simply pointing to the Managed DirectX methods in the background. Although
XNA utilizes DirectX 9 in the background, there are no references to DirectX’s API like
there were in Managed DirectX.

XNA Today

XNA is actually a generic term, much like the term .NET. XNA really refers to anything
that Microsoft produces that relates to game developers. The XNA Framework is the API
we are discussing. The final piece to XNA is the XNA Game Studio application, which we
discuss in detail later. This is the IDE we use to develop our XNA games.

TIP

In this book, whenever | use the term XNA, | am really referring to the XNA Framework,
unless otherwise noted.

XNA allows us to do a lot of things. We have easy access to the input devices (keyboard,
game pad or controller, mouse). XNA gives us easy access to the graphics hardware. We are
able to easily control audio through XNA. XNA provides the ability for us to store infor-
mation such as high scores and even saved games. XNA also has networking capabilities
built in. This was introduced in version 2.0 of the product. Microsoft uses the Xbox LIVE
technology for network support.

To get started using XNA, you have to install some software. You need to install the latest
version of DirectX 9 as well as have a graphics card that supports DirectX 9.0c and Shader
Model 1.1. (You should get a card that supports Shader Model 3.0 because some of the
examples, including the starter kit we use in this chapter and the next one, will not run
without it.) You also need to install Visual C# Express or one of the other Visual Studio
SKUs, the DirectX 9 runtime, and finally XNA Game Studio. Fortunately, all of the soft-
ware is free! If you don’t have graphics hardware that can support Shader Model 2.0, you

10 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

can pick up a card relatively inexpensively for about US$35. If possible, you should
purchase a graphics card that can support Shader Model 3.0 because a couple of examples
at the end of the book require it. Windows Vista machines have graphics cards that
support Shader Model 4.0 and definitely meet the needs of our XNA games.

In the past, only subscribers to the XNA Creators Club could play the games made by
other developers. Xbox LIVE Community Games, introduced in version 3.0 of XNA Game
Studio, has changed that. Through a peer review process, games can be approved and put
on Xbox LIVE for the world to download. Never before has there been such an easy way
for a game to be seen by so many people.

Not only is XNA Game Studio great for the professional, it is great for the game hobbyist,
the student, as well as someone just getting started because you do not have to shell out a
lot of money to get up and running. One exception to this is if you actually want to
deploy your games on your Xbox 360. To do that, you need to subscribe to the XNA
Creators Club for US$99 a year (or US$49 for four months). Writing games for the PC
using XNA is totally free! As an added benefit of paying for the Creators Club subscrip-
tion, you are able to review other creators’ games and are able to submit your own games
to sell on Xbox LIVE Marketplace. This is discussed in Part XI, “Xbox LIVE Community
Games.”

Oh, in case you are wondering what XNA stands for, XNA’s Not Acronymed (or so
Microsoft says in the XNA FAQ).

Installing Visual C# 2008 Express

To get started, you must have the software installed. Let’s start by installing Visual C#
2008 Express.

TIP
Any Visual Studio 2008 SKU works with XNA Game Studio 3.0.

XNA requires C# due to how the Content Pipeline is used. Some people have successfully
created demos using other languages, such as VB.NET and even F#. However, this is not
currently supported by Microsoft and won't be discussed in this book. This book assumes
you have a good understanding of C#. If you know C++, Java, or VB.NET, you should be
able to pick up C# pretty quickly.

I provide detailed steps to make sure anyone who has not worked with Visual C# Express
will be able to get it installed with no issues. Feel free to skip this section if you already
have a Visual Studio 2008 SKU installed.

Installing Visual C# 2008 Express 11

TIP

Visit http://www.lLoveVB.net/ for some examples of using VB.NET to write XNA Game
Studio games.

To install Visual C# 2008 Express, follow these steps:

1. You will need to be connected to the Internet to install the application. The
application can be downloaded by browsing to http://www.microsoft.com/express/
download/ and clicking the Visual C# 2008 Express Edition Download link to
download and run the vcssetup.exe setup program.

2. Optional. On the Welcome to Setup screen, select the check box to send data about
your setup experience to Microsoft. This way, if something goes awry, Microsoft can
get the data and try to make the experience better the next time around. This screen
is shown in Figure 1.1.

W, Misrusofl Visual C4 2008 Fxpress Filition Selup

Micromchtt ; .
Welcome to Setup Visual C#2008

eloomne bo e Micoosoll Yisoal C8 2008 Fxpress Folion ied alalion wizand, Macrosofl Vi ©2
20U xprecc ic & Fun, ampls and ok P bool fior L p

in creating Windows Forms, Windows Presentation Foundation (WFT) as well as class lbraries and
concole-bacad spphcations, This wizard vall guids you through the installsbion process, IF thic
product requires any prerequisites that are not curmently installed an this computer, you will be
abie to inctal those prerequisites as well.

lelp Improve Setup
Tou can submit anonymous information about your setup experiences to
Microsoft, To participate, check the box below.

I es, send infarmation about my setup experiences to Microsoft Corparation.

B For muore information, click Dala Colledion Policy
(e [t [cond |

FIGURE 1.1 Select the check box if you want the system to provide feedback to Microsoft
about your installation experience.

3. Click Next to continue.

4. The next screen is the End-User License Agreement. If you accept the terms, select
the check box and click Next.

5. The following screen, shown in Figure 1.2, has two installation options you can
check. Neither of these options is required to utilize XNA Game Studio.

http://www.ILoveVB.net/
http://www.microsoft.com/express/download/
http://www.microsoft.com/express/download/

12 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

ofl ¥Wisual C& 2008 Fxpress Filition Selup

- Express Edition

St e opptional prohac () yons would B Lo it all:

I~ MsDN Express Library for visual studio 2008 (Download Size: 29 7 ME)

The MSCH Express Library contains a subset of all Visual Studio product documentation, IF
yonn ks vt it all U MSDN Expuress Library, you can still access e prochet docmentation
o0 M5UN Unline,

™ icrosoft SQL Server 2005 Express Edition (486) (Download Size: 36 MB)

UL Sarver kxpress integrates with Yisual Studio bo provids basic dhent-databace and
server-database capabiliies.

4 For more information, see the Roadme file.

< Previous Next > Cancel [

FIGURE 1.2 Neither of these options is required to utilize XNA Game Studio.

6. Click Next to continue.

7. The next screen, shown in Figure 1.3, asks where we would like to install Visual C#
Express. Note that other required applications, including Microsoft .NET Framework
3.5, will be installed. This is required because C# runs on the .NET Framework. You
will also notice it requires more than 300MB of space.

MRy Microsofl Visual C# 7008 Fxpres

: Falder by

St | e b v vebweres yomn veonshd Bes R el all Bicrosf | Visaal ©4 7008 Fxpress Fibtion.

Install in Folder:
| _x\Program FleciMicrosoft Vicual Studio W0y Browess, .. !

The Following kems wil be downloaded and instaled:

Framework {x36)

* Microsoll Windows SDK fur Visual Sludio 2008 Express Tools for Win3z
[EL-13]

& Microsoll Visual 8 ZO0& Frpress Fdition

= Microgoft NET Framework 3.5 -
= Microsoft Windows SDK for Visual Studio 2000 Cxpress Tools for JNET
= Microsolt SQL Server Compact 3.5 ;I

Disk space requirements; C: 027 MD
Tolal thwihsd sice: 57 MB
A Connect to the Internet befors proceedng with the inctallabon.

<Previous ([Install > | Cancel

FIGURE 1.3 Specify in which directory you want Visual C# Express to be installed.

8. Click Next to continue.

9. Now you are looking at the Installation Progress screen, where you can monitor the
progress of the installation.

Installing Visual C# 2008 Express 13

10. On the Setup Complete screen, you can see the Microsoft Update link. Click it to get
any of the latest service packs for Visual C# Express.

11. Click Exit to complete the installation.

TIP

After you install Visual C# 2008 Express, a reboot may be required.

You have now successfully installed the first piece of the pie to start creating excellent
games with XNA! Before we continue to the next piece of software, you need to open up
Visual C# Express. It might take a couple of minutes to launch the first time the applica-

tion is loaded. Once the Visual C# Express is loaded, you should see the Start Page, shown
in Figure 1.4.

"] EFAEBA,

e

FIGURE 1.4 This is the Start Page inside of Visual C# Express.

The following procedure is optional, but it does ensure that everything is working
correctly on your machine:

1. In the Recent Projects section, find Create Project and click the link. You can also
create a new project under the File menu.

2. Visual C# Express installed several default templates that you can choose from.
Select the Windows Application template, as displayed in Figure 1.5.

14 CHAPTER 1

New Project

Lemplabas:

Introducing the XNA Framework and XNA Game Studio

e
(113

Yisual Studio installed templates

@ @ @ 4 A &I

Class Library WP WP Drowser Console [mpty Project
Applcaton Apphcation Apphcation

My Templates

Search Oulne
Templates..,

A qunject for creationg s application wilh a Wilows Forme uses interCace {NFT Framework 3.5)

Mame: | windowsFormsApploation

o

FIGURE 1.5 The New Project dialog box allows you to choose from the default templates to

create an application.

3. You can leave the name set to WindowsFormsApplication1 because you will just be

discarding this project when we are done.

4. Click OK to create the application.

5. At this point a new project should have been created, and you should be looking at

a blank Windows Form called Form1.

6. Press Ctrl+F5 or click Start Without Debugging on the Debug menu.

If everything compiled correctly, the form you just saw in design mode should actually be
running. Granted, it doesn’t do anything, but it does prove that you can compile and run
C# through Visual C# Express. The end result can be seen in Figure 1.6. Close down the
application you just created as well as Visual C# Express. Feel free to discard the applica-

tion.

Form1

H[=1E3

FIGURE 1.6 A C# Windows Form application after the default template has been compiled

and run.

Installing XNA Game Studio 15

Installing the DirectX Runtime

You also need the DirectX 9 runtime if it isn’t already on your machine. To get started,
follow these steps:

1. Run the dxwebsetup.exe file from Microsoft’s website. This can be found by clicking
the DirectX Runtime Web Installer link at the bottom of the XNA Creators Club
Online - Downloads web page (http://creators.xna.com/en-US/downloads). This file
contains the redistribution package of the February 2007 version of DirectX 9. You
will need to be connected to the Internet so it can completely install the application.

2. You are greeted with the End-User License Agreement. Handle with care.

3. The next screen is a dialog box asking where you would like the installation files to
be stored. You can pick any directory you want as long as you remember it so you
can actually install the runtime—you are simply extracting the files needed to install
the runtime.

4. Click OK to continue.

5. You will be prompted to create that directory if the directory entered doesn’t exist.
Click Yes to continue.

6. Wait for the dialog box with the progress bar to finish unpacking the files.
Now you can actually install the runtime by following these steps:
1. Browse to the folder where you installed the files and run the dxsetup.exe file to
actually install DirectX 9 onto your machine.

2. The welcome screen you see includes the End-User License Agreement. Select the
appropriate radio button to continue.

3. Following the agreement is a screen stating that it will install DirectX. Click Next.

4. Once it finishes installing (a progress bar will be visible while the files are being
installed), you will be presented with the Installation Complete screen.

5. Simply click Finish to exit the setup.

Now we can move on to installing XNA Game Studio.

Installing XNA Game Studio

To use XNA Game Studio, you can use any of the Visual Studio SKUs, including Visual C#
Express.

You must run the Visual C# Express IDE at least one time before installing XNA Game
Studio. If this is not done, not all the functionality will be installed. If XNA Game Studio
was installed prematurely, you will need to uninstall XNA Game Studio, run Visual C#
Express, and then exit the IDE. Then you will be able to reinstall XNA Game Studio.
This is true for any of the Visual Studio SKUs.

http://creators.xna.com/en-US/downloads

16 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

To get started, complete the following steps:

1. Run the XNAGS30_setup.msi file from Microsoft’s website. The file can be down-
loaded by clicking the top link on the XNA Creators Club Online - Downloads
website (http://creators.xna.com/en-US/downloads).

2. Click Next to get past the setup welcome screen.

3. The next screen is the End-User License Agreement. If you accept the terms, select
the check box and click Next.

4. A notification dialog box opens that allows the Windows Firewall to have rules
added to it. These rules allow communication between the computer and the Xbox
360, as well as allow for communication between network games. This can be seen
in Figure 1.7.

1 Microsoft XNA Game Studio 3.0 Setu
P

Firewall Setup fur Micrusoll XNA Gaime Studio 3.0

K
A\

Additional rules will be added to Windows Fircwall. Please choose to enable
rhese rules and splect which bn enahle, or arknnwipdge that you dn not wish
these rules to be on.

(%) Yes, Dwish to select these rules to enable:

[+#] Ak communications between a sbox360 and your compober un e bcal subnet.

Allow the communication of network games bult on the XA Framework.

() Mo, Tdo not vank these rules enabled.,
1F Windowws Firewall i dizahled, the niles will <0l he added in the svent thak Windows Firewal
is cnabded in the Future. IF you are using a diferent Fircwall application, please consult the

resahie or Ly e ations aller aedallstion for moe dedaik,

[peck | [nstal | [Concel |

FIGURE 1.7 XNA Game Studio modifies the Windows Firewall so an Xbox 360 and the PC can
talk to each other. It also allows network games created with XNA to communicate.

5. Click Install to continue. The next screen shows the progress of the installation.

6. Once all of the required files are installed, you are presented with a completion dia-
log box. Simply click Finish to exit the setup.

After you have installed XNA Game Studio, you can go to the Start menu and see that it
added a few more items than those contained in the IDE. Make sure to take the time and
read through some of the XNA Game Studio documentation. There is also a Tools folder
that contains a couple of tools we will be looking at later. We will discuss the XACT tool
in Chapter 7, “Sound and Music,” and the XNA Framework Remote Performance Monitor
for Xbox 360 application in Chapter 3, “Performance Considerations.” Go ahead and
open the Visual C# Express or Visual Studio IDE.

http://creators.xna.com/en-US/downloads

Creating the Platformer Projects 17

TIP

Everything in this book works with all the Visual Studio 2008 SKUs as well as Visual
C# 2008 Express. From this point on | will simply use the term Visual Studio, regard-
less of which SKU (including C# Express) is being used.

When you installed XNA Game Studio, it added properties to Visual Studio to allow it to
behave differently under certain circumstances. Mainly it added some templates (which
we will look at shortly) as well as the ability for Visual Studio to handle content via the
XNA Content Pipeline. It also added a way for you to send data to your Xbox 360, as you
will see in the next chapter.

Creating the Platformer Projects

With XNA Game Studio opened, once you create a new project, you should see a screen
similar to Figure 1.8. Select the Platformer Starter Kit template and feel free to change the
name of the project. Click OK to create the project.

New Project E]
Project bypes: Templates: T Framewiark 3.5 b =
WCF “|| Wisual Studio installed
Worlflow
= visual C# EWmdows Game (3.0) | Elwindaws Game Library (3.0)
Windaws TElbox 360 Game (3.0) \Plbox 360 Game Library (3.0)
Weh 7 2une Game (3.0) \[2une Game Library (3
Smart Device ﬁ[ontent Pipeline Extension Library ... [EEEEIEREEHE
OFfice
Database My Templates
Reporting
Robotics || (Z]5earch Online Templates...
Silverlight il
Test
WCF
WorkFlow =
HMA Game Studio 3.0
1 Mither Prtiect Tures o
A project Far creating a platformer game that you can modify using “NA Game Studio 3.0 ((MET Framework 3.5)

Narne; | Platformerl ‘
Lacation: | C:iDocuments and SettingsiChad Carter|\My DocumentsVisual Studio 2008YPrajects v ‘ [Browise. ..]
Solution Name: | Platformerl ‘ Create directory Far solution

FIGURE 1.8 You can see that installing XNA Game Studio added eight more templates to
Visual Studio.

18 CHAPTER 1 Introducing the XNA Framework and XNA Game Studio

Compiling and Running Platformer

At this point you have your software installed and have even created a starter template
(created by Microsoft) that you can take for a spin. You need to make sure you can
compile the code. To just compile without running, either press Ctrl+Shift+B, press F6, or
click Build Solution on the Build menu. The code should have compiled without any
issues. You can now press Ctrl+F5 to actually run the game. Have some fun playing the
game. Feel free to look around the code and tweak it. Fortunately, you can always re-create
the template if something gets really messed up!

TIP

When working with one solution file and multiple project files in Visual Studio, you can
easily change which devices you are currently building and deploying to by changing the
Solutions Platform dropdown box in the toolbar. If you select Mixed Platforms, you will
compile for each platform every time. For the project you set as your startup project,
XNA Game Studio will try to deploy the game to that device.

Summary

In this chapter, I laid the groundwork in getting all the software required installed so you
can actually create games on your PC. We even compiled a game and played it. After
getting a game session fix, join me in the next chapter, where we will get this project up
and running on the Xbox 360!

CHAPTER 2

XNA Game Studio and
the Xbox 360

XNA Game Studio allows us to write games for the Xbox
360, but an Xbox 360 is not required to enjoy XNA. We can
write games strictly for the PC. However, if we do want to
write games that we can play on our Xbox 360 consoles and
share with others to play on their consoles, we need to
purchase the XNA Creators Club subscription. This will also
allow us to play other community games (which other
developers create) on our Xbox 360 consoles as well.

TIP

This chapter should be read even if you do not have an
Xbox 360. Simply skim through the detailed steps and
read the content to understand the concepts. The
book is best when read in order.

Creating an Xbox 360 Project

With XNA Game Studio opened, we can follow these steps
to create a new project that can run on the Xbox 360:

1. Create a new project. You should see a screen similar
to Figure 2.1.

2. Select the Xbox 360 Game template and change the
name of the project if desired.

3. Click OK to create the project.

IN THIS CHAPTER

» Creating an Xbox 360 Project

» Buying the XNA Creators Club
Subscription

» Connecting the Xbox 360 to
the PC

» Deploying on the Xbox 360
» Debugging on the Xbox 360

» Creating a Test Demo for the
Xbox 360

» Programming for Dual Platforms

» The .NET Compact Framework
on the Xbox 360

20 CHAPTER 2 XNA Game Studio and the Xbox 360

Hew Project E]E
Project bypes: Templates: MET Framesuork 3.0 ~ E|E
Visual Cé# ~ Wisual Soalin iveslalled Lengalales
Windows
\Web Tvwindows ame (2.0) T windows ame Lbrary (3.0)
Smart Dovice i1 Moo 360 Game (3.0} IE Mboe 360 Game Library (3.0)
i Cffice M 2une Game (3.0} o1 2une Game Library (3.0)
Database
Reporting My Templates
Robotics
siverlight sk Ol Tempdates, .
Test
WCT
‘Workflow
HNA Game Studio 3.0
i Other Project Types
B Tesl Projecs
~
A qrnjert o crealiong an S0 Framevaork 3.0 Shox 360 ganes NFT Framesork 3.0)
Mame: *bore380Game L
LLocation: C\Documenits 2nd Sstrngsichad Carteriply Doc z Studia ¥ & | erowse...
Sollitinn Name: e IANEAMR | | [reate drectory For sohan
I Ok l Cancel

FIGURE 2.1 XNA Game Studio provides templates we can use to get up and running quickly.

Buying the XNA Creators Club Subscription

You need an Internet connection because you need to be connected to Xbox LIVE to
deploy games from the PC to the Xbox 360 console. To purchase the subscription, you
need to complete the following steps:

1. Select the Game Marketplace and then select Explore Game Content.

2. Select All Games and hold down the right trigger to page down to the end of the
groupings. Select X because we are looking for the XNA Creators Club entry.

3. Toward the bottom you can see XNA Creators Club. Select this entry, as shown in
Figure 2.2.

Can’t Find the XNA Creators Club Game Entry?

If you do not see the XNA Creators Club entry, it is most likely because of the parental

control setting. XNA Creators Club is unrated, which means you have to select Allow All
Games. Fortunately, you can then change your parental controls to the setting you had

before once you have subscribed and downloaded XNA Game Studio Connect. Then you
will need to enter a valid passcode to actually run XNA Game Studio Connect.

4. Now select Memberships and pick a plan to purchase.

5. Follow the instructions to enter the appropriate billing information. The Xbox 360
supports any USB keyboard, which can make this data entry much less painful. After
entering the billing information, confirm to purchase the plan selected.

Connecting the Xbox 360 to the PC 21

Games | Title | X

Title

O Select Back O Marketplace

FIGURE 2.2 XNA Creators Club can be purchased through the Xbox LIVE Marketplace.

TIP

If you are uncomfortable with providing your credit card information through the Xbox
LIVE Marketplace, you can purchase Microsoft Points at many places, including Best
Buy, Wal-Mart, and Target. These points can then be used to purchase the XNA
Creators Club subscription.

6. Under XNA Creators Club, select and download the XNA Game Studio Connect
application.

7. Once XNA Game Studio Connect is downloaded, go to Game Library under My
Xbox, as shown in Figure 2.3.

8. Select the Collections list and then select Community Games.

9. Select XNA Game Studio Connect from the list and finally select Launch to run it.

Connecting the Xbox 360 to the PC

You have the subscription, but you also need to associate the Xbox 360 with the PC. To do
this, follow these steps:

1. The first time the XNA Game Studio Connect application is launched, an encryption
key that needs to be entered into XNA Game Studio is generated. The generated key
is located at the bottom of the screen, as shown in Figure 2.4.

2. Inside of XNA Game Studio, go to the Tools menu and click the Launch XNA Game
Studio Device Center menu item.

3. Click Add Device and then select the Xbox 360 option.

22 CHAPTER 2 XNA Game Studio and the Xbox 360

kewlniss "\’
1= 2%

FIGURE 2.3 Game Library not only allows you to play demos and Xbox originals, but it also
lets you navigate to XNA Game Studio Connect.

XNA Game Studio Connect

FIGURE 2.4 XNA Game Studio Connect generates an encryption key the first time it is run.
This key is to be entered into XNA Game Studio.

4. Type the name of the Xbox 360 (this can be anything) and click Next.

5. Type the connection key in the space provided. An example of this screen is shown
in Figure 2.5.

6. If everything is successful, XNA Game Studio will save the connection key. It is
important that the Xbox 360 and the development and deployment PC are on the

Deploying on the Xbox 360 23

same subnet. For example, if one is on a wireless router and the other on a wired
router, connection issues will arise.

7. Close the XNA Game Studio Device Center application.

Now we are ready to deploy to the Xbox 360!

XHA Game Studio Devices

Type yvour Conneclion Key
Strmncan firnd B Comrws lion Key cisglaye] orn e $ME Geane Shodio Corem b sensenon yoer
Kbox 360 consoie,

The Cornection Key locks smilar to this:

Type youwr connection key (dashes wil be added automatically):

FIGURE 2.5 Associate the Xbox 360 with the PC by entering the connection key generated on
the Xbox 360 into the XNA Game Studio Device Center.

Deploying on the Xbox 360

We need to either create another Platformer game or open up the solution we created in
the last chapter. We also need to set the Xbox 360 project to the startup project so we can
deploy it to the Xbox 360. To deploy on your Xbox 360, you need to perform the follow-
ing steps:
1. Launch XNA Game Studio Connect on the Xbox 360. (If you're continuing from the
previous step, the Xbox 360 is already in this waiting state.)
2. Go back inside of XNA Game Studio on the PC and select Deploy Solution from the
Build menu.

3. The Xbox 360 will start receiving the files needed to run the application.

Deploying Content on the Xbox 360

Deploying on the Xbox 360 can take some time, depending on how much content needs
to be sent over the wire. The good news is that if content does not change, it does not
get sent over again, so you are only waiting on the items you actually changed.

There are a couple of times even after the first deployment that all content will be
resent to the Xbox 360.

» During the deployment, if an error occurs or if the deployment is stopped for any
reason, the next time the project is deployed it will be a complete deployment.

24 CHAPTER 2 XNA Game Studio and the Xbox 360

» If the configuration is different from the last deployment, a complete deployment
will occur.

When the files have been fully deployed, the Xbox 360 will revert back to “Waiting for
computer connection,” as shown in Figure 2.6. Also, in XNA Game Studio you should see
the message “Deploy Succeeded” in the status bar.

To actually play the game we just deployed on the Xbox 360, simply exit out of the
connection. You should now see Platformer at the top of the Recent Games list as a game
that is installed. Select it and then select Play Game and enjoy the game on the Xbox 360!
You can find the game later by going to the Collections list and selecting Community
Games and then selecting the game from that list.

Quitting Platformer

To exit the Platformer game, press the Back button on the game pad.

XNA Game Studio Connect

FIGURE 2.6 Before and after deploying a game to the Xbox 360, XNA Game Studio Connect
shows that it is waiting for a computer connection.

Distributing Your Game

Not only can you deploy your games to your own Xbox 360, you can distribute them so
that others can enjoy your games on their Xbox 360 console, Windows PC, or their
Zune. You can distribute your assets and source code or you can package up your
game and content and just distribute the package.

Debugging on the Xbox 360 25

When consumers get the package, they will need an active XNA Creators Club subscrip-
tion to use the game on their Xbox 360. For Windows, if they do not have XNA Game
Studio installed, they will need the redistributable files that include the XNA Framework
as well as certain DirectX 9 files. For more information, refer to the XNA Game Studio
documentation. Information can be found in the “Sharing and Distributing Your Game”
section under the “Using XNA Game Studio” section of the help.

Another way to distribute your Xbox 360 game is covered in detail in Part XI, “Xbox LIVE
Community Games.” The chapters discuss a peer review process to submitting games
so that anyone can download and play your games!

Debugging on the Xbox 360

Without too much pain we were able to get a game running on the Xbox 360. Now comes
this question: How hard is it to debug games deployed on the Xbox 360? Well, I answer
that question in this section.

To get started, you need to run XNA Game Studio Connect and connect to your computer
as previously described. Once the console is waiting on a connection, press F10 to step
into the Platformer game.

NOTE

Make sure to set the active solution configuration to Debug to step through the code
on the Xbox 360.

Follow these steps for this exercise:

1. Open the PlatformerGame.cs file.
2. Put a breakpoint in the first line of code under the constructor.

3. Press F5 to run the application in debug mode.

Visual Studio will do as expected and stop the code at the appropriate line. You can see
that the console has a black screen because it hasn’t been told to draw anything yet,
because we are holding up the process with our breakpoint. Press F5 to let the game run.
When you're finished with the game, close out the Platformer template.

Creating a Test Demo for the Xbox 360

We are going to create a simple application we can deploy and then debug on the Xbox
360. To begin, we need to create another project, but this time we will use the Xbox 360
Game template to start with.

The template creates a file called AssemblyInfo.cs. (It’s hidden away under the Properties
folder.) Once we open this file, we can see an attribute called AssemblyTitle. This
attribute determines what is displayed under Community Games on the Xbox 360. Unless

26 CHAPTER 2 XNA Game Studio and the Xbox 360

overridden by the Windows.Title property through code, this attribute is also used to
populate the title of the window in Windows. Overriding Windows.Title has no effect on
the Xbox 360 or the Zune.

Not only can we change the title attribute, but we can (and should) also change the
description attribute AssemblyDescription. For Windows, this shows up if someone right-
clicks the executable and looks at its properties. For the Xbox 360 it shows up on the side
of the Community Games list as the game is highlighted in the list—very cool! There is a
300-character limit on the description. Anything over 300 characters will be truncated and
not displayed.

Another thing to note in this code file is the attribute Guid. Although the source code
comment above this attribute suggests that its only use is for COM, it is actually needed to
deploy games to the Xbox 360 as well. Make sure you have a unique globally unique iden-
tifier (GUID) for each game you create. Fortunately, Visual Studio does this automatically
when it creates the file. As long as our project contains the AssemblyInfo.cs source file, we
will be able to deploy the application to the Xbox 360. The GUID is also used to match up
games for networking game play. Only games with the same GUID can connect to each
other.

After changing the assembly title and description, press F5 (we need to make sure the
console is waiting for a computer connection) to run the demo on the Xbox 360. On the
console, you should see a nice blank cornflower blue screen. To exit the demo, simply
press the Back button on the controller. If you did not set the console to be waiting for a
computer connection by running XNA Game Studio Connect, then Visual Studio will time
out trying to deploy the game or demo.

It is easy to just gloss over how simple it is to create a graphics application and deploy it
on the Xbox 360. This was not always the case, however. Just to get this screen up in a
Windows environment was challenging in the days before XNA (even with Managed
DirectX). You've just witnessed how easy it is to get a framework set up that talks to the
graphics device, complete with a game loop.

Our game is now listed in the Community Games list under Game Library. Now you
should see a list of the games we have deployed—Platformer and this demo. Figure 2.7
shows that XNA Game Studio Connect extracted the title and description from the assem-
bly we deployed.

To start a debugging exercise, add the following member field to the top of our class:

private Texture2D spriteTexture;

Locate the LoadContent method and inside of the condition block add the following code:

spriteTexture = Content.Load<Texture2D>("texture");

Creating a Test Demo for the Xbox 360 27

Community Games

Description

FIGURE 2.7 XNA Game Studio Connect reads the title and description values entered in the
Assemblylnfo.cs file of the XNA applications we deployed.

Find an image (.jpg, .bmp, or .tga) and add it into the project. Feel free to use a texture
from the Platformer game folder we created. (The example on the CD uses the
GameThumbnail.png file from the Platformer demo.) After the file is added into the
Content subproject, change the Asset Name in the properties panel to “texture.” We
discuss all these items in detail in later chapters, so do not worry about them at this point.

Finally, add the following code inside of the Draw method under the TODO: Add your
drawing code here comment:

spriteBatch.Begin();
spriteBatch.Draw(spriteTexture, Vector2.Zero, Color.White);
spriteBatch.End();

We simply added a texture that will be displayed at the top-left corner of our screen. Let’s
compile and deploy our changes. Once we have completed that task, we can put a break-

point on spriteBatch.Begin() and run the project in debug mode. We need to make sure
the Xbox 360 is waiting for a connection before we try to deploy.

When the application is finished deploying, we see the lovely black screen because we
haven’t let it get into the Draw method. Press FS to let it process the Draw method once
and then take a look at the Xbox 360 screen. We now have our blue screen with the
texture we loaded at the top left. I won’t labor the point of stepping through more code—
we will have plenty of opportunity to debug our code as we progress in our game-writing
journey. You can now remove the breakpoint and exit the demo.

28 CHAPTER 2 XNA Game Studio and the Xbox 360

The .NET Framework has a System.Diagnostics namespace that is also available on the
Xbox 360. This namespace includes a Debug class that includes, among other things, the
Write and WriteLine methods. Let’s add the following code to the end of the condition
inside of the LoadContent method:

System.Diagnostics.Debug.WriteLine("game content loaded");

While we are at it, we should add the following line of code inside of the UnloadContent
method:

System.Diagnostics.Debug.WriteLine("game content unloaded");

This line of code can be put right after the call to unload our content.

You can now recompile, deploy, and run the changes on your Xbox 360. Notice that
inside the output window of Visual Studio the text was printed out! Now we can capture
data to our IDE if something is really puzzling us or if we just want to dump data during
the game play—a manual log of sorts.

We can set breakpoints inside of our code and step through pieces of code even while it is
running on the console. We can also write information to the output window inside of
the IDE while the game is running on the Xbox 360. Wow!

Programming for Dual Platforms

There is something else we need to discuss as we continue our adventure of writing games
for the Xbox 360. We need to share as much code as possible between our Xbox 360 game
and our Windows PC game. Although it is perfectly acceptable to exclusively build appli-
cations for one platform or the other, with the XNA Framework it is not that much of a
technical jump to use the same code base on both platforms.

TIP

Starting with XNA Game Studio 3.0, another platform is supported. The Zune is a third
device that a developer can write games for using XNA Game Studio. Programming for
the Zune device is covered in Part V, “XNA Game Studio and the Zune.”

With that being said, there are valid reasons why certain developers only target one
system or the other. Some developers do not own an Xbox 360 and that’s a pretty good
reason not to write games for it—it is difficult to debug on a platform without access to it.
Some developers require additional components to be present with their game that cannot
be installed on the Xbox 360. Some only want to fine-tune their game for the Xbox 360
hardware and not worry about the different graphic cards and other PC configurations
that their games would need to support.

Programming for Dual Platforms 29

The goal of this section is to allow us to write one code base that we can easily maintain
to work on both platforms. We could start the process by creating a Windows project and
then creating an Xbox 360 project that shares the same files. Instead, we will start with
the Xbox 360 demo we just created and add a Windows project to the solution. We
cannot support both platforms inside of one project, but we can support both platforms
inside of one solution. We could also create two different solutions and just link the files
from one solution to the other. In this book we will have one solution with two projects
that share the same source code location. The idea here is that we can quickly compile our
changes in both solutions at the same time. We do this because we want to make sure we
have not added calls to methods that do not exist in the platform we were not actively
coding for. We discuss this in more detail in the next section.

Follow these steps to create our Windows Game project inside of the current solution that
already contains our Xbox Game project:

1. Right-click the project and select Create Copy of Project for Windows from the
context menu.

2. Read the information window and click OK.

3. Rename the newly created project to something more appropriate.

You can see that the solution platforms dropdown list box (located in the Visual Studio
toolbar) now has Mixed Platforms as its selection. This allows us to quickly build, deploy,
and run our projects at one time, or we can choose to only work on one platform at a
time. Let’s set the Windows project as our starting project. This can be done by right-
clicking the WindowsGamel project and selecting Set as StartUp Project. Change the
solution platform to x86 if the machine is a 32-bit machine or x64 if the machine is a
64-bit machine. To make sure we have everything set up properly, run the application by
pressing FS.

Visual Studio compiles and runs the Windows version of the demo and does not bother
compiling the Xbox 360 version, which is what we were expecting. Expand the references
tree node for both projects. You can see the two XNA references the templates provided us
when we set up the projects. If you look at the paths in the properties panel, you will see
that they are located in two different places. Appropriately, the Windows reference points
to \Windows\x86\ (or \Windows\x64\ for 64-bit machines), and the console reference
points to \Xbox360\. This is the reason we need to have two separate projects.

The solution platform dropdown list box tells Visual Studio which platforms to compile
(and deploy). The project setting Set as StartUp Project tells the IDE which project to run.
We cannot run both the executables for Windows and the Xbox 360 at the same time.
This really would not be beneficial to us anyway because we could not tell the IDE which
application we wanted to break into when debugging. When we create our multiplayer
games, we will actually create two different solution files and run both at the same time.
One will contain the Xbox 360 projects and the other will contain the Windows projects.
Because the two projects have different references of the XNA Framework, we will run into
the issue of having functionality in one system and not the other. An example of this is
that the Xbox 360 does not have any support for the mouse. Fortunately, we do not have

30 CHAPTER 2 XNA Game Studio and the Xbox 360

to create and maintain two separate code files for situations like this. Instead we can use a
preprocessor directive to tell the compiler to ignore parts of our code if it is compiling for
a certain platform. The following code shows an example of compiling functionality
specific to the Xbox 360:

#if XBOX360
//do Xbox 360 specific code here
#endif

The following code shows an example of compiling a Windows-specific functionality:

#if WINDOWS
//do Windows specific code here
#endif

This means we can keep our code in one file and put a conditional preprocessor directive
around the code we need to handle differently based on a particular platform. Of course,
we can opt to create a totally separate file that would be included in one project but not
the other. The key is that we have a choice, and it will make sense to do this both ways
in a larger project. An example would be a large input handler class that might have its
own Mouse source file that would be included in the Windows project and excluded from
the Xbox 360 project. The main game loop that checks a particular input value might
have the condition in place to ignore the mouse information unless it is being compiled
for Windows.

The last thing we need to talk about in this section is the difference between PC monitors
and television sets. On PC monitors, the developers have confidence that any objects they
draw on the screen from the top-left corner to the bottom right will be seen by the gamer.
When developing for a console such as the Xbox 360, developers have to account for the
fact that not all TVs are created equal. When drawing to a television screen, we need to be
aware of two items in particular: aspect ratio and the title safe area. We talk about the
aspect ratio in Chapter 4, “Creating 3D Objects.” The title safe area is the area of the
screen that the user will definitely be able to see. This is the inner 80% or 90% area of the
TV screen. It is beneficial to put any critical text (such as a title), game scores, timers, and
the like inside of this title safe area while filling all the screen with our environment.
Fortunately, the XNA Framework team has created the TitleSafeArea property, which we
can access for either the graphics device’s display mode or viewport properties. You can see
what it takes to utilize the TitleSafeArea rectangle by modifying the demo we created.
First, add the following private member field:

private Rectangle titleSafeArea;

Now assign a value to this rectangle by adding the following code to the top of the
LoadContent method:

titleSafeArea = GraphicsDevice.Viewport.TitleSafeArea;

The .NET Compact Framework on the Xbox 360 31

Now we can edit our code that draws the texture. We do not need to worry about the
details of the graphic portion of this code because we will cover it later, but we do want to
replace the spriteBatch.Draw line of code with the following line:

spriteBatch.Draw(spriteTexture, new Vector2(titleSafeArea.X, titleSafeArea.Y),
Color.White);

Originally, we told the texture to render at coordinates O, O (top left of the screen) by
passing in Vector2.Zero. Instead of using Vector2.Zero, we use the x and y coordinates
from the title safe rectangle retrieved at the beginning of the program. When we run this
on Windows, the x and y coordinates will still be O, but when we run it on the Xbox 360,
it is offset to make up for televisions that do not display the entire screen. You can see an
example of this in Figure 2.8.

FIGURE 2.8 Displaying a texture in the title safe area of the TV screen.

The .NET Compact Framework on the Xbox 360

We need to discuss another difference between developing for the Xbox 360 and develop-
ing for Windows—the version of the .NET Framework the two platforms are running.
Windows runs on the full-blown .NET Framework (2.0 is required for XNA), whereas the
Xbox 360 runs on the smaller .NET Compact Framework. The .NET Compact Framework
is used in certain Windows CE-powered devices such as the Pocket PC, Pocket PC Phone
Edition, Smartphone, and the Zune. As the name implies, it is compact—not only because
the devices it typically runs on are compact, but also because the framework itself is a
subset of what is available on the desktop. From an Xbox 360 development point of view,
we need to make sure that if we are accessing functionality on the .NET Framework in our

32 CHAPTER 2 XNA Game Studio and the Xbox 360

code that it also exists in the .NET Compact Framework. Fortunately, the two versions of
the XNA Framework our projects have a reference to are utilizing the correct .NET
Framework, so as long as we keep those references correctly set up, we will get compile
errors in our Xbox 360 game if we try to access functionality that is not in the .NET
Compact Framework.

The Xbox 360 version of the .NET Compact Framework actually includes items that are
not in the other compact devices’ framework. The console’s NET Compact Framework
also includes a few things that the .NET Framework doesn’t include. This is mainly due to
the type of hardware that is inside the Xbox 360.

The XNA Game Studio team at Microsoft worked closely with the Visual Studio team to
accomplish the tight integration with Visual Studio, but the team also worked very closely
with the .NET Compact Framework team to make sure we could do what we want—make
games for the Xbox 360! Without the .NET Compact Framework team, the XNA
Framework would not work on the Xbox 360.

The NET Compact Framework team had to add in floating-point support because the
other devices the framework previously targeted did not have floating-point hardware.
The team also added support for four of the six hardware threads that map to the Xbox
360’s three cores—the other two threads (0 and 2) are reserved. This book does not cover
multithreading on the Xbox 360, but the concepts from typical .NET programming will
apply if you choose to tackle that task. In addition, information about the
Thread.SetProcessorAffinity method will prove to be beneficial.

Summary

This chapter was all about the Xbox 360. We discussed how to buy an XNA Creators Club
subscription through Xbox LIVE. You learned how to download and run XNA Game
Studio Connect so you could deploy games on your console.

We created the Platformer project to run on the Xbox 360. We then deployed and
debugged the project on the console. We also created a new Xbox 360 demo, starting with
the most basic template, and we discussed important attributes in the AssemblyInfo.cs
code file. You saw how to send text to the XNA Game Studio output window from inside
the Xbox 360. You also learned about the XBOX360 preprocessor compilation directive and
how it can keep the compiler from compiling code for different platforms.

We discussed different ways to set up our projects so we can more easily use the same code
base for both our Windows and Xbox 360 projects. Finally, we discussed the .NET
Compact Framework that the XNA Framework utilizes on the Xbox 360.

Go play some games, and then we can continue our journey into the next chapter, where
we discuss ways to make our XNA games perform well in Windows and on the Xbox 360.

CHAPTER 3

Performance
Considerations

To be successful at writing games, we have to be very
aware of the expense of the different tasks we want to
perform. Before we write our code, we need to have an
end goal we are striving to reach. As Stephen Covey stated
in his book The 7 Habits of Highly Effective People, we need to
“begin with the end in mind.” This is crucial for personal
growth, but it is also very important when thinking about
performance. As software engineers we need to have goals
and then continue to measure against those goals as we
develop our code. The “end” can change, and we need to
adjust accordingly.

In this chapter, we look at ways to measure how fast our
code is running. We discuss key elements of performance
tuning when running our code on the .NET Framework and
also on the .NET Compact Framework that the Xbox 360
and the Zune uses.

Measure, Measure, Measure

The title of this section really says it all. In real estate they
say what matters is location, location, location. In the
performance realm, measuring is what really matters. How
else can we know if we are meeting our goals if we do not
take the time to measure along the way?

Before we start writing code, we need to take a benchmark
measurement. Then we can see as we add functionality
whether or not we are adversely affecting our performance
goals.

So what is our goal? At the very least our goal should be to
have our game run consistently at n number of frames per

IN THIS CHAPTER

» Measure, Measure, Measure
» Managing Memory

» Understanding the Garbage
Collector

» Optimization Suggestions

34 CHAPTER 3 Performance Considerations

second (fps). Frames per second is the number of times a frame is drawn on the screen per
second. The standard for today’s games is 60 fps.

A game loop is a loop that updates objects and renders those objects to the screen while
processing other elements, such as input, sound, artificial intelligence (Al), and physics.
Each iteration of the render and draw loop is one frame, so we are stating that our goal is
to consistently call the draw loop 60 times each second. XNA provides the game loop for
us.

Shortly after Managed DirectX was released, there were several discussions regarding the
best method to provide a game loop inside of the Windows environment. Fortunately, the
XNA team has handled this for us, which most likely came from the discussions started
with Managed DirectX. The XNA Framework game loop provides both an Update method
and a Draw method we can override. When we create our game class, we inherit from the
Microsoft.Xna.Framework.Game class, which provides these and other virtual methods.

The 80-20 Rule

More than 100 years ago, Vilfredo Pareto, an Italian economist, made the statement that
80% of Italy’s wealth was distributed among only 20% of the people. He observed the
same thing in other countries’ economies as well. This has been called the 80-20 Rule.
There have been other variations of this same principle. We’ve heard statements such as
“20% of the people do 80% of the work.” Successful leaders spend 80% of their time culti-
vating 20% of their people. It is hard to know exactly why this principle works, but it does
work. The same is true when it comes to performance of our applications: 20% of the code
will need optimization because it is the most critical to the overall performance of the
application. Because 20% of our code will do 80% of the work, this makes sense.

As we discuss performance measurement in this chapter, it is key to keep in mind that we
need to be concerned about performance as we write our code, but we should not get
bogged down and try to perform micro-optimizations too early. Sir Tony Hoare is famous
for the often quoted saying, “Premature optimization is the root of all evil.” Most of the
time when this quote is used, it is suggested that performance measurement is not impor-
tant. However, it is very important. There is nothing worse than being at the end of a soft-
ware development cycle and realizing that the application is not performing well.

When we develop any application—even games—we need to make sure we do not fall
into the trap of thinking that optimization is the root of all evil. It is not. It is a lot like
people misquoting the Bible, saying that “money is the root of all evil.” Money is not the
root of all evil; the love of money is the root of all evil. Likewise, in software development,
it is not optimization that is the root of all evil; rather it is premature optimization that is
the root of all evil.

So at what point in the development life cycle is it safe to be concerned about perfor-
mance? There are those at one extreme who say premature is anything before the end
of the development cycle. Then there are those who fall into the trap of doing micro-
optimizations using micro-benchmark testing (which we discuss at the end of this
chapter) before designing their application. Of course, the ideal time to optimize our
code is somewhere between these two extremes.

Measure, Measure, Measure 35

The key to it all really is measurement. We do not know what needs to be optimized
unless we measure. There is no reason to try and make a particular method blazing fast if
it is only called one time when the application starts. Of course, if our load time is too
long, then we would want to take a look at what is happening—and it might turn out to
be that method we were not concerned about to begin with. The point is that we do not
assume the method needs optimization until we measure and see it is causing a problem.

As we develop any application, we should do performance checks throughout the process
just to see how we are doing in relation to our performance goals. If something is taking
some time, but we are still within our performance goals, then we can just make a note of
it and ignore it for the time being. It might be that there is no need to waste time opti-
mizing that part of the code. If during measuring we do see that we need to make some-
thing perform faster, we can make the changes then.

When developing, if we are unsure of what our bottleneck is, we can use profiler tools to
help us find the problem areas. I have used the ANTS Profiler from redgate software (http:/
/www.red-gate.com/products/ants_profiler/index.htm) and have had great success with it.
It costs a few hundred dollars, though, and is not in everyone’s budget. A great open-
source statistical profiler tool is available for Windows called NProf, which can be found at
http://sourceforge.net/projects/nprof. The tool shows the amount of time each method in
our application took to run, and sums up the total time. So when developing games we
need to be aware of times when we are idling in our Start menu. Many resources on the
Web discuss the different tools available and how to use them, so we will not dig into this
here. The point is that tools are available for us to find bottlenecks in our code. Using
these tools will help us find the 20% of our code that needs optimization.

Creating a Benchmark

To get a baseline for our game loop, we will start with a new Windows game project. We
can call this project PerformanceBenchmark. We will add a frame rate counter and update
our window title to show just how many frames per second we are getting “out of the
box.”

Now we can set the following properties inside of the constructor:

//Do not synch our Draw method with the Vertical Retrace of our monitor
graphics.SynchronizeWithVerticalRetrace = false;

//Do not call our Update method at the default rate of 1/60 of a second.
IsFixedTimeStep = false;

The template creates the GraphicsDeviceManager for us. We set the
SynchronizeWithVerticalRetrace property of the manager to false. The default of this
property is true. As the name suggests, this property synchronizes the call to the Draw
method from inside of the XNA Framework’s game loop to coincide with the monitor’s
refresh rate. If the monitor has a refresh rate of 60 Hz, it refreshes every 1/60th of a
second, or 60 times every second. By default, XNA draws to the screen at the same time
the monitor refreshes to keep the scene from appearing jerky. This is typically what we
want. However, when measuring the change a piece of code has on our frame rate, it is

http://www.red-gate.com/products/ants_profiler/index.htm
http://www.red-gate.com/products/ants_profiler/index.htm
http://sourceforge.net/projects/nprof

36 CHAPTER 3 Performance Considerations

difficult to determine how we are affecting it if we are always drawing 60 fps. We would
not know anything was wrong until we did something that dropped us below that
margin, keeping the XNA Framework from calling the Draw method fast enough.

We also set the fixed time step property (IsFixedTimeStep) to false. The default value of
this property is true. This property lets XNA know if it should call the Update method
immediately after drawing to the screen (false) or only after a fixed amount of time has
passed (true). This fixed amount of time is 1/60th of a second and is stored in the prop-
erty TargetElapsedTime, which we can change. At this point we need the framework to
call Update as often as possible so that our Draw call will get called as soon as possible. The
Draw call is executed after every call to Update.

Let’s add the following private member fields to our Gamel.cs file:

private float fps;

private float updateInterval = 1.0f;
private float timeSincelLastUpdate = 0.0f;
private float framecount = 0;

Finally, let’s add the frame rate calculation inside of our Draw method:

float elapsed = (float)gameTime.ElapsedRealTime.TotalSeconds;
framecount++;
timeSincelLastUpdate += elapsed;
if (timeSincelastUpdate > updatelnterval)
{
fps = framecount / timeSincelastUpdate; //mean fps over updatelntrval
#if XBOX360
System.Diagnostics.Debug.WritelLine("FPS: " + fps.ToString() + " - RT: " +
gameTime.ElapsedRealTime.TotalSeconds.ToString() + " - GT: " +
gameTime.ElapsedGameTime.TotalSeconds.ToString());
#else
Window.Title = "FPS: " + fps.ToString() + " - RT: " +
gameTime.ElapsedRealTime.TotalSeconds.ToString() + " - GT: " +
gameTime.ElapsedGameTime.TotalSeconds.ToString();
#endif
framecount = 0;
timeSincelLastUpdate -= updateInterval;

}

The first thing we are doing with the code is storing the elapsed time since the last time
the Draw method was executed. We then increment our frame count along with the vari-
able that is keeping a running total of the time. We check to see if enough time has
passed, at which point we update our frame rate. We have the updateInterval set at 1
second, but we can tweak that number if we would like. Once enough time has passed for
us to recalculate our frame rate, we do just that by taking the number of frames and divid-
ing it by the time it took us to get inside of this condition. We then update the title of the
window with our fps. We also write out the ElapsedRealTime along with the

Measure, Measure, Measure 37

ElapsedGameTime. To calculate our fps, we used the real time. Play with the first

two properties we set to see the effect it has on the time. Remember the
SynchronizeWithVerticalRetrace property determines how often the Draw method gets
called, and the IsFixedTimeStep property determines how often the Update method
gets called. ElapsedRealTime is associated with the time it took to call our Draw method,
whereas ElapsedGameTime is associated with the time it took to call our Update method.

Finally, we reset our frame count along with the timeSincelLastUpdate variable. Let’s run
the application so we can get our baseline for how our machine is performing.

Now that we have our base number, we want to make a note of it. This could be done in
an Excel spreadsheet where we can easily track the changes in our performance. We
should always try to run our performance tests under the same conditions. Ideally,
nothing except the game should be run during all the benchmark testing.

As an example, let’s add the following code inside of the Draw method:

//bad code that should not be replicated
Matrix m = Matrix.Identity;

Vector3 v2;
for (int 1 = 0; 1 < 1; i++)
{
m = Matrix.CreateRotationX(MathHelper.PiOver4);
m *= Matrix.CreateTranslation(new Vector3(5.0f));

Vector3 v = m.Translation - Vector3.0One;
v2 = v + Vector3.0ne;

}

This does not do anything other than some 3D math that has absolutely no purpose. The
reason we are going through this exercise is to see how our frame rate will drop as we
increment the upper limit of our for loop. The point is that when we start writing real
functionality inside the Draw method, we can measure how our frame rate is handling the
addition of code. On the included CD, this example is called PerformanceTest1.

Monitoring Performance on the Xbox 360

Measuring performance on the Xbox 360 is relatively easy to do. To begin monitoring
how the application is functioning on the Xbox 360, follow these steps:

1. Make sure your Xbox 360 is waiting for a computer connection (and not actually
running the game we want to monitor).

2. Open the XNA Framework Remote Performance Monitor for Xbox 360 from the
Tools group in the Microsoft XNA Game Studio group under All Programs.

3. Select your Xbox 360 console from the Device dropdown list box (it will only show
up if step 1 was performed).

4. Tell the tool which game to launch and monitor by entering the name that we
stored in the AssemblyTitle attribute (discussed in Chapter 2, “XNA Game Studio

38 CHAPTER 3 Performance Considerations

and the Xbox 360”) into the Application text box. You can enter Platformer
assuming that has been deployed as discussed in Chapter 1, “Introducing the
XNA Framework and XNA Game Studio.”

5. If the game allows any command-line arguments, enter those into the Arguments
text box. You can leave it blank for Platformer.

6. Click Launch to start the game on the Xbox 360.

Now that you have the tool running, we can take a moment and look at some of the
numbers being displayed. Although all are beneficial to watch, and we should try to
keep the numbers from incrementing too much, the following are some of the impor-
tant numbers:

Garbage Collections (GC)
Managed Bytes Allocated
Managed Objects Allocated

Bytes of String Objects Allocated
Managed String Objects Allocated
Objects Not Moved by Compactor
Boxed Value Types

GC Latency Time (ms)

Calls to GC.Collect

A good exercise is to run an empty Xbox 360 game and watch the numbers. Those values
will be our baseline. As we add functionality, we can check the numbers to see if anything
is getting out of sorts and then act appropriately. Doing this as we go will help us keep our
code working in an optimal way and will keep us from having to come back and scour
through the code to find out where the bottlenecks are. To determine the amount of time
the garbage collector is taking to run, we can take the product of the number of garbage
collections that occurred with latency time. This is a key number to be aware of when
checking the performance of our garbage collector. We discuss the garbage collector in
detail later in this chapter.

Managing Memory

The two types of objects in the .NET Framework are reference and value. Examples of
value types are enums, integral types (byte, short, int, long), floating types (single, double,
float), primitive types (bool, char), and structs. Examples of objects that are reference
types are arrays, exceptions, attributes, delegates, and classes. Value types have their data
stored on the current thread’s stack, and the managed heap is where reference types find
themselves.

By default, when we pass variables into methods, we pass them by value. This means for
value types we are actually passing a copy of the data on the stack, so anything we do to
that variable inside of the method does not affect the original memory. When we pass in a

Understanding the Garbage Collector 39

reference type, we are actually passing a copy of the reference to the data. The actual data
is not copied, just the address of the memory. Because of this, we should pass large value
types by reference instead of by value when appropriate. It is much faster to copy an
address of a large value type than its actual data.

We use the ref keyword to pass the objects as references to our methods. We should not
use this keyword on reference types because it will actually slow things down. We should
use the keyword on value types (such as structs) that have a large amount of data to copy
if passed by value.

The other thing to note is that even if we have a reference type and we pass it into a
method that takes an object type and we box the object (implicitly or explicitly), then a
copy of the data is actually created as well—not just the address to the original memory.
For example, consider a class that takes a general object type (such as an ArrayList’s Add
method). We pass in a reference type, but instead of just the reference being passed across,
a copy of the data is created, and then a reference to that copy of the data is passed across.
This eats up memory and causes the garbage collector to run more often. To avoid this we
need to use generics whenever possible.

Understanding the Garbage Collector

A big plus of writing managed code is the fact that we do not need to worry about
memory leaks from the sense of losing pointers to referenced memory. We still have
“memory leaks” in managed code, but whenever the term is used, it refers to not decom-
missioning variables in a timely fashion. We would have a memory leak if we kept a
handle on a pointer that we should have set to null. It would remain in memory until the
game exits.

We should use the using statement. An example of the using statement can be found in
the program.cs file that is generated for us by the game template. The entry point of the
program uses this using statement to create our game object and then to call its Run
method. The using statement effectively puts a try/finally block around the code while
putting a call to the object’s Dispose method inside of the finally block.

Garbage collection concerns on Windows are not as large as those on the Xbox 360.
However, if we optimize our code to run well on the Xbox 360 in regard to garbage collec-
tion, the game will also perform well on Windows.

On the .NET Framework (Windows)

As we create an object (when we use the new keyword), it is put into the managed heap.
.NET then calculates the needed memory for the object and confirms there is enough
memory available on the managed heap. The constructor of the object is called, and the
executing code returns a reference to that object (a location in the managed heap).
Memory is created in a contiguous manner, which means that objects are typically stored
next to each other as they are created.

If memory cannot be allocated on the managed heap, the garbage collector is executed to
free up any unused memory. There are assumptions the garbage collector makes to free up

40 CHAPTER 3 Performance Considerations

memory. One such assumption is that objects that have just been created will only be
around for a short while. Another assumption is that objects that have been around for a
while will continue to be around for a while. Because of these assumptions, the garbage
collector has a notion of generations. There are a total of three generations in the .NET
Framework. The .NET Compact Framework only has one generation, but we are getting
ahead of ourselves (this is covered in the next section). The first generation (0) stores all
the recently added memory, so memory is allocated when variables are created, Then
memory is “marked” as inactive when the variables go out of scope, get explicitly set to
null, and so on. By marking memory as inactive, .NET is actually setting the root (which is
just a pointer to the location of memory) to null. At some point in time the memory heap
gets full. When this happens, the garbage collector runs and sends all objects that are still
active (roots are not null) into generation 1, freeing up all of the generation O space. If
generation 1 gets full, it goes through the same process and pushes up active objects to
generation 2. If this last generation is full, a full garbage collection is carried out, which is
very expensive. If an object is large enough, it will actually skip generation 0 and jump
straight into generation 2 so that it does not incur the performance hit of being put into
generation 0, maxing out the memory, and repeating the process again in generation 1.

So what does this mean in regard to writing games for Windows? Well, it means we need
to be careful how and when we create objects. We do not want to create very large objects,
and we want the objects we do create to be short lived so they do not get promoted to
generation 1. We also need to let go of objects when we are done with them. We need to
create objects that are related close together so they can move through the process
together. We also need to be careful and not associate a short-lived object with a long-
lived object because the long-lived object will keep a reference to it, which causes the
short-lived object not to be collected. Short-lived objects that require little memory do not
cause performance issues. Long-lived objects (as long as they are not too large) do not
cause performance issues. If the long-lived objects are too big, this will cause the genera-
tion 2 memory to become full, and full collections will happen more often than we want.
We need to keep our objects to a decent size. Objects that are neither short-lived nor long-
lived objects are where we run into performance issues. These midlife objects will get
promoted to generation 1 and then become inactive. Although this is not a huge problem,
it becomes a real concern when the object stays alive and then gets moved into genera-
tion 2 and then shortly thereafter dies. By having the object die in generation 2 instead of
generation 1, we are paying a very large performance price because when the garbage
collector does a full collection (collects data in generation 2), it has to look at each and
every object on the managed heap to determine whether the object is alive or not. While
it is inspecting the objects, it creates a large load on the CPU that reduces the overall
throughput. Any objects with finalizers really hurt the performance of the application. We
do not want to generate full collections.

On the .NET Compact Framework (Xbox 360 and Zune)

The .NET Compact Framework handles garbage collection differently than its desktop
counterpart. However, if we try to optimize our code for the .NET Compact Framework,
we should also realize the benefits on the desktop version of the .NET Framework. The

Optimization Suggestions 41

.NET Compact Framework does not have generations. We can think of it as only having
generation 2 actually, in that every collection is a full collection.

The .NET Compact Framework’s garbage collector will also compact the memory into a
contiguous space when it determines that the memory heap is overly fragmented. If there
is not enough memory, the garbage collector will also pitch the code that was compiled
“just in time.” The code that is compiled just in time is kept in memory to help perfor-
mance, but if memory gets too low the memory will be released.

Finally, the garbage collector will go through any objects in the finalization queue. This
queue also exists in the full .NET Framework and works the same way. As memory is
marked as not needed, the garbage collector determines if the object has a Finalize
method. If it does, the object is actually put into this separate queue before the memory is
marked on the heap as inactive. Then the next time the garbage collector runs, it loops
through the finalization queue and disposes of the objects. This is why it is very impor-
tant to not utilize the Finalize method unless we are using unmanaged resources. When
developing for the Xbox 360 or the Zune, we do not need to worry about unmanaged
objects because we do not have the ability to access them.

Optimization Suggestions

We have discussed how to measure performance and discussed a common performance
issue with the garbage collector. Now we are going to look at different optimizations we
could make if we determine that a certain piece of code is not performing well. This is
considered micro-optimization and should only be done after taking measurements to
make sure that the code we are about to optimize really needs it! If we spend our time
trying to save CPU cycles on a method that did not need it, we wasted our time. Worse,
we probably made the code less readable. Even worse, we could have introduced bugs
during the process that put us even further behind the eight ball.

Although performing micro-optimizations is important, it is really one of the last steps we
do. Great places for this type of optimization are inside of nested loops. For example, our
Update and Draw methods are inside of a tight game loop the XNA Framework runs, and
we will have loops inside of there to update Al logic and check physics and such. Even
those could have nested loops. It is at those points we will be doing most of the micro-
optimizations, but we only do this after we have confirmed that a particular section of
code is our bottleneck. Measure!

Creating a Micro-Benchmark Framework

When we are trying to make a particular piece of code run faster because we see that it is
taking more time compared to everything else in our application, we will need to compare
different implementations of completing the same task. This is where micro-benchmark
testing can help.

Micro-benchmark testing allows us to take a close look at how fast small bits of code are
performing. There are a couple of items to keep in mind as we use micro-benchmark

42 CHAPTER 3 Performance Considerations

testing, though. The first is that we cannot exactly determine best practices from a micro-
benchmark test because it is such an isolated case. The second is that although a piece of
code might perform faster in a micro-benchmark test, it might very well take up a lot
more memory and therefore cause the garbage collector to collect its garbage more often.
The point here is that although micro-benchmark testing is good and we should do it
(which is why we are going to build a framework for it), we need to be careful of any
assumptions we make solely on what we find out from our micro-benchmark tests.

XNA Game Studio not only lets us create game projects, but also allows us to create library
projects. When the library projects are compiled, they can be used by other applications—
a game, a Windows form, or even a console application.

We are going to create another application, but this time it is going to be a normal
Windows Game Library project. We can name this project XNAPerformanceChecker. This
class should be called CheckPerformance. We will be utilizing this library from a console
application. The code for the CheckPerformance class can be found in Listing 3.1. The
purpose of this class is to create methods that perform the same tasks different ways. We
will then create a console application that calls the different methods and measure the
amount of time it takes to process each method.

LISTING 3.1 The CheckPerformance Class Has Methods That Produce the Same Results
Through Different Means

public class CheckPerformance
{
private Vector3 cameraReference = new Vector3(0, 0, -1.0f);
private Vector3 cameraPosition = new Vector3(0, 0, 3.0f);
private Vector3 cameraTarget = Vector3.Zero;
private Vector3 vectorUp = Vector3.Up;
private Matrix projection;
private Matrix view;
private float cameraYaw = 0.0f;

public CheckPerformance() { }

public void TransformVectorByValue()
{
Matrix rotationMatrix = Matrix.CreateRotationY(
MathHelper.ToRadians (45.0f));
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference = Vector3.Transform(cameraReference,
rotationMatrix);
// Calculate the position the camera is looking at.
cameraTarget = cameraPosition + transformedReference;

public void TransformVectorByReference()

Optimization Suggestions 43

{
Matrix rotationMatrix = Matrix.CreateRotationY(
MathHelper.ToRadians (45.0f));
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference;
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);
/| Calculate the position the camera is looking at.
Vector3.Add(ref cameraPosition, ref transformedReference,
out cameraTarget);
}

public void TransformVectorByReferenceAndOut()>
{
Matrix rotationMatrix = Matrix.CreateRotationY(
MathHelper.ToRadians (45.0f));
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference;
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);
/| Calculate the position the camera is looking at.
Vector3.Add(ref cameraPosition, ref transformedReference,
out cameraTarget);

public void TransformVectorByReferenceAndOutVectorAdd()>
{
Matrix rotationMatrix;
Matrix.CreateRotationY(MathHelper.ToRadians(45.0f),
out rotationMatrix);
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference;
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);
/| Calculate the position the camera is looking at.
Vector3.Add(ref cameraPosition, ref transformedReference,
out cameraTarget);

public void InitializeTransformWithCalculation()
{
float aspectRatio = (float)640 / (float)480;
projection = Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f), aspectRatio, 0.0001f, 1000.0f);
view = Matrix.CreateLookAt(cameraPosition, cameraTarget, Vector3.Up);

44 CHAPTER 3 Performance Considerations

public void InitializeTransformWithConstant()

{
float aspectRatio = (float)640 / (float)480;
projection = Matrix.CreatePerspectiveFieldOfView(
MathHelper.PiOver4, aspectRatio, 0.0001f, 1000.07);
view = Matrix.CreateLookAt(cameraPosition, cameraTarget, Vector3.Up);
}
public void InitializeTransformWithDivision()
{
float aspectRatio = (float)640 / (float)480;
projection = Matrix.CreatePerspectiveFieldOfView(
MathHelper.Pi / 4, aspectRatio, 0.0001f, 1000.0f);
view = Matrix.CreateLookAt(cameraPosition, cameraTarget, Vector3.Up);
}

public void InitializeTransformWithConstantReferenceOut()>
{
float aspectRatio = (float)640 / (float)480;
Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians (45.0f), aspectRatio, 0.0001f, 1000.0f,
out projection);
Matrix.CreatelLookAt (
ref cameraPosition, ref cameraTarget, ref vectorUp, out view);

public void InitializeTransformWithPreDeterminedAspectRatio()
{
Matrix.CreatePerspectiveFieldOfView(
MathHelper.ToRadians(45.0f), 1.33333f, 0.0001f, 1000.0f,
out projection);
Matrix.CreatelLookAt (
ref cameraPosition, ref cameraTarget, ref vectorUp, out view);

public void CreateCameraReferenceWithProperty()
{
Vector3 cameraReference = Vector3.Forward;
Matrix rotationMatrix;
Matrix.CreateRotationY(
MathHelper.ToRadians(45.0f), out rotationMatrix);
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference;
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);

Optimization Suggestions

// Calculate the position the camera is looking at.
cameraTarget = cameraPosition + transformedReference;

}
public void CreateCameraReferenceWithValue()
{
Vector3 cameraReference = new Vector3(0, 0, -1.0f);
Matrix rotationMatrix;
Matrix.CreateRotationY(
MathHelper.ToRadians(45.0f), out rotationMatrix);
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference;
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);
// Calculate the position the camera is looking at.
cameraTarget = cameraPosition + transformedReference;
}
public void RotateWithoutMod()
{
cameraYaw += 2.0f;
if (cameraYaw > 360)
cameraYaw -= 360;
if (cameraYaw < 0)
cameraYaw += 360;
float tmp = cameraYaw;
}
public void RotateWithMod ()
{
cameraYaw += 2.0f;
cameraYaw %= 360;
float tmp = cameraYaw;
}

public void RotateElselIf()
{

cameraYaw += 2.0f;

if (cameraYaw > 360)
cameraYaw -= 360;

else if (cameraYaw < 0)
cameraYaw += 360;

45

46 CHAPTER 3 Performance Considerations

float tmp = cameraYaw;

We do not need to be concerned with the actual contents of the different methods. The
main concept you need to understand at this point is that we have different groups of
methods that do the same task but are executed in different ways. We discuss the details
of the Matrix in Chapter 4, “Creating 3D Objects.” For now we can take a look at the last
three methods in the listing and see they are all doing the same thing. All three methods
are adding 2 to the variable cameraYaw and then making sure that the value is between 0
and 360. The idea is that this code would be inside of the game loop reading input from a
device and updating the cameraYaw variable appropriately.

Now we can create the console application that will actually call that class. We need to
add a new Console Application project to the solution and can call this project
XNAPerfStarter. We need to add a reference to the XNAPerformanceChecker project. The
code for Program.cs is given in Listing 3.2.

LISTING 3.2 The Program Measures the Amount of Time It Takes to Execute the Different
CheckPerformance Methods

class Program

{
static int timesToLoop = 10000;

static void Main(string[] args)
{
while (true)
{
XNAPerformanceChecker.CheckPerformance cp =
new XNAPerformanceChecker.CheckPerformance();

Stopwatch sw = new Stopwatch();

//Call all methods once for any JIT-ing that needs to be done
sw.Start();
cp.InitializeTransformWithCalculation();
cp.InitializeTransformWithConstant();
cp.InitializeTransformWithDivision();
cp.InitializeTransformWithConstantReferenceOut();
cp.TransformVectorByReference();
cp.TransformVectorByValue();
cp.TransformVectorByReferenceAndOut();
cp.TransformVectorByReferenceAndOutVectorAdd();
cp.CreateCameraReferenceWithProperty();

Optimization Suggestions 47

cp.CreateCameraReferenceWithValue();

sw.Stop();

sw.Reset();

int i;

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.InitializeTransformWithCalculation();

sw.Stop();

PrintPerformance (" Calculation", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.InitializeTransformWithConstant();

sw.Stop();

PrintPerformance (" Constant", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.InitializeTransformWithDivision();

sw.Stop();

PrintPerformance (" Division", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.InitializeTransformWithConstantReferenceOut();

sw.Stop();

PrintPerformance("ConstantReferenceOut", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.InitializeTransformWithPreDeterminedAspectRatio();

sw.Stop();

PrintPerformance (" AspectRatio", ref sw);
sw.Reset();

Console.WritelLine();
Console.WriteLine("'— — — — — — — — — —=");

48 CHAPTER 3 Performance Considerations

Console.WritelLine();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.TransformVectorByReference();

sw.Stop();

PrintPerformance (" Reference", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.TransformVectorByValue();

sw.Stop();

PrintPerformance (" Value", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.TransformVectorByReferenceAndOut();

sw.Stop();

PrintPerformance("ReferenceAndOut", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.TransformVectorByReferenceAndOutVectorAdd();

sw.Stop();

PrintPerformance ("RefOutVectorAdd", ref sw);
sw.Reset();

Console.WritelLine();
Console.WriteLine("— — — — — — — — — —=");
Console.WritelLine();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.CreateCameraReferenceWithProperty();

sw.Stop();

PrintPerformance("Property", ref sw);
sw.Reset();

Optimization Suggestions 49

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.CreateCameraReferenceWithValue();

sw.Stop();

PrintPerformance (" Value", ref sw);
sw.Reset();

Console.WritelLine();
Console.WriteLine("'— — — — — — — — — —=");
Console.WritelLine();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.RotateWithMod () ;

sw.Stop();

PrintPerformance (" RotateWithMod", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.RotateWithoutMod();

sw.Stop();

PrintPerformance ("RotateWithoutMod", ref sw);
sw.Reset();

sw.Start();

for (1 = @; 1 < timesToLoop; i++)
cp.RotateElseIf();

sw.Stop();

PrintPerformance (" RotateElseIf", ref sw);
sw.Reset();

string command = Console.ReadlLine();

o m
-
—

if (command.ToUpper().StartsWith(
command.ToUpper().StartsWith(
break;

static void PrintPerformance(string label, ref Stopwatch sw)

{

50 CHAPTER 3 Performance Considerations

Console.WriteLine(label + " - Avg: " +
((float) ((float) (sw.Elapsed.Ticks * 100) /
(float)timesToLoop)).ToString("F") +
" Total: " + sw.Elapsed.TotalMilliseconds.ToString());

We need also to add the following using clause to the top of our Program.cs file:

using System.Diagnostics;

The System.Diagnostics class gives us access to the Stopwatch we are using to keep track
of the time it takes to process the different methods. After starting the timer, we then loop
100,000 times and call a method in the CheckPerformance class we created earlier. Once
the loop finishes executing the method the specified number of times, we stop the stop-
watch and print out our results to the console. When using the Stopwatch object, we must
first call the Reset method if we want to start another test. This isn’t built into the Stop
method in case we just want to pause the timer and start it back up for some reason. We
could also use the static StartNew method instead of the instance Start method. The
StartNew method effectively resets the timer as it returns a new instance of the Stopwatch.

When we are trying to measure performance on pieces of code that perform very fast
(even inside of a large loop), it is important to be able to track exactly how much time is
taken, even down to the nanosecond level.

Typically timing things in seconds does not give us the granularity we need to see how
long something is really taking, so the next unit of time we can measure against is
milliseconds. There are 1,000 milliseconds in a second. Next comes the microsecond, and
there are 1,000 microseconds in a millisecond. Next is the tick, which is what the
TimeSpan object uses. There are 10 ticks in a microsecond. Finally, we come to the
nanosecond. There are 100 nanoseconds in each tick. A nanosecond is one-billionth of a
second. Table 3.1 shows the relationships between the different measurements of time.

TABLE 3.1 Time Measurement Relationships

Nanoseconds Ticks Microseconds Milliseconds Seconds
100 1 0.1 0.0001 0.0000001
10,000 100 10.0 0.0100 0.0000100
100,000 1,000 100.0 0.1000 0.0001000
1,000,000 10,000 1,000.0 1.0000 0.0010000
10,000,000 100,000 10,000.0 10.0000 0.0100000
100,000,000 1,000,000 100,000.0 100.0000 0.1000000
1,000,000,000 10,000,000 1,000,000.0 1,000.0000 1.0000000

Optimization Suggestions 51

PrintPerformance, our method to print out the performance measurements, takes in the
label that describes what we are measuring along with a reference to the Stopwatch object.
TimeSpan is the type the .NET Framework uses to measure time. The smallest unit of time
measurement this type allows is a tick.

Because we want to measure our time in nanoseconds, we multiply the number of elapsed
ticks by 100. Then we take the total number of nanoseconds and divide by the number of
times we executed the method. Finally, we display the average number of nanoseconds
along with total number of milliseconds the task took to execute.

When we print out our measurements, we want the average time it took to execute a
method for the number of iterations we told it to loop. The reason we do this instead of
just running it once is so that we can easily determine a more accurate number. In fact, we
even run an outer loop (that we exit out of by entering text that starts with “E” or “Q”) to
account for anomalies in performance on the machine in general.

An additional item to note about this code is that we call each method of the
CheckPerformance object once before we start measuring execution times. The reason we
do this is so the compiler can perform any just-in-time compiling for the methods we
will be calling so we are not taking that time into account.

After setting the new XNAPerfStarter as the StartUp project, we can run the benchmark tests.

Sealing Virtual Methods

Although having virtual methods and virtual classes is extremely beneficial for extensibil-
ity and object-oriented design, it also causes a performance hit because virtual methods
keep certain runtime performance optimizations from happening. This is because virtual
methods require a virtual table lookup to occur. If we are not extending a class or a
method, we can actually seal it to help with the performance. This lets the compiler know
that no one else will be allowed to override the method, and the jitter will generate a
direct call to the method instead of the lookup.

Collections

If possible, we want to utilize regular arrays instead of collections. Of course, if we need to
dynamically add or remove items from our list, a collection is the way to go.

Regardless of which we use, we always want to have our lists to store a specific type. C# has
generics that allow us to use strong types so we do not need to box and unbox objects in
our lists. If we cannot get by with a regular array of a specific type, we need to use generics.
We should never use a “normal” collection (that is, one that does not use generics).

Whether we are using normal arrays or a full-fledged collection, we should always set the
initial size of our list to be as close as possible to the number of items we expect the list

52 CHAPTER 3 Performance Considerations

will store. This way, the correct amount of memory can be allocated once instead of
having to reallocate often due to a growing list.

There is a lot of speculation about foreach loops and the overhead they bring with the
garbage collection they cause. When we loop through an array, we do not create garbage.
When we loop through certain collections, we do not create garbage. The key is whether
or not the enumerator returns a struct. If a struct is returned, the data is put on to the
stack, and we are in good shape. Looping through a Collection<T> will definitely create
overhead because the enumerator will box the value and put it on the heap. If we stick
with straight arrays when we can, there is nothing to worry about. If we need to work
with the list in a dynamic fashion, we just need to choose the type of collection we will
create—Lists, Stacks, and Queues are all good candidates because their GetEnumerator
returns a struct, and no extra memory is allocated.

Summary

You should walk away from this chapter with the sense that before any optimization
takes place, you need to know what you are going to optimize. To determine what needs
a performance boost, you need to measure. Measuring is the key, and it cannot be
stressed enough.

We discussed how to measure the real frame per seconds rate at which our game is capable
of running. We looked at the remote performance monitoring tool for the Xbox 360 and
saw how we could look at critical pieces of information to see how our game performs on
the console.

We discussed a typical bottleneck of memory management and how the garbage collector
runs. We also created a micro-benchmarking framework that allows us to determine how
fast or slow a particular method (or part of a method) is and how it compares to alterna-

tive methods to produce the same results.

We really just scratched the surface of performance considerations. Searching the Web for
more information on increasing our performance would be extremely helpful. Something
not even touched on was the fact that knowledge of MSIL can be beneficial in seeing what
the .NET Framework is really doing with our C# code. We could look at the IL code for
any reference to newobj to see when we created an object and look for box to find when
we boxed and unboxed items (unknowingly).

The main idea of this chapter is that we must have an end goal. We have to know how
well we want our game to perform so we can write our code in such a way to meet those
goals. In the real world we have deadlines, and writing code fast and writing fast code are
often at odds with each other. This is where it is extremely beneficial to know exactly
what we are shooting for. We should measure often to determine which piece of new code
is causing an adverse affect on performance.

PART I

Understanding XNA
Framework Basics

IN THIS PART

CHAPTER 4 Creating 3D Objects
CHAPTER 5 Handling Input to Move our Camera

This page intentionally left blank

CHAPTER 4
Creating 3D Objects

In this chapter, we examine 3D concepts and how the
XNA Framework exposes different types and objects that
allow us to easily create 3D worlds. We will create a couple
3D demos that explain the basics. We will also create 3D
objects directly inside of our code. Finally, we will move
these objects on the screen.

Vertices

Everything in a 3D game is represented by 3D points. We
can use one of two ways to get 3D objects on the screen: We
can plot the points ourselves, or we can load them from a
3D file (which has all the points stored already). Later, in
Chapter 6, “Loading and Texturing 3D Objects,” you will
learn how to load 3D files to use in our games. For now, we
are going to create the vertices ourselves.

We defined these vertices with an x, y, and z coordinate (X,
y, z). In XNA we represent a vertex with a vector, which
leads us to the next section.

Vectors

XNA provides three different vector structs for us—Vector2,
Vector3, and Vector4. Vector2 only has an x and y compo-
nent. We typically use this 2D vector in 2D games and
when working with a texture. Vector3 adds in the z compo-
nent. Not only do we store vertices as a vector, but we also
store velocity as a vector. We discuss velocity in Chapter 16,
“Physics Basics.” The last vector struct that XNA provides
for us is a 4D struct appropriately called Vector4. Later

IN THIS CHAPTER

Vertices
Vectors

Matrices

vV vV v Vv

Transformations
Transformations Reloaded
Creating a Camera

Vertex Buffers

Effects

Textures

vV vV v Vv Vv VY

Index Buffers

v

XNA Game Components

v

Checking Performance

» Transformations Revolutions

56 CHAPTER 4 Creating 3D Objects

examples in this book will use this struct to pass color information around because it has
four components.

We can perform different math operations on vectors, which prove to be very helpful. We
do not discuss 3D math in detail in this book because there are many texts available that
cover it. Fortunately, XNA allows us to use the built-in helper functions without needing a
deep understanding of the inner workings of the code. With that said, it is extremely
beneficial to understand the math behind the different functions.

Matrices

In XNA a matrix is a 4x4 table of data. It is a two-dimensional array. An identity matrix,
also referred to as a unit matrix, is similar to the number 1 in that if we multiply any other
number by 1, we always end up with the number we started out with (5 * 1 = 5).
Multiplying a matrix by an identity matrix will produce a matrix with the same value as
the original matrix. Although the identity matrix can be useful in and of itself, the key is
the individual fields in the 4x4 array are structured so that we can combine many trans-
formations into a single matrix. The XNA Framework provides a struct to hold matrix
data—not surprisingly, it is called Matrix.

Transformations

The data a matrix contains is called a transformation. The three common types of trans-
formations are translation, scaling, and rotation. These transformations do just that: They
transform our 3D obijects.

Translation

Translating an object simply means we are moving the object. We translate an object from
one point to another point by moving each point inside of the object correctly.

Scaling

Scaling an object will make the object larger or smaller. This is done by actually moving
the points in the object closer together or further apart, depending on whether we are
scaling down or scaling up.

Rotation

Rotating an object will turn the object on one or more axes. By moving the points in 3D
space, we can make our object spin.

Transformation versus Translation

A translation is a type of a transformation. Transformations include translations (move-
ment), scaling (size), and rotation. A translation is one type of transformation, but they
are not the same thing.

Creating a Camera 57

Transformations Reloaded

An object can have one transformation applied to it, or it can have many transformations
applied to it. We might only want to translate (move) an object, so we can update the
object’s world matrix to move it around in the world. We might just want the object to
spin around, so we apply a rotation transformation to the object over and over so it will
rotate. We might need an object we created from a 3D editor to be smaller to fit better in
our world. In that case we can apply a scaling transformation to the object. Of course, we
might need to take this object we loaded in from the 3D editor and scale it down and
rotate it 30 degrees to the left so it will face some object, and we might need to move it
closer to the object it is facing. In this case, we would actually do all three types of trans-
formations to get the desired results. We might even need to rotate it downward 5 degrees
as well, and that is perfectly acceptable.

We can have many different transformations applied to an object. This is done by multi-
plying different matrices together. However, there is a catch—there is always a catch,
right? The catch is that because we are doing these transformations using matrix math, we
need to be aware of something very important. We are multiplying our transformation
matrices together to get the results we want. Unlike multiplying normal integers, multi-
plying matrices is not commutative. This means that Matrix A * Matrix B = Matrix B *
Matrix A. So in our earlier example where we want to scale our object and rotate it (two
different times) and then move it, we need to be careful in which order we perform those
operations. You will see how to do this a little later in the chapter.

Creating a Camera

That is enough theory for a bit. We are going to create a camera so we can view our world.
Now we can create a new Windows game project to get started with this section. We’ll name
this project XNADemo. To begin, we need to create the following private member fields:

private Matrix projection;
private Matrix view;

We then need to add a call to InitializeCamera in the beginning of our
LoadGraphicsContent method. The InitializeCamera method will have no parameters
and no return value. We will begin to populate the method, which can be marked as
private, in the next three sections.

Projection

The Matrix struct has a lot of helper functions built in that we can utilize. The
Matrix.CreatePerspectiveFieldOfView is the method we want to look at now:

float aspectRatio = (float)graphics.GraphicsDevice.Viewport.Width /
(float)graphics.GraphicsDevice.Viewport.Height;

Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, aspectRatio,
0.0001f, 1000.0f, out projection);

58 CHAPTER 4 Creating 3D Objects

First, we set up a local variable called aspectRatio. This is to store, you guessed it, the
aspect ratio of our screen. For the Xbox 360 the aspect ratio of the back buffer will deter-
mine how the game is displayed on the gamer’s TV. If we develop with a widescreen
aspect ratio and the user has a standard TV, the game will have a letterbox look to it.
Conversely, if we develop with a standard aspect ratio and the user has a widescreen TV,
the Xbox 360 will stretch the display. To avoid this we should account for both situations
and then adjust the value of our aspect ratio variable to the default values of the viewport
of the graphics device, like in the preceding code. If we needed to find the default value to
which the gamer has his or her Xbox 360 set, we can gather that information by querying
the DisplayMode property of the graphics device during or after the Initialization
method is called by the framework.

However, if we want to force a widescreen aspect ratio on the Xbox 360, we could set the
PreferredBackBufferWidth and PreferredBackBufferHeight properties on the graphics
object right after creating it. Many gamers do not care for the black bars, so we should use
this with caution. Forcing a widescreen aspect ratio on Windows is a little more compli-
cated, but the XNA Game Studio documentation has a great “How To” page explaining
how to do it. Once in the documentation, look for “How to: Restrict Graphics Devices to
Widescreen Aspect Ratios in Full Screen” under the Application Model in the
Programming Guide.

Second, we create our field of view. The first parameter we pass in is 45 degrees. We could
have used MathHelper.ToRadians (45.0f), but there is no need to do the math because the
MathHelper class already has the value as a constant. The second parameter is the aspect
ratio, which we already calculated. The third and fourth parameters are our near and far
clipping planes, respectively. The plane values represent how far the plane is from our
camera. It means anything past the far clipping plane will not be drawn onto the screen.
It also means anything closer to us than the near clipping plane will not be drawn either.
Only the points that fall in between those two planes and are within a 45-degree angle of
where we are looking will be drawn on the screen. The last parameter is where we popu-
late our projection matrix. This is an overloaded method. (One version actually returns
the projection, but we will utilize the overload that has reference and out parameters,
which is faster because it doesn’t have to copy the value of the data.)

View

Now that we have our projection matrix set, we can set up our view matrix. Although our
projection can be thought of as the camera’s internals (like choosing a lens for the
camera), our view can be thought of as what our camera sees. The view matrix contains
which way is up for the camera, which way the camera is facing, and the actual position
of the camera. To set up our view matrix, we are going to use another XNA matrix helper
method. The Matrix.CreateLookAt method takes three parameters. Let’s create and initial-
ize these private member fields now.

private Vector3 cameraPosition = new Vector3(0.0f, 0.0f, 3.0f);
private Vector3 cameraTarget = Vector3.Zero;
private Vector3 cameraUpVector = Vector3.Up;

Vertex Buffers 59

Now we can actually call the CreateLookAt method inside of our InitializeCamera
method. We should add the following code at the end of the method:

Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget,
ref cameraUpVector, out view);

The first parameter we pass in is our camera position. We are passing in the coordinates
(0,0,3) for our camera position to start with, so our camera position will remain at the
origin of the x and y axis, but it will move backward from the origin 3 units. The second
parameter of the CreateLookAt method is the target of where we are aiming the camera.
In this example, we are aiming the camera at the origin of the world Vector3.ZzZero (0,0,0).
Finally, we pass in the camera’s up vector. For this we use the Up property on Vectors3,
which means (0,1,0). Notice we actually created a variable for this so we can pass it in by
reference. This is also an overloaded method, and because we want this to be fast we will
pass the variables in by reference instead of by value. Fortunately, we do not lose much
readability with this performance gain.

World

At this point if we compiled and ran the demo we would still see the lovely blank corn-
flower blue screen because we have not set up our world matrix or put anything in the
world to actually look at. Let’s fix that now.

As you saw, the templates provide a lot of methods stubbed out for us. One of these very
important methods is the Draw method. Find this method and add the following line of
code right below the TODO: Add your drawing code here comment:

Matrix world = Matrix.Identity;

This simply sets our world matrix to an identity matrix, which means that there is no
scaling, no rotating, and no translating (movement). The identity matrix has a transla-
tion of (0,0,0), so this will effectively set our world matrix to the origin of the world.

At this point we have our camera successfully set up, but we have not actually drawn
anything. We are going to correct that starting with the next section.

Vertex Buffers

3D objects are made up of triangles. Every object is one triangle or more. For example, a
sphere is just made up of triangles; the more triangles, the more rounded the sphere is.
Take a look at Figure 4.1 to see how this works. Now that you know that every 3D object
we render is made up of triangles and that a triangle is simply three vertices in 3D space,
we can use vertex buffers to store a list of 3D points. As the name implies, a vertex buffer
is simply memory (a buffer) that holds a list of vertices.

60 CHAPTER 4 Creating 3D Objects

FIGURE 4.1 All 3D objects are made up of triangles.

XNA uses a right-handed coordinate system. This means that the x axis goes from left to
right (left being negative, and right being positive), the y axis goes up and down (down
being negative, and up being positive), and z goes forward and backward (forward being
negative, and backward being positive). You can visualize this by extending your right arm
out to your right and positioning your hand like you are holding a gun. Now rotate your
wrist so your palm is facing the sky. At this point your pointer finger should be pointing
to the right (this is our x axis going in a positive direction to the right). Your thumb
should be pointing behind you (this is our z axis going in a positive direction backward).
Now, uncurl your three fingers so they are pointing to the sky (this represents the y axis
with a positive direction upward). Take a look at Figure 4.2 to help solidify how the right-
handed coordinate system works.

Now that you know what the positive direction is for each axis, we are ready to start plot-
ting our points. XNA uses counterclockwise culling. Culling is a performance measure
graphic cards take to keep from rendering objects that are not facing the camera. XNA has
three options for culling: CullClockwiseFace, CullCounterClockwiseFace, and None. The
default culling mode for XNA is CullCounterClockwiseFace, so to see our objects we have
to set up our points in the opposite order—clockwise.

Vertex Buffers 61

FIGURE 4.2 This demonstrates a right-handed coordinate system.

TIP

It is helpful to use some graph paper (or regular notebook paper for that matter) to plot
out points. Simply put points where you want them and make sure when you put them
into the code that you do it in a clockwise order.

Let’s plot some points. Ultimately, we want to make a square. We know that all 3D objects
can be made with triangles, and we can see that a square is made up of two triangles.

We will position the first triangle at (-1,1,0); (1,-1,0); (-1,-1,0). That means the first point
(-1,1,0) will be positioned on the x axis one unit to the left, and it will be one unit up the
y axis and will stay at the origin on the z axis. The code needed to set up these points is
as follows:

private void InitializeVertices()({
Vector3 position;
Vector2 textureCoordinates;

vertices = new VertexPositionNormalTexture[3];

//top left

position = new Vector3(-1, 1, 0);

textureCoordinates = new Vector2(0, 0);

vertices[@] = new VertexPositionNormalTexture(position, Vector3.Forward,
textureCoordinates);

//bottom right

position = new Vector3(1, -1, 0);

textureCoordinates = new Vector2(1, 1);

vertices[1] = new VertexPositionNormalTexture(position, Vector3.Forward,
textureCoordinates);

62 CHAPTER 4 Creating 3D Objects

//bottom left

position = new Vector3(-1, -1, 0);

textureCoordinates = new Vector2(0, 1);

vertices[2] = new VertexPositionNormalTexture(position, Vector3.Forward,
textureCoordinates);

}

As you look at this function, notice that two variables have been created: position and
textureCoordinates. XNA has different structs that describe the type of data a vertex will
hold. In most cases, for 3D games we will need to store the position, normal, and texture
coordinates. We discuss normals later, but for now it is sufficient to understand that they
let the graphics device know how to reflect light off the face (triangle). The most impor-
tant part of the vertex variable is the position of the point in 3D space. You saw earlier
that XNA allows us to store that information in a Vector3 struct. We can either set the
data in the constructor as we did in this code, or we can explicitly set its X, Y, and Z prop-
erties.

I'll skip over explaining the texture coordinates momentarily, but notice they use the
Vector2 struct XNA provides for us. We need to add the following private member field to
our class we have been using to store our vertices:

private VertexPositionNormalTexture[] vertices;

We need to call this method in our application. The appropriate place to call the
InitializeVertices method is inside of the LoadContent method.

If we compile and run our application now we still do not see anything on the screen.
This is because we have not actually told the program to draw our triangle! We will want
to find our Draw method, and before the last call to the base class base.Draw(gameTime),
we need to add the following code:

graphics.GraphicsDevice.VertexDeclaration = new
VertexDeclaration(graphics.GraphicsDevice,
VertexPositionNormalTexture.VertexElements);

BasicEffect effect = new BasicEffect(graphics.GraphicsDevice, null);

effect.Projection = projection;
effect.View = view;

effect.EnableDefaultLighting();
world = Matrix.Identity;

effect.World = world;
effect.Begin();

Effects 63

foreach (EffectPass pass in effect.CurrentTechnique.Passes)

{
pass.Begin();
graphics.GraphicsDevice.DrawUserPrimitives(
PrimitiveType.TrianglelList, vertices, 0,
vertices.Length / 3);
pass.End();
}

effect.End();

You might think there is a lot of code here just to draw the points we have created on the
screen. Well, there is, but it is all very straightforward, and we can plow on through.
Before we do, though, let’s take a minute and talk about effects.

Effects

Effects are used to get anything in our XNA 3D game to actually show up on the screen.
They handle things such as lights, textures, and even the position of the points. We will
talk about effects extensively in Part VI, “High Level Shader Language.” For now, we can
utilize the BasicEffect class that XNA provides. This keeps us from having to actually
create an effect file, so we can get started quickly.

The first thing to notice is that we create a new variable to hold our effect. We do this by
passing in the graphics device as our first parameter, and we are passing in null as the
effect pool because we are only using one effect and don’t need a pool to share among
multiple effects. After creating our effect, we want to set some of the properties so we can
use it. Notice we set the world, view, and projection matrices for the effect as well as tell
the effect to turn on the default lighting. We discuss lighting in detail in the HLSL part of
the book, but for now, this will light up the 3D scene so we can see our objects.

TIP

When working with 3D, it is a good idea to leave the background color set to
Color.CornflowerBlue or some other nonblack color. The reason for this is if the
lights are not set up correctly, the object will render in black (no light is shining on it).
So if the background color is black, you might think that the object didn’t render at all.

Now back to our code. Notice that we call the Begin method on our effect as well as
the End method. Anything we draw on the screen in between these two calls will have
that effect applied to them. The next section of code is our foreach loop. This loop
iterates through all the passes of our effect. Effects will have one or more techniques.

64 CHAPTER 4 Creating 3D Objects

A technique will have one or more passes. For this basic effect, we have only one tech-
nique and one pass. You will learn about techniques and passes in more detail in Part VI.
At this point we have another begin and end pair, but this time it is for the pass of the
current (only) technique in our effect. Inside of this pass is where we finally get to draw
our triangle onto the screen. This is done using the DrawUserPrimitives method in the
graphics device object:

graphics.GraphicsDevice.DrawUserPrimitives(
PrimitiveType.TriangleList, vertices, 0, vertices.Length / 3);

We are passing in the type of primitive we will be rendering. The primitives we are
drawing are triangles, so we are going to pass in a triangle list. This is the most common
primitive type used in modern games. Refer to Table 4.1 for a list of different primitive
types and how they can be used. The second parameter we pass in is the actual vertex data
we created in our InitializeVertices method. The third parameter is the offset of the
point data where we want to start drawing—in our case, we want to start with the first
point, so that is 0. Finally, we need to pass in the number of triangles we are drawing on
the screen. We can calculate this by taking the number of points we have stored and
dividing it by 3 (because there are three points in a triangle). For our example, this will
return one triangle. If we compile and run the code at this point we should see a triangle
drawn on our screen. It is not very pretty because it is a dull shade of gray, but it is a trian-
gle nonetheless (see Figure 4.3).

TABLE 4.1 PrimitiveType Enumeration from the XNA Documentation

Member Name Description

LineList Renders the vertices as a list of isolated
straight-line segments.

LineStrip Renders the vertices as a single polyline.

PointList Renders the vertices as a collection of isolated
points. This value is unsupported for indexed
primitives.

TriangleFan Renders the vertices as a triangle fan.

TrianglelList Renders the specified vertices as a sequence

of isolated triangles. Each group of three
vertices defines a separate triangle. Back-face
culling is affected by the current winding-order
render state.

TriangleStrip Renders the vertices as a triangle strip. The
back-face culling flag is flipped automatically on
even-numbered triangles.

Textures 65

FIGURE 4.3 Drawing a triangle as our first demo.

Textures

We have a triangle finally drawn on the screen, but it does not look particularly good.

We can fix that by adding a texture. Copy the texture from the Chapter4\XNADemo\
XNADemo folder on the CD (texture.jpg) and paste that into the Content project. This
invokes the XNA Content Pipeline, which we discuss in Part III, “Content Pipeline.” For
now, you just need to know that the content pipeline makes the texture available as load-
able content complete with a name by which we can access it. The asset will get the name
“texture” (because that is the name of the file). We need to declare a private member field
to store our texture:

private Texture2D texture;
We define our texture as a Texture2D object. This is another class that XNA provides for us.
Texture2D inherits from the Texture class, which allows us to manipulate a texture

resource. Now we need to actually load our texture into that variable. We do this in the
LoadContent method by adding this line of code:

texture = Content.Load<Texture2D>("texture");

66 CHAPTER 4 Creating 3D Objects

Now we have our texture added to our project and loaded into a variable (with very little
code), but we have yet to associate that texture to the effect that we used to draw the
triangle. We will do that now by adding the following two lines of code right before our
call to effect.Begin inside of our Draw method:

effect.TextureEnabled = true;
effect.Texture = texture;

This simply tells the effect we are using that we want to use textures, and then we actually
assign the texture to our effect. It is really that simple. Go ahead and compile and run the
code to see our nicely textured triangle!

Index Buffers

We have covered a lot of ground so far, but we aren’t done yet. We want to create a
rectangle on the screen, and to do this we need another triangle. So that means we need
three more vertices, or do we? Actually, we only need one more vertex to create our
square because the second triangle we need to complete the square shares two of our
existing points already. Feel free to review the sections earlier in this chapter where we
talked about vertex buffers. We set up three points to make the triangle. To use the code
as is, we would need to create another three points, but two of those points are redun-
dant, and the amount of data it takes to represent the VertexPositionNormalTexture
struct is not minimal, so we do not want to duplicate all that data if we do not need to.
Fortunately, we do not. XNA provides us with index buffers.

Index buffers simply store indices that correspond to our vertex buffer. So to resolve our
current dilemma of not wanting to duplicate our heavy vertex data, we will instead dupli-
cate our index data, which is much smaller. Our vertex buffer will only store four points
(instead of six), and our index buffer will store six indices that correspond to our vertices
in the order we want them to be drawn. We need to increase our vertex array to hold four
values instead of three. Make the following change in the InitializeVertices method:

vertices = new VertexPositionNormalTexture[4];

An index buffer simply describes the order in which we want the vertices in our vertex
buffer to be drawn in our scene.

Find the InitializeVertices method in our code and add the last point we need for our
rectangle. Try to do this before looking at the following code.

//top right

position = new Vector3(1, 1, 0);

textureCoordinates = new Vector2(1, 0);

vertices[3] = new VertexPositionNormalTexture(position, Vector3.Forward,
textureCoordinates);

Index Buffers 67

As you were writing the code, I imagine you were wondering about the texture coordi-
nates for the points. We finally talked about textures, but not really how we mapped the
texture to the vertices we created. We will take a moment and do that now before we
continue our discussion of index buffers.

Texture coordinates start at the top left at (0,0) and end at the bottom right at (1,1). The
bottom-left texture coordinate is (0,1), and the top right is (1,0). Take a look at Figure 4.4
to see an example.

(0,0) (1,0)
X+
v+
(0.1) (LD

FIGURE 4.4 Texture coordinates start at the top left at (0,0) and end at the bottom right at
(1,1).

If we wanted to map a vertex to the bottom-center pixel of a texture, what should the
values be? The horizontal axis is our x axis, and the vertical axis is our y axis. We know we
need a 1 in our y coordinate to get to the very bottom of the texture. To get to the middle
of that bottom row, we would need to take the value in between 0 and 1, which is 0.5. So
if we wanted to map a vertex to the bottom-center pixel of a texture, we would map it at
(0.5, 1). Back to our demo: Because the vertex we just added was the top-right point of the
rectangle, the texture coordinate we assigned to it was (1,0).

Now that you have a better understanding of why our texture mapped to our triangle
correctly, we can get back to our index buffer. We have added a vertex to our code, and
now we need to create an index buffer to reference these four points. We need to create
another private member field called indices:

private short[] indices;

Notice that we declared this as an array of short. We could have used int, but short takes
up less room, and we aren’t going to have more than 65,535 indices in this demo. The
next thing we need to do is actually create our method that will initialize our indices.

We will name this InitializeIndices, and we will call this method from inside our

68 CHAPTER 4 Creating 3D Objects

LoadContent method right after we make the call to InitializeVertices. Make sure that
the vertex was added right before we initialized our vertex buffer and after we created all
the other vertices. This way, the code for InitializeIndices shown next will work for us.
It assumes the latest addition to our list of vertices is at the bottom of the list.

private void InitializeIndices()

{
/16 vertices make up 2 triangles which make up our rectangle
indices = new short[6];
//triangle 1 (bottom portion)
indices[0] = @; // top left
indices[1] = 1; // bottom right
indices[2] = 2; // bottom left
//triangle 2 (top portion)
indices[3] = 0; // top left
indices[4] = 3; // top right
indices[5] = 1; // bottom right

I3

In this method, we know we are going to create two triangles (with three points each), so
we create enough space to hold all six indices. We then populate our indices. We took care
to add our vertices in clockwise order when adding them to the vertex list, so we can
simply set our first three indices to 0, 1, and 2. The second triangle, however, needs a little
more thought. We know we have to add these in clockwise order, so we can start with any
vertex and work our way around. Let’s start with the top-left vertex (the first vertex we
added to our list—index of 0). That means we need to set our next index to be the top-
right vertex, which is the one we just added to the end of the list. We set that index to 3.
Finally, we set the last point to the bottom-right vertex, which was added to the vertex
buffer second and has the index of 1.

Now we have our vertices created, complete with textured coordinates and position and
even normals. We have our indices set up to use the vertex buffer in a way that doesn't
duplicate any of the complex vertex data. It may appear the data is duplicated, but only
the indices are duplicated, not the actual vertex data. We further saved memory by using
short instead of int because we will only have a few indices we need to store to represent
our 3D object (our rectangle). Also, some older graphic cards do not support 32-bit (int)
index buffers. The only thing left for us to do is to actually modify our code that draws
the primitive to tell it we are now using an index buffer. To do that, find the Draw method
and locate the call to DrawUserPrimitives. We will want to replace that line with the
following line:

graphics.GraphicsDevice.DrawUserIndexedPrimitives (=
PrimitiveType.TrianglelList, vertices, 0, vertices.Length,=
indices, @, indices.Length / 3);

XNA Game Components 69

Notice that we changed the method we are calling on the graphics device. We are now
passing in both vertex and index data. Let’s break down the parameters we are passing in.
We still pass in a triangle array as the first parameter and our array of vertices as the
second parameter, and we are leaving our vertex offset at 0. The next parameter is new
and simply needs the number of vertices that is in our vertex array. The fifth parameter is
our array of indices (this method has an override that accepts an array of int as well). The
sixth parameter is the offset we want for our index buffer. We want to use all the indices,
so we passed in 0. The final parameter, primitive count, is the same as the final parame-
ter in the method we just replaced. Because we only have four vertices, we needed to
change that to our index array. Our indices array has six references to vertices in it, and
we take that value and divide it by 3 to get the number of triangles in our triangle list.
When we compile and run the code, we should see a rectangle that was created with our
modified vertex buffer and our new index buffer!

As an exercise, modify the points in our vertex to have the rectangle slanted into the
screen. This will require modifying a couple of our z values from 0 to something else. Give
it a try!

XNA Game Components

Now that we have created this very exciting rectangle, let’s take a look at what it did to
our performance. In this section we are going to create an XNA GameComponent. A game
component allows us to separate pieces of logic into their own file that will be called auto-
matically by the XNA Framework. We will take the frame rate code we added in our
PerformanceBenchmark project from the last chapter and create a game component out of
it. To do this, we need to add another file to our project, which we can call FPS.cs. We
need to pick GameComponent as the file type from inside the Add New File dialog box of
XNA Game Studio.

With a blank fps.cs in front of us, we should see the class is inheriting from
Microsoft.Xna.Framework.GameComponent. This is useful for components where we are
only updating the internal data, typically through the Update method. For our frame rate
calculation, however, we need to have our game component expose the Draw method
because we want to know how many times a second we can draw our world on the screen.
So we first need to change from which class we are inheriting. Instead of inheriting from
GameComponent, we need to inherit from DrawableGameComponent so we can access the Draw
method. We need to override the Draw method and use the same code we used in the
PerformanceBenchmark project. To see the definition of the DrawableGameComponent to
determine what is available for us to override, press F12 while the cursor is inside the
DrawableGameComponent text.

Listing 4.1 contains the same code we used in the PerformanceBenchmark project. The
difference is that it is inside of a drawable game component now. The biggest difference is
our constructor, so let’s take a minute to dissect that now. As you learned in the last

70 CHAPTER 4 Creating 3D Objects

chapter, to measure a true frame rate we need to get the screen to draw as many times as
it can and not wait on the monitor to do a vertical refresh before updating the screen. We
could put this code inside of our main game class, but for the projects in this book we
typically let the game run at a fixed pace and only change it when we are trying to
measure our true frame rate. Because of this assumption, the code is set up to take these
values in via the constructor of the FPS game component. Typically a game component
only requires passing in a game instance to the constructor, but we can require other para-
meters if we need to. For this game component, we are passing the values we initially set
at the game level. We have a default constructor that will have the game render as fast as
possible. These settings are per game, not per component.

LISTING 4.1 A Drawable Game Component That Calculates Our FPS

using System;
using System.Collections.Generic;
using Microsoft.Xna.Framework;

namespace XNADemo
{
public sealed partial class FPS
: Microsoft.Xna.Framework.DrawableGameComponent

private float fps;

private float updateInterval = 1.0f;
private float timeSincelLastUpdate = 0.0f;
private float framecount = 0;

public FPS(Game game)
: this(game, false, false, game.TargetElapsedTime) { }

public FPS(Game game, bool synchWithVerticalRetrace,
bool isFixedTimeStep, TimeSpan targetElapsedTime)
: base(game)

GraphicsDeviceManager graphics =
(GraphicsDeviceManager)Game.Services.GetService(
typeof (IGraphicsDeviceManager));

graphics.SynchronizeWithVerticalRetrace = synchWithVerticalRetrace;
Game.IsFixedTimeStep = isFixedTimeStep;
Game.TargetElapsedTime = targetElapsedTime;

XNA Game Components

public sealed override void Initialize()

{
// TODO: Add your initialization code here
base.Initialize();

public sealed override void Update(GameTime gameTime)

{
// TODO: Add your update code here

base.Update(gameTime);

public sealed override void Draw(GameTime gameTime)
{
float elapsed = (float)gameTime.ElapsedRealTime.TotalSeconds;
framecount++;
timeSincelLastUpdate += elapsed;
if (timeSincelLastUpdate > updatelnterval)

#if XBOX360

#else

#endif

{
fps = framecount / timeSincelastUpdate;
System.Diagnostics.Debug.WriteLine("FPS: " + fps.ToString());
Game.Window.Title = "FPS: " + fps.ToString();
framecount = 0;
timeSincelLastUpdate -= updatelnterval;

}

base.Draw(gameTime);

71

Now that we have the game component created and added to our project, we need to
actually use it inside of the demo. To do this we need to create a private member field in

our game class, as follows:

private FPS fps;

72 CHAPTER 4 Creating 3D Objects

Then we can add the following code inside of our game constructor after we initialize our
graphics variable:

#if DEBUG

fps = new FPS(this);
#else

fps = new FPS(this, true, true, this.TargetElapsedTime);
#endif

Components.Add (fps);

We wrapped this with the DEBUG compiler directive, but we might want to run in debug
mode without rendering the code as fast as possible. Either we can change how we are
initializing our fps variable by passing in explicit values to the constructor, or we can
create another configuration (that is, PROFILE). If we compiled in release or debug mode,
the game is going to run at the normal pace but will still display the frame rate. This
would allow us to see if the frame rate is dropping and we are falling behind, but in order
to see how much room we have, we would want to run it under the new configuration
(PROFILE). After initializing the fps object, we then add the component to our game’s
component collection. The XNA Framework will then call the component’s Update and
Draw methods (and other virtual methods) at the same time it calls the game’s methods.

It can be very beneficial to separate logic and items we need to draw to the screen. It
provides a nice clean way to separate our code, but it does have some overhead. It is defi-
nitely not wise to handle all the objects we want to draw as game components. Instead, if
we want to separate our enemies from our player, it might be beneficial to have our player
in its own game component and then have an “enemy manager” as its own game compo-
nent. The enemy manager could then handle itself which enemies it needs to draw, move,
and so on. This way, as enemies come and go, the manager is handling all that logic and
not the core game class adding and removing a bunch of enemy components. Game
components can really help, but we cannot go overboard with them or our performance
will suffer.

Checking Performance

Now that we have our fps functionality inside of a game component, we can check out
whether or not the code we wrote for the demo to display the rectangle is performing
well. Fortunately, we recorded the frame rate we were getting in the last chapter, so we
have a baseline from which to work.

We will need to set up an Xbox 360 game project for this solution as we discussed in
Chapter 2, “XNA Game Studio and the Xbox 360.” Once we have it set up, we can run
our application on our machine and on the Xbox 360 to measure performance.

Machine A ran the benchmark code at about 280 fps. The Xbox 360 ran the same bench-
mark code at about 5,220 fps. With our new code, Machine A is running at 206 fps. The
Xbox 360 is running at only 114 fps—ouch! What did we do wrong? Well, because we
tested for performance right away, we know that it has to be an issue with our Draw

Checking Performance 73

method, so we should take a look at it again to see what is going on. We can also run the
XNA Framework Remote Performance Monitor for the Xbox 360 and see what the garbage
collector is doing. If a refresher is needed, you can find information on running this appli-
cation in Chapter 2.

By launching our demo through the performance monitor tool, we can see that the
“Objects Moved by Compactor” value is between 75,000 and 85,000 every second. We can
see the “Objects not moved by Compactor” value is constantly growing with about 5,000
or more per second. This is obviously not good, and it is why we are thrashing our Xbox
360. Looking in the code we can see that we are creating a new instance of the
BasicEffect class on every frame. That has got to be hurting us, so we can make that a
member field of the game class because we are never changing it. We can break it out and
actually initialize the effect inside our LoadContent method as follows:

effect = new BasicEffect(graphics.GraphicsDevice, null);

Now we can run our application again and look at the frame rate it is spitting out in our
debug window. It is much better now—about 2,850 fps. However, that is still a far cry
from our 5,220 fps. Checking the frame rate on Machine A reveals that we are running at
207 fps. So although the change really made a difference on the Xbox 360, it did not do
much for us on the Windows side of things. Of course, this is expected because the issue
we were having was with the garbage collector. Remember from the last chapter that each
time we were creating a new BasicEffect object in Windows, the code was creating the
effect object and destroying it all in the same frame, so when the garbage collector ran, it
simply removed the dead objects. On the Xbox 360, however, the garbage collector has to
go through the entire heap to determine what is dead as it starts to get full. So we have
helped our situation on the console, but we are still only running at 53% of what we were
at the baseline. Let’s dig around some more. Notice the following lines of code at the top
of our Draw method:

graphics.GraphicsDevice.VertexDeclaration = new
VertexDeclaration(graphics.GraphicsDevice,
VertexPositionNormalTexture.VertexElements);

This cannot be doing the garbage collector any favors. Although we need to set our vertex
declaration on every frame, we do not need to create it every frame. We can create a
private member field to hold our vertex declaration as follows:

private VertexDeclaration vertexDeclaration;

Now we can actually initialize that variable inside of the LoadContent method right after
our BasicEffect initialization. The code for this is as follows:

vertexDeclaration = new VertexDeclaration(graphics.GraphicsDevice,
VertexPositionNormalTexture.VertexElements);

74 CHAPTER 4 Creating 3D Objects

Finally, we can change the original statement inside of Draw to set graphics device vertex
declaration to the variable we just initialized:

graphics.GraphicsDevice.VertexDeclaration = vertexDeclaration;

Now we are only creating the vertex declaration once and setting it once instead of every
frame. This is encouraging because we are now at about 3,230 fps on the Xbox 360 and
the performance is still the same on Machine A at about 207 fps. So just with a little bit of
effort we optimized our code from running at a mere 114 fps on the Xbox 360 to a more
reasonable 3,230 fps.

What else can we do? Surely just displaying two triangles on the screen should not
decrease our frame rate by 39%. As we go back to the performance monitoring tool, we
can see that our “Objects Moved by Compactor” and “Objects Not Moved by Compactor”
values are at a much better number—zero!

If we comment out the DrawUserIndexedPrimitives method, we see that our frame rate
jumps back up to 5,220 fps. So it means the “problem” exists in this method. Is there
anything that can be done with the code we have? Because our baseline code did not do
anything and this code is actually drawing something (even if it is only two triangles), it
might be that this is as good as it gets—after all, more than 3,000 fps is not that shabby!
However, there has been some debate in regard to whether the DrawUser* methods are as
fast as their Draw* counterparts. We are going to find out if that is the case.

DrawUserIndexedPrimitives versus DrawIndexedPrimitives

Make a copy of the solution folder we are working on and rename the new folder
XNADemo-DIP. We can leave the solution file and everything else the same name. After
opening this new project, we need to give it another title in the AssemblyInfo.cs file. We
also need to change the GUID value so that when we deploy this, it will show up as a new
entry in our XNA Game Launcher list. We can just replace any one digit with another
digit for this example. This way, we can easily compare this demo with the one we just
finished inside of the remote performance monitor for the Xbox 360. Once this has been
done, we need to modify our game code by adding the following code to the end of the
InitializeIndices method:

IndexBuffer ib = new IndexBuffer(graphics.GraphicsDevice,
sizeof(short) * indices.Length, BufferUsage.WriteOnly,
IndexElementSize.SixteenBits);

ib.SetData(indices);

graphics.GraphicsDevice.Indices = ib;

We are initializing the index buffer on our graphics device by telling it the size of our

indices array. We use BufferUsage.WriteOnly because we will not be reading from the
list (reading would fail with this setting) and it allows the graphics driver to determine
the best location in memory to efficiently perform the rendering and write operations.

Checking Performance 75

Finally, we tell it that we have an array of short by setting the IndexElementSize to 16
bits, the size of the short type (System.Int16). The second statement actually sets the
array of indices inside of the graphic devices index buffer.

We needed to define our index buffer because the method we are replacing in the Draw
method needs to have the data explicitly set on the graphics device. The following is the
code we are going to replace our DrawUserIndexedPrimitives inside the Draw method
with:

graphics.GraphicsDevice.DrawIndexedPrimitives(
PrimitiveType.TriangleList, 0, @, vertices.Length, @, indices.Length / 3);

Finally, we need to set the source of our graphic devices vertex buffer. We do that with
the following code, which should be placed at the end of the InitializeVertices
method:

vertexBuffer = new VertexBuffer(graphics.GraphicsDevice,
VertexPositionNormalTexture.SizeInBytes * vertices.Length,
ResourceUsage.WriteOnly, ResourceManagementMode.Automatic);
vertexBuffer.SetData(vertices);

graphics.GraphicsDevice.Vertices[0Q].SetSource(vertexBuffer, 0,
VertexPositionNormalTexture.SizeInBytes);

The first statement is used to populate our vertex buffer with the actual vertices we
created. We pass in the graphics device followed by the size of the buffer. The size of the
buffer is determined by taking the size of the struct we are using to represent our vertex
(in this case it is VertexPositionNormalTexture) and multiplying that by the number of
points we have. In this case it is three, but instead of hard-coding three, we grab the
length property of our vertex array. The third parameter describes how we plan to use this
vertex buffer. We can find all the different options for this enumeration by looking in the
documentation that was installed with XNA Game Studio. We are setting the BufferUsage
parameter just like we did before. The final parameter of this method tells XNA to handle
our memory management automatically. For more information on this enumeration, take
look at the documentation. The second statement takes our vertex data we set in our
InitializeVertices method and sets our vertex buffer with it.

We can set up our vertexBuffer private member field next:

private VertexBuffer vertexBuffer;

After these changes, we can compile and run the code on the Xbox 360 and see that our
frame rate has done nothing. The conclusion to draw here is that it does not make a
difference if we use DrawUserPrimitives or DrawPrimitives methods. This was a good
exercise, but for our example here it did not make a difference. Whichever version is more
convenient for us as we develop our game is the one we should use. However, the results
could change if we are drawing more vertices. Another performance test could be to add
more vertices and indices to see if one scales better than the other. For example, instead of

76 CHAPTER 4 Creating 3D Objects

only rendering four vertices, you could render 10,000 and see how the two methods
compare. Have fun finding the most efficient way to use these methods in your particular
situation.

Transformations Revolutions

Just in case it is not clear where these transformation section titles come from, when dealing
with matrices it is very hard not to think about The Matrix movies. What a great trilogy.

Anyway, the reason we are back yet again to discuss transformations is because you need
to gain practical knowledge about transformations and not just the theory you learned
about earlier. Therefore, we will look at some of the transformation functions that XNA
has included in the framework.

In the earlier scenario we had a 3D object that we wanted to scale, rotate (twice), and then
translate. We said that we had to do it in a particular order but did not take the discussion
any further. Now that we know how to create a 3D object, we can run through the exer-
cise of transforming the object the way we want.

We can make a copy of the first demo we created in this chapter (XNADemo) and call it
Transformations. We need to rename the assembly title and the GUID again so we will not
overwrite the demo with the same GUID on the Xbox 360. We can actually rename each
project as well as the solution and change the namespaces if that is preferred.

In the earlier scenario, we wanted to move to a position and scale our object down and
then rotate to the left and down some. This needs to be done in the correct order because
matrix multiplication is not commutative. We are going to modify our code and move our
existing rectangle into the distance. Then we will create another rectangle and transform
it to get the desired effect.

To start, we need to refactor a section of code from our Draw method to create a new
method called DrawRectangle. Cut all the code after we create the world matrix variable
and before we call the Draw method on our base class. Now paste the code into the newly
created DrawRectangle method, as follows:

private void DrawRectangle(ref Matrix world)
{

effect.World = world;

effect.Begin();

//As we are doing a basic effect, there is no need to loop
//basic effect will only have one pass on the technique
effect.CurrentTechnique.Passes[0Q].Begin();

graphics.GraphicsDevice.DrawUserIndexedPrimitives(
PrimitiveType.TrianglelList, vertices, 0, vertices.lLength,
indices, @, indices.Length / 3);

Transformations Revolutions 77

effect.CurrentTechnique.Passes[0@].End();

effect.End();
}

The method takes a matrix as a parameter. This is going to be the matrix we transform
before sending it to the effect. To demonstrate another way of setting the passes on our
BasicEffect, we can just grab the first pass on the current technique instead of doing a
foreach loop because we know there is only one pass we can get by with this optimization.

Now we need to call this method inside of our braw method where we just removed the
code. So right above the call to Draw on our base class we can add the following code:

DrawRectangle(ref world);

If we run this, we should get the exact same results as before. We are still rendering one
rectangle in the exact same position—the origin of the world. We can remove the member
variable world and where we set it at the top of our Draw method because we are not using
it in this example. Following is our new Draw method with the changes mentioned so far:

protected override void Draw(GameTime gameTime)

{

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

effect.Projection = projection;
effect.View = view;

effect.EnableDefaultLighting();

effect.TextureEnabled = true;
effect.Texture = texture;

Matrix world = Matrix.Identity;
DrawRectangle(ref world);

base.Draw(gameTime);

}

Let’s move our existing triangle into the distance. We can move it backward and to the
right some. To do this we will need to use the built-in XNA matrix helper method
Matrix.CreateTranslation. We know we are at the origin (0,0,0), and we want to move
back and to the right. Remember that XNA uses a right-handed coordinate system, so this
means that to move the rectangle backward we need to subtract from the z position. To
move it right we need to add to the x position. CreateTranslation takes in Vector3 as a
parameter, so we can set our values into the vector before passing it into the helper func-
tion. Change where we set the world matrix to the following:

Matrix world = Matrix.CreateTranslation(new Vector3(3.0f, 0, -10.0f));

78 CHAPTER 4 Creating 3D Objects

We moved the rectangle to the right by three units and to the back by 10 units. Now we
need to add another rectangle. Let’s add the code to do this immediately following the
first rectangle. To do this we need to simply pass in Matrix.Identity as the following
code shows:

world = Matrix.Identity;
DrawRectangle(ref world);

When we run the code we cannot see the rectangle we originally drew because it is further
back, and this new rectangle is obstructing our view. Let’s scale it down to about 75% of
what it is currently. To do this we need to call the XNA matrix helper method
Matrix.CreateScale as follows:

world = Matrix.CreateScale(0.75f);
By replacing the identity matrix with this CreateScale matrix, we can see our rectangle is

now smaller, so we can partially see the one we moved toward the back. A screenshot of
this can be seen in Figure 4.5.

o FPS: 2364431 oliE

FIGURE 4.5 A smaller rectangle is obstructing the view of a larger rectangle that is further
away.

Transformations Revolutions 79

Let’s move this rectangle back about five units, to the left three, and down one unit. We
want to keep the scale that we have in place. We need to multiply our matrices together,
as discussed earlier, so we change our world matrix again to look like the following code:

world = Matrix.CreateScale(0.75f) *
Matrix.CreateTranslation(new Vector3(-3.0f, -1.0f, -5.0f));

We also want to rotate our object to one side and downward. We can do that using a
couple other helper methods in the Matrix struct. There are three different helper func-
tions, and each will rotate one of the three axes. These methods are called
Matrix.CreateRotationX, Matrix.CreateRotationY, and Matrix.CreateRotationZ. To add
rotation to make the object turn to the side, we need to rotate around the y axis. To visu-
alize this, take a look at Figure 4.6.

P
L

FIGURE 4.6 Rotating around the y axis.

Let’s rotate around the y axis by 30 degrees. The rotation helper methods require a value
in radians, but the MathHelper class allows us to easily convert degrees to radians. Thus,
we can rotate 30 degrees around the y axis by using the following code:

world = Matrix.CreateScale(0.75f) *
Matrix.CreateTranslation(new Vector3(-3.0f, -1.0f, -5.0f)) *
Matrix.CreateRotationY(MathHelper.ToRadians(30.0f));

If we run this code, we do not see the rectangle. The reason is that we rotated the matrix
after we translated it. By doing this, we effectively told it to rotate around the origin
(where it was) instead of at its center. By rotating after translating, we are making it orbit
around where it was. Instead, we want it to rotate around its own center, and to do this
we need to replace the world matrix with the following code:

world = Matrix.CreateScale(0.75f) *
Matrix.CreateRotationY(MathHelper.ToRadians(30.0f)) *
Matrix.CreateTranslation(new Vector3(-3.0f, -1.0f, -5.0f));

80 CHAPTER 4 Creating 3D Objects

Now when we run this, we have rotated around the center of our object to get the desired
results. Finally, we want to throw in another rotation for good measure. This time we
want to rotate downward, so we need to rotate on the x axis. Assuming we want to rotate
it about 15 degrees, we can use the following code:

world = Matrix.CreateScale(0.75f) *
Matrix.CreateRotationX(MathHelper.ToRadians(15.0f)) *
Matrix.CreateRotationY(MathHelper.ToRadians(30.0f)) *
Matrix.CreateTranslation(new Vector3(-3.0f, -1.0f, -5.0f));

The code scales our rectangle, rotates it around the x axis, rotates it around the y axis, and
finally the code moves the rectangle. By multiplying the matrices in the right order, we
were able to accomplish the desired effect (see Figure 4.7).

o5 FPS: 2755899 =il

FIGURE 4.7 Applying matrix transformations in the correct order will produce the desired effect.

Summary

We covered a lot of ground in this chapter. We discussed the foundation of everything we
will do in the 3D worlds we create. We set up a camera to view our 3D world. We
discussed basic 3D terminology and how it correlates to XNA. We examined how to use
different methods to create 3D objects on the screen with points we manually plotted
inside of our code.

Transformations Revolutions 81

We spent quite a bit of time going through the performance-checking process to deter-
mine what things we could do to improve our code. We also put into practice what you
learned in the last chapter.

We ended the chapter by actually performing matrix transformations, a concept you
learned about at the beginning of the chapter. We applied multiple transformations to one
of our objects and saw how important it was to get the multiplication order right when
dealing with transformations.

This chapter is very important because the rest of the book will build on this foundation.
Make sure to take time to let it sink in. Reread it, dwell on it, dream about it—OK, maybe
that’s a little bit too extreme.

This page intentionally left blank

CHAPTER 5

Handling Input to
Move Our Camera

We created a camera in the last chapter that does not
move. We did not allow any input (other than exiting the
demo with the GamePad’s Back button, which the template
provided for us). We are going to change that now. You are
going to learn how to use input devices (keyboard, mouse,
and game pad controller) by working with the camera. To
accomplish this, we are going to start a game library that
we can utilize in our demos and games. Let’s get started!

Creating a Game Service

Instead of just throwing input and camera code inside of
another demo, we are going to take the time to create a
library (even if it is just a small one). Before we dig into
that, however, we need to discuss game services and how
they are used with game components. This will greatly
simplify our library architecture.

We have a camera we have been using up to this point. The
camera code is actually inside of the game object, which is
perfectly acceptable for smaller demos. However, we're
going to take the time in this chapter to move the camera
into its own game component. We have already moved our
FPS code into its own game component, and we will end up
putting that game component into the library we are creat-
ing. In this chapter, we are also going to create an input
handler that’s a game service.

You learned how to create a game component in the last
chapter using our FPS game component. Having a game
component makes it easier to manage our code because
items are broken out into logical pieces. However, we can

IN THIS CHAPTER

vV vV v Vv

v

v

Creating a Game Service
Starting a Library

Working with Input Devices
Creating a Stationary Camera
Creating a First-person Camera

Creating a Split Screen

84 CHAPTER 5 Handling Input to Move Our Camera

run into a potential issue when multiple game components we create need to access the
same piece of functionality (or each other). We can see this more easily when thinking
about input.

We want to put our code that handles the input into its own game component—this is
the XNA way after all. So let’s assume we have our input game component done, and now
we have a player game component that needs access to the input device so that the player
game component can react to the gamer as he or she uses the input device. To enable our
player game component (and any other future game component we make) to access the
input handler game component, we will turn the input handler game component into a
game service. A game service is simply a game component wrapped in a unique interface
that allows other game components and services to interact with it.

NOTE

Remember what you learned from the last chapter: Too many game components can
hurt performance. In such cases we can use a “manager” game component that han-
dles its own objects. The example we discussed last chapter involved creating ene-
mies. Some XNA beginners will create an enemy game component for every enemy they
have on the screen (or even a bullet game component). They then try to add and
remove or set visible and invisible each and every game component. This can bring a
system to a crawl because of the overhead associated with the game components.
They're just not meant to be used in that way. A better approach is to create an
EnemyManager or BulletManager game component and allow the manager to handle
which enemies or bullets are being displayed.

The Game object holds collections of services. We have actually been using one already.
The GraphicsDevice is a game service built into XNA. When we created our FPS game
component, we needed access to the GraphicsDevice. Therefore, we wrote the following
code in the constructor for the FPS code:

GraphicsDeviceManager graphics =
(GraphicsDeviceManager)Game.Services.GetService(
typeof (IGraphicsDeviceManager));

Game components always have a Game object passed to them, so every game component
can obtain access to any game service associated with the game. The preceding code does
just that. It creates a reference to the game’s GraphicsDeviceManager memory. When we
create a new solution by selecting a game template, the code generated for us includes a
variable called graphics that holds the graphics device manager. Although we could have
made the graphics variable public and accessed the data that way, it is much more
elegant to use a service. Otherwise, we would probably be creating many publicly accessi-
ble properties, which would hurt our game design.

Because the XNA Framework team used an interface for the graphics device manager
object and because they added it to the services collection of the game object, we are able

Creating a Game Service 85

to access it from any piece of code that has access to the game object. You can see this if
you look at the preceding code again. It calls out to the game object to which we have a
reference and calls its Services.GetService method. This method takes in a type and
returns an object. We pass in the type of the interface and get returned the graphics device
object. We perform a cast on it so we have a strongly typed object that allows us to work
with it intelligently.

You have seen how we used a game service that XNA created for us; now you'll learn how
to create a game service. To get started, copy the Transformations project we created in the
last chapter and name the new project InputDemo. Also rename the namespace in the
projects and modify the GUID in the AssemblyInfo.cs file.

We will create the input game service now inside of this project and then move it along
with our FPS game component when we create our library in the next section. We need to
add a new game component file to our project, which we will call InputHandler. The first
step to making this a game service is to create an interface.

The game services collection can only have one of any particular interface. This is how it
knows which object to return when a request is made. This means that if we have more
than one object of the same interface and need to access them all as a game service, we
would need to create a different interface for each object. Fortunately, an interface can be
empty. This means through inheritance we can quickly make our “duplicate” object
inherit from the original object and from the new interface that does not require any
additional implementation.

To add our interface we need to use the following code:

public interface IInputHandler { };

We can create a new code file to store this interface or we can put it directly in the input
handler file. Currently, our input handler interface is blank, but we will be adding proper-
ties to it soon. Now we need our game component to inherit from this interface (as well as
the GameComponent object it is already inheriting from). We do this by changing our class
declaration to the following:

public class InputHandler
: Microsoft.Xna.Framework.GameComponent, IInputHandler

We also need to make sure our input handler is using the XNA Framework’s Input name-
space:

using Microsoft.Xna.Framework.Input;
To finish making this game component into a game service, we need to add it to the

game’s services collection. We do this in the game component’s constructor with the
following code:

game.Services.AddService(typeof (IInputHandler), this);

86 CHAPTER 5 Handling Input to Move Our Camera

Adding a service is much like getting a service. We pass in the type of the interface for the
object and then we actually pass in our object. We always want to pass in the type of our
interface and not the type of our actual class. This way, when other objects access the
game service, they can simply do it through the interface without having to explicitly use
the object. Of course if needed, we can cast to the actual object. We should be able to
compile the code at this point. It currently does nothing differently than it did in the last
chapter. However, we are laying a foundation so we can get started on our library. Let’s do
that now!

Starting a Library

We have two game components currently (well, one is a skeleton) and are planning on
adding more. We should put these into a library that we can easily access from multiple
demos and games. We are going to set up a library project to hold our FPS game compo-
nent as well as the start of the input handler class we just created. To do this, we will
create a new Windows Game Library project, which we’ll call XELibrary.

Now that we have our solution set up with the two projects, we can start building our
library. To begin, we add the FPS.cs file from our last project. Let’s cut the actual FPS.cs
and InputHandler.cs files from our InputDemo project and paste them into our XELibrary
project (after saving InputHandler.cs of course). At this point we have started a library that
contains our fully made FPS game component and a skeleton of our InputHandler game
component. We can remove the Class1.cs file from our project. We should also make sure
our namespace is consistent across the library and set it to XELibrary. We should be able
to build the library project with no compilation errors.

NOTE

As we add items to one project (Windows), we need to add them to the other project
(Xbox 360) as well (after we create the additional platform project like we did in Chapter
2, “XNA Game Studio and the Xbox 360”). From here on, it will be assumed that as we
create a project we will create the other platform’s counterpart, and as we add files to
one project it will be assumed that they are added to the other project as well.

Before we start on our input handler code, we can go ahead and create another game
component called Camera. We are going to move the initial camera code we have created
to this game component. We will also talk to our input handler game service inside this
game component. Let’s go ahead and set up a private member field to hold an instance of
the input handler because we know we will need it. We do this by adding the following
code to our Camera.cs file:

private IInputHandler input;

Now that we have the field created, we can initialize it inside of our constructor as follows:

input = (IInputHandler)game.Services.GetService(typeof(IInputHandler));

Starting a Library 87

Now we can move our InitializeCamera method from the InputDemo Gamel.cs code into
our Camera class. We need to cut the call to this method from the Initialize method
inside our game project. Now we need to paste the call into our camera’s Initialize
method. The updated code in our camera class should look like the following:

public override void Initialize()

{
base.Initialize();
InitializeCamera();
I3
private void InitializeCamera()
{
float aspectRatio = (float)Game.GraphicsDevice.Viewport.Width /
(float)Game.GraphicsDevice.Viewport.Height;
Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, aspectRatio,
1.0f, 10000.0f, out projection);
Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget,
ref cameraUpVector, out view);
I3

We did not modify this code; we simply moved it from our InputDemo game class into our
XELibrary camera class. Notice we called InitializeCamera after calling base.Initialize.
This is because we are utilizing the graphics device (from our component’s Game object),
and it is not available until the main game class finishes with its Initialize method.

Our InitializeCamera method is using some member fields we have not moved yet. We
need to move the following code from our demo to our library:

private Matrix projection;

private Matrix view;

private Vector3 cameraPosition = new Vector3(0.0f, 0.0f, 3.0f);
private Vector3 cameraTarget = Vector3.Zero;

private Vector3 cameraUpVector = Vector3.Up;

Because we moved our view and projection fields from our demo, the demo will no longer
compile until we change our demo’s Draw method, where we set the effect’s view and
projection so it will display our objects correctly. We could leave these in the game class as
public fields and have the Camera game component work with them there. A cleaner
approach would be to leave the camera self-contained and access those properties from
inside our demo. Let’s create and initialize our Camera game component inside of our
demo. We can use the following code:

camera = new Camera(this);
Components.Add(camera) ;

88 CHAPTER 5 Handling Input to Move Our Camera

We also need to set up the member field as follows:

private Camera camera;

We need to reference our game library inside of our game project. This can be done by
right-clicking the InputDemo’s project References tree node in the Solution Explorer. Then
click Add Reference and select the Projects tab. Selecting XELibrary and clicking Add will
make XELibrary a dependency of InputDemo. We need to make sure to reference the
Windows library in the Windows demo and the Xbox 360 library in the Xbox 360 demo.

NOTE

It is usually a good idea to create the Xbox 360 copy of the project early on and keep it
up to date as new files are added. It is much better to know how the code is perform-
ing on another platform during the development cycle instead of at the end.

After loading the library projects inside our demo solution, we now need to add a using
statement to the top of our Gamel.cs file in the demo project. We need to use XELibrary,
as shown here:

using XELibrary;

If we compile at this point, the only errors we should see are inside our demo’s Draw
method, stating that it has no idea what view and projection are. We are going to fix that
now by changing the code to use our camera’s view and projection properties. We do not
have any properties yet in our Camera object. Well, let’s change that. We need to add the
following code to our Camera game component:

public Matrix View

{
get { return view; }
}
public Matrix Projection
{
get { return projection; }
}

Now we can access these properties inside of our demo’s Draw method. Let’s change the
properties we set on our effect with the following code:

effect.Projection = camera.Projection;
effect.View = camera.View;

Now we can successfully compile our code again. Not only that, but we can run it and it
will function just like before, but now we have started a library!

Working with Input Devices 89

Working with Input Devices

We will be populating the stub we created for handling our input. We are going to create a
stationary camera, a first-person camera, and a third-person camera. All these cameras will
need to respond to user input. You'll learn how to handle input devices and utilize them
to move our camera to fully see the worlds we create.

Keyboard

The first input device we will talk about is the keyboard. XNA provides helper classes that
allow us to easily determine the state of our input devices. We determine the state of our
keyboard by declaring a variable to store our keyboard state and then calling the GetState
method on the Keyboard helper object. We can then query that variable to determine
which key (or keys) is being pressed or released. We can start by adding a private member
field to store our keyboard state. We do this via the following code inside of our
InputHandler game component:

private KeyboardState keyboardState;

Then we can find the Update method that was stubbed out for us when the InputHandler
game component was created:

keyboardState = Keyboard.GetState();
if (keyboardState.IsKeyDown(Keys.Escape))
Game.Exit();

We can put this at the very beginning of the Update method. We are simply storing the
state of the keyboard and then checking to see if the Escape key was pressed. If it was, we
simply exit the program. It doesn’t get much simpler than that! So now when we run the
program we can exit by pressing the Escape key (instead of having to close the window
with our mouse).

Although being able to exit our game easily is important, we still haven’t done anything
exciting. Let’s set up our camera so we swivel back and forth if the left and right keys are
pressed. To do this we need to add and initialize a new private member field called
cameraReference inside our Camera game component:

private Vector3 cameraReference = new Vector3(0.0f, 0.0f, -1.0f);

This camera reference direction will not change throughout the game, but we will be
passing it in as a reference. Therefore, we cannot declare it as a readonly variable.
Typically this value will be either (0,0,1) or (0,0,-1). We chose to have a negative z value so
we can continue to have our camera face the same way.

Now that we have our camera reference direction set up, we need to apply any movement
and rotation to our view of the world. This way, if the player wants to look left and right,

90 CHAPTER 5 Handling Input to Move Our Camera

we can adjust our view matrix accordingly so that the view of the world is from a certain
angle. To look left and right, we need to rotate around the y axis. We can add the follow-
ing code to our Update method right before our call to the base object’s Update method
(we are still in our Camera class) :

Matrix rotationMatrix;
Matrix.CreateRotationY(MathHelper.ToRadians(cameraYaw), out rotationMatrix);
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference;
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);
// Calculate the position the camera is looking at.
Vector3.Add(ref cameraPosition, ref transformedReference, out cameraTarget);

Matrix.CreateLookAt (ref cameraPosition, ref cameraTarget, ref cameraUpVector,
out view);

Because we know we will be rotating, we need to create a matrix to hold our rotation.
With a helper function from XNA, we will create a matrix with the appropriate values to
rotate our camera on the y axis by a certain number of degrees. We store that value in a
variable we set with our input devices. You'll see how we set that value with our keyboard
soon. Once we have our matrix with all the translations, scaling, and rotations that we
need (in this case we are only rotating), we can create a transform vector that allows us to
change the target of the camera. We get this transformed vector by using another XNA
helper method, Vector3.Transform. We then add the transformed camera reference to our
camera position, which will give us our new camera target. To do this, we could have used
the plus (+) operator like in the following code:

cameraTarget = cameraPosition + transformedReference;

However, it is more efficient to use the built-in static Add method of the vVector3 struct
because it allows us to pass our vectors by reference instead of having to copy the values
to memory. Finally, we reset our view with our new camera target. We also need to set the
following private member field that we used in the code:

private float cameraYaw = 0.0f;

Now we are to the point where we can compile the code, but our newly added code does
not do anything for us. This is because we are never changing our rotation angle. It stays
at 0 on every frame. Let’s change that now with our keyboard. Inside our InputHandler
class, we need to update our IInputHandler interface to expose the keyboard state we
retrieved earlier. Let’s add the following code inside our interface:

KeyboardState KeyboardState { get; }

Now we need to implement that property inside the class. An easy way to do this is to
right-click IInputHandler where we derived it from and select Implement Interface. We

Working with Input Devices 91

will be doing this a couple times, and each time a region will be created. Therefore, we
will have to clean up the code and remove the extra regions the IDE provides for us. Now
we need to change the get value to retrieve our internal keyboardState value, as follows:

public KeyboardState KeyboardState
{

get { return(keyboardState); }
I3

Now that we have exposed our keyboard state, we can utilize it inside our Camera object.
We need to add the following code to our Update method right above the previous code
inside of our camera object:

if (input.KeyboardState.IsKeyDown(Keys.Left))
cameraYaw += spinRate;

if (input.KeyboardState.IsKeyDown(Keys.Right))
cameraYaw -= spinRate;

if (cameraYaw > 360)
cameraYaw -= 360;

else if (cameraYaw < 0)
cameraYaw += 360;

We also need to make sure camera is using the XNA Framework’s Input namespace
because we are accessing the Keys enumeration:

using Microsoft.Xna.Framework.Input;

Finally, we add this constant to the top of our camera class:

private const float spinRate = 2.0f;

In our Update code we utilized the current keyboard state we already captured and
checked to see if either the left arrow or right arrow on the keyboard was pressed. If the
player wants to rotate to the left, we add our spin rate constant to our current camera yaw
angle. (Yaw, pitch, and roll are terms borrowed from flight dynamics. Because we are using
a right-handed coordinate system, this means that yaw is rotation around the y axis, pitch
is rotation around the x axis, and roll is rotation around the z axis.) If the player wants to
rotate to the right, we subtract our spin rate constant from our current camera yaw angle.
Finally, we just check to make sure we do not have an invalid rotation angle.

There is one last thing we need to do before we can run our code again. We need to add
our input handler game component to our game’s collection of components. We can
declare our member field as follows:

private InputHandler input;

92 CHAPTER 5 Handling Input to Move Our Camera

Now we can initialize that variable and add it to the collection inside our constructor with
the following code:

input = new InputHandler(this);
Components.Add(input);

NOTE

The preceding code should be added before the camera component is processed. This
is because the camera component uses the input component. Otherwise, you will get a
null reference exception.

We can compile and run the code, and the left- and right-arrow keys will rotate the
camera. When running the code, you can see that our objects are just flying by. They are
turning so fast that they seem to be blinking. This is because we are calling our Update
statement as fast as possible. We can modify the game code where we are initializing our
fps variable to use a fixed time step:

fps = new FPS(this, false, true);

For the preceding code to work, we need to add another constructor to our FPS code. We
are doing this so we don’t need to actually pass in our target elapsed time value if we want
it to be the default.

public FPS(Game game, bool synchWithVerticalRetrace, bool isFixedTimeStep)
: this(game, synchWithVerticalRetrace, isFixedTimeStep,
game.TargetElapsedTime) { }

Now when you run the code you should see the objects move by at a consistent and
slower rate. This is because the Update method is now only getting called 60 times a
second instead of whatever rate your machine was running at.

You will notice, however, as the rectangles are rendered that our screen is “choppy.” The
reason is that we are not letting XNA only draw during our monitor’s vertical refresh. If
we were to set the second parameter to true, we would see the screen rotate at a nice
even pace with the screen drawing nicely. However, a better way to handle this is by
utilizing the elapsed time between calls to our methods. We need to retrieve the elapsed
time since the last time our Update method was called and then multiply our spinRate
by this delta of the time between calls. Change the camera code snippet to match the
following:

float timeDelta = (float)gameTime.ElapsedGameTime.TotalSeconds;

if (input.KeyboardState.IsKeyDown(Keys.Left))
cameraYaw += (spinRate * timeDelta);

Working with Input Devices 93

if (input.KeyboardState.IsKeyDown(Keys.Right))
cameraYaw -= (spinRate * timeDelta);

We can modify our game code to call the default constructor again:

fps = new FPS(this);

Now we are just creeping along. This is because our spin rate is so low. We had it low
because we were relying on the Update method to be called 60 times per frame, so we were
basically rotating our camera 120 degrees per second. To get the same effect we simply set
our spinRate to 120. The reason is we are now multiplying it by the time difference
between calls. At this point we can safely set our units and know they will be used on a
per-second basis. Now that we have our spinRate utilizing the delta of the time between
calls, we are safe to run at any frame rate and have our objects drawn correctly based on
the amount of time that has elapsed.

We can have it always run at 60 fps in release mode and run as fast as possible in debug
mode by modifying our game code as follows:

#if DEBUG
fps = new FPS(this);
#else
fps = new FPS(this, true, false);

#endif

This allows us to run as fast as we can in debug mode while consistently moving our
objects no matter the frame rate. It allows us to force XNA to only update the screen
during the monitor’s vertical retrace, which would drop us to 60 fps or whatever rate the
monitor is refreshing at.

Making a game update itself consistently regardless of the frame rate can make the game
more complex. We need to calculate the elapsed time (time delta) since the last frame and
use that value in all our calculations. With the fixed step mode that XNA provides, we
could cut down on development time and rely on the fact that the update code will be
called 60 times a second. This is not sufficient if we are writing a library that can be
plugged into games because those games might not run at a consistent frame rate.

Game Pad

The Microsoft Xbox 360 wired controller works on the PC. The wireless Xbox 360
controller will also work on the PC, but the Xbox 360 Wireless Gaming Receiver for
Windows is required. The XNA Framework provides us with helper classes that make it
very easy to determine the state of our game pad. The template already provided one call
to the game pad helper class. This call is also in the Update method. Let’s take a look at
what is provided for us already.

if (GamePad.GetState(PlayerIndex.One).IsButtonDown(Buttons.Back))
this.Exit();

94 CHAPTER 5 Handling Input to Move Our Camera

The template is calling the built-in XNA class GamePad and calling its GetState method,
passing in the specific player’s controller to check. The template then checks the Back
button on that controller to see if it has been pressed. If the controller’s Back button has
been pressed, the game exits. Now, that was pretty straightforward. To be consistent we
can use our input class to check for the condition.

Before we can do that, we need to update our interface and add the appropriate property.
We also need to get the game pad state just like we did for our keyboard. Let’s jump to our
input handler code and do some of these things. We can start by adding a property to get
to our list of game pads in our interface:

GamePadState[] GamePads { get; }
Now we can create the member field and property to get that field, as in the following code:

private GamePadState[] gamePads = new GamePadState[4];
public GamePadState[] GamePads
{
get { return(gamePads); }
I3

We need to initialize each game pad state. We can do that in the Update method of the
InputHandler object:

gamePads[@] = GamePad.GetState
gamePads[1] = GamePad.GetState
gamePads[2] GamePad.GetState
gamePads[3] = GamePad.GetState

PlayerIndex.One);
PlayerIndex.Two);
PlayerIndex.Three);
PlayerIndex.Four);

— o~ o~ —

Now, let’s remove the code that checks to see if the Back button is pressed on player one’s
game pad from our demo. We can add this code in the Update method of our input
handler game component to get the same effect:

if (gamePads[0@].Buttons.Back == ButtonState.Pressed)
Game.Exit();

Let’s update our yaw rotation code inside the Camera game component so that we can get
the same result with our controller. We can modify our existing code that checks for left
and right to also handle input from our controller. Thus, we modify our two conditional
statements that set the cameraYaw to also check the right thumb stick state of the game
pad we are examining:

if (input.KeyboardState.IsKeyDown(Keys.Left) |,
(input.GamePads[@].ThumbSticks.Right.X < 0))

cameraYaw += (spinRate * timeDelta);

}
if (input.KeyboardState.IsKeyDown(Keys.Right) i,

Working with Input Devices 95

(input.GamePads[@].ThumbSticks.Right.X > 0))

cameraYaw -= (spinRate * timeDelta);

}

The thumb stick x and y axes provide a float value between -1 and 1. A value of 0 means
there is no movement. A value of -0.5 means the stick is pushed to the left halfway. A
value of 0.9 means the stick is pushed to the right 90% of the way.

We did not change the keyboard code; instead, we simply added another “or” condition
to handle our controller. You can see it is very simple—we only needed to check the
ThumbSticks.Right property. We check the x axis of that joystick, and if it is less than
zero the user is pushing the stick to the left. We check to see if it is positive (user pushing
to the right) in the second condition. We leave our cameraYaw variable to be set by our
spin rate (taking into account our time delta). At this point, regardless of whether the
players are using the keyboard or the game pad, they will get the same result from the
game: The camera will rotate around the y axis. Compile and run the program to try it
out. You can also try the game on the Xbox 360 because we have hooked up our game
pad code.

At this point you know how to get access to any of the buttons (they are treated the
same way as the Back button) and either thumb stick, but we have not discussed the D-
pad yet. The D-pad is actually treated like buttons. If we want to allow the player to
rotate the camera left or right by using the D-pad, we could add the following as part of
our condition:

input.GamePads[0Q].DPad.Left == ButtonState.Pressed

However, the XNA Framework has the helper methods IsButtonDown and IsButtonUp. We
can get the same result by using the following condition:

input.GamePads[0].IsButtonDown(Buttons.DPadLeft)

We could replace the thumb stick condition by using IsButtonDown as well. Even though

the movement on the thumb stick is not really a button, the XNA Framework can treat it
like one and do the check for us. Therefore, the following condition to check whether the
right thumb stick is pushed to the left is valid:

input.GamePads[0Q].IsButtonDown(Buttons.RightThumbStickLeft)
We can add those conditions to our code. Compile and run the code again and make sure

the demo allows you to look left or right by using the keyboard, thumb stick, and D-pad.
The code should now look like the following:

if (input.KeyboardState.IsKeyDown(Keys.Left) |,
input.GamePads[@].IsButtonDown(Buttons.RightThumbstickLeft) |
input.GamePads[@].IsButtonDown (Buttons.DPadLeft))

cameraYaw += (spinRate * timeDelta);

96 CHAPTER 5 Handling Input to Move Our Camera

}

if (input.KeyboardState.IsKeyDown(Keys.Right) i,
input.GamePads[@].IsButtonDown(Buttons.RightThumbstickRight) |
input.GamePads[0].IsButtonDown(Buttons.DPadRight))

cameraYaw -= (spinRate * timeDelta);

}

The shoulder buttons are just that—buttons—and you know how to handle those already.
We can determine when the left or right thumb stick is pressed down because both are
also considered buttons. In fact, every input on a game pad is mapped to a button.
However, the final item we'll discuss regarding our game pad controller is the triggers.
Now, a good use of our triggers for this demo would be to turn on vibration!

Before we determine how to use the triggers, we can look at another property of the game
pad state we have access to—whether or not the controller is actually connected. We can
check this by getting the value of the IsConnected property.

Even though we can determine whether or not a trigger is pressed (just like we can deter-
mine whether the right thumb stick is pushed to the left), there are times we need more
information. We may need to know how far in the trigger is pressed. All the way? Ten
percent? Ninety percent? Fortunately, the trigger values return a float between 0 and 1 to
signify how much the trigger is pressed (0 = not pressed; 1 = fully pressed). The Xbox 360
controller has two motors that create its vibration. The motor on the left is a low-
frequency motor, whereas the motor on the right is a high-frequency motor. We can set
the values on both motors in the same method call. We do this by calling the
GamePad.SetVibration method. Because this is just something we are doing for our demo
and not really a part of the library, we will put this code in our Gamel.cs file inside the
Update method:

if (input.GamePads[Q].IsConnected)
{
GamePad.SetVibration(PlayerIndex.One, input.GamePads[@].Triggers.Left,
input.GamePads[0Q].Triggers.Right);
}

The first thing we are doing with this new code is checking to see whether the game pad
is actually connected. If it is connected, we set the vibration of both the left and right
motors based on how much the left and right triggers are being pressed. We’ll call the
GamePad'’s static SetVibration method. There is currently no benefit in wrapping that
into a method inside of our input handler.

We can also change the information being displayed in our window title bar to include the
left and right motor values. This can help you determine what values you should use as
you implement vibration in your games! The following is the code to accomplish that task:

this.Window.Title = "left: " +
input.GamePads[0Q].Triggers.Left.ToString() + "; right: " +
input.GamePads[0].Triggers.Right.ToString();

Working with Input Devices 97

Go ahead and add this debug line inside of the IsConnected condition and compile and
run the code to check the progress. We will no longer be able to see our frame rate with
this code, so we could just comment out the fps object until we are ready to check on our
performance.

Mouse (Windows Only)

This input device is only available for Windows, so if you are deploying the game for the
Xbox 360, you will need to put the XB0OX360 compilation directive check around any code
that references the mouse as an input device (refer to Chapter 2). Therefore, we will create
a private member field with this preprocessor check inside our InputHandler class. We
need to set up a private member field to hold our previous mouse state and another one
to hold our current mouse state:

#if 1XBOX360
private MouseState mouseState;
private MouseState prevMouseState;
#endif

Then in the constructor we tell XNA that we want the mouse icon visible in the window
and we store the current mouse state:

#if |XBOX360
Game.IsMouseVisible = true;
prevMouseState = Mouse.GetState();
#endif

In our Update method of the input handler game component, we need to set the previous
state to what our current state is and then reset our current state as follows:

#if |XBOX360
prevMouseState = mouseState;
mouseState = Mouse.GetState();
#endif

Now we need to expose these internal fields so our camera (and any other objects) can get
their values. First we need to add the properties to our interface as follows:

#if |XBOX360
MouseState MouseState { get; }
MouseState PreviousMouseState { get; }
#endif

Now we can implement those properties in our class:

#if |XBOX360
public MouseState MouseState

{

98 CHAPTER 5 Handling Input to Move Our Camera

get { return(mouseState); }

}
public MouseState PreviousMouseState
{
get { return(prevMouseState); }
}
#endif

In our camera’s Update method, we want to get the latest state of our mouse and compare
the current X value to the previous X value to determine whether we moved the mouse left
or right. We also want to check whether the left mouse button is pushed before updating
our cameraYaw variable. Of course, all this is wrapped in our compilation preprocessor
condition, as follows:

#if 1XBOX360
if ((input.PreviousMouseState.X > input.MouseState.X) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraYaw += (spinRate * timeDelta);

}

else if ((input.PreviousMouseState.X < input.MouseState.X) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraYaw -= (spinRate * timeDelta);

}
#endif

We can compile and run the code and test the latest functionality on Windows. If the
preprocessor checks are in place correctly, we should be able to deploy this demo to the
Xbox 360, although it will not do anything different than it did before we added the
mouse support.

Creating a Stationary Camera

Now that you know how to utilize our input, we can get working on implementing our
stationary camera. We actually have most of this done, but we need to add pitching in
addition to the yaw. One use for a stationary camera is to look at an object and follow it
by rotating as needed. This is commonly used in racing game replay mode.

Before we dig into the camera changes, though, let’s add a few more rectangles to our world.
We can do this by adding the following code to the end of our demo’s Update method:

world = Matrix.CreateTranslation(new Vector3(8.0f, 0, -10.0f));
DrawRectangle(ref world);

world = Matrix.CreateTranslation(new Vector3(8.0f, 0, -6.0f));

Creating a Stationary Camera 99

DrawRectangle(ref world);

world = Matrix.CreateRotationY(MathHelper.ToRadians(180f)) *
Matrix.CreateTranslation(new Vector3(3.0f, 0, 10.0f));DrawRectangle(ref world);

We should also change our cull mode to None so that as we rotate around, we will always
see our rectangles. We can do that by calling the following code at the top of our game’s
Draw method:

graphics.GraphicsDevice.RenderState.CullMode = CullMode.None;

To get our camera updated, we need to modify our camera class a little bit. First we need
to declare a private member field as follows:

private float cameraPitch = 0.0f;

Now we can modify the Update method to set our camera pitch. Remember, pitching refers
to rotating around the x axis. To calculate this, we simply take the code we used for calcu-

lating the yaw and replace our reference to the y axis with the x axis. The following is the
code to check our keyboard and game pad:

if (input.KeyboardState.IsKeyDown(Keys.Down) |,
input.GamePads[playerIndex].IsButtonDown(Buttons.RightThumbstickDown) |
input.GamePads[playerIndex].IsButtonDown (Buttons.DPadDown))

cameraPitch -= (spinRate * timeDelta);

}

if (input.KeyboardState.IsKeyDown(Keys.Up) |,
input.GamePads[playerIndex].IsButtonDown(Buttons.RightThumbstickUp)
input.GamePads[playerIndex].IsButtonDown(Buttons.DPadUp))

cameraPitch += (spinRate * timeDelta);

}

No surprises there, and we need to do the same thing with our mouse code. Inside our #if
1XBOX360 compilation directive, add the following code:

if ((input.PreviousMouseState.Y > input.MouseState.Y) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraPitch += (spinRate * timeDelta);

}
else if ((input.PreviousMouseState.Y < input.MouseState.Y) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraPitch -= (spinRate * timeDelta);

100 CHAPTER 5 Handling Input to Move Our Camera

We want to clamp our values so we do not rotate over 90 degrees in either direction:

if (cameraPitch > 89)

cameraPitch = 89;
if (cameraPitch < -89)
cameraPitch = -89;

Finally, we need to update our rotation matrix to include our pitch value. Here is the
updated calculation:

Matrix rotationMatrix;

Matrix.CreateRotationY(MathHelper.ToRadians(cameraYaw), out rotationMatrix);

//add in pitch to the rotation

rotationMatrix = Matrix.CreateRotationX(MathHelper.ToRadians(cameraPitch)) *
rotationMatrix;

The last statement is the only thing we added. We just added our pitch to the rotation
matrix that was already being used to transform our camera. The full Update code can be
found in Listing 5.1.

LISTING 5.1 Our Stationary Camera’s Update Method

public override void Update(GameTime gameTime)

{

float timeDelta = (float)gameTime.ElapsedGameTime.TotalSeconds;

if (input.KeyboardState.IsKeyDown(Keys.Left) |,
input.GamePads[playerIndex].IsButtonDown(Buttons.RightThumbstickLeft) ||
input.GamePads[playerIndex].IsButtonDown(Buttons.DPadLeft))

cameraYaw += (spinRate * timeDelta);

}

if (input.KeyboardState.IsKeyDown(Keys.Right) ||
input.GamePads[playerIndex].IsButtonDown(Buttons.RightThumbstickRight) |
input.GamePads[playerIndex].IsButtonDown(Buttons.DPadRight))

cameraYaw -= (spinRate * timeDelta);

if (input.KeyboardState.IsKeyDown(Keys.Down) |,
input.GamePads[playerIndex].IsButtonDown(Buttons.RightThumbstickDown) |
input.GamePads[playerIndex].IsButtonDown (Buttons.DPadDown))

cameraPitch -= (spinRate * timeDelta);

}

if (input.KeyboardState.IsKeyDown(Keys.Up) |,
input.GamePads[playerIndex].IsButtonDown(Buttons.RightThumbstickUp)

#if

Creating a Stationary Camera 101

input.GamePads[playerIndex].IsButtonDown (Buttons.DPadUp))

cameraPitch += (spinRate * timeDelta);

1’XBOX360
if ((input.PreviousMouseState.X > input.MouseState.X) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraYaw += (spinRate * timeDelta);

}

else if ((input.PreviousMouseState.X < input.MouseState.X) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraYaw -= (spinRate * timeDelta);

if ((input.PreviousMouseState.Y > input.MouseState.Y) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraPitch += (spinRate * timeDelta);

}

else if ((input.PreviousMouseState.Y < input.MouseState.Y) &&
(input.MouseState.LeftButton == ButtonState.Pressed))

cameraPitch -= (spinRate * timeDelta);

}

#endif

//reset camera angle if needed
if (cameraYaw > 360)
cameraYaw -= 360;
else if (cameraYaw < 0)
cameraYaw += 360;

//keep camera from rotating a full 90 degrees in either direction
if (cameraPitch > 89)

cameraPitch = 89;
if (cameraPitch < -89)

cameraPitch -89;

Matrix rotationMatrix;

Matrix.CreateRotationY(MathHelper.ToRadians(cameraYaw),
out rotationMatrix);

//add in pitch to the rotation

102 CHAPTER 5 Handling Input to Move Our Camera

rotationMatrix = Matrix.CreateRotationX(MathHelper.ToRadians(cameraPitch))
* rotationMatrix;
// Create a vector pointing the direction the camera is facing.
Vector3 transformedReference;
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);
/| Calculate the position the camera is looking at.
Vector3.Add(ref cameraPosition, ref transformedReference, out cameraTarget);

Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget, ref cameraUpVector,
out view);

base.Update(gameTime) ;

Creating a First-person Camera

We can build on our stationary camera by adding a first-person camera. The main thing
we want to do is to add in a way to move back and forth and to each side. Before we start,
we should create a new camera class and inherit from the one we have. We can call this
new class FirstPersonCamera. The following is the Update method for this new class:

public override void Update(GameTime gameTime)

{
//reset movement vector
movement = Vector3.Zero;

if (input.KeyboardState.IsKeyDown(Keys.A) |,
input.GamePads[playerIndex].IsButtonDown(Buttons.LeftThumbstickLeft))

movement.X- -;

}
if (input.KeyboardState.IsKeyDown(Keys.D) |,
input.GamePads[playerIndex].IsButtonDown (Buttons.LeftThumbstickRight))

movement.X++;

if (input.KeyboardState.IsKeyDown(Keys.S) |,
input.GamePads[playerIndex].IsButtonDown(Buttons.LeftThumbstickDown))
movement.Z++;

}
if (input.KeyboardState.IsKeyDown(Keys.W) |,

Creating a First-person Camera 103

input.GamePads[playerIndex].IsButtonDown(Buttons.LeftThumbstickUp))

movement.Z- -;

//make sure we don"t increase speed if pushing up and over (diagonal)
if (movement.LengthSquared() != 0)
movement.Normalize();

base.Update(gameTime) ;

}

The conditional logic should look familiar. It is identical to our stationary camera, except
we changed where we were reading the input and what values it updated. We are reading
the A, S, W, D keys and the left thumb stick. We are not looking at the mouse for move-
ment. The value we are setting is a movement vector. We are only setting the X (left and
right) and Z (back and forth) values. At the end of the conditions we are normalizing our
vector as long as the length squared of the vector is not zero. This makes sure that we are
not allowing faster movement just because the user is moving diagonally. There is no
more code in the FirstPersonCamera object. The rest of the changes were made back in
our original Camera object.

We declared the movement as a protected member field of type Vector3 called movement
inside our original Camera object. We also declared a constant value for our movement
speed. Both of these are listed here:

protected Vector3 movement = Vector3.Zero;
private const float moveRate = 120.0f;

We also set the access modifier of our input field to protected so our FirstPersonCamera
could access it:

protected IInputHandler input;

Finally, we updated the last part of our Update method to take the movement into
account when transforming our camera:

//update movement (none for this base class)
movement *= (moveRate * timeDelta);

Matrix rotationMatrix;
Vector3 transformedReference;
Matrix.CreateRotationY(MathHelper.ToRadians(cameraYaw), out rotationMatrix);

if (movement != Vector3.Zero)

{
Vector3.Transform(ref movement, ref rotationMatrix, out movement);
cameraPosition += movement;

104 CHAPTER 5 Handling Input to Move Our Camera

//add in pitch to the rotation
rotationMatrix = Matrix.CreateRotationX(MathHelper.ToRadians(cameraPitch)) *
rotationMatrix;

// Create a vector pointing the direction the camera is facing.
Vector3.Transform(ref cameraReference, ref rotationMatrix,
out transformedReference);
// Calculate the position the camera is looking at.
Vector3.Add(ref cameraPosition, ref transformedReference, out cameraTarget);

Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget, ref cameraUpVector,
out view);

Besides just moving our local variables closer together, the only things that changed are
the items in bold type. We take our movement vector and apply our move rate to it
(taking into account our time delta, of course). The second portion is the key. We trans-
formed our movement vector by our rotation matrix. This keeps us from just looking in a
direction but continuing to move straight ahead. By transforming our movement vector
via our rotation matrix, we actually move in the direction we are looking! Well, the move-
ment actually happens in the next statement when we add this movement vector to our
current camera position. We wrapped all this in a condition to see if any movement
happened because we do not want to take a performance hit to do the math if we did not
move.

Another thing to note is that because we were creating a first-person camera, we only
transformed our movement vector by the yaw portion of our rotation matrix. We did not
include the pitch because that would have allowed us to “fly.” If we did want to create a
flying camera instead, we could simply move the following statement before the code in
bold:

//add in pitch to the rotation
rotationMatrix = Matrix.CreateRotationX(MathHelper.ToRadians(cameraPitch)) *
rotationMatrix;

In order to have our game actually use this new first-person camera, we need to replace
the regular Camera component in our InputDemo class with the FirstPersonCamera compo-
nent. Now when we compile and run the demo, we can use the left thumb stick or D-pad
(or up and down arrows) to move through our world. Feel free to modify the moveRate
value as desired.

Creating a Split Screen

Now that we know how to set up our camera and accept input, we can look into how our
code will need to change to handle multiple players in a split-screen game. To start, we
need to make a copy of the InputDemo project we just finished. We can rename the

Creating a Split Screen 105

project SplitScreen. After we have our solution and projects renamed (complete with our
assembly GUID and title), we can look at the code we will need to change to accomplish a
split-screen mode of play.

To create a split screen, we need to two different viewports. We have only been using one
up until now, and we actually retrieved it in our camera’s Initialization method. We
simply grabbed the GraphicsDevice.Viewport property to get our camera’s viewport.
Because we want to display two screens in one we need to define our two new viewports
and then let the cameras (we will need two cameras) know about them so we can get the
desired effect. To start we need to add the following private member fields to our
Gamel.cs code:

private Viewport defaultViewport;
private Viewport topViewport;
private Viewport bottomViewport;
private Viewport separatorViewport;
private bool twoPlayers = true;
private FirstPersonCamera camera2;

Then at the end of our LoadContent method we will need to define those viewports and
create our cameras and pass the new values. We do this in the following code:

if (twoPlayers)

{
defaultViewport = graphics.GraphicsDevice.Viewport;
topViewport = defaultViewport;
bottomViewport = defaultViewport;

topViewport.Height = topViewport.Height / 2;

separatorViewport.Y = topViewport.Height - 1;
separatorViewport.Height = 3;

bottomViewport.Y = topViewport.Height + 1;
bottomViewport.Height = (bottomViewport.Height / 2) - 1;

camera.Viewport = topViewport;

camera2 = new FirstPersonCamera(this);
camera2.Viewport = bottomViewport;
camera2.Position = new Vector3(0.0f, 0.0f, -3.0f);
camera2.0rientation = camera.Orientation;
camera2.PlayerIndex = PlayerIndex.Two;
Components.Add(camera2);

106 CHAPTER 5 Handling Input to Move Our Camera

We discussed briefly that we would need more than one camera to pull this off. This is
because we have our view and projection matrices associated with our camera class (which
we should). It makes sense that we will have two cameras because the camera is showing
what the player is seeing. Each player needs his or her own view into the game.

Our initial camera is still set up in our game’s constructor, but our second camera will get
added here. Our first camera gets the default viewport associated with it. The preceding
code first checks to see if we are in a two-player game. For a real game, this should be
determined by an options menu or something similar, but for now we have just initialized
the value to true when we initialized the twoPlayer variable.

Inside the two-player condition the first thing we do is set our default viewport to what
we are currently using (the graphic device’s viewport). Then we set our top viewport to the
same value. We also initialize our bottomviewport to our defaultViewport value. The final
thing we do with our viewports is resize them to account for two players. We divide the
height in two (we are making two horizontal viewports) on both. We then set our bottom
viewport’s Y property to be one more than the height of our top viewport. This effectively
puts the bottom viewport right underneath our top viewport.

While still in the two-player condition, we change our first camera’s viewport to use the
top viewport. Then we set up our second camera by setting more properties. Not only do
we set the viewport for this camera to the bottom viewport, but we also set a new camera
position as well as the orientation of the camera. Finally, we set the player index.

None of these properties is exposed from our camera object, so we need to open our
Camera.cs file and make some changes to account for this. First, we need to add a new
private member field to hold our player index. We just assumed it was player 1 before. We
can set up our protected index (so our FirstPersonCamera class can access it) as an
integer, as follows:

protected int playerIndex = 0;

Now we can modify the input code that controls our camera to use this index instead of
the hard-coded value O for the game pads. In the camera’s Update method we can change
any instance of input.GamePads[@] to input.GamePads[playerIndex]. We also need to do
the same for the FirstPersonCamera object. We did not update the keyboard code and will
not for the sake of time. However, to implement multiple users where both can use the
keyboard, we should create a mapping for each player and check accordingly. In general, it
is a good practice to have a keyboard mapping so that if the gamer does not like the
controls we have defined in our games, he or she has a way to change the controls so they
work more logically for him or her. The same can be said about creating a mapping for the
game pads, but many games simply give a choice of a couple of layouts. Because the code
does not implement a keyboard mapping, the only way for us to control the separate
screens differently is by having two game pads hooked up to the PC or Xbox 360.

After we have changed our camera to take the player index into consideration before
reading values from the game pad, we can add the following properties to our Camera.cs
code file:

public PlayerIndex PlayerIndex

{
get { return ((PlayerIndex)playerIndex); }
set { playerIndex = (int)value; }
}
public Vector3 Position
{
get { return (cameraPosition); }
set { cameraPosition = value; }
}
public Vector3 Orientation
{
get { return (cameraReference); }
set { cameraReference = value; }
}
public Vector3 Target
{
get { return (cameraTarget); }
set { cameraTarget = value; }
}
public Viewport Viewport
{
get
{
if (viewport == null)
viewport = Game.GraphicsDevice.Viewport;
return ((Viewport)viewport);
}
set
{
viewport = value;
InitializeCamera();
}
}

Creating a Split Screen 107

We are simply exposing the camera’s position, orientation (reference), and target variables.
We are casting the player index property to a PlayerIndex enumeration type. The final
property is the Viewport property. We first check to see if our viewport variable is null. If
it is, we set it to the graphics device’s viewport. When we set our Viewport property, we
also call our InitializeCamera method again so it can recalculate its view and projection

108 CHAPTER 5 Handling Input to Move Our Camera

matrices. We need to set up a private member field for our viewport. We allow it to have a
default null value so we can declare it as follows:

private Viewport? viewport;

Because we are utilizing the Viewport type, we need to make sure the following using
statement is in our code:

using Microsoft.Xna.Framework.Graphics;

The only thing left for us to do now is to update our game’s drawing code to draw our
scene twice. Because we have to draw our scene twice (once for each camera), we need to

refactor our Draw code into a DrawScene method and pass in a camera reference. Our new
code for the new Draw method is shown here:

protected override void Draw(GameTime gameTime)

{
graphics.GraphicsDevice.Viewport = camera.Viewport;
DrawScene(gameTime, camera);
if (twoPlayers)
{
graphics.GraphicsDevice.Viewport = camera2.Viewport;
DrawScene (gameTime, camera2);
//now clear the thick horizontal line between the two screens
graphics.GraphicsDevice.Viewport = separatorViewport;
graphics.GraphicsDevice.Clear(Color.Black);
}
base.Draw(gameTime);
}

We took all the code that was inside this method and put it into a new method,
DrawScene (GameTime gameTime, Camera camera). The code we put into the DrawScene
method did not change from how it looked when it resided inside of the Draw method.

The first thing we do with the preceding code is set our graphics device’s viewport to be
what our camera’s viewport is. We then draw the scene passing in our camera. Then we
check to see if we have two players; if so, we set the viewport appropriately and finally
draw the scene for that camera. Run the application and see that it is using a split screen!
The screenshot of this split-screen demo can be seen in Figure 5.1.

Creating a Split Screen 109

o left: 0 right: 0 =

FIGURE 5.1 SplitScreen demo shows how you can create two cameras that can be controlled
by two different game pads.

Summary

Another chapter is behind us. You have learned about XNA game services and how they,
along with game components, can really add benefit to our overall game architecture.
We started a small library that currently handles our camera (which we can currently
switch between stationary and first-person), our input devices, and our frame rate
counter component.

We discussed how to utilize the keyboard, game pad, and mouse to get input from our
gamer to move our camera around. You learned specifically how to write a stationary
camera that only rotates and created a functioning first-person camera.

We updated our camera functionality to handle two players. We added split-screen func-
tionality by creating two different cameras and viewports the cameras could use.

In the next chapter, we are going to load 3D objects to the screen, which will allow us to
move in a much better-looking world. Play some games, rest the mind, and come back
strong as we jump right into working with the Content Pipeline.

This page intentionally left blank

PART Il

Content Pipeline

IN THIS PART

CHAPTER 6 Loading and Texturing 3D Objects
CHAPTER 7 Sound and Music
CHAPTER 8 Extending the Content Pipeline

This page intentionally left blank

CHAPTER ©

Loading and Texturing
3D Objects

We are going to discuss the Content Pipeline in this part
of the book. XNA provides out-of-the-box support for
loading 3D objects, textures, effects, Extensible Markup
Language (XML), sounds, music, and XACT projects. We
discuss 3D objects and textures in this chapter. You will
learn how to load 3D objects into our world and learn
about different texturing techniques.

Understanding the Content Pipeline

The Content Pipeline can be used to solve a very real
problem: The content we create for games is typically not
game ready. For example, 3D content is usually stored in a
proprietary format, and there is a need to convert the data
before loading it into the game. This is where the Content
Pipeline helps out. In general, it can take different files as
input, massage them to get them into a type we can work
with, and then compile them into a format that can easily
be loaded when our game starts.

The XNA Framework Content Pipeline is made up of several
components. First is the Content Importer, which is respon-
sible for reading the data loaded into the solution. If there
is data in the file the Content Importer does not know how
to map to the Content Document Object Model (DOM),
then the data is not stored. It only keeps the data it cares
about. Once the importer is done reading in the data, it
passes it along to the Content DOM, which stores the
strongly typed data. The data is then passed from the
Content DOM to a Content Processor, which then passes it
to a Content Compiler. If the compilation fails, we get a
nice message inside of the IDE that tells us what happened:

IN THIS CHAPTER

» Understanding the Content
Pipeline

» Loading 3D Models

» Texturing 3D Models

114 CHAPTER 6 Loading and Texturing 3D Objects

We do not have to wait and see if it is going to load at runtime, which is a huge improve-
ment over how things used to work. The compiler actually builds files that are read in at
runtime. These files typically have an .xnb file extension. Audio files create .xgs, .xwb, and
.xsb files for the actual sound project, wave bank, and sound bank content. We discuss the
sound and how it relates to the Content Pipeline in the next chapter. The Content
Pipeline is smart enough not to recompile any content that has not changed since the last
build. Finally, after all the content is compiled into files, they are read in via the Content
Manager at runtime so our games can consume the content. We have been using the
Content Manager since our very first application in Chapter 2, “XNA Game Studio and
the Xbox 360.” We used it to load the texture using the following code:

spriteTexture = Content.Load<Texture2D>("texture");

Fortunately, when we use the Content Manager, we do not need to actually dispose of our
objects because it handles disposing of our content itself. The following method, which is
always included in our new game projects, is available if we ever need to remove unman-

aged objects such as files we haven’t opened through the Content Pipeline:

protected override void UnloadContent()
{
base.UnloadContent();

}

We discuss the counterpart of this method in the next section. The LoadContent method
does the actual loading of the data.

As we add content to our project that is recognizable as XNA Framework content, it goes
through the process just described. The Properties window inside the Visual C# Express
IDE will show an asset name that we can modify. If we add content types that are not
recognized, we can change the XNA Framework Content boolean value to true. We would
then need to fill in the Content Importer and Content Processor properties, specifying
how to turn the unknown content type into a format that XNA can recognize. This would
require a custom importer and processor, which we discuss building in Chapter 8,
“Extending the Content Pipeline.”

Loading 3D Models

The XNA Framework’s Content Pipeline handles loading .X and .FBX files automatically
when they are pasted into the Solution Explorer (or included in the project). This is when
the Content Pipeline goes through the process described in the previous section of import-
ing, processing, and compiling the data. We then can use our game class and the Content
Manager to read the model information.

We will start by creating a new project, which we can call Load3DObject. We can create
both the Windows and Xbox 360 game projects. After getting our solution set up, we can
then add an existing project to our solution—the XELibrary from last chapter. Once we
import both the Windows and the Xbox 360 XELibrary projects, we need to reference

Loading 3D Models 115

them inside the game projects we created. We reference the XELibrary in our Windows
project and the XELibrary_Xbox360 in our Xbox 360 game project.

After we have our initial setup of our solution file completed, we can jump right in and
add a using statement at the top of our Gamel.cs class to access our library:

using XELibrary;
We can set up our private member fields to access the game components in our library:
private FPS fps;

private FirstPersonCamera camera;
private InputHandler input;

The following is our constructor, where we initialize the variables we just set:

public Gamet ()

{
graphics = new GraphicsDeviceManager(this);
content = new ContentManager(Services);
input = new InputHandler(this);
Components.Add (input);
camera = new FirstPersonCamera(this);
Components.Add(camera) ;

#if DEBUG
//draw 60 fps and update as often as possible
fps = new FPS(this, true, false);

#else
fps = new FPS(this, true, false);

#endif
Components.Add (fps);

I3

With just that little bit of coding (and setup), we now have access to all the code in our
library. We automatically have a first-person camera now, and we can handle input as well
as display our frame rate. Game components aren’t too shabby.

The Content project is where we will add our content, but instead of just shoving all kinds
of content in the root folder, we are going to add two subfolders—Models and Textures.
This is not required, but it really helps keep the clutter minimal. Now with the prelimi-
nary work out of the way, we can actually get down to business and load a 3D object.
Under the Contents\Models\ folder on this book’s CD, copy the asteroid1.x file into the
Content Project’s Models folder. This model was created by Microsoft and is part of the
Spacewar starter kit that is available to download from the XNA Creators Club website.

When you copy the 3D model from the CD and paste it into the Content project, XNA
Game Studio flags it as XNA Framework Content. Now we can compile the code, which

116 CHAPTER 6 Loading and Texturing 3D Objects

will also Kick off the Content Pipeline. The Content Pipeline kicked off the Content
Importer, shoved the data into the DOM, and then called the Content Processor, which
passed it to the Content Compiler. So when we compile our game, it not only compiles
our code, but also the content.

The Content Compiler throws an error, “Missing asset ... \Content\Textures\
asteroidl.tga,” because the .X file we loaded has a reference to a texture inside of it.
It references a sibling folder by the name of Textures. The following is a portion of
the asteroid1.x file that references the texture in the texture’s sibling folder:

Material phong1SG {
1.0;1.0;1.0;1.000000; ;
18.000000;
0.000000;0.000000;0.000000; ;
0.000000;0.000000;0.000000; ;
TextureFilename {
"..\\textures\\asteroidi.tga";

}

We have that folder, but we did not grab the .tga texture from the CD. Let’s do that now
and paste it into our Textures folder. Once we do this, we can compile again. The code
should compile without issues. After it compiles successfully, browse to the
/bin/x86/debug/content/models/ and /textures/ folders. Notice that a couple files were
created at the time we compiled. The Content Compiler took the files and compiled them
into the .xnb files shown here. The compiler gave us an error when it could not find the
texture associated with the .X file. We have corrected that, and our code (and content)
now compiles successfully.

We could run the code, but nothing would be on our screen because we have not actually
told XNA to load and draw the object. We can get that ball rolling by creating a private
member field in our Gamel.cs class as follows:

private Model model;

Now we can initialize this variable by actually loading our model in our code. We do this
inside the LoadContent method:

model = Content.Load<Model>(@"Models\asteroidi");

The LoadContent method is where we load all our content. This method as well as its

counterpart, UnloadContent, gets called at the appropriate times. What are these appropri-
ate times? This is a good place to discuss the logic flow of XNA.

The XNA Framework’s logic flow works something like this:

1. The Main application calls the Game Constructor.
2. The Game Constructor creates any game components and calls their constructors.

3. The XNA Framework calls the game’s Initialize method.

Loading 3D Models 117

4. The XNA Framework calls each of the game component’s Initialize methods.

5. The XNA Framework calls each of the Drawable game component’s LoadContent

© ©® N O

10.
11.
12.

13.
14.
15.
16.

17.
18.
19.

methods.

The XNA Framework calls the game’s LoadContent method.

The XNA Framework calls the game’s Update method.

The XNA Framework calls each of the game component’s Update methods.

The XNA Framework calls the game’s Draw method.

The XNA Framework calls each of the drawable game component’s Draw methods.
Steps 7 through 10 are repeated many times each second.

If the device is lost (the user moved the window to another monitor, the screen
resolution is changed, the window is minimized, and so on), a call to
UnloadContent is made.

If the device is reset, the logic flow starts at step 6 again.
The gamer exits the game.
The XNA Framework calls the game’s Dispose method.

The game’s Dispose method calls the base object’s Dispose method, which causes
the following two steps.

The XNA Framework calls each of the game component’s Dispose methods.
The XNA Framework calls the game’s UnloadContent method.

The game’s Dispose method gets focus back, and the game exits.

Here'’s something to note about how the XNA Framework calls the game component’s
Initialize method (and LoadContent for drawable game components): It only happens
once when the game’s Initialize method is kicked off by the framework. If game compo-
nents are added later, their Initialize (and LoadContent) methods will not be called. This
is important to understand when managing game components.

At this point we have loaded our 3D content. We have created a private member field to
store the model we added. We actually loaded our model in our code and initialized our
variable. Now we just need to draw the model on the screen. Add the following method to
draw the model:

private void DrawModel(ref Model m, ref Matrix world)

{

Matrix[] transforms = new Matrix[m.Bones.Count];
m.CopyAbsoluteBoneTransformsTo(transforms);

foreach (ModelMesh mesh in m.Meshes)

{

foreach (BasicEffect be in mesh.Effects)

{
be.EnableDefaultLighting();

be.Projection = camera.Projection;

118 CHAPTER 6 Loading and Texturing 3D Objects

be.View = camera.View;
be.World = world * mesh.ParentBone.Transform;

mesh.Draw();

}

Our DrawModel method takes in a reference to our model as well as a reference to the
world matrix we need to apply to our model. The first two statements get the transforms
of each bone in the model. A model can have a parent bone with children bones associ-
ated with it. This is mainly used in animations, but even if a model does not have anima-
tions, it might still have bones. Therefore, our code should include this unless we know
for certain that our model does not have any children. The transforms array will contain a
transformation matrix of each mesh of the model that contains its position relative to the
parent. By doing this, we can make sure that each ModelMesh of the parent Model will be
drawn at the right location. This actually happens in the last statement inside of our inner
foreach loop. We take the world matrix that the mesh is supposed to be transformed with
and then multiply that transformation with the ModelMesh’s parent bone’s transformation.
This makes sure each ModelMesh is drawn correctly with the parent mesh.

We did not need to create our own BasicEffect object because XNA will apply one to a
mesh we load. We can override this, which you'll see in Part VI, “High Level Shader
Language,” when we talk about the HLSL and make our own effect files. For now, we just
ensure that the default lighting is enabled on the effect as well as set our projection and
view matrices to what our Camera game component has updated them to be. Instead of
having an effect that we are explicitly calling, we are tying into the one XNA applies to
the Model when it loads it. This is also happening inside the inner foreach loop, so we
could apply different effects to children meshes if we wanted to.

The other thing to notice is the fact that we did not reference our texture anywhere.
Because it is inside the .X file and the Content Compiler stored that information, the
Content Manager knew where to look for the texture and loaded it automatically. You will
see how to override the texture through code a little later in this chapter. Let’s just get it
to draw with the normal texture for now! To do that, we need to call our DrawModel
method inside our Draw method with the following code:

Matrix world = Matrix.CreateTranslation(new Vector3(0,0,-4000));
DrawModel (ref model, ref world);

The model we are loading is rather large, and as such we are going to push it way back
into the world. In fact, we need to make a modification to our Camera class in our
XELibrary. We originally had our near and far planes set up in the
Matrix.CreatePerspectiveField0fView method as 0.0001 and 1000.0, respectively. The
thing about the plane values is that they are floating points, which means there is a finite
amount of precision we can have. We can either have the precision before the decimal
point or after the decimal point, but not both. A lot of times programmers will set the far
plane to a very high number, but then the depth buffer (also known as the z buffer) could

Texturing 3D Models 119

have a hard time knowing which objects to draw first. As a result, during game play the
screen will almost flicker as different vertices are fighting to be drawn first. The z buffer is
confused because it cannot take into account the minor differences in the locations of
those vertices. Of course, the .0001 near plane we originally had set was not exactly practi-
cal either. At this point having a near plane of 1 and a far plane of 10,000 should meet
most of our needs without overly stressing our z buffer. We could have our far plane even
further without causing an adverse effect on the depth buffer.

Now we can compile and run our code, and we should see our asteroid object sitting right
in front of us. This is not extremely exciting, but we have just successfully drawn a .X
model complete with a texture.

Texturing 3D Models

Now let’s replace that texture with one we will load on the fly. We could just modify our
texture resource if we wanted to, but let’s assume that we want to keep that intact, and as
we load different asteroids we want some to use that brownish texture and some to use
our newly created texture, for which we will simply remove the color. So fire up your
favorite paint program, open up the .tga file, and turn it into a grayscale image. If needed,
the image asteroid1-grey.tga can be taken from the CD in this chapter’s source code. Let’s
add our newly created image into our Content project inside the Solution Explorer (or you
can just include it in your project if you saved the new version in the /Textures/ subfolder
from your paint program).

Add the following code in the LoadContent method:

originalAsteroid = Content.Load<Texture2D>(@"Textures\asteroidi");
greyAsteroid = Content.Load<Texture2D>(@"Textures\asteroidi-grey");

Just like adding our model, we can add our texture asset very easily. Of course, now we
have to actually declare our private member field:

private Texture2D originalAsteroid;
private Texture2D greyAsteroid;

Now we can make a couple changes to our DrawModel method. We need to add in another
parameter of type Texture2D and call it texture. We also need to set our effect to use that
texture if it is passed in, which can be seen in the following code:

if (texture != null)
be.Texture = texture;

This code statement is inside of the inner foreach loop with the rest of the code that sets
the properties of our basic effect that is being used by our model. We are simply checking

120 CHAPTER 6 Loading and Texturing 3D Objects

to see if null is passed in; if it isn’t, we are setting the texture of the effect. As you saw
earlier, the effect is getting applied to the mesh of our model, so we only need to modify
our call to our DrawModel to pass in the new texture. Go ahead and create another asteroid
on the screen by replacing the current drawing code with the following:

Matrix world = Matrix.CreateTranslation(new Vector3(0, 0, -4000));
DrawModel (ref model, ref world, greyAsteroid);

world = Matrix.CreateTranslation(new Vector3(0, 0, 4000));
DrawModel (ref model, ref world, originalAsteroid);

The first line did not change, but it is added here for readability. The second statement we
are passing in is our new texture. The last two statements place another asteroid behind us
and reset the texture to the original one. We can run this program and spin the camera to
see both asteroids being drawn.

Now let’s apply some transformations to our asteroids. We can add some rotation to get
them to do a little more than they are right now. To do this, replace the Draw code with
the following:

Matrix world = Matrix.CreateRotationY(MathHelper.ToRadians(
270.0f * (float)gameTime.TotalGameTime.TotalSeconds)) *
Matrix.CreateTranslation(new Vector3(0, 0, -4000));
DrawModel (ref model, ref world, greyAsteroid);

world = Matrix.CreateRotationY(MathHelper.ToRadians(
45.0f * (float)gameTime.TotalGameTime.TotalSeconds)) *
Matrix.CreateRotationZ(MathHelper.ToRadians(
45.0f * (float)gameTime.TotalGameTime.TotalSeconds)) *
Matrix.CreateTranslation(new Vector3(0, 0, 4000));
DrawModel (ref model, ref world, originalAsteroid);

Even with the code wrapping to fit on the page, you can still see that we only have four
statements, just like before. The only thing that changed is the code that modifies the
world matrix. This makes sense because we want to rotate our asteroids. We start by
looking at our first world transformation. You can see that we are simply rotating it
around the y axis by 270 degrees, multiplied by the number of seconds our game has been
running. This effectively makes it continuously render every frame. After the rotation, we
still translate it like we did before, moving it 4,000 units into our world. The second world
transformation is similar, except we are only rotating by 45 degrees instead of 270 degrees.
We are also rotating around the x axis by the same amount. This should give us a decent
wobble effect. Finally, we are translating 4,000 units behind us just like before. You can
compile and run our program to see our asteroids are moving (well, rotating in place).

Texturing 3D Models 121

Summary

You were introduced to the Content Pipeline in this chapter. You saw just how easy it is to
take content from the pipeline and load into our demo. We discussed how to organize our
game content, especially in larger projects.

We loaded a 3D .X file into our demo. We discussed texturing techniques and how to
override textures that are already set up in our 3D objects. You saw how to load the same
3D object more than once and apply different textures to each instance. Finally, we added
some translation to our objects to get a better effect.

This page intentionally left blank

CHAPTER 7/

Sound and Music

Stop and think for a moment what your favorite game
would be like if it did not have sound. Music sets the
atmosphere for our games, and sound effects add to the
realism of our games. In this chapter, we discuss how to get
music and sounds into our demos and games.

To do this, we will need two options. We can have direct
access to sound and music files, or we can use the Microsoft
Cross-Platform Audio Creation Tool (XACT), which
Microsoft provides for us. We will discuss both options in
this book, but the majority of this chapter is devoted to the
Microsoft Cross-Platform Audio Creation Tool (XACT).

Direct Access to Sound Files

The way we directly access the files is by placing our raw
wav or mp3 files into the Content project to be processed
by the Content Pipeline directly. This is identical to how we
have handled the 3D models and texture files.

Before XNA Game Studio 3.0, the only way to play sound
files was by using the XACT tool. Although there’s a lot of
power and flexibility in using the tool, there are times
when we simply want to play a sound or music file. For
situations like these, the XNA Framework has the
SoundEffect and MediaPlayer classes. We will discuss these
in detail in Chapter 12, “Programming for the Zune,” and
Chapter 13, “Running the Game on the Zune.”

IN THIS CHAPTER

» Direct Access to Sound Files

» Microsoft Cross-Platform Audio
Creation Tool (XACT)

Wave Banks

v

Sound Banks

Understanding Variations
Updating Our Input Handler
Plugging In Our Sound Manager

vV v v Vv VY

Creating a Sound Demo

124 CHAPTER 7 Sound and Music

Microsoft Cross-Platform Audio Creation Tool (XACT)

The Microsoft Cross-Platform Audio Creation Tool can be found in our Programs,
Microsoft XNA Game Studio, Tools menu. Once you have the tool opened, we will create
wave banks and sound banks and discuss global settings. We will then create a sound
manager we can add to our library.

We use XACT to bundle raw wave files together and add effects to the different sounds.
The XACT tool allows us to associate categories with our sounds. When we set a sound to
have a category of music, it allows the Xbox 360 to ignore the game’s custom music if the
gamer has a playlist playing on his or her Xbox 360.

Before we open the actual tool, we need to open up the XACT Auditioning Utility, which

is found in the same location as XACT itself. We do this to audition (listen to) the sounds
we are making inside of XACT. This can, of course, be beneficial, especially when we want
to add effects to the file. With that said, XACT is not a sound-editing software package. It

takes completed wave files and puts them in a format that XNA can read and use. We can
do simple effects such as change the pitch and volume, but the tool is not designed to be

a wave file editor.

We first need to hook our XACT tool up to the launched Auditioning Utility. The
Auditioning Utility must be run before the XACT tool is run. To play our sounds we need
to tell XACT to connect to the Auditioning Utility by clicking the Audition menu item
and then clicking the Connect to [machine] (local) item. After we have successfully
connected, the Auditioning Utility will say “XACT tool is now connected....”

The XACT tool will not be able to connect to the Auditioning Utility if the there is a web
server on the machine. If you are running IIS, you can run iisreset/stop to stop the
service so it isn’t listening on port 80.

When you open the tool, you will see an empty project to which we can add .wav files.
After adding the files, we can then set them up as sounds and create cue names for them
that we can kick off inside our code. We can modify properties to get different effects from
the sounds.

Wave Banks

To get started, let’s create a new wave bank from inside XACT. To create a wave bank,
follow these steps:

1. Click File and select New Project. It does not matter what this project is named
because it will be discarded.

2. Right-click Wave Banks and select New Wave Bank (see Figure 7.1).

3. Inside the Wave Bank empty pane, right-click and select Insert Wave File(s).

4. Find a wave file. You can use the Theme.wav file from this book’s CD.

Sound Banks 125

wd New Project ™ - Microsoft Cross-Platform Audio Creation Tool (XACT) v2.0 (Windows)
File Cdt Yiew ‘WaveDarks Sound Danks Global Settings Audbion Window Help

fAaEH x| SE£» HAMAAN - EEEEQOA(HE
- 8 ew Project a

& Sourl Bk IS

= 1 DSP Fllext Path Pt
1 Rlahal =

|8 Ready

FIGURE 7.1 The XACT tool allows us to add wave banks to utilize the sounds in our games.

5. Because you have your Auditioning Tool set up and XACT connected to it, you can
simply select the wave file and press the spacebar to hear it play. You can also right-
click and select Play or click Play in the toolbar. As with most graphical user inter-
faces (GUIs), there are many ways to accomplish the same task. This book only lists
one way in most cases.

Sound Banks

Even though we have the wave file loaded inside our XACT project, we still cannot use it
in our game. We have to create a sound bank first. To create a sound bank, follow these
steps:

1. Right-click Sound Banks and select New Sound Bank. As with the wave bank, we can
also accomplish this through the toolbar or the main menu items.

2. Your work pane fills up with the Sound Bank window. You will need to work with
the Wave Bank window as well as the Sound Bank window, so position them so you
can see them both. One way to do this is to click Tile Horizontally inside the
Window menu item.

3. Now that you can see both windows, drag the wave file from the wave bank into the
sound bank, inside the top-left pane (sounds frame).

126 CHAPTER 7 Sound and Music

4. A cue for the sound needs to be created in order for our code to utilize it. Create a
cue by dragging the sound from the top-left pane (sounds frame) into the bottom-
left pane (cues frame).

This is the bare minimum we need to do to play sounds in our games when using the
XACT tool. To hear the sound, select it and press the spacebar. You can press Escape to
stop the sound. To get sound effects and music into our games, these steps will work. In
the next sections, we discuss more advanced ways to manipulate our sounds to get them
ready for our game.

Understanding Variations

To accomplish something more than just playing sounds, you need to understand varia-
tions. With variations we can assign many waves to a track, and we can create different
events for those tracks to create a sound. We can assign many sounds to a cue. We can
then set up how those sounds or waves are to be played. We will be utilizing XACT to
create different variations, and then we are going to write a library component that a
demo can use to play these cues.

Close out your existing XACT instance and open up a new one. We need to create a wave
bank and a sound bank to put our waves in. On this book’s CD, under this chapter’s folder
is a subfolder titled Sounds. You need to add all these waves into our wave bank. After
adding in the waves, we'll create some sounds. We are going to add the different sounds
and create different variations so you can learn how to use some of the XACT features by
example. Here are the steps to follow:

1. Drag the Attention and Explosion sounds directly into your cues frame (bottom left
pane). We are going to play these sounds as is.

2. Drag the Axe_throw sound directly into your cues frame and rename the cue to
Bullet. You can do this by right-clicking the name in the cues frame and selecting
Rename. At this point, the screen should resemble Figure 7.2.

3. To start the more complicated tasks, drag the CoolLoop wave into your cues frame.

4. In the top-right pane (tracks frame) you can see that XACT created a track with a
play event that includes our wave name. We want to make sure this sound loops, so
click the Play Wave tree node of the Track 1 root to select it.

5. In the properties window you can see the Looping plane. The looping count default
value is 0, but we can either loop it a certain number of times by changing the
number of times to loop, or we can have it loop forever by selecting the Infinite
check box. We are going to let this sound loop forever, so check the Infinite box (see
Figure 7.3).

6. Because this loop is going to be music, click the CoolLoop’s sound icon and drag it
on top of the Music category on the left side of the window. When this is successful,
you will see the category change from Default to Music.

Understanding Variations 127

File Edit View WaveBanks SoundBanks Global Settings Audition Window Help

Emd xS =] S| = & [
=% EW\:‘:‘:';MM Sl @ 5ound Bank (Sound Bank)
[-] wave Bank [/ attention Defaul 0
= &' Sound Banks 1] axe_thow Default 0
Sound Bank, [explosion Defaul 0
- W' Categories
) Detault 1 18 il | B
9_”":‘:5‘5 [Hotes Sou
= arisbles
o 1
¥ SpeedOfSound
= \9 Cue Instance
{3} Distance L : -
{3} DopplerPitchs calar .
¥ MumCuelnstances = Wave Bank {Wave Bank)
{3 Oiientationtngle -
& RPC Precate = Mame Size PLC Format | PC Compressed | PC Ratio | b Format | Qus
= = ‘ﬁdmbm"dnce_mi’en 22078 fas 22016 o0E fam e
i bt ‘ attention 8,548 PCH 8548 100z FCH 100
Notes i are_thiow 12,408 PCHM 12,408 1002 PCM 100
P —— o~ i sus from 1200 oM 13000 wr M 10
Variable Oientationéngle 8 o braie M0E fCH 1w ox oM 7ok
=] i Coofoop 1417200 Aol 1411200 omE Aol HzA
Limitinstances Fabe A explosion 23540 POM 23540 0% PCM 100
Mamuminslances 1 | M40 5o 5644500 ACY 5644500 wes AW 70
Name 0 50n0? 2469600 FCM 2459600 P R T
] i]
cGoot e n L
i | 5]
. Ready

FIGURE 7.2 Wave files can be dragged directly into the cues frame.

W Chapter? * - Micresatt Creas-Platfoem Auste Creation Tes! (KACT) v2.0 (Windows] [P
MW xS S HE B - EEE00 = &

= Chy 7 -
4 e L/ Wave lank (Wave Dank}

[Fom | P Compressed | PC Ratio [i Fomae | Gusiey |
L= 1 =")

1411300
n

¥ Fiay Wrew
4 Coslloss (100%)

G M [betes || SoundMa hczes |
O may Relsase] iCodloso 100%
Vol Viistion |~ Fitch Variasion 360 Pan
DlEnasie CEnasie CEnasie
g X g = 2 -
B Foady

FIGURE 7.3 We can set our play event on a track to loop indefinitely.

128 CHAPTER 7 Sound and Music

7. Next up we are going to add multiple sounds into one cue. We will use
Synth_beep_1 to start us off. Drag that wave into your cues frame.

8. Now make sure that the sound name is selected (in your sounds frame) so the track
frame is showing the play event for track 1.

9. Drag the Synth_beep_2 and Synth_beep_3 waves and drop them on the play event
inside track 1. Be careful to not drag over the sound or cue frames because this will
make the tracks frame empty (it deselects the sound from the sound pane). You can
see where you need to release the cursor in Figure 7.4. The final result after releasing
the cursor and completing the drop operation can be seen in Figure 7.5.

& Mew Project * - Microsoft Cross-Platform Audio Creation Tool (XACT) v2.0 (Windows)

Hlg Bdit Yiew WaveBanks Sound Banks Global satbngs Audition Window Help
SMw| x| % K 5 =) = E =
= B New Pioject -
- & Wave Banks
1 Wave Bank
= @ Sound Rarkes
[¥ Sound Bank u
- W' Calegoiies o
B9 Detaui b bee 1 Defal 0 4
Musc >
= W Vaiables e | Motes
O Gioba linn
© SpecddiSound
= & e nstance | cop
O Lutance sinn
©) DopplePichSeals <
) MumCuelnstances o
O Dricrkaliordnale . . - - . —r
& RPF Piecrts ¥ | Hame [so | PG Fomat | PC Gomprossed | P Halio | #b Fomal | tu:
= a 4037 Al 14037 o Al T
B 141,200 PCM 1,411,200 1002 PCM oo
=] Wwosh bt f'_ cxplosion 23540 FLM 23,540 1005 FLM o
8 50007 5044000 N 5044000 o A i
8 som2 2462600 PO 2462600 ToeE far's T
i sangz 2822400 FOM A2, 400 100 AOM £
i syrih besp_ 1 7775 PCM 100% PCM 100
Lgntr beap 2 9476 PoM HeE A 0w
Wave Praperbes lonth beeo 3 1435 O e v L
< >
@ Neady

FIGURE 7.4 Drag the waves directly into a play event on a sound’s track.

10. Rename the Synth_beep_1 cue to Hit.

11. With Hit as the active cue, press the spacebar to hear it play (assuming you are
connected to the Auditioning Utility). Hit the spacebar several times in a row very
fast. You can hear one sound being played every time you hit the spacebar regardless
if the previous sound was played. You can see they are not played at the same time
by “pressing play” once. By putting the different waves directly into a play event, we
are giving XACT a list of waves to play from when we call play. It does not play
them all at once (but you will see how to do that in a moment).

&) New Project * - Microsoft Cross-Platform Audio Creation Tool (XACT) v2.0 (Windows)

Understanding Variations

e 2|5 M [k

File Edit View WaveBanks SoundBanks Global Settings Audition Window Help

BEHEH-EE

- &!' Sound Banks
[+ Sound Bank
- W' Categories
9 Detault
5 Music
W Vaiiables
= O Glabal
¥ SpeedOfSound
= & CueInstance
{3} Distance
{3} DopplerPitchs calar
¥ MumCuelnstances
¥ Diientationingle

| cop Music O
sion Default 0
Default 0

3]

| e

=

= B New Project ~
=) Wave Banks _
[wave Bank Category | Priciity | Oy & | =] Track 1
throw Default 0O = i]

synth_beep_1(33.33%]
{ synth_beep_2(33.33%)
{ synth_beep_3(33.33%)

3 | Motes

| Sound Na... |

Loop

.= Wave Bank {Wave Bank)

_] CoolLoop

&

- ID)3

129

& RPC Precate v Mame Size PC Format | PC Compressed | PC Flatio | b Format | Qus:
= = B car trake 14032 fa=s 74032 o8 A o
§ CoolLoop 1,411,200 FCM 1.411.200 100% PCH 100
N {8 explosion 23,540 PCH 23540 100 PCM 100
ame Play Wave
Notes {1 50007 SE44E00 FOM 5644600 meE Ao 105
=] § Song? 2468600 PO 2459600 o0 Pk 106
B VolumeVaration Fabe {5 s0ng7 2822400 FCM 2822400 wo0E Ao 106
Fitchaniation Fake {8 syrth_besp 1 7775 PCM 7775 100% FCM 100
=] j £ synth_beep 2 9418 PCH 9418 100 PCH 100
Name { aprih besp 3 14354 PCM 14,354 100% PCH 1000
The name of this event < M 2
‘A I " :
< | &
O Ready
FIGURE 7.5 The waves show up underneath one play event inside of a track when you add
them.

12. Because we do not want this particular cue to play more than one sound at a time,
check the Limit Instances box in the Instance Limiting Properties section of the
properties. You will need to have our cue name selected to do this. Now when you
press the spacebar multiple times, it will not start playing until the last sound has
finished.

You can hear the sounds are random, but we want them to play in the order we
specified in the play event of our track. To do this, change the Playlist Type drop-
down box in the Variation Playlist pane of the property frame. You need to do this
when you have the cue selected. Changing this value to Ordered causes XACT to
play the sounds in the order specified. If we wanted it to start with a random entry
and then play them in order, we could have selected Ordered from Random.

13.

14. Now when you play the sounds, they play in order and only play one at a time.
However, we want the sounds to be queued up so that if you press the spacebar
five times, it will play all of the waves in the sound, with each one starting as

soon as the previous one finishes. To do this you need to change the Behavior At
Max property to Queue instead of Fail To Play. This can be useful for queuing up
voiceover audio, which we would never want to play simultaneously. This is shown

in Figure 7.6.

130

CHAPTER 7 Sound and Music

Fite

W Chapter? " . Micrasait Cross-Platform Ausie Creation Tead (KACT) w20 (Windews] e 8

L % | E EEEO0 =
B 3 .
= ! Wave Barky -

< W Sound Bk

Ede View WoveBanks SoundBaeks Glebalfemings Zudtion Wiedsw el

= [e B

i

PC Fomat | PC Compressed | PC Ratio | % Fomat | Guaity | b Compressed

| Wirew Bk

H Seund ok

[
@
]
}.
-
W Vb &
H
-
i
L

© tumueintanes
O Crmrtacribngs
PC Pressts

Q Datance
O DopplaPachons

matoEmL_aaillinism
Defma

]
]
Max 0
Delma 0
Delmat O

[tiotes Scund Name | Oncer | tictes

FIGURE 7.6 You can queue up calls to play your cues when you have Limit Instances checked.

15

16.

17.

18.

19.

20.

. Now we are going to make a crash cue. To start, drag Ambulance_siren from your

waves into your cues and rename the cue Crash.

Inside the tracks frame, with the Ambulance_siren sound selected from the sound
frame, right-click and add a new track.

Now you can add a play event to the track just added by right-clicking the track and
selecting Add Event, Play Wave.

Drag the Car_brake wave into the play event of the track you just created.
Remember not to drag across the sound or cue frame because the contents of the
track frame will disappear.

Repeat steps 16 through 18 with the wave files Bus_horn and Explosion. When this
step is completed, you should have a total of four tracks, each with its own play
event that has a wave file associated with it. The Sound Banks window is expanded
in Figure 7.7 so you can see the end result.

Now if you play the Crash cue, you will hear all four sounds at the same time. We
want them to be spaced out so as to simulate an accident. You can delay the time at
which different tracks start to play by setting the Time Stamp (sec) property in the
Timing Properties section of the property frame when you have the play wave event
selected. Our Car_brake wave can be left alone because it is a little longer of a sound
file. Modify the rest of the values as follows:

Bus_horn: 0.300
Explosion: 1.000

Ambulance_siren: 1.600

Understanding Variations 131

By Chapt
y e

@ x £ 44| & B

er7 * - Micresatt Cross-Platieem Audie Crestion Toad (ACT) w20 (Windews) - [Sound Bank (Saund Banid) =EECI x|
Edn View WiveBanks SeomdEsnks Globaliettegs Austen Window Melp

EEEO0 =

[Bunlds the current preject|Otons | Netes
Deak 0

Defgt O

Coslime tetes 1[5

| aterter
&bt
| Caellos

B Reaty

Goeml Liscpung % Jadupiosn

el Vintion Fitch Varistion 380 Pan
[Enasie [Enasie [Enasie

FIGURE 7.7 You can create multiple tracks for a sound, each with one or more events in your
tracks frame.

21.

22,

23.

24,

25.

Now when you play the cue, you can hear something that resembles a car colliding
with a bus, creating a large explosion, and the fastest EMT response time ever!

Now we want to make a variant of our explosion sound. We are going to make a
gunshot sound without using an additional wave file. To do this, drag the Explosion
wave bank file into the empty white space inside of the sound pane so it creates a
copy of itself (named Explosion 2). Drag Explosion 2 from the sounds frame into the
cues frame and rename the cue Gunshot.

When you play Gunshot, it does not sound any different from Explosion. Let’s
change that by adding a Pitch event to our only track for the Explosion 2 sound in
our tracks frame. We add this event just like we added the play event earlier, by
right-clicking the track and selecting Add Event, Pitch.

Now we need to modify the pitch to get the desired sound effect. To do this, we
need to make sure our Pitch event is selected and then change the Value. You can
find this value in the properties frame under the newly added Pitch pane. Let’s
change the pitch to 12.00, as shown in Figure 7.8. Now if you play the cue you will
hear something that resembles a gunshot instead of an explosion. We did not have
to add another large wave file to accomplish this effect.

We are now going to create a cue with multiple sounds. Right-click inside the cues
frame and select New Cue. Name this cue Complex.

Drag the Explosion sound down on top of the Complex cue. Do the same thing with
the Synth_beep_1 sound. Remember, this Synth_beep_1 sound has its own sound
variations already because it plays three different waves in order.

132 CHAPTER 7 Sound and Music

&) New Project * - Microsoft Cross-Platform Audio Creation Tool (XACT) v2.0 (Windows) - [Sound Bank (Sound Bank)]
%, File Edit Wiew WaveBanks SoundBarks Global Settings Audition Window Help
G| xS HE A8 EED- EE =
= 8 New Project “ | Sound Name | Category | Priority | Optier | =] Track 1
- & Wave Banks] ambulance_siren Default 0O =] Play wave
" Wave Bank [1] atention Defaul D 1) esplosion (100.00%)
- % Sound Barks [ane_thiow Default 0] Fitch
D!' Sound Bank | CoolLaop Music 0
- W Categaries [explosion Defaull 0
9 Defaut [explasion 2 Defaut 0
5 Music] synth_beep_1 Default 0
= & Variables
- © Global
¥ SpeedOiSound
O Mialnctance s
=] = i >
Mame Pitch Cue Mame | Motes Sound N
Motes | crash explog
|| attention
B SettingType Equation | bullet
El EquationT ype Constant || CoolLaop
Constant 50,00} ~|] ewplagian
OperationT oPerform Replace curent | gunshat
g L2 i
FRepeatEvent Ho
= =
TimeStamp 0.000
Bl lieat .nnn j
Constant
A shatic walue to use when adjusting the parameter. 3 3 %
< 3
e Ready

FIGURE 7.8 You can add a pitch event to the track and set the pitch value in the properties
frame.

26. We need to change the Playlist Type for this Complex cue to Random. This way, it
will just play a sound randomly even if the one it picks was just played.

27. The final thing we will do is add a music playlist. Unfortunately, XACT does not
have a way to give us typical playlist functionality, so we will have to put that into
our code. For now, though, we can at least add our songs to this playlist. Start by
dragging the Song1, Song2, and Song3 waves into the sounds frame.

28. Also drag those sounds to the music category.
29. Now drag the Songl, Song2, and Song3 sounds from the sounds frame into the
cues frame.

30. Save the project.

That was a long example, but it was worth going through because at this point you have a
good idea of how to manipulate sound to prepare cues for our games. Our games will
always reference the cue value.

There are other actions XACT allows us to do, such as setting local and global variables,
setting up transitions through interactive audio settings, and setting up runtime parameter
controls (RPCs).

We can create RPCs when a simple pitch or volume change across the board will not do.
Perhaps we would like to add some reverb, or maybe we would like to modify the volume
as a cue plays up and down. Doing any of these things requires setting up an RPC, which

Understanding Variations 133

can be done by right-clicking the RPC tree node and selecting New RPC Preset, as shown
in Figure 7.9.

&) New Project * - Microsoft Cross-Platform Audio Creation Tool (XACT) v2.0 (Windows) - [Sound Bank (Sound Bank)] [Z |2
% Fie Edt View WaveBanks SoundBanks GlobalSettngs Audtion Window Help - |8 X
M b [k =
= & Global A | Sound Name | Category | Priority | Optics | = = Tiack 1
& speeddisourd [ambulsnce_sren Defaul 0 =1] Play Wve
=0 LusInstance 1] alleniion Dol 0 AR o (100 0
O Nt || awe_thiow Defzull 0 pie| Fileh
0 DopplePitchScale .| CoolLoop Mugic o
) NumCuslnstances cxplosion Default U
& Orienvationdngle] explosion 2 Defslt 0
] sprib b1 Dol 0
= Global
%) Compression Presets
-
€ »
e Mo Hies Sourul M,
] ctazh | splos,
| attention
2] budled
| CoolLoop
| explozion
| gunshot
< ¥ |
< b

@ Neady

FIGURE 7.9 We can add runtime parameter controls and apply them to sounds to produce
different effects.

Then we can drag that preset over to one of our sounds in the sounds frame. To test with,
we can make a copy of our CoolLoop sound and then add our preset to this new sound by
dragging the RPC on top of the new sound we just created. We can open the RPC preset
by double-clicking it. Because there is only one sound associated with the RPC, it will play
that one. The Attached Sounds pane displays all the sounds associated with this RPC. We
can add a new curve by first choosing a variable from the dropdown list. Next, we can
pick Sound as the object of this curve. Finally, for the parameter we can select Volume.
After the final selection a curve will be added. We can move the points around, and then
the vertical bar that is the same color as our curve can be moved left and right. The bar
can be moved, or we can modify the Value of the curve declaration. As we play the sound
and move the bar, we can see the value change and hear the effect it has on the sample
being played. We can set that value in code for the variable to cause the sound to react
exactly how we want. We might want to do this, for example, to dim the background
music when dialogue is happening between characters. We can pass a value to the global
variable that will produce the sound identical to what we are hearing as we audition the
sound with our RPC added. We can add more curves (pitch and reverb) by selecting
another variable from Variable dropdown list. We can add nodes to our curve by double-
clicking the selected curve. A screenshot of this dialog box is shown in Figure 7.10. Have
fun coming up with a totally different CoolLoop 2 sound!

134 CHAPTER 7 Sound and Music

R RPE Preset (Runtime Parameter Control) [F=EE
File Edit View
da @ X o} il AkiEm EEEOO

View Color Viiable Olbyject P mimesles

@ [|orentationangic

| Sound - | valume
o - ié’enlz’..:’in;e E

Aitached Sounds

Soured Bark | Sound

il

<
z
] Foints
Onentatio Volume | Curvature
13176 10.00 Linear
8352 069 Linear
| B0.00 -352 Linear
- 135.34 -1808 Linear

FIGURE 7.10 The RPC dialog box allows us to add new curves and nodes to manipulate the
values.

We can pause and resume all sounds in a category. This means that we could organize our
sounds in such a way that the sounds used in our playing state can all be assigned to a
category we define. Then through the code we can pause that category, and it will pause
all sounds that are playing. This way, we do not need to worry ourselves with making sure
all the sounds stop when someone pauses the game. When we associate a sound with the
Music category, the Xbox 360 can mute that sound and replace it with the playlist the
gamer has his or her console playing at the time. This is a really nice feature because no
matter how good our soundtrack is, at some point gamers will most likely want to play
our games with their own music in the background.

Updating Our Input Handler

Before we dig into the code to utilize the XACT project we just created, let’s back up a

minute and take another look at our input handler. In particular we want to extend our
keyboard and gamepad functionality. Currently, if we try to trigger any event with a key
press or a button push, we will get the event kicked off several times. This is because for
every frame we are checking in our Update method, if a key is pressed for a fraction of a
second the method will return true for many frames. We already know how to solve the
problem because we did it with our Mouse class. We stored the old state and compared it
to the new state to see what has changed. We need to do the same thing here. With the

Updating Our Input Handler 135

mouse code, we did it inside the demo code. However, we want this to be done inside the
library so our game and demo code do not need to be concerned with the gory details. We
will not be updating the mouse code, but that would be an excellent exercise to go
through once you are done with the chapter.

To get started, open up the InputHandler.cs code file inside of the XELibrary project. The
code for our updated InputHandler.cs file is shown in Listing 7.1. We are not going to dive
too deeply into the code in this chapter (this is devoted to sound after all), but we are
going to quickly examine what has been modified.

LISTING 7.1 InputHandler.cs

using System;

using System.Collections.Generic;
using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Input;

namespace XELibrary

{

public interface IInputHandler

{
KeyboardHandler KeyboardState { get; }

GamePadState[] GamePads { get; }
ButtonHandler ButtonHandler { get; }

#if |XBOX360
MouseState MouseState { get; }
MouseState PreviousMouseState { get; }

#endif
b

public class InputHandler
: Microsoft.Xna.Framework.GameComponent, IInputHandler

private KeyboardHandler keyboard;
private ButtonHandler gamePadHandler = new ButtonHandler();

#if 1XBOX360
private MouseState mouseState;
private MouseState prevMouseState;
#endif

public InputHandler(Game game)
: base(game)

136 CHAPTER 7 Sound and Music

// TODO: Construct any child components here
game.Services.AddService(typeof (IInputHandler), this);

//initialize our member fields
keyboard = new KeyboardHandler();

#if |XBOX360
Game.IsMouseVisible = true;
prevMouseState = Mouse.GetState();

#endif
}
public override void Initialize()
{
base.Initialize();
}

public override void Update(GameTime gameTime)

{
keyboard.Update();

gamePadHandler.Update();

if (keyboard.IsKeyDown(Keys.Escape))
Game.Exit();

if (gamePadHandler.WasButtonPressed(0, ButtonType.Back))
Game.Exit();

#if |XBOX360
//Set our previous state
prevMouseState = mouseState;
//Get our new state
mouseState = Mouse.GetState();
#endif

base.Update(gameTime);

#region IInputHandler Members
public KeyboardHandler KeyboardState

{
get { return (keyboard); }

Updating Our Input Handler

public ButtonHandler ButtonHandler

{
get { return (gamePadHandler); }
}
public GamePadState[] GamePads
{
get { return(gamePadHandler.GamePads); }
}

#if 1XBOX360

#endif

public MouseState MouseState

{

get { return(mouseState); }
}
public MouseState PreviousMouseState
{

get { return(prevMouseState); }
}
#endregion

public class ButtonHandler

{

private GamePadState[] prevGamePadsState = new GamePadState[4];
private GamePadState[] gamePadsState = new GamePadState[4];

public GamePadState[] GamePads

{
get
{
return (gamePadsState);
}
}
public ButtonHandler()
{
prevGamePadsState[0] = GamePad.GetState(PlayerIndex.One);
prevGamePadsState[1] = GamePad.GetState(PlayerIndex.Two);
prevGamePadsState[2] = GamePad.GetState(PlayerIndex.Three);
prevGamePadsState[3] = GamePad.GetState(PlayerIndex.Four);
}

public void Update()

137

138 CHAPTER 7 Sound and Music

//set our previous state to our new state
prevGamePadsState[0] = gamePadsState[0];
prevGamePadsState[1] = gamePadsState[1];
prevGamePadsState[2] gamePadsState[2];
prevGamePadsState[3] = gamePadsState[3];

//get our new state

//gamePadsState = GamePad.State .GetState();
gamePadsState[0] = GamePad.GetState(PlayerIndex.One);
gamePadsState[1] GamePad.GetState(PlayerIndex.Two);
gamePadsState[2] GamePad.GetState(PlayerIndex.Three);
gamePadsState[3] = GamePad.GetState(PlayerIndex.Four);

public bool WasButtonPressed(int playerlIndex,
Buttons button)

return (gamePadsState[playerIndex].IsButtonDown(button) &&
prevGamePadsState[playerIndex].IsButtonUp(button));

public class KeyboardHandler

{
private KeyboardState prevKeyboardState;

private KeyboardState keyboardState;

public KeyboardHandler()

{

prevKeyboardState = Keyboard.GetState();
}
public bool IsKeyDown(Keys key)
{

return (keyboardState.IsKeyDown(key));
}
public bool IsHoldingKey(Keys key)
{

return(keyboardState.IsKeyDown(key) &&

prevKeyboardState.IsKeyDown(key));

}

public bool WasKeyPressed(Keys key)
{

Plugging In Our Sound Manager 139

return(keyboardState.IsKeyDown(key) &&
prevKeyboardState.IsKeyUp(key));

}
public bool HasReleasedKey(Keys key)
{
return(keyboardState.IsKeyUp(key) &&
prevKeyboardState.IsKeyDown(key));
}
public void Update()
{
//set our previous state to our new state
prevKeyboardState = keyboardState;
//get our new state
keyboardState = Keyboard.GetState();
}

The first thing to notice is that we added two more classes at the end of our file:
KeyboardHandler and ButtonHandler. These objects each have an Update method that gets
called by our main Update method inside InputHandler. The Update method stores the
previous state and resets the new state. This is the key to it all. We simply check our new
state against our old state to see if keys or buttons have been pressed or released. We have
helper functions that our game code can call to check whether a key was pressed or a
button was clicked. These helper functions just query the previous and new states of the
appropriate input device and return a boolean value. With this implemented, we do not
run into the issue of multiple events kicking off because the gamer is holding the button
down. It also gives us a base from which to start working. We left our most current state
available because we still need that for our triggers and D-pad. The D-pad could also be
put into this handler because it is treated as a button, but that, along with wrapping up
the mouse information, is not in the code. This should be a good starting point if either of
these functions is needed, though.

Plugging In Our Sound Manager

Finally we can get to our sound manager code. We discussed XACT and how we can use it
to create sound projects that our games can consume. We also extended our input handler
code, and now we are ready to dive into the code that will allow us to play the sounds we
set up in our XACT project.

To begin, we need to create a new game component code file inside our XELibrary called
SoundManager.cs. The code for this class can be found in Listing 7.2.

140 CHAPTER 7 Sound and Music

LISTING 7.2 SoundManager.cs

using System;

using System.Collections.Generic;
using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Audio;

namespace XELibrary
{
public class SoundManager : Microsoft.Xna.Framework.GameComponent
{
public bool RepeatPlaylList = true;
private AudioEngine engine;
private WaveBank waveBank;
private SoundBank soundBank;

private Dictionary<string, Cue> cues = new Dictionary<string, Cue>();
private Dictionary<string, AudioCategory> categories =
new Dictionary<string, AudioCategory>();

private string[] playlList;

private int currentSong;

private Cue currentlyPlaying;

public SoundManager(Game game, string xactProjectName)
: this(game, xactProjectName, xactProjectName)

{1

public SoundManager(Game game, string xactProjectName,
string xactFileName)
: this(game, xactProjectName, xactFileName,
game.Content.RootDirectory + @"Sounds\")

{1

public SoundManager(Game game, string xactProjectName,
string xactFileName, string contentPath)

. base(game)
{
xactFileName = xactFileName.Replace(".xap", "");
engine = new AudioEngine(contentPath + xactFileName + ".xgs");
waveBank = new WaveBank(engine, contentPath + "Wave Bank.xwb");
soundBank = new SoundBank(engine, contentPath + "Sound Bank.xsb");
}

public override void Initialize()

{

Plugging In Our Sound Manager

base.Initialize();

public override void Update(GameTime gameTime)

{

engine.Update();

if (currentlyPlaying != null) //are we playing a list?
{

//check current cue to see if it is playing

//if not, go to next cue in list

if (!currentlyPlaying.IsPlaying)

{
currentSong++;
if (currentSong == playlList.Length)
{
if (RepeatPlaylList)
currentSong = 0;
else
StopPlayList();
}
//may have been set to null, if we finished our list
if (currentlyPlaying != null)
{
currentlyPlaying = soundBank.GetCue (
playList[currentSong]);
currentlyPlaying.Play();
}
}

base.Update(gameTime);

protected override void Dispose(bool disposing)

{

soundBank.Dispose();
waveBank.Dispose();
engine.Dispose();

playList = null;
currentlyPlaying = null;
cues = null;

soundBank = null;
waveBank = null;

141

142

CHAPTER 7 Sound and Music

engine = null;
base.Dispose(disposing); }

public void SetGlobalVariable(string name, float amount)

{

engine.SetGlobalvVariable (name, amount);

}
private void CheckCategory(string categoryName)
{
if (!categories.ContainsKey(categoryName))
categories.Add(categoryName, engine.GetCategory(categoryName));
}

public void SetVolume(string categoryName, float volumeAmount)
{
CheckCategory(categoryName) ;

categories[categoryName].SetVolume (volumeAmount); }

public void PauseCategory(string categoryName)

{
CheckCategory(categoryName) ;
categories[categoryName].Pause();
}
public void ResumeCategory(string categoryName)
{
CheckCategory(categoryName) ;
categories[categoryName].Resume();
}
public bool IsPlaying(string cueName)
{
if (cues.ContainsKey(cueName))
return (cues[cueName].IsPlaying);
return (false);
}

public void Play(string cueName)

{

Cue prevCue = null;

Plugging In Our Sound Manager 143

if (!cues.ContainsKey(cueName))
cues.Add(cueName, soundBank.GetCue(cueName));
else
{
//store our cue if we were playing
if (cues[cueName].IsPlaying)
prevCue = cues[cueName];

cues[cueName] = soundBank.GetCue(cueName);
//if we weren't playing, set previous to our current cue name

if (prevCue == null)
prevCue = cues[cueName];

try
{
cues[cueName].Play();
}
catch (InstancePlayLimitException)
{
//hit limit exception, set our cue to the previous
//and let's stop it and then start it up again ...
cues[cueName] = prevCue;
if (cues[cueName].IsPlaying)
cues[cueName] .Stop (AudioStopOptions.AsAuthored);
Toggle(cueName);
}
}
public void Pause(string cueName)
{
if (cues.ContainsKey(cueName))
cues[cueName] .Pause();
}
public void Resume(string cueName)
{
if (cues.ContainsKey(cueName))
cues[cueName] .Resume();
}

public void Toggle(string cueName) {
if (cues.ContainsKey(cueName))

144 CHAPTER 7 Sound and Music

Cue cue = cues[cueName];

if (cue.IsPaused)

{
cue.Resume();
}
else if (cue.IsPlaying)
{
cue.Pause();
}
else //played but stopped
{
//need to reget cue if stopped
Play(cueName);
}
}
else //never played, need to reget cue
Play(cueName);
}
public void StopAll()
{
foreach (Cue cue in cues.Values)
cue.Stop(AudioStopOptions.Immediate);
}
public void Stop(string cueName)
{
if (cues.ContainsKey(cueName))
cues[cueName].Stop(AudioStopOptions.Immediate);
cues.Remove (cueName) ;
}
public void StartPlayList(string[] playList)
{
StartPlayList(playList, 0);
}
public void StartPlayList(string[] playList, int startIndex)
{
if (playList.Length == 0)
return;

this.playList = playlList;
if (startIndex > playlList.Length)
startIndex = 0;

Plugging In Our Sound Manager 145

StartPlayList(startIndex);

}
public void StartPlaylList(int startIndex)
{
if (playList.Length == 0)
return;
currentSong = startIndex;
currentlyPlaying = soundBank.GetCue(playList[currentSong]);
currentlyPlaying.Play();
}

public void StopPlayList()

{
if (currentlyPlaying != null)
{
currentlyPlaying.Stop(AudioStopOptions.Immediate);
currentlyPlaying = null;
}
}

The sound manager can play playlists. The game can simply call a list of cues to be played,
and the sound manager will continue to loop through the list until the game tells it not
to. The sound manager allows us to set global variables so we can modify item cues that
had an RPC associated with them. We can play, pause, and stop any cue in our sound
manager as well.

This library component assumes that the name of the XACT project is the same name as
the file. It also assumes that there is only one sound bank and one wave bank and that
they keep their default names. This is handled in the constructor if there is a need to
change the functionality. The library component assumes the location of the XACT
project file is in the Sounds\ folder of the Content project, but that can be changed by
calling the appropriate constructor.

During our Update method, we call the sound engine’s Update method because it needs to
perform tasks every so often, such as buffering sounds. During our Update call we also
handle all the logic to determine whether we are playing a playlist and, if so, whether it is
actually playing or we need to advance to the next song. Of course, a playlist does not
need to be only music.

We expose functionality that allows us to process actions on categories. This way, we can
set up our sound effects in one category (such as Default) and our music in another cate-
gory (such as Music) and apply different sound volumes to each one differently through a

146 CHAPTER 7 Sound and Music

user interface we display to gamers. Perhaps they do not like their music too loud but like
the sound effects really loud. With the sounds associated with different categories, we can
use the code in this class to pause, resume, stop, and even change the volume on an entire
category at one time. This means all the sounds in that category can be altered with one
call instead of many calls, one for each sound we had individually.

We store our list of categories and cues in a dictionary for easy access. This way, we are not
constantly instantiating new objects. Most of the time sounds will last the entire life of
the game (or at least the current level), so it makes sense to store the data this way.

Creating a Sound Demo

Now we need to add in another Windows game project to our XELibrary solution. We'll
name this new project SoundDemo. We can also set up our solution for our Xbox 360
project if we want to test it on the console. Now we need to make sure our game is refer-
encing the XELibrary project.

Once we have our XELibrary referenced correctly, we can start writing code to test out our
new sound class (and updated input class). We need to use the library’s namespace at the
top of our game class as follows:

using XELibrary;

We should also add a Sounds folder to our demo’s Content project. We can then paste our
XACT project file into our Sounds folder. The wave files should be put in the folder but do
not need to be included in the project. When we compile our code later, the Content
Pipeline will find all the waves from the wave bank and wrap them into a wave bank .xwb
file. It also creates a sound bank .xsb file, whereas the audio engine is stored in
Chapter7.xgs (because that is what we had as our XACT project name).

We will now add in our Input Handler game component so we can kick off sound events
based on our input. We need to declare our private member field to hold the component
as well as add it to our game’s components collection:

private InputHandler input;
private SoundManager sound;

public Gamet ()

{
graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";

input = new InputHandler(this);
Components.Add(input);

sound = new SoundManager(this, "Chapter7");
Components.Add(sound) ;

Creating a Sound Demo 147

We passed in "Chapter7" to our constructor because that is what we called our XACT
project. Next we need to set up our playlist. We can do this inside our Initialize method
because we added the sound component in our constructor:

string[] playList = { "Song1", "Song2", "Song3" };
sound.StartPlayList(playList);

The code tells our sound manager we will be playing three different songs. The library will
keep checking to see if they are playing. The library will automatically play the next song
and then loop back to the beginning song when it reaches the end of the list.

Now we can populate our Update method to check for our input to play all the sounds
and songs we set up in XACT. We need to add the following code to our Update method:

if (input.KeyboardState.WasKeyPressed(Keys.D1) |,
input.ButtonHandler.WasButtonPressed (@, InputHandler.ButtonType.A))
sound.Play("gunshot");
if (input.Ke