

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009932322

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to msinput@microsoft.com.

Microsoft, Microsoft Press, DirectX, Halo, Halo Wars, MS, MSDN, Visual C#, Visual Studio, Windows, Windows Live,
Windows Media, Windows Vista, Xbox, Xbox 360, Xbox LIVE, XNA and Zune are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Valerie Woolley
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X16-03277

To Mary, David, and Jenny.

		 v

Table of Contents
Acknowledgements . xv

Introduction . xvii

Part I	 Getting Started

	 1	 Computers, C#, XNA, and You . 3
Introduction . 3

Learning to Program . 3

Becoming a Great Programmer . 4

How the Book Works . 4

C# and XNA . 5

Getting Started . 6

Installing the Development Environment and the XNA Framework 6

Setting Up a PC to Run XNA Games . 7

Setting Up an Xbox 360 to Run XNA Games . 7

Writing Your First Program . 10

Creating Your First Project . 10

Running Your First Program . 12

Stopping a Program . 14

Storing Games on the Xbox 360 or Zune . 15

Running the Same XNA Game on Different Devices 15

Conclusion . 18

Chapter Review Questions . . 19

	 2	 Programs, Data, and Pretty Colors . 21
Introduction . 21

Making a Game Program . . 22

Statements in the Draw Method . 23

Working with Colors . 24

Storing Color Values . 24

Setting a Color Value . 25

Controlling Color . . 27

Games and Classes . 27

Classes as Offices . 29

Game World Data . 30

Storing Data in Computer Memory . . 31

Drawing by Using Our Color Intensity Variables . 32

vi	 Table of Contents

Updating Our Colors . 33

Memory Overflow and Data Values . 35

Making a Proper Mood Light . 36

Making Decisions in Your Program . 37

The Completed Mood Light . 40

Finding Program Bugs . 42

Conclusion . 43

Chapter Review Questions . . 44

	 3	 Getting Player Input . 45
Introduction . 45

Reading a Gamepad . 46

Gamepads and Classes . . 46

Finding a Gamepad . 48

Testing the Gamepad Status . 49

Zune Buttons . 51

Using the Keyboard . 52

Stopping the Game with the Escape Key . 53

Using a Gamepad and a Keyboard
at the Same Time . 53

Adding Vibration . . 54

Controlling the Vibration of a Gamepad . 55

Testing Intensity Values . 55

Program Bugs . 59

Conclusion . 61

Chapter Review Questions . . 62

Part II	 Images, Sound, and Text

	 4	 Displaying Images . 65
Introduction . 65

Resources and Content . 66

Getting Some Pictures . 66

Content Management Using XNA . 67

Working with Content Using XNA Game Studio 68

XNA Game Studio Solutions and Projects . 68

Adding Resources to a Project . 70

Using Resources in a Game . 73

Loading XNA Textures . 73

Positioning Your Game Sprite on the Screen . 76

	 Table of Contents	 vii

Sprite Drawing with SpriteBatch . 79

Filling the Screen . . 81

Conclusion . 84

Chapter Review Questions . . 84

	 5	 Writing Text . 85
Introduction . 85

Text and Computers . 85

Text as a Resource . . 85

Creating the XNA Clock Project . 86

Adding a Font Resource . 86

Loading a Font . 89

Drawing with a Font . 89

Changing the Font Properties . 92

Getting the Date and Time . 93

Making a Prettier Clock with 3-D Text . 95

Drawing Multiple Text Strings . 95

Repeating Statements with a for Loop . 97

Other Loop Constructions . . 99

Fun with for Loops . 99

Creating Fake 3-D . 101

Creating Shadows Using Transparent Colors . 101

Drawing Images with Transparency . . 103

Conclusion . 104

Chapter Review Questions . . 104

	 6	 Creating a Multi-Player Game . 105
Introduction . 105

Creating the Button-Bash Game . 105

Level and Edge Detectors . 109

Constructing the Complete Game . 109

Adding Test Code . 112

Conclusion . 114

Chapter Review Questions . . 114

	 7	 Playing Sounds . 115
Adding Sound . 115

Creating the Drum Pad Project . 115

Capturing Sounds with Audacity . 115

Storing Sounds in Your Project . 117

viii	 Table of Contents

Using Sounds in an XNA Program . 119

Playing Background Music . 121

Conclusion . 126

Chapter Review Questions . . 126

	 8	 Creating a Timer . 127
Making Another Game . . 127

Reaction Timer Bug . 130

Finding Winners Using Arrays . . 132

Creating an Array . 132

Using Data in an Array . 133

Scanning an Array . . 134

Using an Array as a Lookup Table . 136

Displaying the Winner . 137

Conclusion . 138

Chapter Review Questions . . 139

	 9	 Reading Text Input . 141
Using the Keyboard in XNA . . 141

Creating the Message Board Project . . 141

Registering Key Presses . 142

The Keys Type . 143

Enumerated Types . 144

Working with Arrays, Objects, and References . 144

Values and References . 145

Arrays as Offices . 145

Say Hello to the Garbage Collector . 147

Using References and Values . 147

Why Do We Have References and Values? . 149

References and GetPressedKeys . 149

Displaying Keys . 149

Detecting Key Presses . 151

Decoding Key Characters . 155

Using the Shift Keys . 156

Editing the Text . 157

Conclusion . 159

Chapter Review Questions . . 159

	 Table of Contents	 ix

Part III	 Writing Proper Games

	 10	 Using C# Methods to Solve Problems . 163
Introduction . 163

Playing with Images . 163

Zooming In on an Image . . 163

Creating a Zoom-Out . . 165

Updating the Drawing Rectangle . 166

Creating a Method to Calculate
Percentages . 169

Returning Nothing Using void . 171

Debugging C# Programs . . 175

Hitting a Breakpoint . 176

Using Floating-Point Numbers in C# . . 179

The Compiler and C# Types . 180

Compilers and Casting . . 181

Expression Types . 182

Stopping the Zoom . 184

Zooming from the Center . 184

Conclusion . 187

Chapter Review Questions . . 188

	 11	 A Game as a C# Program . 189
Introduction . 189

Creating Game Graphics . 190

Projects, Resources, and Classes . 191

XNA Game Studio Solutions and Projects . 191

The Program.cs File . 194

Renaming the Game1 Class . 199

Creating Game Objects . 201

Sprites in Games . 201

Managing the Size of Game Sprites . 201

Moving Sprites . 204

Bouncing the Cheese . 206

Dealing with Display Overscan . 206

Conclusion . 208

Chapter Review Questions . . 209

x	 Table of Contents

	 12	 Games, Objects, and State . 211
Introduction . 211

Adding Bread to Your Game . 211

Using a Structure to Hold Sprite Information . 212

Using the Gamepad Thumbsticks to Control Movement 214

Improving Programs Using Methods . 215

Handling Collisions . 218

Making the Cheese Bounce off the Bat . 218

Strange Bounce Behavior . 219

Strange Edge Behavior . . 220

Adding Tomato Targets . 223

Tomato Collisions . 225

Conclusion . 228

Chapter Review Questions . . 228

	 13	 Making a Complete Game . 229
Introduction . 229

Making a Finished Game . 229

Adding Scores to a Game . 229

Adding Survival . 231

Adding Progression . 232

Improving Code Design . 235

Refactoring by Creating Methods from Code . 236

Refactoring by Changing Identifiers . 237

Creating Code Regions . 240

Creating Useful Comments . 241

Adding a Background . . 242

Adding a Title Screen . 243

Games and State . 244

Using the State Values . 244

Building a State Machine . . 245

Conclusion . 248

Chapter Review Questions . . 248

	 14	 Classes, Objects, and Games . 249
Introduction . 249

Design with Objects . 249

An Object Refresher Course . 250

Cohesion and Objects . 250

Coupling Between Objects . 253

	 Table of Contents	 xi

Designing Object Interactions . 256

Container Objects . 257

Background and Title Screen Objects . 259

Classes and Structures . 260

Creating and Using a Structure . 260

Creating and Using an Instance of a Class . 261

References . 263

Multiple References to an Instance . 263

No References to an Instance . 264

Why Bother with References? . 264

Value and Reference Types . 265

Should Our Game Objects Be Classes
or Structures? . . 265

Creating a Sprite Class Hierarchy . 267

The BaseSprite Class . 267

Extending the BaseSprite to Produce a TitleSprite 268

Building a Class Hierarchy . 269

Adding a Deadly Pepper . 270

Creating a DeadlySprite Class . 271

Conclusion . 275

Chapter Review Questions . . 275

	 15	 Creating Game Components . 277
Introduction . 277

Objects and Abstraction . 277

Creating an Abstract Class in C# . 278

Extending an Abstract Class . 278

Designing with Abstract Classes . . 280

References to Abstract Parent Classes . . 280

Constructing Class Instances . 281

Constructors in Structures . 283

Constructors in Class Hierarchies . 284

Adding 100 Killer Tangerines . 285

Creating a KillerSprite Class . 286

Positioning the KillerSprites Using Random
Numbers . . 286

Using Lists of References . 289

Adding Artificial Intelligence . . 293

Chasing the Bread Bat . 293

Adding Game Sounds . . 298

xii	 Table of Contents

From Objects to Components . 300

C# Interfaces . 301

Creating an Interface . 302

Implementing an Interface . 303

References to Interfaces . 303

Linking Bread, Cheese, and Tomatoes . 304

Designing with Interfaces . 304

Conclusion . 305

Chapter Review Questions . . 305

	 16	 Creating Multi-Player Networked Games 307
Introduction . 307

Networks and Computers . 307

Starting with the Signal . 307

Building Up to Packets . 308

Addressing Messages . . 308

Routing . 309

Calls and Datagrams . . 309

Networks and Protocols . 310

Xbox Live . 311

Gamertags and Xbox Live . 311

System Link and XNA . 311

Bread and Cheese Pong . . 312

Managing Gamer Profiles in XNA . 313

Ensuring a Gamer Is Signed In for Network Play 317

Zunes and Gamer Profiles . 318

Creating a Game Lobby . 319

Network Games and State . 319

Playing the Game . 326

The Completed Game . 330

Zune Network Games . 331

Conclusion . 331

Making Games for Fun . . 331

verysillygames.com . 332

Chapter Review Questions . . 332

Answers . . 335

Glossary . 351

Index . 371

		 xiii

Acknowledgments
I’m not sure if you are meant to have fun writing books, but I do. Thanks to Devon Musgrave,
Ben Ryan, and Valerie Woolley at Microsoft Press for making everything fit so well together,
and to Kurt Meyer, the technical reviewer, for making sure it all makes sense. I must also
mention the Microsoft XNA team, who keep making a great thing better, year on year.

		 xv

Introduction
There has never been a better time to learn how to program. Modern programming
languages, coupled with powerful and widely available development environments, provide
an excellent place to work. A wide range of operating environments, including mobile
devices, cloud computing, robotics, embedded devices, and games, means that you can
apply your programming-acquired skills in a huge range of different areas.

Programming lets you bring your ideas to life, and with C# and XNA expertise you can learn
a lot about how games work and even create totally new ones of your own.

This book teaches you programming from first principles. It shows you how to use the C#
language to solve problems and how C# is used within the Microsoft XNA Framework to
create computer games. The games that you write can run on a Microsoft Windows PC, an
Xbox 360, or a Zune device. Along the way you will also gain an insight into how software is
created, and what makes an effective programmer.

C# is a massively popular programming language used by many thousands of software
developers all over the world. The C# skills that you pick up in this book can also be used as
the basis of a career in programming should you find that you really enjoy writing programs.
And because the design of the C# language is very similar to C, C++, and Java you will find
that your skills can be used with them too.

XNA is a framework which allows games to be written in C#. It provides all the “heavy lifting”
concerned with making a game work. It drives the display, manages content, and provides
an easy to use way of interacting with gamepads and other controllers. It also provides a
common platform so that XNA games can run on a variety of different devices, and XNA
games can also be distributed to Xbox users around the world using the Xbox Live service.

The book also provides a working introduction to the Microsoft Visual Studio development
environment used in many thousands of software houses throughout the world. This tool is
the means by which programs are created, tested, and deployed.

Who This Book Is For
This book teaches programming in a gaming context. However, the programming principles
that are explained can be used in any application area. If you want to learn the C# language
and the fundamentals of object-oriented programming using a modern and popular
programming language then this book is for you.

xvi	 Introduction

The book is tightly coupled to an instructional course which also contains practical sessions,
project ideas, and even tests so that you can find out how well you are learning. By the end
of it you will have acquired a grasp of programming fundamentals, an insight into the inner
workings of computer games, and hopefully had some fun too.

The book is structured into 16 chapters, starting with the simplest possible XNA program
and moving on to show you how to use the Xbox and Zune gamepad, the keyboard, sounds,
graphics, and network in your games. In the course of learning how to use C# and XNA, you
create some very silly games, including Color Nerve, Mind Reader, Gamepad Racer, Bread
and Cheese, and Button Bash.

System Requirements
You need the following hardware and software to build and run the code samples for this
book. Chapter 1, “Computers, C#, XNA, and You,” explains how to set up your environment.

n	 A Windows PC with 3-D graphics acceleration if you want to run your XNA games on
your PC.

n	 Microsoft Windows XP SP2 or Windows Vista.

n	 Microsoft Visual Studio 2008 C# Express edition, Visual Studio 2008 Standard edition,
Visual Studio 2008 Professional edition, or Visual Studio 2008 Team Suite.

n	 XNA Game Studio 3.0.

n	 To test your games on a console, you need an Xbox 360 fitted with a hard disk. Your
Xbox 360 must be connected to Xbox Live, and you need to join the XNA Creators
Club. You will find out how to do this in Chapter 1.

n	 If you have a Zune media player, you can run XNA games on that as well. Any Zune
device, from the original 30-gigabyte (GB) device to the latest 4 GB device, can be
connected to your PC you can load your XNA games into it.

Code Samples
All the code samples discussed in this book are accessible through the class instructor.

There are also code samples and games at http://www.verysillygames.com.

Support for This Book
Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/learning/support/books

	 Introduction	 xvii

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion content or
questions that are not answered by visiting the previously mentioned sites, please send them
to Microsoft Press via e-mail to:

mspinput@microsoft.com

Or via postal mail to:

Microsoft Press
Attn: Introduction to Programming Through Game Development Using Microsoft XNA Game
Studio Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through these addresses.

		 1

Part I

Getting Started

In this part:

Chapter 1: Computers, C#, XNA, and You . 3

Chapter 2: Programs, Data, and Pretty Colors . 21

Chapter 3: Getting Player Input . 45

		 3

Chapter 1

Computers, C#, XNA, and You
In this chapter, you will

n	 Discover what makes a good programmer and what makes a great one.

n	 See what computers are all about.

n	 Find out why C# is a language you can love and Microsoft XNA is a framework you can
adore.

n	 Get your system set up so that you can write code.

n	 Run your first XNA program.

Introduction
Welcome to the wonderful world of Rob Miles—a world of bad jokes, puns, and
programming. In this book, I’m going to give you an introduction to the C# programming
language and show you how to use C# to create XNA games. If you have programmed
before, I’d be grateful if you’d still read all the text. It’s worth it just for the jokes, and you
may actually learn something as you’re laughing.

Learning to Program
If you haven’t programmed before, don’t worry. Programming is not rocket science. It
is, well, programming, and there are many more people in the world who have learned
programming than rocket science. The bad news about learning to program is that you have
lots of different things to learn when you start, and this can be confusing. But the keys to
learning programming are simple:

n	 Practice  Do a lot of programming and force yourself to think about things from a
problem-solving point of view.

n	 Study  Look at programs written by other people. You can learn a lot from studying
code that others have created. Figuring out how somebody else did the job is a
great starting point for your solution. And remember that in many cases, there is no
best solution—just solutions that are better in a particular context. (In other words,
sometimes you need an approach that is the fastest or the smallest or the easiest to
use, and so on.)

n	 Persistence  Writing programs is hard work. And you have to work hard at it. The
main reason most folks don’t make it as programmers is that they give up, not because

4	 Part I  Getting Started

they are stupid. However, don't get too persistent. If you haven’t solved a programming
problem in 30 minutes, you should call a timeout and seek help or, at least, walk away
from the problem and come back to it. Staying up all night trying to sort out a problem
is not a good plan. It just makes you irritable in the morning. If you go to bed, have a
nice sleep, and then go back to the problem in the morning, you will be amazed how
often you can fix it in just a few minutes. (Later in this book, we’ll cover what else you
can do if a problem is being stubborn.)

Becoming a Great Programmer
You might think that great programmers can type a thousand words a second, have a
mega-sized brain, and are fitted with a socket that lets them connect directly to a computer.
This is not true. Especially the socket bit. In my experience, the best programmers are the
ones who are the most fun to be with. The ones who you enjoy talking to. The ones who
don’t get upset when you find a mistake in their programs and who sometimes agree that
your solution is better than the one that they invented. I’d much rather work with someone
like that than someone who can write a hundred lines of code a minute but who refuses to
speak to me if I dare to suggest that one of those lines might be wrong.

Great programmers take care to find out that what they are doing is the right thing. If they
are working for a customer, they make sure that the customer gets what the customer wants.
They do not assume that they know the best way to do it and just do it their way. They make
sure that what they produce is tested and comes with helpful documentation. They work
in the team, make coffee when it is their turn, and do whatever it takes to make sure that
the project has a happy ending. Of course, they might also fill your office with beach balls,
superglue your keyboard to the desk, or cover your chair with aluminum foil, but these are all
done in a friendly spirit.

I have secured the services of a great programmer who will be adding Programmer’s Points
to our text. These are truly words of wisdom, so make sure to take note when you see them.

How the Book Works
Great scientists like Sir Isaac Newton and Benjamin Franklin performed experiments
to discover how the world works. Then people like Thomas Edison came along and
again experimented with what science and engineering could do to make things that
everybody wants. You are going to take a similar experimental approach to learning about
programming. By playing with XNA and writing tiny games, you are going to investigate how
a computer works and how you can invent new kinds of computer games.

As you go through the text, you should never be more than a page or so away from making
something happen with a program, so it helps if you have a computer system and an Xbox

	 Chapter 1  Computers, C#, XNA, and You	 5

360 or Zune nearby so that you can try things out. However, you don’t have to have ready
access to hardware when you read the text because all the programs in the book are laid out
and explained in detail.

Don’t be afraid to experiment and try things out yourself. At certain points in the text,
I suggest ideas you might find fun to explore. Remember that learning by doing is one of the
best ways to pick things up, so feel free to try stuff. One of the great things about creating
game programs is that even the code that you get a bit wrong can produce cool-looking
results. You might even end up creating an entirely new type of game by mistake!

Remember that the great scientists did not always find it easy to understand immediately
what was going on inside their experiments, and the same is true about programming. Some
of the things that you do when you write programs do not seem to make much sense at first,
so be prepared to have to work to understand what is going on inside the program.

Note  Throughout the chapters, words appearing in italics are explained more fully in the
Glossary at the end of this book.

C# and XNA
Before you go any farther, it is important that you consider exactly what this book is for. You
are going to learn about the programming language C# and the XNA Software Development
Kit. Understanding the difference between the two is key. You are familiar with the idea of a
computer program. At the moment, I’m using a word processor to create this text. I started
the word processing program, and it is telling my computer to take the text that I type and
add it to the document I am writing. The program is the set of instructions that tells the
computer what to do with the information it receives from the keyboard.

The C# programming language is a way of expressing that set of instructions. When you
create your games, you write lines of C# to tell the computer how to make each game work.
You can use C# to create programs that do many other tasks; you can even use it to create
your own word processor.

A Software Development Kit (SDK) is a set of prebuilt program components that you can
use as part of other programs. The XNA SDK provides program code that will draw things
on the screen, play sounds, read the Xbox 360 gamepad, and do lots of other useful things.
When you create games, the C# code you write uses these prebuilt features of XNA. Part of
becoming a successful programmer is learning how to best use the features provided by an
SDK. Experience with the XNA SDK makes it much easier for you to understand how to use
other SDKs. A particular SDK has an overall architecture that contains all the features that the
SDK provides. This is often called a framework.

6	 Part I  Getting Started

Getting Started
You are going to create programs on the PC and then either run them on the PC or send them
into an Xbox 360 or Zune for execution. Either way, you need to install some tools on your PC.

Installing the Development Environment
and the XNA Framework
When developers wanted to write a program on the very first computers, they had to take
the back off and actually change the wires in the machine. Fortunately, things have moved
on, and now you can use an Integrated Development Environment (IDE) to create your
code. An IDE gets its name because it provides a single place where you can perform the
entire creative process of code development. In an IDE, you can write a program by using
the built-in text editor, you can run the program and see what it does, and you can also
debug the program, which means you stop it and try to find out why it is not doing what
you want it to. The IDE you are going to use is one of the Microsoft Visual Studio 2008
Express Editions, specifically the Microsoft Visual C# 2008 Express Edition. This is a version
of the hugely powerful Visual Studio product, which is used by professional developers all
over the world. At this point, I’m assuming that you have already installed Visual C# 2008
Express Edition and have it running on your machine. You can download Express editions of
Microsoft software for free from http://www.microsoft.com/Express/. The setup procedure
is quite straightforward, and at the end of the process you are asked to register your copy.
Registration does not cost you any money and actually gives you access to even more free
resources. There are a number of other Express products that you can install. You can use
these in addition to XNA Game Studio 3.0, but they are not required to create XNA games.

Note  If you have other versions of Visual Studio on your machine, you can also use these to
write XNA games so long as they include the C# development environment. However, you must
make sure that your version of Visual Studio has the latest version of the service packs installed.
The XNA Creators Club Web site, http://creators.xna.com, has up-to-date information on service
packs and Visual Studio versions.

Once you have got your development environment working, you need to install the XNA
Framework. This binds itself to Visual Studio and provides it with all the extra libraries needed
to create and deploy games. You can download the XNA Framework software from
http://creators.xna.com. The installation is straightforward.

Note  Once you install XNA on your system, you will find a link to Visual Studio in a folder called
Microsoft XNA Game Studio 3.0 in the All Programs folder displayed under the Start menu. For
the purpose of this text, every time I refer to “XNA Game Studio” from now on, I really mean the
customized version of Visual C# 2008 Express Edition.

	 Chapter 1  Computers, C#, XNA, and You	 7

Setting Up a PC to Run XNA Games
Once you have installed XNA on your PC, you can use this to create and run games. If you
just want to write games on the PC and run them on an Xbox 360 or Zune, you don’t need a
very powerful machine. So long as it supports the minimum requirements for Visual Studio,
you can create game software. The games you are going to create in this book do not require
particularly advanced hardware but you will need a machine with reasonable graphical ability
to run some of the more advanced examples. You can find the detailed hardware and driver
requirements for XNA at http://msdn.microsoft.com/en-us/library/bb203925.aspx.

XNA games can be controlled by the PC keyboard. If you have a wired Xbox gamepad,
you can plug it into a Universal Serial Bus (USB) port on your computer and after the New
Hardware Wizard runs, it just works. Windows Vista and Windows XP have the drivers
for the gamepad already loaded. You can also obtain a special adapter that lets your PC
communicate with wireless Xbox gamepads.

Setting Up an Xbox 360 to Run XNA Games
If you want the full game developer experience, there is no substitute for actually using a
genuine console. In this section, you’re going find out how to set up an Xbox 360 and make it
ready to receive the games that you are going to write.

To deploy games on your Xbox 360, it must be fitted with a hard disk. This is where the XNA
Game Studio Connect application and the programs that you create are stored. Your console must
also be connected to the Internet and you must be signed up for a Silver Xbox Live subscription or
better. You must also be a Premium- or Trial-level member of the XNA Creators Club.

XNA Creators Club
If you want to deploy games to your Xbox 360 you must be a member of the XNA Creators
Club. There are a number of different membership levels:

n	 Visitor  A visitor to the Creators Club site can download XNA Game Studio and
educational content. If all you want to do is create and run XNA games on your
Windows PC you can just visit the Creators Club Web site to download software, find
resources, and view the forums.

n	 Registered  Registered members can create a profile on the Creators Club Web site
and post questions on the forums. There is no charge to become a registered member.

n	 Trial  A trial member of the Creators Club can download XNA Game Studio
and educational content. They can also deploy XNA games to an Xbox 360. Trial
membership is available from a variety of sources including MSDN Academic Alliance
(http://msdn.microsoft.com/academic/default.aspx), Microsoft Faculty Connection
(http://www.microsoft.com/education/FacultyConnection), Microsoft DreamSpark

8	 Part I  Getting Started

(http://www.dreamspark.com), and the Dream-Build-Play contest (http://www.
dreambuildplay.com). If you are a student on a course of study, ask at your institution to
see if it has signed up for any of these initiatives.

n	 Premium  A premium member of the Creators Club has all of the abilities of a
trial member, and is also able to download additional sample content. Premium
members can submit their games for distribution on the Xbox Live Marketplace and
can also review Community Games submitted by other premium members. Premium
membership presently costs $99 a year or $49 for three months.

Creators Club membership is linked to your Windows Live ID. Premium and Trial Creators
Club memberships are also linked to your Xbox Live Gamer Tag. You can find membership
details at http://creators.xna.com/membership.

You buy your Premium membership from the XNA Creators Club pages on Xbox Live using
your Xbox 360. Find these pages by signing in to your Xbox 360 with your gamertag and
then navigating to Game MarketPlace|All Games and browsing down to X in the alphabetic
list of game titles, where you will find the “XNA Creators Club” entry. This is also where you
can download the XNA Game Studio Connect application that you must run to connect your
Xbox to XNA Game Studio.

XNA Game Studio Connect
The XNA Game Studio Connect program provides the link between your Xbox 360 and the
XNA Game Studio application that you use to write games on your Windows PC. When you
want to send a program from your Windows PC to the Xbox 360 you must run this program
on the Xbox 360. You download the program from Xbox Live and it is stored in your games
library on your Xbox. You’ll need to start it before each game development session in which
you want to test your game on the Xbox.

You don’t need this program to run XNA programs that have been downloaded onto your
Xbox, these are placed in your game library on your Xbox and you can just run them as you
would any other locally stored game.

XNA Game Studio Device Center
Before you can send a game from your Windows PC to your Xbox 360 (or Zune) the two
systems must be connected together. Connections between XNA Game Studio and Xbox and
Zune devices are managed by the XNA Game Studio Device Center application. You can find
this on your Start menu, as shown in Figure 1-1. It manages all the devices on which you want
to run games you have written.

I am presently developing programs for my Xbox 360 and my two Zune devices. My XNA
Game Studio Device Center is shown in Figure 1-2. You can add an Xbox or a Zune by clicking
Add Device. You will need to add a device so that you can send programs to it.

	 Chapter 1  Computers, C#, XNA, and You	 9

Figure 1-1  Starting the XNA Game Studio Device Center application

Figure 1-2  My XNA Game Studio Device Center

10	 Part I  Getting Started

You need to use The XNA Game Studio Connect application on your Xbox and the XNA
Game Studio Device Center on your Windows PC together to the first time you create a
connection between your Xbox and your Windows PC. You can get detailed help with the
procedure for connecting your Xbox or Zune to your PC by clicking the small blue question
mark on the right side of the XNA Game Studio Device Center application.

Once you have completed the connection procedure, the PC and Xbox 360 retain the settings
that you entered—when you attempt to send a program to the Xbox 360, it should just work.

Connecting a Zune to a Windows PC
The usefulness of XNA also extends to mobile devices. You can take your programming
expertise and use it to create programs for your Zune music player. There are even special
XNA libraries that let you access the music and pictures on your Zune so that you can write
custom music players. Programs you create using XNA Game Studio can be stored on the
Zune for you to use at any time. To do this you simply connect the Zune using its USB cable
and deploy a Zune version of the program. But before you do that, you have to connect your
Zune to Visual Studio using the XNA Game Studio Device Center. There is no Zune equivalent
of the XNA Game Studio Connect program that you must run to deploy games to a Zune.
The Zune will automatically accept games that are sent to it from XNA Game Studio.

Note  Make sure that the Microsoft Zune application is not running when you are using your
Zune device to develop games.

Writing Your First Program
You are now going to start from scratch with your first program. It won’t actually do much—
you won’t be writing your own version of Halo just yet—but it does give you an insight into
what XNA does and how you can write your own C# bits to produce a cool mood light.

Creating Your First Project
A computer game is not just a program—it is also lots of other bits and pieces that make
playing the game fun and interesting. Just about every game has graphics, sounds, 3-D
models of game objects, and all sorts of other items that must be created along with the
code. This means that when you make a game, you have to manage all these other resources,
too. The good news is that the XNA designers have thought of this, and they provide a
comprehensive content management solution that looks after all these resources. You can just
give your game resources to the Content Manager, and it makes sure that they are available
to the programs that you write. Later on in the book, I’ll show you how to add some content
of your own so that you can use a picture of your mom or your dog as a game character.

	 Chapter 1  Computers, C#, XNA, and You	 11

The content management is part of the project mechanism provided by XNA Game Studio.
What this means right now is that to create your first game program, you actually have to
create an XNA Game Studio project.

To create a project, first start XNA Game Studio if it is not already running. Do this by
choosing Microsoft Visual Studio from the Microsoft XNA Game Studio 3.0 folder in the Start
menu shown in Figure 1-1.

Note  This menu is created when XNA Game Studio is installed and contains a link to the version
of Visual Studio 2008 installed on your Windows PC. If you are using a different version of Visual
Studio 2008 (perhaps you installed XNA Game Studio on top your installation of Visual Studio
2008 Professional Edition) you will see a link to your version.

In XNA Game Studio, select New Project from the File menu, as shown in Figure 1-3. This
automatically creates the entire project and the file into which you are going to put your code.

Figure 1-3  Opening the New Project dialog box

XNA Game Studio can make a whole range of different projects depending on what you actually
want to build. The skeletons for each of these types of program are contained in project templates
and Starter Kits. You can download and install other Starter Kits from the Creators Club Web site.
Right now, you are going to use a template to create an empty XNA project.

Figure 1-4 shows all the possible types of projects that can be created. You need to select the
project that matches the device on which you want to run the game.

Note  Make sure that you create a “Game” and NOT a “Game Library”; otherwise, you will not be
able to make your program run.

12	 Part I  Getting Started

Figure 1-4  Creating a new project

Later in this chapter, I’ll show you how you can create a workspace containing multiple
projects, one for each target device. For now, you should just choose the one that you want
to use; the way that the program works is identical for all. Call the project “MoodLight”
because that is what we are building first. You can use the Browse button to select an
appropriate destination for the project. You should ensure that the Create Directory For
Solution check box is selected so that all the files for this game are held in one place. Once
you have done this, click OK to get XNA Game Studio to build the project for you.

When the project has been created, you should see a screen that looks like the one in
Figure 1-5. Yours might not look quite the same (it certainly won’t have the big arrow
pointing at the Start Debugging button), but it should look similar. There are a lot of controls
that you can play with. At the moment quite a few are disabled and can’t be used, but it still
looks confusing the first time that you see it. The key here is not to panic. You are going to
use only a few of the buttons to start with, and I’ll explain the other ones as you need them.

Running Your First Program
If you are running your program on a PC, you can just click the Start Debugging button
(indicated by the arrow in Figure 1-5), and the program runs. If you are sending your
program to an Xbox 360, you must make sure that the XNA Game Studio Connect
application is running on your Xbox 360 and that the Xbox has been connected to your
Windows PC. If you are sending your program to a Zune, make sure that it is connected to
your computer and that the Zune application is not running.

	 Chapter 1  Computers, C#, XNA, and You	 13

Figure 1-5  XNA Game Studio and MoodLight

When you click the button to run the program, a number of things happen in quick succession:

	 1.	 XNA Game Studio compiles the source code files. The source code of the program is all
the lines of C# code that you and XNA Game Studio create that actually describe what
you want the computer to do. A compiler is a program that takes source code and
creates a set of machine instructions that can be loaded into the computer’s processor
to control what the computer does. The C# language has a particular specification, and
the compiler knows all about the rules in the specification. The compiler rejects any
program that it thinks is not correct and tells you about the compilation errors. You are
going to have to live with the fact that you will see a lot of these errors if you decide to
become a computer programmer.

	 2.	 Your project might contain a large number of different source files; each of them must
be compiled. If all the program source files compile correctly, they are then combined
with any resources (for example, images and sounds) that are part of the project.

	 3.	 If you are using an external device, either Xbox 360 or Zune, the compiled files are now
transferred into it.

14	 Part I  Getting Started

	 4.	 Finally, XNA Game Studio starts the program running. If you are using a Windows PC,
the program runs in a window on the desktop. If you are using an external device, the
program takes it over completely. At this point, the window or target device is under
the control of your program statements.

When XNA Game Studio produces an empty project, it actually creates a program that will
compile and run, so you can just click the Start Debugging button (if you haven’t already)
and turn the program loose.

When you run the program, the screen turns blue. That’s it—nothing else. All that work
to turn the screen blue? You could have done that with a can of paint in 30 seconds. The
“empty” project from XNA just turns the screen blue, but in Chapter 2, “Programs, Data,
and Pretty Colors,” you’re going to add some code to make it do much cooler things. You’re
going to make a light that can display millions of possible colors, an ever-changing mood
lamp, and finally, the world’s first-ever color-changing game.

Note  One slightly irritating thing about Visual Studio is that when the program is running, the
organization of the controls in Visual Studio changes. This can confuse a first-time user because
menus, toobars, and panes suddenly don’t seem to be where they used to be. If you carefully
compare Figure 1-5 and 1-6, you notice that a new toolbar has appeared that has buttons on it
that you can use to pause or stop the program.

Stopping a Program
Before you do anything else, you need to stop the program. There are two ways to do this.
You can press the Back button on an Xbox 360 gamepad or Zune to instruct the program to
finish. If the program is running on a remote device, XNA Game Studio displays a message
indicating that the remote connection to the device has been lost. Simply click OK on the
message to dismiss it. Alternatively, you can stop the program from within XNA Game Studio
by clicking the Stop button indicated by the arrow in Figure 1-6.

If you are using a PC and don’t have an Xbox gamepad, you have to stop the program from
XNA Game Studio.

Note  You should not normally stop your program by using XNA Game Studio. This is like
turning off your Xbox 360 rather than quitting a game correctly. It stops the program, but
because the program is interrupted, it might not save all the game data properly before it
stops. When you make your own game, you should make sure that you provide the player with
instructions on how to stop it properly.

	 Chapter 1  Computers, C#, XNA, and You	 15

Figure 1-6  Stopping a running program

Storing Games on the Xbox 360 or Zune
Once you’ve created a game and deployed it to an Xbox 360 or Zune, the game itself
remains stored inside the machine for you to load and play later, without the need for a PC
to be attached. You can find the games you have created by selecting your Game Library on
the Xbox 360 or entering the Games menu on the Zune.

Running the Same XNA Game on Different Devices
You can use a single XNA workspace to hold multiple projects, one for each device you want
to target. You will find out more about projects and workspaces in the section “XNA Game
Studio Solutions and Projects” in Chapter 4. The following example shows how a Windows PC
project can be copied to produce an Xbox 360 project.

16	 Part I  Getting Started

Creating a Copy of an XNA Project for Another Device
Start by clicking the MoodLight project in the Solution Explorer of XNA Game Studio so that
it is selected. Then choose Create Copy Of MoodLight For Xbox 360 from the Project menu,
as shown in Figure 1-7.

Figure 1-7  Copying a project

XNA Game Studio now copies the project and adds the copy to the workspace. This means
that there are now two projects in the workspace, as shown in Figure 1-8.

Note  It looks as if there are now two copies of everything concerned with the project. This is
not actually the case. The copy uses links to the files in the original. This means that changes to
the content of one project are reflected in the other.

You can select which of the projects started by setting one of the projects as the StartUp
Project. If you look carefully at Figure 1-8, you see that the Windows version of MoodLight
has the name of the project displayed in bold type. This means that it is the project that runs
on the Windows machine. To set a project as the StartUp project, you right-click the project
and choose Set As StartUp Project from the menu that appears, as shown in Figure 1-9.

	 Chapter 1  Computers, C#, XNA, and You	 17

Figure 1-8  Multiple projects

Figure 1-9  Selecting the StartUp Project

18	 Part I  Getting Started

When you click Start Debugging, the project that is selected as the StartUp project is the one
that gets to run.

Selecting Your Deployment Targets
If your solution contains multiple projects that target different devices, XNA Game Studio
attempts to send a compiled program to each of them when you try to run the program.
This can be a problem, if for example you want to work on the Windows PC version of your
program and don’t have your Xbox 360 switched on. You can select where the compiled
programs are sent by using the combobox at the top of XNA Game Studio, as shown in
Figure 1-10. If you set this to Mixed Platforms, the program is sent to every device. Otherwise,
pick just the target that you want. To deploy the game just to your Windows PC (both 32-bit
and 64-bit versions), you need to set it to “x86.”

Figure 1-10  Selecting a deployment target

You can change this option at any time, depending on which platform you are working with.

Sample Code: Blue Screen of Life  All the sample projects can be obtained from the course
instructor. The sample projects in the 01 Moodlight Blue Screen folder for this chapter draw
a blue screen for you. They are exactly the same as an empty project that you might create.
The version supplied can be deployed to a PC, an Xbox 360, or a Zune. You can open the project
by double-clicking the Visual Studio solution (.sln) file in this directory to start Visual Studio.

Conclusion
Actually, you’ve done quite a lot in this chapter. You’ve learned about computers, what
makes great programmers so easy to get along with, and the difference between C# (the
programming language of champions) and XNA (the game development framework of
champions). You’ve also got all your development tools sorted out, and you are now ready to
roll. And you did manage to turn the screen a nice blue color.

	 Chapter 1  Computers, C#, XNA, and You	 19

Chapter Review Questions
Every chapter in this book has a set of questions at the end, just to test you a little. There are
no prizes, but you might find it useful to check that you know the answers to the questions
in one chapter before you go on to the next. All the answers are either true or false, and you
can find them by reviewing the chapter and looking in the Glossary. The list of answers for all
the book’s review questions are at the back of the book in Appendix A. No peeking now.

	 1.	 The most important thing about being a great programmer is having a big brain.

	 2.	 You must have an Xbox 360 to create games with C# and XNA.

	 3.	 XNA is a programming language.

	 4.	 XNA Game Studio is an IDE.

	 5.	 The C# compiler produces an XNA output file.

	 6.	 C# is a framework.

	 7.	 You need a Creators Club membership to run your XNA programs on your Xbox 360.

	 8.	 You need a Creators Club membership to run your XNA programs on your Zune.

	 9.	 The XNA Game Studio Device Center runs your programs on your Xbox 360.

	 10.	 The compiler runs your program.

	 11.	 The empty project created by XNA Game Studio draws a red screen.

	 12.	 It is not possible to use an Xbox 360 gamepad on a PC.

	 13.	 To write an XNA game for a Zune, you use a special version of XNA called Zune XNA.

		 21

Chapter 2

Programs, Data, and Pretty Colors
In this chapter, you will

n	 Explore how games actually work.

n	 See how data is stored in a program.

n	 Discover how colors are managed on computers.

n	 Find out about classes and methods.

n	 Write some code that controls color.

n	 Write some code that makes decisions.

n	 Create a funky color-changing mood light.

Introduction
You now know how to create a Microsoft XNA program and run it. Your program only turns
the screen blue, but you could call it a start. Next, you are going to figure out how game
programs are constructed. Then you’ll play with colors and find out how XNA stores color
information and how C# stores data.

Program Project: A Mood Light
Your first project is going to be a program that turns a display (the bigger the
better) into a mood light. These are the things that they have on spaceships, where a
chandelier actually would not work very well. Instead, the spaceship will have a panel
on the wall that can be set to glow in different colors and brightness levels or perhaps
even change color over time. This is probably not a very efficient way of lighting a
building—you are using one of the most powerful game consoles ever made to replace
a lamp—but it is a fun exercise and may even lead to a game idea or two along the
way. You can use the same program to convert your Zune into a multicolored flashlight.

Before going any farther, you need to consider what a game program does. Computer
programs in general read data, do something with it, and then send it out. This is true
whether the computer is working out company wages or timing the ignition spark in a car
engine. Figure 2-1 shows how this works with respect to game programs. The gamepad
provides the input data to the game, and the display screen shows the output.

22	 Part I  Getting Started

Data Data
Computer
Program

Figure 2-1  An Xbox game as a computer program

Later versions of games might have other inputs and outputs, too; for example, if you
are playing on Xbox Live, your console is receiving information about other players in
your networked game. For now, start by considering only the output from your game. In
Chapter 3, “Getting Player Input,” you’ll take a look at where the input values come from.

Making a Game Program
To see how a game program can produce a display, you need to look inside one of the C#
programs that XNA built. At the end of Chapter 1, “Computers, C#, XNA, and You,” you used
XNA Game Studio to create a game program. Now you are going to look at this program and
discover how it works.

The file that contains the game behavior is called Game1.cs. The name Game1 was generated
automatically when the project was created; the .cs part is the file extension for C# programs.
If you want to look inside this file, start XNA Game Studio and open the file from Solution
Explorer. You can find Solution Explorer, shown in Figure 2-2, in the top right corner of the
XNA Game Studio screen. If you double-click the name of the file that you want to work with,
the file opens in the editing window.

If you look at the content of Game1.cs, which drew that impressive blue screen, you can see
how the program works. The program code that XNA Game Studio created when you made
an empty game contains the following method:

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 // TODO: Add your drawing code here

 base.Draw(gameTime);

}

	 Chapter 2  Programs, Data, and Pretty Colors	 23

Figure 2-2  Solution Explorer

A method is a named part of a program. In this case, the method has the name Draw (you
can ignore the protected override void part for now). All you need to know at the
moment is that when XNA wants to draw the screen, it uses this method. You can change
what gets drawn by altering the content of this method. At the moment, we just get a blue
screen; if you look at the second line of the preceding code, you can see where the blue
screen comes from.

Statements in the Draw Method
The Draw method contains a block of statements. C# programs are expressed as a series of
statements that are separated by a semicolon (;). Each statement describes a single action
that your program needs to do. There are a number of different kinds of statements; you
discover new ones as you learn more about programming. The statements are organized into
a single block. A block is a way to lump statements together. The start of a block is marked
with an open curly bracket character ({)and the end of the block is marked with a closing
curly bracket (}). These curly kinds of brackets are sometimes called braces. The C# compiler,
which is trying to convert the program text into something that can actually run, notices and
complains if you use the wrong kind of bracket.

In the preceding code, there is also a comment. Comments are ignored by the compiler; they
let you put text into your program to describe the program or to remind you to do things.
In the preceding code, the comment is a “TODO,” which tells programmers that they need to
do something. In this case, a programmer must add drawing statements at that position in
the program file. The compiler can tell that the text is a comment because it starts with the
character sequence //. For instance, look at the following example:

// This is a comment. It can be any text.

You can add comments anywhere in your program.

24	 Part I  Getting Started

The Great Programmer Speaks: Comments Are Cool  Our Great Programmer likes
comments. She says that a well-written program is like a story in the way that the purpose of
each part is described. She says that she will be looking at our code and making sure that we put
the right kind of comments in.

From the point of view of changing the color of your screen, the statement that is most
interesting is this one:

 GraphicsDevice.Clear(Color.CornflowerBlue);

Clear is a method that is part of XNA. You will see precisely how it fits into the framework
later; for now, all you need to know is that the Clear method is given something that
describes a color, and the method clears the screen to that color. At the moment, you are
sending the Clear method the color CornflowerBlue, and it is clearing the screen to be that
color. If you want a different color, you just have to send a different value into Clear:

GraphicsDevice.Clear(Color.Red);

If you change the color as shown in the preceding line and run the program, you should see
that the screen is now set to red.

Sample Code: Red Screen of Anger  All the sample projects can be obtained from the course
instructor. The sample project in the directory “01 MoodLight Red Screen” in the resources for
this chapter draws a red screen for you. You could run this when you felt particularly angry.
You can change the color that you want to display by changing the colors used in the Draw
method; there are some comments in the code to help you with this.

You can set the background color to a range of preset ones, but you can also design colors of
your own, which brings us to our first project.

Working with Colors
You have seen that XNA has a set of colors built in, including one with the strange name of
Teal (it is actually a rather boring blue/green). However, you want to make your own colors
and use these in your program.

Storing Color Values
A particular color is represented by a structure that holds the red, green, and blue intensity
values. A structure is used to hold a number of related data items in the same way that
you might write your name, address, and phone number on a piece of paper. You want to

	 Chapter 2  Programs, Data, and Pretty Colors	 25

create your own colors, and you need somewhere to store the color values you create. In
programming terms, this is called declaring a variable. Figure 2-3 shows the anatomy of the
statement that declares a variable to hold a value that represents a color.

Color

Type of
variable Identifier

backgroundColor;

Figure 2-3  Declaring a Color variable called backgroundColor

The type of the variable is set as Color. This determines what you can put in your variable.
Having seen this declaration, the C# compiler knows that you want to create a location with
the name backgroundColor in memory, which can hold color information. In programming
terms, the name of a variable is called an identifier. The word backgroundColor is an
identifier that I’ve invented. When you create something to use in a C# program, you have
to think up an identifier for it. An identifier is made up of numbers and letters and must start
with a letter. The identifier should describe what you are going to use the thing for; in this
program, you are storing the color that is going to be used for the background, so it can be
given the identifier backgroundColor.

Note  The C# compiler uses the type of a variable to make sure that a program never tries to do
something that would be stupid. The value Color.Red is recognized by the compiler as being of
type Color, and can therefore be placed in a variable of type Color. If the programmer wrote
some code that tried to put something else in the variable backgroundColor, such as a player
name, then the program would fail to compile. This is rather like real life, where an attempt to
put an elephant in a camera case would be similarly unsuccessful.

The Great Programmer Speaks: Pick Useful Identifiers  Our Great Programmer says
that there should be a special place in hell reserved for programmers who create identifiers like
X24, or secretMagicCode, or clunk. She says that these tell a reader of the program code
nothing about what the variable is being used for. She really likes identifiers like CarSpeed,
backgroundColor, and accountBalance.

Setting a Color Value
You now have a variable that can hold the color of your background. At the moment, it is not
set to anything useful. So next, you have to write a statement that causes the game program
to put a value into this variable. You start by creating a new Color value that contains a

26	 Part I  Getting Started

particular amount of red, blue, and green. Figure 2-4 shows the anatomy of an assignment
that makes a new Color value and then places it in the variable.

=

Variable
identifier

Equals or
“Gozzinta”

Expression

backgroundColor new Color (0,0,0);

Figure 2-4  Assigning a new Color value to backgroundColor

The thing that is going to be assigned is on the right side of the equals sign. In this case, you
are making a new Color value. Don’t get this confused with a double-equals that might be
used to compare two things. You should regard the equals sign in Figure 2-4 as being what
I call a “gozzinta” operator. The value on the right of the equals sign “goes into” the variable on
the left. You will investigate how to compare things later in this chapter, in the section “Making
a Proper Mood Light.” Now that you have your variable, you can use it in the game program:

GraphicsDevice.Clear(backgroundColor);

The preceding statement calls the Clear method and feeds it the value of backgroundColor.
This causes the screen to be cleared to the new color you created. If you put these
statements together, you get a game program that contains a backgroundColor variable
that is used by the Draw method, which sets it to a value and then clears the screen using it:

protected override void Draw(GameTime gameTime)

{

 Color backgroundColor;

 backgroundColor = new Color(0,0,0);

 GraphicsDevice.Clear(backgroundColor);

 base.Draw(gameTime);

}

If you want to find out what color you get if you make one with no red, no green, and no
blue, you can run a program that uses this Draw method. But I don’t think I’m giving too
much away when I tell you that this would produce a black screen. The actual color values
are given in the order red, green, and blue, and each must be in the range 0 to 255 (you
shall learn the reason for this later). By using different values when you set the Color, you
can experiment with different displays. The color combinations obey all the rules of color
combinations (for light, rather than for paint) that you would expect:

backgroundColor = new Color(255, 255, 0);

The preceding statement sets backgroundColor to a color value that has the red and green
values at maximum, which would be displayed as yellow.

	 Chapter 2  Programs, Data, and Pretty Colors	 27

Sample Code: Yellow Screen of Peril  The sample project “02 MoodLight Yellow
Background” creates a yellow background color and fills the screen with it. You can change the
numbers in the Draw method to make any color you like.

Controlling Color
At this point, you can see that we can add C# statements to the Draw method to change what
is drawn on the screen. You also know that XNA uses a Color structure to lump together
information that describes a particular color and that you can create your own Color variables
in the game that contain a specific amount of red, green, and blue. Finally, you have managed
to make a program that uses a color variable to set the screen to any color that you like.

Next, you want the light to change color over time, to get a nice soothing mood light effect.
This sounds like hard work (and like every great programmer, I really hate hard work), but
actually it turns out to be quite easy. To discover how to do this, you have to find how XNA is
connected to the game programs that you write. The way this works uses C# classes.

Games and Classes
The game program is actually a class called Game1. A class is a collection of abilities (methods)
and data (variables) that forms part of a program. You can put as much stuff as you like inside
a single class. A class is usually constructed to look after one particular part of a system. Later
in this book, in Chapter 14, “Classes Objects and Games,” you’ll use classes called things like
GameSprite. In the commercial world, you might find classes called “Receipt,” “Invoice,”
and “StockItem.”

When it created our project, XNA Game Studio gave the game class the name Game1.
However, you can rename this if you wish; you will see how to do this later in the book in
Chapter 11, “Renaming the Game1 Class.”

Classes and Behaviors
A behavior is something that a class can be asked to do. A particular method performs a
particular behavior. You have already used the Clear behavior of the GraphicsDevice class.
When you use Clear, this causes the code in the Clear method to be obeyed to clear the
screen. You don’t need to know how Clear works; you just need to know that you can feed it
with information to tell it what color you want to use.

Drawing and Updating in Games
The Game1 class provides Update and Draw behaviors (among others) so that XNA can ask
Game1 to update the state of the game and draw it on the display. Draw and Update are
methods that you provide for use by XNA.

28	 Part I  Getting Started

In the programs you have written up to now, you have done all the work in the Draw method.
However, this is not really how games should work. The Draw method should do nothing
other than draw the display, and the game should be updated by using the Update method.
You might be wondering why we have this split between Draw and Update. Why can’t Update
do everything, including the drawing part?

The answer to this question has to do with the way that games work. It is very important that
the game world is updated at constant speed. If Update is called less frequently than it should
be, players would find that time in the game goes into “slow motion,” which would be very
frustrating for them because the game would not respond properly to their inputs to the
gamepad. However, a game can usually get away with calling the Draw method less often—all
that happens is that the display becomes more jerky as it is redrawn less frequently.

I’ve played a few games that do this, usually when there are a large number of objects on the
screen at the same time. What is happening is that the display is running more slowly, but
behind the scenes, the game is being updated properly, so gameplay itself is not affected. If
the update and draw behaviors were not separated, it would not be possible to run them at
different rates.

Sharing Game World Data Between Draw and Update
When you create a game, you must create the variables that hold the state of the game itself.
In a driving game, this state would include the speed of the car the player is driving, the car
position on the track, and the position and speed of the other cars. This could be called the
game world data. The game world data that you are going to use in the mood light is the
amount of red, green, and blue that defines the color of the light. The present version of Draw
is entirely self-contained. It has a local variable that is set with the color that is to be drawn:

protected override void Draw(GameTime gameTime)

{

 Color backgroundColor;

 backgroundColor = new Color(255,255,0);

 GraphicsDevice.Clear(backgroundColor);

 base.Draw(gameTime);

}

Local variables are used when you just want to manipulate some data for a very short time.
In this case, the program makes a color value that can be fed into the Clear method. At
the moment, the value of backgroundColor is constructed from the values 255, 255, and 0,
which give the amount of red, green, and blue in the color. We want to construct the color
value from game data values that are set up by the Update method. To make your light work
the way that XNA does, the program must store this game data in a place where both the
Draw and Update methods can use it. In other words, you need to set up some game world
data. Figure 2-5 shows how the Update and the Draw methods are part of the Game1 class,
along with the intensity variables that make up the game world.

	 Chapter 2  Programs, Data, and Pretty Colors	 29

XNA

Update
Method

Draw
Method

Game World Data

redIntensity
blueIntensity
greenIntensity

Game1 class

Figure 2-5  The Game1 class and XNA

The job of the Update method is to update the game world data in the game (that is, adjust
the intensity values). The job of the Draw method is to use the game world data to draw the
display (that is, create a color from these values and clear the screen with it).

The XNA system calls Draw and Update at regular intervals when the game is running. You
have already used methods provided by other classes; you know that the Clear method can
be called to clear the display to a particular color. We are going to make the Update method
set the value of the color to be used, and the Draw method will just draw using that color.
Values that are shared among methods in a class are called members of the class.

Classes as Offices
You can think of Update and Draw as two people sitting in an office called Game1. Each of
them has his or her own telephone and pad of paper for taking notes (local storage). In the
middle of the office is a desk (the description of the game world) with bits of paper on it.

Every now and then, Mr. Draw’s phone rings, and a voice on the other end of the line tells
him that a sixtieth of a second has gone by. Mr. Draw then jumps up, gets the value of the
background intensities from the Game World data on the desk in the office, creates a color
value on his notepad, and then uses his phone to call Ms. Clear in the GraphicsDevice office
down the hall and ask her to clear the screen to that color. She has a set of paint cans and
can fill the screen with any color that she is asked to use.

At a similar interval, the Update phone in the Game1 office rings, and a voice tells Mrs.
Update that a sixtieth of a second has gone by. She jumps up, goes to the table in the office,
and updates the Game World information on the bits of paper. You can see how this would
look in Figure 2-6.

The people/methods in our office/classes perform actions for each other, and data is the
information that the class stores within itself. When a class wants to use a method, it calls it.

In our first version of the Game1 class, the information on the table is the color that Mr. Draw uses
to color the graphics display. You change what happens when the screen is drawn by changing
what Mr. Draw does (the content of the Draw method). You change what happens when the game
itself is updated by changing what Mrs. Update does (the content of the Update method).

30	 Part I  Getting Started

redIntensity

greenIntensity

blueIntensity

Desk

Mr. Draw Mrs. Update

Draw Update

Game1 o�ce GraphicsDevice o�ce

Desk

Red Green Blue

Clear

Screen

Mr. Clear

Figure 2-6  The Game1 and GraphicsDevice classes as offices

Note that no method has to know exactly how the other methods work. Mr. Draw has no
idea about cans of paint and displays, but he does know that if he asks Ms. Clear to clear with
yellow paint, this results in a yellow screen being drawn. A call of a method is equivalent to
calling up someone in an office and asking her or him to perform a task.

Game World Data
The Game World data must be held as part of the class so that the Draw and Update
methods can make use of it. For the MoodLight game the data will be the brightness of the
red, green, and blue components of the color of the light to be produced.

class Game1 {

 // The Game World - our color values

 byte redIntensity ;

 byte greenIntensity ;

 byte blueIntensity ;

 // TODO: Draw method goes here

 // TODO: Update method goes here

}

The preceding code declares three variables inside the Game1 class. These are part of the
class; they are often called members of the class and can be used by any methods that are
also members of the class. They have the identifiers redIntensity, greenIntensity, and
blueIntensity. You can think of these as separate pieces of paper on the desk in the Game1
office. Figure 2-7 shows how a class can contain members.

	 Chapter 2  Programs, Data, and Pretty Colors	 31

Update

Draw

redIntensity

greenIntensity

blueIntensity

Method Members

Data Members

Game1 class

Figure 2-7  The Game1 class and its members

There are two kinds of members: methods (which do something) and data (which hold
information). The Game1 class you are working on has both kinds of members; it has the Draw
method and the Update method, as well as the three data members, which are going to be
used to hold the color values for the changing background. The intensity data members are
of type byte.

If you refer back to Figure 2-3, you can see that a declaration is the type of the variable,
followed by the identifier. Previously you have declared variables of type Color that can
represent a color. Now you are using another type that can represent a numeric value.

Storing Data in Computer Memory
The data for each color intensity is being held in a variable of type byte. The byte type is
interesting because it uses 8 bits of computer memory to hold the value that it is trying to
represent. Computer memory is actually a huge number of such locations, each of which is
1 byte in size. The Xbox 360 has 512 megabytes of memory. This means that the memory
inside the console has about 512 million storage locations, each of which can hold a single
byte value. The memory is addressed by number, and the compiler generates a program that
uses a particular memory location when it accesses a particular variable. Figure 2-8 shows
how this might work. The compiler has decided that blueIntensity is to be held in memory
byte number 1003, greenIntensity in memory byte number 1004, and so on.

When the program runs, the statements that work with redIntensity, blueIntensity, and
greenIntensity are directed to these locations in memory. Each data type uses a particular
amount of computer memory; a byte uses a single memory location. The Color type uses at
least 4 bytes of memory; other types can use a lot more. When the program needs to hold a
Color value, the compiler allocates a number of adjacent memory locations.

32	 Part I  Getting Started

redIntensity

1006

1005

1004

1003

1002

1001

greenIntensity

blueIntensity

. . .

. . .

. . .

Figure 2-8  Storing the color intensity values in memory

Note  In XNA, we never have to worry about precisely where the compiler chooses to put things.
These issues are managed automatically and hidden from our programs. In fact, the way things
really work is a little more complex than the explanation given, but for now, it is important for
you to remember that computer data is held in memory locations of a particular size and that a
particular number of memory locations is available for a program to use.

The same memory locations that store data can also be used to hold program instructions.
When an Xbox game is running, it might be that half the memory space holds the game
program code (the methods) and the other half holds the data that is being used (the
variables). When a game is showing the dreaded “Loading” screen, the Xbox is actually
transferring program code and data values from the game disk into the memory.

Drawing by Using Our Color Intensity Variables
The color intensity variables that we have created represent the amounts of red, green, and
blue that the mood light has. You can use them in your Draw method to create the color to
be used to clear the screen:

class Game1 {

 // The Game World - our color values

 byte redIntensity ;

 byte greenIntensity ;

 byte blueIntensity ;

	 Chapter 2  Programs, Data, and Pretty Colors	 33

 protected override void Draw(GameTime gameTime)

 {

 Color backgroundColor;

 backgroundColor =

 new Color(redIntensity, greenIntensity, blueIntensity);

 graphics.GraphicsDevice.Clear(backgroundColor);

 base.Draw(gameTime);

 }

 // TODO: Update method goes here

}

This Draw method looks very like the previous one, except that it uses member variables
to define the color that is created rather than specifying particular values. Note that the
assignment to backgroundColor has been spread over two lines. The C# compiler is quite
happy with this.

The Great Programmer Speaks: Don’t Try to Fit Everything on One Line  Our Great
Programmer is very keen on sensible program layout. This means not letting program lines
extend off the end of the page. She says if a line gets too long, you should break it at a sensible
point (not in the middle of an identifier) and then continue to the next line, slightly indented. She
has personally checked all the program listings in this book to make sure that the layout meets
her exacting requirements.

Updating Our Colors
When the program starts, the values of byte data members are automatically set to 0 and
the background color is set to black. If you run a program with the preceding Draw method,
you see that the screen just goes black. What you now need to do is take control of the
update process and make the colors change over time. When an empty project is created,
XNA Game Studio creates a bare-bones Update method that contains a TODO reminding the
programmer to add the required code:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back==ButtonState.Pressed)

 this.Exit();

 // TODO: Add your update logic here

 base.Update(gameTime);

}

The Update method is rather similar to Draw but has an extra couple of statements in it, one
of which starts with the word if. This is the part of the code that decides when the game

34	 Part I  Getting Started

should end. When you ran your program, you may have noticed that pressing the Back button
on the gamepad stops the game. These two statements are the ones that dictate that behavior.

The first statement says, “If the Back button on the gamepad for player 1 is pressed, do the
next statement,” and the second statement says, “Exit the program.” Put those together, and
you get a behavior that means that when the Update method is called, if the Back button is
pressed, the program exits. You are going to spend some time on conditions later, but for
now, just remember that if you delete these two lines from your program, it is impossible to
stop it via the Xbox gamepad. So don’t delete them.

You may be wondering who calls Update and how often. The answers at the moment are
“the XNA engine” and “60 times a second.” Whenever your game is active, it needs to update
the game world. This has to happen repeatedly for a game to be any fun. The XNA engine
calls the Update method to give it a chance to perform. In a full-blown game, this involves
reading the gamepad, moving all the objects in the game world, checking to see if any have
collided, and so on. In the mood light, the Update method just changes the color values that
Draw uses to draw the display.

To start with, you are just going to make a mood light that gets steadily brighter over time,
so the Update method increases the value of the red, green, and blue intensities by one each
time that it is called:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back==ButtonState.Pressed)

 this.Exit();

 // Make each color brighter

 redIntensity++;

 greenIntensity++;

 blueIntensity++;

 base.Update(gameTime);

}

The Update method works by using the ++ operator. An operator is something in the
program that tells the compiler that you want to perform an operation on a particular item.
In this case, you are using the operator ++ on each of the intensity variables. The item
that an operator works on is called an operand. Sometimes operators work by combining
operands, and sometimes they work on a single operand. The ++ operator works only on a
single operand. The Update method uses it on each color in turn so that each color intensity
increases by one. This means that each time the Update method is called, the display should
get a little bit brighter.

If you run the program with this Update method, you see that the display does get steadily
brighter for about four seconds. Then it goes black again. This does not seem right. One of

	 Chapter 2  Programs, Data, and Pretty Colors	 35

the additions seems to be making the value much smaller rather than increasing it. To
understand why this is, you need to take a look at how numbers are stored in computers.

Memory Overflow and Data Values
You have already seen that byte values are actually represented by 8 memory bits. Now you
need to understand what this means and the problems that it can cause.

A bit is the smallest unit of data that you can have. A bit is either on or off; in other words,
it can store just two different values. The two values are often referred to as true or false.
Each value is represented by a particular voltage in the memory of the Xbox, but we don’t
need to worry about that in detail.

Think of a bit as a coin on a table. The coin can be either heads or tails; that is, in one of two
possible states. If you put a second coin on the table, the two coins in combination now have
four possible states, head-head, head-tail, tail-head, and tail-tail. Each coin that you add to
the table doubles the number of possible states (that is, when you add the coin, you can have
all the previous states with the new coin on heads plus all the previous states with the new
coin on tails).

If you do the math with eight coins, you find that they can occupy 256 different states. So
8 data bits can hold 256 different values. One of these values is 0 (all false or all tails), which
means that the largest possible integer value that a byte can hold is 255 (all true or all heads).
When the ++ operator tries to increase the value of 255, it will produce the value of 256,
which cannot be represented by 8 bits. The addition process would like to set the value of a
ninth data bit to 1, so that it can represent the value of 256, but there is no ninth bit to set.
So what happens is that the other 8 bits are cleared to zero. This causes the value to wrap
around, which means that the value in the byte goes back to 0 again. The result of this is
that the screen goes from maximum brightness to minimum brightness in a single step. The
technical name for this is overflow.

One very important thing to note here is that no error messages are produced. The
computer does not “know” that it has done anything wrong. Sometimes if your program
does something stupid, you get an error and your program stops. However, in this case, the
game does not seem to notice that you have just fallen off the end of a byte and it continues
to run. Your program may well do the wrong thing, though. This means that your program
has a bug in it. When you create the finished mood light code, you need to make sure that
the values never “wrap around” like this.

Note  Note that you have not “run out of memory.” Rather, the program has tried to put too
much information in a single memory location. The Xbox can work with values much larger than
256; it does this by using multiple storage locations to hold a single item. As an example, you
have seen that the information to describe a color fills at least four memory locations.

36	 Part I  Getting Started

The Great Programmer Speaks: The Computer Doesn’t Care  Our Great Programmer
finds it very amusing when people say, “The stupid computer got it wrong.” She says this is not
what happens. What really happened was that the person who wrote the program did a bad
job. She has been known to roll around on the floor laughing when people ask her, “But why
didn’t the computer notice it was wrong?” She knows that the computer really doesn’t know or
care what a program actually does. The job of the computer is to follow the instructions that
the program gives it. The job of the programmer is to write instructions that are correct in every
scenario.

Sample Code: Fade from Black  The sample project in the “03 MoodLight Fade Up” directory
in the source code resources for this chapter performs the fade up discussed in this section. It
then wraps around to black as the values in the bytes overflow.

Making a Proper Mood Light
The fade-up part of the mood light is very good, but you don’t want it to suddenly change
from white to black each time around. What you would like is for it to fade smoothly up and
down. If you were telling Mrs. Update what to do, you would say something like this:

“Make the value of redIntensity bigger each time that you are called. When the value
reaches 255, start making it smaller each time you are called until it reaches 0, at which point
you should start making it bigger again. Do the same with blue and green.”

Mrs. Update would think about this for a while and decide that she needs to keep track of
two things for each color: the current intensity value (in the range 0 to 255) and something
that lets her remember whether she is counting up or counting down for that color. Then,
each time she is called, she can follow a sequence like this:

	 1.	 If we are counting up, increase the value of redIntensity.

	 2.	 If we are counting down, decrease the value of redIntensity.

	 3.	 If redIntensity is 255, change to counting down.

	 4.	 If redIntensity is 0, change to counting up.

This is an algorithm. It provides a sequence of operations that is used to solve a problem. In
this case, we wanted to make the value of redIntensity move up to 255 and down again in
steps of 1.

Of course, Mrs. Update is not a person but a C# method, so now we have to convert these
steps into C#. The first thing that we need to do is work out what data we need to store.

	 Chapter 2  Programs, Data, and Pretty Colors	 37

We need the intensity value and also a way of remembering if we are counting up or down.
Here’s the code that declares the needed variables:

// The Game World - our color values

byte redIntensity = 0;

bool redCountingUp = true;

You have seen the redIntensity variable before; what you haven’t seen is the way that
we can set it to 0 when we declare it. The redCountingUp variable is new, though. It is of
a new type (C# has hundreds of different types, you’ll be pleased to hear). This is the bool
type, which is special because it can hold only two possible values: true or false. It allows
programs to perform what is called Boolean algebra, which consists of calculations involving
only the values true and false. Such calculations are usually used to drive decisions along
the lines of “If itIsRaining is true and robWillBeGoingOutside is true, I should call the
takeMyUmberella method.”

In this case, the bool type is perfect because redCountingUp is either true or false and
nothing else. The program uses it to make decisions in the Update method so that it can
behave according to the data. This ability to make decisions is what makes computers truly
useful, in that they can change what they do in response to their situation. To make decisions
in your programs, you have to use conditional statements.

Making Decisions in Your Program
You have seen two kinds of statement so far. One calls a method to do something (you use
this to call the Clear method), and the other changes the value of a variable (you use this to
increase the intensity of your colors). Now you are going to use a conditional construction
that can change what the program does depending on the particular situation.

Creating Conditional Statements
Figure 2-9 shows how a conditional construction fits together. Conditional constructions start
with the word if. This is followed by a condition in brackets. The condition produces a Boolean
result, which can be either true or false. You can use a variable of bool type directly here.

Condition Statement

if redCountingUP() redIntensity++;

Figure 2-9  The if condition in action

38	 Part I  Getting Started

If the condition is true (that is, the variable redCountingUp holds the value true in this
case), the statement following the condition is performed. The result is that when this
statement is obeyed, the value of redIntensity gets bigger if the program is counting up.
The condition can be any value that gives a Boolean result, including this rather stupid code:

if (true) redIntensity++;

The preceding code is completely legal C# code and compiles with no problem. When the
program runs, the condition is true, and the statement increases the red intensity value. This
is very stupid code, though, as the test might as well not be there. You could also write the
following:

if (false) redIntensity++;

In this code, the statement following the condition is never obeyed because the condition is
always false. This C# code compiles all right, but if you look very closely at the Microsoft Visual
Studio display, you might notice that it is trying to tell you something, as shown in Figure 2-10.

Figure 2-10  Compiler warnings

If the error window in Figure 2-10 is not displayed, you can open it by selecting the View menu
and clicking Error List in that menu. Alternatively you can use the key combination Ctrl+W+E.

When the compiler has finished trying to convert your C# source code into a program that
can be run on the computer, it tells you how many mistakes that it thinks it has found. There
are two kinds of mistakes. An error is a mistake that prevents what you have written from
being made into a program. Errors are really bad things like spelling identifiers wrong, using
the wrong kind of brackets, and the like.

The other kind of mistake is called a warning. This is where the compiler thinks you
might have done something wrong, but it does not prevent your program from running.
Figure 2-10 shows the warning message for a program with a test for (false) in it.

What the compiler is telling you is that it has managed to work out that the statement after
the test will never be reached. This is because it is impossible for the value false to be true.
The compiler is warning you that although the code is legal C# code, what it does might
actually not be what you want.

	 Chapter 2  Programs, Data, and Pretty Colors	 39

The Great Programmer Speaks: Warnings Should Always Be Heeded  Our Great
Programmer has very strong opinions on compiler warnings; she reckons that your code should
compile with no warnings at all. Warnings usually mean that your solution is imperfect in some
way, and you should always take steps to investigate and resolve them.

Adding an Else Part
The condition you have created is only half correct. If the program is not counting up, it must
make the value of redIntensity smaller. You can use the -- operator to do this, but we need
to add extra code to the condition. You need to add an else part. Figure 2-11 shows another
form of the if condition, with the else part added.

else

Statement
Performed if true

redIntensity++;

Condition

(redCountingUP)

Statement
Performed if false

redIntensity-- ;if

Figure 2-11  The if condition with an else part

The two statements are separated by a new key word, else. The new code means that
if the program is counting up (that is, redCountingUp is true), the value gets bigger, but if
the program is counting down (that is, redCountingUp is false) ,the value gets smaller. The
else part is optional; you must add one only if you need it.

Testing Values
The program must also manage the value in redCountingUp so that when it reaches the
upper limit, it starts to count down, and when it reaches the lower limit, it starts to count up
again. In other words:

	 1.	 When redIntensity reaches 255, set redCountingUp to false.

	 2.	 When redIntensity reaches 0, set redCountingUp to true.

To do this, you need another kind of condition, one that performs a comparison. Figure 2-12
shows how such comparisons are created. This performs the first of these two tests.

Condition Statement

if redCountingUP = false;(redIntensity == 255)

Figure 2-12  Performing a comparison using the if condition

40	 Part I  Getting Started

The key to understanding what is happening is the == comparison operator. When the
program evaluates this condition, the values on the left and right of the == operator are
compared. If they are the same, the result of the comparison is true, and the statement that
follows the condition is performed. If they are different, the result of the comparison is false,
and the statement that follows the comparison is ignored.

The sequence == is the comparison operator. It is completely different from the = operator,
which we know as the “gozzinta.” It is important that you don’t get these two confused.
Unfortunately, you have both a gozzinta and a comparison taking place in the if statement
because you want to put a new value into redCountingUp if the comparison succeeds.

Fortunately, the compiler can usually detect when you use the wrong operator and produce
a message. There are other comparison operators that can test to see if one value is greater
or less than another; we will use these later. An if statement that uses a comparison operator
can have an else part; it is just that we don’t need one here. The final code to make our red
intensity value move up and down ends up as follows:

if (redIntensity == 255) redCountingUp = false;

if (redIntensity == 0) redCountingUp = true;

if (redCountingUp) redIntensity++; else redIntensity--;

The program needs a second test to change the direction of the counting when the bottom
limit of the intensity value is reached. The tests are performed before the intensity value is
updated. This is because when the program starts running we want it to work correctly for
any initial value of redIntensity. If the starting value is 255 the program must count down.
If the starting value is 0 the program must count up.

Note  Pay very careful attention to the three statements shown in this section. Go back and
read our original instructions to Mrs. Update and make sure you are absolutely clear how these
have been converted into C# statements that perform the job. You will notice that Mrs. Update’s
original design has had to be changed so that it works with any starting value.

The Completed Mood Light
You now have the code that lets you create a smoothly pulsing mood light:

// The Game World - our color values

byte redIntensity = 0;

bool redCountingUp = true;

byte greenIntensity = 0;

bool greenCountingUp = true;

byte blueIntensity = 0;

bool blueCountingUp = true;

	 Chapter 2  Programs, Data, and Pretty Colors	 41

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==

 ButtonState.Pressed)

 this.Exit();

 // Update each color in turn

 if (redIntensity == 255) redCountingUp = false;

 if (redIntensity == 0) redCountingUp = true;

 if (redCountingUp) redIntensity++; else redIntensity--;

 if (greenIntensity == 255) greenCountingUp = false;

 if (greenIntensity == 0) greenCountingUp = true;

 if (greenCountingUp) greenIntensity++; else greenIntensity--;

 if (blueIntensity == 255) blueCountingUp = false;

 if (blueIntensity == 0) blueCountingUp = true;

 if (blueCountingUp) blueIntensity++; else blueIntensity--;

 base.Update(gameTime);

}

protected override void Draw(GameTime gameTime)

{

 Color backgroundColor;

 backgroundColor =

 new Color(redIntensity, greenIntensity, blueIntensity);

 graphics.GraphicsDevice.Clear(backgroundColor);

 base.Draw(gameTime);

}

These versions of Update and Draw produce a program that smoothly fades the screen
between black and white.

Sample Code: Mood Light  The project in the “04 MoodLight” directory in the source code
resources for this chapter contains the Update and Draw methods presented in this section and
provides a smoothly changing mood light that goes from dark to light and back again.

A Proper Funky Mood Light
Going from black to white and back is all very well, but it would be nice to have some
additional variety to our light. It turns out that this is very easy to achieve. At the moment,
the red, green, and blue intensities are all the same values, counting up from 0 to 255 and
back down again. This just gives shades of gray. What you want is different combinations and
the color intensities going up and down at different times. You can do this by changing the
starting values of our intensity values and update directions:

byte redIntensity = 0;

bool redCountingUp = true;

42	 Part I  Getting Started

byte greenIntensity = 80;

bool greenCountingUp = false;

byte blueIntensity = 160;

bool blueCountingUp = true;

Rather than all the colors starting at 0 and counting up, the green value now starts at 80 and
counts down, and the blue value starts at 160. This means that instead of just different shades
of gray, you now have lots of other colors being presented. This provides a very groovy display.
If you change the values in your program to the ones shown in this section, you can get a much
more interesting-looking display. You can even try values of your own and see what they look like.

For a much longer-lasting display, we need to change the rate at which the three colors are
updated. This is not actually very hard to do, so I’ve written an “Ultimate Mood Light” that
you can take a look at.

Sample Code: Ultimate Mood Light  The project in the “05 Ultimate Mood Light” directory in
the source code resources for this chapter contains a new version of Update, which changes the
red, green, and blue intensities at different speeds, resulting in a display that never seems to actually
repeat (although it does eventually). Look at the code and see if you can understand how it works.

Finding Program Bugs
Your younger brother has been reading this book and typing in the programs on his
computer. He has just come and told you that the book is rubbish because the programs
don’t work. He has written an Update method and is complaining that for him the red value
only gets brighter. You ask him to show you the code and you see this:

if (redIntensity == 255) redCountingUp = true;

if (redIntensity == 0) redCountingUp = true;

if (redCountingUp) redIntensity++; else redIntensity++;

At first glance, it looks fine, and the C# compiler is quite happy that it is legal, but it is
obviously not working. There is a bug in the program. Note that the bug is not there because
the computer has made a mistake, so the instructions themselves must be faulty. You don’t
want to bother the Great Programmer, as she seems to be busy playing Halo on her Xbox, so
you take a look, bearing in mind something she said recently.

The Great Programmer Speaks: Run Programs by Hand to Find Bugs  A good way to
find out what a program is doing is to behave like the computer and “run” the program yourself.
By working through the statements by hand, keeping track of the variables and making the
changes to them that the program does, you can often find out what is wrong.

Your younger brother has actually made two mistakes in copying the program from these
pages. See if you can find them by working through the statements.

	 Chapter 2  Programs, Data, and Pretty Colors	 43

Figure 2-13 highlights the errors that your younger brother has made.

This means we keep
counting up when we hit

the limit.

if (redIntensity == 225)

if (redIntensity == 0) redCountingUP = true;

if (redCountingUp) redIntensity++; else

redCountingUP = true;

redIntensity++;

This makes the intensity
bigger when we should be

counting down.

Figure 2-13  Finding the errors in the code

The two errors both have the same effect, they cause the screen to get brighter all the time.
If you fixed only one of them the program would still appear broken.

Conclusion
You have learned a lot in this chapter. You now know the fundamentals of C# programs
and the XNA framework. You have seen how to identify and create variables that store data
and also how to write statements that change the values of these variables. You have seen
that the data in a variable is held in a location in memory, which is a certain size and has a
particular capacity. If you exceed this, the value does not fit and is damaged.

You know that in C#, programs are broken down into classes, each class having things it
can do (methods) and things it can hold (member variables). Classes are like offices, where
workers (methods) can be asked to do things. You also know that an XNA game is a particular
kind of class that contains an Update method, which is used by XNA to update the state of
the game world, and a Draw method, which is used to draw the current state of the game
world. You have seen how our programs can be made to make decisions and change what
they do, depending on the values of the data they hold.

44	 Part I  Getting Started

Chapter Review Questions
Time for another review. Have a go at the questions before you move on. When you learn to
program, you find that each step builds on the last, so it is important that you understand
what is in this chapter before you move on to the next. Again, all the answers are either true
or false, and you can work them out from this chapter and the Glossary.

	 1.	 A program is a sequence of variables.

	 2.	 Programs are always held in a file called Program.prog.

	 3.	 An identifier is a name that we give to something we want to use in our program.

	 4.	 Methods tell the computer how to do something.

	 5.	 The Draw method updates the game.

	 6.	 A block of statements is made of wood.

	 7.	 The compiler checks code comments for accuracy and spelling.

	 8.	 A Color value is held as a single byte.

	 9.	 The type of a variable determines what kind of data can be put into it.

	 10.	 A local variable is held inside the class.

	 11.	 An identifier is a name built into C# to identify things.

	 12.	 A variable has an identifier and a type and holds values that our program wants to
work with.

	 13.	 A variable of type bool can hold only the values 0 and 1.

	 14.	 Conditional statements start with the word when.

	 15.	 An if condition must have an else part.

	 16.	 An algorithm is like a recipe.

	 17.	 The = operator is used to compare two values and test if they are the same.

	 18.	 A class holds method members and data members.

	 19.	 A good identifier for a class would be PlayGame.

	 20.	 A good identifier for a method would be Explode.

	 21.	 A byte holds a single bit of data.

	 22.	 The ++ operator works between two operands.

	 23.	 The C# compiler detects if a variable overflows when the program is running.

	 24.	 Boolean values can be either true or false.

		 45

Chapter 3

Getting Player Input
In this chapter, you will

n	 Find out how Microsoft XNA represents the gamepads and keyboards.

n	 Discover the C# language structures that let us get player input.

n	 Write some really silly games and scare people with them.

Introduction
You now know the basics of computer game programming. You know that a program is
actually a sequence of statements, each of which performs a single action. You have seen
that statements are held inside methods, each of which performs a particular task, and
that methods are held in classes along with data. The program itself works on data values,
which are held in variables of a particular type, and the program can make decisions based
on the values that the variables have. (If none of this makes much sense, reread Chapter 2,
“Programs, Data, and Pretty Colors,” until it does.)

Now you are going to expand your understanding to include how to receive input from
the outside world so that games can actually react to what the player does. You shall see
that once we have done this, a number of possibilities open up, and you can create some
truly silly games, including “Color Nerve,” “Mind Reader,” “The Thing That Goes Bump in the
Night,” and “Gamepad Racer.”

Program Project: A Mood-Light Controller
In Chapter 2, you created a light that changes color over time. I also mentioned that
this is the kind of thing that will be used in the starships of the future. A color-changing
light is not all that useful for reading books, but it’s great for setting moods; what our
starship captain really needs is a light that she can set to any color. So now you are
going to make a lamp that can be controlled by an Xbox gamepad. The user presses the
red, blue, green, and yellow buttons on the gamepad to increase the amount of that
color in the light. To make this work, you have to discover how to read the gamepad.

Before you start looking at gamepads, though, you need to decide how the program
will actually work. Consider the following statement of C# from the previous mood-light
program, which is part of the Update method:

if (redCountingUp) redIntensity++;

46	 Part I  Getting Started

This is one of the tests that controls the intensity of the red part of the color. What it is saying
is “If the Boolean value redCountingUp is True, increase the value of redIntensity by 1.”
The statement is processed each time Update is called (at the moment that is 60 times a
second), so this means that if redCountingUp is True, the red intensity of the screen gets
progressively brighter over time.

You want to write some code that says, “If the red button on Gamepad 1 is being pressed,
increase the value of redIntensity by 1.” Then, if the player holds down the button, the
screen gets redder. So all you have to do is change this test to read the button on the
gamepad, and you can create a user-controlled light easily.

Reading a Gamepad
The gamepads are actually very complex devices. They are connected to the host device
either by a universal serial bus (USB) cable or by a wireless connection. As far as you are
concerned, the way that programs work with gamepads does not depend on how they are
connected. The connection to a gamepad can be used to read the buttons and joysticks and
can also be used to send commands to the gamepad—for example, to turn the vibration
effect on and off. The Xbox and XNA provide support for up to four gamepads connected
simultaneously. The Zune has a single gamepad with two buttons that can be used for input.
It is used in exactly the same way as the Xbox gamepad.

Gamepads and Classes
The gamepad information is represented in XNA by means of a class called GamePadState.
The job of this class is to provide the connection between the program and the physical
gamepad that the player is holding. To understand how you are going to use this, you have
to learn a bit more about how classes work.

You have already seen what a class is in the section “Games and Classes” in Chapter 2. A class
contains data (variables that can hold stuff) and methods (code that can do stuff). You
can think of a class as an office, with a desk holding the variables and people acting as the
methods. Figure 3-1 shows the office plan for the class Game1, which you have seen is the
basis of an XNA game.

This class contains some variables on the desk (in this case, the background color intensities)
and two methods, which we have called Mr. Draw and Mrs. Update. Each method has a
corresponding telephone. Programs can place calls to the telephones to request that the
method perform the required task.

	 Chapter 3  Getting Player Input	 47

redIntensity

greenIntensity

blueIntensity

Desk

Mr. Draw Mrs. Update

Draw Update

Game1 office

Figure 3-1  The Game1 class as an office plan

The Great Programmer Speaks: Classes Are Not Really Offices  Our Great Programmer
has been reading these notes and finds them quite amusing. She says that classes are not exactly
like offices, but she thinks that for the purpose of getting an understanding of how programs are
constructed, it is okay to regard them as such.

When an XNA game starts, the XNA system makes an instance of the Game1 class that it then
can ask to Draw and Update. When an instance of a class is created, the instructions for the
methods that it contains are loaded into memory and space is set aside for the data variables
that the instance holds.

The class files that you write give the plans for the class so when the program runs, instances
of each class can be created. In real life, you would make a game office by building a
room, putting a desk and some telephones in the room, and then hiring a Mr. Draw and
a Mrs. Update. The process of making an instance of a class is similar. However, to save
memory, the running program uses only one copy of the method code, which is shared
among all the instances of a class.

Note  It is important to remember that this happens when a program runs. The process of
creating instances of classes is not performed by the compiler. The job of the compiler is to
convert your C# source code into instructions that the target device runs. By the time that
your program has control, the compiler has done its job, and the computer is just running the
machine language output that the compiler produced.

48	 Part I  Getting Started

Finding a Gamepad
XNA also looks after a lot of other things when a game is running, one of which is the GamePad
class connected to all the gamepads. You don’t have to know how the gamepad is actually
connected; for all you know, it might use tiny pixies traveling up and down the wires carrying
pixie notes written on pixie paper saying “Master has pressed the Red Button,” but then again
it might not. Figure 3-2 shows how the GamePad class would look if it were an office.

Desk

Mr. GetState

GetState

GamePad

Figure 3-2  The GamePad class as an office

The GamePad class contains a method called GetState, which gets the state of one of the
gamepads. When GetState is called, it looks at one of the gamepads, reads its settings, and
then sends information back for use in the statement it was called from.

The GetState method is supplied with a parameter that identifies the gamepad to be read.
A parameter is a way that a call can give information to a method. You have seen these
before; in your very first programs, you were passing Color parameters into the Clear
method to select the color of the screen that you wanted.

In the case of the GetState method, the parameter identifies the gamepad that you want
to read. If you are thinking in terms of offices, you can think of a parameter as part of the
instructions that come down the telephone. When the phone rings and Mr. GetState answers it,

	 Chapter 3  Getting Player Input	 49

he is asked, “Get me the state of Gamepad 1.” The information about the state of the gamepad
is sent back in a GamePadState structure, which is shown in Figure 3-3.

GamePadState

Buttons
Green A ButtonState.Pressed
Red B ButtonState.Released
Blue X ButtonState.Released
Yellow Y ButtonState.Released
Start ButtonState.Released
Back ButtonState.Released

Figure 3-3  GamePadState structure with the green A button pressed

You can think of this as a set of items filled in on a form if you wish, but actually it is a C#
structure that contains the data members shown in Figure 3-3, as well as some other data.

So, if Mrs. Update wants to know the state of one of the gamepads on the Xbox, she calls the
GetState method in the GamePad class and asks, “Can you give me the state of the gamepad
for Player 1, please?” Mr. GetState jumps up, fills in a “GamePadState” form, and sends it back
to her. Figure 3-4 gives the breakdown of the C# statement that gets the state of a gamepad
into a variable of type GamePadState.

GamePadState
variable called pad1

Equals or
“Gozzinta” State of the gamepads for Player 1

The class that looks
after gamepads

The GetState
method

The gamepads to be
read

GamepadState pad1 = GamePad . ();GetState PlayerIndex.One

Figure 3-4  Getting the status of a gamepad

Testing the Gamepad Status
Now that you have the status, you can use it in the program to see if a button has been
pressed. Figure 3-5 shows the breakdown of the C# statement that will perform the test.

The button we are
testing

The == (equals)
comparison operator

The value we are
looking for

The statement we perform
if the test succeeds

if () ;==pad1.Buttons.B ButtonState.Pressed redIntensity++

Figure 3-5  Testing a button on a gamepad

50	 Part I  Getting Started

This compares the state of the red button B with the value ButtonState.Pressed. If the two
are equal, this means that the button is down, and the Update method must make the red
intensity bigger. You can then use the same principle to manage the blue and green values,
which means that you now have an Update method that looks like the following:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 GamePadState pad1 = GamePad.GetState(PlayerIndex.One);

 if (pad1.Buttons.B == ButtonState.Pressed) redIntensity++;

 if (pad1.Buttons.X == ButtonState.Pressed) blueIntensity++;

 if (pad1.Buttons.A == ButtonState.Pressed) greenIntensity++;

 base.Update(gameTime);

}

The only problem with the Update method described here is that the program doesn’t
handle the yellow button yet. When the yellow button is pressed, the program needs to
increase the green and the red intensities; that is, it must perform two statements if the
condition is true. It turns out that doing so is very easy; you can just put the two statements
into a block that is controlled by the condition, as shown here:

if (pad1.Buttons.Y == ButtonState.Pressed)

{

 redIntensity++;

 greenIntensity++;

}

You have seen blocks before; the body of a method (the bit that does the work) is a block.
In C# terms, a block is a number of statements that are enclosed in curly braces. The code
shown here performs both statements if the condition is true because they are in a block
controlled by the condition.

The Great Programmer Speaks: Blocks Rock  Our Great Programmer tends to use blocks
after if conditions even when she doesn’t actually need to. She says that it makes the program
text clearer and that it is much easier to add extra statements later if you need to.

If you put the preceding statements into the Update method of one of your earlier
Mood-Light programs, you get compiler warning messages because the new version of
Update doesn’t use all the variables that were created for previous versions of the program.
To get rid of these warnings, you must delete the statements that create the unused

	 Chapter 3  Getting Player Input	 51

variables. The Great Programmer doesn’t like it when programs have variables in them that
are not used. She says this looks unprofessional, and I agree with her.

Zune Buttons
You can run this program on a Zune. However, it doesn’t have colored buttons—the Play
button is the same as button B (Red) on a gamepad, and pressing the center of the joypad is
the same as pressing A (Green), but the other buttons are not supported. However, you can
create a Moodlight for the Zune by using the Dpad inputs as follows:

if (pad1.DPad.Left == ButtonState.Pressed) blueIntensity++;

if (pad1.DPad.Right == ButtonState.Pressed) redIntensity++;

if (pad1.DPad.Down == ButtonState.Pressed) greenIntensity++;

if (pad1.DPad.Up == ButtonState.Pressed)

{

 redIntensity++;

 greenIntensity++;

}

The Zune control pad is mapped onto the Dpad on the gamepad, so this code also allows the
MoodLight to be controlled by the Dpad on a gamepad.

Sample Code: Manual MoodLight  All the sample projects can be obtained from the course
instructor. The sample project in the directory “01 Manual MoodLight” in the resources for
this chapter implements the Update method, as shown in this section. You can increase the
brightness of the colors on the screen by pressing the buttons on the gamepad or by using
the Dpad.

Game Idea: Color Nerve
Every now and then, we are going to try out a game idea. These start out very simply
and then build up to more complicated and interesting games. You can use the
Manual MoodLight code to create your first game. The game uses something we saw
in Chapter 2. You noticed that if you keep making a value bigger, there comes a point
where it won’t fit in the memory store allocated for it, and then it overflows. This is
what caused the screen to go from bright white to black. However, you can use this to
create our first “Very Silly Game.”

Color Nerve is a game for two or more players. The players take turns pressing one or
more buttons on the gamepad. (The other players must watch carefully to make sure
that they actually do press at least one button.) Each player can press as many buttons
as he wants for as long as he wants during his turn, but if the screen changes suddenly
(because one of the color values has gone from 255 to 0), he is out, and the game
continues. The last player left in the game is the winner.

52	 Part I  Getting Started

This game can be very tactical. Players can press the buttons for very short times, or
at the start of the game, they can show their nerve by holding the buttons down for
longer periods, trying to cause problems for the next player. They can also try to work
out which color has wrapped around so that they can press that button when it is their
turn. The game works very well at parties, any number of people can take part, and the
rules are very easy to understand. In Chapter 4, “Displaying Images,” you will improve
the game to add pictures as well as a plain screen.

Using the Keyboard
XNA works with keyboards as well as with gamepads. You might be surprised to learn that
you can plug a USB keyboard into an Xbox 360 and use it just as you’d use the keyboard on
the PC. If you want the program to work with the keyboard, you can add code that does this,
as shown here:

KeyboardState keys = Keyboard.GetState();

if (keys.IsKeyDown(Keys.R)) redIntensity++;

if (keys.IsKeyDown(Keys.B)) blueIntensity++;

if (keys.IsKeyDown(Keys.G)) greenIntensity++;

if (keys.IsKeyDown(Keys.Y))

{

 redIntensity++;

 greenIntensity++;

}

Note that the process is very similar to how the gamepad works, but there are slight
differences. You don’t need to tell the GetState method on the Keyboard which keyboard to
read because XNA supports only a single keyboard. The KeyboardState item that is returned
from the call is not actually a piece of paper; instead, it is an object that provides methods
that the program can use to discover whether a particular key is pressed. Rather than seeing
if the state of a button is set to the value ButtonState.Pressed, the program can call the
method IsKeyDown. You supply the IsKeyDown method with a parameter that identifies the
key you are interested in, as follows:

if (keys.IsKeyDown(Keys.R)) redIntensity++;

This code is a conditional statement that increases the value of redIntensity if the R key is
pressed. The method IsKeyDown returns true if the key is down and false if not. You can,
therefore, use it to control the update of the redIntensity value.

	 Chapter 3  Getting Player Input	 53

Stopping the Game with the Escape Key
The Update method that is created when you make a new XNA game contains a test that
checks the for the Back button on gamepad 1 and calls the Exit method to stop the game
when the Back button is pressed. If you are using a keyboard instead of a gamepad you will
not be able to press this button to stop the a game. You can add a test for the Escape key
on the keyboard. This key is a “control” key, in that it does not actually relate to a printable
character, but is designed to signal an action you want the program to take. Other control
keys include the Enter key and the Backspace key. You can use the same IsKeyDown method
to test for the Escape key.

if (keys.IsKeyDown(Keys.Escape)) Exit();

This code stops the game when the Escape key is pressed.

Using a Gamepad and a Keyboard at the Same Time
If you want to use a gamepad and a keyboard simultaneously, you have to test for both. This
means that the Update method now looks like this:

protected override void Update(GameTime gameTime)

{

 GamePadState pad1 = GamePad.GetState(PlayerIndex.One);

 if (pad1.Buttons.Back == ButtonState.Pressed) Exit();

 if (pad1.Buttons.B == ButtonState.Pressed) redIntensity++;

 if (pad1.Buttons.X == ButtonState.Pressed) blueIntensity++;

 if (pad1.Buttons.A == ButtonState.Pressed) greenIntensity++;

 if (pad1.Buttons.Y == ButtonState.Pressed)

 if (pad1.Buttons.B == ButtonState.Pressed) redIntensity++;

 {

 redIntensity++;

 greenIntensity++;

 }

 KeyboardState keys = Keyboard.GetState();

 if (keys.IsKeyDown(Keys.Escape)) Exit();

 if (keys.IsKeyDown(Keys.R)) redIntensity++;

 if (keys.IsKeyDown(Keys.B)) blueIntensity++;

 if (keys.IsKeyDown(Keys.G)) greenIntensity++;

 if (keys.IsKeyDown(Keys.Y))

 {

 redIntensity++;

 greenIntensity++;

 }

 base.Update(gameTime);

}

54	 Part I  Getting Started

This code is not good because you are doing the same thing twice, just triggered in
a different way. The Great Programmer, if she ever saw this, would not be impressed.
Fortunately C# provides a way that a program can combine two conditions and then perform
some code if either condition is true. This way of combining conditions is called the OR
logical operator because it is true if one thing or the other is true, and it is written in the
program as two vertical bars (||):

GamePadState pad1 = GamePad.GetState(PlayerIndex.One);

KeyboardState keys = Keyboard.GetState();

if (pad1.Buttons.B == ButtonState.Pressed ||

 keys.IsKeyDown(Keys.R)) redIntensity++;

The OR logical operator is placed between two Boolean expressions that can be either true or
false. If one or the other expression is true, the combined logical condition works out to be true.
In this code, if the red button is pressed on the gamepad or the R key is pressed on the keyboard
(or both), the redIntensity value increases. This is exactly what you want, and it means that
Color Nerve can now be played with the gamepad or the keyboard (or both at the same time).
Logical operators are so called because they produce logical rather than numerical results. There
are other logical operators that you will use as you create more complex programs.

Note  If you find this logical operator stuff hard to understand, just go back to the problem that
you are trying to solve. You want the program to perform a statement (redIntensity++) if
the red key is pressed on the gamepad or if the R key is pressed on the keyboard. So you use the
OR operator (||) to combine the two tests and make a condition that triggers if one or the other
condition is true.

Sample Code: Color Nerve  The sample project in the directory “02 Color Nerve” in the
resources for this chapter implements the game. You can adjust the colors of the screen by
pressing the gamepad buttons or a key on the keyboard.

Adding Vibration
The communication between the gamepad and the game works in both directions. Not only can
you read buttons on the gamepad, but also you can send commands to the gamepad to turn on
the vibration motors. Again, you don’t have to know exactly how these messages are delivered;
all you need to know is the features of XNA that are used to control this vibration effect.

This means you can make your Color Nerve game even more exciting by making the
gamepad vibrate when the intensity values are getting close to their limits. It is interesting
how features like this can enhance even a simple game. You will be using the vibration effect
on the gamepads quite a lot in the next few games.

	 Chapter 3  Getting Player Input	 55

Controlling the Vibration of a Gamepad
The GamePad class provides a method called SetVibration that lets a program control the
vibration motors:

GamePad.SetVibration(PlayerIndex.One, 0, 1);

The SetVibration method uses three parameters. The first one identifies which gamepad
you want to vibrate. The second parameter is a value between 0.0 and 1 that controls the
vibration of the left motor. The bigger the number, the more the gamepad vibrates. The third
parameter controls the right motor in the same way as the left one. The statement shown
here would set the right motor of Gamepad 1 vibrating at full speed. The left motor is the
low-frequency vibration, and the right motor is the high-frequency vibration.

If you think of the GamePad class/office having a man called Mr. SetVibration, this means that
he would be told which gamepad to vibrate and the settings for the left and right motors.
Once the method has been called, the gamepad starts to vibrate, and it keeps vibrating
until you call the method again to change its setting. In other words, you can think of the
SetVibration method as a switch that can be set to a number of different positions. Initially,
both of the gamepad motors are set at 0, which means no vibration.

Testing Intensity Values
The game needs to decide when to turn on the vibration. To do this, it must test the intensity
values and turn on the vibration motor if any of them is getting too large. The program can
decide to turn on the motors if any of the red, green, or blue intensity values is greater than
220. To do this, the program must test the intensity values as follows:

if (redIntensity > 220)

{

 GamePad.SetVibration(PlayerIndex.One, 0, 1);

}

This code shows another form of condition. In the previous examples, the conditions have
been checking to see if two values are equal. This code tests if one value is greater than
another. The greater-than sign (>) is another logical operator. Placed between two values, it
returns true if the value on the left is greater than the value on the right and false if not.
That is exactly what you want.

Using the preceding code, the gamepad starts to vibrate using the right motor when the
red intensity value goes above 220. If you add this code to the Update method in the Color
Nerve game, you find that if you increase the red value, the gamepad starts to vibrate.
Unfortunately, our program has a bug. When the red intensity value returns to 0, the
vibration does not stop. You need to add some code that turns off the motor when the

56	 Part I  Getting Started

intensity value is less than 220. It turns out that this is very easy to do—you can add an else
part to the condition:

if (redIntensity > 220)

{

 GamePad.SetVibration(PlayerIndex.One, 0, 1);

}

else

{

 GamePad.SetVibration(PlayerIndex.One, 0, 0);

}

The statement after the else is performed if the condition is found to be false. (You
can add an else part to any if condition that you create.) This means that when the red
intensity value returns to 0, the vibration stops. You can extend the tests using OR so that the
program tests all the intensity values:

if (redIntensity > 220 ||

 greenIntensity > 220 ||

 blueIntensity > 220)

{

 GamePad.SetVibration(PlayerIndex.One, 0, 1);

}

else

{

 GamePad.SetVibration(PlayerIndex.One, 0, 0);

}

Now the vibration is controlled by all the intensity values. As an improvement to the game,
you might want to experiment with different kinds of vibration for different colors, perhaps
by using the low-frequency motor as well. This is controlled by the other value in the call of
SetVibration:

GamePad.SetVibration(PlayerIndex.One, 1, 0);

The line of code shown here turns on the low-frequency vibration. You might also want to
experiment with the thresholds at which the vibration starts.

The program still has one more problem. If you run it and make the gamepad vibrate,
when the program finishes, the gamepad doesn’t always stop vibrating. You need to add
code that stops the vibration when the game ends. The game stops when the player presses
the Back button on the gamepad. The test for this is in the Update method. If the Back
button is pressed, the Exit method is called to stop the game:

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

The Exit method removes the game display and shuts the game down in a tidy fashion.
What the program must do is turn off the gamepad motors before Exit is called. To do this,

	 Chapter 3  Getting Player Input	 57

the program needs to perform more than one statement if the Back button is pressed, so we
need another block:

if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

{

 GamePad.SetVibration(PlayerIndex.One, 0, 0);

 this.Exit();

}

Now, when the player presses the Back button to end the program, the vibration motors are
turned off.

The Great Programmer Speaks: When in Doubt, Make Sure Yourself  The Great
Programmer says that if you are in a situation where you are not sure whether something
is always the case, you should add code to remove all possible doubt. Testing the vibration
behavior described in this section, I discovered that the gamepad is left vibrating on earlier
versions of XNA, but not on some newer ones. To make absolutely sure that the vibration stops
regardless of the version of XNA under which your game runs, you should include the code to
stop the vibration yourself.

Sample Code: Vibration Color Nerve Game  The sample project in the “03 Color Nerve with
Vibes” directory in the source code resources for this chapter holds a version of Color Nerve that
has the vibration effect enabled.

Game Idea: Secret Vibration Messages
Once you see that it is easy to read gamepad buttons and drive the motors, you
can start to have more fun with XNA, particularly with wireless gamepads. You can
create mind-reading games where your assistant seems to know exactly what you
are thinking. What the audience doesn’t know is that both of you are holding Xbox
gamepads in your jacket pockets and using them to send signals back and forth using
the vibration feature. The code to do this is actually very simple, and you should be
able to understand what it does:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if(GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 {

 GamePad.SetVibration(PlayerIndex.One, 0, 0);

 GamePad.SetVibration(PlayerIndex.Two, 0, 0);

 this.Exit();

 }

 GamePadState pad1 = GamePad.GetState(PlayerIndex.One);

 GamePadState pad2 = GamePad.GetState(PlayerIndex.Two);

58	 Part I  Getting Started

 if (pad1.Buttons.A == ButtonState.Pressed)

 {

 GamePad.SetVibration(PlayerIndex.Two, 0, 1);

 }

 else

 {

 GamePad.SetVibration(PlayerIndex.Two, 0, 0);

 }

 if (pad2.Buttons.A == ButtonState.Pressed)

 {

 GamePad.SetVibration(PlayerIndex.One, 0, 1);

 }

 else

 {

 GamePad.SetVibration(PlayerIndex.One, 0, 0);

 }

 base.Update(gameTime);

}

The Update method reads the A button on the gamepad for Player 1. If this is pressed,
it turns on the fast vibration motor in the gamepad for Player 2. It then repeats the
process the other way, sending signals from Gamepad 2 to Gamepad 1. This gives you
a way in which you can send wireless signals from one gamepad to another. Note that
both conditions have else parts so that if the button is not pressed, the vibration is
turned off.

You could also use this for practical jokes; for example, just leave a gamepad
underneath your victim’s bed and then wait until he turns the light off and settles
down. Then give the vibration a quick blast for the maximum scare factor. Just don’t
blame me if you never get the gamepad back!

Sample Code: Vibration Messages  The sample project in the “04 Mind Reader” directory
in the source code resources for this chapter holds a version of the vibration message program.
Just remember to use it wisely. The program also turns the display screen black so that it is not
obvious that there is a program running.

Game Idea: Gamepad Racer
The final game idea in this chapter is really silly, but it can be great fun. The first thing
you need to do is find a large, smooth table. Put a couple of books under the legs at
one end so that the table is sloping, not horizontal. If you put a wireless Xbox gamepad
at the top of the table and make the gamepad vibrate, it slides down the table toward
the other end. You may need to experiment with the angle, but I’ve found that with

	 Chapter 3  Getting Player Input	 59

care, you can arrange things so that a gamepad takes around 30 seconds to slide all the
way down the table with vibration at full power. If you line up four gamepads on the
top of the table, players can pick the one they think will win, and then you can race
them down the slope.

The code for this game is very simple indeed; the Update method just turns on all the
vibration motors in the gamepads:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if(GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 {

 GamePad.SetVibration(PlayerIndex.One, 0, 0);

 GamePad.SetVibration(PlayerIndex.Two, 0, 0);

 GamePad.SetVibration(PlayerIndex.Three, 0, 0);

 GamePad.SetVibration(PlayerIndex.Four, 0, 0);

 this.Exit();

 }

 GamePad.SetVibration(PlayerIndex.One, 1, 1);

 GamePad.SetVibration(PlayerIndex.Two, 1, 1);

 GamePad.SetVibration(PlayerIndex.Three, 1, 1);

 GamePad.SetVibration(PlayerIndex.Four, 1, 1);

 base.Update(gameTime);

}

The only complication is that when the game ends, you must turn off all the vibrations.
Put all the gamepads at the top of the slope and then run the program. Press the Back
button on Gamepad 1 to stop the game.

Sample Code: Gamepad Racer  The sample project in the “05 GamepadRacer” directory in
the source code resources for this chapter holds a version of the Gamepad Racer program.

Note  By carefully tuning vibration values it is possible to “sabotage” gamepads so that the same
one wins each time. Note that I do not condone such behavior.

Program Bugs
Your younger brother is still trying to learn to program, but he keeps having problems. He
claims that this book is faulty because the programs don’t work properly when he types
them in. He is trying to get the Color Nerve game to work, but every time he runs the

60	 Part I  Getting Started

program, the yellow intensity gets brighter whether he presses the button or not. You take a
look at his program and find the following code in the Update method:

if (pad1.Buttons.Y == ButtonState.Pressed ||

 pad1.DPad.Down == ButtonState.Pressed ||

 keys.IsKeyDown(Keys.Y)) ;

{

 redIntensity++;

 greenIntensity++;

}

This is the only part of the program where the yellow intensity is being increased, and it
seems that the condition is being ignored.

This looks perfectly okay, and it seems to compile and run correctly, but it seems to be
making the yellow intensity brighter every time. At this point, it is a good idea to look at
Microsoft Visual Studio and see if the compiler is trying to tell you anything about the code.
Figure 3-6 shows your brother’s code after he has compiled it.

Figure 3-6  Visual Studio compiler warning display

	 Chapter 3  Getting Player Input	 61

Your attention is drawn to the bottom left corner, where the message “Possible mistaken
empty statement” appears. If you double-click this message, you find that the cursor moves
to a point just after the if condition (I’ve drawn a circle around it in Figure 3-6).

The C# compiler is trying to tell us something about this statement. If we go back to the
original listing, we find that your brother has added an extra semicolon at the end of the
condition. The problem is that this ends the statement controlled by the condition. So if the
R button or the R key is pressed or the Dpad is pressed down, the program decides to do
nothing (an empty statement) and then goes on and performs the next statements no matter
what, leading to the effect that we are seeing. Figure 3-7 shows how this happens.

if (pad1.Buttons.Y == ButtonState.Pressed
 pad1.DPad.Down == ButtonState.Pressed
 keys.IsKeyDown(Keys.Y)) ;

redIntensity++;
greenIntensity++;

{

}

This ends the statement
controlled by the condition.

This block is always
executed.

l l
l l

Figure 3-7  The effect of an extra semicolon

You remove the semicolon, the warning goes away, and the program works fine. Your
younger brother is now starting to revise his opinion of you and offers to take out the trash
that night, even though it is your turn.

The Great Programmer Speaks: Helping Other People Is a Good Plan  The Great
Programmer has been watching all this with approval. She figures that it is always a good idea
to try to help people who are stuck with a problem. Sometimes when a programmer working
on uncovering a bug has the chance to explain what is going wrong with a piece of code to an
innocent bystander, that can be enough to allow the programmer to work out what is broken.
That means you can get a reputation as a fearsome bug fixer just by standing by. Furthermore,
seeing what mistakes other people make can give you hints on things that you need to look out
for when your programs go wrong. Oh, and sometimes you get your trash taken out for free.

Conclusion
You have learned a lot in this chapter, and you have finally managed to create some games that
players can have fun with. You have seen how XNA allows programs to interact with physical
devices by calling methods on classes, and we have seen how a program can make decisions on
the information that it receives from the devices and use this to make simple (and silly) games.

62	 Part I  Getting Started

Chapter Review Questions
No chapter would be complete without a review. So here it is. You should know the routine
by now; just decide whether a statement is true or false and look the answers up in Appendix
A at the back of the book to find out whether you are a winner or a loser.

	 1.	 If a class is an office, a method is a desk.

	 2.	 The compiler creates all the instances of classes in a program.

	 3.	 An if statement must have an else part.

	 4.	 A parameter is used to feed information into a class.

	 5.	 The else part of an if statement is always performed.

	 6.	 The state of a gamepad is represented in an XNA program by a byte value.

	 7.	 The GamePad.GetState method can be used to see if a button is pressed on a gamepad
(this is a tough question; you are allowed to look at the chapter to work it out).

	 8.	 A block is a number of C# statements enclosed in curly brackets.

	 9.	 The C# condition (true || false) means “true or false” and would work out to true.

	 10.	 The C# condition (redIntensity > 220) evaluates to true if the value in
greenIntensity is greater than 220.

	 11.	 The gamepad vibration always turns off automatically when an XNA game stops
running.

		 63

Part II

Images, Sound, and Text

In this part:

Chapter 4: Displaying Images . 65

Chapter 5: Writing Text . 85

Chapter 6: Creating a Multi-Player Game . 105

Chapter 7: Playing Sounds . 115

Chapter 8: Creating a Timer . 127

Chapter 9: Reading Text Input . . 141

		 65

Chapter 4

Displaying Images
In this chapter, you will

n	 Find out how the Content Manager lets you add pictures to Microsoft XNA games.

n	 Discover how pictures are manipulated in game programs.

n	 Display your pictures on the screen.

n	 Make a better version of Color Nerve and an even groovier mood light.

Introduction
Your understanding of computers and programs should be coming along nicely by now.
You are starting to get a grasp of classes, methods, and data, as well as the C# constructions
that let your programs make decisions depending on the values in your variables. You also
know how to read information from the gamepad and the keyboard and how to use this
information to change what a game does when it runs.

In this chapter, you learn how to use images in your programs, improve Color Nerve so that it
lets you use your own pictures, and make an even more impressive mood light.

Program Project: Picture Display
Pictures in games are always nice. XNA provides features that are extremely useful for
manipulating images on the screen. Many games use image resources to generate the
view that the player sees. In this project, you get XNA to display a picture. Once you
have some of your images loaded into your programs, you can see about using them in
games. Doing this very simple thing requires a lot of work, including the following steps:

	 1.	 You need to get the picture that you wish to draw into your game project so that
it becomes part of the program when it is loaded into the target device.

	 2.	 You must add code to the program that fetches the image into the program
when it runs.

	 3.	 You need to tell XNA where on the screen the image is to be drawn.

	 4.	 You go ahead and draw the item.

The good news is that while you’re learning how to do this, you’re finding out a lot
about how games, C#, and XNA work.

66	 Part II  Images, Sound, and Text

Resources and Content
In the early days of computers, a program simply read in numbers and printed out results.
Things have moved on a bit since then, and now computer programs can work with images,
video, and sound. This is especially useful where games are concerned; a large part of the
enjoyment of a game results from an attractive game environment. And sometimes the
graphics themselves form part of the game play. If you want to become a game developer, you
need to know how these resources are made part of your program. In fact, many programs
today have significant graphical content in the form of splash screens, icons, and the like. So the
first thing you need to do is get some images and incorporate them into your project. Later, I’ll
show you how to use other kinds of resources, including fonts (for writing text) and sounds.

Unfortunately, I won’t be able to help you create your graphics for use in computer games.
I have no artistic abilities whatsoever, although I do know how to use a camera. If you need
artistic resources, my advice is to find someone who is good at art and commission him or
her to do the drawings for you. The same goes for any music or sounds that you might need.

This means that you can concentrate on what you are supposed to be good at: creating the
game itself. This is what professional game developers do. They have a team of programmers
who make the game work and a team of artists and sound technicians who work on the
sensory aspects of the game. Having said that, you might be good at graphic design as well
as programming, in which case you can do both. However, I still advise getting an artist
involved, as it helps spread the work around and provides you with a useful sounding board
for ideas. It also makes it more fun.

Getting Some Pictures
At this point, you need some pictures. You need to tailor your images to fit the screen of the
XNA device you are going to use. The Xbox screen is capable of showing high-resolution
images. A high-resolution image is made up of a large number of dots, or pixels. Modern
digital cameras can create images that are thousands of pixels in height and width. However,
from a game point of view, you want to make the images as small as you can. This reduces
the amount of memory they consume and also reduces the work required to move them
around the screen. You won’t usually need very high resolution for your games, so your
pictures need be no more than 600 pixels in each direction. The Zune display is 240 pixels
wide and 320 pixels high, so you should use even smaller images for XNA games intended to
run on this device.

There are a number of different formats for storing pictures on computers. Your pictures
should be in the Portable Network Graphics (PNG), Windows Bitmap (BMP), or Joint
Photographic Experts Group (JPEG) format. The PNG and BMP formats are lossless, in that
they always store an exact version of the image that is being held. PNG files can also have
transparent regions, which is important when you want to draw one image on top of another.

	 Chapter 4  Displaying Images	 67

The JPEG format is lossy, in that the image is compressed in a way that makes it much smaller,
but at the expense of precise detail. The games that you create should use JPEG images for
the large backgrounds and PNG images for the smaller objects that are drawn on top of them.

If you have no pictures of your own (which I consider highly unlikely), you can use the ones
that I have provided with the sample files for this chapter, but the games will work best if you
use your own pictures. Figure 4-1 shows my picture of Jake. I will be using this for my first
XNA graphics programs. You can use another picture if you wish.

Figure 4-1  Jake

I have saved the image in the JPEG file format with a width of 600 pixels. If you need to
convert into this format, you can load an image using the Microsoft Paint program and then
save it in this format. With Paint, you can also scale and crop images if you want to reduce
the number of pixels in the image. For more advanced image manipulation, I recommend the
program Paint.Net, which you can obtain for free from http://www.getpaint.net/.

Content Management Using XNA
As far as XNA is concerned, content (images, sounds, 3-D models, and video) is what makes
games more interesting. XNA treats items of content in the same way that variables are
created in programs. XNA can import a content item of a particular type (for example, my
file containing a picture of Jake) and give it an identifier. When the game program is running,
XNA fetches the game content items as they are requested by name. These content items
are sometimes referred to as assets. In the same way that a company has assets, such as
buildings, machinery, and staff, a game has assets such as sounds and images.

68	 Part II  Images, Sound, and Text

Working with Content Using XNA Game Studio
You use XNA Game Studio to put content into your game. When the finished program is
constructed, XNA Game Studio makes sure that the assets are available to your game. The
good news is that you don’t need to worry about any of this; you need only know how to
load assets into XNA Game Studio and get hold of them from within your game programs.

XNA Game Studio Solutions and Projects
You start making a game by creating a brand-new project. I called mine JakeDisplay. You
create the project using the New Project dialog box as you’ve done for all your previous
projects. Remember that the project you are creating is either a Windows Game (3.0), an
Xbox Game (3.0), or a Zune Game (3.0). You can see this dialog box in use in Figure 1-4
in Chapter 1, “Computers, Xboxes, C#, XNA, and You.” Note that the Create Directory For
Solution option is selected in this dialog box. Whenever you create a project, you should
ensure that this option is selected. This creates a directory structure that contains the
program and all the other items that are required to make the game work.

Figure 4-2 shows what is created when I make a new project called JakeDisplay.

Figure 4-2  The JakeDisplay solution directory

However, the file JakeDisplay that you can see in the directory is a solution. This might be
confusing. You’ve used the New Project command in XNA Game Studio and have ended
up with a solution. In this case, XNA Game Studio has created a solution called JakeDisplay
and then added a single project to that solution. The project is also called JakeDisplay. You
can think of a solution as a “shopping list” of projects. Figure 4-3 shows how this works. The
solution holds a list of the names of project files. Each of the project files holds a list of the
names of the files used in that project. Each item on the list is often referred to as a reference
to that item, in that it tells XNA Game Studio how to get to it.

	 Chapter 4  Displaying Images	 69

JakeDisplay\JakeDisplay.csproj

JakeDisplay solution JakeDisplay project

Content Content

Game.ico

Game1.cs

GameThumbnail.png

Program.cs

Game.ico

Game1.cs

GameThumbnail.png

Program.cs

Figure 4-3  The JakeDisplay solution

The solution file holds the name of the JakeDisplay project. The project file holds the
names of the C# files in the project (Game1.cs and Program1.cs) and other resources used
by the project including the Content directory. At present, the only two resources are
GameThumbnail.png, which is an image used as a thumbnail on the display when the game is
stored on the Xbox or Zune, and Game.ico, which is the icon used for the game program file
on a Microsoft Windows PC. When you add your image of Jake to the project, you add the
name of the file to the project file so that XNA Game Studio knows where to go to get the
asset. XNA Game Studio displays the contents of the solution and project files as a diagram
in Solution Explorer, as shown in Figure 4-4. Note that the solution file and project files also
contain other settings (the Properties and References) that you’ll use later.

Figure 4-4  JakeDisplay in XNA Game Studio Solution Explorer

You have already seen that a single game solution can hold projects for deployment to
an Xbox, a Zune, or a Windows PC. Sometimes you might want to add more projects to a
solution so that you can separate your code into reusable portions or because you want
to reuse code that you already separated that way. For example, you might make a project
called HighScoreManager, which would be in charge of displaying high-score tables for your
game. High scores work the same way in many games, so it makes sense to write the code
only once and then use it in those games. You would do this by creating a library project to
deal with the high scores and then add this project to the “shopping list” of those projects.
However, for now, you simply create games that are single projects.

70	 Part II  Images, Sound, and Text

The Great Programmer Speaks: Architecture Is Important  Our Great Programmer is very
keen on using projects to reuse code. The way she sees it, that way she can get paid several times
for writing the same piece of software. When she starts work on a new system, she takes a lot of
time to try to structure things into projects so that different parts of the system are in separate
projects.

Adding Resources to a Project
An XNA Game Studio project contains references to everything that it uses. To keep things
simple, you can keep everything used by a project in a single file directory. Figure 4-5 shows
the content of the JakeDisplay project directory that XNA Game Studio created for you when
you made the new project. You can see the C# source files and also some other resources.

Figure 4-5  The contents of the JakeDisplay project directory

The project contains a Content directory. When you add an asset to this project, it is stored
in this directory. Figure 4-6 shows the JPEG image of Jake that I used in my Pictures directory.
You need to place the picture that you want to use into a directory somewhere on the
computer.

You can either use one of the graphics images that are available in the sample projects or
create your own picture at this point. Now that you have your graphics resource, you can tell
XNA Game Studio to use it. To do this, you need to add the content to the project. Resource
references are added by using the Add Existing Item – Content dialog box, which can be
opened as shown in Figure 4-7. Start by right-clicking the JakeDisplay project’s Content item
in Solution Explorer. From the menu that appears, select Add and then select Existing Item.

	 Chapter 4  Displaying Images	 71

Figure 4-6  My Jake image in my Pictures directory

Figure 4-7  Opening the Add Existing Item – Content dialog box

Figure 4-8 shows the dialog box that you can use to select an item to add to the project.

Now you can select the image file that you want to use and click Add to add it. The project
now contains the resource. Figure 4-9 shows the resource reference in the project once
you’ve added it. You follow the same process to add other images to a game.

If you want to add more than one image to a project, simply repeat the process. Remember
that each image is stored as part of the game program, so the more images you add, the
larger your game becomes and the longer it takes to transfer it into the target when it runs.

72	 Part II  Images, Sound, and Text

Figure 4-8  The Add Existing Item – Content dialog box

Figure 4-9  The JakeDisplay project containing the image resource

Note  The Xbox and Windows PC have plenty of memory in which to store loaded images.
However, the Zune device is restricted in the space that it has available. If you want to store lots
of pictures in the Zune, you need to use small images (320 x 240 pixels or less) to make sure that
you don’t run out of space.

Adding Links to Resources
When you add a resource using the process described previously, XNA Game Studio makes a
copy of the resource and places the copy in the Content directory of the project. If you want
several projects to share a single copy of a resource, you can add a link to it instead. You do
this by clicking the down arrow at the right of the Add button in the Add Existing item dialog
box, as shown in Figure 4-10, which allows you to add the resource as a file or as a link.

	 Chapter 4  Displaying Images	 73

Figure 4-10  Adding the Jake image as a link

Each time XNA Game Studio builds the game, it follows the link to the resource to use it. If
the resource is moved or deleted, the build process fails.

The XNA Content Pipeline
The process of feeding resources in at one end and getting a complete game assembly
out of the other is a bit like a pipeline. In fact, the XNA Framework refers to this part of the
game-building process as the Content Management Pipeline.

Using Resources in a Game
You’ve done a lot of hard work, but your program still can’t draw any pictures. If you run the
solution that you’ve created, you get the familiar blue screen. Next, you have to write some
C# code that fetches the image resource and draws it on the screen at a particular location.

Loading XNA Textures
Within XNA, images that you want to draw in your games are called textures. Textures can
be drawn as flat pictures, and they can also be wrapped around 3-D models. You’ve already
seen how to use the XNA Color type, which lets you manipulate color information. Now
you’ll use another type of XNA data variable so that you can work with your picture as a
texture. XNA provides a range of types that are used to deal with textures. The type you’ll

74	 Part II  Images, Sound, and Text

use is called Texture2D. This holds a texture that you manipulate in two dimensions; that is,
it is drawn on the screen as if it were a flat surface.

You use the same program structure that you used for previous games. Members of your
game class represent the “game world.” These are updated by the Update method and used
by the Draw method to draw the output. The game data takes the form of a single variable
that holds the texture, as shown here:

// The Game World

Texture2D jakeTexture;

The Draw method draws this texture on the screen, and you could use the Update method to
make the image move around the screen by changing the draw position.

You also can use another method that lets the program take control when the graphics need
to be loaded. Figure 4-11 shows how this works. It is a more detailed version of Figure 2-5 in
Chapter 2, “Programs, Data, and Pretty Colors,” which showed how XNA calls the Draw and
Update methods as a game runs. It shows that there is also a LoadContent method that is
called by XNA when a game starts running.

XNA

LoadContent

Draw

Update

Game1 class

Game
World
Data

Figure 4-11  The Game1 class with the LoadContent method

You can think of LoadContent as another person in the Game1 office. That person has his or
her own telephone. When the phone rings, that person must load all the content and make it
ready for use, as follows:

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 // TODO: use this.Content to load your game content here

}

In addition to loading the content that the game needs, the LoadContent method also
creates a SpriteBatch for the program to use. You will use this later to draw the texture on

	 Chapter 4  Displaying Images	 75

the screen. You’ve even been given a comment to tell you where to place the code that loads
your texture. This is the place where the program must ask the Content Manager to fetch the
texture:

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 jakeTexture = this.Content.Load<Texture2D>("jake");

}

When the game starts, XNA calls the LoadContent method to fetch content for use in the
game. The method then performs the statement that loads the texture content:

jakeTexture = this.Content.Load<Texture2D>("jake");

The Load method is a kind of multipurpose tool called a generic method. Because it’s
generic, it can be used to fetch any kind of item, from textures to audio files to 3-D models.
You tell Load to fetch a Texture2D by placing the name of the type you want after the
method name. You then give the method the asset that you want it to fetch. If you select
the Jake.jpg item in Solution Explorer, as shown in Figure 4-9, and then look in the XNA
Game Studio Properties pane (which should be in the lower right of the XNA Game Studio
window), you can see that the asset name has been taken from the file name of the resource.
Figure 4-12 shows the property information for the Jake image resource.

Figure 4-12  Jake image resource properties

This property information tells XNA Game Studio where the image file is located, what to
do with the file when the project is built, and the name to use in the program. So, once the
Load method has completed, you have a copy of the image in the texture in your game. If
the game had lots of different images, you would declare additional Texture2D items in your
game world and assign them to textures using the LoadContent method as well.

76	 Part II  Images, Sound, and Text

If you get the name of the texture wrong, the game program fails in this method, as it is
looking for an asset that is not there. The program fails by throwing an exception. Figure 4-13
shows the error that is produced if the asset name of a content item is incorrect.

Figure 4-13  The texture file not found exception

Later, you’ll find out how to take control when things go wrong like this; for now, you should
make sure that the asset name you use in the call of Load matches the name of the content item.

The Great Programmer Speaks: Always Worry About Things Going Wrong  Our Great
Programmer spends a lot of time worrying about things that might go wrong. She figures that
in a commercial application, such as one that might be used in a bank, she has to write at least
as much program code to deal with all the potential errors as she writes to perform the actual
job. Game programs are probably not as critical as bank code in that, if they go wrong, nobody
actually loses any money, but if a game constantly crashes, it will never become popular. Later,
you’ll see how to make sure that your program fails as seldom as possible.

Positioning Your Game Sprite on the Screen
In computer gaming terms, you can think of the image of Jake as a sprite. A sprite is a flat,
preloaded image that is used as part of a computer game. Sprites can be large, such as
background sky, or smaller, such as spaceships and missiles in a space shooter game. From

	 Chapter 4  Displaying Images	 77

the point of view of XNA, a sprite is an image resource along with location information
that tells XNA where to draw the image. This means that you need a way to tell XNA where
on the screen you want to put your sprite. You do this by using yet another XNA type, the
Rectangle. This holds information about the position and size of a rectangle. You don’t need
to worry about how a rectangle works at the moment; you need only know how to create
one and set the size and position of it. Figure 4-14 shows how you use a rectangle to express
where on the screen you want Jake to be drawn.

450

600

(30,20)

Figure 4-14  Placing a drawing rectangle on the screen

The position of the rectangle is given by the coordinates of its top left corner. You can regard
the screen as a piece of graph paper. You express a position on the screen by giving an
x coordinate value (the distance across the screen from the left) and a y coordinate value (the
distance down the screen from the top). This means that the position with the coordinate of
(0, 0) is the top left corner. Note that this is not quite the same as graphs that you may have
drawn in the past. In a conventional graph, the y value increases as you go up the page. In
computer graphics, the y value increases as you move down the page.

In Figure 4-14, you can see that the top left corner of the Jake sprite is at position (30, 20).
This means 30 steps across and 20 down. The units are called pixels. Pixel, an abbreviation
for “picture element,” refers to the smallest dot that can be drawn on the screen. The Xbox
can drive displays with a range of different sizes, so the pixel at position (30, 20) may be a
different physical distance across the screen, depending on the type of screen being used.
Later, you’ll find out how to write games that automatically scale themselves to fit any screen.

A rectangle is also used to give the width and height of the sprite. In Figure 4-14, I am drawing
the texture in an area that is 600 pixels wide and 450 pixels high. The good thing about this is

78	 Part II  Images, Sound, and Text

that I don’t have worry about the original size of the image; XNA simply scales the image to
fit in a rectangle that size. Later, you’ll have some fun modifying the size. The rectangle where
Jake is drawn is another item in the game world for the program, as shown here:

// The Game World

Texture2D jakeTexture;

Rectangle jakeRect;

The actual Rectangle you are going to use is created using new:

jakeRect = new Rectangle(30, 20, 600, 450);

This code sets a Rectangle variable to one with the position and dimensions that you need.
When the rectangle is created, it is passed the x, y, width, and height values so that these can
be held within the rectangle structure. This means that if you ever want to move the image
or change its size on the screen, you need to change only one of the values that is held in the
rectangle. These values are members of the Rectangle structure. In C#, members that hold
values are called fields.

You can think of a field as a variable that has been declared inside a structure or class. In
the case of your Game1 class, the game world data that you created (for example, the color
intensity values for your mood light) are fields of that class. Later, you’ll see how to get hold
of individual fields inside the Rectangle so that you can change its size and position.

The Rectangle needs to be created when the game program starts. You could do this
in the LoadContent method, but XNA provides another place where it is more sensible,
namely, the Initialize method. This is called when the game starts up. If all these methods
are confusing, think about what happens when you organize a party. This takes a number
of steps:

	 1.	 Set up the tables and chairs.

	 2.	 Fetch the food and drink.

	 3.	 Repeatedly play music and dance.

	 4.	 Tidy up afterward.

When an XNA game runs, it goes through the same process:

	 1.	 Set things up: Initialize

	 2.	 Load game content: LoadContent

	 3.	 Repeatedly update the game and draw the display: Draw and Update

	 4.	 Free up all the content: UnloadContent

	 Chapter 4  Displaying Images	 79

When the game ends, the XNA system calls the UnloadContent method. You can add
statements to that method to release resources explicitly that your game has used, but for
now, you can leave this out.

In fact, you need not provide code for all these methods; they are there only so that you
can take control at various points of the game’s life cycle. The code that you put in the
Initialize method needs to create a Rectangle that describes the destination of the draw
operations:

protected override void Initialize()

{

 jakeRect = new Rectangle(30, 20, 600, 450);

 base.Initialize();

}

Sprite Drawing with SpriteBatch
You now have all the information about your sprite and are ready to draw it. Next, you need
to take control in the Draw method and put your image onto the screen. But before you
can do the drawing, you need to take some time out and discover more about how game
consoles work.

A modern game console is not one powerful computer; in fact, it is several. Some of these
run the game itself, whereas other special graphics processors drive the display. The graphics
processor unit (GPU) contains optimized hardware to allow it to update the screen as fast
as possible. When the Draw method runs, the method assembles a bunch of instructions for
the GPU and sends the instructions into the GPU. The GPU then follows those instructions
to put a picture on the screen. Complex games contain many images that may be drawn
at several different positions on the screen. It is important that the transfer of the position
information and associated images is organized as efficiently as possible. XNA provides
a special class called SpriteBatch to batch up a set of sprite-drawing instructions. Your
program calls methods on a SpriteBatch variable to get the drawing done. This means that
a SpriteBatch needs to be created for the program to use. When XNA Game Studio creates
a new project, it adds the statements to the LoadContent method that create a SpriteBatch
for you to use. The variable is called spriteBatch.

Note  It might look as if you have two items with the same name in your program. However,
if you look carefully, you see that the class SpriteBatch starts with an uppercase S, but the
spriteBatch variable starts with a lowercase s. This works because the C# compiler considers
the case of the letter as significant in an identifier. In other words, your program could have two
variables, Fred and fred, and they would not be confused.

80	 Part II  Images, Sound, and Text

Now you can use spriteBatch to draw the sprite. You must tell spriteBatch when you’ve
started drawing sprites and when you’ve finished:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(jakeTexture, jakeRect, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

You call methods on the spriteBatch variable to begin the draw process, draw the sprite,
and then end the drawing. The Draw method is part of the SpriteBatch class and is given
parameters that identify the image to be drawn, the rectangle to place it in, and the color of
the light to “shine” on the texture.

Note  The game class contains a Draw method, which is used to draw the entire game. The
SpriteBatch class also contains a Draw method, which is used to draw textures. Although
the methods have the same name and are both involved in the draw process, they actually do
different things. However, both are performing a drawing operation in their own way, so it is
appropriate for the designers of XNA to call them Draw methods.

If you put a program together with the previously described methods, you can finally run a
program that will display an image on the screen.

Sample Code: Jake Display  All the sample projects can be obtained from the course
instructor. The sample project in the 01 JakeDisplay directory in the resources for this chapter
draws a picture of Jake.

Figure 4-15 shows the output that you get when you run your program to display Jake on the
screen.

If you change the content of the file Jake.jpg, you can make this program display other
pictures.

If you run this program on a Zune device you will find that the picture is too large to fit on
the Zune display, which is limited to 240 by 320 pixels. This will not cause XNA to report an
error, but not all of the image will be displayed. You can fix this by reducing the width and
height of the rectangle to 180 and 120 respectively. This preserves the aspect ratio, but
makes sure the image will fit on the screen.

	 Chapter 4  Displaying Images	 81

Figure 4-15  Displaying Jake on a PC screen

Filling the Screen
It would be nice if the image that you display could exactly fill the screen. You’ve used values
that let you see the picture, but the picture does not completely cover the display, and if you
run the program on differently configured systems, you notice that the picture takes up a
different amount of space on the screen. It turns out that filling the screen is easy to do. Your
program can ask the XNA environment the width and height of the screen and use this to set
the size of the display rectangle, as follows:

jakeRect = new Rectangle(

 0, // X position of top left corner

 0, // Y position of top left corner

 GraphicsDevice.Viewport.Width, // rectangle width

 GraphicsDevice.Viewport.Height); // rectangle height

I’ve changed the layout of my call to construct the jakeRect variable. Rather than put
everything on one line, I’ve spread the call out a bit and added some comments. This makes
it easier to see what’s happening. The code is constructing a Rectangle instance. When
you do this, you can feed information into the construction process to set up the value. This
particular call is feeding in the position of the top left corner in the form of x and y and the

82	 Part II  Images, Sound, and Text

width and height of the rectangle that is required. I can get the width of the screen by using
the following code:

GraphicsDevice.Viewport.Width

This looks a bit scary but is easy to understand. It’s rather like the way that we explain where
things are. My office is on the third floor of the Robert Blackburn Building on the Hull
campus of the University of Hull. You could express this information as follows:

HullCampus.RobertBlackburn.ThirdFloor.RobMiles

The Hull campus contains a number of buildings, the Robert Blackburn Building contains
a number of floors, and so on. You can now find your way to my office by starting at the
Hull campus, looking for the Robert Blackburn Building, going to the third floor, and then
finding the office with “Rob Miles” written on the door. The identifier is GraphicsDevice.
Viewport.Width, which means, “Start at the GraphicsDevice variable, go to the Viewport,
and then get the Width field from it.” The GraphicsDevice variable is the Graphics Device
manager for your program. It is created by XNA and provides methods and data that you
can use in your program (you’ve already used the Clear method to clear the screen). The
GraphicsDevice contains a Viewport, and so on. Part of the skill of using XNA is knowing
where these data items are.

Intellisense
You can find your way around the XNA framework by using the Intellisense feature, which
is part of XNA Game Studio. Whenever you type an identifier into the editor, it finds the
variable that the identifier represents and offers you options based on that identifier. These
can save you a lot of typing. Figure 4-16 shows how it works. I have just typed the identifier
graphics followed by the period that separates it from the next item. Intellisense is showing
me all the possible items that are available. I can scroll down the list, select the one I want by
pressing Enter, and then move on to the next item.

Figure 4-16  Intellisense for the Graphics Device manager

	 Chapter 4  Displaying Images	 83

You can move quickly up and down the list of items by typing the first few letters of the name
of the selection you want. Intellisense also shows you brief help snippets about the items that
you can select. It makes writing programs much easier and reduces the amount you have to
remember. The Great Programmer doesn’t think she could write programs without it.

Sample Code: Jake Full Screen  The sample project in the 02 Jake Full Screen directory in the
resources for this chapter draws a picture of Jake that completely fills the screen.

Note  If you are using an Xbox that is connected to a TV, you might notice that not all the picture
is visible. This is because TVs use an “overscanned” display, where only the middle part of the
picture is displayed. I’ll describe how to fix this in Chapter 11 in the section “Dealing with Display
Overscan.” You’ll also find that if the shape of your picture does not exactly match that of the
screen, the image appears stretched. I’ll discuss these problems of “aspect ratio” in Chapter 11 in
the section “Drawing and Aspect Ratios.”

Game Idea: Color Nerve with a Picture
Now that you can display pictures, you can improve your Color Nerve game and
display a picture rather than a blank background. This makes the game much more fun,
especially if a familiar picture is used.

The key to this is the way that you select the color you want to use to “light” any sprite that
you draw:

spriteBatch.Draw(jakeTexture, jakeRect, Color.White);

When drawing this image, I used a white light so that the colors look natural. You can use any
color of light, and XNA processes the image accordingly. If you want the image to be drawn
more dimly, you can draw with the color gray; if you want to tint the image, you can simply
change the color. You can use any color that you can create to tint your sprite, as follows:

protected override void Draw(GameTime gameTime)

{

 Color textureColor;

 textureColor = new Color(redIntensity,greenIntensity,blueIntensity);

 spriteBatch.Begin();

 spriteBatch.Draw(jakeTexture, jakeRect, textureColor);

 spriteBatch.End();

 base.Draw(gameTime);

}

Rather than using white as the drawing color, this version of Draw uses the color it creates
based on the red, green, and blue intensity values.

84	 Part II  Images, Sound, and Text

Sample Code: Jake Color Nerve  The sample project in the 03 Image Color Nerve directory
in the resources for this chapter is a version of Color Nerve that uses the picture of Jake.

You can use the same principle to make a picture mood light; this works especially well if
you use a black-and-white image or one with really strong colors in it. You can also make a
picture recognition game here, where the aim of the game is to be the first one to recognize
a picture as you slowly make it brighter.

Sample Code: Image MoodLight  The sample project in the 04 Image MoodLight directory
in the resources for this chapter is a version of the ultimate mood light that uses an image
background. The image contains a pattern of blocks of different colors. One interesting
challenge is to try to work out which of the blocks is white (only one of them is).

Conclusion
You have learned a lot in this chapter. You’ve seen how you can add graphical resources to
XNA projects and use them in your game programs. You’ve also found out how images are
positioned and drawn on the screen in XNA.

Chapter Review Questions
Just in case you thought you were having too much fun, here’s a chapter review to bring you
back down to earth. You can look up the answers in Appendix A.

	 1.	 The C# compiler manages images.

	 2.	 In an XNA program, an image can be held in a texture.

	 3.	 XNA uses the LoadContent method to load the graphics images onto the display.

	 4.	 A sprite is a small, pixie-like creature who lives with the fairies.

	 5.	 The SpriteBatch class is used to batch up sprites before they are drawn.

	 6.	 There is no need to add any code to the Initialize method to make an XNA game work.

	 7.	 A Rectangle has a Width field that specifies how wide it is.

	 8.	 The XNA system can store only one image at a time.

	 9.	 A pixel is a measure of screen size.

	 10.	 The origin of the XNA drawing operations is the top left corner of the display area.

	 11.	 PNG images would be good for background images in a game.

	 12.	 It is impossible to find out how wide the screen is from an XNA game program.

		 85

Chapter 5

Writing Text
In this chapter, you will

n	 Discover how text is drawn using Microsoft XNA.

n	 Add some font resources to your XNA program.

n	 Draw some funky text.

n	 Create the biggest clock you’ve ever seen.

n	 Find out how to fake 3-D images.

Introduction
Your programming skills are really coming along. Your programs can store different kinds of
numbers, do things with them, and even make decisions. You also know how to add image
assets to your games and place them on the screen.

In this chapter you find out how to use some XNA features to make your games even better.
Then you can move on to create fully formed games. The first thing you want to do is add
some text output so that your games can talk to the players.

Program Project: Giant Clock
The Xbox, the Zune, and the PC each has a clock inside, so each device always knows
the date and time. You can use this feature to turn the entire display into a digital clock.

Text and Computers
In the early days of computers, the appearance of text that you could print was limited by the
shapes built into a mechanical printer. Later, dot-matrix, laser, and inkjet printers came along,
giving high-resolution graphical displays that could draw any character design you wanted.
XNA programs are capable of drawing very high-resolution images, and you can use this
ability to display text.

Text as a Resource
Before you can start drawing text on the Xbox, you need to understand just how computers
manage character designs. The design of the shape of the characters is described in a font file.

86	 Part II  Images, Sound, and Text

Microsoft Windows provides a very large number of these font files. The shape of the text that
you are reading now is described in a font called “Segoe.” Windows also provides a font called
“Arial,” used in this book for headings, and “Courier New,” used here for program listings.

The font file gives the shape of each of the characters. When a character shape is needed for
either printing on paper or drawing on the screen, the font data is used to draw this shape
at the required size. To get an XNA program to display text in a particular font, you need
to add a reference to that font file to the program project. You then use the XNA Content
Management System to bring the font into the program for use when you want to draw text.

Creating the XNA Clock Project
You create the project (called BigClock) using the New Project dialog box as you’ve done for
all your previous projects. You can see this dialog box in Figure 1-4 in Chapter 1, “Computers,
Xboxes, C#, XNA, and You.” Note that the Create Directory For Solution option is selected in
this dialog box. Whenever you create a project, you should ensure that this option is selected.

Adding a Font Resource
Figure 5-1 shows how to add a new resource to a game project. In Solution Explorer,
right-click the Content item in the BigClock project, then select Add, New Item.

Figure 5-1  Adding a new item

You can add a number of different kinds of new items to a project. Figure 5-2 shows the
dialog box that lets you select the kind of item you wish to add.

	 Chapter 5  Writing Text	 87

Figure 5-2  Selecting a new item

The range of items that you can add to your project depends on how many other Microsoft
Visual Studio components you have installed. You might have more items available than those
shown in Figure 5-2. If you select the Sprite Font item, you can create a sprite font reference.
When you do this, you find that XNA Game Studio has filled in the Name information at the
bottom of the dialog box with SpriteFont1.spritefont. This is the name that you use within
your program to refer to this item of font content. We are going to use this for now, but in
later games, you might want to change it to a name that has a bit more meaning.

When Visual Studio builds the BigClock project, it reads an existing font on your Windows PC
to build the SpriteFont that is used when the game runs. When a new font resource is created,
it is initially set to use a font called Kootenay, which is supplied with XNA Game Studio.

You can use a different font if you want, but if the name you give does not match a font
that’s installed on your computer, you won’t be able to build your program because the
Content Manager will be unable to find the requested item.

You can have more than one font in your game if required, but you need to add each font
that you want to use as another resource. Remember, though, that adding extra fonts makes
your output program bigger because the character designs need to be made part of the
program. The name that you give must match a font available on the computer that’s being
used to build the game because the XNA Content Manager uses the font file on the host
computer to build the sprite design for use in your XNA program.

Figure 5-3 shows the font item in Solution Explorer in XNA Game Studio as added to the
project. If you select this item in Solution Explorer and open it by double-clicking it, you can
see that it’s a file describing the font that’s to be used in your program.

88	 Part II  Images, Sound, and Text

Figure 5-3  The font reference in the BigClock project

Note  It’s important you understand what’s happening here. When you add a resource to
a project, you simply add a reference to the item that you want to use. You can think of the
reference as an item on a shopping list. Just like an item on a shopping list would remind you to
buy a new toothbrush the next time you were shopping, a resource reference tells the Content
Manager that a certain resource must be fetched when the program is to be built.

When the project is built, the Content Manager follows the reference to the required item
and then adds it to the program that’s being built. The purpose of the resource information
is to tell the Content Manager what to retrieve and how to use the resource in the project.

This reference file is not written in C#, nor is it plain text. It’s written in a format called
Extensible Markup Language (XML).

The XML File Format
A markup language is used to describe things. It contains the names of these things and
information about them. As its name indicates, XML is extensible, so you can use it to
describe just about anything. As an example, a snippet of XML that describes a high score
might look as follows:

<?xml version="1.0" encoding="us-ascii" ?>

<highscore game="Breakout">

 <playername>Rob Miles</playername>

 <score>1500</score>

</highscore>

This high score information is for the Breakout game; it shows the name of the player and
the score the player reached. The format of the lines and the way that the open bracket (<)
and close bracket (>) characters are used to denote the names of the values and the values
themselves are defined in the XML standard. The first line of the snippet identifies which
version of XML you’re using for the rest of the data. The nice thing about XML is that it’s easy

	 Chapter 5  Writing Text	 89

for non-computers to understand the content, and it’s a very well-established way in which
computer software can exchange information.

In the case of your font, the XML tells the Content Manager the name of the font to fetch,
the size of the font, whether it’s to be drawn as bold or italic, and other font-related
information. You don’t need to worry too much about what’s in this file at the moment, but
you can take a look if you wish. Later, you’ll edit the content of this file to change the size of
the characters that are drawn.

Loading a Font
The Content Manager fetches a font and make it available for use in a very similar way to the
images that you’ve used before. Each character design is delivered to your program as a little
image that the Draw method displays on the screen. For your clock, the game world consists
of a variable called font, which is of type SpriteFont. This holds a reference to the font the
program will have loaded. SpriteFont is another XNA type (there are many more). Your
SpriteFont will hold information about a font that the Content Manager loads for you. You
can declare the variable for the game world as follows:

// Game World

SpriteFont font;

The font can be loaded in the LoadContent method:

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 font = Content.Load<SpriteFont>("SpriteFont1");

}

At this point, you might be experiencing déjà vu or at least think you’ve seen this code
before. The pattern is the same as when you loaded your images, and even the name of the
method is the same. However, this time you’re using the generic Load method to fetch a
SpriteFont rather than a Texture2D element. There is some strong programming magic at
work here, but fortunately you don’t need to worry about this at the moment; all you need
to know is that the Load method gets whatever type it is asked to fetch. Later, you’ll create
some games that contain textures, fonts, and sounds, and for each type, the Load method
behaves in an appropriate manner.

Drawing with a Font
Now that you have your font, you can draw with it. Remember that when you used the
textures in Chapter 4, “Displaying Images,” you used a Rectangle to tell the Draw method

90	 Part II  Images, Sound, and Text

where to place the texture. However, when drawing text, you don’t do this. Instead, you
use a vector, which tells the Draw method where on the screen to start. “Vector” is a fancy
word that means “direction and distance.” You’re using the 2-D (x and y value) version of the
vector. Games that work in 3-D space use values of x, y, and z (where z is the depth value).

A 2-D vector is given as two coordinates: the x value and the y value. It’s a bit like a treasure
map that pirates used. A pirate would say, “Start ye at the Old Oak Tree and take ye twenty
paces East and thirty paces South, and there ye shall find my treasure chest.” The vector
says, “Start at the origin and move 20 units across and 30 units down.” If you think about
it, this means that a vector indeed specifies a direction so that a very smart pirate could
work out that she could “cut corners” and get to the treasure more quickly by moving in the
appropriate direction. Figure 5-4 shows how this would work, with a line showing the direct
path to Blackbeard’s treasure.

Old Oak Tree

20 paces East

30
 p

ac
es

 S
ou

th

Treasure Chest

Figure 5-4  Vectors and directions to a pirate treasure

	 Chapter 5  Writing Text	 91

In a text-drawing program, you’re using a vector like a coordinate in that it specifies the top
left corner of the text you’re about to draw. You feed it into the DrawText method as follows:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 Vector2 textVector = new Vector2(20, 30);

 spriteBatch.Begin();

 spriteBatch.DrawString(font, "Hello World", textVector, Color.Red);

 spriteBatch.End();

 base.Draw(gameTime);

}

You’ve placed the top left corner of the text at the spot 20 pixels across the screen and 30
pixels down. The text that you’re writing is the famous string “Hello World,” which is, by one of
the laws of the universe, what your first program that prints text should say. In a C# program,
you enter a string as a sequence of characters enclosed in double quotation marks. You’re
printing the text in Red. If you run this program, you get the display shown in Figure 5-5.

Figure 5-5  “Hello World” on the big screen

92	 Part II  Images, Sound, and Text

Although it is perfectly okay to make your first program print something other than “Hello
World,” I take no responsibility for any misfortune that you suffer as a result of offending the
programming gods in this way.

Sample Code: “Hello World”  All the sample projects can be obtained from the course instructor.
You can make your “Hello World” program by creating an empty project, adding the font reference,
and then adding the game world section and the LoadContent and Draw methods described in
this and the preceding section. If you don’t want to do that, you can load the sample project in the
01 Hello World directory in the resources for this chapter, which writes “Hello World” on the screen.
Either flesh out your own BigClock solution or just open the 01 Hello World method to continue
with the rest of the chapter.

Changing the Font Properties
The program works all right, but you really wanted something larger than this small text.
It is possible to scale text sprites, but at the moment it’s easiest to get larger text simply by
changing the XML in the SpriteFont resource file. This also means that if anybody asks
you what you were doing today, you can say, “Oh, I hand-coded some XML,” which should
impress them a bit. To get hold of the file that describes the font, open it by double-clicking
it in Solution Explorer for the BigClock project. Figure 5-6 shows which item to select.

Figure 5-6  Selecting the Arial SpriteFont resource

The left window in XNA Game Studio changes to show you the XML that describes the font
to be loaded. The font and the size of the text are set as shown here:

<!--

Modify this string to change the font that will be imported.

-->

<FontName>Kootenay</FontName>

	 Chapter 5  Writing Text	 93

<!--

Size is a float value, measured in points. Modify this value to change

the size of the font.

-->

<Size>14</Size>

You can change the name of the font that you want to use and the size of the font by
adjusting the items shown in bold in this code. You can also adjust the style and the spacing
between letters. You can change FontName to select any font installed on your computer
(but personally, I really like Kootenay). Use Control Panel on your Windows operating system
to find out what fonts are available. Make sure you type the name correctly, including spaces
and capital letters. You need to adjust the font size depending on the font design that you
select. I’ve found that a font size of 100 gives nice large text using the Kootenay font on an
Xbox or a Windows PC screen. If you are using a Zune a size of 25 works well.

Getting the Date and Time
You can now display text on the screen in a variety of sizes and fonts. You could use this
to write a program that simply displays messages on the screen. Next, you need a way to
determine the correct time for the clock in your program to display. The PC, the Zune, and
the Xbox have internal clock hardware that is used by some games to change the way they
play so that, for example, if it’s dark outside, it’s dark in the game as well. To accomplish this,
the XNA Framework must provide a way of finding the date and time.

The date and time values are held in a special structure called DateTime. You already know
that XNA provides types that are tailored to different needs. You’ve seen the Color type, the
Texture2D type, and the SpriteFont type, to name a few. The DateTime type holds all the
information about the date and time of a particular instance. The structure is not part of XNA
as such; rather, it’s part of the Microsoft .NET Framework, which provides resources to all C#
programs. Thus, when you want to manipulate dates and times in a C# program running on a
Windows operating system, you can do it in exactly the same way.

For your clock, you need a DateTime structure that’s set to the current date and time. It turns
out that DateTime provides a property that creates one for you. A property is a value or
setting that an object in a C# program can expose for you to use. You’ve already seen these;
when you used Color.CornflowerBlue, you were asking the Color structure to give you a
color that represents that shade of blue. You use DateTime.Now in the same way. Later, when
you start using structures and classes to design more complicated game programs, you’ll get
more of an insight into how all this works. For now, you simply get a DateTime value that
holds the current time and use that to drive your clock, as follows:

DateTime nowDateTime = DateTime.Now;

The Now property of the DateTime structure is always set to the current date and time. This
works by taking values from an internal hardware clock, which means that after a while, the

94	 Part II  Images, Sound, and Text

value will be out of date. In fact, you could use a DateTime variable to record the time at
which the game was started.

Once you have your DateTime variable, you can ask it to do things for you. One thing it can
do is give you a string that contains the time in text form:

DateTime nowDateTime = DateTime.Now;

string nowString = nowDateTime.ToLongTimeString();

These two statements create a variable of type DateTime, which holds the current date and
time, and then use this to create a string. A string does exactly what you would expect, it holds a
string of text. The DateTime structure contains a method with the identifier ToLongTimeString.
You know that objects contain methods; this method has the job of converting the date and
time information inside the object into a string that you can put on the screen in text form. In
fact, DateTime provides several methods that you can use (see Table 5-1).

Table 5-1  Some DateTime String Methods

Method Call Output

ToLongTimeString() 20:23:55

ToShortTimeString() 20:23

ToLongDateString() 16 March 2009

ToShortDateString() 16/03/2009

ToString() 16/03/2009 20:23:55

We have previously considered different types in C# as offices. You can think of these methods
as a number of different people sitting in the DateTime office, all of whom have their own
telephone and can be asked to deliver an appropriately formatted string of text. You can call
any of these methods to get a string of text that describes the value being held by the variable
nowDateTime. You can use them to add the date and time to your clock if you wish.

Note  The precise format of the date and time produced depends on the localization of your
system. Most software products are configured to display the date and time in a manner in
keeping with the country where they are being used. The previously given samples are for a
Windows PC used in England. Yours might look slightly different.

Putting all this together, you can create a version of the Draw method that displays the
current time on your screen:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 DateTime nowDateTime = DateTime.Now;

 string nowString = nowDateTime.ToLongTimeString();

 Vector2 nowVector = new Vector2(50, 400);

	 Chapter 5  Writing Text	 95

 spriteBatch.Begin();

 spriteBatch.DrawString(font, nowString, nowVector, Color.Red);

 spriteBatch.End();

 base.Draw(gameTime);

}

I’ve changed the name of the vector to nowVector to better describe what it is used for. I’ve
also moved the draw position so that if you set the font size to 100, this Draw method gives
you a big clock on your Xbox that nicely fills the bottom of the screen. If you want to display
the clock on a Zune I’ve found that with a font size of 25 you can use an X position of 50 and
a Y position of 280.

Sample Code: Big Clock  The sample project in the 02 Big Clock directory in the resources
for this chapter contains an XNA Game Studio solution for the program in this section. Note
that Xbox, PC, and Zune versions are available. However, you should remember that because of
localization differences, you might not see exactly the same display on each device.

Because the Draw and Update methods are called automatically for you by the XNA
environment, the clock is repeatedly redrawn with the up-to-date time.

Making a Prettier Clock with 3-D Text
At the moment, your clock is very boring; it just displays the time in red on a blue
background. You can make the text more interesting by changing the way that you draw the
time. This kind of multiple drawing is performed a lot in computer games.

Drawing Multiple Text Strings
One way to make the display more interesting is to draw different-colored versions of the
text at slightly different positions on the screen:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 DateTime nowDateTime = DateTime.Now;

 string nowString = nowDateTime.ToLongTimeString();

 Vector2 nowVector = new Vector2(50, 400);

 spriteBatch.Begin();

 spriteBatch.DrawString(font, nowString, nowVector, Color.Red);

 nowVector.X = nowVector.X + 4;

 nowVector.Y = nowVector.Y + 4;

96	 Part II  Images, Sound, and Text

 spriteBatch.DrawString(font, nowString, nowVector, Color.Yellow);

 spriteBatch.End();

 base.Draw(gameTime);

}

This version of the Draw method is very similar to the original, except that DrawString is
now called twice, first drawing in red and then in yellow. In between the draw operations, the
values of the X and Y properties of the position vector are increased by 4 using the following
statements:

 nowVector.X = nowVector.X + 4;

 nowVector.Y = nowVector.Y + 4;

Figure 5-7 shows how this works. The thing on the right side of the “gozzinta” is an
expression. This generates a result that is then placed in the destination.

Destination Expression

Gozzinta

nowVector.X nowVector.X + 4 ;=

Figure 5-7  A statement that evaluates an expression and updates the value for a variable

The sequence of instructions that the compiler creates to work out the statement is as follows:

	 1.	 Fetch the value of the X property of nowVector.

	 2.	 Add 4 to it.

	 3.	 Store the value back in the X property of nowVector.

The effect of adding 4 to the X and Y properties is to move the drawing position for the text
across and down the screen. Figure 5-8 shows the result of these changes.

Figure 5-8  A more interesting time display

	 Chapter 5  Writing Text	 97

From this, you can see that when you draw on the screen, the images are laid on top of each
other in the order they are drawn. The red version of the time string is overwritten by the
yellow one. The nice thing about this approach is that it gives a good 3-D effect. The human
eye interprets the darker color as being in the “background,” making the letters appear to
pop out of the display. However, the 3-D effect is not quite perfect. The image in Figure 5-9
is an enlargement of part of the text and shows that the red part is not actually “solid”;
instead, it’s simply a layer drawn behind the yellow one.

Figure 5-9  A zoomed-in detail of the overwritten text

If you want the 3-D effect to be perfect, you need to draw lots more red versions to “fill
in the gaps.” You could do this by simply copying the code four times, but perhaps you
remember reading somewhere that computers are supposed to make life easier, and this
doesn’t feel very easy at all. What you really want to do is perform a block of statements a
given number of times, and it turns out that C# provides a way to do this: it’s called the for
loop construction.

Repeating Statements with a for Loop
A program can do three things as it runs. It can perform a single action (a statement), it can
make a choice of what to do (a condition statement), or it can repeat something (a loop
construction). It might surprise you to learn that with these three programming constructions,
you could write any program. You’ve seen how to write statements and conditions; now you
need to discover how to create a loop. With a loop, you need to write the drawing instructions
only once, and the loop construction then performs them as many times as you like:

spriteBatch.Begin();

int layer;

for (layer = 0; layer < 4; layer++)

{

 spriteBatch.DrawString(font, nowString, nowVector, Color.Red);

 nowVector.X++;

 nowVector.Y++;

}

spriteBatch.DrawString(font, nowString, nowVector, Color.Yellow);

spriteBatch.End();

98	 Part II  Images, Sound, and Text

This code performs four drawing operations with the red color. The code in the block
controlled by for is repeated a given number of times. When the loop finishes, the final
DrawString puts the yellow version on top of all the red ones. Note that the yellow
DrawString is not repeated four times because it is not inside the block of code controlled
by the for loop.

The loop itself is controlled by the three items in brackets that follow the key word
for. These are shown in Figure 5-10. Each of the three items is used to manage the behavior
of the loop.

Begin Test condition Change

Statement

for loop
for (layer = 0 ; layer < 4 ; layer++)

gameSpriteBatch.DrawString(font,nowString,nowVector,Color.Red);
nowVector.X++;
nowVector.Y++;

}

{

Figure 5-10  How a for loop is constructed

n	 Begin  This is a statement that is obeyed when the loop starts. In this example, you’re
using an integer variable called layer to count each of the layers that you’re drawing,
and the loop must set this to zero at the beginning.

n	 Test Condition  The condition controls when the loop finishes. It can be either true
(the loop continues) or false (the loop ends). The condition in your loop is layer < 4.
You might not have seen the < operator before; it performs a “less-than” comparison
between the two operands. If the item on the left is less than the item on the right,
the result of the comparison is true. If the item on the left is not less than the item
on the right, the result of the comparison is false. C# provides a range of different
comparison operators.

n	 Change  Each time the statements in the loop are completed, the change is
performed. In this case, the change statement layer++ makes the value in layer 1
larger each time. After the change has been performed, the test condition is evaluated
to see whether the statements controlled by the loop are to be executed again.

	 Chapter 5  Writing Text	 99

The C# compiler has the job of producing the machine instructions that perform the loop
when the program runs. The precise sequence that’s followed by the code that the compiler
produces is as follows:

	 1.	 Perform the Begin statement to start the loop.

	 2.	 Perform the Test and finish if the test is false.

	 3.	 Perform the statement in the loop body.

	 4.	 Perform the Change statement.

	 5.	 Return to step 2.

Sample Code: 3-D Big Clock  The sample project in the 03 3D Big Clock directory in the
resources for this chapter contains an XNA Game Studio solution that uses a for loop to draw
multiple versions of the time.

Other Loop Constructions
C# also provides two other loop constructions, called do – while and while. These are
not actually vital, in that you can always get the looping behavior that you want by using an
appropriately designed for loop, but they can be useful in situations where you don’t want
to go to the trouble of creating a for loop construction. You can find out more about these
kinds of loops and when they would be useful in the glossary in the do – while entry.

Fun with for Loops
You can test your understanding of the for loop behavior by looking at some for loops and
trying to work out what they would do. For instance, look at this one:

for (layer = 0 ; layer > 4 ; layer++)

There’s a mistake in this statement, but it’s rather hard to spot. The mistake is that the test is
now layer > 4. The > character means “greater than.” This means that the test is now true
only when the value of layer is greater than 4. Because the initialization sets the value of
layer to 0, this condition is never true. The result is that the code in the statement controlled
by the loop is never performed. Now look at this statement:

for (layer = 0 ; layer < 4 ; layer--)

There’s another mistake here. The less-than character (<) is in the correct place, but rather than
increasing the value of layer each time around, the change makes layer smaller by using
the -- operator each time. This means that the value of layer never becomes greater than 4,
so the loop never ends. The result is that your program appears to “get stuck” at this point.

100	 Part II  Images, Sound, and Text

You can write code to request this as follows if you really want a loop that goes on forever:

for (layer = 0 ; true ; layer--)

Simply putting the value true in the position of the condition causes the loop to never stop.
If you’re wondering what would happen if you ran a loop like this, you can try it if you like,
but I can save you the trouble. If you run either of these never-ending loops, you eventually
get the message shown in Figure 5-11. This is the message that XNA displays when it runs
out of memory.

Figure 5-11  Out-of-memory error message

The reason you get this message is that each time the DrawString method is called in the
body of the loop, it uses a small amount of memory to record what is drawn. If you call
the method a large number of times, it eventually uses up all the memory available for this
purpose, and the memory allocation part of XNA throws an exception when it is asked for
memory it doesn’t have. The good news is that this doesn’t cause any damage, but it does
cause serious damage to your credibility.

One of the nice things about loops is that you can get a lot more work done by the computer
simply by changing the values that cause them to stop. For instance, look at this code:

for (layer = 0; layer < 40 ; layer++)

	 Chapter 5  Writing Text	 101

This version of the loop draws 40 red time values before putting the yellow one on top. It
gives rise to the rather funky display shown in Figure 5-12.

Figure 5-12  Funky time

This is nice, but you can do even better. You can make the display even more funky by using
some other drawing tricks that XNA provides.

Creating Fake 3-D
Lots of the graphics in games are faked. Rather than make something 3-D, a game
programmer makes something that looks 3-D but turns out to be much easier to program.
In this section, you make some 3-D text, but without using any complicated rendering or
models (although you can do this kind of thing if required). You use only two principles:

n	 Things that are 3-D have shadows.

n	 Things that have the light shining directly on them look the brightest.

This means that you need to draw your text in three stages. First, you draw the shadows, then
the “sides” of the text, and finally the top layer of the text. This seems like a lot of work, but,
as Figure 5-13 shows, I think it’s worth the effort.

Figure 5-13  3-D text that “jumps” out of the screen

Creating Shadows Using Transparent Colors
The first part of the text that you want to draw is the shadow at the back. You draw your
picture from the back forwards and use the fact that each time you draw, you add to what’s
already there. You use another feature of XNA drawing: colors that cause things to be drawn
slightly transparent (that is, with part of the background showing through). By drawing

102	 Part II  Images, Sound, and Text

transparent colors on top of each other, you can get a nice blurry effect, as done in the
following code:

Color nowColor = new Color(0,0,0,20);

for (layer = 0; layer < 10 ; layer++)

{

 spriteBatch.DrawString(font, nowString, nowVector, nowColor);

 nowVector.X++;

 nowVector.Y++;

}

This code is very similar to the previous code that draws the 3-D text except that it creates
the value for nowColor in a slightly different way. The Color is constructed from four values
rather than three:

Color nowColor = new Color(0,0,0,20);

The first three values give the intensity of red, green, and blue, which you’ve set to 0 because
you’re drawing in black. The fourth gives the transparency of the color. In graphical terms,
this is often called the alpha channel value. The bigger the number, the less the background
shows through. Just like your color intensity values, the transparency value can range from 0
(completely transparent) to 255 (solid color). If you don’t give a transparency value, the Color
is created as solid.

A value of 20 means that a lot of the background shows through the color that you draw.
Figure 5-14 shows the display produced by drawing 10 times using a transparent black value.
Note that because each of the drawing positions is slightly different, you get a blurring effect.

Figure 5-14  Creating a shadow using transparent colors

This works rather well in that the text is nicely blurred around the edges, as a shadow would
be. Now you know one way video games achieve blur. They can do it by repeatedly drawing
the same scene in slightly different positions.

The next part of the drawing process uses the same technique you’ve used before, except
that you use slightly different colors. The complete drawing method is as follows:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 DateTime nowDateTime = DateTime.Now;

 string nowString = nowDateTime.ToLongTimeString();

	 Chapter 5  Writing Text	 103

 Vector2 nowVector = new Vector2(50, 400);

 int layer;

 spriteBatch.Begin();

 // Draw the shadow

 Color nowColor = new Color(0, 0, 0, 20);

 for (layer = 0; layer < 10; layer++)

 {

 spriteBatch.DrawString(font, nowString, nowVector, nowColor);

 nowVector.X++;

 nowVector.Y++;

 }

 // Draw the solid part of the characters

 nowColor = Color.Gray;

 for (layer = 0; layer < 5; layer++)

 {

 spriteBatch.DrawString(font, nowString, nowVector, nowColor);

 nowVector.X++;

 nowVector.Y++;

 }

 // Draw the top of the characters

 spriteBatch.DrawString(font, nowString, nowVector, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

This produces the display shown in Figure 5-13.

Sample Code: 3-D Shadow Clocks  The sample project in the 04 3D Shadow Clock directory
in the resources for this chapter contains an XNA Game Studio solution that shows the 3-D time
over a blue background. If you want to draw the time over a picture, you can take a look at the
solution in the 05 3D Picture Clock directory, which draws the same clock over a picture of Jake.
Finally, if you want to see the time over your mood light, look at the solution in the 06 3D Clock
MoodLight directory.

Drawing Images with Transparency
Something else that’s useful is that if you draw an image using a color that has a
transparency value, the image is drawn transparently. This is how game programmers get
pictures to fade slowly onto the screen. The image is repeatedly drawn with different levels of
transparency to make it slowly appear over a background.

104	 Part II  Images, Sound, and Text

Conclusion
In this chapter, you’ve learned how to add font resources to your programs. You’ve also
gained a bit of insight into how 3-D effects can be created from 2-D images. You’ve also seen
how you can use the for loop construction to repeat code a particular number of times.

Chapter Review Questions
At the risk of being somewhat predictable, the chapter ends with another set of true-false
problems.

	 1.	 A font describes the color of the text to be printed.

	 2.	 An XNA game can use only one font to draw text.

	 3.	 The Content Manager creates your fonts.

	 4.	 A resource in an XNA project is a reference to an item that must be included in the
game file when the program is built.

	 5.	 XML stands for Xbox Machine Language and is used to design the font graphics.

	 6.	 A vector describes a direction and distance of movement.

	 7.	 The first program you write that can print should display “Hello Mum”.

	 8.	 The Xbox requires a network connection to load the date and time.

	 9.	 Dates and times are printed the same all over the world.

	 10.	 The DateTime structure holds the value of a particular date and time.

	 11.	 A property of an object cannot be used outside that object.

	 12.	 You can call the ToString method on an object to ask the object to supply a text
description of itself.

	 13.	 A for loop construction always runs forever.

	 14.	 The C# code for (layer = 0; layer < 4; layer++) would repeat five times.

	 15.	 After a loop controlled by the C# code for (layer = 0; layer <= 10; layer++)
has completed, the value in layer would be 10.

	 16.	 The C# code for (layer = 4; layer < 0; layer++) would repeat zero times.

	 17.	 The C# code for (layer = 4; layer > 0; layer++) would repeat infinite times.

	 18.	 Colors can be made “transparent.”

		 105

Chapter 6

Creating a Multi-Player Game
In this chapter, you will

n	 Discover how to detect and use individual button-press events in a game.

n	 Learn how to create and debug a complex program.

n	 Write one of the only 16-player games for the Xbox in the world.

Introduction
Now that you can write programs that process data, read input from the gamepad, and
display text and graphics, you can move on to create some proper games. The first games
that you are going to create are simple to use and play, but are great fun, particularly if you
have large numbers of people around to play them. While you create the behaviors for the
games, you also learn some more C# constructions that can be used in later games.

Game Idea: Button-Bashing Mob
One very popular and easy-to-create game is one where a player has to repeatedly
press a button as quickly as possible. Players compete against each other, and the
winner is the one who can press their button the most in a given time. Because each
gamepad has four buttons and the Xbox can support four gamepads, up to 16 players
can take part, for maximum button-bashing fun.

Creating the Button-Bash Game
To get started, you need to create an empty project called ButtonBash. This project needs to
be able to display text. The best way to do this is to create a new project and then initialize
and load the font as for the Big Clock application in Chapter 5, “Writing Text.” Set the size of
the font to 30 in the SpriteFont1.spritefont file that you create.

To create the game, you first build a program that counts and displays the presses of a single
button on the gamepad. Then you can scale up the program and use more buttons. This is a
very common programming technique. “Make a button-bashing game for 16 players” sounds
a bit daunting, but “Make a program that counts how many times the B button on gamepad 1
is pressed” is something you can probably do.

106	 Part II  Images, Sound, and Text

Note  To complete this program, you are going to take two things that you already know how
to do (read buttons on the gamepad and display messages on the screen) and use these abilities
to create a game called Button Bash. You do this sort of combining a lot in programming; in fact,
you can think of writing programs as stringing a set of behaviors together to get the required
result.

Button-Bash Game Data
Your program needs to keep track of the number of times the button has been pressed. You
can use an integer to hold the value as follows:

// Game World

int count;

The range of an int variable in C# can go over 2,000,000,000. It’s unlikely that anyone who
was not Superman could press a button that number of times in a minute.

Starting the Button-Bash Game
The game is started by the player pressing the Start button on the gamepad to zero the
counter. The program handles this in the Update method:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 GamePadState pad1 = GamePad.GetState(PlayerIndex.One);

 if (pad1.Buttons.Start == ButtonState.Pressed)

 {

 count = 0;

 }

 base.Update(gameTime);

}

This program builds on the gamepad reading code that you wrote in Chapter 3, “Getting
Player Input.” It creates a GamePadState variable called pad1 and then tests to see if the Start
button has been pressed on it. When the Start button is pressed, the conditional statement
in the Update method sets count to 0.

	 Chapter 6  Creating a Multi-Player Game	 107

Displaying the Button-Bash Count Value
As the game is being played, it must display the current number of presses on the screen
for the player to see. You can use a variant of the Draw method in the Big Clock program to
display the value in count:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 string countString = count.ToString();

 Vector2 countVector = new Vector2(50, 400);

 spriteBatch.Begin();

 spriteBatch.DrawString(font, countString, countVector, Color.Red);

 spriteBatch.End();

 base.Draw(gameTime);

}

Running this program gives you what you expect: the value 0 displayed on the screen.

Counting Button Presses
Now you need to add the statements to the Update method that count the number of times
that the B button has been pressed:

if (pad1.Buttons.B == ButtonState.Pressed)

{

 count++;

}

This seems to be what you want; if the condition is true because the button has been
pressed, the counter is incremented.

Sample Code: Broken Button Bash  All the sample projects can be obtained from the course
instructor. The sample project in the 01 Broken Button Bash directory in the resources for this
chapter contains a Microsoft XNA Game Studio solution that contains a program that uses the
Update method described in this section to implement a test button-bashing program.

You might have gathered from the example title “01 Broken Button Bash” that this won’t
work. This is because the Update method is called 60 times a second. If you hold down the
button, you find that each time Update is called, the value of count gets one bigger, so the
score goes up at a rate of 60 times a second. This is impressive (and might be the basis of
other games in the future), but it won’t give you the game you want.

108	 Part II  Images, Sound, and Text

Detecting Changes in the Button Position
You need to find a way of detecting when the state of the button changes from the up to
the down position. Your program must increase count only when this happens, not when
the button is simply being held down. Figure 6-1 shows the sequence of events when the
button is pressed. The Update method is being called at regular intervals. At some point, the
B button is pressed. This means that when Update is called the first time in the illustration, it
detects that B is up, and the second time it is called, it detects that B has been pressed.

button B is up

Time

Update called Update called

button B is down

Figure 6-1  Time line for Update calls and the B button

This means that the Update method must perform a test along the lines of “If the button
was up last time and is down this time, now the counter must be increased.” The Update
method needs to know the state of the button the last time Update was called. It can then
test to see if the button state has changed since it was called the last time. You can declare a
GamePadState variable to hold this value and create an Update method as follows:

GamePadState oldpad1;

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 GamePadState pad1 = GamePad.GetState(PlayerIndex.One);

 if (pad1.Buttons.Start == ButtonState.Pressed)

 {

 count = 0;

 oldpad1 = pad1;

 }

 if (oldpad1.Buttons.B == ButtonState.Released &&

 pad1.Buttons.B == ButtonState.Pressed)

 {

 count++;

 }

 oldpad1 = pad1;

 base.Update(gameTime);

}

	 Chapter 6  Creating a Multi-Player Game	 109

The variable oldpad1 holds the previous state of the gamepad; at the end of the method, you
store the current pad state in it. The test for the change makes use of the AND (&&) logical
operator. Only if the previous state of the button was up AND the current state is down is
the count value increased. You’ve already seen the OR (||) logical operator, which causes a
condition to be true if one or the other condition is true (or both are true). The AND operator
is used in the same way but produces a true result if the conditions on each side of it are both
true. When the player presses Start to begin the game, the value of oldPad1 is set to the
current pad state, so that only changes to the gamepad after Start was pressed are registered.

Note  This code is quite simple, but you need to understand exactly how it works. Make sure
that you can follow what is going on: the way that Update is called 60 times a second and the
way the method makes a copy of the previous gamepad settings at the end of each call.

If you had a really fast player who could press and release a button in less than 1/60 of a
second, your program would not detect this, as the up-and-down changes would occur
between two calls to the Draw method.

Level and Edge Detectors
The code in the previous section is an edge detector in that it detects a change from one state
to another. This is the kind of code that you would use to detect when a game player selects
an option or presses a switch. Up until now, you have used the buttons as level detectors in
that only whether a button is up or down has been significant. When you design the controls
for a game, you need to decide what kind of input you’re using for the control. If you’re creating
a driving game, you’d use a level-based signal to control whether the accelerator was pressed
and perhaps an edge-triggered signal to control the gear selections made by the player.

Sample Code: Working Button Bash  The sample project in the 02 Working Button Bash
directory in the resources for this chapter contains an XNA Game Studio solution that contains a
program that counts the presses for button B.

Constructing the Complete Game
Now that you know how to make edge detectors, you can go on and create the
button-counting code for all 16 buttons in the game. The best way to organize these is to
track and examine each controller in turn. For each controller, you need some variables to
hold information about the gamepad and the buttons:

// Gamepad 1

GamePadState pad1;

GamePadState oldpad1;

int acount1;

int bcount1;

110	 Part II  Images, Sound, and Text

int xcount1;

int ycount1;

Vector2 apos1 = new Vector2(150, 250);

Vector2 bpos1 = new Vector2(200, 200);

Vector2 xpos1 = new Vector2(100, 200);

Vector2 ypos1 = new Vector2(150, 150);

The top two variables hold the gamepad states. The pad1 variable holds the state of the
gamepad during a call of Update. The oldPad1 variable holds the value from the previous
call of Update. Then there are counters for each of the buttons on the gamepad. Finally,
there are four vectors that position the counters on the screen. The code that runs in the
Update method is a variation on the edge detector that you saw previously but is extended
to handle all the buttons on the gamepad:

pad1 = GamePad.GetState(PlayerIndex.One);

if (pad1.IsConnected)

{

 if (pad1.Buttons.Start == ButtonState.Pressed)

 {

 acount1 = 0;

 bcount1 = 0;

 xcount1 = 0;

 ycount1 = 0;

 // repeat for the other three gamepads

 }

 if (oldpad1.Buttons.A == ButtonState.Released &&

 pad1.Buttons.A == ButtonState.Pressed)

 {

 acount1++;

 }

 if (oldpad1.Buttons.B == ButtonState.Released &&

 pad1.Buttons.B == ButtonState.Pressed)

 {

 bcount1++;

 }

 if (oldpad1.Buttons.X == ButtonState.Released &&

 pad1.Buttons.X == ButtonState.Pressed)

 {

 xcount1++;

 }

 if (oldpad1.Buttons.Y == ButtonState.Released &&

 pad1.Buttons.Y == ButtonState.Pressed)

 {

 ycount1++;

 }

 oldpad1 = pad1;

}

	 Chapter 6  Creating a Multi-Player Game	 111

This code makes use of the IsConnected property of the GamePadState structure. This
property is true only if the gamepad is active, meaning that the program updates the values
for the gamepad only when it is connected. Now that you have the game behavior working,
you need to add the display part of the game code in the Draw method: This is the code for
gamepad 1. A similar sequence of statements will be required for the other three gamepads.

spriteBatch.Begin();

if (pad1.IsConnected)

{

 spriteBatch.DrawString(font, acount1.ToString(), apos1, Color.Green);

 spriteBatch.DrawString(font, bcount1.ToString(), bpos1, Color.Red);

 spriteBatch.DrawString(font, xcount1.ToString(), xpos1, Color.Blue);

 spriteBatch.DrawString(font, ycount1.ToString(), ypos1, Color.Yellow);

}

spriteBatch.End();

This code uses the vectors that were set up at the beginning of the program to position the
count values in the correct place on the screen. The code also draws the counters only if that
gamepad is connected.

Sample Code: Button Bash  The sample project in the 03 Multi Player ButtonBash directory
in the resources for this chapter contains an XNA Game Studio solution that contains a program
that you can use to play 16-Player Button Bash.

Code Design
If you look at the sample program, you notice that there’s a lot of repetition. The same code is
used four times in a row, once for each gamepad. In addition, the statements for each gamepad
are fundamentally similar. It turns out that you can use more advanced features of C# to make
this program much smaller and easier to understand. However, the game works well, and the
more people who take part, the more fun it is. Simply begin the game by pressing Start on
gamepad 1, and then all the players must bash their particular button as many times as possible
in a certain amount of time. This turns out to be a test of stamina as much as anything else.
Later, you might return to this code and add an automatic clock to time the games.

The Great Programmer Speaks: Make Sure You Can Test Your Code  The Great
Programmer has been looking at the code that you’ve been writing. She notices that your
program is quite long and reckons that she could do the job with fewer statements. But because
your game works and she enjoys playing it, she thinks it’s a good solution. However, she’s
worried about one thing. The only way that the program can be tested completely is by using
four Xbox gamepads. If you don’t have four gamepads on hand, you can’t prove that all the
counter and display code works properly. In many of the programs that she has written, it’s been
very difficult to test parts of the code, particularly the bits that deal with errors. She therefore
thinks that you need to work out a way that you can test the program without needing to have
all the hardware present. I will show you how to do that next.

112	 Part II  Images, Sound, and Text

Adding Test Code
If you have four gamepads, you can simply connect them and play the game. However, if you
have only one, you need a way to use it to test the code for the other gamepads as well. The
simplest way to do this is to copy the state of gamepad1 into the other gamepads during the
Update method:

pad2 = GamePad.GetState(PlayerIndex.Two);

// test code – copy the value of pad1 into pad2

pad2 = pad1;

if (pad2.IsConnected)

{

 // code for gamepad 2

}

The test code copies the value of pad1 into pad2. This means that the button presses on
this gamepad are now copied onto the counters for this pad, too. If you also copy this
information into the other two gamepads, you can test the code for all of them with only a
single gamepad. Figure 6-2 shows you the display produced by a test version of the program.
I found some faults in my original positioning of the counter displays by using this program
on a PC with only one Xbox gamepad attached.

Figure 6-2  Test gamepad counter displays

	 Chapter 6  Creating a Multi-Player Game	 113

Once the code has been tested, it’s important that these tests are removed from the program.
It turns out that C# provides a mechanism called conditional compilation, which lets you ask
the compiler to ignore parts of a program. This provides a way that you can mark statements
of program code that are to be ignored and that do not become part of the program when it
is built, but that you can keep around for testing when you later update your code.

To understand what’s going on here, you have to take the lid off the compiler and find out
a bit more about how it works. The job of the compiler is to take the C# statements that you
write and convert them into machine instructions for the Xbox or PC. The compiler opens
the source file on the computer that holds your C# and reads it a line at a time. It finds all
the variables, makes sure they are used correctly, looks for all the statements, and generates
low-level instructions that are to be used when the program runs.

The part at the very front of the compiler that reads in the C# file is called the preprocessor. If
you built a machine to make apple pies, you’d have to have a part at the front that peeled the
apples, discarded any rotten ones, and got them ready for cooking. The preprocessor does this
peeling job for the compiler. It takes the program source, removes all the comments (which the
compiler should not see), discards blank lines and empty space, and passes on clean statements.
However, the C# compiler preprocessor can also be told to do things to the source that it sees:

#if test

 // test code - copy the value of pad1 into pad4

 pad4 = pad1;

#endif

Commands to the preprocessor have a # at the start of the line and are called directives.
What the previous statements say to the preprocessor is, “If the test symbol has been
defined, pass on the following statements to the rest of the compiler; otherwise, ignore
them.” The statements to be passed on are between the #if and the #endif directives.

If you want to switch these lines on, you simply need to define the test symbol at the top of
the source file as follows:

#define test

If the test symbol has been defined, all the test statements are compiled into the main
program. Deleting the #define directive keeps the designated statements from being compiled.

Sample Code: Button-Bash Test  The sample project in the 04 Button Bash Test directory in
the resources for this chapter contains an XNA Game Studio solution that contains a program
that you can use to test the button-bashing program with only one gamepad.

If you use XNA Game Studio to open the code file Game1.cs in the 04 Button Bash Test
sample project, you see that the test code is “live.” If you go to the top of Game1.cs and
delete the #define line, you see that all the code controlled by the test symbol goes light
gray in the editor to indicate that this code is no longer live. If you run the program, it now
works with four gamepads as it should.

114	 Part II  Images, Sound, and Text

Note  It’s very important that you understand what’s happening here. The program is not
making a decision what to do when it runs; this decision is taking place when the program itself
is built. If the symbol is not defined, the statements are not even part of the machine language
program itself.

You can create as many symbols as you like, so if you wanted to, you could turn on and off
different parts of the program. This is one of the ways that game manufacturers make “demo”
versions of their games. Some game levels are compiled conditionally in the source so that they
can make a limited version of the program just by recompiling with some of these symbols
missing. Note that the test is not perfect, for example if your program was displaying the count
for gamepad 1 in place of the count for gamepad 2, this would not be detected by this test.
You would have to think of a different kind of test behavior to detect this fault.

The Great Programmer Speaks: Remember to Charge for Testing  The Great
Programmer is one of the most expensive programmers you’ll ever meet. She charges a lot of
money for her work. But her customers are happy to pay because they know they are getting
a properly tested program and they never get any nasty surprises. She says that if you’re asked
how much a job will cost and how long it will take, you must make sure that you include the time
it will take you to test your solution, as well as the time it will take to actually write the program
that does the job. She’s very careful to include the cost of these parts of the work in her prices,
and her software is always very well tested and works the first time, so she makes the big bucks.

Conclusion
In this chapter, you’ve discovered how to detect edges on button presses and how to use
this to create a good party game. Finally, you’ve seen the importance of testing and found a
mechanism, conditional compilation, that makes testing easier.

Chapter Review Questions
Perhaps the world will end with a set of review questions. I’m not sure about that actually,
but I am sure that this chapter does. As usual, say whether these statements are true or false.

	 1.	 Only the start button can be used as edge triggered.

	 2.	 You need to have the previous state of the gamepad if you want to detect an edge.

	 3.	 Edge-triggered inputs work only if the button is held down.

	 4.	 Conditionally compiled code is discarded when the program runs.

	 5.	 The preprocessor produces the output file from the compiler.

		 115

Chapter 7

Playing Sounds
In this chapter, you will

n	 Find out how to prepare sounds for inclusion in Microsoft XNA projects.

n	 Incorporate sounds into XNA.

n	 Play the sounds from within your programs.

Adding Sound
Now that you can display pictures and text, it’s time to make some noise. Then you can set
about making a proper gaming experience for your players. You add sound to a game in
the same way as you add other resources. You can even grab your favorite sound sample
and drop this into the XNA Game Studio project as you did for the graphics resources
(remembering to respect copyrights, of course).

If you want even more control over the sounds that your game makes, you can use something
called the Microsoft Cross-Platform Audio Creation Tool (XACT) to create the library of sounds
that you want to use, insert the library into your game, and then create a sound engine in the
game program to play those sounds at the appropriate times. This facility is very powerful,
but it can be confusing to use, so we use simple sound playback in this chapter.

Program Project: Drum Pad
The first program you are going to build creates a very simple drum kit that is
controlled from a gamepad. Each button is assigned a different drum sound, enabling
you to use your console to play the drums.

Creating the Drum Pad Project
You create the project (called DrumPad) using the New Project dialog box as you’ve done
for all your previous projects. You can see this dialog box in use in Figure 1-4 in Chapter 1,
“Computers, Xboxes, C#, XNA, and You.”

Capturing Sounds with Audacity
You start with a few drum sounds. The samples that I used were captured using the
microphone input in my notebook to record live drum sounds. I used a program called

116	 Part II  Images, Sound, and Text

Audacity, which you can obtain for free from audacity.sourceforge.net. This program
captures live sound and provides a graphical interface that you can use to select portions
of recordings and export them as .wav files. Figure 7-1 shows a wave form that has been
captured and a portion marked off to be exported.

Figure 7-1  The Audacity user interface

Each time you click the round, red, record button in the controls at the top of the screen, a
new track is recorded. Before you start recording, you should select the format of the sound
that you are going to capture. The quality of a sound recording is controlled by the sample
rate and the resolution of each sound sample. You need to be careful when recording sounds
because the higher the quality of the sound, the more disk space and memory that the
sample takes up. I have found that a sample rate of 44,100 hertz (Hz) and 16-bit resolution
gives high-quality sounds that do not take up too much memory. You can select these by
clicking the item on top of the track as shown in Figure 7-2, where the sample rate is being
selected. The resolution is set using the Set Sample Format item immediately above the Set
Rate option on the menu shown.

Once you have selected a sound quality setting, it is used for any future recordings. If you
are recording very long sounds, such as background music, you might decide to reduce the
quality so that the sound files are smaller.

Note that with sound samples, as with other assets in your game, you must be careful to
observe copyright laws. Although it’s very tempting to use parts of songs or TV shows as
in-game sounds, you need to make sure that you don’t get into trouble for doing this.

	 Chapter 7  Playing Sounds	 117

Figure 7-2  Selecting a sample rate in Audacity

Sounds and File Types
When I had finished with the drums, I had some sound files that were .wav files. Today,
you’re more likely to have heard of .mp3 or .wma files when storing sound. In these files, the
sound information is compressed so that it takes up less space in your music player. The XNA
Framework can play simple sound effects from .wav files. Later in this chapter, in the section
“Playing Songs using the MediaPlayer Class,” you find out how to create an XNA program
that plays complete songs from .mp3 or .wma files.

Storing Sounds in Your Project
Sounds are just another item of content, along with images and fonts. You add them to your
project in the same way. Start by right-clicking the Content folder in XNA Game Studio, then
select Existing Item from the Add option, as shown in Figure 7-3.

118	 Part II  Images, Sound, and Text

Figure 7-3  Adding items to the Content folder

This causes the Add Existing Item - Content dialog box to appear. You can then navigate to
the folder on your system containing the sound files and open them as shown in Figure 7-4.
Note that you can select multiple items in this dialog box if you want to add more than one
thing at a time.

Figure 7-4  Selecting sound files

Note  If you’ve installed any programs that work with sound files, you might find that your .wav
files have different icons. The ones in Figure 7-4 are associated with Windows Media Player on
my computer.

	 Chapter 7  Playing Sounds	 119

Once the files have been added to the game project, the Content Manager transfers them
into the game and makes them available to the game program.

Resources: “Drum Sounds”  All the sample projects and content resources can be obtained
from the Web resources for this text, which can be found at http://microsoft.learning.en/us/
Books/13411.aspx. You can find the drum samples in the resources directory for this chapter.
Before you hit the drums, remember that sounds might be faint on your PC but play loudly
through your Xbox, or vice versa. The program will work on the Zune, but you will need to
change it to use the Zune Dpad to get all the drum sounds.

Using Sounds in an XNA Program
Now that you have the files, you can get them into a form that can be used in your XNA
program. You follow the same pattern you have used twice before now, with fonts and images:

n	 Create a variable to hold the loaded content.

n	 Set the variable in the LoadContent Method.

n	 Use the resource in the game.

The variable type that you are going to use is SoundEffect. This represents a sound that you
want to play. You need four of these variables, as you are giving our player four drum sounds
to play:

// Game World

SoundEffect kick;

SoundEffect cymbolTing;

SoundEffect snare;

SoundEffect top;

Once you have the variables, you now need to load them from the Sounds folder in the
content for this game:

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kick = Content.Load<SoundEffect>("kick");

 cymbolTing = Content.Load<SoundEffect>("cymbolTing");

 snare = Content.Load<SoundEffect>("snare");

 top = Content.Load<SoundEffect>("top");

}

This code sets the SoundEffect variables with the samples that they are going to play.

120	 Part II  Images, Sound, and Text

Playing Sounds
Now you’re at the point where you can play sounds in your program. You are going to make
a program that plays different drums by pressing different buttons on the Xbox gamepad.
The sound should be produced when the button is pressed. You can use the edge detection
code from Chapter 6, “Creating a Multi-Player Game,” to detect when to play the sounds:

// Current state of the gamepad during the Update

GamePadState pad1;

// Old gamepad state. XNA initializes this to all

// buttons not pressed. After the first call of Update

// this holds the previous gamepad state.

GamePadState oldpad1;

protected override void Update(GameTime gameTime)

{

 pad1 = GamePad.GetState(PlayerIndex.One);

 if (pad1.IsConnected)

 {

 // allow the game to exit when back is pressed

 if (pad1.Buttons.Back == ButtonState.Pressed)

 {

 this.Exit();

 }

 // test if A has been pressed since the last Update

 if (oldpad1.Buttons.A == ButtonState.Released &&

 pad1.Buttons.A == ButtonState.Pressed)

 {

 snare.Play();

 }

 }

 // record the current gamepad state for the next

 // call of Update

 oldpad1 = pad1;

 base.Update(gameTime);

}

This version of Update plays the “snare” sound when the A button is pressed on gamepad 1.
It does this by calling the Play method provided by a SoundEffect object. You can expand
this code so that each of the buttons on the controller plays one of your four sound effects.

Sample Code: 01 DrumPad  All the sample projects can be obtained from the course instructor.
The 01 DrumPad project in the resources for this chapter contains all the .wav files. It makes
a different drum sound when each of the buttons is pressed. If you want to use your own sounds
with this project, simply replace the .wav files in the Content folder with yours and rebuild the XNA
Game Studio project.

	 Chapter 7  Playing Sounds	 121

If you play with the sample project, you find that you can get several versions of a given
sound sample playing at the same time if you press the buttons very quickly.

Playing Background Music
You can also use the XNA sound system for playing background music. The technique
described here could also be used for engine noise or background sounds for a particular
location. Unlike the sounds you’ve used so far, you want the music to repeat when it finishes
playing, and you’d also like a way to stop and start the music from within your program. The
actual music file is a .wav file like all the other sounds, but it might be somewhat larger. It is
loaded into the game project in the same way as the other sounds that you saw earlier.

Controlling Sound Playback
If you call the Play method on a SoundEffect instance, it causes that sound to play.
However, the Play method also returns a result, which up until now our program has
ignored. The result that Play returns is an object that represents the playing instance of the
sound. This is held in a class called SoundEffectInstance. Each time Play is called, it returns
a SoundEffectInstance for that particular instance of the sound playing. The program can
use this value to control the background music playback.

Controlling the Sound Playback
In the next version of the game we use the shoulder buttons on the gamepad to control
the music playback. The left shoulder button can start the playback, and the right shoulder
button can pause it. We can use the by-now-familiar edge detection code to detect when
a button is pressed:

if (oldpad1.Buttons.LeftShoulder == ButtonState.Released &&

 pad1.Buttons.LeftShoulder == ButtonState.Pressed)

{

 // Start the music playing

}

if (oldpad1.Buttons.RightShoulder == ButtonState.Released &&

 pad1.Buttons.RightShoulder == ButtonState.Pressed)

{

 // Pause the music

}

Now you just have to fill in the code that controls the playback.

Starting the Sound Playback
The very first time that the left shoulder button is pressed to start playback, there is no
SoundEffectInstance to control because the sound effect is not playing. You can handle

122	 Part II  Images, Sound, and Text

this by using another feature of C#: the null reference. You can create a variable and explicitly
set it to indicate that it doesn’t refer to an object in memory at the moment:

// Game World

SoundEffect music;

SoundEffectInstance musicInstance = null;

These two variables are part of the Game World for the music player program. The
variable music holds the sound effect, and the variable musicInstance refers to the
SoundEffectInstance that is created the first time we play the sound effect. This is explicitly
set to null when it is declared. The program can then test this value and create the instance
if the value is null:

if (oldpad1.Buttons.LeftShoulder == ButtonState.Released &&

 pad1.Buttons.LeftShoulder == ButtonState.Pressed)

{

 // Start the music playing

 if (musicInstance == null)

 {

 // Need to create a SoundInstance to play the music.

 musicInstance = music.Play();

 }

 else

 {

 // Already got a SoundInstance. Just play it.

 musicInstance.Play();

 }

}

This code repays careful study. The problem that it is solving is that the very first time that the
play button is pressed, it must set the musicInstance variable. Every time after that first press,
the code just needs to call the Play method on the musicInstance that it has created. It turns
out that XNA doesn’t mind if you try and play a SoundInstance that is already playing, and so
the program works OK (although the Great Programmer might not approve of this).

Pausing the Sound Playback
The SoundInstance class provides a method called Pause that you can call to make the
sound pause. This means that the code to pause the music looks quite simple:

if (oldpad1.Buttons.RightShoulder == ButtonState.Released &&

 pad1.Buttons.RightShoulder == ButtonState.Pressed)

{

 // Pause the music

 musicInstance.Pause();

}

When the right shoulder button is pressed, the program just calls the Pause method on the
musicInstance. This program looks OK, but unfortunately it has problems, which of course
your younger brother finds straight away. Perhaps he feels it is his mission to break programs

	 Chapter 7  Playing Sounds	 123

whenever he gets the chance. Anyway, he has been playing with your program and tells you
that if you press the right shoulder button before pressing the left one (that is, if you try to
pause the music before it has started playing), the program fails. You try the program, and
sure enough, when you press the right button you get the screen shown in Figure 7-5.

Figure 7-5  Throwing a NullReferenceException

The reason for this is quite simple. Some types in C# are managed by reference. This
means that a variable of this type is actually a reference to an object in memory. When you
use the variable, the program follows the reference to the object it refers to, and uses that
object. A reference that is null is not set to refer to an object, so any attempt to follow
this reference causes the program to fail. If the program tries to follow the musicInstance
reference before it has been set to refer to the object produced by the call of Play, it is
trying to go nowhere. This infringement is picked up by the system running our program,
and the program is stopped at this point.

The good news is that this kind of problem is detected when the program runs and does not
cause the Xbox, Zune, or Windows PC running the program to crash. Similar mistakes with
other programming languages can sometimes result in the famous “Blue Screen of Death”
appearing. The bad news is that the program still crashes, and your younger brother finds
this very amusing. So it needs to be fixed.

124	 Part II  Images, Sound, and Text

The solution turns out to be quite simple. The program must check to see if the
musicInstance variable is null before it tries to follow it. It should follow the reference only
if the variable is actually referring to an object in memory:

if (oldpad1.Buttons.RightShoulder == ButtonState.Released &&

 pad1.Buttons.RightShoulder == ButtonState.Pressed)

{

 // Pause the music

 if (musicInstance != null)

 {

 musicInstance.Pause();

 }

}

The operator != means “not equal to.” The reference is followed only if the program
determines that the reference is not null.

Making a Sound Repeat
The Play method usually just plays a sound effect once. When the playback reaches the end
of the sound, it stops. However, you want your music background to repeat in a loop. If you
were using a sound sample as an engine noise, you would want it to repeat in this way. It
turns out that there are several forms of the Play method where you can give extra detail
about the way you want the sound played. One of the items of detail is whether the sound
should loop. You can call this form of the Play method, as shown here. I’ve spread the call
over several lines and added some comments to make it clear what each parameter does:

// Need to create a SoundInstance to play the music.

musicInstance = music.Play(

 1, // volume - between 0 and 1

 0, // pitch - between –1 (octave low) and 1 (octave high)

 0, // pan - between –1 (left) and 1 (right)

 true); // loop (true means loop)

This form of the Play method has four parameters that you can use to control how a sound
effect is played. You can set the volume of the sound, the pitch (whether it sounds squeaky,
normal, or deep), and the pan (whether the sound is at the left, at the right, or in the middle
of the soundstage). Finally, you can set whether the sound plays in a loop.

Sample Code: 02 Drumpad with Music  The 02 Drumpad with Music project in the resources
for this chapter contains an XNA project and all the .wav files, including a music file. The music
can be controlled with the shoulder buttons on the gamepad. It also contains the drum pad code
to make sounds when the buttons are pressed. There is no version of this program for the Zune
because the music sound effect is too large to fit in the XNA program memory for this device.
However, you can still play background music on this device, as you will see in the next section.

If you have the time, you can explore some of the more powerful features of XNA sound
generation, including using the XACT audio tool, which is supplied with the XNA Framework.

	 Chapter 7  Playing Sounds	 125

This is a professional standard game sound creation program that can be used to create very
impressive sound effects, including automatic random selection of different sounds for a
particular event and changing the pitch and volume of sounds as they play.

Playing Songs Using the MediaPlayer Class
The sounds you have played so far have been created using SoundEffect values. These are
intended for use in games, where the game program needs to be able to play the sounds
quickly in response to game events. However, sound effects are not the best way to play
longer sound samples, such as songs, because the sound data takes up too much program
memory. Instead, you can use the media playing features of XNA which let your games use
compressed .mp3 and .wma files as background music.

Up until now you have used .wav files in your games. You have created these files using the
Audacity program. However, any sound files that you have on your computer are unlikely to
be held in this format. Instead you will probably find that your files are either .mp3 or .wma
files. These hold the sound in a compressed form which takes up less storage space. XNA is
not able to use .mp3 or .wma files as content for sound effects, but it does have the ability to
play such files using the MediaPlayer class.

The MediaPlayer class provides a Play method which is used to start playback of a
particular Song value. You can load a Song as you would any other item of content.

// Game World

// Song to be played by the MediaPlayer class

Song music;

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 music = Content.Load<Song>("music");

}

The music item in the Content folder is an .mp3 file. This can be added into the game
solution in exactly the same way as the drum sound samples.

It is very easy to control the playback of a song using the MediaPlayer class. The code here
will use the A button to start/resume playback and the B button to pause it.

// test if A has been pressed since the last Update

if (oldpad1.Buttons.A == ButtonState.Released &&

 pad1.Buttons.A == ButtonState.Pressed)

{

 if (MediaPlayer.State == MediaState.Paused)

 {

 MediaPlayer.Resume();

 }

126	 Part II  Images, Sound, and Text

 else

 {

 MediaPlayer.Play(music);

 }

}

// test if B has been pressed since the last Update

if (oldpad1.Buttons.B == ButtonState.Released &&

 pad1.Buttons.B == ButtonState.Pressed)

{

 if (MediaPlayer.State == MediaState.Playing)

 {

 MediaPlayer.Pause();

 }

}

The MediaPlayer class provides a property called State which your program can use to
determine whether or not it is presently playing a song.

Sample Code: 03 Music Player  The 03 Music Player project in the resources for this chapter
contains an XNA project and an .mp3 music file. The music playback can be started/resumed
with button A and paused with button B.

Conclusion
This has been an interesting chapter. You’ve seen how to capture sounds and store them on
your computer. You’ve also discovered how to use XNA to make sounds and play music.

Chapter Review Questions
And now the ever-popular review. Some people say that for some things in life, there are no
right answers. Well, I think that for these questions, there is—namely, true or false.

	 1.	 Sound in an XNA program is managed by the Content Manager.

	 2.	 Games can use .mp3 files for sound.

	 3.	 You have to copy your sound files onto your target device by hand.

	 4.	 You can play only one sound at a time in an XNA program.

	 5.	 The Play method loads a sound effect into memory.

	 6.	 The Play method does not return anything useful.

	 7.	 A null reference refers to a null object.

		 127

Chapter 8

Creating a Timer
In this chapter, you will

n	 Find out how your program can measure the passage of time.

n	 Create a multi-player reaction game.

n	 Use C# arrays to allow the program to determine who won.

Making Another Game
You are now going to use your knowledge of Microsoft XNA and C# to create another game.
This builds on the party theme that you explored in Chapter 6, “Creating a Multi-Player
Game,” where you created a button-bashing game.

Game Idea: Mob Reaction Timer
In this game, you test the reactions of your players. Each player is in charge of one
button on a gamepad. The game plays a sound, and the player who presses his or her
button the soonest after the sound starts playing wins. Anyone who presses the button
before the sound starts playing is out.

You need to use a timer variable to keep track of time and a variable for each player to
measure the reaction time of that player. Those variables are declared in the following code:

// Game World

int timer;

// Gamepad 1 scores

int ascore1;

int bscore1;

int xscore1;

int yscore1;

These are the variables for the timer and the first gamepad. The timer starts counting up
from zero when the sound plays. Each time that XNA calls the Update method, the value
in timer is increased by one and the program checks to see if the player has pressed his or
her button. If the button has been pressed, the value of the timer is copied into the score
variable for that button. The player with the lowest value is the winner. The first problem we
have to solve is how to start the game. If the sound is produced as soon the game begins,
the player who starts the game has an obvious advantage. One way to make this work is to

128	 Part II  Images, Sound, and Text

make the timer a negative number when the game starts and increase it each time Update
is called. When it reaches the value 0, the sound is played and the game starts counting.
Figure 8-1 shows how this works.

Begin

Is Start
button Pressed?

End

Is timer 0?

Button pressed?

Set timer to -120
Clear scores

Play sound

Copy timer value
into the score for

this player

Increase timer
by 1

YES

YES

YES

NO

NO

NO

Figure 8-1  Flow diagram for a reaction timer

Each time Update is called, the flow in Figure 8-1 is performed. If the Start button is pressed,
the timer variable is set to –120. Each time Update runs, the value in timer is made one
bigger. When timer reaches zero, the sound is played. When a button press is detected, the
program copies the current value of timer into the score for that button. If a player presses

	 Chapter 8  Creating a Timer	 129

a button before the sound has been played, he or she has a negative timer value. The player
who gets the smallest positive value is the winner. The game world variables for this game
will include the game timer variable along with the scores for each gamepad and the sound
effect that is used to play the sound.

// Game World

// Display font

SpriteFont font;

// Game Timer

int timer;

// Game world sounds

SoundEffect dingSound;

// Gamepad 1

GamePadState pad1;

GamePadState oldpad1;

int ascore1;

int bscore1;

int xscore1;

int yscore1;

Each time that Update is called it must perform the actions shown in the flowchart, as shown
in the following code:

protected override void Update(GameTime gameTime)

{

 pad1 = GamePad.GetState(PlayerIndex.One);

 if (pad1.Buttons.Back == ButtonState.Pressed)

 {

 this.Exit();

 }

 // start a new game

 if (pad1.Buttons.Start == ButtonState.Pressed)

 {

 timer = -120;

 ascore1 = 0;

 bscore1 = 0;

 xscore1 = 0;

 yscore1 = 0;

 }

 // update the timer

 timer++;

 // play the sound at the start of the game

 if (timer == 0)

 {

 dingSound.Play();

 }

130	 Part II  Images, Sound, and Text

 // if A is pressed copy the timer

 if (oldpad1.Buttons.A == ButtonState.Released &&

 pad1.Buttons.A == ButtonState.Pressed)

 {

 ascore1 = timer;

 }

 // repeat for buttons B, X and Y

 oldpad1 = pad1;

 // repeat for gamepads 2, 3 and 4

 base.Update(gameTime);

}

You should look carefully at this method because, although it is not very large, it is somewhat
complicated. Remember that the Update method is called 60 times a second, so when
the Start button is pressed and timer is set to –120, this means that there is a 2-second
delay before the sound plays. The code runs and works well. In fact, I’m rather proud of it.
Unfortunately, it has a rather nasty bug in it.

Sample Code: 01 Broken Reaction Timer Game  All the sample projects can be obtained
from the course instructor. The 01 Broken ReactionTimer project in the resources for this chapter
contains a version of the game using the Update method from this section. Have a go with it
and see if you can find the bug.

Reaction Timer Bug
You first notice the bug in the program when you find that your younger brother is beating
everyone at the game. He seems to have amazing reflexes. Or he is cheating. It turns out to
be the latter. He has noticed that although you get a negative (and therefore invalid) score if
you press your button before the sound plays, you can press the button again later and have
another go. What he does is press the button up and down very rapidly until he hears the
sound and then stops. This usually results in his winning.

If you look at the code in the Update method, you find that there’s nothing to stop a
naughty player from pressing his or her button lots of times. There’s no penalty for pressing
the button before the sound plays because the player can just press the button again. You’ve
designed the game without allowing for the fact that players might cheat and seem to have
reckoned without your younger brother.

You need to change the program to fix the problem. At this point, you’re doing proper
programming. You’ve used an algorithm that gives a set of steps to make the game work, but
you’ve found that it’s faulty in some circumstances. Therefore, you need to either improve
your solution or find a better one.

	 Chapter 8  Creating a Timer	 131

Because I wrote the first version, I’m going to start by asking you to work out what is going
wrong. This might seem a little unfair, but I’m going to give you some help by suggesting
things that might be the cause. Pick the one you think is the most sensible and then read on.

	 1.	 The problem occurs because you’re not detecting when the player releases the button
as well as when it’s pressed.

	 2.	 The problem occurs because you should be using level detection on the buttons, not
edge detection.

	 3.	 The problem occurs because you should register only the first press of the button.

	 4.	 The problem occurs because you need to reset the gamepad after it’s been read.

If you look carefully at the flow diagram in Figure 8-1 and the code, you can simulate these
ideas to see which makes the most sense. If this feels a bit like solving a puzzle, you’re very close
to what this part of programming is all about. If you get stuck trying to solve a programming
problem, the best thing to do is to go back and consider what you’re trying to achieve. What
you mustn’t do is just add lines of code in the hope that one of them fixes the problem.

Your younger brother is winning by pressing his button more than once. Because you can’t
physically stop him from doing this, you have to find a way to prevent later button presses
having any effect on the score of the player. From the previous list, option 3 is the best one
to try. So the problem now becomes: How can you tell if the button has been pressed more
than once? Take a look at the flowchart and try to decide what the program could test to
decide if this is the first or second time that the button has been pressed in a game.

It turns out that this is easy. The program works by copying the value of the timer into the
score for each player. When the Start button is pressed, the program loads zero into the
score values for each of the players. The very first time the player presses his or her button,
the zero is replaced with a time value. Next time he or she presses the button, the score is
not zero, so you should not update this value. The following code implements this fix:

// if A is pressed and ascore1 is 0 copy the timer

if (oldpad1.Buttons.A == ButtonState.Released &&

 pad1.Buttons.A == ButtonState.Pressed && ascore1 == 0)

{

 ascore1 = timer;

}

The program now contains a condition that tests whether the score is zero and sets the score
only if it is. If the score is not zero (that is, the button has already been pressed), then the
score is not stored.

Sample Code: 02 Fixed ReactionTimer  The 02 Fixed ReactionTimer project in the resources
for this chapter contains a mended version of the game using the Update method as fixed in
this section.

132	 Part II  Images, Sound, and Text

Finding Winners Using Arrays
Your younger brother is now rather cross with you. The update means that he can’t always
win at the game anymore, and this has upset him somewhat. So he has taken to claiming that
the game is rubbish anyway “because it doesn’t tell you who won.”

Unfortunately, he has a point. When the game finishes, the players must look at the screen
and decide who the winner is. This doesn’t seem right, bearing in mind that computers are
supposed to make our lives easier. So now you have to work out a way of deciding who has
the winning score. Any scores less than or equal to zero must be ignored because those
players either pressed their buttons before the sound played or never pressed their buttons
at all. Of the remaining scores, you want the one with the lowest value. You could write some
complicated code like this:

if (ascore1 > 0)

{

 if (ascore1 < bscore1 && ascore1 < xscore1 && ascore1 < yscore1)

 {

 // if we get here button A of Gamepad 1 has won

 }

}

This code works only for the A button of gamepad 1. The first if statement checks to see
if the score is greater than zero. If it is, the second condition is evaluated. This is a rather
complicated if statement that checks to see if the score for the A button is less than the score
for the other buttons on the gamepad. If the score is less than all of them, that button is the
winner. You need to write three other conditions for the other buttons on the gamepad. This
is a lot of work, and it gets even worse when you consider the possibility of four gamepads.

Creating an Array
What you need is a way of working through a list of scores using your program. In C#, a
variable that holds a list of values is called an array. The type of values that you want your
array to hold are integers, and it is “one-dimensional,” in that it has only one list of values.
Arrays can be declared and initialized just like any other C# variable:

int[] scores = new int[4];

This declares an array variable called scores that can refer to one-dimensional integer arrays
and makes it refer to a new 4-element array instance. This would let the array hold the score
values for the four buttons on gamepad 1.

You can think of an array as a row of numbered boxes, each of which can hold a single value.
A single “box” in an array is called an element. Figure 8-2 shows how this works.

The size of the array is set when you create it. In the previous code, you made an array with
four elements. If you want a different size, you simply change the 4 to a different number.

	 Chapter 8  Creating a Timer	 133

0

0
scores[]

0 0 0

1 2 3

Figure 8-2  An array reference and an array instance

Note  You may have noticed that I’m talking about “array instances” and that arrays are created
using the key word new. I have used these terms before when I was talking about objects. This
means that arrays are implemented in C# as objects, and you can ask them to do things for you.
Later in this chapter, you’ll see how you can use array properties and methods to make your life
easier.

Using Data in an Array
Now that you have your array, you need to be able to get a hold of individual elements. If
you take a look at Figure 8-2 again, you see that each element has a number above it. This is
called the subscript or index of that element in the array. You can regard a subscript as telling
the computer how far “down” an array to go to get to the element that is required. In this
respect, array elements are similar to house numbers on a street (except that no houses have
the number zero). To use a particular element in an array, you simply give the subscript of the
element that you want. The following code shows how this works. The value of the subscript
is enclosed in square brackets:

if (oldpad1.Buttons.A == ButtonState.Released &&

 pad1.Buttons.A == ButtonState.Pressed && scores[0] == 0)

{

 scores[0] = timer;

}

This C# code works in the same way as the original code, except that it uses the first element
in the array, scores[0], instead of a variable called ascore1. You can use scores[1] as
bscore1, the score for the B button on gamepad 1, and so on.

At this point, it doesn’t seem that creating an array has made life much easier; you’ve only
found a quick way of declaring more than one variable. However, the real power comes when
you use variables in your array subscripts, as follows:

for (int i = 0; i < 4 ; i++)

{

 scores[i] = 0;

}

This is a for loop construction that takes the value of i from 0 to 3 (remember that when the
value of i reaches 4, the test “i less than 4” fails and the loop stops). The value of i is used as
a subscript for the array access. This means that the first time around the loop, the statement

134	 Part II  Images, Sound, and Text

will set scores[0] to zero. The next time around the loop, the assignment statement works
on scores[1], and so on, up until the end of the array. This is how you’d set the scores array
elements to zero at the start of a game.

Note  The previous code uses an additional C# feature of the for loop that lets you declare the
counter variable (in this case, a variable called i) in the loop itself. This variable exists only for
the duration of the loop, being local to the for loop block. The Great Programmer thinks this
is the right thing to do here, as you need the variable only for the duration of the loop block.

In this case, you want to work with only four elements, so the code doesn’t look that much
shorter than your original. However, if you needed to set 1,000 values, the code would contain
the same statements, except that you’d change the limit value so that i goes up to 999.

Note  If you have a mind like your younger brother, at this point you’ll be wondering what
would happen if you tried to use silly subscript values like scores[101]. Your younger brother
would no doubt be hoping that this would cause the computer to crash or, better yet, allow
access to secret memory locations. The boring answer is that if you step outside what are called
the bounds of an array, your program is stopped in its tracks by an exception because this is just
not allowed to happen in a proper language like C#. This form of naughtiness was not always
detected in older computers, however, and was once one of the standard ways that a virus
program could attack a system.

Scanning an Array
Now you need to use an array to help you find the best score. Figure 8-3 shows a typical
arrangement of the values.

0

23
scores[]

50 -10 22

1 2 3

Figure 8-3  Sample scores

You now need to write some C# to work through the array and find the best score. At this
point, you have a problem. If I ask you, “Which element in Figure 8-3 has the winning time
in it?” you would glance at the page and say, “The element with subscript 3.” And you’d be
right. The problem is that you won’t necessarily be able to tell me precisely how you worked
it out. You simply looked along the row, and that number was the smallest number that
wasn’t negative. It was obvious.

Unfortunately, you can’t say to the C# compiler, “Look along the row and find me the
winner.” You need to set things out in simpler and much more boring steps. The program

	 Chapter 8  Creating a Timer	 135

must look at each element in turn and see if it wins. At any given point in the process, the
program would have an idea of the best result it has seen so far. If it sees a value that is
better, it now has a new winner, and so on.

If you think about it, this is what people really do, particularly if they are working through
1,000 numbers instead of only a few. In that case, you would take care to remember the best
result that you had seen so far as you went through and probably write it down on a piece of
paper. With all this in mind, consider the following code:

int winningValue = 120;

for (int i = 0; i < 16; i++)

{

 if (scores[i] > 0)

 {

 if (scores[i] < winningValue)

 {

 winningValue = scores[i];

 }

 }

}

This code uses a variable called winningValue to hold the smallest value it has seen so far.
It starts by setting it to a large value that is guaranteed not to be a winner. It then compares
winningValue with each element in the array in turn. If the element is smaller than the current
smallest value, it sets winningValue to the new value. Before it tests winningValue, the code
makes sure that the count is a valid one (in that the button must have been pressed). At the end
of the pass through the loop, the variable winningValue has the value of the winning score.

Now that you know the winning score, you can write some code to display the winner:

string winnerName;

if (scores[0] == winningValue)

{

 winnerName = "Gamepad 1 button A";

}

if (scores[1] == winningValue)

{

 winnerName = "Gamepad 1 button B";

}

This code selects the winning string for the A and B buttons on gamepad 1. The string
winnerName is set with the name of the winning button and gamepad and can be displayed
on the screen at the end of the game. You could write more statements for each of the other
buttons and gamepads.

Note  You need to make sure that when you check the buttons, you set the correct elements in
the array; otherwise, the wrong names are displayed.

136	 Part II  Images, Sound, and Text

Using an Array as a Lookup Table
The previous code produces a string that contains the name of the winning gamepad and
button. But you still need to perform all those conditional statements to decide the string to
display. You do have a way to make your life easier, though, and it starts by finding out the
position in the array of the winning score. Here’s code that does that:

int winningValue = 120;

int winnerSubscript = 0;

for (int i = 0; i < 16; i++)

{

 if (scores[i] > 0)

 {

 if (scores[i] < winningValue)

 {

 winningValue = scores[i];

 winnerSubscript = i;

 }

 }

}

This is the same loop as before, but you now have a variable called winnerSubscript that
holds the position in the array of the winning value. Note that the program copies the value of
i into the winnerSubscript when it finds a new winning value. Remember that when you find
a new winning value, the variable i holds the subscript in the array where that value is stored.

Now that you have the subscript value of the winning score, you can use it in another array to
find the string that describes that player. The array is set up as shown in Figure 8-4.

0

Gamepad 1 A Gamepad 1 B Gamepad 1 X Gamepad 1 Y

1 2 3

names[]

Figure 8-4  A player lookup table

This is an array of strings of text. There is an element in the array for each of the buttons on
gamepad 1, and the names are lined up with the buttons that are tested. Now, to get the
description of the winner, you simply need to look up the name in your table:

winnerName = names[winnerSubscript];

You need to have a way of setting up the lookup table with the correct strings. C# provides a
way that you can create an array and set the initial values in it:

string[] names = new string[] {

 "Gamepad 1 A",

 "Gamepad 1 B",

 "Gamepad 1 X",

 "Gamepad 1 Y"

};

	 Chapter 8  Creating a Timer	 137

This creates an array with the preset values that you specify. Note that you don’t need to tell
C# how long the array is because the compiler can work this out automatically.

Displaying the Winner
You now have code that you can use to display the winner. Now you need to work out how
to add this to the program. A good time to display the winner would be two seconds after
the sound was produced, which is when the timer value reaches 120. By then, all the players
should have pressed their buttons. The following code does that:

protected override void Update(GameTime gameTime)

{

 pad1 = GamePad.GetState(PlayerIndex.One);

 if (pad1.Buttons.Back == ButtonState.Pressed)

 {

 this.Exit();

 }

 // start a new game

 if (pad1.Buttons.Start == ButtonState.Pressed)

 {

 for (int i = 0; i < 16; i++)

 {

 scores[i] = 0;

 }

 winnerName = "";

 timer = -120;

 }

 // update the timer

 timer++;

 // play the sound at the start of the game

 if (timer == 0)

 {

 dingSound.Play();

 }

 // if A is pressed and scores[0] is 0 copy the timer

 if (oldpad1.Buttons.A == ButtonState.Released &&

 pad1.Buttons.A == ButtonState.Pressed && scores[0] == 0)

 {

 scores[0] = timer;

 }

 // Repeat for other buttons and gamepads

 if (timer == 120)

 {

 int winningValue = 120;

 int winnerSubscript = 0;

138	 Part II  Images, Sound, and Text

 for (int i = 0; i < 16; i++)

 {

 if (scores[i] > 0)

 {

 if (scores[i] < winningValue)

 {

 winningValue = scores[i];

 winnerSubscript = i;

 }

 }

 }

 if (winningValue != 120)

 {

 winnerName = names[winnerSubscript];

 }

 else

 {

 winnerName = "**NO WINNER**";

 }

 }

 base.Update(gameTime);

}

This version of Update works out the winner two seconds after the sound has been played.
It places the name of the winner in the variable winnerName, which can then be displayed
in the Draw method. When the game is started, the winnerName is set to an empty string so
that the name appears only when it has been calculated.

There is one further improvement to this code, which is that if all the players have pressed
their buttons before the sound, no one wins. The program checks to see if the winningValue
has been changed by the search for the best time. If no value better than 120 was found, it
means that everyone pressed their button too early. As a result, the program displays “**NO
WINNER**”.

Sample Code: 03 ReactionTimer with Winner Display  The 03 ReactionTimer with Winner
Display project in the resources for this chapter contains a fully working version of the game that
displays the winner.

Conclusion
In this chapter you’ve created another party game, discovered how to measure time and
trigger events. You’ve also started to work with arrays as a means of allowing your programs
to work much more effectively with collections of data.

	 Chapter 8  Creating a Timer	 139

Chapter Review Questions
And now yet another popular set of review questions. Just remember that there is nothing
like knowing what you know. Prove it by saying whether these statements are true or false.

	 1.	 The C# code int[] scores; creates an array that could hold four integers.

	 2.	 An array can hold any type of data.

	 3.	 An array is an object.

	 4.	 The first element in an array has the subscript 1.

	 5.	 It doesn’t matter if your array subscript values are out of range.

		 141

Chapter 9

Reading Text Input
In this chapter, you will

n	 Discover how the keyboard works in Microsoft XNA.

n	 Use enumerated types.

n	 Use arrays and references.

n	 Work with strings of text.

n	 Create a message board program.

Using the Keyboard in XNA
The Xbox itself does not have a keyboard, but you can plug any Universal Serial Bus (USB)
keyboard into an Xbox and it will work. XNA programs use the keyboard in the same way
whether they are running on an Xbox or a Microsoft Windows PC. In this chapter, you
explore how you can use the keyboard in your XNA games. At the same time, you find out
more about how C# programs can manipulate text.

Program Project: Message Board
The next program you make won’t be a game as such, but rather an extension to one
of your earlier programs. You create a message board that can be used to display text
for all to see. You can use this to tell people where you are (really cool kids might have
one on the outside of their bedroom door to show when they are free/busy and leave
helpful messages for parents like “Please clean”). Or you could use it in the living room
on the big-screen TV to avoid talking to people.

Creating the Message Board Project
You can use an earlier project, the BigClock project in the 06 3D Clock MoodLight folder in
the resources for Chapter 5, “Writing Text,” as the starting point of your message board. This
provides a clock (which would be a nice thing to have on the message board) and also has
the code that lets you display text on the screen.

142	 Part II  Images, Sound, and Text

Registering Key Presses
You’ve used the keyboard before in the Color Nerve game in Chapter 3, “Getting Player
Input.” You used it alongside the gamepad as follows:

GamePadState pad1 = GamePad.GetState(PlayerIndex.One);

KeyboardState keys = Keyboard.GetState();

if (pad1.Buttons.B == ButtonState.Pressed ||

 keys.IsKeyDown(Keys.R))

{

 redIntensity++;

}

This code increases the intensity of the red part of your color if the B button on the gamepad
is pressed or the R key is pressed on the keyboard. The IsKeyDown method is provided with
a parameter that tells it which key to test for. If that key is pressed down, the method returns
true. By calling IsKeyDown with different parameters, you can check to see if particular keys
are pressed. This is particularly useful in a game situation because a player might be holding
down several keys at once, such as holding down an arrow key to move a spaceship as well as
pressing the spacebar to fire a weapon.

The previous code is using inputs in a level-sensitive mode in that so long as the R key is
held down, the intensity value increases. However, you’ve seen that this is not always how
you want to use inputs. Sometimes you want them to be edge-triggered so that you register
an event only when something changes. You used edge-triggered events to detect button
presses to create the button-bashing games in Chapter 6, “Creating a Multi-Player Game,”
and also in the reaction timer game in Chapter 7, “Playing Sounds.” For a keyboard to be
useful, it must be edge-triggered; you want to know only when the key changes from up
to down. You can’t just say that a key has been pressed if IsKeyDown says it’s down at any
particular time.

There are two reasons that you can’t do this. The first is that if you test the keyboard 60 times
a second, your program might decide that a particular key has been pressed 60 times a second.
The second reason is that when people type, they often press several keys at once. When I type
the word “the,” I find that as I press the “h” character, I still have the “t” held down. This is called
“rollover,” and hardware designers have been dealing with this ever since keyboards were first
used on computers. So you need to write some kind of keyboard edge-triggered code.

Note  At this point, it’s worth mentioning that reading text from a keyboard in XNA is a lot
trickier than reading text in other programming environments. This is because in XNA, the
keyboard handling is really designed for playing games.

	 Chapter 9  Reading Text Input	 143

Note  In conventional programming, there are commands that let you read in a line of text
that the user enters. If you write programs using other frameworks to run in the Windows
environment, you can request that a method be called each time the user presses a key.
However, you’re using XNA, so you just have to live with this. The only good news is that this
does provide a good way to learn some fundamental programming principles along the way.

Detecting When Keys Are Pressed
You can detect a key being pressed by comparing the current state of the keyboard with the
state it had previously. If a key is shown as being in the down position and it was previously
up, this means that it must have been pressed, and you need to register it. You could do this
on an individual key basis as follows:

if (keyState.IsKeyDown(Keys.R) && oldKeyState.IsKeyUp(Keys.R))

{

 // if we get here the key R has just been pressed

}

This code tests to see if the R key has just been pressed. The variable oldKeyState holds
the previous state of the keyboard, and the variable keyState holds the current state. The
problem with this approach is that you would need to perform this test for every single key
on the keyboard, which would take a while to write. Fortunately, there’s a slightly easier way
to do this. The KeyboardState structure provides a method called GetPressedKeys that
gives you an array of the keys that are currently pressed. You’ve seen arrays before; you made
one to hold the score values of the reaction timer game in Chapter 8. This time, the array is
being used to allow a method to return a set of answers, each of which identifies a key that is
currently pressed. The elements in the array are of type Keys.

Note  There is potential for confusion here. You can use a key on a keyboard to type a character.
In this case, the word type means the action of typing. However, within the C# language the type
of a variable determines what the variable can be used for.

The Keys Type
Part of the fun of programming is deciding the best way to store the things that a program
must work with. You’ve seen that you can use the byte type to hold small integer values (in
the range 0 to 255) and the int type to hold integer values in a wider range. We have also
seen that XNA provides a variety of types that can hold game-specific things like textures
and colors. The designers of XNA needed a way to represent a key on the keyboard so that
programmers can write programs that react to a particular key being pressed. You’ve already
used values of type Keys in your programs; Keys.R is used in the previous code to ask
IsKeyDown to test whether the R key is being pressed.

144	 Part II  Images, Sound, and Text

Enumerated Types
The Keys type is a kind of type that I haven’t discussed yet. It’s an enumerated type. The
word enumerate means to “count” or “number” items. Enumerated types are created by
programmers when they need only a particular range of values to represent something.
When the XNA team realized they needed to store information about a particular key on the
keyboard, they could have used numbers (for example, they could have decided that A was
65, B was 66, and so on). However, they decided to create an enumerated type instead.

An enumerated type is one where the programmer defines the range of possible values that
variables of this type can have and creates names for each of these values. Possible keys on a
keyboard include the letter keys, A to Z, and the digit keys, 0 to 9, as well as the left and right
Shift keys, the Enter key, and the Esc key, so the Keys type has a value for each of these.

The Great Programmer Speaks: Enumerated Types Are Useful  The Great Programmer
is a big fan of enumerated types. She says that if you create a type that can have only certain
values, it reduces the chances of your program doing silly things. As an example, she says that if
you had a game that was either in Attract mode (nobody playing), Play mode (game in progress),
or High Score mode (entering the high-score value), it makes very good sense to represent these
states with a variable that can have only one of those three values. You could use an integer to
store this and remember that 0, 1, and 2 mean the three different states, but this would not stop
an idiot programmer (or your younger brother) putting “97” in there and causing the program to
do strange things.

The Keys enumeration does not include separate values for capital (uppercase) A and little
(lowercase) a. It just represents the key itself. Your program needs to check if the A key and a
Shift key are being pressed at the same time. If they are, the user is typing an uppercase A.

Working with Arrays, Objects, and References
The GetPressedKeys method returns an array of Keys values. Each element in the array
describes a key that is presently pressed. The more keys that are pressed, the more elements
are in the array. Figure 9-1 shows how such an array might look.

0

Keys.A Keys.LeftShift Keys.D1 Keys.B

1 2 3

Figure 9-1  A sample Keys array

	 Chapter 9  Reading Text Input	 145

From the illustration, you can see that when the method was called, the A key, the left Shift
key, the digit 1, and the B key are all pressed down. This means that to determine which keys
have been pressed on the keyboard, you need to work through the array of key information
supplied by the GetPressedKeys method. However, before you write the code to do this,
it’s time to take a detour into how arrays and objects work together and consider what the
GetPressedKeys method actually gives you.

Values and References
Up until now, you’ve treated all objects equally. You’ve used byte, string, Texture2D,
double, Color, SpriteBatch, and lots of other kinds of objects in your XNA programs and
treated all of them in the same way. You know that different objects hold different amounts
of data and that this data is held inside the object in fields. You also know that objects expose
properties that you can use to access the values of the fields in the object and that objects
also have methods that you can use to ask an object to do something for you. You can
declare variables of these types, give them identifiers, and assign values to them using the
= operator. Sometimes you need to use the key word new to create instances (for example,
for SpriteBatch), and sometimes you don’t (for byte). Now is the time to improve your
understanding of how objects are organized in memory. You need to consider the difference
between value and reference types.

An array is a type that’s managed by reference. It’s very important that you understand how
references work in C# programs. The Great Programmer reckons that you can’t call yourself a
proper programmer unless you understand how references work, and you need to consider
this now. A reference is a kind of variable that refers to something. It doesn’t hold any data;
rather, it refers to the object in memory that contains the data. If you wanted an array that
could hold four Keys values, you would write the following:

Keys[] pressedKeys;

pressedKeys = new Keys[4];

The first statement creates an array reference called pressedKeys. The second statement
makes an array that can hold four Keys values. These are two separate actions. When they
are complete, you have an array reference that has been made to refer to a particular
four-element array of Keys that is sitting in memory somewhere. At the moment, the
pressedKeys reference is the only way that you can locate and use that four-element array.

Arrays as Offices
If you want to go back to the office scenario, you can think of an array as an office, as shown
in Figure 9-2.

146	 Part II  Images, Sound, and Text

Desk

Mr. [] Mrs. Length

[] Length

Array office

Keys.A

Figure 9-2  The Keys array as an office

The office holds the usual desk with the properties on it and the telephones for the behaviors
that the object can support. The array type exposes a property called Length that’s used
to find out how many elements there are in the array. When the Length phone rings,
Mrs. Length gets up, gets the number of array elements on the property table, and tells the
caller the result as follows:

int keyCount = pressedKeys.Length;

This code shows how the Length property is used. If the pressedKeys reference refers to the
array you created previously, the keyCount integer would be set to 4.

There’s also another strange-looking property called [] in your array office. This is how
elements are accessed. Mr. [] provides access to the pile of elements on the table. He is
given the subscript value and then counts down the pile of elements on the table to get to
the one that you want. If you give the subscript 0, you get the top one; the subscript 1 gets
you the one below that; and so on. Mr. [] can read values off the array elements and also
can write new values at the appropriate place in the pile. The following code shows how
Mr. [] is used:

pressedKeys[0] = Keys.R;

It would cause him to put the value Keys.R in the element on the top of the pile.

You can think of a reference to an object as the phone number that you use to call to the
people in that office. When a new instance of a class is created, it’s as if you built an office,
put in a desk and telephones, and hired a staff member for each behavior. Each telephone
is identified with the phone number of the office, followed by an extension for the behavior
in the object that you want to contact. So you could use 123435.Length to get a hold of
Mrs. Length in office 12345. Of course, in reality, a reference is the place in memory where the
object is stored rather than a telephone number, but the principle is the same. When you’re

	 Chapter 9  Reading Text Input	 147

given a reference, all you’re told is how to get hold of something. The following code would
create a new array and then set pressedKeys with the “telephone number” of that array:

pressedKeys = new Keys[4];

The only way that you can get hold of this array is by using pressedKeys to locate it. If the
pressedKeys variable is destroyed or overwritten, the object might as well not exist, as you
have no way of getting in touch with it. This is the same as if you met someone wonderful
at a party and failed to get their telephone number. If you can’t get to an object, it might as
well not be there.

Say Hello to the Garbage Collector
Within C#, there’s a special mechanism for getting rid of objects that might as well not be
there. The garbage collector process has the job of looking for objects that do not have any-
thing referring to them and removing them from memory. Memory allocation is an impor-
tant part of programming, and you need to be careful not to make too much work for the
garbage collector. An idiot programmer could write the following C# code:

Keys[] pressedKeys ;

pressedKeys = new Keys[100];

pressedKeys = new Keys[200];

This is very stupid code. It’s completely legal and would compile and run, but it’s still
very stupid because the 100-element array that was created in the second statement is
immediately made useless in the third, where pressedKeys is made to refer to another,
larger array. This is like building a brand-new office and then destroying the only copy of the
telephone number that could be used to contact it. The garbage collector would eventually
notice that the array object had no references referring to it and would destroy it, but until
this happened, a large chunk of memory would be unusable.

The Great Programmer makes sure that when she writes a program, it does not repeatedly
create and destroy objects in this way; as a result, her software runs quickly and uses only the
minimum amount of memory.

Using References and Values
You can see that reference variables are quite different from “ordinary” variables that simply
hold values. It’s important that you understand the difference. A reference variable holds the
“telephone number” of an instance of an object. A value variable holds a particular value, for
example:

int myAge;

myAge = 21;

148	 Part II  Images, Sound, and Text

These statements declare an int variable called myAge and set it to the rather optimistic (in
my case) value of 21. You can think of myAge as a piece of paper with space to write a single
integer value on it. When a value is assigned to the variable, it’s equivalent to writing a new
number on the paper. If I assign the value in myAge to another int variable, the value on the
paper is copied across:

int myAge;

myAge = 21;

int tempAge;

tempAge = myAge;

You now have a new int variable called tempAge. This has the value 21 written on it because
that’s the value that was copied from the myAge variable. In other words, when you work with
value types, you’re copying values from one piece of paper to another. Changing the value
written on one piece of paper does not change the value on another:

tempAge++; // this will not change the value in myAge

If the value in tempAge is increased by 1, it now holds the value 22, but myAge still has the
value 21.

However, consider what happens when the program performs assignments using references:

Keys[] pressedKeys ;

pressedKeys = new Keys[100];

Keys[] oldKeys;

oldKeys = pressedKeys;

The oldKeys variable is a reference that can refer to an array of Keys. If I set oldKeys equal
to pressedKeys, it means that it refers to the same object as pressedKeys does. In other
words, it contains the same office phone number. Whether you use oldKeys.Length or
pressedKeys.Length, you get the same Mrs. Length on the end of the line. So you can see
that the following statements both set the element at the start of the same array:

oldKeys[0] = Keys.X;

pressedKeys[0] = Keys.Y;

First, the element is set to X; then it is set to Y. At the end of these two statements, both
oldKeys[0] and pressedKeys[0] contain Y.

An object managed by reference doesn’t have a name; rather, it’s identified only in terms of
the things that are referring to it. You should never say “the array called oldKeys”; you can
say only “the array that oldKeys is currently referring to.” During the lifetime of the oldKeys
reference, it could be made to refer to many different arrays.

	 Chapter 9  Reading Text Input	 149

Why Do We Have References and Values?
You might be wondering why the designers of C# have bothered with value and reference
types. All they have done so far is make programming more confusing in that assignment
statements can assign either references or values. Look at this code:

x = y;

This statement could mean, “Make the reference x refer to the same thing that y refers to,”
or it could mean, “Take the value in y and copy it into x.” Without knowing what types x and
y are, you can’t decide. However, references are very useful in programs. As an example,
consider the Texture2D type. You’ve used this in your programs to store an image you might
want to draw. The image might be very large, in which case a Texture2D instance would
take up a lot of memory. Because of this, textures are managed by reference. If I want to
give someone my texture, I’ll pass them a reference to it. In a game, you often want to do
this because you can use the same texture to draw lots of objects. In a space shooter game,
each of the identical aliens that are attacking your spaceship could be drawn using the same
texture. Value types, on the other hand, are small and copies can easily be passed between
different parts of a program.

References and GetPressedKeys
Up until now, you’ve been using value types and reference types without worrying too much
about the difference, but as you write more complicated games, you need to deal with
both kinds. In Chapter 14, in the section “References,” you’ll revisit the way that value and
references are used when you design some data types of your own; for now, the important
thing to remember is that an array is a type that is managed by reference, and that what you
get back from GetPressedKeys is a reference to an array.

Displaying Keys
You start your message board off by writing a program that displays the keys that are
presently being held down on a keyboard. The Update method sets a message string in the
game world that the Draw method puts up on the screen for everyone to see. The code in
the Update method must look through the array of pressed keys and add a description of
each key to the message string as follows:

// Game World

string messageString;

protected override void Update(GameTime gameTime)

{

 KeyboardState keyState = Keyboard.GetState();

150	 Part II  Images, Sound, and Text

 // Allows the game to exit by pressing the Esc key

 if (keyState.IsKeyDown(Keys.Escape))

 {

 this.Exit();

 }

 // Get the pressed keys and display them

 Keys[] pressedKeys;

 pressedKeys = keyState.GetPressedKeys();

 messageString = "";

 for (int i = 0; i < pressedKeys.Length; i++)

 {

 messageString = messageString + pressedKeys[i].ToString() + " " ;

 }

 base.Update(gameTime);

}

The first part of the method sets messageString to an empty string. Then the string
representation for each Keys item in the array is added to the end of the message. You’ve
used the ToString method before when you converted dates and times into strings for your
clock. ToString asks n object to provide a string of text describing the information it holds.
When you call ToString on an instance of an object, it should tell you what key it is. The
string that is built in the Update method is displayed by the Draw method:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 Vector2 messageVector = new Vector2(50, 100);

 spriteBatch.Begin();

 spriteBatch.DrawString(font, messageString, messageVector,

 Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

This Draw method simply draws the messageString on the screen. Figure 9-3 shows the
output of the program if the Caps Lock key, the A key, and the left Alt key are held down.

Sample Code: Key Viewer  All the sample projects can be obtained from the course instructor.
The KeyViewer project in the 01 KeyViewer directory in the resources for this chapter contains a
program that uses the Draw and Update methods described in this section to display the keys
that are being pressed on the keyboard. Note that different hardware is able to support different
numbers of keys being held down at the same time.

	 Chapter 9  Reading Text Input	 151

Figure 9-3  Drawing level-detected key presses on the screen

Detecting Key Presses
As you see with the KeyViewer program, the name of the key that is pressed is displayed so
long as the key itself is held down. However, as we found with the gamepad, you want to
register a key press only when you see a key change from up to down. You detect such changes
by comparing the present state of the keyboard with the previous state. Figure 9-4 shows how
this might work. It shows the oldKeys that were previously pressed and the pressedKeys that
are presently pressed. Your program must decide which key has just been pressed.

2

Keys.A

0 1

Keys.LeftShift

Keys.BKeys.A Keys.LeftShift

oldKeys[]

PressedKeys[]

Figure 9-4  Detecting key presses

152	 Part II  Images, Sound, and Text

If you look at Figure 9-4, you can see that the key that must have just been pressed is the
B key. The A key was already pressed, as was the left Shift key. You need to find a sequence of
operations that can work this out. This means that it is time to create another algorithm.

When faced with a situation like this, I think that it’s a bit like being a detective. A detective
arrives at the scene of a crime, looks at the evidence, and then tries to build up a sequence
of events that explains everything that has been found. A programmer has some information
that comes in from which he or she must produce the desired output by a process that he or
she needs to devise. If you have a problem like this, it’s often useful to set out what you know
and what you want to find out and then try to find a way of getting one from the other.

In this case, in the input side, you have a list of keys that were pressed before and a list of
keys that are pressed now.

The output that you want is any keys that have been pressed since you last looked. If you think
about it for a while, you can come up with a way to tell which keys have just been pressed:

“Any keys in the list of keys that are pressed now that are not in the list of keys that were
pressed before are ones that have just been pressed.”

You can test this by applying it to the keys in Figure 9-4. Both the A key and the left Shift
key are in the oldKeys array and the pressedKeys array. However, the B key is only in the
pressedKeys array, so it must have just been pressed down. At the moment, your solution
does not give you any steps to follow; what you need to do now is convert it into a proper
algorithm. Initially, you can write this in English; then you can convert it into C# code.

“Take each value in pressedKeys in turn and check to see if it occurs in oldKeys. If you don’t
find the value in oldKeys, that key must have been pressed since you last looked.”

You know that to work your way through an array, you need to use a for loop of some kind.
In this case, you need to put one for loop inside another because you need to look through
the oldKeys array for each of the values in pressedKeys. This is called “nesting” the for
loops and is a very common programming technique:

// String we are going to display – initially an empty string

string messageString = "";

// the keys that were pressed before – initially an empty array

Keys[] oldKeys = new Keys[0];

protected override void Update(GameTime gameTime)

{

 KeyboardState keyState = Keyboard.GetState();

 // Allows the game to exit by pressing the Esc key

 if (keyState.IsKeyDown(Keys.Escape))

 {

 this.Exit();

 }

	 Chapter 9  Reading Text Input	 153

 // the keys that are currently pressed

 Keys[] pressedKeys;

 pressedKeys = keyState.GetPressedKeys();

 // work through each key that is presently pressed

 for (int i = 0; i < pressedKeys.Length; i++)

 {

 // set a flag to indicate we have not found the key

 bool foundIt = false;

 // work through each key that was previously pressed

 for (int j = 0; j < oldKeys.Length; j++)

 {

 if (pressedKeys[i] == oldKeys[j])

 {

 // we found the key in the previously pressed keys

 foundIt = true;

 }

 }

 if (foundIt == false)

 {

 // if we get here we didn't find the key in the old keys, so

 // add the key to the end of the message string

 messageString = messageString + pressedKeys[i].ToString();

 }

 }

 // remember the currently pressed keys for next time

 oldKeys = pressedKeys;

 base.Update(gameTime);

}

This version of Update takes each key in the pressedKeys array and searches the oldKeys
array to see if that key is in there. If it doesn’t find the key, it adds a description of the key to
the message string. I’ve added quite a few comments (the lines that start with //) that should
make the code easier to understand. Note that I am using a bool variable called foundIt to
record whether a key has been found when the old key array is searched. If this flag is not
set during a search, that key value is not present in the old array and must be a new key. The
message string itself is drawn in the same way as it was in the previous program.

Don’t worry if you find this code confusing at first; just remember the problem that it is
trying to solve. The program has two lists of keys, an old list and a new list. It is trying to
detect new arrivals (that is, those who are in the new list but not in the old one). You would
use the same algorithm if you were in charge of greeting people arriving at a party. Every
now and then, you would look around and try to spot any new faces that you hadn’t seen
before. If you were organized, you would keep a list of those people you have seen, and then
look out for people not on that list. If you look at the code, you should find that it is doing
exactly that.

154	 Part II  Images, Sound, and Text

Sample Code: First Message Display  The MessageBoard project in the 02 First Message
Display directory in the resources for this chapter contains a program that uses the Update method
from this section to build and display a message from the keys that are pressed on the keyboard.

If you look closely at the code in Update, you find that at the end of the method, the value of
oldKeys is set to refer to the pressedKeys array so that the next time that Update is called,
it will have some old keys to check against. However, the very first time that Update is called,
there are no old keys. This problem has been solved by making oldKeys refer to an empty
array when the variable is declared:

// the keys that were pressed before – initially an empty array

Keys[] oldKeys = new Keys[0];

This declaration creates the oldKeys array reference and makes it refer to an array that
contains zero elements. The program must do this because the Update method uses this
reference to find the list of the keys that were pressed before. It turns out that this is a problem
only if there is a key pressed the very first time that Update is called, which is not normally the
case. However, I am confident that your younger brother would soon find this mistake.

The Great Programmer Speaks: Testing Is Vital  Our Great Programmer reckons that
good testers are worth their weight in gold. She might not include your younger brother in this
category, but she does say that people who are good at breaking programs are very valuable.
You might not think of asking the question, “I wonder what would happen if we ran the program
with a key already held down?” but it is useful if someone tries this before the program is actually
given to customers. The Great Programmer even goes as far as rewarding people who find faults
in her programs so that she can identify and fix mistakes before they become faults. When you
start thinking about selling your games (and XNA Creators Club now makes this viable), it is
useful to find a bunch of people like your younger brother and offer them a free soda for every
new bug they find in the program.

Using break to Improve Performance
The program that you’ve written works fine, but it’s not as efficient as it could be. There’s an
additional feature of C# that you can use to improve it. The C# language provides a key word
called break that you can use to abandon the execution of a loop. When you’re searching
through oldKeys to see if it contains a key that is currently pressed, as soon as you find a
match, you need not look any further. You can use the break key word to break out of the
search loop, as shown in bold type here:

// work through each key in that was previously pressed

for (int j = 0; j < oldKeys.Length; j++)

{

 if (pressedKeys[i] == oldKeys[j])

	 Chapter 9  Reading Text Input	 155

 {

 // we found the key in the previously pressed keys

 foundIt = true;

 // no need to look any further

 break;

 }

}

If the program reaches the break instruction, it abandons the loop and continues running at
the statement after the loop.

Decoding Key Characters
You can now detect individual key presses, which is nice. However, at the moment, the text
you get from the keys is not as useful as you might like. The letter keys seem to work okay,
but keys like Shift and the spacebar do not produce the output you want. Figure 9-5 shows
what happens if you try to type in “Hello World.” When you press Shift to get the uppercase
characters, this is registered as a key, and the spacebar key doesn’t work properly, either.

Figure 9-5  Some problems with typed text

156	 Part II  Images, Sound, and Text

What you need to do next is decode the keys into more useful strings. If you get the value
Keys.A, you’d like to have “A,” and so on. You could use a large number of if statements to
do this, but C# provides a better way of doing this, called a switch statement:

string keyString = ""; // initially this is an empty string

switch (pressedKeys[i])

{

 // digits

 case Keys.D0:

 keyString = "0";

 break;

 case Keys.D1:

 keyString = "1";

 break;

 // rest of digits here

 case Keys.A:

 keyString = "A";

 break;

 case Keys.B:

 keyString = "B";

 break;

 // rest of alphabet here

 // punctuation characters

 case Keys.Space:

 keyString = " ";

 break;

 case Keys.OemPeriod:

 keyString = ".";

 break;

}

The switch statement selects a particular case based on the value of a control expression. In
this case, the control expression is pressedKeys[i], the value of the key you’ve discovered
has just been pressed. Depending on this value, the code sets a string called keyString to
the appropriate text. Once the string has been set, the code uses the C# break key word,
causing the program to exit from the switch statement. You’ve seen break before when you
used it to exit from a for loop. You can also use it to exit from a switch statement.

If the value in the control expression does not match any of the cases, the statement has no
effect. The switch statement does not make anything possible that you couldn’t do with a
large number of if statements, but it does make programming easier in some situations.

Using the Shift Keys
If you use the previous code to decode your keys, you have a usable text reader, but at the
moment, it doesn’t use the Shift keys properly, so every letter that is typed is in uppercase.

	 Chapter 9  Reading Text Input	 157

However, it turns out that it’s easy to fix this by adding the following code after your switch
statement:

if (keyState.IsKeyUp(Keys.LeftShift) &&

 keyState.IsKeyUp(Keys.RightShift))

{

 keyString = keyString.ToLower();

}

I’m quite proud of this code. It tests the state of the two Shift keys on the keyboard. If both
Shift keys are in the up position, the string that has been pressed is converted into the
lowercase version of that text. This works because the string type provides a method called
ToLower that provides a lowercase version of the string, which turns out to be exactly what
you want. ToLower is clever in that it has no effect on characters other than letters, such as
numbers and punctuation.

You could expand this code to allow the user to type in the shifted versions of the number
keys. You could also create a flag variable to keep track of the Caps Lock key.

Editing the Text
The string type provides a huge number of methods that can be used to get a hold of
processed versions of the string. It provides one called ToUpper, which produces a version
of the string containing all uppercase letters; it also provides a method that can be used to
chop out a certain number of characters from the string. You can use this to provide your
user with simple text editing, as follows:

if (pressedKeys[i] == Keys.Back)

{

 if (messageString.Length > 0)

 {

 messageString = messageString.Remove(messageString.Length - 1);

 }

}

If the user presses the Back key, this code removes a key from the end of the messageString.
It does this by using the Remove method, which removes characters from the end of the
string. Remove is told the position to start removing from, so I give it the length of the string
minus 1 to remove the last character. The code also checks to see if the length of the string is
zero because if the string has zero length, there’s nothing to remove.

The final enhancement that you need to add is the ability to take a new line in our string so
that the user can create messages that are more than one line in size. A string can contain
special control characters that control the layout of the text. The most useful of these is the
newline character, which instructs whatever is processing the string to take a new line. It turns
out that the DrawString method that you use to draw the text on the screen takes a new
line when it sees this character in a message, so all you need to do is convert the Enter key

158	 Part II  Images, Sound, and Text

(which users press when they want a new line on the display) into a newline character. The
convention in C# strings is that a control character is preceded by the backslash character (\).
The following case is added to your switch statement to convert the Enter key into a string
that causes DrawString to take a new line:

case Keys.Enter:

 keyString = "\n";

 break;

C# provides other special formatting characters, but for now, you use only the newline character.

Sample Code: Message Board Program  The MessageBoard project in the 03 Full Message
Display directory in the resources for this chapter contains a program that uses the previously
mentioned code to implement a message display with a changing color background, 3-D text,
and a clock.

Figure 9-6 shows the fully featured message board in action. The clock is always drawn on
the line beneath the text.

Figure 9-6  A message board with clock

You can experiment with the sample code for the Message Board program. You could try
using different sizes of text to create different kinds of displays.

	 Chapter 9  Reading Text Input	 159

Conclusion
You now have a way that users can type text into your XNA program. This can be the basis
of some interesting games, as you’ll see in later chapters. You’ve also started to look at
how data is stored and structured in C# programs and at the difference between value and
reference types. You’ve used a new program structure, the switch statement, that lets a
program select among a number of different options depending on the value of a particular
expression. Finally, you’ve taken a look at the things you can do with strings.

Chapter Review Questions
And now the ever-popular chapter review. The questions are different, but the range of
answers is still the same: true or false.

	 1.	 In XNA, a keyboard can register only one key at a time.

	 2.	 The Keys type holds a string.

	 3.	 There are separate Keys values for uppercase A and lowercase a.

	 4.	 The Keys type is an enumerated type.

	 5.	 A reference gives the location of an object in memory.

	 6.	 It’s not possible for two references to refer to the same object in memory.

	 7.	 The garbage collector runs only when a program has finished.

	 8.	 The break key word causes your program to stop.

	 9.	 A switch statement is used to turn off the power to the computer.

	 10.	 The string class provides a method to produce an uppercase version of itself.

	 11.	 It’s not possible to add two strings together.

		 161

Part III

Writing Proper Games

In this part:

Chapter 10: Using C# Methods to Solve Problems . . 163

Chapter 11: A Game as a C# Program . . 189

Chapter 12: Games, Objects, and State . 211

Chapter 13: Making a Complete Game . 229

Chapter 14: Classes, Objects, and Games . 249

Chapter 15: Creating Game Components . 277

Chapter 16: Creating Multiplayer Networked Games . 307

		 163

Chapter 10

Using C# Methods to Solve
Problems

In this chapter, you will

n	 Use image manipulation to write a game you might like to play.

n	 Discover how to create and use your first C# methods.

n	 Take a look at test-driven development.

n	 Make some mistakes and discover how to fix them.

Introduction
Your programming skills are coming along. Your programs can store different kinds of
numbers, do things with them, and even make decisions. You also know how to add image
assets to your games and display them on the screen.

Now you create a game based on the image manipulation. To make your life easier, you
create some C# methods of your own, and you also look at a development technique called
test-driven development.

Playing with Images
In Chapter 4, “Displaying Images,” you discovered how to load images into your programs.
Now you can start to have some fun with them. Up until now, the image drawing that you
performed simply displays a texture on the screen in the same place each time the Draw
method is called. It would be really nice to be able to move the picture around the screen and
maybe even zoom in on it. You might even find that these abilities give you an idea for a game.

Zooming In on an Image
When you wrote your image display program, you created a variable called jakeRect of type
Rectangle. This rectangle was the destination of the draw action. The size of the rectangle
was set to the full screen in the Initialize method, as follows:

protected override void Initialize()

{

 gameSpriteBatch = new SpriteBatch(graphics.GraphicsDevice);

 jakeRect = new Rectangle(

164	 Part III  Writing Proper Games

 0, // X position of top left hand corner

 0, // Y position of top left hand corner

 GraphicsDevice.Viewport.Width, // rectangle width

 GraphicsDevice.Viewport.Height); // rectangle height

 base.Initialize();

}

When the Draw method ran, it drew the image texture in the jakeRect rectangle:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 gameSpriteBatch.Begin();

 gameSpriteBatch.Draw(jakeTexture, jakeRect, Color.White);

 gameSpriteBatch.End();

 base.Draw(gameTime);

}

Now you change the way that the picture is drawn by changing the values in jakeRect as
the program runs. XNA can resize the picture for you so that you can move and scale your
picture very easily. You start by adding the following Update method to the display program:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 jakeRect.Height++;

 jakeRect.Width++;

 base.Update(gameTime);

}

Each time the Update method is called, the width and height fields of the rectangle are
increased by one. These fields are the data members inside the rectangle that represent the
rectangle dimensions. You get a hold of a field in an object by giving the identifier of the
variable a period character ( . ) and then the name of the field you wish to use. Remember
that this is the rectangle that describes where you want Jake to be drawn, so changing the
size of this rectangle changes the size of the image on the screen.

Microsoft XNA does not care about the fact that you’re “drawing off the screen” and simply
shows you the part of the picture that fits on the screen. Figure 10-1 shows what the screen
looks like after a program using this Update method has been running for a few seconds.

If you leave the program running a very long time, it only zooms in on a particular blade of
grass, but it does show how you can change the way that images are placed on the screen.

	 Chapter 10  Using C# Methods to Solve Problems	 165

Figure 10-1  Stretching Jake

Sample Code: Jake Zoom  All the sample projects can be obtained from the course instructor.
The sample project in the 01 Jake Zoom directory in the resources for this chapter draws a picture
of Jake and then slowly zooms in on it.

Game Idea: Super Zoom Out
You can use this zooming ability to create a game. Rather than starting with a picture
and then zooming in on it, you could start with a zoomed image and slowly pull
back (zoom out) to reveal more and more of the picture. The first person to correctly
identify the picture wins the game. This game is quite fun, particularly if the images are
ones that are familiar to the players.

Creating a Zoom-Out
The starting point of the game should be an enormous drawing rectangle that you reduce in
size as the game continues, causing more and more of the image to be visible.

166	 Part III  Writing Proper Games

Updating the Drawing Rectangle
To make this work, you need to change the way that you set up the Rectangle, which
describes the part of the image that you’ll draw. Here’s the code for that:

protected override void Initialize()

{

 gameSpriteBatch = new SpriteBatch(graphics.GraphicsDevice);

 jakeRect = new Rectangle(0, 0, 6000, 4500);

 base.Initialize();

}

This creates a rectangle that’s 6,000 pixels wide and 4,500 pixels high, or 10 times the
original image size and much bigger than the screen. Figure 10-2 shows the effect of using
a rectangle like this. If you use this rectangle to control the draw process, the image is too
large to fit on the display, so it shows only the top right corner.

6000

4500

XNA screen

Figure 10-2  Jake in “Zoom”

The program then reduces the width and height of the rectangle each time Update is called:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 jakeRect.Height--;

 jakeRect.Width--;

 base.Update(gameTime);

}

The idea of this Update is that each time it’s called, the width and height fields of the
rectangle are reduced by one. This decreases the amount of zoom, meaning that more of the
picture will be visible.

	 Chapter 10  Using C# Methods to Solve Problems	 167

Sample Code: Jake Display Bad Zoom  The sample project in the 02 JakeDisplay Bad Zoom
Out directory in the resources for this chapter displays a zoomed-in image of Jake and then uses
the Update method from this section to zoom out.

If you run the program, you find that although the zoom-out idea is a good one, the way it
behaves is not quite what you want. Figure 10-3 shows what happens after you’ve run this
program for a while.

Figure 10-3  Zooming out Jake, a first attempt

More of the picture is visible, but it seems to have been stretched for some reason.
To understand what’s happening, you need to think first about what you set out to do.

	 1.	 You wanted to display only part of the image on the screen. This allows you to show
only part of the image so that the player has to guess what the picture is.

	 2.	 To achieve this, you made the draw rectangle enormous by multiplying its width and
height by 10 so that only part of the drawn image was visible on the screen.

	 3.	 You then created an Update method that reduces the width and height of this rectangle by
one each time it is called so that the amount of image in the screen increases progressively.

	 4.	 You’ve noticed that as this program “zooms out” of the image, it no longer looks right.

168	 Part III  Writing Proper Games

The problem is that each time you reduce the width and height, you’re reducing them by the
same amount (that is, both the width and the height get smaller by one). Figure 10-4 shows
the path followed by the bottom left corner of the Jake image if you repeatedly reduce the
width and height of the picture by one each time.

6000

4500

XNA screen

Figure 10-4  Zoom path behavior

The path does not follow the diagonal of the image; instead, it moves up too quickly and
scrunches the height of the picture. This happens because you’re reducing the height and
width by the same amount each time. Because the picture is not as high (4,500) as it is wide
(6,000), the height is “used up” more quickly, leading to a scrunched picture.

You can fix the problem by reducing each value by a percentage each time rather than by
a particular value. For example, if you wanted to reduce the picture size by 1 percent, you
would take 45 (1 percent of 4,500) off the height and 60 (1 percent of 6,000) off the width.
This sounds a bit complicated, so let’s ask the Great Programmer for advice.

The Great Programmer Speaks: Break Complicated Things Down  The Great
Programmer thinks that it’s always a good idea to break more complicated things down into
smaller chunks using methods. She says there are three reasons to do this:

n	 It makes the programming simpler.

n	 Perhaps you can find someone else to do that task (or maybe a method already exists to
do that).

n	 You might end up with methods that you can use in other parts of your program.

In this case, you want to reduce the sizes by a particular percentage, so a good starting point is a
method that works out percentages.

Because the Great Programmer is never wrong, you now have to find out how to use
methods to help you solve your problem.

	 Chapter 10  Using C# Methods to Solve Problems	 169

Creating a Method to Calculate Percentages
A method is a block of code that does something for you. Each method has an identifier that
you use to refer to the method when you call it.

Putting a Method into Your Game Class
You’ve seen methods many times before. Mr. Draw and Mrs. Update are methods that
were written by the XNA team for you to use. Now you create a method of your own. This
means that you need to provide a name (identifier) for the method and a way that the
method can tell you the result. You also need to provide a list of instructions for the method
to use when it’s asked to run. Figure 10-5 shows how this might work. You’ve given the
method the name getPercentage, and Mr. getPercentage now has a chair and a telephone
in the Game1 office.

Desk

Mr. Draw Mrs. Update Mr. getPercentage

Game1 office

Draw Update getPercentage

Figure 10-5  A new member of the Game1 class

When the getPercentage telephone rings, Mr. getPercentage jumps up and answers it. He is
told the number and the percentage required. He then needs to work out the answer, write
it down on a piece of paper, and have the value sent back to the caller. The details of what
information is passed into the method (the telephone call) and the result it delivers (what’s
written on the piece of paper) are written in C# as the method header. The details of what
the method does is called the method body. Figure 10-6 shows how this would apply to a
method called getPercentage.

This is not a very good getPercentage method in that it doesn’t work out the result, but it
does show how a C# method is made up of a header and a body.

170	 Part III  Writing Proper Games

int getPercentage(int percentage, int inputvalue)

{
 int result = 0;
 // TODO: work out answer and set result to it
 return result;
}

Method header

Method body

Figure 10-6  A getPercentage method header and body

The method header gives the identifier for the method, what type of result it returns, and the
number and type of any parameters. A parameter is used to feed information into a method.
It’s how you told the Clear method the color to use when the screen was cleared way back
in Chapter 1, “Computers, C#, XNA, and You.” Once the compiler has the header of a method,
it knows what the method “looks like” in that it can create the code to use the method. This
description of a method is often called the signature of the method. The getPercentage
method accepts two integer parameters and returns an integer result. When you create a
method, you decide the type and number of the parameters that the method needs to do its
job. Some methods have many parameters; others have none. The Initialize method does
not accept any parameters; it’s simply called to initialize the game program and does not
need to be told anything.

The method header is followed by the method body, a block of statements that perform the
task for which the method was created. The body can be a very large number of statements
or only one or two. If the method delivers a result (which your getPercentage method
needs to do), then the body must contain a statement that returns a value of the type
specified in the method header. Once the compiler has the body of the method, it knows
what statements need to be performed when the method is called. I’ve put a TODO in the
place where the calculation needs to go. You haven’t seen the return statement before, but
it’s the key word return, followed by the value the method is to send back to the caller.

Calling a Method
You’ve called methods many times in your programs. You use the getPercentage method
as you would any other, but you need to make sure that you supply the right kinds of
parameters, as follows:

height = height - getPercentage(1, height);

	 Chapter 10  Using C# Methods to Solve Problems	 171

This line of code would use getPercentage to reduce the value of the variable called
height by 1 percent. When a method call is made, the program does a number of things in
sequence:

	 1.	 It makes a note of where it is in the program so that it can come back to the right place
when the method finishes.

	 2.	 It gets the values of any parameters and sets them up for the method to use.

	 3.	 It jumps into the method body and performs the statements in the method body.

	 4.	 At the end of the method body, or when it reaches a return statement, it goes back
and delivers whatever value was expected.

	 5.	 Then the program continues running at the statement following the method call.

Note  You need to make sure that you call the method correctly. If you don’t give the expected
number of parameters, or one of them is not the correct type of data, the C# compiler shows you
the errors and refuses to make a program that you can run.

Returning Nothing Using void
The getPercentage method must return a value, but sometimes a method need only perform
a task. The Draw and Update methods are like this. Although they’re given parameters to
work on, they don’t return an answer for the caller to use. Methods that don’t return a result
are given the return type void. This tells the compiler that the method does not deliver any
information to the caller:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 // game draw behavior here

 base.Draw(gameTime);

}

Methods that don’t return anything don’t have to contain a return key word to deliver
a result. Instead, they return when the program reaches the end of the statements in the
method body. Don’t worry about the meaning of the protected and override key words.
If you want a method to return before the end of the method block, you can use the return
key word to cause a return at that point. If the method returns a value, the return key word
must be followed by an expression that delivers a value of the required type.

It’s up to you whether a method you create returns a value. Most of the methods that I write
do return something, usually whether or not the method has worked correctly.

172	 Part III  Writing Proper Games

Creating a getPercentage Method
At this point, you know how to create methods. Now you need to make one that works for
you. You started with an “empty” getPercentage method:

int getPercentage(int percentage, int inputValue)

{

 int result = 0;

 // TODO: work out answer and set result to it

 return result;

}

This code shows how the method works, and this compiles and runs. However, because it
always returns 0, it won’t do what you want. You need to add statements to the method
body to get it to behave as you want.

Testing a Method
At this point, you’ve created a version of getPercentage that doesn’t work properly, and this
seems a bit silly. The Great Programmer tells you that it’s quite sensible to create “broken”
methods like this; you can use them to decide what the method looks like and then go back
and fill in the statements later. You can also use them to write tests, as follows:

protected override void Draw(GameTime gameTime)

{

 if (getPercentage(10, 800) == 80)

 {

 graphics.GraphicsDevice.Clear(Color.Green);

 }

 else

 {

 graphics.GraphicsDevice.Clear(Color.Red);

 }

 base.Draw(gameTime);

}

This code is a test of the getPercentage method that turns the screen green if a call of the
method works and red if it doesn’t. Programmers usually use better ways to perform these
tests, but it demonstrates the principle. This is a version of a professional development
technique called test-driven development.

The Great Programmer Speaks: Test-Driven Development Is the Best Way to Write
Programs  The Great Programmer likes test-driven development even more than she likes shoe
sales, which is to say, a lot. She says that creating tests and then writing program statements that
pass the tests is a very good way to develop software. But she warns that you should design your
tests carefully.

	 Chapter 10  Using C# Methods to Solve Problems	 173

Designing Tests for getPercentage
You could easily write a version of getPercentage that would pass the previously mentioned
single test:

int getPercentage(int percentage, int inputValue)

{

 return 80;

}

This method would pass the one test that you’ve created but would not be a very good way
to work out percentages. It does highlight a very important point, though: A test can prove
only that a particular fault is not present. It can’t prove that there are no faults in the code at
all. The test that you wrote checks that your method could work out that 10 percent of 800 is
80. Even the original method that always returned 0 would work whenever you tried to work
out 0 percent of something or any percentage of 0. If programmers claim that their code is
“fully tested,” usually what they really mean is that they can’t think of a reason it shouldn’t
work, and this is not quite the same thing.

Testing computer programs is really difficult. If you want to test a design for a bridge over
a river, you simply make a test bridge and put increasingly heavy things on it until it breaks.
Then you know the heaviest thing that can go across that kind of bridge. Where computers
are concerned, it doesn’t work like this. A computer program might work with one value and
then fail with another, slightly different one.

The good news (for most of you at least) is that your programs won’t ever do anything
that could be called “mission critical.” However, if you end up writing programs for a living,
you should take testing very seriously. It’s what separates the Great Programmers from the
merely good programmers.

I’ve come up with some C# code that gives your method a reasonable workout. It is not a
particularly comprehensive test, but it will do for now:

protected override void Draw(GameTime gameTime)

{

 if ((getPercentage(0, 0) == 0) && // 0 percent of 0

 (getPercentage(0, 100) == 0) && // 0 percent of 100

 (getPercentage(50, 100) == 50) && // 50 percent of 100

 (getPercentage(100, 50) == 50) && // 100 percent of 50

 (getPercentage(10, 100) == 10)) // 10 percent of 100

 {

 graphics.GraphicsDevice.Clear(Color.Green);

 }

 else

 {

 graphics.GraphicsDevice.Clear(Color.Red);

 }

 base.Draw(gameTime);

}

174	 Part III  Writing Proper Games

Note that I’m using the && (AND) operator to combine a bunch of conditions. You’ve seen the
|| (OR) condition before. I used to test if one thing or another was true. The && condition lets
me test if one thing and another is true. I want all the calls of getPercentage to work before
I show the green screen. If any one of them fails, the && condition returns false, and you’ll
get a red screen. This is not a very sensible way to manage large numbers of tests because
if you get a red screen in this scenario, you have difficulty working out which test has failed.
However, the principle is an important one. The objective now is to create a version of
getPercentage that passes all the previously mentioned tests.

Creating the getPercentage Method Body
You now have a design for the method header and a set of tests for the method, so now you
must create the method body. You could make it work like this:

	 1.	 Calculate the fraction of the amount that you want (this is the percentage divided by
100; in other words, 50 percent would give you 50/100, which is a half).

	 2.	 Multiply the incoming amount by this fraction to create the result.

The getPercentage method that uses this technique looks like the code shown here:

int getPercentage(int percentage, int inputValue)

{

 int fraction = percentage / 100;

 int result = fraction * inputValue;

 return result;

}

First, you work out the fraction; then you do the multiplication. The / operator can be applied
between two operands (things that operators work on) and performs a division. The * operator
is applied in the same way but performs multiplication.

Remember that when the method runs, the parameters percentage and inputValue are set
to the values that they have in the call of the method:

int test;

test = getPercentage (10, 800);

The previous call would be performed with percentage set to 10 and inputValue set to 800:

 int fraction = 10 / 100;

 int result = fraction * 800;

	 Chapter 10  Using C# Methods to Solve Problems	 175

If you plug the figures in and do the sums by hand, the result comes out fine. When you use
this version of the method, though, you get a red screen, which is not good. Something is
broken, and you need to fix it.

Sample Code: Percentage Test  The sample project in the 03 Percentage Test directory in the
resources for this chapter implements the Update method presented in this section. You won’t
ever use this project as the basis of a game, but you do use it to investigate the problems that
you’re having with the getPercentage method.

Debugging C# Programs
By now, you’ve probably started to wonder if zooming is worth all this effort. You’ve done
lots of work and found out about methods, parameters, tests, and other stuff, but you have
a red screen for your trouble. The good news is that the techniques you’re learning are how
all programs are written. The process of failing to get a picture of Jake to zoom properly is
teaching you a lot about how programs are constructed. But now you need to learn some
more things about how C# programs work and how to debug them.

Debugging with Breakpoints
You know that your program isn’t working because the screen goes red when it runs. That
means that at least one of the tests is failing. However, at the moment, you don’t know which
of the conditions is wrong. It would be really nice if you could stop the program and take a
look at the values to see what’s going on at that point. Fortunately, using the magic of XNA
Game Studio you can do this by setting a breakpoint.

A breakpoint is a way of marking a particular statement in your program and saying to XNA
Game Studio “When the program reaches this statement, pause it and let me take a look at
stuff.” This makes your game stop, so you use breakpoints not when you’re playing the game,
but only for debugging. Breakpoints are easy to set; you simply open the C# file in XNA
Game Studio and click on the left margin in the position shown in Figure 10-7. XNA Game
Studio highlights the line in brown, and a brown dot appears against the line. You want to
stop the program when it has calculated a percentage, so the return statement is a good
one to put the breakpoint on.

You can set lots of breakpoints in a program. The program stops at each one when it
gets to that statement. Real programmers call this “hitting a breakpoint,” so I suppose we
should, too.

176	 Part III  Writing Proper Games

Figure 10-7  Setting a breakpoint in XNA Game Studio

Hitting a Breakpoint
If you now run the program, you see that when it gets to the line that you’ve marked as
a breakpoint, it stops. This works whether you’re using a PC, an Xbox, or a Zune for the
development. This is impressive as a technical feat in that when you’re using the Xbox or
Zune, you’re controlling the program remotely from XNA Game Studio but I guess that today
it’s okay to take these things for granted. When your program hits the breakpoint, it stops
and gives you the display shown in Figure 10-8.

Viewing Variables
Now that the program has stopped, you can look at the values of the variables and see
what’s gone wrong. This is very easy to do; you simply rest the mouse pointer over the
identifier of the variable in the code that you’re interested in. A box pops up and tells you the
value in that variable, as shown in Figure 10-9, where I placed the cursor over the fraction
variable.

	 Chapter 10  Using C# Methods to Solve Problems	 177

Figure 10-8  Hitting a breakpoint in XNA Game Studio

Figure 10-9  Viewing a variable value in XNA Game Studio

You can rest the cursor over any variable in the method to find out what it holds. If you do
this the first time that the breakpoint is hit, all the values for fraction, inputValue, and
percentage are 0. This is exactly what you’d expect. The very first call of getPercentage is
as follows:

if ((getPercentage(0, 0) == 0) & // 0 percent of 0

For these input values, the method is working correctly in that 0 percent of 0 is 0. It must be
one of the later calls of getPercentage that’s failing. This means that you need to run the
program a bit further to find the problem. You can do this by pressing the green arrow in
the program controls in the top left corner, as shown in Figure 10-10.

178	 Part III  Writing Proper Games

Figure 10-10  The continue button in the program controls

The program runs and hits the breakpoint again. This is the second call of getPercentage, which
has been asked to work out 0 percent of 100. You can use the debugger to view the result value
again, and you find that it is 0, which is correct. So you need to continue the program again. This
time, you stop the third call of getPercentage, where you’re trying to work out 50 percent of
100. This should work out to be half of 100, or 50. But when you use the debugger, you find that
the result that’s being calculated has the value of 0, which is wrong. If you dig a little further,
you find that the value of fraction is also 0. This looks like the problem. If fraction is 0, when
you work out the calculation fraction * inputValue, you get 0 because anything multiplied
by 0 is 0. So you need to take a close look at how you calculate the value of fraction:

int fraction = percentage / 100;

The problem has to do with the int type, which is used to hold integer values. An integer
does not have any fractional part. When you try to work out 50 / 100, which should work
out to 0.5 or a half, there’s no place in the variable fraction to put this. Integers are used to
store values that do not have any fractional part. It’s reasonable to use them to count pixels
because there’s no such thing as half a pixel as far as the display is concerned. C# is quite
happy to divide an integer by an integer, but it always produces an integer result when it
does this, throwing away the fractional part.

	 Chapter 10  Using C# Methods to Solve Problems	 179

However, for your program, you need to manipulate numbers that have that fractional bit;
otherwise, the program won’t work. Such numbers are called real or floating-point numbers.
Therefore, you need a new type of data storage that can hold this type of number.

Using Floating-Point Numbers in C#
C# provides a variety of number storage options. For this task, you need to use the float
type, which can hold floating-point numbers. These are so called because they have a
decimal point that can “float” up and down the number, depending on the value being held.

A floating-point number is capable of holding the 0.5 value that you need to store. So you
change the type of the fraction variable to float in your method:

int getPercentage(int percentage, int inputValue)

{

 float fraction = percentage / 100;

 int result = fraction * inputValue;

 return result;

}

However, when you try to build this method, things go horribly wrong. You now get an error
message, as shown in Figure 10-11, because your program no longer compiles. The compiler
has found something wrong with the code that you’ve written, and it can’t produce an
output program that runs.

Figure 10-11  Build error message dialog box

This is quite often how programming is. You think you’ve found the answer to the problem,
you put in the fix, and the problem promptly gets worse. The Great Programmer can tell
many tales of bugs that she’s found and fixed, and she has lots of experience with this kind of
thing. She also has some good advice at this point.

The Great Programmer Speaks: Don’t Let It Get to You  When you get to a snag like
this, don’t panic. It’s probably a good time to go off and get a cup of coffee, walk the dog, do
20 pushups, or do whatever else to relax. The important point to remember is that you will find
an answer to the problem, you will make it work, and you will understand what’s going on.

180	 Part III  Writing Proper Games

People tell me things like “I spent five hours last night trying to fix a bug in a program,” as if
that is supposed to impress me. Not so. If you can’t fix it after an hour or so, you should go
and do something else. It doesn’t matter what that thing is; just don’t think too hard about
the problem while you do it. When you come back to the code, it’s amazing how many times
you can then fix the bug in an instant, as if the back of your brain has been working away on
the problem, and suddenly up pops the answer for you.

The Compiler and C# Types
In this case, you’re having problems because you don’t know all about how C# works and
what the compiler is having trouble with. If you go back and look at your method now that
you have the error, you see that XNA Game Studio is trying to tell you something about
the program. Some parts of the code are underlined in wavy blue lines. This indicates that
the compiler is flagging some aspect of these statements for your attention. If you rest the
cursor over the offending text, a message pops up that describes what the compiler has
determined is wrong. Figure 10-12 shows what happens if you do this on your broken version
of getPercentage.

Figure 10-12  Compilation errors in getPercentage

The compiler is saying “Cannot implicitly convert type 'float' to 'int'. An
explicit conversion exists (are you missing a cast?).” This is a technically correct
description of the problem, but the compiler might as well be saying “Cannot put pizza
in briefcase, but I can chop off a slice so it fits if you like” for all that this
means at the moment. To understand what’s going on, you need to get into the compiler
and work out what the problem in the code really is.

The compiler has the job of converting the C# that you’ve written into instructions that the
computer can perform. Consider a C# statement that performs an addition:

greenIntensity++;

This statement increases by one the value of the variable greenIntensity. The compiler
might produce a sequence of machine code statements a bit like this:

	 1.	 Fetch the value of greenIntensity from memory.

	 2.	 Add 1 to this value.

	 3.	 Store the result in the greenIntensity memory location.

	 Chapter 10  Using C# Methods to Solve Problems	 181

So you can think of a compiler as somewhat of a translator, only rather than converting from
English to French, it’s converting from C# into machine instructions. At the same time, the
compiler tries very hard to stop a programmer from doing stupid things. In this case, it’s
telling you that your program might lose data as it is. If you try to put a floating-point value
(with a fractional part, say, the value 2.9) into a variable of type int (which doesn’t have
support for the floating bit), you are in danger of losing information. The line of code that
you’re looking at does just that:

int result = fraction * inputValue;

From your knowledge of math, you know that that if you multiply an integer value
(inputValue) by a floating-point value (fraction), the result is a floating-point value. When
you move that into the result, you’re moving a floating-point value into an integer, which
results in data loss. In programming terms, this is called narrowing. You’re moving values
from a data type with a wide range of values (floating point) into a type with a narrower
range of values (integer). This is rather like trying to sail a high-masted sailboat under a low
bridge. There’s a danger that something might get chopped off in the process. You’d be
heading for exactly the same trouble if you tried to put the value of an integer variable into a
byte. The C# compiler has been designed to look for situations like this, where data might be
lost by mistake, and to refuse to perform the conversion automatically.

Compilers and Casting
When the compiler sees a statement that narrows a value, it produces the error message,
“Cannot implicitly convert type 'float' to 'int'.” What it’s saying is that the
compiler won’t produce output steps that perform the conversion unless you explicitly ask
it to. This is because it thinks you might have made a mistake when you combined these two
types.

The next part of the message gives you some more help. “An explicit conversion
exists (are you missing a cast?).” This means that the compiler can perform such a
conversion, but you need to use a cast to request that the action be performed. A cast is
where you ask the compiler to produce code that converts a value from one type to another.
You’re saying, “We know what we’re doing, so trust us on this and let the conversion take
place.” The cast you want looks like this:

int result = (int)(fraction * inputValue);

A cast is the name of the type you want (in parentheses). It precedes the value to be cast,
which in this situation is the entire sum, which I’ve also put in parentheses. Now the compiler
is quite happy to perform the narrowing since you’ve said that it’s okay to do so.

Note that not all casts work. You can’t convert from a Color to an int by using a cast
because the compiler hasn’t been told how to generate code to do this. For casting from

182	 Part III  Writing Proper Games

floating point to integer, though, the compiler knows just what to do. It generates code to
throw away the fraction and put the integer part into the destination. This means that if
what you are casting were 0.999999, the destination would be set to 0, something you might
need to watch out for later. So, after all that, you now have a new, improved version of the
method:

int getPercentage(int percentage, int inputValue)

{

 float fraction = percentage / 100;

 int result = (int)(fraction * inputValue);

 return result;

}

This version of the method compiles, so you can now run the program with your bug fix. And
you get your red screen again—which seems very unfair.

Expression Types
At this point, you might be thinking that programming is not for you. Nothing seems to
work. You started off trying to draw a picture on the screen. You got that working and
decided to do some zooming, only to find that you need to do some serious messing
about to make the picture stay the same shape. And it still doesn’t work. If you put in some
breakpoints and do some more digging, you’ll find that the problem occurs when you work
out the fraction:

float fraction = percentage / 100;

Even though you’re storing the result of the division in a floating-point variable, for some
reason the calculation is generating a result of 0 when you divide 50 by 100. You can blame
the compiler again for this one. The compiler has the job of converting operators like /
(divide) into the instructions that perform the division. There are two kinds of division: those
that produce an integer result and those that produce a floating-point result. If the compiler
sees an expression that divides an integer by another integer, it performs the integer division
even if the result is being put into a floating-point variable.

There is actually method in this madness. You want your programs to run as fast as possible,
and calculating the fractional portion of the result takes extra time, so it makes sense not to
do the full division if you don’t need to. However, you need to force the compiler to perform
floating-point division, and the way you do that is to turn one of the things in the calculation
into a floating-point value. You can do this by casting again:

float fraction = (float) percentage / 100;

	 Chapter 10  Using C# Methods to Solve Problems	 183

This forces the compiler to regard the percentage variable as floating point so that it uses
a floating-point division to get the correct result. This means that your getPercentage
method now looks like this:

int getPercentage(int percentage, int inputValue)

{

 float fraction = (float) percentage / 100;

 int result = (int)(fraction * inputValue);

 return result;

}

If you put this into your program and run it, you find that you have a green screen. This
means that this version of the method seems to work with the tests that you’ve created.
So at this point, you can feel very pleased with yourself. You show your code to the Great
Programmer. She wrinkles her nose, sits down at the keyboard, and types this:

int getPercentage(int percentage, int inputValue)

{

 return (inputValue * percentage) / 100;

}

This works fine as well and is much simpler than your version, which is annoying. However,
both methods work okay, and unless you’re performing many thousands of calls to your
method, the user won’t notice the difference between yours and the Great Programmer’s.
And anyway, you learned a lot writing your method, so there. The Great Programmer even
has a point about this.

The Great Programmer Speaks: Don’t Get Upset with Other Programmers  If you end
up writing programs for a living, you’ll come up against programmers who are better than you
(who you copy) and worse than you (who you help). It’s important not to get upset when another
programmer suggests a better way of doing something, finds something wrong with your code,
or says something stupid. My experience has been that I am wrong as often as I am right, and
the nicer I am about these situations, the more people want to work with me. Try to work in an
“egoless” way if you can; it makes everyone happier in the long run. That’s not to say that you
shouldn’t argue your corner when you think your ideas or opinions are the best way forward, but
if the argument goes against you, accept this in good grace. In any project, what you’re really
working toward is a “happy ending.” There are many ways you can get to the ending—just make
sure that you get there happy.

Sample Code: Working Jake Zoom Program  The sample project in the 04 Working Jake
Zoom directory in the resources for this chapter uses the GetPercentage method that the
Great Programmer wrote for us. It steadily zooms out of a picture of Jake. It is by no means a
perfect program, though, because the picture gets smaller than the screen size and eventually
stops zooming.

184	 Part III  Writing Proper Games

Stopping the Zoom
You need to find a way to stop the zoom when the image is the same size as the screen. It
turns out that this is quite easy. You need only change the size of the sprite rectangle while
it’s wider than the screen. You’ve already seen that you can use the Width property of the
device viewport to determine this value, so you simply need to add a condition as follows:

if (jakeRect.Width > graphics.GraphicsDevice.Viewport.Width)

{

 jakeRect.Width =

 jakeRect.Width - getPercentage(1, jakeRect.Width);

 jakeRect.Height =

 jakeRect.Height - getPercentage(1, jakeRect.Height);

}

The program now stops zooming, reducing the height and width of the drawing rectangle at
the appropriate time.

Zooming from the Center
The zoom that you have at the moment starts off as zoomed in on the top left corner of the
image. This is because when you create jakeRect, you set its position to (0, 0), which is the
top left corner of the screen. Figure 10-13 shows what’s happening. The top left corner of
the image is being displayed because the rectangle is positioned at the top left corner of the
display area.

X = 0
Y = 0

XNA screen

Figure 10-13  Zooming in on the top left corner of the image

	 Chapter 10  Using C# Methods to Solve Problems	 185

If you want to zoom in on the center of the image, you need to move the top left corner of the
draw rectangle upward and to the left, as shown in Figure 10-14, moving the display area into
the middle of the image. Remember that XNA draws only the part of the rectangle starting at
coordinate position (0, 0) and extending to the width and height of the screen’s display area.

X = 0

300
Y = 0

XNA screen

400

30000

40000

Figure 10-14  Zooming in on Jake’s cheek

The thin lines on Figure 10-14 show both the center of the image of Jake and the center of
the display area. To get the center of the image lined up exactly with the center of the display
area, you must move the X (horizontal) position of the top left corner of the rectangle 40,000
(half the image width) to the left and then 400 (half the screen width) to the right. You then
need to do the same thing with the Y (vertical) position. For the method to work properly, it
has to know the width of the texture that is to be used, so all the work must be performed in
the LoadContent method, as follows:

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 jakeTexture = this.Content.Load<Texture2D>("jake");

 int displayWidth = GraphicsDevice.Viewport.Width;

 int displayHeight = GraphicsDevice.Viewport.Height;

 int scaledWidth = jakeTexture.Width * 10;

 int scaledHeight = jakeTexture.Height * 10;

186	 Part III  Writing Proper Games

 jakeRect = new Rectangle(

 -(scaledWidth / 2) + (displayWidth / 2),

 -(scaledHeight / 2) + (displayHeight / 2),

 scaledWidth, scaledHeight);

}

To make this code clearer, I’ve created some extra variables that hold the width and height
of the scaled image and the width and height of the display area. Note that you can make a
number (or an expression) negative simply by putting a minus sign in front of it.

Now that you’ve put the viewing rectangle in the center of the screen, you need to move the
draw position each time you scale the image. It turns out that if the width of the rectangle
changes by X-amount, the position of the top left corner must move to the right by half of X to
keep the rectangle centered with respect to the display area. The code to do this is as follows:

int widthChange = getPercentage(1, jakeRect.Width);

int heightChange = getPercentage(1, jakeRect.Height);

jakeRect.Width = jakeRect.Width - widthChange;

jakeRect.Height = jakeRect.Height - heightChange;

jakeRect.X = jakeRect.X + (widthChange / 2);

jakeRect.Y = jakeRect.Y + (heightChange / 2);

This code works out the change in width, updates the width and height of the rectangle, and
then moves the X and Y positions of the rectangle to keep the drawing centered correctly.
To get a good understanding of what’s happening here, you can try some values and sketch
some diagrams based on Figure 10-14. I often find it very useful to draw out what needs to
happen on graph paper (that’s how I worked out what the previous code must do).

Sample Code: Broken Jake Center Zoom Program  The sample project in the 05 Broken
Jake Center Zoom directory in the resources for this chapter uses the code given so far in this
section to zoom out of the picture and keep it in the center. The name doesn’t particularly inspire
confidence, though, and when you run it, you find that it doesn’t work properly.

The problem with this zoom program is that although it works fine, when the zoom finishes,
the image is not lined up properly with the display. If you add some breakpoints and do
some digging, you find that the X and Y draw positions, which should be 0 when you’ve fully
zoomed out of the image, still hold negative values at the end of the zoom. The problem lies
with the following two statements:

jakeRect.X = jakeRect.X + (widthChange / 2);

jakeRect.Y = jakeRect.Y + (heightChange / 2);

You know that you want to move these positions by half the change in the width and height.
Unfortunately, you’re dividing integers. This means that you can get only an integer result;
in other words, if the width change were 101, the change to the value of X would be 50, not
50.5. This calculation is repeated many times, and eventually this lack of precision leads to
an answer that’s incorrect. The only way to solve this problem is to change the data type

	 Chapter 10  Using C# Methods to Solve Problems	 187

you’re using to hold all the values. Rather than using the integer values that are stored in the
jakeRect, you need to create floating-point variables and use them instead. Floating-point
values have a fractional part, meaning that they are better for representing a smooth
transition from one coordinate to another. Here are the updated variable declarations:

float displayWidth;

float displayHeight;

float rectWidth;

float rectHeight;

float rectX;

float rectY;

These variables are set up by the LoadContent method. The new variables are used in all the
calculations and are transferred into the jakeRect to position the drawing as follows:

float widthChange = getPercentage(1, rectWidth);

rectWidth = rectWidth - widthChange;

rectX = rectX + (widthChange / 2);

float heightChange = getPercentage(1, rectHeight);

rectHeight = rectHeight - heightChange;

rectY = rectY + (heightChange / 2);

jakeRect.Width = (int)rectWidth;

jakeRect.Height = (int)rectHeight;

jakeRect.X = (int)rectX;

jakeRect.Y = (int)rectY;

Sample Code: Float Jake Center Zoom Program  The sample project in the 06 Float Jake
Center Zoom directory in the resources for this chapter uses floating-point values to keep track
of the size and position of the draw rectangle. Note that it also contains a floating-point version
of getPercentage.

It’s not uncommon for games—and indeed other programs—to have problems with the
precision of numeric calculations. The float and double data types provided by C# can hold
numbers to very high levels of precision, but you need to remember that updates to the variables
in games may take place many millions of times a second. Errors in values that build up over time,
sometimes called cumulative errors, are something that programmers often need to address.

Conclusion
This has been another very busy chapter. You began with a simple idea for a game and then
got diverted into program design and structure. You made your first simple method, which
worked on numbers that you gave it and returned a result. You also looked at the test-driven
programming technique, which you can use to make sure the methods you create work
correctly. Finally, you saw how to manage the draw position of an item on the screen and
discovered why game programs need to use values stored to high levels of precision.

188	 Part III  Writing Proper Games

Chapter Review Questions
If chapter reviewing is what you want to do, you’ve come to the right place. See if you can
outperform a penny with heads for true and tails for false.

	 1.	 You use an XNA Rectangle to draw a texture on the screen.

	 2.	 Only the creators of XNA are allowed to make methods.

	 3.	 Methods are created inside classes.

	 4.	 The body of a method is made up of C# statements.

	 5.	 Methods must return a result.

	 6.	 A method can contain only one return.

	 7.	 A method must have at least one parameter.

	 8.	 The C# compiler automatically fills in the value of any missing parameters when a
method is called.

	 9.	 Test-driven development means that you do all the testing when the program is
finished.

	 10.	 You can set breakpoints only when your program is not running.

	 11.	 The C# compiler automatically converts a float value into an int value.

	 12.	 The C# compiler lets you move an integer into a double precision variable.

	 13.	 A cast requests that data be converted from one type into another.

	 14.	 You can cast a string into an integer.

		 189

Chapter 11

A Game as a C# Program
In this chapter, you will

n	 Find out how Microsoft XNA games are actually C# programs.

n	 Start to create a game from the contents of a grocery bag.

n	 Make your game display fit correctly on the screen.

n	 Get the first components of a game running.

Introduction
At the moment, you know quite a lot about how XNA works and how to use C# language
constructions to control the facilities that XNA gives you. You have created games by
investigating what you need to do inside the game class to get the effects that you want
on the screen. Now it’s time to step back a little and consider how the XNA Framework and
the C# language fit together and just what a C# program is. This helps you understand how
to construct games of your own and also how you can make programs other than games.
If you like, you can think of this as “lifting the hood” on the C# process and looking at how
the engine and transmission work underneath. You consider what makes up a C# program
and how it is started and given control.

To do this, you create a brand-new game from scratch, using the contents of a grocery bag.
You start by creating some simple game behaviors and then combine them until you get
something that might be fun to play.

Game Idea: Bread and Cheese
Game ideas are tricky things. The way I see it, there are two ways that you can make a
great game:

You can wake up one morning with the idea perfectly formed in your head and
then sit down and write the game program. Alternatively, you can start off playing
with a few pieces of program code and then tinker with them until you get
something interesting.

190	 Part III  Writing Proper Games

You take the second approach for your game, using as your inspiration the contents of
a grocery bag. The Great Programmer has been out getting some food and has come
back with some bread, some cheese, some tomatoes, and a green pepper. She wonders
if you might like to use these things in your game. She suggests that you get the cheese
bouncing around the screen, maybe add the bread as a bat to hit the cheese around,
and see where this takes you. For now, you decide to call the game BreadAndCheese
and to find a use for the tomatoes and peppers later.

Creating Game Graphics
In a large-scale game development, you have the graphics created for you by the art
department, but for this one, we are going to do all the work ourselves. I created the
graphics for the game by taking a well-lit picture of each item against a white background.
I then cut the central image out of the picture and pasted it onto a transparent background
(see Figure 11-1). To do this, I used a free graphics editing program called “Paint .NET,” which
can be downloaded from www.getpaint.net. I then ate the cheese on the bread, and it was
delicious. If you want to do something similar to create your game objects, it’s very easy. You
could use model cars, candy, toy soldiers, or anything else that’s easy to photograph. When
you take the pictures, ensure that the objects are as evenly lit as possible; ideally, take the
pictures outside on a cloudy day. If you have a friend who is good with a camera, you might
like to ask them to give you a hand.

Figure 11-1  Your game objects

	 Chapter 11  A Game as a C# Program	 191

You add these images to the project in the same way that you added Jake to your first
image-drawing program in Chapter 4, “Displaying Images.”

Projects, Resources, and Classes
You start by making a new game project using XNA Game Studio and call the project
BreadAndCheese. Before you go any further, it’s worth spending some time discovering how
an XNA program fits together and actually gets to run. You can use this knowledge to tidy up
your solution and allow you to understand better how C# programs are structured.

XNA Game Studio Solutions and Projects
You know that when you make a new project, XNA Game Studio creates a solution, a project,
and some C# class files. Figure 11-2 shows how these appear in Solution Explorer. Some
programmers call a solution a workspace, but I am going to use the word solution throughout
this book.

Figure 11-2  The BreadAndCheese solution and project

In Chapter 4, you saw that when you create a new project, you get a new solution as well.
An XNA Game Studio solution can contain a number of projects. Each project brings
together C# program source files and resources.

Projects and Folders
Whenever you write a program, you need to consider how things will be organized. At the
moment, all the files related to a particular game program are stored in a single directory in
the file store of the PC. You should be familiar with using directories, or folders as they are
sometimes called. Microsoft Windows provides folders for your documents and pictures so
that you can group documents and pictures together easily. When XNA Game Studio creates a
new XNA project, it makes a new folder that holds all the information for a particular solution.
This folder contains other folders, reflecting the way that XNA Game Studio organizes things.

192	 Part III  Writing Proper Games

Because you’re about to add a whole bunch of image files to the BreadAndCheese project, it
makes sense to put these all together in a particular place. You can get XNA Game Studio to
create such a location. You create an images folder and put all the images into it. When you
add sound to the game, you can then put all the sounds in a different place, thus keeping
everything nice and tidy.

The Great Programmer Speaks: Tidy Is Good  If you take a peek at the Great Programmer’s
desk, you might notice what a mess it is. There are bits and pieces everywhere, used concert
tickets, old photos, and even the occasional stuffed toy. However, if you look inside the
organization of her projects, you find everything perfectly tidy, with images in graphics folders,
sounds in audio folders, and all items having a name that reflects exactly what it is used for. She
reckons she does not have time to keep her desk tidy (and actually doesn’t particularly want to),
but she knows that keeping her project and resource files well organized pays huge dividends
when she needs to find something important.

Figure 11-3 shows how you can use XNA Game Studio to create a new content folder. Start
by right-clicking the Content item in the BreadAndCheese project in the Solution Explorer
and find your way to the New Folder option as shown.

Figure 11-3  Creating a new content folder in XNA Game Studio

XNA Game Studio creates a new folder with the original name New Folder. You can overtype
this with a more appropriate name; I’d suggest Images. Once you’ve created the new
directory, it takes its place in Solution Explorer for the project, as shown in Figure 11-4.

This has created a new directory, and the next step is to get your image files and put them
into that directory. You can do this in exactly the same way as you added the picture of Jake

	 Chapter 11  A Game as a C# Program	 193

Figure 11-4  The new Images folder in Solution Explorer

in Chapter 4, only rather than adding them to the Content directory, you can add them to
the Images directory instead. Figure 11-5 shows how this should appear once two image files
have been added.

Figure 11-5  An Images folder with Bread and Cheese images in it

The Content Manager needs to be told to look in the folder for the resource when it tries to
load it. This means that the name of the folder holding the resource must be used when it is
loaded, as shown in the LoadContent method here:

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 breadTexture = Content.Load<Texture2D>("Images/Bread");

 cheeseTexture = Content.Load<Texture2D>("Images/Cheese");

}

194	 Part III  Writing Proper Games

The name of the folder is given, separated from the asset name by the forward slash /
character. It is perfectly possible to create folders inside folders, so that you could have
a folder inside Images that contained backgrounds, another that contained enemy sprites,
and so on. The Great Programmer thinks this kind of organization is a really good idea. It is
particularly useful if you have different teams working on the same game project and you
don’t want to have problems with name clashes.

The Game Program Files
Now that you know how best to organize the assets in a game, it is time to take a look at the
program files that XNA Game Studio has created for you.

You’re already familiar with the Game1.cs file, which contains the program that provides
all the game behaviors, including the Update and Draw methods. However, this is not
where your program starts running. To discover how this happens, you need to look in the
Program.cs source file.

The Program.cs File
The Program.cs file is created automatically by XNA Game Studio when you make a new game
project. You don’t have to change this file, but the Great Programmer (who is at the moment
rather cross because I seem to have eaten all the cheese that she bought) reckons that you
really should know how programs work if you’re going to call yourself a programmer. If you
take a look at the Program.cs file in XNA Game Studio, you find that it’s quite small:

using System;

namespace BreadAndCheese

{

 static class Program

 {

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 static void Main(string[] args)

 {

 using (Game1 game = new Game1())

 {

 game.Run();

 }

 }

 }

}

The job of the C# code in this file is to create an instance of the game class and then start the
game running. A C# program is started by the call to the program’s Main method. You can
see the Main method in the Program class shown previously, but there are also some words
that you have not seen before, and now you must consider what they mean.

	 Chapter 11  A Game as a C# Program	 195

Namespaces and Programs
At the top of the Program.cs file, there’s the statement that tells the compiler to use the
System namespace:

using System;

The word using has two meanings in C#. In this statement, it’s used as a compiler directive.
In other words, it’s a message to the compiler and doesn’t directly generate machine
language instructions for the program the compiler is creating. You use directives to tell the
compiler what to do. In this case, you want to tell the compiler to use the System namespace.

A namespace is a space where names have meaning. You can think of it as a directory of
services. The System namespace contains descriptions of lots of classes provided by .NET
that you might want to use in your program. You’ve already used one class from the System
namespace; the DateTime class is described there. You used this to obtain the current time
for the clock, as described in the section entitled “Getting the Date and Time,” in Chapter 5,
“Writing Text.”

Whenever you use a name that the compiler hasn’t seen before, it looks in all the namespaces
that it has been told about to see if it can find a resource that matches that name. If the name
is found, the compiler generates code that uses that resource. If the name is not found, the
compiler states that it doesn’t know about the item. As an example, consider what would
happen if your program contained the following statement:

dateTime d;

The statement is intended to create a DateTime variable, but the name has not been
typed correctly. When the program is compiled, this statement produces the following
compilation error:

Error	 1	 The type or namespace name 'dateTime' could not be found (are you missing a

using directive or an assembly reference?)

The compiler is saying that it can’t find anything called dateTime. It even suggests that you
might need to add a using directive to identify the namespace that holds this item. (Of course,
in this case it is wrong, in that you have misspelled something, rather than forgotten to tell the
compiler where to look for it—but at least the compiler is trying to help).

As far as programmers are concerned, a namespace is a way they can make sure that when
they invent an identifier for an object, it’s unique in their namespace and won’t be confused
with an identically named resource in any other namespace. In fact, the next line of Program.cs
sets up a namespace for your solution:

namespace BreadAndCheese

{

 // Program class in here

}

196	 Part III  Writing Proper Games

XNA Game Studio automatically creates a namespace to hold all your classes. The namespace
is given the same name as the solution. If other C# programmers want to refer to the Game1
class that is in your namespace, they could insert using BreadAndCheese at the top of their
program source files. If you use two namespaces that contain a class with identical names,
the compiler asks you to use the fully qualified form of the name, as in this example:

BreadAndCheese.Game1 myGame = new BreadAndCheese.Game1();

A fully qualified name includes the namespace in which the object is declared, followed by
the name of the class required.

A namespace can contain other namespaces, so programmers can build a tree of
namespaces that can be used to hold different categories of resources. The designers of XNA
have created several namespaces that describe resources you’ve used in your programs. The
using directives at the top of Game1.cs include the following:

using System;

using System.Collections.Generic;

using System.Linq;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Audio;

using Microsoft.Xna.Framework.Content;

using Microsoft.Xna.Framework.GamerServices;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework.Input;

using Microsoft.Xna.Framework.Media;

using Microsoft.Xna.Framework.Net;

using Microsoft.Xna.Framework.Storage;

The features of XNA that you’ve used are described in appropriate namespaces; for example,
the Texture2D class is described in the Microsoft.XNA.Graphics namespace.

Note  It’s important to remember that the namespace information is used by the compiler to identify
the resources that are to be used. The resources themselves are loaded and used when the program
runs and your solution must have a reference to them. A solution contains a list of references that it is
using; you can see the References folder in Figure 11-2, just above the Content folder.

You’d create namespaces of your own if you wanted to use some classes in more than one
solution. For example, you might create some classes that deal with high scores in a game. For
this, you might create a HighScores namespace that stores and displays a high-score table.

Static Classes and Methods
The next line in Program.cs describes a class called Program:

static class Program

{

 // content of the class goes here

}

	 Chapter 11  A Game as a C# Program	 197

The class has been made static. You haven’t seen the word static before, but it means
“always there.” In the programs you’ve written up until now, you’ve had to create instances
of classes using new. When a class is made static, it means that there’s always one and
only one instance of that class present when the program is running. When a C# program
starts up, before the code that you’ve written is given control, any static classes are created
automatically. This means that there’s no need to ever create an instance of the Program class
by using new because it’s always there when your program starts.

The next line of the program declares a method called Main in the Program class:

static void Main(string[] args)

{

 // content of the Main method goes here

}

The Main method has also been made static. This is because it must exist before your
program begins to run. When you run a C# program, the operating system loads the
program file into memory, creates all the static classes, and then finds and calls the Main
method. One and only one of the classes in a program must contain a Main method so that
the operating system knows where to start. Imagine you misspell the name of the method,
for example you write the following:

static void main(string[] args)

{

 // content of the Main method goes here

}

The compiler produces an error message saying that the program cannot be started, as follows:

Program 'BreadAndCheese.exe' does not contain a static 'Main' method suitable for an

entry point

The compiler is trying to make an executable output (one that can be run as a program), and
if the Main method isn’t present, it literally doesn’t know where to start the program.

Making Methods Static
Methods are made static so that they can be used without needing to have an instance of
the class present. Static methods can be ones that are used to perform a particular task and
are not part of a class instance. The getPercentage method that you created in Chapter 10,
“Using C# Methods to Solve Problems,” could be made static because it simply works out a
calculation and returns the result.

Main Method Parameters
When the Main method is called to start the program, it’s provided with a parameter called
args, which is an array of strings. This parameter gives the Main method any arguments that
have been supplied to the program when it starts. An argument is a way of giving a program

198	 Part III  Writing Proper Games

instructions when it runs. If a program is run from the command prompt (in other words, you
type in a command to make the program run), you can provide arguments simply by typing
them after the program command. For example, the Windows command del (for delete) is
followed by a list of arguments that give the names of the files that are to be deleted, like this:

del notes.txt oldImage.png

In this case, a program that implements the delete behavior is provided with two strings,
which are the names of two files to be deleted. Because XNA games are usually started from
within Windows or directly by the target device, you won’t be providing arguments to the
Main method, so you can ignore these parameters.

The C# Using Statement
The Program.cs file contains a second use of the keyword using. This is a bit confusing because
I’ve just described using, but this is a different use of the same keyword. Previously, you saw
that using was a directive to the compiler meaning, “Look in here if you want to find out about
something.” Once you get inside the C# program itself, however, the word has a different
meaning: “Use this object and then dispose of it when you are finished.” It’s a way of explicitly
telling the run-time system how long you need an object. You’ve seen that the garbage
collector is continuously searching for objects that it can remove from memory. If you want to
speed up this process and make sure that an object is disposed of as soon as the program has
finished with it, an object should be used within a block of code following a using statement.
As an example, consider how you’d use a class called HugeObjectUsedForSums in this program:

using (temp = new HugeObjectUsedForSums())

{

 // do things with temp to work out the answer

}

You need to make an instance of HugeObjectUsedForSums to perform some calculations,
after which you want it removed as quickly as possible. The previous code does this. As soon
as the program leaves the block following the using statement, the system knows that temp
is no longer required, and the resources that it uses can be recovered.

The Main Method in an XNA Game
In an XNA game, the job of the Main method is to create an instance of the Game1 class and
then make it run. Look at the following code:

static void Main(string[] args)

{

 using (Game1 game = new Game1())

 {

 game.Run();

 }

}

	 Chapter 11  A Game as a C# Program	 199

The designers of XNA wanted to make sure that the instance of the game class created to
run the game is destroyed as soon as it’s no longer needed, so they place it within a block of
code after a using statement.

The Run method runs your game. When Run is called, it calls the Initialize and
LoadContent methods and then repeatedly calls the Update and Draw methods.
When the game finishes, the Run method ends, the game class is destroyed, and the
program finishes.

Renaming the Game1 Class
The Great Programmer doesn’t like using the names that XNA Game Studio creates.
She suggests that rather than calling the game class Game1, you might want to call it something
else, perhaps BreadAndCheeseGame. This make it easier for other people to understand what
your program does. At the moment, the Game1 class is held in a file called Game1.cs. The
C# language doesn’t insist that the file and the class it holds have the same name, but it would
seem sensible to make the two names line up.

You can rename the Game1.cs file from within XNA Game Studio. One way to do this is to
right-click the filename in Solution Explorer and select Rename from the menu that appears,
as shown in Figure 11-6.

Figure 11-6  The Rename command for a source file

200	 Part III  Writing Proper Games

When you select Rename, you can type a new name, as shown in Figure 11-7.

Figure 11-7  Renaming a class file

You need to make sure that you don’t remove the “.cs” from the end of the filename. This is
the filename extension, and it is how XNA Game Studio and the rest of Windows know that
the file contains a C# program. One really nice feature of XNA Game Studio is that when you
finish typing the new name and press Enter, the dialog box shown in Figure 11-8 appears.

Figure 11-8  Renaming a class globally

XNA Game Studio detects that you’re renaming the file and offers to rename the class
throughout all your files for you. To accept this useful offer, you simply click OK, and the Game1
class is now renamed BreadAndCheeseGame in all your source files. This renaming process is a
lot subtler than you might think. The class is renamed in the BreadAndCheeseGame.cs file and
also where it’s used in the Program.cs file.

The Great Programmer Speaks: Refactoring Is Good  What you’ve done is called
“refactoring,” which means changing the code you’ve written to make it better. If you find that a
block of statements needs to be made into a method, you can use the refactoring support in XNA
Game Studio to do this for you. If you invent a better name for a variable than the one that you
originally came up with, you also can use XNA Game Studio to change the name for you. Before
we had tools like XNA Game Studio, it was very difficult to do this, so programmers tended to be
stuck with bad decisions made at the beginning of a project. Today, it’s very easy to make these
changes. The Great Programmer is very keen on refactoring; she says that as you write a program,
your understanding of the problem improves, and you’ll need to make these changes.

	 Chapter 11  A Game as a C# Program	 201

You can access the refactoring support in XNA Game Studio by selecting the item you want
to refactor and right-clicking the selection. You can then select Refactor from the menu that
appears. Of course, you can rename only the items that you’ve created yourself; for example,
it would not be sensible to try to rename the Update method.

Creating Game Objects
Now that you have a good understanding of your classes and how a game program
fits together, you can start making objects to be used in your game. You begin with the
graphical items to be drawn on the screen. To start, you draw the cheese and make it move,
and then you implement the bread bat.

Sprites in Games
Graphical objects in a game are often called sprites. A sprite can be a very small image, such
as a spaceship viewed from far away, a missile, or a piece of cheese. It can also be very large.
The background of your screen can be a single sprite. Sprites have graphical content and a
position on the screen. Your sprites are drawn with a particular texture and have a position
specified by a rectangle, as follows:

// Game World

Texture2D cheeseTexture;

Rectangle cheeseRectangle;

When the game starts, you load the texture from the image content, set the size of the draw
rectangle, and draw the texture using techniques that we first saw in Chapter 4. Your finished
game will contain a great many sprites.

Managing the Size of Game Sprites
Owners of Xbox consoles can choose from a variety of screen-size and screen-resolution
settings. They can also select between standard and wide screen shapes. Your game must
work correctly on any of these sizes and give the player the same game-play experience on
each. If you do this correctly, it should even be possible to play the game properly on the
tiny Zune screen. This means that your game must automatically set the size of the objects
that you draw, depending on the display in use. The game must also adjust the speed at
which the objects in the game move; otherwise, a game that works on a small TV might be
unplayable on a large display.

You’ve seen in the section entitled “Filling the Screen” in Chapter 4 that you can get the
dimensions of your screen from the display adapter viewport properties. However, getting
a hold of these is a rather laborious process, so you create two data fields in your game that

202	 Part III  Writing Proper Games

hold these values for you to use. The best place to set these variables is in the Initialize
method, which is called once when your game first starts running:

// Display settings

float displayWidth;

float displayHeight;

protected override void Initialize()

{

 displayWidth = GraphicsDevice.Viewport.Width;

 displayHeight = GraphicsDevice.Viewport.Height;

 base.Initialize();

}

Working with Floating-Point Values and Integers
The previously mentioned displayWidth and displayHeight variables have been declared
as floating-point, although the display properties themselves are integers. This is because
all your calculations involving the width and height of items need the fractional part that
floating-point variables give you, so that they are sufficiently accurate.

However, all the properties of your display rectangle are integers, so you need to convert
these floating-point values into integers when you want to position the sprites. You know
that you can use casting to convert from one type to another, but you also need to allow
for the fact that casting always truncates; in other words, if the floating-point input were
1.99999, it would still be converted to 1, which would be inaccurate. You can make sure
that the converted value is as accurate as possible by adding 0.5 to the floating-point value
before you truncate it so that 1.99999 would turn into 2.4999 and then be truncated down
to 2. You can see this in action in the scaleSprites method later in this chapter.

Double Precision Floating-Point Values
C# and XNA can use two different types to hold floating-point values. One of these is called
float and holds a number with seven digits of precision. This means it could hold the
mathematical constant pi (an endless decimal) as 3.141593. The other is called double. It uses
twice as much memory to hold each value and is good for around 16 digits of accuracy, and
could hold pi as 3.14159265358979. Very high levels of precision can be important in video
games because values are being updated thousands of times a second, so errors accumulate
quickly. For the purpose of your game, you can use floating-point variables. However, you
need to remember that when you give a real number value (one with a decimal point) in the
program text, the C# compiler assumes that it’s a double precision one. This means that the
following statement causes a compilation error:

float pi = 3.14159;

	 Chapter 11  A Game as a C# Program	 203

This is because 3.14159 is compiled as a double precision value, and you know that the
C# compiler reacts badly when you perform an action that might result in a loss of data
(which is what could happen if you put a double value into a float variable). There are two
ways around this: you can cast the double value to floating-point, or you can change the
value in the program to be a floating-point value, as shown here:

float pi = 3.14159f;

Putting the letter “f” after a decimal value tells the compiler that you’re writing a floating-point
value, not a double precision value.

Drawing and Aspect Ratios
When an image is drawn, you need to be careful to preserve its aspect ratio. The aspect
ratio of an image is the ratio of the width to the height. For your cheese, this is just about
one because the texture is square, but for your bread, it’s quite different. Figure 11-9 shows
the effect of getting the aspect ratio wrong when you draw the bread bat.

Distorted Aspect Ratio

Correct Aspect Ratio

Figure 11-9  The effect of aspect ratio on drawing

The bread has an aspect ratio of around 4 to 1; in other words, it is around four times as wide
as it is high. The program can get the aspect ratio of the original image from the dimensions
of the texture:

float aspectRatio =

 (float) cheeseTexture.Width / cheeseTexture.Height;

The program can now use the aspect ratio to calculate the correct height of a sprite given
the width that we want it to have.

Note  The variable aspectRatio is being declared and used in the program to hold a value
that is going to be used in one particular part of the code. This is called a local variable because
it is used in only one place in the code and has no need to be visible anywhere else.

Sprite Sizing
Next, you need to decide how large to make the cheese sprite. This depends on the game
you’re creating. Do you want to have a big cheese or a little cheese? In some games, the
objects change size as the game progresses so that you can start with large sprites and then

204	 Part III  Writing Proper Games

reduce their size and increase their speed to make the game more challenging. You think
that having the cheese take up around one-twentieth of the screen width would work well,
but you’re not sure. You ask the Great Programmer for advice because it was her cheese that
you used for the game.

The Great Programmer Speaks: Flexibility Should Be Designed into Your
Programs  The Great Programmer has no idea what size cheese makes a good game. She
suggests that you have no idea either. Therefore, you need to make sure that when you create
the game, you make it as easy as possible to change the size of the cheese and all the other
game sprites. Your program could use variables to represent the scale values, so that rather than
using the literal value of one-twentieth (0.05) to represent the fact that you want the width of
the cheese to be one-twentieth of the screen, you use a variable called cheeseWidthFactor
instead. Then you can easily change the value everywhere it’s used just by changing the value
of cheeseWidthFactor. Your program could also use methods. If you create a method called
scaleSprites, you can then call it to perform the scaling. If you decide that you need to
change the size of the sprites during the game, you simply need to call this method again.

With these points in mind, you create a method called scaleSprites and some variables to
hold the width factors. You can call the scaleSprites method from LoadGraphicsContent
when the cheese texture has been loaded. It sets the size of the draw rectangle to match the
display you’re using, as follows:

void scaleSprites()

{

 cheeseRectangle.Width = (int)((displayWidth * cheeseWidthFactor) + 0.5f);

 float aspectRatio = (float) cheeseTexture.Width / cheeseTexture.Height;

 cheeseRectangle.Height = (int)((cheeseRectangle.Width / aspectRatio) + 0.5f);

}

This scaleSprites method performs the required calculations. Note that you need to use
casting to convert the floating-point results into integers that can be used to set up the
cheeseRectangle.

Moving Sprites
Now that you have your cheese sprite, you need to make it move. You use two floating-point
variables to hold the draw positions and two more floating-point variables to hold the speed
at which the cheese is moving:

float cheeseX;

float cheeseXSpeed;

float cheeseY;

float cheeseYSpeed;

	 Chapter 11  A Game as a C# Program	 205

Each time that Update is called in your game, you update the X and Y properties of
cheeseRectangle, causing the cheese to be drawn in a different position and so appear
to move:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back==ButtonState.Pressed)

 this.Exit();

 cheeseX = cheeseX + cheeseXSpeed;

 cheeseY = cheeseY + cheeseYSpeed;

 cheeseRectangle.X = (int)(cheeseX + 0.5f);

 cheeseRectangle.Y = (int)(cheeseY + 0.5f);

 base.Update(gameTime);

}

Each time this Update is called, it adds the speed values to the current position of your
cheese, causing it to appear to move across the screen. It’s important that the cheese
appears to move at the same speed on every kind of game display, so you need to calculate
appropriate values for cheeseXSpeed and cheeseYSpeed. You know that the Update method
is called 60 times a second. If cheeseXSpeed were set to one-sixtieth of the width of the
screen, this would mean that the cheese would take around a second to cross the screen.
If you want your cheese to take around 2 seconds to cross the screen, the position of the
cheese must change by half that (1/120 of the screen) each time. At this point, you remember
what the Great Programmer said. She said that you should make important values into
variables so that they are easy to change. With that in mind, you modify the scaleSprites
method to calculate speed values as well as sizes:

float cheeseWidthFactor = 0.05f;

float cheeseTicksToCrossScreen = 200.0f;

void scaleSprites()

{

 cheeseRectangle.Width = (int)((displayWidth * cheeseWidthFactor) + 0.5f);

 float aspectRatio = (float) cheeseTexture.Width / cheeseTexture.Height;

 cheeseRectangle.Height = (int)((cheeseRectangle.Width / aspectRatio) + 0.5f);

 cheeseX = 0;

 cheeseY = 0;

 cheeseXSpeed = displayWidth / cheeseTicksToCrossScreen;

 cheeseYSpeed = cheeseXSpeed;

}

The interval between calls of Update is sometimes called a “tick.” The variable
cheeseTicksToCrossScreen sets the number of ticks that the cheese takes to move across
the screen. The larger this number, the slower the cheese moves. It turns out that 200 ticks
is a reasonable number. Note that the value of cheeseYSpeed has been made the same as

206	 Part III  Writing Proper Games

cheeseXSpeed. This means that the cheese moves at 45 degrees down the screen rather
than along the diagonal of the screen.

Sample Code: Moving Cheese  All the sample projects can be obtained from the course
instructor. The sample project in the 01 Moving Cheese directory in the resources for this chapter
draws a piece of cheese that flies down the screen and vanishes off the bottom.

Bouncing the Cheese
What you really want to do is have the cheese bounce around the screen. To do this, you
need to reverse the direction of movement of the cheese when it reaches the edge. This is
what happens when things bounce. To reverse a direction of movement, you simply need to
multiply the speed value by –1. You can use the size of the screen and the size of your draw
rectangle to determine when you’ve reached an edge:

if (cheeseX + cheeseRectangle.Width >= displayWidth)

{

 cheeseXSpeed = cheeseXSpeed * -1;

}

if (cheeseX <= 0)

{

 cheeseXSpeed = cheeseXSpeed * -1;

}

This code performs two tests. The first one checks to see if the cheese has gone off the right
of the screen. If the X position plus the width of the cheese is greater than the width of the
display, it’s time for the cheese to change direction. If the X position is less than or equal
to 0, the cheese must change direction again. You need to perform the same tests for the
Y movement so that you can get your cheese to bounce properly.

Sample Code: Bouncing Cheese  The sample project in the 02 Bouncing Cheese directory in
the resources for this chapter draws a piece of cheese that bounces around the screen.

Dealing with Display Overscan
The previously mentioned sample program runs correctly on the Xbox or a desktop PC.
However, some Xbox owners find a game based on this code rather hard to play. If they’re using
an older display device or a TV screen, they complain that the cheese goes off the screen at the
edges. This is because TV displays use what is called overscan. Figure 11-10 shows the problem.
The cheese has managed to disappear almost completely from the TV picture.

	 Chapter 11  A Game as a C# Program	 207

Xbox Display Width

Xbox Display Height

TV Display Height

TV Display Width

Figure 11-10  A drawing extending off the visible screen

The problem arises because a TV does not show the entire Xbox display; it shows only
a central region. This is because glass TV tubes cannot be made to align precisely with the
edge of the picture they are showing, so TV signals have an area of overscan where program
makers must be careful not to put important parts of a scene. If you let your game objects
go into the overscan area, there’s a danger that players won’t be able to see them, and this
would be very bad for game play.

The amount of overscan (in other words, the amount of the display that you lose) varies
from one display to another. It’s usually expressed as a percentage, perhaps 10 percent or
20 percent. The bigger the number, the greater the amount of screen that’s lost. You need
to calculate the range of the available screen coordinates that you can use to place items on
display if you want them to be visible. You can do this when you set up the scaling values,
and you can use a floating-point version of your getPercentage method from Chapter 10
to help you, as follows:

// Display settings

float displayWidth;

float displayHeight;

float overScanPercentage = 10.0f;

float minDisplayX;

float maxDisplayX;

float minDisplayY;

float maxDisplayY;

float getPercentage(float percentage, float inputValue)

{

 return (inputValue * percentage) / 100;

}

private void setupScreen ()

{

 displayWidth = graphics.GraphicsDevice.Viewport.Width;

 displayHeight = graphics.GraphicsDevice.Viewport.Height;

 float xOverscanMargin =

 getPercentage(overScanPercentage, displayWidth) / 2.0f;

 float yOverscanMargin =

 getPercentage(overScanPercentage, displayHeight) / 2.0f;

208	 Part III  Writing Proper Games

 minDisplayX = xOverscanMargin;

 minDisplayY = yOverscanMargin;

 maxDisplayX = displayWidth - xOverscanMargin;

 maxDisplayY = displayHeight - yOverscanMargin;

}

The setupScreen method is called by the Initialize method when the game starts
running. It calculates the width and height values based on a particular overscan percentage.
It does this by working out the margins required around the screen and then creating
maximum and minimum values for the X and Y coordinates. It also provides the game with
minimum and maximum values, which can be used to place the cheese on the screen at the
start of the game and also in the code that bounces the cheese. Look at the following:

if (cheeseX + cheeseRectangle.Width >= maxDisplayX)

{

 cheeseXSpeed = cheeseXSpeed * -1;

}

if (cheeseX <= minDisplayX)

{

 cheeseXSpeed = cheeseXSpeed * -1;

}

This code uses the new boundary values to ensure that the cheese never leaves the visible
part of the screen.

Sample Code: Overscan Bouncing Cheese  The sample project in the 03 Overscan Bouncing
Cheese directory in the resources for this chapter draws a piece of cheese that bounces around
the screen and stays within a 10 percent overscan boundary.

You now have some bouncing cheese that provides the same gaming experience on any
platform. You can now take any image of yours and make it bounce around the screen. In the
next chapter, you’ll add the bread bat and start hitting the cheese about with it.

Conclusion
In this chapter, you’ve learned a lot. For the first time, you’ve taken a look at how a game
application is structured. You’ve seen how it’s spread over more than one class and how
the Program.cs file gets the game running. You’ve also learned the meaning of some more
C# key words. Now you know how one program can be given information provided from
another by means of the using compiler directive. You’ve seen how the static key word can
make methods and classes that are created when your application runs without your needing
to explicitly create them, and you’ve looked at the Main method, which is how C# programs
are started. You completed your investigation into how C# programs work with a look at the

	 Chapter 11  A Game as a C# Program	 209

using key word. You moved on to creating your game and found out how to ensure that
games work correctly on different types, sizes, and resolutions of the display device. Then
you created a sprite and got it moving around the visible portion of the display.

Chapter Review Questions
If you’re thinking that you’re due for another chapter review about now, you’re right. As
usual, true or false?

	 1.	 Images for use in games must be bought from a special XNA image bank.

	 2.	 An XNA Game Studio project contains a solution.

	 3.	 You need to create your own Program.cs file to run your programs.

	 4.	 The Program.cs source file does not contain your game program.

	 5.	 Namespaces are used in a program to locate resources.

	 6.	 The main method is called to start the program.

	 7.	 If something is made static, it means it can’t be moved around in memory.

	 8.	 The C# using statement is provided to help the garbage collector work more
effectively.

	 9.	 The cast from floating-point to integer value automatically rounds up values with a
fractional value greater than 0.5.

		 211

Chapter 12

Games, Objects, and State
In this chapter, you will

n	 Discover a better way to structure your programs.

n	 Add some bread that you can use to bash the cheese around on your screen.

n	 Give yourself some targets to hit the cheese at.

Introduction
You have the basis of a little game at the moment. You know how to place objects on the
screen and manage their movement. You also know how to make sure that the games you
create work with different display sizes and resolutions. In this chapter, you develop the game
play further, add some more sprites, and create a game that has proper game-play.

Adding Bread to Your Game
You can continue working on the 03 Overscan Bouncing Cheese sample code that you were
using in Chapter 11, “A Game as a C# Program.” You need to add some bread to your game.
The bread will be the bat that the player uses to hit the cheese around the screen. You think
that tomatoes might make good targets, but first you need to get the bread working.

You need to store all the same information about the bread as you do about the cheese.
It has a position, a texture, and a speed. The only difference is in the Update behavior.
Whereas the cheese travels in a particular direction each time it’s updated and bounces
off the edges of the playing field, the bread is controlled by one of the thumbsticks on
gamepad 1. In the game, you need to store the same information for the cheese and bread,
so you could go ahead and create all the class member variables for them as follows:

Texture2D cheeseTexture;

Rectangle cheeseRectangle;

float cheeseX;

float cheeseXSpeed;

float cheeseY;

float cheeseYSpeed;

float cheeseWidthFactor = 0.05f;

float cheeseTicksToCrossScreen = 200.0f;

Texture2D breadTexture;

Rectangle breadRectangle;

float breadX;

212	 Part III  Writing Proper Games

float breadXSpeed;

float breadY;

float breadYSpeed;

float breadWidthFactor = 0.05f;

float breadTicksToCrossScreen = 200.0f;

This code simply has a copy of all the cheese variables, but renamed for bread. However, from
a programming point of view, this is not really the best way to do it. The Great Programmer
would certainly not approve. She doesn’t like it when you have lots of separate variables all
relating to one thing. She reckons that all the information about a particular item should be
grouped together in one place. There should be a “cheese group” and a “bread group.”

You’ve seen this “grouping together” in Microsoft XNA ever since you started writing programs.
For example, you know that XNA holds Color information in the form of a structure with fields
that represent the red, green, and blue intensities of a particular color. For your bread and
cheese, you’d like to group all this information together in the same way.

Using a Structure to Hold Sprite Information
C# provides a kind of object called a structure to allow programmers to group things
together. Structures are like classes, in that they can contain methods and data, but they
are managed by value. You found out about values and references in the section entitled
“Working with Arrays, Objects, and References,” in Chapter 9, “Reading Text Input.” The fact
that structures are managed by value makes them ideal for holding small lumps of data that
we want to treat as a whole. You can design a structure that holds all the information about
a sprite on the screen as follows:

struct GameSpriteStruct

{

 public Texture2D SpriteTexture;

 public Rectangle SpriteRectangle;

 public float X;

 public float Y;

 public float XSpeed;

 public float YSpeed;

 public float WidthFactor;

 public float TicksToCrossScreen;

}

Each of the items in the structure is a field. If you compare the fields of the structure
GameSpriteStruct with the variables you used in the original bouncing cheese program,
you find that it holds all the information you need for a sprite: the texture, the rectangle
in which to draw the sprite, the current position of the sprite, the speed at which the sprite
moves, and the size and speed settings. Once you’ve created this structure, you can declare
variables of this type for use in your game:

GameSpriteStruct cheese;

GameSpriteStruct bread;

	 Chapter 12  Games, Objects, and State	 213

When you declare a GameSpriteStruct variable, you get a structure that contains all the
fields grouped together in it. You can then use the fields in the structure as follows:

cheese.SpriteTexture = Content.Load<Texture2D>("Images/Cheese");

bread.SpriteTexture = Content.Load<Texture2D>("Images/Bread");

These statements set the textures for the bread and cheese to ones loaded from images
placed in your project content. You can get hold of any of the fields in your structure by
following the name of the structure variable with a period (.) and then the name of the
field. This works because you’ve made the fields public. If you look back to the declaration
of GameSpriteStruct, you see that each field has the C# keyword public in front of it.
Words placed in front of fields like this are called modifiers. There are a number of different
modifiers in C#; public is an “access modifier,” in that it determines the level of access to a
field. Fields marked as public can be used by code outside the class or structure. You can
make fields private so that code in methods outside the class or structure can’t read or
write the value in the field. For now, though, public fields are fine because they are easy to
use and you don’t have any particular need for security. Now that you have your bread and
cheese structures, you can set the values in them:

void scaleSprites()

{

 cheese.TicksToCrossScreen = 200.0f;

 cheese.WidthFactor = 0.05f;

 cheese.SpriteRectangle.Width =

 (int)((displayWidth * cheese.WidthFactor) + 0.5f);

 float aspectRatio =

 (float)cheese.SpriteTexture.Width / cheese.SpriteTexture.Height;

 cheese.SpriteRectangle.Height =

 (int)((cheese.SpriteRectangle.Width / aspectRatio) + 0.5f);

 cheese.X = minDisplayX;

 cheese.Y = minDisplayY;

 cheese.XSpeed = displayWidth / cheese.TicksToCrossScreen;

 cheese.YSpeed = cheese.XSpeed;

 bread.WidthFactor = 0.15f;

 bread.TicksToCrossScreen = 120.0f;

 bread.SpriteRectangle.Width =

 (int)((displayWidth * bread.WidthFactor) + 0.5f);

 aspectRatio =

 (float)bread.SpriteTexture.Width / bread.SpriteTexture.Height;

 bread.SpriteRectangle.Height =

 (int)((bread.SpriteRectangle.Width / aspectRatio) + 0.5f);

 bread.X = displayWidth / 2;

 bread.Y = displayHeight / 2;

 bread.XSpeed = displayWidth / bread.TicksToCrossScreen;

 bread.YSpeed = bread.XSpeed;

}

214	 Part III  Writing Proper Games

This version of scaleSprites sets the width, height, speed, and initial position of the bread
and the cheese sprites. It makes the bread take up slightly more of the width of the screen
and allows it to move a bit faster than the cheese. The ScaleSprites method also sets the
initial position of the bread at the middle of the screen and places the cheese at the top left
corner of the display area.

Using the Gamepad Thumbsticks to Control Movement
You’ve decided that the player will control the bread and use it as a bat to hit the cheese.
To make the bread move, you need to add some statements to the Update method. This
turns out to be very easy. The Xbox gamepad has two thumbsticks that can be used to
control games. These generate floating-point values that you can use to direct the movement
of the bread bat. Figure 12-1 shows the range of values that the thumbstick produces. If it’s
pushed all the way to the left, it will generate –1.0 for the X value. If it’s pushed halfway to the
left, it will generate –0.5. If the thumbstick is left in the center, the X and Y values are zero.

Y=1

Y=-1

X=-1 X=1

Figure 12-1  Thumbstick values

You’ve used the GamePadState structure before to read the state of buttons on a gamepad.
It also provides a ThumbSticks property that contains two vectors (one for each thumbstick)
that allow your program to read the current thumbstick values. Version 2.0 of the Zune (the
devices with a Zune pad) map input from the pad onto the left thumbstick.

To get the amount of movement of the bread, you simply need to take the values from the
left thumbstick and multiply them by the speed values for your bread sprite. The farther the
thumbstick is moved, the bigger the values and the faster the bread moves across the screen:

GamePadState gamePad1 = GamePad.GetState(PlayerIndex.One);

// Allows the game to exit

if (gamePad1.Buttons.Back == ButtonState.Pressed)

 this.Exit();

// Move the bread

bread.X = bread.X + (bread.XSpeed * gamePad1.ThumbSticks.Left.X);

bread.Y = bread.Y - (bread.YSpeed * gamePad1.ThumbSticks.Left.Y);

bread.SpriteRectangle.X = (int)bread.X;

bread.SpriteRectangle.Y = (int)bread.Y;

	 Chapter 12  Games, Objects, and State	 215

This code is placed in the Update method and updates the position of the bread rectangle
according to the setting of the left thumbstick. Note that the code must subtract the speed
value from the Y coordinate. This is because the Y coordinate goes down the screen, with
0 at the top. If the speed value was added to the Y coordinate, the bread would go down
the screen when the thumbstick is moved up, making it harder to control. This version of the
bread movement does not restrict the bread to the screen, so it is possible for the player to
move the bread right off the screen.

Sample Code: Bread and Cheese  All the sample projects can be obtained from the course
instructor. The sample project in the 01 Bread and Cheese directory in the resources for this
chapter draws cheese bouncing around the screen and a bread bat that you can move around
the screen with the left thumbstick. It works very well, and the feeling of control that you get is
very impressive for such a simple program. The bread doesn’t yet interact with the cheese; you’ll
add that later.

Improving Programs Using Methods
The Great Programmer has just been around and has taken a look at your code. She purses
her lips when she sees something she doesn’t like, and she’s doing that now. The bit of code
she doesn’t like is the scaleSprites method where you set up the bread and cheese sprites:

void scaleSprites()

{

 cheese.TicksToCrossScreen = 200.0f;

 cheese.WidthFactor = 0.05f;

 cheese.SpriteRectangle.Width =

 (int)((displayWidth * cheese.WidthFactor) + 0.5f);

 float aspectRatio =

 (float)cheese.SpriteTexture.Width / cheese.SpriteTexture.Height;

 cheese.SpriteRectangle.Height =

 (int)((cheese.SpriteRectangle.Width / aspectRatio) + 0.5f);

 cheese.X = minDisplayX;

 cheese.Y = minDisplayY;

 cheese.XSpeed = displayWidth / cheese.TicksToCrossScreen;

 cheese.YSpeed = cheese.XSpeed;

 bread.WidthFactor = 0.15f;

 bread.TicksToCrossScreen = 120.0f;

 bread.SpriteRectangle.Width =

 (int)((displayWidth * bread.WidthFactor) + 0.5f);

 aspectRatio =

 (float)bread.SpriteTexture.Width / bread.SpriteTexture.Height;

 bread.SpriteRectangle.Height =

 (int)((bread.SpriteRectangle.Width / aspectRatio) + 0.5f);

 bread.X = displayWidth / 2;

 bread.Y = displayHeight / 2;

 bread.XSpeed = displayWidth / bread.TicksToCrossScreen;

 bread.YSpeed = bread.XSpeed;

}

216	 Part III  Writing Proper Games

For a start, she reckons that the name is no longer correct. The method doesn’t only scale the
sprites; it also sets their initial position on the screen and their speed of movement. So you
promise to go through and change the name of the method, using the Refactor technique
you used in Chapter 11. The next thing she doesn’t like to see is the same piece of code
repeated. Rather than perform exactly the same sequence of statements for the bread as
for the cheese, she suggests that you make a method called setupSprite that sets up a
sprite. You then call this for every sprite you want to set up. You know that you’ll have tomato
sprites later, so this seems like a sensible, time-saving plan. You can pass the setupSprite
method parameters that give it all the information it needs to work on, so you begin to write
the method:

void setupSprite(

 GameSpriteStruct sprite,

 float widthFactor,

 float ticksToCrossScreen,

 float initialX,

 float initialY)

{

 sprite.WidthFactor = widthFactor;

 sprite.TicksToCrossScreen = ticksToCrossScreen;

 sprite.SpriteRectangle.Width = (int)((displayWidth * widthFactor) + 0.5f);

 float aspectRatio =

 (float)sprite.SpriteTexture.Width / sprite.SpriteTexture.Height;

 sprite.SpriteRectangle.Height =

 (int)((sprite.SpriteRectangle.Width / aspectRatio) + 0.5f);

 sprite.X = initialX;

 sprite.Y = initialY;

 sprite.XSpeed = displayWidth / ticksToCrossScreen;

 sprite.YSpeed = sprite.XSpeed;

}

The method is given the sprite to set up, along with the width factor, the time taken to cross
the screen, and the initial start position of the sprite. You can then set up the cheese and
bread by making two calls of the method:

void setupSprites()

{

 setupSprite(cheese, 0.05f, 200.0f, minDisplayX, minDisplayY);

 setupSprite(bread, 0.15f, 120.0f, displayWidth / 2, displayHeight / 2);

}

This looks much neater, and you’re really pleased with the code that you’ve written. You feed all
your setup values into the method call, and it calculates the content of the gameSpriteStruct
that needs to be set up. The only problem is that it doesn’t work. The method call doesn’t seem
to have any effect on the bread or cheese sprite value.

Value and Reference Parameters
It turns out that your program doesn’t work because the parameters in your method are
passed by value. A parameter is the means by which you can pass information into a method.

	 Chapter 12  Games, Objects, and State	 217

When a method is called, the value given in the call is copied into the parameter. This means
that when code in a method assigns a value to the parameter, the copy is changed, but not
the original. In other words, the statement sprite.X = initialX; changes the value of a
copy of the GameSpriteStruct that was supplied as a parameter. When a method ends, all
the parameter copies are discarded, and the updated values are lost.

Passing value parameters into method calls is fine when you want to tell a method
something, but it is less useful when you want the method to change the parameter. To make
the method useful, you need to find a way of pointing the method at the variable you want
it to change. It turns out that you have a way to do this, and you’ve seen it before. The
device you’ll use is called a reference. If you give the method a reference to the thing you
want it to change, it can follow the reference and make changes to your actual bread and
cheese objects rather than to copies. In Chapter 9, in the section entitled “Working with
Arrays, Objects, and References,” you discovered that some variables are managed by value
and some by reference. C# structures are managed by value, which is why the values of
the cheese and bread sprites get copied when the method is called. To tell C# to manage
a particular parameter as a reference, you need to change the header of the method:

void setupSprite(

 ref GameSpriteStruct sprite,

 float widthFactor,

 float ticksToCrossScreen,

 float initialX,

 float initialY)

{

 // method goes here

}

The ref modifier before the GameSpriteStruct parameter in the method header tells the
compiler to pass a reference to the parameter’s location in memory rather than copying a
value stored in that memory location. You also need to use the ref modifier, as shown here
in bold, when you make a call to the method:

setupSprite(ref cheese, 0.05f, 200.0f,

 minDisplayX, minDisplayY);

setupSprite(ref bread, 0.15f, 120.0f,

 displayWidth/2, displayHeight/2);

Now, when setupSprite runs, it is given the values of the rest of the parameters that it
needs to work with and a reference to the GameSpriteStruct object that needs to be
changed. You don’t need to change any code in the body of the method itself; the compiler
makes sure that the instructions it produces follow the reference and update the correct
values in memory rather than updating a copy of the values.

Sample Code: Bread and Cheese with Setup Method  The sample project in the 02 Bread
and Cheese with Setup Method directory in the resources for this chapter uses a setupSprite
method to set up the sprites.

218	 Part III  Writing Proper Games

Handling Collisions
You have a bread bat and some cheese, and you can move the bread around the game and
chase the cheese, but nothing happens when you hit the cheese with the bread. You now
need to add the interaction between these two sprites. The first thing the game needs to
do is detect when the bread and the cheese collide. The best way to do this is to use the
rectangles that define the size and position of the two sprites on the screen. When these two
rectangles intersect (that is, both of them cover the same part of the screen), it means that a
collision has taken place. Figure 12-2 shows how this works.

Figure 12-2  A sprite collision

What you need is a method that you can use to detect when this happens. Fortunately, the
designers of XNA have provided just such a method using the Rectangle type. The method,
called Intersects, is used as follows:

if (cheese.SpriteRectangle.Intersects(bread.SpriteRectangle))

{

 // we have a collision

}

You call the Intersects method on one rectangle and feed it the other one to compare
with it. It returns true if the two rectangles intersect. Note that in the previous code, it is
necessary to get the rectangle value of the bread and cheese sprites.

Making the Cheese Bounce off the Bat
Now that you can detect when the cheese and the bread collide, you need to make the
cheese “bounce” off the bat. Because the bread is horizontal, it makes sense to bounce the
cheese up and down the screen so that whenever the cheese hits the bat, it reverses its
movement in the Y direction. The code to achieve this is very simple; you do the same thing
with the YSpeed as you do when the cheese hits the top or bottom of the game region:

if (cheese.SpriteRectangle.Intersects(bread.SpriteRectangle))

{

 cheese.YSpeed = cheese.YSpeed * -1;

}

	 Chapter 12  Games, Objects, and State	 219

This code can be placed at the end of the Update method to cause the cheese to bounce off
the bat.

Sample Code: Cheese and Bread Bat  The sample project in the 03 Cheese and Bread Bat
directory in the resources for this chapter lets players hit the cheese up and down the screen with
the bread bat.

Strange Bounce Behavior
When you run the game, you find that it works well, and you can guide the cheese around
the screen successfully. However, you make the mistake of letting your younger brother have
a go, and he’s soon complaining that there’s a bug in your game. Sometimes the cheese gets
“stuck” on the bread. You ask him to show you what happens, and it turns out that he’s right.
It seems to happen when the bread is moving when it hits the cheese. The cheese travels
along the bread, vibrating up and down as it moves. After some thought, you work out
what’s causing the problem. Figure 12-3 shows what’s happening.

Moving Down

Moving Up

Figure 12-3  Cheese that gets stuck on the bread

When the cheese rectangle and the bread rectangle intersect, the program reverses the
direction of movement of the cheese. Normally, this means that the next time the position of
the cheese is updated, it moves away from the bread, and the rectangles no longer intersect.
However, if the cheese is moving down and the bread is moving up when they collide, the
cheese goes so far “in” to the bread that, even after the cheese has been updated, the bread
and cheese rectangles still intersect. If this is the case, the Update method reverses the vertical
direction of movement of the cheese, causing the cheese to move back into the bread. This
continues as the cheese moves along the bread, following the path shown in Figure 12-3, until
it finally escapes off the end. There are a number of ways you can solve this problem:

	 1.	 When the cheese collides with the bread, the program could stop detecting collisions
for a while, giving the cheese a chance to move clear of the bread. To implement this,
you need to add a variable to count a certain number of ticks after the collision and not
allow collisions until after that number of ticks.

220	 Part III  Writing Proper Games

	 2.	 The program could move the cheese away from the bread after a collision so that
the two sprite rectangles no longer intersect at the next update. To implement this,
you need to know which direction the cheese is moving so that you can move it
appropriately.

	 3.	 You could change the rules of the game and tell the player about this special trick shot
where a skillful player can send the cheese in a particular direction by making it stick to
the bat in this way. This would require no additional programming at all.

The important thing to remember is that because you own the game universe, including
what you say the game is supposed to do, you can change the rules to suit what your
program does. The Great Programmer doesn’t have this freedom; usually she’s paid a large
sum of money to create a solution that does what the customer wants. However, quite a few
games have turned out the way they are because of the way the programmer made them
work or because of a bug that turned out to make the game more fun. In this case, you
decide to use the third approach and tell your younger brother that the game is meant to
work like that, and he has found a secret feature.

Strange Edge Behavior
Your younger brother is now very pleased with himself and with you. He is pleased with you
for making a game that rewards clever play and pleased with himself for finding this new
trick in the game. However, this doesn’t last long because he soon comes back and tells you
that he’s found a proper bug in the game. He can make the cheese go right off the screen
and not come back. You ask him to show you, and sure enough, if he uses the bread to chase
the cheese right to the top of the screen, he can send the cheese right off the screen. This is
definitely a bug, and you can’t pass it off as a feature.

Debugging a Running Program
One of the great things about XNA Game Studio is that you can stop the game and take
a look at what’s happening. Once you’ve persuaded your younger brother to make the
problem happen, you can put a breakpoint into the program and stop it so that you can look
at the values of the variables. You can do this even as the program is running, either on the
Xbox, Zune or Windows PC. You’ve used breakpoints before in the section entitled “Creating
a Method to Calculate Percentages,” in Chapter 10, “Using C# Methods to Solving Problems,”
where you were debugging the getPercentage method. Now you use them again to find
out how your cheese is escaping from the screen.

You can put a breakpoint in the Update method by clicking next to the line at which you
want it to stop. XNA Game Studio indicates that a breakpoint has been set by highlighting
the line, as shown in Figure 12-4.

	 Chapter 12  Games, Objects, and State	 221

Figure 12-4  Adding a breakpoint to the program

The next time the program reaches this statement, it stops, and XNA Game Studio enters
debugging mode. You can then look at the values of the variables to see what’s going wrong.
You did this in Chapter 10 as well. You add the breakpoint, and the program stops at that
line. When you take a look at the values in the cheese sprite, you find that the X coordinate
value is fine, but the Y coordinate is –50, which is very wrong. The cheese Y coordinate should
never get as low as this because the direction of the cheese movement should reverse when
it reaches an edge. You take another look at the code that does this, and it looks sensible:

if (cheese.Y <= minDisplayY)

{

 cheese.YSpeed = cheese.YSpeed * -1;

}

If the cheese Y value becomes less than the minimum it’s allowed to have, the direction of
movement is reversed to bring it back onto the screen. The program does this by multiplying
the speed of the cheese by –1, which made perfect sense when you wrote it. You take a
look at the cheese YSpeed and find that for the size of the screen you are using it has been
calculated as 4. This means that next time the cheese is updated, the Y position of the cheese
will be changed to –46 (which is still much lower than it’s supposed to be). The result is that

222	 Part III  Writing Proper Games

the same condition triggers again, reversing the direction of the YSpeed and sending the
Y position of the cheese back to –50. So the cheese remains forever off the screen, dancing
backward and forward just out of view. The problem happens because the bread collision
testing is performed after the cheese has been made to bounce when it hits the edge of the
screen, so if the cheese repeatedly bounces off the bread when it’s on the edge of the screen,
it can be made to vanish like this.

There are a number of ways you can fix this bug. You can stop the bread from going too
close to the edges so that it can’t harass the cheese like this, or you can fix the bouncing
problem of the cheese. You can’t really say that this behavior is a feature, although you could
create a completely different game where the aim was to push all the objects off the screen,
perhaps something called “Herd the Cheese” or “Sweep the Table.” However, you decide to
fix the problem.

The problem lies with the use of multiplication by –1 to change the direction of movement.
If the next update brings the cheese back into the required range, then all is well, but if by
some mischance it doesn’t, you get the dancing behavior that you’ve just uncovered.

The best way to fix this is to set the direction of movement of the cheese explicitly to the one
in which you need it to go. Rather than bouncing, where you simply reverse the sign of the
speed value, you should say, “If the cheese Y position is less than the limit, then make the
movement positive so that this always brings the cheese back onto the screen.” Even if the
cheese Y position remains less than the limit next time, the movement will still be correct and
result in the cheese heading in the right direction.

This turns out to be easy. You can use a method called Abs, which is provided by .NET.
The Abs method is held in the Math class and returns the absolute value or magnitude of a
number. The absolute value of a number is simply its value, if the number is zero or positive,
or the opposite of its value if the number is negative. For example, the absolute value of –4
is 4. The Math class provides a number of static methods (which are always available) for
use in your programs. The Math class is in the System namespace, so you can use it without
having to add any using directives to your program. The code to deal with the Y position of
the cheese ends up looking like this:

if (cheese.Y + cheese.SpriteRectangle.Height >= maxDisplayY)

{

 cheese.YSpeed = Math.Abs(cheese.YSpeed) * -1;

}

if (cheese.Y <= minDisplayY)

{

 cheese.YSpeed = Math.Abs(cheese.YSpeed) ;

}

If the cheese is too high, you make it move downward. If the cheese is too low, you make it
move upward. Now there’s no way the cheese can get stuck off the screen.

	 Chapter 12  Games, Objects, and State	 223

Unfortunately it is still possible to move the bat off the screen, To solve this, you have to add
code to limit the movement of the bread.

Sample Code: Absolute Cheese Bouncing  The sample project in the 04 Absolute Cheese
Bouncing directory in the resources for this chapter has the updated cheese bouncing behavior
so that the cheese cannot be forced off the screen.

Adding Tomato Targets
Your younger brother has become adept at balancing the cheese on the bat, but he wants
something to aim at, so now’s the time to provide some targets. You decide to use tomatoes
for this, so you need to add them to your program. You want to have lots of tomatoes, so
you need to create an array of GameSpriteStruct instances to hold all of them:

Texture2D tomatoTexture;

GameSpriteStruct[] tomatoes;

int numberOfTomatoes = 20;

These are the fields that you have to create to hold tomato information. Note that although
I’ve created an array reference called tomatoes, I haven’t yet created the array itself. You’ll
load the tomato texture from your image into a single Texture2D object which will be loaded
with the rest of the content for the game:

protected override void LoadContent()

{

 // Create a new SpriteBatch, which can be used to draw textures.

 spriteBatch = new SpriteBatch(GraphicsDevice);

 cheese.SpriteTexture = Content.Load<Texture2D>("Images/Cheese");

 bread.SpriteTexture = Content.Load<Texture2D>("Images/Bread");

 tomatoTexture = Content.Load<Texture2D>("Images/Tomato");

 setupSprites();

}

Textures are classes, and are managed by reference, not value, so each of your tomatoes
contains a reference to the same tomato texture:

void setupSprites()

{

 setupSprite(ref cheese, 0.05f, 200.0f, minDisplayX, minDisplayY);

 setupSprite(ref bread, 0.15f, 120.0f, displayWidth / 2, displayHeight / 2);

 tomatoes = new GameSpriteStruct[numberOfTomatoes];

 float tomatoSpacing = (maxDisplayX - minDisplayX) / numberOfTomatoes;

224	 Part III  Writing Proper Games

 for (int i = 0; i < numberOfTomatoes; i++)

 {

 tomatoes[i].SpriteTexture = tomatoTexture;

 setupSprite(

 ref tomatoes[i],

 0.05f, // 20 tomatoes across the screen

 1000, // 1000 ticks to move across the screen

 minDisplayX + (i * tomatoSpacing), minDisplayY);

 }

}

The setupSprites method creates the tomatoes array and contains a for loop that works
through each tomato sprite and sets its size and position. Your first version of the game
has the tomatoes evenly spaced in a line along the top of the screen. To make this work,
the method uses a local variable called tomatoSpacing that’s set to the width of the display
divided by the number of tomatoes that you’re using in the game. Note that you’re following
the advice of the Great Programmer in that it is very easy to change the number of tomatoes
in the game; you need only change the value of one variable.

At the moment, you won’t be making the tomatoes move, so the Update method only needs
to copy the X and Y positions of the tomato into the rectangle for that sprite:

for (int i = 0; i < numberOfTomatoes; i++)

{

 tomatoes[i].SpriteRectangle.X = (int)tomatoes[i].X;

 tomatoes[i].SpriteRectangle.Y = (int)tomatoes[i].Y;

}

The last thing you need to do is add the code to draw all the tomatoes. This is placed in the
Draw method as follows:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 spriteBatch.Draw(cheese.SpriteTexture, cheese.SpriteRectangle, Color.White);

 spriteBatch.Draw(bread.SpriteTexture, bread.SpriteRectangle, Color.White);

 for (int i = 0; i < numberOfTomatoes; i++)

 {

 spriteBatch.Draw(tomatoes[i].SpriteTexture,

 tomatoes[i].SpriteRectangle, Color.White);

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

The Draw method contains another for loop that draws each of the tomatoes in turn.
Figure 12-5 shows the display produced with your 20 tomatoes along the top.

	 Chapter 12  Games, Objects, and State	 225

Figure 12-5  Bread, cheese, and 20 tomatoes

Sample Code: Adding Tomatoes  The sample project in the 05 Adding Tomatoes directory in
the resources for this chapter draws 20 tomatoes along the top of the screen.

Zune Image Sizes
The Zune will run XNA games quite happily, but it does not have as much available memory
as the Xbox 360 or Windows PC. Up until now I have been using quite high resolution images
of the bread, tomatoes, and cheese. However, these images have been so large that if we
add too many the Zune is unable to hold them. (And the Zune screen is so small that images
made up of fewer pixels are quite acceptable anyway.) For this version of the game I have
re-sized the textures so that they look acceptable on the Xbox and Windows PC, but will also
fit into the Zune memory. When you create game resources you must be careful to make
sure that the images you produce are of the appropriate size and resolution.

Tomato Collisions
The idea of the game is that when the cheese hits a tomato, the tomato vanishes. This means
that you need a way of making the tomatoes disappear. You can’t make them vanish as such,
but you can decide not to draw them.

226	 Part III  Writing Proper Games

Controlling Sprite Visibility
The game must have some way of deciding when a particular sprite shouldn’t be drawn. This
turns out to be easy; you need only add an extra field to the GameSpriteStruct structure:

struct GameSpriteStruct

{

 public Texture2D SpriteTexture;

 public Rectangle SpriteRectangle;

 public float X;

 public float Y;

 public float XSpeed;

 public float YSpeed;

 public float WidthFactor;

 public float TicksToCrossScreen;

 public bool Visible;

}

The Visible field is set to true if the sprite is to be drawn on the screen.

Setting the Initial Visibility State
The initial value of Visible can be set by the setupSprite method, which is now given an
additional parameter that is used to set the initial visibility of the sprite:

void setupSprite(

 ref GameSpriteStruct sprite,

 float widthFactor,

 float ticksToCrossScreen,

 float initialX,

 float initialY,

 bool initialVisibility)

{

 // original setup code here

 sprite.Visible = initialVisibility;

}

Initially, it’s set to true for all the tomatoes, the cheese, and the bread in the setupSprites
method:

void setupSprites()

{

 setupSprite(ref cheese, 0.05f, 200.0f, 200, 100, true);

 setupSprite(ref bread, 0.15f, 120.0f, displayWidth / 2, displayHeight / 2, true);

 tomatoes = new GameSpriteStruct[numberOfTomatoes];

 float tomatoSpacing = (maxDisplayX - minDisplayX) / numberOfTomatoes;

 for (int i = 0; i < numberOfTomatoes; i++)

 {

 tomatoes[i].SpriteTexture = tomatoTexture;

 setupSprite(

	 Chapter 12  Games, Objects, and State	 227

 ref tomatoes[i],

 0.05f, // 20 tomatos across the screen

 1000, // 1000 ticks to move across the screen

 minDisplayX + (i * tomatoSpacing), minDisplayY,

 true // initially visible

);

 }

}

This setupSprites method also sets the initial position of the cheese a bit further into the
screen so that it does not initially collide with any tomatoes.

Using the Visible Field When Drawing
You use the value of the Visible field when you draw the sprites in the Draw method:

for (int i = 0; i < numberOfTomatoes; i++)

{

 if (tomatoes[i].Visible)

 {

 spriteBatch.Draw(tomatoes[i].SpriteTexture,

 tomatoes[i].SpriteRectangle, Color.White);

 }

}

Only tomatoes that have the Visible field set to true are drawn on the screen. To make
a tomato vanish, you simply set its Visible property to false. You do this in the Update
method:

for (int i = 0; i < numberOfTomatoes; i++)

{

 if (tomatoes[i].Visible)

 {

 if (cheese.SpriteRectangle.Intersects(tomatoes[i].SpriteRectangle))

 {

 tomatoes[i].Visible = false;

 cheese.YSpeed = cheese.YSpeed * -1;

 break;

 }

 }

}

The for loop looks through all the tomatoes and tests to see if any of the tomato rectangles
intersect with the cheese. If it finds an intersection, it sets the Visible property of the
tomato to false and then reverses the direction of the cheese movement to make it
“bounce” off the tomato it has just destroyed. Once it has removed one tomato, it stops
looking for any more because the break statement causes the for loop to end at that point.
This is important because otherwise, the cheese might collide with and destroy more than
one tomato at a time, making the game too easy.

228	 Part III  Writing Proper Games

Sample Code: Tomato Killer  The sample project in the 06 Tomato Killer directory lets
a player steer the cheese around the screen and use it to destroy tomatoes.

Conclusion
You’re now starting to make games that look like “proper” ones. You’re building your
understanding of how C# lets you structure the data in your programs so that it’s easier to
work with. You’ve also discovered how to use references so that methods can change the
content of variables passed as parameters, and you’ve found another use for the XNA Game
Studio debugger.

Chapter Review Questions
Here’s the twelfth chapter review. You know the procedure by now: true or false?

	 1.	 Structures are held in fields.

	 2.	 Structures let programmers group things together in their programs.

	 3.	 Structures are managed by reference.

	 4.	 Making a member of a class public stops code in other classes from using that item.

	 5.	 The absolute value of a number is always negative.

	 6.	 By default, parameters to a C# method are passed by copying their values into the
method.

	 7.	 You can’t put a breakpoint in a running program.

	 8.	 The Abs method is static, so you don’t need an instance of the Math class to use it.

	 9.	 You can’t change the name of a method once you’ve created it.

		 229

Chapter 13

Making a Complete Game
In this chapter, you will

n	 Finish off the game play in your game.

n	 Add some features to make the game more exciting.

n	 Discover how to improve the structure of the game program itself.

n	 Find out how to use state machines to add a title screen to the game.

Introduction
You can now create programs with all the behaviors required to create a “proper” game. You
know how to place objects on the screen and manage their movement. You also know how
to make sure that the games you create work on different display sizes. You can also display
text and produce sounds. In this chapter, you develop the game play further, add some more
sprites, and create a game that has proper game-play states.

Making a Finished Game
You now have the basis of a single-player tomato-killer game. The game play is simple—
you use the bread to steer the cheese around at the tomatoes—but even your younger
brother, who is easy to amuse, quickly finds it boring. Thus, you need to add some additional
game-play elements: scores, survival, and progression.

Adding Scores to a Game
Even a simple game can be made addictive by adding a score component. It gets even more
interesting when you add a high score so that the player always has something to beat. The
game score is another integer variable that’s set to 0 when the game starts and increases
each time a tomato is killed. You’ve decided that tomatoes are worth 10 points, so each
time the cheese crashes into a tomato, the score goes up by 10. The code that manages the
cheese and tomato collisions is in the Update method:

if (cheese.SpriteRectangle.Intersects(tomatoes[i].SpriteRectangle))

{

 cheese.YSpeed = cheese.YSpeed * -1;

 score = score + 10;

 tomatoes[i].Visible = false;

 break;

}

230	 Part III  Writing Proper Games

You could make the game even more interesting by making the value of the tomatoes
change over time so that the longer the player takes to destroy them, the less they’re worth,
but for now, you’ll simply give the player 10 points for every tomato destroyed.

Drawing Text in the Game
Now that you have a score value to display you need some code to write it on the screen so
that the player can see it increasing. The best way to do this is to create a general-purpose
method for drawing text. You can then use the method to draw text whenever you need to
display a message. The method needs to be given the text to be displayed, the position of
the text, and the color of the text. It uses a font resource that is loaded by LoadContent and
draws using the spriteBatch that is set up by the game:

void drawText(string text, Color textColor, float x, float y)

{

 int layer;

 Vector2 textVector = new Vector2(x, y);

 // Draw the shadow

 Color backColor = new Color(0, 0, 0, 20);

 for (layer = 0; layer < 10; layer++)

 {

 spriteBatch.DrawString(font, text, textVector, backColor);

 textVector.X++;

 textVector.Y++;

 }

 // Draw the solid part of the characters

 backColor = new Color(190, 190, 190);

 for (layer = 0; layer < 5; layer++)

 {

 spriteBatch.DrawString(font, text, textVector, backColor);

 textVector.X++;

 textVector.Y++;

 }

 // Draw the top of the characters

 spriteBatch.DrawString(font, text, textVector, textColor);

}

The drawText method is the same code you used to draw the clock in Chapter 5, “Writing
Text.” However, it’s been packaged as a method that you can use whenever you want to put
text onto the screen. It is supplied with the string to be displayed, the color of text that’s
required, and the position on the screen to draw it. The font that is to be used must have
been loaded by the LoadContent method. To draw the score on the screen, you simply need
to call the drawText method within the Draw method:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

	 Chapter 13  Making a Complete Game	 231

 spriteBatch.Draw(cheese.SpriteTexture, cheese.SpriteRectangle, Color.White);

 spriteBatch.Draw(bread.SpriteTexture, bread.SpriteRectangle, Color.White);

 for (int i = 0; i < numberOfTomatoes; i++)

 {

 if (tomatoes[i].Visible)

 {

 spriteBatch.Draw(tomatoes[i].SpriteTexture,

 tomatoes[i].SpriteRectangle, Color.White);

 }

 }

 drawText(

 "Score : " + score.ToString(),

 Color.White,

 minDisplayX,

 maxDisplayY - 50);

 spriteBatch.End();

 base.Draw(gameTime);

}

This Draw method draws all the game objects and then puts the score on last. This means
that the score values are shown “on top” of all the other game items. You can call the
drawText method several times if you want to draw multiple messages.

Adding Survival
At the moment, the player is under no particular pressure during the game. If the player
makes a mistake, it doesn’t cost anything. You need to add some bad news to the game.
Later, you could add deadly peppers and the killer tangerines, but for now, just cause the
player to lose a life if the cheese hits the bottom of the screen. The life counter is just another
variable in the game. There seems to be a tradition in computer games that you always start
with three lives and that each time something bad happens, you lose a life. When you have
no lives left, your game ends. The Update method contains the code that checks for the
cheese hitting the bottom of the screen; you need only add some code that updates the life
counter when this happens. The life counter must be reduced only when the player has some
lives left, so the program must test for this, as follows:

if (cheese.Y + cheese.SpriteRectangle.Height >= maxDisplayY)

{

 cheese.YSpeed = Math.Abs(cheese.YSpeed) * -1;

 if (lives > 0)

 {

 lives--;

 }

}

232	 Part III  Writing Proper Games

Next, you need to stop the game from continuing when the number of lives reaches 0. The
best way to do this is to exit from the Update method after you’ve moved the cheese but
before you update the bread and look for tomatoes to collide with. This code uses the fact
that C# lets a program return from a method at any point during the method:

protected override void Update(GameTime gameTime)

{

 ...

 // code to move the cheese and update the life counter

 ...

 if (lives <= 0)

 {

 return;

 }

 ...

 // Code to update the bread position

 // Code to check for the cheese hitting the tomatoes

 ...

}

The effect of this code is that when all the lives are used up, the cheese continues bouncing
around the screen, but the score does not change, and the player is unable to control the bread.

You need to display the number of lives left alongside the player score. You can do this by
adding this information to the string displayed by Draw:

protected override void Draw(GameTime gameTime)

{

 ...

 // Code to clear the screen and draw the game elements

 ...

 drawText(

 "Score : " + score.ToString() + " Lives : " + lives.ToString(),

 Color.White,

 minDisplayX,

 maxDisplayY - 50);

 ...

 // Code to finish off the Draw method

 ...

}

Adding Progression
Once the player has killed all the tomatoes, your game becomes very boring in that there’s
nothing left to do. Many games are built around the idea of successive levels, with each one
being progressively more difficult than the last. The task of the player is to survive as long
as possible, building up the highest score possible before all the lives are used up. One way

	 Chapter 13  Making a Complete Game	 233

you can achieve progression is by redrawing the tomatoes each time all of them have been
destroyed. To make the game more difficult, you can redraw them lower down the screen so
that the player has less time to react with each passing level.

To achieve this, you need to detect when all the tomatoes have been destroyed. One way to
do this is to use a flag that’s set when a tomato is found, as shown in the following code:

bool noTomatoes = true;

for (int i = 0; i < numberOfTomatoes; i++)

{

 if (tomatoes[i].Visible)

 {

 noTomatoes = false;

 if (cheese.SpriteRectangle.Intersects(tomatoes[i].SpriteRectangle))

 {

 cheese.YSpeed = cheese.YSpeed * -1;

 score = score + 10;

 tomatoes[i].Visible = false;

 break;

 }

 }

 tomatoes[i].SpriteRectangle.X = (int)tomatoes[i].X;

 tomatoes[i].SpriteRectangle.Y = (int)tomatoes[i].Y;

}

if (noTomatoes)

{

 resetTomatoDisplay();

}

The noTomatoes flag is set to false if a visible tomato is found in the list. If the loop
completes and noTomatoes is still true, the program must call the resetTomatoDisplay
method to put the tomatoes back on the screen again. The method moves the tomato draw
height down the screen and then uses a loop to update the draw height of each tomato and
make the tomato visible again:

void resetTomatoDisplay()

{

 tomatoHeight = tomatoHeight + (displayHeight * tomatoStepFactor);

 if (tomatoHeight > tomatoHeightLimit)

 {

 tomatoHeight = minDisplayY;

 }

 for (int i = 0; i < numberOfTomatoes; i++)

 {

 tomatoes[i].Visible = true;

 tomatoes[i].Y = tomatoHeight;

 }

}

234	 Part III  Writing Proper Games

The resetTomatoDisplay method cannot move the tomatoes down the screen indefinitely;
otherwise, they would eventually fall off the bottom of the display. To prevent this, the
method imposes a limit on how far down the screen tomatoes can be drawn. Once this limit
is reached, the tomatoes are moved back to the top of the screen again. The limit value is set
when the game starts, in the method that sets up the tomatoes:

void setupTomatoes()

{

 tomatoHeight = minDisplayY;

 tomatoHeightLimit = minDisplayY + ((maxDisplayY - minDisplayY) / 2);

 tomatoes = new GameSpriteStruct[numberOfTomatoes];

 float tomatoSpacing = (maxDisplayX - minDisplayX) / numberOfTomatoes;

 for (int i = 0; i < numberOfTomatoes; i++)

 {

 tomatoes[i].SpriteTexture = tomatoTexture;

 setupSprite(

 ref tomatoes[i],

 0.05f, // 20 tomatos across the screen

 1000, // 1000 ticks to move across the screen

 minDisplayX + (i * tomatoSpacing), minDisplayY,

 true // initially visible

); }

}

Sample Code: Bread and Cheese Game  All the sample projects can be obtained from
the course instructor. The sample project in the 01 Bread and Cheese Game directory in the
resources for this chapter is a fully working version of the game. Use the bread bat to hit the
cheese at the tomato targets. When you’ve destroyed a complete row, the tomatoes are all
redrawn. If you let the cheese hit the bottom of the screen, the life counter is reduced. Once all
three lives have been used up, you cannot control the bread, and the score does not update.

Figure 13-1 shows a Bread and Cheese game in progress. This game is actually quite easy to
play; it would be interesting to see how much better it would be made by adding a clock that
timed the disposal of each level, or some additional forms of player jeopardy.

Note  There are some game-play issues with this design that your younger brother might notice,
particularly the way that after a level is redrawn, the cheese often collides instantly with one of
the tomatoes and gets above the tomato row, bouncing about and making a huge score. If you
decide that this is a problem, there are a number of ways you could fix it. I’ll leave it to you to
sort it out.

	 Chapter 13  Making a Complete Game	 235

Figure 13-1  Simple Bread and Cheese game

Improving Code Design
In Chapter 11, “A Game as a C# Program,” in the section entitled “Renaming the Game1
Class,” you changed the name of the class to one that better reflects the game that’s being
created. Now you consider other ways that your programs can be better structured. At the
moment, you haven’t given much thought to the structure of the game program itself. When
you have needed extra code, you simply added it where it seemed to do the job. However,
this is not very good design practice.

It’s much easier if code is structured into well-defined areas. If you think about it, all the
cheese, bread, and tomato game elements are used in the same way. The game program
performs a number of fundamental actions with these elements during a game:

	 1.	 The game elements are set up at the beginning of the game.

	 2.	 The game elements are updated during the game.

	 3.	 The game elements are drawn during the game.

At the moment, these actions are performed in a piecemeal fashion in the game methods
that perform these tasks. However, it makes very good sense to bring the code for each

236	 Part III  Writing Proper Games

element together so that they’re easier to manage. Rather than having bits of behavior for all
the elements in the Update method, you can change the Update method so that it instead
calls a method for each game element type:

protected override void Update(GameTime gameTime)

{

 gamePad1 = GamePad.GetState(PlayerIndex.One);

 if (gamePad1.Buttons.Back == ButtonState.Pressed)

 this.Exit();

 updateCheese();

 if (lives <= 0)

 {

 return;

 }

 updateBread();

 updateTomatoes();

 base.Update(gameTime);

}

The same pattern could be used in the Setup and Draw methods. Note that these changes
won’t make the game program run more quickly (in fact, the method calls slow things down
very slightly), but it makes things much easier for the programmer, as shown next. You might
remember that the process of tidying up a program like this is known as refactoring. You first
saw this in Chapter 11, where you changed the name of elements in your game to better
reflect what they were used for. XNA Game Studio provides some useful refactoring features
to help you organize your program and perform refactoring.

Refactoring by Creating Methods from Code
The refactoring support in XNA Game Studio makes it easy to create a method from a block
of statements. First, you need to highlight the statements to be placed in the new method.
Then right-click the block of code to bring up the Context menu, select Refactor, and then
select Extract Method from the Refactor menu, as shown in Figure 13-2.

The Extract Method dialog box now appears, as shown in Figure 13-3. Enter the name of the
method to be created and click OK.

XNA Game Studio creates a method with the name you’ve entered, puts the selected code
into the method, and places a call to the method where the code used to be. You could have
performed all these tasks yourself, but the automation makes it much easier.

	 Chapter 13  Making a Complete Game	 237

Figure 13-2  Opening the Extract Method dialog box

Figure 13-3  Creating a method

Note  If the statements that you have extracted use variables that are local to the block of
code from which the statements were taken, you will find that extracting a method stops your
program from compiling correctly. You would need to fix the problem by declaring parameters
for the new method and passing the variables as arguments.

Refactoring by Changing Identifiers
Frequently it’s necessary to change identifiers as a program is developed. This happens
because the purpose of the variables and methods changes as you gain a better
understanding of the problem you’re solving. At the start of the development, you created
a method called setupSprites, which set up all the sprite settings for the elements in the

238	 Part III  Writing Proper Games

game. However, this method now has other responsibilities; it must also set the score and life
counters. If the purpose of a method changes, you should make sure to change the name of
the method to reflect its purpose. This means that the name of the method should change
to setupGame. The refactoring support in XNA Game Studio makes this easy. To rename an
identifier, right-click the identifier you want to rename and select the appropriate refactoring
command, as shown in Figure 13-4.

Figure 13-4  Selecting the rename operation

The Rename dialog box now appears, as shown in Figure 13-5. You can type in the new
name of the method and select options to control the renaming process. If you’ve created
comments or text strings that refer to the method, you can ask XNA Game Studio to update
these, too.

Figure 13-5  Renaming a method

By default, the Preview Reference Changes check box is selected so that you are given a
chance to see the names that are about to be changed, as shown in Figure 13-6. You can
control which changes are to be made by selecting the check box next to each change.

	 Chapter 13  Making a Complete Game	 239

Figure 13-6  Previewing name changes

When you click OK, the changes that you have requested are applied, and the program
source code is updated. When renaming items, you must be careful that you don’t break
your program. Figure 13-7 shows the warning that XNA Game Studio displays if it detects
that you’re about to rename something that’s used in other parts of the program.

Figure 13-7  Warning of invalid name changes

If you ignore this warning and perform the changes anyway, it’s very likely that you’ll prevent
your program from compiling. The good news here, though, is that you can always use the
Undo command in XNA Game Studio to remove the changes that you’ve made. Figure 13-8
shows where the command is on the Edit menu; you can also invoke it by pressing the left
looping arrow on the toolbar or by using the key combination Ctrl+Z or Alt+Backspace.

240	 Part III  Writing Proper Games

Figure 13-8  The Undo command

Creating Code Regions
Another way to make program listings easier to understand is to use regions. A region is an
area of the code that you can expand or collapse. For example, you can expand or collapse
the view of your code by clicking on the plus (+) or minus (–) signs at the top of a method.
You can also create regions that can be expanded or collapsed by enclosing related code
in #region compiler directives, as shown in Figure 13-9. This shows a region around the
collapsed methods that were created to manage the tomatoes in the game.

Figure 13-9  Creating code regions

	 Chapter 13  Making a Complete Game	 241

Regions can be placed inside other regions to make it easier for other programmers to find
their way around your programs.

Creating Useful Comments
You’ve seen that Microsoft Visual Studio provides a feature called Intellisense when you’re
writing a program. When you’re typing a statement that contains a method call, the
structure of the method call is described to you automatically using Intellisense. Some of
this information is obtained from specially formatted comments that have been added to the
method itself. You first saw comments in Chapter 2, “Programs, Data, and Pretty Colors.”
They provide a way that you can leave notes in your program that the compiler ignores.
If you give comments in a particular format, they can be used by the compiler to provide
Intellisense to other programmers. As an example, consider the drawText method. Each of
the parameters has a particular purpose, and you can add comments to describe them:

/// <summary>

/// Draws text on the screen

/// </summary>

/// <param name="text">text to write</param>

/// <param name="textColor">color of text</param>

/// <param name="x">left edge of text</param>

/// <param name="y">top of text</param>

void drawText(string text, Color textColor, float x, float y)

{

 // Draw statements

}

The comments are formatted so as to provide XNA Game Studio with Intellisense information
so that now when you start coding a call of the method, the extra information is displayed.
Figure 13-10 shows how the information is displayed when a call of drawText is being coded.

Figure 13-10  Using Intellisense comments

The structure of the Intellisense comments has to be exactly right; otherwise, no help is
displayed. You can create these by hand, or you can use XNA Game Studio to create a
template for you to fill in. To obtain the template, you type three forward slash (/) characters
in succession in the editor immediately above the item to which you wish to add the comment.

The Great Programmer Speaks: A Great Program Is a Work of Art  The Great Programmer
reckons that, just as there is artistry in the design of a bridge or other great engineering work,
well-written code is a thing of beauty. She regards code that uses properly chosen identifiers and
appropriate methods and that is broken down into regions as being as worthy of admiration as any
other work of art. She always tries to make sure that her code looks good.

242	 Part III  Writing Proper Games

Sample Code: Refactored Bread and Cheese Game  The sample project in the 02
Refactored Bread and Cheese Game directory in the resources for this chapter is a refactored
version of the game. From the player’s point of view, it’s exactly the same. However, if you look
at the source code of this program, you find that the code has been organized into a set of
methods and separated into regions. You should find it much easier to locate particular items of
code in the source file.

Adding a Background
At the moment, the game is played on the blue background that is provided by XNA. This is okay,
but it doesn’t look very special. To improve things, you could add a texture that’s drawn behind
the game. You can do this by following the same pattern that was used for the other graphics
items. The set of background methods shown in this next code block match those that are
provided for the bread, cheese, and tomatoes. You need only put calls to the following methods
into the appropriate game methods, and you have a game with an attractive background image:

#region Background code and data

GameSpriteStruct background;

private void loadBackgroundContent()

{

 background.SpriteTexture =

 Content.Load<Texture2D>("Images\\Background");

 background.SpriteRectangle =

 new Rectangle(

 (int) minDisplayX, (int) minDisplayY,

 (int) (maxDisplayX - minDisplayX),

 (int) (maxDisplayY - minDisplayY)

);

}

private void updateBackground()

{

}

private void drawBackground()

{

 spriteBatch.Draw(background.SpriteTexture,

 background.SpriteRectangle, Color.White);

}

#endregion

The background texture is drawn in an area that fills the playfield. This makes it easier for the
player to determine when the cheese is going to bounce.

Note that there’s an updateBackround method, but it is empty at the moment. Later, you
might want to make the background flutter in the breeze or change color as the player
approaches the high score. Leaving the method blank makes it easy to add code to do this.

	 Chapter 13  Making a Complete Game	 243

Sample Code: Bread and Cheese with Background  The sample project in the 03 Bread
and Cheese with Background directory in the resources for this chapter is a version of the
game with a rather snazzy tablecloth in the background. Note that although this program runs
correctly on a Zune, the graphics in the title and background screens look a little stretched and
the text spills off the edge of the screen. This is because the Zune graphics are drawn in “portrait”
orientation where the screen is higher than it is wide. If you want to make a proper Zune version
of the game you will have to change the font size and perhaps use different textures.

The use of this technique makes it much easier to add new elements to the game program.
It also makes it easier to swap one element for another. If other programmers wanted to
create a different type of background, you could tell them what methods they would need to
provide, and then their code would plug directly into the game code. In later chapters, you
will see ways to make genuinely “pluggable” software components that can be added to a
game easily.

Adding a Title Screen
At the moment, the game starts when you run the program and then finishes when the last
life has been used up by the player. This is not how real games work. If you watch a real video
game, you might notice that it has an “attract” mode, where it shows a screen intended to
entice the player into playing the game. You can create a simple version of this by adding a
title screen like the one shown in Figure 13-11.

Figure 13-11  A tasteful title screen

This screen is displayed when the game is not active. You create a title, GameSpriteStruct,
and all the associated methods in the same way as you created a background earlier in this
chapter.

244	 Part III  Writing Proper Games

Games and State
To make the title screen appear correctly, the program must manage the state of the game.
The best way to do this is to create an enumerated type that has values to represent the states
that the game can occupy. You first saw enumerated types in Chapter 9, “Reading Text Input.”
Each of the possible keys that the keyboard can generate is represented by a value of the
enumerated type Keys. You create an enumerated type to hold the state of the game. This
type has only two values, representing a state when the title screen is displayed and a state
when the game is being played. Once the type has been created, you can make a variable of
that type to hold the state of the game, setting it initially to the title screen state as follows:

enum GameState

{

 titleScreen,

 playingGame

}

GameState state = GameState.titleScreen;

If there are only two states the program can occupy, you might think that this is overkill.
You could have just used a Boolean type, perhaps called gameActive, and make it true
to indicate a game in progress and false to indicate that the title screen should be
displayed. However, you might decide later to add other game states, perhaps one where
the high-score table is displayed. This enhancement is easier to implement if you use an
enumerated type instead of a Boolean type because you simply need to add a new value to
the enumerated type to represent this state.

Using the State Values
The state variable in the game controls what happens in the Draw and Update methods.
When the game is in the title screen state, the title screen needs to be drawn. When the
game is in the playingGame state, the background, cheese, bread, and tomatoes need to be
drawn. The following code accomplishes this:

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 switch (state)

 {

 case GameState.titleScreen:

 drawTitle();

 break;

 case GameState.playingGame:

 drawBackground();

 drawCheese();

	 Chapter 13  Making a Complete Game	 245

 drawBread();

 drawTomatoes();

 drawScore();

 break;

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

The Update method in the game contains a similar switch construction that would be used to
select the appropriate behavior:

protected override void Update(GameTime gameTime)

{

 gamePad1 = GamePad.GetState(PlayerIndex.One);

 if (gamePad1.Buttons.Back == ButtonState.Pressed)

 this.Exit();

 switch (state)

 {

 case GameState.titleScreen:

 updateTitle(); // changes state to playingGame when A pressed

 break;

 case GameState.playingGame:

 updateCheese(); // changes state to titleScreen when game ends

 updateBread();

 updateTomatoes();

 break;

 }

 base.Update(gameTime);

}

Building a State Machine
Now that you’ve identified the states that the game occupies, you need to consider what
causes the game program to move from one state to another. In professional programming,
this is shown using a state diagram, as shown in Figure 13-12.

A state diagram shows the entry point (the black filled-in blob) and then arrows that show
transition from one state to another. Some of the arrows have “guard conditions” on them
that identify things that must happen for the transition to take place. The diagram shows
that when the game starts, it moves into the “Title Screen” state, and then, if the A button is
pressed, it moves into the “Playing Game” state. Once the player has no lives left, it moves
back onto the title screen.

246	 Part III  Writing Proper Games

Title screen

Playing game

[No lives left] [A button pressed]

Figure 13-12  A game state diagram

State diagrams are useful in showing how a program behaves. They tell the programmer that
at certain points, the program must behave in a certain way; for example, in the previous
game state machine, there’s no need to test the A button when the player is playing the
game. State diagrams are used often in games when game items have a range of possible
states. Once you’ve identified the states, you need to create some methods that manage the
transition from one state to another. You need one method to start the game and one that’s
called when the game is over. The methods must set up all the variables as required and then
change the state of the game. Look at the following code:

#region Game state management

void startGame()

{

 score = 0;

 lives = 3;

 startCheese();

 startBread();

 startTomatoes();

 state = GameState.playingGame;

}

void gameOver()

{

 if (score > highScore)

 {

 highScore = score;

 }

 state = GameState.titleScreen;

}

#endregion

The startGame method clears the score, sets the number of lives left to three, and begins the
game. It also calls a method for each of the game elements to reset it to a known position

	 Chapter 13  Making a Complete Game	 247

before the game starts running. This makes sure that the bread is sensibly placed on the screen
and the cheese isn’t so near the edge that the player loses a life as soon as the game starts,
which wouldn’t be very fair.

The gameOver method updates the high score if it’s been beaten and then puts the game
back to the titleScreen state. Now all you need to do is call these methods at the
appropriate times to change the states in the game state machine. When the player presses
the A button, the game must call the startGame method. The test for this should be placed
in the updateTitle method, which updates the title screen:

if (gamePad1.Buttons.A == ButtonState.Pressed)

{

 startGame();

}

A game ends when the last life is used up. The test for this should be placed in the
updateCheese method:

if (cheese.Y + cheese.SpriteRectangle.Height >= maxDisplayY)

{

 cheese.YSpeed = Math.Abs(cheese.YSpeed) * -1;

 lives = lives - 1;

 if (lives <= 0)

 {

 gameOver();

 }

}

Sample Code: Bread and Cheese with Title Screen  The sample project in the 04 Bread
and Cheese with Title Screen directory in the resources for this chapter is a version of the game
that operates using a state machine to provide a title screen.

Many games show different displays during their “attract mode.” It’s easy to get your game
to do this by making the program change from one state to another over time. The game
code can do this by counting the number of times that titleUpdate has been called and
then moving to another state when the counter reaches a particular value.

The Great Programmer Speaks: State Machines Are a Great Way to Write
Programs  The Great Programmer uses state machines a lot in her code. They let her programs
“remember” where they are so that they can respond correctly when an event happens. She
starts off by working out what states her program must occupy and identifying the events that
cause the states to change. Once she has done this and drawn her state diagram, she can go
ahead and write the code.

248	 Part III  Writing Proper Games

Conclusion
At last, you’ve created what might be regarded as a finished game. It has some rough edges
and is rather simple to play, but it should keep your younger brother quiet for an hour or
so. You’ve seen how the way a program is structured and laid out in the source file can
have a huge impact on how easy it is to work with the code. You’ve also discovered some
fundamentals of game program behavior by finding out how a state machine can be used to
manage the operation of a game.

Chapter Review Questions
I don’t know a better way to end a chapter than with some review questions. I really don’t.

	 1.	 A program returns from a method only when it reaches the end of that method block.

	 2.	 Refactoring is how you change the type of the variables.

	 3.	 Method names can’t be changed once a program has been written.

	 4.	 Each code region in a program is stored in a separate source file.

	 5.	 Intellisense information is retrieved from code regions.

	 6.	 A state machine can have only two possible states.

		 249

Chapter 14

Classes, Objects, and Games
In this chapter, you will

n	 Find out about making programs using software objects.

n	 Learn some software engineering terms and what they mean when we write programs.

n	 Use objects to add some new elements to our game easily.

Introduction
In this chapter, you learn something about the craft of programming and how writing a good
solution to a problem is all about organization. You also see how a well-organized program is
simple to extend and modify, and how to create software components that make it possible
to create code mashups very easily.

The Great Programmer is very keen on this chapter. You might not be quite so enthusiastic, but
it has to be said that objects do make software construction much easier. The whole of Microsoft
XNA is built around objects, so to get a complete understanding of how the framework fits
together, you really have to know about objects and how a system is built using them.

Design with Objects
We have seen that if we want to store a block of information about a particular item, we
can bring all this together in a structure. We used this technique when we created the
GameSpriteStruct structure in Chapter 12, “Games, Objects, and State.” Structures are useful,
but we would like to be able to solve other problems when we create large programs:

n	 We want to make sure that a given item in our program cannot be placed into an invalid
state; that is, we don’t want to have tomatoes that can be positioned off the display
screen.

n	 We want to be able to separate a large system into distinct and isolated parts that can
be developed independently and made to work together; that is, we want to get one
team of programmers working on game backgrounds, another on the cheese, another
on animated bread, and so on.

n	 We want to make sure that the effort involved with making new types of game
elements is as small as possible; that is, if we decide to introduce a new “killer tomato”
we want to be able to make use of the existing tomato code as much as we can.

250	 Part III  Writing Proper Games

To do all these things, we are going to have to start to consider programs from the point of
view of object-based design. This section should come with some kind of a health warning
along the lines of "Some of these ideas might hurt your head a bit at the start." But the
following points are also very important:

n	 Objects don’t add any new behaviors to our programs—we know just about everything
we need to know to write programs when we know about variables, statements, loops,
conditions, and arrays.

n	 Objects are best regarded as a solution to the problem of design. They let us talk about
systems in general terms. We can decide which objects we need and then go back and
refine how the objects actually do their tasks once we have decided how they fit together.

You can write just about every program that has ever been written just by using the
technologies that we have seen so far. But objects allow you to work in a much nicer way.
And so you are going to have to get the hang of them, like it or not.

An Object Refresher Course
At this point, it is probably worth reminding ourselves what a software object is. An object
is a collection of data (fields) and behaviors (methods) that a programmer creates for a
particular purpose. An XNA game is an object. It contains data such as the GraphicsDevice
(which describes the display system our game can use) and methods such as Draw (which
provides the draw behavior for the game). You have created the beginnings of an object with
your GameSpriteStruct structure, which brings together information about an item to be
displayed on the game screen.

In this chapter, you find out what makes a full-fledged object and how systems are designed
using them. To learn how objects can be used in the design and construction of a game, you
rebuild the Bread and Cheese game program, this time using objects. Then, in the payoff at
the end, you find out how easy an object-based design makes it to add a new game element
in the form of the “deadly pepper,” which provides a new hazard for the player to deal with.
You learn some of the software engineering principles that the Great Programmer seems to
know, and how they can be used to improve the design of the game program.

Cohesion and Objects
Cohesion is a term used by software engineers to express how “together” an object is.
A “together” object is a bit like those people who are always very organized and always
have everything sorted. If you went camping with a “together” object, you would find that
it would always know what to do and have the tools with it to do the job. It would not be
the one borrowing a can opener from the people in the tent next door so that it could open
the can of beans for breakfast. It would have a “can opener” behavior built in, along with
everything else it needed to be able to do.

	 Chapter 14  Classes, Objects, and Games	 251

The GameSpriteStruct type is not very “together”; all the data inside it has been made public
so that the outside world can get hold of its contents and use the values. Although this has
been quite convenient, it is not the best way to create reliable programs. At the moment, it is
possible for any code to access the value of SpriteRectangle that the GameSpriteStruct
uses to position itself on the screen. This means that a naughty programmer could change
the location of the sprite to a random place, which is not good. This would be even more
dangerous if you were designing objects to hold bank account information, where you want
to protect the account balance and control how money is paid in and out.

Creating a Cohesive BatSpriteStruct
Rather than having one generic type of sprite structure, you must now think about each kind
of sprite in turn. You can start with the bat, which in the previous game was drawn as a piece of
bread. Once you make a bat sprite, you have something that can be moved around the screen
by the player. This might come in very handy in any game you might create later that needs any
kind of bat. What you want is a BatSpriteStruct that can look after itself and keep its internal
data private. It should be able to behave as a bat, and it should not be possible for other
programs to upset this behavior. To do this, you need to protect the data inside the bat object,
so that programs outside can’t see or change the values that control how the bat behaves.

Protecting Data Inside Objects
The C# language provides a means by which data in an object can be made private, so that
only methods inside the object can access the data. Of course, once the data has been made
private, it is impossible for the outside world to use the data to interact with the bat, so you
must add some public behaviors (methods) so that the bat can be asked to do things. Public
members of a class can be used by code in any other class. When creating objects with high
cohesion, the data in the object should be private and the methods should be public. You
select whether or not a member is private or public by putting the appropriate C# keyword
in front of the class member when you declare it. From now on you will take care to make
sure that only members of a class that need to be used by other classes are made public, and
that all other members are made private.

BatSpriteStruct Behaviors
The early part of the design of an object focuses on what it needs to do. Then you can
consider the data that the object needs to hold to perform the required actions. There are
four things we want the bat to be able to do for our game:

n	 Load its content  Load the texture to be used to draw the object itself on the screen.

n	 Start a new game  Set up the rectangle for drawing the bat and set the initial
position and speed at the start of a game.

n	 Update itself  Update the bat position during the game.

n	 Draw itself  Draw the bat at its required position.

252	 Part III  Writing Proper Games

There might be other methods that we need later, but these are a start. You can create a
method for each of these actions. If this looks like you are taking the different methods out
of the regions that were set up when we refactored the program and putting them inside the
bat object, that is exactly what you are doing. The methods that make a bat behave like a bat
are now being moved into a bat structure. These methods work on data held privately inside
the object, so that any code outside the bat is not able to put it in the wrong place on the
screen by directly changing the member variables that hold its position:

struct BatSpriteStruct

{

 private Texture2D spriteTexture;

 private Rectangle spriteRectangle;

 private float x;

 private float y;

 private float xSpeed;

 private float ySpeed;

 public void LoadTexture(Texture2D inSpriteTexture)

 {

 spriteTexture = inSpriteTexture;

 }

 public void StartGame(

 float widthFactor,

 float ticksToCrossScreen,

 float inDisplayWidth,

 float initialX,

 float initialY)

 {

 spriteRectangle.Width = (int)((inDisplayWidth * widthFactor) + 0.5f);

 float aspectRatio =

 (float)spriteTexture.Width / spriteTexture.Height;

 spriteRectangle.Height =

 (int)((spriteRectangle.Width / aspectRatio) + 0.5f);

 x = initialX;

 y = initialY;

 xSpeed = inDisplayWidth / ticksToCrossScreen;

 ySpeed = xSpeed;

 }

 public void Draw(SpriteBatch spriteBatch)

 {

 spriteBatch.Draw(spriteTexture, spriteRectangle, Color.White);

 }

 public void Update()

 {

 GamePadState gamePad1 = GamePad.GetState(PlayerIndex.One);

 x = x + (xSpeed * gamePad1.ThumbSticks.Left.X);

 y = y - (ySpeed * gamePad1.ThumbSticks.Left.Y);

 spriteRectangle.X = (int)x;

 spriteRectangle.Y = (int)y;

 }

}

	 Chapter 14  Classes, Objects, and Games	 253

This is all that is needed to make a working bat. The world outside the bat knows it only by
the methods it exposes, and everything about how the bat works is hidden inside and can’t
be damaged by the outside world.

Objects and Encapsulation
Another software engineering term we can use at this point is encapsulation, the approach
where everything relating to a particular part of a system is placed in a single object. If you
think about it, this is how a lot of appliances work. Your MP3 player contains a computer and
some very complicated software, but as far as you are concerned, it just has buttons that
you press to select music tracks and play them. You don’t know (or even care) how it works
internally. You just know which buttons to press to get sound out.

Users of the bat sprite can work the same way. They don’t need to know how the bat manages
internal state, what variables it contains, or how the methods actually work, they just know
what each method does and how to use it. Any game can now contain a BatSpriteStruct
value and call the methods at the appropriate points to add a bread bat to the game.

Sample Code: Bat Sprite Structure  All the sample projects can be obtained from the course
instructor. The sample project in the 01 Bat Sprite Structure directory in the resources for this
chapter contains a BatSpriteStruct structure that implements a self-contained bat. This is
then used to provide a bread bat that can be steered around the screen.

The next step is to consider how the bread bat can be made to work with other objects to
create a working game.

The Great Programmer Speaks: Cohesion Is Good  The Great Programmer is going to be
talking a lot in this chapter. She really likes cohesion. She likes the way that the bat is now “master
of its own destiny.” There is no chance that any other part of the program can affect the behavior
of the bat. They have to use the four methods described in this section to drive it, and they
cannot damage the data inside it. She could give this implementation of the bat to a customer
knowing that they could not break it, which for her is a very good thing.

Coupling Between Objects
Now that you have a bat object, you need to connect it to the other game objects. You start
with the cheese object, which is acting as the ball in the game and needs to be able to find the
location of the bat so that it can make the ball change direction when it hits the bat. Software
engineers like the Great Programmer call this kind of object linkage coupling. She carefully
manages the amount of coupling in her programs because a lot of coupling in a program is
bad. If all the objects in a program are coupled together, this makes it much harder to change
one component because you have to worry about how the change might affect everything else.

254	 Part III  Writing Proper Games

This is a bit like organizing a party. The more people you have to organize, the harder it is to
find a free evening. If you are inviting (coupled to) only one or two people, then you can sort
out things like the date of the party really quickly. However, if you have lots of friends, and
they have lots of friends that they want to bring, too, it can be very hard to agree on a date.

The fewer objects that are coupled, the easier it is to manage change in a program. It is
also easier to manage change if the way that the objects are coupled is restricted to a few
well-defined connections. Rather than letting the ball structure have access to all the data
inside the bat, it makes sense for the bread bat to provide a method that lets the ball ask if it
has collided with it. If this is the only form of communication between the ball and the bat,
any other changes to them (for example, an animated trail of crumbs behind the bread bat)
can be added without fear of changing the way this part of the game works. Good program
design is all about making sure that the amount of coupling between different program
elements is as small as possible.

The Great Programmer Speaks: Proper Design Is Vital  This all sounds like a lot of work.
Your game seems to be getting more complicated for no good reason. You make this point
to the Great Programmer, who just shrugs and starts up a copy of “Halo Wars” on her Xbox.
She gets to a point where her forces are attacking an enemy base. The screen is alive with
troops, spartans, warthogs, and gunfire. Then she pauses the game and reminds you that the
program behind the scenes must be keeping track of every battlefield element, every vehicle,
character, bullet, and flash of light. There must be hundreds of different objects on the screen,
all interacting with each other and doing their own thing to make up the game world. A team of
programmers must have worked on these objects, with one group doing the vehicles, another
the characters, a third the bullets, and so on.

She tells you that if the objects in the game were not carefully organized, it would have been
impossible to create the game program. She reckons that modern computer games are among the
most complicated software around, and so you need to use these techniques to make sure that the
programs are properly structured and the development can be managed across a team of people.

Creating a Link Between the Bread Bat and the Cheese Ball
You will implement the coupling between the bat and ball by providing a method in the
BatSpriteStruct. The method is called CheckCollision:

public bool CheckCollision(Rectangle target)

{

 return spriteRectangle.Intersects(target);

}

Next, the ball has to be provided with a way that it can find the bat sprite when the game
is running. The best way is to provide the Update method in the cheese with a reference to
the BreadAndCheeseGame game object that represents the running game. The ball can then
get hold of data items in the game, including the bat sprite. This link also allows the ball to
tell the game itself that lives have been lost if the ball hits the bottom of the display. This
information is provided as a parameter to the call of Update in the ball as follows:

	 Chapter 14  Classes, Objects, and Games	 255

public struct BallSpriteStruct

{

 // ...

 // All the other members for the ball

 // ...

 /// <summary>

 /// Update the ball position. Handle collisions with the bat.

 /// </summary>

 /// <param name="game">Game the ball is part of</param>

 public void Update(BreadAndCheeseGame game)

 {

 x = x + xSpeed;

 y = y + ySpeed;

 // Set the sprite rectangle to the new position

 spriteRectangle.X = (int)(x + 0.5f);

 spriteRectangle.Y = (int)(y + 0.5f);

 // Check to see if the ball has hit the bat

 if (game.BreadBat.CheckCollision(spriteRectangle))

 {

 // bat has hit the ball.

 ySpeed = ySpeed * -1;

 }

 // Other updates here

 }

 // ...

 // Rest of ball members

 // ...

}

When the game is running, the ball can now check for collisions with the bat and behave
correctly when it hits it. When the game calls the Update method in the ball, it needs to
provide a reference to the game object. C# provides a key word called this, which allows an
object to get hold of a reference to itself, shown in bold here:

// Update method for the BreadAndCheeseGame

protected override void Update(GameTime gameTime)

{

 GamePadState gamePad1 = GamePad.GetState(PlayerIndex.One);

 if (gamePad1.Buttons.Back == ButtonState.Pressed)

 this.Exit();

 BreadBat.Update(this);

 CheeseBall.Update(this);

 base.Update(gameTime);

}

256	 Part III  Writing Proper Games

The this key word means “a reference to me.” When used within the BreadAndCheeseGame
class, it means the currently executing instance of the game class. This is exactly what the ball
needs, so that it can get the bat variable out of the game and use it to check for collisions.
The ball can also use this reference to tell the game when a life has been lost because the
ball has hit the bottom of the screen.

Designing Object Interactions
It is important to manage carefully what each of the game objects is responsible for, what
it needs to interact with, and what it needs from what it interacts with. There are several
objects in our game, and for each of them, you need to work out what methods it needs to
have and who uses them. You can draw these out in tables like Table 14-1.

Table 14-1  Methods in BatSpriteStruct

Method Description Users

LoadTexture Loads the texture into the bat BreadAndCheeseGame

StartGame Calculates the bat size and positions it for the
start of the game

BreadAndCheeseGame

Draw Draws the bat BreadAndCheeseGame

Update Updates the bat BreadAndCheeseGame

CheckCollision Checks for collision with the bread bat Ball

This looks very much like the list of bat methods we saw earlier, but there is now the
additional method to check for collisions. This table tells us what objects the bat interacts
with. For example, you can see that the design of the game does not need the bat to interact
with the tomatoes. You can make changes to the bat behavior without affecting how the
tomato works, and vice versa.

Software designers draw up tables like these when they are trying to decide what each thing
in a system should do. I’m not suggesting that you should create such tables every time
you write a program, but they do help you think about the way your solution should be
structured.

Objects and Messages
The bat object is one of the simplest ones, but some of the objects need to change the state
of the game. Every time the ball hits the bottom of the screen, it needs to tell the game that
a life has been lost, and when the ball hits a tomato target, this causes the game score to
increase. This makes the game itself a kind of “fourth object,” after the bat, ball, and tomato
targets. Table 14-2 lists methods for a game object.

	 Chapter 14  Classes, Objects, and Games	 257

Table 14-2  Methods in BreadAndCheeseGame

Method Description Users

LoseLife Lose a life Ball

AddToScore Adds a value to the score Ball

The ball object needs to use a reference to the game it is part of, so that it can call methods
in the game to send these messages. When the ball is updated, it is given such a reference so
that it can call the methods at the appropriate times.

Messages and Organization
At this level, designing a program sounds a lot like an organizational problem, and it is.
Consider the example of a ship: The captain gives orders to the mate to set sail in a particular
direction. But the captain must also respond to messages from those on the ship. The captain
tells the lookout to scan the horizon for pirates. If the lookout spots a suspicious ship, the
lookout calls out to the captain, who sends out further orders to the crew to prepare to repel
boarders.

A good programmer must be able to work out what each object needs to do and how the
objects communicate to create a solution. Note that there is never just one way to structure a
program. If you look at my design, you find that the cheese ball does most of the work (you
might want to call it the “Big Cheese,” I suppose—but I won’t) but it is perfectly possible to
organize everything around another game object if you wish. The Great Programmer says
that there are only two kinds of solutions—those that work and those that don’t—and that
everything else is just detail. In this, I’m inclined to agree with her.

Sample Code: Bread and Cheese Sprite Structures  The sample project in the 02 Bat and
Ball Sprite Structures directory in the resources for this chapter contains a BatSpriteStruct
structure that implements a self-contained bread bat and BallSpriteStruct that implements the
cheese. This does not implement all the game play (there are some tomatoes missing) but it does
have all the behaviors for the bat, ball, and other game objects. A full table of all the objects and
how they interact is also included in the directory.

Container Objects
We now have a very well-organized game that is not complete. The ball and the bat interact
properly, but there are presently no tomato targets to aim at. Actually, it turns out that “No
Tomatoes” is the punch line of one of my favorite jokes (“What is red and not there?”), but
this is not going to help in terms of getting a game that is worth playing. We now need to
investigate how we can create tomato target objects and add them.

258	 Part III  Writing Proper Games

When adding tomatoes to the game, we have to ask ourselves whether the game should
work with individual tomato targets or whether it should work in terms of a collection of
them. From the point of view of the game, it makes very good sense to regard the whole row
of targets as a single item. The row has to manage things like deciding when the last target
has been destroyed, and it makes sense for all this behavior to be hidden from the game
itself. The game just calls the Update and Draw behaviors for the row, as it would any other
object in the game.

The fact that there are lots of targets inside this object does not affect the game at all. You
can use this technique to good effect whenever a game of yours needs to manage lots of
related items. Many games have “waves” of attacking aliens, and putting them all in a single
collection like this makes them much easier to manage. Table 14-3 lists methods for a target
collection.

Table 14-3  Methods in TargetRowStruct

Method Description Users

LoadTexture Loads the texture for use on the targets BreadAndCheeseGame

StartGame Calculates the texture size and positions all the
targets for the start of the game

BreadAndCheeseGame

Draw Draws all the visible targets BreadAndCheeseGame

Update Updates the targets and redraws the row if no
targets are left

BreadAndCheeseGame

CheckCollision Checks for collision with the cheese and hides
the target that was hit

Ball

These methods look very similar to the ones supplied by the bat sprite, although the way that
they are used is slightly different.

The next block of code shows the data that TargetRowStruct stores for a row of tomato
targets. The texture is stored once for the entire row, and there is an array of rectangles that
holds the position on the screen of each of the targets. This illustrates another common
game technique: the same texture is used for a large number of game objects. There is also
an array called TargetVisibility, which is used to keep track of which targets in the row
are visible. This controls the draw process and is also used to decide when a row needs to be
restored and redrawn at the end of a level:

public struct TargetRowStruct

{

 private Texture2D targetTexture;

 private Rectangle[] targets;

 private bool[] targetVisibility;

 private int numberOfTargetss;

 private float targetWidth;

 private float targetHeight;

 private float targetStepFactor;

 private float targetHeightLimit;

}

	 Chapter 14  Classes, Objects, and Games	 259

Sample Code: Bat, Ball, and Targets  The sample project in the 03 Bat, Ball and Targets
directory in the resources for this chapter contains a version of the game that is nearly playable.
You can direct the bread bat around the screen and use it to send the ball toward the targets,
which vanish when they are hit. When the last target is destroyed, the whole row is redrawn
correctly.

Perhaps the most interesting thing about this sample program is the Draw method:

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 BreadBat.Draw(spriteBatch);

 CheeseBall.Draw(spriteBatch);

 TomatoTargets.Draw(spriteBatch);

 spriteBatch.End();

 base.Draw(gameTime);

}

This Draw method is now tiny. All the responsibility for the draw behaviors has been
delegated to the objects in our game. If we add more game objects, we can use the same
mechanism.

Background and Title Screen Objects
The final two objects that are needed for the game are the background and title screen.
These are actually very similar, in that they are both just textures that must be drawn over the
entire screen. However, the title screen is slightly different in that it has an Update behavior
that checks for the player pressing the A button. When the player presses the A button, the
game needs to start, which means that the BreadAndCheeseGame object must provide a
method that can be called to get the game going. Here’s the title screen’s Update method:

public void Update(BreadAndCheeseGame game)

{

 if (game.GamePad1.Buttons.A == ButtonState.Pressed)

 {

 game.StartGame();

 }

}

This is the Update method for TitleSpriteStruct. It is provided with a reference to the
game from which it reads the gamepad settings. If the gamepad has the A button pressed,
the StartGame method is called to get the game going.

260	 Part III  Writing Proper Games

Sample Code: 04 Bread and Cheese  The sample project in the 04 Bread and Cheese
directory in the resources for this chapter contains a version of the game that is fully playable.
It works in exactly the same way as the one you developed in the previous chapter, but the Great
Programmer prefers to play this version because it is structured better.

At first glance, it looks very similar to the original code, but there are some important changes.
All the components could be taken out and used in other games. If you think another game
you’re developing would be improved by a row of targets or some bouncing balls, you can add
the objects and connect them into the Draw and Update behaviors of the game easily.

You have started to build a library of items that can be reused for different games. It now
looks a lot easier to make an XNA version of tennis because you have the ball and bat com-
ponents ready-made. However, reusing components isn’t quite as easy as you might like, and
we do seem to have a lot of code duplication, in that every structure we have made contains
the same LoadTexture method. You might be wondering if there is an easier way to arrange
the game objects, and it turns out there is. At this point, we have to leave behind structures
and start to work with classes. But first we have to consider how classes and structures differ.

Classes and Structures
In C#, classes and structures are two different kinds of object. They can both hold data
fields and contain methods. However, there are some crucial differences between the two.
One is that structures are managed in terms of value, whereas classes are managed in terms
of reference. We first discovered these terms in the section entitled “Working with Arrays,
Objects, and References,” in Chapter 9, “Reading Text Input.” Now it is time to understand
how they really work and how to use them.

Creating and Using a Structure
We have already seen how to make a structure in C#. The BackgroundSpriteStruct
structure was created to hold information about the background display in our game. This is
the simplest display element in the game; it just displays the tablecloth texture behind our
game sprites:

public struct BackgroundSpriteStruct

{

 private Texture2D spriteTexture;

 private Rectangle spriteRectangle;

 public void LoadTexture(Texture2D inSpriteTexture)

 {

 spriteTexture = inSpriteTexture;

 }

	 Chapter 14  Classes, Objects, and Games	 261

 public void SetRectangle(Rectangle inSpriteRectangle)

 {

 spriteRectangle = inSpriteRectangle;

 }

 public void Draw(SpriteBatch spriteBatch)

 {

 spriteBatch.Draw(spriteTexture, spriteRectangle, Color.White);

 }

}

Once the structure has been set up, the program can declare variables of this type:

public BackgroundSpriteStruct Background;

This sprite contains the texture for the background. Later in the program, the sprite is set
with the size of the rectangle it is going to use to draw:

// fill the visible area with the background texture

Background.SetRectangle(

 new Rectangle(

 (int)minDisplayX, (int)minDisplayY,

 (int)(maxDisplayX - minDisplayX),

 (int)(maxDisplayY - minDisplayY)

));

This statement creates a Rectangle that fills the playable area of the screen and sets this as
the one that is used by the background texture when it draws itself.

Creating and Using an Instance of a Class
We can make a tiny change to the C# code shown previously by converting the background
sprite to a class:

class BackgroundSpriteClass

{

 // rest of object just as before

}

The game element information is now being held in a class rather than a structure. You might
think that we can now use a BackgroundSpriteClass value in exactly the same way as the
structure version, but this does not work. The program compiles correctly, but when we try
to run it, the following exception is thrown:

System.NullReferenceException was unhandled

What is going on? To understand what is happening, you need to know what is performed
by this statement:

BackgroundSpriteClass Background;

262	 Part III  Writing Proper Games

It looks like the declaration of a variable called Background. But in the case of a class, it is
not what it seems. What you actually get when the program obeys the statement is a new
reference variable called Background. This reference variable is allowed to refer to instances
of the BackgroundSpriteClass. You can think of a reference a bit like a luggage tag, in that
it can be tied to something with a piece of rope. Figure 14-1 illustrates this concept.

Background

Figure 14-1  The Background reference variable as a luggage tag

A program uses a reference by following the rope to the object it is tied to. When we used
arrays in Chapter 9, we had the idea of arrows that “point” at the object. A tag tied with
a piece of rope is a slightly more accurate way of describing what is happening. The thing to
remember is that when you create a reference, you don’t actually get one of the things that
it refers to, you just get a tag. When the program runs and tries to follow the reference to
get to an object, it fails, because the reference does not actually go anywhere. A reference
is initially set to the value null which we first saw in Chapter 9 in the section entitled
“References and null.” As we saw then, following a null reference results in a program failing.

You can solve this problem by creating an instance of the class and then connecting our tag
variable to it. The best place to do this is in the Initialize method of the game:

protected override void Initialize()

{

 setScreenSizes();

 Background = new BackgroundSpriteClass();

 // Other initialization stuff here

 base.Initialize();

}

This part of the method creates an instance of the BackgroundSpriteClass class and makes
the reference variable Background refer to it. We have seen this new key word before. We use
it to create arrays. This is because an array is actually implemented by a class, and so we use new
to create it. When we create the instance, we actually connect the tag to an object in memory,
as shown in Figure 14-2.

Background BackgroundSpriteClass

Figure 14-2  The Background reference variable connected to a BackgroundSpriteClass instance

	 Chapter 14  Classes, Objects, and Games	 263

References
We now have to get used to the idea that if we want to use classes, we have to use
references. The two come hand in hand and are inseparable. Structures are useful, but for
real object-oriented satisfaction, you have to have a class, and that means that we must
manage our access to a particular instance by using references to it. Actually, this is not that
painful in reality, in that just about all the time you can treat a reference as if it really was
the object, but you must remember that when you hold a reference, you do not hold an
instance—you hold a tag that is tied onto an instance.

Multiple References to an Instance
Perhaps another example of references would help at this point. Consider the
following code:

BackgroundSpriteClass Background = new BackgroundSpriteClass ();

BackgroundSpriteClass temp = Background;

temp.SetRectangle(

 new Rectangle(

 0, 0, // position of rectangle

 800, 600 // size of rectangle

));

The question is What is the resulting value of the rectangle in Background? If we draw a
diagram like the one in Figure 14-3, the answer becomes clearer.

Background

BackgroundSpriteClass

spriteRectangle
X=0
Y=0
Width=800
Height=600

temp

Figure 14-3  Multiple references to a single BackgroundSpriteClass instance

Both of the tags refer to the same instance of BackgroundGameSprite. This means that
any changes that are made to the object that temp refers to also are reflected in the one
that Background refers to because they are the same object. This indicates a trickiness
with objects and references. There is no limit to the number of references that can be
attached to a single instance, so you need to remember that changing the object that a
reference refers to will change that instance from the point of view of other references to
the same object.

264	 Part III  Writing Proper Games

No References to an Instance
Just to complete the description, we need to consider what happens if an object has no
references to it, as in the following:

BackgroundSpriteClass Background = new BackgroundSpriteClass ();

Background.SetRectangle(

 new Rectangle(

 0, 0, // position of rectangle

 100, 200 // size of rectangle

));

Background = new BackgroundSpriteClass ();

Background.SetRectangle(

 new Rectangle(

 0, 0, // position of rectangle

 800, 600 // size of rectangle

));

This code makes a BackgroundSpriteClass instance, sets the rectangle to a particular value,
and then makes another BackgroundSpriteClass instance and sets the rectangle of that
one to a different value. The question is: What happens to the first instance? Again, this can
be made clear with a diagram such as Figure 14-4.

Background

BackgroundSpriteClass

spriteRectangle
X=0
Y=0
Width=100
Height=200

BackgroundSpriteClass

spriteRectangle
X=0
Y=0
Width=800
Height=600

Figure 14-4  No references to a BackgroundSpriteClass instance

The first instance is shown “hanging” in space, with nothing referring to it. As far as using data
in the instance is concerned, it might as well not be there. When your program is running,
a special process called the garbage collector has the job of finding such useless items and
disposing of them. You first saw the garbage collector in Chapter 9 in the aptly named section
“Say Hello to the Garbage Collector”; now you know the full reference-powered truth about
how the process works.

Why Bother with References?
References don’t sound much fun at the moment. They seem to make it harder to create
and use objects and can be the source of much confusion. So why do we bother with them?

	 Chapter 14  Classes, Objects, and Games	 265

To answer this, we can consider the Pacific island of Yap. The currency in use on this island
is based around 12-foot-tall stones that weigh several hundred pounds each. The value of a
“coin” in the Yap currency is directly related to the number of men who died in the process
of bringing the rock to the island. When the residents pay someone with one of these coins,
they don’t actually pick it up and give it to the person. Instead, they just say, “The coin in
the road at the top of the hill is now yours.” In other words, they use references to manage
objects that they don’t want to have to move around.

That is why we use references in our programs. A program can load textures, sounds, and
other large objects and they can be left sitting in memory. If a method needs to be given a
particular object to work with (for example, if a large sound effect needs to be played), the
method can be supplied with a reference to the sound to be used. A downside with using
references is that whenever a program wants to use an actual value, it needs to follow the
reference to get to the item. This can slow a program down slightly.

Value and Reference Types
We know that everything in C# is an object and that objects can contain methods and data
fields. We also know there are two kinds of objects: those managed by value and those
managed by reference. Objects managed by value include all the low-level data types
such as int, float, and double, along with slightly more complex XNA data types such as
Color. Any object created as a C# struct is also managed by value. By default, whenever a
program does something with an object that is managed by value, the value of that object
is used. The assignment operation copies the value of a variable from one to another. Value
types are used in situations where you are working with small amounts of data (for example,
numeric values), and the effort of following references would slow things down.

Objects managed by reference include large and complex types such as the SoundEffect
and Texture2D items in an XNA game. The reference assignment makes the variable being
assigned to refer to the same object as the source. Whenever a program does something
with an object that is managed by reference, a reference to that object is used. This means
that large objects can be used within a program without the effort of actually copying their
contents around in memory.

Should Our Game Objects Be Classes or Structures?
Classes are objects that are managed by reference. Structures are objects that are managed by
value. Up to now, we have used structures because we like the way that they can combine data
and behaviors and we don’t need to use new to make them; but now, classes are starting to
look interesting. We have come to an important question. What should we do with our game
objects? Should they be value types (structures) or reference types (classes)? We have reached
that high spot of many films and TV shows, the courtroom scene. This is where the prosecutor
and the defendant do battle to decide the outcome—should the hero walk free or go to jail?
So, without further ado, let’s present the case for both sides, with you as the judge.

266	 Part III  Writing Proper Games

Game Objects Should Be Structures Managed by Value
First, we have the case for game objects as structures. The case here looks pretty clear-cut.
Value types are a good idea when the objects don’t hold much data, your program makes
heavy use of them, and you want to have lots of them in memory. The objects in our game
are actually quite small, only a few tens of bytes in size, and a game could have hundreds,
perhaps thousands of them on the screen at once. All the game objects are updated and
drawn 60 times a second, and so they are used a lot. This would be much quicker if the
program didn’t have to waste time following references to find each one.

At this point, the case for the structure looks pretty watertight, and the Great Programmer
(who is presenting the case that we should be using classes) should be looking nervous. But
she doesn’t. Perhaps this is because she knows something we don’t.

Game Objects Should Be Classes Managed by Reference
The Great Programmer doesn’t say a great deal at the start of her presentation. Instead, she
just opens up a diagram that she has brought with her and shows it to you. Look at Figure 14-5.

BaseSprite
Class

TitleSprite
Class

BatSprite
Class

BallSprite
Class

TargetRowSprite
Class

BaseSprite

MovingSprite
Class

BaseSprite BaseSprite

MovingSpriteMovingSprite

Figure 14-5  The GameSprite hierarchy

It looks a bit like a family tree, with a BaseSprite at the top and others descended from this
parent. At the bottom, you can see BatSprite and BallSprite, and there are some other
sprite types in the middle of the tree. The Great Programmer explains that if you use classes,
you can build a class hierarchy where you can create a child class that inherits the behaviors
of a parent. The great thing about this, she says, is that you only have to write a behavior in
the parent and then the child class can pick this up and just has to add any new behaviors
that it needs. In other words, it is much easier to reuse code.

You find this interesting; you have not heard of object hierarchies before (this is not the
first time that a case has been swayed by the sudden arrival of new evidence), and so you

	 Chapter 14  Classes, Objects, and Games	 267

ask for more information. As an example, she produces Exhibit A, which is a version of the
BreadAndCheeseGame that she has created using classes. She tells you that it is over 150 lines
shorter and much simpler because she used the class hierarchy that she has shown you.

This is all very well, you reply, but it does not really answer the question as to why classes
are managed by reference and not value. The reason, says the Great Programmer, is that
using references actually makes a class hierarchy possible. For example, a BallSprite
object must contain a bit of ball behavior (to check for collisions with the bread bat) and a
bit of BaseSprite behavior (to draw itself on the screen). This means that the elements that
make up a BallSprite are not necessarily held in one place in memory. Therefore, it is not
possible to think of a single block of memory that holds the “value” of a BallSprite; bits of
it might be stored in different parts. Fortunately, this is not a problem for the programmer
because the environment in which your code runs takes care of this automatically.

When your program follows a reference to a BallSprite instance, the underlying system
can work out the whereabouts of each part of the object. However, this makes it impossible
to manage a BallSprite as a single value, and so classes must be managed by reference.
But, she continues, the fact that you can reuse code means programs can be simpler and
smaller. The previous version of the BreadAndCheeseGame contained five copies of the
LoadTexture method. Her new version contains just one. Furthermore, she concludes, using
classes makes adding new game elements really easy.

That sounds like a convincing argument, and so you decide that game objects should be
classes and resolve to find out more about class hierarchies. So let’s do that now.

Creating a Sprite Class Hierarchy
A class hierarchy is a great way that similar types of object can all share the same code. The
Great Programmer has created one for our Bread and Cheese game to show how they work.

The BaseSprite Class
The starting point for the hierarchy is the class at the very base. (This is drawn at the top of
the diagram.) The class that the Great Programmer has put at the base of the hierarchy is
called BaseSprite. It does not seem to do very much:

public class BaseSprite

{

 protected Texture2D spriteTexture;

 protected Rectangle spriteRectangle;

 public void LoadTexture(Texture2D inSpriteTexture)

 {

 spriteTexture = inSpriteTexture;

 }

268	 Part III  Writing Proper Games

 public void SetRectangle(Rectangle inSpriteRectangle)

 {

 spriteRectangle = inSpriteRectangle;

 }

 public virtual void Draw(SpriteBatch spriteBatch)

 {

 spriteBatch.Draw(spriteTexture, spriteRectangle, Color.White);

 }

 public virtual void Update(BreadAndCheeseGame game)

 {

 }

}

The BaseSprite is the simplest type of sprite. It contains the bare minimum of sprite
behaviors. It can be given a texture and a destination rectangle and be asked to draw itself.
It also declares an update behavior, although in this version of the sprite, it doesn’t do
anything. We shall see how you can add an actual Update behavior later in this chapter. This
BaseSprite class serves as the starting point for all the sprite classes. It brings together some
fundamental data items (the texture and the drawing rectangle) that all sprites need, along
with the essential methods (LoadTexture, SetRectangle, Draw, and Update). Every sprite
class that we are going to create needs these facilities, and so it is put in the parent class,
which every child class extends.

Using the BaseSprite to Store the Background
The BaseSprite class is perfect for the game’s background. This is created, set to the size of
the display, and then drawn at the start of each call of the game’s Draw method. It is used in
exactly the same way as the BackgroundSpriteStruct you saw earlier, so the game contains
an instance of a BaseSprite to manage the background display.

Extending the BaseSprite to Produce a TitleSprite
The next most complicated sprite is the TitleSprite. This is exactly the same as the
BaseSprite, except that it has an Update behavior that checks to see if the player has pressed
the A button on the gamepad. If this button is pressed, the sprite must then start the game.
Here’s the code for that:

public class TitleSprite : BaseSprite

{

 public override void Update(BreadAndCheeseGame game)

 {

 if (game.GamePad1.Buttons.A == ButtonState.Pressed)

 {

 game.StartGame();

 }

 }

}

	 Chapter 14  Classes, Objects, and Games	 269

The interesting part about this sprite is the size of the code. There is only one method
present, which gives the new Update behavior. The rest of the methods are inherited from
the parent sprite. This means that a TitleSprite has LoadTexture, SetRectangle, and
Draw behaviors, but it gets them from the BaseSprite class it extends. The compiler is
told that the TitleSprite is extending the BaseSprite by the way that TitleSprite is
declared, as shown in bold here:

public class TitleSprite : BaseSprite

The name of the class being created is followed by a colon and the name of the class being
extended. The compiler now knows that the class is being based on another, and so inherits
all the methods and data properties in the parent.

Overriding Methods from a Parent Class
The BaseSprite has an empty Update method. This is fine for our background, which does
not need to do anything when it updates itself. However, the TitleSprite has to test the
A button on the gamepad to see if the player wants to start a new game. What you want to
do is provide a replacement Update method that works for the TitleSprite. It turns out
that this is very easy to do. The empty method in the BaseSprite class has been marked as
virtual, as shown here in bold:

/// Empty Update method in BaseSprite

public virtual void Update(BreadAndCheeseGame game)

{

}

A method that is virtual can be overridden by a method with the same name in a child class.
When a program calls the Update method on a reference to a TitleSprite instance, this
Update method is used instead of the one in BaseSprite. In other words, the TitleSprite
class can contain a new version of the Update method that behaves in the way it needs:

public override void Update(BreadAndCheeseGame game)

{

 if (game.GamePad1.Buttons.A == ButtonState.Pressed)

 {

 game.StartGame();

 }

}

Note that the compiler is told that some overriding is taking place by the override key word.

Building a Class Hierarchy
The Great Programmer has grouped together the sprites in a very sensible way (as you might
expect). She has created another child class called MovingSprite. These are sprites that need
to move around the screen. They have extra properties and methods that allow them to be set

270	 Part III  Writing Proper Games

up and their movement managed. There are two moving sprites in our game at the moment:
the BatSprite and the BallSprite, both of which inherit all their movement information
from the MovingSprite parent. The only method that differs between these classes is Update.
In the BatSprite class, the Update method reads the gamepad and uses it to control the
position of the bread bat. In the BallSprite class, the Update method bounces the cheese
ball around the screen and checks for collisions between the ball and other game objects.

Using Protected Members from a Parent Class
One thing worthy of note here is the way that data is protected in class hierarchies. You
know that members of an object can be marked public (everyone can use them) or private
(nobody outside the object can use them). This protection also works between classes in
hierarchies, in that if the parent class contains private members, they are not visible to code
in the child classes. However, it is sometimes useful for the children of a class to be able to
use things in the parent. In the case of the bread bat and cheese ball, these classes need
access to the texture and the rectangle in the BaseSprite. The Great Programmer has solved
this problem by using another feature of C#. Members of a class can be marked as protected,
which means that they are visible to code in children of the class, but not to any code in
classes outside the hierarchy. Note the following code:

public class BaseSprite

{

 protected Texture2D spriteTexture;

 protected Rectangle spriteRectangle;

 // Other BaseSprite content here

}

You can regard protected as a halfway house between private and public.

Sample Code: 05 Bread and Cheese Classes  The sample project in the 05 Bread and
Cheese Classes directory in the resources for this chapter contains a version of the game that is
implemented using classes. Because it has been designed and written by the Great Programmer,
you can regard it as pretty much the last word on our simple game.

Adding a Deadly Pepper
The Bread and Cheese game is now reasonably playable, but it needs a few extra features.
You ask your younger brother for advice, and he suggests a “deadly pepper” that constantly
moves about the screen. Sometimes the pepper is green, at which point it is harmless, but
at other times it is red. If the bread bat collides with the pepper when it is red, the player
loses a life. Shooting the pepper with the cheese when it is red gains 50 points and turns
the pepper green again. We already have an image of a pepper in our arsenal, and so this
should be easy to add.

	 Chapter 14  Classes, Objects, and Games	 271

Creating a DeadlySprite Class
The first thing you need to decide is where in our class hierarchy the deadly pepper sprite
should be located. The Great Programmer has arranged things so that there is a class called
MovingSprite that provides all the elements required to make a sprite that moves across
the screen. This includes working out the size of the sprite and how fast it should move. This
seems to be a good place to start, and so you start by extending the MovingSprite class to
make a new class called DeadlySprite. This needs to contain an extra data field that records
whether or not the pepper is deadly, as follows:

private bool isDeadly;

If the value of isDeadly is true, the sprite is deadly; if it is false, the sprite is harmless.

Drawing the Deadly Pepper Sprite
Your younger brother wants the pepper to be red when it is deadly, and green when not. You
need to provide an updated Draw behavior to do this. It turns out that this is really easy to
do, and you can achieve it using only one pepper texture. The first thing you do is convert
your image of the pepper to black and white. You can use any image-processing program to
do this, including Paint.Net, which you can download from http://www.getpaint.net/.

Then you just have to provide a new version of the Draw method for the DeadlySprite class
that uses a different color to draw the pepper, depending on whether it is deadly or not:

public override void Draw(SpriteBatch spriteBatch)

{

 if (isDeadly)

 {

 spriteBatch.Draw(spriteTexture, spriteRectangle, Color.Red);

 }

 else

 {

 spriteBatch.Draw(spriteTexture, spriteRectangle, Color.Green);

 }

}

This method overrides the Draw method in the MovingSprite class. This means that when
Draw is called on a DeadlySprite instance, this code runs instead of the method in the
parent class. It tests the value of isDeadly. If the sprite is deadly, it draws the texture using a
red light. If the sprite is safe, it draws the texture using green. This works quite well, and you
can use it if you want to display the same texture in a game using different colors. You can
also use it to show things “heating up” by changing the draw color from white to pink.

Setting Up the Deadly Pepper Sprite
The next thing you need to do is provide the method that sets up the pepper at the beginning
of the game. The MovingSprite class provides a method called StartGame to set up a moving
sprite. It works out the size of the texture to use, and also calculates the speed of movement.

272	 Part III  Writing Proper Games

However, the version of StartGame in DeadlySprite must also set the isDeadly property
to false, so that the pepper is green when the game starts. What you want to do is override
the StartGame method in MovingSprite and replace it with one that does everything the
parent one does, plus the action of setting isDeadly to false. This turns out to be really
easy, the power of XNA Game Studio and the C# language being extremely helpful at this
point. If you start to override a method, XNA Game Studio provides Intellisense to help you
choose the method to override. When you type “public override” into the code inside the
DeadlySprite class, XNA Game Studio shows you a menu of methods that can be overridden.
Figure 14-6 shows how this works.

Figure 14-6  Intellisense helping override a method

XNA Game Studio uses the comments that the Great Programmer put in the code to display
information about the method as you step through them in the Intellisense list. You want
to override the StartGame method, so you select that from the list and press Enter. At this
point, XNA Game Studio makes an empty version of the method to get you started, as shown
in Figure 14-7.

Figure 14-7  An empty StartGame method in the DeadlyPepper class

This empty version contains a key word we haven’t yet discussed. The base key word is used
to call the method that has been overridden. If you think about it, this is exactly what you
want. You don’t want to have to replace the entire StartGame method; you just want to add
something to set the isDeadly value. This is very easy to write:

public override void StartGame(float widthFactor, float ticksToCrossScreen,

 float inMinDisplayX, float inMaxDisplayX, float inMinDisplayY,

 float inMaxDisplayY, float initialX, float initialY)

	 Chapter 14  Classes, Objects, and Games	 273

{

 isDeadly = false;

 base.StartGame(widthFactor, ticksToCrossScreen,

 inMinDisplayX, inMaxDisplayX, inMinDisplayY,

 inMaxDisplayY, initialX, initialY);

}

The base key word is very useful when creating class hierarchies. It means that you can use
the behavior of the parent method and then add something extra. You have actually seen
base lots of times in the XNA programs that we have written already. The Draw and Update
methods in the games that you have written so far are overrides of methods that exist in the
parent class of the game you are creating. They always call the base behavior of their parent,
and you have seen this call of base at the bottom of every Draw and Update method in the
game class.

Updating the Deadly Pepper Sprite
The final thing you need to do is write the Update behavior for the DeadlySprite class. This
is the largest method you need to make. It must move the sprite around the screen and also
check for collisions with bat or ball. Finally, it needs to control when the sprite becomes deadly.

The movement code is easy to write—it is the same as that used for the ball:

x = x + xSpeed;

y = y + ySpeed;

spriteRectangle.X = (int)(x + 0.5f);

spriteRectangle.Y = (int)(y + 0.5f);

if (x + spriteRectangle.Width >= maxDisplayX)

{

 // sprite has hit the right side

 xSpeed = Math.Abs(xSpeed) * -1;

}

if (x <= minDisplayX)

{

 // sprite has hit the left side

 xSpeed = Math.Abs(xSpeed);

}

if (y + spriteRectangle.Height >= maxDisplayY)

{

 // sprite has hit the bottom

 ySpeed = Math.Abs(ySpeed) * -1;

}

if (y <= minDisplayY)

{

 // sprite has hit the top

 ySpeed = Math.Abs(ySpeed);

}

274	 Part III  Writing Proper Games

The only difference is that the player does not lose a life when the deadly sprite hits the
bottom of the screen.

The collision code is also easy because you have seen this kind of code in the ball before. The
only new bit is that the program must test for collisions only when the sprite is deadly. Here’s
the code:

if (isDeadly)

{

 if (game.BreadBat.CheckCollision(spriteRectangle))

 {

 // bat has hit the sprite.

 isDeadly = false;

 // lose a life

 game.LoseLife();

 }

 if (game.CheeseBall.CheckCollision(spriteRectangle))

 {

 // ball has hit the sprite

 isDeadly = false;

 // update the score

 game.UpdateScore(50);

 }

}

When the deadly pepper sprite collides with the cheese ball, the player is awarded 50 points,
as this is a skill shot. When the pepper collides with the bread bat, the player loses a life,
because this is not very skillful.

The final part of the Update method deals with the appearance of the deadly sprite. You
talk it through with your younger brother and agree that the pepper should become deadly
after the player has scored 200 points, and every 100 points after that. This means that the
deadly pepper sprite needs to be able to obtain the score of the game. You look to see if
the Great Programmer has thought of this and, sure enough, there is now a method in the
BreadAndCheese class that returns the current score of the game:

public int GetScore()

{

 return score;

}

The deadly sprite needs to keep track of the next score to trigger its deadly behavior. To do
this, it uses two variables:

int deadlyScoreStep= 100;

int deadlyTriggerScore = 200;

	 Chapter 14  Classes, Objects, and Games	 275

The code in Update gets the score and compares it with the trigger value:

if (game.GetScore() > deadlyTriggerScore)

{

 // Score has passed a threshold.

 // Turn deadly mode on and move the threshold.

 isDeadly = true;

 deadlyTriggerScore = deadlyTriggerScore + deadlyScoreStep;

}

When the score passes the trigger value, the sprite turned deadly and the trigger level is
moved to the next step. It is up to the player whether to shoot the deadly pepper sprite or
just avoid it when it is deadly. At the start of a game the deadlyTriggerScore value must be
set back to 200. You can do this in the StartGame method.

Sample Code: 06 Bread and Cheese with Deadly Pepper  The sample project in the 06
Bread and Cheese with Deadly Pepper directory in the resources for this chapter contains a
version of the game that adds a deadly pepper to the game. The game has now become quite
challenging.

Conclusion
This has been another packed chapter. You have learned how to organize a solution properly
using object-based design. You now know the meaning of coupling and cohesion in software
engineering. You have finally solved the mystery of the difference between values and
references and learned about classes for the first time. You have also discovered how a class
can build on the behaviors of an existing class to create working systems from objects
that cooperate together. And to cap it all, you have seen some code written by the Great
Programmer.

Chapter Review Questions
What better way to follow a chapter than with a review? You know what to do.

	 1.	 High cohesion is bad for programs.

	 2.	 High coupling is bad for a system.

	 3.	 Data in an object should be made public to protect it.

	 4.	 Structures are managed by reference.

	 5.	 Using references makes a program run more slowly.

	 6.	 References make class hierarchies possible.

276	 Part III  Writing Proper Games

	 7.	 A class can only have one child class.

	 8.	 Methods must be marked virtual if they are to be overridden.

	 9.	 It is impossible for an overriding method in a child class to use the method that it has
overridden.

	 10.	 Protected members of a class are also visible to code in child classes that extend
that class.

	 11.	 The key word this refers to the class that a child class is overriding.

	 12.	 A child class must override all the methods in the parent class.

	 13.	 You can have only one reference to an object.

	 14.	 Objects without references referring to them are destroyed automatically by the
garbage collector process.

		 277

Chapter 15

Creating Game Components
In this chapter, you will

n	 Find out what turns an object into a component.

n	 See how Microsoft XNA really uses components to make game creation easy.

n	 Experiment with artificial intelligence (AI) in a game.

n	 Turn "Bread and Cheese" into an arcade-quality game.

Introduction
You now know a lot about how programs are made. You have traveled all the way from
performing simple calculations with your programs to creating complex game objects that
show high cohesion (that is, they can look after themselves) and low coupling (that is, they
interact in the simplest manner possible). In this chapter, you are going to find out how
to take a high-level view of your programs and use this perspective to create software
components that can be used in many different games. You also write your first code which
displays AI and find out how to store large numbers of game objects in a program.

Objects and Abstraction
I take the view that as you develop as a software writer, you go through a process of “stepping
back” from problems and thinking at higher and higher levels. The Great Programmer calls
this abstraction. This is the progress that you have made so far:

n	 Representing values by named locations (variables)

n	 Creating actions that work on variables (statements and blocks)

n	 Putting actions into lumps of code to which we can give names. We can reuse these
actions and also use them in the design process (methods)

n	 Creating things that contain member variables as properties and member methods as
actions (objects)

n	 Making constructions that contain objects that are related in some way and want to
share resources (class hierarchies)

As you think about a design in a more abstract way you will initially describe the actions
that are needed in general terms. Rather than looking at specific behavior and low-level
detail with statements like “A sprite will draw itself using the spriteRect rectangle and the

278	 Part III  Writing Proper Games

spriteTexture texture,” you are thinking about things in more general terms and saying
things like “A sprite will have to draw itself.” This is because at the early stages of the design
process, you are trying to focus on what things need to do rather than on the specific
details of how they do them. Later on, you can come back and fill in precisely how the draw
behavior works.

It is frequently the case that different components in your system that share a need for a
draw behavior (for example, different kinds of game object) actually implement that draw
behavior differently (some might draw a texture, whereas others might just draw a dot or a
line), but from the point of view of the top-level design, it is best to think of them as just
having the Draw behavior.

Creating an Abstract Class in C#
From a C# point of view, you can create abstract classes, which contain placeholders for
methods that need to be present when actual instances of the class need to be created. Look
at the following code:

public abstract class AbstractSprite

{

 public abstract void Draw (SpriteBatch spriteBatch);

}

This is a very simple abstract class called AbstractSprite that contains a single Draw
method. You would not be able to create an instance of the AbstractSprite class. If you
tried as follows, the compiler would reward you with an error:

AbstractSprite s;

s = new AbstractSprite(); // would cause a compilation error

The Draw method is not actually present in the class—it is an abstract placeholder. It is saying
to the compiler, “A class that extends AbstractSprite must have a Draw method if you want
to make an instance of it.”

You could think of an abstract class as a really strict family business. To join the business, you
have to be related to someone already in it and be able to do all the things that the business
needs. Members of the AbstractSprite business must have a Draw method and be a child
of a class in the hierarchy that has AbstractSprite at the base.

Extending an Abstract Class
The idea of an abstract class is that it provides a template of behaviors that are required in
all the children of the class. We can create a child class called MySprite that satisfies these
requirements. In fact, XNA Game Studio makes it very easy to do this. All you have to do is
start typing the class declaration, then right-click the parent class name. This action brings up a
menu from which you can select the Implement Abstract Class option, as shown in Figure 15-1.

	 Chapter 15  Creating Game Components	 279

Figure 15-1  Implementing an abstract class in XNA Game Studio

When you select the option, an empty child class that contains a placeholder Draw method is
created automatically. If the parent class contained many abstract methods, the new class would
have a placeholder for each. This is a lovely example of just how an intelligent editor that is aware
of the design of the language you are using can make life much easier for the programmer.
Figure 15-2 shows how XNA Game Studio fills in the child class started in Figure 15-1.

Figure 15-2  XNA Game Studio filling in an abstract class

The code for MySprite that XNA Game Studio has created allows a program to create an
instance of the MySprite class. This is because the MySprite class contains an implementation
of the abstract Draw method and therefore fulfills the entry requirements to join the
AbstractSprite “club.” Here’s the code for this:

public class MySprite : AbstractSprite

{

 public override void Draw(SpriteBatch spriteBatch)

 {

 throw new NotImplementedException();

 }

}

280	 Part III  Writing Proper Games

The next thing that you would do is fill in the Draw method with the code that performs the
draw behavior for this particular type of sprite. If you forget to do this, you can still create
instances of the AbstractSprite class and call the Draw method, but the version of Draw
shown here throws an exception and stops the program.

An exception is a way that a program can signal it is unhappy and bring this to the attention
of an exception handler that might be able to sort things out. You have seen exceptions
before in this book: in Chapter 4, “Displaying Images,” in the section entitled “Loading XNA
Textures,” and in Chapter 8, “Creating a Timer,” in the section entitled “Using Data in an
Array.” However, in these situations, things that you are using have thrown exceptions when
something bad happens (such as trying to load a texture that isn’t there, or trying to read
elements beyond the bounds of an array). This time it is the other way around, in that the
code you are writing is signaling that something has gone wrong—in this case, that the
programmer has not filled in a placeholder produced by XNA Game Studio.

Designing with Abstract Classes
Abstract classes let you design a system by working out what a particular kind of object
needs to do and then setting a specification or template to ensure that all the objects of
that kind can do these things. You have already been working along these lines in this book.
In Table 14-1 in Chapter 14, “Classes, Objects, and Games,” you saw how we set out the
requirements for a bat sprite. If you were using abstraction, you would find those behaviors
that are common to all sprites (Draw, Update, BeginGame, and EndGame) and put them in
an abstract parent class, so you could be sure that all classes in the sprite hierarchy had
those minimum behaviors. The class could even have some data members and non-abstract
methods that could be used by all the child classes.

Note  Of course, the fact that a class contains a Draw method does not actually mean that
it can draw itself properly. A properly built system also has some tests that can be applied to
objects to ensure that they really can do what is needed, just like you should have to pass some
kind of interview to join the family business even if your dad owns the company. You have seen
this test-driven approach in the section entitled “Playing with Images,” in Chapter 10, “Using C#
Methods to Solve Problems.”

References to Abstract Parent Classes
You have seen that it is not possible to create an instance of an abstract class like
AbstractSprite. This is because if the program ever needed to perform the Draw operation
on such an object, it would not know what to do. However, you might find it surprising that
you can create references of type AbstractSprite, and in fact, this is a very sensible thing to
do. Here’s code that does this:

	 Chapter 15  Creating Game Components	 281

AbstractSprite anySprite;

anySprite = new MySprite();

anySprite.Draw(spriteBatch);

This code creates a reference called anySprite of type AbstractSprite. It then sets this to
a new MySprite instance and calls Draw on it. You might think that the compiler would take
issue with this, but in fact, it is completely happy. A reference to a parent class can always
refer to any of the child types. This is because a child is always able to do everything that a
parent can. (Note that this is in direct contradiction to real life, in that none of my children
seem to have inherited my dancing ability—and they are very relieved about this.)

The compiler knows that an instance of MySprite has a Draw method that can be called
when required. This would be true for any child of the AbstractSprite class, although which
actual code runs depends on precisely what class is on the end of the reference.

This turns out to be very useful. You might change the design of your game so that all the
sprites on the display are managed using an array. You would want to hold a large number of
sprites in such an array and not have to worry about precisely what kind of sprites they are.
This can be achieved by making the array of type AbstractSprite:

AbstractSprite[] screenSprites = new AbstractSprite[100];

This would create an array that could hold references to 100 sprites, which could be any of
the classes that are in the hierarchy that has AbstractSprite as its root. Actually, references
like this also work with parent classes that are not abstract, so you could manage the game
objects in BreadAndCheese using an array of BaseSprite objects as well.

The Great Programmer Speaks: Abstraction Is a Good Idea  The Great Programmer is a
big fan of abstraction. She says that “stepping back” from a problem and just concentrating on
what the system needs to do is a great way to start. She reckons that too many software projects
fail because the developers focused on the programming aspects of the problem rather than
on what the customer wants. In fact, her first question to a customer is even more abstract than
asking what he or she wants. She tends to ask, “What is the budget for your project?” so that she
can decide in advance whether she even wants to do the job.

We will see an even better abstraction tool, the C# interface, a little later in this chapter.

Constructing Class Instances
The Great Programmer takes code writing very seriously. She is always concerned that
objects in her programs contain valid data at all times. To her, this means that if an object has
been created, it must contain values that mean it will not do something stupid if someone

282	 Part III  Writing Proper Games

tries to use it. She had a look at the BreadAndCheeseGame code when she created her class
hierarchy for Chapter 14 and she reckons that it has a serious flaw: it is possible to create
sprites that would cause the game to crash if it ever tried to draw them.

The Great Programmer Speaks: Code Review Really Is a Good Idea  Letting other
programmers see your programs (or “code review” as the professionals call it) is actually a
really good idea. It might not be that good for your self-esteem as other people find problems
with your solution that you hadn’t thought of, but it does result in a better program. The Great
Programmer has taken part in a lot of reviews (both as a reviewer and someone being reviewed)
and she reckons that so long as you check your ego at the door, they work pretty well.

You take a look at the code and it turns out that she is right. The following statements create
a BaseSprite reference called b and then try to draw it:

BaseSprite b = new BaseSprite();

b.Draw(spriteBatch);

These statements cause an exception to be thrown because the Draw method would try to
use values of spriteRectangle and spriteTexture in the class that haven’t been set up
yet. What you want is a way of making sure that whenever a BaseSprite is created, it must
be given a texture and rectangle. It turns out that this is very easy to do—you just need to
add a constructor to the BaseSprite class. This is code that gets control when your object is
being created, and can be used to set it up. Your constructor method, shown in bold in here,
has the same name as the class and accepts two parameters:

public class BaseSprite

{

 protected Texture2D spriteTexture;

 protected Rectangle spriteRectangle;

 public void LoadTexture(Texture2D inSpriteTexture)

 {

 spriteTexture = inSpriteTexture;

 }

 public void SetRectangle(Rectangle inSpriteRectangle)

 {

 spriteRectangle = inSpriteRectangle;

 }

 public virtual void Draw(SpriteBatch spriteBatch)

 {

 spriteBatch.Draw(spriteTexture, spriteRectangle, Color.White);

 }

 public virtual void Update(BreadAndCheeseGame game)

 {

 }

	 Chapter 15  Creating Game Components	 283

 public BaseSprite(Texture2D inSpriteTexture, Rectangle inRectangle)

 {

 LoadTexture(inSpriteTexture);

 SetRectangle(inRectangle);

 }

}

This constructor for BaseSprite is given the texture to draw and the rectangle to be used
to draw it. The constructor then calls the methods in the class to set these values. This means
that now the only way that you can create a BaseSprite is by supplying a texture and a
rectangle when you use the new key word to create a BaseSprite instance:

Texture2D background = Content.Load<Texture2D>("Images/Background");

Rectangle position = new Rectangle (0,0, 500,500);

BaseSprite b = new BaseSprite(background, position);

Any BaseSprite instance referred to now always has a texture and a rectangle, which means
that it can be drawn without problems. You have been using new in this way ever since your
first program. Even this code uses new in the constructor call to set up the Rectangle being
used to make the BaseSprite.

You can provide as many constructors as you like for a class, so that if there are different
ways of providing the initial values, you can provide a constructor for each. You have already
seen this in action, too: the Color type provides lots of different constructors so that you can
make a new color value in many different ways.

Constructors in Structures
There is a subtle difference in the way that constructors are applied to value types. If you create
a constructor for a value type, it must set a value for every data member of the structure:

struct demo

{

 int i;

 int j;

 int k;

 public demo(int newi, int newj, int newk)

 {

 i = newi;

 j = newj;

 k = newk;

 }

}

The structure called demo (which is a value type) contains three data members. If you create a
constructor for it, the compiler insists that the constructor must accept some parameters and
must explicitly set all three members of the structure. This is not the same as for types managed
by reference, where the compiler is much more relaxed about what has been initialized and
automatically sets member data to default values (0 for numbers and null for references).

284	 Part III  Writing Proper Games

Constructors in Class Hierarchies
You haven’t had to create constructors before because the compiler has provided an “empty”
constructor (that is, one that accepts no parameters) automatically for each object you have
created. However, once you add your own constructor, the compiler stops doing this. The
designers of C# worked on the basis that if you provide a constructor you are indicating that
you want complete control over how classes are created. This can lead to problems, as you
now discover.

Armed with your knowledge of how constructors work, you now decide to sort out all the
classes in the BreadAndSprite game. This does not go well. As soon as you add a proper
constructor to the BaseSprite class to improve the program, it actually breaks everything.
Figure 15-3 shows the errors that are produced by XNA Game Studio from this “improvement.”

Figure 15-3  Compilation errors after adding a BaseSprite constructor

The compiler is not very happy with the BaseSprite class. It seems to want back the empty
constructor, the “constructor that takes 0 arguments.” The compiler is trying to tell you that
some parts of your program are trying to use the empty constructor to create a BaseSprite
class. This no longer exists because you have provided your own constructor. You could start
by fixing the Background sprite, which is a BaseSprite instance that draws the background.
When it is created, the game must provide the texture and rectangle for this sprite:

Background = new BaseSprite(

 Content.Load<Texture2D>("Images/Background"),

 new Rectangle(0, 0, displayWidth, displayHeight));

The Background is now created in the LoadContent method because this is the point at which
the texture is loaded. This gets rid of one of the errors, but there are still quite a few left.

Constructors in Child Classes
The next class that you could fix is the TitleSprite class, which is a child of the BaseSprite
class. From what we know of class hierarchies, this means that when a TitleSprite instance
is created, the system must create a BaseSprite first. If a parent class contains a constructor

	 Chapter 15  Creating Game Components	 285

(as ours now does), this means that the child constructor must call the parent constructor
to ensure that the parent class is set up properly before the child is constructed. The C#
language provides a means of doing this very easily, as shown here in bold:

public class TitleSprite : BaseSprite

{

 // TitleSprite contents

 // TitleSprite constructor:

 public TitleSprite(Texture2D inSpriteTexture, Rectangle inRectangle)

 : base (inSpriteTexture, inRectangle)

 {

 // The constructor doesn't actually have to do anything

 }

}

The constructor for TitleSprite actually just needs to call the constructor for the base class.
The preceding code shows how this is done. The parameters to the TitleSprite call are
passed into a call of a method called base. We have seen this before when we called parent
methods from overridden ones. In this context, it is doing something very similar, calling the
constructor of the parent class (sometimes called the base class). The rather strange syntax,
with the call actually appearing outside the body of the constructor method, is designed
to make it clear that the constructor for the parent must run before the code in the child
constructor runs.

To make the program compile all the children of the BaseSprite class must include a call
of the base constructor like this. This calls for some changes to the code, but it is worth the
effort as we shall see in a moment.

Sample Code: 01 Bread and Cheese with Constructors  All the sample projects can
be obtained from the course instructor. The sample project in the 01 Bread and Cheese with
Constructors directory in the resources for this chapter contains a version of the game that has
proper constructors for all the classes. The MovingSprite constructor is more complicated than
the others, as it has to use the scaling information to make the rectangle that bounds the texture.

The construction of objects in your system is something that you should plan carefully when
you design your program.

Adding 100 Killer Tangerines
Your younger brother (who seems to have taken on the role of lead game designer) has
come to you with an idea for 100 “killer tangerines” that appear on the screen once the
player has scored 500 points. He is not sure what they would do, or how they would work,
but he reckons that they would “scare the player to death,” as he puts it. Because you are
making up the game as you go along, you reckon that this might be a fun thing to do,
and you can work out what to do with them once you have created them. The first thing

286	 Part III  Writing Proper Games

you need is a picture of a tangerine to use for a sprite. Fortunately, the Great Programmer
likes oranges, and so you are able to take a picture of one and convert it for use as a game
texture. You decide to call this new type of sprite a KillerSprite for now; you can always
change its name later if you need to.

Creating a KillerSprite Class
You use the MovingSprite as the basis of your KillerSprite sprite:

public class KillerSprite : MovingSprite

{

 public KillerSprite(

 Texture2D inSpriteTexture,

 float widthFactor, float ticksToCrossScreen,

 float inMinDisplayX, float inMaxDisplayX,

 float inMinDisplayY, float inMaxDisplayY)

 : base(inSpriteTexture, widthFactor, ticksToCrossScreen,

 inMinDisplayX, inMaxDisplayX,

 inMinDisplayY, inMaxDisplayY,

 0, 0) // set the initial position to 0,0 for now

 {

 // TODO: Calculate a random initial position for the Killer Sprite

 }

}

The big scary lump of code in the class is the call of the constructor of the MovingSprite
class. This needs to be given all the information it needs to create the sprite rectangle and set
up the movement of the sprite. At the moment, the constructor for KillerSprite doesn’t
actually do anything—it just passes all the values to the base constructor of its parent class.

The base constructor for the parent MovingSprite class must be given an initial position
for the sprite. At the moment we don’t know where to put the sprite, so all KillerSprite
objects are initially placed at 0,0. The constructor code for the KillerSprite will calculate a
random position of this sprite, so there is a TODO comment in the constructor to remind us
to add this code later.

Your game could construct a KillerSprite instance like this:

KillerTangerine = new KillerSprite(

 Content.Load<Texture2D>("Images/Tangerine"),

 0.03f, // a tangerine takes 0.03 of the screen width

 1000, // tangerine takes 200 ticks to cross the screen

 minDisplayX, maxDisplayX, minDisplayY, maxDisplayY);

Positioning the KillerSprites Using Random Numbers
Your younger brother wants the tangerine killer sprites to appear at random all over the
screen. This means that you need a source of random numbers to position them.
Computers are carefully designed to do exactly the same thing when given the same

	 Chapter 15  Creating Game Components	 287

sequence of instructions. A computer that did not do this would be called a “broken” one.
From a programming perspective, getting truly random behavior is difficult. Fortunately,
the Microsoft .NET Framework provides a way of getting “pseudorandom” numbers
very easily.

Pseudorandom Numbers
A source of pseudorandom numbers is not completely random, but it is random enough to
be useful. It uses the previous random number to generate the next one and so produces a
sequence of numbers that appear random.

The sequence starts with a particular “seed” value. The process always produces the same
sequence from the same seed. This is why it’s called “pseudorandom” rather than “completely
random.” Pseudorandom numbers are actually quite useful, in that they can produce
complex but repeatable behavior. You are going to use this feature so that the killer sprites
always appear in the same places on the screen. This would make it possible for a keen player
to learn these locations and use this to improve their game play.

The .NET Random Class
The .NET Framework provides a class called Random which exposes a number of methods that
can be used to obtain random numbers in a variety of ways. The first thing the program must
do is create an instance of the Random class:

Random rand = new Random(1); // create a random number generator seeded at 1

This statement creates a new Random instance and sets the variable rand to refer to it. The
instance has been seeded with the value 1, so that it will always produce exactly the same
sequence of values. The program can now call methods on this reference to get a hold of
random numbers from it:

int diceSpots;

int winner;

diceSpots = rand.Next(1, 7); // get a value between 1 and 6

winner = rand.Next(100); // get a value between 0 and 99

The constructor for the KillerSprite must generate random numbers that will place the
sprite somewhere within the boundary of the playfield. To do this it can use the maximum
and minimum values for the screen size along with the width and height of the sprites that
will be drawn:

initialX = rand.Next((int)minDisplayX, // min value

 (int)(maxDisplayX - spriteRectangle.Width)); // max value

initialY = rand.Next((int)minDisplayY, // min value

 (int)(maxDisplayY - spriteRectangle.Height)); // max value

288	 Part III  Writing Proper Games

The previous code sets the initial position for a KillerSprite so that it is random but within
the screen boundary. Note that the Next method requires integer parameters, and so the
values must be cast to int before being passed into it.

Creating a Static Random Generator for the KillerSprite
The KillerSprite class must have one random number generator which is shared among
all instances of the class. If the program made a new random number generator each time it
made a new KillerSprite instance this would not work. All the sprites would be placed in
the same location because they would each contain a brand-new random number generator
seeded with the value 1. They would then set their positions by using the same first two
numbers produced by the identically seeded generator.

You can get around this problem by making the random number generator a static member
of the class. When a class member is made static it is not held inside an instance, but is
actually part of the class, and shared by all the instances.

static Random rand = new Random(1);

Whenever an instance of KillerSprite uses the rand member variable, it will use the single,
static variable which is part of the class.

You first saw static class members in Chapter 11 in the section “Static Classes and Methods,”
where you saw how useful it can be to make methods static so that they can be called without
needing to create an instance of a class. This is a situation where you want a particular data
item to be shared among class members. The KillerSprite constructor uses the random
number generator to position a sprite at a random position, as shown here in bold:

public class KillerSprite : MovingSprite

{

 static Random rand = new Random(1);

 public KillerSprite(

 Texture2D inSpriteTexture,

 float widthFactor, float ticksToCrossScreen,

 float inMinDisplayX, float inMaxDisplayX,

 float inMinDisplayY, float inMaxDisplayY)

 : base(inSpriteTexture, widthFactor, ticksToCrossScreen,

 inMinDisplayX, inMaxDisplayX,

 inMinDisplayY, inMaxDisplayY,

 0, 0) // set the initial position to 0,0 for now

 {

 initialX = rand.Next((int)minDisplayX,

 (int)(maxDisplayX - spriteRectangle.Width));

 initialY = rand.Next((int)minDisplayY,

 (int)(maxDisplayY - spriteRectangle.Height));

 }

}

	 Chapter 15  Creating Game Components	 289

Getting a Random Sequence of Numbers
Your younger brother has been reading this section with interest. He is obviously planning
some kind of card game program where he can know exactly what cards the other players
are holding, because of the way that he can get a predictable sequence of values from the
Random class. If you need to get truly random behavior you can create a Random instance
without giving it an initial seed value:

Random rand = new Random(); // create a truly random number generator

If you do not provide a seed value the .NET Framework uses a seed that’s obtained from
the precise time that the program runs, so that the game program gets a different random
sequence each time the game is played.

Using Lists of References
The next problem to solve is how to store all the KillerTangerine variables that you are
going to create. Arrays are, at the moment, the only way we know to hold large numbers of
things. We used them when we were decoding the scores in the section entitled “Finding
Winners Using Arrays,” in Chapter 8, “Creating a Timer.” They let you create a storage area of
a particular size and fill the elements in the store with data.

You could use arrays to hold all the game objects, but the C# libraries provide a much
better mechanism for doing this. It is called a List. The List is a “collection” class, which
is designed to hold lists of things. It is so useful that you feel like taking it home to meet
your parents.

The List collection uses a C# feature called generics, where a program construction can be
designed and made to work on items independent of their type. The great thing about a
List is that you can create it and add items to it without worrying about it filling up. Some
clever software behind the scenes (that you don’t have to know about) reserves extra space
when required. The List collection seems to have arrived just in time. For now, you need to
create something that can manage a very large number of sprites.

Creating a List Collection
You declare a List collection as you would any other variable, as shown in bold here:

// The Game World

public BreadSprite Bread;

public CheeseSprite Cheese;

public DeadlyPepper Pepper;

public TomatoRowSprite Tomato;

public TitleSprite Title;

public BaseSprite Background;

public List<BaseSprite> GameSprites = new List<BaseSprite>();

290	 Part III  Writing Proper Games

This is the game world for our game. It includes all the original sprites, plus the list variable
called GameSprites, which is going to hold all the sprites that are on the screen when
the game is active. The type of the items you want to put in the list is given between the
left-angle bracket (<) and the right-angle bracket (>) characters. In this case, you are
creating a list of BaseSprite references, but you can create lists to hold any type. Note that
because a reference to a parent class is able to refer to any of the child classes of that parent,
we can add any of our sprite types to the list.

Adding Items to a List
The List class provides a method called Add, which can be used to add things to the List,
as shown here in bold:

for (int i = 0; i < 100; i++)

{

 KillerSprite Tangerine;

 Tangerine = new KillerSprite(

 Content.Load<Texture2D>("Images/Tangerine"),

 0.03f, // a tangerine takes 0.03 of the screen width

 1000, // tangerine takes 200 ticks to cross the screen

 minDisplayX, maxDisplayX, minDisplayY, maxDisplayY);

 GameSprites.Add(Tangerine);

}

This code creates 100 tangerines and adds them to the GameSprites list. Note that if we
wanted 1,000 of them (which would really scare the player), we just have to change the upper
limit of the for loop and hope that the Xbox can keep up.

Accessing List Elements
Getting a hold of elements from a list turns out to be very easy. You can use subscripts just
like an array, as follows:

for (int i = 0; i < 100; i++)

{

 GameSprites[i].Draw(spriteBatch);

}

This code would call the Draw method on all the tangerines in the list. If the program tries
to access an element that is not present (perhaps the one with a subscript of 100), then the
program fails with an exception, just as an array would. The List class provides a Count
method, which can be used to find out how many items the list contains:

for (int i = 0; i < GameSprites.Count(); i++)

{

 GameSprites[i].Draw(spriteBatch);

}

	 Chapter 15  Creating Game Components	 291

This version of the loop would work correctly for any size of list. In this respect, the Count
method is directly analogous to the Length property of an array.

Working Through List Elements Using foreach
Lists (and indeed arrays) can also be used with another form of C# loop construction called
foreach. This provides a really neat way of performing an operation on a large number
of items in a collection. It removes the need for you to create a control variable and worry
about the size of the collection:

foreach (BaseSprite sprite in GameSprites)

{

 sprite.Draw(spriteBatch);

}

The foreach construction takes each item out of a collection and feeds it into the
statements to be repeated. This code asks all the sprites in the game to perform their Draw
operation. The elements of the List collection are fetched by the foreach loop in the same
order that they were added. You can also use foreach to work through the elements of
an array in the same way. Note however that other collection classes might not return
the elements in the same order that you stored them; only lists and arrays are guaranteed
to do this.

Setting Up the Game Sprites
It makes sense to add all the sprites into the game into the GameSprites list. This means
that the Draw and Update methods can be made much simpler because they just have
to use a foreach construction. The sprites would be added to GameSprites when they
are created:

CheeseBall = new BallSprite(

 Content.Load<Texture2D>("Images/Cheese"),

 0.07f, // a cheese takes 0.07 of the screen width

 200, // cheese takes 200 ticks to cross the screen

 minDisplayX, maxDisplayX, minDisplayY, maxDisplayY,

 displayWidth / 4, // a quarter across the screen

 displayHeight / 4); // a quarter down the screen

GameSprites.Add(CheeseBall);

Note that you now have two ways that to get to the BallSprite instance that represents
the cheese in the game. The program can either follow the CheeseBall reference, or use
the reference stored in the GameSprites list. You can now remove the use of the individual

292	 Part III  Writing Proper Games

references in the Draw and Update methods so that they are now even simpler, as shown in
the complete Draw method below:

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 switch (state)

 {

 case GameState.titleScreen:

 Title.Draw(spriteBatch);

 drawHighScore();

 break;

 case GameState.playingGame:

 foreach (BaseSprite sprite in GameSprites)

 {

 sprite.Draw(spriteBatch);

 }

 drawScore();

 break;

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

The only sprite that is not added to the list of GameSprites is the Title sprite, which is
drawn when the title screen must be displayed.

Extra List Features
The List collection also provides Remove methods that let you remove elements from a list.
When an element is removed, the list is “shuffled down” to so that there is no empty slot.
This would be a very useful way of removing items from game that have been destroyed.
If they are removed from the list, they are not drawn.

Sample Code: 02 Bread and Cheese with Tangerines  The sample project in the 02 Bread
and Cheese with Tangerines directory in the resources for this chapter contains a version of the
game that draws 100 tangerines when it starts.

Figure 15-4 shows how the tangerines are drawn. Note that because the code uses a random
number generator seeded with the same number each time, the tangerines are placed in
exactly the same position each time the program runs.

	 Chapter 15  Creating Game Components	 293

Figure 15-4  100 tangerines (count them if you like) in the Bread and Cheese game

Adding Artificial Intelligence
At the moment, the tangerines just stay at their initial positions on the screen looking
dangerous, which is rather boring. Perhaps they could chase the bread bat instead (your
younger brother really likes this idea). The posh name for what you are doing now is artificial
intelligence (AI). You want to make it look as though the tangerines are being controlled by
an intelligent opponent who knows where you are and is heading that way.

Chasing the Bread Bat
To change the way the tangerines behave, you just have to override the Update method
in the KillerSprite class. To chase the bread bat, a killer sprite first has to know where
the bat is. At the moment, this information is hidden inside the Bat class, so we need to
add some code to make this information visible. The best place to put this code is the
MovingSprite class; then we can get the position of any of the moving sprites on the screen,
including the Cheese and the DeadlyPepper.

294	 Part III  Writing Proper Games

Using Properties to Read the Bread Bat Position
We could provide a method called GetX to read the X position of the a MovingSprite,
but C# provides something called a property, which makes this much easier. Look at
this code:

public float XPos

{

 get

 {

 return x;

 }

}

When placed inside the MovingSprite class, the code provides a property that lets objects
read the value of x (which is the member of the sprite that holds the position). The new XPos
property can be used very easily:

float breadX = Bread.XPos;

This assigns the x location of the bread to the value of breadX. This looks a lot like direct
access to a member of a class, but what is actually happening is that the code inside get
portion of the property is running and the value following the return is being sent back as
the result of the property. At the moment, there is no way that the position of the bread can
be changed (which is what we want in this case). However, this would not stop programmers
like your younger brother from trying, as in the following code:

Bread.XPos = 99;

Because there is no set behavior, this fails to compile. However, you can provide such
a behavior if you like by adding a set part to the property declaration, as shown here
in bold:

public float XPos

{

 get

 {

 return x;

 }

 set

 {

 x = value;

 }

}

	 Chapter 15  Creating Game Components	 295

The set behavior of a property uses the key word value as a placeholder for the value
specified on the right side of the assignment operator. So if your younger brother’s code to
write to the property was performed, the value of x would be set to 99.

Properties are quite neat, and they can make code look simpler. I don’t use them
much myself (and neither does the Great Programmer) because we like it to be very
clear to a user of a class just when code is running within it (as opposed to just accessing
a property within it). If you provide a set behavior in a property you should of course
make sure that this validates the incoming data before changing a value held inside
the object.

Creating the KillerSprite-Chasing AI
The code to make a killer sprite chase the bread bat is actually quite simple:

if (game.BreadBat.XPos > x)

{

 x += xSpeed;

}

else

{

 x -= xSpeed;

}

if (game.BreadBat.YPos > y)

{

 y += ySpeed;

}

else

{

 y -= ySpeed;

}

This is pure AI. These statements are doing exactly what you would do if you were steering
a tangerine towards the bread. They work on the principle that if the bread was to the
left of you, you’d move left. If the bread was below you, you’d move down, and so on.
If this code is placed in the Update method, the tangerines try to head towards the bread.
The speed of the tangerine has been set so that the tangerines move quite slowly, but it
definitely feels like they are chasing you. If you really want to scare the player, you can
speed the tangerines up. Figure 15-5 shows the situation in the game a few seconds after
the tangerines have been made to appear. This is actually quite a scary point in the game,
as the pepper is also deadly.

If you want to make tangerines that ran away from the bread bat (to make a kind of chasing
game), you just have to reverse this behavior.

296	 Part III  Writing Proper Games

Figure 15-5  Starting the chase

Hitting the Killer Sprite Tangerines
The only problem with the tangerines is that we can’t really have them make the player lose a
life when they touch the bread bat. This would be very unfair because the player would almost
certainly die quickly. We get your younger brother to test this form of the game play and see
how long he can survive and the answer is what we expected—not very long.

However, we can arrange things so that the player suffers in other ways. Every killer sprite
that hits the player’s bat could cost them 10 points, whereas every one they manage to get
rid of by hitting it with the cheese could earn them 10 points. This makes the killer sprite a bit
like the pepper in some respects. The final Update behavior for the KillerTangerine looks
like this:

public override void Update(BreadAndCheeseGame game)

{

 if (game.GetScore() > killerTriggerScore)

 {

 // Score has passed a threshold.

 // Turn the killer sprite on and move the threshold.

 isDeadly = true;

 killerTriggerScore = killerTriggerScore + killerScoreStep;

 }

	 Chapter 15  Creating Game Components	 297

 if (isDeadly)

 {

 if (game.BreadBat.CheckCollision(spriteRectangle))

 {

 // bat has hit the Killer Sprite.

 isDeadly = false;

 // lose some score

 game.UpdateScore(-10);

 }

 if (game.CheeseBall.CheckCollision(spriteRectangle))

 {

 // ball has hit the Killer Sprite.

 isDeadly = false;

 // update the score

 game.UpdateScore(10);

 }

 if (game.BreadBat.XPos > x)

 {

 x += xSpeed;

 }

 else

 {

 x -= xSpeed;

 }

 if (game.BreadBat.YPos > y)

 {

 y += ySpeed;

 }

 else

 {

 y -= ySpeed;

 }

 }

 spriteRectangle.X = (int)(x + 0.5f);

 spriteRectangle.Y = (int)(y + 0.5f);

 base.Update(game);

}

Note that, unlike the pepper, the tangerines are drawn and moved only when they are deadly.

Sample Code: 03 Bread and Cheese with Killer Tangerines  The sample project in the
03 Bread and Cheese with Killer Tangerines directory in the resources for this chapter contains a
version of the game that creates 100 killer tangerines when the score reaches 500. It also creates
them every 400 points after that.

The interesting thing about this is that we have added only a few lines to the game to get the
new character, and many of the lines we have added were copied from other methods. We
could easily add other kinds of sprites and make them appear and disappear when we want
them. It would also be quite easy to add things like “Extra Life” sprites if we wanted the game
sprites that increase the number of lives available.

298	 Part III  Writing Proper Games

Adding Game Sounds
The BreadAndCheese game is now quite playable. It has a bit of variety and it can get quite
hectic, with the player having to keep an eye on lots of things at the same time to stay alive
and rack up a big score. However, there is one thing missing from it, and that is sounds. At the
moment, playing the game is very much like watching the TV with the sound turned off.

Such is the value of sound to a game that even the very first computer games had sound
output, even if it took the form of primitive beeps. You now need to think about how sounds
can be added to the game. You have seen how easy it is to load and play sound effects; now
you have to bind them into the game sprites so that when something happens to each sprite,
it plays an appropriate sound effect. But before we can add sounds, we have to decide how
to do it and decide who makes the sounds in the game.

This is actually a profound question. Does the BreadAndCheeseGame class make the sound,
or do the sprites do it themselves? After some thought, you probably come to the same
conclusion that I did, which is that the sound of a sprite is a bit like the texture that is used
to draw it; it is a property of the sprite. Furthermore, on the principle of high cohesion being
good (that is, it is best if an object can look after itself and not rely on any other objects), it
makes sense for the sprite to make the sound. Sprites that need to make sounds can be given
the sound effects when they are constructed and play the appropriate ones as required.
You can make the sounds any way you like. I created mine using a little electronic sound
generator. Figure 15-6 shows the sounds after I had imported them. Note that the name of
each sound file directly reflects its purpose.

Figure 15-6  All the sound effects in the Bread and Cheese game

	 Chapter 15  Creating Game Components	 299

Each of them is loaded into the game as content, and the constructor of each sprite class is
modified to accept the sound effect resources when the sprite is created:

CheeseBall = new BallSprite(

 Content.Load<Texture2D>("Images/Cheese"),

 0.07f, // a cheese takes 0.07 of the screen width

 200, // cheese takes 200 ticks to cross the screen

 minDisplayX, maxDisplayX, minDisplayY, maxDisplayY,

 displayWidth / 4, // a quarter across the screen

 displayHeight / 4, // a quarter down the screen

 Content.Load<SoundEffect>("Sounds/BreadHit"),

 Content.Load<SoundEffect>("Sounds/TomatoHit"),

 Content.Load<SoundEffect>("Sounds/EdgeHit"),

 Content.Load<SoundEffect>("Sounds/LoseLife"));

GameSprites.Add(Cheese);

This code creates a new CheeseBall and passes it all the information it needs, including the
sound effects. The constructor of the class stores the sound effects so that they can be used
to produce the sounds as required:

public BallSprite(Texture2D inSpriteTexture,

 float widthFactor, float ticksToCrossScreen,

 float inMinDisplayX, float inMaxDisplayX,

 float inMinDisplayY, float inMaxDisplayY,

 float inInitialX, float inInitialY,

 SoundEffect inBatHitSound,

 SoundEffect inTargetHitSound,

 SoundEffect inEdgeHitSound,

 SoundEffect inLoseLifeSound)

 : base(inSpriteTexture, widthFactor, ticksToCrossScreen,

 inMinDisplayX, inMaxDisplayX,

 inMinDisplayY, inMaxDisplayY,

 inInitialX, inInitialY)

{

 batHitSound = inBatHitSound;

 targetHitSound = inTargetHitSound;

 edgeHitSound = inEdgeHitSound;

 loseLifeSound = inLoseLifeSound;

}

This code actually looks rather horrible, and for that I apologize. The constructor for
the cheese actually does very little work because most of the heavy lifting is done by
its base constructor, which sets up the moving sprite. All the constructor does is copy
the incoming sound effects into members inside the BallSprite class, so that they can
be used in the Update method to make the appropriate sounds. I think it is fair to say
that when you understand this lump of code, you properly understand constructors and
class hierarchies.

300	 Part III  Writing Proper Games

Here is part of the Update method in the BallSprite class that plays a sound when the
cheese ball hits the top of the screen:

if (y <= minDisplayY)

{

 // ball has hit the top of the screen.

 edgeHitSound.Play();

 ySpeed = Math.Abs(ySpeed);

}

Sample Code: 04 Bread and Cheese with Sound  The sample project in the 04 Bread and
Cheese with Sound directory in the resources for this chapter contains a version of the game that
has all the existing game play with sounds added. I have used the code from the music player
that we created in Chapter 7, “Playing Sounds,” to play background music and to make the sound
for the deadly pepper repeats when it is on the screen. And you should make sure that you have
the volume turned down a bit before the tangerines turn up.

Note  The game will run on a Zune but because the Zune has fewer sound channels than the Xbox
or Windows PC it may fail when the bat or the ball collides with a large number of killer tangerines.
This is because the game will try to play a sound for each collision, and these are all played on
separate sound channels. To fix this problem you could make a Zune version that does not play a
new collision sound if the existing one is already active. I will leave this for you to sort out.

From Objects to Components
We now have a whole set of sprite components that are used in the BreadAndCheeseGame.
These components use some methods in the game itself, so that they can tell the game when
something important happens. As an example, the Update method in the Ball is given a
reference to the BreadAndCheeseGame that it is part of so that it can tell the game when
a life has been lost, as shown here in bold:

public override void Update(BreadAndCheeseGame game)

{

 ...

 if (y + spriteRectangle.Height >= maxDisplayY)

 {

 // cheese has hit the bottom. Lose a life.

 LoseLifeSound.Play();

 ySpeed = Math.Abs(ySpeed) * -1;

 game.LoseLife();

 }

 ...

}

	 Chapter 15  Creating Game Components	 301

The LoseLife method is part of the BreadAndCheeseGame class and is how game sprites tell
the game that a life has been lost. You use a similar method when you score points. Sprites
need to have this form of coupling so that the sprites can affect the game where required.
However, this means that they are tightly linked with the BreadAndCheeseGame class and can
be used only with it. This is actually a serious restriction. We would like to use the same set of
sprites in an “Alien Wars” game that we are also working on, but because this is held in a class
called AlienWarsGame, our sprites can’t talk to it. We can’t use abstract classes to solve this
problem, because the game classes are children of the XNA Game class, whereas our sprites
are all children of the BaseSprite class.

C# Interfaces
However, it turns out that we can use another C# feature to solve this problem and turn our
sprites into genuine components. This feature is called an interface.

Note  One point I should make here is that we are not talking about the user interface to our
game. The user interface is the way a person using a program would make it work for them. These
are usually either text-based (that is, the user types in commands and gets responses) or graphical
(that is, the user clicks “buttons” on a screen using the mouse). In programming terms, an interface
just specifies how a software component could be used by another software component.

You can think of interfaces in terms of plugs and sockets. When you plug your computer
into the wall socket, you are actually using an interface. The power company has created a
standard that describes the shape of the outlet on the wall and the voltage and frequency
of the power that comes out of it. This interface lets you plug in anything built to use that
connection, whether it is a computer, a toaster, or an Xbox 360. You can create a software
interface to specify the connection between your game and the sprite you would like to plug
into it. You can design this interface by deciding what a sprite needs to be able to do with
the game that it is part of:

n	 Update the lives

n	 Update the score

n	 Get the current score in the game

n	 Get the gamepad state

n	 Start the game

n	 End the game

Anything which provides these behaviors can act as a "host" for our sprites, in that it can do
anything that they need.

302	 Part III  Writing Proper Games

Creating an Interface
I worked out the contents of the interface by looking at the existing classes and deciding
which methods the sprites actually needed. These methods can be put into a C# interface as
follows:

public interface ISpriteBasedGame

{

 void UpdateLives(int update);

 void UpdateScore(int update);

 int GetScore();

 GamePadState GetGamePad();

 void StartGame();

 void EndGame();

}

A C# interface looks a lot like an abstract class. It is a collection of method specifications.
The idea is that rather than using a reference to a particular class, you can instead use a
reference to a class that can implement that interface. In other words, rather than thinking of
the host of a sprite as a BreadAndCheeseGame, we think of it as a class that implements the
ISpriteBasedGame interface. The BreadAndCheeseGame class can indicate that it implements
the interface, as shown in bold here:

/// <summary>

/// This is the main type for your game

/// </summary>

public class BreadAndCheeseGame : Microsoft.Xna.Framework.Game,

 ISpriteBasedGame

{

 // All of the game class code goes here.

 // This must include implementations of UpdateLives,

 // UpdateScore, GetScore, GetGamePad, StartGame;

 // and EndGame

}

When you declare a class, you can state that it extends a parent (in this case, the
Microsoft.XNA.Framework.Game class) and also give a list of any interfaces that it
implements (in this case, the ISpriteBasedGame interface). A class can implement many
interfaces, depending on the number of things you want to be able to ask it to do.

Note  The name of the interfaces I have created is ISpriteBasedGame. There is a convention
in C# that interfaces have names that start with I. This is so that a programmer can tell whether
a given item is an interface or an object. You do not have to use this convention, but the Great
Programmer has told me that she will hunt you down if you don’t.

	 Chapter 15  Creating Game Components	 303

Implementing an Interface
When a class implements an interface, it is saying, “I can do these things.” In other words,
it contains public versions of all the methods described in the interface. You can regard an
interface as a kind of resume if you like. My resume says that I can teach computer science.
This means that you can stand me in front of a class and call my “StartTeaching” method, and
I do something in response. You could replace me with any other teacher, or perhaps even a
robot, or anything that also has “teach computer science” on its resume because you know
that means it contains the required method.

Note  The interface doesn’t say anything about what the methods actually do (any more than
me having “computer science teacher” on my resume says how I will teach my class); it says only
that the object contains them. If we want to prove that a component can provide the expected
behaviors appropriately, we have to create tests for these methods.

References to Interfaces
From the programming point of view, this means that we can now refer to objects in
terms of what they can do, as opposed to what they are. We can refer to an object of type
BreadAndCheeseGame by using a reference of type BreadAndCheeseGame. But we can also
refer to such an object by using a reference of type ISpriteBasedGame. A reference of type
ISpriteBasedGame can refer to any object that implements the interface. The compiler is
quite happy with this. It knows that if it needs to use any of the methods in the interface,
they are there, and it doesn’t need to care precisely what type of object the instance actually
is. The Update method in the sprites is now passed a reference to the ISpriteBasedGame
so that it can use the methods it provides. For example, here is the Update method in the
TitleSprite class:

public override void Update(ISpriteBasedGame game)

{

 if (game.GetGamePad().Buttons.Start == ButtonState.Pressed)

 {

 game.StartGame();

 }

}

This Update method reads the gamepad of the game using the GetGamepad method and
calls the StartGame method if it is time to start the game. It doesn’t know exactly what it is
being given to work with, but it does know that the object that the game parameter refers
to contains the GetGamePad and StartGame methods because the game reference is only
allowed to refer to objects that implement the interface.

304	 Part III  Writing Proper Games

Linking Bread, Cheese, and Tomatoes
Earlier versions of the Bread and Cheese game used the game class itself to link the Bat,
Ball, and Target classes. In other words, when the ball wanted to find out if it had collided
with the bat, it would access the BreadAndCheeseGame class to get a hold of the reference to
the breadBat that is stored within the game.

You are trying to make the behavior of the bat, ball, and targets independent of the game
they are part of, and to do this you need to couple the bat, ball, and targets together, and
not have them use the game to find each other.

This means that the constructor of the ball must now be passed a reference to the bat and
the targets it must interact with so that it can store these for use later. This is actually quite
sensible design, in that it makes the coupling more direct; rather than coupling via a third
party, the bat, ball, and targets are directly connected.

Designing with Interfaces
Interfaces provide a very neat solution to the problem of wanting to reuse our sprites in
the AlienWarsGame game. If the AlienWarsGame class implements the ISpriteBasedGame
interface, the sprites can be used with that game.

Our sprites can work with any class that implements the ISpriteBasedGame interface. You
could also create an interface that works the other way. An ISprite interface would have
all the methods required to control a sprite. This would make it possible to plug any kind of
sprite into a game, not just ones that are children of the BaseSprite class.

The Great Programmer Speaks: Interfaces Are Very Useful  The Great Programmer uses
interfaces a lot when she designs her programs. When she has decided what objects are needed
to implement a solution, she next works out how they need to communicate with each other and
creates interfaces based on these interactions. The result is that she can plug in new versions, or
even plug in test versions, of objects very easily.

Sample Code: 05 Bread and Cheese with Interfaces  The sample project in the 05 Bread
and Cheese with Interfaces directory in the resources for this chapter contains a version of the
game that uses interfaces to connect the game sprites with the game of which they are a part.

	 Chapter 15  Creating Game Components	 305

Conclusion
This has been another very busy chapter. We have seen how abstract classes can be used
as templates, to make sure that a child class provides implementations of the methods it
needs to perform its work. We have also discovered how a class can take control during its
construction and how this can be used to set the initial values of the class. We have used
the List collection to store a large number of sprites in our game and we have written our
first piece of AI code to control a tangerine. Finally, we have explored interfaces as a way of
creating true component-based software.

Chapter Review Questions
More chapter review questions. Never mind—we have just one more chapter to get through.

	 1.	 An abstract class cannot contain any working code.

	 2.	 An abstract class is not allowed to contain a constructor.

	 3.	 You can make only one instance of an abstract class.

	 4.	 You can mark data in an abstract class as abstract.

	 5.	 A C# class can extend more than one parent class.

	 6.	 An abstract class can be used as the base of a class hierarchy.

	 7.	 A reference to an abstract class can refer to any instance of children of that class.

	 8.	 The constructor of a class is called when a new instance of the class is created.

	 9.	 If a class contains one constructor, this must be called to create an instance of that class.

	 10.	 In a class hierarchy, the data members of an instance of a child class must be initialized
before the data members of the parent class are initialized.

	 11.	 The .NET system can be used to provide random numbers.

	 12.	 The List collection class must have its length set when it is created.

	 13.	 The foreach construction can be used to work through all the elements in a List.

	 14.	 Artificial Intelligence involves adding brain cells to a program.

	 15.	 An interface contains a list of methods.

	 16.	 A reference to an interface can refer to any object that implements the interface.

		 307

Chapter 16

Creating Multi-Player Networked
Games

n	 See how Microsoft XNA games can be made to connect together.

n	 Look at the C# constructions that let network games exchange data.

n	 Create a multi-player game for Microsoft Windows PC, Xbox, and Zune.

Introduction
You are well on the way to becoming a full-fledged programmer. You don’t know everything
yet, but you have enough programming and XNA knowledge to produce very playable
(and marketable) games. One XNA feature that is worth exploring, though, is the way that
XNA makes networked games possible.

In this chapter, we are going to find out a bit about how networks function and create
a simple networked game for PC, Xbox, or Zune.

Networks and Computers
It should come as no surprise to you that networks are used to link computers. Before we
look at how XNA provides network connections, we need to learn a little bit about how
networks work. This is not a detailed examination of the field, but it should give you enough
background to understand what the XNA networking support does.

Starting with the Signal
The first computer networks used wires to send their data signals, although more modern
networks can use radio or fiberoptic cables. Whatever the medium is, the fundamental
principle is that you have hardware that can put data onto the medium in the form of bits
and get it off again. A bit is either 0 or 1 (or you can think of a bit as either true or false) and
can be signaled by the presence or absence of a voltage, a light from a light-emitting diode
(LED), or a radio signal.

If you imagine signaling your friend in the house across the road by flashing your bedroom
light on and off, you have an idea of the starting point of network communications. Figure 16-1
shows how such a bedroom-to-bedroom signaling system might work.

308	 Part III  Writing Proper Games

Figure 16-1  Sending messages from one bedroom to another using a light

Once we have this raw ability to send a signal from one place to another, we can start to
transfer useful data.

Building Up to Packets
Just flashing your light to your friend willy-nilly does not allow you to send much
information. To communicate useful signals, you have to agree on a system. You could say,
“If my light is off and I flash it twice, it means it is safe to come round because my sister is
out. If I flash it once, it means don’t come, and if I flash it three times, it means come and
bring pizza with you.” This is the basis of a thing called a protocol, which is an arrangement
by parties on the construction and meaning of messages.

Addressing Messages
Your bedroom light communication system would be more complicated if you had two
friends on your street with whom you needed to communicate. You would have to agree
with them that you would send two sets of flashes. The first one would indicate who the
message was for, and the second would be the message itself. Computer networks function
in exactly the same way. Every station on a network must have a unique address. Messages
sent to that address are picked up by the network hardware in that station.

Networks also have what is called a broadcast address. This allows a system to send
a message which will be picked up by every system. This is the network equivalent of “Calling
all cars . . .” In our communication network, this could be used to warn everyone that your
sister has come home and brought her boyfriend, so your house is to be avoided at all costs.

Everyone can receive and act on a broadcast. In fact, if it wanted to, a station could listen to
all the messages traveling down its part of the wire or WiFi channel. This illustrates a problem
with networks. Just as both of your friends can see all the messages from your bedroom light,
including ones not meant for them, there is nothing to stop someone from eavesdropping
on your network traffic. When you connect to a secure Web site, your computer is encoding
all the messages that it sends out so that someone listening other than the intended
recipient would not be able to learn anything.

	 Chapter 16  Creating Multi-Player Networked Games	 309

Routing
If you had a friend on the next block, she might not be able to see your bedroom light. But
she might be able to see the light of your friend across the road. This means that you could
ask your friend across the road to receive messages and then transmit them on for you. Your
friend across the road would read the address of the message coming in, and if it was for
your friend on the next block, she would transmit it again. Figure 16-2 shows how this works.
Your friend uses the window on the left to talk to you and the window on the right to relay
messages to your more distant friend.

Your House Friend’s House Distant Friend

Figure 16-2  Using your friend to route messages to a friend farther away

This is the basis of routing, and it is how the Internet works. Messages that you send from
your home PC to distant machines are passed to the network hardware at your Internet
service provider (ISP), which then passes them along to the next system in the path to the
destination. Messages might have to be sent over several machines to reach their destination.
The Internet constantly changes the routes that messages take. This makes the Internet very
reliable and able to manage sudden surges in traffic and failures of systems in the network,
but it can lead to situations where a message arrives before another which was sent first.
Sometimes messages can get lost (although this is fairly rare), so you can’t be sure that one
has arrived until you receive an acknowledgement. One thing you should remember is that
you do not really “connect” your system to the Internet. Whenever your system is connected,
it actually becomes part of the Internet.

Anything that you send via the Internet will be transferred using one or more individual
messages. Each message contains the address of the destination and each message is
numbered, so that missing messages can be detected and messages can be put into the right
order when they are received (if you want that). If you need to transfer a large file, this will be
broken down into a number of messages.

Calls and Datagrams
The Internet provides two forms of connection: calls and datagrams. A datagram is a single
message that is sent from one system to another. You don’t know if a datagram has been
received. This is like flashing your bedroom light to ask for pizza (message 3) and then just
waiting for someone to turn up.

310	 Part III  Writing Proper Games

You could agree with your friend that she would flash her light once to indicate that she
has received your message. Then perhaps you could send another message. When she was
leaving to fetch the pizza, she could flash her light twice to indicate that she was “going off
the air.” This would be the basis of a call between the two of you.

When two systems are in a call, they have to perform extra work to manage the call itself.
When one system sends a message that is part of a call, the network either tells that
system that the message was successfully transferred (once the network have received an
acknowledgement) or give an error saying that it could not be delivered. Some Internet
services use datagrams, and some use calls.

Datagrams are used for things like broadcasting video. In this situation, if a message is lost
by the network, there is no point in asking for it again because by the time the replacement
arrives, it will be too late to display it. So the display program must make up for the missing
data and just keep going, hoping the viewer does not notice. Datagrams are used when you
want to send data as fast as you can and it doesn’t matter if some gets lost on the way. Game
data is often sent like this because you want the objects in the game to update as smoothly
as possible and there is no time to resend missing information. Datagrams are also used for
streaming media, where moving video is being sent and the priority is to get the signal to
you as fast as possible.

Calls are used when it is important that the entire message gets through. When your browser
is loading a Web page, your computer and the Web server are connected by a call across the
network. This makes sure that all parts of the Web page get through and that any pieces that
don’t arrive are retransmitted. The effort of setting up and managing the call and requesting
retransmission when things fail to arrive means that data in calls is transferred more slowly
and places heavier demands on the systems communicating by means of a call.

Networks and Protocols
A protocol is a set of rules that tells you how to behave in a certain situation. There is a
protocol that tells you which knife and fork to use in a posh banquet, and another that tells
you to kiss a maiden on her hand having just rescued her from a dragon. You already have
one with your friend, where you have agreed on the meaning of the various messages that
you send with your bedroom lights.

In networking terms, a protocol sets out the design of all the messages and how stations in a
network should cooperate to move data around. There are essentially two levels at which this
must take place. There must be a “local-level” protocol that lets local stations (ones on the
same piece of physical media) exchange data, and there must be an “internetwork” protocol
that allows messages to be sent from one local network to another.

You can regard a local-level network as the same as the internal mail that is used in many
organizations, including my university at Hull. If I want to send a message to our chemistry
department, I just put the address “Chemistry Department” on the envelope and drop it

	 Chapter 16  Creating Multi-Player Networked Games	 311

in the internal mail. There is a local protocol (called the internal mail system) that makes
sure that the message gets there. However, if I want to send a message to the chemistry
department at York University, I must put a longer address on the envelope. When the letter
gets to the mailroom, the staff notice that the destination is not local, and they route it out
to the postal system, which sends it to York. This is the “Internet Protocol” for letters.

The Internet is powered by a local protocol (Transport Control Protocol, or TCP) and an
internetwork protocol (Internet Protocol, or IP). Put these together, and you have the familiar
TCP/IP name that refers to the combination. You can also use the TCP/IP protocol to connect
machines without linking them to the Internet. In effect, you can create an “Internet in your
bedroom” from just a few machines. Windows PCs and Xbox consoles connected in this way
can be used to play games using a connection called “System Link,” which we’ll discuss in the
next section.

Xbox Live
Xbox Live uses the TCP/IP protocol to connect Xbox consoles and Windows PCs for
networked game play. All Xbox games provide support for some form of network connection
using Xbox Live. This can be as simple as the uploading of high scores and achievements to
your gamertag. However, many games provide very advanced network play facilities, with
Xbox Live connectivity allowing gamers to set up and play multi-player sessions.

Gamertags and Xbox Live
If you have used Xbox Live, you know about “gamertags.” A gamertag is a name by which
a player is known on the Xbox Live network. You have created an account on the Xbox Live
network associated with a unique gamertag that other gamers can use to find you. Your
gamertag is also linked to your game achievement records and other game-related information
that is stored for you by the Xbox Live system. You can also create an avatar which lets other
gamers see what you look like.

It is possible to create XNA programs that make use of the Xbox Live gamertags and worldwide
servers and provide a multi-player experience just like that from any full-fledged game. However,
to develop and test such a game requires multiple XNA Creators Club memberships and some
fairly complex coding that is beyond the scope of this introductory text. However, you can still
create multi-player games using the somewhat simpler System Link technology, which XNA also
supports.

System Link and XNA
System Link is a game networking technology that allows Xbox 360 consoles and Windows
PCs on the same physical network to engage in network game play. When I say “same physical
network,” I mean the network is connected to the same piece of wire or WiFi access point.

312	 Part III  Writing Proper Games

The bad news is that this means for multi-player action, your friend has to bring her computer
or console round to your house and plug it into your network. The good news is that PC and
console owners can play against each other. The better news is that System Link is also the
way that Zune devices communicate using XNA, so you can use your System Link skills to write
games that allow handheld multi-player gaming.

Note  It is not possible to use XNA to play network games between PC and Zune at the moment.
Although the Zune can use its WiFi connection to link to a Windows PC to synchronize media,
it is not possible for it to perform XNA game play with a PC or Xbox 360.

System Link provides a set of methods that can be used to allow a program running on one
system to send a message to another. What the message contains and how it is formatted
are completely up to the game developer. You also get a means by which a network game
can be set up between two or more players. A System Link game is “local,” which means
that it does not need to use the Xbox Live gamertag system to find players; instead, you can
create local Gamer Profiles on machines.

Note  By “local network,” I really do mean local. I have encountered problems creating System
Link games using machines connected via WiFi adapters. It seems that XNA works best when
communicating across real wire. Bearing in mind that during network play it is important that the
systems have a reliable and speedy network connection, it is probably best to use wire anyway.

Bread and Cheese Pong
To find out how to create a network game, you are going to make a new game called “Bread
and Cheese Pong.” Your younger brother really likes the name. It will be a simple pong game,
with each player controlling a bat and hitting the cheese towards the opponent. You can use
a lot of the bread and cheese sprite code that you have already written in previous chapters.
A good starting point would be a simple, two-player pong game, as shown in Figure 16-3.

This game finally answers the question, “Which is better, white bread or brown bread?” with
bread bats being used to hit the cheese ball. The players are defending their back wall—
if cheese hits the back wall, the player on the opposing side gains a point.

Sample Code: 01 Bread and Cheese Pong Game  All the sample projects can be obtained
from the course instructor. The sample project in the 01 Bread and Cheese Pong Game directory
in the resources for this chapter contains a two-player pong game that uses two gamepads to
control the bread bats. This is the starting point for our game.

	 Chapter 16  Creating Multi-Player Networked Games	 313

Figure 16-3  Two-player Bread and Cheese Pong game

Managing Gamer Profiles in XNA
Before a game can start network play, the players must be signed in. On an Xbox 360, you
perform this kind of task using the Guide part of the user interface, which you access by
pressing the big silver X button in the middle of the gamepad. This facility is part of the Xbox
and is always available. When running XNA programs on a Windows PC, you can access a
similar facility by pressing the Home key on the PC keyboard. However, if you start one of the
games we have already written and press the Home key, you find that nothing happens. This
is because the Guide behavior is managed by the GamerServicesComponent, which is part of
XNA and must be loaded into a game if the game wishes to use it. This is simple to do—you
just have to add an extra line to the constructor of your game class:

public PongGame()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

 this.Components.Add(new GamerServicesComponent(this));

}

314	 Part III  Writing Proper Games

This creates a new GamerServicesComponent instance and connects it to your game. Now,
when you run your game, you can press the Home key to call up the display. Figure 16-4
shows the initial sign-in screen.

Figure 16-4  Initial sign-in screen

Creating a Profile
The very first time you use the GameServicesComponent on your Windows PC, you do not
have any gamer profiles on it. This means that it displays the screen shown in Figure 16-4,
from which you can create a new profile. You can control the screen from an Xbox gamepad
or from the keyboard. You should move the highlighted menu option to select Create New
Profile, and then press the A button on the gamepad, the A key on the keyboard, or the
Enter key to select this option. You can also use the Windows PC mouse to select options on
any of these screens. Once you have selected Create New Profile, the screen changes to the
one shown in Figure 16-5, where you can enter your profile name.

Once you enter your profile name and select Submit, you are taken to the New Profile Save
screen, as shown in Figure 16-6.

	 Chapter 16  Creating Multi-Player Networked Games	 315

Figure 16-5  Creating a user profile

Figure 16-6  Saving a profile

316	 Part III  Writing Proper Games

You are allocated a random icon, but you can change this by selecting Customize Profile.
The profile that you are about to create is local to the Windows PC you are using. If you want
to create a Windows Live–based profile, you can select that option and you are directed to
a browser-driven interface where you can set up your account. You can do this later if you
wish. Once you have created your profile, you are taken to your profile page, as shown in
Figure 16-7. At this point, the system has signed you in.

Figure 16-7  A signed-in user profile

You can close the guide by pressing the Home key again or the B button on the gamepad, or
by clicking the X in the top right corner of the display.

Automatic Sign-In
The next time you start an XNA game that has GameServicesComponent active, it automatically
signs in for you using the last active profile. It shows you that this has happened by momentarily
displaying a message at the base of the screen, as shown in Figure 16-8.

The message also reminds you that you can sign out and change to a different profile, or
even create a new profile, by pressing the Home key.

	 Chapter 16  Creating Multi-Player Networked Games	 317

Figure 16-8  Notice of automatic sign-in

Sample Code: 02 UserDisplay  The sample project in the 02 UserDisplay directory in the
resources for this chapter is a brand-new, empty project that has the GameServicesComponent
loaded. You can use it to create a new profile for yourself.

Ensuring a Gamer Is Signed In for Network Play
It is impossible to start a network game until a gamer has signed in. This is because the
gamertag is used to identify this player on the network, and if the player is not signed in,
there is no tag. The Gamer class provides a property called SignedInGamers, which contains
a collection of the gamers currently signed in at your game. On the Xbox 360, it is possible
for more than one gamer to sign in to a single console (this is so they can use split-screen
multi-player mode in networked games). On the Windows PC, there can never be more than
one signed-in gamer at a machine.

The game must make sure that a gamer has signed in for network play. It can test to see if a
gamer is signed in by checking the number of items in the SignedInGamers collection. If this

318	 Part III  Writing Proper Games

is zero, no players are signed in. This means that the game must display the menu that lets
a player sign in with his or her profile. The XNA menus are created using the Guide class,
which can display a number of different menus. The one that you want is activated using the
SignIn method on the Guide. The Guide also provides a property called IsVisible, which
is set to true when the guide is active. You can use this to stop the guide being displayed
on top of itself. Your program should only try to display a new guide menu if the IsVisible
property is false:

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==

 ButtonState.Pressed)

 this.Exit();

 if (Gamer.SignedInGamers.Count == 0)

 {

 if (Guide.IsVisible == false)

 {

 Guide.ShowSignIn(1, false);

 }

 }

 base.Update(gameTime);

}

This version of Update displays the sign-in screen if there are no signed-in gamers. If a user
closes the guide without signing in, this code displays the sign-in screen again. Note that the
ShowSignin method for the Guide has two parameters. The first is the number of sign-in
screens to display. For a Windows PC game, this must always be 1. The second is whether
or not to restrict the sign-in to permit only online gamers to sign in. Online gamers have
profiles linked to Xbox Live. For our game, we want to allow local gamer profiles as well, and
so this parameter should be false.

Zunes and Gamer Profiles
The Zune does not support multiple gamer profiles. As far as XNA is concerned,
it is always signed in, and the gamertag that it uses is the name of the Zune itself. The
Zune also lacks the Guide behavior because it doesn’t need to perform user management.
If you try to use the Guide object in a Zune XNA program, it fails to compile, but
this doesn’t keep us from making a single game that works on all platforms, as you
will see later.

	 Chapter 16  Creating Multi-Player Networked Games	 319

Creating a Game Lobby
Playing a network game is just like any other. If you wake up one morning with a strong
desire for some “Snakes and Ladders” action, you have to find your copy of the game and
then get a hold of enough people to join you and start playing. This might involve standing
somewhere shouting, “Who wants to play Snakes and Ladders?” until you have enough
people who want to take part.

In computer gaming terms, this is sometimes called a “game lobby,” where one system on
the network proposes a game session and other players enter the game lobby and wait
together until there are enough of them there to play the game. To create a network game,
you are going to have to add code to set up a lobby and invite people to join your game.
In the case of Bread and Cheese Pong, you need only one additional player, but the system
we are going to build will handle more than two players.

Network Games and State
We have looked at game states before. The original Bread and Cheese game had a “Title Screen”
state and a “Playing” state and would switch between them. In the case of a networked game,
state is even more important. There are a number of possible states that the networked game
might occupy. The best way to represent these is to use an enumerated type as follows:

public enum GameState

{

 titleScreen,

 NotSignedIn,

 SelectingRole,

 WaitingAsHost,

 WaitingAsPlayer,

 PlayingAsPlayer,

 PlayingAsHost

}

GameState state = GameState.titleScreen;

These are all the possible states that the game can occupy. For each state, there will be events
that cause the game to move from that state into another. Figure 16-9 shows the states, the
screens that they display, and the events that cause the states to change. The variable state
holds the current state of the game.

The Update and Draw methods contain switch statements that control what the game does
when in each state, something we used before when creating the original Bread and Cheese
game. We can now look at how the states are used to start the game and play it.

320	 Part III  Writing Proper Games

Title Screen

Not Signed in

[Press A]

[Sign in with Gamer Profile]

[Player Arrives] [Host Arrives]

[Selected as Host] [Selected as Player]

Selecting Role

Waiting as Host Waiting as Player

Playing as Host Playing as Player

[Game Over]

Bread and Cheese Pong

Waiting for Player

Bread and Cheese Pong

Waiting for Host

Bread and Cheese Pong

Waiting for sign in

Bread and Cheese Pong

Select Role

L-Host R-Player

Figure 16-9  States in the Bread and Cheese Pong game

Starting at the Title Screen
The titleScreen state is the state the game occupies at the start. A title screen is displayed
and the player is invited to press A on the gamepad to continue. The game returns to this
state when a game finishes. You have seen the code for this state before—it simply reads the
gamepad of the player and checks whether the A button has been pressed. This is the part
of the switch statement in Update that deals with the behavior of the game when in the
titleScreen state:

case GameState.titleScreen:

 if (gamePad1.Buttons.A == ButtonState.Pressed)

 {

 state = GameState.NotSignedIn;

 }

 break;

When the player presses A, the game state is changed to the NotSignedIn state.

	 Chapter 16  Creating Multi-Player Networked Games	 321

Signing In Players
The first thing the game must do is make sure that the player is signed in with a gamer
profile. The code for the NotSignedIn state in the Update method must check whether
a gamer is signed in and display the ShowSignIn page from the Guide if not. This code is
made slightly complicated by the fact that if the game is running on a Zune device; it is not
possible to use the Guide at all, and if the program refers to a Guide, it does not compile.

The code here uses conditional compilation, a C# feature we have seen before in Chapter 6,
“Creating a Multi-Player Game,” in the section entitled “Adding Test Code.” This lets you turn on
and off lines of C# source code, depending on symbols which can be defined in the program.
The designers of XNA have provided the symbol ZUNE, which is defined if the program is being
compiled for a Zune device. This means that when we compile for a Zune target, we can make
sure that the offending lines are “switched off”:

case GameState.NotSignedIn:

#if ZUNE

 // Special handling for the Zune device

 // This state will never be reached

 // because the zune is always signed

 // in with the device profile.

 // So we move on to the selecting role state

 // if we ever do end up here for

 // any reason

 state = GameState.SelectingRole;

#else

 if (Gamer.SignedInGamers.Count == 0)

 {

 if (!Guide.IsVisible)

 {

 Guide.ShowSignIn(1, false);

 }

 }

 else

 {

 state = GameState.SelectingRole;

 }

#endif

break;

As XNA automatically signs in a player, the game normally moves straight through this state
into the SelectingRole, where the player selects the role he or she is going to play.

322	 Part III  Writing Proper Games

Selecting the Role of Host
One player must be the host of the game, and the other will be the player. The host sets up
the game lobby and waits for the player to join. The role to be taken is selected using the
D-pad on the gamepad, which is tested when the game is in the SelectingRole state.

Note  The lobby system works fine whether the player waits for the host or vice versa. However,
you might have to wait a second or two after both systems have selected their roles as the
systems find each other on the network.

Pressing the left button on the pad selects the Host role. The host must create a network
session and wait for other players to join. The session is created using the Create method,
which is told the type of the game, the maximum number of local gamers on a machine and
the maximum number of players the game can support:

if (gamePad1.DPad.Left == ButtonState.Pressed)

{

 // Selected Host role

 // Create the session

 session = NetworkSession.Create(

 NetworkSessionType.SystemLink,

 1, // only 1 local gamer

 2 // no more than 2 players

);

 session.GamerJoined +=

 new EventHandler<GamerJoinedEventArgs>(hostSession_GamerJoined);

 session.GamerLeft +=

 new EventHandler<GamerLeftEventArgs>(hostSession_GamerLeft);

 state = GameState.WaitingAsHost;

Once the session has been created, the game program must bind to events that tell it when
more players arrive. At this point, we need to digress into events.

The Great Programmer Speaks: You Need to Know About Events  The Great
Programmer reckons that events are, quite literally, what make programs tick. They underpin the
way that software responds to user actions on your Windows PC, including mouse movement,
key presses, and even the system clock. A good understanding of how events are managed in
a program is a very good thing to have, and the game sessions of XNA provide a good place to
start exploring this subject.

Events let programs deal with things when they happen instead of the program having to
hang around waiting. In the case of the Pong game, it might take several seconds for a player
to join the host in a game. However, the XNA system wants to keep calling the Draw and
Update methods until a player arrives. So instead of waiting for a response, the program tells
the session what to do when a gamer arrives by connecting, or binding, a method to the
events the program wants to know about.

	 Chapter 16  Creating Multi-Player Networked Games	 323

To do this, the program needs a way of creating a reference to a method. You have seen
references to objects before, but references to methods are different. They are called
delegates. A delegate is an object that refers to a particular method in a class. You declare
a delegate by telling the compiler the type returned by the delegate, and the type of the
parameters to the delegate:

delegate int DoSimpleSum(int v1, int v2);

This creates a delegate type called DoSimpleSum. This particular delegate accepts two integer
values and returns an integer result. It can be made to refer to any method that accepts two
integers and returns an integer result, such as the two methods below:

int DoAdd(int v1, int v2)

{

 return v1 + v2;

}

int DoMultiply(int v1, int v2)

{

 return v1 * v2;

}

To create an instance of the delegate that refers to one of these methods we must declare
a variable and create an instance of the delegate, as shown below.

DoSimpleSum mySum = new DoSimpleSum(DoAdd);

This code creates a delegate variable of type DoSimpleSum, which has the identifier mySum.
This is then set to a new delegate instance that refers to the DoAdd method. This means that
if I use the mySum delegate it will call the DoAdd method:

int result = mySum(3, 3);

The code above would put the value 6 into the result variable, because the delegate points to
the DoAdd method.

A program can use the mySum delegate to tell another part of the program which method to
call when a sum needs to be performed. Because mySum is an object like any other, I can pass
it into a method as a parameter.

Delegates are type-safe, in that they are allowed to refer only to methods that match their
declaration. For example, it would not be possible to create a delegate of type DoSimpleSum
that referred to a method that only accepted a single parameter.

If I give a program a delegate value, it can use that to call the method that the delegate
points to. The first event the game is interested in is when a gamer joins. You will create a
method called hostSessionGamerJoined that will deal with this situation and then connect
it to the event. The C# that connects to this event is shown here:

session.GamerJoined +=

 new EventHandler<GamerJoinedEventArgs>(hostSession_GamerJoined);

324	 Part III  Writing Proper Games

The event that we are interested in is the GamerJoined property of the session object. The
event manages a list of people to contact when a gamer joins the session. The += operator
is one we have seen before. It lets you add a value easily. For example, x += 3 adds 3 to the
value x. In this case, the += is adding a new delegate value to the GamerJoined event in our
session.

The delegate is set up to refer to an EventHandler method that accepts GamerJoinedEventArgs.
The method being connected to the event is called hostSession_GamerJoined. This method
must check to see if there are enough remote gamers connected, and if there are, it must start the
game and change the state of the game to PlayingAsHost. It is actually quite a simple method.
It checks to see if we have enough gamers available and then, if we have, it calls StartGame to set
up all the game elements and changes the state to indicate that the game is now playing with this
machine as the host, as shown here:

void hostSession_GamerJoined(object sender, GamerJoinedEventArgs e)

{

 if (session.RemoteGamers.Count == 1)

 {

 StartGame();

 state = GameState.PlayingAsHost;

 }

}

This version of hostSession_GamerJoined lets anyone join the game. It is, however, possible
for the event handler method to get the gamertag of the player wishing to join and start
playing only with certain people.

Events and delegates are used extensively throughout the Windows operating system to
allow programs to bind to events such as button presses in the Windows graphical user
interface. If the code looks a bit confusing, do not worry. The nice thing is that XNA Game
Studio creates most of the code for you automatically.

Just remember that delegates provide a way that you can connect an event generator
(something that wants to tell our program something) with a method (that needs to do
something to respond to that event). The game also binds a method to the event for when
a gamer leaves. If a gamer leaves, we want the game session to end and return to the title
screen. The following method handles this event:

void hostSession_GamerLeft(object sender, GamerLeftEventArgs e)

{

 session.Dispose();

 EndGame();

}

Calling the Dispose method on a session causes it to shut down. This means that the player
should be able to initiate a new game at this point. The EndGame method tells all the sprites
in the game that it has ended and resets the game state to titleScreen so it is ready for
the next game.

	 Chapter 16  Creating Multi-Player Networked Games	 325

Displaying the Contents of the Lobby
While the game is acting as a host, waiting for players to join, it shows a list of players already
in the game waiting to take part:

case GameState.WaitingAsHost:

 displayMessage = "";

 foreach (Gamer g in session.AllGamers)

 {

 displayMessage += g.Gamertag + "\n";

 }

 session.Update();

 break;

This part of a game is sometimes called the “lobby display.” The foreach loop assembles
a string called displayMessage containing the gamertags of all the gamers who are presently
in the lobby waiting to play the game. For your game, this just shows the gamertag of the
host of the game (because a host is always part of the session she is hosting), but if a game
was waiting for several players, it would let the host see how many people had joined so far.
The string displayMessage is drawn on the screen by the Draw method.

Note that there is also a call of an Update method on the session that is being managed.
When a system is using the network, it must do this to keep the network active.

Selecting the Role of Player
The role of player is selected by pressing the right button on the D-Pad when the game is
in the SelectingRole state. When in this state, the game looks for game sessions being
presented by hosts and joins one if it finds it. This is much simpler than the host behavior.
As shown here, the game just moves into the WaitingAsPlayer state, where all the work
is actually performed.

if (gamePad1.DPad.Right == ButtonState.Pressed)

{

 // Selected Player role

 state = GameState.WaitingAsPlayer;

}

Waiting for a Host
If the game is in the WaitingAsPlayer state, it is waiting for a host. The game must repeatedly
look for hosts who are presenting sessions that it might want to join. In a full-fledged lobby
system, players would be able to choose which games they might like to join. Your game is
much simpler, in that it simply finds the first available hosted game and joins it:

case GameState.WaitingAsPlayer:

 AvailableNetworkSessionCollection sessions =

 NetworkSession.Find(NetworkSessionType.SystemLink, 1, null);

326	 Part III  Writing Proper Games

 if (sessions.Count > 0)

 {

 AvailableNetworkSession mySession = sessions[0];

 session = NetworkSession.Join(mySession);

 session.GamerLeft +=

 new EventHandler<GamerLeftEventArgs>(playerSession_GamerLeft);

 StartGame();

 state = GameState.PlayingAsPlayer;

 }

 break;

The Find method is called on the NetworkSession class, which looks for games and returns
a collection of the ones that it finds. It can be supplied with the properties of the game
you want it to look for, in terms of the type of game, the number of local players, and
other filtering options. The call shown previously looks for SystemLink games with no more
than one local player. If it finds some games, it joins the one at the start of the collection
(sessions[0]) and then adds the method playerSession_GamerLeft to the GamerLeft
event so that the game is informed if the host leaves the game. It then starts the game and
sets the game state to PlayingAsPlayer, so that the players can start their networked battle.

At this point, you now know how the lobby system works, and what happens to get the
players this far in the network game. This would be a good time to go for a cup of coffee.

Playing the Game
The lobby mechanism has brought the two players to the point where one game is in the
PlayingAsHost state and the other is in the PlayingAsPlayer state. Both games also have
an active session instance that is providing the link between the two XNA programs. Now
they can start playing the game.

Game Topology
You can arrange a network game in a number of ways. Some games are based on a configuration
called “peer to peer,” where no one player is in overall control and each player must exchange
game status information with all the other players in the game. This works for small numbers of
players, but for games with many systems, it can result in a lot of network traffic.

A better way to arrange network play is to have one system operate as a server and have all
the others send their information to it. The server can then send out a message to everyone
that contains the position of all the elements in the game. This results in much less network
traffic. In terms of game arrangement, it is often the case that there must be one system in
overall control of the game. The server for a game is usually, but not always, the system that
proposed it in the first place.

In the case of our game, the system that is in the PlayingAsHost state works as a server and
manages the game state, with the PlayingAsPlayer system working as a client. This means
that if you wanted to add players (whole-grain bread, anyone?), then this would be easy to do.

	 Chapter 16  Creating Multi-Player Networked Games	 327

Creating the Server Behavior
The host system performs all the game mechanics for player 1. These are very recognizable
from previous games. The first part of the update is very familiar:

CheeseBall.Update(this);

Player1Bat.Update(this);

These two calls move the cheese ball and update the position of the bread bat for player 1.
The ball update method also checks for collisions between the bats and the ball and performs the
scoring.

Once the ball and the player 1 bat have been updated, the host must then send this information
to the client system so that the game running on the other player’s machine can use it to drive
the display. You can think of the connection between the server and the client as two pipes
which are plugged into your program. A system can push information into the “send” pipe and
also check to see if anything has arrived from the “receive” pipe. The connection itself is not
aware of the meaning of the data that is being transferred, and so we must make sure that it is
clear to the receiver what they are getting.

XNA provides classes that take our data and convert it into a format suitable for transfer
over the network connection. These classes are called PacketWriter and PacketReader.
They do the same kind of thing for a network connection that SpriteBatch does for the
graphics. They let a program assemble a bunch of items and then transfer them in one lump.
We declare the reader and writer as part of the game world along with the network session
that we are going to use:

// Game World

NetworkSession session = null;

PacketWriter writer = new PacketWriter();

PacketReader reader = new PacketReader();

The host system needs to tell the clients three things:

n	 The position of the cheese

n	 The position of the player 1 bat

n	 The message containing the score

The client can use this information to update the display. Note that the client is not handling
any of the collisions between ball and bats or keeping track of the score. The code to use a
packet writer to assemble this information is as follows:

writer.Write('H');

writer.Write(Cheese.XPos);

writer.Write(Cheese.YPos);

328	 Part III  Writing Proper Games

writer.Write(Player1.XPos);

writer.Write(Player1.YPos);

writer.Write(displayMessage);

The Write method provided by a writer can be given any number of simple values (number
or string), and it assembles this into a message. The first thing that is sent is the character H,
to indicate the message is from the host. A character is a single letter. The C# type char is
provided for holding such single characters, and a string of text is made up of individual
char values. You need to put this on the front of the message so the receiver can tell which
message it is. The character is followed by the X and Y positions of the cheese, and then the
positions of the Player1 bat, and finally the message presently being displayed.

Having assembled the message in the writer, it can now be sent to the game session for
delivery for all the players in the game:

LocalNetworkGamer localHost = session.LocalGamers[0];

localHost.SendData(writer, SendDataOptions.ReliableInOrder);

The first statement gets a reference to LocalNetworkGamer from the session. The next
statement uses the SendData method on this gamer to send the contents of the writer. The
second parameter to the SendData method selects how the message is to be sent. There are
a number of possible settings for this:

n	 Chat  The message is part of a chat between systems. This option lets your game send
chat messages in a properly formatted manner.

n	 InOrder  Data is not guaranteed to be delivered, but messages are received in the
same order they were sent.

n	 None  There is no guarantee that the messages get to their destination or that they
arrive in the order they were sent.

n	 Reliable  Messages are guaranteed to arrive, but they are not guaranteed to arrive in
the same order they were sent.

n	 ReliableInOrder  Messages are guaranteed to arrive, and they will be in the same
order they were sent.

The option that you select depends on the importance of data integrity and synchronization.
You should remember that if you ask for a Reliable or ReliableInOrder transfer, this
means that the transfer is slower and involves more effort to manage. In effect, the system
must manage a virtual call to implement ReliableInorder. It must wait for late packets so
that they can be given to your program in order, and it must also request retransmission of
lost ones. On the other hand, selecting None means that data arrives more quickly, but some
pieces of the data might be missing or out of order.

In our game, it does not really matter if messages are missing or out of order; all that happens
in that case is that the ball or bats might seem to jump slightly. However, because the data is
small and the systems are on the same network, I’ve selected the ReliableInOrder setting.
You might like to experiment with other ones.

	 Chapter 16  Creating Multi-Player Networked Games	 329

The next thing the host must do is read the position of the player 2 bat. This is managed by
the client game, which uses a call of SendData to transfer the data to the host. To read data is
actually very easy; it is done as follows:

while (localHost.IsDataAvailable)

{

 NetworkGamer sender;

 localHost.ReceiveData(reader, out sender);

 char messageType = reader.ReadChar();

 if (messageType == 'P')

 {

 Player2Bat.XPos = reader.ReadSingle();

 Player2Bat.YPos = reader.ReadSingle();

 }

}

The localHost provides a property called IsDataAvailable, which is true when data is
available. This is used to control a loop construction that we haven’t seen before. The while
loop repeats a block of code while the condition controlling it is true. In this case, we want
the game to read packets repeatedly until there are none left. The code inside the loop
reads messages and processes them. The first statement in the loop uses the ReceiveData
method. This is provided with a reference to a PacketReader, which it fills up with data, and
also sets a reference to the NetworkGamer description of the system that sent the message.
It does this by using an out parameter:

NetworkGamer sender;

localHost.ReceiveData(reader, out sender);

We have seen that normally parameters are passed into methods by value. In other words,
the value of the parameter is copied and sent into the method. In this case, however, we
want the ReceiveData method to actually change the value of sender to make it refer to the
NetworkGamer object that describes the system from which the message came. The method
has been declared as wanting to write to the value of the parameter, so when you use the
method, we have put the out keyword in front of the variable name.

If a method wants full control of a parameter (that is, it wants to read and write), it can use the
ref key word to modify the way the parameter behaves. Your game doesn’t actually use this
information, but you could use this in a multi-player game with lots of players to find out who
sent the message. The host wants to see a message that starts with the character P because
it knows that it comes from the player and contains the position of the player’s bat. The
following code reads the first character of the message, and if it is a P, it knows that it can read
two single-precision, floating-point values to set the X and Y positions of the player 2 bat.

char messageType = reader.ReadChar();

if (messageType == 'P')

{

 Player2Bat.XPos = reader.ReadSingle();

 Player2Bat.YPos = reader.ReadSingle();

}

330	 Part III  Writing Proper Games

To make the game work, we have created a little protocol of our own. If a message starts
with the character H, it contains four numbers (for the positions of the ball and the player 1
bat) and a string (the message for the display). If a message starts with the character P, it
contains two numbers (for the position of player 2 bat). For a more complicated game, you
could invent more messages, each with a different format.

Creating the Client Behavior
The client behavior looks very similar to the server:

Player2.Update(this);

writer.Write('P');

writer.Write(Player2.XPos);

writer.Write(Player2.YPos);

LocalNetworkGamer localPlayer = session.LocalGamers[0];

localPlayer.SendData(writer, SendDataOptions.ReliableInOrder);

while (localPlayer.IsDataAvailable)

{

 NetworkGamer sender;

 localPlayer.ReceiveData(reader, out sender);

 char messageType = reader.ReadChar();

 if (messageType == 'H')

 {

 Cheese.XPos = reader.ReadSingle();

 Cheese.YPos = reader.ReadSingle();

 Player1.XPos = reader.ReadSingle();

 Player1.YPos = reader.ReadSingle();

 displayMessage = reader.ReadString();

 }

}

session.Update();

First, the player 2 bat is updated, and then its position is sent to the host in a packet starting
with the character P. Then the code looks for a message that starts with H, which it can use to
set the position of the cheese, player 1 bat, and the message to be displayed. Note that the
Update method on the network session is also called to keep the network active.

The Completed Game
The completed game works well, although it is not without its faults. The screen dimensions
of the two systems being used must be the same because the present version passes
the position of the items in terms of absolute screen coordinates. However, it would be
comparatively easy to perform some scaling of these values.

Another slight problem is that because the host system performs all collision detection, it is
the only system that makes sounds. However, it would be quite easy to extend the design of
the messages sent from the host to include information to tell the client to play particular
sound effects.

	 Chapter 16  Creating Multi-Player Networked Games	 331

Sample Code: 03 Networked Pong Game  The sample project in the 03 Networked Pong
Game directory in the resources for this chapter contains a fully working version of the game
that provides networked gameplay for PC, Xbox 360, or Zune. It is not possible to play the game
between a Zune and a device on another platform, but the game can be played between two
Zune devices.

Zune Network Games
The games work well on the Zune device, although you might want to improve the sensitivity
of the gamepad inputs and also add some code to stop the player bats from going off
the screen. You might also want to stop the player bats from being able to overlap on the
playfield, perhaps you could make one bat bounce off another, and add a new, fighting,
dimension to the game.

If you want to install the program on more than one Zune from a single PC you will have to
use the XNA Device Center to select each Zune in turn for deployment of the game program.

When you have installed the pong game on a Zune device you can select and run this game
from the Games menu on the Zune itself. Make sure that the Zune wireless adapter is turned
on at the Settings menu before running the game. Once a game is waiting for a network
connection you can only abandon the game by holding down the Back button to stop the
game and reset the Zune.

Conclusion
You have learned a lot in this chapter, starting with a quick introduction to the way that
networks operate and then moving on to consider how Xbox Live uses the network to
provide to multi-player games the profile of the gamers that use it.

You have seen how the Guide can be used on Windows PCs to allow XNA gamers to create
their own gamer profiles and store them on their systems. You have also seen how a system
can use a state machine to set up a lobby and wait for players to turn up and take part in a
game. Finally, you have seen how to format data so that it can be passed from one system to
another during game play and how to set up a server and client arrangement that can serve
as the basis of any kind of networked game. All in all, not a bad place to end up.

Making Games for Fun
Even the simplest of ideas can be explored in a fun way. So take what I’ve provided, play
around with it, and use it as the basis for creating silly games of your own. You have a very
powerful platform, a lot of flexibility, and gamepads that can lead to some really interesting
developments, even without considering the high-powered graphics and processing power

332	 Part III  Writing Proper Games

that XNA provides . Many of the games that people play for fun, particularly in groups, are
extremely simple to play and very amenable to a computer-based interpretation. So think
of silly things that you like to do and make some games based around them. The way I see
it, you’ll have fun both ways—enjoying the challenge of writing the code and enjoying
your creations.

The Great Programmer says that programming is “The Science of the Happy Ending” in that,
at the end of a development, users should have something that does what they want and
maybe even that they like working with. She says that there’s nothing quite like seeing a
group of people enjoying using a system that your code is making work, and I’m inclined to
agree with her on that.

This slim volume does not teach you everything there is to know about C# and XNA, but
I hope it will get you started on the road to enjoying programming and producing games
that you and others can enjoy playing.

verysillygames.com
As you can see, I think there’s definitely a place in the world for very silly game play, so all
the game ideas used as examples in this book have been packaged up as fully playable
games that can be downloaded from the Web site http://www.verysillygames.com. If you
have silly games of your own that you would like to post on this site, please contact
newgames@verysillygames.com and let me know.

Chapter Review Questions
And now (fanfare), the final set of review questions. As usual, say whether these statements
are true or false.

	 1.	 Networks are made using wet string.

	 2.	 Every station on a particular network must have a unique address.

	 3.	 Messages sent over a network to your system cannot be received by other systems.

	 4.	 You can use XNA network gaming without a gamer profile.

	 5.	 A router is connected to only one network.

	 6.	 You can create the Internet in your front room.

	 7.	 XNA cannot be used to create games that provide full Xbox Live network game play to
gamers all round the world.

	 8.	 It is not possible to play network games using the Zune.

	 Chapter 16  Creating Multi-Player Networked Games	 333

	 9.	 The XNA NetworkSession class drives the network gameplay in a multi-player
XNA game.

	 10.	 Only two players can take part in a network game.

	 11.	 A state machine can be used to store the score gained in a network game.

	 12.	 One XNA system must create a session that others can join to play a networked game.

	 13.	 An event is a way of attracting the attention of a program.

	 14.	 A delegate is a type-safe reference to a method in an object.

	 15.	 XNA games can only transfer floating-point values between each other when playing
network games.

	 16.	 In a server-client network game configuration, the clients send information to each
other about the state of the game.

		 335

Answers to the Chapter Review
Questions

Chapter 1
	 1.	 False. If you enjoy solving problems and working with people, that will make you a great

programmer.

	 2.	 False. You can write Microsoft XNA game programs and run them on your PC if you don’t
have an Xbox.

	 3.	 False. XNA is a framework for writing games. It is written in a programming language and is
used by programs, but it is not a programming language.

	 4.	 True. Indeed it is.

	 5.	 False. The C# compiler produces a file containing a sequence of machine instructions that
the computer can follow when the program runs. Once you have the instructions, you don’t
need the compiler anymore.

	 6.	 False. C# is a programming language; XNA is the framework.

	 7.	 True. Indeed you do. But you don’t need to be a club member to write games for the PC.

	 8.	 False. You can plug a Zune into your PC and put programs on it from XNA Game Studio
without joining anything.

	 9.	 False. This program is used to manage the connections between your PC and XNA devices
that you want to use.

	 10.	 False. The compiler converts your source code into lower-level instructions for the computer
to follow. But once the compiler has done this, you can just run the program that the
compiler has produced.

	 11.	 False. The screen is initially blue.

	 12.	 False. Actually, you can do this, and it works very well (especially for games on a PC that
require a joystick).

	 13.	 False. You don’t. The version of XNA you use to write Zune games is just the same; it is just
that some of the more advanced features aren’t available on the Zune platform.

336	 Answers to the Chapter Review Questions

Chapter 2
	 1.	 False. A program is a sequence of statements. A variable is the way that we represent values

that we want our program to work on.

	 2.	 False. We can call the file what we like; when coding in C#, it must have the language
extension (the bit after the dot) of .cs. XNA Game Studio puts our game program into a file
called Game1.cs by default, which is a good start.

	 3.	 True. We need to think of a name that represents the value that the identifier is going to
hold or the action the method is going to do for us.

	 4.	 True. A method contains a sequence of statements. It also has an identifier as a name.
Our program can “call” the method by name, and when the method is called, it performs
the statements in the method. We don’t have to write every method ourselves; instead, we
can call methods provided by other programmers.

	 5.	 False. The Draw method is not in charge of updating the game. Instead, it is supposed to
perform the drawing. The method that performs the update is called, not surprisingly,
Update.

	 6.	 False. A block of statements is a number of statements that have been enclosed in curly
brackets. C# can treat an entire block as a whole.

	 7.	 False. A comment is put into the program by the programmer as a kind of “note to self.”
The compiler completely ignores any comments.

	 8.	 False. A byte can hold only a number in the range 0 to 255. When creating a color, each of
the primary colors (red, green, and blue) has a byte value that represents the intensity of
that primary color. So a Color must be held as at least 3 bytes.

	 9.	 True. The C# compiler always ensures that we don’t combine variables in an incorrect way.
Trying to place a Color into a byte would not work because it would not fit. Therefore, the
compiler refuses to compile a program that does this.

	 10.	 False. A local variable is held inside a block. It is not visible to statements outside the block;
each time the block is entered, a new version of the variable is made.

	 11.	 False. We create the identifiers. If we need to keep track of the highest score in the game,
we might want to create the identifier HighScore, which can be used to identify the variable
where we store the high score.

	 12.	 True. This is exactly what a variable does. We create a variable every time we need to store
something in our program. Each variable has a different identifier and has a particular type.

	 13.	 False. The Boolean type has just two possible values, but they are true and false,
not 0 and 1.

	 14.	 False. The word that starts a conditional statement is if.

	 15.	 False. You don’t need to add an else part to an if condition unless your program needs it.

	 16.	 True. A recipe tells you how to combine and process ingredients to cook something.
An algorithm gives a sequence of actions that you can perform to achieve something.

	 Answers to the Chapter Review Questions	 337

	 17.	 False. A single equals character (=) is used to assign a value to a variable.

	 18.	 True. The methods provide the class with things it can do (behaviors) and a place to hold
information (data).

	 19.	 False. PlayGame sounds like a good identifier for a method (an action of some kind), but it is
not a good name for a class. Classes have names like Sprite, Session, Game, Invoice, and
Car. A class represents a whole thing that you want to create and interact with, not just a
single action.

	 20.	 True. Explode is a word that implies that an action is being performed; perhaps we are
going to make one of our game objects perform an explosion behavior. Method names
should be “doing” words, like verbs.

	 21.	 False. A byte holds 8 bits organized in one lump. Each of the bits can be either true or false,
which means that a byte can actually occupy 256 different states.

	 22.	 False. ++ works on a single numeric operand and makes the value in the thing it works on
one bigger. We use it to increase the intensity of the color values in our program. It has a
complementary -- operator.

	 23.	 False, for two reasons. One is that the compiler does not have control when your program
runs. It just prepares the program for execution, so there is no way that it can react to things
that happen when the program runs. The second reason is that when some numbers over-
flow (for example, if we try to overfill the byte type), the processor typically doesn’t notice.
We have to make sure that the values in our programs always stay within the range of the
variables that we create to hold them.

	 24.	 True. In programs, we often need to represent things that can be either true or false. These
allow us to decide whether we do something (true) or not (false).

Chapter 3
	 1.	 False. A method does something. A desk is just a holder for values. It is more sensible

to regard a method as a person in the office who can do something when the method
is called.

	 2.	 False. The compiler converts your C# source code into machine language instructions for
the computer, Zune, or Xbox, but it is not around when your program is running. The class
instances are created when the program runs.

	 3.	 False. You need to add the else part only if you want to perform some other statement or
block of statements if the condition is not true.

	 4.	 False. The parameter feeds information into a method.

	 5.	 False. It is performed only if the condition controlling the if statement is false when the
program runs.

	 6.	 False (aren’t we having a lot of false answers this time?). The gamepad is represented by a
special Microsoft XNA structure that holds all the gamepad settings. The structure is called
GamePadState.

338	 Answers to the Chapter Review Questions

	 7.	 False. This method gives your program a GamePadState structure. You can use the
GamePadState structure to find out what the button state is.

	 8.	 True (at last). This is exactly what a block is.

	 9.	 True. The logical expression (true || false) works out to true, as do (true || true) and
(false || true). In fact, the only condition involving explicit values and a single logical OR
operator that works out false is (false || false).

	 10.	 False. I feel terrible about this one. The condition is fine, but it does not test the value of
greenIntensity.

	 11.	 False. We may have to do this ourselves when the game is stopped.

Chapter 4
	 1.	 False. The compiler is the program that converts C# source code into machine instructions

for the computer. Images are held by the XNA Content Manager, which ensures that they are
incorporated into your program once it has been compiled successfully.

	 2.	 True. A texture is a special type of data that can hold images. The examples in Chapter 4 use
the Texture2D data type to hold an image because the examples are for textures that are to
be displayed as flat.

	 3.	 False. This method brings the images into the program. It gets the item of content and
loads it into the target texture, but it does not display the image.

	 4.	 This might be true, but it is not relevant to Microsoft XNA graphics. A sprite is a texture and
a position. It represents something in the game you want to draw at a particular position.
In your programs, you’ve used a Texture2D variable to hold the image to be drawn and
a Rectangle to express where the image is to be put on the screen.

	 5.	 True. The clue is in the name. You can use SpriteBatch to perform a number of drawing op-
erations, and then, when the Draw method is called the SpriteBatch actually does the draw-
ing, it can organize all the draw operations in the most resource-efficient way.

	 6.	 True—but with reservations. The Initialize method is simply a placeholder where you
can put C# code that runs when the game is being initialized. If you need to get control at
this point in the game process, you can add code to this method. Otherwise, you can leave
it empty.

	 7.	 True. It also has a Height field for the height and X and Y fields that describe where on the
screen it is to be positioned.

	 8.	 False. An XNA game can store many image resources. Each of them is given a name and can
be loaded by the Content Manager when required.

	 9.	 False. I’d say that an inch is a better measure of screen size. A 20-inch monitor could have
different numbers of pixels depending on the quality of the images it can show. A monitor
with 1,024 pixels across displays a more detailed picture than one with only 800. The
number of pixels really gives you an idea of the resolution of the images, not the actual size
as displayed.

	 Answers to the Chapter Review Questions	 339

	 10.	 True. Unlike graph paper, which has the origin on the bottom left, the XNA display area has
the origin at the top left corner.

	 11.	 False. Although you could use a Portable Network Graphics (PNG) picture in this way, you
might find that a large image (such as you would use for a background) stored in this file
format would be quite a large file. If you do not need transparency (and background images
do not) then I would suggest that you use a Joint Photographic Experts Group (JPEG) image
for that. A JPEG image can be much smaller than an equivalent PNG picture.

	 12.	 False. The XNA system provides an easy way to find out this information. The
GraphicsDevice.Viewport.Width and GraphicsDevice.Viewport.Height values will do
this a treat.

Chapter 5
	 1.	 False. The font information is concerned with the shape of the characters. You decide the

color of the text only when you use the font to draw the text on your output device.

	 2.	 False. You can incorporate as many fonts as you like in a Microsoft XNA game. You just need
to remember that each additional font uses up space in the memory and make the game
program larger.

	 3.	 False. The Content Manager is told which fonts are required. It then reads the font
information and makes each requested font part of your game in a way that makes it
possible for you to use the font.

	 4.	 True. This is exactly what a resource is. The resource itself is fetched only when the program
is being created.

	 5.	 False. Nice thought, though. XML stands for Extensible Markup Language. XML is widely
used in computing to allow two different programs to share information. An XML file
contains the names of settings (for example, <size>) and the values that these should have
(for example, 100).

	 6.	 True. A vector is given as coordinates that identify a point, such as (200, 300). You get the
direction and distance of movement by considering how you would travel from the origin
(0, 0) to that point. In the case of (200, 300), you would be moving across and down the
screen if you were drawing in 2-D.

	 7.	 False. The first program you write should display “Hello World.”

	 8.	 False. Although the Xbox can be programmed to update the clock by using a network
connection, the hardware itself holds a clock, backed up by a battery, that keeps track of
time for the Xbox device.

	 9.	 False. Both the PC and the Xbox have special software to “localize” them to a particular area.
One aspect of localization is how the date and the time are displayed, so the same program
code might display the date and time differently on machines in different countries.

	 10.	 True. That is exactly what it does. Inside the structure itself are fields that hold the day,
month, year, hour, minute, and second that the particular value of DateTime represents.

340	 Answers to the Chapter Review Questions

	 11.	 False. For example, the DateTime structure provides a property called Now. This delivers a
DateTime instance that is set to the current time. Properties are used by objects as a way for
the outside world to interact with the data that they hold.

	 12.	 True. That is what ToString is for. Exactly what you get when you call ToString depends
on what the object holds and what the programmer who created the type of object has
decided that ToString should return. In the case of a DateTime object, the ToString
method returns the date in a text format.

	 13.	 False. A programmer can make it run forever, either intentionally or by mistake. However,
how long the for loop runs depends on your requirements. In Chapter 5, you’ve used it to
draw items a particular number of times.

	 14.	 False. The first time around the loop, the value of layer is 0; the second time, it is 1; the
third time, it is 2; and the fourth time, it is 3. At the end of the fourth time around the loop,
the value of layer is increased to 4, and then the condition is checked before the next time
around the loop. Because the value of layer is no longer less than 4, the condition is not
true, and the loop ends after four times around.

	 15.	 False (nasty ones, these). The value left in layer when the loop has stopped is the value that
caused the condition to fail. The value 10 would not cause the condition to fail, as layer
would be equal to 10. The value of layer that causes the loop to end would be 11 because
that is not less than or equal to 10.

	 16.	 True. The test is always performed before the code controlled by the for loop is obeyed.
The first time the test is performed, the value of layer is 4. Because 4 is not less than 0, the
test fails, and the loop never runs.

	 17.	 True—sort of. Because you’re making the value of layer 1 bigger each time and it starts at
4, the condition (layer > 0) is always true, so you would expect the loop to repeat forever.
But this is not quite the case, given what you know about variable types. If layer were a
byte, you know that the range of a byte is from 0 to 255. This means that once the value of
layer reached 255, it would wrap around to 0, and the loop would stop. Note that this kind
of mistake would result in the program acting strangely and would be hard to uncover.

	 18.	 True. They can. This is where the idea of a color as a paint can or colored light breaks down.
You’d be happy drawing red text on the screen by using the red color. However, you can
also use red text through which the background can be seen by using a red color value
with a transparency value. Furthermore, because you know that you can draw images in a
particular color, this means that you can draw transparent images by drawing them with
a transparent color.

Chapter 6
	 1.	 False. Any of the buttons on a gamepad can be used to detect edges.

	 2.	 True. The program can notice that a signal has changed only if it has before and after
values that it can compare. If these two values are the same, there has been no change, but
if they are different, it means that the signal has changed.

	 Answers to the Chapter Review Questions	 341

	 3.	 False. The whole point of an edge-triggered input is that you detect when the button
changes state. They are used for flicking switches, changing gears in a car, or for your
button-press-counting game. The only way that you can detect an edge is to compare the
state now with the state it had last time you looked.

	 4.	 False. The clue is in the name. The compilation process, where your program is converted into
executable statements, is where conditional compilation takes place. By the time the program
runs, the statements have either been included in the program or ignored.

	 5.	 False. The preprocessor, as the name implies, looks at the C# code going into the compiler.
If it’s given commands to ignore sections of the program, these are not passed into the
compiler for conversion into machine instructions in the finished program.

Chapter 7
	 1.	 True. The Content Manager provides a version of the Load method that loads and converts

audio files for use in a game.

	 2.	 True. You can also use .wma and .wav files.

	 3.	 False. The files are copied automatically for you by the Content Manager.

	 4.	 False. Each hardware platform supports a different number of simultaneous sound samples,
but it is always more than one.

	 5.	 False. The Play method is used to play an existing effect. The effect should have been
loaded when the game started running.

	 6.	 False. The Play method actually returns a reference to a SoundEffectInstance that
describes the particular instance of the sound being played. You can call methods on this to
control the sound playback.

	 7.	 False. There is no such thing as a null object. A null reference is defined as explicitly
referring nowhere. It is used to denote the fact that the reference does not refer to
anything at all.

Chapter 8
	 1.	 False. The code creates a variable called scores that can refer to arrays of integers, but it

does not create the array itself. The program must actually construct the array to use it:
int[] scores = new int [4]; would do this. To make the array bigger, change the 4 to a
different value. You can even use a variable to set the size of an array, so that a program can
allocate the correct amount of storage for its needs automatically.

	 2.	 This is both true and false. You can create an array of any type, so you can have arrays of
integers, arrays of strings, and pretty much arrays of anything you like. However, once an
array has been created, it has a particular type and keeps that type forever; for example, an
array of integers can hold only integer values.

342	 Answers to the Chapter Review Questions

	 3.	 True. When you create an array, you make an instance of an array object. You can tell this
because making the array (that is, the step where you set up how many elements the array
has in it) uses the key word new. The identifier you give the array is a reference that refers to
the array object.

	 4.	 False. In some languages (Microsoft Visual Basic, for example), this is true. However, in
C# the convention is that the first element in the array is zero. If you think of a subscript
as giving the distance down the array you need to travel to get to the element, then it
is reasonable to have a subscript value of zero. It is unfortunate that different languages
handle this differently, but there’s nothing you can do about it.

	 5.	 False—to the extreme. The system running your programs cares a great deal about this.
If you try to get a hold of an array element that is not there, your program stops.

Chapter 9
	 1.	 False. Exactly how many keys can be pressed at once depends on the keyboard hardware, but

multiple keys can be registered.

	 2.	 False. The Keys type holds information that describes a particular key on the keyboard. For
every key on the keyboard (including the Shift, Ctrl, and Alt keys), there is a corresponding
Keys value that matches that key.

	 3.	 False. The Keys type has values just for physical keys on the keyboard. The only way that
you can determine whether an uppercase letter has been typed is by checking the state of
the Shift keys when the key press is detected.

	 4.	 True. Each value of a variable of type Keys describes one physical key on the keyboard.
There are as many Keys values as there are keys on the keyboard. An enumerated type
allows programmers to create their own types that have just the values that are required by
their application.

	 5.	 False. A reference provides a way that a program can find and use an object. However,
you should not regard a reference as letting your programs find out where in memory
something is stored. The way that C# works, you’re not allowed to know where the objects
in your program are actually located. In this respect, a “telephone number” analogy works
best, in that a telephone number provides a way you can contact someone but does not
tell you where he or she physically is. You can think of a variable that refers to an object in
memory as holding the “telephone number” of that object.

	 6.	 False. It’s very common in C# programs for a particular object to have multiple references
referring to it. This is the best way that a large resource (for example, a particular texture or
sound) can be shared in a program.

	 7.	 False. In C#, garbage collection takes place while a program is active. The garbage collection
process runs alongside your program to make sure that the maximum amount of memory is
available at all times.

	 8.	 False. You’ve used the break key word in two situations: when you wanted to exit from a for
loop and when you wanted to exit from a case in a switch statement. It does not stop the
program; instead, it says, “I’ve done all I want here, and I want to escape from this construct.”

	 Answers to the Chapter Review Questions	 343

	 9.	 False. The idea of a program turning the computer off is interesting but is not what the
switch statement is used for. It’s used to select an option from a number of different
possible ones, depending on the value of a control.

	 10.	 True. Note that this does not cause the contents of the string itself to change; instead,
you should regard methods like ToUpper and ToLower as different views of the string,
much as you can get a DateTime instance to give you a string that contains only the time
information.

	 11.	 False. You can add strings together, but the effect is to put one string on the end of
the other, which is called string concatenation. C# uses the same operator, +, for adding
numbers and for concatenating strings but the meaning of the action changes depending
on what it is applied to. A + between two integers would add them together. A + between
two strings causes them to be strung together to make a longer string.

Chapter 10
	 1.	 False. The Rectangle tells the draw process the position and size of the drawing area, but it

does not do the drawing itself.

	 2.	 False. Although the Microsoft XNA programmers have made methods for you to use, there’s
nothing to stop you from creating methods of your own.

	 3.	 True. A method is a member of a class. It’s how you can ask an instance of a class to do
something for you.

	 4.	 True. The statements are performed when the method is called. Used like this, a method lets
you use a given sequence of statements from any part of your program simply by calling
the method.

	 5.	 False. A method that specifies a return type of void does not return a result to the caller.

	 6.	 False. A method can contain many return statements. If the method returns a result, each
return statement must be followed by a result that’s an expression of the correct type.

	 7.	 False. You’ve seen methods that don’t accept any parameters.

	 8.	 False. The C# compiler is very picky about method calls. If the call doesn’t exactly match the
header definition (the signature) of the method, the compiler produces an error.

	 9.	 False. When you work with test-driven development, you do the testing as you write the
program. Often you write the tests before you write the code.

	 10.	 False. One of the many wonderful things about XNA Game Studio is the way that you can
set a breakpoint in your code even if it’s running on an Xbox. When you run the program in
debugging mode, the next time the program reaches the breakpoint, it stops.

	 11.	 False. The int type holds a value that doesn’t have a fractional part. This means that
when you move a floating-point value (which does have a fractional part) into an integer
variable, the fractional part of the data is lost. This is called narrowing. The C# compiler

344	 Answers to the Chapter Review Questions

won’t let a programmer unintentionally lose or damage data in this way, so it refuses to
allow such a transfer unless the programmer explicitly takes responsibility for the effect of
the action by adding a cast.

	 12.	 True. The double precision type can hold all integer values, so data is not lost when the
move takes place. This is called widening.

	 13.	 True. It tells the compiler that although the actual data is in one type, for the purposes of the
program, it needs to be converted into an alternative type. This is the programmer’s way of
“taking responsibility” for the consequences of the action. When you move a floating-point
value into an integer location, you’re destroying data because the fractional part of the
floating-point value is lost. The cast is the way that you tell the compiler that you know what
you’re doing, and the compiler then allows the conversion to take place.

	 14.	 False. Although casting does perform conversion between similar types (programmers
can cast between integers, bytes, doubles, floating points, and the like), it cannot convert
any type to any other type automatically. Only conversions that have been predefined
are allowed.

Chapter 11
	 1.	 False. You can use any image that you like in your games (subject to copyright laws, of

course). The images must be in file formats that can be imported into the games, but you
can create the images yourself.

	 2.	 False. The solution contains the project. A solution brings together a number of projects
that are used to create a single application. When you create a new project, XNA Game
Studio creates a solution that contains it.

	 3.	 False. The Program.cs file is created for you when the project is created by XNA
Game Studio.

	 4.	 True. The Program.cs source code starts the game running in that it creates an instance of
your game class, but it doesn’t contain the game program itself.

	 5.	 True. The compiler is told to search namespaces by using directives at the start of the
program source file. When the compiler comes across the name of a resource it hasn’t seen
before, it looks in the namespaces to find the resource.

	 6.	 False. But this is really unfair. The method that starts the program is called Main (with an
uppercase “M”). In C# this is important because the case of letters in identifiers is significant.

	 7.	 False. The term static means that the static item is always there. It doesn’t need to be
created by your programs because static items are created automatically when the program
is loaded.

	 8.	 True. When program execution exits the block of code after the using statement, it means
that the item created at the top of the using statement can now be removed and that any
resources it uses can be reclaimed.

	 9.	 False. When a floating-point value is converted into an integer, the fractional part is simply
removed.

	 Answers to the Chapter Review Questions	 345

Chapter 12
	 1.	 False. Cows are held in fields, but structures are not. A field is a member of a structure that

holds data.

	 2.	 True. Whenever you have a number of related items, you should think about creating a
structure to hold them.

	 3.	 False. Structures are managed by value. You can tell this because you don’t have to use
the new key word to make a new structure variable. By default, the value in the structure is
copied when passed into a method call.

	 4.	 False. Public is used to explicitly make members visible to code outside a class or structure.
To restrict access to a member you would use the private modifier.

	 5.	 False. An absolute value is always positive or zero.

	 6.	 True. When a value type is passed as a parameter a copy is made of the contents of
the variable. This is the value passed into the method. When a reference is passed as a
parameter a copy of the reference is passed into the method. If you want the method to
change the content of a value or change a reference to refer to a different object you must
use the ref modifier to ask the compiler to generate a reference.

	 7.	 False. Oh, yes you can. XNA Game Studio lets you add breakpoints or pause a running
program even when it’s running in an Xbox or Zune.

	 8.	 True. If you make a method static, it means that it’s always around and not part of any object.
This means that you can use Abs without needing to make an instance of the Math class.

	 9.	 False. Nothing in C# forces you to keep the name of a method once you’ve written some
code. It was once difficult to change the name of a method because you needed to make
sure that you changed all the places in which it was used. Fortunately, XNA Game Studio
makes it much easier to do this, so you should consider doing this (it is called refactoring)
whenever you notice that the things a method does no longer fit its name.

Chapter 13
	 1.	 False. A programmer can add a return key word anywhere in a method. In fact, a method can

have as many return statements as you like, although the Great Programmer won’t approve
of this because it can make programs harder to understand if you have too many ways that a
method can return.

	 2.	 False. The type of the variables is not usually changed, although the name used to identify a
variable might be changed if you decide on a better name to use.

	 3.	 False. The Refactor menu in Microsoft Visual Studio can be used to change the name of a
method in your program. The only proviso is that you can’t change the name of methods
that are part of the system; for example, it’s not possible to change the name of the Update
method, as this is based on a method that’s part of Microsoft XNA.

	 4.	 False. A code region is a way of grouping together a number of items in your program
source file. A single source code file can hold a large number of regions.

346	 Answers to the Chapter Review Questions

	 5.	 False. A code region just lumps together parts of your program. Certain Intellisense
information is retrieved from specially formatted comments that programmers can place
inside the code as they write it.

	 6.	 False. A state machine can have as many states as the application requires. The Great
Programmer uses an enumerated (enum) type to keep track of the states that a state
machine can occupy. The state machine that we created for the game had two states: when
the game was being played and when the title screen was being displayed. It would be easy
to add a third state in which the high-score table is displayed.

Chapter 14
	 1.	 False. If an object has high cohesion, it means that it can go about its business with no need

to use resources from other objects. This is good because it means that changes to the rest
of the system do not affect the object.

	 2.	 True. The amount of coupling in a system reflects on how much objects rely on each other.
Coupling is a form of dependency in that if A is coupled to B, you have to test A if you make
any changes to B. Large amounts of coupling make it difficult to modify or repair systems
because of the number of internal components that need to be checked if one is changed.

	 3.	 False. Public data can be read and written by code running outside the object, making it
possible for unmanaged changes to be made to the data. The data in an object should be
made private. The object should contain methods that provide managed access to the data
so that objects can be created which always hold data that is in a valid state.

	 4.	 False. Structures are managed by value. When you work with a structure variable, you are
actually using the value it contains. This means that during assignment, the data from the
structure is copied from one variable to another.

	 5.	 True. When using the data pointed to by a reference, the program must follow the reference
to get to the data itself. This introduces an extra stage into the use of a variable which adds a
delay. However, modern processors run so quickly that this is virtually never a problem within
a program. Furthermore, the delay can be compensated for by time saved moving data
around memory.

	 6.	 True. A class hierarchy is a means of code reuse. A child class is created based on an existing
one (the parent). This means that the new class contains its own data elements as well as
those of the parent. The data from the parent and child portions of the variable may not
necessarily be held in a single place in memory and so cannot be regarded as a single
value. When you use references, the run-time system can find the requested data when a
reference is followed.

	 7.	 False. A class can be extended by many other classes as required. There is no upper limit on
the number of child classes that a parent can have.

	 8.	 True. Overriding is the process by which a child class replaces an existing method in the
parent class with one that meets the needs of the child. However, it is possible to override a
method in a parent only if the parent method has been marked as virtual.

	 Answers to the Chapter Review Questions	 347

	 9.	 False. The key word base allows the overriding method to use the method in the parent
that it has replaced. This is very useful if you want to add to existing behaviors in the parent
method.

	 10.	 True. The protected key word is provided so that child classes can be given access to data
members in the parent.

	 11.	 False. The key word this means “a reference to the currently executing instance.” If an
object needs to supply a reference to itself for any code outside the class to use, it uses the
key word this. We used it so that the BreadAndCheeseGame class could provide a reference
to the currently executing game. The cheese needs this so that it can get hold of the bread
in that game, and check for collisions.

	 12.	 False. The child class does not have to override any of the methods in the parent. It could
just add new methods and leave all the old ones untouched.

	 13.	 False. A single object can have many references to it.

	 14.	 True. The garbage collector continuously searches for such objects and reclaims the
memory they occupy.

Chapter 15
	 1.	 False. Although an abstract class can be used as a template for child classes and states

which methods the child classes must contain, there is nothing to keep a programmer from
putting full methods and member data inside an abstract class. In fact, this can be a very
sensible design if a method or data must be used in all the child classes.

	 2.	 False. If there are data members of the abstract class that always need to be set up, there is
no reason why the class shouldn’t contain a constructor method to set these properties.

	 3.	 False. You can’t make any instances of an abstract class. This is because it is intended to
serve as a template for child classes.

	 4.	 False. Only the methods can be abstract. An abstract method is a way of signaling that there
is a need for a particular behavior; it has nothing to do with member data.

	 5.	 False. In C#, a class is allowed to have only one parent class. If you are used to other
languages like C++, this will be surprising because C++ lets a class have multiple parents.
However, the designers of C# left this ability out, perhaps because it can make classes too
confusing.

	 6.	 True. That is the best way to use abstract classes. A user of an instance of any child in
the class can be sure that it provides implementations of all the abstract methods in the
abstract class at the base of the hierarchy.

	 7.	 True. This is a good way to allow a program to manage collections of objects that must
perform a particular function but do it in their own way.

	 8.	 True. The constructor provides the way in which a programmer can get control at the
moment an instance of a class is created. If the constructor accepts parameters, these can
be used to set up data inside the class.

348	 Answers to the Chapter Review Questions

	 9.	 True. If the programmer has provided a constructor for a class, the constructor must be
called to create an instance. This is how a programmer can ensure that all instances of a
class start out with valid data.

	 10.	 False. The child must make sure that the constructor for the parent (if there is one) is
executed before the code in the child constructor. The base key word is how the child
makes use of the parent constructor.

	 11.	 True. The Random class provides a “pseudorandom” sequence of values based on a starting
value called the seed. If this starting value is based on something effectively random (such
as the number of milliseconds since midnight), then from a programmer’s point of view,
the sequence can be sufficiently random. Note, however, that using a particular seed value
allows the same sequence of random numbers to be generated repeatedly.

	 12.	 False. The great thing about the List is that you do not have to set the length of the list.
It automatically expands to hold all the values that are added to it. In this respect, it is much
more useful than an array.

	 13.	 True. That is exactly what foreach was created for. It removes the need to worry about
managing a counter value to keep track of the particular length of the collection
being used.

	 14.	 False. It just means making a piece of program that is intended to mimic the effect of
intelligence in a particular situation.

	 15.	 True. If a class implements an interface, it must contain public implementations of all the
methods in the interface.

	 16.	 True. This means that objects can be regarded in terms of what they can do rather
than what they actually are. In this respect, interfaces are a very powerful way to let
programmers create software components that behave according to a set of requirements
given in the interface.

Chapter 16
	 1.	 False. A network can be made using radio, fiberoptic, or wires, but probably not wet string.

The actual medium of the connection is not really the most important thing these days,
though; it is the protocol that runs on top that makes it useful.

	 2.	 True. If the stations are actually wired together, all the machines on that particular wire
(or radio channel) must have a unique address so that messages can be sent to them.
If a particular physical network is connected via a route to another network (using an
Internet Protocol, or IP) then they must also have an address that is unique in the world.
The IP address of your computer must be the only one of its kind so that only you get the
messages sent to you.

	 3.	 False. This depends on the precise type of network, but very often, the same physical media
is used to carry traffic between lots of machines. This means that anyone with the right
equipment could eavesdrop on conversations between any machine. The way this problem
is solved today is to have software that scrambles (or encrypts) important information
before it is sent so that eavesdroppers don’t hear anything of use to them.

	 Answers to the Chapter Review Questions	 349

	 4.	 False. The profile provides the gamertag information that allows you to be identified on the
network. If you do not have a profile, you cannot perform network gaming. Profiles can be
held locally on your Windows PC, however, and they are easy to create.

	 5.	 False. The idea of a router is to send information from one network to another. This means
that it must be connected to at least a couple of networks. Stations on the network send their
messages to the router if they determine that the destination machine is not on their physical
network, and the message must be routed to a distant network.

	 6.	 True. Well, perhaps not the complete Internet, but you can create a network using the
Transport Control Protocol/Internet Protocol (TCP/IP) standard, which is used by the
Internet. You could use such a network for System Link games. If you connected your little
network to a router, it could then become part of the worldwide Internet.

	 7.	 False. If you wish, you can create highly advanced network game play with servers, lobbies,
and vast numbers of players. However, to deploy and test such games, you need to have
two Premium-level memberships in the XNA Creators Club. On the other hand, System Link
network game play can be achieved between Windows PCs with no need to join the XNA
Creators Club. You can also create network game play between Windows PCs and Xbox
consoles.

	 8.	 False. The Zune has built-in WiFi hardware, which can be used for System Link network
games using XNA. However, it is not possible to play network games between a Zune and a
PC or an Xbox 360. Zune networking is strictly a Zune-to-Zune affair.

	 9.	 True. This class is used to set up and manage the connection between machines taking part
in a network game. It also provides lobby support so that systems can propose games that
others can join.

	 10.	 False. When a game is proposed, the proposer can specify how many players the game is
for. This takes the form of an upper limit.

	 11.	 False. A state machine is not really used to store scores. Instead, it is used to manage the
state of the game itself, for example whether it is waiting for more players, it is being
played, or it is at the title screen.

	 12.	 True. The system is notified when players join the game.

	 13.	 True—mostly. Rather than having a program waiting for something to happen, an event lets
a program say, “When this happens, call this method.”

	 14.	 True—exactly. It is like writing your phone number down on a piece of paper, giving it to a
garage mechanic, and saying, “Call me when my car is ready to be picked up.” A delegate is
a lump of data that identifies a particular method. I give this to an event generator (perhaps
the thing that fires when someone joins a game I’m proposing) so that the event can be
bound to the method that needs to act on it.

	 15.	 False. The PacketWriter class can accept many different C# types and assemble them for
transfer to another system. The PacketReader class can then extract these items.

	 16.	 False. This would result in a lot of unwanted network traffic. In a game that uses a server, the
clients would communicate only with the server, not with each other.

		 351

Glossary

abstract  Something that is abstract does not
have a “proper” existence as such. When
writing programs, we use the word to mean
“an idealized description of something.” In
the case of component design, an abstract
class contains descriptions of things that
need to be present, but it does not say
how they are to be realized. In C# terms, a
class is abstract if it is marked as such, or if
it contains one or more methods that are
marked as abstract.

You can’t make an instance of an abstract
class, but you can use it as the basis
of, or the template for, a concrete one.
For example, you might decide that you
need many different kinds of sprite in the
BreadAndCheese game: bat sprite, ball
sprite, target sprite, and so on. We don’t
know how each particular sprite will work
inside, but we do know those behaviors
that it must have to make it into a sprite.

We can therefore create an abstract Sprite
class that serves as the basis of all the
concrete ones. Each “real” sprite class is
created by extending the parent, abstract
one. This means that it is a member of the
sprite family (that is, it can be treated as a
sprite) but it works in its own way.

Algorithm  An algorithm is a description of
steps to solve a problem. You can think of
it as a recipe if you like. It gives a sequence
of steps to be followed and decisions to
be taken. A good “getting wet avoidance”
algorithm would be “If it is raining, take an
umbrella.”

Analog  An analog value is one which can
never be held exactly. Some data items,
for example the number of attacking
spaceships in a space shooter, or whether
or not a button has been pressed, can be

represented precisely in a program. Other
values, for example the physical position of a
thumbstick on the gamepad, cannot be held
exactly since there are in theory an infinite
number of positions available. Programs
often need to manipulate analog values,
and they do this by storing them within a
particular range and to a particular precision.
The analog thumbsticks on a gamepad are
represented by a floating point number
in an XNA program which has a particular
number of decimal places. The float and
decimal types in C# are used to represent
analog values.

Arithmetic  The adjective arithmetic is applied
to operators that perform some form of
calculation on their operands and generate a
numeric result. The * (multiply) operator can
be used as an arithmetic operator to multiply
values together.

Array  An array holds a large number of items
in a single variable. A one-dimensional array
holds a number of values in a single row. You
use a subscript to indicate which box in the
row you want to use. Consider the following,
which creates an array to hold 10 integer
high scores and sets all the elements to 0:

int[] scores = new int[10];

for (int i = 0; i < 10; i = i + 1)

{

 scores[i] = 0;

}

The int[] scores part of the code tells
the compiler that you want to create an
array variable. You can think of this as a
reference that can be made to refer to an
array of integers. The array itself is created
by new int[10]. When the program runs, a
10-element array is created; if the value 10
is replaced by a different number, an array

352	 Glossary

of that size is made. Each item in the array
is called an element. In the program, you
identify which element you mean by putting
its number in square brackets [] after the
array name. This part is called the subscript.
The size of an array can be set using an
expression as well as a constant, allowing
the program to create exactly the right-sized
array for a given task.

Arrays can have more than one dimension;
a two-dimensional array equates to a grid,
with two subscripts used to specify the
row and column of the desired element.
A three-dimensional array equates to a pile
of grids and requires three subscripts. The
C# language can handle arrays with a very
large number of dimensions, but it is unlikely
that you’ll ever need to go beyond three.

Aspect ratio  This is the ratio of height to
width of a display screen. The first TV sets
had an aspect ratio of 3:2 (that is, their
screens were was 3 units wide and 2 units
high). Wide-screen displays have a ratio
of 16:9 (that is, the screen is 16 units wide
and 9 units high). Games must be written
to accommodate the possibility that
they will be used with different display
formats.

Assembly  An assembly is used by .NET
framework to bring together program
code and resources that the program
might need. It is created when a project
is built. There are two forms of assembly:
programs that can be executed (which have
the file extension .exe) and libraries (which
have the file extension .dll). Only program
assemblies have a Main method, which
starts the program running.

Asset  An asset is any item of content that
is used as part of a game. This includes
sounds and images that the game requires,
as well as 3-D models and any other game
information. The XNA Framework provides
a Content Manager, which manages the
assets in a game project.

Assignment  There are two parts to an
assignment: the thing you want to
assign and the place you want to put it.
For example, consider the following:

int first, second, third ;

first = 1 ;

second = 2 ;

third = second + first ;

The program declares three variables:
first, second, and third, each of which
is of integer type. The last three statements
are the ones that actually do some
work. These are assignment statements.
An assignment gives a value to a specified
variable that must be of a compatible type.
The value that is assigned is an expression.
The equals sign in the middle is there
mainly to confuse you; it does not mean
“equals” in the numeric sense. I like to
think of it as a “gozzinta.” A gozzinta takes
the result on the right-hand side of the
assignment and drops it into the box on
the left.

Bit  A bit is a single “binary digit.” It is the
smallest unit of data that a computer can
hold and has two possible states: on (1) or
off (0). Bits are combined so that values
larger than 1 can be represented. Each bit
that you append doubles the number of
possible values.

Block  A block is a number of code statements
that are enclosed in curly brackets. These
are the characters { and } and are also
known as braces. Any block can contain any
number of local variables; that is, variables
that are local to that block. Here’s an
example:

{

 int localToThisBlock;

 // create a variable local to

 the block

 localToThisBlock = 99;

 // OK because the variable

 exists here

}

localToThisBlock = 100;

// will cause compilation error

	 Glossary	 353

Blocks are used as the bodies of methods
and in any situation where you want to
lump a number of statements together so
that they can be treated as a single entity,
such as in an if condition or loop.

Boolean  Boolean arithmetic deals only with
values that can be true or false. A variable
of type bool can hold a value that is true
or false. Sometimes that is all you need.
An example of a bool variable could be
one that holds the state of a network
connection, like this:

bool networkOK;

This variable can be set to indicate the state
of the network. The results of conditions
are Boolean values, and variables of type
bool can be used directly in conditions:

if (networkOK) sendPlayerMove();

The preceding statement would call
sendPlayerMove if networkOK was set
to true.

Bounds (of an array)  The bounds of an array
is the range of possible subscripts that can
be used to access elements in the array.
This ranges from 0 (the element at the
base of the array) to (size-1), which is the
element at the end of the array. If your
program “goes outside the bounds of the
array”—that is, tries to access an element
with a subscript that is not in the permitted
range—then it fails with an exception.

Brace  The curly bracket characters ({ and })
are sometimes called braces. This is perhaps a
reference to the fact that they come in pairs;
that is, every open bracket must be matched
by a closed bracket. Braces are used to
enclose statements and create blocks.

break  The break keyword is used in looping
constructions and switch statements to
allow program execution to exit from the
construct:

for (int i = 0; i < 10; i++)

{

 if (i == 5) break;

}

// get here when i reaches 5

The loop would terminate when the value
of i reaches 5. The break causes execution
to transfer to the statement immediately
following the loop block. The break
keyword is used in the switch construct to
end the execution of the switch statement.

Breakpoint  Breakpoints are used when
debugging programs. They are a way
of finding out what a program is doing.
Within XNA Game Studio, you can mark
program statements with breakpoints.
In debugging mode, a program runs until
it reaches (or hits) the breakpoint, at which
point it pauses and returns control to you
so that you can investigate the state of the
program. You can then resume execution
or step through statements. Note that you
can set breakpoints while your program is
running, even if it is running inside an Xbox,
as long as you started it using debugging
mode in XNA Game Studio.

Byte  A byte is the smallest unit of addressable
storage in a computer. It is made up of 8
bits, meaning that it can represent any one
of 256 possible values, from 0 to 255.

C#  “The Programming Language of
Champions,” I reckon.

Call  When you want to use a method, you call
it. When a method is called, the sequence
of execution switches to that method,
starting at the first statement in its body.
When the end of the method, or a return
statement, is reached, the sequence of
execution returns to the caller.

Cast  A cast gives an additional instruction
to the compiler to force it to convert a
value in a particular way. You cast a value
by putting the required type in brackets
before the value. For example:

double d = 1.7;

int i = (int) d ;

Because the double type has greater
range and precision than an integer, the
programmer must tell the compiler explicitly
that the assignment is sensible. In the
previous code, the message to the compiler

354	 Glossary

is “I don’t care that this assignment could
cause information to be lost. I, as the writer
of the program, take the responsibility
of making sure that the program works
correctly.” Casting can cause data to be lost.
In the code above the fractional part of d
would be truncated when it is transferred
leaving the value 1 in i.

char  The char type is used to hold a single
character in a program. The character can
be a letter, a digit, a punctuation character,
or a nonprintable character, such as the
newline character. Here’s an example:

char ch = 'A';

Some characters have special “control”
behaviors and do not map to printable
characters on the screen. They are expressed
using a sequence of characters that starts
with a special escape character. Escape in
this context means “Escape from the normal
humdrum conventions of just meaning what
you are, and let’s do something special.” The
escape character in C# is the backslash (\).
Control characters and their possible escape
sequences are shown in the following table.

Character Escape Sequence
\’ Single quote
\” Double quote
\\ Backslash
\0 Null
\a Alert
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab

The effect of these control characters
depends on the device you send them
to. Some systems beep when you send
the alert character to them. Some clear
the screen when you send the form feed
character. You can use them as follows:

char beep = '\a' ;

Note that the a must be lowercase. Within
Microsoft XNA, you can use the New Line
escape sequence ‘\n’ in a string to produce
a control character that will cause the
DrawString method to take a new line.

Class  A class is a collection of behaviors
(methods) and data (fields). Class instances
are managed by reference. Declaring a
variable of the type of the class creates
a reference to an instance of that class.
To make an instance of a class, you have
to use the new keyword.

Cohesion  Cohesion is a software
engineering term that refers to how
“together” an object is. Objects with high
cohesion are self-contained and self-reliant.
They contain all the data and behaviors
they need to do their job and do not
require the involvement of other objects.
High cohesion is generally a good thing
because it means that the objects can be
interchanged with others more easily and
alterations to the way they work internally
do not affect other objects.

Comment  A comment is an item that you put
into your program for the humans to read
and the compiler to ignore. Comments can
be given in two forms, depending on how
much you want to say:

// This is a simple comment that

 just runs to the end of

 this line

/* This is a comment in which I'm

 going to try to express the

 creative forces that drove

 me to write this program,

 which was forged in the

 smithy of my soul and for

 which all should be

 grateful.

*/

The first comment begins with the
characters // and finishes at the end of the
line. The second kind of comment begins
with the /* characters and continues until

	 Glossary	 355

the */ characters appear. Comments are a
good thing; you can use them to provide
useful information to someone trying to
make sense of your program (or, indeed,
even to yourself).

Compiler  The compiler is the part of XNA
Game Studio that converts the C# program
that you write into instructions to be
executed on the target device. It ensures
that the statements that you write have
the correct C# syntax and that your code
is broadly sensible. The compiler produces
compilation errors if it finds problems
with your source code that prevent it from
being able to produce an output, such as a
missing semicolon or mismatched brackets
or braces. The compiler also produces
warnings if it detects something in the
program that indicates you might have
made a mistake—for example, if a variable
is created but never used, or that some part
of the code would never be reached when
the program runs.

Component  A component is a piece of
software that has a particular set of
behaviors that are exposed in a particular
way. It can be exchanged with another
component that is configured the
same way. A Microsoft XNA Game class can
be regarded as a component in that it has
Initialize, Draw, and Update behaviors
that can be used by other classes. The
XNA Framework uses these behaviors
when it runs your game. In this way, the
XNA Framework can treat a game as a
component that it is using. Components
often expose their behaviors by means of
an interface.

Conditional compilation  This allows
a programmer to “switch off” statements
in the program so that the statements are
compiled only if a given symbol is defined:

#if debug

// debug code goes here

#endif

The debug symbol is defined at the top of
the program:

#define debug

If the debug symbol is not defined, the
compiled program does not contain any of
the statements controlled by it.

Constructor  A constructor is a method in
a class or structure that gets control when
a new instance of the class or structure is
being created. Constructor methods often
accept parameters so that an instance can
be given values to set it up. The Color
structure has a number of constructor
methods that accept different numbers of
parameters, depending on how the color
is to be created. You used one constructor
when you created the colors for the mood
light, like so:

Color background = new Color

(redIntensity, greenIntensity,

blueIntensity);

When you create your own classes or
structures, you can give them constructors
so that they can be initialized when they
are created:

class Player

{

 public string Name;

 public int Score;

 public Player (string inName,

 int inScore)

 {

 Name = inName;

 Score = inScore;

 }

}

Player p = new Player("Rob", 100);

Once you declare a constructor for the
Player class, the only way that an instance
of the Player class can be created is
by calling this constructor, which must
initialize the Name and Score fields,
typically based on values passed to the
constructor.

356	 Glossary

A constructor method has the same name as
the class or structure of which it is part. Once
you have added one or more constructor
methods, programmers must call one of the
constructors to create an instance.

Content Manager  The Content Manager is the
component of Microsoft XNA that manages
all the assets used by a particular game. It
includes the tools that prepare the content
when a game project is being built and is
also the component that makes the content
available when the game is running. The
Content Manager is component-based
so that it can be extended to handle new
types of assets as required.

continue  The continue keyword is used to
cause the execution of a loop to return
to the “top” of the loop and perform the
update behavior:

for (int i = 0; i < 10; i++)

{

 if (i == 5) continue;

 // will never get here with

 i holding 5

}

In this example, the code after the
conditional statement is not executed when
i has the value 5 because the continue
will have been performed, causing the
execution to return to the top of the loop.
Note that this behavior is not the same as
the break keyword in that it does not cause
the loop to be abandoned completely.

Control characters  Character variables
normally represent letters, digits, or
symbols that can be read from a keyboard
or displayed on a screen. A control
character is not visible, but it has some
form of control effect; for example, it
takes a new line or returns the cursor to
the start of a new line. A control character
is expressed in a program as an escape
sequence. A list of the control characters
and escape sequences that can be
represented in a C# program is given in the
entry for char in this glossary.

Control expression  A control expression is
used in a switch to select the case to be
performed.

Coupling  Two objects are said to be coupled if
one of them relies on the other to perform
its work. This reliance means that there is a
dependency between the two objects such
that if one of them (the one being relied
on) changes the way it works, it is necessary
to make sure that the other class is not
affected. As an example, you could consider
a menu screen that displays settings for the
player of a game. The menu screen object
must read data from the game and display
it. In this respect it is “coupled” to the game.
If the way the game stores its data changes,
the menu screen might have to change
as well. However, this dependency is only
one-way. Changes to the menu screen do
not affect the behavior of the game. Large
amounts of coupling in a system make it
hard to maintain and update because time
must be spent checking dependencies and
making sure that a change in one object
does not break others.

Creators Club  See XNA Creators Club.

Debug  Faults in programs are called bugs,
which perhaps is a reference to an insect
that was found trapped in a piece of
computer hardware by Grace Hopper, one
of the world’s first programmers. The body
of the insect was physically stopping
the program from working, and she
“debugged” the program by removing it.
A bug is caused by a misunderstanding of
the problem, a limitation in the algorithm
that is intended to solve the problem, or
a mistranslation when the algorithm is
converted into program code. Programs
are debugged by a mixture of skill,
determination, and luck. You often have
to add extra statements to find out what is
going on in the program when it fails. You
can also use breakpoints to stop a running
program and investigate the state of the
variables in it.

	 Glossary	 357

Declaration  A declaration is a program
statement that tells the compiler about
a new variable or method in your program.
The new item must be given an identifier
and a type. If a method is being declared,
the source code must also give the method
signature (the type of the method and the
identifiers and types of any parameters), as
well as the method body:

int i; // declare an integer

 with the identifier i

int doAdd(int first, int second)

 // declare a method

{

 return first + second;

}

Variables can be local to a block or
members of a class or structure. Local
variables must be declared in a block
before they can be used. Methods are
members of a particular class or structure
and are declared within it.

delegate  A delegate is a type-safe reference
to a method. A delegate is created for a
particular method signature (for example,
“this method accepts two integers and
returns a float”). It can then refer to a
method that matches that signature. Note
that the delegate instance holds two
items: a reference to the instance of the
class which contains the method and a
reference to the method itself. The fact that
a delegate is an object means that it can be
passed around like any other.

Delegates are used to inform event
generators (things like network sessions or
timers) of the method that is to be called
when the event they generate takes place.

Directive  A directive is a command in the
source of a program that tells the compiler
to do something. The #define directive
tells the compiler that a symbol is being
defined. The using directive tells the
compiler to look in a particular namespace
for objects.

Directory  A directory is a place in a file store
where you can store a file. It is sometimes
called a folder. Directories can contain
directories so that file storage can be
arranged in a hierarchy. The path to a file
identifies all the directories that must be
traversed to get to that file. Each directory
name is separated from the next by
the backslash character, as in c:\code\
program\progfile.cs.

do – while  The do – while construction allows
a program to repeat a block of code until a
controlling condition at the end becomes
false. Note that the test is performed
after the statement or block; that is, even
if the test is bound to fail, the statement is
performed at least once, as follows:

do

 statement or block

while (condition) ;

This form of loop can be used as an
alternative to the for loop constructions.
It is very useful in programs where you
want to request something, check that it
is okay, and then repeat the process if it is
not. There is an alternative form where the
condition is tested before the statement:

while (condition)

 statement or block

In this looping construction, the statement
is not performed at all if the condition is
false at the beginning of the while loop.

You don’t have to use these constructions
if you have no need to; it’s simply provided
for situations where a loop is required but
there is no need for a counter as would be
used in a for loop.

Element (of an array)  An element is an
individual item in an array. Each element is
identified by its subscript value.

Encapsulation  This is the creation of objects
that encapsulate a set of behaviors and
data for a particular purpose. The object
performs all the functions required for that

358	 Glossary

purpose and can be regarded as a “black
box,” with no need for outsiders to actually
know how it works. An example would be
an AlienSprite object that would perform
all its drawing, updating, and initialization
behavior without needing the involvement
of any other classes.

Enumerated type  An enumerated type is one
for which you specify the set of values that
it can have. Here is an example:

enum SeaState {

 EmptySea,

 Attacked,

 Battleship,

 Cruiser,

 Submarine

 } ;

SeaState openSea ;

openSea = SeaState.EmptySea;

The type SeaState could be used to hold
the state of the sea in a battleship game. It
has five possible values, which are created
as shown. The variable openSea is of
type SeaState and is set to EmptySea in
the previous code.

Exception  An exception is a way that a
C# program can signal that something has
gone wrong when it runs. The exception
itself is an object that is created when the
exception is “thrown” and can be “caught”
by an exception handler. The C# language
provides the try – catch construction,
which can be used to deal with exceptions
that might be thrown. Your program gets
exceptions if it calls things that create a bad
result. For example, if a running program
tries to get the Content Manager to load a
nonexistent resource, the Content Manager
signals its displeasure by throwing an
exception. If your program doesn’t catch
the exception, it fails at that point.

Expression  An expression is a collection
of operands and operators that can
be evaluated to produce a result. You
have seen numeric expressions, logical

expressions, and text expressions, as shown
in this code example:

int i = 0;

i = i + 1;

// arithmetic expression adding

 1 to i

bool iIsPositive;

iIsPositive = i > 0;

// logical expression

string IValue;

IValue = "Value of i is : " +

i.ToString(); // text expression

Field  A field is a member of a class or
structure that stores data within an
instance:

class Player

{

 public string Name;

 public int Score;

}

The Player class contains two fields: the
Name of the player, which is a string, and
the Score the player has reached, which is
an integer. A program uses a field by giving
the identifier of the instance, followed by a
period (.), followed by the name of the field:

Player p = new Player();

p.Name = "rob";

p.Score = 100;

The Name and Score fields can be accessed
in this way because they have been made
public. Fields can also be made private,
in which case they are not visible to code
outside the class or structure.

File extension  Files on a computer system
have filenames that are used to locate
them. The file extension is information
on the end of the filename made up of
a number of characters after a period
(.) character. The Microsoft Windows
operating system uses the file extension
to select the application to be used
to open a particular file. “Program.cs”
identifies a C# program file, for example,
while “Background.png” would identify a
Portable Network Graphics (PNG) file.

	 Glossary	 359

Folder  See Directory.

Framework  A framework is a set of software
resources that programmers can fit
together and extend to create solutions to
problems. The Microsoft .NET Framework
provides a way that programs can run
on a computer platform. It also provides
a comprehensive set of resources that
can be used to create general-purpose
applications. The XNA Framework provides
resources for the creation of games.

Fully qualified name  A fully qualified name is
one that provides a complete path to the
resource that is being identified. It identifies
all the namespaces in the path to the
resource with that name:

Microsoft.Xna.Framework.Graphics.

Color background;

You can avoid having to use the fully
qualified name of a resource by adding a
using directive at the top of your program
source. A set of using directives is inserted
automatically into the Game1.cs file when
XNA Game Studio creates a new game
project.

Garbage collector  The garbage collector
is a process that runs as part of a .NET
application and searches for and removes
resources that are no longer used.

Generic method  A C# method is supplied with
parameters for the method to act on. In a
generic method, the parameters are not
restricted to one particular type. Generic
methods are used when the programmer
wants to create a method to perform a
particular action but wants the action to be
performed on variables of different types.
In Microsoft XNA, the Content Manager
provides a generic method called Load,
which is supplied with the type of the item
to be loaded.

Texture2D cheeseTexture =

 Content.Load<Texture2D>

 ("Images/Cheese");

SoundEffect cymbolTing =

 Content.Load<SoundEffect>

 ("cymbolTing");

The Load method can then perform the
appropriate load action and deliver a result
of the required type.

The List collection class also uses this
mechanism so that it can manage a list of
whatever type you give it.

public List<BaseSprite>

 GameSprites =

 new List<BaseSprite>();

This creates a List that can hold references
to BaseSprite instances.

Header (of a method)  A C# method can
be broken into two parts: the block of
code, which is the body of the method
and contains the statements that the
method performs, and the header,
which indicates the type returned by the
method, the identifier (which is the name
of the method), and the parameters that
the method accepts. Look at this code
example:

int doAdd(int first, int second)

// declare a method

{

 return first + second;

}

The header of the method doAdd is int
doAdd(int first, int second).

IDE  See Integrated Development
Environment (IDE).

Identifier  An identifier is a name chosen by
the programmer to identify something
in a program. This includes the names
of variables and the names of classes,
structures, and methods. The C# compiler
has rules concerning the construction of
identifiers; they can contain letters (a–z or
A–Z), digits (0–9), and the underscore
(_) character. An identifier must not start
with a digit. The case of the letters in an
identifier is significant in that the identifiers

360	 Glossary

count and Count could both be used in
the same program to refer to different
variables:

int count;

double Count;

// legal C# - but the Great

 Programmer wouldn't approve

C# has a convention that local variables,
parameters, and private members of a class
or structure should have identifiers that start
with a lowercase letter. Identifiers for classes
and structures and public members of
classes and structures should have identifiers
that start with an uppercase letter.

Instance  Instances of objects are created as a
program runs. If the object is manipulated
by value, there is no need to use new to
create an instance of it, although you can
use new if you wish to call the constructor
for that type.

Integer  An integer is a numerical value that
has no fractional part. The C# language
provides a number of integer types;
the programmer should choose the type
that provides the most appropriate range
of values for the program being written.

Integrated Development
Environment (IDE)  An Integrated
Development Environment (IDE) combines
an editor for creating the source code, a
compiler, and a debugger in a single tool
that can be used for development. XNA
Game Studio is based on the Microsoft
Visual Studio IDE.

Intellisense  Intellisense is the name given to the
feature of XNA Game Studio that provides
context-sensitive help and suggestions to
you as you write your program source. The
system constantly monitors what you are
typing and suggests appropriate items on
the basis of what it sees.

Interface  An interface defines a set of actions.
The actions are defined in terms of a
number of method definitions. A class that

implements an interface must contain code
for each of the methods defined in the
interface. Look at this code:

interface ISinger

{

 void SingSong(int loudNess);

}

class OperaSinger : ISinger

{

 public void SingSong(int

loudNess)

 {

 }

 public void SingAria

 (int loudness, int vibrato)

 {

 }

}

class PoliceMan : ISinger

{

 public void SingSong

 (int loudNess)

 {

 }

 public void MakeArrest ()

 {

 }

}

ISinger singer = new PoliceMan();

The interface ISinger contains a single
method called SingSong, which is supplied
with a parameter to indicate how loudly
the song is to be sung. Both OperaSinger
and PoliceMan implement the interface,
meaning that either of them can be
asked to sing (although you might get
a better tune out of OperaSinger). This
means that you can regard PoliceMan
and OperaSinger in terms of their
singing ability, even though they are
completely different classes. A reference
to ISinger could be made to refer to
either an OperaSinger or a PoliceMan
interface and ask it to sing by calling the
SingSong method. Viewing classes in

	 Glossary	 361

terms of what they can do is a large part of
component-based development.

Keyword  A keyword is a word that is part of
the C# language. Keywords that you have
seen include for, if, new, class, struct,
switch, and case. Keywords have a
particular meaning, and you cannot create
an identifier that is the same as a keyword.
The XNA Game Studio editor displays
keywords in bright blue.

Literal  A literal is something in a program that
is literally just there. Examples of literals
include values in expressions and strings:

width = width + 2;

playerName = "rob";

In the preceding statements, the literals are
the value “rob” and the value 2.

Local  A variable that is local to a block is
declared in the block and is discarded
when the execution of the program leaves
that block. Local variables are used in the
situation where you want a variable for a
very short part of the program.

Localization  Localization is the name for the
process of making a program work in a
manner appropriate to a particular part of
the world. It includes aspects such as the
language used for the user interface, the
character set, and how dates, times, and
currency values are displayed.

Logical  Logical values can be either true or
false. C# provides the bool type to hold
logical values, it provides comparison
operators (for example, LESS THAN) that
compare values and produce logical results,
and it provides logical operators (for
example, OR) that allow logical values to be
combined.

Machine code  This is a generic term for
low-level instructions that can be processed
by a computer. This is in contrast with
source code, which contains the program
instructions that are written by the

programmer and that contain a high-level
description of a solution to a problem
in a form that can be read by humans.
The compiler takes the high-level source
code and converts this into a form that is
eventually made into machine code for
execution on a target device.

Member  A member of a class is declared
within that class. It can either do something
(if it is a method) or hold some data (if it is
a variable). Methods are sometimes called
behaviors. Data members are sometimes
called fields.

Method  A method is a block of code
preceded by a method header. The method
has a particular identifier and may return
a value. It may also accept one or more
parameters to work on. Methods are
used to break a large program up into a
number of smaller units, each of which
performs one part of the task. They are
also used to allow the same piece of
program to be used in lots of places in a
large development. If a method is public,
it can be called by code in other classes.
An object exposes its behaviors by using
a public method.

Microsoft XNA  The best game development
environment in the world, bar none.

Modifier  A modifier is used to modify a
declaration. It gives the compiler additional
information about the thing that is being
declared. Examples of modifiers are
public, private, and static.

Namespace  A namespace is a way of
categorizing related resources. Each
resource provided by a framework must
have a unique name. Putting all the names
at the same level would result in confusion;
for example, the name Device could have
many possible meanings—you might want
to have audio devices, graphics devices,
and so on. A namespace is a space where
particular names have meaning. You could
create a Graphics namespace and an

362	 Glossary

Audio namespace, each of which could
hold a Device resource:

namespace Graphics

{

 class Device

 {

 }

}

namespace Audio

{

 class Device

 {

 }

}

You would refer to the devices created
by this code as Graphics.Device
and Audio.Device. It is possible for a
namespace to contain a namespace,
allowing a hierarchy of names to be
created. A particular source file can contain
a number of different namespaces, and
a namespace can be spread over several
source files.

The XNA Framework is organized into a
series of namespaces, each of which holds
a set of related resources. You can access
them by using a particular namespace or by
giving a fully qualified name.

Narrowing  Narrowing can occur when a
variable of one type is assigned to another.
C# provides a number of different data
types that are used to hold values in
programs. Each type has a particular range
and precision. For example, the byte type
can hold values in the range 0 to 255,
whereas an integer can hold values in the
range –2, 147, 483, 648 to 2, 147, 483, 647.
Narrowing would occur if a program
assigned a value from an integer variable
into a byte. If the integer had a value
greater than 255, the narrowing would
result in the corruption of the value. The C#
compiler insists the programmer use a
cast to confirm that a narrowing operation
is valid.

null  The C# keyword null allows a program
to express the fact that a reference points
nowhere. Newly created reference variables
are set automatically to refer to null, and it
is possible to test for this condition in your
programs as follows:

Player p;

if (p == null)

{

 // will get here because p is

 initially null

}

You can actually assign the value null to a
reference to indicate that the reference is
not set to refer anywhere.

Object  An object is an instance of a given
data type. Many types are provided by C#
and Microsoft XNA, and you can create
your own types by declaring classes (class)
and structures (struct).

Operand  An operand is something that is
worked on in an expression by an operator.
Operands are either literals, variables, or
expressions.

Operator  An operator is used in an
expression and identifies an operation to
be performed on one or more operands.
Arithmetic operators that you have seen
include plus (+), minus (–) , multiply (*) and
divide (/). Relational operators include less
than (<), greater than (>), equals (==) and
not equals (!=). Logical operators that you
have seen include logical AND (&&) and
logical OR (   ||   ).

Overflow  Overflow occurs if the capacity of
a variable is exceeded when a program
is running. Variables are declared as
being of a particular type, and the
programmer must be careful to use the
type appropriately. For example, the byte
type is able to hold values that range
from 0 to 255. If a program put 255 into
a byte variable and then added 1 to this
variable, the result would cause the variable

	 Glossary	 363

to overflow because the byte type is not
able to represent that value. While some
forms of program error, such as exceeding
the array bounds, cause an exception to
be thrown, this is not always the case with
overflow.

Overload  A method is overloaded when
a method with the same name but a
different set of parameters is declared in
the same class. Methods are overloaded
when there is more than one way of
providing information for a particular
action; for example, a date can be set
by providing day, month, and year
information, or by a text string or by a
single integer that is the number of days
since January 1. Three different overloaded
methods could be provided to set the date,
each with the name SetDate. In that case,
the SetDate method could be said to have
been overloaded.

Override  Sometimes you may want to make
a more specialized version of an existing
class. This may entail providing updated
versions of methods in the class. You do
this by creating a child class that extends
the parent and then overriding the
methods that need to be changed. When
the method is called on instances of the
child class, the new method is called, not
the overridden one in the parent. You can
use the base keyword to get access to the
overridden method if necessary.

Parameter  A parameter is supplied by a call
to a method to give the method something
to work on. A parameter that is a value
type is passed into the method by value.
A parameter that is a reference type is
passed into the method by the value of the
reference. If you want to pass a value type
by reference, you must mark the parameter
as a reference type using the ref qualifier.
A special kind of reference that can only be
used to deliver a result (that is, you can’t
follow the reference to read the thing it

refers to) can be specified by using the
out qualifier.

Pixel  A pixel, or “picture element,” gives the
color of a single small area of the display
screen. The more pixels that a screen
contains, the higher the quality of the
picture, but more memory will be used,
and it will take longer to create an image.

Precision  C# provides several types that
can hold numbers with fractional parts,
and these types have different precisions.
The precision of a type determines how
accurately that type can represent a
particular value. Because computer storage
is finite, the precision to which numbers
are stored is limited. The float type can
represent values to a precision of 7 digits,
whereas the double type provides 15 to 16
digits of precision.

Private  A private member of a class is visible
to code only in methods inside that class.
It is conventional to make data members
of a class private so that they cannot be
changed by code outside the class. The
programmer then can provide methods
or C# properties to manage the values
that can be assigned to the private
members. The only reason for not making
a data member private is to remove the
performance hit of using a method to
access the data.

Program  A program is a description of a
solution to a problem. The program sets
out the steps to be taken and decisions
to be made and that ultimately are to
be performed by some sort of computer
hardware.

Programming language  A programming
language is a special form of language that
has a simple and unambiguous syntax and
grammar. It is designed so that programs
written in the language can be converted
easily into forms that can be executed by
computer hardware.

364	 Glossary

Project  A project is a collection of program
files and other resources that can be
brought together to produce a single
assembly that can be deployed as part of
a solution to a problem. XNA Game Studio
manages projects and also brings a number
of projects together to create a single
solution.

Property  Properties are extremely useful and
make your code a lot cleaner. Essentially, you
can have code like the following:

x.Width = 99;

This looks like an assignment to a member
of a class, but it can be much more than
that and can result in additional code
running. The Width property could be
managed like this:

class ThingWithWidth {

 private int widthValue;

 public int Width

 {

 get

 {

 return widthValue;

 }

 set

 {

 widthValue = value;

 }

 }

}

When a program performs the assignment
to the property, the set portion (the “setter”)
runs. The value keyword is set to the
value of the incoming property. This set
code performs a simple assignment to the
widthValue data member, but you could
validate the value and throw an exception
if you don’t like it. I’ve decoupled the name
of the property value from the value of
the property (one convention is to put the
word value on the end of the name of the
internal value). Of course, you don’t actually
have to have a value inside the class; you
could calculate a result rather than return
a member.

When setting the value, you can run
additional code whenever the value of your
property changes. This makes creating state
machines easy. Furthermore, you don’t
have to implement both a get and a set
behavior; you can have just one so that
you can create write-only (or read-only)
properties. You can have lots of getters for
the same property; perhaps you would like
to read the speed in kilometers per hour as
well as miles per hour.

The only downside is that you must be
aware that substantial amounts of code can
run when you perform innocent-looking
assignments.

Protected  A protected member of a class
is visible to methods in the class and to
methods in classes that extend this class.
It is kind of a halfway house between
private (no access to methods outside this
class) and public (everyone has access).
It lets you designate members in parent
classes as being visible in the child classes.

public  A public member of a class is visible to
methods outside the class. It is conventional
to make the method members of a class
public so that they can be used by code
in other classes. A public method is how a
class provides services to other classes.

Range  The range of a given type sets out the
largest and smallest values that can be held
in a variable of that type. Each C# type has
a particular range, and one of the tasks
for programmers is to select a type with a
range that is appropriate for the data they
wish to store.

Reference  A reference is like a tag that can be
attached to an instance of a class and has a
particular name. C# uses a reference to find
its way to an instance of the class and use
its methods and data:

class Player

{

 public string Name;

 public int Score;

}

	 Glossary	 365

Player p = new Player();

p.Score = 100;

The variable p is a reference variable that
can refer to instances of the class Player. It
is set to refer to a new Player instance. The
reference is then used to access the Score
field inside the instance referred to by p.

One reference can be assigned to another.
If you do this, the result is that there are
now two references that refer to a single
object in memory. In C#, references are
type-safe in that a reference to one
particular object, such as a Texture2D,
would not be allowed to refer to any other
type of texture. This means that when the
reference is followed to an object, the
actions performed with that object are
always appropriate.

SDK  See Software Development Kit (SDK).

Signature  A given C# method has a particular
signature that allows it to be identified
uniquely in a program. The signature is
the name of the method and the type and
order of the parameters to that method:

n	 void Silly(int a, int b) has the
signature of the name Silly and two
int parameters.

n	 void Silly(float a, int b)

has the signature of the name Silly
and a float parameter followed by
an integer parameter.

This means that the code

Silly(1, 2) ;

would call the first method, whereas

Silly(1.0f, 2) ;

would call the second.

Note that in C#, the return type of the
method is not part the method signature.

Software Development Kit (SDK)  A Software
Development Kit (SDK) is a collection of
tools and library resources that can be used
to create software on a particular platform.

Solution  XNA Game Studio brings together
one or more project files to produce a
single solution. The same project file can
be used in more than one solution, which
allows libraries of code to be created
and reused. Within a solution, one of
the projects is designated the startup
project and will be the one that runs when
the system produced by the solution
is started.

Source code  Source code is the text written
by programmers. It is stored in plain
text on the development computer and
converted by a compiler into the machine
code that actually performs the program
instructions on the target machine.

State  At any given instant, a running program
is in a particular state. Many game
programs contain variables that explicitly
manage the state of items in the game. It is
often the case that an enumerated type is
created to represent a particular state.

Statement  A statement is a single action that
a program performs. Statements in C#
programs are separated by the semicolon
(;) character.

static  In the context of C#, the static
keyword makes a member of a class part
of a class rather than part of an instance of
the class. This means that you don’t need to
create an instance of a class to use a static
member. It also means that static members
are accessed by means of the name of their
class rather than a reference to an instance.
Static members are useful for creating class
members that are to be shared with all the
instances, such as currency conversion rates
for all the accounts in a bank.

string  The string data type lets programs
work with strings of text. The string
is held as a one-dimensional array of
characters. Strings can be used with
the + operator, which cause them to be
concatenated together. String literals
are denoted in a program enclosed in

366	 Glossary

double quotes. A string literal can contain
control characters; see the Char entry in
this glossary for details of these. Here’s an
example of strings in code:

string firstname = "Rob";

string surname = "Miles";

string fullname =

 firstname + " " + surname;

Structure  A structure is a collection of data
items. It is managed by value, not by
reference, and struct contents are copied
on assignment:

struct Particle

{

 public int X;

 public int Y;

}

Particle position;

position.X = 99;

position.Y = 00;

Particle[] Smoke = new

Particle[1000];

The Particle structure simply holds the
X and Y positions of a particle. Because
it is a struct, I can declare a variable of
type Particle, and an instance is created
automatically. The Smoke array, which
contains 1,000 particles, is also created
automatically. There is no need to use new
to create any Particle instance.

Structures are also passed by value into
methods. Structures are useful for holding
a simple set of related data in a single
unit. They are not as flexible as objects
(which are managed by reference), but
they can be more efficient to use because
accessing structure items does not require
a reference to be followed in the same way
as for an object. An array of struct values
is stored in a single block of memory that
contains a row of the items. An array of
items managed by reference (for example,
instances of a class) is stored as an array of
references, with each element in the array
able to refer to one instance.

Subscript  A subscript is a value that is used
to identify the element in an array. It must
be an integer value. Subscripts in C# always
start at 0 (this identifies the initial element
of the array) and extend up to the size of
the array minus 1. This means that if you
create a four-element array, you get hold
of elements in the array by subscript values
of 0, 1, 2, or 3. The best way to regard a
subscript is that it is the distance down the
array that you are going to move to get
the element that you want. This means that
the first element in the array must have a
subscript value of 0.

switch  The switch construction allows a
program to select one option from several
based on a control expression. Switches
are often used to select particular behavior
based on the value of an enumerated type.
Here’s an example:

switch (state)

{

 case GameState.titleScreen:

 drawTitle ();

 break;

 case GameState.playingGame:

 drawGame();

 break;

 case GameState.highScoreDisplay:

 drawHighScore();

 break;

 default:

 doShowError();

 break;

}

The switch construction uses the value
of the control expression to decide which
option to perform. It executes the case
that matches the value of the control
expression. The break statement after the
call of the relevant method is used to stop
the program running on and performing
the code that immediately follows. In the
same way as you break out of a loop, when
the break is reached, the switch is finished
and the program continues running at the
statement after the switch.

	 Glossary	 367

Another useful feature is the default
option, which gives the switch somewhere
to go if the switch value doesn’t match any
of the cases available.

this  The this keyword means “a reference
to the current instance.” Its use is implied
within methods in classes:

class Player

{

 public string Name;

 public int Score;

 public void IncreaseScore ()

 {

 this.Score = this.Score + 1;

 }

}

It would be possible to write Score rather
than this.Score in the IncreaseScore
method because the compiler inserts this.
automatically if required.

The this reference can also be used to
pass an instance as a parameter in a call to
another method:

DisplayScore(this);

The DisplayScore method accepts
a reference to a Player as a parameter.
It can be called from a method in the
Player class to display the score of that
player instance.

Type  In C#, all data items have a particular
type associated with them. Some types are
built into the C# language. These types,
such as int, float, and bool, are available
to all programs written in the language.
Other types can be added from libraries,
such as DateTime. Finally, you can create
your own types to hold a collection of
data and behaviors that are specific to the
problem at hand.

The C# compiler ensures that whenever
variables of different types are used
together, there is no potential for errors to
occur or data to be lost. For example, an
attempt to move a value from a variable of

floating-point type into an integer results
in the compiler generating an error unless
programmers use a cast to indicate that
they are aware of the issue, and in this
context, the action is valid. Type checking
is performed at compile time (which is
called static type checking) and also when
the program runs. This means that even if
the programmer uses a cast to force one
thing to be used as another, at run time
any inappropriate mixing of types would
be rejected. This extra stage makes C#
programs much safer, but the extra run-time
type checking slows down the program.

Type-safe  We have seen that C# is quite fussy
about combining things that should not be
combined. Try to put a float value into an
int variable, and the compiler rejects the
code. The reason for this is that the designers
of the language have noticed a few common
programming mistakes and have designed
for these mistakes to be detected before
the program runs, not afterwards when it
has crashed. One of these mistakes is to use
values or items in contexts where it is either
not meaningful to do so (such as putting a
string into a bool) or where doing so could
result in losing data or accuracy (such as
putting a double into a byte). This kind of
fussiness is called type safety, and C# is very
big on it. Some other languages are much
more relaxed when it comes to combining
things, working on the assumption that the
programmer knows best. They assume that
just because code has been written to do
something, that thing must be the right
thing. But C# is not that way; and neither
am I. I think it is important that developers
get all the help they can to stop them doing
stupid things, and a language that stops you
from combining things in a way that might
not be sensible is a good thing in my book.

Of course, if you really want to impose your
will on the compiler and force it to compile
your code in spite of any type-safety issues,
you can do this by using casting.

368	 Glossary

using  The word using can serve as either
a compiler directive or a keyword in
a program.

C# provides the using directive, which you
can use as follows:

using Audio;

The using directive must appear at
the start of a source file. It identifies a
namespace that is to be used to resolve
the names of classes in that file. If the
Audio namespace contains a class called
Device, I could add a using directive to
my program so that I can create instances
of Device without having to add Audio to
qualify the name.

I can still use other Device classes, such as
Graphics.Device, but I need to give its
fully qualified name. You can add multiple
using directives at the start of a source
file; when you create a new project, you
often find that a number of them have
been added automatically. If there is a
name clash (for example, you use two
namespaces that each contain a class called
Device), the compiler requires you to use
the fully qualified name for that particular
class. It can also be sensible to use the fully
qualified name in circumstances where you
want a reader of the program source to
identify easily where a class is defined.

C# provides the using keyword, which lets
you state precisely where in a program a
variable is being used:

using (PongGame game = new

PongGame())

{

 game.Run();

}

The using keyword is followed by the
declaration of a variable to be used in the
block which follows the using statement.
When the block is complete, the garbage
collector knows the variable is no longer

required and can be removed. Without the
using statement, the Garbage Collector
would have to deduce that there were no
remaining references to the variable game
in the preceding code.

Value type  A value type holds a simple value.
Value types are passed as values into
method calls, and their values are copied
on assignment; that is, x = y causes the
value in y to be copied into x. Subsequent
changes to the value in x do not affect the
value of y. Note that this is in contrast to
reference types, where the result of this
assignment would be that x and y refer to
the same instance.

Variable  A variable holds a value that is being
used by a program. A given variable has a
unique identifier and is declared as having
a particular type. Variables can be local to
a block or they can be members of a class.

Virtual method  I can call a method (a
member of a class) to do a job. Sometimes
I may want to extend a class to produce a
child class that is a more specialized version
of that class. In that case, I may want to
replace (override) the method in the parent
with a new one in the child class. For this to
take place, the method in the parent class
must have been marked as virtual. Only
virtual methods can be overridden. Making
a method virtual slightly slows down access
to it because the program must look for
any overrides of the method before calling
it. This is why not all methods are made
virtual initially.

void  A void method performs a task but does
not return a value. A programmer who
wants to create a method that does not
return a value can tell the compiler this by
making the type of the method void.

while  The while keyword is used in looping
constructions which are described in the
do – while item in this glossary.

	 Glossary	 369

Widening  Widening is the reverse of
narrowing. When a value is widened, it
is moved from a type with a narrower
range and precision into one that has
a wider range, such as from the byte type
(with a range of 0 to 255) into an integer
type (with a range of 2, 147, 483, 648 to
2, 147, 483, 647). The compiler is quite
able to produce code that performs this
conversion because there is no chance of
data being lost.

Workspace  A workspace is analogous to
an XNA Game Studio solution in that it
contains programming resources and
projects that are used to create a solution.

Xbox Live  Xbox Live is a networking solution
for Xbox 360 and PC games. Gamers pay a
subscription that gives them an identity on
the Xbox Live network and allows them to
engage in network play using Xbox games.

They can also download game demos and
other content that is then stored on the
hard disk of their Xbox 360. An Xbox Live
account is required if you wish to obtain an
XNA Creators Club membership.

XNA  See Microsoft XNA.

XNA Creators Club  If you want to run
your Microsoft XNA programs on an
Xbox 360, you must be a member of
the XNA Creators Club. Members of the
club pay a membership fee, and their
Xbox Live account is extended to include
XNA game development. XNA Creators Club
membership also gives you access to extra
sample programs and the Creators Club
forums. You can find out more at
http://creators.xna.com. If you want to create
and run your XNA programs on a Microsoft
Windows PC or Zune, you don’t have to be
a member of the Creators Club.

		 371

Index

Symbols and
Numbers
-- operator, 82, 84
! (NOT) logical operator, 124
command, preprocessor, 113
&& (AND) logical operator, 109, 174
* (multiplication operator), 174
/ forward slash character, 23–24,

194, 241
/y1#/y0define directive, 113
/y1#/y0endif directive, 113
/y1#/y0if directive, 113
/y1#/y0region compiler directive, 73
; (semicolon), 23, 61
[] (square brackets) array value, 133
[] property, 146
| | (OR) logical operator, 54, 109
: (colon), 269
++ operator, 34
+= operator, 324
< (less than) logical operator, 98
= (equals operator), 25–26, 40, 145
= = (comparison operator), 40,

49–50
> (greater than) logical operator, 55
2-D vectors, 89–92
3-D text creation, 95–99, 101–03

A
Abs method, 222
absolute value, 222
abstract classes, 278–81
abstraction, 277–78, 281
AbstractSprite class, 278–81
access modifiers, 213
actions, 277
Add Existing Item - Content

dialog box, 70–71
adding sounds, 117–19
linking to resources, 72

Add method, 290
addresses

broadcast, 308
network, 308

AI (artificial intelligence), 293
algorithms, 36, 130, 152–53
alpha channel value, 102
AND (&&) logical operator, 109, 174
architecture, 70

code design, 111

args (argument) parameter, 197–98
array references, 144–45, 154, 223
arrays, 132

as lookup tables, 136–37
as offices, 145–47
bounds, 134
data, 133–34
elements, 132–34
one-dimensional, 132
references and, 149
registering key presses, 143
scanning, 134–35
structures, 145–47

artificial intelligence (AI), 293
aspect ratio, 80, 203
aspectRatio variable, 203
assets, 67, 191–94
attract mode. See title screens
Audacity (program), 115–25
audio. See sound
avatars, 311

B
Back button, 14, 33–34, 53,

56–57, 59, 331
background, 242–43, 259
background color, 25–27, 32–35
background music, 121–26
Background reference variable, 262
BackgroundSpriteClass, 261–62
BackgroundSpriteStruct

structure, 260
backslash (\)character, 157
base (key word), 272–73
base method, 285
BaseSprite Class, 266–69

constructors, 282–85
BatSpriteStruct, 251–53
behaviors

classes and, 27–28, 251, 266, 280
interfaces and, 301
looping, 98

bits, 35, 307
blocks, 50–51, 277. See also method

body
for loop, 97–98

blue screen, 14, 23, 123
BMP (Windows Bitmap) images, 66
body, method. See method body
bool variables, 37, 153–54, 244
Boolean expressions, 37–38, 54

bouncing behavior, 206–08, 218–20
Bouncing Cheese, 206
braces ({ }) and blocks, 23
brackets and blocks, 23
Bread and Cheese Pong project, 312

states, 319
Bread and Cheese project, 189–91

methods in, 256–57
Bread and Cheese Sprite

Structures, 257
break (key word)

for loops, 154–55
switch statement with, 156

breakpoints, 175–76, 220–21
broadcast addresses, 308
Broken Jake Center Zoom, 184–86
Broken Reaction Timer Game, 130
bugs, 98–99

finding, 42–43, 59–61
floating point number, 179–80
reaction timer, 130–31

Button-Bash Test sample project, 113
Button-Bashing Mob project, 105

counting presses, 107–09
data, 106
displaying values on screen, 107
starting, 106
Update method, 106

ButtonState.Pressed value, 50–52
byte variables, 31
bytes, 31, 35, 143

C
C#, 5

array bounds, 134
arrays, 132
backslash (\) character, 157
break (key word), 154–56
classes. See classes
compiler. See compiler
creating methods in, 169–71
debugging. See debugging
file extensions, 22, 199
I convention, 302
interfaces, 301–04
Main method, 50
null reference, 123
reference types, 149
references, 145
removing unwanted objects, 147
to start game, 194

372	 call statements

call statements
Update method, 37
XNA engine and, 34

calls, 309–10
constructors, 286–88
methods and performance, 28
of methods, 30

casting, 181–82, 202, 204
character designs and font files,

85–86
Chat messages, 328
CheckCollision method, 27,

254–56, 274
child classes, 266–67, 269, 278

constructors, 284–85
class files, renaming, 199–200
class hierachies. See

hierarchies, class
class members

key words and, 251
static, 288

classes, 27, 46–47. See also specific
classes

abstract, 278–81
behaviors and, 27, 251, 266, 280
creating, 261
games and, 27
implementation of interfaces, 302
members, 29–30
references and, 263
renaming, 199
static, 196
structures and, 260

Clear method, 24, 26–27, 29
client behavior, 330
clock project. See Giant

Clock project
code

compilation, 13–14. See also
compiler

reuse of, 69–70, 260
testing, 111–14, 173–74
turning on and off lines of, 321
well-written, 241

code design, 235–36
code regions, 240–41
code review, 281–82
cohesion, 250–51, 253
collisions

checking for, 27, 256, 274
client/server checking for,

327, 330
creating, 254–56
handling, 218–20

colon (:), 269
Color Nerve game, 51–54, 83
Color structure, 27
color values

assigning, 25–27

controlling, 27
storing, 24–25

colors
drawing, with intensity variables,

32–33
making different, 24–27
transparent, 101–03
transparent vs. solid, 97
updating, 33–34

comments, 23–24, 241
comparative condition, 39–40
comparison operators, 40, 49–50
compilation

conditional, 113, 321
source code, 13–14

compilation errors, 13
abstract class, 278
constructor, 284
naming, 195–96
narrowing, 180–81, 202

compiler, 13–14, 25, 106
C# types, 180
commands, 113
error messages, 179–80
errors, 13
memory, 31
preprocessor, 113
using directive, 195–96, 198,

208, 222
warnings, 38–39

compiler code, 60
compiler directive, 195
components, 300–01
conditional compilation, 113, 321
conditional statements

else part, 39
if condition, 37–38
IsKeyDown method, 52
testing, 39–40

constructors, 282–85
content, 67, 75
Content directory, adding to, 70–72
content folder, 192
content management, 10
Content Management Pipeline, 73
Content Manager, 10

folders, 193
font loading, 87, 89
reference file, 88
sound files, 119

continue button, 177
control characters, 157
control expressions, 156
control keys, 53
controls, designing and input

detectors, 109
copyright law, sound sample, 116
costs, game development, 114
Count method, 290–91

counter variable, 134
coupling, 253–54
Create Directory For Solution

option, 68
Create New Profile, 314–16
Creators Club, XNA, 6–8, 11, 311
cs. file extension, 22, 199. See also

Program cs. file
cumulative errors, 187

D
data, 31

arrays, 133–34
game world, 28–31
memory overflow, 35–36
private, 251, 270
reading, from player, 329
storing in memory, 31

data entry shortcuts, 82–83
data integrity, 328
data protection, 270
data signals, 307
data types, 265
data values, 35. See also values
datagrams, 309–10
date and time values, 93–94
DateTime class, 195
DateTime string methods, 94
DateTime structure, 93–94
DateTime.Now property, 93–94, 102
DeadlySprite class, 270–75
debugging, 42–43, 59

breakpoints, 175–79
C# programs, 175–79
running program, 220–23

decision making, program, 37
declaration, variables, 24–25,

31, 145
of delegates, 323

decoding, 156
delegates, 323–24
destination, 96
detectors. See edge detectors;

level detectors
directives, 113

compiler, 195–96, 198, 208
directories, 70, 191
directory structure, 68
display adapter viewpoint

properties, 201
display creation, 21–22

color value setting, 25–27
color value storage, 24–25
full screen, 81–82, 201
statements, Draw method, 23–24

display, overscan, 83
displayHeight variable, 185–87,

201–02, 207–08

	 gamer profiles	 373

displayWidth variable, 185–87,
201–02, 207–08

Dispose method, 324
division

integer, 182–83
operator (/), 174

do . . . while loop construction, 99
DoAdd method, 323
double precision floating-point

numbers, 202–03
double type, 202, 265
D-pad

role selection, 322, 325
Zune, 51, 119

Draw behavior, 27
Draw method, 89–92, 164

background color, 26
BatSpriteStruct, 251
color updating, 32–33
DeadlySprite class, 271
for added objects, 224
game class, 80
game world data, 28–29
image textures, 73
messageString, 150
multilple text strings, 95
spriteBatch variable, 79–80
statements in, 23–24
textures, 80
using member variables, 32–33
vs. Update method, 27–28
winner name display, 137

DrawBackground, 244–45
drawing ratio, 203
DrawString method

loop construction, 98, 100
multilple text strings, 95–96
new line, 157

DrawText method, 89–92
message display, 230–31

Drum Pad project, 115
creating, 115

Drum Sounds, 119
Drumpad with Music project, 124

E
edge behavior, 220
edge detectors, 109

code, 108–09
multiplayer games, 109–11
sound playback, 120

edge-triggered events, 142
elements, array, 132–34
else part, conditional statements,

39, 56
encapsulation, 253
EndGame method, 324
ending programs, 33–34

enumerated types
game state, 244, 319
overview, 144

equals operator (=), 25–26,
40, 145

error messages, 35, 179–80
out-of-memory, 100

errors
casting, 181–82
compilation. See compilation

errors
compiler, 38
cumulative, 187
exception, 76

escape key, 53
EventHandler method, 323–24
events, 142, 322–24
exceptions, 76, 100. See also bugs;

also errors
NullReference, 123, 261, 280

Exit method, 53, 56–57
expressions

Boolean, 37–38, 54
control, 156
gozzinta, 96
types, 182–83

Extensible Markup Language (XML)
file format, 88–89, 92–93

Extract Method, 236–37

F
Fade from Black sample code, 36
false values. See true/false values
fields

C#, 78
data, 265
in structures, 212–13
modifiers, 213
objects, 145, 250
public and private, 213
width and height, 164

file directory, 70
file extensions, 22, 199. See also

Program cs. file
sound files, 117

Fixed Reaction Timer project, 131
flags, 153, 232–33
float type, 179, 187, 202, 265
floating-point numbers, 179,

181–82, 186, 202
double precision, 202–03

floating-point values, 181–83,
186–87

folders, 191–94
font

changing properties, 92–93
drawing, 89–92
files, 85–86

loading, 89
resource addition, 86–87

FontName, 92–93
for loops

added objects, 224
array subscripts in, 133–34
debugging, 99–100
drawing, 97
nesting, 152
neverending, 99–100
repeating statements, 97–99

foreach loop constuction, 291, 325
forward ( / ) slash character,

comments and, 194, 241
foundIt, 152–53
fraction value, 179
fraction variable, 176–79
fractions, 174, 179, 181–82
framework, 5
fully qualified names, 196

G
game design, 254
game lobby, 319, 325–26
game objects, 256–57

as classes, 266–67
as structures, 266

game world data, 28–31
Game.ico, 69
gamepad

as input device, 21
Back button, 14, 33–34, 53, 56–57,

59, 331
classes, 46–47
controlling sound playback,

121–22
keyboards and, 53–54
movement control, 214–15
PC connection, 7
reading, 46–47
role selection, 322
Start Button, 106
status, 48–49
stopping a program, 14, 33–34
testing status, 49–50
USB (Universal Serial Bus), 21
vibration, 54–59
wireless, 7, 21, 57–58

GamePad class, 48–49, 55
GamePad Racer, 58–59
GamePadState class, 46
GamePadState structure, 48–50

button state, 49–50
IsConnected property, 110–11
Thumbsticks property, 214–15

game play, networked, 311
Gamer class, 317
gamer profiles, 313

374	 GamerJoined property

GamerJoined property, 324
GamerServicesComponent, 313–14
gamertags, 311, 317–18, 325
games

classes and, 27
creating in XNA Game Studio, 68
deploying to devices, 18
ending programs, 79
playing the, 326
programming, 22
startup, 78
stopping a, 53
storing, 15

GameSprites list, 291–92
GameSpriteStruct structure, 212–13,

216–17, 226, 251
GameState, 244–45, 319–20
GameThumbnail.png, 69
garbage collector, 147, 198, 264
generic methods, 75–76
getPercentage method, 169–75
GetPressedKey method, 143
GetPressedKeys method,

144–45, 149
GetState method, 48–49
Giant Clock project, 85, 95
gozzinta operators, 26, 40, 96
GPU (graphics processor unit), 79
graphics, 66

creating game, 190
loading, 73
sprite, 76

graphics processor unit (GPU), 79
GraphicsDevice, 81–82, 250
GraphicsDevice class, 22, 27
GraphicsDevice variable, 82

zooming
greater than (>) logical operator, 55
grouping, 212–14
Guide, 313, 317–18, 321

H
header, method. See method header
hierarchies, class, 266–67

base (key word) in, 273
building, 269
constructors in, 284

high score
code, 88–89
namespaces, 196

high-resolution images, 66
hitting. See breakpoints; collisions
Home key, 313–14, 316
host system, 326

role selection, 322
waiting for, 325

hostSessionGamerJoined
method, 323

I
I convention, 302
icons, game program file, 69
IDE (Integrated Development

Environment), 6
identifiers

lowercase/uppercase letters in, 79
method header, 170
namespaces, 195
refactoring, 201, 237–39
variables, 25, 145

if statements, 33–34. See also
conditional statements

blocks, 50
else part, 39, 56
testing, 49–50
true/false values, 38

image manipulation, 67, 163–68
images, 65

formats, 66–67
high-resolution, 66
lossy, 66
percent calculation method,

168–79
placement on screen, 164
retrieving, 73
scaling, 77, 203–04
sizing, 81–82
sprite. See sprites
storing, 66
textures, 73–76
transparent, 103
zooming in, 163–64
zooming out, 165–68
Zune, 225

Images directory, 192
index, element, 133
Initialize method

instances in, 262
overscan display, 208
parameters and, 170
rectangle, 78–79
rectangle size, 170
screen size, 201

InOrder message, 328
input, player, 45
InputValue, 174
installation, IDE and XNA, 6
instances, 47

array, 132–33
new (key word), 145
references to, 263–64

int type, 265
int variable, 106, 143, 148, 178
integer type errors, 181
integers, 132, 202
Integrated Development

Environment (IDE), 6
Intellisense, 82–83, 241, 272

interfaces, 301–04
behaviors and, 301
implementation, 303

Internet connection, 7
Internet service provider (ISP), 309
internetwork protocol (IP), 310
Intersects method, 218
IP (internetwork protocol), 311
IsConnected property, 111
IsDataAvailable property, 329–30
isDeadly property, 271–72
IsKeyDown method, 52, 142–43
ISP (Internet service provider), 309
ISpriteBasedGame, 302

J
JakeDisplay Bad Zoom Out sample

code, 167–68
JakeDisplay sample code, 80
JPEG (Joint Photographic Experts

Group) format, 66

K
key presses, 142–43
key word, 145
keyboards

arrays, objects. and references,
144–56

gamepad and, 53–54
keys type, 143–44
PC, 7
programming code, 52
rollover, 142
USB (Universal Serial Bus), 70, 141

KeyboardState, 52
KeyboardState structure, 143
keyCount integer, 146
keys

character decoding, 155–56
displaying, 149–50
presses, detecting, 143, 151–54
presses, registering, 142–43
shift, 156

keys type, 143, 156
keys values, 156
keyState variable, 143
keyString, 156
KeyViewer, 150
KillerSprite Class, 286–88

chase, 295
random number generator, 288

Kootenay, 87

L
layer++ update statement, 98
layers, loop construction, 97–99

	 PC	 375

LED (light emitting diode), 307
Length property, 146, 291
less than (<) logical operator, 98
level detectors, 109, 142
life counter, 231–32
light emitting diode (LED), 307
links, adding to resources, 72–73
list collection, 289–91

Remove method, 292
Load method, 75
LoadContent method, 74–75, 78,

193. See also Initialize method
BatSpriteStruct, 251
font loading, 89, 230–31
sound cues, 119

LoadGraphicsContent, 204
loading screen, Xbox 360, 32
lobby display, 319, 325–26
local level networks, 310–11
localHost, 329
localization, 94
LocalNetworkGamer reference, 328
logical operators

AND (&&), 109, 174
greater than (>), 55
less than (<), 98
NOT (!), 124
OR (| |), 54, 109

lookup tables
arrays as, 136–37
player, 136

loops. See also for loops; also
foreach loop constuction

do while and while, 99
in Play method, 124

lossy images, 66
lowercase/uppercase letters

identifiers, 79
variables, 144

M
Main method, 194, 197

parameters, 197–98
XNA game, 198–99

Math class, 222
media, streaming, 310
MediaPlayer class, 125–26
members, class, 29–31, 270
memory

allocation, 147
data storage, 31
object storage, 24, 145–49
overflow, 35–36

Message Board project, 141, 158
message boards, 141
messages

addressing, 308
objects and, 256–57
on computer networks, 308–09

routing, 309
settings, 328

method body, 169–71
getPercentage method, 174–75

method header, 170
getPercentage method, 172

methods, 22–23, 31, 145. See also
specific methods

adding to game class, 169–70
calling, 170–71
generic, 75
organization of, 256
overriding, 269, 272
parameters, 197–98
percent calculation, 169–75
public, 251
renaming, 236–39
static, 197
testing, 172–74

microphone, sound recording, 115
Microsoft .NET Framework

DateTime structure, 93–94
random and pseudorandom

numbers, 286
Microsoft Cross-Platform Audio

Creation Tool (XACT), 115, 124
Microsoft Paint, 67
Microsoft Visual C# 2008 Express

edition, 6
Microsoft Visual Studio, 10

debugging using, 60
Intellisense, 82–83, 241, 272
toolbars, 14

Microsoft Windows PC Game.ico, 69
mistakes. See errors
Mob Reaction Timer project, 127
modifiers, 213
MoodLight project, 12–13

code for, 40–41
movement, controlling, 206,

222–23, 273–74
Thumbsticks property, 214–15

MP3 sound files, 117, 125
multiplayer games, 110–14, 311–13
multiplication operator (*), 174
music, playing, 125–26
musicInstance variable, 122–24
MyAge class, 147–48
MySprite class, 278–80

N
namespaces, 195–96

fully qualified names, 196
high score, 196
identifiers, 195

narrowing, 180–81, 202
nesting, for loops, 152
Networked Pong Game, 331
new (key word)

array creation, 133, 262
instances, 145

newline character, 157–58
Next method, 287–88
None message, 328
NOT (!) logical operator, 124
NOW property, 93–94
nowColor, 101–02
null references, 121, 123, 262
numbers. See floating-point

numbers; fractions; integers

O
objects, 145, 250

adding, 211, 223
connecting, 253
container, 257–59
creating, 201
designing interactions of, 256
game. See game objects
graphical. See sprites
linking, 254–56, 304
removing unwanted, 147

oldKeys array reference, 151–54
oldKeyState variable, 143, 148, 154
operand, 34
operators, 174

comparison, 40, 49–50
defined, 34
gozzinta, 26, 40, 96
logical. See logical operators

OR (| |) logical operator, 54, 109
organization

in XNA Game Studio, 191–94
programming, 257

out parameter, 329
overflow, 35–36
overscan, display, 83, 206–08

P
PacketReader class, 327, 329
PacketWriter class, 327
Paint.NET, 67, 190
pan, sound, 124
parameters

argument, 197–98
defined, 48–49
Initialize method, 170
out, 329
value and reference, 216–17

parent class, 266–67, 269
abstract, 279–80
constructors, 284–85

pausing, 122–23
PC

gamepad, 7
localization, 94
networking to Xbox 360, 311

376	 peer-to-peer network play

running XNA games, 313
sign in for networked play, 313–14
System Link, 311
Xbox connection, 10
Zune connection, 10

peer-to-peer network play, 326
percent calculation method, 168–79
picture display, 65–67
picture elements. See pixels
Pictures directory, 70
Pipeline, Content Management, 73
pitch, 124
pixels, 66, 77
platforms, selecting, 18
Play method, 120–21

looping, 124
MediaPlayer class, 125

play mode, 144
playback control, sound, 121

MediaPlayer class, 125–26
parameters, 124
pausing, 122–23
starting, 121–22

player, role selection, 325
PlayingAsHost state, 326
PlayingAsPlayer state, 326
playingGame state, 244–45
PNG (Portable Network Graphics)

format, 66
preprocessor, compiler, 113
pressedKeys array reference,

145–48, 151–54
pressedKeys variable, 147, 152–53
pressedKeys.length, 146
pressedKeys[i], 156
private (key word), 213, 251

class members, 270
profiles, gamer, 314–17
Program cs. file, 194–95
programming, 3–4, 22

breaking down complicated
tasks, 168

ego and, 282
problems. See bugs; debugging;

errors
programs, computer, 15, 21
progression, 232–34
project directory, 70
project file

in XNA Game Studio, 69
project templates, 11
projects

adding resources, 86
copying, 15–16
creating, 10–12
empty, 14
organizing, 191–92
running, 12–14
stopping, 14

properties, 93, 145, 294–95

protected (key word), 270
protocols, 308, 310
pseudorandom numbers, 287
public (key word), 213, 251

class members, 270

R
radio signals, 307
Random class, 287
random numbers, 286–88
reaction timer, 127
real numbers. See floating-point

numbers
ReceiveData method, 329
rectangle class, collisions and, 218
Rectangle instance, 81–82
Rectangle structure, 78
Rectangle type

creating, 76–78
Intersects method, 218

rectangles, drawing, 163–68
Red Screen of Anger sample

code, 24
ref modifier, 217, 329
refactoring, 200–01

changing identifiers, 201, 237–39
creating methods from code,

236–37
reference, 123, 146

font file, 85–86
to parent/child classes, 281

Reference changes, 238
reference parameters, 216–17
reference types, 145, 149, 265
reference variables, 147–48

in classes, 261–62
references, 68

adding, 88
array, 132–33
classes and, 263
in programs, 264–65
interface, 303
multilple to an instance, 263
no, to an instance, 264
to abstract parent classes, 280–81
to methods, 323

regions, code, 240–41
registering key presses, 142, 151
Reliable message, 328
ReliableInOrder message, 328
Remove method, 157, 292
renaming methods, 236–39
resources, 73

adding, 70
adding as copies, 70–72
adding as links, 72–73
sharing, 72

results, 96
return (key word), 171

returning nothing, 171
role selection, 322, 325
roles, in network play, 322

selecting, 325
rollover, 142
Run method, 199
running a program, 12–14

S
scanning, arrays, 134–35
scores, 274–75

adding, 229
displaying, 135–37, 230–31
setting, in StartGame

method, 275
screen size

filling, 81, 201
title, 243

SDK (Software Development Kit), 5
Secret Vibration messages, 57–58
seed value, 287, 289
SelectingRole state, 322
semicolon (;)

extra, 61
in statements, 23

SendData method, 328–29
server, 326
set behavior, 294–95
setupScreen method, 208
setupSprite method, 216

array creation, 224
sprite visibility, 226–27

SetVibration method, 55–58
Shadow Clock project, 101–03
shadow effect, 101–03
shadows, creating, 101–03
shift keys, 156
sign in, network play

automatic, 316
creating a profile, 314–16
state, 321

signals, data, 307
signature, 170
SignedInGamers, 317–18
Silver Xbox Live, 7
sizing

fonts, 92–93
images, 81–82
sprites, 77, 201, 203

Software Development Kit (SDK), 5
Solution Explorer, 22, 69, 191, 199
solution file, in XNA Game Studio,

68–69
Song value, 125
sound, 115, 124

adding game, 298–300
background music, 125–26
capturing, 115–16

	 user display	 377

copyright law, 116
file types, 117, 125
playing, 120–21
storing, 117–19
XACT (Microsoft Cross-Platform

Audio Creation Tool), 124
sound playback, 121

pausing, 122–23
starting, 121

SoundEffect variable type, 119
SoundEffectInstance, 121–22
SoundInstance class, 122–23
source code. See also code

compilation, 13–14
renaming, 239

spacing, objects, 224
SpriteBatch class, 79–80
spriteBatch variable, 79–80
SpriteFont, 87, 89
sprites, 201

drawing, 79–80
moving, 204–06
positioning, 76–79
sizing, 77, 201, 203
tinting, 83–84

Starter Kits, 11
StartGame method, 259

DeadlySprite class, 271–72
setting scores in, 275

starting values, changing, 41–42
StartUp Project, 16–18
state machines, 245–47
State property, in MediaPlayer

class, 126
state, game

changes, 244–45
enumerated types, 244–45
network games, 319

statements, 23, 277
blocks, 50
blocks and, 23
call, 34, 37
conditional. See conditional

statements
Draw method, 23–24
empty, 61
repeating, 97–99
switch, 156

static classes, 196–97, 288
static methods, 222
stopping, game activity, 14, 53
storing

floating-point numbers, 179
keys type, 143
programs, 15

stretching images, 164, 167–68
strings

control characters, 157
drawing multiple text, 95
message, 149–50

structures, 24, 212, 260–61
subscript, element, 133, 146, 290
survival, adding, 231–32
switch statement, 156
symbols, test, 113–14
synchronization, 328
System Link, 311–12
System namespace, 195

T
target collections, 258–59
TargetRowStruct, 258
TargetVisibility, 258
TCP (Transport Control Protocol), 311
TCP/IP protocol, 311
television screens, overscan display,

206–07
tempAge variable, 148
templates, 241, 280
test symbols, 113–14
test-driven development, 172
testing

code for, 111–14
costs, 114
design, 173
getPercentage method, 172–75
importance of, 154
method, 172–75
multi-player game, 112–14
timer code, 131
values, 39–40
vibration intensity, 55

text
/y1as a/y0 resource, 85–86
creation, 3-D, 95–99, 101–03
decoding, 155–57
drawing, in game, 230–31
editing, 157–58
layout control, 157–58
reading, from a keyboard, 142–43
strings, drawing multiple, 95–101

Texture2D type, 73–75, 149
textures, 223

background, 242–43
loading, 73–74
name errors, 76

this (key word), 255–56
Thumbsticks property, 214–15
ticks, 205
time and date values, 93–94
timer creation, 127–30, 331

arrays, 132–37
timer variable, 127
title screens, 243–45, 259, 320
TitleSprite, 268, 284–85
TitleUpdate, 247
TODO comment, 23, 79
ToLongDateStringMethod, 94
ToLongTimeStringMethod, 94

ToLower method, 157
toolbars, Visual Studio, 14
ToShortDateStringMethod, 94
ToShortTimeStringMethod, 94
ToString method, 94, 150
ToUpper method, 157
tranparent images, 103
transparent colors, 97, 101–03
Transport Control Protocol

(TCP), 311
true/false values, 35, 39–40. See also

conditional statements
truncation, 202
type-safe, 323

U
Ultimate Mood Light sample

code, 42
Undo command, 239
Universal Serial Bus (USB), 70

gamepad, 21
keyboards, 141

UnloadContent method, 78–79
Update behavior, 211

DeadlySprite class, 273
TitleSprite, 268

Update method
BatSpriteStruct, 251
call statements, 37
DeadlySprite class, 274
display program, 164
for added objects, 224
game world data, 28–29
gamepad and keyboard, 53–54
Gamepad Racer, 58–59
gamepad status, 49–51
GetPressedKeys method, 149
keys, 149
life counter, 231–32
on network, 325
overview, 27–28
scoring, 229
state changes, 107–09
timers, 127–30
TitleSpriteStruct method, 259
using member variables, 33–34
vibration intensity, 55–56
width and height, 166
winners, 137
XNA Game Studio, 28–29

UpdateTitle method, 247
updating variables, 96
uppercase/lowercase letters

identifiers, 79
variables, 144

USB (Universal Serial Bus)
gamepad, 21
keyboards, 70, 141

user display, 317

378	 user profiles

user profiles, 314–16
using (compiler directive), 195–96,

198, 208, 222
using (key word)

in C# program, 197–98
with directives, 196

using statement, 198

V
value parameters, 216–17
value types, 145, 148–49,

265–66, 283
values

changing starting, 41–42
relationship to structures, 212
testing, 39–40

variable types, 119
variables, 73, 217, 277

declaring, 24–25
in structures, 213
local, 28
lowercase/uppercase letters, 144
reference, 147
types of, 25
unused, 50
updating, 96
viewing, 176

vectors, 89–91
vibration, 54–59
Viewport, 81–82
virtual method, 269
visibility

controlling, 226–28
sprite, 226–27

Visible field, 226–28
Visual C# 2008 Express edition.

See Microsoft Visual C# 2008
Express edition

Visual Studio. See Microsoft
Visual Studio

void type, 171
volume, 124

W
WaitingAsPlayer state, 325–26
warnings. See also bugs; also errors

compiler, 38–39
debugging using, 60–61

WAV files, 120, 125
Drum Pad project, 120

while loop construction, 99
Width property, 184
WiFi, 311
Windows Bitmap (BMP) format, 66

Windows Media Player, 118
Windows PCs. See PC
Windows Vista, 7
Windows XP, 7
WinnerName variable, 138
winners

determining, 132–38
displaying, 137

winnerSubscript variable, 136
WinnerSubscript variable, 136–37
winningValue variable, 135, 138
wire connections, 312
WMA files, 117, 125
wraparound values, 35
Write method, 328

X
X coordinate, 76–77, 89–92, 221
XACT (Microsoft Cross-Platform

Audio Creation Tool), 115, 124
Xbox 360, 7

adding to XNA Game Studio
Device Center, 8

gamepad. See gamepad
GameThumbnail.png, 69
image requirements, 66
keyboard and, 52
memory capacity, 31
multiple player sign ins, 317
networking to Windows PCs, 311
pixels, 77
running XNA games, 12
sign in, using XNA Game

Studio, 313
Xbox Live, 311
XML (Extensible Markup Language)

file format, 88–89, 92–93
XNA Creators Club. See Creators

Club, XNA
XNA Framework, 6, 117, 124
XNA Game Studio, 22

content, 68
creating a project in, 10–13
debugging in, 220
Draw method, 28–29
GamerServicesComponent,

313–14
GraphicsDevice, 81–82
Implement Class option, 278–79
Intellisense, 82–83, 272
keyboard, 141
Kootenay, 87
Main method, 198
managing gamer profiles, 313
MediaPlayer class, 125

organization, 191–92
PacketReader class, 327
PacketWriter class, 327
Program cs. file, 194–95
projects, 191
reading text from a keyboard,

142–43
refactoring, 200–01, 236–39
sign in, for networked play, 321
Solution Explorer, 69
solutions, 191
stopping a program, 14
templates, 241
Undo command, 239
Update method, 28–29

XNA Game Studio Connect, 7–8,
10, 12

XNA Game Studio Device Center,
8, 10

XNA Game Studio
breakpoints, 175
check, 6
continue button, 177

Y
Y coordinate, 76–77, 89–92,

215, 221
Yellow Screen of Peril sample

code, 27

Z
zero, setting gamepad to, 106
zoom

from center, 184–86
in, images, 163–64
out, images, 165–68
stopping, 184

zoom path behavior, 168
Zune, 4, 7–8, 321

adding to XNA Game Studio
Device Center, 8

button programming, 51
connecting to Windows PC, 10
drum sounds, 119
game sounds on, 300
GameThumbnail.png, 69
image requirements, 66, 80
image sizing, 225
image storage in, 72
multiple user profiles on, 318
network games, 331
running a program, 12
System Link and, 311–12
wireless adapter, 331

About the Author

Rob Miles
I wrote my first computer game on the original Commodore
PET in Microsoft Basic, having learned to program some
time before that at school, where I began by writing my
first programs on cards using a hand punch, posting them
off to a distant mainframe, and getting a message back
(two weeks later) that I’d omitted a semicolon. A good many
years have gone by since then. I’m still omitting semicolons,
but the turnaround has improved quite a bit. I’ve been at the
University of Hull in the United Kingdom for over 25 years
now, moving from the Computer Center to Electronic

Engineering to Computer Science departments where I teach programming (in C#, of course)
and software engineering, amongst other subjects. In my time, I’ve also had a hand in quite
a few industrial projects, and it is a matter of great personal pride to be the man who wrote
the software that puts the date stamps on Budweiser beer cans, among many other products.
I’ve also been known to turn out bad verse, the highlight of this being a whole page of
poetry for the Independent newspaper in Britain. I’m a Microsoft Most Valuable Professional
(MVP) for embedded devices, and I live happily in East Yorkshire with number-one wife Mary
(she calls me “husband zero”). Number-one children David and Jenny return home every
now and then so that we can play happy families properly. You can find out more about my
interesting life at http://www.robmiles.com.

What’s Next?
If you have made it this far, well done! At this point you know enough to write and run XNA
games. So now is the time to take your skills to the next level and start to make a name
for yourself. By now you should be a member of the Creators Club. If not you can join at
creators.xna.com. If you want to deploy games to your Xbox 360 you will have to upgrade
your club membership. If you are a student there are lots of ways you can do this for free.
Start by taking a look at project DreamSpark at www.dreamspark.com. You can find all
kinds of good stuff there, including copies of Visual Studio 2008 Professional edition. You
can also get a free one year Trial membership of the XNA Creators Club which lets you run
XNA games on your Xbox but doesn’t let you distribute games via Xbox Live. If you are not
a student you can also get a Trial membership by entering the Dream-Build-Play contest at
www.dreambuildplay.com.

And don’t forget that your C# expertise can be applied in lots of other ways too. Find out how
you can control robots using Microsoft Robotics Studio from www.microsoft.com/robotics/.
The Academic version of this development environment is a free download, and it is based on
the familiar Visual Studio environment. If you want to create web based C# business applications
(or perhaps even games) for use by anyone with a browser, get hold of Visual Web Developer
which is another free download at www.microsoft.com/express/vwd/. Finally, if really small
devices are your thing, take a look at the embedded development possibilities of the .NET Micro
Framework, a free download that lets you put your C# code into tiny platforms. Find out more
at www.microsoft.com/netmf. And remember that the copy of Visual Studio you already have on
your system can also create fully fledged applications that can run on Windows PCs.

At the start of the book I said that programming lets you bring your ideas to life. I hope that
by now you have seen how this is true, and I wish you all the best in taking your ideas and
making great programs out of them.

Rob Miles

	Cover
	Copyright Page

	Dedication
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	System Requirements
	Code Samples
	Support for This Book
	Questions and Comments

	Part I: Getting Started
	Chapter 1: Computers, C#, XNA, and You
	Introduction
	Learning to Program
	Becoming a Great Programmer

	How the Book Works
	C# and XNA
	Getting Started
	Installing the Development Environment and the XNA Framework
	Setting Up a PC to Run XNA Games
	Setting Up an Xbox 360 to Run XNA Games

	Writing Your First Program
	Creating Your First Project
	Running Your First Program
	Stopping a Program
	Storing Games on the Xbox 360 or Zune
	Running the Same XNA Game on Different Devices

	Conclusion
	Chapter Review Questions

	Chapter 2: Programs, Data, and Pretty Colors
	Introduction
	Making a Game Program
	Statements in the Draw Method

	Working with Colors
	Storing Color Values
	Setting a Color Value

	Controlling Color
	Games and Classes
	Classes as Offices
	Game World Data
	Storing Data in Computer Memory
	Drawing by Using Our Color Intensity Variables
	Updating Our Colors
	Memory Overflow and Data Values
	Making a Proper Mood Light
	Making Decisions in Your Program
	The Completed Mood Light
	Finding Program Bugs

	Conclusion
	Chapter Review Questions

	Chapter 3: Getting Player Input
	Introduction
	Reading a Gamepad
	Gamepads and Classes
	Finding a Gamepad
	Testing the Gamepad Status
	Zune Buttons

	Using the Keyboard
	Stopping the Game with the Escape Key
	Using a Gamepad and a Keyboard at the Same Time

	Adding Vibration
	Controlling the Vibration of a Gamepad
	Testing Intensity Values

	Program Bugs
	Conclusion
	Chapter Review Questions

	Part II: Images, Sound, and Text
	Chapter 4: Displaying Images
	Introduction
	Resources and Content
	Getting Some Pictures
	Content Management Using XNA
	Working with Content Using XNA Game Studio
	XNA Game Studio Solutions and Projects
	Adding Resources to a Project

	Using Resources in a Game
	Loading XNA Textures
	Positioning Your Game Sprite on the Screen
	Sprite Drawing with SpriteBatch
	Filling the Screen

	Conclusion
	Chapter Review Questions

	Chapter 5: Writing Text
	Introduction
	Text and Computers
	Text as a Resource
	Creating the XNA Clock Project
	Adding a Font Resource
	Loading a Font
	Drawing with a Font
	Changing the Font Properties

	Getting the Date and Time
	Making a Prettier Clock with 3-D Text
	Drawing Multiple Text Strings
	Repeating Statements with a for Loop
	Other Loop Constructions
	Fun with for Loops

	Creating Fake 3-D
	Creating Shadows Using Transparent Colors
	Drawing Images with Transparency

	Conclusion
	Chapter Review Questions

	Chapter 6: Creating a Multi-Player Game
	Introduction
	Creating the Button-Bash Game
	Level and Edge Detectors
	Constructing the Complete Game
	Adding Test Code

	Conclusion
	Chapter Review Questions

	Chapter 7: Playing Sounds
	Adding Sound
	Creating the Drum Pad Project
	Capturing Sounds with Audacity
	Storing Sounds in Your Project
	Using Sounds in an XNA Program
	Playing Background Music

	Conclusion
	Chapter Review Questions

	Chapter 8: Creating a Timer
	Making Another Game
	Reaction Timer Bug

	Finding Winners Using Arrays
	Creating an Array
	Using Data in an Array
	Scanning an Array
	Using an Array as a Lookup Table
	Displaying the Winner

	Conclusion
	Chapter Review Questions

	Chapter 9: Reading Text Input
	Using the Keyboard in XNA
	Creating the Message Board Project
	Registering Key Presses
	The Keys Type
	Enumerated Types

	Working with Arrays, Objects, and References
	Values and References
	Arrays as Offices
	Say Hello to the Garbage Collector
	Using References and Values
	Why Do We Have References and Values?
	References and GetPressedKeys

	Displaying Keys
	Detecting Key Presses
	Decoding Key Characters
	Using the Shift Keys
	Editing the Text

	Conclusion
	Chapter Review Questions

	Part III: Writing Proper Games
	Chapter 10: Using C# Methods to Solve Problems
	Introduction
	Playing with Images
	Zooming In on an Image

	Creating a Zoom-Out
	Updating the Drawing Rectangle
	Creating a Method to Calculate Percentages
	Returning Nothing Using void
	Debugging C# Programs
	Hitting a Breakpoint
	Using Floating-Point Numbers in C#
	The Compiler and C# Types
	Compilers and Casting
	Expression Types
	Stopping the Zoom
	Zooming from the Center

	Conclusion
	Chapter Review Questions

	Chapter 11: A Game as a C# Program
	Introduction
	Creating Game Graphics
	Projects, Resources, and Classes
	XNA Game Studio Solutions and Projects
	The Program.cs File
	Renaming the Game1 Class

	Creating Game Objects
	Sprites in Games
	Managing the Size of Game Sprites
	Moving Sprites
	Bouncing the Cheese
	Dealing with Display Overscan

	Conclusion
	Chapter Review Questions

	Chapter 12: Games, Objects, and State
	Introduction
	Adding Bread to Your Game
	Using a Structure to Hold Sprite Information
	Using the Gamepad Thumbsticks to Control Movement
	Improving Programs Using Methods
	Handling Collisions
	Making the Cheese Bounce off the Bat
	Strange Bounce Behavior
	Strange Edge Behavior

	Adding Tomato Targets
	Tomato Collisions

	Conclusion
	Chapter Review Questions

	Chapter 13: Making a Complete Game
	Introduction
	Making a Finished Game
	Adding Scores to a Game
	Adding Survival
	Adding Progression

	Improving Code Design
	Refactoring by Creating Methods from Code
	Refactoring by Changing Identifiers
	Creating Code Regions
	Creating Useful Comments

	Adding a Background
	Adding a Title Screen
	Games and State
	Using the State Values
	Building a State Machine

	Conclusion
	Chapter Review Questions

	Chapter 14: Classes, Objects, and Games
	Introduction
	Design with Objects
	An Object Refresher Course
	Cohesion and Objects
	Coupling Between Objects
	Designing Object Interactions
	Container Objects
	Background and Title Screen Objects

	Classes and Structures
	Creating and Using a Structure
	Creating and Using an Instance of a Class

	References
	Multiple References to an Instance
	No References to an Instance
	Why Bother with References?

	Value and Reference Types
	Should Our Game Objects Be Classes or Structures?

	Creating a Sprite Class Hierarchy
	The BaseSprite Class
	Extending the BaseSprite to Produce a TitleSprite
	Building a Class Hierarchy

	Adding a Deadly Pepper
	Creating a DeadlySprite Class

	Conclusion
	Chapter Review Questions

	Chapter 15: Creating Game Components
	Introduction
	Objects and Abstraction
	Creating an Abstract Class in C#
	Extending an Abstract Class
	Designing with Abstract Classes
	References to Abstract Parent Classes

	Constructing Class Instances
	Constructors in Structures
	Constructors in Class Hierarchies

	Adding 100 Killer Tangerines
	Creating a KillerSprite Class
	Positioning the KillerSprites Using Random Numbers
	Using Lists of References

	Adding Artificial Intelligence
	Chasing the Bread Bat

	Adding Game Sounds
	From Objects to Components
	C# Interfaces
	Creating an Interface
	Implementing an Interface
	References to Interfaces
	Linking Bread, Cheese, and Tomatoes
	Designing with Interfaces

	Conclusion
	Chapter Review Questions

	Chapter 16: Creating Multi-Player Networked Games
	Introduction
	Networks and Computers
	Starting with the Signal
	Building Up to Packets
	Addressing Messages
	Routing
	Calls and Datagrams
	Networks and Protocols

	Xbox Live
	Gamertags and Xbox Live
	System Link and XNA

	Bread and Cheese Pong
	Managing Gamer Profiles in XNA
	Ensuring a Gamer Is Signed In for Network Play
	Zunes and Gamer Profiles
	Creating a Game Lobby
	Network Games and State
	Playing the Game
	The Completed Game
	Zune Network Games

	Conclusion
	Making Games for Fun
	verysillygames.com
	Chapter Review Questions

	Answers to the Chapter Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

	Glossary
	Index
	About the Author
	End Page

